content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import pytest from app.routes import is_running_locally @pytest.mark.parametrize('url,expected_res', [ ('http://localhost:5000/test', True), ('http://127.0.0.1:5000/test', True), ('http://live.website/test', False), ])
[ 11748, 12972, 9288, 198, 198, 6738, 598, 13, 81, 448, 274, 1330, 318, 62, 20270, 62, 17946, 453, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 6371, 11, 40319, 62, 411, 3256, 685, 198, 220, 220, 220, 19203, 4023, 1378, 36750, 25, 27641, 14, 9288, 3256, 6407, 828, 198, 220, 220, 220, 19203, 4023, 1378, 16799, 13, 15, 13, 15, 13, 16, 25, 27641, 14, 9288, 3256, 6407, 828, 198, 220, 220, 220, 19203, 4023, 1378, 12583, 13, 732, 12485, 14, 9288, 3256, 10352, 828, 198, 12962, 198 ]
2.516129
93
from kivy.app import App from kivy.uix.button import Button from kivy import utils if __name__ == "__main__": MainApp().run()
[ 6738, 479, 452, 88, 13, 1324, 1330, 2034, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 16539, 1330, 20969, 198, 6738, 479, 452, 88, 1330, 3384, 4487, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 8774, 4677, 22446, 5143, 3419, 198 ]
2.62
50
from __future__ import absolute_import, unicode_literals from django.apps import AppConfig
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.72
25
import asyncio import json from typing import List from websockets.legacy.client import WebSocketClientProtocol from nbr.schemas.message import Content from nbr.schemas.result import ExecutionStatus, RunResult from nbr.schemas.session import Session from nbr.utils.message import create_message from nbr.utils.websocket import connect_websocket
[ 11748, 30351, 952, 198, 11748, 33918, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 2639, 11603, 13, 1455, 1590, 13, 16366, 1330, 5313, 39105, 11792, 19703, 4668, 198, 198, 6738, 299, 1671, 13, 1416, 4411, 292, 13, 20500, 1330, 14041, 198, 6738, 299, 1671, 13, 1416, 4411, 292, 13, 20274, 1330, 37497, 19580, 11, 5660, 23004, 198, 6738, 299, 1671, 13, 1416, 4411, 292, 13, 29891, 1330, 23575, 198, 6738, 299, 1671, 13, 26791, 13, 20500, 1330, 2251, 62, 20500, 198, 6738, 299, 1671, 13, 26791, 13, 732, 1443, 5459, 1330, 2018, 62, 732, 1443, 5459, 628 ]
3.587629
97
# env.unwrapped.get_action_meanings() #====================================================== # Agent classes #====================================================== ''' Info: Version: 1.0 Author: Young Lee Created: Friday, 16 August 2019 ''' # Import modules import os import re import sys try: get_ipython().system('pip install gym') get_ipython().system('pip install tqdm') get_ipython().system('pip install dropbox') get_ipython().system('pip install gym[atari]') except NameError: pass # get_ipython().system('apt-get install -y cmake libopenmpi-dev python3-dev zlib1g-dev') # get_ipython().system('apt-get install -y python-mpi4py') # get_ipython().system('pip install stable-baselines') # get_ipython().system('brew install cmake openmpi') # !pip install pandas # !pip install keras # !pip install matplotlib # !pip install gym[atari] try: from stable_baselines.common.atari_wrappers import WarpFrame except ModuleNotFoundError: try: from stable_baselines.common.atari_wrappers import WarpFrame except ModuleNotFoundError: from baselines.common.atari_wrappers import WarpFrame import gym from gym import spaces from gym.wrappers.atari_preprocessing import AtariPreprocessing from gym import envs from tqdm import tqdm import numpy as np import pandas as pd import random import dropbox from datetime import datetime from scipy.special import softmax import matplotlib.pyplot as plt from copy import deepcopy # %matplotlib inline # Import custom modules try: sys.path.append(os.path.dirname(os.path.abspath(os.path.join(__file__, '..')))) # 1 level upper dir sys.path.append(os.path.dirname(os.path.abspath(os.path.join(__file__, '..', '..')))) # 2 levels upper dir except NameError: sys.path.append('.') # current dir sys.path.append('..') # 1 level upper dir sys.path.append(os.path.join(os.getcwd(), '..')) # 1 levels upper dir sys.path.append(os.path.join(os.getcwd(), '..', '..')) # 2 levels upper dir from config.paths import main_dir import utility.util_general as gen from collections import deque from tensorflow.keras.models import Sequential from tensorflow.keras.models import Model from tensorflow.keras.layers import Input from tensorflow.keras.layers import concatenate from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras.layers import Conv3D, MaxPooling3D, AveragePooling3D from tensorflow.keras.optimizers import Adam, Nadam, RMSprop, SGD from tensorflow.keras.models import clone_model from tensorflow.keras import backend as K import tensorflow as tf # dtype = 'float16' # K.set_floatx(dtype) # K.set_epsilon(1e-4) # print(tf.__version__) # config = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=12, device_count = {'CPU': 12 }) # session = tf.compat.v1.Session(config=config) # K.set_session(session) # Suppress warnings import logging, os logging.disable(logging.WARNING) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" #------------------------------ # DQN Agent #------------------------------ # Define agent # Initialise # Model predicts the action values (Q-values) # Target network # Update target model # Story in memory # Epsilon greedy or Boltzmann action # Replay memory # Replay memory # Load # Save
[ 2, 17365, 13, 403, 29988, 1496, 13, 1136, 62, 2673, 62, 32604, 654, 3419, 198, 198, 2, 10052, 4770, 50155, 198, 2, 15906, 6097, 198, 2, 10052, 4770, 50155, 198, 7061, 6, 198, 12360, 25, 220, 220, 220, 220, 220, 220, 220, 198, 14815, 25, 220, 220, 220, 352, 13, 15, 198, 13838, 25, 220, 220, 220, 220, 6960, 5741, 198, 41972, 25, 220, 220, 220, 3217, 11, 1467, 2932, 13130, 198, 7061, 6, 198, 2, 17267, 13103, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 28311, 25, 198, 220, 220, 220, 651, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 11550, 11537, 198, 220, 220, 220, 651, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 256, 80, 36020, 11537, 198, 220, 220, 220, 651, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 4268, 3524, 11537, 198, 220, 220, 220, 651, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 11550, 58, 35554, 60, 11537, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 1208, 198, 2, 651, 62, 541, 7535, 22446, 10057, 10786, 2373, 12, 1136, 2721, 532, 88, 12067, 539, 9195, 9654, 3149, 72, 12, 7959, 21015, 18, 12, 7959, 1976, 8019, 16, 70, 12, 7959, 11537, 198, 2, 651, 62, 541, 7535, 22446, 10057, 10786, 2373, 12, 1136, 2721, 532, 88, 21015, 12, 3149, 72, 19, 9078, 11537, 198, 2, 651, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 8245, 12, 12093, 20655, 11537, 198, 198, 2, 651, 62, 541, 7535, 22446, 10057, 10786, 11269, 2721, 12067, 539, 1280, 3149, 72, 11537, 198, 198, 2, 5145, 79, 541, 2721, 19798, 292, 198, 2, 5145, 79, 541, 2721, 41927, 292, 198, 2, 5145, 79, 541, 2721, 2603, 29487, 8019, 198, 2, 5145, 79, 541, 2721, 11550, 58, 35554, 60, 198, 28311, 25, 198, 220, 220, 220, 422, 8245, 62, 12093, 20655, 13, 11321, 13, 35554, 62, 29988, 11799, 1330, 31382, 19778, 198, 16341, 19937, 3673, 21077, 12331, 25, 198, 220, 220, 220, 1949, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 422, 8245, 62, 12093, 20655, 13, 11321, 13, 35554, 62, 29988, 11799, 1330, 31382, 19778, 198, 220, 220, 220, 2845, 19937, 3673, 21077, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1615, 20655, 13, 11321, 13, 35554, 62, 29988, 11799, 1330, 31382, 19778, 198, 198, 11748, 11550, 198, 6738, 11550, 1330, 9029, 198, 6738, 11550, 13, 29988, 11799, 13, 35554, 62, 3866, 36948, 1330, 35884, 6719, 36948, 198, 6738, 11550, 1330, 551, 14259, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 4738, 198, 11748, 4268, 3524, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 629, 541, 88, 13, 20887, 1330, 2705, 9806, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 4866, 1330, 2769, 30073, 198, 2, 4064, 6759, 29487, 8019, 26098, 198, 198, 2, 17267, 2183, 13103, 198, 28311, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 705, 492, 6, 35514, 1303, 352, 1241, 6727, 26672, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 705, 492, 3256, 705, 492, 6, 35514, 1303, 362, 2974, 6727, 26672, 198, 16341, 6530, 12331, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 10786, 2637, 8, 1303, 1459, 26672, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 10786, 492, 11537, 1303, 352, 1241, 6727, 26672, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 492, 6, 4008, 1303, 352, 2974, 6727, 26672, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 492, 3256, 705, 492, 6, 4008, 1303, 362, 2974, 6727, 26672, 198, 198, 6738, 4566, 13, 6978, 82, 1330, 1388, 62, 15908, 198, 11748, 10361, 13, 22602, 62, 24622, 355, 2429, 198, 6738, 17268, 1330, 390, 4188, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 9104, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 23412, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 1673, 36686, 378, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 360, 1072, 11, 14258, 448, 11, 1610, 41769, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 34872, 17, 35, 11, 5436, 27201, 278, 17, 35, 11, 13475, 27201, 278, 17, 35, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 34872, 18, 35, 11, 5436, 27201, 278, 18, 35, 11, 13475, 27201, 278, 18, 35, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 40085, 11341, 1330, 7244, 11, 21877, 321, 11, 371, 5653, 22930, 11, 26147, 35, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 27530, 1330, 17271, 62, 19849, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 30203, 355, 509, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 2, 288, 4906, 796, 705, 22468, 1433, 6, 198, 2, 509, 13, 2617, 62, 22468, 87, 7, 67, 4906, 8, 198, 2, 509, 13, 2617, 62, 538, 18217, 261, 7, 16, 68, 12, 19, 8, 198, 2, 3601, 7, 27110, 13, 834, 9641, 834, 8, 198, 198, 2, 4566, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 16934, 2964, 1462, 7, 600, 430, 62, 404, 62, 1845, 29363, 1042, 62, 16663, 82, 28, 1065, 11, 3335, 62, 9127, 796, 1391, 6, 36037, 10354, 1105, 32092, 198, 2, 6246, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 7, 11250, 28, 11250, 8, 198, 2, 509, 13, 2617, 62, 29891, 7, 29891, 8, 198, 198, 2, 8105, 601, 14601, 198, 11748, 18931, 11, 28686, 198, 6404, 2667, 13, 40223, 7, 6404, 2667, 13, 31502, 8, 198, 418, 13, 268, 2268, 14692, 10234, 62, 8697, 47, 62, 23678, 62, 25294, 62, 2538, 18697, 8973, 796, 366, 18, 1, 220, 628, 198, 2, 1783, 26171, 198, 2, 360, 48, 45, 15906, 198, 2, 1783, 26171, 198, 2, 2896, 500, 5797, 198, 220, 220, 220, 1303, 20768, 786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9104, 26334, 262, 2223, 3815, 357, 48, 12, 27160, 8, 198, 220, 220, 220, 1303, 12744, 3127, 198, 220, 220, 220, 1303, 10133, 2496, 2746, 198, 220, 220, 220, 1303, 8362, 287, 4088, 198, 220, 220, 220, 1303, 43427, 33576, 31828, 393, 21764, 89, 9038, 2223, 198, 220, 220, 220, 1303, 23635, 4088, 198, 220, 220, 220, 1303, 23635, 4088, 198, 220, 220, 220, 1303, 8778, 198, 220, 220, 220, 1303, 12793 ]
2.796926
1,236
from fastapi_integration.current_user_resolvers.role_checkers import RoleCheckerFactory from galo_ioc import get_factory __all__ = [ "load", ]
[ 6738, 3049, 15042, 62, 18908, 1358, 13, 14421, 62, 7220, 62, 411, 349, 690, 13, 18090, 62, 9122, 364, 1330, 20934, 9787, 263, 22810, 198, 6738, 308, 7335, 62, 72, 420, 1330, 651, 62, 69, 9548, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 2220, 1600, 198, 60, 628 ]
2.811321
53
# Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Class representing instrumentation test apk and jar.""" import os from devil.android import apk_helper from pylib.instrumentation import test_jar from pylib.local.device import local_device_test_run
[ 2, 15069, 357, 66, 8, 2211, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 9487, 10200, 8875, 341, 1332, 2471, 74, 290, 17379, 526, 15931, 198, 198, 11748, 28686, 198, 198, 6738, 17118, 13, 19411, 1330, 2471, 74, 62, 2978, 525, 198, 6738, 279, 2645, 571, 13, 259, 43872, 341, 1330, 1332, 62, 9491, 198, 6738, 279, 2645, 571, 13, 12001, 13, 25202, 1330, 1957, 62, 25202, 62, 9288, 62, 5143, 628 ]
3.576923
104
# # Copyright 2019 BrainPad Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # import os from cliboa.util.cache import StorageIO
[ 2, 198, 2, 15069, 13130, 14842, 26114, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 2, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 11748, 28686, 198, 198, 6738, 537, 571, 12162, 13, 22602, 13, 23870, 1330, 20514, 9399, 628 ]
4.327044
159
from django import forms from resources.models import Pet
[ 6738, 42625, 14208, 1330, 5107, 198, 198, 6738, 4133, 13, 27530, 1330, 4767, 628 ]
4.285714
14
from utils import normdata, myrmse from sklearn.metrics import ( accuracy_score, roc_curve, auc, roc_auc_score, mean_squared_error, ) import numpy as np import random import matplotlib.pyplot as plt def performance_vs_confidence( original_data, imp_data, missing_data, testY, test_idx, total_uncertainty, coeff_variation, clf=None, ): """ Computes the performance vs confidence (i.e exclusions) Args: analysis_scores (dict): dict of different analysis scores """ df_mis = missing_data testX = original_data percents = np.linspace(0.01, 0.9, 10) amounts = percents * testX.shape[0] # sort based on variance uncert = np.argsort(total_uncertainty) # sort based on CV cv_uncert = np.argsort(coeff_variation)[::-1] uncert_rmses_retention = [] cv_rmses_retention = [] random_rmses_retention = [] y_score_retention = [] auc_retention = [] gt_y = [] acc_scores = [] # apply mask true = testX[~missing_data.astype(bool)] preds = imp_data[~missing_data.astype(bool)] # oracle error errors = np.abs(preds - true) # sort based on error - oracle uncert_oracle = np.argsort(errors) rmse_oracle = [] for count, amount in enumerate(amounts): idx = int(amount) # Calculations and exclusions based on variance excl = uncert[:-idx] ori_data = testX[excl, :] imputed_data = imp_data[excl, :] data_m = np.array(df_mis != df_mis)[excl, :] rmse = myrmse( actual=ori_data, predicted=imputed_data, mask=~data_m.astype(bool) ) uncert_rmses_retention.append(rmse) # Calculations for oracle if count > 0: excl_oracle = uncert_oracle[: -int(amount)] rmseval = mean_squared_error(true[excl_oracle], preds[excl_oracle]) rmse_oracle.append(rmseval) else: rmse_oracle.append(rmse) excl_oracle = uncert_oracle[: -int(amount)] rmseval = mean_squared_error(true[excl_oracle], preds[excl_oracle]) rmse_oracle.append(rmseval) # if a classifier is specified apply the sortings for diff acc and auc if clf: y_preds = clf.predict(imputed_data[:, 0:-1]) y_scores = clf.predict_proba(imputed_data[:, 0:-1])[:, 1] if len(np.unique(testY)) == 2: auc_retention.append( roc_auc_score(testY[excl], y_scores, multi_class="ovr") ) y_score_retention.append(y_scores) gt_y.append(testY[excl]) acc_scores.append(accuracy_score(testY[excl], y_preds)) # Calculations and exclusions based on CV excl = cv_uncert[:-idx] ori_data = testX[excl, :] imputed_data = imp_data[excl, :] data_m = np.array(df_mis != df_mis)[excl, :] rmse = myrmse( actual=ori_data, predicted=imputed_data, mask=~data_m.astype(bool) ) cv_rmses_retention.append(rmse) # Calculations and exclusions based on random rand_excl = random.sample(range(len(uncert)), idx) ori_data = testX[rand_excl, :] imputed_data = imp_data[rand_excl, :] data_m = np.array(df_mis != df_mis)[rand_excl, :] rmse = myrmse( actual=ori_data, predicted=imputed_data, mask=~data_m.astype(bool) ) random_rmses_retention.append(rmse) return ( uncert_rmses_retention, cv_rmses_retention, random_rmses_retention, y_score_retention, auc_retention, gt_y, acc_scores, rmse_oracle[:-1], ) def plot_rmse_conf_curve(analysis_scores, dataset, filename): """ Plots the RMSE Confidence-Exclusion curve """ plt.style.reload_library() plt.style.use(["science", "ieee", "no-latex", "notebook", "grid", "vibrant"]) mean_uncert = np.mean(analysis_scores["uncert_rmses_retention"], axis=0) std_uncert = np.std(analysis_scores["uncert_rmses_retention"], axis=0) plt.plot(np.linspace(0, 1, 10), mean_uncert, label="Variance", marker="o") plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) mean_uncert = np.mean(analysis_scores["random_rmses_retention"], axis=0) std_uncert = np.std(analysis_scores["random_rmses_retention"], axis=0) plt.plot(np.linspace(0, 1, 10), mean_uncert, label="Random", marker="o") plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) mean_uncert = np.mean(analysis_scores["cv_rmses_retention"], axis=0) std_uncert = np.std(analysis_scores["cv_rmses_retention"], axis=0) plt.plot(np.linspace(0, 1, 10), mean_uncert, label="CV", marker="o") plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) mean_uncert = np.mean(analysis_scores["rmse_oracle"], axis=0) std_uncert = np.std(analysis_scores["rmse_oracle"], axis=0) plt.plot(np.linspace(0, 1, 11), mean_uncert, label="Oracle", marker="o") plt.fill_between( np.linspace(0, 1, 11), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) plt.xlabel("Proportion Data Excluded") plt.ylabel("RMSE") plt.legend() plt.savefig(f"data/results/{dataset}/{filename}.png") def plot_reliability_diagram(uncertainty_list, rmses, dataset, filename): """ Plots the Reliability diagram """ f, ax = plt.subplots(figsize=(6, 6)) ax.scatter(uncertainty_list, rmses, c=".3") (diag_line,) = ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") plt.xlabel("Uncertainty") plt.ylabel("RMSE") plt.savefig(f"data/results/{dataset}/reliability_{filename}.png") def plot_auc_sparsification( aoc_uncert_lists, aoc_uncert_rand_lists, aoc_uncert_cv_lists, auc_uncerts, auc_rands, auc_cvs, dataset, filename, ): """ Plots the Sparsification curve """ plt.figure() xx = np.linspace(0, 1, 10) mean_uncert = np.mean(aoc_uncert_lists, axis=0) std_uncert = np.std(aoc_uncert_lists, axis=0) auc_label = f"Variances Scores AUC: {round(np.mean(auc_uncerts),2)}+-{round(np.std(auc_uncerts),2)}" plt.plot(np.linspace(0, 1, 10), mean_uncert, marker="o", label=auc_label) plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) mean_uncert = np.mean(aoc_uncert_rand_lists, axis=0) std_uncert = np.std(aoc_uncert_rand_lists, axis=0) auc_label = f"Random Scores AUC: {round(np.mean(auc_rands),2)}+-{round(np.std(auc_rands),2)}" plt.plot(np.linspace(0, 1, 10), mean_uncert, marker="o", label=auc_label) plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) mean_uncert = np.mean(aoc_uncert_cv_lists, axis=0) std_uncert = np.std(aoc_uncert_cv_lists, axis=0) auc_label = ( f"Coeff Variation AUC: {round(np.mean(auc_cvs),2)}+-{round(np.std(auc_cvs),2)}" ) plt.plot(np.linspace(0, 1, 10), mean_uncert, marker="o", label=auc_label) plt.fill_between( np.linspace(0, 1, 10), mean_uncert - std_uncert, mean_uncert + std_uncert, alpha=0.25, ) plt.legend() plt.title("Area under the sparsification curve") plt.savefig(f"data/results/{dataset}/{filename}.png")
[ 6738, 3384, 4487, 1330, 2593, 7890, 11, 616, 26224, 325, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 357, 198, 220, 220, 220, 9922, 62, 26675, 11, 198, 220, 220, 220, 686, 66, 62, 22019, 303, 11, 198, 220, 220, 220, 257, 1229, 11, 198, 220, 220, 220, 686, 66, 62, 14272, 62, 26675, 11, 198, 220, 220, 220, 1612, 62, 16485, 1144, 62, 18224, 11, 198, 8, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 4299, 2854, 62, 14259, 62, 39745, 7, 198, 220, 220, 220, 2656, 62, 7890, 11, 198, 220, 220, 220, 848, 62, 7890, 11, 198, 220, 220, 220, 4814, 62, 7890, 11, 198, 220, 220, 220, 1332, 56, 11, 198, 220, 220, 220, 1332, 62, 312, 87, 11, 198, 220, 220, 220, 2472, 62, 19524, 1425, 774, 11, 198, 220, 220, 220, 763, 14822, 62, 25641, 341, 11, 198, 220, 220, 220, 537, 69, 28, 14202, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1769, 262, 2854, 3691, 6628, 357, 72, 13, 68, 10293, 507, 8, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 3781, 62, 1416, 2850, 357, 11600, 2599, 8633, 286, 1180, 3781, 8198, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 47764, 62, 25413, 796, 4814, 62, 7890, 198, 220, 220, 220, 1332, 55, 796, 2656, 62, 7890, 628, 220, 220, 220, 583, 66, 658, 796, 45941, 13, 21602, 10223, 7, 15, 13, 486, 11, 657, 13, 24, 11, 838, 8, 198, 220, 220, 220, 6867, 796, 583, 66, 658, 1635, 1332, 55, 13, 43358, 58, 15, 60, 628, 220, 220, 220, 1303, 3297, 1912, 319, 24198, 198, 220, 220, 220, 4591, 861, 796, 45941, 13, 22046, 419, 7, 23350, 62, 19524, 1425, 774, 8, 198, 220, 220, 220, 1303, 3297, 1912, 319, 26196, 198, 220, 220, 220, 269, 85, 62, 19524, 861, 796, 45941, 13, 22046, 419, 7, 1073, 14822, 62, 25641, 341, 38381, 3712, 12, 16, 60, 628, 220, 220, 220, 4591, 861, 62, 81, 907, 274, 62, 1186, 1463, 796, 17635, 198, 220, 220, 220, 269, 85, 62, 81, 907, 274, 62, 1186, 1463, 796, 17635, 198, 220, 220, 220, 4738, 62, 81, 907, 274, 62, 1186, 1463, 796, 17635, 628, 220, 220, 220, 331, 62, 26675, 62, 1186, 1463, 796, 17635, 198, 220, 220, 220, 257, 1229, 62, 1186, 1463, 796, 17635, 628, 220, 220, 220, 308, 83, 62, 88, 796, 17635, 628, 220, 220, 220, 697, 62, 1416, 2850, 796, 17635, 628, 220, 220, 220, 1303, 4174, 9335, 198, 220, 220, 220, 2081, 796, 1332, 55, 58, 93, 45688, 62, 7890, 13, 459, 2981, 7, 30388, 15437, 198, 220, 220, 220, 2747, 82, 796, 848, 62, 7890, 58, 93, 45688, 62, 7890, 13, 459, 2981, 7, 30388, 15437, 628, 220, 220, 220, 1303, 393, 6008, 4049, 198, 220, 220, 220, 8563, 796, 45941, 13, 8937, 7, 28764, 82, 532, 2081, 8, 628, 220, 220, 220, 1303, 3297, 1912, 319, 4049, 532, 393, 6008, 198, 220, 220, 220, 4591, 861, 62, 273, 6008, 796, 45941, 13, 22046, 419, 7, 48277, 8, 628, 220, 220, 220, 42721, 325, 62, 273, 6008, 796, 17635, 628, 220, 220, 220, 329, 954, 11, 2033, 287, 27056, 378, 7, 17287, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 796, 493, 7, 17287, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 602, 290, 10293, 507, 1912, 319, 24198, 198, 220, 220, 220, 220, 220, 220, 220, 409, 565, 796, 4591, 861, 58, 21912, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 22812, 62, 7890, 796, 1332, 55, 58, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 848, 7241, 62, 7890, 796, 848, 62, 7890, 58, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 76, 796, 45941, 13, 18747, 7, 7568, 62, 25413, 14512, 47764, 62, 25413, 38381, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 796, 616, 26224, 325, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 28, 10145, 62, 7890, 11, 11001, 28, 320, 17128, 62, 7890, 11, 9335, 31820, 7890, 62, 76, 13, 459, 2981, 7, 30388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4591, 861, 62, 81, 907, 274, 62, 1186, 1463, 13, 33295, 7, 26224, 325, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 602, 329, 393, 6008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 954, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 565, 62, 273, 6008, 796, 4591, 861, 62, 273, 6008, 58, 25, 532, 600, 7, 17287, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 2100, 796, 1612, 62, 16485, 1144, 62, 18224, 7, 7942, 58, 1069, 565, 62, 273, 6008, 4357, 2747, 82, 58, 1069, 565, 62, 273, 6008, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 62, 273, 6008, 13, 33295, 7, 26224, 325, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 62, 273, 6008, 13, 33295, 7, 26224, 325, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 409, 565, 62, 273, 6008, 796, 4591, 861, 62, 273, 6008, 58, 25, 532, 600, 7, 17287, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 2100, 796, 1612, 62, 16485, 1144, 62, 18224, 7, 7942, 58, 1069, 565, 62, 273, 6008, 4357, 2747, 82, 58, 1069, 565, 62, 273, 6008, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 62, 273, 6008, 13, 33295, 7, 26224, 325, 2100, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 257, 1398, 7483, 318, 7368, 4174, 262, 3297, 654, 329, 814, 697, 290, 257, 1229, 198, 220, 220, 220, 220, 220, 220, 220, 611, 537, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 28764, 82, 796, 537, 69, 13, 79, 17407, 7, 320, 17128, 62, 7890, 58, 45299, 657, 21912, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1416, 2850, 796, 537, 69, 13, 79, 17407, 62, 1676, 7012, 7, 320, 17128, 62, 7890, 58, 45299, 657, 21912, 16, 12962, 58, 45299, 352, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37659, 13, 34642, 7, 9288, 56, 4008, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1229, 62, 1186, 1463, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 66, 62, 14272, 62, 26675, 7, 9288, 56, 58, 1069, 565, 4357, 331, 62, 1416, 2850, 11, 5021, 62, 4871, 2625, 709, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 26675, 62, 1186, 1463, 13, 33295, 7, 88, 62, 1416, 2850, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 88, 13, 33295, 7, 9288, 56, 58, 1069, 565, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 697, 62, 1416, 2850, 13, 33295, 7, 4134, 23843, 62, 26675, 7, 9288, 56, 58, 1069, 565, 4357, 331, 62, 28764, 82, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 602, 290, 10293, 507, 1912, 319, 26196, 198, 220, 220, 220, 220, 220, 220, 220, 409, 565, 796, 269, 85, 62, 19524, 861, 58, 21912, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 22812, 62, 7890, 796, 1332, 55, 58, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 848, 7241, 62, 7890, 796, 848, 62, 7890, 58, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 76, 796, 45941, 13, 18747, 7, 7568, 62, 25413, 14512, 47764, 62, 25413, 38381, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 796, 616, 26224, 325, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 28, 10145, 62, 7890, 11, 11001, 28, 320, 17128, 62, 7890, 11, 9335, 31820, 7890, 62, 76, 13, 459, 2981, 7, 30388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 81, 907, 274, 62, 1186, 1463, 13, 33295, 7, 26224, 325, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 602, 290, 10293, 507, 1912, 319, 4738, 198, 220, 220, 220, 220, 220, 220, 220, 43720, 62, 1069, 565, 796, 4738, 13, 39873, 7, 9521, 7, 11925, 7, 19524, 861, 36911, 4686, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 22812, 62, 7890, 796, 1332, 55, 58, 25192, 62, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 848, 7241, 62, 7890, 796, 848, 62, 7890, 58, 25192, 62, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 76, 796, 45941, 13, 18747, 7, 7568, 62, 25413, 14512, 47764, 62, 25413, 38381, 25192, 62, 1069, 565, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 796, 616, 26224, 325, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4036, 28, 10145, 62, 7890, 11, 11001, 28, 320, 17128, 62, 7890, 11, 9335, 31820, 7890, 62, 76, 13, 459, 2981, 7, 30388, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 81, 907, 274, 62, 1186, 1463, 13, 33295, 7, 26224, 325, 8, 628, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 4591, 861, 62, 81, 907, 274, 62, 1186, 1463, 11, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 62, 81, 907, 274, 62, 1186, 1463, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 81, 907, 274, 62, 1186, 1463, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 26675, 62, 1186, 1463, 11, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1229, 62, 1186, 1463, 11, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 88, 11, 198, 220, 220, 220, 220, 220, 220, 220, 697, 62, 1416, 2850, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42721, 325, 62, 273, 6008, 58, 21912, 16, 4357, 198, 220, 220, 220, 1267, 628, 198, 4299, 7110, 62, 26224, 325, 62, 10414, 62, 22019, 303, 7, 20930, 62, 1416, 2850, 11, 27039, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1345, 1747, 262, 29820, 5188, 7326, 1704, 12, 3109, 4717, 12133, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 458, 83, 13, 7635, 13, 260, 2220, 62, 32016, 3419, 198, 220, 220, 220, 458, 83, 13, 7635, 13, 1904, 7, 14692, 16801, 1600, 366, 494, 1453, 1600, 366, 3919, 12, 17660, 87, 1600, 366, 11295, 2070, 1600, 366, 25928, 1600, 366, 85, 2889, 415, 8973, 8, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 20930, 62, 1416, 2850, 14692, 19524, 861, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 20930, 62, 1416, 2850, 14692, 19524, 861, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 6167, 2625, 23907, 590, 1600, 18364, 2625, 78, 4943, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 20930, 62, 1416, 2850, 14692, 25120, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 20930, 62, 1416, 2850, 14692, 25120, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 6167, 2625, 29531, 1600, 18364, 2625, 78, 4943, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 20930, 62, 1416, 2850, 14692, 33967, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 20930, 62, 1416, 2850, 14692, 33967, 62, 81, 907, 274, 62, 1186, 1463, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 6167, 2625, 33538, 1600, 18364, 2625, 78, 4943, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 20930, 62, 1416, 2850, 14692, 26224, 325, 62, 273, 6008, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 20930, 62, 1416, 2850, 14692, 26224, 325, 62, 273, 6008, 33116, 16488, 28, 15, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 1367, 828, 1612, 62, 19524, 861, 11, 6167, 2625, 48625, 1600, 18364, 2625, 78, 4943, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 1367, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 458, 83, 13, 87, 18242, 7203, 2964, 16864, 6060, 1475, 10341, 4943, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7203, 29138, 5188, 4943, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 628, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 69, 1, 7890, 14, 43420, 14, 90, 19608, 292, 316, 92, 14, 90, 34345, 27422, 11134, 4943, 628, 198, 4299, 7110, 62, 2411, 12455, 62, 10989, 6713, 7, 19524, 1425, 774, 62, 4868, 11, 374, 907, 274, 11, 27039, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1345, 1747, 262, 4718, 12455, 16362, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 277, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 21, 11, 718, 4008, 628, 220, 220, 220, 7877, 13, 1416, 1436, 7, 19524, 1425, 774, 62, 4868, 11, 374, 907, 274, 11, 269, 28, 1911, 18, 4943, 628, 220, 220, 220, 357, 10989, 363, 62, 1370, 35751, 796, 7877, 13, 29487, 7, 897, 13, 1136, 62, 87, 2475, 22784, 7877, 13, 1136, 62, 88, 2475, 22784, 43979, 2625, 438, 1600, 269, 28, 1911, 18, 4943, 628, 220, 220, 220, 458, 83, 13, 87, 18242, 7203, 3118, 39239, 774, 4943, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7203, 29138, 5188, 4943, 628, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 69, 1, 7890, 14, 43420, 14, 90, 19608, 292, 316, 92, 14, 2411, 12455, 23330, 34345, 27422, 11134, 4943, 628, 198, 4299, 7110, 62, 14272, 62, 2777, 945, 2649, 7, 198, 220, 220, 220, 257, 420, 62, 19524, 861, 62, 20713, 11, 198, 220, 220, 220, 257, 420, 62, 19524, 861, 62, 25192, 62, 20713, 11, 198, 220, 220, 220, 257, 420, 62, 19524, 861, 62, 33967, 62, 20713, 11, 198, 220, 220, 220, 257, 1229, 62, 19524, 861, 82, 11, 198, 220, 220, 220, 257, 1229, 62, 81, 1746, 11, 198, 220, 220, 220, 257, 1229, 62, 66, 14259, 11, 198, 220, 220, 220, 27039, 11, 198, 220, 220, 220, 29472, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1345, 1747, 262, 1338, 945, 2649, 12133, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 31383, 796, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 8, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 64, 420, 62, 19524, 861, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 64, 420, 62, 19524, 861, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 257, 1229, 62, 18242, 796, 277, 1, 53, 3699, 728, 44654, 317, 9598, 25, 1391, 744, 7, 37659, 13, 32604, 7, 14272, 62, 19524, 861, 82, 828, 17, 38165, 10, 12, 90, 744, 7, 37659, 13, 19282, 7, 14272, 62, 19524, 861, 82, 828, 17, 8, 36786, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 18364, 2625, 78, 1600, 6167, 28, 14272, 62, 18242, 8, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 64, 420, 62, 19524, 861, 62, 25192, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 64, 420, 62, 19524, 861, 62, 25192, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 257, 1229, 62, 18242, 796, 277, 1, 29531, 44654, 317, 9598, 25, 1391, 744, 7, 37659, 13, 32604, 7, 14272, 62, 81, 1746, 828, 17, 38165, 10, 12, 90, 744, 7, 37659, 13, 19282, 7, 14272, 62, 81, 1746, 828, 17, 8, 36786, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 18364, 2625, 78, 1600, 6167, 28, 14272, 62, 18242, 8, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1612, 62, 19524, 861, 796, 45941, 13, 32604, 7, 64, 420, 62, 19524, 861, 62, 33967, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 14367, 62, 19524, 861, 796, 45941, 13, 19282, 7, 64, 420, 62, 19524, 861, 62, 33967, 62, 20713, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 257, 1229, 62, 18242, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 34, 2577, 487, 15965, 341, 317, 9598, 25, 1391, 744, 7, 37659, 13, 32604, 7, 14272, 62, 66, 14259, 828, 17, 38165, 10, 12, 90, 744, 7, 37659, 13, 19282, 7, 14272, 62, 66, 14259, 828, 17, 8, 36786, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 1612, 62, 19524, 861, 11, 18364, 2625, 78, 1600, 6167, 28, 14272, 62, 18242, 8, 198, 220, 220, 220, 458, 83, 13, 20797, 62, 23395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21602, 10223, 7, 15, 11, 352, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 532, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 19524, 861, 1343, 14367, 62, 19524, 861, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 7839, 7203, 30547, 739, 262, 599, 945, 2649, 12133, 4943, 628, 220, 220, 220, 458, 83, 13, 21928, 5647, 7, 69, 1, 7890, 14, 43420, 14, 90, 19608, 292, 316, 92, 14, 90, 34345, 27422, 11134, 4943, 198 ]
2.038827
3,786
import pytest @pytest.fixture def passed_submission_py() -> str: """ Function which returns a passed execution output in python """ return """ .. ---------------------------------------------------------------------- Ran 2 tests in 0.000s OK """ @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198, 4299, 3804, 62, 7266, 3411, 62, 9078, 3419, 4613, 965, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 543, 5860, 257, 3804, 9706, 5072, 287, 21015, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 37227, 198, 220, 220, 220, 11485, 198, 10097, 23031, 198, 49, 272, 362, 5254, 287, 657, 13, 830, 82, 198, 198, 11380, 198, 37811, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
3.326087
92
import logging import csv import json from platform import system from sys import stderr, stdout # not needed in python >= 3.6? as default dict keeps order from collections import OrderedDict, deque try: from google.protobuf.json_format import MessageToDict except ImportError: # not in debian stretch dpkg/apt version of the pb lib from google.protobuf.json_format import MessageToJson from google.protobuf.message import DecodeError from bblogger import bb_log_entry_pb2 from bblogger.defs import BlueBerryLogEntryFields from bblogger.outputwriter import mk_OutputWriter logger = logging.getLogger(__name__) TXT_COL_WIDTH = 10 _COLNAME_TO_FLD = {} _COLNAME_TO_UNITS = {} _COLNAME_TO_TXTFMT = {} _PBNAME_TO_FLD = {} for x in BlueBerryLogEntryFields: fld = x.value _PBNAME_TO_FLD[fld.pbname] = fld for colname in fld.colnames: _COLNAME_TO_FLD[colname] = fld _COLNAME_TO_UNITS[colname] = fld.unit _COLNAME_TO_TXTFMT[colname]= fld.txtfmt class _PacketBuffer: """ FIFO buffer preserving BLE packets. can handle packets out of order and drop induvidual packets 'pkt' - bluteooth package (chunk of bytes) """ def peek(self, size, pkt_order=None): """ returns a bytearray of len size or less """ res = bytearray() if not size: return res if pkt_order is None: pkt_order = range(0, len(self._q)) for i in pkt_order: remains = size - len(res) if remains <= 0: break try: pkt = self._q[i] except IndexError: break # remains could be out of range (no error raised) chunk = pkt[0 : remains] res.extend(chunk) return res def getc(self): """ read a single char/byte """ try: c = self._q[0][0] except IndexError: raise EOFError() self._q[0] = self._q[0][1:] # pop left return int(c) def seek_fwd(self, size, pkt_order=None): """ Move "read cursor" forward N bytes """ if not size: return if pkt_order is None: pkt_order = range(0, len(self._q)) remains = size to_del = [] for i in pkt_order: try: pkt = self._q[i] except IndexError: break if remains < len(pkt): self._q[i] = pkt[remains:] remains = 0 break to_del.append(i) remains -= len(pkt) if remains <= 0: break if remains > 0: raise EOFError() # reverse sort to preserve index while deleting for i in sorted(to_del, reverse=True): del self._q[i] class BlueBerryDeserializer: """ reads a stream of protobuf data with the format <len><protobuf message of size len><len>,... abbrevations and definitions used: 'msg' - bytes or pb object for a complete message 'pkg' - bluteooth package (chunk of bytes) """ @property def _MessageToOrderedDict(self, pb, columnize=False): """ mimic name from protobuf lib. assumption: all values can be converted to float or list of floats. if the protobuf format change, the built in MessageToDict() function can be used. requres python > 3.6 (?) where the default dict heaviour rememebers insertion order. """ od = OrderedDict() for descr in pb.DESCRIPTOR.fields: fld = _PBNAME_TO_FLD[descr.name] val = getattr(pb, descr.name) if descr.label == descr.LABEL_REPEATED: # HasField() do not work on repeated, use len instead. hack if not len(val): continue if columnize: for i in range(0, len(val)): name = fld.colnames[i] od[name] = val[i] else: name = fld.colnames[0] od[name] = list(val) # [x for x in val] else: if not pb.HasField(descr.name): continue name = fld.colnames[0] od[name] = val return od def _is_end_of_log_msg(self, odm): """ end of log "EOF" is a empty messagge with only the required timestamp field """ if len(odm) == 1: if "TS" not in odm: logger.warning("unexpected last msg keys {}".format(odm.keys())) return True else: return False def _parse_pkt_buf(self, pkt_order=None): """ parse data previously added to pkt_buf """ if self._msg_size is None: self._msg_size = self._pkt_buf.getc() # raises EOFError if no data if self._msg_size == 0: raise RuntimeError("msg_size is zero. Where to start?") msg_bytes = self._pkt_buf.peek(self._msg_size, pkt_order) if len(msg_bytes) < self._msg_size: raise EOFError("Need more data") if self._debug_dump: self._print_msg_bytes(self._msg_count, self._msg_size, msg_bytes) done = False else: done = self.parse_msg_bytes(msg_bytes) entry = (self._msg_count, self._msg_size, msg_bytes, "") self._msg_hist.append(entry) self._msg_count += 1 # reset self._pkt_buf.seek_fwd(self._msg_size, pkt_order) self._msg_size = None return done # might have more msg in pkt_buf
[ 11748, 18931, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 6738, 3859, 1330, 1080, 198, 198, 6738, 25064, 1330, 336, 1082, 81, 11, 14367, 448, 198, 198, 2, 407, 2622, 287, 21015, 18189, 513, 13, 21, 30, 355, 4277, 8633, 7622, 1502, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 11, 390, 4188, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 23645, 13, 11235, 672, 3046, 13, 17752, 62, 18982, 1330, 16000, 2514, 35, 713, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 407, 287, 50001, 7539, 288, 35339, 14, 2373, 2196, 286, 262, 279, 65, 9195, 198, 220, 220, 220, 422, 23645, 13, 11235, 672, 3046, 13, 17752, 62, 18982, 1330, 16000, 2514, 41, 1559, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 20500, 1330, 4280, 1098, 12331, 198, 198, 6738, 275, 14036, 1362, 1330, 275, 65, 62, 6404, 62, 13000, 62, 40842, 17, 198, 6738, 275, 14036, 1362, 13, 4299, 82, 1330, 4518, 25215, 11187, 30150, 15878, 82, 198, 6738, 275, 14036, 1362, 13, 22915, 16002, 1330, 33480, 62, 26410, 34379, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 51, 25010, 62, 25154, 62, 54, 2389, 4221, 796, 838, 628, 198, 62, 25154, 20608, 62, 10468, 62, 3697, 35, 796, 23884, 198, 62, 25154, 20608, 62, 10468, 62, 4944, 29722, 796, 23884, 198, 62, 25154, 20608, 62, 10468, 62, 29551, 10234, 13752, 796, 23884, 198, 62, 47, 15766, 10067, 62, 10468, 62, 3697, 35, 796, 23884, 198, 198, 1640, 2124, 287, 4518, 25215, 11187, 30150, 15878, 82, 25, 198, 220, 220, 220, 277, 335, 796, 2124, 13, 8367, 198, 220, 220, 220, 4808, 47, 15766, 10067, 62, 10468, 62, 3697, 35, 58, 69, 335, 13, 40842, 3672, 60, 796, 277, 335, 628, 220, 220, 220, 329, 951, 3672, 287, 277, 335, 13, 4033, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 25154, 20608, 62, 10468, 62, 3697, 35, 58, 4033, 3672, 60, 796, 277, 335, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 25154, 20608, 62, 10468, 62, 4944, 29722, 58, 4033, 3672, 60, 796, 277, 335, 13, 20850, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 25154, 20608, 62, 10468, 62, 29551, 10234, 13752, 58, 4033, 3672, 22241, 277, 335, 13, 14116, 69, 16762, 628, 198, 4871, 4808, 47, 8317, 28632, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 376, 5064, 46, 11876, 23934, 347, 2538, 24624, 13, 460, 5412, 24624, 503, 286, 1502, 290, 198, 220, 220, 220, 4268, 9318, 16921, 723, 24624, 198, 220, 220, 220, 705, 79, 21841, 6, 532, 698, 1133, 5226, 5301, 357, 354, 2954, 286, 9881, 8, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 27185, 7, 944, 11, 2546, 11, 279, 21841, 62, 2875, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5860, 257, 416, 83, 451, 2433, 286, 18896, 2546, 393, 1342, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 416, 83, 451, 2433, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 628, 220, 220, 220, 220, 220, 220, 220, 611, 279, 21841, 62, 2875, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 62, 2875, 796, 2837, 7, 15, 11, 18896, 7, 944, 13557, 80, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 279, 21841, 62, 2875, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3793, 796, 2546, 532, 18896, 7, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3793, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 796, 2116, 13557, 80, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3793, 714, 307, 503, 286, 2837, 357, 3919, 4049, 4376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16058, 796, 279, 21841, 58, 15, 1058, 3793, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 13, 2302, 437, 7, 354, 2954, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 628, 198, 220, 220, 220, 825, 651, 66, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1100, 257, 2060, 1149, 14, 26327, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 2116, 13557, 80, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 80, 58, 15, 60, 796, 2116, 13557, 80, 58, 15, 7131, 16, 47715, 1303, 1461, 1364, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 66, 8, 628, 198, 220, 220, 220, 825, 5380, 62, 69, 16993, 7, 944, 11, 2546, 11, 279, 21841, 62, 2875, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10028, 366, 961, 23493, 1, 2651, 399, 9881, 37227, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 611, 279, 21841, 62, 2875, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 62, 2875, 796, 2837, 7, 15, 11, 18896, 7, 944, 13557, 80, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 3793, 796, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 12381, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 279, 21841, 62, 2875, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 21841, 796, 2116, 13557, 80, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3793, 1279, 18896, 7, 79, 21841, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 80, 58, 72, 60, 796, 279, 21841, 58, 2787, 1299, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3793, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 12381, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3793, 48185, 18896, 7, 79, 21841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3793, 19841, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3793, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9575, 3297, 284, 12201, 6376, 981, 34817, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 23243, 7, 1462, 62, 12381, 11, 9575, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13557, 80, 58, 72, 60, 198, 198, 4871, 4518, 25215, 5960, 48499, 7509, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9743, 257, 4269, 286, 1237, 672, 3046, 1366, 351, 262, 5794, 220, 198, 220, 220, 220, 1279, 11925, 6927, 11235, 672, 3046, 3275, 286, 2546, 18896, 6927, 11925, 22330, 986, 198, 220, 220, 220, 198, 220, 220, 220, 28873, 85, 602, 290, 17336, 973, 25, 198, 220, 220, 220, 705, 19662, 6, 532, 9881, 393, 279, 65, 2134, 329, 257, 1844, 3275, 198, 220, 220, 220, 705, 35339, 6, 532, 698, 1133, 5226, 5301, 357, 354, 2954, 286, 9881, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 825, 4808, 12837, 2514, 35422, 1068, 35, 713, 7, 944, 11, 279, 65, 11, 5721, 1096, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 220, 220, 220, 26332, 1438, 422, 1237, 672, 3046, 9195, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13196, 25, 477, 3815, 460, 307, 11513, 284, 12178, 393, 1351, 286, 36016, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 262, 1237, 672, 3046, 5794, 1487, 11, 262, 3170, 287, 16000, 2514, 35, 713, 3419, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 973, 13, 1038, 411, 21015, 1875, 513, 13, 21, 357, 10091, 810, 262, 4277, 8633, 6002, 49439, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8572, 68, 1213, 36075, 1502, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16298, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1715, 81, 287, 279, 65, 13, 30910, 36584, 32961, 13, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 335, 796, 4808, 47, 15766, 10067, 62, 10468, 62, 3697, 35, 58, 20147, 81, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 651, 35226, 7, 40842, 11, 1715, 81, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1715, 81, 13, 18242, 6624, 1715, 81, 13, 48780, 3698, 62, 2200, 11401, 11617, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7875, 15878, 3419, 466, 407, 670, 319, 5100, 11, 779, 18896, 2427, 13, 8156, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5721, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 2100, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 335, 13, 4033, 14933, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16298, 58, 3672, 60, 796, 1188, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 335, 13, 4033, 14933, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16298, 58, 3672, 60, 796, 1351, 7, 2100, 8, 220, 1303, 685, 87, 329, 2124, 287, 1188, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 65, 13, 19242, 15878, 7, 20147, 81, 13, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 277, 335, 13, 4033, 14933, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16298, 58, 3672, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 16298, 628, 220, 220, 220, 825, 4808, 271, 62, 437, 62, 1659, 62, 6404, 62, 19662, 7, 944, 11, 16298, 76, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 886, 286, 2604, 366, 4720, 37, 1, 318, 257, 6565, 2085, 363, 469, 351, 691, 262, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 41033, 2214, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 375, 76, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 4694, 1, 407, 287, 16298, 76, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 403, 40319, 938, 31456, 8251, 23884, 1911, 18982, 7, 375, 76, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 4808, 29572, 62, 79, 21841, 62, 29325, 7, 944, 11, 279, 21841, 62, 2875, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21136, 1366, 4271, 2087, 284, 279, 21841, 62, 29325, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 19662, 62, 7857, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19662, 62, 7857, 796, 2116, 13557, 79, 21841, 62, 29325, 13, 1136, 66, 3419, 1303, 12073, 412, 19238, 12331, 611, 645, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 19662, 62, 7857, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 19662, 62, 7857, 318, 6632, 13, 6350, 284, 923, 1701, 8, 628, 220, 220, 220, 220, 220, 220, 220, 31456, 62, 33661, 796, 2116, 13557, 79, 21841, 62, 29325, 13, 431, 988, 7, 944, 13557, 19662, 62, 7857, 11, 279, 21841, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 19662, 62, 33661, 8, 1279, 2116, 13557, 19662, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 19238, 12331, 7203, 23037, 517, 1366, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 24442, 62, 39455, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4798, 62, 19662, 62, 33661, 7, 944, 13557, 19662, 62, 9127, 11, 2116, 13557, 19662, 62, 7857, 11, 31456, 62, 33661, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1760, 796, 2116, 13, 29572, 62, 19662, 62, 33661, 7, 19662, 62, 33661, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 357, 944, 13557, 19662, 62, 9127, 11, 2116, 13557, 19662, 62, 7857, 11, 31456, 62, 33661, 11, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19662, 62, 10034, 13, 33295, 7, 13000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19662, 62, 9127, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13259, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 79, 21841, 62, 29325, 13, 36163, 62, 69, 16993, 7, 944, 13557, 19662, 62, 7857, 11, 279, 21841, 62, 2875, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 19662, 62, 7857, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1760, 1303, 1244, 423, 517, 31456, 287, 279, 21841, 62, 29325, 628, 628 ]
2.041204
2,791
import contextlib as cl from . import accessors @cl.contextmanager @cl.contextmanager
[ 11748, 4732, 8019, 355, 537, 198, 198, 6738, 764, 1330, 1895, 669, 628, 198, 31, 565, 13, 22866, 37153, 628, 198, 31, 565, 13, 22866, 37153, 198 ]
3.37037
27
from error_handlers import captha from error_handlers import rps error_handlers_bp = ( rps.user, captha.user, )
[ 6738, 4049, 62, 4993, 8116, 1330, 1451, 12898, 198, 6738, 4049, 62, 4993, 8116, 1330, 374, 862, 198, 198, 18224, 62, 4993, 8116, 62, 46583, 796, 357, 198, 220, 220, 220, 374, 862, 13, 7220, 11, 198, 220, 220, 220, 1451, 12898, 13, 7220, 11, 198, 8, 198 ]
2.520833
48
import pytest from RNA_describe import RNA_describer from RNA_describe import ORF_counter from RNA_describe import ORF_RE # The following unix command will run all tests. # $ pytest # The -v option will list each test and show progress. # $ pytest -v # By default, pytest captures stdout unless the tests fail. # Use this option to see the output of print() statements. # $ pytest --capture=tee-sys
[ 11748, 12972, 9288, 198, 6738, 25897, 62, 20147, 4892, 1330, 25897, 62, 20147, 24735, 198, 6738, 25897, 62, 20147, 4892, 1330, 6375, 37, 62, 24588, 198, 6738, 25897, 62, 20147, 4892, 1330, 6375, 37, 62, 2200, 198, 198, 2, 383, 1708, 555, 844, 3141, 481, 1057, 477, 5254, 13, 198, 2, 720, 12972, 9288, 198, 2, 383, 532, 85, 3038, 481, 1351, 1123, 1332, 290, 905, 4371, 13, 198, 2, 720, 12972, 9288, 532, 85, 198, 2, 2750, 4277, 11, 12972, 9288, 23007, 14367, 448, 4556, 262, 5254, 2038, 13, 198, 2, 5765, 428, 3038, 284, 766, 262, 5072, 286, 3601, 3419, 6299, 13, 198, 2, 720, 12972, 9288, 1377, 27144, 495, 28, 660, 68, 12, 17597, 198 ]
3.389831
118
from .navbar import nav_bar from .visuals import gdp_viz
[ 6738, 764, 28341, 5657, 1330, 6812, 62, 5657, 198, 6738, 764, 41464, 82, 1330, 308, 26059, 62, 85, 528 ]
2.947368
19
import argparse import corenlp import gzip import inflect from tqdm import tqdm if __name__ == '__main__': parser = argparse.ArgumentParser('Generate negative examples for LM agreement task.') parser.add_argument('--source', required=True, type=str) parser.add_argument('--output', default='verb_negative_examples.txt') args = parser.parse_args() run(args)
[ 198, 11748, 1822, 29572, 198, 11748, 4755, 21283, 79, 198, 11748, 308, 13344, 198, 11748, 1167, 801, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 10786, 8645, 378, 4633, 6096, 329, 37125, 4381, 4876, 2637, 8, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 10459, 3256, 2672, 28, 17821, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22915, 3256, 4277, 11639, 19011, 62, 31591, 62, 1069, 12629, 13, 14116, 11537, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1057, 7, 22046, 8, 198 ]
3
127
# Valentin Macé # [email protected] # Developed for fun # Feel free to use this code as you wish as long as you quote me as author """ snake.py ~~~~~~~~~~ This module is for building the snake itself in the snake game The snake: - Is on the form of a list, each element for a body block (containing its coordinates) - Has a head pointing on the first block, a direction and also a neural network (brain) - Has vision given by the map (Map.scan method) - Is in charge of moving its blocks, aging, growing by adding a block to the right place and makes decision with neural net - Gives its fitness based on self age and length """ from neural_network import * class Snake: """Snake Class""" def __init__(self, neural_net=None, xMaxSize = 20, yMaxSize = 20): """ :param neural_net: NeuralNet given to the snake in charge of decisions (AI) """ self.body = [[10, 10], [9, 10], [9, 11], [9, 12]] # the snake is in fact a list of coordinates self.head = self.body[0][:] # first body block self.old_tail = self.head[:] # useful to grow self.direction = RIGHT self.age = 0 self.starve = 500 # useful to avoid looping AI snakes self.alive = True self.neural_net = neural_net self.vision = [] # holds the map.scan() and is used by the neural net self.xMaxSize = xMaxSize self.yMaxSize = yMaxSize def update(self): """ Actualize the snake through time, making it older and more hungryat each game iteration, sorry snek """ self.age += 1 self.starve -= 1 if self.starve < 1: self.alive = False self.move() def grow(self): """ Makes snake grow one block longer Called by map.update() when snake's head is in collision with food """ self.starve = 500 # useful to avoid looping AI snakes (they die younger -> bad fitness) self.body.append(self.old_tail) # that's why I keep old_tail def move(self): """ Makes the snake move, head moves in current direction and each blocks replace its predecessor """ self.old_tail = self.body[-1][:] # save old position of last block self.head[0] += self.direction[0] # moves head self.head[1] += self.direction[1] self.head[0] = (self.head[0] + self.xMaxSize) % self.xMaxSize self.head[1] = (self.head[1] + self.yMaxSize) % self.yMaxSize if self.head in self.body[1:]: # if snakes hits himself self.alive = False self.body.insert(0, self.body.pop()) # each block is replace by predecessor self.body[0] = self.head[:] # first block is head def turn_right(self): """ Makes the snake direction to the right of the current direction Current direction = [x,y], turn_right gives [-y,x] Example: If [0,1] (down) is current direction, [-1,0] (right) is new direction """ temp = self.direction[0] self.direction[0] = -self.direction[1] self.direction[1] = temp def turn_left(self): """ Makes the snake direction to the right of the current direction Current direction = [x,y], turn_right gives [y,-x] """ temp = self.direction[0] self.direction[0] = self.direction[1] self.direction[1] = -temp def AI(self): """ Makes decision for the snake direction according to its current vision Vision is given to the NeuralNetwork and most activated output neuron is considered as decision """ decision = np.argmax(self.neural_net.feed_forward(self.vision)) if decision == 1: self.turn_right() elif decision == 2: self.turn_left() def fitness(self): """ Measures how well the snake is doing as a function of its length and age Note: - You can be creative with the formula and find a better solution - It has a big impact on the genetic algorithm :return: integer representing how good the snake is performing """ return (len(self.body)**2) * self.age def render(self, window): """ Renders the map (background, walls and food) on the window surface and calls render() of snake Very very very unoptimized since render does not affect the genetic algorithm :param window: surface window """ body = pygame.image.load(IMAGE_SNAKE).convert_alpha() # loading image for block in self.body: window.blit(body, (block[0]*SPRITE_SIZE, block[1]*SPRITE_SIZE)) # painting a beautiful snek if self.neural_net: # calls for neural net rendering self.neural_net.render(window, self.vision)
[ 2, 17284, 259, 4100, 2634, 198, 2, 1188, 31371, 13, 76, 558, 31, 9091, 469, 1443, 13, 785, 198, 2, 6013, 276, 329, 1257, 198, 2, 18571, 1479, 284, 779, 428, 2438, 355, 345, 4601, 355, 890, 355, 345, 9577, 502, 355, 1772, 198, 198, 37811, 198, 16184, 539, 13, 9078, 198, 15116, 4907, 198, 198, 1212, 8265, 318, 329, 2615, 262, 17522, 2346, 287, 262, 17522, 983, 198, 198, 464, 17522, 25, 198, 12, 1148, 319, 262, 1296, 286, 257, 1351, 11, 1123, 5002, 329, 257, 1767, 2512, 357, 38301, 663, 22715, 8, 198, 12, 7875, 257, 1182, 10609, 319, 262, 717, 2512, 11, 257, 4571, 290, 635, 257, 17019, 3127, 357, 27825, 8, 198, 12, 7875, 5761, 1813, 416, 262, 3975, 357, 13912, 13, 35836, 2446, 8, 198, 12, 1148, 287, 3877, 286, 3867, 663, 7021, 11, 14736, 11, 3957, 416, 4375, 257, 2512, 284, 262, 826, 1295, 198, 220, 290, 1838, 2551, 351, 17019, 2010, 198, 12, 402, 1083, 663, 13547, 1912, 319, 2116, 2479, 290, 4129, 198, 198, 37811, 198, 198, 6738, 17019, 62, 27349, 1330, 1635, 628, 198, 4871, 16705, 25, 198, 220, 220, 220, 37227, 49795, 5016, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 17019, 62, 3262, 28, 14202, 11, 2124, 11518, 10699, 796, 1160, 11, 331, 11518, 10699, 796, 1160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 17019, 62, 3262, 25, 47986, 7934, 1813, 284, 262, 17522, 287, 3877, 286, 5370, 357, 20185, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2618, 796, 16410, 940, 11, 838, 4357, 685, 24, 11, 838, 4357, 685, 24, 11, 1367, 4357, 685, 24, 11, 1105, 11907, 220, 220, 220, 220, 220, 220, 1303, 262, 17522, 318, 287, 1109, 257, 1351, 286, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 796, 2116, 13, 2618, 58, 15, 7131, 47715, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 1767, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 13199, 796, 2116, 13, 2256, 58, 47715, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4465, 284, 1663, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37295, 796, 33621, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 496, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7364, 303, 796, 5323, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4465, 284, 3368, 9052, 278, 9552, 26042, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 282, 425, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 710, 1523, 62, 3262, 796, 17019, 62, 3262, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10178, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6622, 262, 3975, 13, 35836, 3419, 290, 318, 973, 416, 262, 17019, 2010, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 11518, 10699, 796, 2124, 11518, 10699, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 88, 11518, 10699, 796, 331, 11518, 10699, 628, 220, 220, 220, 825, 4296, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33520, 1096, 262, 17522, 832, 640, 11, 1642, 340, 4697, 290, 517, 14720, 265, 1123, 983, 24415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7926, 10505, 74, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 496, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7364, 303, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 7364, 303, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 282, 425, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21084, 3419, 628, 220, 220, 220, 825, 1663, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27433, 17522, 1663, 530, 2512, 2392, 198, 220, 220, 220, 220, 220, 220, 220, 34099, 416, 3975, 13, 19119, 3419, 618, 17522, 338, 1182, 318, 287, 17661, 351, 2057, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7364, 303, 796, 5323, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4465, 284, 3368, 9052, 278, 9552, 26042, 357, 9930, 4656, 7099, 4613, 2089, 13547, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2618, 13, 33295, 7, 944, 13, 727, 62, 13199, 8, 220, 220, 220, 220, 1303, 326, 338, 1521, 314, 1394, 1468, 62, 13199, 628, 220, 220, 220, 825, 1445, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27433, 262, 17522, 1445, 11, 1182, 6100, 287, 1459, 4571, 290, 1123, 7021, 6330, 663, 18476, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 727, 62, 13199, 796, 2116, 13, 2618, 58, 12, 16, 7131, 47715, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 1468, 2292, 286, 938, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 58, 15, 60, 15853, 2116, 13, 37295, 58, 15, 60, 220, 220, 220, 220, 220, 220, 1303, 6100, 1182, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 58, 16, 60, 15853, 2116, 13, 37295, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 58, 15, 60, 796, 357, 944, 13, 2256, 58, 15, 60, 1343, 2116, 13, 87, 11518, 10699, 8, 4064, 2116, 13, 87, 11518, 10699, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 58, 16, 60, 796, 357, 944, 13, 2256, 58, 16, 60, 1343, 2116, 13, 88, 11518, 10699, 8, 4064, 2116, 13, 88, 11518, 10699, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2256, 287, 2116, 13, 2618, 58, 16, 25, 5974, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 26042, 7127, 2241, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 282, 425, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2618, 13, 28463, 7, 15, 11, 2116, 13, 2618, 13, 12924, 28955, 220, 220, 220, 1303, 1123, 2512, 318, 6330, 416, 18476, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2618, 58, 15, 60, 796, 2116, 13, 2256, 58, 47715, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 717, 2512, 318, 1182, 628, 220, 220, 220, 825, 1210, 62, 3506, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27433, 262, 17522, 4571, 284, 262, 826, 286, 262, 1459, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 4571, 796, 685, 87, 11, 88, 4357, 1210, 62, 3506, 3607, 25915, 88, 11, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 685, 15, 11, 16, 60, 357, 2902, 8, 318, 1459, 4571, 11, 25915, 16, 11, 15, 60, 357, 3506, 8, 318, 649, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 2116, 13, 37295, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37295, 58, 15, 60, 796, 532, 944, 13, 37295, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37295, 58, 16, 60, 796, 20218, 628, 220, 220, 220, 825, 1210, 62, 9464, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27433, 262, 17522, 4571, 284, 262, 826, 286, 262, 1459, 4571, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 4571, 796, 685, 87, 11, 88, 4357, 1210, 62, 3506, 3607, 685, 88, 12095, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 2116, 13, 37295, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37295, 58, 15, 60, 796, 2116, 13, 37295, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37295, 58, 16, 60, 796, 532, 29510, 628, 220, 220, 220, 825, 9552, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27433, 2551, 329, 262, 17522, 4571, 1864, 284, 663, 1459, 5761, 198, 220, 220, 220, 220, 220, 220, 220, 19009, 318, 1813, 284, 262, 47986, 26245, 290, 749, 13906, 5072, 43164, 318, 3177, 355, 2551, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2551, 796, 45941, 13, 853, 9806, 7, 944, 13, 710, 1523, 62, 3262, 13, 12363, 62, 11813, 7, 944, 13, 10178, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2551, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15344, 62, 3506, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2551, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15344, 62, 9464, 3419, 628, 220, 220, 220, 825, 13547, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 45040, 703, 880, 262, 17522, 318, 1804, 355, 257, 2163, 286, 663, 4129, 290, 2479, 628, 220, 220, 220, 220, 220, 220, 220, 5740, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 921, 460, 307, 7325, 351, 262, 10451, 290, 1064, 257, 1365, 4610, 198, 220, 220, 220, 220, 220, 220, 220, 532, 632, 468, 257, 1263, 2928, 319, 262, 8513, 11862, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 18253, 10200, 703, 922, 262, 17522, 318, 9489, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 11925, 7, 944, 13, 2618, 8, 1174, 17, 8, 1635, 2116, 13, 496, 628, 220, 220, 220, 825, 8543, 7, 944, 11, 4324, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 371, 7338, 262, 3975, 357, 25249, 11, 7714, 290, 2057, 8, 319, 262, 4324, 4417, 290, 3848, 8543, 3419, 286, 17522, 198, 220, 220, 220, 220, 220, 220, 220, 9576, 845, 845, 555, 40085, 1143, 1201, 8543, 857, 407, 2689, 262, 8513, 11862, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4324, 25, 4417, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 796, 12972, 6057, 13, 9060, 13, 2220, 7, 3955, 11879, 62, 50, 4535, 7336, 737, 1102, 1851, 62, 26591, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11046, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 287, 2116, 13, 2618, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 13, 2436, 270, 7, 2618, 11, 357, 9967, 58, 15, 60, 9, 4303, 49, 12709, 62, 33489, 11, 2512, 58, 16, 60, 9, 4303, 49, 12709, 62, 33489, 4008, 220, 220, 220, 220, 1303, 12036, 257, 4950, 10505, 74, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 710, 1523, 62, 3262, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3848, 329, 17019, 2010, 14837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 710, 1523, 62, 3262, 13, 13287, 7, 17497, 11, 2116, 13, 10178, 8, 198 ]
2.354157
2,177
# project/test_basic.py import os import unittest from app.app import Kanban_app from app.models import db, User, Card TEST_DB = 'test.db' # execute before each test # execute after each test # methods to help pass data to views # tests to run # check home view works # test user can register # test invalid email during registration # test invalid passwords during registration # test log in works # test incorrect password # test bad email prevents login # test app prevents duplicate emails # test logout if __name__ == "__main__": unittest.main()
[ 2, 1628, 14, 9288, 62, 35487, 13, 9078, 198, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 598, 13, 1324, 1330, 14248, 3820, 62, 1324, 198, 6738, 598, 13, 27530, 1330, 20613, 11, 11787, 11, 5172, 198, 198, 51, 6465, 62, 11012, 796, 705, 9288, 13, 9945, 6, 628, 220, 220, 220, 1303, 12260, 878, 1123, 1332, 628, 220, 220, 220, 1303, 12260, 706, 1123, 1332, 628, 220, 220, 220, 1303, 5050, 284, 1037, 1208, 1366, 284, 5009, 628, 220, 220, 220, 1303, 5254, 284, 1057, 628, 220, 220, 220, 1303, 2198, 1363, 1570, 2499, 628, 220, 220, 220, 1303, 1332, 2836, 460, 7881, 628, 220, 220, 220, 1303, 1332, 12515, 3053, 1141, 9352, 628, 220, 220, 220, 1303, 1332, 12515, 21442, 1141, 9352, 628, 220, 220, 220, 1303, 1332, 2604, 287, 2499, 628, 220, 220, 220, 1303, 1332, 11491, 9206, 628, 220, 220, 220, 1303, 1332, 2089, 3053, 15174, 17594, 628, 220, 220, 220, 1303, 1332, 598, 15174, 23418, 7237, 628, 220, 220, 220, 1303, 1332, 2604, 448, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.2
195
""" Direct access to the Pwned Passwords API for checking whether a password is compromised. """ import hashlib import logging import sys import requests from django.conf import settings from . import __version__ log = logging.getLogger(__name__) API_ENDPOINT = "https://api.pwnedpasswords.com/range/{}" REQUEST_TIMEOUT = 1.0 # 1 second USER_AGENT = "pwned-passwords-django/{} (Python/{} | requests/{})".format( __version__, "{}.{}.{}".format(*sys.version_info[:3]), requests.__version__ ) def _get_pwned(prefix): """ Fetches a dict of all hash suffixes from Pwned Passwords for a given SHA-1 prefix. """ try: response = requests.get( url=API_ENDPOINT.format(prefix), headers={"User-Agent": USER_AGENT}, timeout=getattr(settings, "PWNED_PASSWORDS_API_TIMEOUT", REQUEST_TIMEOUT), ) response.raise_for_status() except requests.RequestException as e: # Gracefully handle timeouts and HTTP error response codes. log.warning("Skipped Pwned Passwords check due to error: %r", e) return None results = {} for line in response.text.splitlines(): line_suffix, _, times = line.partition(":") results[line_suffix] = int(times) return results def pwned_password(password): """ Checks a password against the Pwned Passwords database. """ if not isinstance(password, str): raise TypeError("Password values to check must be Unicode strings.") password_hash = hashlib.sha1(password.encode("utf-8")).hexdigest().upper() prefix, suffix = password_hash[:5], password_hash[5:] results = _get_pwned(prefix) if results is None: # Gracefully handle timeouts and HTTP error response codes. return None return results.get(suffix, 0)
[ 37811, 198, 13470, 1895, 284, 262, 350, 675, 276, 6251, 10879, 7824, 329, 10627, 1771, 257, 198, 28712, 318, 19066, 13, 198, 198, 37811, 198, 198, 11748, 12234, 8019, 198, 11748, 18931, 198, 11748, 25064, 198, 198, 11748, 7007, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6738, 764, 1330, 11593, 9641, 834, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 17614, 62, 1677, 6322, 46, 12394, 796, 366, 5450, 1378, 15042, 13, 79, 675, 276, 6603, 10879, 13, 785, 14, 9521, 14, 90, 36786, 198, 2200, 35780, 62, 34694, 12425, 796, 352, 13, 15, 220, 1303, 352, 1218, 198, 29904, 62, 4760, 3525, 796, 366, 79, 675, 276, 12, 6603, 10879, 12, 28241, 14208, 14, 90, 92, 357, 37906, 14, 90, 92, 930, 7007, 14, 90, 30072, 1911, 18982, 7, 198, 220, 220, 220, 11593, 9641, 834, 11, 45144, 27422, 90, 27422, 90, 92, 1911, 18982, 46491, 17597, 13, 9641, 62, 10951, 58, 25, 18, 46570, 7007, 13, 834, 9641, 834, 198, 8, 628, 198, 4299, 4808, 1136, 62, 79, 675, 276, 7, 40290, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44649, 2052, 257, 8633, 286, 477, 12234, 35488, 274, 422, 350, 675, 276, 6251, 10879, 329, 257, 198, 220, 220, 220, 1813, 25630, 12, 16, 21231, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 17614, 62, 1677, 6322, 46, 12394, 13, 18982, 7, 40290, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 4895, 12982, 12, 36772, 1298, 1294, 1137, 62, 4760, 3525, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1136, 35226, 7, 33692, 11, 366, 47, 29767, 1961, 62, 47924, 45359, 5258, 62, 17614, 62, 34694, 12425, 1600, 4526, 35780, 62, 34694, 12425, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 2845, 7007, 13, 18453, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16156, 2759, 5412, 640, 5269, 290, 14626, 4049, 2882, 12416, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 43917, 7203, 15739, 3949, 350, 675, 276, 6251, 10879, 2198, 2233, 284, 4049, 25, 4064, 81, 1600, 304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2482, 796, 23884, 198, 220, 220, 220, 329, 1627, 287, 2882, 13, 5239, 13, 35312, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 37333, 844, 11, 4808, 11, 1661, 796, 1627, 13, 3911, 653, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 58, 1370, 62, 37333, 844, 60, 796, 493, 7, 22355, 8, 628, 220, 220, 220, 1441, 2482, 628, 198, 4299, 279, 675, 276, 62, 28712, 7, 28712, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 257, 9206, 1028, 262, 350, 675, 276, 6251, 10879, 6831, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 28712, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 35215, 3815, 284, 2198, 1276, 307, 34371, 13042, 19570, 198, 220, 220, 220, 9206, 62, 17831, 796, 12234, 8019, 13, 26270, 16, 7, 28712, 13, 268, 8189, 7203, 40477, 12, 23, 4943, 737, 33095, 12894, 395, 22446, 45828, 3419, 198, 220, 220, 220, 21231, 11, 35488, 796, 9206, 62, 17831, 58, 25, 20, 4357, 9206, 62, 17831, 58, 20, 47715, 198, 220, 220, 220, 2482, 796, 4808, 1136, 62, 79, 675, 276, 7, 40290, 8, 198, 220, 220, 220, 611, 2482, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16156, 2759, 5412, 640, 5269, 290, 14626, 4049, 2882, 12416, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 1441, 2482, 13, 1136, 7, 37333, 844, 11, 657, 8, 198 ]
2.626801
694
import numpy as np from smartredis import Dataset def test_add_get_tensor(mock_data): """Test adding and retrieving 1D tensors to a dataset and with all datatypes """ dataset = Dataset("test-dataset") # 1D tensors of all data types data = mock_data.create_data(10) add_get_arrays(dataset, data) def test_add_get_tensor_2D(mock_data): """Test adding and retrieving 2D tensors to a dataset and with all datatypes """ dataset = Dataset("test-dataset") # 2D tensors of all data types data_2D = mock_data.create_data((10, 10)) add_get_arrays(dataset, data_2D) def test_add_get_tensor_3D(mock_data): """Test adding and retrieving 3D tensors to a dataset and with all datatypes """ dataset = Dataset("test-dataset") # 3D tensors of all datatypes data_3D = mock_data.create_data((10, 10, 10)) add_get_arrays(dataset, data_3D) def test_add_get_scalar(mock_data): """Test adding and retrieving scalars to a dataset and with all datatypes """ dataset = Dataset("test-dataset") # 1D tensors of all data types data = mock_data.create_metadata_scalars(10) add_get_scalars(dataset, data) def test_add_get_strings(mock_data): """Test adding and retrieving strings to a dataset """ dataset = Dataset("test-dataset") # list of strings data = mock_data.create_metadata_strings(10) add_get_strings(dataset, data) # ------- Helper Functions ----------------------------------------------- def add_get_arrays(dataset, data): """Helper for dataset tests""" # add to dataset for index, array in enumerate(data): key = f"array_{str(index)}" dataset.add_tensor(key, array) # get from dataset for index, array in enumerate(data): key = f"array_{str(index)}" rarray = dataset.get_tensor(key) np.testing.assert_array_equal( rarray, array, "Returned array from get_tensor not equal to tensor added to dataset", ) def add_get_scalars(dataset, data): """Helper for metadata tests""" # add to dataset for index, scalars in enumerate(data): key = f"meta_scalars_{index}" for scalar in scalars: dataset.add_meta_scalar(key, scalar) # get from dataset for index, scalars in enumerate(data): key = f"meta_scalars_{index}" rscalars = dataset.get_meta_scalars(key) np.testing.assert_array_equal( rscalars, scalars, "Returned scalars from get_meta_scalars not equal to scalars added to dataset", ) def add_get_strings(dataset, data): """Helper for metadata tests""" # add to dataset key = "test_meta_strings" for meta_string in data: dataset.add_meta_string(key, meta_string) # get from dataset rdata = dataset.get_meta_strings(key) assert len(data) == len(rdata) assert all([a == b for a, b in zip(data, rdata)])
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4451, 445, 271, 1330, 16092, 292, 316, 628, 198, 4299, 1332, 62, 2860, 62, 1136, 62, 83, 22854, 7, 76, 735, 62, 7890, 2599, 198, 220, 220, 220, 37227, 14402, 4375, 290, 50122, 352, 35, 11192, 669, 284, 198, 220, 220, 220, 257, 27039, 290, 351, 477, 4818, 265, 9497, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 796, 16092, 292, 316, 7203, 9288, 12, 19608, 292, 316, 4943, 628, 220, 220, 220, 1303, 352, 35, 11192, 669, 286, 477, 1366, 3858, 198, 220, 220, 220, 1366, 796, 15290, 62, 7890, 13, 17953, 62, 7890, 7, 940, 8, 198, 220, 220, 220, 751, 62, 1136, 62, 3258, 592, 7, 19608, 292, 316, 11, 1366, 8, 628, 198, 4299, 1332, 62, 2860, 62, 1136, 62, 83, 22854, 62, 17, 35, 7, 76, 735, 62, 7890, 2599, 198, 220, 220, 220, 37227, 14402, 4375, 290, 50122, 362, 35, 11192, 669, 284, 198, 220, 220, 220, 257, 27039, 290, 351, 477, 4818, 265, 9497, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 796, 16092, 292, 316, 7203, 9288, 12, 19608, 292, 316, 4943, 628, 220, 220, 220, 1303, 362, 35, 11192, 669, 286, 477, 1366, 3858, 198, 220, 220, 220, 1366, 62, 17, 35, 796, 15290, 62, 7890, 13, 17953, 62, 7890, 19510, 940, 11, 838, 4008, 198, 220, 220, 220, 751, 62, 1136, 62, 3258, 592, 7, 19608, 292, 316, 11, 1366, 62, 17, 35, 8, 628, 198, 4299, 1332, 62, 2860, 62, 1136, 62, 83, 22854, 62, 18, 35, 7, 76, 735, 62, 7890, 2599, 198, 220, 220, 220, 37227, 14402, 4375, 290, 50122, 513, 35, 11192, 669, 284, 198, 220, 220, 220, 257, 27039, 290, 351, 477, 4818, 265, 9497, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 796, 16092, 292, 316, 7203, 9288, 12, 19608, 292, 316, 4943, 628, 220, 220, 220, 1303, 513, 35, 11192, 669, 286, 477, 4818, 265, 9497, 198, 220, 220, 220, 1366, 62, 18, 35, 796, 15290, 62, 7890, 13, 17953, 62, 7890, 19510, 940, 11, 838, 11, 838, 4008, 198, 220, 220, 220, 751, 62, 1136, 62, 3258, 592, 7, 19608, 292, 316, 11, 1366, 62, 18, 35, 8, 628, 198, 4299, 1332, 62, 2860, 62, 1136, 62, 1416, 282, 283, 7, 76, 735, 62, 7890, 2599, 198, 220, 220, 220, 37227, 14402, 4375, 290, 50122, 16578, 945, 284, 198, 220, 220, 220, 257, 27039, 290, 351, 477, 4818, 265, 9497, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 796, 16092, 292, 316, 7203, 9288, 12, 19608, 292, 316, 4943, 628, 220, 220, 220, 1303, 352, 35, 11192, 669, 286, 477, 1366, 3858, 198, 220, 220, 220, 1366, 796, 15290, 62, 7890, 13, 17953, 62, 38993, 62, 1416, 282, 945, 7, 940, 8, 198, 220, 220, 220, 751, 62, 1136, 62, 1416, 282, 945, 7, 19608, 292, 316, 11, 1366, 8, 628, 198, 4299, 1332, 62, 2860, 62, 1136, 62, 37336, 7, 76, 735, 62, 7890, 2599, 198, 220, 220, 220, 37227, 14402, 4375, 290, 50122, 13042, 284, 198, 220, 220, 220, 257, 27039, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27039, 796, 16092, 292, 316, 7203, 9288, 12, 19608, 292, 316, 4943, 628, 220, 220, 220, 1303, 1351, 286, 13042, 198, 220, 220, 220, 1366, 796, 15290, 62, 7890, 13, 17953, 62, 38993, 62, 37336, 7, 940, 8, 198, 220, 220, 220, 751, 62, 1136, 62, 37336, 7, 19608, 292, 316, 11, 1366, 8, 628, 198, 2, 35656, 5053, 525, 40480, 20368, 24305, 628, 198, 4299, 751, 62, 1136, 62, 3258, 592, 7, 19608, 292, 316, 11, 1366, 2599, 198, 220, 220, 220, 37227, 47429, 329, 27039, 5254, 37811, 628, 220, 220, 220, 1303, 751, 284, 27039, 198, 220, 220, 220, 329, 6376, 11, 7177, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 277, 1, 18747, 23330, 2536, 7, 9630, 8, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2860, 62, 83, 22854, 7, 2539, 11, 7177, 8, 628, 220, 220, 220, 1303, 651, 422, 27039, 198, 220, 220, 220, 329, 6376, 11, 7177, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 277, 1, 18747, 23330, 2536, 7, 9630, 8, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 374, 18747, 796, 27039, 13, 1136, 62, 83, 22854, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13615, 276, 7177, 422, 651, 62, 83, 22854, 407, 4961, 284, 11192, 273, 2087, 284, 27039, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 751, 62, 1136, 62, 1416, 282, 945, 7, 19608, 292, 316, 11, 1366, 2599, 198, 220, 220, 220, 37227, 47429, 329, 20150, 5254, 37811, 628, 220, 220, 220, 1303, 751, 284, 27039, 198, 220, 220, 220, 329, 6376, 11, 16578, 945, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 277, 1, 28961, 62, 1416, 282, 945, 23330, 9630, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16578, 283, 287, 16578, 945, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2860, 62, 28961, 62, 1416, 282, 283, 7, 2539, 11, 16578, 283, 8, 628, 220, 220, 220, 1303, 651, 422, 27039, 198, 220, 220, 220, 329, 6376, 11, 16578, 945, 287, 27056, 378, 7, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 277, 1, 28961, 62, 1416, 282, 945, 23330, 9630, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1416, 282, 945, 796, 27039, 13, 1136, 62, 28961, 62, 1416, 282, 945, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 1416, 282, 945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13615, 276, 16578, 945, 422, 651, 62, 28961, 62, 1416, 282, 945, 407, 4961, 284, 16578, 945, 2087, 284, 27039, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4299, 751, 62, 1136, 62, 37336, 7, 19608, 292, 316, 11, 1366, 2599, 198, 220, 220, 220, 37227, 47429, 329, 20150, 5254, 37811, 628, 220, 220, 220, 1303, 751, 284, 27039, 198, 220, 220, 220, 1994, 796, 366, 9288, 62, 28961, 62, 37336, 1, 198, 220, 220, 220, 329, 13634, 62, 8841, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 13, 2860, 62, 28961, 62, 8841, 7, 2539, 11, 13634, 62, 8841, 8, 628, 220, 220, 220, 1303, 651, 422, 27039, 198, 220, 220, 220, 374, 7890, 796, 27039, 13, 1136, 62, 28961, 62, 37336, 7, 2539, 8, 198, 220, 220, 220, 6818, 18896, 7, 7890, 8, 6624, 18896, 7, 4372, 1045, 8, 198, 220, 220, 220, 6818, 477, 26933, 64, 6624, 275, 329, 257, 11, 275, 287, 19974, 7, 7890, 11, 374, 7890, 8, 12962, 198 ]
2.426494
1,238
from rest_framework import generics from .models import Item from .serializers import ItemSerializer
[ 6738, 1334, 62, 30604, 1330, 1152, 873, 198, 198, 6738, 764, 27530, 1330, 9097, 198, 6738, 764, 46911, 11341, 1330, 9097, 32634, 7509, 628, 198 ]
4.16
25
from distutils.core import setup, Extension from Cython.Build import cythonize # ext = Extension(name="wrap_fib", source=["cfibc.c", "wrap_fib.pyx"]) # ext = ["hermite_splines.pyx", "source_iteration.pyx", "splines.pyx"] ext = ["multi_group.pyx", "x_sweeps.pyx"] #, "x_sweeps.pxd"] setup(ext_modules=cythonize(ext, language_level="3"))
[ 6738, 1233, 26791, 13, 7295, 1330, 9058, 11, 27995, 198, 6738, 327, 7535, 13, 15580, 1330, 3075, 400, 261, 1096, 198, 198, 2, 1070, 796, 27995, 7, 3672, 2625, 37150, 62, 69, 571, 1600, 2723, 28, 14692, 12993, 571, 66, 13, 66, 1600, 366, 37150, 62, 69, 571, 13, 9078, 87, 8973, 8, 198, 2, 1070, 796, 14631, 372, 32937, 62, 22018, 1127, 13, 9078, 87, 1600, 366, 10459, 62, 2676, 341, 13, 9078, 87, 1600, 366, 22018, 1127, 13, 9078, 87, 8973, 220, 198, 2302, 796, 14631, 41684, 62, 8094, 13, 9078, 87, 1600, 366, 87, 62, 46280, 25386, 13, 9078, 87, 8973, 1303, 11, 366, 87, 62, 46280, 25386, 13, 8416, 67, 8973, 220, 198, 198, 40406, 7, 2302, 62, 18170, 28, 948, 400, 261, 1096, 7, 2302, 11, 3303, 62, 5715, 2625, 18, 48774, 628 ]
2.471014
138
import os from django.core.wsgi import get_wsgi_application from dj_static import Cling os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'bus_plan.settings') application = Cling(get_wsgi_application())
[ 198, 11748, 28686, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 18504, 12397, 1330, 651, 62, 18504, 12397, 62, 31438, 198, 6738, 42625, 62, 12708, 1330, 1012, 278, 198, 198, 418, 13, 268, 2268, 13, 2617, 12286, 10786, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 3256, 705, 10885, 62, 11578, 13, 33692, 11537, 198, 198, 31438, 796, 1012, 278, 7, 1136, 62, 18504, 12397, 62, 31438, 28955, 198 ]
2.887324
71
#!/usr/bin/env python3 # encoding: utf-8 import asyncio asyncio.run(main())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 11748, 30351, 952, 198, 198, 292, 13361, 952, 13, 5143, 7, 12417, 28955, 198 ]
2.363636
33
# # Embed a photo data inside a Tk frame # import tkinter as tk import smimgpng as smimg AUTHOR = "Alexandre Gomiero de Oliveira" REPO = "https://github.com/gomiero/bin2src" # Entry point: create the root window... root = tk.Tk() # ...the App instance... app = App(master = root) # ...and run the main loop. app.mainloop()
[ 2, 198, 2, 13302, 276, 257, 4590, 1366, 2641, 257, 309, 74, 5739, 198, 2, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 11748, 895, 9600, 11134, 355, 895, 9600, 198, 198, 32, 24318, 1581, 796, 366, 15309, 49078, 402, 296, 959, 78, 390, 30012, 8704, 1, 198, 2200, 16402, 796, 366, 5450, 1378, 12567, 13, 785, 14, 19120, 959, 78, 14, 8800, 17, 10677, 1, 198, 198, 2, 21617, 966, 25, 2251, 262, 6808, 4324, 986, 198, 15763, 796, 256, 74, 13, 51, 74, 3419, 198, 2, 2644, 1169, 2034, 4554, 986, 198, 1324, 796, 2034, 7, 9866, 796, 6808, 8, 198, 2, 2644, 392, 1057, 262, 1388, 9052, 13, 198, 1324, 13, 12417, 26268, 3419, 628 ]
2.739496
119
import struct
[ 11748, 2878, 628 ]
5
3
import numpy as np from instance_occlsegm_lib.datasets.apc.apc2016 import JskAPC2016Dataset
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4554, 62, 420, 565, 325, 39870, 62, 8019, 13, 19608, 292, 1039, 13, 499, 66, 13, 499, 66, 5304, 1330, 449, 8135, 2969, 34, 5304, 27354, 292, 316, 628, 198 ]
2.5
38
import random from optparse import make_option from django.conf import settings from django.core.management.base import BaseCommand
[ 11748, 4738, 198, 6738, 2172, 29572, 1330, 787, 62, 18076, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 628 ]
4.060606
33
from lib.mlnet import MLNet from data.data_loader import DataLoader from data.utils import split_and_pack import tensorflow as tf import numpy as np import time def get_descs_and_labels(net: MLNet, sess: tf.Session, modal, paths_with_labels, process_fn, batch_size): """ This function computes description vectors for image and text samples. """ if net.is_training: raise Exception("should not run this in training mode") if net.is_retrieving: raise Exception("should not run this in retrieving mode") descriptors = [] labels = [] loader = DataLoader(paths_with_labels, batch_size, shuffle=False, process_fn=process_fn) for batch in range(loader.n_batches): batch_data, batch_labels = loader.get_batch_by_index(batch) batch_data = split_and_pack(batch_data) if modal == 1: feed_dict = {} for ph, data in zip(net.ph1, batch_data): feed_dict[ph] = data batch_descs = net.descriptors_1.eval(session=sess, feed_dict=feed_dict) elif modal == 2: feed_dict = {} for ph, data in zip(net.ph2, batch_data): feed_dict[ph] = data batch_descs = net.descriptors_2.eval(session=sess, feed_dict=feed_dict) else: raise Exception("modal should be either 1 or 2") descriptors.append(batch_descs) labels.append(batch_labels) if loader.n_remain > 0: batch_data, batch_labels = loader.get_remaining() batch_data = split_and_pack(batch_data) if modal == 1: feed_dict = {} for ph, data in zip(net.ph1, batch_data): feed_dict[ph] = data batch_descs = net.descriptors_1.eval(session=sess, feed_dict=feed_dict) elif modal == 2: feed_dict = {} for ph, data in zip(net.ph2, batch_data): feed_dict[ph] = data batch_descs = net.descriptors_2.eval(session=sess, feed_dict=feed_dict) else: raise Exception("modal should be either 1 or 2") descriptors.append(batch_descs[:loader.n_remain]) labels.append(batch_labels[:loader.n_remain]) descriptors = np.concatenate(descriptors, axis=0) labels = np.concatenate(labels, axis=0) return descriptors, labels def average_precisions(net: MLNet, sess: tf.Session, q_descs, q_labels, r_descs, r_labels, at=100, batch_size=128): """ :param net: an MLNet model :param sess: a tensorflow session= :param q_descs: descriptors for querying data :param q_labels: labels for querying data :param r_descs: descriptors for retrieved data :param r_labels: labels for retrieved data :param at: if mAP@100 is desired, assign 'at' with 100, if mAP@ALL is desired, assign 'at' with 0 :param batch_size: batch size :return: average procisions """ n_samples, n_entries = len(q_descs), len(r_descs) APs = [] for query_idx in range(n_samples): time1 = time.time() _, average_precision = retrieve(net, sess, q_descs[query_idx], q_labels[query_idx], r_descs, r_labels, at=at, batch_size=batch_size) APs.append(average_precision) time2 = time.time() ellapsed = time2 - time1 print("sample %4d/%4d, AP: %5.3f, time: %5.2fs" % (query_idx + 1, n_samples, average_precision, ellapsed), end='\r') return APs
[ 6738, 9195, 13, 4029, 3262, 1330, 10373, 7934, 198, 6738, 1366, 13, 7890, 62, 29356, 1330, 6060, 17401, 198, 6738, 1366, 13, 26791, 1330, 6626, 62, 392, 62, 8002, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 198, 4299, 651, 62, 20147, 82, 62, 392, 62, 23912, 1424, 7, 3262, 25, 10373, 7934, 11, 264, 408, 25, 48700, 13, 36044, 11, 953, 282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 62, 4480, 62, 23912, 1424, 11, 1429, 62, 22184, 11, 15458, 62, 7857, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 552, 1769, 6764, 30104, 329, 2939, 290, 2420, 8405, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 2010, 13, 271, 62, 34409, 25, 5298, 35528, 7203, 21754, 407, 1057, 428, 287, 3047, 4235, 4943, 198, 220, 220, 220, 611, 2010, 13, 271, 62, 1186, 37418, 25, 5298, 35528, 7203, 21754, 407, 1057, 428, 287, 50122, 4235, 4943, 628, 220, 220, 220, 12145, 669, 796, 17635, 198, 220, 220, 220, 14722, 796, 17635, 628, 220, 220, 220, 40213, 796, 6060, 17401, 7, 6978, 82, 62, 4480, 62, 23912, 1424, 11, 15458, 62, 7857, 11, 36273, 28, 25101, 11, 1429, 62, 22184, 28, 14681, 62, 22184, 8, 628, 220, 220, 220, 329, 15458, 287, 2837, 7, 29356, 13, 77, 62, 8664, 2052, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7890, 11, 15458, 62, 23912, 1424, 796, 40213, 13, 1136, 62, 43501, 62, 1525, 62, 9630, 7, 43501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7890, 796, 6626, 62, 392, 62, 8002, 7, 43501, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 953, 282, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 872, 11, 1366, 287, 19974, 7, 3262, 13, 746, 16, 11, 15458, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 746, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 20147, 82, 796, 2010, 13, 20147, 1968, 669, 62, 16, 13, 18206, 7, 29891, 28, 82, 408, 11, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 953, 282, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 872, 11, 1366, 287, 19974, 7, 3262, 13, 746, 17, 11, 15458, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 746, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 20147, 82, 796, 2010, 13, 20147, 1968, 669, 62, 17, 13, 18206, 7, 29891, 28, 82, 408, 11, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 4666, 282, 815, 307, 2035, 352, 393, 362, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 13, 33295, 7, 43501, 62, 20147, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 13, 33295, 7, 43501, 62, 23912, 1424, 8, 628, 220, 220, 220, 611, 40213, 13, 77, 62, 2787, 391, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7890, 11, 15458, 62, 23912, 1424, 796, 40213, 13, 1136, 62, 2787, 1397, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7890, 796, 6626, 62, 392, 62, 8002, 7, 43501, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 953, 282, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 872, 11, 1366, 287, 19974, 7, 3262, 13, 746, 16, 11, 15458, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 746, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 20147, 82, 796, 2010, 13, 20147, 1968, 669, 62, 16, 13, 18206, 7, 29891, 28, 82, 408, 11, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 953, 282, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 872, 11, 1366, 287, 19974, 7, 3262, 13, 746, 17, 11, 15458, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 58, 746, 60, 796, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 20147, 82, 796, 2010, 13, 20147, 1968, 669, 62, 17, 13, 18206, 7, 29891, 28, 82, 408, 11, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 4666, 282, 815, 307, 2035, 352, 393, 362, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 12145, 669, 13, 33295, 7, 43501, 62, 20147, 82, 58, 25, 29356, 13, 77, 62, 2787, 391, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 13, 33295, 7, 43501, 62, 23912, 1424, 58, 25, 29356, 13, 77, 62, 2787, 391, 12962, 628, 220, 220, 220, 12145, 669, 796, 45941, 13, 1102, 9246, 268, 378, 7, 20147, 1968, 669, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 14722, 796, 45941, 13, 1102, 9246, 268, 378, 7, 23912, 1424, 11, 16488, 28, 15, 8, 628, 220, 220, 220, 1441, 12145, 669, 11, 14722, 628, 198, 4299, 2811, 62, 3866, 66, 3279, 7, 3262, 25, 10373, 7934, 11, 264, 408, 25, 48700, 13, 36044, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 62, 20147, 82, 11, 10662, 62, 23912, 1424, 11, 374, 62, 20147, 82, 11, 374, 62, 23912, 1424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 28, 3064, 11, 15458, 62, 7857, 28, 12762, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 2010, 25, 281, 10373, 7934, 2746, 198, 220, 220, 220, 1058, 17143, 264, 408, 25, 257, 11192, 273, 11125, 6246, 28, 198, 220, 220, 220, 1058, 17143, 10662, 62, 20147, 82, 25, 12145, 669, 329, 42517, 1112, 1366, 198, 220, 220, 220, 1058, 17143, 10662, 62, 23912, 1424, 25, 14722, 329, 42517, 1112, 1366, 198, 220, 220, 220, 1058, 17143, 374, 62, 20147, 82, 25, 12145, 669, 329, 29517, 1366, 198, 220, 220, 220, 1058, 17143, 374, 62, 23912, 1424, 25, 14722, 329, 29517, 1366, 198, 220, 220, 220, 1058, 17143, 379, 25, 611, 285, 2969, 31, 3064, 318, 10348, 11, 8333, 705, 265, 6, 351, 1802, 11, 611, 285, 2969, 31, 7036, 318, 10348, 11, 8333, 705, 265, 6, 351, 657, 198, 220, 220, 220, 1058, 17143, 15458, 62, 7857, 25, 15458, 2546, 198, 220, 220, 220, 1058, 7783, 25, 2811, 13834, 3279, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 299, 62, 82, 12629, 11, 299, 62, 298, 1678, 796, 18896, 7, 80, 62, 20147, 82, 828, 18896, 7, 81, 62, 20147, 82, 8, 628, 220, 220, 220, 3486, 82, 796, 17635, 628, 220, 220, 220, 329, 12405, 62, 312, 87, 287, 2837, 7, 77, 62, 82, 12629, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 640, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 2811, 62, 3866, 16005, 796, 19818, 7, 3262, 11, 264, 408, 11, 10662, 62, 20147, 82, 58, 22766, 62, 312, 87, 4357, 10662, 62, 23912, 1424, 58, 22766, 62, 312, 87, 4357, 374, 62, 20147, 82, 11, 374, 62, 23912, 1424, 11, 379, 28, 265, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3486, 82, 13, 33295, 7, 23913, 62, 3866, 16005, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 17, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 30004, 28361, 796, 640, 17, 532, 640, 16, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 39873, 4064, 19, 67, 14, 4, 19, 67, 11, 3486, 25, 4064, 20, 13, 18, 69, 11, 640, 25, 4064, 20, 13, 17, 9501, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22766, 62, 312, 87, 1343, 352, 11, 299, 62, 82, 12629, 11, 2811, 62, 3866, 16005, 11, 30004, 28361, 828, 886, 11639, 59, 81, 11537, 628, 220, 220, 220, 1441, 3486, 82, 198 ]
2.212255
1,583
"""Testing invalid cookiecutter template repositories.""" import pytest from tackle import exceptions, main def test_should_raise_error_if_repo_does_not_exist(chdir): """Cookiecutter invocation with non-exist repository should raise error.""" chdir('/') with pytest.raises(exceptions.UnknownSourceException): main.tackle('definitely-not-a-valid-repo-dir')
[ 37811, 44154, 12515, 19751, 8968, 353, 11055, 38072, 526, 15931, 198, 11748, 12972, 9288, 198, 198, 6738, 9761, 1330, 13269, 11, 1388, 628, 198, 4299, 1332, 62, 21754, 62, 40225, 62, 18224, 62, 361, 62, 260, 7501, 62, 22437, 62, 1662, 62, 38476, 7, 354, 15908, 2599, 198, 220, 220, 220, 37227, 34, 18055, 8968, 353, 43219, 351, 1729, 12, 38476, 16099, 815, 5298, 4049, 526, 15931, 198, 220, 220, 220, 442, 15908, 10786, 14, 11537, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 1069, 11755, 13, 20035, 7416, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 13, 36346, 10786, 4299, 12998, 12, 1662, 12, 64, 12, 12102, 12, 260, 7501, 12, 15908, 11537, 198 ]
3.132231
121
import torch as ch import pandas as pd import numpy as np from pathlib import Path from pathos.multiprocessing import Pool from argparse import ArgumentParser from numpy.random import seed import matplotlib as mpl from matplotlib import rc from matplotlib import pyplot as plt import seaborn as sns sns.set() mpl.style.use('ggplot') rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) rc('text', usetex=True) ## Copied verbatim from Recht et al code release # Selection frequency ops # Bootstrap if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--trials', type=int, default=10) parser.add_argument('--workers', type=int, default=2) parser.add_argument('--experiment', required=True, choices=['heldout', 'naiveest', 'ezflickr']) parser.add_argument('--out-dir', required=True) parser.add_argument('--df-path', required=True) args = parser.parse_args() print("Loading data...") MY_PATH = Path(args.out_dir) df = ch.load(args.df_path) print(f"Loaded data (currently {len(df)} annotations)") CLA_KEYS = [k for k in df.columns if k.startswith('correct_')] p = Pool(args.workers) if args.experiment == 'ezflickr': FORMAT_STR = "Accs (v1, v2, v2_EZ): ({0}, {1}, {2}) | " \ "SFs (v1, v2, v2_EZ): ({3}, {4}, {5}) | " \ "v2 heldout SF: {6}" res = p.map(flickr_ez_exp, range(args.trials)) print(FORMAT_STR.format(*list(np.array(res).mean(0)))) elif args.experiment == 'heldout': FORMAT_STR = "SFs (v1, v2): ({0:.3f}, {1:.3f}) | " \ "v2 heldout SF: {2:.3f}" stats = p.map(heldout_sf_exp, range(args.trials)) print(FORMAT_STR.format(*list(np.array(stats).mean(0)))) elif args.experiment == 'naiveest': fig, ax = plt.subplots(1, 1, figsize=(6,2)) xs = [5, 6, 7, 8, 9, 10] res = np.array(p.map(naive_est_exp, [xs] * args.trials)) res_df = pd.DataFrame(columns=xs, data=res).melt(var_name='xs', value_name='adj_acc') ch.save(res_df, str(MY_PATH / 'orig_data_naive_est_data.pt')) print(f"X: {xs} | Y: {res.mean(0)}") sns.lineplot(data=res_df, x='xs', y='adj_acc', ax=ax, palette=sns.color_palette("tab10", 1)) ax.set(xlabel='Number of annotators per image', ylabel='ImageNet v1/v2 accuracy gap') plt.tight_layout() fig.savefig(str(MY_PATH / 'orig_data_naive_est.png'))
[ 11748, 28034, 355, 442, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 3108, 418, 13, 16680, 541, 305, 919, 278, 1330, 19850, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 299, 32152, 13, 25120, 1330, 9403, 198, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 6738, 2603, 29487, 8019, 1330, 48321, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 82, 5907, 13, 2617, 3419, 198, 76, 489, 13, 7635, 13, 1904, 10786, 1130, 29487, 11537, 198, 6015, 10786, 10331, 3256, 12429, 90, 6, 17989, 10354, 705, 2655, 361, 3256, 705, 2655, 361, 10354, 37250, 34556, 12495, 20520, 30072, 198, 6015, 10786, 5239, 3256, 514, 316, 1069, 28, 17821, 8, 198, 198, 2235, 6955, 798, 3326, 8664, 320, 422, 797, 21474, 2123, 435, 2438, 2650, 198, 2, 29538, 8373, 39628, 198, 2, 18892, 26418, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 45751, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 28461, 874, 3256, 2099, 28, 600, 11, 4277, 28, 940, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22896, 3256, 2099, 28, 600, 11, 4277, 28, 17, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 23100, 3681, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 17816, 10217, 448, 3256, 705, 2616, 425, 395, 3256, 705, 8471, 2704, 18994, 6, 12962, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 448, 12, 15908, 3256, 2672, 28, 17821, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 7568, 12, 6978, 3256, 2672, 28, 17821, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 3601, 7203, 19031, 1366, 9313, 8, 198, 220, 220, 220, 17615, 62, 34219, 796, 10644, 7, 22046, 13, 448, 62, 15908, 8, 198, 220, 220, 220, 47764, 796, 442, 13, 2220, 7, 22046, 13, 7568, 62, 6978, 8, 198, 220, 220, 220, 3601, 7, 69, 1, 8912, 276, 1366, 357, 41745, 1391, 11925, 7, 7568, 38165, 37647, 8, 4943, 628, 220, 220, 220, 47666, 62, 7336, 16309, 796, 685, 74, 329, 479, 287, 47764, 13, 28665, 82, 611, 479, 13, 9688, 2032, 342, 10786, 30283, 62, 11537, 60, 198, 220, 220, 220, 279, 796, 19850, 7, 22046, 13, 22896, 8, 198, 220, 220, 220, 611, 26498, 13, 23100, 3681, 6624, 705, 8471, 2704, 18994, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 7473, 41636, 62, 18601, 796, 366, 17320, 82, 357, 85, 16, 11, 410, 17, 11, 410, 17, 62, 36, 57, 2599, 37913, 15, 5512, 1391, 16, 5512, 1391, 17, 30072, 930, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20802, 82, 357, 85, 16, 11, 410, 17, 11, 410, 17, 62, 36, 57, 2599, 37913, 18, 5512, 1391, 19, 5512, 1391, 20, 30072, 930, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 85, 17, 2714, 448, 14362, 25, 1391, 21, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 279, 13, 8899, 7, 2704, 18994, 62, 8471, 62, 11201, 11, 2837, 7, 22046, 13, 28461, 874, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 21389, 1404, 62, 18601, 13, 18982, 46491, 4868, 7, 37659, 13, 18747, 7, 411, 737, 32604, 7, 15, 35514, 628, 220, 220, 220, 1288, 361, 26498, 13, 23100, 3681, 6624, 705, 10217, 448, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 7473, 41636, 62, 18601, 796, 366, 20802, 82, 357, 85, 16, 11, 410, 17, 2599, 37913, 15, 25, 13, 18, 69, 5512, 1391, 16, 25, 13, 18, 69, 30072, 930, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 85, 17, 2714, 448, 14362, 25, 1391, 17, 25, 13, 18, 69, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 9756, 796, 279, 13, 8899, 7, 10217, 448, 62, 28202, 62, 11201, 11, 2837, 7, 22046, 13, 28461, 874, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 21389, 1404, 62, 18601, 13, 18982, 46491, 4868, 7, 37659, 13, 18747, 7, 34242, 737, 32604, 7, 15, 35514, 628, 220, 220, 220, 1288, 361, 26498, 13, 23100, 3681, 6624, 705, 2616, 425, 395, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 352, 11, 2336, 7857, 16193, 21, 11, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 82, 796, 685, 20, 11, 718, 11, 767, 11, 807, 11, 860, 11, 838, 60, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 45941, 13, 18747, 7, 79, 13, 8899, 7, 2616, 425, 62, 395, 62, 11201, 11, 685, 34223, 60, 1635, 26498, 13, 28461, 874, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 581, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 28665, 82, 28, 34223, 11, 1366, 28, 411, 737, 76, 2120, 7, 7785, 62, 3672, 11639, 34223, 3256, 1988, 62, 3672, 11639, 41255, 62, 4134, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 442, 13, 21928, 7, 411, 62, 7568, 11, 965, 7, 26708, 62, 34219, 1220, 705, 11612, 62, 7890, 62, 2616, 425, 62, 395, 62, 7890, 13, 457, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 55, 25, 1391, 34223, 92, 930, 575, 25, 1391, 411, 13, 32604, 7, 15, 38165, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 1370, 29487, 7, 7890, 28, 411, 62, 7568, 11, 2124, 11639, 34223, 3256, 331, 11639, 41255, 62, 4134, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 28, 897, 11, 27043, 28, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 8658, 940, 1600, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 7, 87, 18242, 11639, 15057, 286, 24708, 2024, 583, 2939, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 11639, 5159, 7934, 410, 16, 14, 85, 17, 9922, 7625, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 2536, 7, 26708, 62, 34219, 1220, 705, 11612, 62, 7890, 62, 2616, 425, 62, 395, 13, 11134, 6, 4008, 198 ]
2.198406
1,129
#!/usr/bin/python3 import argparse from http import server import json import subprocess if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 1822, 29572, 198, 6738, 2638, 1330, 4382, 198, 11748, 33918, 198, 11748, 850, 14681, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.933333
45
import mysql import configparser def initialize(config_path): ''' Import a config .ini file. It should have the following definition: ''' config = configparser.ConfigParser() config.read(config_path)
[ 11748, 48761, 198, 11748, 4566, 48610, 628, 628, 198, 4299, 41216, 7, 11250, 62, 6978, 2599, 198, 197, 7061, 6, 198, 197, 20939, 257, 4566, 764, 5362, 2393, 13, 198, 197, 1026, 815, 423, 262, 1708, 6770, 25, 198, 197, 7061, 6, 198, 197, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 197, 11250, 13, 961, 7, 11250, 62, 6978, 8, 628, 197 ]
3.3125
64
# write tests for parsers from seqparser import ( FastaParser, FastqParser) def test_freebie_parser_1(): """ This one is a freebie DO NOT MODIFY THIS FUNCTION """ assert True def test_freebie_parser_2(): """ This too is a freebie DO NOT MODIFY THIS FUNCTION """ assert 1 != 2 def test_FastaParser(): """ Write your unit test for your FastaParser class here. You should generate an instance of your FastaParser class and assert that it properly reads in the example Fasta File. """ fa = FastaParser("./data/test.fa") records = [r for r in fa] assert len(records) == 100, "did not read in correct number of records" # 100 records in total for r in records: assert len(r) == 2, "the record is the wrong length" # each record consists of header and sequence def test_FastqParser(): """ Write your unit test for your FastqParser class here. You should generate an instance of your FastqParser class and assert that it properly reads in the example Fastq File. """ fq = FastqParser("./data/test.fq") records = [r for r in fq] assert len(records) == 100, "did not read in correct number of records" # 100 records in total for r in records: assert len(r) == 3, "the record is the wrong length" # each record is header, sequence, and quality
[ 2, 3551, 5254, 329, 13544, 364, 198, 198, 6738, 33756, 48610, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 12549, 64, 46677, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12549, 80, 46677, 8, 628, 198, 4299, 1332, 62, 5787, 12590, 62, 48610, 62, 16, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 530, 318, 257, 1479, 12590, 198, 220, 220, 220, 8410, 5626, 19164, 5064, 56, 12680, 29397, 4177, 2849, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 6407, 628, 198, 4299, 1332, 62, 5787, 12590, 62, 48610, 62, 17, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1165, 318, 257, 1479, 12590, 198, 220, 220, 220, 8410, 5626, 19164, 5064, 56, 12680, 29397, 4177, 2849, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 352, 14512, 362, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 1332, 62, 22968, 64, 46677, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19430, 534, 4326, 1332, 329, 534, 12549, 64, 46677, 198, 220, 220, 220, 1398, 994, 13, 921, 815, 7716, 281, 4554, 286, 198, 220, 220, 220, 534, 12549, 64, 46677, 1398, 290, 6818, 326, 340, 6105, 198, 220, 220, 220, 9743, 287, 262, 1672, 12549, 64, 9220, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24685, 796, 12549, 64, 46677, 7, 1911, 14, 7890, 14, 9288, 13, 13331, 4943, 628, 220, 220, 220, 4406, 796, 685, 81, 329, 374, 287, 24685, 60, 198, 220, 220, 220, 6818, 18896, 7, 8344, 3669, 8, 6624, 1802, 11, 366, 20839, 407, 1100, 287, 3376, 1271, 286, 4406, 1, 1303, 1802, 4406, 287, 2472, 628, 220, 220, 220, 329, 374, 287, 4406, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 81, 8, 6624, 362, 11, 366, 1169, 1700, 318, 262, 2642, 4129, 1, 1303, 1123, 1700, 10874, 286, 13639, 290, 8379, 628, 198, 4299, 1332, 62, 22968, 80, 46677, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19430, 534, 4326, 1332, 329, 534, 12549, 80, 46677, 198, 220, 220, 220, 1398, 994, 13, 921, 815, 7716, 281, 4554, 286, 198, 220, 220, 220, 534, 12549, 80, 46677, 1398, 290, 6818, 326, 340, 6105, 198, 220, 220, 220, 9743, 287, 262, 1672, 12549, 80, 9220, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 80, 796, 12549, 80, 46677, 7, 1911, 14, 7890, 14, 9288, 13, 69, 80, 4943, 628, 220, 220, 220, 4406, 796, 685, 81, 329, 374, 287, 277, 80, 60, 198, 220, 220, 220, 6818, 18896, 7, 8344, 3669, 8, 6624, 1802, 11, 366, 20839, 407, 1100, 287, 3376, 1271, 286, 4406, 1, 1303, 1802, 4406, 287, 2472, 628, 220, 220, 220, 329, 374, 287, 4406, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 81, 8, 6624, 513, 11, 366, 1169, 1700, 318, 262, 2642, 4129, 1, 1303, 1123, 1700, 318, 13639, 11, 8379, 11, 290, 3081, 198 ]
2.828974
497
# Generated by Django 3.1.2 on 2022-03-26 11:11 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 17, 319, 33160, 12, 3070, 12, 2075, 1367, 25, 1157, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import pathlib import ctypes import numpy as np from objc_util import c, create_objc_class, ObjCClass, ObjCInstance import ui #import pdbg shader_path = pathlib.Path('./Shaders.metal') # --- load objc classes MTKView = ObjCClass('MTKView') MTLCompileOptions = ObjCClass('MTLCompileOptions') MTLRenderPipelineDescriptor = ObjCClass('MTLRenderPipelineDescriptor') # --- initialize MetalDevice MTLCreateSystemDefaultDevice = c.MTLCreateSystemDefaultDevice MTLCreateSystemDefaultDevice.argtypes = [] MTLCreateSystemDefaultDevice.restype = ctypes.c_void_p memcpy = c.memcpy memcpy.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t] memcpy.restype = ctypes.c_void_p err_ptr = ctypes.c_void_p() nd_type = np.float32 # --- set Vertex vertex_array = [ [[-1.0, -1.0, 1.0, 1.0], [1.0, 0.0, 0.0, 1.0]], [[ 1.0, -1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0]], [[ 1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], [[-1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[-1.0, -1.0, -1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], [[ 1.0, -1.0, -1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], [[ 1.0, 1.0, -1.0, 1.0], [1.0, 0.0, 0.0, 1.0]], [[-1.0, 1.0, -1.0, 1.0], [0.0, 1.0, 0.0, 1.0]], ] Vertex = (((ctypes.c_float * 4) * 2) * 8) np_vertex = np.array(vertex_array, dtype=nd_type) index_array = [ 0, 1, 2, 2, 3, 0, # front 1, 5, 6, 6, 2, 1, # right 3, 2, 6, 6, 7, 3, # top 4, 5, 1, 1, 0, 4, # bottom 4, 0, 3, 3, 7, 4, # left 7, 6, 5, 5, 4, 7, # back ] Index = (ctypes.c_uint16 * 36) np_index = np.array(index_array, dtype=np.uint16) #MatrixFloat4x4 = ((ctypes.c_float * 4) *4) MatrixFloat4x4 = (ctypes.c_float *16) # --- Matrix func # todo: 無駄にキャストするテスト __vertexData = np_vertex.ctypes.data_as(ctypes.POINTER(Vertex)).contents _vertexData = np.ctypeslib.as_array(__vertexData) vertexData = _vertexData.ctypes.data_as(ctypes.POINTER(Vertex)).contents indexData = np_index.ctypes.data_as(ctypes.POINTER(Index)).contents # --- MTKViewDelegate PyRenderer = create_objc_class( name='PyRenderer', methods=[drawInMTKView_, mtkView_drawableSizeWillChange_], protocols=['MTKViewDelegate']) if __name__ == '__main__': view = MetalView() view.present(style='fullscreen', orientations=['portrait'])
[ 11748, 3108, 8019, 198, 11748, 269, 19199, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 26181, 66, 62, 22602, 1330, 269, 11, 2251, 62, 26801, 66, 62, 4871, 11, 38764, 34, 9487, 11, 38764, 34, 33384, 198, 11748, 334, 72, 198, 198, 2, 11748, 279, 9945, 70, 628, 198, 198, 1477, 5067, 62, 6978, 796, 3108, 8019, 13, 15235, 7, 4458, 14, 2484, 9972, 13, 28469, 11537, 628, 198, 2, 11420, 3440, 26181, 66, 6097, 198, 13752, 42, 7680, 796, 38764, 34, 9487, 10786, 13752, 42, 7680, 11537, 198, 13752, 5639, 3361, 576, 29046, 796, 38764, 34, 9487, 10786, 13752, 5639, 3361, 576, 29046, 11537, 198, 13752, 35972, 2194, 47, 541, 4470, 24564, 1968, 273, 796, 38764, 34, 9487, 10786, 13752, 35972, 2194, 47, 541, 4470, 24564, 1968, 273, 11537, 198, 198, 2, 11420, 41216, 12136, 24728, 198, 13752, 5639, 260, 378, 11964, 19463, 24728, 796, 269, 13, 13752, 5639, 260, 378, 11964, 19463, 24728, 198, 13752, 5639, 260, 378, 11964, 19463, 24728, 13, 853, 19199, 796, 17635, 198, 13752, 5639, 260, 378, 11964, 19463, 24728, 13, 2118, 2981, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 198, 11883, 66, 9078, 796, 269, 13, 11883, 66, 9078, 198, 11883, 66, 9078, 13, 853, 19199, 796, 685, 310, 9497, 13, 66, 62, 19382, 62, 79, 11, 269, 19199, 13, 66, 62, 19382, 62, 79, 11, 269, 19199, 13, 66, 62, 7857, 62, 83, 60, 198, 11883, 66, 9078, 13, 2118, 2981, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 198, 198, 8056, 62, 20692, 796, 269, 19199, 13, 66, 62, 19382, 62, 79, 3419, 198, 198, 358, 62, 4906, 796, 45941, 13, 22468, 2624, 198, 2, 11420, 900, 4643, 16886, 198, 332, 16886, 62, 18747, 796, 685, 198, 220, 16410, 12, 16, 13, 15, 11, 532, 16, 13, 15, 11, 220, 352, 13, 15, 11, 352, 13, 15, 4357, 685, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 352, 13, 15, 11, 532, 16, 13, 15, 11, 220, 352, 13, 15, 11, 352, 13, 15, 4357, 685, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 352, 13, 15, 11, 220, 352, 13, 15, 11, 220, 352, 13, 15, 11, 352, 13, 15, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 12, 16, 13, 15, 11, 220, 352, 13, 15, 11, 220, 352, 13, 15, 11, 352, 13, 15, 4357, 685, 16, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 12, 16, 13, 15, 11, 532, 16, 13, 15, 11, 532, 16, 13, 15, 11, 352, 13, 15, 4357, 685, 15, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 352, 13, 15, 11, 532, 16, 13, 15, 11, 532, 16, 13, 15, 11, 352, 13, 15, 4357, 685, 16, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 352, 13, 15, 11, 220, 352, 13, 15, 11, 532, 16, 13, 15, 11, 352, 13, 15, 4357, 685, 16, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 220, 16410, 12, 16, 13, 15, 11, 220, 352, 13, 15, 11, 532, 16, 13, 15, 11, 352, 13, 15, 4357, 685, 15, 13, 15, 11, 352, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 4357, 198, 60, 198, 13414, 16886, 796, 14808, 7, 310, 9497, 13, 66, 62, 22468, 1635, 604, 8, 1635, 362, 8, 1635, 807, 8, 198, 37659, 62, 332, 16886, 796, 45941, 13, 18747, 7, 332, 16886, 62, 18747, 11, 288, 4906, 28, 358, 62, 4906, 8, 628, 198, 9630, 62, 18747, 796, 685, 198, 220, 657, 11, 352, 11, 362, 11, 362, 11, 513, 11, 657, 11, 220, 1303, 2166, 198, 220, 352, 11, 642, 11, 718, 11, 718, 11, 362, 11, 352, 11, 220, 1303, 826, 198, 220, 513, 11, 362, 11, 718, 11, 718, 11, 767, 11, 513, 11, 220, 1303, 1353, 198, 220, 604, 11, 642, 11, 352, 11, 352, 11, 657, 11, 604, 11, 220, 1303, 4220, 198, 220, 604, 11, 657, 11, 513, 11, 513, 11, 767, 11, 604, 11, 220, 1303, 1364, 198, 220, 767, 11, 718, 11, 642, 11, 642, 11, 604, 11, 767, 11, 220, 1303, 736, 198, 60, 198, 15732, 796, 357, 310, 9497, 13, 66, 62, 28611, 1433, 1635, 4570, 8, 198, 37659, 62, 9630, 796, 45941, 13, 18747, 7, 9630, 62, 18747, 11, 288, 4906, 28, 37659, 13, 28611, 1433, 8, 198, 198, 2, 46912, 43879, 19, 87, 19, 796, 14808, 310, 9497, 13, 66, 62, 22468, 1635, 604, 8, 1635, 19, 8, 198, 46912, 43879, 19, 87, 19, 796, 357, 310, 9497, 13, 66, 62, 22468, 1635, 1433, 8, 628, 198, 198, 2, 11420, 24936, 25439, 628, 220, 220, 628, 198, 198, 2, 284, 4598, 25, 13328, 226, 94, 165, 100, 226, 28618, 25084, 23131, 43302, 33623, 25748, 24336, 43302, 198, 834, 332, 16886, 6601, 796, 45941, 62, 332, 16886, 13, 310, 9497, 13, 7890, 62, 292, 7, 310, 9497, 13, 16402, 41358, 7, 13414, 16886, 29720, 3642, 658, 198, 62, 332, 16886, 6601, 796, 45941, 13, 310, 9497, 8019, 13, 292, 62, 18747, 7, 834, 332, 16886, 6601, 8, 198, 332, 16886, 6601, 796, 4808, 332, 16886, 6601, 13, 310, 9497, 13, 7890, 62, 292, 7, 310, 9497, 13, 16402, 41358, 7, 13414, 16886, 29720, 3642, 658, 628, 198, 9630, 6601, 796, 45941, 62, 9630, 13, 310, 9497, 13, 7890, 62, 292, 7, 310, 9497, 13, 16402, 41358, 7, 15732, 29720, 3642, 658, 628, 628, 198, 2, 11420, 19308, 42, 7680, 5005, 34637, 628, 198, 198, 20519, 49, 437, 11882, 796, 2251, 62, 26801, 66, 62, 4871, 7, 198, 220, 1438, 11639, 20519, 49, 437, 11882, 3256, 198, 220, 5050, 41888, 19334, 818, 13752, 42, 7680, 62, 11, 285, 30488, 7680, 62, 19334, 540, 10699, 8743, 19400, 62, 4357, 198, 220, 19565, 28, 17816, 13752, 42, 7680, 5005, 34637, 6, 12962, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 1570, 796, 12136, 7680, 3419, 198, 220, 1570, 13, 25579, 7, 7635, 11639, 12853, 9612, 3256, 11367, 602, 28, 17816, 634, 12907, 6, 12962, 198 ]
2.064007
1,078
'''NeteaseCloudMusicApiPy NeteaseCloudMusicApi 的 Python 绑定 https://github.com/NKID00/NeteaseCloudMusicApiPy MIT License Copyright (c) 2020 NKID00 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from typing import Iterable, Dict, Union, Optional from subprocess import Popen, DEVNULL from os import environ, kill from signal import SIGTERM from contextlib import contextmanager from time import time from requests import Session from hashlib import md5 from base64 import b64decode from io import BytesIO __all__ = ['VERSION', 'start_ncmapi_server', 'stop_ncmapi_server', 'ncmapi', 'NeteaseCloudMusicApi'] VERSION = 'NeteaseCloudMusicApiPy 0.1.0' def start_ncmapi_server(ncmapi_server_command: Iterable[str], port: int = 3000, host: str = 'localhost') -> int: '''启动指定的 NeteaseCloudMusicApi 服务进程并返回进程 pid''' env = dict(environ) env['HOST'] = str(host) env['PORT'] = str(port) p = Popen(tuple(ncmapi_server_command), stdin=DEVNULL, stdout=DEVNULL, stderr=DEVNULL, env=env) return p.pid def stop_ncmapi_server(ncmapi_server_pid: int) -> None: '''停止指定 pid 的 NeteaseCloudMusicApi 服务进程''' kill(ncmapi_server_pid, SIGTERM) @contextmanager def ncmapi(ncmapi_server_command: Iterable[str], port: int = 3000, host: str = 'localhost'): '''启动指定的 NeteaseCloudMusicApi 服务进程 并返回 NeteaseCloudMusicApi 对象 退出运行时上下文时自动退出登录并停止 NeteaseCloudMusicApi 服务进程''' pid = None try: pid = start_ncmapi_server(ncmapi_server_command, port, host) with NeteaseCloudMusicApi(port, host) as api: yield api finally: if pid is not None: try: stop_ncmapi_server(pid) except OSError: pass class NeteaseCloudMusicApi: '''保存有 API 地址、相关设置和登录状态的 NeteaseCloudMusicApi 对象 退出运行时上下文时自动退出登录''' def call_api(self, api: str, args: Dict[str, Union[int, bool, str]], add_timestamp: bool = False) -> dict: '''调用 API''' if self.add_timestamp or add_timestamp: # 添加时间戳 args['timestamp'] = int(time() * 1000) r = self.api_session.get(self.api_url_base + api, params=args) if self.raise_for_status: # 如果返回错误代码则抛出异常 r.raise_for_status() return r.json() def login(self, email: str, password: str = '', md5_password: Optional[str] = None, **args: Union[int, bool, str]) -> dict: '''/login 邮箱登录 email: 邮箱 password: 密码 md5_password: md5 加密后的密码,传入后 password 将失效''' if md5_password is None: h = md5() h.update(password.encode('utf8')) md5_password = h.hexdigest() args['email'] = email args['md5_password'] = md5_password return self.call_api('/login', args, add_timestamp=True) def login_cellphone(self, phone: int, password: str = '', countrycode: Optional[int] = None, md5_password: Optional[str] = None, **args: Union[int, bool, str]) -> dict: '''/login/cellphone 手机登录 phone: 手机号码 password: 密码 countrycode: 国家码,用于国外手机号登录,例如美国传入1 md5_password: md5加密后的密码,传入后 password 将失效''' if md5_password is None: h = md5() h.update(password.encode('utf8')) md5_password = h.hexdigest() args['phone'] = phone if countrycode is not None: args['countrycode'] = countrycode args['md5_password'] = md5_password return self.call_api('/login/cellphone', args, add_timestamp=True) def login_qr_check(self, key: str, **args: Union[int, bool, str]) -> dict: '''/login/qr/check 验证二维码登录 key: 二维码标识符''' args['key'] = key return self.call_api('/login/qr/check', args, add_timestamp=True) def login_qr_create(self, key: str, qrimg: bool = True, qrimg_str: bool = True, **args: Union[int, bool, str]) -> str: '''/login/qr/create 获取二维码链接 key: 二维码标识符 qrimg: 获取二维码图片 qrimg_str: 获取二维码图片字符画''' args['key'] = key args['qrimg'] = qrimg or qrimg_str data = self.call_api('/login/qr/create', args, add_timestamp=True) if qrimg_str: from PIL import Image img_base64 = data['data']['qrimg'].split(',')[1] img = Image.open(BytesIO(b64decode(img_base64))) img = img.resize((40, 40), Image.NEAREST).crop((1, 1, 39, 39)) img_str = '' for y in range(38): # 遍历行 for x in range(38): # 遍历列 black = sum(img.getpixel((x, y))[:3]) < 384 img_str += '██' if black else ' ' img_str += '\n' return img_str if qrimg: return data['data']['qrimg'] else: return data['data']['qrurl'] def login_qr_key(self, **args: Union[int, bool, str]) -> str: '''/login/qr/key 获取二维码标识符''' data = self.call_api('/login/qr/check', args, add_timestamp=True) return data['data']['unikey'] def login_refresh(self, **args: Union[int, bool, str]) -> dict: '''/login/refresh 刷新登录''' return self.call_api('/login/refresh', args, add_timestamp=True) def login_status(self, **args: Union[int, bool, str]) -> dict: '''/login/status 获取登录状态 注意: 需要登录''' return self.call_api('/login/status', args, add_timestamp=True) def logout(self, **args: Union[int, bool, str]) -> dict: '''/logout 退出登录 注意: 需要登录''' return self.call_api('/logout', args, add_timestamp=True) def playlist_detail(self, id: int, s: Optional[int] = None, **args: Union[int, bool, str]) -> dict: '''/playlist/detail 获取歌单详情 id: 歌单 id s: 歌单最近的 s 个收藏者[默认8] 注意: 需要登录''' args['id'] = id if s: args['s'] = s return self.call_api('/playlist/detail', args) def song_detail(self, ids: Union[int, Iterable[int]], **args: Union[int, bool, str]) -> dict: '''/song/detail 获取歌曲详情 ids: 音乐 id''' if isinstance(ids, int): args['ids'] = ids else: args['ids'] = ','.join(map(str, ids)) return self.call_api('/song/detail', args) def user_playlist(self, uid: int, limit: Optional[int] = None, offset: Optional[int] = None, **args: Union[int, bool, str]) -> dict: '''/user/playlist 获取用户歌单 uid: 用户 id limit: 返回数量 offset: 偏移数量[默认0] 注意: 需要登录''' args['uid'] = uid if limit is not None: args['limit'] = limit if offset is not None: args['offset'] = offset return self.call_api('/user/playlist', args)
[ 7061, 6, 7934, 68, 589, 18839, 22648, 32, 14415, 20519, 198, 7934, 68, 589, 18839, 22648, 32, 14415, 13328, 248, 226, 11361, 13328, 119, 239, 22522, 248, 198, 5450, 1378, 12567, 13, 785, 14, 46888, 2389, 405, 14, 7934, 68, 589, 18839, 22648, 32, 14415, 20519, 198, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 12131, 46465, 2389, 405, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 7061, 6, 198, 198, 6738, 19720, 1330, 40806, 540, 11, 360, 713, 11, 4479, 11, 32233, 198, 6738, 850, 14681, 1330, 8099, 268, 11, 5550, 53, 33991, 198, 6738, 28686, 1330, 551, 2268, 11, 1494, 198, 6738, 6737, 1330, 33993, 5781, 44, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 6738, 640, 1330, 640, 198, 6738, 7007, 1330, 23575, 198, 6738, 12234, 8019, 1330, 45243, 20, 198, 6738, 2779, 2414, 1330, 275, 2414, 12501, 1098, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 198, 834, 439, 834, 796, 37250, 43717, 3256, 705, 9688, 62, 10782, 8899, 72, 62, 15388, 3256, 705, 11338, 62, 10782, 8899, 72, 62, 15388, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10782, 8899, 72, 3256, 705, 7934, 68, 589, 18839, 22648, 32, 14415, 20520, 198, 198, 43717, 796, 705, 7934, 68, 589, 18839, 22648, 32, 14415, 20519, 657, 13, 16, 13, 15, 6, 628, 198, 4299, 923, 62, 10782, 8899, 72, 62, 15388, 7, 10782, 8899, 72, 62, 15388, 62, 21812, 25, 40806, 540, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 25, 493, 796, 20343, 11, 2583, 25, 965, 796, 705, 36750, 11537, 4613, 493, 25, 198, 220, 220, 220, 705, 7061, 28938, 107, 27950, 101, 162, 234, 229, 22522, 248, 21410, 3433, 68, 589, 18839, 22648, 32, 14415, 42164, 235, 27950, 94, 32573, 249, 163, 101, 233, 33176, 114, 32573, 242, 32368, 252, 32573, 249, 163, 101, 233, 46514, 7061, 6, 198, 220, 220, 220, 17365, 796, 8633, 7, 268, 2268, 8, 198, 220, 220, 220, 17365, 17816, 39, 10892, 20520, 796, 965, 7, 4774, 8, 198, 220, 220, 220, 17365, 17816, 15490, 20520, 796, 965, 7, 634, 8, 198, 220, 220, 220, 279, 796, 8099, 268, 7, 83, 29291, 7, 10782, 8899, 72, 62, 15388, 62, 21812, 828, 14367, 259, 28, 39345, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 39345, 33991, 11, 336, 1082, 81, 28, 39345, 33991, 11, 17365, 28, 24330, 8, 198, 220, 220, 220, 1441, 279, 13, 35317, 628, 198, 4299, 2245, 62, 10782, 8899, 72, 62, 15388, 7, 10782, 8899, 72, 62, 15388, 62, 35317, 25, 493, 8, 4613, 6045, 25, 198, 220, 220, 220, 705, 7061, 161, 223, 250, 29826, 95, 162, 234, 229, 22522, 248, 46514, 13328, 248, 226, 3433, 68, 589, 18839, 22648, 32, 14415, 42164, 235, 27950, 94, 32573, 249, 163, 101, 233, 7061, 6, 198, 220, 220, 220, 1494, 7, 10782, 8899, 72, 62, 15388, 62, 35317, 11, 33993, 5781, 44, 8, 628, 198, 31, 22866, 37153, 198, 4299, 299, 66, 8899, 72, 7, 10782, 8899, 72, 62, 15388, 62, 21812, 25, 40806, 540, 58, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 25, 493, 796, 20343, 11, 2583, 25, 965, 796, 705, 36750, 6, 2599, 198, 220, 220, 220, 705, 7061, 28938, 107, 27950, 101, 162, 234, 229, 22522, 248, 21410, 3433, 68, 589, 18839, 22648, 32, 14415, 42164, 235, 27950, 94, 32573, 249, 163, 101, 233, 198, 220, 220, 220, 10263, 117, 114, 32573, 242, 32368, 252, 3433, 68, 589, 18839, 22648, 32, 14415, 10263, 107, 117, 164, 109, 94, 198, 220, 220, 220, 16268, 222, 222, 49035, 118, 32573, 238, 26193, 234, 33768, 114, 41468, 10310, 233, 23877, 229, 33768, 114, 164, 229, 103, 27950, 101, 34460, 222, 49035, 118, 163, 247, 119, 37605, 243, 33176, 114, 161, 223, 250, 29826, 95, 3433, 68, 589, 18839, 22648, 32, 14415, 42164, 235, 27950, 94, 32573, 249, 163, 101, 233, 7061, 6, 198, 220, 220, 220, 46514, 796, 6045, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 46514, 796, 923, 62, 10782, 8899, 72, 62, 15388, 7, 10782, 8899, 72, 62, 15388, 62, 21812, 11, 2493, 11, 2583, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 3433, 68, 589, 18839, 22648, 32, 14415, 7, 634, 11, 2583, 8, 355, 40391, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 40391, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 46514, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 10782, 8899, 72, 62, 15388, 7, 35317, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 4871, 3433, 68, 589, 18839, 22648, 32, 14415, 25, 198, 220, 220, 220, 705, 7061, 46479, 251, 27764, 246, 17312, 231, 7824, 10263, 250, 108, 161, 251, 222, 23513, 33566, 116, 17739, 111, 164, 106, 122, 163, 121, 106, 161, 240, 234, 163, 247, 119, 37605, 243, 163, 232, 35050, 222, 223, 21410, 3433, 68, 589, 18839, 22648, 32, 14415, 10263, 107, 117, 164, 109, 94, 198, 220, 220, 220, 16268, 222, 222, 49035, 118, 32573, 238, 26193, 234, 33768, 114, 41468, 10310, 233, 23877, 229, 33768, 114, 164, 229, 103, 27950, 101, 34460, 222, 49035, 118, 163, 247, 119, 37605, 243, 7061, 6, 628, 220, 220, 220, 825, 869, 62, 15042, 7, 944, 11, 40391, 25, 965, 11, 26498, 25, 360, 713, 58, 2536, 11, 4479, 58, 600, 11, 20512, 11, 965, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 16514, 27823, 25, 20512, 796, 10352, 8, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 164, 108, 225, 18796, 101, 7824, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2860, 62, 16514, 27823, 393, 751, 62, 16514, 27823, 25, 220, 1303, 10545, 115, 119, 27950, 254, 33768, 114, 29785, 112, 22755, 111, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 16514, 27823, 20520, 796, 493, 7, 2435, 3419, 1635, 8576, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 2116, 13, 15042, 62, 29891, 13, 1136, 7, 944, 13, 15042, 62, 6371, 62, 8692, 1343, 40391, 11, 42287, 28, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 40225, 62, 1640, 62, 13376, 25, 220, 1303, 10263, 99, 224, 162, 252, 250, 32573, 242, 32368, 252, 165, 242, 247, 46237, 107, 47987, 163, 254, 223, 26344, 247, 162, 232, 249, 49035, 118, 28156, 224, 30585, 116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 13, 40225, 62, 1640, 62, 13376, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 13, 17752, 3419, 628, 220, 220, 220, 825, 17594, 7, 944, 11, 3053, 25, 965, 11, 9206, 25, 965, 796, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 198, 220, 220, 220, 220, 220, 220, 220, 16268, 224, 106, 163, 106, 109, 163, 247, 119, 37605, 243, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 25, 16268, 224, 106, 163, 106, 109, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 25, 10263, 107, 228, 163, 254, 223, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 25, 45243, 20, 10263, 232, 254, 43380, 228, 28938, 236, 21410, 43380, 228, 163, 254, 223, 171, 120, 234, 27670, 254, 17739, 98, 28938, 236, 9206, 10263, 108, 228, 13783, 109, 46763, 230, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45243, 20, 62, 28712, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 45243, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 13, 19119, 7, 28712, 13, 268, 8189, 10786, 40477, 23, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 796, 289, 13, 33095, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 12888, 20520, 796, 3053, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 9132, 20, 62, 28712, 20520, 796, 45243, 20, 62, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 17594, 62, 3846, 4862, 7, 944, 11, 3072, 25, 493, 11, 9206, 25, 965, 796, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1499, 8189, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 25, 32233, 58, 2536, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 3846, 4862, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 231, 233, 17312, 118, 163, 247, 119, 37605, 243, 198, 220, 220, 220, 220, 220, 220, 220, 3072, 25, 10545, 231, 233, 17312, 118, 20998, 115, 163, 254, 223, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 25, 10263, 107, 228, 163, 254, 223, 198, 220, 220, 220, 220, 220, 220, 220, 1499, 8189, 25, 10263, 249, 121, 22522, 114, 163, 254, 223, 171, 120, 234, 18796, 101, 12859, 236, 32368, 121, 13783, 244, 33699, 233, 17312, 118, 20998, 115, 163, 247, 119, 37605, 243, 171, 120, 234, 160, 122, 233, 36685, 224, 163, 122, 236, 32368, 121, 27670, 254, 17739, 98, 16, 198, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 25, 45243, 20, 27950, 254, 43380, 228, 28938, 236, 21410, 43380, 228, 163, 254, 223, 171, 120, 234, 27670, 254, 17739, 98, 28938, 236, 9206, 10263, 108, 228, 13783, 109, 46763, 230, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 45243, 20, 62, 28712, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 45243, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 13, 19119, 7, 28712, 13, 268, 8189, 10786, 40477, 23, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28712, 796, 289, 13, 33095, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 4862, 20520, 796, 3072, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1499, 8189, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 19315, 8189, 20520, 796, 1499, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 9132, 20, 62, 28712, 20520, 796, 45243, 20, 62, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 3846, 4862, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 17594, 62, 80, 81, 62, 9122, 7, 944, 11, 1994, 25, 965, 11, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 80, 81, 14, 9122, 198, 220, 220, 220, 220, 220, 220, 220, 16268, 103, 234, 46237, 223, 12859, 234, 163, 119, 112, 163, 254, 223, 163, 247, 119, 37605, 243, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 220, 12859, 234, 163, 119, 112, 163, 254, 223, 43718, 229, 46237, 228, 163, 105, 99, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 2539, 20520, 796, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 80, 81, 14, 9122, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 17594, 62, 80, 81, 62, 17953, 7, 944, 11, 1994, 25, 965, 11, 10662, 3036, 70, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 3036, 70, 62, 2536, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 80, 81, 14, 17953, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 12859, 234, 163, 119, 112, 163, 254, 223, 165, 241, 122, 162, 236, 98, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 220, 12859, 234, 163, 119, 112, 163, 254, 223, 43718, 229, 46237, 228, 163, 105, 99, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 3036, 70, 25, 5525, 236, 115, 20998, 244, 12859, 234, 163, 119, 112, 163, 254, 223, 32368, 122, 31965, 229, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 3036, 70, 62, 2536, 25, 5525, 236, 115, 20998, 244, 12859, 234, 163, 119, 112, 163, 254, 223, 32368, 122, 31965, 229, 27764, 245, 163, 105, 99, 18796, 119, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 2539, 20520, 796, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 80, 3036, 70, 20520, 796, 10662, 3036, 70, 393, 10662, 3036, 70, 62, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 80, 81, 14, 17953, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10662, 3036, 70, 62, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 350, 4146, 1330, 7412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 8692, 2414, 796, 1366, 17816, 7890, 6, 7131, 6, 80, 3036, 70, 6, 4083, 35312, 7, 3256, 11537, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7, 45992, 9399, 7, 65, 2414, 12501, 1098, 7, 9600, 62, 8692, 2414, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 33705, 13, 411, 1096, 19510, 1821, 11, 2319, 828, 7412, 13, 12161, 1503, 6465, 737, 31476, 19510, 16, 11, 352, 11, 5014, 11, 5014, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 2536, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2837, 7, 2548, 2599, 220, 1303, 16268, 223, 235, 43889, 228, 26193, 234, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2837, 7, 2548, 2599, 220, 1303, 16268, 223, 235, 43889, 228, 26344, 245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2042, 796, 2160, 7, 9600, 13, 1136, 32515, 19510, 87, 11, 331, 4008, 58, 25, 18, 12962, 1279, 40400, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 2536, 15853, 705, 9968, 6, 611, 2042, 2073, 705, 220, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 2536, 15853, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33705, 62, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10662, 3036, 70, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 17816, 7890, 6, 7131, 6, 80, 3036, 70, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 17816, 7890, 6, 7131, 6, 80, 81, 6371, 20520, 628, 220, 220, 220, 825, 17594, 62, 80, 81, 62, 2539, 7, 944, 11, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 80, 81, 14, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 12859, 234, 163, 119, 112, 163, 254, 223, 43718, 229, 46237, 228, 163, 105, 99, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 80, 81, 14, 9122, 3256, 26498, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 62, 16514, 27823, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 17816, 7890, 6, 7131, 6, 403, 522, 88, 20520, 628, 220, 220, 220, 825, 17594, 62, 5420, 3447, 7, 944, 11, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 5420, 3447, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 230, 115, 23877, 108, 163, 247, 119, 37605, 243, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 5420, 3447, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 17594, 62, 13376, 7, 944, 11, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 38235, 14, 13376, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 163, 247, 119, 37605, 243, 163, 232, 35050, 222, 223, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 111, 101, 35707, 237, 25, 16268, 250, 222, 17358, 223, 163, 247, 119, 37605, 243, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 38235, 14, 13376, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 2604, 448, 7, 944, 11, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 6404, 448, 198, 220, 220, 220, 220, 220, 220, 220, 16268, 222, 222, 49035, 118, 163, 247, 119, 37605, 243, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 111, 101, 35707, 237, 25, 16268, 250, 222, 17358, 223, 163, 247, 119, 37605, 243, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 6404, 448, 3256, 26498, 11, 751, 62, 16514, 27823, 28, 17821, 8, 628, 220, 220, 220, 825, 33178, 62, 49170, 7, 944, 11, 4686, 25, 493, 11, 264, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 1759, 4868, 14, 49170, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 29826, 234, 39355, 243, 46237, 99, 46349, 227, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 25, 10545, 255, 234, 39355, 243, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 264, 25, 10545, 255, 234, 39355, 243, 17312, 222, 32573, 239, 21410, 264, 220, 10310, 103, 162, 242, 114, 164, 245, 237, 38519, 58, 165, 119, 246, 164, 106, 97, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 111, 101, 35707, 237, 25, 16268, 250, 222, 17358, 223, 163, 247, 119, 37605, 243, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 312, 20520, 796, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 611, 264, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 82, 20520, 796, 264, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 1759, 4868, 14, 49170, 3256, 26498, 8, 628, 220, 220, 220, 825, 3496, 62, 49170, 7, 944, 11, 220, 2340, 25, 4479, 58, 600, 11, 40806, 540, 58, 600, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 34050, 14, 49170, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 29826, 234, 162, 249, 110, 46237, 99, 46349, 227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 25, 16268, 253, 111, 20046, 238, 4686, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 2340, 11, 493, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 2340, 20520, 796, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 2340, 20520, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 220, 2340, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 34050, 14, 49170, 3256, 26498, 8, 628, 220, 220, 220, 825, 2836, 62, 1759, 4868, 7, 944, 11, 334, 312, 25, 493, 11, 4179, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22046, 25, 4479, 58, 600, 11, 20512, 11, 965, 12962, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 14, 7220, 14, 1759, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 18796, 101, 22755, 115, 29826, 234, 39355, 243, 198, 220, 220, 220, 220, 220, 220, 220, 334, 312, 25, 13328, 242, 101, 22755, 115, 4686, 198, 220, 220, 220, 220, 220, 220, 220, 4179, 25, 5525, 123, 242, 32368, 252, 46763, 108, 34932, 237, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 25, 10263, 223, 237, 163, 100, 119, 46763, 108, 34932, 237, 58, 165, 119, 246, 164, 106, 97, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 111, 101, 35707, 237, 25, 16268, 250, 222, 17358, 223, 163, 247, 119, 37605, 243, 7061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 27112, 20520, 796, 334, 312, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4179, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 32374, 20520, 796, 4179, 198, 220, 220, 220, 220, 220, 220, 220, 611, 11677, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 17816, 28968, 20520, 796, 11677, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 13345, 62, 15042, 10786, 14, 7220, 14, 1759, 4868, 3256, 26498, 8, 198 ]
1.833562
4,380
# -*- coding: utf-8 -*- import unittest import unittest.mock as mock from fastapi.testclient import TestClient from projects.api.main import app from projects.database import session_scope import tests.util as util app.dependency_overrides[session_scope] = util.override_session_scope TEST_CLIENT = TestClient(app)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 555, 715, 395, 198, 11748, 555, 715, 395, 13, 76, 735, 355, 15290, 198, 198, 6738, 3049, 15042, 13, 9288, 16366, 1330, 6208, 11792, 198, 198, 6738, 4493, 13, 15042, 13, 12417, 1330, 598, 198, 6738, 4493, 13, 48806, 1330, 6246, 62, 29982, 198, 198, 11748, 5254, 13, 22602, 355, 7736, 198, 198, 1324, 13, 45841, 1387, 62, 2502, 81, 1460, 58, 29891, 62, 29982, 60, 796, 7736, 13, 2502, 13154, 62, 29891, 62, 29982, 198, 51, 6465, 62, 5097, 28495, 796, 6208, 11792, 7, 1324, 8, 628 ]
3.106796
103
from django.views.generic.base import TemplateView
[ 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 8692, 1330, 37350, 7680 ]
4.166667
12
from __future__ import absolute_import, print_function, unicode_literals import _test_utilities # NOTHING FOR NOW
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 4808, 9288, 62, 315, 2410, 628, 198, 2, 5626, 39, 2751, 7473, 20229, 198 ]
3.342857
35
# -*- coding: utf-8 -*- """ Created on Thu Dec 3 21:40:05 2020 @author: Amir Moradi """ import cv2 from Utils.undistortion import undistortion from Utils.angle_calculation import angle_calculation import numpy as np import serial video_StreamL = cv2.VideoCapture(2) # index of left camera video_StreamR = cv2.VideoCapture(1) # index of right camera face_cascade = cv2.CascadeClassifier('SmartCar/Cascades/haarcascade_frontalface_alt.xml') eye_cascade = cv2.CascadeClassifier('SmartCar/Cascades/haarcascade_eye_tree_eyeglasses.xml') cen_eyesL = [] cen_eyesR = [] Proj_R = np.load("SmartCar/Calibration/matrices/Proj_R.npy") Proj_L = np.load("SmartCar/Calibration/matrices/Proj_L.npy") ser = serial.Serial("COM5", 9600) # Set this value according to your project. mirror_pt = [-10, 10, 150] while(True): retL, imgL = vidStreamL.read() retR, imgR = vidStreamR.read() imgL, imgR = undistortion(imgL, imgR) grayL = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY) grayR = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY) try: facesL = face_cascade.detectMultiScale(grayL, 1.3, 5) facesR = face_cascade.detectMultiScale(grayR, 1.3, 5) for (x_l, y_l, w_l, h_l), (x_r, y_r, w_r, h_r) in zip(facesL, facesR): roi_grayL = grayL[y_l:y_l+h_l, x_l:x_l+w_l] roi_grayR = grayR[y_r:y_r + h_r, x_r:x_r + w_r] eyesL = eye_cascade.detectMultiScale(roi_grayL) eyesR = eye_cascade.detectMultiScale(roi_grayR) inter_l = [] inter_r = [] for (ex_l,ey_l,ew_l,eh_l), (ex_r,ey_r,ew_r,eh_r) in zip(eyesL, eyesR): cv2.rectangle(imgL, (ex_l + x_l, ey_l + y_l), (ex_l + ew_l + x_l, ey_l + eh_l + y_l), (0,255,0), 2) cv2.rectangle(imgR, (ex_r + x_r, ey_r + y_r), (ex_r + ew_r + x_r, ey_r + eh_r + y_r), (0,255,0), 2) inter_l.append(((2 * ex_l + ew_l)/2, (2 * ey_l + eh_l)/2)) inter_r.append(((2 * ex_r + ew_r)/2, (2 * ey_r + eh_r)/2)) eyeL_lو eyeR_l = inter_l[0], inter_l[1] eyeLx_l = eyeL_l[0] eyeLy_l = eyeL_l[1] eyeRx_l = eyeR_l[0] eyeRy_l = eyeR_l[1] eyeL_r = inter_r[0] eyeR_r = inter_r[1] eyeLx_r = eyeL_r[0] eyeLy_r = eyeL_r[1] eyeRx_r = eyeR_r[0] eyeRy_r = eyeR_r[1] cen_pos_l = (int((eyeLx_l + eyeRx_l)/2 + x_l), int((eyeLy_l + eyeRy_l)/2 + y_l)) cen_pos_r = (int((eyeLx_r + eyeRx_r)/2 + x_r), int((eyeLy_r + eyeRy_r)/2 + y_r)) cen_eyesL.append(cen_pos_l) cen_eyesR.append(cen_pos_r) ptL = np.array([[cen_pos_l[0]], [cen_pos_l[1]]], dtype=np.float) ptR = np.array([[cen_pos_r[0]], [cen_pos_r[1]]], dtype=np.float) cv2.circle(imgL, cen_pos_l, radius=1, color=(0, 0, 255), thickness=10) cv2.circle(imgR, cen_pos_r, radius=1, color=(0, 0, 255), thickness=10) xyz_points = cv2.triangulatePoints(Proj_L, Proj_R, ptL, ptR) xyz_points /= xyz_points[3] driver_pt = [int(xyz_points[0][0]), int(xyz_points[1][0]), int(xyz_points[2][0])] yaw, pitch = angle_calculation(driver_pt, mirror_pt) pitch_angle = f"S2={pitch}" yaw_angle = f"S1={yaw}" ser.write(pitch_angle.encode()) ser.write(yaw_angle.encode()) """ text_z = "Z is: {} cm".format(int(xyz_points[2][0])) text_y = "Y is: {} cm".format(int(xyz_points[1][0])) text_x = "X is: {} cm".format(int(xyz_points[0][0])) cv2.putText(imgL, text_z, (int(w_l/2) + 20, int(h_l/2)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) cv2.putText(imgL, text_y, (int(w_l/2) + 20, int(h_l/2)+35), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) cv2.putText(imgL, text_x, (int(w_l/2) + 20, int(h_l/2)+70), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) """ origin_R = np.dot(Proj_R[:3], xyz_points) origin_L = np.dot(Proj_L[:3], xyz_points) # Again, put in homogeneous form before using them origin_R /= origin_R[2] origin_L /= origin_L[2] # Press "q" to break the loop if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imshow('imgL', imgL) cv2.imshow('imgR', imgR) except: pass ser.close() cv2.destroyAllWindows()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 26223, 4280, 220, 513, 2310, 25, 1821, 25, 2713, 12131, 198, 198, 31, 9800, 25, 43931, 3461, 9189, 198, 37811, 628, 198, 11748, 269, 85, 17, 198, 6738, 7273, 4487, 13, 917, 396, 5817, 1330, 3318, 396, 5817, 198, 6738, 7273, 4487, 13, 9248, 62, 9948, 14902, 1330, 9848, 62, 9948, 14902, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11389, 198, 198, 15588, 62, 12124, 43, 796, 269, 85, 17, 13, 10798, 49630, 7, 17, 8, 220, 1303, 6376, 286, 1364, 4676, 198, 15588, 62, 12124, 49, 796, 269, 85, 17, 13, 10798, 49630, 7, 16, 8, 220, 1303, 6376, 286, 826, 4676, 198, 198, 2550, 62, 66, 28966, 796, 269, 85, 17, 13, 34, 28966, 9487, 7483, 10786, 25610, 9914, 14, 34, 3372, 2367, 14, 3099, 5605, 28966, 62, 8534, 1604, 558, 62, 2501, 13, 19875, 11537, 198, 25379, 62, 66, 28966, 796, 269, 85, 17, 13, 34, 28966, 9487, 7483, 10786, 25610, 9914, 14, 34, 3372, 2367, 14, 3099, 5605, 28966, 62, 25379, 62, 21048, 62, 2959, 1533, 28958, 13, 19875, 11537, 198, 198, 66, 268, 62, 48418, 43, 796, 17635, 198, 66, 268, 62, 48418, 49, 796, 17635, 198, 198, 2964, 73, 62, 49, 796, 45941, 13, 2220, 7203, 25610, 9914, 14, 9771, 571, 1358, 14, 6759, 45977, 14, 2964, 73, 62, 49, 13, 77, 9078, 4943, 198, 2964, 73, 62, 43, 796, 45941, 13, 2220, 7203, 25610, 9914, 14, 9771, 571, 1358, 14, 6759, 45977, 14, 2964, 73, 62, 43, 13, 77, 9078, 4943, 198, 198, 2655, 796, 11389, 13, 32634, 7203, 9858, 20, 1600, 860, 8054, 8, 198, 198, 2, 5345, 428, 1988, 1864, 284, 534, 1628, 13, 198, 10793, 1472, 62, 457, 796, 25915, 940, 11, 838, 11, 6640, 60, 198, 198, 4514, 7, 17821, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1005, 43, 11, 33705, 43, 796, 410, 312, 12124, 43, 13, 961, 3419, 198, 220, 220, 220, 1005, 49, 11, 33705, 49, 796, 410, 312, 12124, 49, 13, 961, 3419, 628, 220, 220, 220, 33705, 43, 11, 33705, 49, 796, 3318, 396, 5817, 7, 9600, 43, 11, 33705, 49, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 12768, 43, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 43, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 220, 220, 220, 12768, 49, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 49, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6698, 43, 796, 1986, 62, 66, 28966, 13, 15255, 478, 29800, 29990, 7, 44605, 43, 11, 352, 13, 18, 11, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6698, 49, 796, 1986, 62, 66, 28966, 13, 15255, 478, 29800, 29990, 7, 44605, 49, 11, 352, 13, 18, 11, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 87, 62, 75, 11, 331, 62, 75, 11, 266, 62, 75, 11, 289, 62, 75, 828, 357, 87, 62, 81, 11, 331, 62, 81, 11, 266, 62, 81, 11, 289, 62, 81, 8, 287, 19974, 7, 32186, 43, 11, 6698, 49, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 72, 62, 44605, 43, 796, 12768, 43, 58, 88, 62, 75, 25, 88, 62, 75, 10, 71, 62, 75, 11, 2124, 62, 75, 25, 87, 62, 75, 10, 86, 62, 75, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 72, 62, 44605, 49, 796, 12768, 49, 58, 88, 62, 81, 25, 88, 62, 81, 1343, 289, 62, 81, 11, 2124, 62, 81, 25, 87, 62, 81, 1343, 266, 62, 81, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2951, 43, 796, 4151, 62, 66, 28966, 13, 15255, 478, 29800, 29990, 7, 305, 72, 62, 44605, 43, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2951, 49, 796, 4151, 62, 66, 28966, 13, 15255, 478, 29800, 29990, 7, 305, 72, 62, 44605, 49, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 62, 75, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 62, 81, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 357, 1069, 62, 75, 11, 2959, 62, 75, 11, 413, 62, 75, 11, 17231, 62, 75, 828, 357, 1069, 62, 81, 11, 2959, 62, 81, 11, 413, 62, 81, 11, 17231, 62, 81, 8, 287, 19974, 7, 48418, 43, 11, 2951, 49, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 9600, 43, 11, 357, 1069, 62, 75, 1343, 2124, 62, 75, 11, 1926, 62, 75, 1343, 331, 62, 75, 828, 357, 1069, 62, 75, 1343, 304, 86, 62, 75, 1343, 2124, 62, 75, 11, 1926, 62, 75, 1343, 32622, 62, 75, 1343, 331, 62, 75, 828, 357, 15, 11, 13381, 11, 15, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 9600, 49, 11, 357, 1069, 62, 81, 1343, 2124, 62, 81, 11, 1926, 62, 81, 1343, 331, 62, 81, 828, 357, 1069, 62, 81, 1343, 304, 86, 62, 81, 1343, 2124, 62, 81, 11, 1926, 62, 81, 1343, 32622, 62, 81, 1343, 331, 62, 81, 828, 357, 15, 11, 13381, 11, 15, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 62, 75, 13, 33295, 19510, 7, 17, 1635, 409, 62, 75, 1343, 304, 86, 62, 75, 20679, 17, 11, 357, 17, 1635, 1926, 62, 75, 1343, 32622, 62, 75, 20679, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 62, 81, 13, 33295, 19510, 7, 17, 1635, 409, 62, 81, 1343, 304, 86, 62, 81, 20679, 17, 11, 357, 17, 1635, 1926, 62, 81, 1343, 32622, 62, 81, 20679, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 43, 62, 75, 30335, 4151, 49, 62, 75, 796, 987, 62, 75, 58, 15, 4357, 987, 62, 75, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 43, 87, 62, 75, 796, 4151, 43, 62, 75, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 31633, 62, 75, 796, 4151, 43, 62, 75, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 49, 87, 62, 75, 796, 4151, 49, 62, 75, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 46987, 62, 75, 796, 4151, 49, 62, 75, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 43, 62, 81, 796, 987, 62, 81, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 49, 62, 81, 796, 987, 62, 81, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 43, 87, 62, 81, 796, 4151, 43, 62, 81, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 31633, 62, 81, 796, 4151, 43, 62, 81, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 49, 87, 62, 81, 796, 4151, 49, 62, 81, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4151, 46987, 62, 81, 796, 4151, 49, 62, 81, 58, 16, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 268, 62, 1930, 62, 75, 796, 357, 600, 19510, 25379, 43, 87, 62, 75, 1343, 4151, 49, 87, 62, 75, 20679, 17, 1343, 2124, 62, 75, 828, 493, 19510, 25379, 31633, 62, 75, 1343, 4151, 46987, 62, 75, 20679, 17, 1343, 331, 62, 75, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 268, 62, 1930, 62, 81, 796, 357, 600, 19510, 25379, 43, 87, 62, 81, 1343, 4151, 49, 87, 62, 81, 20679, 17, 1343, 2124, 62, 81, 828, 493, 19510, 25379, 31633, 62, 81, 1343, 4151, 46987, 62, 81, 20679, 17, 1343, 331, 62, 81, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 268, 62, 48418, 43, 13, 33295, 7, 66, 268, 62, 1930, 62, 75, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 268, 62, 48418, 49, 13, 33295, 7, 66, 268, 62, 1930, 62, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42975, 43, 796, 45941, 13, 18747, 26933, 58, 66, 268, 62, 1930, 62, 75, 58, 15, 60, 4357, 685, 66, 268, 62, 1930, 62, 75, 58, 16, 11907, 4357, 288, 4906, 28, 37659, 13, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42975, 49, 796, 45941, 13, 18747, 26933, 58, 66, 268, 62, 1930, 62, 81, 58, 15, 60, 4357, 685, 66, 268, 62, 1930, 62, 81, 58, 16, 11907, 4357, 288, 4906, 28, 37659, 13, 22468, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 9600, 43, 11, 269, 268, 62, 1930, 62, 75, 11, 16874, 28, 16, 11, 3124, 16193, 15, 11, 657, 11, 14280, 828, 20735, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 9600, 49, 11, 269, 268, 62, 1930, 62, 81, 11, 16874, 28, 16, 11, 3124, 16193, 15, 11, 657, 11, 14280, 828, 20735, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 45579, 62, 13033, 796, 269, 85, 17, 13, 28461, 648, 5039, 40710, 7, 2964, 73, 62, 43, 11, 1041, 73, 62, 49, 11, 42975, 43, 11, 42975, 49, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 45579, 62, 13033, 1220, 28, 2124, 45579, 62, 13033, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4639, 62, 457, 796, 685, 600, 7, 5431, 89, 62, 13033, 58, 15, 7131, 15, 46570, 493, 7, 5431, 89, 62, 13033, 58, 16, 7131, 15, 46570, 493, 7, 5431, 89, 62, 13033, 58, 17, 7131, 15, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 707, 11, 7078, 796, 9848, 62, 9948, 14902, 7, 26230, 62, 457, 11, 10162, 62, 457, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7078, 62, 9248, 796, 277, 1, 50, 17, 34758, 79, 2007, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 707, 62, 9248, 796, 277, 1, 50, 16, 34758, 88, 707, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1055, 13, 13564, 7, 79, 2007, 62, 9248, 13, 268, 8189, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1055, 13, 13564, 7, 88, 707, 62, 9248, 13, 268, 8189, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 89, 796, 366, 57, 318, 25, 23884, 12067, 1911, 18982, 7, 600, 7, 5431, 89, 62, 13033, 58, 17, 7131, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 88, 796, 366, 56, 318, 25, 23884, 12067, 1911, 18982, 7, 600, 7, 5431, 89, 62, 13033, 58, 16, 7131, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 87, 796, 366, 55, 318, 25, 23884, 12067, 1911, 18982, 7, 600, 7, 5431, 89, 62, 13033, 58, 15, 7131, 15, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 9600, 43, 11, 2420, 62, 89, 11, 357, 600, 7, 86, 62, 75, 14, 17, 8, 1343, 1160, 11, 493, 7, 71, 62, 75, 14, 17, 36911, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 220, 657, 13, 20, 11, 357, 13381, 11, 657, 11, 657, 828, 362, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 9600, 43, 11, 2420, 62, 88, 11, 357, 600, 7, 86, 62, 75, 14, 17, 8, 1343, 1160, 11, 493, 7, 71, 62, 75, 14, 17, 47762, 2327, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 220, 657, 13, 20, 11, 357, 13381, 11, 657, 11, 657, 828, 362, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 1996, 8206, 7, 9600, 43, 11, 2420, 62, 87, 11, 357, 600, 7, 86, 62, 75, 14, 17, 8, 1343, 1160, 11, 493, 7, 71, 62, 75, 14, 17, 47762, 2154, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 220, 657, 13, 20, 11, 357, 13381, 11, 657, 11, 657, 828, 362, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 62, 49, 796, 45941, 13, 26518, 7, 2964, 73, 62, 49, 58, 25, 18, 4357, 2124, 45579, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 62, 43, 796, 45941, 13, 26518, 7, 2964, 73, 62, 43, 58, 25, 18, 4357, 2124, 45579, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6521, 11, 1234, 287, 3488, 32269, 1296, 878, 1262, 606, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 62, 49, 1220, 28, 8159, 62, 49, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 62, 43, 1220, 28, 8159, 62, 43, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4332, 366, 80, 1, 284, 2270, 262, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 1222, 657, 87, 5777, 6624, 2760, 10786, 80, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 9600, 43, 3256, 33705, 43, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 9600, 49, 3256, 33705, 49, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 2655, 13, 19836, 3419, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 198 ]
1.665963
2,844
from dataclasses import dataclass # from pprint import pprint import aiohttp import discord from discord.ext import commands from bot import constants API_URL = "https://livescore6.p.rapidapi.com/matches/v2/" LIVE_MATCHES_URL = API_URL + "list-live" HEADERS = { "x-rapidapi-key": constants.RAPIDAPI_KEY, "x-rapidapi-host": constants.RAPIDAPI_LIVESCORE6_HOST, } @dataclass def setup(bot: commands.Bot): """Add Cricket Cog.""" bot.add_cog(Cricket(bot))
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 2, 422, 279, 4798, 1330, 279, 4798, 198, 198, 11748, 257, 952, 4023, 198, 11748, 36446, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 198, 6738, 10214, 1330, 38491, 198, 198, 17614, 62, 21886, 796, 366, 5450, 1378, 75, 1083, 7295, 21, 13, 79, 13, 2416, 312, 15042, 13, 785, 14, 6759, 2052, 14, 85, 17, 30487, 198, 43, 9306, 62, 44, 11417, 1546, 62, 21886, 796, 7824, 62, 21886, 1343, 366, 4868, 12, 12583, 1, 198, 198, 37682, 4877, 796, 1391, 198, 220, 220, 220, 366, 87, 12, 2416, 312, 15042, 12, 2539, 1298, 38491, 13, 49, 2969, 2389, 17614, 62, 20373, 11, 198, 220, 220, 220, 366, 87, 12, 2416, 312, 15042, 12, 4774, 1298, 38491, 13, 49, 2969, 2389, 17614, 62, 43, 42472, 34, 6965, 21, 62, 39, 10892, 11, 198, 92, 628, 198, 31, 19608, 330, 31172, 628, 198, 198, 4299, 9058, 7, 13645, 25, 9729, 13, 20630, 2599, 198, 220, 220, 220, 37227, 4550, 34761, 327, 519, 526, 15931, 198, 220, 220, 220, 10214, 13, 2860, 62, 66, 519, 7, 34, 5557, 316, 7, 13645, 4008, 198 ]
2.492147
191
# -*- coding: utf-8 -*- import family
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 220, 532, 9, 12, 198, 198, 11748, 1641, 198 ]
2.105263
19
#!/usr/bin/python2 # coding: utf-8 # Daniel Elsner # Get the amino acid sequence from the correct url for a kegg entry... # Use best with GNU parallel (Tange 2011a) and an input list containing all the gene IDs from a kegg pathway. import sys from bs4 import BeautifulSoup import requests url = sys.argv[1] r = requests.get(url) data = r.text soup = BeautifulSoup(data, 'html.parser') print soup.pre.get_text()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 198, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 7806, 2574, 82, 1008, 198, 2, 3497, 262, 23206, 7408, 8379, 422, 262, 3376, 19016, 329, 257, 885, 1130, 5726, 986, 198, 2, 5765, 1266, 351, 22961, 10730, 357, 51, 858, 2813, 64, 8, 290, 281, 5128, 1351, 7268, 477, 262, 9779, 32373, 422, 257, 885, 1130, 21182, 13, 198, 198, 11748, 25064, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 7007, 628, 198, 6371, 796, 25064, 13, 853, 85, 58, 16, 60, 628, 198, 81, 220, 796, 7007, 13, 1136, 7, 6371, 8, 198, 7890, 796, 374, 13, 5239, 628, 198, 82, 10486, 796, 23762, 50, 10486, 7, 7890, 11, 705, 6494, 13, 48610, 11537, 628, 198, 4798, 17141, 13, 3866, 13, 1136, 62, 5239, 3419 ]
3.014286
140
from .axle import * # noqa from .cycle import * # noqa
[ 6738, 764, 897, 293, 1330, 1635, 220, 1303, 645, 20402, 198, 6738, 764, 13696, 1330, 1635, 220, 1303, 645, 20402, 198 ]
2.714286
21
from itertools import chain from django.template.defaultfilters import linebreaksbr, urlize from django.utils.html import format_html, mark_safe from feincms3_forms.models import FormFieldBase
[ 6738, 340, 861, 10141, 1330, 6333, 198, 198, 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 1627, 30058, 1671, 11, 19016, 1096, 198, 6738, 42625, 14208, 13, 26791, 13, 6494, 1330, 5794, 62, 6494, 11, 1317, 62, 21230, 198, 198, 6738, 730, 1939, 907, 18, 62, 23914, 13, 27530, 1330, 5178, 15878, 14881, 628, 628 ]
3.473684
57
# Copyright (C) 2017-2020 Pascal Pepe <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core models.""" import uuid from django.conf import settings from django.db import models from django.utils.translation import gettext_lazy as _ class ArchivableModel(models.Model): """Abstract model that can be archived.""" is_archived = models.BooleanField( default=False, verbose_name=_('archived?'), ) class OrderableModel(models.Model): """Abstract model that can be ordered.""" order = models.PositiveSmallIntegerField( blank=True, null=True, verbose_name=_('order'), ) class OwnableModel(models.Model): """Abstract model with an optional owner.""" owner = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.SET_NULL, blank=True, null=True, verbose_name=_('owner'), ) class PublishableModel(models.Model): """Abstract model with publication features.""" PUB_STATUS_CHOICES = [ ('DRAFT', _('draft')), ('PENDING', _('pending')), ('PUBLISHED', _('published')), ] pub_date = models.DateTimeField( blank=True, null=True, verbose_name=_('publication date'), ) pub_status = models.CharField( max_length=32, choices=PUB_STATUS_CHOICES, default='DRAFT', verbose_name=_('publication status'), ) class SEOModel(models.Model): """Abstract model with SEO-specific fields.""" search_title = models.CharField( max_length=255, blank=True, verbose_name=_('search title'), ) search_description = models.CharField( max_length=255, blank=True, verbose_name=_('search description'), ) class UUIDModel(models.Model): """Abstract model with a UUID as primary key.""" id = models.UUIDField( primary_key=True, default=uuid.uuid4, editable=False, verbose_name=_('ID'), ) class VisibilityStatusModel(models.Model): """Abstract model with a visibility status.""" VISIBILITY_STATUS_CHOICES = [ ('PRIVATE', _('private')), ('PUBLIC', _('public')), ] visibility_status = models.CharField( max_length=32, choices=VISIBILITY_STATUS_CHOICES, default='PUBLIC', verbose_name=_('visibility status'), )
[ 2, 15069, 357, 34, 8, 2177, 12, 42334, 35163, 49761, 1279, 32057, 31, 79, 27747, 431, 431, 13, 785, 29, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 14055, 4981, 526, 15931, 198, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 628, 198, 4871, 5579, 21911, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 326, 460, 307, 33962, 526, 15931, 628, 220, 220, 220, 318, 62, 998, 1572, 796, 4981, 13, 46120, 13087, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 998, 1572, 8348, 828, 198, 220, 220, 220, 1267, 628, 198, 4871, 8284, 540, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 326, 460, 307, 6149, 526, 15931, 628, 220, 220, 220, 1502, 796, 4981, 13, 21604, 1800, 18712, 46541, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 2875, 33809, 198, 220, 220, 220, 1267, 628, 198, 4871, 11744, 540, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 351, 281, 11902, 4870, 526, 15931, 628, 220, 220, 220, 4870, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6460, 13, 32, 24318, 62, 29904, 62, 33365, 3698, 11, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 28480, 62, 33991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 18403, 33809, 198, 220, 220, 220, 1267, 628, 198, 4871, 8525, 1836, 540, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 351, 9207, 3033, 526, 15931, 628, 220, 220, 220, 350, 10526, 62, 35744, 2937, 62, 44899, 34444, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 35, 44700, 3256, 4808, 10786, 35679, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 47, 10619, 2751, 3256, 4808, 10786, 79, 1571, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 5105, 9148, 18422, 1961, 3256, 4808, 10786, 30271, 11537, 828, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 2240, 62, 4475, 796, 4981, 13, 10430, 7575, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 11377, 341, 3128, 33809, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2240, 62, 13376, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 5105, 33, 62, 35744, 2937, 62, 44899, 34444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 35, 44700, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 11377, 341, 3722, 33809, 198, 220, 220, 220, 1267, 628, 198, 4871, 7946, 2662, 375, 417, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 351, 30850, 12, 11423, 7032, 526, 15931, 628, 220, 220, 220, 2989, 62, 7839, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 13381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 12947, 3670, 33809, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2989, 62, 11213, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 13381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 12947, 6764, 33809, 198, 220, 220, 220, 1267, 628, 198, 4871, 471, 27586, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 351, 257, 471, 27586, 355, 4165, 1994, 526, 15931, 628, 220, 220, 220, 4686, 796, 4981, 13, 52, 27586, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 2539, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 12303, 312, 13, 12303, 312, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4370, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 2389, 33809, 198, 220, 220, 220, 1267, 628, 198, 4871, 6911, 2247, 19580, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 2746, 351, 257, 20742, 3722, 526, 15931, 628, 220, 220, 220, 50035, 40, 25382, 62, 35744, 2937, 62, 44899, 34444, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 4805, 3824, 6158, 3256, 4808, 10786, 19734, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 5105, 32936, 3256, 4808, 10786, 11377, 11537, 828, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 20742, 62, 13376, 796, 4981, 13, 12441, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 29817, 40, 25382, 62, 35744, 2937, 62, 44899, 34444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 5105, 32936, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 62, 3672, 28, 62, 10786, 4703, 2247, 3722, 33809, 198, 220, 220, 220, 1267, 198 ]
2.551965
1,145
""" ===== About ===== Acquire measurement information from DWD and filter using SQL. ===== Setup ===== :: pip install wetterdienst[sql] """ import logging from wetterdienst import DWDStationRequest from wetterdienst import TimeResolution, Parameter, PeriodType log = logging.getLogger() if __name__ == "__main__": main()
[ 37811, 198, 1421, 28, 198, 8585, 198, 1421, 28, 198, 12832, 29782, 15558, 1321, 422, 360, 22332, 290, 8106, 1262, 16363, 13, 628, 198, 1421, 28, 198, 40786, 198, 1421, 28, 198, 3712, 628, 220, 220, 220, 7347, 2721, 9583, 353, 67, 2013, 301, 58, 25410, 60, 198, 198, 37811, 198, 11748, 18931, 198, 198, 6738, 9583, 353, 67, 2013, 301, 1330, 360, 22332, 12367, 18453, 198, 6738, 9583, 353, 67, 2013, 301, 1330, 3862, 4965, 2122, 11, 25139, 2357, 11, 18581, 6030, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3
113
import sys from enum import Enum from PySide2.QtUiTools import QUiLoader #allows us to load .ui files #be sure to import any widget that you want to manipulate from PySide2.QtWidgets import QApplication, QPushButton, QGridLayout, QSizePolicy from PySide2.QtCore import QFile, QObject import random #class constructor if __name__ == '__main__': app = QApplication(sys.argv) main_window = MainWindow() sys.exit(app.exec_())
[ 11748, 25064, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 9485, 24819, 17, 13, 48, 83, 52, 72, 33637, 1330, 19604, 72, 17401, 1303, 47205, 514, 284, 3440, 764, 9019, 3696, 198, 198, 2, 1350, 1654, 284, 1330, 597, 26295, 326, 345, 765, 284, 18510, 198, 6738, 9485, 24819, 17, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 11, 1195, 49222, 21864, 11, 1195, 41339, 32517, 11, 1195, 10699, 36727, 198, 6738, 9485, 24819, 17, 13, 48, 83, 14055, 1330, 1195, 8979, 11, 1195, 10267, 198, 11748, 4738, 628, 220, 220, 220, 1303, 4871, 23772, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 1388, 62, 17497, 796, 8774, 27703, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 1324, 13, 18558, 62, 28955 ]
3.006803
147
# List GCP Regional project quotas # Official GCP SDK (Python) Documentation: https://googleapis.github.io/google-api-python-client/docs/dyn/ import json import ipcalc import sys import argparse from googleapiclient import discovery from oauth2client.client import GoogleCredentials from google.cloud import resource_manager client = resource_manager.Client() credentials = GoogleCredentials.get_application_default() compute = discovery.build('compute', 'v1', credentials=credentials) # Filter of Projects that will be scanned parser_args = argparse.ArgumentParser(description='Define the projetc_id filter.' 'if empity will looking for all the active project_id that the credential have access') parser_args.add_argument('--project') project_Filter = parser_args.parse_args() if project_Filter.project is None: env_filter = {'lifecycleState': 'ACTIVE' } else: env_filter = {'projectId': project_Filter.project ,'lifecycleState': 'ACTIVE' } # print csv header print ('project_id;project_name;region;metric;limit;usage') for project in client.list_projects(env_filter): region_request = compute.regions().list(project=project.project_id) regions = region_request.execute() for region in regions['items']: for quota in region['quotas']: print( project.project_id, ';', project.name, ';', region.get('name'),';', quota.get('metric'),';', quota.get('limit'),';', quota.get('usage'),';' )
[ 2, 7343, 402, 8697, 15994, 1628, 38736, 198, 2, 15934, 402, 8697, 26144, 357, 37906, 8, 43925, 25, 3740, 1378, 13297, 499, 271, 13, 12567, 13, 952, 14, 13297, 12, 15042, 12, 29412, 12, 16366, 14, 31628, 14, 67, 2047, 14, 198, 198, 11748, 33918, 198, 11748, 20966, 9948, 66, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 6738, 23645, 499, 291, 75, 1153, 1330, 9412, 198, 6738, 267, 18439, 17, 16366, 13, 16366, 1330, 3012, 34, 445, 14817, 198, 6738, 23645, 13, 17721, 1330, 8271, 62, 37153, 198, 198, 16366, 796, 8271, 62, 37153, 13, 11792, 3419, 198, 198, 66, 445, 14817, 796, 3012, 34, 445, 14817, 13, 1136, 62, 31438, 62, 12286, 3419, 198, 5589, 1133, 796, 9412, 13, 11249, 10786, 5589, 1133, 3256, 705, 85, 16, 3256, 18031, 28, 66, 445, 14817, 8, 198, 198, 2, 25853, 286, 29898, 326, 481, 307, 28660, 220, 198, 48610, 62, 22046, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 7469, 500, 262, 386, 73, 14784, 62, 312, 8106, 2637, 198, 6, 361, 795, 79, 414, 481, 2045, 329, 477, 262, 4075, 1628, 62, 312, 326, 262, 49920, 423, 1895, 11537, 198, 48610, 62, 22046, 13, 2860, 62, 49140, 10786, 438, 16302, 11537, 198, 198, 16302, 62, 22417, 796, 30751, 62, 22046, 13, 29572, 62, 22046, 3419, 628, 198, 361, 1628, 62, 22417, 13, 16302, 318, 6045, 25, 198, 220, 220, 220, 17365, 62, 24455, 796, 1391, 6, 36195, 47510, 9012, 10354, 705, 10659, 9306, 6, 1782, 198, 17772, 25, 198, 220, 220, 220, 17365, 62, 24455, 796, 1391, 6, 16302, 7390, 10354, 1628, 62, 22417, 13, 16302, 837, 6, 36195, 47510, 9012, 10354, 705, 10659, 9306, 6, 1782, 198, 198, 2, 3601, 269, 21370, 13639, 198, 4798, 19203, 16302, 62, 312, 26, 16302, 62, 3672, 26, 36996, 26, 4164, 1173, 26, 32374, 26, 26060, 11537, 198, 198, 1640, 1628, 287, 5456, 13, 4868, 62, 42068, 7, 24330, 62, 24455, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3814, 62, 25927, 796, 24061, 13, 2301, 507, 22446, 4868, 7, 16302, 28, 16302, 13, 16302, 62, 312, 8, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 7652, 796, 3814, 62, 25927, 13, 41049, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 3814, 287, 7652, 17816, 23814, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 32539, 287, 3814, 17816, 421, 313, 292, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 13, 16302, 62, 312, 11, 705, 26, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 13, 3672, 11, 705, 26, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3814, 13, 1136, 10786, 3672, 33809, 17020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32539, 13, 1136, 10786, 4164, 1173, 33809, 17020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32539, 13, 1136, 10786, 32374, 33809, 17020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32539, 13, 1136, 10786, 26060, 33809, 17020, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.670628
589
from django import forms from django.contrib import admin from osmaxx.profile.models import Profile admin.site.register(Profile, ProfileAdmin)
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 6738, 267, 5796, 897, 87, 13, 13317, 13, 27530, 1330, 13118, 628, 198, 28482, 13, 15654, 13, 30238, 7, 37046, 11, 13118, 46787, 8, 198 ]
3.560976
41
# # Copyright (C) 2002-2008 greg Landrum and Rational Discovery LLC # """ unit tests for the model and descriptor packager """ import os import random import unittest from xml.dom import minidom from xml.etree import ElementTree as ET from rdkit import Chem from rdkit import RDConfig from rdkit.Chem import Descriptors from rdkit.ML.Composite import Composite from rdkit.ML.Data import DataUtils from rdkit.ML.Descriptors.MoleculeDescriptors import MolecularDescriptorCalculator from rdkit.ML.ModelPackage import Packager, PackageUtils from rdkit.ML.ModelPackage.Packager import ModelPackage from io import BytesIO import pickle if __name__ == '__main__': # pragma: nocover unittest.main()
[ 2, 198, 2, 220, 15069, 357, 34, 8, 6244, 12, 11528, 220, 308, 2301, 6379, 6582, 290, 46863, 23455, 11419, 198, 2, 198, 37811, 4326, 5254, 329, 262, 2746, 290, 43087, 2353, 3536, 37227, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 555, 715, 395, 198, 6738, 35555, 13, 3438, 1330, 949, 312, 296, 198, 6738, 35555, 13, 316, 631, 1330, 11703, 27660, 355, 12152, 198, 198, 6738, 374, 67, 15813, 1330, 12870, 198, 6738, 374, 67, 15813, 1330, 31475, 16934, 198, 6738, 374, 67, 15813, 13, 41829, 1330, 2935, 6519, 669, 198, 6738, 374, 67, 15813, 13, 5805, 13, 5377, 1930, 578, 1330, 49355, 198, 6738, 374, 67, 15813, 13, 5805, 13, 6601, 1330, 6060, 18274, 4487, 198, 6738, 374, 67, 15813, 13, 5805, 13, 24564, 1968, 669, 13, 44, 2305, 23172, 24564, 1968, 669, 1330, 38275, 24564, 1968, 273, 9771, 3129, 1352, 198, 6738, 374, 67, 15813, 13, 5805, 13, 17633, 27813, 1330, 6400, 3536, 11, 15717, 18274, 4487, 198, 6738, 374, 67, 15813, 13, 5805, 13, 17633, 27813, 13, 11869, 3536, 1330, 9104, 27813, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 11748, 2298, 293, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 1303, 23864, 2611, 25, 299, 420, 2502, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.18552
221
from fractions import Fraction import pytest from mugen.utilities import conversion, general @pytest.mark.parametrize( "a_start, a_end, b_start, b_end, do_overlap", [ (5, 10, 11, 12, False), # disjoint (5, 10, 10, 12, False), # contiguous (5, 10, 9, 12, True), # overlaps right (5, 10, 6, 8, True), # contained (5, 10, 4, 11, True), # contains (5, 10, 5, 10, True), # equal (5, 10, 4, 5, False), # contiguous (5, 10, 4, 6, True), # overlaps left ], ) @pytest.mark.parametrize( "float_var, expected_fraction", [ (0.5, Fraction(numerator=1, denominator=2)), (1 / 3, Fraction(numerator=1, denominator=3)), (5, Fraction(numerator=5, denominator=1)), ], ) @pytest.mark.parametrize( "slices, length, expected_slices", [ ([slice(1, 2)], 0, [slice(0, 1), slice(1, 2)]), ([slice(2, 3)], 2, [slice(0, 2), slice(2, 3)]), ([slice(0, 8)], 2, [slice(0, 8)]), ([slice(1, 3)], 5, [slice(0, 1), slice(1, 3), slice(3, 5)]), ([slice(0, 3), slice(3, 4)], 5, [slice(0, 3), slice(3, 4), slice(4, 5)]), ( [slice(1, 3), slice(5, 7)], 8, [slice(0, 1), slice(1, 3), slice(3, 5), slice(5, 7), slice(7, 8)], ), ], ) @pytest.mark.parametrize( "time, expected_seconds", [ (15.4, 15.4), ((1, 21.5), 81.5), ((1, 1, 2), 3662), (".5", 0.5), ("33", 33), ("33.045", 33.045), ("1:21.5", 81.5), ("01:33.045", 93.045), ("1:33.045", 93.045), ("00:00:33.045", 33.045), ("01:01:33.045", 3693.045), ("01:01:33.5", 3693.5), ("01:01:33,5", 3693.5), ], ) @pytest.mark.parametrize( "seconds, expected_time_code", [(25, "00:00:25.000"), (500.45, "00:08:20.450"), (50000.085, "13:53:20.085")], ) @pytest.mark.parametrize( "hex_value, expected_rgb", [ ("#000000", [0, 0, 0]), ("#ffffff", [255, 255, 255]), ("#3563df", [53, 99, 223]), ("#FF4500", [255, 69, 0]), ], ) @pytest.mark.parametrize( "color, expected_hex_code", [("#123456", "#123456"), ("black", "#000000"), ("white", "#ffffff")], )
[ 6738, 49876, 1330, 376, 7861, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 25152, 268, 13, 315, 2410, 1330, 11315, 11, 2276, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 64, 62, 9688, 11, 257, 62, 437, 11, 275, 62, 9688, 11, 275, 62, 437, 11, 466, 62, 2502, 37796, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 1367, 11, 1105, 11, 10352, 828, 220, 1303, 595, 73, 1563, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 838, 11, 1105, 11, 10352, 828, 220, 1303, 48627, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 860, 11, 1105, 11, 6407, 828, 220, 1303, 12893, 1686, 826, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 718, 11, 807, 11, 6407, 828, 220, 1303, 7763, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 604, 11, 1367, 11, 6407, 828, 220, 1303, 4909, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 642, 11, 838, 11, 6407, 828, 220, 1303, 4961, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 604, 11, 642, 11, 10352, 828, 220, 1303, 48627, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 838, 11, 604, 11, 718, 11, 6407, 828, 220, 1303, 12893, 1686, 1364, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 22468, 62, 7785, 11, 2938, 62, 69, 7861, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 13, 20, 11, 376, 7861, 7, 77, 6975, 1352, 28, 16, 11, 31457, 1352, 28, 17, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 1220, 513, 11, 376, 7861, 7, 77, 6975, 1352, 28, 16, 11, 31457, 1352, 28, 18, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 357, 20, 11, 376, 7861, 7, 77, 6975, 1352, 28, 20, 11, 31457, 1352, 28, 16, 36911, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 82, 677, 274, 11, 4129, 11, 2938, 62, 82, 677, 274, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 48369, 7, 16, 11, 362, 8, 4357, 657, 11, 685, 48369, 7, 15, 11, 352, 828, 16416, 7, 16, 11, 362, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 48369, 7, 17, 11, 513, 8, 4357, 362, 11, 685, 48369, 7, 15, 11, 362, 828, 16416, 7, 17, 11, 513, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 48369, 7, 15, 11, 807, 8, 4357, 362, 11, 685, 48369, 7, 15, 11, 807, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 48369, 7, 16, 11, 513, 8, 4357, 642, 11, 685, 48369, 7, 15, 11, 352, 828, 16416, 7, 16, 11, 513, 828, 16416, 7, 18, 11, 642, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 48369, 7, 15, 11, 513, 828, 16416, 7, 18, 11, 604, 8, 4357, 642, 11, 685, 48369, 7, 15, 11, 513, 828, 16416, 7, 18, 11, 604, 828, 16416, 7, 19, 11, 642, 15437, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 48369, 7, 16, 11, 513, 828, 16416, 7, 20, 11, 767, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 48369, 7, 15, 11, 352, 828, 16416, 7, 16, 11, 513, 828, 16416, 7, 18, 11, 642, 828, 16416, 7, 20, 11, 767, 828, 16416, 7, 22, 11, 807, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 2435, 11, 2938, 62, 43012, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1314, 13, 19, 11, 1315, 13, 19, 828, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 11, 2310, 13, 20, 828, 9773, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 16, 11, 352, 11, 362, 828, 513, 39380, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1911, 20, 1600, 657, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2091, 1600, 4747, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2091, 13, 40350, 1600, 4747, 13, 40350, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 16, 25, 2481, 13, 20, 1600, 9773, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 486, 25, 2091, 13, 40350, 1600, 10261, 13, 40350, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 16, 25, 2091, 13, 40350, 1600, 10261, 13, 40350, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 405, 25, 405, 25, 2091, 13, 40350, 1600, 4747, 13, 40350, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 486, 25, 486, 25, 2091, 13, 40350, 1600, 45620, 18, 13, 40350, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 486, 25, 486, 25, 2091, 13, 20, 1600, 45620, 18, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 486, 25, 486, 25, 2091, 11, 20, 1600, 45620, 18, 13, 20, 828, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 43012, 11, 2938, 62, 2435, 62, 8189, 1600, 198, 220, 220, 220, 47527, 1495, 11, 366, 405, 25, 405, 25, 1495, 13, 830, 12340, 357, 4059, 13, 2231, 11, 366, 405, 25, 2919, 25, 1238, 13, 17885, 12340, 357, 20, 2388, 13, 2919, 20, 11, 366, 1485, 25, 4310, 25, 1238, 13, 2919, 20, 4943, 4357, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 33095, 62, 8367, 11, 2938, 62, 81, 22296, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2, 10535, 1600, 685, 15, 11, 657, 11, 657, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2, 12927, 487, 1600, 685, 13381, 11, 14280, 11, 14280, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2, 2327, 5066, 7568, 1600, 685, 4310, 11, 7388, 11, 30299, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 2, 5777, 2231, 405, 1600, 685, 13381, 11, 8644, 11, 657, 46570, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 8043, 11, 2938, 62, 33095, 62, 8189, 1600, 198, 220, 220, 220, 685, 7203, 2, 10163, 29228, 1600, 25113, 10163, 29228, 12340, 5855, 13424, 1600, 25113, 10535, 12340, 5855, 11186, 1600, 25113, 12927, 487, 4943, 4357, 198, 8, 198 ]
1.847097
1,223
import unittest import json import os import datetime from prometheus_api_client import MetricsList if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 4818, 8079, 198, 6738, 1552, 36916, 62, 15042, 62, 16366, 1330, 3395, 10466, 8053, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3
50
from random import uniform import numpy as np from collections import OrderedDict, defaultdict from itertools import tee import time # -----------------------------------------------
[ 6738, 4738, 1330, 8187, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 11, 4277, 11600, 198, 6738, 340, 861, 10141, 1330, 30479, 198, 11748, 640, 198, 198, 2, 20368, 24305 ]
5.083333
36
import pytest from jamesbond import bonddata def test_load_data(): """ Test the row & column count (shape) Test the first column from the last row of the dataset 'Spectre'. """ df = bonddata.load_data() shape = df.shape last_row_first_col = df.iloc[-1, 1] assert shape == (24, 27) assert last_row_first_col == 'Spectre'
[ 11748, 12972, 9288, 198, 6738, 474, 1047, 65, 623, 1330, 6314, 7890, 628, 198, 4299, 1332, 62, 2220, 62, 7890, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 5752, 1222, 5721, 954, 357, 43358, 8, 198, 220, 220, 220, 6208, 262, 717, 5721, 422, 262, 938, 5752, 286, 262, 27039, 705, 49738, 260, 4458, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47764, 796, 6314, 7890, 13, 2220, 62, 7890, 3419, 198, 220, 220, 220, 5485, 796, 47764, 13, 43358, 198, 220, 220, 220, 938, 62, 808, 62, 11085, 62, 4033, 796, 47764, 13, 346, 420, 58, 12, 16, 11, 352, 60, 198, 220, 220, 220, 6818, 5485, 6624, 357, 1731, 11, 2681, 8, 198, 220, 220, 220, 6818, 938, 62, 808, 62, 11085, 62, 4033, 6624, 705, 49738, 260, 6, 198 ]
2.613139
137
"""Unit test package for helplotlib."""
[ 37811, 26453, 1332, 5301, 329, 932, 29487, 8019, 526, 15931, 198 ]
3.636364
11
a=1,b=2 print(assertEqual(a,b)) #验证是否一致
[ 198, 64, 28, 16, 11, 65, 28, 17, 198, 198, 4798, 7, 30493, 36, 13255, 7, 64, 11, 65, 4008, 220, 1303, 165, 103, 234, 46237, 223, 42468, 28938, 99, 31660, 164, 229, 112, 198, 220, 220, 220, 220, 198, 220, 220, 220, 198 ]
1.181818
44
import numpy as np import scipy import matcompat # if available import pylab (from matlibplot) try: import matplotlib.pylab as plt except ImportError: pass
[ 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 198, 11748, 2603, 5589, 265, 198, 198, 2, 611, 1695, 1330, 279, 2645, 397, 357, 6738, 2603, 8019, 29487, 8, 198, 28311, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 79, 2645, 397, 355, 458, 83, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208 ]
2.79661
59
import copy import datetime import json import logging from django.http import HttpResponse from django.utils.decorators import classonlymethod, method_decorator from django.views.generic import View from corehq.util.es.elasticsearch import ElasticsearchException, NotFoundError from casexml.apps.case.models import CommCareCase from corehq.util.es.interface import ElasticsearchInterface from dimagi.utils.logging import notify_exception from dimagi.utils.parsing import ISO_DATE_FORMAT from corehq.apps.api.models import ESCase, ESXFormInstance from corehq.apps.api.resources.v0_1 import TASTYPIE_RESERVED_GET_PARAMS from corehq.apps.api.util import object_does_not_exist from corehq.apps.domain.decorators import login_and_domain_required from corehq.apps.es import filters from corehq.apps.es.forms import FormES from corehq.apps.es.cases import CaseES from corehq.apps.es.utils import flatten_field_dict from corehq.apps.reports.filters.forms import FormsByApplicationFilter from corehq.elastic import ( ESError, get_es_new, report_and_fail_on_shard_failures, ) from corehq.pillows.base import VALUE_TAG, restore_property_dict from corehq.pillows.mappings.case_mapping import CASE_ES_ALIAS from corehq.pillows.mappings.reportcase_mapping import REPORT_CASE_ES_ALIAS from corehq.pillows.mappings.reportxform_mapping import REPORT_XFORM_ALIAS from corehq.pillows.mappings.xform_mapping import XFORM_ALIAS from no_exceptions.exceptions import Http400 logger = logging.getLogger('es') class ESView(View): """ Generic CBV for interfacing with the Elasticsearch REST api. This is necessary because tastypie's built in REST assumptions don't like ES's POST for querying, which we can set explicitly here. For security purposes, queries ought to be domain'ed by the requesting user, so a base_query is encouraged to be added. Access to the APIs can be done via url endpoints which are attached to the corehq.api.urls or programmatically via the self.run_query() method. This current iteration of the ESView must require a domain for its usage for security purposes. """ #note - for security purposes, csrf protection is ENABLED #search POST queries must take the following format: #query={query_json} #csrfmiddlewaretoken=token #in curl, this is: #curl -b "csrftoken=<csrftoken>;sessionid=<session_id>" -H "Content-Type: application/json" -XPOST http://server/a/domain/api/v0.1/xform_es/ # -d"[email protected]&csrfmiddlewaretoken=<csrftoken>" #or, call this programmatically to avoid CSRF issues. es_alias = "" domain = "" es = None doc_type = None model = None http_method_names = ['get', 'post', 'head', ] @method_decorator(login_and_domain_required) #@method_decorator(csrf_protect) # todo: csrf_protect temporarily removed and left to implementor's prerogative # getting ajax'ed csrf token method needs revisit. @classonlymethod def as_view(cls, **initkwargs): """ Django as_view cannot be used since the constructor requires information only present in the request. """ raise Exception('as_view not supported for domain-specific ESView') @classonlymethod def as_domain_specific_view(cls, **initkwargs): """ Creates a simple domain-specific class-based view for passing through ES requests. """ return view def run_query(self, es_query, es_type=None): """ Run a more advanced POST based ES query Returns the raw query json back, or None if there's an error """ logger.info("ESlog: [%s.%s] ESquery: %s" % (self.__class__.__name__, self.domain, json.dumps(es_query))) if 'fields' in es_query or 'script_fields' in es_query: #nasty hack to add domain field to query that does specific fields. #do nothing if there's no field query because we get everything fields = es_query.get('fields', []) fields.append('domain') es_query['fields'] = fields try: es_results = self.es_interface.search(self.es_alias, es_type, body=es_query) report_and_fail_on_shard_failures(es_results) except ElasticsearchException as e: if 'query_string' in es_query.get('query', {}).get('filtered', {}).get('query', {}): # the error may have been caused by a bad query string # re-run with no query string to check querystring = es_query['query']['filtered']['query']['query_string']['query'] new_query = es_query new_query['query']['filtered']['query'] = {"match_all": {}} new_results = self.run_query(new_query) if new_results: # the request succeeded without that query string # an error with a blank query will return None raise ESUserError("Error with elasticsearch query: %s" % querystring) msg = "Error in elasticsearch query [%s]: %s\nquery: %s" % (self.es_alias, str(e), es_query) raise ESError(msg) hits = [] for res in es_results['hits']['hits']: if '_source' in res: res_domain = res['_source'].get('domain', None) elif 'fields' in res: res['fields'] = flatten_field_dict(res) res_domain = res['fields'].get('domain', None) # security check if res_domain == self.domain: hits.append(res) else: logger.info("Requester domain %s does not match result domain %s" % ( self.domain, res_domain)) es_results['hits']['hits'] = hits return es_results class CaseESView(ESView): """ Expressive CaseES interface. Yes, this is redundant with pieces of the v0_1.py CaseAPI - todo to merge these applications Which this should be the final say on ES access for Casedocs """ es_alias = CASE_ES_ALIAS doc_type = "CommCareCase" model = ESCase def report_term_filter(terms, mapping): """convert terms to correct #value term queries based upon the mapping does it match up with pre-defined stuff in the mapping? """ ret_terms = [] for orig_term in terms: curr_mapping = mapping.get('properties') split_term = orig_term.split('.') for ix, sub_term in enumerate(split_term, start=1): is_property = sub_term in curr_mapping if ix == len(split_term): #it's the last one, and if it's still not in it, then append a value if is_property: ret_term = orig_term else: ret_term = '%s.%s' % (orig_term, VALUE_TAG) ret_terms.append(ret_term) if is_property and 'properties' in curr_mapping[sub_term]: curr_mapping = curr_mapping[sub_term]['properties'] return ret_terms class ElasticAPIQuerySet(object): """ An abstract representation of an elastic search query, modeled somewhat after Django's QuerySet but with the only important goal being compatibility with Tastypie's classes. Key capabilities, by piece of Tastypie: Pagination: - `__getitem__([start:stop])` which should efficiently pass the bounds on to ES - `count()` which should efficiently ask ES for the total matching (regardless of slice) Sorting: - order_by('field') or order_by('-field') both become ES service-side sort directives Serialization: - `__iter__()` """ # Also note https://github.com/llonchj/django-tastypie-elasticsearch/ which is # not very mature, plus this code below may involve Dimagic-specific assumptions def __init__(self, es_client, payload=None, model=None): """ Instantiate with an entire ElasticSearch payload, since "query", "filter", etc, all exist alongside each other. """ self.es_client = es_client self.payload = payload self.model = model self.__results = None def with_fields(self, es_client=None, payload=None, model=None): "Clones this queryset, optionally changing some fields" return ElasticAPIQuerySet(es_client=es_client or self.es_client, payload=payload or self.payload, model=model or self.model) @property SUPPORTED_DATE_FORMATS = [ ISO_DATE_FORMAT, '%Y-%m-%dT%H:%M:%S', '%Y-%m-%dT%H:%M:%S.%f', '%Y-%m-%dT%H:%MZ', # legacy Case API date format ] RESERVED_QUERY_PARAMS = set(['limit', 'offset', 'order_by', 'q', '_search'] + TASTYPIE_RESERVED_GET_PARAMS) query_param_consumers = [ TermParam('xmlns', 'xmlns.exact'), TermParam('xmlns.exact'), TermParam('case_name', 'name', analyzed=True), TermParam('case_type', 'type', analyzed=True), # terms listed here to prevent conversion of their values to lower case since # since they are indexed as `not_analyzed` in ES TermParam('type.exact'), TermParam('name.exact'), TermParam('external_id.exact'), TermParam('contact_phone_number'), DateRangeParams('received_on'), DateRangeParams('server_modified_on'), DateRangeParams('date_modified', 'modified_on'), DateRangeParams('server_date_modified', 'server_modified_on'), DateRangeParams('indexed_on', 'inserted_at'), ]
[ 11748, 4866, 198, 11748, 4818, 8079, 198, 11748, 33918, 198, 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 26791, 13, 12501, 273, 2024, 1330, 1398, 8807, 24396, 11, 2446, 62, 12501, 273, 1352, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 3582, 198, 198, 6738, 4755, 71, 80, 13, 22602, 13, 274, 13, 417, 3477, 12947, 1330, 48567, 12947, 16922, 11, 1892, 21077, 12331, 198, 198, 6738, 1339, 19875, 13, 18211, 13, 7442, 13, 27530, 1330, 1520, 17784, 20448, 198, 6738, 4755, 71, 80, 13, 22602, 13, 274, 13, 39994, 1330, 48567, 12947, 39317, 198, 6738, 5391, 18013, 13, 26791, 13, 6404, 2667, 1330, 19361, 62, 1069, 4516, 198, 6738, 5391, 18013, 13, 26791, 13, 79, 945, 278, 1330, 19694, 62, 35, 6158, 62, 21389, 1404, 198, 198, 6738, 4755, 71, 80, 13, 18211, 13, 15042, 13, 27530, 1330, 40251, 589, 11, 13380, 55, 8479, 33384, 198, 6738, 4755, 71, 80, 13, 18211, 13, 15042, 13, 37540, 13, 85, 15, 62, 16, 1330, 309, 1921, 9936, 47, 10008, 62, 19535, 1137, 53, 1961, 62, 18851, 62, 27082, 40834, 198, 6738, 4755, 71, 80, 13, 18211, 13, 15042, 13, 22602, 1330, 2134, 62, 22437, 62, 1662, 62, 38476, 198, 6738, 4755, 71, 80, 13, 18211, 13, 27830, 13, 12501, 273, 2024, 1330, 17594, 62, 392, 62, 27830, 62, 35827, 198, 6738, 4755, 71, 80, 13, 18211, 13, 274, 1330, 16628, 198, 6738, 4755, 71, 80, 13, 18211, 13, 274, 13, 23914, 1330, 5178, 1546, 198, 6738, 4755, 71, 80, 13, 18211, 13, 274, 13, 33964, 1330, 8913, 1546, 198, 6738, 4755, 71, 80, 13, 18211, 13, 274, 13, 26791, 1330, 27172, 268, 62, 3245, 62, 11600, 198, 6738, 4755, 71, 80, 13, 18211, 13, 48922, 13, 10379, 1010, 13, 23914, 1330, 39196, 3886, 23416, 22417, 198, 6738, 4755, 71, 80, 13, 417, 3477, 1330, 357, 198, 220, 220, 220, 412, 5188, 81, 1472, 11, 198, 220, 220, 220, 651, 62, 274, 62, 3605, 11, 198, 220, 220, 220, 989, 62, 392, 62, 32165, 62, 261, 62, 1477, 446, 62, 32165, 942, 11, 198, 8, 198, 6738, 4755, 71, 80, 13, 27215, 1666, 13, 8692, 1330, 26173, 8924, 62, 42197, 11, 11169, 62, 26745, 62, 11600, 198, 6738, 4755, 71, 80, 13, 27215, 1666, 13, 76, 39242, 13, 7442, 62, 76, 5912, 1330, 42001, 62, 1546, 62, 1847, 43429, 198, 6738, 4755, 71, 80, 13, 27215, 1666, 13, 76, 39242, 13, 13116, 7442, 62, 76, 5912, 1330, 39099, 62, 34, 11159, 62, 1546, 62, 1847, 43429, 198, 6738, 4755, 71, 80, 13, 27215, 1666, 13, 76, 39242, 13, 13116, 87, 687, 62, 76, 5912, 1330, 39099, 62, 55, 21389, 62, 1847, 43429, 198, 6738, 4755, 71, 80, 13, 27215, 1666, 13, 76, 39242, 13, 87, 687, 62, 76, 5912, 1330, 1395, 21389, 62, 1847, 43429, 198, 6738, 645, 62, 1069, 11755, 13, 1069, 11755, 1330, 367, 29281, 7029, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 274, 11537, 628, 628, 198, 4871, 13380, 7680, 7, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42044, 10078, 53, 329, 9556, 4092, 351, 262, 48567, 12947, 30617, 40391, 13, 198, 220, 220, 220, 770, 318, 3306, 780, 14854, 4464, 494, 338, 3170, 287, 30617, 14895, 836, 470, 588, 198, 220, 220, 220, 13380, 338, 24582, 329, 42517, 1112, 11, 543, 356, 460, 900, 11777, 994, 13, 628, 220, 220, 220, 1114, 2324, 4959, 11, 20743, 10783, 284, 307, 7386, 6, 276, 416, 262, 20623, 2836, 11, 523, 257, 2779, 62, 22766, 198, 220, 220, 220, 318, 10085, 284, 307, 2087, 13, 628, 220, 220, 220, 8798, 284, 262, 23113, 460, 307, 1760, 2884, 19016, 886, 13033, 543, 389, 7223, 284, 262, 4755, 71, 80, 13, 15042, 13, 6371, 82, 628, 220, 220, 220, 393, 1430, 49454, 2884, 262, 2116, 13, 5143, 62, 22766, 3419, 2446, 13, 628, 220, 220, 220, 770, 1459, 24415, 286, 262, 13380, 7680, 1276, 2421, 257, 7386, 329, 663, 8748, 329, 2324, 4959, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11295, 532, 329, 2324, 4959, 11, 269, 27891, 69, 4800, 318, 412, 4535, 9148, 1961, 198, 220, 220, 220, 1303, 12947, 24582, 20743, 1276, 1011, 262, 1708, 5794, 25, 198, 220, 220, 220, 1303, 22766, 34758, 22766, 62, 17752, 92, 198, 220, 220, 220, 1303, 6359, 41871, 27171, 1574, 30001, 28, 30001, 628, 220, 220, 220, 1303, 259, 29249, 11, 428, 318, 25, 198, 220, 220, 220, 1303, 66, 6371, 532, 65, 366, 6359, 81, 701, 4233, 28, 27, 6359, 81, 701, 4233, 29, 26, 29891, 312, 28, 27, 29891, 62, 312, 24618, 532, 39, 366, 19746, 12, 6030, 25, 3586, 14, 17752, 1, 532, 27481, 10892, 2638, 1378, 15388, 14, 64, 14, 27830, 14, 15042, 14, 85, 15, 13, 16, 14, 87, 687, 62, 274, 14, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 532, 67, 1, 22766, 28, 31, 1820, 22766, 13, 17752, 5, 6359, 41871, 27171, 1574, 30001, 28, 27, 6359, 81, 701, 4233, 24618, 198, 220, 220, 220, 1303, 273, 11, 869, 428, 1430, 49454, 284, 3368, 9429, 32754, 2428, 13, 628, 220, 220, 220, 1658, 62, 26011, 796, 13538, 198, 220, 220, 220, 7386, 796, 13538, 198, 220, 220, 220, 1658, 796, 6045, 198, 220, 220, 220, 2205, 62, 4906, 796, 6045, 198, 220, 220, 220, 2746, 796, 6045, 628, 220, 220, 220, 2638, 62, 24396, 62, 14933, 796, 37250, 1136, 3256, 705, 7353, 3256, 705, 2256, 3256, 2361, 628, 220, 220, 220, 2488, 24396, 62, 12501, 273, 1352, 7, 38235, 62, 392, 62, 27830, 62, 35827, 8, 198, 220, 220, 220, 1303, 31, 24396, 62, 12501, 273, 1352, 7, 6359, 41871, 62, 35499, 8, 198, 220, 220, 220, 1303, 284, 4598, 25, 269, 27891, 69, 62, 35499, 13413, 4615, 290, 1364, 284, 3494, 273, 338, 662, 3828, 876, 198, 220, 220, 220, 1303, 1972, 257, 73, 897, 6, 276, 269, 27891, 69, 11241, 2446, 2476, 32302, 13, 628, 220, 220, 220, 2488, 4871, 8807, 24396, 198, 220, 220, 220, 825, 355, 62, 1177, 7, 565, 82, 11, 12429, 15003, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37770, 355, 62, 1177, 2314, 307, 973, 1201, 262, 23772, 4433, 1321, 691, 1944, 287, 262, 2581, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 292, 62, 1177, 407, 4855, 329, 7386, 12, 11423, 13380, 7680, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 4871, 8807, 24396, 198, 220, 220, 220, 825, 355, 62, 27830, 62, 11423, 62, 1177, 7, 565, 82, 11, 12429, 15003, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 2829, 7386, 12, 11423, 1398, 12, 3106, 1570, 329, 6427, 832, 13380, 7007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1570, 628, 220, 220, 220, 825, 1057, 62, 22766, 7, 944, 11, 1658, 62, 22766, 11, 1658, 62, 4906, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5660, 257, 517, 6190, 24582, 1912, 13380, 12405, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 8246, 12405, 33918, 736, 11, 393, 6045, 611, 612, 338, 281, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 1546, 6404, 25, 685, 4, 82, 13, 4, 82, 60, 13380, 22766, 25, 4064, 82, 1, 4064, 357, 944, 13, 834, 4871, 834, 13, 834, 3672, 834, 11, 2116, 13, 27830, 11, 33918, 13, 67, 8142, 7, 274, 62, 22766, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 25747, 6, 287, 1658, 62, 22766, 393, 705, 12048, 62, 25747, 6, 287, 1658, 62, 22766, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 77, 7833, 8156, 284, 751, 7386, 2214, 284, 12405, 326, 857, 2176, 7032, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4598, 2147, 611, 612, 338, 645, 2214, 12405, 780, 356, 651, 2279, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 1658, 62, 22766, 13, 1136, 10786, 25747, 3256, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 13, 33295, 10786, 27830, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1658, 62, 22766, 17816, 25747, 20520, 796, 7032, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1658, 62, 43420, 796, 2116, 13, 274, 62, 39994, 13, 12947, 7, 944, 13, 274, 62, 26011, 11, 1658, 62, 4906, 11, 1767, 28, 274, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 392, 62, 32165, 62, 261, 62, 1477, 446, 62, 32165, 942, 7, 274, 62, 43420, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 48567, 12947, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 22766, 62, 8841, 6, 287, 1658, 62, 22766, 13, 1136, 10786, 22766, 3256, 23884, 737, 1136, 10786, 10379, 4400, 3256, 23884, 737, 1136, 10786, 22766, 3256, 23884, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4049, 743, 423, 587, 4073, 416, 257, 2089, 12405, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 302, 12, 5143, 351, 645, 12405, 4731, 284, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 8841, 796, 1658, 62, 22766, 17816, 22766, 6, 7131, 6, 10379, 4400, 6, 7131, 6, 22766, 6, 7131, 6, 22766, 62, 8841, 6, 7131, 6, 22766, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22766, 796, 1658, 62, 22766, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 22766, 17816, 22766, 6, 7131, 6, 10379, 4400, 6, 7131, 6, 22766, 20520, 796, 19779, 15699, 62, 439, 1298, 1391, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 43420, 796, 2116, 13, 5143, 62, 22766, 7, 3605, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 43420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2581, 14131, 1231, 326, 12405, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 4049, 351, 257, 9178, 12405, 481, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 12564, 2655, 12331, 7203, 12331, 351, 27468, 12947, 12405, 25, 4064, 82, 1, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 8841, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 12331, 287, 27468, 12947, 12405, 685, 4, 82, 5974, 4064, 82, 59, 77, 22766, 25, 4064, 82, 1, 4064, 357, 944, 13, 274, 62, 26011, 11, 965, 7, 68, 828, 1658, 62, 22766, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 412, 5188, 81, 1472, 7, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7127, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 581, 287, 1658, 62, 43420, 17816, 71, 896, 6, 7131, 6, 71, 896, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 62, 10459, 6, 287, 581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 27830, 796, 581, 17816, 62, 10459, 6, 4083, 1136, 10786, 27830, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 25747, 6, 287, 581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 17816, 25747, 20520, 796, 27172, 268, 62, 3245, 62, 11600, 7, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 62, 27830, 796, 581, 17816, 25747, 6, 4083, 1136, 10786, 27830, 3256, 6045, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2324, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 581, 62, 27830, 6624, 2116, 13, 27830, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7127, 13, 33295, 7, 411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 16844, 7834, 7386, 4064, 82, 857, 407, 2872, 1255, 7386, 4064, 82, 1, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27830, 11, 581, 62, 27830, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1658, 62, 43420, 17816, 71, 896, 6, 7131, 6, 71, 896, 20520, 796, 7127, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1658, 62, 43420, 628, 198, 4871, 8913, 1546, 7680, 7, 1546, 7680, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5518, 3314, 8913, 1546, 7071, 13, 3363, 11, 428, 318, 30806, 351, 5207, 286, 262, 410, 15, 62, 16, 13, 9078, 8913, 17614, 532, 284, 4598, 284, 20121, 777, 5479, 198, 220, 220, 220, 9022, 428, 815, 307, 262, 2457, 910, 319, 13380, 1895, 329, 327, 839, 420, 82, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1658, 62, 26011, 796, 42001, 62, 1546, 62, 1847, 43429, 198, 220, 220, 220, 2205, 62, 4906, 796, 366, 6935, 17784, 20448, 1, 198, 220, 220, 220, 2746, 796, 40251, 589, 628, 628, 198, 4299, 989, 62, 4354, 62, 24455, 7, 38707, 11, 16855, 2599, 198, 220, 220, 220, 37227, 1102, 1851, 2846, 284, 3376, 1303, 8367, 3381, 20743, 1912, 2402, 262, 16855, 198, 220, 220, 220, 857, 340, 2872, 510, 351, 662, 12, 23211, 3404, 287, 262, 16855, 30, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1005, 62, 38707, 796, 17635, 198, 220, 220, 220, 329, 1796, 62, 4354, 287, 2846, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 76, 5912, 796, 16855, 13, 1136, 10786, 48310, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 4354, 796, 1796, 62, 4354, 13, 35312, 10786, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 220, 844, 11, 850, 62, 4354, 287, 27056, 378, 7, 35312, 62, 4354, 11, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 26745, 796, 850, 62, 4354, 287, 1090, 81, 62, 76, 5912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 220, 844, 6624, 18896, 7, 35312, 62, 4354, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 270, 338, 262, 938, 530, 11, 290, 611, 340, 338, 991, 407, 287, 340, 11, 788, 24443, 257, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 26745, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 4354, 796, 1796, 62, 4354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 4354, 796, 705, 4, 82, 13, 4, 82, 6, 4064, 357, 11612, 62, 4354, 11, 26173, 8924, 62, 42197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 38707, 13, 33295, 7, 1186, 62, 4354, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 26745, 290, 705, 48310, 6, 287, 1090, 81, 62, 76, 5912, 58, 7266, 62, 4354, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 76, 5912, 796, 1090, 81, 62, 76, 5912, 58, 7266, 62, 4354, 7131, 6, 48310, 20520, 198, 220, 220, 220, 1441, 1005, 62, 38707, 628, 198, 198, 4871, 48567, 17614, 20746, 7248, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 12531, 10552, 286, 281, 27468, 2989, 12405, 11, 198, 220, 220, 220, 29563, 6454, 706, 37770, 338, 43301, 7248, 475, 351, 198, 220, 220, 220, 262, 691, 1593, 3061, 852, 17764, 198, 220, 220, 220, 351, 309, 459, 4464, 494, 338, 6097, 13, 7383, 9889, 11, 416, 3704, 286, 198, 220, 220, 220, 309, 459, 4464, 494, 25, 628, 220, 220, 220, 31525, 1883, 25, 628, 220, 220, 220, 532, 4600, 834, 1136, 9186, 834, 26933, 9688, 25, 11338, 12962, 63, 543, 815, 18306, 1208, 262, 22303, 319, 284, 13380, 198, 220, 220, 220, 532, 4600, 9127, 3419, 63, 543, 815, 18306, 1265, 13380, 329, 262, 2472, 12336, 357, 2301, 14694, 286, 16416, 8, 628, 220, 220, 220, 311, 24707, 25, 628, 220, 220, 220, 532, 1502, 62, 1525, 10786, 3245, 11537, 393, 1502, 62, 1525, 10786, 12, 3245, 11537, 1111, 1716, 13380, 2139, 12, 1589, 3297, 34819, 628, 220, 220, 220, 23283, 1634, 25, 628, 220, 220, 220, 532, 4600, 834, 2676, 834, 3419, 63, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 4418, 3465, 3740, 1378, 12567, 13, 785, 14, 297, 261, 354, 73, 14, 28241, 14208, 12, 83, 459, 4464, 494, 12, 417, 3477, 12947, 14, 543, 318, 198, 220, 220, 220, 1303, 407, 845, 15345, 11, 5556, 428, 2438, 2174, 743, 6211, 14048, 9083, 12, 11423, 14895, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1658, 62, 16366, 11, 21437, 28, 14202, 11, 2746, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 24470, 9386, 351, 281, 2104, 48567, 18243, 21437, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1201, 366, 22766, 1600, 366, 24455, 1600, 3503, 11, 477, 2152, 7848, 198, 220, 220, 220, 220, 220, 220, 220, 1123, 584, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 274, 62, 16366, 796, 1658, 62, 16366, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15577, 2220, 796, 21437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 796, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 43420, 796, 6045, 628, 220, 220, 220, 825, 351, 62, 25747, 7, 944, 11, 1658, 62, 16366, 28, 14202, 11, 21437, 28, 14202, 11, 2746, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2601, 1952, 428, 42517, 893, 316, 11, 42976, 5609, 617, 7032, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48567, 17614, 20746, 7248, 7, 274, 62, 16366, 28, 274, 62, 16366, 393, 2116, 13, 274, 62, 16366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21437, 28, 15577, 2220, 393, 2116, 13, 15577, 2220, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 28, 19849, 393, 2116, 13, 19849, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2488, 26745, 628, 198, 40331, 15490, 1961, 62, 35, 6158, 62, 21389, 33586, 796, 685, 198, 220, 220, 220, 19694, 62, 35, 6158, 62, 21389, 1404, 11, 198, 220, 220, 220, 705, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 3256, 198, 220, 220, 220, 705, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 25, 4, 50, 13, 4, 69, 3256, 198, 220, 220, 220, 705, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 4, 44, 57, 3256, 220, 1303, 10655, 8913, 7824, 3128, 5794, 198, 60, 628, 198, 198, 19535, 1137, 53, 1961, 62, 10917, 19664, 62, 27082, 40834, 796, 900, 7, 17816, 32374, 3256, 705, 28968, 3256, 705, 2875, 62, 1525, 3256, 705, 80, 3256, 705, 62, 12947, 20520, 1343, 309, 1921, 9936, 47, 10008, 62, 19535, 1137, 53, 1961, 62, 18851, 62, 27082, 40834, 8, 628, 628, 198, 22766, 62, 17143, 62, 5936, 31260, 796, 685, 198, 220, 220, 220, 35118, 22973, 10786, 19875, 5907, 3256, 705, 19875, 5907, 13, 1069, 529, 33809, 198, 220, 220, 220, 35118, 22973, 10786, 19875, 5907, 13, 1069, 529, 33809, 198, 220, 220, 220, 35118, 22973, 10786, 7442, 62, 3672, 3256, 705, 3672, 3256, 15475, 28, 17821, 828, 198, 220, 220, 220, 35118, 22973, 10786, 7442, 62, 4906, 3256, 705, 4906, 3256, 15475, 28, 17821, 828, 198, 220, 220, 220, 1303, 2846, 5610, 994, 284, 2948, 11315, 286, 511, 3815, 284, 2793, 1339, 1201, 198, 220, 220, 220, 1303, 1201, 484, 389, 41497, 355, 4600, 1662, 62, 38200, 8863, 63, 287, 13380, 198, 220, 220, 220, 35118, 22973, 10786, 4906, 13, 1069, 529, 33809, 198, 220, 220, 220, 35118, 22973, 10786, 3672, 13, 1069, 529, 33809, 198, 220, 220, 220, 35118, 22973, 10786, 22615, 62, 312, 13, 1069, 529, 33809, 198, 220, 220, 220, 35118, 22973, 10786, 32057, 62, 4862, 62, 17618, 33809, 628, 220, 220, 220, 7536, 17257, 10044, 4105, 10786, 47844, 62, 261, 33809, 198, 220, 220, 220, 7536, 17257, 10044, 4105, 10786, 15388, 62, 41771, 62, 261, 33809, 198, 220, 220, 220, 7536, 17257, 10044, 4105, 10786, 4475, 62, 41771, 3256, 705, 41771, 62, 261, 33809, 198, 220, 220, 220, 7536, 17257, 10044, 4105, 10786, 15388, 62, 4475, 62, 41771, 3256, 705, 15388, 62, 41771, 62, 261, 33809, 198, 220, 220, 220, 7536, 17257, 10044, 4105, 10786, 9630, 276, 62, 261, 3256, 705, 28463, 276, 62, 265, 33809, 198, 60, 628, 198 ]
2.495305
3,834
from django.db import models
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628 ]
3.75
8
#!/usr/bin/env python # coding: utf-8 # In[69]: # In[70]: isPrime(7) # In[71]: isPrime(8) # In[72]: pno = [] # In[73]: lst = list(range(0,2500)) # In[74]: for item in lst: if isPrime(item): pno.append(item) # In[75]: print(pno) # In[76]: lst_prime_no = filter(isPrime,lst) # In[77]: print(list(lst_prime_no)) # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 3388, 5974, 628, 198, 198, 2, 554, 58, 2154, 5974, 628, 198, 271, 26405, 7, 22, 8, 628, 198, 2, 554, 58, 4869, 5974, 628, 198, 271, 26405, 7, 23, 8, 628, 198, 2, 554, 58, 4761, 5974, 628, 198, 79, 3919, 796, 17635, 628, 198, 2, 554, 58, 4790, 5974, 628, 198, 75, 301, 796, 1351, 7, 9521, 7, 15, 11, 44688, 4008, 628, 198, 2, 554, 58, 4524, 5974, 628, 198, 1640, 2378, 287, 300, 301, 25, 198, 220, 220, 220, 611, 318, 26405, 7, 9186, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 3919, 13, 33295, 7, 9186, 8, 628, 198, 2, 554, 58, 2425, 5974, 628, 198, 4798, 7, 79, 3919, 8, 628, 198, 2, 554, 58, 4304, 5974, 628, 198, 75, 301, 62, 35505, 62, 3919, 796, 8106, 7, 271, 26405, 11, 75, 301, 8, 628, 198, 2, 554, 58, 3324, 5974, 628, 198, 4798, 7, 4868, 7, 75, 301, 62, 35505, 62, 3919, 4008, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
1.917098
193
# -*- coding: utf-8 -*- from deliver.tests.test_base import BaseTest, load_msg, load_all_msg class ConverterTest(BaseTest): '''Tests for the UnicodeMessage class'''
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 5203, 13, 41989, 13, 9288, 62, 8692, 1330, 7308, 14402, 11, 3440, 62, 19662, 11, 3440, 62, 439, 62, 19662, 198, 198, 4871, 35602, 353, 14402, 7, 14881, 14402, 2599, 198, 220, 220, 220, 705, 7061, 51, 3558, 329, 262, 34371, 12837, 1398, 7061, 6, 198 ]
2.786885
61
import requests import random import os DEVELOPMENT_MODE = os.getenv("DEVELOPMENT_MODE", True) if DEVELOPMENT_MODE: # Import package multirunnable import pathlib import sys package_path = str(pathlib.Path(__file__).absolute().parent.parent.parent) sys.path.append(package_path) # multirunnable package from multirunnable import RunningMode, SimplePool, sleep, async_sleep if __name__ == '__main__': print("This is system client: ") o_pool = ExamplePool(pool_size=3, task_size=10) o_pool.main_run()
[ 11748, 7007, 198, 11748, 4738, 198, 11748, 28686, 198, 198, 7206, 18697, 3185, 10979, 62, 49058, 796, 28686, 13, 1136, 24330, 7203, 7206, 18697, 3185, 10979, 62, 49058, 1600, 6407, 8, 198, 198, 361, 5550, 18697, 3185, 10979, 62, 49058, 25, 198, 220, 220, 220, 1303, 17267, 5301, 1963, 343, 20935, 540, 198, 220, 220, 220, 1330, 3108, 8019, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 5301, 62, 6978, 796, 965, 7, 6978, 8019, 13, 15235, 7, 834, 7753, 834, 737, 48546, 22446, 8000, 13, 8000, 13, 8000, 8, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 26495, 62, 6978, 8, 198, 198, 2, 1963, 343, 20935, 540, 5301, 198, 6738, 1963, 343, 20935, 540, 1330, 18162, 19076, 11, 17427, 27201, 11, 3993, 11, 30351, 62, 42832, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 3601, 7203, 1212, 318, 1080, 5456, 25, 366, 8, 198, 220, 220, 220, 267, 62, 7742, 796, 17934, 27201, 7, 7742, 62, 7857, 28, 18, 11, 4876, 62, 7857, 28, 940, 8, 198, 220, 220, 220, 267, 62, 7742, 13, 12417, 62, 5143, 3419, 628 ]
2.765306
196
# %% import torch import torchvision import threading import time from utils import preprocess import torch.nn.functional as F import traitlets import torchvision.transforms as transforms from dataset import ImageClassificationDataset device = torch.device('cuda') TASK = 'balls' CATEGORIES = ['red_ball',' blue_ball'] DATASETS = ['A'] TRANSFORMS = transforms.Compose([ transforms.ColorJitter(0.2, 0.2, 0.2, 0.2), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) datasets = {} dataset = datasets[DATASETS[0]] path = "" # ALEXNET # model = torchvision.models.alexnet(pretrained=True) # model.classifier[-1] = torch.nn.Linear(4096, len(dataset.categories)) # SQUEEZENET # model = torchvision.models.squeezenet1_1(pretrained=True) # model.classifier[1] = torch.nn.Conv2d(512, len(dataset.categories), kernel_size=1) # model.num_classes = len(dataset.categories) # RESNET 18 model = torchvision.models.resnet18(pretrained=True) model.fc = torch.nn.Linear(512, len(dataset.categories)) # RESNET 34 # model = torchvision.models.resnet34(pretrained=True) # model.fc = torch.nn.Linear(512, len(dataset.categories)) model = model.to(device) # display(model_widget) print("model configured and model_widget created") BATCH_SIZE = 8 optimizer = torch.optim.Adam(model.parameters()) # optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) epochs_widget = 1 # display(train_eval_widget) print("trainer configured and train_eval_widget created")
[ 2, 43313, 201, 198, 11748, 28034, 201, 198, 11748, 28034, 10178, 201, 198, 11748, 4704, 278, 201, 198, 11748, 640, 201, 198, 6738, 3384, 4487, 1330, 662, 14681, 201, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 201, 198, 11748, 1291, 2578, 912, 201, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 31408, 201, 198, 6738, 27039, 1330, 7412, 9487, 2649, 27354, 292, 316, 201, 198, 201, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 11537, 201, 198, 51, 1921, 42, 796, 705, 21591, 6, 201, 198, 34, 6158, 38, 1581, 11015, 796, 37250, 445, 62, 1894, 41707, 4171, 62, 1894, 20520, 201, 198, 35, 1404, 1921, 32716, 796, 37250, 32, 20520, 201, 198, 201, 198, 5446, 15037, 13775, 5653, 796, 31408, 13, 7293, 577, 26933, 201, 198, 220, 220, 220, 31408, 13, 10258, 41, 1967, 7, 15, 13, 17, 11, 657, 13, 17, 11, 657, 13, 17, 11, 657, 13, 17, 828, 201, 198, 220, 220, 220, 31408, 13, 4965, 1096, 19510, 24137, 11, 26063, 36911, 201, 198, 220, 220, 220, 31408, 13, 2514, 51, 22854, 22784, 201, 198, 220, 220, 220, 31408, 13, 26447, 1096, 26933, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 685, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 201, 198, 12962, 201, 198, 201, 198, 201, 198, 201, 198, 19608, 292, 1039, 796, 23884, 201, 198, 19608, 292, 316, 796, 40522, 58, 35, 1404, 1921, 32716, 58, 15, 11907, 201, 198, 6978, 796, 13538, 201, 198, 2, 32318, 55, 12884, 201, 198, 2, 2746, 796, 28034, 10178, 13, 27530, 13, 1000, 87, 3262, 7, 5310, 13363, 28, 17821, 8, 201, 198, 2, 2746, 13, 4871, 7483, 58, 12, 16, 60, 796, 28034, 13, 20471, 13, 14993, 451, 7, 1821, 4846, 11, 18896, 7, 19608, 292, 316, 13, 66, 26129, 4008, 201, 198, 201, 198, 2, 45880, 6500, 57, 1677, 2767, 220, 201, 198, 2, 2746, 796, 28034, 10178, 13, 27530, 13, 16485, 1453, 4801, 316, 16, 62, 16, 7, 5310, 13363, 28, 17821, 8, 201, 198, 2, 2746, 13, 4871, 7483, 58, 16, 60, 796, 28034, 13, 20471, 13, 3103, 85, 17, 67, 7, 25836, 11, 18896, 7, 19608, 292, 316, 13, 66, 26129, 828, 9720, 62, 7857, 28, 16, 8, 201, 198, 2, 2746, 13, 22510, 62, 37724, 796, 18896, 7, 19608, 292, 316, 13, 66, 26129, 8, 201, 198, 201, 198, 2, 15731, 12884, 1248, 201, 198, 19849, 796, 28034, 10178, 13, 27530, 13, 411, 3262, 1507, 7, 5310, 13363, 28, 17821, 8, 201, 198, 19849, 13, 16072, 796, 28034, 13, 20471, 13, 14993, 451, 7, 25836, 11, 18896, 7, 19608, 292, 316, 13, 66, 26129, 4008, 201, 198, 201, 198, 2, 15731, 12884, 4974, 201, 198, 2, 2746, 796, 28034, 10178, 13, 27530, 13, 411, 3262, 2682, 7, 5310, 13363, 28, 17821, 8, 201, 198, 2, 2746, 13, 16072, 796, 28034, 13, 20471, 13, 14993, 451, 7, 25836, 11, 18896, 7, 19608, 292, 316, 13, 66, 26129, 4008, 201, 198, 220, 220, 220, 220, 201, 198, 19849, 796, 2746, 13, 1462, 7, 25202, 8, 201, 198, 201, 198, 201, 198, 201, 198, 2, 3359, 7, 19849, 62, 42655, 8, 201, 198, 4798, 7203, 19849, 17839, 290, 2746, 62, 42655, 2727, 4943, 201, 198, 201, 198, 33, 11417, 62, 33489, 796, 807, 201, 198, 201, 198, 40085, 7509, 796, 28034, 13, 40085, 13, 23159, 7, 19849, 13, 17143, 7307, 28955, 201, 198, 2, 6436, 7509, 796, 28034, 13, 40085, 13, 38475, 35, 7, 19849, 13, 17143, 7307, 22784, 300, 81, 28, 16, 68, 12, 18, 11, 12858, 28, 15, 13, 24, 8, 201, 198, 201, 198, 538, 5374, 82, 62, 42655, 796, 352, 201, 198, 201, 198, 2, 3359, 7, 27432, 62, 18206, 62, 42655, 8, 201, 198, 4798, 7203, 2213, 10613, 17839, 290, 4512, 62, 18206, 62, 42655, 2727, 4943 ]
2.53125
640
import unittest try: from mock import MagicMock except ImportError: from unittest.mock import MagicMock from pubnub.pubnub import PubNub import pubnub.enums from pubnub.endpoints.push.remove_channels_from_push import RemoveChannelsFromPush from tests.helper import pnconf, sdk_name
[ 11748, 555, 715, 395, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 15290, 1330, 6139, 44, 735, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 198, 198, 6738, 2240, 77, 549, 13, 12984, 77, 549, 1330, 8525, 45, 549, 198, 198, 11748, 2240, 77, 549, 13, 268, 5700, 198, 198, 6738, 2240, 77, 549, 13, 437, 13033, 13, 14689, 13, 28956, 62, 354, 8961, 62, 6738, 62, 14689, 1330, 17220, 1925, 8961, 4863, 49222, 198, 6738, 5254, 13, 2978, 525, 1330, 279, 77, 10414, 11, 264, 34388, 62, 3672, 628 ]
2.864078
103
rhombusD1 = float(input("Enter Rhombus First Diagonal = ")) rhombusD2 = float(input("Enter Rhombus Second Diagonal = ")) rhombusArea = calRhombusArea(rhombusD1, rhombusD2) print("The Area of a Rhombus = %.3f" %rhombusArea)
[ 198, 17179, 2381, 385, 35, 16, 796, 12178, 7, 15414, 7203, 17469, 10323, 2381, 385, 3274, 6031, 27923, 220, 796, 366, 4008, 198, 198, 17179, 2381, 385, 35, 17, 796, 12178, 7, 15414, 7203, 17469, 10323, 2381, 385, 5498, 6031, 27923, 796, 366, 4008, 198, 198, 17179, 2381, 385, 30547, 796, 2386, 38576, 2381, 385, 30547, 7, 17179, 2381, 385, 35, 16, 11, 9529, 2381, 385, 35, 17, 8, 198, 198, 4798, 7203, 464, 9498, 286, 257, 10323, 2381, 385, 796, 4064, 13, 18, 69, 1, 4064, 17179, 2381, 385, 30547, 8, 220, 198 ]
2.43617
94
import sys, subprocess import os import os.path import shutil import re import glob from optparse import OptionParser #------------------------------------------------------------------------------- # the main function # Below we deform the moving image segmentation by the current result as well as # by a previous stored result. This makes this test a regression test. # # We could instead compare with a fixed image segmentation, but that would require # the tested registrations to be relatively good, which they are not to save time. #------------------------------------------------------------------------------- if __name__ == '__main__': sys.exit(main())
[ 11748, 25064, 11, 850, 14681, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 4423, 346, 198, 11748, 302, 198, 11748, 15095, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 198, 2, 10097, 24305, 198, 2, 262, 1388, 2163, 198, 2, 10383, 356, 47577, 262, 3867, 2939, 10618, 341, 416, 262, 1459, 1255, 355, 880, 355, 198, 2, 416, 257, 2180, 8574, 1255, 13, 770, 1838, 428, 1332, 257, 20683, 1332, 13, 198, 2, 198, 2, 775, 714, 2427, 8996, 351, 257, 5969, 2939, 10618, 341, 11, 475, 326, 561, 2421, 198, 2, 262, 6789, 47997, 284, 307, 5365, 922, 11, 543, 484, 389, 407, 284, 3613, 640, 13, 198, 198, 2, 10097, 24305, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
4.890511
137
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import generator_common.common as common import utils.type_conv
[ 2, 15069, 357, 66, 8, 2177, 10184, 10501, 13, 1439, 6923, 33876, 13, 198, 2, 220, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 220, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 220, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 17301, 62, 11321, 13, 11321, 355, 2219, 198, 11748, 3384, 4487, 13, 4906, 62, 42946, 628 ]
3.813559
177
import re
[ 11748, 302, 628, 198 ]
3
4
import torch import torch import torch.nn as nn import torch.nn.functional as F def batch_cosine_fully_connected_layer(x_in, weight, scale=None, bias=None): """ Args: x_in: a 3D tensor with shape [meta_batch_size x num_examples x num_features_in] weight: a 3D tensor with shape [meta_batch_size x num_features_in x num_features_out] scale: (optional) a scalar value bias: (optional) a 1D tensor with shape [num_features_out] Returns: x_out: a 3D tensor with shape [meta_batch_size x num_examples x num_features_out] """ assert(x_in.dim() == 3) assert(weight.dim() == 3) assert(x_in.size(0) == weight.size(0)) assert(x_in.size(2) == weight.size(1)) x_in = F.normalize(x_in, p=2, dim=2, eps=1e-12) weight = F.normalize(weight, p=2, dim=1, eps=1e-12) x_out = torch.bmm(x_in, weight) if scale is not None: x_out = x_out * scale if bias is not None: x_out = x_out + bias return x_out
[ 11748, 28034, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 628, 198, 4299, 15458, 62, 6966, 500, 62, 2759, 62, 15236, 62, 29289, 7, 87, 62, 259, 11, 3463, 11, 5046, 28, 14202, 11, 10690, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 259, 25, 257, 513, 35, 11192, 273, 351, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 28961, 62, 43501, 62, 7857, 2124, 997, 62, 1069, 12629, 2124, 997, 62, 40890, 62, 259, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3463, 25, 257, 513, 35, 11192, 273, 351, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 28961, 62, 43501, 62, 7857, 2124, 997, 62, 40890, 62, 259, 2124, 997, 62, 40890, 62, 448, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 25, 357, 25968, 8, 257, 16578, 283, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 10690, 25, 357, 25968, 8, 257, 352, 35, 11192, 273, 351, 5485, 685, 22510, 62, 40890, 62, 448, 60, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 448, 25, 257, 513, 35, 11192, 273, 351, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 28961, 62, 43501, 62, 7857, 2124, 997, 62, 1069, 12629, 2124, 997, 62, 40890, 62, 448, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 6818, 7, 87, 62, 259, 13, 27740, 3419, 6624, 513, 8, 198, 220, 220, 220, 6818, 7, 6551, 13, 27740, 3419, 6624, 513, 8, 198, 220, 220, 220, 6818, 7, 87, 62, 259, 13, 7857, 7, 15, 8, 6624, 3463, 13, 7857, 7, 15, 4008, 198, 220, 220, 220, 6818, 7, 87, 62, 259, 13, 7857, 7, 17, 8, 6624, 3463, 13, 7857, 7, 16, 4008, 628, 220, 220, 220, 2124, 62, 259, 796, 376, 13, 11265, 1096, 7, 87, 62, 259, 11, 279, 28, 17, 11, 5391, 28, 17, 11, 304, 862, 28, 16, 68, 12, 1065, 8, 198, 220, 220, 220, 3463, 796, 376, 13, 11265, 1096, 7, 6551, 11, 279, 28, 17, 11, 5391, 28, 16, 11, 304, 862, 28, 16, 68, 12, 1065, 8, 628, 220, 220, 220, 2124, 62, 448, 796, 28034, 13, 65, 3020, 7, 87, 62, 259, 11, 3463, 8, 628, 220, 220, 220, 611, 5046, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 448, 796, 2124, 62, 448, 1635, 5046, 628, 220, 220, 220, 611, 10690, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 448, 796, 2124, 62, 448, 1343, 10690, 628, 220, 220, 220, 1441, 2124, 62, 448, 628, 628 ]
2.173278
479
# !/usr/bin/env python # -*- coding:utf-8 -*- import ctypes from ctypes import * import os import numpy as np import time JPGENC_FORMAT_NV12 = 0x10
[ 2, 5145, 14, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 220, 220, 198, 198, 11748, 269, 19199, 198, 6738, 269, 19199, 1330, 1635, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 198, 41, 6968, 24181, 62, 21389, 1404, 62, 27159, 1065, 796, 657, 87, 940, 198 ]
2.412698
63
# 보석 쇼핑 if __name__ == "__main__": gems = ["DIA", "RUBY", "RUBY", "DIA", "DIA", "EMERALD", "SAPPHIRE", "DIA"] print(solution(gems))
[ 2, 31619, 111, 112, 168, 226, 251, 23821, 229, 120, 47991, 239, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 23685, 796, 14631, 35, 3539, 1600, 366, 49, 10526, 56, 1600, 366, 49, 10526, 56, 1600, 366, 35, 3539, 1600, 366, 35, 3539, 1600, 366, 3620, 27130, 35, 1600, 366, 50, 2969, 11909, 41736, 1600, 366, 35, 3539, 8973, 198, 220, 220, 220, 3601, 7, 82, 2122, 7, 70, 5232, 4008, 198 ]
1.765432
81
import pygame import numpy as np from Source import UI_functions as UI from Source import battleships_functions_bot as bfb from Source import battleships_functions_check as bfc
[ 11748, 12972, 6057, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 8090, 1330, 12454, 62, 12543, 2733, 355, 12454, 198, 6738, 8090, 1330, 10181, 5748, 62, 12543, 2733, 62, 13645, 355, 275, 21855, 198, 6738, 8090, 1330, 10181, 5748, 62, 12543, 2733, 62, 9122, 355, 275, 16072 ]
3.744681
47
# -*- coding: utf-8 -*- """ Created on Sat Jul 30 15:20:09 2016 @author: hjalmar """ import tensorflow as tf from ht_helper import HeSD, angle2class, FrameStepper, class2angle, whiten from ht_helper import anglediff, get_max_gaze_line, CountdownPrinter from ht_helper import angles2complex, complex2angles, softmax, get_error from data_preparation import read_log_data import numpy as np import re import os from scipy.misc import imresize from glob import glob import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.animation as manimation class TrainModel: """ """ def get_inputs(self, fname, Nepoch, Nex_per_epoch, train=False, batch_sz=None): """ Nex_per_epoch - Ntrain or Nvalid: number_of_examples_per_epoch """ if not os.path.isfile(fname): raise FileNotFoundError('Failed to find file: %s' % fname) if batch_sz is None: batch_sz = self.batch_sz with tf.name_scope('input'): fname_queue = tf.train.string_input_producer( [fname], num_epochs=Nepoch) # Even when reading in multiple threads, share the filename # queue. im, angle, angle_ok, pos_x, pos_y = self._read_and_decode(fname_queue) if train: # Distort im im = self._distort_inputs(im) n_threads = 8 else: n_threads = 4 # Subtract off the mean and divide by the variance of the pixels. im = tf.image.per_image_whitening(im) # Shuffle the examples and collect them into batch_sz batches. # (Internally uses a RandomShuffleQueue.) # We run this in two threads to avoid being a bottleneck. # Ensures a minimum amount of shuffling of examples. min_queue_examples = int(Nex_per_epoch * 0.4) capacity = min_queue_examples + 3 * batch_sz im, angle, angle_ok, pos_x, pos_y = tf.train.shuffle_batch([im, angle, angle_ok, pos_x, pos_y], batch_size=batch_sz, num_threads=n_threads, capacity=capacity, min_after_dequeue=min_queue_examples) return im, angle, angle_ok, pos_x, pos_y def _distort_inputs(self, im): """ Don't flip orientation images """ im = tf.image.random_brightness(im, max_delta=63) im = tf.image.random_contrast(im, lower=0.2, upper=1.8) return im def train(self, Nepoch, lmbda=5e-4): """ """ model_fname = os.path.join(self.model_dir, 'CAM') train_fname = os.path.join(self.data_dir, 'train_CAM_N*.tfrecords') valid_fname = os.path.join(self.data_dir, 'dev_CAM_N*.tfrecords') train_fname = glob(train_fname) if not len(train_fname) == 1: raise ValueError('Something wrong with the file name of the training data.') else: train_fname = train_fname[0] valid_fname = glob(valid_fname) if not len(valid_fname) == 1: raise ValueError('Something wrong with the file name of the validation data.') else: valid_fname = valid_fname[0] batch_sz = self.batch_sz Nvalid = int(re.search(r'[\d]{4,6}', valid_fname.split('/')[-1]).group()) Ntrain = int(re.search(r'[\d]{4,6}', train_fname.split('/')[-1]).group()) Nbatch_per_epoch = Ntrain // batch_sz #Nbatch = Nbatch_per_epoch * Nepoch valid_batch_sz = 50 learning_rate = 1e-4 valid_X, valid_y = [], [] model = Model(Nclass=self.Nclass, im_w=self.im_w, im_h=self.im_h, lmbda=lmbda) print('Starting training for %d epochs.' % Nepoch) with model.graph.as_default(): # Input images and labels. images, angles, angles_ok, _, _ = self.get_inputs(train_fname, Nepoch, Ntrain, train=True) valid_images, valid_angles, valid_angles_ok, _, _ = self.get_inputs(valid_fname, 1, Nvalid, train=False, batch_sz=valid_batch_sz) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(model.loss) with tf.Session(graph=model.graph) as session: session.run(tf.initialize_all_variables()) session.run(tf.initialize_local_variables()) # Start input enqueue threads coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=session, coord=coord) validation_accuracy = [] train_accuracy = [] print('%s\n step | loss | acc | epoch \n%s' % ('='*30, '='*30)) step, epoch = 0, 0 while (epoch < Nepoch) and not coord.should_stop(): step += 1 # Train X, theta, theta_ok = session.run([images, angles, angles_ok]) y = angle2class(theta, self.Nclass, angles_ok=theta_ok, units='deg') optimizer.run(feed_dict={model.X: X, model.y_: y}) if (step % Nbatch_per_epoch == 0): l, acc = session.run([model.loss, model.accuracy], feed_dict={model.X: X, model.y_: y}) epoch += 1 print(' %-5d| %-6.3f| %-6.2f| %-5d' % (step, l, acc, epoch)) if (epoch % 10 == 0) or (epoch == Nepoch): v_acc, i = 0.0, 0 if len(valid_y) < 1: load_valid = True else: load_valid = False while i < (Nvalid // valid_batch_sz): if load_valid: X, theta, theta_ok = session.run([valid_images, valid_angles, valid_angles_ok]) y = angle2class(theta, self.Nclass, angles_ok=theta_ok, units='deg') valid_X.append(X) valid_y.append(y) feed_dict = {model.X: valid_X[i], model.y_: valid_y[i]} v_acc += model.accuracy.eval(feed_dict=feed_dict) i += 1 validation_accuracy.append(v_acc/i) train_accuracy.append(np.mean(acc)) model.saver.save(session, ('%s_Nclass%d_acc%1.1f_%d.ckpt' % (model_fname, self.Nclass, validation_accuracy[-1], epoch))) print('Done training for %d epochs, %d steps.' % (epoch, step-1)) # Ask threads to stop coord.request_stop() # Wait for threads to finish. coord.join(threads) session.close() print('Training accuracy:', train_accuracy) print('Validation accuracy:', validation_accuracy) return validation_accuracy, train_accuracy class HeadTracker: """ """ def track2video(self, in_fname, out_fname, log_fname=None, t_start=0.0, t_end=-1, dur=None, verbose=True): """ t_start : only used if no log_fname is provided t_end : only used if no log_fname is provided dur : only used if no log_fname is provided """ if not tf.gfile.Exists(in_fname): raise ValueError('Failed to find file: %s' % in_fname) fst = FrameStepper(in_fname) fps = int(round(1/fst.dt)) FFMpegWriter = manimation.writers['ffmpeg'] ttl = 'Head position tracking from video %s.' % in_fname.split('/')[-1] metadata = dict(title=ttl, artist='Matplotlib', comment='more info...') # TODO! writer = FFMpegWriter(fps=fps, metadata=metadata, bitrate=20000, codec=None) # TODO: set a good codec dpi = 96 figsize = (fst.frame.shape[1]/dpi, fst.frame.shape[0]/dpi) fig = plt.figure(figsize=figsize, dpi=dpi) # TODO dpi depends on the monitor used, remove this dependence # see: http://stackoverflow.com/questions/13714454/specifying-and-saving-a-figure-with-exact-size-in-pixels if t_start < 0: raise ValueError('t_start cannot be less than 0.0 (beginning of the video).') if t_end < 0: t_end = fst.duration if not dur is None: t_end = min(t_end, t_start + dur) if t_end > fst.duration: raise ValueError('t_end cannot be later %1.3f (time of the last frame)' % fst.duration) if not log_fname is None: if not tf.gfile.Exists(log_fname): raise ValueError('Failed to find file: %s' % log_fname) else: log_data, log_header = read_log_data(log_fname) Nframe = len(log_data) if verbose: # Counter printed on command line cdp = CountdownPrinter(Nframe) with writer.saving(fig, out_fname, dpi): for i, dat in enumerate(log_data): if verbose: cdp.print(i) fst.read_t(dat['frame_time']) true_pos = {'x': dat['center_x'], 'y': dat['center_y']} if dat['angle_ok']: true_angle = (180 * (dat['angle'] / np.pi)).round() else: true_angle = None self.plot(fst.frame, true_pos=true_pos, true_angle=true_angle, fig=fig, verbose=False) writer.grab_frame() fig.clf() else: Nframe = int(np.ceil((t_end - t_start) / fst.dt)) if verbose: # Counter printed on command line cdp = CountdownPrinter(Nframe) with writer.saving(fig, out_fname, dpi): ok = fst.read_t(t_start) i = 0 while (fst.t < t_end) and ok: if verbose: cdp.print(i) self.plot(fst.frame, true_pos=None, fig=fig, verbose=False) writer.grab_frame() fig.clf() ok = fst.next() i += ok fst.close() def track2fig(self, in_fname, out_fname, log_data, verbose=True): """ """ if not tf.gfile.Exists(in_fname): raise ValueError('Failed to find file: %s' % in_fname) fst = FrameStepper(in_fname) #figsize=figsize, dpi=dpi fig = plt.figure() Nframe = len(log_data) if verbose: # Counter printed on command line cdp = CountdownPrinter(Nframe) for i, dat in enumerate(log_data): if verbose: cdp.print(i) print(i, dat['frame_time']) fst.read_t(dat['frame_time']) true_pos = {'x': dat['center_x'], 'y': dat['center_y']} if dat['angle_ok']: true_angle = (180 * (dat['angle'] / np.pi)).round() else: true_angle = None self.plot(fst.frame, true_pos=true_pos, true_angle=true_angle, fig=fig, verbose=False) fig.savefig('%s_%03d.svg' % (out_fname, i)) fig.savefig('%s_%03d.png' % (out_fname, i)) fig.clf() fst.close() def track(self, video_fname, t_start=0.0, t_end=-1, dur=None, verbose=True): """ """ if not tf.gfile.Exists(video_fname): raise ValueError('Failed to find file: %s' % video_fname) fst = FrameStepper(video_fname) if t_start < 0: raise ValueError('t_start cannot be less than 0.0 (beginning of the video).') if t_end < 0: t_end = fst.duration if not dur is None: t_end = min(t_end, t_start + dur) if t_end > fst.duration: raise ValueError('t_end cannot be later %1.3f (time of the last frame)' % fst.duration) Nframe = int(np.ceil((t_end - t_start) / fst.dt)) if verbose: cdp = CountdownPrinter(Nframe) est_track = np.recarray(shape=Nframe+1, dtype=[('t', float), ('x', float), ('y', float), ('angle', float), ('angle_w', float)]) i = 0 ok = fst.read_t(t_start) while (fst.t < t_end) and ok: if verbose: cdp.print(i) x, y, angle, angle_w, _ = self.predict(fst.frame, verbose=False) est_track[i].x = x est_track[i].y = y est_track[i].angle = angle est_track[i].angle_w = angle_w est_track[i].t = fst.t ok = fst.next() i += ok est_track = est_track[:i] fst.close() return est_track def test_track(self, log_fname, video_dir, Nframe=None): """ Nframe : number of frames to predict. Default all frames in the log file. """ verbose=False log_data, log_header = read_log_data(log_fname) if Nframe is None: Nframe = len(log_data) - 1 if Nframe >= len(log_data): raise ValueError('Nframes cannot be greater than the number of frames in the log file.') #video_fname = '%s/%s' % (video_dir.rstrip('/'), log_header['video_fname']) video_fname = os.path.join(video_dir.rstrip('/'), log_header['video_fname']) video_fname = glob(video_fname)[0] fst = FrameStepper(video_fname) est_track = np.recarray(shape=Nframe, dtype=[('t', float), ('x', float), ('y', float), ('angle', float), ('angle_w', float)]) true_track = np.recarray(shape=Nframe, dtype=[('t', float), ('x', float), ('y', float), ('angle', float)]) if verbose: cdp = CountdownPrinter(Nframe) for i, dat in enumerate(log_data[:Nframe]): if verbose: cdp.print(i) # Read the frame fst.read_t(dat['frame_time']) # Time of frame true_track[i].t = fst.t est_track[i].t = fst.t # True head position true_track[i].x = dat['center_x'] true_track[i].y = dat['center_y'] # True head orientation if not dat['angle_ok']: true_track[i].angle = np.nan else: true_track[i].angle = 180. * (dat['angle'] / np.pi) # Estimated head position and orientation x, y, angle, angle_w, _ = self.predict(fst.frame, verbose=verbose) est_track[i].x = x est_track[i].y = y est_track[i].angle = angle est_track[i].angle_w = angle_w fst.close() error, error_desrc = get_error(est_track, true_track) return est_track, true_track, error, error_desrc def predict(self, frame, verbose=True): """ Frame by frame x, y -- in frame coordinates """ self.restore_model(verbose=verbose) if frame.ndim == 3: frame = frame.mean(axis=2) rescale = False if frame.shape[0] == 480 and frame.shape[1] == 640: im = imresize(frame, self.im_scale) rescale = True elif frame.shape[0] == self.im_h and frame.shape[1] == self.im_w: im = frame else: raise ValueError('Some odd differences btw frame.shape and' ' self.im_w/im_w. FIX this.') # Reshape and whiten the image im = whiten(im.astype(float)).reshape((1, self.im_h, self.im_w, 1)) p = softmax(self.model.logits.eval(session=self.model.session, feed_dict={self.model.X: im})) label = p.argmax() angles = class2angle(np.arange(self.Nclass-1), self.Nclass-1) # Use the Softmax output, p, as weights for a weighted average. p = (p[0, :-1] / p[0, :-1].sum()).flatten() z_w = (angles2complex(angles) * p).sum() angle_w = complex2angles(z_w) if (label == (self.Nclass - 1)): # head orientation is the horiz plane not visible. angle = np.nan angle_w = np.nan else: angle = angles[label] cam = self.model.cam.eval(session=self.model.session, feed_dict={self.model.X: im, self.model.y_: label}) # rescale cam to the same size as frame if rescale: cam = imresize(cam.reshape((self.im_h, self.im_w)), 1/self.im_scale) else: cam = cam.reshape((self.im_h, self.im_w)) y, x = np.unravel_index(cam.argmax(), cam.shape) return x, y, angle, angle_w, cam def restore_model(self, verbose=True): """ """ if hasattr(self, 'model'): msg = ('Model %s already restored.' % self.model.fname.split('/')[-1]) else: model = Model(Nclass=self.Nclass, im_w=self.im_w, im_h=self.im_h) model_fn = os.path.join(self.model_dir, 'CAM_Nclass%d_acc*.ckpt' % self.Nclass) #model_fn = '%s/CAM_Nclass%d_acc*.ckpt' % (self.model_dir, self.Nclass) model_fn = glob(model_fn) model_fn.sort() if model_fn[-1].endswith('meta'): model.fname = model_fn[-1].rstrip('.meta') else: model.fname = model_fn[-1] # Following rlrs's comment on: # https://github.com/tensorflow/tensorflow/issues/1325 # seems to be neccesary for getting access to the GAP weights model_fn_meta = glob('%s.meta' % model.fname)[0] saved = tf.train.import_meta_graph(model_fn_meta) model.session = tf.Session(graph=model.graph) saved.restore(model.session, model.fname) # Restore variables from disk. #model.saver.restore(model.session, model.fname) self.model = model msg = ('Model %s restored.' % model.fname.split('/')[-1]) if verbose: print(msg) def plot(self, frame, true_pos=None, true_angle=None, fname=None, fig=None, verbose=False): """ """ x, y, angle, angle_w, cam = self.predict(frame, verbose=verbose) if fig is None: fig = plt.figure(frameon=False) ax = fig.add_axes([0, 0, 1, 1]) ax.imshow(frame) im_h, im_w = frame.shape[:2] plt.hold(True) ax.imshow(cam, cmap=plt.cm.jet, alpha=0.3, interpolation='bilinear') if not np.isnan(angle): ax.plot(x, y, 'o', ms=5, mec=[1, 0.6, 0.3], mfc='none', mew=1) ax.plot(x, y, 'o', ms=20, mec=[1, 0.6, 0.3], mfc='none', mew=1) x1, y1 = get_max_gaze_line(angle, x, y, im_w, im_h, units='deg') ax.plot([x, x1], [y, y1], '-', color=[1, 0.6, 0.2], lw=2, label='argmax') x1, y1 = get_max_gaze_line(angle_w, x, y, im_w, im_h, units='deg') ax.plot([x, x1], [y, y1], '-', color=[1, 0.3, 0.0], lw=2, label='weighted') else: ax.plot(x, y, 'o', ms=20, mfc='w', mec='w', lw=2) if not true_pos is None: # Maximum possible error given x, y max_xerr, max_yerr = max(x, im_w-x), max(y, im_h-y) max_err = np.sqrt(max_xerr**2 + max_yerr**2) error = im_h * np.sqrt((x - true_pos['x'])**2 + (y - true_pos['y'])**2) / max_err # Note that x,y gets replaced so that true_angle will be drawn # starting at true_pos instead of predicted pos. x, y = true_pos['x'], true_pos['y'] ax.plot(x, y, 'o', ms=5, mec='g', mfc='none', mew=1) ax.plot(x, y, 'o', ms=20, mec='g', mfc='none', mew=1) # draw position error as a bar to the right ax.plot([im_w-4, im_w-4], [0, error], '-', c='r', lw=4) if not true_angle is None: x1, y1 = get_max_gaze_line(true_angle, x, y, im_w, im_h, units='deg') ax.plot([x, x1], [y, y1], '-', color=[.3, 1., 0.], lw=2, label='True') error_w = im_h * np.abs(anglediff(true_angle, angle_w, 'deg')) / 180 error = im_h * np.abs(anglediff(true_angle, angle, 'deg')) / 180 # Draw orientation error as a bar to the left ax.plot([4, 4], [0, error], '-', c=[1, .6, .2], lw=4) ax.plot([11, 11], [0, error_w], '-', c=[1, .3, 0.], lw=4) ax.set_xlim([0, im_w]) ax.set_ylim([0, im_h]) ax.set_xticks([]) ax.set_yticks([]) #ax.legend() if not fname is None: fig.savefig(fname) plt.close(fig) def close(self): """ """ if hasattr(self, 'model'): if hasattr(self.model, 'session'): self.model.session.close()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 7031, 5979, 1542, 1315, 25, 1238, 25, 2931, 1584, 198, 198, 31, 9800, 25, 289, 73, 282, 3876, 198, 37811, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 289, 83, 62, 2978, 525, 1330, 679, 10305, 11, 9848, 17, 4871, 11, 25184, 7447, 2848, 11, 1398, 17, 9248, 11, 20542, 268, 198, 6738, 289, 83, 62, 2978, 525, 1330, 48719, 733, 11, 651, 62, 9806, 62, 70, 6201, 62, 1370, 11, 47555, 6836, 3849, 198, 6738, 289, 83, 62, 2978, 525, 1330, 18333, 17, 41887, 11, 3716, 17, 27787, 11, 2705, 9806, 11, 651, 62, 18224, 198, 6738, 1366, 62, 3866, 1845, 341, 1330, 1100, 62, 6404, 62, 7890, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 302, 198, 11748, 28686, 198, 6738, 629, 541, 88, 13, 44374, 1330, 545, 411, 1096, 198, 6738, 15095, 1330, 15095, 198, 11748, 2603, 29487, 8019, 198, 6759, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 11227, 341, 355, 582, 18991, 628, 198, 4871, 16835, 17633, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 651, 62, 15414, 82, 7, 944, 11, 277, 3672, 11, 15310, 5374, 11, 14786, 62, 525, 62, 538, 5374, 11, 4512, 28, 25101, 11, 15458, 62, 82, 89, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14786, 62, 525, 62, 538, 5374, 220, 532, 399, 27432, 393, 399, 12102, 25, 1271, 62, 1659, 62, 1069, 12629, 62, 525, 62, 538, 5374, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 9220, 3673, 21077, 12331, 10786, 37, 6255, 284, 1064, 2393, 25, 4064, 82, 6, 4064, 277, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15458, 62, 82, 89, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 82, 89, 796, 2116, 13, 43501, 62, 82, 89, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 3672, 62, 29982, 10786, 15414, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 62, 36560, 796, 48700, 13, 27432, 13, 8841, 62, 15414, 62, 18230, 2189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 69, 3672, 4357, 997, 62, 538, 5374, 82, 28, 45, 538, 5374, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3412, 618, 3555, 287, 3294, 14390, 11, 2648, 262, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16834, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 11, 9848, 11, 9848, 62, 482, 11, 1426, 62, 87, 11, 1426, 62, 88, 796, 2116, 13557, 961, 62, 392, 62, 12501, 1098, 7, 69, 3672, 62, 36560, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4307, 419, 545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 2116, 13557, 17080, 419, 62, 15414, 82, 7, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16663, 82, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 16663, 82, 796, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3834, 83, 974, 572, 262, 1612, 290, 14083, 416, 262, 24198, 286, 262, 17848, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 48700, 13, 9060, 13, 525, 62, 9060, 62, 1929, 270, 3101, 7, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 911, 18137, 262, 6096, 290, 2824, 606, 656, 15458, 62, 82, 89, 37830, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 15865, 453, 3544, 257, 14534, 2484, 18137, 34991, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1057, 428, 287, 734, 14390, 284, 3368, 852, 257, 49936, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48221, 942, 257, 5288, 2033, 286, 32299, 1359, 286, 6096, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 36560, 62, 1069, 12629, 796, 493, 7, 45, 1069, 62, 525, 62, 538, 5374, 1635, 657, 13, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 796, 949, 62, 36560, 62, 1069, 12629, 1343, 513, 1635, 15458, 62, 82, 89, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 11, 9848, 11, 9848, 62, 482, 11, 1426, 62, 87, 11, 1426, 62, 88, 796, 48700, 13, 27432, 13, 1477, 18137, 62, 43501, 26933, 320, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 62, 482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 88, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 43501, 62, 82, 89, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16663, 82, 28, 77, 62, 16663, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5339, 28, 42404, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 8499, 62, 2934, 36560, 28, 1084, 62, 36560, 62, 1069, 12629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 545, 11, 9848, 11, 9848, 62, 482, 11, 1426, 62, 87, 11, 1426, 62, 88, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 17080, 419, 62, 15414, 82, 7, 944, 11, 220, 545, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2094, 470, 14283, 12852, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 48700, 13, 9060, 13, 25120, 62, 29199, 1108, 7, 320, 11, 3509, 62, 67, 12514, 28, 5066, 8, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 48700, 13, 9060, 13, 25120, 62, 3642, 5685, 7, 320, 11, 2793, 28, 15, 13, 17, 11, 6727, 28, 16, 13, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 545, 628, 198, 220, 220, 220, 825, 4512, 7, 944, 11, 15310, 5374, 11, 300, 2022, 6814, 28, 20, 68, 12, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 69, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 19849, 62, 15908, 11, 705, 34, 2390, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 69, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 7890, 62, 15908, 11, 705, 27432, 62, 34, 2390, 62, 45, 24620, 27110, 8344, 3669, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 69, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 7890, 62, 15908, 11, 705, 7959, 62, 34, 2390, 62, 45, 24620, 27110, 8344, 3669, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 69, 3672, 796, 15095, 7, 27432, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 27432, 62, 69, 3672, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 22210, 2642, 351, 262, 2393, 1438, 286, 262, 3047, 1366, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 69, 3672, 796, 4512, 62, 69, 3672, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 69, 3672, 796, 15095, 7, 12102, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 12102, 62, 69, 3672, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 22210, 2642, 351, 262, 2393, 1438, 286, 262, 21201, 1366, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 69, 3672, 796, 4938, 62, 69, 3672, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 82, 89, 796, 2116, 13, 43501, 62, 82, 89, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 399, 12102, 796, 493, 7, 260, 13, 12947, 7, 81, 6, 58, 59, 67, 60, 90, 19, 11, 21, 92, 3256, 4938, 62, 69, 3672, 13, 35312, 10786, 14, 11537, 58, 12, 16, 35944, 8094, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 399, 27432, 796, 493, 7, 260, 13, 12947, 7, 81, 6, 58, 59, 67, 60, 90, 19, 11, 21, 92, 3256, 4512, 62, 69, 3672, 13, 35312, 10786, 14, 11537, 58, 12, 16, 35944, 8094, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 399, 43501, 62, 525, 62, 538, 5374, 796, 399, 27432, 3373, 15458, 62, 82, 89, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45, 43501, 796, 399, 43501, 62, 525, 62, 538, 5374, 1635, 15310, 5374, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 43501, 62, 82, 89, 796, 2026, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4673, 62, 4873, 796, 352, 68, 12, 19, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 55, 11, 220, 4938, 62, 88, 796, 685, 4357, 220, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 9104, 7, 45, 4871, 28, 944, 13, 45, 4871, 11, 545, 62, 86, 28, 944, 13, 320, 62, 86, 11, 545, 62, 71, 28, 944, 13, 320, 62, 71, 11, 300, 2022, 6814, 28, 75, 2022, 6814, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 22851, 3047, 329, 4064, 67, 36835, 82, 2637, 4064, 15310, 5374, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 2746, 13, 34960, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23412, 4263, 290, 14722, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 11, 18333, 11, 18333, 62, 482, 11, 4808, 11, 4808, 796, 2116, 13, 1136, 62, 15414, 82, 7, 27432, 62, 69, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15310, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 27432, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 17566, 11, 4938, 62, 27787, 11, 4938, 62, 27787, 62, 482, 11, 4808, 11, 4808, 796, 2116, 13, 1136, 62, 15414, 82, 7, 12102, 62, 69, 3672, 11, 352, 11, 399, 12102, 11, 4512, 28, 25101, 11, 15458, 62, 82, 89, 28, 12102, 62, 43501, 62, 82, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 796, 48700, 13, 27432, 13, 23159, 27871, 320, 7509, 7, 40684, 62, 4873, 737, 1084, 48439, 7, 19849, 13, 22462, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 36044, 7, 34960, 28, 19849, 13, 34960, 8, 355, 6246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 5143, 7, 27110, 13, 36733, 1096, 62, 439, 62, 25641, 2977, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 5143, 7, 27110, 13, 36733, 1096, 62, 12001, 62, 25641, 2977, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7253, 5128, 551, 36560, 14390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 796, 48700, 13, 27432, 13, 7222, 585, 20900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14390, 796, 48700, 13, 27432, 13, 9688, 62, 36560, 62, 36740, 7, 82, 408, 28, 29891, 11, 220, 6349, 28, 37652, 8, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 4134, 23843, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 4134, 23843, 796, 17635, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4, 82, 59, 77, 2239, 930, 220, 2994, 930, 220, 697, 220, 930, 36835, 3467, 77, 4, 82, 6, 4064, 19203, 11639, 9, 1270, 11, 705, 11639, 9, 1270, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 11, 36835, 220, 796, 657, 11, 220, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 357, 538, 5374, 1279, 15310, 5374, 8, 290, 407, 6349, 13, 21754, 62, 11338, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 220, 262, 8326, 11, 262, 8326, 62, 482, 796, 6246, 13, 5143, 26933, 17566, 11, 18333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18333, 62, 482, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 9848, 17, 4871, 7, 1169, 8326, 11, 2116, 13, 45, 4871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18333, 62, 482, 28, 1169, 8326, 62, 482, 11, 4991, 11639, 13500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 5143, 7, 12363, 62, 11600, 34758, 19849, 13, 55, 25, 1395, 11, 2746, 13, 88, 62, 25, 331, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 9662, 4064, 399, 43501, 62, 525, 62, 538, 5374, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 11, 697, 796, 6246, 13, 5143, 26933, 19849, 13, 22462, 11, 2746, 13, 4134, 23843, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 34758, 19849, 13, 55, 25, 1395, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 88, 62, 25, 331, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 4064, 12, 20, 67, 91, 4064, 12, 21, 13, 18, 69, 91, 4064, 12, 21, 13, 17, 69, 91, 4064, 12, 20, 67, 6, 4064, 357, 9662, 11, 300, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 697, 11, 36835, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 538, 5374, 4064, 838, 6624, 657, 8, 393, 357, 538, 5374, 6624, 15310, 5374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 4134, 11, 220, 1312, 796, 657, 13, 15, 11, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 12102, 62, 88, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 12102, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 12102, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1312, 1279, 357, 45, 12102, 3373, 4938, 62, 43501, 62, 82, 89, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3440, 62, 12102, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 220, 262, 8326, 11, 262, 8326, 62, 482, 796, 6246, 13, 5143, 26933, 12102, 62, 17566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 27787, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 27787, 62, 482, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 9848, 17, 4871, 7, 1169, 8326, 11, 2116, 13, 45, 4871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18333, 62, 482, 28, 1169, 8326, 62, 482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 11639, 13500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 55, 13, 33295, 7, 55, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 88, 13, 33295, 7, 88, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 1391, 19849, 13, 55, 25, 4938, 62, 55, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 88, 62, 25, 4938, 62, 88, 58, 72, 48999, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 4134, 15853, 2746, 13, 4134, 23843, 13, 18206, 7, 12363, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 4134, 23843, 13, 33295, 7, 85, 62, 4134, 14, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 4134, 23843, 13, 33295, 7, 37659, 13, 32604, 7, 4134, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 82, 8770, 13, 21928, 7, 29891, 11, 19203, 4, 82, 62, 45, 4871, 4, 67, 62, 4134, 4, 16, 13, 16, 69, 62, 4, 67, 13, 694, 457, 6, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 19849, 62, 69, 3672, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45, 4871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 4134, 23843, 58, 12, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 45677, 3047, 329, 4064, 67, 36835, 82, 11, 4064, 67, 4831, 2637, 4064, 357, 538, 5374, 11, 2239, 12, 16, 4008, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16981, 14390, 284, 2245, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 13, 25927, 62, 11338, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 329, 14390, 284, 5461, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 13, 22179, 7, 16663, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 19836, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 44357, 9922, 25, 3256, 220, 4512, 62, 4134, 23843, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 7762, 24765, 9922, 25, 3256, 220, 21201, 62, 4134, 23843, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21201, 62, 4134, 23843, 11, 4512, 62, 4134, 23843, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4871, 7123, 35694, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2610, 17, 15588, 7, 944, 11, 287, 62, 69, 3672, 11, 503, 62, 69, 3672, 11, 2604, 62, 69, 3672, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 9688, 28, 15, 13, 15, 11, 256, 62, 437, 10779, 16, 11, 22365, 28, 14202, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 256, 62, 9688, 220, 1058, 691, 973, 611, 645, 2604, 62, 69, 3672, 318, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 220, 1058, 691, 973, 611, 645, 2604, 62, 69, 3672, 318, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 22365, 220, 1058, 691, 973, 611, 645, 2604, 62, 69, 3672, 318, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 259, 62, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 37, 6255, 284, 1064, 2393, 25, 4064, 82, 6, 4064, 287, 62, 69, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 277, 301, 796, 25184, 7447, 2848, 7, 259, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32977, 796, 493, 7, 744, 7, 16, 14, 69, 301, 13, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 18402, 44, 22071, 34379, 796, 582, 18991, 13, 34422, 17816, 487, 43913, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 256, 28781, 796, 705, 13847, 2292, 9646, 422, 2008, 4064, 82, 2637, 220, 4064, 287, 62, 69, 3672, 13, 35312, 10786, 14, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 796, 8633, 7, 7839, 28, 926, 75, 11, 6802, 11639, 19044, 29487, 8019, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2912, 11639, 3549, 7508, 986, 11537, 220, 1303, 16926, 46, 0, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 18402, 44, 22071, 34379, 7, 29647, 28, 29647, 11, 20150, 28, 38993, 11, 1643, 4873, 28, 2167, 405, 11, 40481, 28, 14202, 8, 220, 1303, 16926, 46, 25, 900, 257, 922, 40481, 198, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 796, 9907, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 7857, 796, 357, 69, 301, 13, 14535, 13, 43358, 58, 16, 60, 14, 67, 14415, 11, 277, 301, 13, 14535, 13, 43358, 58, 15, 60, 14, 67, 14415, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 28, 5647, 7857, 11, 288, 14415, 28, 67, 14415, 8, 220, 1303, 16926, 46, 288, 14415, 8338, 319, 262, 5671, 973, 11, 4781, 428, 21403, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 766, 25, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 19708, 1415, 34229, 14, 16684, 4035, 12, 392, 12, 29336, 12, 64, 12, 26875, 12, 4480, 12, 1069, 529, 12, 7857, 12, 259, 12, 79, 14810, 220, 628, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 9688, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 83, 62, 9688, 2314, 307, 1342, 621, 657, 13, 15, 357, 27471, 768, 286, 262, 2008, 737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 437, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 796, 277, 301, 13, 32257, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 22365, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 796, 949, 7, 83, 62, 437, 11, 220, 256, 62, 9688, 1343, 22365, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 437, 1875, 277, 301, 13, 32257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 83, 62, 437, 2314, 307, 1568, 4064, 16, 13, 18, 69, 357, 2435, 286, 262, 938, 5739, 33047, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 32257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2604, 62, 69, 3672, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 6404, 62, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 37, 6255, 284, 1064, 2393, 25, 4064, 82, 6, 4064, 2604, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 7890, 11, 2604, 62, 25677, 796, 1100, 62, 6404, 62, 7890, 7, 6404, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 796, 18896, 7, 6404, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15034, 10398, 319, 3141, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 796, 47555, 6836, 3849, 7, 45, 14535, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 6260, 13, 29336, 7, 5647, 11, 503, 62, 69, 3672, 11, 288, 14415, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4818, 287, 27056, 378, 7, 6404, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 13, 4798, 7, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 961, 62, 83, 7, 19608, 17816, 14535, 62, 2435, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 1930, 796, 1391, 6, 87, 10354, 4818, 17816, 16159, 62, 87, 6, 4357, 705, 88, 10354, 4818, 17816, 16159, 62, 88, 20520, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4818, 17816, 9248, 62, 482, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 796, 357, 15259, 1635, 357, 19608, 17816, 9248, 20520, 1220, 45941, 13, 14415, 29720, 744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 7, 69, 301, 13, 14535, 11, 2081, 62, 1930, 28, 7942, 62, 1930, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 28, 7942, 62, 9248, 11, 2336, 28, 5647, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 32393, 62, 14535, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 565, 69, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 796, 493, 7, 37659, 13, 344, 346, 19510, 83, 62, 437, 532, 256, 62, 9688, 8, 1220, 277, 301, 13, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15034, 10398, 319, 3141, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 796, 47555, 6836, 3849, 7, 45, 14535, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 6260, 13, 29336, 7, 5647, 11, 503, 62, 69, 3672, 11, 288, 14415, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 277, 301, 13, 961, 62, 83, 7, 83, 62, 9688, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 357, 69, 301, 13, 83, 1279, 256, 62, 437, 8, 290, 12876, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 13, 4798, 7, 72, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 7, 69, 301, 13, 14535, 11, 2081, 62, 1930, 28, 14202, 11, 2336, 28, 5647, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 32393, 62, 14535, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 565, 69, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 277, 301, 13, 19545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 12876, 628, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 19836, 3419, 220, 628, 198, 220, 220, 220, 825, 2610, 17, 5647, 7, 944, 11, 287, 62, 69, 3672, 11, 503, 62, 69, 3672, 11, 2604, 62, 7890, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 259, 62, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 37, 6255, 284, 1064, 2393, 25, 4064, 82, 6, 4064, 287, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 796, 25184, 7447, 2848, 7, 259, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5647, 7857, 28, 5647, 7857, 11, 288, 14415, 28, 67, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 796, 18896, 7, 6404, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15034, 10398, 319, 3141, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 796, 47555, 6836, 3849, 7, 45, 14535, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4818, 287, 27056, 378, 7, 6404, 62, 7890, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 13, 4798, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 72, 11, 4818, 17816, 14535, 62, 2435, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 961, 62, 83, 7, 19608, 17816, 14535, 62, 2435, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 1930, 796, 1391, 6, 87, 10354, 4818, 17816, 16159, 62, 87, 6, 4357, 705, 88, 10354, 4818, 17816, 16159, 62, 88, 20520, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4818, 17816, 9248, 62, 482, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 796, 357, 15259, 1635, 357, 19608, 17816, 9248, 20520, 1220, 45941, 13, 14415, 29720, 744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 7, 69, 301, 13, 14535, 11, 2081, 62, 1930, 28, 7942, 62, 1930, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 9248, 28, 7942, 62, 9248, 11, 2336, 28, 5647, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 10786, 4, 82, 62, 4, 3070, 67, 13, 21370, 70, 6, 4064, 357, 448, 62, 69, 3672, 11, 1312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 10786, 4, 82, 62, 4, 3070, 67, 13, 11134, 6, 4064, 357, 448, 62, 69, 3672, 11, 1312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 565, 69, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 19836, 3419, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2610, 7, 944, 11, 2008, 62, 69, 3672, 11, 256, 62, 9688, 28, 15, 13, 15, 11, 256, 62, 437, 10779, 16, 11, 22365, 28, 14202, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 15588, 62, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 37, 6255, 284, 1064, 2393, 25, 4064, 82, 6, 4064, 2008, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 796, 25184, 7447, 2848, 7, 15588, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 9688, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 83, 62, 9688, 2314, 307, 1342, 621, 657, 13, 15, 357, 27471, 768, 286, 262, 2008, 737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 437, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 796, 277, 301, 13, 32257, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 22365, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 62, 437, 796, 949, 7, 83, 62, 437, 11, 220, 256, 62, 9688, 1343, 22365, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 256, 62, 437, 1875, 277, 301, 13, 32257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 83, 62, 437, 2314, 307, 1568, 4064, 16, 13, 18, 69, 357, 2435, 286, 262, 938, 5739, 33047, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 32257, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 796, 493, 7, 37659, 13, 344, 346, 19510, 83, 62, 437, 532, 256, 62, 9688, 8, 1220, 277, 301, 13, 28664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 796, 47555, 6836, 3849, 7, 45, 14535, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 796, 45941, 13, 260, 7718, 2433, 7, 43358, 28, 45, 14535, 10, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 41888, 10786, 83, 3256, 220, 12178, 828, 19203, 87, 3256, 220, 12178, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 88, 3256, 220, 12178, 828, 19203, 9248, 3256, 220, 12178, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9248, 62, 86, 3256, 12178, 8, 12962, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 277, 301, 13, 961, 62, 83, 7, 83, 62, 9688, 8, 198, 220, 220, 220, 220, 220, 220, 220, 981, 357, 69, 301, 13, 83, 1279, 256, 62, 437, 8, 290, 12876, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 13, 4798, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 220, 331, 11, 9848, 11, 9848, 62, 86, 11, 4808, 796, 2116, 13, 79, 17407, 7, 69, 301, 13, 14535, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 87, 796, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 88, 796, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 9248, 796, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 9248, 62, 86, 796, 9848, 62, 86, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 83, 796, 277, 301, 13, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 277, 301, 13, 19545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 12876, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 796, 1556, 62, 11659, 58, 25, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1556, 62, 11659, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1332, 62, 11659, 7, 944, 11, 2604, 62, 69, 3672, 11, 2008, 62, 15908, 11, 399, 14535, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 220, 1058, 1271, 286, 13431, 284, 4331, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 477, 13431, 287, 262, 2604, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 7890, 11, 2604, 62, 25677, 796, 1100, 62, 6404, 62, 7890, 7, 6404, 62, 69, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 399, 14535, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 14535, 796, 18896, 7, 6404, 62, 7890, 8, 532, 352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 399, 14535, 18189, 18896, 7, 6404, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 45, 37805, 2314, 307, 3744, 621, 262, 1271, 286, 13431, 287, 262, 2604, 2393, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15588, 62, 69, 3672, 796, 705, 4, 82, 14, 4, 82, 6, 4064, 357, 15588, 62, 15908, 13, 81, 36311, 10786, 14, 33809, 2604, 62, 25677, 17816, 15588, 62, 69, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2008, 62, 69, 3672, 796, 28686, 13, 6978, 13, 22179, 7, 15588, 62, 15908, 13, 81, 36311, 10786, 14, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 25677, 17816, 15588, 62, 69, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2008, 62, 69, 3672, 796, 15095, 7, 15588, 62, 69, 3672, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 796, 25184, 7447, 2848, 7, 15588, 62, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 796, 45941, 13, 260, 7718, 2433, 7, 43358, 28, 45, 14535, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 41888, 10786, 83, 3256, 220, 12178, 828, 19203, 87, 3256, 220, 12178, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 88, 3256, 220, 12178, 828, 19203, 9248, 3256, 220, 12178, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9248, 62, 86, 3256, 12178, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 796, 45941, 13, 260, 7718, 2433, 7, 43358, 28, 45, 14535, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 41888, 10786, 83, 3256, 220, 12178, 828, 19203, 87, 3256, 220, 12178, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 88, 3256, 220, 12178, 828, 19203, 9248, 3256, 220, 12178, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 796, 47555, 6836, 3849, 7, 45, 14535, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4818, 287, 27056, 378, 7, 6404, 62, 7890, 58, 25, 45, 14535, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22927, 79, 13, 4798, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 262, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 961, 62, 83, 7, 19608, 17816, 14535, 62, 2435, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3862, 286, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 58, 72, 4083, 83, 796, 277, 301, 13, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 83, 796, 277, 301, 13, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 1182, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 58, 72, 4083, 87, 796, 4818, 17816, 16159, 62, 87, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 58, 72, 4083, 88, 796, 4818, 17816, 16159, 62, 88, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 1182, 12852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4818, 17816, 9248, 62, 482, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 58, 72, 4083, 9248, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 62, 11659, 58, 72, 4083, 9248, 796, 11546, 13, 1635, 357, 19608, 17816, 9248, 20520, 1220, 45941, 13, 14415, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 47737, 1182, 2292, 290, 12852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 220, 331, 11, 9848, 11, 9848, 62, 86, 11, 4808, 796, 2116, 13, 79, 17407, 7, 69, 301, 13, 14535, 11, 15942, 577, 28, 19011, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 87, 796, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 88, 796, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 9248, 796, 9848, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 62, 11659, 58, 72, 4083, 9248, 62, 86, 796, 9848, 62, 86, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 301, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 11, 4049, 62, 8906, 6015, 796, 651, 62, 18224, 7, 395, 62, 11659, 11, 2081, 62, 11659, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1556, 62, 11659, 11, 2081, 62, 11659, 11, 4049, 11, 4049, 62, 8906, 6015, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4331, 7, 944, 11, 5739, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25184, 416, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 1377, 287, 5739, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2118, 382, 62, 19849, 7, 19011, 577, 28, 19011, 577, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 13, 358, 320, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 5739, 13, 32604, 7, 22704, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6811, 1000, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5739, 13, 43358, 58, 15, 60, 6624, 23487, 290, 5739, 13, 43358, 58, 16, 60, 6624, 33759, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 545, 411, 1096, 7, 14535, 11, 2116, 13, 320, 62, 9888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6811, 1000, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5739, 13, 43358, 58, 15, 60, 6624, 2116, 13, 320, 62, 71, 290, 5739, 13, 43358, 58, 16, 60, 6624, 2116, 13, 320, 62, 86, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 4366, 5629, 5400, 275, 4246, 5739, 13, 43358, 290, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2116, 13, 320, 62, 86, 14, 320, 62, 86, 13, 44855, 428, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 71, 1758, 290, 20542, 268, 262, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 20542, 268, 7, 320, 13, 459, 2981, 7, 22468, 29720, 3447, 1758, 19510, 16, 11, 2116, 13, 320, 62, 71, 11, 2116, 13, 320, 62, 86, 11, 352, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 279, 796, 2705, 9806, 7, 944, 13, 19849, 13, 6404, 896, 13, 18206, 7, 29891, 28, 944, 13, 19849, 13, 29891, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 34758, 944, 13, 19849, 13, 55, 25, 545, 92, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 279, 13, 853, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 18333, 796, 1398, 17, 9248, 7, 37659, 13, 283, 858, 7, 944, 13, 45, 4871, 12, 16, 828, 2116, 13, 45, 4871, 12, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 262, 8297, 9806, 5072, 11, 279, 11, 355, 19590, 329, 257, 26356, 2811, 13, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 357, 79, 58, 15, 11, 1058, 12, 16, 60, 1220, 279, 58, 15, 11, 1058, 12, 16, 4083, 16345, 3419, 737, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 86, 796, 357, 27787, 17, 41887, 7, 27787, 8, 1635, 279, 737, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 62, 86, 796, 3716, 17, 27787, 7, 89, 62, 86, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 18242, 6624, 357, 944, 13, 45, 4871, 532, 352, 8, 2599, 220, 220, 1303, 1182, 12852, 318, 262, 3076, 528, 6614, 407, 7424, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 62, 86, 796, 45941, 13, 12647, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 18333, 58, 18242, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 12172, 796, 2116, 13, 19849, 13, 20991, 13, 18206, 7, 29891, 28, 944, 13, 19849, 13, 29891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 34758, 944, 13, 19849, 13, 55, 25, 545, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 88, 62, 25, 6167, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6811, 1000, 12172, 284, 262, 976, 2546, 355, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6811, 1000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12172, 796, 545, 411, 1096, 7, 20991, 13, 3447, 1758, 19510, 944, 13, 320, 62, 71, 11, 2116, 13, 320, 62, 86, 36911, 352, 14, 944, 13, 320, 62, 9888, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12172, 796, 12172, 13, 3447, 1758, 19510, 944, 13, 320, 62, 71, 11, 2116, 13, 320, 62, 86, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11, 2124, 796, 45941, 13, 403, 25843, 62, 9630, 7, 20991, 13, 853, 9806, 22784, 12172, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 11, 331, 11, 9848, 11, 9848, 62, 86, 11, 12172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 11169, 62, 19849, 7, 944, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 11, 220, 705, 19849, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 19203, 17633, 4064, 82, 1541, 15032, 2637, 4064, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 69, 3672, 13, 35312, 10786, 14, 11537, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 9104, 7, 45, 4871, 28, 944, 13, 45, 4871, 11, 545, 62, 86, 28, 944, 13, 320, 62, 86, 11, 545, 62, 71, 28, 944, 13, 320, 62, 71, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 22184, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 19849, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34, 2390, 62, 45, 4871, 4, 67, 62, 4134, 24620, 694, 457, 6, 4064, 2116, 13, 45, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19849, 62, 22184, 796, 705, 4, 82, 14, 34, 2390, 62, 45, 4871, 4, 67, 62, 4134, 24620, 694, 457, 6, 4064, 357, 944, 13, 19849, 62, 15908, 11, 2116, 13, 45, 4871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 22184, 796, 15095, 7, 19849, 62, 22184, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 22184, 13, 30619, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2746, 62, 22184, 58, 12, 16, 4083, 437, 2032, 342, 10786, 28961, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 69, 3672, 796, 2746, 62, 22184, 58, 12, 16, 4083, 81, 36311, 7, 4458, 28961, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 69, 3672, 796, 2746, 62, 22184, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14207, 374, 75, 3808, 338, 2912, 319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3740, 1378, 12567, 13, 785, 14, 83, 22854, 11125, 14, 83, 22854, 11125, 14, 37165, 14, 1485, 1495, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2331, 284, 307, 497, 535, 274, 560, 329, 1972, 1895, 284, 262, 402, 2969, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 22184, 62, 28961, 796, 15095, 10786, 4, 82, 13, 28961, 6, 4064, 2746, 13, 69, 3672, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7448, 796, 48700, 13, 27432, 13, 11748, 62, 28961, 62, 34960, 7, 19849, 62, 22184, 62, 28961, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 29891, 796, 48700, 13, 36044, 7, 34960, 28, 19849, 13, 34960, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7448, 13, 2118, 382, 7, 19849, 13, 29891, 11, 2746, 13, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 42019, 9633, 422, 11898, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19849, 13, 82, 8770, 13, 2118, 382, 7, 19849, 13, 29891, 11, 2746, 13, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 796, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 19203, 17633, 4064, 82, 15032, 2637, 4064, 220, 2746, 13, 69, 3672, 13, 35312, 10786, 14, 11537, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19662, 8, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 7110, 7, 944, 11, 5739, 11, 2081, 62, 1930, 28, 14202, 11, 2081, 62, 9248, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 28, 14202, 11, 2336, 28, 14202, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 9848, 11, 9848, 62, 86, 11, 12172, 796, 2116, 13, 79, 17407, 7, 14535, 11, 15942, 577, 28, 19011, 577, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2336, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 14535, 261, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 897, 274, 26933, 15, 11, 657, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 14535, 8, 198, 220, 220, 220, 220, 220, 220, 220, 545, 62, 71, 11, 545, 62, 86, 796, 5739, 13, 43358, 58, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2946, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 20991, 11, 269, 8899, 28, 489, 83, 13, 11215, 13, 31173, 11, 17130, 28, 15, 13, 18, 11, 39555, 341, 11639, 33473, 259, 451, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 271, 12647, 7, 9248, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 331, 11, 705, 78, 3256, 13845, 28, 20, 11, 502, 66, 41888, 16, 11, 657, 13, 21, 11, 657, 13, 18, 4357, 285, 16072, 11639, 23108, 3256, 285, 413, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 331, 11, 705, 78, 3256, 13845, 28, 1238, 11, 502, 66, 41888, 16, 11, 657, 13, 21, 11, 657, 13, 18, 4357, 285, 16072, 11639, 23108, 3256, 285, 413, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 11, 331, 16, 796, 651, 62, 9806, 62, 70, 6201, 62, 1370, 7, 9248, 11, 2124, 11, 331, 11, 545, 62, 86, 11, 545, 62, 71, 11, 4991, 11639, 13500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 87, 11, 2124, 16, 4357, 685, 88, 11, 331, 16, 4357, 220, 705, 12, 3256, 3124, 41888, 16, 11, 657, 13, 21, 11, 657, 13, 17, 4357, 300, 86, 28, 17, 11, 6167, 11639, 853, 9806, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 11, 331, 16, 796, 651, 62, 9806, 62, 70, 6201, 62, 1370, 7, 9248, 62, 86, 11, 2124, 11, 331, 11, 545, 62, 86, 11, 545, 62, 71, 11, 4991, 11639, 13500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 87, 11, 2124, 16, 4357, 685, 88, 11, 331, 16, 4357, 220, 705, 12, 3256, 3124, 41888, 16, 11, 657, 13, 18, 11, 657, 13, 15, 4357, 300, 86, 28, 17, 11, 6167, 11639, 6551, 276, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 331, 11, 705, 78, 3256, 13845, 28, 1238, 11, 285, 16072, 11639, 86, 3256, 502, 66, 11639, 86, 3256, 300, 86, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2081, 62, 1930, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22246, 1744, 4049, 1813, 2124, 11, 331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 87, 8056, 11, 3509, 62, 88, 8056, 796, 3509, 7, 87, 11, 545, 62, 86, 12, 87, 828, 3509, 7, 88, 11, 545, 62, 71, 12, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 8056, 796, 45941, 13, 31166, 17034, 7, 9806, 62, 87, 8056, 1174, 17, 1343, 3509, 62, 88, 8056, 1174, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 796, 545, 62, 71, 1635, 45941, 13, 31166, 17034, 19510, 87, 532, 2081, 62, 1930, 17816, 87, 6, 12962, 1174, 17, 1343, 357, 88, 532, 2081, 62, 1930, 17816, 88, 6, 12962, 1174, 17, 8, 1220, 3509, 62, 8056, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 326, 2124, 11, 88, 3011, 6928, 523, 326, 2081, 62, 9248, 481, 307, 7428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3599, 379, 2081, 62, 1930, 2427, 286, 11001, 1426, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 2081, 62, 1930, 17816, 87, 6, 4357, 2081, 62, 1930, 17816, 88, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 331, 11, 705, 78, 3256, 13845, 28, 20, 11, 502, 66, 11639, 70, 3256, 285, 16072, 11639, 23108, 3256, 285, 413, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11, 331, 11, 705, 78, 3256, 13845, 28, 1238, 11, 502, 66, 11639, 70, 3256, 285, 16072, 11639, 23108, 3256, 285, 413, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3197, 2292, 4049, 355, 257, 2318, 284, 262, 826, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 320, 62, 86, 12, 19, 11, 545, 62, 86, 12, 19, 4357, 685, 15, 11, 4049, 4357, 705, 12, 3256, 269, 11639, 81, 3256, 300, 86, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2081, 62, 9248, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 11, 331, 16, 796, 651, 62, 9806, 62, 70, 6201, 62, 1370, 7, 7942, 62, 9248, 11, 2124, 11, 331, 11, 545, 62, 86, 11, 545, 62, 71, 11, 4991, 11639, 13500, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 87, 11, 2124, 16, 4357, 685, 88, 11, 331, 16, 4357, 220, 705, 12, 3256, 3124, 41888, 13, 18, 11, 352, 1539, 657, 13, 4357, 300, 86, 28, 17, 11, 6167, 11639, 17821, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 86, 796, 545, 62, 71, 1635, 45941, 13, 8937, 7, 22393, 733, 7, 7942, 62, 9248, 11, 9848, 62, 86, 11, 705, 13500, 6, 4008, 1220, 11546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 796, 545, 62, 71, 1635, 45941, 13, 8937, 7, 22393, 733, 7, 7942, 62, 9248, 11, 9848, 11, 705, 13500, 6, 4008, 1220, 11546, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15315, 12852, 4049, 355, 257, 2318, 284, 262, 1364, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 19, 11, 604, 4357, 685, 15, 11, 4049, 4357, 705, 12, 3256, 269, 41888, 16, 11, 764, 21, 11, 764, 17, 4357, 300, 86, 28, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 26933, 1157, 11, 1367, 4357, 685, 15, 11, 4049, 62, 86, 4357, 705, 12, 3256, 269, 41888, 16, 11, 764, 18, 11, 657, 13, 4357, 300, 86, 28, 19, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 15, 11, 545, 62, 86, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 11, 545, 62, 71, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 742, 3378, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 20760, 3378, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 897, 13, 1455, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 277, 3672, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 220, 220, 628, 198, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 11, 705, 19849, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 944, 13, 19849, 11, 705, 29891, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 29891, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 198 ]
1.662766
14,785
import marshal import imp import struct import os import sys import base64 import new import dis from dis import opmap, opname class Bytecode(): ''' Class to store individual instruction as a node in the graph ''' def len(self): ''' Returns the length of the bytecode 1 for no argument 3 for argument ''' if self.opcode < dis.HAVE_ARGUMENT: return 1 else: return 3 def disassemble(self): ''' Return disassembly of bytecode ''' rvalue = opname[self.opcode].ljust(20) if self.opcode >= dis.HAVE_ARGUMENT: rvalue += " %04x" % (self.oparg) return rvalue def hex(self): ''' Return ASCII hex representation of bytecode ''' rvalue = "%02x" % self.opcode if self.opcode >= dis.HAVE_ARGUMENT: rvalue += "%02x%02x" % \ (self.oparg & 0xff, (self.oparg >> 8) & 0xff) return rvalue def bin(self): ''' Return bytecode string ''' if self.opcode >= dis.HAVE_ARGUMENT: return struct.pack("<BH", self.opcode, self.oparg) else: return struct.pack("<B", self.opcode) def get_target_addr(self): ''' Returns the target address for the current instruction based on the current address. ''' rvalue = None if self.opcode in dis.hasjrel: rvalue = self.addr + self.oparg + self.len() if self.opcode in dis.hasjabs: rvalue = self.oparg return rvalue def clean_ROT_TWO(bcg, skip_xrefs=True): ''' Replace two sequential ROT_TWO sequences with NOPS ''' count = 0 for current in bcg.nodes(): if current.next is None: break if current.opcode == opmap['ROT_TWO'] and \ current.next.opcode == opmap['ROT_TWO']: if current.next.xrefs != [] and skip_xrefs: continue else: current.opcode = opmap['NOP'] current.next.opcode = opmap['NOP'] count += 1 return count def clean_ROT_THREE(bcg, skip_xrefs=True): ''' Replace three sequential ROT_THREE sequences with NOPS ''' count = 0 for current in bcg.nodes(): if current.next is None or current.next.next is None: break if current.opcode == opmap['ROT_THREE'] and \ current.next.opcode == opmap['ROT_THREE'] and \ current.next.next.opcode == opmap['ROT_THREE']: if (current.next.xrefs != [] or current.next.next.xrefs != []) \ and skip_xrefs: continue else: current.opcode = opmap['NOP'] current.next.opcode = opmap['NOP'] current.next.next.opcode = opmap['NOP'] count += 1 return count def clean_LOAD_POP(bcg, skip_xrefs=True): ''' Replace LOAD_CONST/POP_TOP sequences with NOPS ''' count = 0 for current in bcg.nodes(): if current.next is None: break if current.opcode == opmap['LOAD_CONST'] and \ current.next.opcode == opmap['POP_TOP']: if current.next.xrefs != [] and skip_xrefs: continue else: current.opcode = opmap['NOP'] current.next.opcode = opmap['NOP'] count += 1 return count def clean_NOPS(bcg): ''' Remove NOP instrustions from bytecode ''' count = 0 for current in bcg.nodes(): if current.opcode == opmap['NOP']: bcg.delete_node(current) count += 1 return count if __name__ == "__main__": main(sys.argv)
[ 11748, 22397, 282, 198, 11748, 848, 198, 11748, 2878, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 2779, 2414, 198, 11748, 649, 198, 11748, 595, 198, 6738, 595, 1330, 1034, 8899, 11, 1034, 3672, 628, 198, 4871, 30589, 8189, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5016, 284, 3650, 1981, 12064, 355, 257, 10139, 287, 262, 4823, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 18896, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 4129, 286, 262, 18022, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 352, 329, 645, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 513, 329, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 1279, 595, 13, 7801, 6089, 62, 1503, 38, 5883, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 513, 628, 220, 220, 220, 825, 595, 292, 15140, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 595, 41873, 286, 18022, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 796, 1034, 3672, 58, 944, 13, 404, 8189, 4083, 75, 3137, 7, 1238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 18189, 595, 13, 7801, 6089, 62, 1503, 38, 5883, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 15853, 366, 4064, 3023, 87, 1, 4064, 357, 944, 13, 404, 853, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 8367, 628, 220, 220, 220, 825, 17910, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 37101, 17910, 10552, 286, 18022, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 796, 36521, 2999, 87, 1, 4064, 2116, 13, 404, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 18189, 595, 13, 7801, 6089, 62, 1503, 38, 5883, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 15853, 36521, 2999, 87, 4, 2999, 87, 1, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 404, 853, 1222, 657, 47596, 11, 357, 944, 13, 404, 853, 9609, 807, 8, 1222, 657, 47596, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 8367, 628, 220, 220, 220, 825, 9874, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 18022, 8189, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 18189, 595, 13, 7801, 6089, 62, 1503, 38, 5883, 3525, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2878, 13, 8002, 7203, 27, 33, 39, 1600, 2116, 13, 404, 8189, 11, 2116, 13, 404, 853, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2878, 13, 8002, 7203, 27, 33, 1600, 2116, 13, 404, 8189, 8, 628, 220, 220, 220, 825, 651, 62, 16793, 62, 29851, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2496, 2209, 329, 262, 1459, 12064, 1912, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1459, 2209, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 287, 595, 13, 10134, 73, 2411, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 796, 2116, 13, 29851, 1343, 2116, 13, 404, 853, 1343, 2116, 13, 11925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 404, 8189, 287, 595, 13, 10134, 73, 8937, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 8367, 796, 2116, 13, 404, 853, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 8367, 628, 628, 198, 4299, 3424, 62, 49, 2394, 62, 34551, 46, 7, 15630, 70, 11, 14267, 62, 87, 5420, 82, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 40177, 734, 35582, 371, 2394, 62, 34551, 46, 16311, 351, 399, 30737, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 329, 1459, 287, 47125, 70, 13, 77, 4147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 19545, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 404, 8189, 6624, 1034, 8899, 17816, 49, 2394, 62, 34551, 46, 20520, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 6624, 1034, 8899, 17816, 49, 2394, 62, 34551, 46, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 19545, 13, 87, 5420, 82, 14512, 17635, 290, 14267, 62, 87, 5420, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 1441, 954, 628, 198, 4299, 3424, 62, 49, 2394, 62, 4221, 11587, 7, 15630, 70, 11, 14267, 62, 87, 5420, 82, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 40177, 1115, 35582, 371, 2394, 62, 4221, 11587, 16311, 351, 399, 30737, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 329, 1459, 287, 47125, 70, 13, 77, 4147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 19545, 318, 6045, 393, 1459, 13, 19545, 13, 19545, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 404, 8189, 6624, 1034, 8899, 17816, 49, 2394, 62, 4221, 11587, 20520, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 6624, 1034, 8899, 17816, 49, 2394, 62, 4221, 11587, 20520, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 19545, 13, 404, 8189, 6624, 1034, 8899, 17816, 49, 2394, 62, 4221, 11587, 6, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 14421, 13, 19545, 13, 87, 5420, 82, 14512, 17635, 393, 1459, 13, 19545, 13, 19545, 13, 87, 5420, 82, 14512, 685, 12962, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 14267, 62, 87, 5420, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 19545, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 1441, 954, 628, 198, 4299, 3424, 62, 35613, 62, 47, 3185, 7, 15630, 70, 11, 14267, 62, 87, 5420, 82, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 40177, 17579, 2885, 62, 10943, 2257, 14, 47, 3185, 62, 35222, 16311, 351, 399, 30737, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 329, 1459, 287, 47125, 70, 13, 77, 4147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 19545, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 404, 8189, 6624, 1034, 8899, 17816, 35613, 62, 10943, 2257, 20520, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 6624, 1034, 8899, 17816, 47, 3185, 62, 35222, 6, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 19545, 13, 87, 5420, 82, 14512, 17635, 290, 14267, 62, 87, 5420, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 13, 19545, 13, 404, 8189, 796, 1034, 8899, 17816, 45, 3185, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 1441, 954, 628, 198, 4299, 3424, 62, 45, 30737, 7, 15630, 70, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 17220, 399, 3185, 6480, 436, 507, 422, 18022, 8189, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 954, 796, 657, 628, 220, 220, 220, 329, 1459, 287, 47125, 70, 13, 77, 4147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 13, 404, 8189, 6624, 1034, 8899, 17816, 45, 3185, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47125, 70, 13, 33678, 62, 17440, 7, 14421, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 1441, 954, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 8, 198 ]
1.970918
1,960
import logging from collections import defaultdict from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, List, Literal, NamedTuple, Optional from eth_utils import to_checksum_address from gevent.lock import Semaphore from rotkehlchen.accounting.structures.balance import AssetBalance, Balance from rotkehlchen.chain.ethereum.contracts import EthereumContract from rotkehlchen.chain.ethereum.defi.defisaver_proxy import HasDSProxy from rotkehlchen.chain.ethereum.graph import ( SUBGRAPH_REMOTE_ERROR_MSG, Graph, format_query_indentation, ) from rotkehlchen.chain.ethereum.utils import multicall_2, token_normalized_value_decimals from rotkehlchen.constants.assets import A_ETH, A_LQTY, A_LUSD, A_USD from rotkehlchen.constants.ethereum import LIQUITY_TROVE_MANAGER from rotkehlchen.errors.misc import ModuleInitializationFailure, RemoteError from rotkehlchen.errors.serialization import DeserializationError from rotkehlchen.fval import FVal from rotkehlchen.history.price import PriceHistorian from rotkehlchen.inquirer import Inquirer from rotkehlchen.logging import RotkehlchenLogsAdapter from rotkehlchen.premium.premium import Premium from rotkehlchen.serialization.deserialize import ( deserialize_asset_amount, deserialize_optional_to_fval, ) from rotkehlchen.types import ChecksumEthAddress, Timestamp from rotkehlchen.user_messages import MessagesAggregator from rotkehlchen.utils.mixins.serializableenum import SerializableEnumMixin from .graph import QUERY_STAKE, QUERY_TROVE if TYPE_CHECKING: from rotkehlchen.chain.ethereum.manager import EthereumManager from rotkehlchen.db.dbhandler import DBHandler MIN_COLL_RATE = '1.1' logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) @dataclass(frozen=True) @dataclass(frozen=True) @dataclass(frozen=True) # -- Methods following the EthereumModule interface -- #
[ 11748, 18931, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 11, 4377, 11, 360, 713, 11, 7343, 11, 25659, 1691, 11, 34441, 51, 29291, 11, 32233, 198, 198, 6738, 4555, 62, 26791, 1330, 284, 62, 42116, 388, 62, 21975, 198, 6738, 4903, 1151, 13, 5354, 1330, 12449, 6570, 382, 198, 198, 6738, 5724, 365, 18519, 6607, 13, 23317, 278, 13, 7249, 942, 13, 20427, 1330, 31433, 45866, 11, 22924, 198, 6738, 5724, 365, 18519, 6607, 13, 7983, 13, 316, 1456, 388, 13, 28484, 82, 1330, 20313, 45845, 198, 6738, 5724, 365, 18519, 6607, 13, 7983, 13, 316, 1456, 388, 13, 4299, 72, 13, 4299, 271, 8770, 62, 36436, 1330, 7875, 5258, 44148, 198, 6738, 5724, 365, 18519, 6607, 13, 7983, 13, 316, 1456, 388, 13, 34960, 1330, 357, 198, 220, 220, 220, 28932, 10761, 31300, 62, 40726, 23051, 62, 24908, 62, 5653, 38, 11, 198, 220, 220, 220, 29681, 11, 198, 220, 220, 220, 5794, 62, 22766, 62, 521, 298, 341, 11, 198, 8, 198, 6738, 5724, 365, 18519, 6607, 13, 7983, 13, 316, 1456, 388, 13, 26791, 1330, 47368, 439, 62, 17, 11, 11241, 62, 11265, 1143, 62, 8367, 62, 12501, 320, 874, 198, 6738, 5724, 365, 18519, 6607, 13, 9979, 1187, 13, 19668, 1330, 317, 62, 20702, 11, 317, 62, 43, 48, 9936, 11, 317, 62, 43, 29072, 11, 317, 62, 29072, 198, 6738, 5724, 365, 18519, 6607, 13, 9979, 1187, 13, 316, 1456, 388, 1330, 24653, 10917, 9050, 62, 5446, 46, 6089, 62, 10725, 4760, 1137, 198, 6738, 5724, 365, 18519, 6607, 13, 48277, 13, 44374, 1330, 19937, 24243, 1634, 50015, 11, 21520, 12331, 198, 6738, 5724, 365, 18519, 6607, 13, 48277, 13, 46911, 1634, 1330, 2935, 48499, 1634, 12331, 198, 6738, 5724, 365, 18519, 6607, 13, 69, 2100, 1330, 376, 7762, 198, 6738, 5724, 365, 18519, 6607, 13, 23569, 13, 20888, 1330, 7886, 13749, 22618, 198, 6738, 5724, 365, 18519, 6607, 13, 18934, 557, 81, 1330, 17193, 557, 81, 198, 6738, 5724, 365, 18519, 6607, 13, 6404, 2667, 1330, 18481, 365, 18519, 6607, 11187, 82, 47307, 198, 6738, 5724, 365, 18519, 6607, 13, 31605, 1505, 13, 31605, 1505, 1330, 17315, 198, 6738, 5724, 365, 18519, 6607, 13, 46911, 1634, 13, 8906, 48499, 1096, 1330, 357, 198, 220, 220, 220, 748, 48499, 1096, 62, 562, 316, 62, 17287, 11, 198, 220, 220, 220, 748, 48499, 1096, 62, 25968, 62, 1462, 62, 69, 2100, 11, 198, 8, 198, 6738, 5724, 365, 18519, 6607, 13, 19199, 1330, 47719, 388, 40226, 20231, 11, 5045, 27823, 198, 6738, 5724, 365, 18519, 6607, 13, 7220, 62, 37348, 1095, 1330, 43534, 46384, 2301, 1352, 198, 6738, 5724, 365, 18519, 6607, 13, 26791, 13, 19816, 1040, 13, 46911, 13821, 44709, 1330, 23283, 13821, 4834, 388, 35608, 259, 198, 198, 6738, 764, 34960, 1330, 19604, 19664, 62, 2257, 32, 7336, 11, 19604, 19664, 62, 5446, 46, 6089, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 5724, 365, 18519, 6607, 13, 7983, 13, 316, 1456, 388, 13, 37153, 1330, 20313, 13511, 198, 220, 220, 220, 422, 5724, 365, 18519, 6607, 13, 9945, 13, 9945, 30281, 1330, 20137, 25060, 198, 198, 23678, 62, 8220, 3069, 62, 49, 6158, 796, 705, 16, 13, 16, 6, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 796, 18481, 365, 18519, 6607, 11187, 82, 47307, 7, 6404, 1362, 8, 628, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 198, 31, 19608, 330, 31172, 7, 69, 42005, 28, 17821, 8, 628, 628, 198, 220, 220, 220, 1303, 1377, 25458, 1708, 262, 20313, 26796, 7071, 1377, 1303, 198 ]
3.038095
630
from rest_framework import decorators, permissions, response, status from rest_framework.request import Request from django.contrib.auth import get_user_model from django.utils.translation import ugettext as _ from .serializers import UserCreateSerializer User = get_user_model() @decorators.api_view(["POST"]) @decorators.permission_classes([permissions.AllowAny])
[ 6738, 1334, 62, 30604, 1330, 11705, 2024, 11, 21627, 11, 2882, 11, 3722, 198, 6738, 1334, 62, 30604, 13, 25927, 1330, 19390, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 198, 6738, 764, 46911, 11341, 1330, 11787, 16447, 32634, 7509, 198, 198, 12982, 796, 651, 62, 7220, 62, 19849, 3419, 628, 198, 31, 12501, 273, 2024, 13, 15042, 62, 1177, 7, 14692, 32782, 8973, 8, 198, 31, 12501, 273, 2024, 13, 525, 3411, 62, 37724, 26933, 525, 8481, 13, 35265, 7149, 12962, 198 ]
3.5
106
# Generated by Django 2.1.7 on 2019-03-31 16:43 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 362, 13, 16, 13, 22, 319, 13130, 12, 3070, 12, 3132, 1467, 25, 3559, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=cell-var-from-loop """Replace each block of consecutive gates by a single Unitary node.""" from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit, Gate from qiskit.quantum_info.operators import Operator from qiskit.quantum_info.synthesis import TwoQubitBasisDecomposer from qiskit.extensions import UnitaryGate from qiskit.circuit.library.standard_gates import CXGate from qiskit.transpiler.basepasses import TransformationPass from qiskit.transpiler.exceptions import TranspilerError from qiskit.transpiler.passes.synthesis import unitary_synthesis class ConsolidateBlocks(TransformationPass): """Replace each block of consecutive gates by a single Unitary node. Pass to consolidate sequences of uninterrupted gates acting on the same qubits into a Unitary node, to be resynthesized later, to a potentially more optimal subcircuit. Notes: This pass assumes that the 'blocks_list' property that it reads is given such that blocks are in topological order. The blocks are collected by a previous pass, such as `Collect2qBlocks`. """ def __init__(self, kak_basis_gate=None, force_consolidate=False, basis_gates=None): """ConsolidateBlocks initializer. Args: kak_basis_gate (Gate): Basis gate for KAK decomposition. force_consolidate (bool): Force block consolidation basis_gates (List(str)): Basis gates from which to choose a KAK gate. """ super().__init__() self.basis_gates = basis_gates self.force_consolidate = force_consolidate if kak_basis_gate is not None: self.decomposer = TwoQubitBasisDecomposer(kak_basis_gate) elif basis_gates is not None: kak_basis_gate = unitary_synthesis._choose_kak_gate(basis_gates) if kak_basis_gate is not None: self.decomposer = TwoQubitBasisDecomposer(kak_basis_gate) else: self.decomposer = None else: self.decomposer = TwoQubitBasisDecomposer(CXGate()) def run(self, dag): """Run the ConsolidateBlocks pass on `dag`. Iterate over each block and replace it with an equivalent Unitary on the same wires. """ if self.decomposer is None: return dag new_dag = dag._copy_circuit_metadata() # compute ordered indices for the global circuit wires global_index_map = {wire: idx for idx, wire in enumerate(dag.qubits)} blocks = self.property_set['block_list'] # just to make checking if a node is in any block easier all_block_nodes = {nd for bl in blocks for nd in bl} for node in dag.topological_op_nodes(): if node not in all_block_nodes: # need to add this node to find out where in the list it goes preds = [nd for nd in dag.predecessors(node) if nd.type == 'op'] block_count = 0 while preds: if block_count < len(blocks): block = blocks[block_count] # if any of the predecessors are in the block, remove them preds = [p for p in preds if p not in block] else: # should never occur as this would mean not all # nodes before this one topologically had been added # so not all predecessors were removed raise TranspilerError("Not all predecessors removed due to error" " in topological order") block_count += 1 # we have now seen all predecessors # so update the blocks list to include this block blocks = blocks[:block_count] + [[node]] + blocks[block_count:] # create the dag from the updated list of blocks basis_gate_name = self.decomposer.gate.name for block in blocks: if len(block) == 1 and block[0].name != basis_gate_name: # pylint: disable=too-many-boolean-expressions if block[0].type == 'op' \ and self.basis_gates \ and block[0].name not in self.basis_gates \ and len(block[0].cargs) == 0 and block[0].condition is None \ and isinstance(block[0].op, Gate) \ and hasattr(block[0].op, '__array__') \ and not block[0].op.is_parameterized(): new_dag.apply_operation_back(UnitaryGate(block[0].op.to_matrix()), block[0].qargs, block[0].cargs) else: # an intermediate node that was added into the overall list new_dag.apply_operation_back(block[0].op, block[0].qargs, block[0].cargs) else: # find the qubits involved in this block block_qargs = set() block_cargs = set() for nd in block: block_qargs |= set(nd.qargs) if nd.condition: block_cargs |= set(nd.condition[0]) # convert block to a sub-circuit, then simulate unitary and add q = QuantumRegister(len(block_qargs)) # if condition in node, add clbits to circuit if len(block_cargs) > 0: c = ClassicalRegister(len(block_cargs)) subcirc = QuantumCircuit(q, c) else: subcirc = QuantumCircuit(q) block_index_map = self._block_qargs_to_indices(block_qargs, global_index_map) basis_count = 0 for nd in block: if nd.op.name == basis_gate_name: basis_count += 1 subcirc.append(nd.op, [q[block_index_map[i]] for i in nd.qargs]) unitary = UnitaryGate(Operator(subcirc)) # simulates the circuit max_2q_depth = 20 # If depth > 20, there will be 1q gates to consolidate. if ( # pylint: disable=too-many-boolean-expressions self.force_consolidate or unitary.num_qubits > 2 or self.decomposer.num_basis_gates(unitary) < basis_count or len(subcirc) > max_2q_depth or (self.basis_gates is not None and not set(subcirc.count_ops()).issubset(self.basis_gates)) ): new_dag.apply_operation_back( UnitaryGate(unitary), sorted(block_qargs, key=lambda x: block_index_map[x])) else: for nd in block: new_dag.apply_operation_back(nd.op, nd.qargs, nd.cargs) return new_dag def _block_qargs_to_indices(self, block_qargs, global_index_map): """Map each qubit in block_qargs to its wire position among the block's wires. Args: block_qargs (list): list of qubits that a block acts on global_index_map (dict): mapping from each qubit in the circuit to its wire position within that circuit Returns: dict: mapping from qarg to position in block """ block_indices = [global_index_map[q] for q in block_qargs] ordered_block_indices = sorted(block_indices) block_positions = {q: ordered_block_indices.index(global_index_map[q]) for q in block_qargs} return block_positions
[ 2, 770, 2438, 318, 636, 286, 1195, 1984, 270, 13, 198, 2, 198, 2, 357, 34, 8, 15069, 19764, 2177, 11, 13130, 13, 198, 2, 198, 2, 770, 2438, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 13, 921, 743, 198, 2, 7330, 257, 4866, 286, 428, 5964, 287, 262, 38559, 24290, 13, 14116, 2393, 287, 262, 6808, 8619, 198, 2, 286, 428, 2723, 5509, 393, 379, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 13, 198, 2, 198, 2, 4377, 19008, 393, 27255, 2499, 286, 428, 2438, 1276, 12377, 428, 198, 2, 6634, 4003, 11, 290, 9518, 3696, 761, 284, 3283, 257, 4003, 12739, 198, 2, 326, 484, 423, 587, 14294, 422, 262, 47324, 13, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 3846, 12, 7785, 12, 6738, 12, 26268, 198, 198, 37811, 3041, 5372, 1123, 2512, 286, 12785, 17435, 416, 257, 2060, 791, 9331, 10139, 526, 15931, 628, 198, 6738, 10662, 1984, 270, 13, 21170, 5013, 1330, 29082, 38804, 11, 43680, 38804, 11, 29082, 31560, 5013, 11, 12816, 198, 6738, 10662, 1984, 270, 13, 40972, 388, 62, 10951, 13, 3575, 2024, 1330, 35946, 198, 6738, 10662, 1984, 270, 13, 40972, 388, 62, 10951, 13, 1837, 429, 8497, 1330, 4930, 48, 549, 270, 15522, 271, 10707, 296, 1930, 263, 198, 6738, 10662, 1984, 270, 13, 2302, 5736, 1330, 791, 9331, 22628, 198, 6738, 10662, 1984, 270, 13, 21170, 5013, 13, 32016, 13, 20307, 62, 70, 689, 1330, 327, 55, 22628, 198, 6738, 10662, 1984, 270, 13, 7645, 79, 5329, 13, 12093, 538, 13978, 1330, 49127, 14478, 198, 6738, 10662, 1984, 270, 13, 7645, 79, 5329, 13, 1069, 11755, 1330, 3602, 79, 5329, 12331, 198, 6738, 10662, 1984, 270, 13, 7645, 79, 5329, 13, 6603, 274, 13, 1837, 429, 8497, 1330, 4326, 560, 62, 1837, 429, 8497, 628, 198, 4871, 43419, 378, 45356, 7, 8291, 1161, 14478, 2599, 198, 220, 220, 220, 37227, 3041, 5372, 1123, 2512, 286, 12785, 17435, 416, 257, 2060, 791, 9331, 10139, 13, 628, 220, 220, 220, 6251, 284, 38562, 16311, 286, 49471, 17435, 7205, 319, 198, 220, 220, 220, 262, 976, 627, 9895, 656, 257, 791, 9331, 10139, 11, 284, 307, 581, 33567, 956, 1143, 1568, 11, 198, 220, 220, 220, 284, 257, 6196, 517, 16586, 850, 21170, 5013, 13, 628, 220, 220, 220, 11822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 770, 1208, 18533, 326, 262, 705, 27372, 62, 4868, 6, 3119, 326, 340, 9743, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1813, 884, 326, 7021, 389, 287, 1353, 2770, 1502, 13, 383, 7021, 389, 198, 220, 220, 220, 220, 220, 220, 220, 7723, 416, 257, 2180, 1208, 11, 884, 355, 4600, 31337, 17, 80, 45356, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 461, 62, 12093, 271, 62, 10494, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 5936, 10180, 378, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4308, 62, 70, 689, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9444, 10180, 378, 45356, 4238, 7509, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 461, 62, 12093, 271, 62, 10494, 357, 22628, 2599, 6455, 271, 8946, 329, 509, 10206, 26969, 9150, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2700, 62, 5936, 10180, 378, 357, 30388, 2599, 5221, 2512, 31941, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4308, 62, 70, 689, 357, 8053, 7, 2536, 8, 2599, 6455, 271, 17435, 422, 543, 284, 3853, 257, 509, 10206, 8946, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12093, 271, 62, 70, 689, 796, 4308, 62, 70, 689, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3174, 62, 5936, 10180, 378, 796, 2700, 62, 5936, 10180, 378, 628, 220, 220, 220, 220, 220, 220, 220, 611, 479, 461, 62, 12093, 271, 62, 10494, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 296, 1930, 263, 796, 4930, 48, 549, 270, 15522, 271, 10707, 296, 1930, 263, 7, 74, 461, 62, 12093, 271, 62, 10494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4308, 62, 70, 689, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 461, 62, 12093, 271, 62, 10494, 796, 4326, 560, 62, 1837, 429, 8497, 13557, 6679, 577, 62, 74, 461, 62, 10494, 7, 12093, 271, 62, 70, 689, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 479, 461, 62, 12093, 271, 62, 10494, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 296, 1930, 263, 796, 4930, 48, 549, 270, 15522, 271, 10707, 296, 1930, 263, 7, 74, 461, 62, 12093, 271, 62, 10494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 296, 1930, 263, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12501, 296, 1930, 263, 796, 4930, 48, 549, 270, 15522, 271, 10707, 296, 1930, 263, 7, 34, 55, 22628, 28955, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 48924, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 262, 43419, 378, 45356, 1208, 319, 4600, 67, 363, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 40806, 378, 625, 1123, 2512, 290, 6330, 340, 351, 281, 7548, 791, 9331, 198, 220, 220, 220, 220, 220, 220, 220, 319, 262, 976, 19474, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 12501, 296, 1930, 263, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 48924, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 363, 796, 48924, 13557, 30073, 62, 21170, 5013, 62, 38993, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 6149, 36525, 329, 262, 3298, 10349, 19474, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9630, 62, 8899, 796, 1391, 21809, 25, 4686, 87, 329, 4686, 87, 11, 6503, 287, 27056, 378, 7, 67, 363, 13, 421, 9895, 38165, 628, 220, 220, 220, 220, 220, 220, 220, 7021, 796, 2116, 13, 26745, 62, 2617, 17816, 9967, 62, 4868, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 655, 284, 787, 10627, 611, 257, 10139, 318, 287, 597, 2512, 4577, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 9967, 62, 77, 4147, 796, 1391, 358, 329, 698, 287, 7021, 329, 299, 67, 287, 698, 92, 628, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 48924, 13, 4852, 2770, 62, 404, 62, 77, 4147, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 407, 287, 477, 62, 9967, 62, 77, 4147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 761, 284, 751, 428, 10139, 284, 1064, 503, 810, 287, 262, 1351, 340, 2925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 685, 358, 329, 299, 67, 287, 48924, 13, 28764, 721, 23295, 7, 17440, 8, 611, 299, 67, 13, 4906, 6624, 705, 404, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 9127, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2747, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2512, 62, 9127, 1279, 18896, 7, 27372, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 796, 7021, 58, 9967, 62, 9127, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 597, 286, 262, 27677, 389, 287, 262, 2512, 11, 4781, 606, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 685, 79, 329, 279, 287, 2747, 82, 611, 279, 407, 287, 2512, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 815, 1239, 3051, 355, 428, 561, 1612, 407, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13760, 878, 428, 530, 1353, 13437, 550, 587, 2087, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 407, 477, 27677, 547, 4615, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3602, 79, 5329, 12331, 7203, 3673, 477, 27677, 4615, 2233, 284, 4049, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 287, 1353, 2770, 1502, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 9127, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 423, 783, 1775, 477, 27677, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 4296, 262, 7021, 1351, 284, 2291, 428, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7021, 796, 7021, 58, 25, 9967, 62, 9127, 60, 1343, 16410, 17440, 11907, 1343, 7021, 58, 9967, 62, 9127, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 262, 48924, 422, 262, 6153, 1351, 286, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 4308, 62, 10494, 62, 3672, 796, 2116, 13, 12501, 296, 1930, 263, 13, 10494, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2512, 287, 7021, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9967, 8, 6624, 352, 290, 2512, 58, 15, 4083, 3672, 14512, 4308, 62, 10494, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 2127, 21052, 12, 42712, 507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2512, 58, 15, 4083, 4906, 6624, 705, 404, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13, 12093, 271, 62, 70, 689, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2512, 58, 15, 4083, 3672, 407, 287, 2116, 13, 12093, 271, 62, 70, 689, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 18896, 7, 9967, 58, 15, 4083, 66, 22046, 8, 6624, 657, 290, 2512, 58, 15, 4083, 31448, 318, 6045, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 318, 39098, 7, 9967, 58, 15, 4083, 404, 11, 12816, 8, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 468, 35226, 7, 9967, 58, 15, 4083, 404, 11, 705, 834, 18747, 834, 11537, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 2512, 58, 15, 4083, 404, 13, 271, 62, 17143, 2357, 1143, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 363, 13, 39014, 62, 27184, 62, 1891, 7, 3118, 9331, 22628, 7, 9967, 58, 15, 4083, 404, 13, 1462, 62, 6759, 8609, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 58, 15, 4083, 80, 22046, 11, 2512, 58, 15, 4083, 66, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 281, 19898, 10139, 326, 373, 2087, 656, 262, 4045, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 363, 13, 39014, 62, 27184, 62, 1891, 7, 9967, 58, 15, 4083, 404, 11, 2512, 58, 15, 4083, 80, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 58, 15, 4083, 66, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 262, 627, 9895, 2950, 287, 428, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 80, 22046, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 66, 22046, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 67, 287, 2512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 80, 22046, 930, 28, 900, 7, 358, 13, 80, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 67, 13, 31448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 66, 22046, 930, 28, 900, 7, 358, 13, 31448, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 2512, 284, 257, 850, 12, 21170, 5013, 11, 788, 29308, 4326, 560, 290, 751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 796, 29082, 38804, 7, 11925, 7, 9967, 62, 80, 22046, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 4006, 287, 10139, 11, 751, 537, 9895, 284, 10349, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9967, 62, 66, 22046, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 43680, 38804, 7, 11925, 7, 9967, 62, 66, 22046, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 21170, 796, 29082, 31560, 5013, 7, 80, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 21170, 796, 29082, 31560, 5013, 7, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 9630, 62, 8899, 796, 2116, 13557, 9967, 62, 80, 22046, 62, 1462, 62, 521, 1063, 7, 9967, 62, 80, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9630, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4308, 62, 9127, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 67, 287, 2512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 67, 13, 404, 13, 3672, 6624, 4308, 62, 10494, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4308, 62, 9127, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 21170, 13, 33295, 7, 358, 13, 404, 11, 685, 80, 58, 9967, 62, 9630, 62, 8899, 58, 72, 11907, 329, 1312, 287, 299, 67, 13, 80, 22046, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 560, 796, 791, 9331, 22628, 7, 18843, 1352, 7, 7266, 21170, 4008, 220, 1303, 985, 15968, 262, 10349, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 17, 80, 62, 18053, 796, 1160, 220, 1303, 1002, 6795, 1875, 1160, 11, 612, 481, 307, 352, 80, 17435, 284, 38562, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 2127, 21052, 12, 42712, 507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3174, 62, 5936, 10180, 378, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 4326, 560, 13, 22510, 62, 421, 9895, 1875, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 2116, 13, 12501, 296, 1930, 263, 13, 22510, 62, 12093, 271, 62, 70, 689, 7, 403, 9331, 8, 1279, 4308, 62, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 18896, 7, 7266, 21170, 8, 1875, 3509, 62, 17, 80, 62, 18053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 944, 13, 12093, 271, 62, 70, 689, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 900, 7, 7266, 21170, 13, 9127, 62, 2840, 3419, 737, 747, 549, 2617, 7, 944, 13, 12093, 271, 62, 70, 689, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 363, 13, 39014, 62, 27184, 62, 1891, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 791, 9331, 22628, 7, 403, 9331, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23243, 7, 9967, 62, 80, 22046, 11, 1994, 28, 50033, 2124, 25, 2512, 62, 9630, 62, 8899, 58, 87, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 67, 287, 2512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 67, 363, 13, 39014, 62, 27184, 62, 1891, 7, 358, 13, 404, 11, 299, 67, 13, 80, 22046, 11, 299, 67, 13, 66, 22046, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 67, 363, 628, 220, 220, 220, 825, 4808, 9967, 62, 80, 22046, 62, 1462, 62, 521, 1063, 7, 944, 11, 2512, 62, 80, 22046, 11, 3298, 62, 9630, 62, 8899, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13912, 1123, 627, 2545, 287, 2512, 62, 80, 22046, 284, 663, 6503, 2292, 1871, 262, 2512, 338, 19474, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 80, 22046, 357, 4868, 2599, 1351, 286, 627, 9895, 326, 257, 2512, 6529, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9630, 62, 8899, 357, 11600, 2599, 16855, 422, 1123, 627, 2545, 287, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10349, 284, 663, 6503, 2292, 1626, 326, 10349, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 16855, 422, 10662, 853, 284, 2292, 287, 2512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 521, 1063, 796, 685, 20541, 62, 9630, 62, 8899, 58, 80, 60, 329, 10662, 287, 2512, 62, 80, 22046, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6149, 62, 9967, 62, 521, 1063, 796, 23243, 7, 9967, 62, 521, 1063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 62, 1930, 1756, 796, 1391, 80, 25, 6149, 62, 9967, 62, 521, 1063, 13, 9630, 7, 20541, 62, 9630, 62, 8899, 58, 80, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10662, 287, 2512, 62, 80, 22046, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2512, 62, 1930, 1756, 198 ]
2.061843
4,091
# Generated by Django 3.2.10 on 2021-12-24 07:16 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 940, 319, 33448, 12, 1065, 12, 1731, 8753, 25, 1433, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.840909
44
import requests from bs4 import BeautifulSoup from time import sleep from retrying import retry import json import re import pymongo import datetime from feichangzun import config headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 ' '(KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'} feichangzun = 'http://www.variflight.com' allUrl = "http://www.variflight.com/sitemap.html?AE71649A58c77=" pausetime = 1000 if __name__ == '__main__': fp = FCZPAC() fp.start() # flightdata = fp.getchuanghanglist() # flightlink = flightdata.flightlink # fp.getListData(flightlink) # fp.getaflightinfo(['/schedule/SZX-CTU-3U3033.html?AE71649A58c77='])
[ 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 640, 1330, 3993, 198, 6738, 1005, 14992, 1330, 1005, 563, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 279, 4948, 25162, 198, 11748, 4818, 8079, 198, 198, 6738, 730, 488, 648, 89, 403, 1330, 4566, 628, 198, 50145, 796, 1391, 6, 12982, 12, 36772, 10354, 705, 44, 8590, 5049, 14, 20, 13, 15, 357, 11209, 24563, 838, 13, 15, 26, 370, 3913, 2414, 8, 4196, 13908, 20827, 14, 46096, 13, 2623, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29513, 42, 28656, 11, 588, 2269, 37549, 8, 13282, 14, 2920, 13, 15, 13, 2075, 1954, 13, 26115, 23298, 14, 46096, 13, 2623, 7946, 362, 13, 55, 30277, 50, 81, 352, 13, 15, 6, 92, 198, 5036, 488, 648, 89, 403, 796, 705, 4023, 1378, 2503, 13, 7785, 361, 2971, 13, 785, 6, 198, 439, 28165, 796, 366, 4023, 1378, 2503, 13, 7785, 361, 2971, 13, 785, 14, 82, 9186, 499, 13, 6494, 30, 14242, 22, 1433, 2920, 32, 3365, 66, 3324, 2625, 198, 79, 8717, 8079, 796, 8576, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 277, 79, 796, 10029, 57, 44938, 3419, 198, 220, 220, 220, 277, 79, 13, 9688, 3419, 198, 220, 220, 220, 1303, 5474, 7890, 796, 277, 79, 13, 1136, 354, 7258, 456, 648, 4868, 3419, 198, 220, 220, 220, 1303, 5474, 8726, 796, 5474, 7890, 13, 22560, 8726, 198, 220, 220, 220, 1303, 277, 79, 13, 1136, 8053, 6601, 7, 22560, 8726, 8, 198, 220, 220, 220, 1303, 277, 79, 13, 1136, 1878, 2971, 10951, 7, 17816, 14, 15952, 5950, 14, 50, 40692, 12, 4177, 52, 12, 18, 52, 1270, 2091, 13, 6494, 30, 14242, 22, 1433, 2920, 32, 3365, 66, 3324, 11639, 12962 ]
2.332288
319
from numpy import zeros import time n=6 # number of equations A=[[10.0, -1.0, 4.0, 0.0, 2.0, 9.0, 19.0], [0.0, 25.0, -2.0, 7.0, 8.0, 4.0, 2.0], [1.0, 0.0, 15.0, 7.0, 3.0, -2.0, 13.0], [6.0, -1.0, 2.0, 23.0, 0.0, 8.0, -7.0], [-4.0, 2.0, 0.0, 5.0, -25.0, 3.0, -9.0], [0.0, 7.0, -1.0, 5.0, 4.0, -22.0, 2.0]] #the augmented matrix x = zeros(n) # solution matrix x=GE(A) print(x)
[ 6738, 299, 32152, 1330, 1976, 27498, 198, 11748, 640, 198, 198, 77, 28, 21, 1303, 1271, 286, 27490, 198, 32, 28, 30109, 940, 13, 15, 11, 532, 16, 13, 15, 11, 604, 13, 15, 11, 657, 13, 15, 11, 362, 13, 15, 11, 860, 13, 15, 11, 678, 13, 15, 4357, 685, 15, 13, 15, 11, 1679, 13, 15, 11, 532, 17, 13, 15, 11, 767, 13, 15, 11, 807, 13, 15, 11, 604, 13, 15, 11, 362, 13, 15, 4357, 685, 16, 13, 15, 11, 657, 13, 15, 11, 1315, 13, 15, 11, 767, 13, 15, 11, 513, 13, 15, 11, 532, 17, 13, 15, 11, 1511, 13, 15, 4357, 685, 21, 13, 15, 11, 532, 16, 13, 15, 11, 362, 13, 15, 11, 2242, 13, 15, 11, 657, 13, 15, 11, 807, 13, 15, 11, 532, 22, 13, 15, 4357, 25915, 19, 13, 15, 11, 362, 13, 15, 11, 657, 13, 15, 11, 642, 13, 15, 11, 532, 1495, 13, 15, 11, 513, 13, 15, 11, 532, 24, 13, 15, 4357, 685, 15, 13, 15, 11, 767, 13, 15, 11, 532, 16, 13, 15, 11, 642, 13, 15, 11, 604, 13, 15, 11, 532, 1828, 13, 15, 11, 362, 13, 15, 11907, 1303, 1169, 30259, 17593, 198, 87, 796, 1976, 27498, 7, 77, 8, 1303, 4610, 17593, 198, 87, 28, 8264, 7, 32, 8, 198, 4798, 7, 87, 8, 198 ]
1.62069
232
""" Code up the game tic tac toe 1 class solution """ if __name__ == "__main__": t = TicTacToe() t.print_board() t.play_game()
[ 37811, 198, 10669, 510, 262, 983, 256, 291, 26142, 21189, 198, 16, 1398, 4610, 198, 37811, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 256, 796, 309, 291, 51, 330, 2514, 68, 3419, 198, 220, 220, 220, 256, 13, 4798, 62, 3526, 3419, 198, 220, 220, 220, 256, 13, 1759, 62, 6057, 3419, 198 ]
2.274194
62
from model.contact import Contact testdata = [ Contact(firstname="name1", lastname="lastname1", middlename="middlename1", nickname="nickname1", title="title1", company="company1", address="address1", homephone="homephone1", mobilephone="mobphone1", workphone="workphone1", fax="fax1", email="email1", secondaryphone="secphone1") ]
[ 6738, 2746, 13, 32057, 1330, 14039, 198, 198, 9288, 7890, 796, 685, 198, 220, 220, 220, 14039, 7, 11085, 3672, 2625, 3672, 16, 1600, 938, 3672, 2625, 12957, 3672, 16, 1600, 285, 1638, 11925, 480, 2625, 76, 1638, 11925, 480, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21814, 2625, 17172, 3672, 16, 1600, 3670, 2625, 7839, 16, 1600, 1664, 2625, 39722, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 2625, 21975, 16, 1600, 1363, 4862, 2625, 11195, 4862, 16, 1600, 5175, 4862, 2625, 39949, 4862, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 670, 4862, 2625, 1818, 4862, 16, 1600, 35168, 2625, 23560, 16, 1600, 3053, 2625, 12888, 16, 1600, 9233, 4862, 2625, 2363, 4862, 16, 4943, 198, 60, 198 ]
2.657143
140
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2015, 2016 # -------------------------------------------------------------------------- """ Configuration of the CP Optimizer Python API This module is the top-level handler of the configuration parameters for the CP Optimizer Python API. It contains the default values of the different configuration parameters. It should NOT be changed directly. The preferable way is to add at least one of the following files that contain the changes to be performed: * *cpo_config.py*, a local set of changes on these parameters, * *cpo_config_<hostname>.py*, a hostname dependent set of changes. * *docloud_config.py* (for DOcloud url and key, file shared with docplex.mp package). Final set of parameters is obtained by reading first this module, and then those listed above. These modules should be visible from the *PYTHONPATH* and are loaded in this order to overwrite default values. This module also defines two global variables: * *DOCLOUD_CONTEXT*, that contains the configuration necessary to solve a model on DOcloud. This context is the context by default, referenced by the global variable 'context'. * *LOCAL_CONTEXT*, that contains the configuration appropriate to solve a model with a local installation of the CPO solver. This configuration is available for solver with version number greater or equal to 12.7.0. The method :meth:`set_default` allows to set the default configuration to one that is predefined, or another that has been totally customized. If called as main, this module prints the actual configuration on standard output, including all customizations made using the mechanism described above. Following sections describe the most important parameters that can be easily modified to customize the behavior of the Python API. All available parameters are available by consulting the source code of this module. General parameters ------------------ *context.log_output = sys.stdout* This parameter contains the default log stream. By default it is set to the standard output. A value of *None* can be used to disable all logs. *context.verbose = 0* This parameter controls the verbosity level of the log, between 0 and 9, if *log_output* is not None. The default value of 0 means no log. *context.model.add_source_location = True* This parameter indicates that when the model is transformed into CPO format, additional information is added to correlate expressions with the Python file and line where it has been generated. If any error is raised by the solver during the solve, this information is provided in the error description, which allows for easier debugging. *context.model.length_for_alias = 15* This parameter allows to associate a shorter alias to variables whose name is longer than the given length. In the CPO representation of the model, variable is declared with its original name and an alias is created to use it with a shorter name in model expressions, allowing to reduce the size of the generated CPO format. In the returned solution, variable can be still retrieved with their original names. By default, the value is 15. A value of None would indicate to always keep original variable names. *context.model.length_for_rename = None* This parameter allows to replace the names of the variables when it is longer than the given length. A shorter name is generated and is used everywhere in the generated model CPO format in place of the original name. This allows to drastically reduce the size of the model generated in the CPO format. In the returned solution, the value of such variables can be retrieved thanks to a mapping between previous and new names, that is maintained in the client Python program. By default, the value is None, indicating to keep original variable names. *context.model.name_all_constraints = False* This parameter enables the naming of all constraints when the model is generated in CPO format. It is mandatory only if the *refine conflict* function is called. Anyway, if the *refine conflict* function is called, and if the CPO format of the model has already been generated, it is generated again with this option set in order to allow proper completion of the request. Setting it to *True* is preferable only if *refine conflict* function is called on a big model. *context.model.dump_directory = None* This parameter gives the name of a directory where the CPO files that are generated for solving models are stored for logging purpose. If not None, the directory is created and generated models are stored in files named `<model_name>.cpo`. *context.model.cache.size = 10000* This parameter gives the maximum capacity of the internal cache used to speed-up conversion of Python expressions into CPO expressions. *context.model.cache.active = True* This parameter allows to enable or disable the expression cache mechanism. Value os a boolean (True or False). Default value is True. *context.params.\** The parameter `context.params` is an instance of the class :class:`~docplex.cp.parameters.CpoParameters` (in :doc:`parameters.py</docplex.cp.parameters.py>`) which describes all of the public solver parameters as properties. The default configuration limits the solving time to 100 seconds by using following settings: :: context.params.TimeMode = "ElapsedTime" context.params.TimeLimit = 100 These parameters may have a different default setting if the solver is not *DOcplexcloud*. Configuration of the model solving ---------------------------------- *context.solver.trace_cpo = False* This parameter indicates to trace the CPO model that is generated before submitting it for solving. The model is printed on the `context.log_output stream`, if given. *context.solver.trace_log = False* This parameter indicates to trace the log generated by the solver when solving the CPO model. The log is printed on the `context.log_output stream`, if given. The default value of this parameter is False for a solve on the cloud, and True for a local solve. *context.solver.enable_undocumented_params = False* This parameter allows to enable the possibility to set solving parameters that are not in the public parameters detailed in the class :class:`~docplex.cp.parameters.CpoParameters` (in :doc:`parameters.py</docplex.cp.parameters.py>`). *context.solver.add_log_to_solution = True* This parameter indicates to add the solver log content to the solution object. By default, this parameter is True but it can be set to False if the log is very big or of no interest. *context.solver.agent = 'docloud'* This parameter specifies the name of the solver agent that is used to solve the model. The value of this parameter is the name of a child context of `context.solver`, which contains necessary attributes that allow to create and run the required agent. There are two different agents described in the default configuration file: * `docloud`, the default agent, for solving a CPO model using the DOcplexcloud service. * `local`, the agent allowing to solve models locally using the CP Optimizer Interactive coming with versions of COS greater or equal to 12.7.0. If the CP Optimizer Interactive program *cpoptimizer(.exe)* is detected in the system path, the default solver agent is automatically set to *local* instead of *docloud*. *context.solver.log_prefix = "[Solver] "* Prefix that is added to every message that is logged by the solver component. Configuration of the `docloud` solving agent -------------------------------------------- *context.solver.docloud.url = "https://api-oaas.docloud.ibmcloud.com/job_manager/rest/v1/"* This parameter is used to specify the URL of the *DOcplexcloud* service. *context.solver.docloud.key = "'Set your key in docloud_config.py'"* This parameter contains the personal key for authorizing access to the *DOcplexcloud* service. Access credentials (base URL and access key) can be retrieved after registration from `<http://developer.ibm.com/docloud/docs/api-key/>`_. *context.solver.docloud.verify_ssl = True* This parameter allows to enable/disable the verification of SSL certificates. *context.solver.docloud.proxies = None* This parameter allows to optionally define proxies to be used in the connection with *DOcplexcloud*. It is a Python dictionary protocol_name / endpoint, as described in http://docs.python-requests.org/en/master/user/advanced/#proxies. *context.solver.docloud.request_timeout = 30* This parameter contains the maximum time, in seconds, that a response is waited for after a unitary request to *DOcplexcloud* server. *context.solver.docloud.result_wait_extra_time = 60* This parameter is a time in seconds added to the expected solve time to compute the total result waiting timeout. *context.solver.docloud.clean_job_after_solve = True* This parameter indicates whether the job is automatically cleaned after the model is solved. If not set to True, the model stays on the *DOcplexcloud* server and is visible from its *DropSolve* interface. Note that the server may block future solving requests if there are too many jobs waiting. *context.solver.docloud.polling = Context(min=1, max=3, incr=0.2)* This parameter describes how the Python client polls the result of the solve on *DOcplexcloud*. Polling delay is inside an interval [min, max], starting by min, growing to max with the given increment. Configuration of the `local` solving agent ------------------------------------------ *context.solver.local.execfile* Name or full path of the CP Optimizer Interactive executable file. By default, it is set to *cpoptimizer(.exe)*, which supposes that the program is visible from the system path. Configuration for best performances ----------------------------------- To configure the CP Python API for best performances, the following configuration settings may be used. Obviously, this performance is won at the cost of the loss of some features that may be useful in other cases. :: context.verbose = 0 context.model.add_source_location = False context.model.length_for_rename = 10 context.model.name_all_constraints = False context.model.dump_directory = None context.solver.trace_cpo = False context.solver.trace_log = False context.solver.add_log_to_solution = False Detailed description -------------------- """ from docplex.cp.utils import Context, CpoException, search_file_in_path, IS_IN_NOTEBOOK, is_string from docplex.cp.parameters import CpoParameters, ALL_PARAMETER_NAMES import sys, socket, os, platform, traceback try: import docplex.util.environment as runenv ENVIRONMENT_PRESENT = True except: ENVIRONMENT_PRESENT = False EXE_EXTENSION = ".exe" if platform.system() == 'Windows' else "" ############################################################################## ## Define default context for DOcloud solving ############################################################################## #----------------------------------------------------------------------------- # Global context # Create default context infrastructure DOCLOUD_CONTEXT = Context(model=Context(), params=CpoParameters(), solver=Context()) context = DOCLOUD_CONTEXT # Default log output context.log_output = sys.stdout # Default log verbosity context.verbose = 0 # Visu enable indicator (internal, can be disabled for testing purpose) context.visu_enabled = True #----------------------------------------------------------------------------- # Modeling context # Indicate to add source location in model context.model.add_source_location = True # Minimal variable name length that trigger use of shorter alias. None for no alias. context.model.length_for_alias = 15 # Minimal variable name length that trigger renaming variable with a shorter name. None for no rename. context.model.length_for_rename = None # Automatically add a name to every top-level constraint context.model.name_all_constraints = False # Name of the directory where store copy of the generated CPO files. None for no dump. context.model.dump_directory = None # Expression cache context.model.cache = Context() context.model.cache.size = 10000 context.model.cache.active = True #----------------------------------------------------------------------------- # Solving parameters # Default time limit context.params.TimeLimit = 100 # Workers count context.params.Workers = 4 #----------------------------------------------------------------------------- # Solving context # Indicate to trace CPO model before solving context.solver.trace_cpo = False # Indicate to trace solver log on log_output. context.solver.trace_log = False # Enable undocumented parameters context.solver.enable_undocumented_params = False # Max number of threads allowed for model solving context.solver.max_threads = None if ENVIRONMENT_PRESENT: context.solver.max_threads = runenv.get_environment().get_available_core_count() # Indicate to add solver log to the solution context.solver.add_log_to_solution = True # Indicate to auto-publish solve details and results in environment context.solver.auto_publish = True # Indicate to replace simple solve by a start/next loop context.solver.solve_with_start_next = False # Log prefix context.solver.log_prefix = "[Solver] " # Name of the agent to be used for solving. Value is name of one of this context child context (i.e. 'docloud'). context.solver.agent = 'docloud' #----------------------------------------------------------------------------- # DoCloud solving agent context context.solver.docloud = Context() # Agent class name context.solver.docloud.class_name = "docplex.cp.solver.solver_docloud.CpoSolverDocloud" # Url of the DOCloud service context.solver.docloud.url = "https://api-oaas.docloud.ibmcloud.com/job_manager/rest/v1/" # Authentication key. context.solver.docloud.key = "'Set your key in docloud_config.py''" # Secret key. context.solver.docloud.secret = None # Indicate to verify SSL certificates context.solver.docloud.verify_ssl = True # Proxies (map protocol_name/endpoint, as described in http://docs.python-requests.org/en/master/user/advanced/#proxies) context.solver.docloud.proxies = None # Default unitary request timeout in seconds context.solver.docloud.request_timeout = 30 # Time added to expected solve time to compute the total result waiting timeout context.solver.docloud.result_wait_extra_time = 60 # Clean job after solve indicator context.solver.docloud.clean_job_after_solve = True # Add 'Connection close' in all headers context.solver.docloud.always_close_connection = False # Log prefix context.solver.docloud.log_prefix = "[DOcloud] " # Polling delay (min, max and increment) context.solver.docloud.polling = Context(min=1, max=3, incr=0.2) #----------------------------------------------------------------------------- # Local solving agent context context.solver.local = Context(class_name = "docplex.cp.solver.solver_local.CpoSolverLocal", execfile = "cpoptimizer" + EXE_EXTENSION, parameters = ['-angel'], log_prefix = "[Local] ") LOCAL_CONTEXT = context.clone() LOCAL_CONTEXT.params.pop('TimeLimit') LOCAL_CONTEXT.params.pop('Workers') LOCAL_CONTEXT.solver.trace_log = not IS_IN_NOTEBOOK LOCAL_CONTEXT.solver.agent = 'local' LOCAL_CONTEXT.solver.max_threads = None # Select local context if exec file is visible in the path cpfile = search_file_in_path(LOCAL_CONTEXT.solver.local.execfile) if cpfile: LOCAL_CONTEXT.solver.local.execpath = cpfile context = LOCAL_CONTEXT ############################################################################## ## Public functions ############################################################################## def get_default(): """ Get the default context Default context is also accessible with the global variable 'context' in this module. Returns: Current default context """ return context def set_default(ctx): """ Set the default context. Default context becomes accessible in the global variable 'context' in this module. Args: ctx: New default context """ if ctx is None: ctx = Context() else: assert isinstance(ctx, Context), "Context object must be of class Context" sys.modules[__name__].context = ctx # Attribute values denoting a default value DEFAULT_VALUES = ("ENTER YOUR KEY HERE", "ENTER YOUR URL HERE", "default") def _get_effective_context(**kwargs): """ Build a effective context from a variable list of arguments that may specify changes to default. Args: context (optional): Source context, if not default. params (optional): Solving parameters (CpoParameters) that overwrite those in the solving context (others) (optional): All other context parameters that can be changed. Returns: Updated (cloned) context """ # If 'url' and 'key' are defined, force agent to be docloud if ('agent' not in kwargs) and not ENVIRONMENT_PRESENT: url = kwargs.get('url') key = kwargs.get('key') if url and key and is_string(url) and is_string(key) and url.startswith('http'): kwargs['agent'] = 'docloud' # Determine source context ctx = kwargs.get('context') if (ctx is None) or (ctx in DEFAULT_VALUES): ctx = context ctx = ctx.clone() # print("\n*** Source context"); # ctx.print_context() # First set parameters if given prms = kwargs.get('params') if prms is not None: ctx.params.add(prms) # Process other changes rplist = [] # List of replacements to be done in solving parameters for k, v in kwargs.items(): if (k != 'context') and (k != 'params') and (v not in DEFAULT_VALUES): rp = ctx.search_and_replace_attribute(k, v) # If not found, set in solving parameters if (rp is None): rplist.append((k, v)) # Replace or set remaining fields in parameters if rplist: params = ctx.params chkparams = not ctx.solver.enable_undocumented_params if isinstance(params, CpoParameters): for k, v in rplist: if chkparams and not k in ALL_PARAMETER_NAMES: raise CpoException("CPO solver does not accept a parameter named '{}'".format(k)) setattr(params, k, v) # Return # print("\n*** Result context"); # ctx.print_context() return ctx ############################################################################## ## Overload this configuration with other customized configuraton python files ############################################################################## def _eval_file(file): """ If exists, evaluate the content of a python module in this module. Args: file: Python file to evaluate """ for f in filter(os.path.isfile, [dir + "/" + file for dir in sys.path]): try: exec(open(f).read()) except Exception as e: traceback.print_exc() raise Exception("Error while loading config file {}: {}".format(f, str(e))) # Initialize default list of files to load FILE_LIST = ("cpo_config.py", "cpo_config_" + socket.gethostname() + ".py", "docloud_config.py") # Load all config changes for f in FILE_LIST: _eval_file(f) ############################################################################## ## Print configuration when called as main ############################################################################## if __name__ == "__main__": context.print_context()
[ 2, 16529, 35937, 201, 198, 2, 8090, 2393, 2810, 739, 24843, 13789, 11, 10628, 362, 13, 15, 11, 3269, 5472, 11, 201, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 201, 198, 2, 357, 66, 8, 15069, 19764, 11421, 13, 1853, 11, 1584, 201, 198, 2, 16529, 35937, 201, 198, 201, 198, 37811, 201, 198, 38149, 286, 262, 16932, 30011, 7509, 11361, 7824, 201, 198, 201, 198, 1212, 8265, 318, 262, 1353, 12, 5715, 21360, 286, 262, 8398, 10007, 329, 201, 198, 1169, 16932, 30011, 7509, 11361, 7824, 13, 632, 4909, 262, 4277, 3815, 286, 262, 1180, 201, 198, 11250, 3924, 10007, 13, 201, 198, 201, 198, 1026, 815, 5626, 307, 3421, 3264, 13, 201, 198, 464, 33887, 835, 318, 284, 751, 379, 1551, 530, 286, 262, 1708, 3696, 326, 3994, 262, 2458, 201, 198, 1462, 307, 6157, 25, 201, 198, 201, 198, 1635, 1635, 66, 7501, 62, 11250, 13, 9078, 25666, 257, 1957, 900, 286, 2458, 319, 777, 10007, 11, 201, 198, 1635, 1635, 66, 7501, 62, 11250, 62, 27, 4774, 3672, 28401, 9078, 25666, 257, 2583, 3672, 10795, 900, 286, 2458, 13, 201, 198, 1635, 1635, 15390, 75, 2778, 62, 11250, 13, 9078, 9, 357, 1640, 8410, 17721, 19016, 290, 1994, 11, 2393, 4888, 351, 2205, 11141, 13, 3149, 5301, 737, 201, 198, 201, 198, 19006, 900, 286, 10007, 318, 6492, 416, 3555, 717, 428, 8265, 11, 290, 788, 883, 201, 198, 17935, 2029, 13, 201, 198, 4711, 13103, 815, 307, 7424, 422, 262, 1635, 47, 56, 4221, 1340, 34219, 9, 290, 389, 9639, 287, 201, 198, 5661, 1502, 284, 49312, 4277, 3815, 13, 201, 198, 201, 198, 1212, 8265, 635, 15738, 734, 3298, 9633, 25, 201, 198, 201, 198, 1635, 1635, 38715, 43, 2606, 35, 62, 10943, 32541, 25666, 326, 4909, 262, 8398, 3306, 284, 8494, 257, 2746, 319, 8410, 17721, 13, 201, 198, 220, 220, 770, 4732, 318, 262, 4732, 416, 4277, 11, 20717, 416, 262, 3298, 7885, 705, 22866, 4458, 201, 198, 1635, 1635, 29701, 1847, 62, 10943, 32541, 25666, 326, 4909, 262, 8398, 5035, 284, 8494, 257, 2746, 351, 257, 1957, 201, 198, 220, 220, 9988, 286, 262, 327, 16402, 1540, 332, 13, 201, 198, 220, 220, 770, 8398, 318, 1695, 329, 1540, 332, 351, 2196, 1271, 3744, 393, 4961, 284, 1105, 13, 22, 13, 15, 13, 201, 198, 201, 198, 464, 2446, 1058, 76, 2788, 25, 63, 2617, 62, 12286, 63, 3578, 284, 900, 262, 4277, 8398, 284, 530, 326, 318, 2747, 18156, 11, 201, 198, 273, 1194, 326, 468, 587, 6635, 27658, 13, 201, 198, 201, 198, 1532, 1444, 355, 1388, 11, 428, 8265, 20842, 262, 4036, 8398, 319, 3210, 5072, 11, 1390, 201, 198, 439, 2183, 4582, 925, 1262, 262, 9030, 3417, 2029, 13, 201, 198, 201, 198, 14291, 9004, 6901, 262, 749, 1593, 10007, 326, 460, 307, 3538, 9518, 284, 24184, 201, 198, 1169, 4069, 286, 262, 11361, 7824, 13, 201, 198, 3237, 1695, 10007, 389, 1695, 416, 18158, 262, 2723, 2438, 286, 428, 8265, 13, 201, 198, 201, 198, 12218, 10007, 201, 198, 1783, 438, 201, 198, 201, 198, 9, 22866, 13, 6404, 62, 22915, 796, 25064, 13, 19282, 448, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 4909, 262, 4277, 2604, 4269, 13, 201, 198, 220, 220, 220, 2750, 4277, 340, 318, 900, 284, 262, 3210, 5072, 13, 201, 198, 220, 220, 220, 317, 1988, 286, 1635, 14202, 9, 460, 307, 973, 284, 15560, 477, 17259, 13, 201, 198, 201, 198, 9, 22866, 13, 19011, 577, 796, 657, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 6973, 262, 15942, 16579, 1241, 286, 262, 2604, 11, 1022, 657, 290, 860, 11, 611, 1635, 6404, 62, 22915, 9, 318, 407, 6045, 13, 201, 198, 220, 220, 220, 383, 4277, 1988, 286, 657, 1724, 645, 2604, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 2860, 62, 10459, 62, 24886, 796, 6407, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 9217, 326, 618, 262, 2746, 318, 14434, 656, 327, 16402, 5794, 11, 3224, 1321, 318, 2087, 201, 198, 220, 220, 220, 284, 39684, 14700, 351, 262, 11361, 2393, 290, 1627, 810, 340, 468, 587, 7560, 13, 201, 198, 220, 220, 220, 1002, 597, 4049, 318, 4376, 416, 262, 1540, 332, 1141, 262, 8494, 11, 428, 1321, 318, 2810, 287, 262, 201, 198, 220, 220, 220, 4049, 6764, 11, 543, 3578, 329, 4577, 28769, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 13664, 62, 1640, 62, 26011, 796, 1315, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 11602, 257, 12238, 16144, 284, 9633, 3025, 1438, 318, 2392, 621, 262, 1813, 4129, 13, 201, 198, 220, 220, 220, 554, 262, 327, 16402, 10552, 286, 262, 2746, 11, 7885, 318, 6875, 351, 663, 2656, 1438, 290, 281, 16144, 318, 2727, 201, 198, 220, 220, 220, 284, 779, 340, 351, 257, 12238, 1438, 287, 2746, 14700, 11, 5086, 284, 4646, 262, 2546, 286, 262, 7560, 327, 16402, 5794, 13, 201, 198, 201, 198, 220, 220, 220, 554, 262, 4504, 4610, 11, 7885, 460, 307, 991, 29517, 351, 511, 2656, 3891, 13, 201, 198, 201, 198, 220, 220, 220, 2750, 4277, 11, 262, 1988, 318, 1315, 13, 317, 1988, 286, 6045, 561, 7603, 284, 1464, 1394, 2656, 7885, 3891, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 13664, 62, 1640, 62, 918, 480, 796, 6045, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 6330, 262, 3891, 286, 262, 9633, 618, 340, 318, 2392, 621, 262, 1813, 4129, 13, 201, 198, 220, 220, 220, 317, 12238, 1438, 318, 7560, 290, 318, 973, 8347, 287, 262, 7560, 2746, 327, 16402, 5794, 287, 1295, 286, 262, 2656, 1438, 13, 201, 198, 220, 220, 220, 770, 3578, 284, 22188, 4646, 262, 2546, 286, 262, 2746, 7560, 287, 262, 327, 16402, 5794, 13, 201, 198, 201, 198, 220, 220, 220, 554, 262, 4504, 4610, 11, 262, 1988, 286, 884, 9633, 460, 307, 29517, 5176, 284, 257, 16855, 1022, 2180, 290, 201, 198, 220, 220, 220, 649, 3891, 11, 326, 318, 9456, 287, 262, 5456, 11361, 1430, 13, 201, 198, 201, 198, 220, 220, 220, 2750, 4277, 11, 262, 1988, 318, 6045, 11, 12739, 284, 1394, 2656, 7885, 3891, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 3672, 62, 439, 62, 1102, 2536, 6003, 796, 10352, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 13536, 262, 19264, 286, 477, 17778, 618, 262, 2746, 318, 7560, 287, 327, 16402, 5794, 13, 201, 198, 220, 220, 220, 632, 318, 13677, 691, 611, 262, 1635, 5420, 500, 5358, 9, 2163, 318, 1444, 13, 201, 198, 220, 220, 220, 21836, 11, 611, 262, 1635, 5420, 500, 5358, 9, 2163, 318, 1444, 11, 290, 611, 262, 327, 16402, 5794, 286, 262, 2746, 468, 1541, 587, 7560, 11, 201, 198, 220, 220, 220, 340, 318, 7560, 757, 351, 428, 3038, 900, 287, 1502, 284, 1249, 1774, 11939, 286, 262, 2581, 13, 201, 198, 220, 220, 220, 25700, 340, 284, 1635, 17821, 9, 318, 33887, 691, 611, 1635, 5420, 500, 5358, 9, 2163, 318, 1444, 319, 257, 1263, 2746, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 39455, 62, 34945, 796, 6045, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3607, 262, 1438, 286, 257, 8619, 810, 262, 327, 16402, 3696, 326, 389, 7560, 329, 18120, 4981, 389, 8574, 201, 198, 220, 220, 220, 329, 18931, 4007, 13, 201, 198, 201, 198, 220, 220, 220, 1002, 407, 6045, 11, 262, 8619, 318, 2727, 290, 7560, 4981, 389, 8574, 287, 3696, 3706, 4600, 27, 19849, 62, 3672, 28401, 66, 7501, 44646, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 23870, 13, 7857, 796, 33028, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3607, 262, 5415, 5339, 286, 262, 5387, 12940, 973, 284, 2866, 12, 929, 11315, 286, 11361, 14700, 201, 198, 220, 220, 220, 656, 327, 16402, 14700, 13, 201, 198, 201, 198, 9, 22866, 13, 19849, 13, 23870, 13, 5275, 796, 6407, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 7139, 393, 15560, 262, 5408, 12940, 9030, 13, 201, 198, 220, 220, 220, 11052, 28686, 257, 25131, 357, 17821, 393, 10352, 737, 15161, 1988, 318, 6407, 13, 201, 198, 201, 198, 9, 22866, 13, 37266, 13, 59, 1174, 201, 198, 201, 198, 220, 220, 220, 383, 11507, 4600, 22866, 13, 37266, 63, 318, 281, 4554, 286, 262, 1398, 201, 198, 220, 220, 220, 1058, 4871, 25, 63, 93, 15390, 11141, 13, 13155, 13, 17143, 7307, 13, 34, 7501, 48944, 63, 357, 259, 1058, 15390, 25, 63, 17143, 7307, 13, 9078, 3556, 15390, 11141, 13, 13155, 13, 17143, 7307, 13, 9078, 29, 63, 8, 201, 198, 220, 220, 220, 543, 8477, 477, 286, 262, 1171, 1540, 332, 10007, 355, 6608, 13, 201, 198, 201, 198, 220, 220, 220, 383, 4277, 8398, 7095, 262, 18120, 640, 284, 1802, 4201, 416, 1262, 1708, 6460, 25, 201, 198, 220, 220, 220, 7904, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 13, 37266, 13, 7575, 19076, 796, 366, 9527, 28361, 7575, 1, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 13, 37266, 13, 7575, 39184, 796, 1802, 201, 198, 201, 198, 220, 220, 220, 2312, 10007, 743, 423, 257, 1180, 4277, 4634, 611, 262, 1540, 332, 318, 407, 1635, 18227, 66, 11141, 17721, 24620, 201, 198, 201, 198, 38149, 286, 262, 2746, 18120, 201, 198, 3880, 438, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 40546, 62, 66, 7501, 796, 10352, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 9217, 284, 12854, 262, 327, 16402, 2746, 326, 318, 7560, 878, 24353, 340, 329, 18120, 13, 201, 198, 220, 220, 220, 383, 2746, 318, 10398, 319, 262, 4600, 22866, 13, 6404, 62, 22915, 4269, 47671, 611, 1813, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 40546, 62, 6404, 796, 10352, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 9217, 284, 12854, 262, 2604, 7560, 416, 262, 1540, 332, 618, 18120, 262, 327, 16402, 2746, 13, 201, 198, 220, 220, 220, 383, 2604, 318, 10398, 319, 262, 4600, 22866, 13, 6404, 62, 22915, 4269, 47671, 611, 1813, 13, 201, 198, 201, 198, 220, 220, 220, 383, 4277, 1988, 286, 428, 11507, 318, 10352, 329, 257, 8494, 319, 262, 6279, 11, 290, 6407, 329, 257, 1957, 8494, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 21633, 62, 917, 17664, 62, 37266, 796, 10352, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 7139, 262, 5885, 284, 900, 18120, 10007, 326, 389, 407, 287, 262, 1171, 10007, 201, 198, 220, 220, 220, 6496, 287, 262, 1398, 201, 198, 220, 220, 220, 1058, 4871, 25, 63, 93, 15390, 11141, 13, 13155, 13, 17143, 7307, 13, 34, 7501, 48944, 63, 357, 259, 1058, 15390, 25, 63, 17143, 7307, 13, 9078, 3556, 15390, 11141, 13, 13155, 13, 17143, 7307, 13, 9078, 29, 63, 737, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 2860, 62, 6404, 62, 1462, 62, 82, 2122, 796, 6407, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 9217, 284, 751, 262, 1540, 332, 2604, 2695, 284, 262, 4610, 2134, 13, 201, 198, 220, 220, 220, 2750, 4277, 11, 428, 11507, 318, 6407, 475, 340, 460, 307, 900, 284, 10352, 611, 262, 2604, 318, 845, 1263, 393, 286, 645, 1393, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 25781, 796, 705, 15390, 75, 2778, 6, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 26052, 262, 1438, 286, 262, 1540, 332, 5797, 326, 318, 973, 284, 8494, 262, 2746, 13, 201, 198, 220, 220, 220, 383, 1988, 286, 428, 11507, 318, 262, 1438, 286, 257, 1200, 4732, 286, 4600, 22866, 13, 82, 14375, 47671, 543, 4909, 3306, 12608, 201, 198, 220, 220, 220, 326, 1249, 284, 2251, 290, 1057, 262, 2672, 5797, 13, 201, 198, 201, 198, 220, 220, 220, 1318, 389, 734, 1180, 6554, 3417, 287, 262, 4277, 8398, 2393, 25, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 1635, 4600, 15390, 75, 2778, 47671, 262, 4277, 5797, 11, 329, 18120, 257, 327, 16402, 2746, 1262, 262, 8410, 66, 11141, 17721, 2139, 13, 201, 198, 220, 220, 220, 220, 220, 220, 1635, 4600, 12001, 47671, 262, 5797, 5086, 284, 8494, 4981, 15726, 1262, 262, 16932, 30011, 7509, 21365, 2406, 351, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6300, 286, 327, 2640, 3744, 393, 4961, 284, 1105, 13, 22, 13, 15, 13, 201, 198, 201, 198, 220, 220, 220, 1002, 262, 16932, 30011, 7509, 21365, 1430, 1635, 13155, 40085, 7509, 7, 13, 13499, 27493, 318, 12326, 287, 262, 1080, 3108, 11, 262, 4277, 1540, 332, 201, 198, 220, 220, 220, 5797, 318, 6338, 900, 284, 1635, 12001, 9, 2427, 286, 1635, 15390, 75, 2778, 24620, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 6404, 62, 40290, 796, 12878, 50, 14375, 60, 366, 9, 201, 198, 201, 198, 220, 220, 220, 3771, 13049, 326, 318, 2087, 284, 790, 3275, 326, 318, 18832, 416, 262, 1540, 332, 7515, 13, 201, 198, 201, 198, 38149, 286, 262, 4600, 15390, 75, 2778, 63, 18120, 5797, 201, 198, 3880, 10541, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 6371, 796, 366, 5450, 1378, 15042, 12, 12162, 292, 13, 15390, 75, 2778, 13, 571, 76, 17721, 13, 785, 14, 21858, 62, 37153, 14, 2118, 14, 85, 16, 30487, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 318, 973, 284, 11986, 262, 10289, 286, 262, 1635, 18227, 66, 11141, 17721, 9, 2139, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 2539, 796, 24018, 7248, 534, 1994, 287, 2205, 75, 2778, 62, 11250, 13, 9078, 29653, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 4909, 262, 2614, 1994, 329, 42765, 1895, 284, 262, 1635, 18227, 66, 11141, 17721, 9, 2139, 13, 201, 198, 220, 220, 220, 8798, 18031, 357, 8692, 10289, 290, 1895, 1994, 8, 460, 307, 29517, 706, 9352, 422, 4600, 27, 4023, 1378, 16244, 263, 13, 571, 76, 13, 785, 14, 15390, 75, 2778, 14, 31628, 14, 15042, 12, 2539, 15913, 63, 44807, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 332, 1958, 62, 45163, 796, 6407, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 7139, 14, 40223, 262, 19637, 286, 25952, 20835, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 1676, 87, 444, 796, 6045, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 3578, 284, 42976, 8160, 41775, 284, 307, 973, 287, 262, 4637, 351, 1635, 18227, 66, 11141, 17721, 24620, 201, 198, 220, 220, 220, 632, 318, 257, 11361, 22155, 8435, 62, 3672, 1220, 36123, 11, 355, 3417, 287, 2638, 1378, 31628, 13, 29412, 12, 8897, 3558, 13, 2398, 14, 268, 14, 9866, 14, 7220, 14, 32225, 2903, 31113, 1676, 87, 444, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 25927, 62, 48678, 796, 1542, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 4909, 262, 5415, 640, 11, 287, 4201, 11, 326, 257, 2882, 318, 13488, 329, 706, 257, 4326, 560, 2581, 284, 1635, 18227, 66, 11141, 17721, 9, 4382, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 20274, 62, 17077, 62, 26086, 62, 2435, 796, 3126, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 318, 257, 640, 287, 4201, 2087, 284, 262, 2938, 8494, 640, 284, 24061, 262, 2472, 1255, 4953, 26827, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 27773, 62, 21858, 62, 8499, 62, 82, 6442, 796, 6407, 9, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 9217, 1771, 262, 1693, 318, 6338, 20750, 706, 262, 2746, 318, 16019, 13, 201, 198, 220, 220, 220, 1002, 407, 900, 284, 6407, 11, 262, 2746, 14768, 319, 262, 1635, 18227, 66, 11141, 17721, 9, 4382, 290, 318, 7424, 422, 663, 1635, 26932, 50, 6442, 9, 7071, 13, 201, 198, 220, 220, 220, 5740, 326, 262, 4382, 743, 2512, 2003, 18120, 7007, 611, 612, 389, 1165, 867, 3946, 4953, 13, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 30393, 278, 796, 30532, 7, 1084, 28, 16, 11, 3509, 28, 18, 11, 753, 81, 28, 15, 13, 17, 27493, 201, 198, 201, 198, 220, 220, 220, 770, 11507, 8477, 703, 262, 11361, 5456, 9231, 262, 1255, 286, 262, 8494, 319, 1635, 18227, 66, 11141, 17721, 24620, 201, 198, 220, 220, 220, 12868, 278, 5711, 318, 2641, 281, 16654, 685, 1084, 11, 3509, 4357, 3599, 416, 949, 11, 3957, 284, 3509, 351, 262, 1813, 18703, 13, 201, 198, 201, 198, 201, 198, 38149, 286, 262, 4600, 12001, 63, 18120, 5797, 201, 198, 3880, 35937, 201, 198, 201, 198, 9, 22866, 13, 82, 14375, 13, 12001, 13, 18558, 7753, 9, 201, 198, 201, 198, 220, 220, 220, 6530, 393, 1336, 3108, 286, 262, 16932, 30011, 7509, 21365, 28883, 2393, 13, 201, 198, 220, 220, 220, 2750, 4277, 11, 340, 318, 900, 284, 1635, 13155, 40085, 7509, 7, 13, 13499, 8, 25666, 543, 802, 4629, 326, 262, 1430, 318, 7424, 422, 262, 1080, 3108, 13, 201, 198, 201, 198, 201, 198, 38149, 329, 1266, 13289, 201, 198, 3880, 6329, 201, 198, 201, 198, 2514, 17425, 262, 16932, 11361, 7824, 329, 1266, 13289, 11, 262, 1708, 8398, 6460, 743, 307, 973, 13, 201, 198, 20670, 11, 428, 2854, 318, 1839, 379, 262, 1575, 286, 262, 2994, 286, 617, 3033, 326, 743, 307, 4465, 287, 584, 2663, 13, 201, 198, 3712, 201, 198, 201, 198, 220, 220, 220, 4732, 13, 19011, 577, 796, 657, 201, 198, 220, 220, 220, 4732, 13, 19849, 13, 2860, 62, 10459, 62, 24886, 796, 10352, 201, 198, 220, 220, 220, 4732, 13, 19849, 13, 13664, 62, 1640, 62, 918, 480, 796, 838, 201, 198, 220, 220, 220, 4732, 13, 19849, 13, 3672, 62, 439, 62, 1102, 2536, 6003, 796, 10352, 201, 198, 220, 220, 220, 4732, 13, 19849, 13, 39455, 62, 34945, 796, 6045, 201, 198, 220, 220, 220, 4732, 13, 82, 14375, 13, 40546, 62, 66, 7501, 796, 10352, 201, 198, 220, 220, 220, 4732, 13, 82, 14375, 13, 40546, 62, 6404, 796, 10352, 201, 198, 220, 220, 220, 4732, 13, 82, 14375, 13, 2860, 62, 6404, 62, 1462, 62, 82, 2122, 796, 10352, 201, 198, 201, 198, 201, 198, 32080, 6764, 201, 198, 19351, 201, 198, 37811, 201, 198, 201, 198, 6738, 2205, 11141, 13, 13155, 13, 26791, 1330, 30532, 11, 327, 7501, 16922, 11, 2989, 62, 7753, 62, 259, 62, 6978, 11, 3180, 62, 1268, 62, 16580, 39453, 11, 318, 62, 8841, 201, 198, 6738, 2205, 11141, 13, 13155, 13, 17143, 7307, 1330, 327, 7501, 48944, 11, 11096, 62, 27082, 2390, 2767, 1137, 62, 45, 29559, 201, 198, 201, 198, 11748, 25064, 11, 17802, 11, 28686, 11, 3859, 11, 12854, 1891, 201, 198, 201, 198, 28311, 25, 201, 198, 220, 220, 220, 1330, 2205, 11141, 13, 22602, 13, 38986, 355, 1057, 24330, 201, 198, 220, 220, 220, 12964, 53, 4663, 1340, 10979, 62, 48296, 3525, 796, 6407, 201, 198, 16341, 25, 201, 198, 220, 220, 220, 12964, 53, 4663, 1340, 10979, 62, 48296, 3525, 796, 10352, 201, 198, 201, 198, 6369, 36, 62, 13918, 16938, 2849, 796, 27071, 13499, 1, 611, 3859, 13, 10057, 3419, 6624, 705, 11209, 6, 2073, 13538, 201, 198, 201, 198, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 2235, 2896, 500, 4277, 4732, 329, 8410, 17721, 18120, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 8060, 4732, 201, 198, 201, 198, 2, 13610, 4277, 4732, 6884, 201, 198, 38715, 43, 2606, 35, 62, 10943, 32541, 796, 30532, 7, 19849, 28, 21947, 22784, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 34, 7501, 48944, 22784, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1540, 332, 28, 21947, 28955, 201, 198, 22866, 796, 37760, 43, 2606, 35, 62, 10943, 32541, 201, 198, 201, 198, 2, 15161, 2604, 5072, 201, 198, 22866, 13, 6404, 62, 22915, 796, 25064, 13, 19282, 448, 201, 198, 201, 198, 2, 15161, 2604, 15942, 16579, 201, 198, 22866, 13, 19011, 577, 796, 657, 201, 198, 201, 198, 2, 6911, 84, 7139, 16916, 357, 32538, 11, 460, 307, 10058, 329, 4856, 4007, 8, 201, 198, 22866, 13, 4703, 84, 62, 25616, 796, 6407, 201, 198, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 9104, 278, 4732, 201, 198, 201, 198, 2, 1423, 5344, 284, 751, 2723, 4067, 287, 2746, 201, 198, 22866, 13, 19849, 13, 2860, 62, 10459, 62, 24886, 796, 6407, 201, 198, 201, 198, 2, 1855, 4402, 7885, 1438, 4129, 326, 7616, 779, 286, 12238, 16144, 13, 6045, 329, 645, 16144, 13, 201, 198, 22866, 13, 19849, 13, 13664, 62, 1640, 62, 26011, 796, 1315, 201, 198, 201, 198, 2, 1855, 4402, 7885, 1438, 4129, 326, 7616, 8851, 3723, 7885, 351, 257, 12238, 1438, 13, 6045, 329, 645, 36265, 13, 201, 198, 22866, 13, 19849, 13, 13664, 62, 1640, 62, 918, 480, 796, 6045, 201, 198, 201, 198, 2, 17406, 4142, 751, 257, 1438, 284, 790, 1353, 12, 5715, 32315, 201, 198, 22866, 13, 19849, 13, 3672, 62, 439, 62, 1102, 2536, 6003, 796, 10352, 201, 198, 201, 198, 2, 6530, 286, 262, 8619, 810, 3650, 4866, 286, 262, 7560, 327, 16402, 3696, 13, 6045, 329, 645, 10285, 13, 201, 198, 22866, 13, 19849, 13, 39455, 62, 34945, 796, 6045, 201, 198, 201, 198, 2, 41986, 12940, 201, 198, 22866, 13, 19849, 13, 23870, 796, 30532, 3419, 201, 198, 22866, 13, 19849, 13, 23870, 13, 7857, 796, 33028, 201, 198, 22866, 13, 19849, 13, 23870, 13, 5275, 796, 6407, 201, 198, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 4294, 1075, 10007, 201, 198, 201, 198, 2, 15161, 640, 4179, 201, 198, 22866, 13, 37266, 13, 7575, 39184, 796, 1802, 201, 198, 201, 198, 2, 16847, 954, 201, 198, 22866, 13, 37266, 13, 12468, 364, 796, 604, 201, 198, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 4294, 1075, 4732, 201, 198, 201, 198, 2, 1423, 5344, 284, 12854, 327, 16402, 2746, 878, 18120, 201, 198, 22866, 13, 82, 14375, 13, 40546, 62, 66, 7501, 796, 10352, 201, 198, 201, 198, 2, 1423, 5344, 284, 12854, 1540, 332, 2604, 319, 2604, 62, 22915, 13, 201, 198, 22866, 13, 82, 14375, 13, 40546, 62, 6404, 796, 10352, 201, 198, 201, 198, 2, 27882, 21829, 10007, 201, 198, 22866, 13, 82, 14375, 13, 21633, 62, 917, 17664, 62, 37266, 796, 10352, 201, 198, 201, 198, 2, 5436, 1271, 286, 14390, 3142, 329, 2746, 18120, 201, 198, 22866, 13, 82, 14375, 13, 9806, 62, 16663, 82, 796, 6045, 201, 198, 361, 12964, 53, 4663, 1340, 10979, 62, 48296, 3525, 25, 201, 198, 220, 220, 220, 4732, 13, 82, 14375, 13, 9806, 62, 16663, 82, 796, 1057, 24330, 13, 1136, 62, 38986, 22446, 1136, 62, 15182, 62, 7295, 62, 9127, 3419, 201, 198, 201, 198, 2, 1423, 5344, 284, 751, 1540, 332, 2604, 284, 262, 4610, 201, 198, 22866, 13, 82, 14375, 13, 2860, 62, 6404, 62, 1462, 62, 82, 2122, 796, 6407, 201, 198, 201, 198, 2, 1423, 5344, 284, 8295, 12, 12984, 1836, 8494, 3307, 290, 2482, 287, 2858, 201, 198, 22866, 13, 82, 14375, 13, 23736, 62, 12984, 1836, 796, 6407, 201, 198, 201, 198, 2, 1423, 5344, 284, 6330, 2829, 8494, 416, 257, 923, 14, 19545, 9052, 201, 198, 22866, 13, 82, 14375, 13, 82, 6442, 62, 4480, 62, 9688, 62, 19545, 796, 10352, 201, 198, 201, 198, 2, 5972, 21231, 201, 198, 22866, 13, 82, 14375, 13, 6404, 62, 40290, 796, 12878, 50, 14375, 60, 366, 201, 198, 201, 198, 2, 6530, 286, 262, 5797, 284, 307, 973, 329, 18120, 13, 11052, 318, 1438, 286, 530, 286, 428, 4732, 1200, 4732, 357, 72, 13, 68, 13, 705, 15390, 75, 2778, 27691, 201, 198, 22866, 13, 82, 14375, 13, 25781, 796, 705, 15390, 75, 2778, 6, 201, 198, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 2141, 18839, 18120, 5797, 4732, 201, 198, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 796, 30532, 3419, 201, 198, 201, 198, 2, 15906, 1398, 1438, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 4871, 62, 3672, 796, 366, 15390, 11141, 13, 13155, 13, 82, 14375, 13, 82, 14375, 62, 15390, 75, 2778, 13, 34, 7501, 50, 14375, 23579, 75, 2778, 1, 201, 198, 201, 198, 2, 8799, 75, 286, 262, 8410, 18839, 2139, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 6371, 796, 366, 5450, 1378, 15042, 12, 12162, 292, 13, 15390, 75, 2778, 13, 571, 76, 17721, 13, 785, 14, 21858, 62, 37153, 14, 2118, 14, 85, 16, 30487, 201, 198, 201, 198, 2, 48191, 1994, 13, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 2539, 796, 24018, 7248, 534, 1994, 287, 2205, 75, 2778, 62, 11250, 13, 9078, 7061, 1, 201, 198, 201, 198, 2, 3943, 1994, 13, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 21078, 796, 6045, 201, 198, 201, 198, 2, 1423, 5344, 284, 11767, 25952, 20835, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 332, 1958, 62, 45163, 796, 6407, 201, 198, 201, 198, 2, 1041, 87, 444, 357, 8899, 8435, 62, 3672, 14, 437, 4122, 11, 355, 3417, 287, 2638, 1378, 31628, 13, 29412, 12, 8897, 3558, 13, 2398, 14, 268, 14, 9866, 14, 7220, 14, 32225, 2903, 31113, 1676, 87, 444, 8, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 1676, 87, 444, 796, 6045, 201, 198, 201, 198, 2, 15161, 4326, 560, 2581, 26827, 287, 4201, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 25927, 62, 48678, 796, 1542, 201, 198, 201, 198, 2, 3862, 2087, 284, 2938, 8494, 640, 284, 24061, 262, 2472, 1255, 4953, 26827, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 20274, 62, 17077, 62, 26086, 62, 2435, 796, 3126, 201, 198, 201, 198, 2, 5985, 1693, 706, 8494, 16916, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 27773, 62, 21858, 62, 8499, 62, 82, 6442, 796, 6407, 201, 198, 201, 198, 2, 3060, 705, 32048, 1969, 6, 287, 477, 24697, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 33770, 62, 19836, 62, 38659, 796, 10352, 201, 198, 201, 198, 2, 5972, 21231, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 6404, 62, 40290, 796, 12878, 18227, 17721, 60, 366, 201, 198, 201, 198, 2, 12868, 278, 5711, 357, 1084, 11, 3509, 290, 18703, 8, 201, 198, 22866, 13, 82, 14375, 13, 15390, 75, 2778, 13, 30393, 278, 796, 30532, 7, 1084, 28, 16, 11, 3509, 28, 18, 11, 753, 81, 28, 15, 13, 17, 8, 201, 198, 201, 198, 201, 198, 2, 10097, 32501, 201, 198, 2, 10714, 18120, 5797, 4732, 201, 198, 201, 198, 22866, 13, 82, 14375, 13, 12001, 796, 30532, 7, 4871, 62, 3672, 796, 366, 15390, 11141, 13, 13155, 13, 82, 14375, 13, 82, 14375, 62, 12001, 13, 34, 7501, 50, 14375, 14565, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 7753, 220, 220, 796, 366, 13155, 40085, 7509, 1, 1343, 7788, 36, 62, 13918, 16938, 2849, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 796, 685, 29001, 8368, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 40290, 796, 12878, 14565, 60, 366, 8, 201, 198, 201, 198, 29701, 1847, 62, 10943, 32541, 796, 4732, 13, 21018, 3419, 201, 198, 201, 198, 29701, 1847, 62, 10943, 32541, 13, 37266, 13, 12924, 10786, 7575, 39184, 11537, 201, 198, 29701, 1847, 62, 10943, 32541, 13, 37266, 13, 12924, 10786, 12468, 364, 11537, 201, 198, 201, 198, 29701, 1847, 62, 10943, 32541, 13, 82, 14375, 13, 40546, 62, 6404, 796, 407, 3180, 62, 1268, 62, 16580, 39453, 201, 198, 29701, 1847, 62, 10943, 32541, 13, 82, 14375, 13, 25781, 796, 705, 12001, 6, 201, 198, 29701, 1847, 62, 10943, 32541, 13, 82, 14375, 13, 9806, 62, 16663, 82, 796, 6045, 201, 198, 201, 198, 2, 9683, 1957, 4732, 611, 2452, 2393, 318, 7424, 287, 262, 3108, 201, 198, 13155, 7753, 796, 2989, 62, 7753, 62, 259, 62, 6978, 7, 29701, 1847, 62, 10943, 32541, 13, 82, 14375, 13, 12001, 13, 18558, 7753, 8, 201, 198, 361, 31396, 7753, 25, 201, 198, 220, 220, 220, 37347, 1847, 62, 10943, 32541, 13, 82, 14375, 13, 12001, 13, 18558, 6978, 796, 31396, 7753, 201, 198, 220, 220, 220, 4732, 796, 37347, 1847, 62, 10943, 32541, 201, 198, 201, 198, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 2235, 5094, 5499, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 201, 198, 4299, 651, 62, 12286, 33529, 201, 198, 220, 220, 220, 37227, 3497, 262, 4277, 4732, 201, 198, 201, 198, 220, 220, 220, 15161, 4732, 318, 635, 9857, 351, 262, 3298, 7885, 705, 22866, 6, 287, 428, 8265, 13, 201, 198, 201, 198, 220, 220, 220, 16409, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9236, 4277, 4732, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1441, 4732, 201, 198, 201, 198, 4299, 900, 62, 12286, 7, 49464, 2599, 201, 198, 220, 220, 220, 37227, 5345, 262, 4277, 4732, 13, 201, 198, 201, 198, 220, 220, 220, 15161, 4732, 4329, 9857, 287, 262, 3298, 7885, 705, 22866, 6, 287, 428, 8265, 13, 201, 198, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 25, 968, 4277, 4732, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 611, 269, 17602, 318, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 796, 30532, 3419, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 49464, 11, 30532, 828, 366, 21947, 2134, 1276, 307, 286, 1398, 30532, 1, 201, 198, 220, 220, 220, 25064, 13, 18170, 58, 834, 3672, 834, 4083, 22866, 796, 269, 17602, 201, 198, 201, 198, 201, 198, 2, 3460, 4163, 3815, 2853, 10720, 257, 4277, 1988, 201, 198, 7206, 38865, 62, 23428, 35409, 796, 5855, 3525, 1137, 16592, 35374, 15698, 1600, 366, 3525, 1137, 16592, 10289, 15698, 1600, 366, 12286, 4943, 201, 198, 201, 198, 4299, 4808, 1136, 62, 16803, 62, 22866, 7, 1174, 46265, 22046, 2599, 201, 198, 220, 220, 220, 37227, 10934, 257, 4050, 4732, 422, 257, 7885, 1351, 286, 7159, 326, 743, 11986, 2458, 284, 4277, 13, 201, 198, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 357, 25968, 2599, 220, 220, 8090, 4732, 11, 611, 407, 4277, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 357, 25968, 2599, 220, 220, 220, 4294, 1075, 10007, 357, 34, 7501, 48944, 8, 326, 49312, 883, 287, 262, 18120, 4732, 201, 198, 220, 220, 220, 220, 220, 220, 220, 357, 847, 82, 8, 357, 25968, 2599, 220, 1439, 584, 4732, 10007, 326, 460, 307, 3421, 13, 201, 198, 220, 220, 220, 16409, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 19433, 357, 565, 12004, 8, 4732, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1303, 1002, 705, 6371, 6, 290, 705, 2539, 6, 389, 5447, 11, 2700, 5797, 284, 307, 2205, 75, 2778, 201, 198, 220, 220, 220, 611, 19203, 25781, 6, 407, 287, 479, 86, 22046, 8, 290, 407, 12964, 53, 4663, 1340, 10979, 62, 48296, 3525, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 796, 479, 86, 22046, 13, 1136, 10786, 6371, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 479, 86, 22046, 13, 1136, 10786, 2539, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19016, 290, 1994, 290, 318, 62, 8841, 7, 6371, 8, 290, 318, 62, 8841, 7, 2539, 8, 290, 19016, 13, 9688, 2032, 342, 10786, 4023, 6, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 25781, 20520, 796, 705, 15390, 75, 2778, 6, 201, 198, 201, 198, 220, 220, 220, 1303, 45559, 3810, 2723, 4732, 201, 198, 220, 220, 220, 269, 17602, 796, 479, 86, 22046, 13, 1136, 10786, 22866, 11537, 201, 198, 220, 220, 220, 611, 357, 49464, 318, 6045, 8, 393, 357, 49464, 287, 5550, 38865, 62, 23428, 35409, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 796, 4732, 201, 198, 220, 220, 220, 269, 17602, 796, 269, 17602, 13, 21018, 3419, 201, 198, 220, 220, 220, 1303, 3601, 7203, 59, 77, 8162, 8090, 4732, 15341, 201, 198, 220, 220, 220, 1303, 269, 17602, 13, 4798, 62, 22866, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 3274, 900, 10007, 611, 1813, 201, 198, 220, 220, 220, 778, 907, 796, 479, 86, 22046, 13, 1136, 10786, 37266, 11537, 201, 198, 220, 220, 220, 611, 778, 907, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 37266, 13, 2860, 7, 1050, 907, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 10854, 584, 2458, 201, 198, 220, 220, 220, 374, 489, 396, 796, 17635, 220, 1303, 7343, 286, 36205, 284, 307, 1760, 287, 18120, 10007, 201, 198, 220, 220, 220, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 74, 14512, 705, 22866, 11537, 290, 357, 74, 14512, 705, 37266, 11537, 290, 357, 85, 407, 287, 5550, 38865, 62, 23428, 35409, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 79, 796, 269, 17602, 13, 12947, 62, 392, 62, 33491, 62, 42348, 7, 74, 11, 410, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 407, 1043, 11, 900, 287, 18120, 10007, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 81, 79, 318, 6045, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 489, 396, 13, 33295, 19510, 74, 11, 410, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 1303, 40177, 393, 900, 5637, 7032, 287, 10007, 201, 198, 220, 220, 220, 611, 374, 489, 396, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 269, 17602, 13, 37266, 201, 198, 220, 220, 220, 220, 220, 220, 220, 442, 74, 37266, 796, 407, 269, 17602, 13, 82, 14375, 13, 21633, 62, 917, 17664, 62, 37266, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 37266, 11, 327, 7501, 48944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 374, 489, 396, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 442, 74, 37266, 290, 407, 479, 287, 11096, 62, 27082, 2390, 2767, 1137, 62, 45, 29559, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 327, 7501, 16922, 7203, 8697, 46, 1540, 332, 857, 407, 2453, 257, 11507, 3706, 705, 90, 92, 6, 1911, 18982, 7, 74, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 37266, 11, 479, 11, 410, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 8229, 201, 198, 220, 220, 220, 1303, 3601, 7203, 59, 77, 8162, 25414, 4732, 15341, 201, 198, 220, 220, 220, 1303, 269, 17602, 13, 4798, 62, 22866, 3419, 201, 198, 220, 220, 220, 1441, 269, 17602, 201, 198, 201, 198, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 2235, 3827, 2220, 428, 8398, 351, 584, 27658, 4566, 333, 13951, 21015, 3696, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 201, 198, 4299, 4808, 18206, 62, 7753, 7, 7753, 2599, 201, 198, 220, 220, 220, 37227, 1002, 7160, 11, 13446, 262, 2695, 286, 257, 21015, 8265, 287, 428, 8265, 13, 201, 198, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 25, 11361, 2393, 284, 13446, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 329, 277, 287, 8106, 7, 418, 13, 6978, 13, 4468, 576, 11, 685, 15908, 1343, 12813, 1, 1343, 2393, 329, 26672, 287, 25064, 13, 6978, 60, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2452, 7, 9654, 7, 69, 737, 961, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 12331, 981, 11046, 4566, 2393, 23884, 25, 23884, 1911, 18982, 7, 69, 11, 965, 7, 68, 22305, 201, 198, 201, 198, 201, 198, 2, 20768, 1096, 4277, 1351, 286, 3696, 284, 3440, 201, 198, 25664, 62, 45849, 796, 5855, 66, 7501, 62, 11250, 13, 9078, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 7501, 62, 11250, 62, 1, 1343, 17802, 13, 1136, 4774, 3672, 3419, 1343, 27071, 9078, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15390, 75, 2778, 62, 11250, 13, 9078, 4943, 201, 198, 201, 198, 2, 8778, 477, 4566, 2458, 201, 198, 1640, 277, 287, 45811, 62, 45849, 25, 201, 198, 220, 220, 220, 4808, 18206, 62, 7753, 7, 69, 8, 201, 198, 201, 198, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 2235, 12578, 8398, 618, 1444, 355, 1388, 201, 198, 29113, 29113, 7804, 4242, 2235, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 4732, 13, 4798, 62, 22866, 3419, 201, 198 ]
3.190871
6,507
from peewee import DoesNotExist from datetime import datetime from ServiceManager.utilities import generate_module_name from shared.const import DBTypeIDs, DBClassIDs from shared.utils import need_connection from shared.db_models import * from ServiceManager.logger import manager_logger as logger @need_connection def get_object(object_id): """ Gets the record of the object with the given ID. Returns: (GamObject/None): The object with the given ID, None if not found. """ return GamObject.get_or_none(GamObject.ob_id == object_id) @need_connection def get_object_id(object_name): """ Get the ID of the object with the given name. Returns: (int/None): The object ID, None if object with given name not found. """ obj = GamObject.get_or_none(GamObject.ob_name == object_name) return obj.ob_id if obj else None @need_connection def get_max_object_id(): """ Get the ID highest ID. Returns: (int): The highest object ID in the database or zero if there isn't any present. """ query = GamObject.select(GamObject.ob_id).order_by(GamObject.ob_id) if not query: return 0 else: return query[-1].ob_id @need_connection def get_object_name(object_id): """ Gets the name of the object with the given ID. Args: object_id (int): The object ID. Returns: (str/None): The object name, None if object with given ID not found. """ obj = GamObject.get_or_none(GamObject.ob_id == object_id) return obj.ob_name if obj else None @need_connection def get_all_object_names(): """ Get a list of all object names. Returns: (list): The object names. """ query = GamObject.select(GamObject.ob_name) return [x.ob_name for x in query if x] @need_connection def get_all_type_names(): """ Get a list of all object type names. Returns: (list): The object type names. """ query = GamObjecttype.select(GamObjecttype.ot_name) return [x.ot_name for x in query if x] @need_connection def get_all_display_names(): """ Get a list of all display group names. Returns: (list): The display group names. """ query = GamDisplaygroup.select(GamDisplaygroup.dg_name) return [x.dg_name for x in query if x] @need_connection def get_type_id(type_name: str): """ Get the ID of the object type with the given name. Args: type_name (str): The object type name. Returns: type_id (int/None): The object type ID, None if not found. """ obj_type = GamObjecttype.get_or_none(GamObjecttype.ot_name == type_name) return obj_type.ot_id if obj_type else None @need_connection def get_display_group_id(display_group: str): """ Get the ID of the object type with the given name. Args: display_group (str): The display group name. Returns: type_id (int/None): The object type ID, None if not found. """ group = GamDisplaygroup.get_or_none(GamDisplaygroup.dg_name == display_group) return group.dg_id if group else None @need_connection def get_object_type(object_id: int): """ Returns the type name of the object with the specified ID. Args: object_id (int): The object ID. Returns: (str/None): The object type name, None if not found. """ obj = GamObject.get_or_none(GamObject.ob_id == object_id) return obj.ob_objecttype.ot_name if obj else None @need_connection def get_object_class(object_id: int): """ Returns the class name of the object with the specified ID. Args: object_id (int): The object ID. Returns: (str/None): The object class name, None if not found. """ obj = GamObject.get_or_none(GamObject.ob_id == object_id) return obj.ob_objecttype.ot_objectclass.oc_name if obj else None @need_connection def get_class_id(type_id: int): """ Returns the object class ID of the object type with the specified ID. Args: type_id (int): The object type ID. Returns: (int/None): The object class ID, None if not found. """ obj_type = GamObjecttype.get_or_none(GamObjecttype.ot_id == type_id) return obj_type.ot_objectclass.oc_id if obj_type else None @need_connection def get_object_function(object_id: int): """ Returns the object function name of the object with the specified ID. Args: object_id (int): The DB ID of the object. Returns: (str/None): The object function name, None if not found. """ obj = GamObject.get_or_none(GamObject.ob_id == object_id) return obj.ob_objecttype.ot_objectclass.oc_function.of_name if obj else None @need_connection def get_measurement_types(object_class_id: int): """ Returns the measurement types of the class with the specified ID. Args: object_class_id (int): The class ID. Returns: (list/None): The measurement types, None if class was not found. """ try: obj_class = GamObjectclass.get(GamObjectclass.oc_id == object_class_id) return [obj_class.oc_measuretype1, obj_class.oc_measuretype2, obj_class.oc_measuretype3, obj_class.oc_measuretype4, obj_class.oc_measuretype5] except DoesNotExist: return None @need_connection def get_object_display_group(object_id: int): """ Get the name of the object's display group if it has one. Args: object_id (int): The object ID. Returns: (str/None): The object's display group, None if not found. """ obj = GamObject.get_or_none(GamObject.ob_id == object_id) try: display_id = obj.ob_displaygroup return display_id.dg_name except (DoesNotExist, AttributeError): return @need_connection @need_connection def add_object(name: str, type_id: int, display_group_id: int = None, comment: str = None): """ Create a new object with the given name, type and comment. Args: name (str): The name of the object. type_id (int): The type ID of the object. display_group_id (int): The ID of the display group this object is part of. comment (str): Object comment. Returns: (int): ID of the added object. Raises: DBObjectNameAlreadyExists: If an object with the given name already exists in the database. """ if get_object_id(object_name=name) is not None: raise DBObjectNameAlreadyExists(f'Could not create object - ' f'Object with name "{name}" already exists in the database.') record_id = GamObject.insert(ob_name=name, ob_objecttype=type_id, ob_displaygroup=display_group_id, ob_comment=comment).execute() logger.info(f'Created object no. {record_id} ("{name}") of type {type_id}.') return record_id @need_connection def add_relation(or_object_id: int, or_object_id_assigned: int): """ Creates a relation between two objects. Note: Dates must be in '%Y-%m-%d %H:%M:%S' format. Args: or_object_id (int): The object ID (the object itself). or_object_id_assigned (int): The assigned object ID (e.g. the SLD/ILM Module etc.). """ record_id = GamObjectrelation.insert( or_primary=0, or_object=or_object_id, or_object_id_assigned=or_object_id_assigned, or_date_assignment=datetime.now().strftime('%Y-%m-%d %H:%M:%S'), or_date_removal=None, or_outflow=None, or_bookingrequest=None ).execute() logger.info(f'Added relation {record_id} for objects {or_object_id} - {or_object_id_assigned}.')
[ 6738, 613, 413, 1453, 1330, 8314, 3673, 3109, 396, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 4809, 13511, 13, 315, 2410, 1330, 7716, 62, 21412, 62, 3672, 198, 6738, 4888, 13, 9979, 1330, 20137, 6030, 47954, 11, 20137, 9487, 47954, 198, 6738, 4888, 13, 26791, 1330, 761, 62, 38659, 198, 6738, 4888, 13, 9945, 62, 27530, 1330, 1635, 198, 6738, 4809, 13511, 13, 6404, 1362, 1330, 4706, 62, 6404, 1362, 355, 49706, 628, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 7, 15252, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 1700, 286, 262, 2134, 351, 262, 1813, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 34777, 10267, 14, 14202, 2599, 383, 2134, 351, 262, 1813, 4522, 11, 6045, 611, 407, 1043, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 312, 7, 15252, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 4522, 286, 262, 2134, 351, 262, 1813, 1438, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 600, 14, 14202, 2599, 383, 2134, 4522, 11, 6045, 611, 2134, 351, 1813, 1438, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 3672, 6624, 2134, 62, 3672, 8, 198, 220, 220, 220, 1441, 26181, 13, 672, 62, 312, 611, 26181, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 9806, 62, 15252, 62, 312, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 4522, 4511, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 4511, 2134, 4522, 287, 262, 6831, 393, 6632, 611, 612, 2125, 470, 597, 1944, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12405, 796, 14014, 10267, 13, 19738, 7, 34777, 10267, 13, 672, 62, 312, 737, 2875, 62, 1525, 7, 34777, 10267, 13, 672, 62, 312, 8, 198, 220, 220, 220, 611, 407, 12405, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12405, 58, 12, 16, 4083, 672, 62, 312, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 3672, 7, 15252, 62, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 1438, 286, 262, 2134, 351, 262, 1813, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 312, 357, 600, 2599, 383, 2134, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 14, 14202, 2599, 383, 2134, 1438, 11, 6045, 611, 2134, 351, 1813, 4522, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 198, 220, 220, 220, 1441, 26181, 13, 672, 62, 3672, 611, 26181, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 439, 62, 15252, 62, 14933, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 1351, 286, 477, 2134, 3891, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 2599, 383, 2134, 3891, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12405, 796, 14014, 10267, 13, 19738, 7, 34777, 10267, 13, 672, 62, 3672, 8, 198, 220, 220, 220, 1441, 685, 87, 13, 672, 62, 3672, 329, 2124, 287, 12405, 611, 2124, 60, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 439, 62, 4906, 62, 14933, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 1351, 286, 477, 2134, 2099, 3891, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 2599, 383, 2134, 2099, 3891, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12405, 796, 14014, 10267, 4906, 13, 19738, 7, 34777, 10267, 4906, 13, 313, 62, 3672, 8, 198, 220, 220, 220, 1441, 685, 87, 13, 313, 62, 3672, 329, 2124, 287, 12405, 611, 2124, 60, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 439, 62, 13812, 62, 14933, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 257, 1351, 286, 477, 3359, 1448, 3891, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 2599, 383, 3359, 1448, 3891, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12405, 796, 14014, 23114, 8094, 13, 19738, 7, 34777, 23114, 8094, 13, 67, 70, 62, 3672, 8, 198, 220, 220, 220, 1441, 685, 87, 13, 67, 70, 62, 3672, 329, 2124, 287, 12405, 611, 2124, 60, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 4906, 62, 312, 7, 4906, 62, 3672, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 4522, 286, 262, 2134, 2099, 351, 262, 1813, 1438, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 3672, 357, 2536, 2599, 383, 2134, 2099, 1438, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 312, 357, 600, 14, 14202, 2599, 383, 2134, 2099, 4522, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 62, 4906, 796, 14014, 10267, 4906, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 4906, 13, 313, 62, 3672, 6624, 2099, 62, 3672, 8, 198, 220, 220, 220, 1441, 26181, 62, 4906, 13, 313, 62, 312, 611, 26181, 62, 4906, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 13812, 62, 8094, 62, 312, 7, 13812, 62, 8094, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 4522, 286, 262, 2134, 2099, 351, 262, 1813, 1438, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 8094, 357, 2536, 2599, 383, 3359, 1448, 1438, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 312, 357, 600, 14, 14202, 2599, 383, 2134, 2099, 4522, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1448, 796, 14014, 23114, 8094, 13, 1136, 62, 273, 62, 23108, 7, 34777, 23114, 8094, 13, 67, 70, 62, 3672, 6624, 3359, 62, 8094, 8, 198, 220, 220, 220, 1441, 1448, 13, 67, 70, 62, 312, 611, 1448, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 4906, 7, 15252, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2099, 1438, 286, 262, 2134, 351, 262, 7368, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 312, 357, 600, 2599, 383, 2134, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 14, 14202, 2599, 383, 2134, 2099, 1438, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 198, 220, 220, 220, 1441, 26181, 13, 672, 62, 15252, 4906, 13, 313, 62, 3672, 611, 26181, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 4871, 7, 15252, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1398, 1438, 286, 262, 2134, 351, 262, 7368, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 312, 357, 600, 2599, 383, 2134, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 14, 14202, 2599, 383, 2134, 1398, 1438, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 198, 220, 220, 220, 1441, 26181, 13, 672, 62, 15252, 4906, 13, 313, 62, 15252, 4871, 13, 420, 62, 3672, 611, 26181, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 4871, 62, 312, 7, 4906, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2134, 1398, 4522, 286, 262, 2134, 2099, 351, 262, 7368, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 312, 357, 600, 2599, 383, 2134, 2099, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 600, 14, 14202, 2599, 383, 2134, 1398, 4522, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 62, 4906, 796, 14014, 10267, 4906, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 4906, 13, 313, 62, 312, 6624, 2099, 62, 312, 8, 198, 220, 220, 220, 1441, 26181, 62, 4906, 13, 313, 62, 15252, 4871, 13, 420, 62, 312, 611, 26181, 62, 4906, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 8818, 7, 15252, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2134, 2163, 1438, 286, 262, 2134, 351, 262, 7368, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 312, 357, 600, 2599, 383, 20137, 4522, 286, 262, 2134, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 14, 14202, 2599, 383, 2134, 2163, 1438, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 198, 220, 220, 220, 1441, 26181, 13, 672, 62, 15252, 4906, 13, 313, 62, 15252, 4871, 13, 420, 62, 8818, 13, 1659, 62, 3672, 611, 26181, 2073, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 1326, 5015, 434, 62, 19199, 7, 15252, 62, 4871, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 15558, 3858, 286, 262, 1398, 351, 262, 7368, 4522, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 4871, 62, 312, 357, 600, 2599, 383, 1398, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4868, 14, 14202, 2599, 383, 15558, 3858, 11, 6045, 611, 1398, 373, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 4871, 796, 14014, 10267, 4871, 13, 1136, 7, 34777, 10267, 4871, 13, 420, 62, 312, 6624, 2134, 62, 4871, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 26801, 62, 4871, 13, 420, 62, 1326, 5015, 4906, 16, 11, 26181, 62, 4871, 13, 420, 62, 1326, 5015, 4906, 17, 11, 26181, 62, 4871, 13, 420, 62, 1326, 5015, 4906, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 4871, 13, 420, 62, 1326, 5015, 4906, 19, 11, 26181, 62, 4871, 13, 420, 62, 1326, 5015, 4906, 20, 60, 198, 220, 220, 220, 2845, 8314, 3673, 3109, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 198, 31, 31227, 62, 38659, 198, 4299, 651, 62, 15252, 62, 13812, 62, 8094, 7, 15252, 62, 312, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 1438, 286, 262, 2134, 338, 3359, 1448, 611, 340, 468, 530, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 312, 357, 600, 2599, 383, 2134, 4522, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 14, 14202, 2599, 383, 2134, 338, 3359, 1448, 11, 6045, 611, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26181, 796, 14014, 10267, 13, 1136, 62, 273, 62, 23108, 7, 34777, 10267, 13, 672, 62, 312, 6624, 2134, 62, 312, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 312, 796, 26181, 13, 672, 62, 13812, 8094, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3359, 62, 312, 13, 67, 70, 62, 3672, 198, 220, 220, 220, 2845, 357, 13921, 3673, 3109, 396, 11, 3460, 4163, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 198, 31, 31227, 62, 38659, 628, 198, 31, 31227, 62, 38659, 198, 4299, 751, 62, 15252, 7, 3672, 25, 965, 11, 2099, 62, 312, 25, 493, 11, 3359, 62, 8094, 62, 312, 25, 493, 796, 6045, 11, 2912, 25, 965, 796, 6045, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 649, 2134, 351, 262, 1813, 1438, 11, 2099, 290, 2912, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 357, 2536, 2599, 383, 1438, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 312, 357, 600, 2599, 383, 2099, 4522, 286, 262, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 8094, 62, 312, 357, 600, 2599, 383, 4522, 286, 262, 3359, 1448, 428, 2134, 318, 636, 286, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 357, 2536, 2599, 9515, 2912, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 4522, 286, 262, 2087, 2134, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20137, 10267, 5376, 37447, 3109, 1023, 25, 1002, 281, 2134, 351, 262, 1813, 1438, 1541, 7160, 287, 262, 6831, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 651, 62, 15252, 62, 312, 7, 15252, 62, 3672, 28, 3672, 8, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 20137, 10267, 5376, 37447, 3109, 1023, 7, 69, 6, 23722, 407, 2251, 2134, 532, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 10267, 351, 1438, 45144, 3672, 36786, 1541, 7160, 287, 262, 6831, 2637, 8, 628, 220, 220, 220, 1700, 62, 312, 796, 14014, 10267, 13, 28463, 7, 672, 62, 3672, 28, 3672, 11, 909, 62, 15252, 4906, 28, 4906, 62, 312, 11, 909, 62, 13812, 8094, 28, 13812, 62, 8094, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 909, 62, 23893, 28, 23893, 737, 41049, 3419, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 41972, 2134, 645, 13, 1391, 22105, 62, 312, 92, 5855, 90, 3672, 92, 4943, 286, 2099, 1391, 4906, 62, 312, 92, 2637, 8, 628, 220, 220, 220, 1441, 1700, 62, 312, 628, 198, 31, 31227, 62, 38659, 198, 4299, 751, 62, 49501, 7, 273, 62, 15252, 62, 312, 25, 493, 11, 393, 62, 15252, 62, 312, 62, 562, 3916, 25, 493, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 8695, 1022, 734, 5563, 13, 5740, 25, 44712, 1276, 307, 287, 705, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 6, 5794, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 15252, 62, 312, 357, 600, 2599, 383, 2134, 4522, 357, 1169, 2134, 2346, 737, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 15252, 62, 312, 62, 562, 3916, 357, 600, 2599, 383, 8686, 2134, 4522, 357, 68, 13, 70, 13, 262, 311, 11163, 14, 4146, 44, 19937, 3503, 15729, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1700, 62, 312, 796, 14014, 10267, 49501, 13, 28463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 39754, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 15252, 28, 273, 62, 15252, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 15252, 62, 312, 62, 562, 3916, 28, 273, 62, 15252, 62, 312, 62, 562, 3916, 11, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 4475, 62, 562, 16747, 28, 19608, 8079, 13, 2197, 22446, 2536, 31387, 10786, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 4475, 62, 2787, 8325, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 448, 11125, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 393, 62, 2070, 278, 25927, 28, 14202, 198, 220, 220, 220, 6739, 41049, 3419, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 13003, 8695, 1391, 22105, 62, 312, 92, 329, 5563, 1391, 273, 62, 15252, 62, 312, 92, 532, 1391, 273, 62, 15252, 62, 312, 62, 562, 3916, 92, 2637, 8, 628, 198 ]
2.560651
3,009
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2019 Shlomi Fish <[email protected]> # # Distributed under terms of the MIT license. from pysol_cards.errors import SubclassResponsibility
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 43907, 25, 69, 12685, 28, 40477, 12, 23, 198, 2, 198, 2, 15069, 10673, 13130, 911, 75, 12753, 13388, 1279, 1477, 75, 296, 361, 31, 66, 6839, 13, 2398, 29, 198, 2, 198, 2, 4307, 6169, 739, 2846, 286, 262, 17168, 5964, 13, 198, 198, 6738, 279, 893, 349, 62, 27761, 13, 48277, 1330, 3834, 4871, 19309, 684, 2247, 628 ]
2.588235
85
from collections import defaultdict from conceptnet5.edges import make_edge from conceptnet5.formats.msgpack_stream import MsgpackStreamWriter from conceptnet5.languages import ATOMIC_SPACE_LANGUAGES from conceptnet5.nodes import split_uri from conceptnet5.uri import get_uri_language, join_uri, Licenses def prepare_vocab_for_morphology(language, input, output): """ Morfessor's input is a list of terms with their counts. Here, we read a ConceptNet vocabulary file with counts (core_concept_counts.txt), filter it for a single language, and convert it into the input form that Morfessor expects. We're stripping out the word sense information here, which would cause the same term to appear multiple times. Because of that, we build up a new dictionary of counts, summing all occurrences of a term. We use _ to represent all spaces. In languages where the space-separated segments are atomic (Vietnamese), we use _ to represent the locations where subwords are allowed to end, and thus add _ to the end of the term as well. """ vocab_counts = defaultdict(int) for line in input: countstr, uri = line.strip().split(' ', 1) if get_uri_language(uri) == language: term = split_uri(uri)[2] if language in ATOMIC_SPACE_LANGUAGES: term += '_' vocab_counts[term] += int(countstr) for term, count in sorted(list(vocab_counts.items())): print(count, term, file=output) MORPH_SOURCES = [{'process': '/s/rule/morfessor'}] def subwords_to_edges(language, input, output): """ Morfessor hypothesizes ways to break words into sub-word chunks. Produce edges from these sub-words that can be used in retrofitting. """ writer = MsgpackStreamWriter(output) for line in input: line = line.rstrip() if not line or line.startswith('#'): continue # Remove the unnecessary count ("1 ") from the start of each line line = line.split(' ', 1)[1] chunks = line.split(' + ') # Strip a possible trailing underscore, which would particularly show # up in the way we segment ATOMIC_SPACE_LANGUAGES (Vietnamese) full_text = ''.join(chunks).strip('_') end = join_uri('c', language, full_text) for chunk in chunks: if chunk != '_': start = join_uri('x', language, chunk.strip('_')) edge = make_edge( '/r/SubwordOf', start, end, dataset='/d/morphology', license=Licenses.cc_attribution, sources=MORPH_SOURCES, weight=0.01 ) writer.write(edge) writer.close()
[ 6738, 17268, 1330, 4277, 11600, 198, 198, 6738, 3721, 3262, 20, 13, 276, 3212, 1330, 787, 62, 14907, 198, 6738, 3721, 3262, 20, 13, 687, 1381, 13, 19662, 8002, 62, 5532, 1330, 6997, 70, 8002, 12124, 34379, 198, 6738, 3721, 3262, 20, 13, 75, 33213, 1330, 5161, 2662, 2149, 62, 4303, 11598, 62, 43, 15567, 52, 25552, 198, 6738, 3721, 3262, 20, 13, 77, 4147, 1330, 6626, 62, 9900, 198, 6738, 3721, 3262, 20, 13, 9900, 1330, 651, 62, 9900, 62, 16129, 11, 4654, 62, 9900, 11, 10483, 4541, 628, 198, 4299, 8335, 62, 18893, 397, 62, 1640, 62, 24503, 1435, 7, 16129, 11, 5128, 11, 5072, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3461, 69, 5987, 338, 5128, 318, 257, 1351, 286, 2846, 351, 511, 9853, 13, 3423, 11, 356, 198, 220, 220, 220, 1100, 257, 26097, 7934, 25818, 2393, 351, 9853, 357, 7295, 62, 43169, 62, 9127, 82, 13, 14116, 828, 198, 220, 220, 220, 8106, 340, 329, 257, 2060, 3303, 11, 290, 10385, 340, 656, 262, 5128, 1296, 326, 198, 220, 220, 220, 3461, 69, 5987, 13423, 13, 628, 220, 220, 220, 775, 821, 37727, 503, 262, 1573, 2565, 1321, 994, 11, 543, 561, 2728, 198, 220, 220, 220, 262, 976, 3381, 284, 1656, 3294, 1661, 13, 4362, 286, 326, 11, 356, 1382, 510, 198, 220, 220, 220, 257, 649, 22155, 286, 9853, 11, 2160, 2229, 477, 40279, 286, 257, 3381, 13, 628, 220, 220, 220, 775, 779, 4808, 284, 2380, 477, 9029, 13, 554, 8950, 810, 262, 2272, 12, 25512, 515, 198, 220, 220, 220, 17894, 389, 17226, 357, 53, 1155, 22678, 828, 356, 779, 4808, 284, 2380, 262, 7064, 810, 198, 220, 220, 220, 850, 10879, 389, 3142, 284, 886, 11, 290, 4145, 751, 4808, 284, 262, 886, 286, 262, 3381, 355, 880, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12776, 397, 62, 9127, 82, 796, 4277, 11600, 7, 600, 8, 198, 220, 220, 220, 329, 1627, 287, 5128, 25, 198, 220, 220, 220, 220, 220, 220, 220, 954, 2536, 11, 2956, 72, 796, 1627, 13, 36311, 22446, 35312, 10786, 46083, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 651, 62, 9900, 62, 16129, 7, 9900, 8, 6624, 3303, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3381, 796, 6626, 62, 9900, 7, 9900, 38381, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3303, 287, 5161, 2662, 2149, 62, 4303, 11598, 62, 43, 15567, 52, 25552, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3381, 15853, 705, 62, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 9127, 82, 58, 4354, 60, 15853, 493, 7, 9127, 2536, 8, 628, 220, 220, 220, 329, 3381, 11, 954, 287, 23243, 7, 4868, 7, 18893, 397, 62, 9127, 82, 13, 23814, 28955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9127, 11, 3381, 11, 2393, 28, 22915, 8, 628, 198, 44, 1581, 11909, 62, 50, 2606, 7397, 1546, 796, 685, 90, 6, 14681, 10354, 31051, 82, 14, 25135, 14, 4491, 69, 5987, 6, 92, 60, 628, 198, 4299, 850, 10879, 62, 1462, 62, 276, 3212, 7, 16129, 11, 5128, 11, 5072, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3461, 69, 5987, 22079, 4340, 2842, 284, 2270, 2456, 656, 850, 12, 4775, 22716, 13, 21522, 344, 198, 220, 220, 220, 13015, 422, 777, 850, 12, 10879, 326, 460, 307, 973, 287, 12175, 32232, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6260, 796, 6997, 70, 8002, 12124, 34379, 7, 22915, 8, 198, 220, 220, 220, 329, 1627, 287, 5128, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1627, 393, 1627, 13, 9688, 2032, 342, 10786, 2, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17220, 262, 13114, 954, 5855, 16, 366, 8, 422, 262, 923, 286, 1123, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 35312, 10786, 46083, 352, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 22716, 796, 1627, 13, 35312, 10786, 1343, 705, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 18508, 257, 1744, 25462, 44810, 11, 543, 561, 3573, 905, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 510, 287, 262, 835, 356, 10618, 5161, 2662, 2149, 62, 4303, 11598, 62, 43, 15567, 52, 25552, 357, 53, 1155, 22678, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 5239, 796, 705, 4458, 22179, 7, 354, 14125, 737, 36311, 10786, 62, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 4654, 62, 9900, 10786, 66, 3256, 3303, 11, 1336, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 16058, 287, 22716, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16058, 14512, 705, 62, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 4654, 62, 9900, 10786, 87, 3256, 3303, 11, 16058, 13, 36311, 10786, 62, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 796, 787, 62, 14907, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 81, 14, 7004, 4775, 5189, 3256, 923, 11, 886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 11639, 14, 67, 14, 24503, 1435, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5964, 28, 26656, 4541, 13, 535, 62, 1078, 3890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4237, 28, 44, 1581, 11909, 62, 50, 2606, 7397, 1546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 28, 15, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 13, 13564, 7, 14907, 8, 198, 220, 220, 220, 6260, 13, 19836, 3419, 198 ]
2.497292
1,108
from __future__ import annotations from calendar import monthrange from datetime import timedelta, date from .timerange import TimeRange from .date_range import daterange class CalendarMonth(TimeRange): """ Represent a calendar month. """ @property def next(self) -> CalendarMonth: """Return an instance of next month.""" first_day_in_next_month = self.end.date() + timedelta(days=1) return CalendarMonth(first_day_in_next_month.year, first_day_in_next_month.month) @property def prev(self) -> CalendarMonth: """Return an instance of previous month.""" last_day_in_previous_month = self.start.date() - timedelta(days=1) return CalendarMonth(last_day_in_previous_month.year, last_day_in_previous_month.month) @staticmethod
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 11845, 1330, 1227, 9521, 198, 6738, 4818, 8079, 1330, 28805, 12514, 11, 3128, 198, 198, 6738, 764, 45016, 858, 1330, 3862, 17257, 198, 6738, 764, 4475, 62, 9521, 1330, 288, 729, 858, 628, 198, 4871, 26506, 31948, 7, 7575, 17257, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10858, 257, 11845, 1227, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1306, 7, 944, 8, 4613, 26506, 31948, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 281, 4554, 286, 1306, 1227, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 820, 62, 259, 62, 19545, 62, 8424, 796, 2116, 13, 437, 13, 4475, 3419, 1343, 28805, 12514, 7, 12545, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26506, 31948, 7, 11085, 62, 820, 62, 259, 62, 19545, 62, 8424, 13, 1941, 11, 717, 62, 820, 62, 259, 62, 19545, 62, 8424, 13, 8424, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8654, 7, 944, 8, 4613, 26506, 31948, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 281, 4554, 286, 2180, 1227, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 820, 62, 259, 62, 3866, 1442, 62, 8424, 796, 2116, 13, 9688, 13, 4475, 3419, 532, 28805, 12514, 7, 12545, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26506, 31948, 7, 12957, 62, 820, 62, 259, 62, 3866, 1442, 62, 8424, 13, 1941, 11, 938, 62, 820, 62, 259, 62, 3866, 1442, 62, 8424, 13, 8424, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.809028
288
# Generated by Django 2.0.2 on 2018-02-06 22:35 from django.db import migrations, models import markupfield.fields
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 17, 319, 2864, 12, 2999, 12, 3312, 2534, 25, 2327, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 41485, 3245, 13, 25747, 628 ]
3.078947
38
from django.contrib import admin from .models import blogPost admin.site.register(blogPost)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 764, 27530, 1330, 4130, 6307, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 14036, 6307, 8 ]
3.481481
27
red = 0xff3d3d green = 0xb8ff3d blue = 0x2e66ff yellow = 0xfff94d
[ 445, 796, 657, 47596, 18, 67, 18, 67, 201, 198, 14809, 796, 657, 30894, 23, 487, 18, 67, 201, 198, 17585, 796, 657, 87, 17, 68, 2791, 487, 201, 198, 36022, 796, 657, 87, 20972, 5824, 67 ]
1.837838
37
#!/usr/bin/env python # Copyright 2018-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # ''' Pseudo-spectral methods (COSX, PS, SN-K) ''' import copy import numpy from pyscf import lib from pyscf import gto from pyscf import scf from pyscf import mcscf from pyscf.scf import _vhf from pyscf.lib import logger from pyscf.sgx import sgx_jk from pyscf.df import df_jk from pyscf import __config__ def sgx_fit(mf, auxbasis=None, with_df=None): '''For the given SCF object, update the J, K matrix constructor with corresponding SGX or density fitting integrals. Args: mf : an SCF object Kwargs: auxbasis : str or basis dict Same format to the input attribute mol.basis. If auxbasis is None, optimal auxiliary basis based on AO basis (if possible) or even-tempered Gaussian basis will be used. Returns: An SCF object with a modified J, K matrix constructor which uses density fitting integrals to compute J and K Examples: >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = sgx_fit(scf.RHF(mol)) >>> mf.scf() -100.00978770917165 >>> mol.symmetry = 1 >>> mol.build(0, 0) >>> mf = sgx_fit(scf.UHF(mol)) >>> mf.scf() -100.00978770951018 ''' assert(isinstance(mf, scf.hf.SCF)) if with_df is None: with_df = SGX(mf.mol) with_df.max_memory = mf.max_memory with_df.stdout = mf.stdout with_df.verbose = mf.verbose with_df.auxbasis = auxbasis mf_class = mf.__class__ if isinstance(mf, _SGXHF): if mf.with_df is None: mf = mf_class(mf, with_df, auxbasis) elif mf.with_df.auxbasis != auxbasis: #logger.warn(mf, 'DF might have been initialized twice.') mf = copy.copy(mf) mf.with_df = with_df return mf return SGXHF(mf, with_df, auxbasis) # A tag to label the derived SCF class scf.hf.SCF.COSX = sgx_fit mcscf.casci.CASCI.COSX = sgx_fit def _make_opt(mol): '''Optimizer to genrate 3-center 2-electron integrals''' intor = mol._add_suffix('int3c2e') cintopt = gto.moleintor.make_cintopt(mol._atm, mol._bas, mol._env, intor) # intor 'int1e_ovlp' is used by the prescreen method # 'SGXnr_ovlp_prescreen' only. Not used again in other places. # It can be released early vhfopt = _vhf.VHFOpt(mol, 'int1e_ovlp', 'SGXnr_ovlp_prescreen', 'SGXsetnr_direct_scf') vhfopt._intor = intor vhfopt._cintopt = cintopt return vhfopt if __name__ == '__main__': from pyscf import scf mol = gto.Mole() mol.build( atom = [["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ], basis = 'ccpvdz', ) method = sgx_fit(scf.RHF(mol), 'weigend') energy = method.scf() print(energy - -76.02673747045691) method.with_df.dfj = True energy = method.scf() print(energy - -76.02686422219752)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 2864, 12, 42334, 383, 9485, 6173, 37, 34152, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 6434, 25, 1195, 320, 278, 3825, 1279, 418, 343, 457, 13, 19155, 31, 14816, 13, 785, 29, 198, 2, 198, 198, 7061, 6, 198, 47, 325, 12003, 12, 4443, 1373, 5050, 357, 34, 2640, 55, 11, 6599, 11, 11346, 12, 42, 8, 198, 7061, 6, 198, 198, 11748, 4866, 198, 11748, 299, 32152, 198, 6738, 279, 893, 12993, 1330, 9195, 198, 6738, 279, 893, 12993, 1330, 308, 1462, 198, 6738, 279, 893, 12993, 1330, 629, 69, 198, 6738, 279, 893, 12993, 1330, 36650, 1416, 69, 198, 6738, 279, 893, 12993, 13, 1416, 69, 1330, 4808, 85, 71, 69, 198, 6738, 279, 893, 12993, 13, 8019, 1330, 49706, 198, 6738, 279, 893, 12993, 13, 45213, 87, 1330, 264, 70, 87, 62, 73, 74, 198, 6738, 279, 893, 12993, 13, 7568, 1330, 47764, 62, 73, 74, 198, 6738, 279, 893, 12993, 1330, 11593, 11250, 834, 198, 198, 4299, 264, 70, 87, 62, 11147, 7, 76, 69, 11, 27506, 12093, 271, 28, 14202, 11, 351, 62, 7568, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 1890, 262, 1813, 6374, 37, 2134, 11, 4296, 262, 449, 11, 509, 17593, 23772, 351, 198, 220, 220, 220, 11188, 26147, 55, 393, 12109, 15830, 4132, 30691, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 69, 1058, 281, 6374, 37, 2134, 628, 220, 220, 220, 31767, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27506, 12093, 271, 1058, 965, 393, 4308, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16766, 5794, 284, 262, 5128, 11688, 18605, 13, 12093, 271, 13, 220, 1002, 27506, 12093, 271, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 16586, 37419, 4308, 1912, 319, 317, 46, 4308, 357, 361, 1744, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 772, 12, 11498, 13653, 12822, 31562, 4308, 481, 307, 973, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1052, 6374, 37, 2134, 351, 257, 9518, 449, 11, 509, 17593, 23772, 543, 3544, 12109, 198, 220, 220, 220, 220, 220, 220, 220, 15830, 4132, 30691, 284, 24061, 449, 290, 509, 628, 220, 220, 220, 21066, 25, 628, 220, 220, 220, 13163, 18605, 796, 308, 1462, 13, 44, 7, 37696, 11639, 39, 657, 657, 657, 26, 376, 657, 657, 352, 3256, 4308, 11639, 535, 79, 20306, 89, 3256, 15942, 577, 28, 15, 8, 198, 220, 220, 220, 13163, 285, 69, 796, 264, 70, 87, 62, 11147, 7, 1416, 69, 13, 49, 29567, 7, 43132, 4008, 198, 220, 220, 220, 13163, 285, 69, 13, 1416, 69, 3419, 198, 220, 220, 220, 532, 3064, 13, 28694, 41019, 31495, 1558, 20986, 628, 220, 220, 220, 13163, 18605, 13, 1837, 3020, 11973, 796, 352, 198, 220, 220, 220, 13163, 18605, 13, 11249, 7, 15, 11, 657, 8, 198, 220, 220, 220, 13163, 285, 69, 796, 264, 70, 87, 62, 11147, 7, 1416, 69, 13, 52, 29567, 7, 43132, 4008, 198, 220, 220, 220, 13163, 285, 69, 13, 1416, 69, 3419, 198, 220, 220, 220, 532, 3064, 13, 28694, 41019, 2154, 3865, 8784, 23, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 6818, 7, 271, 39098, 7, 76, 69, 11, 629, 69, 13, 71, 69, 13, 6173, 37, 4008, 628, 220, 220, 220, 611, 351, 62, 7568, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 7568, 796, 26147, 55, 7, 76, 69, 13, 43132, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 7568, 13, 9806, 62, 31673, 796, 285, 69, 13, 9806, 62, 31673, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 7568, 13, 19282, 448, 796, 285, 69, 13, 19282, 448, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 7568, 13, 19011, 577, 796, 285, 69, 13, 19011, 577, 198, 220, 220, 220, 220, 220, 220, 220, 351, 62, 7568, 13, 14644, 12093, 271, 796, 27506, 12093, 271, 628, 220, 220, 220, 285, 69, 62, 4871, 796, 285, 69, 13, 834, 4871, 834, 628, 220, 220, 220, 611, 318, 39098, 7, 76, 69, 11, 4808, 38475, 55, 29567, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 285, 69, 13, 4480, 62, 7568, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 69, 796, 285, 69, 62, 4871, 7, 76, 69, 11, 351, 62, 7568, 11, 27506, 12093, 271, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 285, 69, 13, 4480, 62, 7568, 13, 14644, 12093, 271, 14512, 27506, 12093, 271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6404, 1362, 13, 40539, 7, 76, 69, 11, 705, 8068, 1244, 423, 587, 23224, 5403, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 69, 796, 4866, 13, 30073, 7, 76, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 69, 13, 4480, 62, 7568, 796, 351, 62, 7568, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 285, 69, 628, 220, 220, 220, 1441, 26147, 55, 29567, 7, 76, 69, 11, 351, 62, 7568, 11, 27506, 12093, 271, 8, 198, 198, 2, 317, 7621, 284, 6167, 262, 10944, 6374, 37, 1398, 198, 198, 1416, 69, 13, 71, 69, 13, 6173, 37, 13, 34, 2640, 55, 796, 264, 70, 87, 62, 11147, 198, 23209, 1416, 69, 13, 34004, 979, 13, 34, 1921, 25690, 13, 34, 2640, 55, 796, 264, 70, 87, 62, 11147, 628, 198, 4299, 4808, 15883, 62, 8738, 7, 43132, 2599, 198, 220, 220, 220, 705, 7061, 27871, 320, 7509, 284, 2429, 4873, 513, 12, 16159, 362, 12, 9509, 1313, 4132, 30691, 7061, 6, 198, 220, 220, 220, 493, 273, 796, 18605, 13557, 2860, 62, 37333, 844, 10786, 600, 18, 66, 17, 68, 11537, 198, 220, 220, 220, 269, 600, 8738, 796, 308, 1462, 13, 76, 2305, 600, 273, 13, 15883, 62, 66, 600, 8738, 7, 43132, 13557, 265, 76, 11, 18605, 13557, 12093, 11, 18605, 13557, 24330, 11, 493, 273, 8, 198, 220, 220, 220, 1303, 493, 273, 705, 600, 16, 68, 62, 709, 34431, 6, 318, 973, 416, 262, 10859, 1361, 2446, 198, 220, 220, 220, 1303, 705, 38475, 55, 48624, 62, 709, 34431, 62, 18302, 32060, 6, 691, 13, 1892, 973, 757, 287, 584, 4113, 13, 198, 220, 220, 220, 1303, 632, 460, 307, 2716, 1903, 198, 220, 220, 220, 410, 71, 69, 8738, 796, 4808, 85, 71, 69, 13, 53, 39, 6080, 457, 7, 43132, 11, 705, 600, 16, 68, 62, 709, 34431, 3256, 705, 38475, 55, 48624, 62, 709, 34431, 62, 18302, 32060, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38475, 55, 2617, 48624, 62, 12942, 62, 1416, 69, 11537, 198, 220, 220, 220, 410, 71, 69, 8738, 13557, 600, 273, 796, 493, 273, 198, 220, 220, 220, 410, 71, 69, 8738, 13557, 66, 600, 8738, 796, 269, 600, 8738, 198, 220, 220, 220, 1441, 410, 71, 69, 8738, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 279, 893, 12993, 1330, 629, 69, 198, 220, 220, 220, 18605, 796, 308, 1462, 13, 44, 2305, 3419, 198, 220, 220, 220, 18605, 13, 11249, 7, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 796, 685, 14692, 46, 1, 837, 357, 15, 13, 837, 657, 13, 220, 220, 220, 220, 837, 657, 2014, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 220, 220, 837, 357, 15, 13, 837, 532, 15, 13, 39251, 837, 657, 13, 44617, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 220, 220, 837, 357, 15, 13, 837, 657, 13, 39251, 220, 837, 657, 13, 44617, 15437, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 4308, 796, 705, 535, 79, 20306, 89, 3256, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2446, 796, 264, 70, 87, 62, 11147, 7, 1416, 69, 13, 49, 29567, 7, 43132, 828, 705, 732, 328, 437, 11537, 198, 220, 220, 220, 2568, 796, 2446, 13, 1416, 69, 3419, 198, 220, 220, 220, 3601, 7, 22554, 532, 532, 4304, 13, 15, 25674, 2718, 27790, 2231, 49541, 8, 628, 220, 220, 220, 2446, 13, 4480, 62, 7568, 13, 7568, 73, 796, 6407, 198, 220, 220, 220, 2568, 796, 2446, 13, 1416, 69, 3419, 198, 220, 220, 220, 3601, 7, 22554, 532, 532, 4304, 13, 15, 25022, 2414, 23148, 38449, 17, 8, 198 ]
2.235692
1,625
import logging import warnings from abc import ABC, abstractmethod from pathlib import Path from timeit import default_timer as timer from typing import Any, Dict, Optional import docker from gobbli.model.context import ContainerTaskContext from gobbli.util import ( format_duration, generate_uuid, gobbli_version, is_dir_empty, model_dir, read_metadata, write_metadata, ) LOGGER = logging.getLogger(__name__) _WEIGHTS_DIR_NAME = "weights" class BaseModel(ABC): """ Abstract base class for all models. Derived classes should be careful to call super().__init__(...) with the appropriate arguments if they override __init__() to preserve all the functionality. Functionality to facilitate making GPU(s) available to derived classes is available. """ # File containing information about the model, including type of model and gobbli version # the model was created under _INFO_FILENAME = "gobbli-model-info.json" # File containing model parameters (i.e. arguments to init()) _METADATA_FILENAME = "gobbli-model-meta.json" _WEIGHTS_DIR_NAME = _WEIGHTS_DIR_NAME _CONTAINER_WEIGHTS_PATH = Path("/model") / _WEIGHTS_DIR_NAME def __init__( self, data_dir: Optional[Path] = None, load_existing: bool = False, use_gpu: bool = False, nvidia_visible_devices: str = "all", logger: Optional[logging.Logger] = None, **kwargs, ): """ Create a model. Args: data_dir: Optional path to a directory used to store model data. If not given, a unique directory under GOBBLI_DIR will be created and used. load_existing: If True, ``data_dir`` should be a directory that was previously used to create a model. Parameters will be loaded to match the original model, and user-specified model parameters will be ignored. If False, the data_dir must be empty if it already exists. use_gpu: If True, use the nvidia-docker runtime (https://github.com/NVIDIA/nvidia-docker) to expose NVIDIA GPU(s) to the container. Will cause an error if the computer you're running on doesn't have an NVIDIA GPU and/or doesn't have the nvidia-docker runtime installed. nvidia_visible_devices: Which GPUs to make available to the container; ignored if ``use_gpu`` is False. If not 'all', should be a comma-separated string: ex. ``1,2``. logger: If passed, use this logger for logging instead of the default module-level logger. **kwargs: Additional model-specific parameters to be passed to the model's :meth:`init` method. """ self._logger = LOGGER if logger is not None: self._logger = logger if data_dir is None: self._data_dir = self.model_class_dir() / generate_uuid() else: self._data_dir = data_dir # Ensure we have an absolute data dir so any derived paths used in metadata files, etc # aren't ambiguous self._data_dir = self._data_dir.resolve() self._data_dir.mkdir(parents=True, exist_ok=True) class_name = self.__class__.__name__ cur_gobbli_version = gobbli_version() if self.info_path.exists(): info = read_metadata(self.info_path) if not info["class"] == class_name: raise ValueError( f"Model class mismatch: the model stored in {data_dir} is of " f"class '{info['class']}'. Expected '{class_name}'." ) if not info["gobbli_version"] == cur_gobbli_version: warnings.warn( f"The model stored in {data_dir} was created with gobbli version " f"{info['gobbli_version']}, but you're running version {cur_gobbli_version}. " "You may encounter compatibility issues." ) if load_existing and self.metadata_path.exists(): params = read_metadata(self.metadata_path) if len(kwargs) > 0: warnings.warn( "User-passed params ignored due to existing model being " f"loaded: {kwargs}" ) else: if not is_dir_empty(self._data_dir): raise ValueError( f"data_dir '{self._data_dir}' is non-empty;" " it must be empty to avoid overwriting data." ) params = kwargs write_metadata(params, self.metadata_path) write_metadata( {"class": class_name, "gobbli_version": cur_gobbli_version}, self.info_path, ) self.use_gpu = use_gpu self.nvidia_visible_devices = nvidia_visible_devices self.docker_client = docker.from_env() self.init(params) self._logger.info( f"{class_name} initialized with data directory '{self._data_dir}'" ) @property def logger(self) -> logging.Logger: """ Returns: A logger for derived models to use. """ return self._logger @property def info_path(self) -> Path: """ Returns: The path to the model's info file, containing information about the model including the type of model, gobbli version it was trained using, etc. """ return self.data_dir() / BaseModel._INFO_FILENAME @property def metadata_path(self) -> Path: """ Returns: The path to the model's metadata file containing model-specific parameters. """ return self.data_dir() / BaseModel._METADATA_FILENAME @abstractmethod def init(self, params: Dict[str, Any]): """ Initialize a derived model using parameters specific to that model. Args: params: A dictionary where keys are parameter names and values are parameter values. """ raise NotImplementedError def _base_docker_run_kwargs(self, context: ContainerTaskContext) -> Dict[str, Any]: """ Establish a base set of docker run kwargs to handle GPU support, etc. Map directories as specified by the context. Returns: Base kwargs for any model that will be run using Docker. """ kwargs = { "environment": { # Minimize the probability of containers exiting without dumping # buffered output "PYTHONUNBUFFERED": "1" }, "detach": True, "volumes": { str(context.task_root_dir): { "bind": str(context.container_root_dir), "mode": "rw", }, # Ideally we'd mount this as read-only, but some models (e.g. fastText) # need to write to their weights str(self.weights_dir): { "bind": str(BaseModel._CONTAINER_WEIGHTS_PATH), "mode": "rw", }, }, } # type: Dict[str, Any] if self.use_gpu: kwargs["environment"][ "NVIDIA_VISIBLE_DEVICES" ] = self.nvidia_visible_devices kwargs["runtime"] = "nvidia" return kwargs @property def _base_docker_build_kwargs(self) -> Dict[str, Any]: """ Handle GPU support, etc via common args for any model Docker container. Returns: Base kwargs for any model that will be built using Docker. """ kwargs = {"buildargs": {}} # type: Dict[str, Any] if self.use_gpu: kwargs["buildargs"]["GPU"] = "1" return kwargs def data_dir(self) -> Path: """ Returns: The main data directory unique to this instance of the model. """ return self._data_dir @classmethod def model_class_dir(cls) -> Path: """ Returns: A directory shared among all classes of the model. """ return model_dir() / cls.__name__ @property def class_weights_dir(self) -> Path: """ The root directory used to store initial model weights (before fine-tuning). These should generally be some pretrained weights made available by model developers. This directory will NOT be created by default; models should download their weights and remove the weights directory if the download doesn't finish properly. Most models making use of this directory will have multiple sets of weights and will need to store those in subdirectories under this directory. Returns: The path to the class-wide weights directory. """ return self.model_class_dir() / BaseModel._WEIGHTS_DIR_NAME @property def weights_dir(self) -> Path: """ The directory containing weights for a specific instance of the model. This is the class weights directory by default, but subclasses might define this property to return a subdirectory based on a set of pretrained model weights. Returns: The instance-specific weights directory. """ return self.class_weights_dir def build(self): """ Perform any pre-setup that needs to be done before running the model (building Docker images, etc). """ self.logger.info("Starting build.") start = timer() self._build() end = timer() self.logger.info(f"Build finished in {format_duration(end - start)}.") @abstractmethod def _build(self): """ Used for derived classes to define their implementation of the build method. """ raise NotImplementedError
[ 11748, 18931, 198, 11748, 14601, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 355, 19781, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 32233, 198, 198, 11748, 36253, 198, 198, 6738, 48484, 2436, 72, 13, 19849, 13, 22866, 1330, 43101, 25714, 21947, 198, 6738, 48484, 2436, 72, 13, 22602, 1330, 357, 198, 220, 220, 220, 5794, 62, 32257, 11, 198, 220, 220, 220, 7716, 62, 12303, 312, 11, 198, 220, 220, 220, 48484, 2436, 72, 62, 9641, 11, 198, 220, 220, 220, 318, 62, 15908, 62, 28920, 11, 198, 220, 220, 220, 2746, 62, 15908, 11, 198, 220, 220, 220, 1100, 62, 38993, 11, 198, 220, 220, 220, 3551, 62, 38993, 11, 198, 8, 198, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 62, 8845, 34874, 62, 34720, 62, 20608, 796, 366, 43775, 1, 628, 198, 4871, 7308, 17633, 7, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 2779, 1398, 329, 477, 4981, 13, 628, 220, 220, 220, 9626, 1572, 6097, 815, 307, 8161, 284, 869, 2208, 22446, 834, 15003, 834, 7, 23029, 351, 262, 5035, 198, 220, 220, 220, 7159, 611, 484, 20957, 11593, 15003, 834, 3419, 284, 12201, 477, 262, 11244, 13, 628, 220, 220, 220, 15553, 1483, 284, 15570, 1642, 11362, 7, 82, 8, 1695, 284, 10944, 6097, 318, 1695, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 9220, 7268, 1321, 546, 262, 2746, 11, 1390, 2099, 286, 2746, 290, 48484, 2436, 72, 2196, 198, 220, 220, 220, 1303, 262, 2746, 373, 2727, 739, 198, 220, 220, 220, 4808, 10778, 62, 46700, 1677, 10067, 796, 366, 44270, 2436, 72, 12, 19849, 12, 10951, 13, 17752, 1, 628, 220, 220, 220, 1303, 9220, 7268, 2746, 10007, 357, 72, 13, 68, 13, 7159, 284, 2315, 28955, 198, 220, 220, 220, 4808, 47123, 2885, 13563, 62, 46700, 1677, 10067, 796, 366, 44270, 2436, 72, 12, 19849, 12, 28961, 13, 17752, 1, 628, 220, 220, 220, 4808, 8845, 34874, 62, 34720, 62, 20608, 796, 4808, 8845, 34874, 62, 34720, 62, 20608, 198, 220, 220, 220, 4808, 10943, 30339, 1137, 62, 8845, 34874, 62, 34219, 796, 10644, 7203, 14, 19849, 4943, 1220, 4808, 8845, 34874, 62, 34720, 62, 20608, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 15908, 25, 32233, 58, 15235, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 25687, 25, 20512, 796, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 46999, 25, 20512, 796, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 21744, 62, 23504, 62, 42034, 25, 965, 796, 366, 439, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 25, 32233, 58, 6404, 2667, 13, 11187, 1362, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 15908, 25, 32233, 3108, 284, 257, 8619, 973, 284, 3650, 2746, 1366, 13, 220, 1002, 407, 1813, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 3748, 8619, 739, 402, 9864, 9148, 40, 62, 34720, 481, 307, 2727, 290, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 25687, 25, 1002, 6407, 11, 7559, 7890, 62, 15908, 15506, 815, 307, 257, 8619, 326, 373, 4271, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 2251, 257, 2746, 13, 220, 40117, 481, 307, 9639, 284, 2872, 262, 2656, 2746, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 12, 23599, 2746, 10007, 481, 307, 9514, 13, 220, 1002, 10352, 11, 262, 1366, 62, 15908, 1276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 6565, 611, 340, 1541, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 46999, 25, 1002, 6407, 11, 779, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 21744, 12, 45986, 19124, 357, 5450, 1378, 12567, 13, 785, 14, 38021, 14, 77, 21744, 12, 45986, 8, 284, 15651, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15127, 11362, 7, 82, 8, 284, 262, 9290, 13, 220, 2561, 2728, 281, 4049, 611, 262, 3644, 345, 821, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 1595, 470, 423, 281, 15127, 11362, 290, 14, 273, 1595, 470, 423, 262, 299, 21744, 12, 45986, 19124, 6589, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 21744, 62, 23504, 62, 42034, 25, 9022, 32516, 284, 787, 1695, 284, 262, 9290, 26, 9514, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 1904, 62, 46999, 15506, 318, 10352, 13, 220, 1002, 407, 705, 439, 3256, 815, 307, 257, 39650, 12, 25512, 515, 4731, 25, 409, 13, 7559, 16, 11, 17, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 25, 1002, 3804, 11, 779, 428, 49706, 329, 18931, 2427, 286, 262, 4277, 8265, 12, 5715, 49706, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 15891, 2746, 12, 11423, 10007, 284, 307, 3804, 284, 262, 2746, 338, 1058, 76, 2788, 25, 63, 15003, 63, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 796, 41605, 30373, 198, 220, 220, 220, 220, 220, 220, 220, 611, 49706, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 796, 49706, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 15908, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 15908, 796, 2116, 13, 19849, 62, 4871, 62, 15908, 3419, 1220, 7716, 62, 12303, 312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 15908, 796, 1366, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 356, 423, 281, 4112, 1366, 26672, 523, 597, 10944, 13532, 973, 287, 20150, 3696, 11, 3503, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3588, 470, 27102, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 15908, 796, 2116, 13557, 7890, 62, 15908, 13, 411, 6442, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 15908, 13, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 3672, 796, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 44270, 2436, 72, 62, 9641, 796, 48484, 2436, 72, 62, 9641, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 10951, 62, 6978, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 1100, 62, 38993, 7, 944, 13, 10951, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7508, 14692, 4871, 8973, 6624, 1398, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 17633, 1398, 46318, 25, 262, 2746, 8574, 287, 1391, 7890, 62, 15908, 92, 318, 286, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 4871, 705, 90, 10951, 17816, 4871, 20520, 92, 4458, 220, 1475, 7254, 705, 90, 4871, 62, 3672, 92, 30827, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7508, 14692, 44270, 2436, 72, 62, 9641, 8973, 6624, 1090, 62, 44270, 2436, 72, 62, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 464, 2746, 8574, 287, 1391, 7890, 62, 15908, 92, 373, 2727, 351, 48484, 2436, 72, 2196, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 10951, 17816, 44270, 2436, 72, 62, 9641, 20520, 5512, 475, 345, 821, 2491, 2196, 1391, 22019, 62, 44270, 2436, 72, 62, 9641, 27422, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1639, 743, 8791, 17764, 2428, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3440, 62, 25687, 290, 2116, 13, 38993, 62, 6978, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1100, 62, 38993, 7, 944, 13, 38993, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46265, 22046, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12982, 12, 6603, 276, 42287, 9514, 2233, 284, 4683, 2746, 852, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14578, 25, 1391, 46265, 22046, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 62, 15908, 62, 28920, 7, 944, 13557, 7890, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 7890, 62, 15908, 705, 90, 944, 13557, 7890, 62, 15908, 92, 6, 318, 1729, 12, 28920, 26033, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 340, 1276, 307, 6565, 284, 3368, 6993, 799, 278, 1366, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 479, 86, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 38993, 7, 37266, 11, 2116, 13, 38993, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 38993, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 4871, 1298, 1398, 62, 3672, 11, 366, 44270, 2436, 72, 62, 9641, 1298, 1090, 62, 44270, 2436, 72, 62, 9641, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1904, 62, 46999, 796, 779, 62, 46999, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 21744, 62, 23504, 62, 42034, 796, 299, 21744, 62, 23504, 62, 42034, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45986, 62, 16366, 796, 36253, 13, 6738, 62, 24330, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15003, 7, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 4871, 62, 3672, 92, 23224, 351, 1366, 8619, 705, 90, 944, 13557, 7890, 62, 15908, 92, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 49706, 7, 944, 8, 4613, 18931, 13, 11187, 1362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 49706, 329, 10944, 4981, 284, 779, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 6404, 1362, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 7508, 62, 6978, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3108, 284, 262, 2746, 338, 7508, 2393, 11, 7268, 1321, 546, 262, 2746, 1390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2099, 286, 2746, 11, 48484, 2436, 72, 2196, 340, 373, 8776, 1262, 11, 3503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7890, 62, 15908, 3419, 1220, 7308, 17633, 13557, 10778, 62, 46700, 1677, 10067, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 20150, 62, 6978, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3108, 284, 262, 2746, 338, 20150, 2393, 7268, 2746, 12, 11423, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7890, 62, 15908, 3419, 1220, 7308, 17633, 13557, 47123, 2885, 13563, 62, 46700, 1677, 10067, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 2315, 7, 944, 11, 42287, 25, 360, 713, 58, 2536, 11, 4377, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 1096, 257, 10944, 2746, 1262, 10007, 2176, 284, 326, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 25, 317, 22155, 810, 8251, 389, 11507, 3891, 290, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11507, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 628, 220, 220, 220, 825, 4808, 8692, 62, 45986, 62, 5143, 62, 46265, 22046, 7, 944, 11, 4732, 25, 43101, 25714, 21947, 8, 4613, 360, 713, 58, 2536, 11, 4377, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10062, 17148, 257, 2779, 900, 286, 36253, 1057, 479, 86, 22046, 284, 5412, 11362, 1104, 11, 3503, 13, 198, 220, 220, 220, 220, 220, 220, 220, 9347, 29196, 355, 7368, 416, 262, 4732, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7308, 479, 86, 22046, 329, 597, 2746, 326, 481, 307, 1057, 1262, 25716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38986, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1855, 48439, 262, 12867, 286, 16472, 33895, 1231, 30231, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6940, 1068, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 56, 4221, 1340, 4944, 19499, 45746, 1961, 1298, 366, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15255, 620, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10396, 8139, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 22866, 13, 35943, 62, 15763, 62, 15908, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21653, 1298, 965, 7, 22866, 13, 34924, 62, 15763, 62, 15908, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14171, 1298, 366, 31653, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 40067, 356, 1549, 3817, 428, 355, 1100, 12, 8807, 11, 475, 617, 4981, 357, 68, 13, 70, 13, 3049, 8206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 761, 284, 3551, 284, 511, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 944, 13, 43775, 62, 15908, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 21653, 1298, 965, 7, 14881, 17633, 13557, 10943, 30339, 1137, 62, 8845, 34874, 62, 34219, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14171, 1298, 366, 31653, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 220, 1303, 2099, 25, 360, 713, 58, 2536, 11, 4377, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1904, 62, 46999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 38986, 1, 7131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38021, 62, 29817, 34563, 62, 39345, 34444, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 796, 2116, 13, 77, 21744, 62, 23504, 62, 42034, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 43282, 8973, 796, 366, 77, 21744, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 479, 86, 22046, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 8692, 62, 45986, 62, 11249, 62, 46265, 22046, 7, 944, 8, 4613, 360, 713, 58, 2536, 11, 4377, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33141, 11362, 1104, 11, 3503, 2884, 2219, 26498, 329, 597, 2746, 25716, 9290, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7308, 479, 86, 22046, 329, 597, 2746, 326, 481, 307, 3170, 1262, 25716, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 19779, 11249, 22046, 1298, 1391, 11709, 220, 1303, 2099, 25, 360, 713, 58, 2536, 11, 4377, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1904, 62, 46999, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 11249, 22046, 1, 7131, 1, 33346, 8973, 796, 366, 16, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 479, 86, 22046, 628, 220, 220, 220, 825, 1366, 62, 15908, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1388, 1366, 8619, 3748, 284, 428, 4554, 286, 262, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7890, 62, 15908, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 2746, 62, 4871, 62, 15908, 7, 565, 82, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 8619, 4888, 1871, 477, 6097, 286, 262, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2746, 62, 15908, 3419, 1220, 537, 82, 13, 834, 3672, 834, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1398, 62, 43775, 62, 15908, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6808, 8619, 973, 284, 3650, 4238, 2746, 19590, 357, 19052, 3734, 12, 28286, 278, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2312, 815, 4143, 307, 617, 2181, 13363, 19590, 925, 1695, 416, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 6505, 13, 220, 770, 8619, 481, 5626, 307, 2727, 416, 4277, 26, 4981, 815, 198, 220, 220, 220, 220, 220, 220, 220, 4321, 511, 19590, 290, 4781, 262, 19590, 8619, 611, 262, 4321, 1595, 470, 198, 220, 220, 220, 220, 220, 220, 220, 5461, 6105, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4042, 4981, 1642, 779, 286, 428, 8619, 481, 423, 3294, 5621, 286, 19590, 290, 198, 220, 220, 220, 220, 220, 220, 220, 481, 761, 284, 3650, 883, 287, 850, 12942, 1749, 739, 428, 8619, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3108, 284, 262, 1398, 12, 4421, 19590, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 19849, 62, 4871, 62, 15908, 3419, 1220, 7308, 17633, 13557, 8845, 34874, 62, 34720, 62, 20608, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 19590, 62, 15908, 7, 944, 8, 4613, 10644, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 8619, 7268, 19590, 329, 257, 2176, 4554, 286, 262, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 1398, 19590, 8619, 416, 4277, 11, 475, 850, 37724, 1244, 198, 220, 220, 220, 220, 220, 220, 220, 8160, 428, 3119, 284, 1441, 257, 850, 34945, 1912, 319, 257, 900, 286, 2181, 13363, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 19590, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4554, 12, 11423, 19590, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4871, 62, 43775, 62, 15908, 628, 220, 220, 220, 825, 1382, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 35006, 597, 662, 12, 40406, 326, 2476, 284, 307, 1760, 878, 2491, 262, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16894, 25716, 4263, 11, 3503, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 7203, 22851, 1382, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 19781, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11249, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 886, 796, 19781, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 7, 69, 1, 15580, 5201, 287, 1391, 18982, 62, 32257, 7, 437, 532, 923, 38165, 19570, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 11249, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16718, 329, 10944, 6097, 284, 8160, 511, 7822, 286, 262, 1382, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 198 ]
2.339353
4,264
from .tomorrow import threads
[ 6738, 764, 39532, 6254, 1330, 14390, 198 ]
4.285714
7
# -*- encoding: utf-8 -*- import csv import io import itertools import json from aws_gate.constants import ( AWS_DEFAULT_PROFILE, AWS_DEFAULT_REGION, DEFAULT_LIST_OUTPUT_FIELDS, DEFAULT_LIST_HUMAN_FIELDS, DEFAULT_LIST_OUTPUT, ) from aws_gate.query import get_multiple_instance_details from aws_gate.utils import ( get_aws_client, get_aws_resource, ) # pylint: disable=unused-argument
[ 2, 532, 9, 12, 21004, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 269, 21370, 198, 11748, 33245, 198, 11748, 340, 861, 10141, 198, 11748, 33918, 198, 198, 6738, 3253, 82, 62, 10494, 13, 9979, 1187, 1330, 357, 198, 220, 220, 220, 30865, 62, 7206, 38865, 62, 31190, 25664, 11, 198, 220, 220, 220, 30865, 62, 7206, 38865, 62, 31553, 2849, 11, 198, 220, 220, 220, 5550, 38865, 62, 45849, 62, 2606, 7250, 3843, 62, 11674, 3698, 5258, 11, 198, 220, 220, 220, 5550, 38865, 62, 45849, 62, 39, 5883, 1565, 62, 11674, 3698, 5258, 11, 198, 220, 220, 220, 5550, 38865, 62, 45849, 62, 2606, 7250, 3843, 11, 198, 8, 198, 6738, 3253, 82, 62, 10494, 13, 22766, 1330, 651, 62, 48101, 62, 39098, 62, 36604, 198, 6738, 3253, 82, 62, 10494, 13, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 8356, 62, 16366, 11, 198, 220, 220, 220, 651, 62, 8356, 62, 31092, 11, 198, 8, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 628, 628 ]
2.372881
177
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import logging import random from typing import Any, Dict, List, Set from terragraph_thrift.Controller.ttypes import IperfTransportProtocol from terragraph_thrift.Topology.ttypes import NodeStatusType from tglib.clients import APIServiceClient from tglib.exceptions import ClientRuntimeError from ..models import NetworkTestDirection, NetworkTestType from .base import BaseTest, TestAsset
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 5472, 12, 25579, 3203, 13, 1439, 6923, 33876, 13, 198, 198, 11748, 18931, 198, 11748, 4738, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 5345, 198, 198, 6738, 8812, 6111, 62, 400, 35357, 13, 22130, 13, 83, 19199, 1330, 314, 525, 69, 8291, 634, 19703, 4668, 198, 6738, 8812, 6111, 62, 400, 35357, 13, 9126, 1435, 13, 83, 19199, 1330, 19081, 19580, 6030, 198, 6738, 256, 4743, 571, 13, 565, 2334, 1330, 3486, 1797, 712, 501, 11792, 198, 6738, 256, 4743, 571, 13, 1069, 11755, 1330, 20985, 41006, 12331, 198, 198, 6738, 11485, 27530, 1330, 7311, 14402, 35, 4154, 11, 7311, 14402, 6030, 198, 6738, 764, 8692, 1330, 7308, 14402, 11, 6208, 45869, 628 ]
3.658915
129
# ------------------------------ # 228. Summary Ranges # # Description: # # Version: 2.0 # 09/25/18 by Jianfa # ------------------------------ # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: #
[ 2, 34400, 26171, 198, 2, 29041, 13, 21293, 371, 6231, 198, 2, 220, 198, 2, 12489, 25, 198, 2, 220, 198, 2, 10628, 25, 362, 13, 15, 198, 2, 7769, 14, 1495, 14, 1507, 416, 40922, 13331, 198, 2, 34400, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 16718, 329, 4856, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1332, 796, 28186, 3419, 198, 198, 2, 34400, 26171, 198, 2, 21293, 25, 198, 2, 220 ]
2.90625
96