content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import numpy as np from ukfm import SO3, SE3 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class PENDULUM: """Pendulum example, where the state lives on the 2-sphere. See a text description of the spherical pendulum dynamics in :cite:`sjobergAn2019`, Section 7, and :cite:`kotaruVariation2019`. :arg T: sequence time (s). :arg model_freq: model frequency (Hz). """ g = 9.81 "gravity constant (m/s^2) :math:`g`." m = 1.0 "mass of payload (kg) :math:`m`." b = 0.0 "damping :math:`b`." L = 1.3 "wire length :math:`L`." e3 = -np.array([0, 0, 1]) "third coordinate vector :math:`\mathbf{e}^b=-[0,0,1]^T`." H = np.zeros((2, 3)) "observability matrix :math:`\mathbf{H}`." H[:, 1:3] = np.eye(2) class STATE: """State of the system. It represents the orientation of the wire and its angular velocity. .. math:: \\boldsymbol{\\chi} \in \\mathcal{M} = \\left\\{ \\begin{matrix} \\mathbf{C} \in SO(3), \\mathbf{u} \in \\mathbb R^3 \\end{matrix} \\right\\} :ivar Rot: rotation matrix :math:`\mathbf{C}`. :ivar u: angular velocity vector :math:`\mathbf{u}`. """ class INPUT: """Input of the propagation model. The model does not require any input. """ @classmethod def f(cls, state, omega, w, dt): """ Propagation function. .. math:: \\mathbf{C}_{n+1} &= \\mathbf{C}_{n} \\exp\\left(\\left(\\mathbf{u} + \\mathbf{w}^{(0:3)} \\right) dt\\right), \\\\ \\mathbf{u}_{n+1} &= \\mathbf{u}_{n} + \\dot{\\mathbf{u}} dt, where .. math:: \\dot{\\mathbf{u}} = \\begin{bmatrix} -\\omega_y \\omega_x\\ \\\\ \\omega_x \\omega_z \\\\ 0 \end{bmatrix} + \\frac{g}{l} \\left(\\mathbf{e}^b \\right)^\\wedge \\mathbf{C}^T \\mathbf{e}^b + \\mathbf{w}^{(3:6)} :var state: state :math:`\\boldsymbol{\\chi}`. :var omega: input :math:`\\boldsymbol{\\omega}`. :var w: noise :math:`\\mathbf{w}`. :var dt: integration step :math:`dt` (s). """ e3_i = state.Rot.T.dot(cls.e3) u = state.u d_u = np.array([-u[1]*u[2], u[0]*u[2], 0]) + \ cls.g/cls.L*np.cross(cls.e3, e3_i) new_state = cls.STATE( Rot=state.Rot.dot(SO3.exp((u+w[:3])*dt)), u=state.u + (d_u+w[3:6])*dt ) return new_state @classmethod def h(cls, state): """ Observation function. .. math:: h\\left(\\boldsymbol{\\chi}\\right) = \\mathbf{H} \mathbf{x}, where .. math:: \mathbf{H}&= \\begin{bmatrix} 0 & 1 & 0 \\\\ 0 & 0 & 1 \end{bmatrix} \\\\ \mathbf{x} &= L \\mathbf{C} \mathbf{e}^b with :math:`\mathbf{x}` the position of the pendulum. :var state: state :math:`\\boldsymbol{\\chi}`. """ x = cls.L*state.Rot.dot(cls.e3) return cls.H.dot(x) @classmethod def phi(cls, state, xi): """Retraction. .. math:: \\varphi\\left(\\boldsymbol{\\chi}, \\boldsymbol{\\xi}\\right) = \\left( \\begin{matrix} \\exp\\left(\\boldsymbol{\\xi}^{(0:3)}\\right) \\mathbf{C} \\\\ \\mathbf{u} + \\boldsymbol{\\xi}^{(3:6)} \\end{matrix} \\right) The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3) \\times \\mathbb R^3`. Its corresponding inverse operation is :meth:`~ukfm.PENDULUM.phi_inv`. :var state: state :math:`\\boldsymbol{\\chi}`. :var xi: state uncertainty :math:`\\boldsymbol{\\xi}`. """ new_state = cls.STATE( Rot=state.Rot.dot(SO3.exp(xi[:3])), u=state.u + xi[3:6], ) return new_state @classmethod def phi_inv(cls, state, hat_state): """Inverse retraction. .. math:: \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}\\left(\\boldsymbol{\\chi} \\right) = \\left( \\begin{matrix} \\log\\left(\\mathbf{\\hat{C}}^T \\mathbf{C} \\right)\\\\ \\mathbf{u} - \\mathbf{\\hat{u}} \\end{matrix} \\right) The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3) \\times \\mathbb R^3`. Its corresponding retraction is :meth:`~ukfm.PENDULUM.phi`. :var state: state :math:`\\boldsymbol{\\chi}`. :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`. """ xi = np.hstack([SO3.log(hat_state.Rot.T.dot(state.Rot)), state.u - hat_state.u]) return xi @classmethod @classmethod
[ 11748, 299, 32152, 355, 45941, 198, 6738, 334, 74, 38353, 1330, 12809, 18, 11, 7946, 18, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 76, 29487, 18, 67, 1330, 12176, 274, 18, 35, 628, 198, 4871, 350, 10619, 6239, 5883, 25, 198, 220, 220, 220, 37227, 47, 437, 14452, 1672, 11, 810, 262, 1181, 3160, 319, 262, 362, 12, 2777, 1456, 13, 198, 220, 220, 220, 4091, 257, 2420, 6764, 286, 262, 43180, 44017, 14452, 17262, 287, 198, 220, 220, 220, 1058, 66, 578, 25, 63, 82, 73, 2023, 70, 2025, 23344, 47671, 7275, 767, 11, 290, 220, 1058, 66, 578, 25, 63, 74, 313, 11493, 23907, 341, 23344, 44646, 628, 220, 220, 220, 1058, 853, 309, 25, 8379, 640, 357, 82, 737, 198, 220, 220, 220, 1058, 853, 2746, 62, 19503, 80, 25, 2746, 8373, 357, 7399, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 308, 796, 860, 13, 6659, 198, 220, 220, 220, 366, 46453, 6937, 357, 76, 14, 82, 61, 17, 8, 1058, 11018, 25, 63, 70, 63, 526, 628, 220, 220, 220, 285, 796, 352, 13, 15, 198, 220, 220, 220, 366, 22208, 286, 21437, 357, 10025, 8, 1058, 11018, 25, 63, 76, 63, 526, 628, 220, 220, 220, 275, 796, 657, 13, 15, 198, 220, 220, 220, 366, 67, 37843, 1058, 11018, 25, 63, 65, 63, 526, 628, 220, 220, 220, 406, 796, 352, 13, 18, 198, 220, 220, 220, 366, 21809, 4129, 1058, 11018, 25, 63, 43, 63, 526, 628, 220, 220, 220, 304, 18, 796, 532, 37659, 13, 18747, 26933, 15, 11, 657, 11, 352, 12962, 198, 220, 220, 220, 366, 17089, 20435, 15879, 1058, 11018, 25, 63, 59, 11018, 19881, 90, 68, 92, 61, 65, 10779, 58, 15, 11, 15, 11, 16, 60, 61, 51, 63, 526, 628, 220, 220, 220, 367, 796, 45941, 13, 9107, 418, 19510, 17, 11, 513, 4008, 198, 220, 220, 220, 366, 672, 3168, 1799, 17593, 1058, 11018, 25, 63, 59, 11018, 19881, 90, 39, 92, 63, 526, 198, 220, 220, 220, 367, 58, 45299, 352, 25, 18, 60, 796, 45941, 13, 25379, 7, 17, 8, 628, 220, 220, 220, 1398, 35454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9012, 286, 262, 1080, 13, 628, 220, 220, 220, 220, 220, 220, 220, 632, 6870, 262, 12852, 286, 262, 6503, 290, 663, 32558, 15432, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 36575, 1837, 23650, 90, 6852, 11072, 92, 3467, 259, 26867, 11018, 9948, 90, 44, 92, 796, 26867, 9464, 6852, 90, 26867, 27471, 90, 6759, 8609, 92, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 34, 92, 3467, 259, 12809, 7, 18, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 84, 92, 3467, 259, 26867, 11018, 11848, 371, 61, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 437, 90, 6759, 8609, 92, 26867, 3506, 6852, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 452, 283, 18481, 25, 13179, 17593, 1058, 11018, 25, 63, 59, 11018, 19881, 90, 34, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 452, 283, 334, 25, 32558, 15432, 15879, 1058, 11018, 25, 63, 59, 11018, 19881, 90, 84, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 1398, 3268, 30076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20560, 286, 262, 43594, 2746, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2746, 857, 407, 2421, 597, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 277, 7, 565, 82, 11, 1181, 11, 37615, 11, 266, 11, 288, 83, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8772, 363, 341, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 34, 92, 23330, 77, 10, 16, 92, 220, 1222, 28, 26867, 11018, 19881, 90, 34, 92, 23330, 77, 92, 26867, 11201, 6852, 9464, 7, 6852, 9464, 7, 6852, 11018, 19881, 90, 84, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 26867, 11018, 19881, 90, 86, 92, 36796, 7, 15, 25, 18, 38165, 26867, 3506, 8, 288, 83, 6852, 3506, 828, 220, 3467, 6852, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 84, 92, 23330, 77, 10, 16, 92, 220, 1222, 28, 26867, 11018, 19881, 90, 84, 92, 23330, 77, 92, 1343, 26867, 26518, 90, 6852, 11018, 19881, 90, 84, 11709, 220, 288, 83, 11, 628, 220, 220, 220, 220, 220, 220, 220, 810, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 26518, 90, 6852, 11018, 19881, 90, 84, 11709, 220, 796, 26867, 27471, 90, 65, 6759, 8609, 92, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 6852, 462, 4908, 62, 88, 220, 26867, 462, 4908, 62, 87, 6852, 3467, 6852, 59, 26867, 462, 4908, 62, 87, 26867, 462, 4908, 62, 89, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 6852, 59, 657, 3467, 437, 90, 65, 6759, 8609, 92, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 31944, 90, 70, 18477, 75, 92, 220, 26867, 9464, 7, 6852, 11018, 19881, 90, 68, 92, 61, 65, 26867, 3506, 8, 61, 6852, 86, 14907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 34, 92, 61, 51, 26867, 11018, 19881, 90, 68, 92, 61, 65, 1343, 26867, 11018, 19881, 90, 86, 92, 36796, 7, 18, 25, 21, 38165, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 1181, 25, 1181, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 37615, 25, 5128, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 462, 4908, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 266, 25, 7838, 1058, 11018, 25, 63, 6852, 11018, 19881, 90, 86, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 288, 83, 25, 11812, 2239, 1058, 11018, 25, 63, 28664, 63, 357, 82, 737, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 304, 18, 62, 72, 796, 1181, 13, 24864, 13, 51, 13, 26518, 7, 565, 82, 13, 68, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 334, 796, 1181, 13, 84, 198, 220, 220, 220, 220, 220, 220, 220, 288, 62, 84, 796, 45941, 13, 18747, 26933, 12, 84, 58, 16, 60, 9, 84, 58, 17, 4357, 334, 58, 15, 60, 9, 84, 58, 17, 4357, 657, 12962, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 70, 14, 565, 82, 13, 43, 9, 37659, 13, 19692, 7, 565, 82, 13, 68, 18, 11, 304, 18, 62, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 5219, 796, 537, 82, 13, 44724, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18481, 28, 5219, 13, 24864, 13, 26518, 7, 15821, 18, 13, 11201, 19510, 84, 10, 86, 58, 25, 18, 12962, 9, 28664, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 28, 5219, 13, 84, 1343, 357, 67, 62, 84, 10, 86, 58, 18, 25, 21, 12962, 9, 28664, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 5219, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 289, 7, 565, 82, 11, 1181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11086, 13208, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 6852, 9464, 7, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 6852, 3506, 8, 220, 796, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 39, 92, 3467, 11018, 19881, 90, 87, 5512, 628, 220, 220, 220, 220, 220, 220, 220, 810, 220, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 11018, 19881, 90, 39, 92, 5, 28, 26867, 27471, 90, 65, 6759, 8609, 92, 657, 1222, 352, 1222, 657, 3467, 6852, 59, 220, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 657, 1222, 352, 3467, 437, 90, 65, 6759, 8609, 92, 3467, 6852, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 11018, 19881, 90, 87, 92, 1222, 28, 406, 26867, 11018, 19881, 90, 34, 92, 3467, 11018, 19881, 90, 68, 92, 61, 65, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1058, 11018, 25, 63, 59, 11018, 19881, 90, 87, 92, 63, 262, 2292, 286, 262, 44017, 14452, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 1181, 25, 1181, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 537, 82, 13, 43, 9, 5219, 13, 24864, 13, 26518, 7, 565, 82, 13, 68, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 82, 13, 39, 13, 26518, 7, 87, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 872, 72, 7, 565, 82, 11, 1181, 11, 2124, 72, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 7861, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 7785, 34846, 6852, 9464, 7, 6852, 36575, 1837, 23650, 90, 6852, 11072, 5512, 26867, 36575, 1837, 23650, 90, 6852, 29992, 92, 6852, 3506, 8, 796, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 9464, 7, 26867, 27471, 90, 6759, 8609, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11201, 6852, 9464, 7, 6852, 36575, 1837, 23650, 90, 6852, 29992, 92, 36796, 7, 15, 25, 18, 38165, 6852, 3506, 8, 26867, 11018, 19881, 90, 34, 92, 220, 3467, 6852, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 84, 92, 1343, 26867, 36575, 1837, 23650, 90, 6852, 29992, 92, 36796, 7, 18, 25, 21, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 437, 90, 6759, 8609, 92, 26867, 3506, 8, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1181, 318, 9569, 355, 257, 5002, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 31478, 11072, 92, 26867, 259, 12809, 7, 18, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 26867, 22355, 26867, 11018, 11848, 371, 61, 18, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 6363, 11188, 34062, 4905, 318, 1058, 76, 2788, 25, 63, 93, 2724, 38353, 13, 47, 10619, 6239, 5883, 13, 34846, 62, 16340, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 1181, 25, 1181, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 2124, 72, 25, 1181, 13479, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 29992, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 5219, 796, 537, 82, 13, 44724, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18481, 28, 5219, 13, 24864, 13, 26518, 7, 15821, 18, 13, 11201, 7, 29992, 58, 25, 18, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 28, 5219, 13, 84, 1343, 2124, 72, 58, 18, 25, 21, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 5219, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 872, 72, 62, 16340, 7, 565, 82, 11, 1181, 11, 6877, 62, 5219, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 4399, 1005, 7861, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 7785, 34846, 36796, 12, 16, 92, 23330, 6852, 36575, 1837, 23650, 90, 6852, 5183, 90, 6852, 11072, 42535, 6852, 9464, 7, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 3506, 8, 796, 26867, 9464, 7, 26867, 27471, 90, 6759, 8609, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 6404, 6852, 9464, 7, 6852, 11018, 19881, 90, 6852, 5183, 90, 34, 11709, 61, 51, 26867, 11018, 19881, 90, 34, 92, 220, 26867, 3506, 8, 13426, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 11018, 19881, 90, 84, 92, 532, 26867, 11018, 19881, 90, 6852, 5183, 90, 84, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26867, 437, 90, 6759, 8609, 92, 26867, 3506, 8, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1181, 318, 9569, 355, 257, 5002, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 31478, 11072, 92, 26867, 259, 12809, 7, 18, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 26867, 22355, 26867, 11018, 11848, 371, 61, 18, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 6363, 11188, 1005, 7861, 318, 1058, 76, 2788, 25, 63, 93, 2724, 38353, 13, 47, 10619, 6239, 5883, 13, 34846, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 1181, 25, 1181, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 90, 6852, 11072, 92, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7785, 6877, 62, 5219, 25, 7838, 12, 5787, 1181, 1058, 11018, 25, 63, 6852, 36575, 1837, 23650, 31478, 5183, 90, 6852, 11072, 11709, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 796, 45941, 13, 71, 25558, 26933, 15821, 18, 13, 6404, 7, 5183, 62, 5219, 13, 24864, 13, 51, 13, 26518, 7, 5219, 13, 24864, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1181, 13, 84, 532, 6877, 62, 5219, 13, 84, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 72, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
1.900667
2,547
"""Run the Sample ACE problem from [Breiman85]_.""" import numpy.random import scipy.special from ace import ace def build_sample_ace_problem_breiman85(N=200): """Sample problem from Breiman 1985.""" x_cubed = numpy.random.standard_normal(N) x = scipy.special.cbrt(x_cubed) noise = numpy.random.standard_normal(N) y = numpy.exp((x ** 3.0) + noise) return [x], y def build_sample_ace_problem_breiman2(N=500): """Build sample problem y(x) = exp(sin(x)).""" x = numpy.linspace(0, 1, N) # x = numpy.random.uniform(0, 1, size=N) noise = numpy.random.standard_normal(N) y = numpy.exp(numpy.sin(2 * numpy.pi * x)) + 0.0 * noise return [x], y def run_breiman85(): """Run Breiman 85 sample.""" x, y = build_sample_ace_problem_breiman85(200) ace_solver = ace.ACESolver() ace_solver.specify_data_set(x, y) ace_solver.solve() try: ace.plot_transforms(ace_solver, 'sample_ace_breiman85.png') except ImportError: pass return ace_solver def run_breiman2(): """Run Breiman's other sample problem.""" x, y = build_sample_ace_problem_breiman2(500) ace_solver = ace.ACESolver() ace_solver.specify_data_set(x, y) ace_solver.solve() try: plt = ace.plot_transforms(ace_solver, None) except ImportError: pass plt.subplot(1, 2, 1) phi = numpy.sin(2.0 * numpy.pi * x[0]) plt.plot(x[0], phi, label='analytic') plt.legend() plt.subplot(1, 2, 2) y = numpy.exp(phi) plt.plot(y, phi, label='analytic') plt.legend(loc='lower right') # plt.show() plt.savefig('no_noise_linear_x.png') return ace_solver if __name__ == '__main__': run_breiman2()
[ 37811, 10987, 262, 27565, 40488, 1917, 422, 685, 12679, 24086, 5332, 60, 62, 526, 15931, 198, 198, 11748, 299, 32152, 13, 25120, 198, 11748, 629, 541, 88, 13, 20887, 198, 198, 6738, 31506, 1330, 31506, 628, 198, 4299, 1382, 62, 39873, 62, 558, 62, 45573, 62, 4679, 24086, 5332, 7, 45, 28, 2167, 2599, 198, 220, 220, 220, 37227, 36674, 1917, 422, 3719, 24086, 12863, 526, 15931, 198, 220, 220, 220, 2124, 62, 66, 549, 276, 796, 299, 32152, 13, 25120, 13, 20307, 62, 11265, 7, 45, 8, 198, 220, 220, 220, 2124, 796, 629, 541, 88, 13, 20887, 13, 66, 1671, 83, 7, 87, 62, 66, 549, 276, 8, 198, 220, 220, 220, 7838, 796, 299, 32152, 13, 25120, 13, 20307, 62, 11265, 7, 45, 8, 198, 220, 220, 220, 331, 796, 299, 32152, 13, 11201, 19510, 87, 12429, 513, 13, 15, 8, 1343, 7838, 8, 198, 220, 220, 220, 1441, 685, 87, 4357, 331, 628, 198, 4299, 1382, 62, 39873, 62, 558, 62, 45573, 62, 4679, 24086, 17, 7, 45, 28, 4059, 2599, 198, 220, 220, 220, 37227, 15580, 6291, 1917, 331, 7, 87, 8, 796, 1033, 7, 31369, 7, 87, 4008, 526, 15931, 198, 220, 220, 220, 2124, 796, 299, 32152, 13, 21602, 10223, 7, 15, 11, 352, 11, 399, 8, 198, 220, 220, 220, 1303, 2124, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 15, 11, 352, 11, 2546, 28, 45, 8, 198, 220, 220, 220, 7838, 796, 299, 32152, 13, 25120, 13, 20307, 62, 11265, 7, 45, 8, 198, 220, 220, 220, 331, 796, 299, 32152, 13, 11201, 7, 77, 32152, 13, 31369, 7, 17, 1635, 299, 32152, 13, 14415, 1635, 2124, 4008, 1343, 657, 13, 15, 1635, 7838, 198, 220, 220, 220, 1441, 685, 87, 4357, 331, 628, 198, 4299, 1057, 62, 4679, 24086, 5332, 33529, 198, 220, 220, 220, 37227, 10987, 3719, 24086, 7600, 6291, 526, 15931, 198, 220, 220, 220, 2124, 11, 331, 796, 1382, 62, 39873, 62, 558, 62, 45573, 62, 4679, 24086, 5332, 7, 2167, 8, 198, 220, 220, 220, 31506, 62, 82, 14375, 796, 31506, 13, 2246, 1546, 14375, 3419, 198, 220, 220, 220, 31506, 62, 82, 14375, 13, 16684, 1958, 62, 7890, 62, 2617, 7, 87, 11, 331, 8, 198, 220, 220, 220, 31506, 62, 82, 14375, 13, 82, 6442, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31506, 13, 29487, 62, 7645, 23914, 7, 558, 62, 82, 14375, 11, 705, 39873, 62, 558, 62, 4679, 24086, 5332, 13, 11134, 11537, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1441, 31506, 62, 82, 14375, 198, 198, 4299, 1057, 62, 4679, 24086, 17, 33529, 198, 220, 220, 220, 37227, 10987, 3719, 24086, 338, 584, 6291, 1917, 526, 15931, 198, 220, 220, 220, 2124, 11, 331, 796, 1382, 62, 39873, 62, 558, 62, 45573, 62, 4679, 24086, 17, 7, 4059, 8, 198, 220, 220, 220, 31506, 62, 82, 14375, 796, 31506, 13, 2246, 1546, 14375, 3419, 198, 220, 220, 220, 31506, 62, 82, 14375, 13, 16684, 1958, 62, 7890, 62, 2617, 7, 87, 11, 331, 8, 198, 220, 220, 220, 31506, 62, 82, 14375, 13, 82, 6442, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 796, 31506, 13, 29487, 62, 7645, 23914, 7, 558, 62, 82, 14375, 11, 6045, 8, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 16, 11, 362, 11, 352, 8, 198, 220, 220, 220, 872, 72, 796, 299, 32152, 13, 31369, 7, 17, 13, 15, 1635, 299, 32152, 13, 14415, 1635, 2124, 58, 15, 12962, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 87, 58, 15, 4357, 872, 72, 11, 6167, 11639, 38200, 13370, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 16, 11, 362, 11, 362, 8, 198, 220, 220, 220, 331, 796, 299, 32152, 13, 11201, 7, 34846, 8, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 88, 11, 872, 72, 11, 6167, 11639, 38200, 13370, 11537, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17946, 11639, 21037, 826, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 3919, 62, 3919, 786, 62, 29127, 62, 87, 13, 11134, 11537, 628, 220, 220, 220, 1441, 31506, 62, 82, 14375, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 62, 4679, 24086, 17, 3419, 198 ]
2.182166
785
""" Modifications copyright (C) 2020 Michael Strobl """ import pprint import configparser pp = pprint.PrettyPrinter() #endinit if __name__=='__main__': c = Config("configs/allnew_mentions_config.ini", verbose=True)
[ 37811, 198, 5841, 6637, 6634, 357, 34, 8, 12131, 3899, 30183, 2436, 198, 37811, 198, 198, 11748, 279, 4798, 198, 11748, 4566, 48610, 198, 198, 381, 796, 279, 4798, 13, 35700, 6836, 3849, 3419, 628, 220, 220, 220, 1303, 437, 15003, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 269, 796, 17056, 7203, 11250, 82, 14, 439, 3605, 62, 434, 507, 62, 11250, 13, 5362, 1600, 15942, 577, 28, 17821, 8, 198 ]
2.8375
80
import pandas as pd import dill as pickle # sklearn from sklearn.model_selection import train_test_split import json import os import numpy as np import matplotlib.pyplot as plt import itertools from collections import Counter # sklearn from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import roc_auc_score import scikitplot.metrics as skplt from sklearn.metrics import classification_report, confusion_matrix from sklearn.utils.multiclass import unique_labels # from this project import utils.common as common # Function to calculate missing values by column
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 288, 359, 355, 2298, 293, 198, 2, 1341, 35720, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 340, 861, 10141, 198, 6738, 17268, 1330, 15034, 198, 198, 2, 1341, 35720, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1855, 11518, 3351, 36213, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 686, 66, 62, 14272, 62, 26675, 198, 11748, 629, 1134, 270, 29487, 13, 4164, 10466, 355, 1341, 489, 83, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 17923, 62, 13116, 11, 10802, 62, 6759, 8609, 198, 6738, 1341, 35720, 13, 26791, 13, 16680, 291, 31172, 1330, 3748, 62, 23912, 1424, 198, 2, 422, 428, 1628, 198, 11748, 3384, 4487, 13, 11321, 355, 2219, 628, 198, 2, 15553, 284, 15284, 4814, 3815, 416, 5721, 628, 628, 628, 628 ]
3.532934
167
"""Utility functions for interacting with the console""" #----------------------------------------------------------------------------- # Copyright (c) 2013, the IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Used to determine python version import sys #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def input(prompt_text): """ Prompt the user for input. The input command will change depending on the version of python installed. To maintain support for 2 and earlier, we must use raw_input in that case. Else use input. Parameters ---------- prompt_text : str Prompt to display to the user. """ # Try to get the python version. This command is only available in # python 2 and later, so it's important that we catch the exception # if the command isn't found. try: majorversion = sys.version_info[0] except AttributeError: majorversion = 1 # Use the correct function to prompt the user for input depending on # what python version the code is running in. if majorversion >= 3: return input(prompt_text) else: return raw_input(prompt_text).decode(sys.stdin.encoding) def prompt_boolean(prompt, default=False): """ Prompt the user for a boolean response. Parameters ---------- prompt : str prompt to display to the user default : bool, optional response to return if none is given by the user """ response = input(prompt) response = response.strip().lower() #Catch 1, true, yes as True if len(response) > 0 and (response == "1" or response[0] == "t" or response[0] == "y"): return True #Catch 0, false, no as False elif len(response) > 0 and (response == "0" or response[0] == "f" or response[0] == "n"): return False else: return default def prompt_dictionary(choices, default_style=1, menu_comments={}): """ Prompt the user to chose one of many selections from a menu. Parameters ---------- choices : dictionary Keys - choice numbers (int) Values - choice value (str), this is what the function will return default_style : int, optional Choice to select if the user doesn't respond menu_comments : dictionary, optional Additional comments to append to the menu as it is displayed in the console. Keys - choice numbers (int) Values - comment (str), what will be appended to the corresponding choice """ # Build the menu that will be displayed to the user with # all of the options available. prompt = "" for key, value in choices.items(): prompt += "%d %s " % (key, value) if key in menu_comments: prompt += menu_comments[key] prompt += "\n" # Continue to ask the user for a style until an appropriate # one is specified. response = -1 while (not response in choices): try: text_response = input(prompt) # Use default option if no input. if len(text_response.strip()) == 0: response = default_style else: response = int(text_response) except ValueError: print("Error: Value is not an available option. 0 selects the default.\n") return choices[response]
[ 37811, 18274, 879, 5499, 329, 24986, 351, 262, 8624, 37811, 198, 2, 10097, 32501, 198, 2, 15069, 357, 66, 8, 2211, 11, 262, 6101, 7535, 7712, 4816, 13, 198, 2, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 2393, 27975, 45761, 13, 14116, 11, 9387, 351, 428, 3788, 13, 198, 2, 10097, 32501, 198, 198, 2, 10097, 32501, 198, 2, 1846, 3742, 198, 2, 10097, 32501, 198, 198, 2, 16718, 284, 5004, 21015, 2196, 198, 11748, 25064, 198, 198, 2, 10097, 32501, 198, 2, 38884, 290, 5499, 198, 2, 10097, 32501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 5128, 7, 16963, 457, 62, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45965, 262, 2836, 329, 5128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 383, 5128, 3141, 481, 1487, 6906, 319, 262, 2196, 286, 21015, 198, 220, 220, 220, 6589, 13, 220, 1675, 5529, 1104, 329, 362, 290, 2961, 11, 356, 1276, 779, 198, 220, 220, 220, 8246, 62, 15414, 287, 326, 1339, 13, 220, 25974, 779, 5128, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 6152, 62, 5239, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 45965, 284, 3359, 284, 262, 2836, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 9993, 284, 651, 262, 21015, 2196, 13, 220, 770, 3141, 318, 691, 1695, 287, 198, 220, 220, 220, 1303, 21015, 362, 290, 1568, 11, 523, 340, 338, 1593, 326, 356, 4929, 262, 6631, 198, 220, 220, 220, 1303, 611, 262, 3141, 2125, 470, 1043, 13, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1688, 9641, 796, 25064, 13, 9641, 62, 10951, 58, 15, 60, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1688, 9641, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5765, 262, 3376, 2163, 284, 6152, 262, 2836, 329, 5128, 6906, 319, 220, 198, 220, 220, 220, 1303, 644, 21015, 2196, 262, 2438, 318, 2491, 287, 13, 198, 220, 220, 220, 611, 1688, 9641, 18189, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5128, 7, 16963, 457, 62, 5239, 8, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 8246, 62, 15414, 7, 16963, 457, 62, 5239, 737, 12501, 1098, 7, 17597, 13, 19282, 259, 13, 12685, 7656, 8, 628, 220, 220, 220, 220, 198, 4299, 6152, 62, 2127, 21052, 7, 16963, 457, 11, 4277, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45965, 262, 2836, 329, 257, 25131, 2882, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 6152, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6152, 284, 3359, 284, 262, 2836, 198, 220, 220, 220, 4277, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 284, 1441, 611, 4844, 318, 1813, 416, 262, 2836, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2882, 796, 5128, 7, 16963, 457, 8, 198, 220, 220, 220, 2882, 796, 2882, 13, 36311, 22446, 21037, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 34, 963, 352, 11, 2081, 11, 3763, 355, 6407, 198, 220, 220, 220, 611, 18896, 7, 26209, 8, 1875, 657, 290, 357, 26209, 6624, 366, 16, 1, 393, 2882, 58, 15, 60, 6624, 366, 83, 1, 393, 2882, 58, 15, 60, 6624, 366, 88, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 34, 963, 657, 11, 3991, 11, 645, 355, 10352, 198, 220, 220, 220, 1288, 361, 18896, 7, 26209, 8, 1875, 657, 290, 357, 26209, 6624, 366, 15, 1, 393, 2882, 58, 15, 60, 6624, 366, 69, 1, 393, 2882, 58, 15, 60, 6624, 366, 77, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4277, 628, 198, 4299, 6152, 62, 67, 14188, 7, 6679, 1063, 11, 4277, 62, 7635, 28, 16, 11, 6859, 62, 15944, 34758, 92, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45965, 262, 2836, 284, 7690, 530, 286, 867, 28224, 422, 257, 6859, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 7747, 1058, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 26363, 532, 3572, 3146, 357, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27068, 532, 3572, 1988, 357, 2536, 828, 428, 318, 644, 262, 2163, 481, 1441, 198, 220, 220, 220, 4277, 62, 7635, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 18502, 284, 2922, 611, 262, 2836, 1595, 470, 3031, 198, 220, 220, 220, 6859, 62, 15944, 1058, 22155, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 15891, 3651, 284, 24443, 284, 262, 6859, 355, 340, 318, 9066, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 8624, 13, 198, 220, 220, 220, 220, 220, 220, 220, 26363, 532, 3572, 3146, 357, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27068, 532, 2912, 357, 2536, 828, 644, 481, 307, 598, 1631, 284, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 3572, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10934, 262, 6859, 326, 481, 307, 9066, 284, 262, 2836, 351, 198, 220, 220, 220, 1303, 477, 286, 262, 3689, 1695, 13, 220, 198, 220, 220, 220, 6152, 796, 13538, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 7747, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 6152, 15853, 36521, 67, 4064, 82, 366, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 6859, 62, 15944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6152, 15853, 6859, 62, 15944, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6152, 15853, 37082, 77, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 10054, 284, 1265, 262, 2836, 329, 257, 3918, 1566, 281, 5035, 198, 220, 220, 220, 1303, 530, 318, 7368, 13, 198, 220, 220, 220, 2882, 796, 532, 16, 198, 220, 220, 220, 981, 357, 1662, 2882, 287, 7747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 26209, 796, 5128, 7, 16963, 457, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5765, 4277, 3038, 611, 645, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 5239, 62, 26209, 13, 36311, 28955, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 4277, 62, 7635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 493, 7, 5239, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 25, 11052, 318, 407, 281, 1695, 3038, 13, 220, 657, 40573, 262, 4277, 13, 59, 77, 4943, 198, 220, 220, 220, 1441, 7747, 58, 26209, 60, 198 ]
2.947955
1,345
# coding=utf-8 from os import sys, path from logging import getLogger from items.view import app sys.path.append(path.dirname(path.abspath(__file__))) logger = getLogger(__name__) logger.info(sys.path) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080)
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 6738, 28686, 1330, 25064, 11, 3108, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 198, 6738, 3709, 13, 1177, 1330, 598, 198, 198, 17597, 13, 6978, 13, 33295, 7, 6978, 13, 15908, 3672, 7, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 22305, 198, 198, 6404, 1362, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 1362, 13, 10951, 7, 17597, 13, 6978, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 4774, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 2493, 28, 1795, 1795, 8, 628, 628, 628 ]
2.469027
113
from lib import action
[ 6738, 9195, 1330, 2223, 628 ]
4.8
5
""" ******************************************************************************** * Name: gen_commands.py * Author: Nathan Swain * Created On: 2015 * Copyright: (c) Brigham Young University 2015 * License: BSD 2-Clause ******************************************************************************** """ import os import string import random from tethys_apps.utilities import get_tethys_home_dir, get_tethys_src_dir from distro import linux_distribution from django.conf import settings from jinja2 import Template os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tethys_portal.settings") GEN_SETTINGS_OPTION = 'settings' GEN_APACHE_OPTION = 'apache' GEN_ASGI_SERVICE_OPTION = 'asgi_service' GEN_NGINX_OPTION = 'nginx' GEN_NGINX_SERVICE_OPTION = 'nginx_service' GEN_PORTAL_OPTION = 'portal' GEN_SERVICES_OPTION = 'services' GEN_INSTALL_OPTION = 'install' GEN_SITE_YAML_OPTION = 'site_content' FILE_NAMES = { GEN_SETTINGS_OPTION: 'settings.py', GEN_APACHE_OPTION: 'tethys-default.conf', GEN_ASGI_SERVICE_OPTION: 'asgi_supervisord.conf', GEN_NGINX_OPTION: 'tethys_nginx.conf', GEN_NGINX_SERVICE_OPTION: 'nginx_supervisord.conf', GEN_PORTAL_OPTION: 'portal.yml', GEN_SERVICES_OPTION: 'services.yml', GEN_INSTALL_OPTION: 'install.yml', GEN_SITE_YAML_OPTION: 'site_content.yml', } VALID_GEN_OBJECTS = ( GEN_SETTINGS_OPTION, # GEN_APACHE_OPTION, GEN_ASGI_SERVICE_OPTION, GEN_NGINX_OPTION, GEN_NGINX_SERVICE_OPTION, GEN_PORTAL_OPTION, GEN_SERVICES_OPTION, GEN_INSTALL_OPTION, GEN_SITE_YAML_OPTION ) TETHYS_SRC = get_tethys_src_dir() gen_commands = { GEN_SETTINGS_OPTION: gen_settings, GEN_ASGI_SERVICE_OPTION: gen_asgi_service, GEN_NGINX_OPTION: gen_nginx, GEN_NGINX_SERVICE_OPTION: gen_nginx_service, GEN_PORTAL_OPTION: gen_portal_yaml, GEN_SERVICES_OPTION: gen_services_yaml, GEN_INSTALL_OPTION: gen_install, GEN_SITE_YAML_OPTION: gen_site_content_yaml, } def generate_command(args): """ Generate a settings file for a new installation. """ # Setup variables context = gen_commands[args.type](args) destination_path = get_destination_path(args) render_template(args.type, context, destination_path)
[ 37811, 198, 17174, 17174, 8412, 198, 9, 6530, 25, 2429, 62, 9503, 1746, 13, 9078, 198, 9, 6434, 25, 18106, 2451, 391, 198, 9, 15622, 1550, 25, 1853, 198, 9, 15069, 25, 357, 66, 8, 37434, 6960, 2059, 1853, 198, 9, 13789, 25, 347, 10305, 362, 12, 2601, 682, 198, 17174, 17174, 8412, 198, 37811, 198, 11748, 28686, 198, 11748, 4731, 198, 11748, 4738, 198, 6738, 256, 2788, 893, 62, 18211, 13, 315, 2410, 1330, 651, 62, 83, 2788, 893, 62, 11195, 62, 15908, 11, 651, 62, 83, 2788, 893, 62, 10677, 62, 15908, 198, 6738, 1233, 305, 1330, 32639, 62, 17080, 3890, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 474, 259, 6592, 17, 1330, 37350, 628, 198, 418, 13, 268, 2268, 13, 2617, 12286, 7203, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 1600, 366, 83, 2788, 893, 62, 634, 282, 13, 33692, 4943, 628, 198, 35353, 62, 28480, 51, 20754, 62, 3185, 24131, 796, 705, 33692, 6, 198, 35353, 62, 2969, 2246, 13909, 62, 3185, 24131, 796, 705, 43073, 6, 198, 35353, 62, 1921, 18878, 62, 35009, 27389, 62, 3185, 24131, 796, 705, 292, 12397, 62, 15271, 6, 198, 35353, 62, 10503, 1268, 55, 62, 3185, 24131, 796, 705, 782, 28413, 6, 198, 35353, 62, 10503, 1268, 55, 62, 35009, 27389, 62, 3185, 24131, 796, 705, 782, 28413, 62, 15271, 6, 198, 35353, 62, 15490, 1847, 62, 3185, 24131, 796, 705, 634, 282, 6, 198, 35353, 62, 35009, 53, 34444, 62, 3185, 24131, 796, 705, 30416, 6, 198, 35353, 62, 38604, 7036, 62, 3185, 24131, 796, 705, 17350, 6, 198, 35353, 62, 50, 12709, 62, 56, 2390, 43, 62, 3185, 24131, 796, 705, 15654, 62, 11299, 6, 198, 198, 25664, 62, 45, 29559, 796, 1391, 198, 220, 220, 220, 24700, 62, 28480, 51, 20754, 62, 3185, 24131, 25, 705, 33692, 13, 9078, 3256, 198, 220, 220, 220, 24700, 62, 2969, 2246, 13909, 62, 3185, 24131, 25, 705, 83, 2788, 893, 12, 12286, 13, 10414, 3256, 198, 220, 220, 220, 24700, 62, 1921, 18878, 62, 35009, 27389, 62, 3185, 24131, 25, 705, 292, 12397, 62, 16668, 4703, 585, 13, 10414, 3256, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 3185, 24131, 25, 705, 83, 2788, 893, 62, 782, 28413, 13, 10414, 3256, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 35009, 27389, 62, 3185, 24131, 25, 705, 782, 28413, 62, 16668, 4703, 585, 13, 10414, 3256, 198, 220, 220, 220, 24700, 62, 15490, 1847, 62, 3185, 24131, 25, 705, 634, 282, 13, 88, 4029, 3256, 198, 220, 220, 220, 24700, 62, 35009, 53, 34444, 62, 3185, 24131, 25, 705, 30416, 13, 88, 4029, 3256, 198, 220, 220, 220, 24700, 62, 38604, 7036, 62, 3185, 24131, 25, 705, 17350, 13, 88, 4029, 3256, 198, 220, 220, 220, 24700, 62, 50, 12709, 62, 56, 2390, 43, 62, 3185, 24131, 25, 705, 15654, 62, 11299, 13, 88, 4029, 3256, 198, 92, 198, 198, 23428, 2389, 62, 35353, 62, 9864, 41, 2943, 4694, 796, 357, 198, 220, 220, 220, 24700, 62, 28480, 51, 20754, 62, 3185, 24131, 11, 198, 220, 220, 220, 1303, 24700, 62, 2969, 2246, 13909, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 1921, 18878, 62, 35009, 27389, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 35009, 27389, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 15490, 1847, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 35009, 53, 34444, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 38604, 7036, 62, 3185, 24131, 11, 198, 220, 220, 220, 24700, 62, 50, 12709, 62, 56, 2390, 43, 62, 3185, 24131, 198, 8, 198, 198, 51, 20702, 16309, 62, 50, 7397, 796, 651, 62, 83, 2788, 893, 62, 10677, 62, 15908, 3419, 628, 628, 628, 628, 628, 628, 628, 628, 198, 5235, 62, 9503, 1746, 796, 1391, 198, 220, 220, 220, 24700, 62, 28480, 51, 20754, 62, 3185, 24131, 25, 2429, 62, 33692, 11, 198, 220, 220, 220, 24700, 62, 1921, 18878, 62, 35009, 27389, 62, 3185, 24131, 25, 2429, 62, 292, 12397, 62, 15271, 11, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 3185, 24131, 25, 2429, 62, 782, 28413, 11, 198, 220, 220, 220, 24700, 62, 10503, 1268, 55, 62, 35009, 27389, 62, 3185, 24131, 25, 2429, 62, 782, 28413, 62, 15271, 11, 198, 220, 220, 220, 24700, 62, 15490, 1847, 62, 3185, 24131, 25, 2429, 62, 634, 282, 62, 88, 43695, 11, 198, 220, 220, 220, 24700, 62, 35009, 53, 34444, 62, 3185, 24131, 25, 2429, 62, 30416, 62, 88, 43695, 11, 198, 220, 220, 220, 24700, 62, 38604, 7036, 62, 3185, 24131, 25, 2429, 62, 17350, 11, 198, 220, 220, 220, 24700, 62, 50, 12709, 62, 56, 2390, 43, 62, 3185, 24131, 25, 2429, 62, 15654, 62, 11299, 62, 88, 43695, 11, 198, 92, 628, 198, 4299, 7716, 62, 21812, 7, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 6460, 2393, 329, 257, 649, 9988, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 31122, 9633, 198, 220, 220, 220, 4732, 796, 2429, 62, 9503, 1746, 58, 22046, 13, 4906, 16151, 22046, 8, 628, 220, 220, 220, 10965, 62, 6978, 796, 651, 62, 16520, 1883, 62, 6978, 7, 22046, 8, 628, 220, 220, 220, 8543, 62, 28243, 7, 22046, 13, 4906, 11, 4732, 11, 10965, 62, 6978, 8, 198 ]
2.461287
917
if __name__ == "__main__": grid = [[0 for x in range(9)] for y in range(9)] grid = [[3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0]] if (solve_sudoku(grid)): print_grid(grid) else: print "No solution exists"
[ 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 201, 198, 220, 220, 220, 10706, 796, 16410, 15, 329, 2124, 287, 2837, 7, 24, 15437, 329, 331, 287, 2837, 7, 24, 15437, 201, 198, 201, 198, 220, 220, 220, 10706, 796, 16410, 18, 11, 657, 11, 718, 11, 642, 11, 657, 11, 807, 11, 604, 11, 657, 11, 657, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20, 11, 362, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 807, 11, 767, 11, 657, 11, 657, 11, 657, 11, 657, 11, 513, 11, 352, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 513, 11, 657, 11, 352, 11, 657, 11, 657, 11, 807, 11, 657, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 24, 11, 657, 11, 657, 11, 807, 11, 718, 11, 513, 11, 657, 11, 657, 11, 642, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 642, 11, 657, 11, 657, 11, 860, 11, 657, 11, 718, 11, 657, 11, 657, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 513, 11, 657, 11, 657, 11, 657, 11, 657, 11, 362, 11, 642, 11, 657, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 767, 11, 604, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 657, 11, 642, 11, 362, 11, 657, 11, 718, 11, 513, 11, 657, 11, 657, 11907, 201, 198, 201, 198, 220, 220, 220, 611, 357, 82, 6442, 62, 82, 463, 11601, 7, 25928, 8, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 25928, 7, 25928, 8, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 4610, 7160, 1, 201, 198 ]
1.477612
402
# -*- coding: utf-8 -*- # # Hymn documentation build configuration file import os import sys PROJECT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) sys.path.insert(0, PROJECT_DIR) import hymn extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', ] source_suffix = '.rst' master_doc = 'index' project = u'Hymn' copyright = u'2014-2018, Philip Xu' author = u'Philip Xu' version = '%d.%d' % hymn.__version__ release = hymn.VERSION language = None exclude_patterns = ['_build'] pygments_style = 'colorful' todo_include_todos = False on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: html_theme = 'bizstyle' htmlhelp_basename = 'Hymndoc' latex_documents = [ (master_doc, 'Hymn.tex', u'Hymn Documentation', u'Philip Xu', 'manual'), ] man_pages = [ (master_doc, 'hymn', u'Hymn Documentation', [author], 1) ] texinfo_documents = [ (master_doc, 'Hymn', u'Hymn Documentation', author, 'Hymn', hymn.__doc__, 'Miscellaneous'), ]
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 367, 4948, 77, 10314, 1382, 8398, 2393, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 31190, 23680, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 40720, 6, 4008, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 21965, 23680, 62, 34720, 8, 198, 11748, 2537, 10295, 198, 198, 2302, 5736, 796, 685, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 2306, 375, 420, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 1073, 1857, 3256, 198, 220, 220, 220, 705, 82, 746, 28413, 13, 2302, 13, 1177, 8189, 3256, 198, 60, 198, 198, 10459, 62, 37333, 844, 796, 45302, 81, 301, 6, 198, 198, 9866, 62, 15390, 796, 705, 9630, 6, 198, 198, 16302, 796, 334, 6, 39, 4948, 77, 6, 198, 22163, 4766, 796, 334, 6, 4967, 12, 7908, 11, 14576, 33591, 6, 198, 9800, 796, 334, 6, 18673, 541, 33591, 6, 198, 198, 9641, 796, 705, 4, 67, 13, 4, 67, 6, 4064, 2537, 10295, 13, 834, 9641, 834, 198, 20979, 796, 2537, 10295, 13, 43717, 198, 198, 16129, 796, 6045, 198, 198, 1069, 9152, 62, 33279, 82, 796, 37250, 62, 11249, 20520, 198, 198, 9078, 11726, 62, 7635, 796, 705, 8043, 913, 6, 198, 198, 83, 24313, 62, 17256, 62, 83, 375, 418, 796, 10352, 198, 198, 261, 62, 81, 8671, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 15675, 4221, 1961, 4503, 50, 3256, 6045, 8, 6624, 705, 17821, 6, 198, 198, 361, 407, 319, 62, 81, 8671, 25, 198, 220, 220, 220, 27711, 62, 43810, 796, 705, 42189, 7635, 6, 198, 198, 6494, 16794, 62, 12093, 12453, 796, 705, 39, 4948, 358, 420, 6, 198, 198, 17660, 87, 62, 15390, 2886, 796, 685, 198, 220, 357, 9866, 62, 15390, 11, 705, 39, 4948, 77, 13, 16886, 3256, 334, 6, 39, 4948, 77, 43925, 3256, 198, 220, 220, 334, 6, 18673, 541, 33591, 3256, 705, 805, 723, 33809, 198, 60, 198, 198, 805, 62, 31126, 796, 685, 198, 220, 220, 220, 357, 9866, 62, 15390, 11, 705, 71, 4948, 77, 3256, 334, 6, 39, 4948, 77, 43925, 3256, 198, 220, 220, 220, 220, 685, 9800, 4357, 352, 8, 198, 60, 198, 198, 16886, 10951, 62, 15390, 2886, 796, 685, 198, 220, 357, 9866, 62, 15390, 11, 705, 39, 4948, 77, 3256, 334, 6, 39, 4948, 77, 43925, 3256, 198, 220, 220, 1772, 11, 705, 39, 4948, 77, 3256, 2537, 10295, 13, 834, 15390, 834, 11, 198, 220, 220, 705, 31281, 25673, 33809, 198, 60, 198 ]
2.302428
453
# coding=utf-8 from services.base import BaseService from services.service_locator import ServiceLocator from logger import error __author__ = 'Glebov Boris'
[ 2, 19617, 28, 40477, 12, 23, 198, 198, 6738, 2594, 13, 8692, 1330, 7308, 16177, 198, 6738, 2594, 13, 15271, 62, 17946, 1352, 1330, 4809, 33711, 1352, 198, 6738, 49706, 1330, 4049, 198, 198, 834, 9800, 834, 796, 705, 38, 293, 65, 709, 25026, 6, 628 ]
3.5
46
import os from typing import List import random import h5py import numpy as np from PIL import Image, ImageFile import threading # force pillow to load also truncated images ImageFile.LOAD_TRUNCATED_IMAGES = True # number of images to take from the folder N_EL = int(5e5) # path/to/folder that contains the images. No particular structure is required and nested folder are accepted. RES_PATH = os.path.join('E:\\dataset\\images_only') def square_img(im: Image.Image) -> Image: """ :param im: :return: """ w, h = im.size if w == h: return im crop_shift = random.randrange(abs(h-w)) # crops only in the dimension that is bigger! if w > h: # left-upper, right-lower # box dimension must be that way box = [0, 0, h, h] # and it may be moved horizontally box[0] += crop_shift box[2] += crop_shift else: # moving box vertically box = [0, 0, w, w] box[1] += crop_shift box[3] += crop_shift im = im.crop(box) return im class ThreadedImageWriter(threading.Thread): """ Threaded version to prepare the dataset. Everything runs smoothly because we have multiple folders that avoid race conditions """ def images_in_paths(folder_path: str) -> List[str]: """ Collects all images from one folder and return a list of paths :param folder_path: :return: """ paths = [] folder_path = os.path.join(os.getcwd(), folder_path) for root, dirs, files in os.walk(folder_path): for file in files: paths.append(os.path.join(root, file)) return paths def shuffle_dataset(lst: List, seed: int = None) -> None: """ Controlled shuffle. :param lst: :param seed: if specified the shuffle returns the same shuffled list every time it is invoked :return: """ if seed is not None: random.seed(seed) random.shuffle(lst) def generate_dataset(file_list: List, dataset_folder: str, img_size=256, train_dim: float = 0.70, val_dim: float = 0.25): """ Generate and save train, validation and test data. Test data is what is left from train and validation sets :param file_list: :param img_size: :param train_dim: :param val_dim: :param hdf5_file_name: :return: """ shuffle_dataset(file_list) # make train, validation and test partitions n = len(file_list) train_i = [0, int(train_dim*n)] val_i = [int(train_dim*n), int((train_dim+val_dim)*n)] test_i = [int((train_dim+val_dim)*n), -1] file_dict = { 'train': file_list[train_i[0]:train_i[1]], 'val': file_list[val_i[0]:val_i[1]], 'test': file_list[test_i[0]:] } # it is better to keep validation dataset bigger than test one assert len(file_dict['train']) > len(file_dict['val']) > len(file_dict['test']) os.makedirs(dataset_folder, exist_ok=True) # create h5file to store information about train_mean and train_std that are useful for training later h5_path = os.path.join(dataset_folder, 'info.h5') with h5py.File(h5_path, mode='w') as hdf5_out: hdf5_out.create_dataset('train_mean', (img_size, img_size, 3), np.float32) hdf5_out.create_dataset('train_std', (img_size, img_size, 3), np.float32) hdf5_out.create_dataset('train_dim', (), np.int32, data=int(n*train_dim)) hdf5_out.create_dataset('val_dim', (), np.int32, data=int(n*val_dim)) hdf5_out.create_dataset('test_dim', (), np.int32, data=int(n*(1-train_dim-val_dim))) # make one thread for <set_type> threaded_types = [] for set_type, img_list in file_dict.items(): threaded_types.append(ThreadedImageWriter(img_list, set_type, hdf5_out, img_size, dataset_folder)) for thread in threaded_types: thread.start() for thread in threaded_types: # wait for the threads to finish the execution thread.join() for i, thread in enumerate(threaded_types): if thread.read_errors: with open('errors{}.txt'.format(i), 'w') as f: f.writelines(thread.read_errors) if thread.set_type == 'train': # calculate the std using the variace array only for train set training_std = np.sqrt(thread.M2 / (len(file_dict['train']) - 1)) hdf5_out['train_mean'][...] = thread.mean hdf5_out['train_std'][...] = training_std if __name__ == '__main__': output_path = os.path.join(os.getcwd(), 'resources', 'images') elements = N_EL res_path = RES_PATH images_list = images_in_paths(os.path.join(res_path)) random.shuffle(images_list) images_list = images_list[0:elements] generate_dataset(images_list, os.path.join(output_path, 'ILSVRC_' + str(elements)))
[ 11748, 28686, 198, 6738, 19720, 1330, 7343, 198, 11748, 4738, 198, 11748, 289, 20, 9078, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 8979, 198, 11748, 4704, 278, 198, 2, 2700, 28774, 284, 3440, 635, 40122, 515, 4263, 198, 5159, 8979, 13, 35613, 62, 5446, 4944, 34, 11617, 62, 3955, 25552, 796, 6407, 198, 198, 2, 1271, 286, 4263, 284, 1011, 422, 262, 9483, 198, 45, 62, 3698, 796, 493, 7, 20, 68, 20, 8, 198, 2, 3108, 14, 1462, 14, 43551, 326, 4909, 262, 4263, 13, 1400, 1948, 4645, 318, 2672, 290, 28376, 9483, 389, 6292, 13, 198, 19535, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 10786, 36, 25, 6852, 19608, 292, 316, 6852, 17566, 62, 8807, 11537, 628, 198, 4299, 6616, 62, 9600, 7, 320, 25, 7412, 13, 5159, 8, 4613, 7412, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 545, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 266, 11, 289, 796, 545, 13, 7857, 198, 220, 220, 220, 611, 266, 6624, 289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 545, 198, 220, 220, 220, 13833, 62, 30846, 796, 4738, 13, 25192, 9521, 7, 8937, 7, 71, 12, 86, 4008, 220, 1303, 14450, 691, 287, 262, 15793, 326, 318, 5749, 0, 198, 220, 220, 220, 611, 266, 1875, 289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1364, 12, 45828, 11, 826, 12, 21037, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3091, 15793, 1276, 307, 326, 835, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 796, 685, 15, 11, 657, 11, 289, 11, 289, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 340, 743, 307, 3888, 36774, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 58, 15, 60, 15853, 13833, 62, 30846, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 58, 17, 60, 15853, 13833, 62, 30846, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3867, 3091, 31677, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 796, 685, 15, 11, 657, 11, 266, 11, 266, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 58, 16, 60, 15853, 13833, 62, 30846, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 58, 18, 60, 15853, 13833, 62, 30846, 198, 220, 220, 220, 545, 796, 545, 13, 31476, 7, 3524, 8, 198, 220, 220, 220, 1441, 545, 628, 198, 4871, 14122, 276, 5159, 34379, 7, 16663, 278, 13, 16818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14122, 276, 2196, 284, 8335, 262, 27039, 13, 11391, 4539, 21461, 780, 356, 423, 3294, 24512, 326, 3368, 198, 220, 220, 220, 3234, 3403, 198, 220, 220, 220, 37227, 628, 198, 4299, 4263, 62, 259, 62, 6978, 82, 7, 43551, 62, 6978, 25, 965, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9745, 82, 477, 4263, 422, 530, 9483, 290, 1441, 257, 1351, 286, 13532, 198, 220, 220, 220, 1058, 17143, 9483, 62, 6978, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13532, 796, 17635, 198, 220, 220, 220, 9483, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 9483, 62, 6978, 8, 198, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 43551, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 15763, 11, 2393, 4008, 198, 220, 220, 220, 1441, 13532, 628, 198, 4299, 36273, 62, 19608, 292, 316, 7, 75, 301, 25, 7343, 11, 9403, 25, 493, 796, 6045, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43253, 36273, 13, 198, 220, 220, 220, 1058, 17143, 300, 301, 25, 198, 220, 220, 220, 1058, 17143, 9403, 25, 611, 7368, 262, 36273, 5860, 262, 976, 32299, 992, 1351, 790, 640, 340, 318, 24399, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 9403, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 75, 301, 8, 628, 198, 4299, 7716, 62, 19608, 292, 316, 7, 7753, 62, 4868, 25, 7343, 11, 27039, 62, 43551, 25, 965, 11, 33705, 62, 7857, 28, 11645, 11, 4512, 62, 27740, 25, 12178, 796, 657, 13, 2154, 11, 1188, 62, 27740, 25, 12178, 796, 657, 13, 1495, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 290, 3613, 4512, 11, 21201, 290, 1332, 1366, 13, 6208, 1366, 318, 644, 318, 1364, 422, 4512, 290, 21201, 5621, 198, 220, 220, 220, 1058, 17143, 2393, 62, 4868, 25, 198, 220, 220, 220, 1058, 17143, 33705, 62, 7857, 25, 198, 220, 220, 220, 1058, 17143, 4512, 62, 27740, 25, 198, 220, 220, 220, 1058, 17143, 1188, 62, 27740, 25, 198, 220, 220, 220, 1058, 17143, 289, 7568, 20, 62, 7753, 62, 3672, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36273, 62, 19608, 292, 316, 7, 7753, 62, 4868, 8, 198, 220, 220, 220, 1303, 787, 4512, 11, 21201, 290, 1332, 43869, 198, 220, 220, 220, 299, 796, 18896, 7, 7753, 62, 4868, 8, 198, 220, 220, 220, 4512, 62, 72, 796, 685, 15, 11, 493, 7, 27432, 62, 27740, 9, 77, 15437, 198, 220, 220, 220, 1188, 62, 72, 796, 685, 600, 7, 27432, 62, 27740, 9, 77, 828, 493, 19510, 27432, 62, 27740, 10, 2100, 62, 27740, 27493, 77, 15437, 198, 220, 220, 220, 1332, 62, 72, 796, 685, 600, 19510, 27432, 62, 27740, 10, 2100, 62, 27740, 27493, 77, 828, 532, 16, 60, 198, 220, 220, 220, 2393, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 27432, 10354, 2393, 62, 4868, 58, 27432, 62, 72, 58, 15, 5974, 27432, 62, 72, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2100, 10354, 2393, 62, 4868, 58, 2100, 62, 72, 58, 15, 5974, 2100, 62, 72, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 10354, 2393, 62, 4868, 58, 9288, 62, 72, 58, 15, 5974, 60, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1303, 340, 318, 1365, 284, 1394, 21201, 27039, 5749, 621, 1332, 530, 198, 220, 220, 220, 6818, 18896, 7, 7753, 62, 11600, 17816, 27432, 6, 12962, 1875, 18896, 7, 7753, 62, 11600, 17816, 2100, 6, 12962, 1875, 18896, 7, 7753, 62, 11600, 17816, 9288, 6, 12962, 628, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 19608, 292, 316, 62, 43551, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 1303, 2251, 289, 20, 7753, 284, 3650, 1321, 546, 4512, 62, 32604, 290, 4512, 62, 19282, 326, 389, 4465, 329, 3047, 1568, 198, 220, 220, 220, 289, 20, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 19608, 292, 316, 62, 43551, 11, 705, 10951, 13, 71, 20, 11537, 198, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 71, 20, 62, 6978, 11, 4235, 11639, 86, 11537, 355, 289, 7568, 20, 62, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 13, 17953, 62, 19608, 292, 316, 10786, 27432, 62, 32604, 3256, 357, 9600, 62, 7857, 11, 33705, 62, 7857, 11, 513, 828, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 13, 17953, 62, 19608, 292, 316, 10786, 27432, 62, 19282, 3256, 357, 9600, 62, 7857, 11, 33705, 62, 7857, 11, 513, 828, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 13, 17953, 62, 19608, 292, 316, 10786, 27432, 62, 27740, 3256, 29994, 45941, 13, 600, 2624, 11, 1366, 28, 600, 7, 77, 9, 27432, 62, 27740, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 13, 17953, 62, 19608, 292, 316, 10786, 2100, 62, 27740, 3256, 29994, 45941, 13, 600, 2624, 11, 1366, 28, 600, 7, 77, 9, 2100, 62, 27740, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 13, 17953, 62, 19608, 292, 316, 10786, 9288, 62, 27740, 3256, 29994, 45941, 13, 600, 2624, 11, 1366, 28, 600, 7, 77, 9, 7, 16, 12, 27432, 62, 27740, 12, 2100, 62, 27740, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 530, 4704, 329, 1279, 2617, 62, 4906, 29, 198, 220, 220, 220, 220, 220, 220, 220, 40945, 62, 19199, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 900, 62, 4906, 11, 33705, 62, 4868, 287, 2393, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40945, 62, 19199, 13, 33295, 7, 16818, 276, 5159, 34379, 7, 9600, 62, 4868, 11, 900, 62, 4906, 11, 289, 7568, 20, 62, 448, 11, 33705, 62, 7857, 11, 27039, 62, 43551, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4704, 287, 40945, 62, 19199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 4704, 287, 40945, 62, 19199, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4043, 329, 262, 14390, 284, 5461, 262, 9706, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4704, 13, 22179, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 4704, 287, 27056, 378, 7, 16663, 276, 62, 19199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4704, 13, 961, 62, 48277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 48277, 90, 27422, 14116, 4458, 18982, 7, 72, 828, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 8933, 20655, 7, 16663, 13, 961, 62, 48277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4704, 13, 2617, 62, 4906, 6624, 705, 27432, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 262, 14367, 1262, 262, 5553, 558, 7177, 691, 329, 4512, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 19282, 796, 45941, 13, 31166, 17034, 7, 16663, 13, 44, 17, 1220, 357, 11925, 7, 7753, 62, 11600, 17816, 27432, 6, 12962, 532, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 17816, 27432, 62, 32604, 6, 7131, 22345, 796, 4704, 13, 32604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 7568, 20, 62, 448, 17816, 27432, 62, 19282, 6, 7131, 22345, 796, 3047, 62, 19282, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5072, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 1136, 66, 16993, 22784, 705, 37540, 3256, 705, 17566, 11537, 198, 220, 220, 220, 4847, 796, 399, 62, 3698, 198, 220, 220, 220, 581, 62, 6978, 796, 15731, 62, 34219, 198, 220, 220, 220, 4263, 62, 4868, 796, 4263, 62, 259, 62, 6978, 82, 7, 418, 13, 6978, 13, 22179, 7, 411, 62, 6978, 4008, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 17566, 62, 4868, 8, 198, 220, 220, 220, 4263, 62, 4868, 796, 4263, 62, 4868, 58, 15, 25, 68, 3639, 60, 198, 220, 220, 220, 7716, 62, 19608, 292, 316, 7, 17566, 62, 4868, 11, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 6978, 11, 705, 45484, 53, 7397, 62, 6, 1343, 965, 7, 68, 3639, 22305, 198 ]
2.372252
2,047
import urllib.request import os import argparse from bs4 import BeautifulSoup parser = argparse.ArgumentParser() parser.add_argument("url", type=str, nargs=1, help="Main url with list of recipe URLs") parser.add_argument("cuisine", type=str, nargs=1, help="Type of cuisine on the main url page") parser.add_argument("pageNum", type=int, nargs=1, help="Page number to pull from") #parser.add_argument("fileStart", type=int, nargs=1, help="number to start filenames on") args = parser.parse_args() cuisine = str(args.cuisine[0]).lower() page = str(args.pageNum[0]) main_url = str(args.url[0]) + "?sort=Newest&page=" + page #local_filename, headers = urllib.request.urlretrieve(main_url) try:local_filename, headers = urllib.request.urlretrieve(main_url) except: print("\n### Unable to open webpage " + main_url + " ### \n") exit(-1) url_file = open(local_filename) html = url_file.read() soup = BeautifulSoup(html, 'html.parser') div = soup.find_all('article', class_='grid-col--fixed-tiles') url_list = [] for item in div: for a in item.find_all('a', href=True): if "/recipe" in a['href']: if a['href'] not in url_list: url_list.append(a['href']) url_file.close() filenum = len(os.listdir("html/" + cuisine)) for url in url_list: if filenum > 160: break urlname = "http://allrecipes.com" + url html_filename = "html/" + cuisine +"/" + cuisine + str(filenum) + ".html" html_file = open(html_filename, 'w') print(urlname, filenum) try:local_filename, headers = urllib.request.urlretrieve(urlname) except: print("UNABLE TO OPEN " + urlname) exit(-1) file_ = open(local_filename) data = file_.read() html_file.write(data) html_file.close() file_.close() filenum += 1 print("Done")
[ 11748, 2956, 297, 571, 13, 25927, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 6371, 1600, 2099, 28, 2536, 11, 299, 22046, 28, 16, 11, 1037, 2625, 13383, 19016, 351, 1351, 286, 8364, 32336, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 27399, 27480, 1600, 2099, 28, 2536, 11, 299, 22046, 28, 16, 11, 1037, 2625, 6030, 286, 33072, 319, 262, 1388, 19016, 2443, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 7700, 33111, 1600, 2099, 28, 600, 11, 299, 22046, 28, 16, 11, 1037, 2625, 9876, 1271, 284, 2834, 422, 4943, 198, 2, 48610, 13, 2860, 62, 49140, 7203, 7753, 10434, 1600, 2099, 28, 600, 11, 299, 22046, 28, 16, 11, 1037, 2625, 17618, 284, 923, 1226, 268, 1047, 319, 4943, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 27399, 27480, 796, 965, 7, 22046, 13, 27399, 27480, 58, 15, 35944, 21037, 3419, 198, 7700, 796, 965, 7, 22046, 13, 7700, 33111, 58, 15, 12962, 198, 12417, 62, 6371, 796, 965, 7, 22046, 13, 6371, 58, 15, 12962, 1343, 366, 30, 30619, 28, 3791, 395, 5, 7700, 2625, 1343, 2443, 198, 198, 2, 12001, 62, 34345, 11, 24697, 796, 2956, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 12417, 62, 6371, 8, 198, 28311, 25, 12001, 62, 34345, 11, 24697, 796, 2956, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 12417, 62, 6371, 8, 198, 16341, 25, 198, 220, 220, 220, 3601, 7203, 59, 77, 21017, 27319, 284, 1280, 35699, 366, 1343, 1388, 62, 6371, 1343, 366, 44386, 3467, 77, 4943, 198, 220, 220, 220, 8420, 32590, 16, 8, 198, 198, 6371, 62, 7753, 796, 1280, 7, 12001, 62, 34345, 8, 198, 6494, 796, 19016, 62, 7753, 13, 961, 3419, 198, 82, 10486, 796, 23762, 50, 10486, 7, 6494, 11, 705, 6494, 13, 48610, 11537, 198, 198, 7146, 796, 17141, 13, 19796, 62, 439, 10786, 20205, 3256, 1398, 62, 11639, 25928, 12, 4033, 438, 34021, 12, 83, 2915, 11537, 198, 198, 6371, 62, 4868, 796, 17635, 198, 198, 1640, 2378, 287, 2659, 25, 198, 220, 220, 220, 329, 257, 287, 2378, 13, 19796, 62, 439, 10786, 64, 3256, 13291, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12813, 29102, 431, 1, 287, 257, 17816, 33257, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 257, 17816, 33257, 20520, 407, 287, 19016, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19016, 62, 4868, 13, 33295, 7, 64, 17816, 33257, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 6371, 62, 7753, 13, 19836, 3419, 198, 198, 10379, 44709, 796, 18896, 7, 418, 13, 4868, 15908, 7203, 6494, 30487, 1343, 33072, 4008, 198, 1640, 19016, 287, 19016, 62, 4868, 25, 198, 220, 220, 220, 611, 1226, 44709, 1875, 13454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 19016, 3672, 796, 366, 4023, 1378, 439, 8344, 18636, 13, 785, 1, 1343, 19016, 198, 220, 220, 220, 27711, 62, 34345, 796, 366, 6494, 30487, 1343, 33072, 1343, 1, 30487, 1343, 33072, 1343, 965, 7, 10379, 44709, 8, 1343, 27071, 6494, 1, 628, 220, 220, 220, 27711, 62, 7753, 796, 1280, 7, 6494, 62, 34345, 11, 705, 86, 11537, 198, 220, 220, 220, 3601, 7, 6371, 3672, 11, 1226, 44709, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 12001, 62, 34345, 11, 24697, 796, 2956, 297, 571, 13, 25927, 13, 6371, 1186, 30227, 7, 6371, 3672, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 52, 4535, 19146, 5390, 38303, 366, 1343, 19016, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 32590, 16, 8, 628, 220, 220, 220, 2393, 62, 796, 1280, 7, 12001, 62, 34345, 8, 198, 220, 220, 220, 1366, 796, 2393, 44807, 961, 3419, 198, 220, 220, 220, 220, 628, 220, 220, 220, 27711, 62, 7753, 13, 13564, 7, 7890, 8, 198, 220, 220, 220, 27711, 62, 7753, 13, 19836, 3419, 198, 220, 220, 220, 2393, 44807, 19836, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1226, 44709, 15853, 352, 198, 220, 220, 220, 220, 198, 198, 4798, 7203, 45677, 4943, 198 ]
2.442408
764
""" Here are declare all the settings of the app. 1. Database configurations. 2. Develop config 3. Prod config 4. Also default config that is develop """ import os # file' path BASE_DIR = os.path.abspath(os.path.dirname(__file__)) #main class configuration # Develop configuration # Production Configuration # dictionary for selecting the confinguration desired config = { "dev": DevMode, "prod": ProdMode, "default": DevMode }
[ 37811, 198, 220, 220, 220, 3423, 389, 13627, 477, 262, 6460, 286, 262, 598, 13, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 24047, 25412, 13, 198, 220, 220, 220, 220, 220, 220, 220, 362, 13, 6013, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 513, 13, 1041, 67, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 604, 13, 4418, 4277, 4566, 326, 318, 1205, 198, 37811, 198, 11748, 28686, 220, 198, 2, 2393, 6, 3108, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 198, 2, 12417, 1398, 8398, 198, 198, 2, 6013, 8398, 198, 198, 2, 19174, 28373, 628, 198, 2, 22155, 329, 17246, 262, 1013, 278, 3924, 10348, 198, 11250, 796, 1391, 198, 220, 220, 220, 366, 7959, 1298, 6245, 19076, 11, 198, 220, 220, 220, 366, 1676, 67, 1298, 1041, 67, 19076, 11, 628, 220, 220, 220, 366, 12286, 1298, 6245, 19076, 198, 92 ]
2.852071
169
import pytest from django.urls import reverse from freezegun import freeze_time from rest_framework import status from datahub.company_referral.test.factories import ( ClosedCompanyReferralFactory, CompanyReferralFactory, ) from datahub.core.test_utils import format_date_or_datetime, get_attr_or_none from datahub.dataset.core.test import BaseDatasetViewTest def get_expected_data_from_company_referral(referral): """Returns company referral data as a dictionary""" return { 'company_id': str(referral.company_id), 'completed_by_id': get_attr_or_none(referral, 'completed_by_id'), 'completed_on': format_date_or_datetime(referral.completed_on), 'contact_id': str(referral.contact_id), 'created_by_id': str(referral.created_by_id), 'created_on': format_date_or_datetime(referral.created_on), 'id': str(referral.id), 'interaction_id': ( str(referral.interaction_id) if referral.interaction_id is not None else None ), 'notes': referral.notes, 'recipient_id': str(referral.recipient_id), 'status': str(referral.status), 'subject': referral.subject, } @pytest.mark.django_db class TestCompanyReferralDatasetView(BaseDatasetViewTest): """ Tests for CompanyReferralDatasetView """ view_url = reverse('api-v4:dataset:company-referrals-dataset') factory = CompanyReferralFactory @pytest.mark.parametrize( 'referral_factory', ( CompanyReferralFactory, ClosedCompanyReferralFactory, ), ) def test_success(self, data_flow_api_client, referral_factory): """Test that endpoint returns with expected data for a single referral""" referral = referral_factory() response = data_flow_api_client.get(self.view_url) assert response.status_code == status.HTTP_200_OK response_results = response.json()['results'] assert len(response_results) == 1 result = response_results[0] expected_result = get_expected_data_from_company_referral(referral) assert result == expected_result def test_with_multiple_records(self, data_flow_api_client): """Test that endpoint returns correct number of records""" with freeze_time('2019-01-01 12:30:00'): referral1 = CompanyReferralFactory() with freeze_time('2019-01-03 12:00:00'): referral2 = CompanyReferralFactory() with freeze_time('2019-01-01 12:00:00'): referral3 = CompanyReferralFactory() referral4 = CompanyReferralFactory() response = data_flow_api_client.get(self.view_url) assert response.status_code == status.HTTP_200_OK response_results = response.json()['results'] assert len(response_results) == 4 expected_list = sorted([referral3, referral4], key=lambda x: x.pk) + [referral1, referral2] for index, referral in enumerate(expected_list): assert str(referral.id) == response_results[index]['id']
[ 11748, 12972, 9288, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 1479, 89, 1533, 403, 1330, 16611, 62, 2435, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 198, 6738, 4818, 993, 549, 13, 39722, 62, 260, 2232, 1373, 13, 9288, 13, 22584, 1749, 1330, 357, 198, 220, 220, 220, 30550, 39154, 46238, 1373, 22810, 11, 198, 220, 220, 220, 5834, 46238, 1373, 22810, 11, 198, 8, 198, 6738, 4818, 993, 549, 13, 7295, 13, 9288, 62, 26791, 1330, 5794, 62, 4475, 62, 273, 62, 19608, 8079, 11, 651, 62, 35226, 62, 273, 62, 23108, 198, 6738, 4818, 993, 549, 13, 19608, 292, 316, 13, 7295, 13, 9288, 1330, 7308, 27354, 292, 316, 7680, 14402, 628, 198, 4299, 651, 62, 40319, 62, 7890, 62, 6738, 62, 39722, 62, 260, 2232, 1373, 7, 260, 2232, 1373, 2599, 198, 220, 220, 220, 37227, 35561, 1664, 31413, 1366, 355, 257, 22155, 37811, 198, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39722, 62, 312, 10354, 965, 7, 260, 2232, 1373, 13, 39722, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 785, 16838, 62, 1525, 62, 312, 10354, 651, 62, 35226, 62, 273, 62, 23108, 7, 260, 2232, 1373, 11, 705, 785, 16838, 62, 1525, 62, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 785, 16838, 62, 261, 10354, 5794, 62, 4475, 62, 273, 62, 19608, 8079, 7, 260, 2232, 1373, 13, 785, 16838, 62, 261, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32057, 62, 312, 10354, 965, 7, 260, 2232, 1373, 13, 32057, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 62, 1525, 62, 312, 10354, 965, 7, 260, 2232, 1373, 13, 25598, 62, 1525, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 62, 261, 10354, 5794, 62, 4475, 62, 273, 62, 19608, 8079, 7, 260, 2232, 1373, 13, 25598, 62, 261, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 965, 7, 260, 2232, 1373, 13, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3849, 2673, 62, 312, 10354, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 260, 2232, 1373, 13, 3849, 2673, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31413, 13, 3849, 2673, 62, 312, 318, 407, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17815, 10354, 31413, 13, 17815, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8344, 48137, 62, 312, 10354, 965, 7, 260, 2232, 1373, 13, 8344, 48137, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13376, 10354, 965, 7, 260, 2232, 1373, 13, 13376, 828, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32796, 10354, 31413, 13, 32796, 11, 198, 220, 220, 220, 1782, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 198, 4871, 6208, 39154, 46238, 1373, 27354, 292, 316, 7680, 7, 14881, 27354, 292, 316, 7680, 14402, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 329, 5834, 46238, 1373, 27354, 292, 316, 7680, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1570, 62, 6371, 796, 9575, 10786, 15042, 12, 85, 19, 25, 19608, 292, 316, 25, 39722, 12, 260, 2232, 30691, 12, 19608, 292, 316, 11537, 198, 220, 220, 220, 8860, 796, 5834, 46238, 1373, 22810, 628, 220, 220, 220, 2488, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 260, 2232, 1373, 62, 69, 9548, 3256, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5834, 46238, 1373, 22810, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30550, 39154, 46238, 1373, 22810, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 825, 1332, 62, 13138, 7, 944, 11, 1366, 62, 11125, 62, 15042, 62, 16366, 11, 31413, 62, 69, 9548, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 326, 36123, 5860, 351, 2938, 1366, 329, 257, 2060, 31413, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 31413, 796, 31413, 62, 69, 9548, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 1366, 62, 11125, 62, 15042, 62, 16366, 13, 1136, 7, 944, 13, 1177, 62, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2882, 13, 13376, 62, 8189, 6624, 3722, 13, 40717, 62, 2167, 62, 11380, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 43420, 796, 2882, 13, 17752, 3419, 17816, 43420, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 26209, 62, 43420, 8, 6624, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2882, 62, 43420, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 20274, 796, 651, 62, 40319, 62, 7890, 62, 6738, 62, 39722, 62, 260, 2232, 1373, 7, 260, 2232, 1373, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1255, 6624, 2938, 62, 20274, 628, 220, 220, 220, 825, 1332, 62, 4480, 62, 48101, 62, 8344, 3669, 7, 944, 11, 1366, 62, 11125, 62, 15042, 62, 16366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 326, 36123, 5860, 3376, 1271, 286, 4406, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 351, 16611, 62, 2435, 10786, 23344, 12, 486, 12, 486, 1105, 25, 1270, 25, 405, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31413, 16, 796, 5834, 46238, 1373, 22810, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 16611, 62, 2435, 10786, 23344, 12, 486, 12, 3070, 1105, 25, 405, 25, 405, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31413, 17, 796, 5834, 46238, 1373, 22810, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 16611, 62, 2435, 10786, 23344, 12, 486, 12, 486, 1105, 25, 405, 25, 405, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31413, 18, 796, 5834, 46238, 1373, 22810, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31413, 19, 796, 5834, 46238, 1373, 22810, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 1366, 62, 11125, 62, 15042, 62, 16366, 13, 1136, 7, 944, 13, 1177, 62, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2882, 13, 13376, 62, 8189, 6624, 3722, 13, 40717, 62, 2167, 62, 11380, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 43420, 796, 2882, 13, 17752, 3419, 17816, 43420, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 26209, 62, 43420, 8, 6624, 604, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 4868, 796, 23243, 26933, 260, 2232, 1373, 18, 11, 31413, 19, 4357, 1994, 28, 50033, 2124, 25, 2124, 13, 79, 74, 8, 1343, 685, 260, 2232, 1373, 16, 11, 31413, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6376, 11, 31413, 287, 27056, 378, 7, 40319, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 965, 7, 260, 2232, 1373, 13, 312, 8, 6624, 2882, 62, 43420, 58, 9630, 7131, 6, 312, 20520, 198 ]
2.444885
1,261
""" The AwsIamTester class implements all necessary logic to run validations on an account, role or user. """ # pylint: disable=broad-except,C0103,E0401,R0912,R0913,R0914,R0915,R1702,W0603,W1203 from __future__ import annotations import os import sys import errno import json import logging import re import time import yaml import click import boto3 # type: ignore import botocore # type: ignore from tabulate import tabulate from typing import Any, Dict, List, Optional, Tuple, Union #, Literal # Literal is p3.8 and higher from termcolor import colored
[ 37811, 198, 464, 5851, 82, 40, 321, 51, 7834, 1398, 23986, 477, 3306, 9156, 284, 1057, 4938, 602, 319, 281, 1848, 11, 2597, 393, 2836, 13, 198, 37811, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 36654, 12, 16341, 11, 34, 486, 3070, 11, 36, 3023, 486, 11, 49, 2931, 1065, 11, 49, 2931, 1485, 11, 49, 2931, 1415, 11, 49, 2931, 1314, 11, 49, 1558, 2999, 11, 54, 15, 35642, 11, 54, 1065, 3070, 198, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 11454, 3919, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 302, 198, 11748, 640, 198, 11748, 331, 43695, 198, 11748, 3904, 198, 11748, 275, 2069, 18, 1303, 2099, 25, 8856, 198, 11748, 10214, 420, 382, 1303, 2099, 25, 8856, 198, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 11, 4479, 220, 1303, 11, 25659, 1691, 1303, 25659, 1691, 318, 279, 18, 13, 23, 290, 2440, 198, 6738, 3381, 8043, 1330, 16396, 628 ]
3.139665
179
#!/usr/bin/python -u import datetime import calendar if __name__ == "__main__": print datetime.datetime.today().weekday() # 3 print calendar.day_name[datetime.datetime.today().weekday()] # Thursday
[ 2, 48443, 14629, 14, 8800, 14, 29412, 532, 84, 198, 11748, 4818, 8079, 198, 11748, 11845, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 4818, 8079, 13, 19608, 8079, 13, 40838, 22446, 10464, 820, 3419, 1303, 513, 198, 220, 220, 220, 3601, 11845, 13, 820, 62, 3672, 58, 19608, 8079, 13, 19608, 8079, 13, 40838, 22446, 10464, 820, 3419, 60, 198, 220, 220, 220, 1303, 3635, 198 ]
2.776316
76
from rich.console import Console import subprocess as sp import time import click @click.command() @click.option('--path','-p',help='Path of file to watch') @click.option('--arguments','-args',help='Arguments to run when file changes') @click.option('--delay','-d',default=4,help='Delay in seconds') def start(path,arguments,delay): '''FILEWATCH is a file watcher that allows you to watch files if something changes run arguments''' App(filepath=str(path),arguments=arguments,delay=delay) if __name__ == '__main__': try: start() except FileNotFoundError: print("Use --help to see help information")
[ 6738, 5527, 13, 41947, 1330, 24371, 201, 198, 11748, 850, 14681, 355, 599, 201, 198, 11748, 640, 201, 198, 11748, 3904, 201, 198, 201, 198, 201, 198, 31, 12976, 13, 21812, 3419, 201, 198, 31, 12976, 13, 18076, 10786, 438, 6978, 3256, 29001, 79, 3256, 16794, 11639, 15235, 286, 2393, 284, 2342, 11537, 201, 198, 31, 12976, 13, 18076, 10786, 438, 853, 2886, 3256, 29001, 22046, 3256, 16794, 11639, 28100, 2886, 284, 1057, 618, 2393, 2458, 11537, 201, 198, 31, 12976, 13, 18076, 10786, 438, 40850, 3256, 29001, 67, 3256, 12286, 28, 19, 11, 16794, 11639, 13856, 323, 287, 4201, 11537, 201, 198, 4299, 923, 7, 6978, 11, 853, 2886, 11, 40850, 2599, 201, 198, 220, 220, 220, 705, 7061, 25664, 35192, 318, 257, 2393, 4383, 2044, 326, 3578, 345, 284, 2342, 3696, 611, 1223, 2458, 1057, 7159, 7061, 6, 201, 198, 220, 220, 220, 2034, 7, 7753, 6978, 28, 2536, 7, 6978, 828, 853, 2886, 28, 853, 2886, 11, 40850, 28, 40850, 8, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 923, 3419, 201, 198, 201, 198, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11041, 1377, 16794, 284, 766, 1037, 1321, 4943 ]
2.864035
228
import json import os from lib.object_documentor import ( documentize_object, documentize_prop, documentize_array, ) file_name = input("Specify json to document: ") file = open(file_name) data = json.load(file) # Iterating through the json lines = [" Prop | Type | Description | Example \n", "----|----|----|----\n"] for i in data: parents = (i,) if isinstance(data[i], dict): lines = lines + documentize_object(i, data[i], parents) elif isinstance(data[i], list): lines = lines + documentize_array(i, data[i], parents) else: lines = lines + documentize_prop(i, data[i]) file.close() # Write output MD to file directory = "./output-md" if not os.path.exists(directory): os.makedirs(directory) file1 = open(directory + "/" + file_name + ".md", "w+") file1.writelines(lines) file1.close()
[ 11748, 33918, 198, 11748, 28686, 198, 6738, 9195, 13, 15252, 62, 22897, 273, 1330, 357, 198, 220, 220, 220, 3188, 1096, 62, 15252, 11, 198, 220, 220, 220, 3188, 1096, 62, 22930, 11, 198, 220, 220, 220, 3188, 1096, 62, 18747, 11, 198, 8, 198, 198, 7753, 62, 3672, 796, 5128, 7203, 22882, 1958, 33918, 284, 3188, 25, 366, 8, 198, 198, 7753, 796, 1280, 7, 7753, 62, 3672, 8, 198, 198, 7890, 796, 33918, 13, 2220, 7, 7753, 8, 198, 198, 2, 40806, 803, 832, 262, 33918, 198, 6615, 796, 14631, 8772, 930, 5994, 930, 12489, 930, 17934, 3467, 77, 1600, 366, 650, 91, 650, 91, 650, 91, 650, 59, 77, 8973, 198, 1640, 1312, 287, 1366, 25, 198, 220, 220, 220, 3397, 796, 357, 72, 35751, 198, 220, 220, 220, 611, 318, 39098, 7, 7890, 58, 72, 4357, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 3951, 1343, 3188, 1096, 62, 15252, 7, 72, 11, 1366, 58, 72, 4357, 3397, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 7890, 58, 72, 4357, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 3951, 1343, 3188, 1096, 62, 18747, 7, 72, 11, 1366, 58, 72, 4357, 3397, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 3951, 1343, 3188, 1096, 62, 22930, 7, 72, 11, 1366, 58, 72, 12962, 198, 7753, 13, 19836, 3419, 198, 198, 2, 19430, 5072, 10670, 284, 2393, 198, 34945, 796, 366, 19571, 22915, 12, 9132, 1, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 34945, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 34945, 8, 198, 7753, 16, 796, 1280, 7, 34945, 1343, 12813, 1, 1343, 2393, 62, 3672, 1343, 27071, 9132, 1600, 366, 86, 10, 4943, 198, 7753, 16, 13, 8933, 20655, 7, 6615, 8, 198, 7753, 16, 13, 19836, 3419, 198 ]
2.64486
321
# Blackheart Day Damage Skin success = sm.addDamageSkin(2435313) if success: sm.chat("The Blackheart Day Damage Skin has been added to your account's damage skin collection.") # sm.consumeItem(2435313)
[ 2, 2619, 11499, 3596, 8995, 17847, 198, 13138, 796, 895, 13, 2860, 22022, 42455, 7, 1731, 2327, 25838, 8, 198, 361, 1943, 25, 198, 220, 220, 220, 895, 13, 17006, 7203, 464, 2619, 11499, 3596, 8995, 17847, 468, 587, 2087, 284, 534, 1848, 338, 2465, 4168, 4947, 19570, 198, 220, 220, 220, 1303, 895, 13, 5936, 2454, 7449, 7, 1731, 2327, 25838, 8, 198 ]
3.28125
64
import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer class ScheduledDropout(Layer): """Applies Scheduled Dropout to the input. The Dropout layer randomly sets input units to 0 with a frequency of `rate` scheduled by network layer's depth and training step at each step, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Note that the Dropout layer only applies when `training` is set to True such that no values are dropped during inference. When using `model.fit`, `training` will be appropriately set to True automatically, and in other contexts, you can set the kwarg explicitly to True when calling the layer. (This is in contrast to setting `trainable=False` for a Dropout layer. `trainable` does not affect the layer's behavior, as Dropout does not have any variables/weights that can be frozen during training.) Arguments: drop_rate: Float between 0 and 1. Fraction of the input units to drop. cell_num: Cell number in the network total_num_cells: Number of cells in the network total_training_steps: Number of total steps performed during training seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ class ScheduledDroppath(Layer): """Applies Scheduled Droppath to the input. The Droppath layer randomly sets whole input path inside to 0 with a frequency of `rate` scheduled by network layer's depth and training step at each step, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Note that the Scheduled Droppath layer only applies when `training` is set to True. When using `model.fit`, `training` will be appropriately set to True automatically, and in other contexts, you can set the kwarg explicitly to True when calling the layer. (This is in contrast to setting `trainable=False` for a Droppath layer. `trainable` does not affect the layer's behavior, as Droppath does not have any variables/weights that can be frozen during training.) Arguments: drop_rate: Float between 0 and 1. Fraction of the inputs to drop. cell_num: Cell number in the network total_num_cells: Number of cells in the network total_training_steps: Number of total steps performed during training seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ class ConcreteDropout(Layer): """Applies Concrete Dropout to the input. The Concrete Droppath layer randomly sets input path to 0 with a frequency considered as a weight of the layer optimized during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Note that the Concrete Dropout layer only applies when `training` is set to True. When using `model.fit`, `training` will be appropriately set to True automatically, and in other contexts, you can set the kwarg explicitly to True when calling the layer. (This is in contrast to setting `trainable=False` for a Concrete Dropout layer. `trainable` does not affect the layer's behavior, as Dropout does not have any variables/weights that can be frozen during training.) Arguments: dropout_regularizer: A positive number which satisfies $dropout_regularizer = 2 / (\tau * N)$ with model precision $\tau$ (inverse observation noise) and N the number of instances in the dataset. init_min: dropout probability initializer min init_max: dropout probability initializer max seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ @tf.function def concrete_dropout(self, x): ''' Concrete dropout - used at training time and testing time (gradients can be propagated) :param x: input :return: approx. dropped out input ''' eps = K.cast_to_floatx(K.epsilon()) temp = 0.1 unif_noise = K.random_uniform(K.shape(x)) drop_prob = ( K.log(self.get_p() + eps) - K.log(1. - self.get_p() + eps) + K.log(unif_noise + eps) - K.log(1. - unif_noise + eps) ) drop_prob = K.sigmoid(drop_prob / temp) random_tensor = 1. - drop_prob retain_prob = 1. - self.get_p() x *= random_tensor x /= retain_prob return x class ConcreteDroppath(Layer): """Applies Concrete Droppath to the input. The Concrete Droppath layer randomly sets input path to 0 with a frequency considered as a weight of the layer optimized during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Note that the Concrete Droppath layer only applies when `training` is set to True. When using `model.fit`, `training` will be appropriately set to True automatically, and in other contexts, you can set the kwarg explicitly to True when calling the layer. (This is in contrast to setting `trainable=False` for a Concrete Droppath layer. `trainable` does not affect the layer's behavior, as Dropout does not have any variables/weights that can be frozen during training.) Arguments: dropout_regularizer: A positive number which satisfies $dropout_regularizer = 2 / (\tau * N)$ with model precision $\tau$ (inverse observation noise) and N the number of instances in the dataset. init_min: dropout probability initializer min init_max: dropout probability initializer max seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ @tf.function def concrete_droppath(self, x): """ Concrete droppath - used at training and testing time (gradients can be propagated) :param x: input :return: approx. dropped out input """ eps = K.cast_to_floatx(K.epsilon()) temp = 0.1 unif_noise = tf.random.uniform(shape=[K.shape(x)[0], 1, 1, 1]) drop_prob = ( K.log(self.get_p() + eps) - K.log(1. - self.get_p() + eps) + K.log(unif_noise + eps) - K.log(1. - unif_noise + eps) ) drop_prob = K.sigmoid(drop_prob / temp) random_tensor = 1. - drop_prob retain_prob = 1. - self.get_p() x *= random_tensor x /= retain_prob return x
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 30203, 355, 509, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 34398, 628, 198, 4871, 27774, 6309, 26932, 448, 7, 49925, 2599, 198, 220, 220, 220, 37227, 4677, 13508, 27774, 6309, 14258, 448, 284, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 14258, 448, 7679, 15456, 5621, 5128, 4991, 284, 657, 351, 257, 8373, 286, 4600, 4873, 63, 198, 220, 220, 220, 220, 220, 220, 220, 7530, 416, 3127, 7679, 338, 6795, 290, 3047, 2239, 379, 1123, 2239, 11, 543, 198, 220, 220, 220, 220, 220, 220, 220, 5419, 2948, 625, 32232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 407, 900, 284, 657, 389, 27464, 510, 416, 352, 29006, 16, 532, 2494, 8, 884, 326, 262, 2160, 625, 198, 220, 220, 220, 220, 220, 220, 220, 477, 17311, 318, 21588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 262, 14258, 448, 7679, 691, 8991, 618, 4600, 34409, 63, 318, 900, 284, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 884, 326, 645, 3815, 389, 5710, 1141, 32278, 13, 1649, 1262, 4600, 19849, 13, 11147, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 34409, 63, 481, 307, 20431, 900, 284, 6407, 6338, 11, 290, 287, 584, 198, 220, 220, 220, 220, 220, 220, 220, 26307, 11, 345, 460, 900, 262, 479, 86, 853, 11777, 284, 6407, 618, 4585, 262, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 357, 1212, 318, 287, 6273, 284, 4634, 4600, 27432, 540, 28, 25101, 63, 329, 257, 14258, 448, 7679, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27432, 540, 63, 857, 407, 2689, 262, 7679, 338, 4069, 11, 355, 14258, 448, 857, 198, 220, 220, 220, 220, 220, 220, 220, 407, 423, 597, 9633, 14, 43775, 326, 460, 307, 12912, 1141, 3047, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 4873, 25, 48436, 1022, 657, 290, 352, 13, 376, 7861, 286, 262, 5128, 4991, 284, 4268, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 62, 22510, 25, 12440, 1271, 287, 262, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22510, 62, 46342, 25, 7913, 286, 4778, 287, 262, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 34409, 62, 20214, 25, 7913, 286, 2472, 4831, 6157, 1141, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 25, 317, 11361, 18253, 284, 779, 355, 4738, 9403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 7159, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 23412, 11192, 273, 357, 1659, 597, 4279, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 25, 11361, 25131, 12739, 1771, 262, 7679, 815, 17438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 4235, 357, 26872, 4268, 448, 8, 393, 287, 32278, 4235, 357, 19631, 2147, 737, 198, 220, 220, 220, 37227, 628, 198, 4871, 27774, 6309, 35442, 381, 776, 7, 49925, 2599, 198, 220, 220, 220, 37227, 4677, 13508, 27774, 6309, 21045, 381, 776, 284, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 21045, 381, 776, 7679, 15456, 5621, 2187, 5128, 3108, 2641, 284, 657, 351, 257, 198, 220, 220, 220, 220, 220, 220, 220, 8373, 286, 4600, 4873, 63, 7530, 416, 3127, 7679, 338, 6795, 290, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 379, 1123, 2239, 11, 543, 5419, 2948, 625, 32232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 407, 900, 284, 657, 389, 27464, 510, 416, 352, 29006, 16, 532, 2494, 8, 884, 326, 262, 2160, 625, 198, 220, 220, 220, 220, 220, 220, 220, 477, 17311, 318, 21588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 262, 27774, 6309, 21045, 381, 776, 7679, 691, 8991, 618, 4600, 34409, 63, 318, 900, 284, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1649, 1262, 4600, 19849, 13, 11147, 47671, 4600, 34409, 63, 481, 307, 20431, 900, 284, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 6338, 11, 290, 287, 584, 26307, 11, 345, 460, 900, 262, 479, 86, 853, 11777, 198, 220, 220, 220, 220, 220, 220, 220, 284, 6407, 618, 4585, 262, 7679, 13, 357, 1212, 318, 287, 6273, 284, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27432, 540, 28, 25101, 63, 329, 257, 21045, 381, 776, 7679, 13, 4600, 27432, 540, 63, 857, 407, 2689, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7679, 338, 4069, 11, 355, 21045, 381, 776, 857, 407, 423, 597, 9633, 14, 43775, 326, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 12912, 1141, 3047, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 4873, 25, 48436, 1022, 657, 290, 352, 13, 376, 7861, 286, 262, 17311, 284, 4268, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2685, 62, 22510, 25, 12440, 1271, 287, 262, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22510, 62, 46342, 25, 7913, 286, 4778, 287, 262, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 34409, 62, 20214, 25, 7913, 286, 2472, 4831, 6157, 1141, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 25, 317, 11361, 18253, 284, 779, 355, 4738, 9403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 7159, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 23412, 11192, 273, 357, 1659, 597, 4279, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 25, 11361, 25131, 12739, 1771, 262, 7679, 815, 17438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 4235, 357, 26872, 4268, 448, 8, 393, 287, 32278, 4235, 357, 19631, 2147, 737, 198, 220, 220, 220, 37227, 628, 198, 4871, 1482, 38669, 26932, 448, 7, 49925, 2599, 198, 220, 220, 220, 37227, 4677, 13508, 1482, 38669, 14258, 448, 284, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1482, 38669, 21045, 381, 776, 7679, 15456, 5621, 5128, 3108, 284, 657, 351, 257, 198, 220, 220, 220, 220, 220, 220, 220, 8373, 3177, 355, 257, 3463, 286, 262, 7679, 23392, 1141, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11, 543, 5419, 2948, 625, 32232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 407, 900, 284, 657, 389, 27464, 510, 416, 352, 29006, 16, 532, 2494, 8, 884, 326, 262, 2160, 625, 198, 220, 220, 220, 220, 220, 220, 220, 477, 17311, 318, 21588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 262, 1482, 38669, 14258, 448, 7679, 691, 8991, 618, 4600, 34409, 63, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 284, 6407, 13, 1649, 1262, 4600, 19849, 13, 11147, 47671, 4600, 34409, 63, 481, 307, 20431, 900, 284, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 6338, 11, 290, 287, 584, 26307, 11, 345, 460, 900, 262, 479, 86, 853, 11777, 198, 220, 220, 220, 220, 220, 220, 220, 284, 6407, 618, 4585, 262, 7679, 13, 357, 1212, 318, 287, 6273, 284, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27432, 540, 28, 25101, 63, 329, 257, 1482, 38669, 14258, 448, 7679, 13, 4600, 27432, 540, 63, 857, 407, 2689, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7679, 338, 4069, 11, 355, 14258, 448, 857, 407, 423, 597, 9633, 14, 43775, 326, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 12912, 1141, 3047, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 16338, 7509, 25, 317, 3967, 1271, 543, 45104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 14781, 448, 62, 16338, 7509, 796, 362, 1220, 357, 59, 83, 559, 1635, 399, 8, 3, 351, 2746, 15440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39280, 83, 559, 3, 357, 259, 4399, 13432, 7838, 8, 290, 399, 262, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10245, 287, 262, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 1084, 25, 4268, 448, 12867, 4238, 7509, 949, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 9806, 25, 4268, 448, 12867, 4238, 7509, 3509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 25, 317, 11361, 18253, 284, 779, 355, 4738, 9403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 7159, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 23412, 11192, 273, 357, 1659, 597, 4279, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 25, 11361, 25131, 12739, 1771, 262, 7679, 815, 17438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 4235, 357, 26872, 4268, 448, 8, 393, 287, 32278, 4235, 357, 19631, 2147, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 27110, 13, 8818, 628, 220, 220, 220, 825, 10017, 62, 14781, 448, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 38669, 4268, 448, 532, 973, 379, 3047, 640, 290, 4856, 640, 357, 9744, 2334, 460, 307, 8928, 515, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2124, 25, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 220, 5561, 13, 5710, 503, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 304, 862, 796, 509, 13, 2701, 62, 1462, 62, 22468, 87, 7, 42, 13, 538, 18217, 261, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 555, 361, 62, 3919, 786, 796, 509, 13, 25120, 62, 403, 6933, 7, 42, 13, 43358, 7, 87, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 1676, 65, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 13, 6404, 7, 944, 13, 1136, 62, 79, 3419, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 509, 13, 6404, 7, 16, 13, 532, 2116, 13, 1136, 62, 79, 3419, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 509, 13, 6404, 7, 403, 361, 62, 3919, 786, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 509, 13, 6404, 7, 16, 13, 532, 555, 361, 62, 3919, 786, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 1676, 65, 796, 509, 13, 82, 17225, 1868, 7, 14781, 62, 1676, 65, 1220, 20218, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 83, 22854, 796, 352, 13, 532, 4268, 62, 1676, 65, 198, 220, 220, 220, 220, 220, 220, 220, 12377, 62, 1676, 65, 796, 352, 13, 532, 2116, 13, 1136, 62, 79, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 28, 4738, 62, 83, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1220, 28, 12377, 62, 1676, 65, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628, 198, 4871, 1482, 38669, 35442, 381, 776, 7, 49925, 2599, 198, 220, 220, 220, 37227, 4677, 13508, 1482, 38669, 21045, 381, 776, 284, 262, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1482, 38669, 21045, 381, 776, 7679, 15456, 5621, 5128, 3108, 284, 657, 351, 257, 198, 220, 220, 220, 220, 220, 220, 220, 8373, 3177, 355, 257, 3463, 286, 262, 7679, 23392, 1141, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 640, 11, 543, 5419, 2948, 625, 32232, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 407, 900, 284, 657, 389, 27464, 510, 416, 352, 29006, 16, 532, 2494, 8, 884, 326, 262, 2160, 625, 198, 220, 220, 220, 220, 220, 220, 220, 477, 17311, 318, 21588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5740, 326, 262, 1482, 38669, 21045, 381, 776, 7679, 691, 8991, 618, 4600, 34409, 63, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 284, 6407, 13, 1649, 1262, 4600, 19849, 13, 11147, 47671, 4600, 34409, 63, 481, 307, 20431, 900, 284, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 6338, 11, 290, 287, 584, 26307, 11, 345, 460, 900, 262, 479, 86, 853, 11777, 198, 220, 220, 220, 220, 220, 220, 220, 284, 6407, 618, 4585, 262, 7679, 13, 357, 1212, 318, 287, 6273, 284, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 27432, 540, 28, 25101, 63, 329, 257, 1482, 38669, 21045, 381, 776, 7679, 13, 4600, 27432, 540, 63, 857, 407, 2689, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7679, 338, 4069, 11, 355, 14258, 448, 857, 407, 423, 597, 9633, 14, 43775, 326, 198, 220, 220, 220, 220, 220, 220, 220, 460, 307, 12912, 1141, 3047, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 62, 16338, 7509, 25, 317, 3967, 1271, 543, 45104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 14781, 448, 62, 16338, 7509, 796, 362, 1220, 357, 59, 83, 559, 1635, 399, 8, 3, 351, 2746, 15440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39280, 83, 559, 3, 357, 259, 4399, 13432, 7838, 8, 290, 399, 262, 1271, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10245, 287, 262, 27039, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 1084, 25, 4268, 448, 12867, 4238, 7509, 949, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 9806, 25, 4268, 448, 12867, 4238, 7509, 3509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 25, 317, 11361, 18253, 284, 779, 355, 4738, 9403, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 7159, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 23412, 11192, 273, 357, 1659, 597, 4279, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 25, 11361, 25131, 12739, 1771, 262, 7679, 815, 17438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 4235, 357, 26872, 4268, 448, 8, 393, 287, 32278, 4235, 357, 19631, 2147, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 27110, 13, 8818, 628, 220, 220, 220, 825, 10017, 62, 22285, 381, 776, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1482, 38669, 3102, 381, 776, 532, 973, 379, 3047, 290, 4856, 640, 357, 9744, 2334, 460, 307, 8928, 515, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2124, 25, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 220, 5561, 13, 5710, 503, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 304, 862, 796, 509, 13, 2701, 62, 1462, 62, 22468, 87, 7, 42, 13, 538, 18217, 261, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 555, 361, 62, 3919, 786, 796, 48700, 13, 25120, 13, 403, 6933, 7, 43358, 41888, 42, 13, 43358, 7, 87, 38381, 15, 4357, 352, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 1676, 65, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 509, 13, 6404, 7, 944, 13, 1136, 62, 79, 3419, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 509, 13, 6404, 7, 16, 13, 532, 2116, 13, 1136, 62, 79, 3419, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 509, 13, 6404, 7, 403, 361, 62, 3919, 786, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 509, 13, 6404, 7, 16, 13, 532, 555, 361, 62, 3919, 786, 1343, 304, 862, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 62, 1676, 65, 796, 509, 13, 82, 17225, 1868, 7, 14781, 62, 1676, 65, 1220, 20218, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 83, 22854, 796, 352, 13, 532, 4268, 62, 1676, 65, 198, 220, 220, 220, 220, 220, 220, 220, 12377, 62, 1676, 65, 796, 352, 13, 532, 2116, 13, 1136, 62, 79, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 28, 4738, 62, 83, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 1220, 28, 12377, 62, 1676, 65, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 198 ]
2.604788
3,049
import re string = "" while True: command = input() if command == "": break else: string += " "+command search_patter = r"(www\.([A-Za-z0-9]+((-[A-Za-z0-9]+))*)\.([a-z]+((\.[a-z]+))*))" for i in re.findall(search_patter, string): print(i[0])
[ 11748, 302, 198, 198, 8841, 796, 13538, 198, 4514, 6407, 25, 198, 220, 220, 220, 3141, 796, 5128, 3419, 198, 220, 220, 220, 611, 3141, 6624, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 15853, 366, 43825, 21812, 198, 12947, 62, 79, 1436, 796, 374, 18109, 2503, 59, 12195, 58, 32, 12, 57, 64, 12, 89, 15, 12, 24, 48688, 19510, 49146, 32, 12, 57, 64, 12, 89, 15, 12, 24, 48688, 4008, 9, 19415, 12195, 58, 64, 12, 89, 48688, 19510, 59, 3693, 64, 12, 89, 48688, 4008, 9, 4008, 1, 198, 1640, 1312, 287, 302, 13, 19796, 439, 7, 12947, 62, 79, 1436, 11, 4731, 2599, 198, 220, 220, 220, 3601, 7, 72, 58, 15, 12962 ]
2.014706
136
""" Do not modify this file. It is generated from the Swagger specification. Container module for JSONSchema definitions. This does not include inlined definitions. The pretty-printing functionality provided by the json module is superior to what is provided by pformat, hence the use of json.loads(). """ import json # When no schema is provided in the definition, we use an empty schema __UNSPECIFIED__ = {} {% for name, definition in schemas|dictsort(true) %} {{ name }} = json.loads(""" {{ definition }} """,strict=False) {% endfor %}
[ 37811, 198, 5211, 407, 13096, 428, 2393, 13, 632, 318, 7560, 422, 262, 2451, 7928, 20855, 13, 198, 198, 29869, 8265, 329, 19449, 27054, 2611, 17336, 13, 198, 1212, 857, 407, 2291, 287, 10837, 17336, 13, 198, 198, 464, 2495, 12, 4798, 278, 11244, 2810, 416, 262, 33918, 8265, 318, 9098, 284, 198, 10919, 318, 2810, 416, 279, 18982, 11, 12891, 262, 779, 286, 33918, 13, 46030, 22446, 198, 37811, 198, 11748, 33918, 198, 198, 2, 1649, 645, 32815, 318, 2810, 287, 262, 6770, 11, 356, 779, 281, 6565, 32815, 198, 834, 4944, 48451, 28343, 834, 796, 23884, 198, 198, 90, 4, 329, 1438, 11, 6770, 287, 3897, 5356, 91, 11600, 30619, 7, 7942, 8, 4064, 92, 198, 27007, 1438, 34949, 796, 33918, 13, 46030, 7203, 15931, 198, 27007, 6770, 34949, 198, 15931, 1600, 301, 2012, 28, 25101, 8, 198, 198, 90, 4, 886, 1640, 4064, 92, 198 ]
3.675676
148
# VMware vCloud Director Python SDK # Copyright (c) 2014-2019 VMware, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click from pyvcloud.vcd.vapp_firewall import VappFirewall from vcd_cli.utils import restore_session from vcd_cli.utils import stderr from vcd_cli.utils import stdout from vcd_cli.vapp_network import services @services.group('firewall', short_help='manage firewall service of vapp network') @click.pass_context def firewall(ctx): """Manages firewall service of vapp network. \b Examples vcd vapp network services firewall enable-firewall vapp_name network_name --enable Enable firewall service. \b vcd vapp network services firewall set-default-action vapp_name network_name --action allow --log-action False Set deault action in firewall service. \b vcd vapp network services firewall list vapp_name network_name List firewall rules in firewall service. \b vcd vapp network services firewall add vapp_name network_name rule_name --enable --policy drop --protocols Tcp,Udp --source-ip Any --source-port-range Any --destination-port-range Any --destination-ip Any --enable-logging Add firewall rule in firewall service. \b vcd vapp network services firewall update vapp_name network_name rule_name --name rule_new_name --enable --policy drop --protocols Tcp,Udp --source-ip Any --source-port-range Any --destination-port-range Any --destination-ip Any --enable-logging Update firewall rule in firewall service. \b vcd vapp network services firewall delete vapp_name network_name --name firewall_rule_name Delete firewall rule in firewall service. """ def get_vapp_network_firewall(ctx, vapp_name, network_name): """Get the VappFirewall object. It will restore sessions if expired. It will reads the client and creates the VappFirewall object. """ restore_session(ctx, vdc_required=True) client = ctx.obj['client'] vapp_dhcp = VappFirewall(client, vapp_name, network_name) return vapp_dhcp @firewall.command('enable-firewall', short_help='Enable firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @click.option('--enable/--disable', 'is_enabled', default=True, metavar='<is_enable>', help='enable firewall service') @firewall.command('set-default-action', short_help='set default action of firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @click.option('--action', 'action', default='drop', metavar='<action>', help='deafult action on firewall service') @click.option('--enable-log-action/--disable-log-action', 'log_action', default=True, metavar='<log_action>', help='default action on firewall service log') @firewall.command('add', short_help='add firewall rule to firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @click.argument('firewall_rule_name', metavar='<firewall-rule-name>', required=True) @click.option('--enable/--disable', 'is_enable', default=True, metavar='<is_enable>', help='enable firewall rule') @click.option('--policy', 'policy', default='drop', metavar='<policy>', help='policy on firewall rule') @click.option('--protocols', 'protocols', default=None, metavar='<protocols>', help='all protocol names in comma separated format') @click.option('--source-port-range', 'source_port_range', default='Any', metavar='<source_port_range>', help='source port range on firewall rule') @click.option('--source-ip', 'source_ip', default='Any', metavar='<source_ip>', help='source ip on firewall rule') @click.option('--destination-port-range', 'destination_port_range', default='Any', metavar='<destination_port_range>', help='destination port range on firewall rule') @click.option('--destination-ip', 'destination_ip', default='Any', metavar='<destination_ip>', help='destination ip on firewall rule') @click.option('--enable-logging/--disable-logging', 'is_logging', default=True, metavar='<is_logging>', help='enable logging on firewall rule') @firewall.command('list', short_help='list firewall rules in firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @firewall.command('update', short_help='update firewall rule of firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @click.argument('firewall_rule_name', metavar='<firewall-rule-name>', required=True) @click.option('--name', 'new_name', default=None, metavar='<new_name>', help='new name of firewall rule') @click.option('--enable/--disable', 'is_enable', default=None, metavar='<is_enable>', help='enable firewall rule') @click.option('--policy', 'policy', default=None, metavar='<policy>', help='policy on firewall rule') @click.option('--protocols', 'protocols', default=None, metavar='<protocols>', help='all protocol names in comma separated format') @click.option('--source-port-range', 'source_port_range', default=None, metavar='<source_port_range>', help='source port range on firewall rule') @click.option('--source-ip', 'source_ip', default=None, metavar='<source_ip>', help='source ip on firewall rule') @click.option('--destination-port-range', 'destination_port_range', default=None, metavar='<destination_port_range>', help='destination port range on firewall rule') @click.option('--destination-ip', 'destination_ip', default=None, metavar='<destination_ip>', help='destination ip on firewall rule') @click.option('--enable-logging/--disable-logging', 'is_logging', default=None, metavar='<is_logging>', help='enable logging on firewall rule') @firewall.command('delete', short_help='delete firewall rule in firewall service') @click.pass_context @click.argument('vapp_name', metavar='<vapp-name>', required=True) @click.argument('network_name', metavar='<network-name>', required=True) @click.argument('firewall_rule_name', metavar='<firewall-rule-name>', required=True)
[ 2, 37754, 410, 18839, 5890, 11361, 26144, 198, 2, 15069, 357, 66, 8, 1946, 12, 23344, 37754, 11, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 3904, 198, 6738, 12972, 85, 17721, 13, 85, 10210, 13, 85, 1324, 62, 6495, 11930, 1330, 569, 1324, 13543, 11930, 198, 6738, 410, 10210, 62, 44506, 13, 26791, 1330, 11169, 62, 29891, 198, 6738, 410, 10210, 62, 44506, 13, 26791, 1330, 336, 1082, 81, 198, 6738, 410, 10210, 62, 44506, 13, 26791, 1330, 14367, 448, 198, 6738, 410, 10210, 62, 44506, 13, 85, 1324, 62, 27349, 1330, 2594, 628, 198, 31, 30416, 13, 8094, 10786, 6495, 11930, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1790, 62, 16794, 11639, 805, 496, 32928, 2139, 286, 410, 1324, 3127, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 32928, 7, 49464, 2599, 198, 220, 220, 220, 37227, 5124, 1095, 32928, 2139, 286, 410, 1324, 3127, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 7139, 12, 6495, 11930, 410, 1324, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 3672, 1377, 21633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27882, 32928, 2139, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 900, 12, 12286, 12, 2673, 410, 1324, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 3672, 1377, 2673, 1249, 1377, 6404, 12, 2673, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 390, 1721, 2223, 287, 32928, 2139, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 1351, 410, 1324, 62, 3672, 3127, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 32928, 3173, 287, 32928, 2139, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 751, 410, 1324, 62, 3672, 3127, 62, 3672, 3896, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 21633, 1377, 30586, 4268, 1377, 11235, 4668, 82, 309, 13155, 11, 52, 26059, 1377, 10459, 12, 541, 4377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 10459, 12, 634, 12, 9521, 4377, 1377, 16520, 1883, 12, 634, 12, 9521, 4377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 16520, 1883, 12, 541, 4377, 1377, 21633, 12, 6404, 2667, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3060, 32928, 3896, 287, 32928, 2139, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 4296, 410, 1324, 62, 3672, 3127, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3896, 62, 3672, 1377, 3672, 3896, 62, 3605, 62, 3672, 1377, 21633, 1377, 30586, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 1377, 11235, 4668, 82, 309, 13155, 11, 52, 26059, 1377, 10459, 12, 541, 4377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 10459, 12, 634, 12, 9521, 4377, 1377, 16520, 1883, 12, 634, 12, 9521, 4377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 16520, 1883, 12, 541, 4377, 1377, 21633, 12, 6404, 2667, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10133, 32928, 3896, 287, 32928, 2139, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 220, 220, 220, 220, 410, 10210, 410, 1324, 3127, 2594, 32928, 12233, 410, 1324, 62, 3672, 3127, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1377, 3672, 32928, 62, 25135, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23520, 32928, 3896, 287, 32928, 2139, 13, 198, 220, 220, 220, 37227, 628, 198, 4299, 651, 62, 85, 1324, 62, 27349, 62, 6495, 11930, 7, 49464, 11, 410, 1324, 62, 3672, 11, 3127, 62, 3672, 2599, 198, 220, 220, 220, 37227, 3855, 262, 569, 1324, 13543, 11930, 2134, 13, 628, 220, 220, 220, 632, 481, 11169, 10991, 611, 21350, 13, 632, 481, 9743, 262, 5456, 290, 198, 220, 220, 220, 8075, 262, 569, 1324, 13543, 11930, 2134, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11169, 62, 29891, 7, 49464, 11, 410, 17896, 62, 35827, 28, 17821, 8, 198, 220, 220, 220, 5456, 796, 269, 17602, 13, 26801, 17816, 16366, 20520, 198, 220, 220, 220, 410, 1324, 62, 34985, 13155, 796, 569, 1324, 13543, 11930, 7, 16366, 11, 410, 1324, 62, 3672, 11, 3127, 62, 3672, 8, 198, 220, 220, 220, 1441, 410, 1324, 62, 34985, 13155, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 21633, 12, 6495, 11930, 3256, 1790, 62, 16794, 11639, 36695, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 14, 438, 40223, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 25616, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 271, 62, 21633, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 21633, 32928, 2139, 11537, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 2617, 12, 12286, 12, 2673, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1790, 62, 16794, 11639, 2617, 4277, 2223, 286, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 18076, 10786, 438, 2673, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2673, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 14781, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 2673, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 2934, 1878, 586, 2223, 319, 32928, 2139, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 12, 6404, 12, 2673, 14, 438, 40223, 12, 6404, 12, 2673, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6404, 62, 2673, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 6404, 62, 2673, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 12286, 2223, 319, 32928, 2139, 2604, 11537, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 2860, 3256, 1790, 62, 16794, 11639, 2860, 32928, 3896, 284, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 6495, 11930, 62, 25135, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 6495, 11930, 12, 25135, 12, 3672, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 14, 438, 40223, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 21633, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 271, 62, 21633, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 21633, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 30586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 14781, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 30586, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 30586, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 11235, 4668, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11235, 4668, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 11235, 4668, 82, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 439, 8435, 3891, 287, 39650, 11266, 5794, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 10459, 12, 634, 12, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10459, 62, 634, 62, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 7149, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 10459, 62, 634, 62, 9521, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 10459, 2493, 2837, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 10459, 12, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10459, 62, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 7149, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 10459, 62, 541, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 10459, 20966, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 16520, 1883, 12, 634, 12, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16520, 1883, 62, 634, 62, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 7149, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 16520, 1883, 62, 634, 62, 9521, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 16520, 1883, 2493, 2837, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 16520, 1883, 12, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16520, 1883, 62, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 7149, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 16520, 1883, 62, 541, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 16520, 1883, 20966, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 12, 6404, 2667, 14, 438, 40223, 12, 6404, 2667, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 6404, 2667, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 271, 62, 6404, 2667, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 21633, 18931, 319, 32928, 3896, 11537, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 4868, 3256, 1790, 62, 16794, 11639, 4868, 32928, 3173, 287, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 19119, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1790, 62, 16794, 11639, 19119, 32928, 3896, 286, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 6495, 11930, 62, 25135, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 6495, 11930, 12, 25135, 12, 3672, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198, 31, 12976, 13, 18076, 10786, 438, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3605, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 3605, 62, 3672, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 3605, 1438, 286, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 14, 438, 40223, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 21633, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 271, 62, 21633, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 21633, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 30586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30586, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 30586, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 30586, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 11235, 4668, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11235, 4668, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 11235, 4668, 82, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 439, 8435, 3891, 287, 39650, 11266, 5794, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 10459, 12, 634, 12, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10459, 62, 634, 62, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 10459, 62, 634, 62, 9521, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 10459, 2493, 2837, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 10459, 12, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10459, 62, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 10459, 62, 541, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 10459, 20966, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 16520, 1883, 12, 634, 12, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16520, 1883, 62, 634, 62, 9521, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 16520, 1883, 62, 634, 62, 9521, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 16520, 1883, 2493, 2837, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 16520, 1883, 12, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16520, 1883, 62, 541, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 16520, 1883, 62, 541, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 16520, 1883, 20966, 319, 32928, 3896, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 21633, 12, 6404, 2667, 14, 438, 40223, 12, 6404, 2667, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 6404, 2667, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 271, 62, 6404, 2667, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 21633, 18931, 319, 32928, 3896, 11537, 628, 198, 31, 6495, 11930, 13, 21812, 10786, 33678, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1790, 62, 16794, 11639, 33678, 32928, 3896, 287, 32928, 2139, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 31, 12976, 13, 49140, 10786, 85, 1324, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 85, 1324, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 27349, 62, 3672, 3256, 1138, 615, 283, 11639, 27, 27349, 12, 3672, 29, 3256, 2672, 28, 17821, 8, 198, 31, 12976, 13, 49140, 10786, 6495, 11930, 62, 25135, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 27, 6495, 11930, 12, 25135, 12, 3672, 29, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 8, 198 ]
2.287694
3,681
import graphene from graphene import relay from api.schema.benefit import BenefitQuery from api.schema.branch import BranchQuery from api.schema.cultural_fit import CulturalFitQuery from api.schema.dashboard import DashboardQuery from api.schema.faq_category import FAQCategoryQuery from api.schema.company import CompanyProfileMutation, CompanyQuery, UniversityProfileMutation from api.schema.attachment import AttachmentMutation, AttachmentQuery from api.schema.employee import EmployeeMutation from api.schema.job_requirement import JobRequirementQuery from api.schema.job_type import JobTypeQuery from api.schema.job_posting import JobPostingMutation, JobPostingQuery from api.schema.keyword.schema import KeywordQuery from api.schema.language import LanguageQuery from api.schema.auth import AuthMutation, LogoutMutation, VerifyPasswordResetToken from api.schema.language_level import LanguageLevelQuery from api.schema.match import MatchQuery, MatchMutation from api.schema.project_posting.schema import ProjectPostingQuery, ProjectPostingMutation from api.schema.project_type.schema import ProjectTypeQuery from api.schema.skill import SkillQuery from api.schema.soft_skill import SoftSkillQuery from api.schema.student import StudentProfileMutation, StudentQuery from api.schema.registration import RegistrationMutation from api.schema.topic.schema import TopicQuery from api.schema.upload import UploadMutation from api.schema.upload.schema import UploadConfigurationQuery from api.schema.user import UserQuery from api.schema.user_request import UserRequestMutation from api.schema.zip_city import ZipCityQuery schema = graphene.Schema(query=Query, mutation=Mutation)
[ 11748, 42463, 198, 198, 6738, 42463, 1330, 24248, 198, 6738, 40391, 13, 15952, 2611, 13, 48649, 1330, 38065, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 1671, 3702, 1330, 20551, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 30844, 62, 11147, 1330, 23897, 31805, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 42460, 3526, 1330, 16189, 3526, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 13331, 80, 62, 22872, 1330, 18749, 27313, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 39722, 1330, 5834, 37046, 44, 7094, 11, 5834, 20746, 11, 2059, 37046, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 1078, 15520, 1330, 3460, 15520, 44, 7094, 11, 3460, 15520, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 7033, 1453, 1330, 36824, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 21858, 62, 8897, 24615, 1330, 15768, 16844, 24615, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 21858, 62, 4906, 1330, 15768, 6030, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 21858, 62, 7353, 278, 1330, 15768, 6307, 278, 44, 7094, 11, 15768, 6307, 278, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 2539, 4775, 13, 15952, 2611, 1330, 7383, 4775, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 16129, 1330, 15417, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 18439, 1330, 26828, 44, 7094, 11, 5972, 448, 44, 7094, 11, 49899, 35215, 4965, 316, 30642, 198, 6738, 40391, 13, 15952, 2611, 13, 16129, 62, 5715, 1330, 15417, 4971, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 15699, 1330, 13225, 20746, 11, 13225, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 16302, 62, 7353, 278, 13, 15952, 2611, 1330, 4935, 6307, 278, 20746, 11, 4935, 6307, 278, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 16302, 62, 4906, 13, 15952, 2611, 1330, 4935, 6030, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 42401, 1330, 16023, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 4215, 62, 42401, 1330, 8297, 35040, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 50139, 1330, 13613, 37046, 44, 7094, 11, 13613, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 2301, 33397, 1330, 24610, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 26652, 13, 15952, 2611, 1330, 47373, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 25850, 1330, 36803, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 25850, 13, 15952, 2611, 1330, 36803, 38149, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 7220, 1330, 11787, 20746, 198, 6738, 40391, 13, 15952, 2611, 13, 7220, 62, 25927, 1330, 11787, 18453, 44, 7094, 198, 6738, 40391, 13, 15952, 2611, 13, 13344, 62, 19205, 1330, 38636, 14941, 20746, 628, 628, 198, 15952, 2611, 796, 42463, 13, 27054, 2611, 7, 22766, 28, 20746, 11, 15148, 28, 44, 7094, 8, 198 ]
3.707048
454
import pandas as pd import h5py from sentence_transformers import SentenceTransformer, util import re import pickle class Sample(): """Samples a relevant paper given an input, using corpus_embeddings """ def sample(self, paper_id, abstract, title): """Given paper_text ( = paper_abstract+paper_title), samples out the most relevant paper Args: paper_id (str): the arxiv id of the paper which is treated as the starting point abstract (str): abstract of paper title (str) : title of paper Returns: [type]: [description] """ paper_text = abstract + ' ' + title paper_text = self.clean_text(paper_text) # get the vector for query paper query_embedding = self.model.encode(paper_text, convert_to_tensor=True) # retrieve top similar papers search_hits = util.semantic_search(query_embedding, self.corpus_embeddings)[0] # do softmax normalization and sampling using random strategy next_paper_id = self.corpus_ids[search_hits[0]['corpus_id']] if next_paper_id == paper_id: next_paper_id = self.corpus_ids[search_hits[1]['corpus_id']] return str(next_paper_id) if __name__=='__main__': paper_id = '0704.0001' title = "Calculation of prompt diphoton production cross sections at Tevatron and LHC energies" abstract = '''A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.''' sample = Sample() result = sample.sample(paper_id, abstract, title) print(result)
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 289, 20, 9078, 198, 6738, 6827, 62, 35636, 364, 1330, 11352, 594, 8291, 16354, 11, 7736, 198, 11748, 302, 198, 11748, 2298, 293, 628, 198, 4871, 27565, 33529, 198, 220, 220, 220, 37227, 50, 12629, 257, 5981, 3348, 1813, 281, 5128, 11, 1262, 35789, 62, 20521, 67, 654, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 6291, 7, 944, 11, 3348, 62, 312, 11, 12531, 11, 3670, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15056, 3348, 62, 5239, 357, 796, 3348, 62, 397, 8709, 10, 20189, 62, 7839, 828, 8405, 503, 262, 749, 5981, 3348, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3348, 62, 312, 357, 2536, 2599, 262, 610, 87, 452, 4686, 286, 262, 3348, 543, 318, 5716, 355, 262, 3599, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12531, 357, 2536, 2599, 12531, 286, 3348, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 357, 2536, 8, 220, 220, 1058, 3670, 286, 3348, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 5974, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3348, 62, 5239, 796, 12531, 1343, 705, 705, 1343, 3670, 198, 220, 220, 220, 220, 220, 220, 220, 3348, 62, 5239, 796, 2116, 13, 27773, 62, 5239, 7, 20189, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 15879, 329, 12405, 3348, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 20521, 12083, 796, 2116, 13, 19849, 13, 268, 8189, 7, 20189, 62, 5239, 11, 10385, 62, 1462, 62, 83, 22854, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19818, 1353, 2092, 9473, 198, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 71, 896, 796, 7736, 13, 43616, 5109, 62, 12947, 7, 22766, 62, 20521, 12083, 11, 2116, 13, 10215, 79, 385, 62, 20521, 67, 654, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 2705, 9806, 3487, 1634, 290, 19232, 1262, 4738, 4811, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 20189, 62, 312, 796, 2116, 13, 10215, 79, 385, 62, 2340, 58, 12947, 62, 71, 896, 58, 15, 7131, 6, 10215, 79, 385, 62, 312, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1306, 62, 20189, 62, 312, 6624, 3348, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 20189, 62, 312, 796, 2116, 13, 10215, 79, 385, 62, 2340, 58, 12947, 62, 71, 896, 58, 16, 7131, 6, 10215, 79, 385, 62, 312, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 7, 19545, 62, 20189, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 3348, 62, 312, 796, 705, 15, 32869, 13, 18005, 6, 198, 220, 220, 220, 3670, 796, 366, 9771, 14902, 286, 6152, 19550, 8940, 261, 3227, 3272, 9004, 379, 1665, 85, 23484, 290, 406, 16045, 27598, 1, 198, 220, 220, 220, 12531, 796, 705, 7061, 32, 3938, 22577, 17952, 287, 22146, 5945, 876, 14821, 15358, 44124, 318, 5545, 329, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 3227, 286, 4858, 48190, 14729, 379, 550, 1313, 2927, 4157, 13, 1439, 1306, 12, 1462, 12, 12294, 1502, 22146, 5945, 876, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9284, 422, 627, 668, 12, 415, 1557, 668, 11, 1278, 84, 261, 30420, 17096, 8, 421, 668, 11, 290, 1278, 84, 261, 12, 70, 2290, 261, 850, 14681, 274, 389, 3017, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 880, 355, 477, 12, 6361, 581, 13929, 341, 286, 4238, 12, 5219, 1278, 84, 261, 11881, 4938, 379, 1306, 12, 1462, 12, 19545, 12, 1462, 12, 12294, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 283, 342, 9383, 9922, 13, 383, 3814, 286, 7108, 2272, 318, 7368, 287, 543, 262, 17952, 318, 749, 9314, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4599, 4381, 318, 9555, 351, 1366, 422, 262, 376, 7780, 346, 397, 1665, 85, 23484, 11, 290, 16277, 389, 925, 329, 517, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6496, 5254, 351, 6458, 37, 290, 8410, 1366, 13, 14322, 9278, 389, 3402, 329, 24570, 286, 19550, 8940, 261, 14729, 4635, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 262, 2568, 286, 262, 13601, 11161, 1313, 50253, 357, 43, 16045, 737, 46567, 507, 286, 262, 19550, 8940, 261, 14729, 422, 262, 22119, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 367, 20340, 37284, 261, 389, 49754, 351, 883, 4635, 422, 1195, 8610, 7767, 379, 262, 406, 16045, 11, 4478, 326, 13105, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14233, 284, 262, 6737, 460, 307, 6492, 351, 2553, 6243, 6356, 286, 2995, 2637, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6291, 796, 27565, 3419, 198, 220, 220, 220, 1255, 796, 6291, 13, 39873, 7, 20189, 62, 312, 11, 12531, 11, 3670, 8, 198, 220, 220, 220, 3601, 7, 20274, 8 ]
2.646712
1,019
# Copyright (c) Facebook, Inc. and its affiliates. from mmf.common.registry import registry from mmf.datasets.builders.visual_genome.builder import VisualGenomeBuilder from mmf.datasets.builders.visual_genome.masked_dataset import MaskedVisualGenomeDataset @registry.register_builder("masked_visual_genome")
[ 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 198, 6738, 8085, 69, 13, 11321, 13, 2301, 4592, 1330, 20478, 198, 6738, 8085, 69, 13, 19608, 292, 1039, 13, 50034, 13, 41464, 62, 5235, 462, 13, 38272, 1330, 15612, 13746, 462, 32875, 198, 6738, 8085, 69, 13, 19608, 292, 1039, 13, 50034, 13, 41464, 62, 5235, 462, 13, 27932, 276, 62, 19608, 292, 316, 1330, 18007, 276, 36259, 13746, 462, 27354, 292, 316, 628, 198, 31, 2301, 4592, 13, 30238, 62, 38272, 7203, 27932, 276, 62, 41464, 62, 5235, 462, 4943, 198 ]
3.206186
97
from unittest import TestCase from core.download import DownloadHelperMulti, DownLoadUrl, DownLoadUrlAdvance # def test
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 4755, 13, 15002, 1330, 10472, 47429, 29800, 11, 5588, 8912, 28165, 11, 5588, 8912, 28165, 2782, 19259, 628, 198, 220, 220, 220, 1303, 825, 1332, 628, 198 ]
3.486486
37
#!/usr/bin/env python3 # The MIT License (MIT) # # Copyright (c) 2017 allancth # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. fn = lambda a: a + 1 arg = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] r = map(fn, arg) for e in r: print("{0}".format(e)) r = map(fn_map, arg) for e in r: print(">> {0}".format(e))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 383, 17168, 13789, 357, 36393, 8, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 477, 272, 310, 71, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 220, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 220, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 220, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 220, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 220, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 220, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 220, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 220, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 220, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 220, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 220, 198, 2, 47466, 13, 198, 198, 22184, 796, 37456, 257, 25, 257, 1343, 352, 198, 853, 796, 685, 657, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 2361, 198, 81, 796, 3975, 7, 22184, 11, 1822, 8, 198, 1640, 304, 287, 374, 25, 198, 220, 220, 220, 3601, 7203, 90, 15, 92, 1911, 18982, 7, 68, 4008, 198, 198, 81, 796, 3975, 7, 22184, 62, 8899, 11, 1822, 8, 198, 1640, 304, 287, 374, 25, 198, 220, 220, 220, 3601, 7203, 4211, 1391, 15, 92, 1911, 18982, 7, 68, 4008, 628 ]
3.241463
410
from pathlib import Path EXP_NAME = 'Transformer32' EPOCH = 20 EMBEDDING_DIM = 64 ENCODER_STACK = 6 ATTENTION_HEAD = 1 DROPOUT = 0.1 LR = 0.0001 BATCH_SIZE = 32 AUGMENTATION = None MAX_FEATURE = 32 SMOTE_SEED = 23904 PYTORCH_SEED = 321295675063 PYTHON_SEED = 123146427 ML_SEED = 32129 MODEL_DIR = Path.cwd() / "models" / EXP_NAME if not MODEL_DIR.exists(): MODEL_DIR.mkdir(parents=True) FEATURES = ['Baseline Features', 'Intensity Parameters', 'Formant Frequencies', 'Bandwidth Parameters', 'Vocal Fold', 'MFCC', 'Wavelet Features', 'TQWT Features'] FEATURE_GROUPS = ['Basic Info', 'Baseline Features', 'Intensity Parameters', 'Formant Frequencies', 'Bandwidth Parameters', 'Vocal Fold', 'MFCC', 'Wavelet Features', 'TQWT Features']
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 49864, 62, 20608, 796, 705, 8291, 16354, 2624, 6, 198, 8905, 46, 3398, 796, 1160, 198, 3620, 33, 1961, 35, 2751, 62, 35, 3955, 796, 5598, 198, 24181, 3727, 1137, 62, 2257, 8120, 796, 718, 198, 17139, 45589, 62, 37682, 796, 352, 198, 7707, 3185, 12425, 796, 657, 13, 16, 198, 35972, 796, 657, 13, 18005, 198, 33, 11417, 62, 33489, 796, 3933, 198, 32, 7340, 10979, 6234, 796, 6045, 198, 22921, 62, 15112, 40086, 796, 3933, 198, 198, 12310, 23051, 62, 5188, 1961, 796, 32817, 3023, 198, 47, 56, 32961, 3398, 62, 5188, 1961, 796, 3933, 1065, 3865, 3134, 1120, 5066, 198, 47, 56, 4221, 1340, 62, 5188, 1961, 796, 17031, 1415, 2414, 1983, 198, 5805, 62, 5188, 1961, 796, 3933, 18741, 198, 198, 33365, 3698, 62, 34720, 796, 10644, 13, 66, 16993, 3419, 1220, 366, 27530, 1, 1220, 25703, 62, 20608, 198, 198, 361, 407, 19164, 3698, 62, 34720, 13, 1069, 1023, 33529, 198, 220, 220, 220, 19164, 3698, 62, 34720, 13, 28015, 15908, 7, 23743, 28, 17821, 8, 198, 198, 15112, 47471, 796, 37250, 15522, 4470, 17571, 3256, 705, 5317, 6377, 40117, 3256, 705, 8479, 415, 22192, 3976, 3256, 705, 31407, 10394, 40117, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 53, 4374, 39957, 3256, 705, 49800, 4093, 3256, 705, 39709, 1616, 17571, 3256, 705, 51, 48, 39386, 17571, 20520, 198, 198, 15112, 40086, 62, 10761, 2606, 3705, 796, 37250, 26416, 14151, 3256, 705, 15522, 4470, 17571, 3256, 705, 5317, 6377, 40117, 3256, 705, 8479, 415, 22192, 3976, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31407, 10394, 40117, 3256, 705, 53, 4374, 39957, 3256, 705, 49800, 4093, 3256, 705, 39709, 1616, 17571, 3256, 705, 51, 48, 39386, 17571, 20520, 198 ]
2.473016
315
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Mar 31 11:55:42 2020 @author: esteban """ # Este script necesita que instales # conda install geopandas #conda install -c conda-forge descartes fechaAAnalizar='2020-05-04' alFecha=" al 04/05" cuarentena_total=['Arica', 'Estación Central', 'Independencia', 'El Bosque', 'Quinta Normal', 'Pedro Aguirre Cerda', 'Angol','Victoria', 'Punta Arenas'] cuarentena_parcial=['San Ramón', 'La Pintana', 'Ñuñoa', 'Santiago', 'Puente Alto', 'San Bernardo'] import geopandas as gp import matplotlib.pyplot as plt import pandas as pd import numpy as np import sys import unicodedata def strip_accents(text): try: text = unicode(text, 'utf-8') except NameError: # unicode is a default on python 3 pass text = unicodedata.normalize('NFD', text)\ .encode('ascii', 'ignore')\ .decode("utf-8") return str(text) s = strip_accents('àéêöhello') #print(s) #reload(sys) #sys.setdefaultencoding('utf8') ## Primero necesitamos cargar los polígonos de las comunas. # poligonos descargados desde https://www.bcn.cl/siit/mapas_vectoriales/index_html shp_path = "../../fuentes/geometrias_comunas/comunas.shp" comunasChile = gp.read_file(shp_path) #aprovechamos al toque de calcular la superficie de cada comuna en km2 comunasChile['superficie']=comunasChile.to_crs({'init': 'epsg:3035'}).area/10**6 ## Luego cargamos los datos del COVID19 datos_path="../../Consolidado_COVID19_Chile_Comunas.CSV" #datos_path="../../COVID19_Chile_Comunas-casos_totales.CSV" datosComunas = pd.read_csv(datos_path) df=datosComunas #################################### Aumento porcentual ############ Idea 1 fechas=df.fecha.unique() i=1 df_old=df while i<len(fechas): old=df[df.fecha==fechas[i-1]][['id_comuna','casos_totales']] old=old.rename(columns={'casos_totales':'casos_totales_old'}) # Si mantenemos la fecha del new, donde vamos a calcular los casos nuevos new=df[df.fecha==fechas[i]][['fecha','id_comuna','casos_totales']] new=new.rename(columns={'casos_totales':'casos_totales_new'}) old_new=pd.merge(old,new,on=['id_comuna']) old_new['var%1periodo']=(old_new.casos_totales_new-old_new.casos_totales_old)*100/old_new.casos_totales_old old_new=old_new[['fecha','id_comuna','var%1periodo']] if (i==1): #para el primero hacemos merge, porque la columna casos_nuevos no existe en df df=pd.merge(df,old_new,how='left',on=['fecha','id_comuna']) else: df_aporte=pd.merge(df_old,old_new,how='left',on=['fecha','id_comuna']) #para todo el resto tenemos que sobreescribir los datos df[df.fecha==fechas[i]]=df_aporte[df_aporte.fecha==fechas[i]] i=i+1 df['var%1periodo']=df['var%1periodo'].fillna(0) df['var%1periodo']=df['var%1periodo'].replace([np.inf, -np.inf], np.nan).fillna(0) ########### Idea 2 df=df[df.fecha==fechaAAnalizar] ''' comunasChile.columns = Index(['objectid', 'shape_leng', 'dis_elec', 'cir_sena', 'cod_comuna', 'codregion', 'st_area_sh', 'st_length_', 'Region', 'Comuna', 'Provincia', 'geometry'], dtype='object') ''' ## Necesitamos que las columnas tengan el mismo nombre: comunasChile['nombre_comuna']=comunasChile.Comuna ############################################################ df=comunasChile.merge(df, on='nombre_comuna') ''' df.columns= Index(['id_region', 'nombre_region', 'id_comuna', 'nombre_comuna', 'poblacion', 'casos_totales', 'tasa', 'objectid', 'shape_leng', 'dis_elec', 'cir_sena', 'cod_comuna', 'codregion', 'st_area_sh', 'st_length_', 'Region', 'Comuna', 'Provincia', 'geometry'], dtype='object') ### Los datos por Comuna tienen que ser arreglados. # Primero, a partir de la columna de tasa y la de población, hay que # reconstruir los datos de los casos (porque sólo informan cuando hay más # de 4 casos) df['casos_totales']=df.casos_totales.replace('-',0) df['casos_totales']=df.casos_totales.fillna(0) df['casos_totales']=df.casos_totales.astype(int) df['tasa']=df.tasa.fillna(0) df['tasa']=df.tasa.astype(float) df['poblacion']=df.poblacion.fillna(0) ##Ahora corregimos los datos de los casos totales. df['casos_totales']=(df.tasa*df.poblacion/100000).round(0).astype(int) ''' df['nombre_comuna']=df.nombre_comuna.replace('San Juan de la Costa','S.J. de la Costa') ###################################### ###################################### ###################################### ###################################### # CALCULO DE RIESGO = casos*poblacion/superficie ###################################### ###################################### ###################################### ###################################### df['riesgo']=df['casos_totales']*df['poblacion']/df['superficie'] # Lo normalizamos! df['riesgo']=df['riesgo']/df['riesgo'].max() df['casos_pp']=df['casos_totales']/df['poblacion']*100000 df['casos_totales']=df['casos_totales'].astype(int) df['casos_activos']=df['casos_activos'].astype(int) df['riesgo_activos']=df['casos_activos']*df['poblacion']/df['superficie'] # Lo normalizamos! df['riesgo_activos']=df['riesgo_activos']/df['riesgo_activos'].max() df['casos_activos_pp']=df['casos_activos']/df['poblacion']*100000 import seaborn as sns casos=[['casos_totales','Casos Totales','%i'], ['riesgo','Indice de Riesgo','%.2f'], ['casos_pp','Casos por 100.000 habitantes','%i'], ['riesgo_activos','Índice de Riesgo Activo','%.2f'], ['casos_activos','Casos Activos','%i'], ['casos_activos_pp','Casos Activos por 100.000 hbs.','%i'], ['var%1periodo','Variacion % 1 periodo','%i'], ] #Datos al 18 de Abril for caso in casos: caracteristica=caso[0] titulo=caso[1] t=caso[2] #top10=df[df.nombre_region!='Metropolitana'][['nombre_comuna',caracteristica]].sort_values(caracteristica,ascending=False).head(10) top10=df[['nombre_comuna',caracteristica]].sort_values(caracteristica,ascending=False).head(10) top10=top10.reset_index(drop=True) print(top10) paleta_rojos=['red']*10#sns.color_palette("Reds",10)#sns.color_palette("bwr",50)[40:50] paleta_verdes=['lime']*10#sns.color_palette("Greens_r",20)[0:10] yellow=[(255/255, 198/255, 0/255)]*10 paleta_naranjos=yellow#['yellow']*10#sns.color_palette("Oranges_r",20)[0:10] paleta=paleta_verdes#['green']*10 #sns.color_palette("winter",10) i=0 for bool in top10.nombre_comuna.isin(cuarentena_total): if bool: paleta[i]=paleta_rojos[i]#'tomato' i+=1 i=0 for bool in top10.nombre_comuna.isin(cuarentena_parcial): if bool: paleta[i]=paleta_naranjos[i]#'lightyellow' i+=1 sns.set(font_scale=2) # sns.set_style("ticks") sns.set_style("whitegrid") alto=11 ancho=8 f, ax = plt.subplots(figsize=(ancho, alto)) sns.barplot(x=caracteristica, y='nombre_comuna',data=top10,palette=paleta) sns.despine(left=True, bottom=True) #ax.set_xticklabels(top10[caracteristica]) for p in ax.patches: ax.annotate(t % p.get_width(), (p.get_x() + p.get_width(), p.get_y() + 1.2), xytext=(5, 40), textcoords='offset points') plt.xlabel(titulo) plt.title("Top 10 Comunas según "+titulo + alFecha) plt.ylabel('') #plt.yticks(rotation=45) plt.show() plt.tight_layout() plt.savefig('indice_comunas'+caracteristica+'.png') #plt.figure(figsize=(12,8)) # plot barh chart with index as x values #ax = sns.barplot(top15.index, top10.casos_totales) #ax.get_yaxis().set_major_formatter(plt.FuncFormatter(lambda x, loc: "{:,}".format(int(x)))) #ax.set(xlabel="Dim", ylabel='Count') # add proper Dim values as x labels #ax.set_xticklabels(top15.nombre_comuna) #for item in ax.get_xticklabels(): item.set_rotation(90) #for i, v in enumerate(top15["nombre_comuna"].iteritems()): # ax.text(i ,v[1], "{:,}".format(v[1]), color='m', va ='bottom', rotation=45) #plt.tight_layout() #plt.show() rm= df[df.Region=='Región Metropolitana de Santiago'] gran_stgo_path="../../fuentes/gran_stgo/gran_stgo.csv" #datos_path="../../COVID19_Chile_Comunas-casos_totales.CSV" gran_stgo = pd.read_csv(gran_stgo_path) rm=rm.merge(gran_stgo, left_on='nombre_comuna', right_on='nombre_comuna', sort='False') stgo= rm[rm.gran_stgo==1] # Control del tamaño de la figura del mapa fig, ax = plt.subplots(figsize=(30, 30)) # Control del título y los ejes ax.set_title(u'Comunas del Gran Santiago por Índice de Riesgo de Contagio', pad = 20, fontdict={'fontsize':20, 'color': 'black'}) # Control del título y los ejes #ax.set_xlabel('Longitud') #ax.set_ylabel('Latitud') plt.axis('off') #ax.legend(fontsize=1000) # Añadir la leyenda separada del mapa from mpl_toolkits.axes_grid1 import make_axes_locatable divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.2) #map_STGO[(map_STGO.NOMBRE!='Santiago')&(map_STGO.NOMBRE!='Providencia')&(map_STGO.NOMBRE!='Ñuñoa')&(map_STGO.NOMBRE!='Las Condes')] # Mostrar el mapa finalizado stgo.plot(column='riesgo', cmap='Reds', ax=ax, legend=True, legend_kwds={'label': "Riesgo de Contagio"}, cax=cax, zorder=5,# missing_kwds={"color": "lightgrey", "edgecolor": "black", "hatch": "///" #"label": "Missing values", }) fig, ax = plt.subplots(figsize=(30, 30)) ''' stgo.plot(column='riesgo',cmap='Reds', ax=ax, legend=Truelegend_kwds={'label': "Riesgo de Contagio"}, cax=cax, zorder=5, missing_kwds={"color": "lightgrey", "edgecolor": "black", "hatch": "///" })#, #"label": "Missing values",}) '''
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 201, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 37811, 201, 41972, 319, 30030, 1526, 3261, 1367, 25, 2816, 25, 3682, 12131, 201, 31, 9800, 25, 1556, 1765, 272, 201, 37811, 201, 201, 2, 412, 4169, 4226, 497, 728, 5350, 8358, 916, 2040, 220, 201, 2, 1779, 64, 2721, 30324, 392, 292, 201, 2, 66, 13533, 2721, 532, 66, 1779, 64, 12, 30293, 1715, 433, 274, 201, 201, 69, 3055, 64, 32, 2025, 282, 528, 283, 11639, 42334, 12, 2713, 12, 3023, 6, 201, 282, 37, 3055, 64, 2625, 435, 8702, 14, 2713, 1, 201, 201, 201, 201, 27399, 1580, 8107, 62, 23350, 28, 17816, 32, 30997, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22362, 32009, 18840, 5694, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5497, 2690, 29634, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9527, 14548, 4188, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4507, 600, 64, 14435, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43468, 305, 33118, 343, 260, 17419, 6814, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13450, 349, 41707, 49898, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 44424, 9843, 292, 20520, 220, 220, 220, 220, 201, 27399, 1580, 8107, 62, 1845, 2413, 28, 17816, 15017, 7431, 18840, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14772, 350, 600, 2271, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 127, 239, 84, 12654, 12162, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 50, 17096, 3839, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47, 84, 21872, 34317, 3256, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15017, 6206, 13109, 20520, 201, 201, 201, 201, 11748, 30324, 392, 292, 355, 27809, 201, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 11748, 19798, 292, 355, 279, 67, 201, 11748, 299, 32152, 355, 45941, 201, 11748, 25064, 201, 201, 201, 11748, 28000, 9043, 1045, 201, 201, 4299, 10283, 62, 4134, 658, 7, 5239, 2599, 201, 201, 220, 220, 220, 1949, 25, 201, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 28000, 1098, 7, 5239, 11, 705, 40477, 12, 23, 11537, 201, 220, 220, 220, 2845, 6530, 12331, 25, 1303, 28000, 1098, 318, 257, 4277, 319, 21015, 513, 220, 201, 220, 220, 220, 220, 220, 220, 220, 1208, 201, 201, 220, 220, 220, 2420, 796, 28000, 9043, 1045, 13, 11265, 1096, 10786, 21870, 35, 3256, 2420, 19415, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 268, 8189, 10786, 292, 979, 72, 3256, 705, 46430, 11537, 59, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 12501, 1098, 7203, 40477, 12, 23, 4943, 201, 201, 220, 220, 220, 1441, 965, 7, 5239, 8, 201, 201, 82, 796, 10283, 62, 4134, 658, 10786, 24247, 2634, 25792, 9101, 31373, 11537, 201, 201, 2, 4798, 7, 82, 8, 201, 201, 2, 260, 2220, 7, 17597, 8, 201, 2, 17597, 13, 2617, 12286, 12685, 7656, 10786, 40477, 23, 11537, 201, 201, 201, 2235, 11460, 3529, 497, 728, 270, 321, 418, 269, 853, 283, 22346, 755, 8836, 14520, 418, 390, 39990, 401, 403, 292, 13, 201, 2, 755, 37107, 418, 1715, 853, 22484, 748, 2934, 3740, 1378, 2503, 13, 15630, 77, 13, 565, 14, 13396, 270, 14, 8899, 292, 62, 31364, 498, 274, 14, 9630, 62, 6494, 201, 1477, 79, 62, 6978, 796, 366, 40720, 40720, 20942, 298, 274, 14, 469, 908, 380, 292, 62, 785, 403, 292, 14, 785, 403, 292, 13, 1477, 79, 1, 201, 785, 403, 292, 1925, 576, 796, 27809, 13, 961, 62, 7753, 7, 1477, 79, 62, 6978, 8, 201, 2, 499, 305, 303, 49869, 418, 435, 284, 4188, 390, 2386, 10440, 8591, 21176, 291, 494, 390, 269, 4763, 401, 9613, 551, 10571, 17, 201, 785, 403, 292, 1925, 576, 17816, 16668, 69, 291, 494, 20520, 28, 785, 403, 292, 1925, 576, 13, 1462, 62, 66, 3808, 15090, 6, 15003, 10354, 705, 25386, 70, 25, 1270, 2327, 6, 92, 737, 20337, 14, 940, 1174, 21, 201, 201, 201, 201, 2235, 406, 518, 2188, 269, 853, 321, 418, 22346, 4818, 418, 1619, 7375, 11008, 1129, 201, 19608, 418, 62, 6978, 2625, 40720, 40720, 9444, 10180, 4533, 62, 8220, 11008, 1129, 62, 1925, 576, 62, 5377, 403, 292, 13, 7902, 53, 1, 201, 2, 19608, 418, 62, 6978, 2625, 40720, 40720, 8220, 11008, 1129, 62, 1925, 576, 62, 5377, 403, 292, 12, 34004, 418, 62, 83, 313, 2040, 13, 7902, 53, 1, 201, 19608, 418, 5377, 403, 292, 796, 279, 67, 13, 961, 62, 40664, 7, 19608, 418, 62, 6978, 8, 201, 201, 7568, 28, 19608, 418, 5377, 403, 292, 201, 201, 29113, 4242, 317, 1713, 78, 16964, 1087, 723, 201, 201, 7804, 4242, 37560, 352, 201, 69, 3055, 292, 28, 7568, 13, 69, 3055, 64, 13, 34642, 3419, 201, 72, 28, 16, 201, 7568, 62, 727, 28, 7568, 201, 4514, 1312, 27, 11925, 7, 69, 3055, 292, 2599, 201, 220, 220, 220, 220, 201, 220, 220, 220, 1468, 28, 7568, 58, 7568, 13, 69, 3055, 64, 855, 69, 3055, 292, 58, 72, 12, 16, 60, 7131, 17816, 312, 62, 785, 9613, 41707, 34004, 418, 62, 83, 313, 2040, 6, 11907, 201, 220, 220, 220, 1468, 28, 727, 13, 918, 480, 7, 28665, 82, 34758, 6, 34004, 418, 62, 83, 313, 2040, 10354, 6, 34004, 418, 62, 83, 313, 2040, 62, 727, 6, 30072, 201, 201, 220, 220, 220, 1303, 15638, 24818, 268, 368, 418, 8591, 730, 11693, 1619, 649, 11, 288, 14378, 410, 321, 418, 257, 2386, 10440, 22346, 6124, 418, 299, 518, 85, 418, 201, 220, 220, 220, 649, 28, 7568, 58, 7568, 13, 69, 3055, 64, 855, 69, 3055, 292, 58, 72, 60, 7131, 17816, 69, 3055, 64, 41707, 312, 62, 785, 9613, 41707, 34004, 418, 62, 83, 313, 2040, 6, 11907, 201, 220, 220, 220, 649, 28, 3605, 13, 918, 480, 7, 28665, 82, 34758, 6, 34004, 418, 62, 83, 313, 2040, 10354, 6, 34004, 418, 62, 83, 313, 2040, 62, 3605, 6, 30072, 201, 220, 220, 220, 1468, 62, 3605, 28, 30094, 13, 647, 469, 7, 727, 11, 3605, 11, 261, 28, 17816, 312, 62, 785, 9613, 6, 12962, 201, 220, 220, 220, 1468, 62, 3605, 17816, 7785, 4, 16, 41007, 78, 20520, 16193, 727, 62, 3605, 13, 34004, 418, 62, 83, 313, 2040, 62, 3605, 12, 727, 62, 3605, 13, 34004, 418, 62, 83, 313, 2040, 62, 727, 27493, 3064, 14, 727, 62, 3605, 13, 34004, 418, 62, 83, 313, 2040, 62, 727, 201, 220, 220, 220, 1468, 62, 3605, 28, 727, 62, 3605, 58, 17816, 69, 3055, 64, 41707, 312, 62, 785, 9613, 41707, 7785, 4, 16, 41007, 78, 6, 11907, 201, 220, 220, 220, 611, 357, 72, 855, 16, 2599, 201, 220, 220, 220, 220, 220, 220, 220, 1303, 1845, 64, 1288, 2684, 3529, 289, 330, 368, 418, 20121, 11, 16964, 4188, 8591, 951, 388, 2616, 6124, 418, 62, 77, 518, 85, 418, 645, 2152, 68, 551, 47764, 201, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 30094, 13, 647, 469, 7, 7568, 11, 727, 62, 3605, 11, 4919, 11639, 9464, 3256, 261, 28, 17816, 69, 3055, 64, 41707, 312, 62, 785, 9613, 6, 12962, 201, 220, 220, 220, 2073, 25, 201, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 499, 419, 68, 28, 30094, 13, 647, 469, 7, 7568, 62, 727, 11, 727, 62, 3605, 11, 4919, 11639, 9464, 3256, 261, 28, 17816, 69, 3055, 64, 41707, 312, 62, 785, 9613, 6, 12962, 201, 220, 220, 220, 220, 220, 220, 220, 1303, 1845, 64, 284, 4598, 1288, 1334, 78, 3478, 368, 418, 8358, 523, 4679, 3798, 822, 343, 22346, 4818, 418, 201, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 7568, 13, 69, 3055, 64, 855, 69, 3055, 292, 58, 72, 11907, 28, 7568, 62, 499, 419, 68, 58, 7568, 62, 499, 419, 68, 13, 69, 3055, 64, 855, 69, 3055, 292, 58, 72, 11907, 201, 220, 220, 220, 220, 220, 220, 220, 220, 201, 220, 220, 220, 1312, 28, 72, 10, 16, 201, 201, 7568, 17816, 7785, 4, 16, 41007, 78, 20520, 28, 7568, 17816, 7785, 4, 16, 41007, 78, 6, 4083, 20797, 2616, 7, 15, 8, 201, 7568, 17816, 7785, 4, 16, 41007, 78, 20520, 28, 7568, 17816, 7785, 4, 16, 41007, 78, 6, 4083, 33491, 26933, 37659, 13, 10745, 11, 532, 37659, 13, 10745, 4357, 45941, 13, 12647, 737, 20797, 2616, 7, 15, 8, 201, 201, 7804, 21017, 37560, 362, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 7568, 28, 7568, 58, 7568, 13, 69, 3055, 64, 855, 69, 3055, 64, 32, 2025, 282, 528, 283, 60, 201, 201, 7061, 6, 201, 785, 403, 292, 1925, 576, 13, 28665, 82, 796, 220, 220, 201, 15732, 7, 17816, 15252, 312, 3256, 705, 43358, 62, 75, 1516, 3256, 705, 6381, 62, 11129, 66, 3256, 705, 66, 343, 62, 6248, 64, 3256, 705, 19815, 62, 785, 9613, 3256, 201, 220, 220, 220, 220, 220, 220, 705, 19815, 36996, 3256, 705, 301, 62, 20337, 62, 1477, 3256, 705, 301, 62, 13664, 62, 3256, 705, 47371, 3256, 705, 5377, 9613, 3256, 201, 220, 220, 220, 220, 220, 220, 705, 15946, 1939, 544, 3256, 705, 469, 15748, 6, 4357, 201, 220, 220, 220, 220, 220, 288, 4906, 11639, 15252, 11537, 201, 7061, 6, 201, 2235, 19652, 274, 270, 321, 418, 8358, 39990, 5721, 292, 3478, 1030, 1288, 32691, 78, 299, 2381, 260, 25, 201, 785, 403, 292, 1925, 576, 17816, 77, 2381, 260, 62, 785, 9613, 20520, 28, 785, 403, 292, 1925, 576, 13, 5377, 9613, 201, 29113, 14468, 7804, 4242, 201, 201, 7568, 28, 785, 403, 292, 1925, 576, 13, 647, 469, 7, 7568, 11, 319, 11639, 77, 2381, 260, 62, 785, 9613, 11537, 201, 201, 201, 7061, 6, 201, 7568, 13, 28665, 82, 28, 201, 15732, 7, 17816, 312, 62, 36996, 3256, 705, 77, 2381, 260, 62, 36996, 3256, 705, 312, 62, 785, 9613, 3256, 705, 77, 2381, 260, 62, 785, 9613, 3256, 705, 79, 45292, 49443, 3256, 201, 220, 220, 220, 220, 220, 220, 705, 34004, 418, 62, 83, 313, 2040, 3256, 705, 83, 15462, 3256, 705, 15252, 312, 3256, 705, 43358, 62, 75, 1516, 3256, 705, 6381, 62, 11129, 66, 3256, 201, 220, 220, 220, 220, 220, 220, 705, 66, 343, 62, 6248, 64, 3256, 705, 19815, 62, 785, 9613, 3256, 705, 19815, 36996, 3256, 705, 301, 62, 20337, 62, 1477, 3256, 705, 301, 62, 13664, 62, 3256, 201, 220, 220, 220, 220, 220, 220, 705, 47371, 3256, 705, 5377, 9613, 3256, 705, 15946, 1939, 544, 3256, 705, 469, 15748, 6, 4357, 201, 220, 220, 220, 220, 220, 288, 4906, 11639, 15252, 11537, 201, 201, 220, 201, 21017, 5401, 4818, 418, 16964, 955, 9613, 256, 2013, 268, 8358, 1055, 610, 2301, 9435, 418, 13, 201, 2, 220, 220, 11460, 3529, 11, 257, 636, 343, 390, 8591, 951, 388, 2616, 390, 256, 15462, 331, 8591, 390, 279, 45292, 32009, 18840, 11, 27678, 8358, 201, 2, 220, 220, 8195, 19554, 343, 22346, 4818, 418, 390, 22346, 6124, 418, 357, 1819, 4188, 264, 10205, 5439, 4175, 272, 18912, 25440, 27678, 285, 40138, 201, 2, 390, 604, 6124, 418, 8, 201, 201, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 28, 7568, 13, 34004, 418, 62, 83, 313, 2040, 13, 33491, 10786, 12, 3256, 15, 8, 201, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 28, 7568, 13, 34004, 418, 62, 83, 313, 2040, 13, 20797, 2616, 7, 15, 8, 201, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 28, 7568, 13, 34004, 418, 62, 83, 313, 2040, 13, 459, 2981, 7, 600, 8, 201, 7568, 17816, 83, 15462, 20520, 28, 7568, 13, 83, 15462, 13, 20797, 2616, 7, 15, 8, 201, 7568, 17816, 83, 15462, 20520, 28, 7568, 13, 83, 15462, 13, 459, 2981, 7, 22468, 8, 201, 7568, 17816, 79, 45292, 49443, 20520, 28, 7568, 13, 79, 45292, 49443, 13, 20797, 2616, 7, 15, 8, 201, 201, 2235, 10910, 5799, 1162, 2301, 320, 418, 22346, 4818, 418, 390, 22346, 6124, 418, 2006, 2040, 13, 201, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 16193, 7568, 13, 83, 15462, 9, 7568, 13, 79, 45292, 49443, 14, 3064, 830, 737, 744, 7, 15, 737, 459, 2981, 7, 600, 8, 201, 705, 7061, 201, 220, 201, 7568, 17816, 77, 2381, 260, 62, 785, 9613, 20520, 28, 7568, 13, 77, 2381, 260, 62, 785, 9613, 13, 33491, 10786, 15017, 16852, 390, 8591, 18133, 41707, 50, 13, 41, 13, 390, 8591, 18133, 11537, 201, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 201, 2, 220, 220, 33290, 34, 6239, 46, 5550, 371, 11015, 11230, 796, 6124, 418, 9, 79, 45292, 49443, 14, 16668, 69, 291, 494, 201, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 29113, 4242, 2235, 201, 7568, 17816, 1678, 2188, 20520, 28, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 9, 7568, 17816, 79, 45292, 49443, 20520, 14, 7568, 17816, 16668, 69, 291, 494, 20520, 201, 2, 6706, 3487, 528, 321, 418, 0, 201, 7568, 17816, 1678, 2188, 20520, 28, 7568, 17816, 1678, 2188, 20520, 14, 7568, 17816, 1678, 2188, 6, 4083, 9806, 3419, 201, 7568, 17816, 34004, 418, 62, 381, 20520, 28, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 14, 7568, 17816, 79, 45292, 49443, 20520, 9, 3064, 830, 201, 201, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 20520, 28, 7568, 17816, 34004, 418, 62, 83, 313, 2040, 6, 4083, 459, 2981, 7, 600, 8, 201, 7568, 17816, 34004, 418, 62, 15791, 418, 20520, 28, 7568, 17816, 34004, 418, 62, 15791, 418, 6, 4083, 459, 2981, 7, 600, 8, 201, 7568, 17816, 1678, 2188, 62, 15791, 418, 20520, 28, 7568, 17816, 34004, 418, 62, 15791, 418, 20520, 9, 7568, 17816, 79, 45292, 49443, 20520, 14, 7568, 17816, 16668, 69, 291, 494, 20520, 201, 2, 6706, 3487, 528, 321, 418, 0, 201, 7568, 17816, 1678, 2188, 62, 15791, 418, 20520, 28, 7568, 17816, 1678, 2188, 62, 15791, 418, 20520, 14, 7568, 17816, 1678, 2188, 62, 15791, 418, 6, 4083, 9806, 3419, 201, 7568, 17816, 34004, 418, 62, 15791, 418, 62, 381, 20520, 28, 7568, 17816, 34004, 418, 62, 15791, 418, 20520, 14, 7568, 17816, 79, 45292, 49443, 20520, 9, 3064, 830, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 201, 11748, 384, 397, 1211, 355, 3013, 82, 201, 201, 34004, 418, 41888, 17816, 34004, 418, 62, 83, 313, 2040, 41707, 35155, 418, 20323, 2040, 41707, 4, 72, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 1678, 2188, 41707, 5497, 501, 390, 371, 444, 2188, 41707, 7225, 17, 69, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 34004, 418, 62, 381, 41707, 35155, 418, 16964, 1802, 13, 830, 7947, 39781, 41707, 4, 72, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 1678, 2188, 62, 15791, 418, 41707, 38638, 358, 501, 390, 371, 444, 2188, 13144, 78, 41707, 7225, 17, 69, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 34004, 418, 62, 15791, 418, 41707, 35155, 418, 13144, 418, 41707, 4, 72, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 34004, 418, 62, 15791, 418, 62, 381, 41707, 35155, 418, 13144, 418, 16964, 1802, 13, 830, 289, 1443, 2637, 4032, 4, 72, 6, 4357, 201, 220, 220, 220, 220, 220, 220, 37250, 7785, 4, 16, 41007, 78, 41707, 23907, 49443, 4064, 352, 2278, 78, 41707, 4, 72, 6, 4357, 220, 220, 220, 220, 220, 220, 220, 201, 220, 220, 220, 220, 220, 220, 2361, 201, 201, 201, 2, 27354, 418, 435, 1248, 390, 317, 1671, 346, 201, 201, 201, 201, 201, 201, 201, 201, 1640, 6124, 78, 287, 6124, 418, 25, 201, 220, 220, 220, 1097, 7321, 2569, 64, 28, 34004, 78, 58, 15, 60, 201, 220, 220, 220, 5259, 43348, 28, 34004, 78, 58, 16, 60, 201, 220, 220, 220, 256, 28, 34004, 78, 58, 17, 60, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 1303, 4852, 940, 28, 7568, 58, 7568, 13, 77, 2381, 260, 62, 36996, 0, 11639, 9171, 1773, 6212, 2271, 6, 7131, 17816, 77, 2381, 260, 62, 785, 9613, 3256, 7718, 7321, 2569, 64, 60, 4083, 30619, 62, 27160, 7, 7718, 7321, 2569, 64, 11, 3372, 1571, 28, 25101, 737, 2256, 7, 940, 8, 201, 220, 220, 220, 1353, 940, 28, 7568, 58, 17816, 77, 2381, 260, 62, 785, 9613, 3256, 7718, 7321, 2569, 64, 60, 4083, 30619, 62, 27160, 7, 7718, 7321, 2569, 64, 11, 3372, 1571, 28, 25101, 737, 2256, 7, 940, 8, 201, 220, 220, 220, 1353, 940, 28, 4852, 940, 13, 42503, 62, 9630, 7, 14781, 28, 17821, 8, 201, 220, 220, 220, 3601, 7, 4852, 940, 8, 201, 201, 220, 220, 220, 6340, 17167, 62, 305, 73, 418, 28, 17816, 445, 20520, 9, 940, 2, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 49, 5379, 1600, 940, 8, 2, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 65, 18351, 1600, 1120, 38381, 1821, 25, 1120, 60, 201, 220, 220, 220, 6340, 17167, 62, 332, 8906, 28, 17816, 27299, 20520, 9, 940, 2, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 38, 5681, 62, 81, 1600, 1238, 38381, 15, 25, 940, 60, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 7872, 41888, 7, 13381, 14, 13381, 11, 2757, 14, 13381, 11, 657, 14, 13381, 15437, 9, 940, 201, 220, 220, 220, 6340, 17167, 62, 77, 19173, 73, 418, 28, 36022, 2, 17816, 36022, 20520, 9, 940, 2, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 5574, 6231, 62, 81, 1600, 1238, 38381, 15, 25, 940, 60, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 6340, 17167, 28, 18596, 17167, 62, 332, 8906, 2, 17816, 14809, 20520, 9, 940, 1303, 82, 5907, 13, 8043, 62, 18596, 5857, 7203, 40078, 1600, 940, 8, 201, 220, 220, 220, 1312, 28, 15, 201, 220, 220, 220, 329, 20512, 287, 1353, 940, 13, 77, 2381, 260, 62, 785, 9613, 13, 45763, 7, 27399, 1580, 8107, 62, 23350, 2599, 201, 220, 220, 220, 220, 220, 220, 220, 611, 20512, 25, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6340, 17167, 58, 72, 22241, 18596, 17167, 62, 305, 73, 418, 58, 72, 60, 2, 6, 39532, 5549, 6, 201, 220, 220, 220, 220, 220, 220, 220, 1312, 47932, 16, 201, 220, 220, 220, 1312, 28, 15, 201, 220, 220, 220, 329, 20512, 287, 1353, 940, 13, 77, 2381, 260, 62, 785, 9613, 13, 45763, 7, 27399, 1580, 8107, 62, 1845, 2413, 2599, 201, 220, 220, 220, 220, 220, 220, 220, 611, 20512, 25, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6340, 17167, 58, 72, 22241, 18596, 17167, 62, 77, 19173, 73, 418, 58, 72, 60, 2, 6, 2971, 36022, 6, 201, 220, 220, 220, 220, 220, 220, 220, 1312, 47932, 16, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 3013, 82, 13, 2617, 7, 10331, 62, 9888, 28, 17, 8, 201, 2, 220, 220, 220, 3013, 82, 13, 2617, 62, 7635, 7203, 83, 3378, 4943, 201, 220, 220, 220, 3013, 82, 13, 2617, 62, 7635, 7203, 11186, 25928, 4943, 201, 220, 220, 220, 435, 1462, 28, 1157, 201, 220, 220, 220, 281, 6679, 28, 23, 201, 220, 220, 220, 277, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 3702, 78, 11, 435, 1462, 4008, 201, 220, 220, 220, 220, 201, 220, 220, 220, 3013, 82, 13, 5657, 29487, 7, 87, 28, 7718, 7321, 2569, 64, 11, 331, 11639, 77, 2381, 260, 62, 785, 9613, 3256, 7890, 28, 4852, 940, 11, 18596, 5857, 28, 18596, 17167, 8, 201, 220, 220, 220, 220, 201, 220, 220, 220, 3013, 82, 13, 8906, 23908, 7, 9464, 28, 17821, 11, 4220, 28, 17821, 8, 201, 220, 220, 220, 1303, 897, 13, 2617, 62, 742, 624, 23912, 1424, 7, 4852, 940, 58, 7718, 7321, 2569, 64, 12962, 201, 220, 220, 220, 329, 279, 287, 7877, 13, 8071, 2052, 25, 201, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 34574, 378, 7, 83, 4064, 279, 13, 1136, 62, 10394, 22784, 357, 79, 13, 1136, 62, 87, 3419, 1343, 279, 13, 1136, 62, 10394, 22784, 279, 13, 1136, 62, 88, 3419, 1343, 352, 13, 17, 828, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 5239, 16193, 20, 11, 2319, 828, 2420, 1073, 3669, 11639, 28968, 2173, 11537, 201, 201, 220, 220, 220, 220, 220, 220, 220, 220, 201, 220, 220, 220, 458, 83, 13, 87, 18242, 7, 83, 270, 43348, 8, 201, 220, 220, 220, 458, 83, 13, 7839, 7203, 9126, 838, 955, 403, 292, 384, 70, 21356, 77, 43825, 83, 270, 43348, 1343, 435, 37, 3055, 64, 8, 201, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 7061, 8, 201, 220, 220, 220, 1303, 489, 83, 13, 20760, 3378, 7, 10599, 341, 28, 2231, 8, 201, 220, 220, 220, 458, 83, 13, 12860, 3419, 201, 220, 220, 220, 220, 201, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 220, 220, 220, 458, 83, 13, 21928, 5647, 10786, 521, 501, 62, 785, 403, 292, 6, 10, 7718, 7321, 2569, 64, 10, 4458, 11134, 11537, 201, 220, 220, 220, 220, 201, 220, 220, 220, 220, 201, 201, 2, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 1065, 11, 23, 4008, 201, 2, 7110, 2318, 71, 8262, 351, 6376, 355, 2124, 3815, 201, 2, 897, 796, 3013, 82, 13, 5657, 29487, 7, 4852, 1314, 13, 9630, 11, 1353, 940, 13, 34004, 418, 62, 83, 313, 2040, 8, 201, 2, 897, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 22478, 62, 687, 1436, 7, 489, 83, 13, 37, 19524, 8479, 1436, 7, 50033, 2124, 11, 1179, 25, 45144, 45299, 92, 1911, 18982, 7, 600, 7, 87, 35514, 201, 2, 897, 13, 2617, 7, 87, 18242, 2625, 29271, 1600, 331, 18242, 11639, 12332, 11537, 201, 2, 751, 1774, 14048, 3815, 355, 2124, 14722, 201, 2, 897, 13, 2617, 62, 742, 624, 23912, 1424, 7, 4852, 1314, 13, 77, 2381, 260, 62, 785, 9613, 8, 201, 2, 1640, 2378, 287, 7877, 13, 1136, 62, 742, 624, 23912, 1424, 33529, 2378, 13, 2617, 62, 10599, 341, 7, 3829, 8, 201, 2, 1640, 1312, 11, 410, 287, 27056, 378, 7, 4852, 1314, 14692, 77, 2381, 260, 62, 785, 9613, 1, 4083, 2676, 23814, 3419, 2599, 220, 220, 220, 220, 220, 220, 220, 220, 201, 2, 220, 220, 220, 7877, 13, 5239, 7, 72, 837, 85, 58, 16, 4357, 45144, 45299, 92, 1911, 18982, 7, 85, 58, 16, 46570, 3124, 11639, 76, 3256, 46935, 796, 6, 22487, 3256, 13179, 28, 2231, 8, 201, 2, 489, 83, 13, 33464, 62, 39786, 3419, 201, 2, 489, 83, 13, 12860, 3419, 201, 201, 201, 201, 201, 201, 201, 26224, 28, 47764, 58, 7568, 13, 47371, 855, 6, 8081, 72, 18840, 3395, 1773, 6212, 2271, 390, 34802, 20520, 201, 201, 46324, 62, 301, 2188, 62, 6978, 2625, 40720, 40720, 20942, 298, 274, 14, 46324, 62, 301, 2188, 14, 46324, 62, 301, 2188, 13, 40664, 1, 201, 2, 19608, 418, 62, 6978, 2625, 40720, 40720, 8220, 11008, 1129, 62, 1925, 576, 62, 5377, 403, 292, 12, 34004, 418, 62, 83, 313, 2040, 13, 7902, 53, 1, 201, 46324, 62, 301, 2188, 796, 279, 67, 13, 961, 62, 40664, 7, 46324, 62, 301, 2188, 62, 6978, 8, 201, 201, 201, 26224, 28, 26224, 13, 647, 469, 7, 46324, 62, 301, 2188, 11, 1364, 62, 261, 11639, 77, 2381, 260, 62, 785, 9613, 3256, 826, 62, 261, 11639, 77, 2381, 260, 62, 785, 9613, 3256, 3297, 11639, 25101, 11537, 201, 201, 201, 301, 2188, 28, 42721, 58, 26224, 13, 46324, 62, 301, 2188, 855, 16, 60, 201, 201, 2, 6779, 1619, 256, 1689, 31329, 390, 8591, 2336, 5330, 1619, 3975, 64, 201, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 1270, 11, 1542, 4008, 201, 2, 6779, 1619, 256, 8836, 83, 43348, 331, 22346, 304, 73, 274, 201, 897, 13, 2617, 62, 7839, 7, 84, 6, 5377, 403, 292, 1619, 17113, 34802, 16964, 6184, 235, 358, 501, 390, 371, 444, 2188, 390, 2345, 363, 952, 3256, 220, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 796, 1160, 11, 220, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 11600, 34758, 6, 10331, 7857, 10354, 1238, 11, 705, 8043, 10354, 705, 13424, 6, 30072, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 2, 6779, 1619, 256, 8836, 83, 43348, 331, 22346, 304, 73, 274, 201, 2, 897, 13, 2617, 62, 87, 18242, 10786, 14617, 26331, 11537, 201, 2, 897, 13, 2617, 62, 2645, 9608, 10786, 24220, 26331, 11537, 201, 489, 83, 13, 22704, 10786, 2364, 11537, 201, 2, 897, 13, 1455, 437, 7, 10331, 7857, 28, 12825, 8, 201, 2, 317, 12654, 324, 343, 8591, 443, 88, 7438, 2880, 4763, 1619, 3975, 64, 201, 6738, 285, 489, 62, 25981, 74, 896, 13, 897, 274, 62, 25928, 16, 1330, 787, 62, 897, 274, 62, 17946, 21156, 201, 7146, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 8, 201, 66, 897, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 3506, 1600, 2546, 2625, 20, 4, 1600, 14841, 28, 15, 13, 17, 8, 201, 2, 8899, 62, 2257, 11230, 58, 7, 8899, 62, 2257, 11230, 13, 45, 2662, 40438, 0, 11639, 50, 17096, 3839, 11537, 5, 7, 8899, 62, 2257, 11230, 13, 45, 2662, 40438, 0, 11639, 15946, 312, 29634, 11537, 5, 7, 8899, 62, 2257, 11230, 13, 45, 2662, 40438, 0, 11639, 127, 239, 84, 12654, 12162, 11537, 5, 7, 8899, 62, 2257, 11230, 13, 45, 2662, 40438, 0, 11639, 46898, 9724, 274, 11537, 60, 220, 201, 2, 4042, 20040, 1288, 3975, 64, 2457, 528, 4533, 201, 301, 2188, 13, 29487, 7, 28665, 11639, 1678, 2188, 3256, 220, 201, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 11639, 49, 5379, 3256, 7877, 28, 897, 11, 201, 220, 220, 220, 220, 220, 220, 220, 8177, 28, 17821, 11, 201, 220, 220, 220, 220, 220, 220, 220, 8177, 62, 46265, 9310, 34758, 6, 18242, 10354, 366, 49, 444, 2188, 390, 2345, 363, 952, 25719, 201, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 11, 1976, 2875, 28, 20, 11, 2, 201, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 46265, 9310, 28, 4895, 8043, 1298, 366, 2971, 49502, 1600, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14907, 8043, 1298, 366, 13424, 1600, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 71, 963, 1298, 366, 20379, 1, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 18242, 1298, 366, 43730, 3815, 1600, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 201, 201, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 1270, 11, 1542, 4008, 201, 7061, 6, 201, 301, 2188, 13, 29487, 7, 28665, 11639, 1678, 2188, 3256, 66, 8899, 11639, 49, 5379, 3256, 7877, 28, 897, 11, 201, 220, 220, 220, 220, 220, 220, 220, 8177, 28, 17821, 1455, 437, 62, 46265, 9310, 34758, 6, 18242, 10354, 366, 49, 444, 2188, 390, 2345, 363, 952, 25719, 201, 220, 220, 220, 220, 220, 220, 220, 269, 897, 28, 66, 897, 11, 1976, 2875, 28, 20, 11, 201, 220, 220, 220, 220, 220, 220, 220, 4814, 62, 46265, 9310, 28, 4895, 8043, 1298, 366, 2971, 49502, 1600, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14907, 8043, 1298, 366, 13424, 1600, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 71, 963, 1298, 366, 20379, 1, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 2, 11, 201, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 18242, 1298, 366, 43730, 3815, 1600, 30072, 201, 7061, 6, 201, 201, 201 ]
2.039841
5,045
#!/usr/bin/env python # # Copyright (c) 2019, Arista Networks, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # - Neither the name of Arista Networks nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED # TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF # THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Locate last Snapshot with user provided name for CVP 2018.1.x # # Version 0.1 22/01/2019 # # Written by: # Hugh Adams, Arista Networks # # Revision history: # 0.1 - 22/01/2019 - initial script # # Requires a user with read access to "Snapshots" in CVP # Requires a snapshot to be created with the following commands # show inventory | json # show lldp neighbors | json # # Requires CVP user credentials # # Import Required Libraries import json import re import os, csv import argparse import getpass import sys import json import requests from requests import packages from time import sleep # Global Variables # CVP manipulation class # Set up classes to interact with CVP API # serverCVP exception class # Create a session to the CVP server def fileOpen(filePath,fileType): """ filePath - full directory and filename for file function returns file contents based on selection json - JSON object txt - text string csv - Comma Separated Variable j2 - Jinja2 Template object""" if os.path.exists(filePath) and os.path.getsize(filePath) > 0: print "Retrieving file:%s" %filePath if fileType.lower() == "xl": fileObject = xlrd.open_workbook(filePath) else: with open(filePath, 'r') as FH: if fileType.lower() == "json": fileObject = json.load(FH) elif fileType.lower() == "txt": fileObject = FH.readlines() elif fileType.lower() == "csv": file_data = csv.reader(FH) fileObject = output = list(file_data) elif fileType.lower() == "j2": fileObject = Template(FH.read()) else: print "Invalid fileType" fileObject = False return fileObject else: print "File does not exist or is empty: %s" %filePath return False def fileWrite(filePath,data,fileType,option="c"): """ filePath - full directory and filename for file Function returns True is file is successfully written to media data - content to write to file fileType json - JSON object txt - text string csv - Comman Separated Variable string option a - append w - overwrite c - choose option based on file existance """ if option.lower() == "c": if os.path.exists(filePath) and os.path.getsize(filePath) > 0: print "Appending data to file:%s" %filePath fileOp = "a" else: print "Creating file %s to write data to" %filePath fileOp = "w" else: fileOp = option.lower() try: with open(filePath, fileOp) as FH: if fileOp == "a": FH.seek(0, 2) if fileType.lower() == "json": #json.dump(json.loads(data), FH, sort_keys = True, indent = 4, ensure_ascii = True) json.dump(data, FH, sort_keys = True, indent = 4, ensure_ascii = True) result = True elif fileType.lower() == "txt": FH.writelines(data) result = True elif fileType.lower() == "csv": #write_csv = csv.writer(FH, dialect='excel') write_csv = csv.writer(FH) write_csv.writerows(data) result = True else: print "Invalid fileType" result = False except IOError as file_error: print "File Write Error: %s"%file_error result = False return result def parseArgs(): """Gathers comand line options for the script, generates help text and performs some error checking""" # Configure the option parser for CLI options to the script usage = "usage: %prog [options] userName password configlet xlfile" parser = argparse.ArgumentParser(description="Excel File to JSON Configlet Builder") parser.add_argument("--userName", help='Username to log into CVP') parser.add_argument("--password", help='Password for CVP user to login') parser.add_argument("--target", nargs="*", metavar='TARGET', default=[], help='List of CVP appliances to get snapshot from URL,URL') parser.add_argument("--snapshot", help='CVP Snapshot name containing required data') parser.add_argument("--last", default="True", help="True - Only get latest snapshot for each device") args = parser.parse_args() return checkArgs( args ) def askPass( user, host ): """Simple function to get missing password if not recieved as a CLI option""" prompt = "Password for user {} on host {}: ".format( user, host ) password = getpass.getpass( prompt ) return password def checkArgs( args ): """check the correctness of the input arguments""" # Set Intial Variables required getCvpAccess = False destList = [] # React to the options provided # CVP Username for script to use if args.userName == None: getCvpAccess = True # CVP Password for script to use if args.password == None: getCvpAccess = True else: if (args.password[0] == args.password[-1]) and args.password.startswith(("'", '"')): password = args.password[1:-1] if getCvpAccess: args.userName = raw_input("User Name to Access CVP: ") args.password = askPass( args.userName, "CVP" ) # CVP appliances to get snapsots from if not args.target: applianceNumber = int(raw_input("Number of CVP Appliance to use: ")) loop = 0 while loop < applianceNumber: args.target.append(raw_input("CVP Appliance %s: " %(loop+1))) loop += 1 # Target snapshot if args.snapshot == None: args.snapshot = raw_input("Name of Snapshot to retrieve: ") else: if (args.snapshot[0] == args.snapshot[-1]) and args.snapshot.startswith(("'", '"')): args.snapshot = args.snapshot[1:-1] # Get Last Snapshot if args.last.lower() == "true": args.last = True else: args.last = False return args # Main Script if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 357, 66, 8, 13130, 11, 943, 12523, 27862, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 198, 2, 1138, 25, 198, 2, 220, 532, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 4003, 11, 198, 2, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 532, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 532, 16126, 262, 1438, 286, 943, 12523, 27862, 4249, 262, 3891, 286, 663, 198, 2, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 198, 2, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 198, 2, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 198, 2, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 198, 2, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 198, 2, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 198, 2, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 198, 2, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 198, 2, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 198, 2, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 198, 2, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 2, 406, 13369, 938, 16026, 9442, 351, 2836, 2810, 1438, 329, 327, 8859, 2864, 13, 16, 13, 87, 198, 2, 198, 2, 220, 220, 220, 10628, 657, 13, 16, 2534, 14, 486, 14, 23344, 198, 2, 198, 2, 220, 220, 220, 22503, 416, 25, 198, 2, 220, 220, 220, 220, 220, 220, 25464, 12620, 11, 943, 12523, 27862, 198, 2, 198, 2, 220, 220, 220, 46604, 2106, 25, 198, 2, 220, 220, 220, 220, 220, 220, 657, 13, 16, 532, 2534, 14, 486, 14, 23344, 532, 4238, 4226, 198, 2, 198, 2, 26848, 257, 2836, 351, 1100, 1895, 284, 366, 43826, 20910, 1, 287, 327, 8859, 198, 2, 26848, 257, 27479, 284, 307, 2727, 351, 262, 1708, 9729, 198, 2, 905, 13184, 930, 33918, 198, 2, 905, 32660, 26059, 12020, 930, 33918, 198, 2, 198, 2, 26848, 327, 8859, 2836, 18031, 198, 2, 198, 198, 2, 17267, 20906, 46267, 198, 11748, 33918, 198, 11748, 302, 198, 11748, 28686, 11, 269, 21370, 198, 11748, 1822, 29572, 198, 11748, 651, 6603, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 7007, 198, 6738, 7007, 1330, 10392, 198, 6738, 640, 1330, 3993, 198, 198, 2, 8060, 15965, 2977, 198, 198, 2, 327, 8859, 17512, 1398, 198, 2, 5345, 510, 6097, 284, 9427, 351, 327, 8859, 7824, 198, 2, 4382, 34, 8859, 6631, 1398, 198, 198, 2, 13610, 257, 6246, 284, 262, 327, 8859, 4382, 628, 198, 4299, 2393, 11505, 7, 7753, 15235, 11, 7753, 6030, 2599, 198, 220, 220, 220, 37227, 2393, 15235, 532, 1336, 8619, 290, 29472, 329, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 5860, 2393, 10154, 1912, 319, 6356, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 532, 19449, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 256, 742, 532, 2420, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 532, 1520, 64, 8621, 283, 515, 35748, 198, 220, 220, 220, 220, 220, 220, 220, 474, 17, 532, 17297, 6592, 17, 37350, 2134, 37811, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 15235, 8, 290, 28686, 13, 6978, 13, 11407, 1096, 7, 7753, 15235, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 9781, 37418, 2393, 25, 4, 82, 1, 4064, 7753, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6030, 13, 21037, 3419, 6624, 366, 87, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 2124, 75, 4372, 13, 9654, 62, 1818, 2070, 7, 7753, 15235, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 15235, 11, 705, 81, 11537, 355, 376, 39, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6030, 13, 21037, 3419, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 33918, 13, 2220, 7, 44602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 6030, 13, 21037, 3419, 6624, 366, 14116, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 376, 39, 13, 961, 6615, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 6030, 13, 21037, 3419, 6624, 366, 40664, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 7890, 796, 269, 21370, 13, 46862, 7, 44602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 5072, 796, 1351, 7, 7753, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 6030, 13, 21037, 3419, 6624, 366, 73, 17, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 37350, 7, 44602, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 44651, 2393, 6030, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 10267, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2393, 10267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 8979, 857, 407, 2152, 393, 318, 6565, 25, 4064, 82, 1, 4064, 7753, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 4299, 2393, 16594, 7, 7753, 15235, 11, 7890, 11, 7753, 6030, 11, 18076, 2625, 66, 1, 2599, 198, 220, 220, 220, 37227, 2393, 15235, 532, 1336, 8619, 290, 29472, 329, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 5860, 6407, 318, 2393, 318, 7675, 3194, 284, 2056, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 532, 2695, 284, 3551, 284, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 532, 19449, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 742, 532, 2420, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 532, 955, 805, 8621, 283, 515, 35748, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 532, 24443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 532, 49312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 532, 3853, 3038, 1912, 319, 2393, 2152, 590, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 3038, 13, 21037, 3419, 6624, 366, 66, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 15235, 8, 290, 28686, 13, 6978, 13, 11407, 1096, 7, 7753, 15235, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 4677, 1571, 1366, 284, 2393, 25, 4, 82, 1, 4064, 7753, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 18257, 796, 366, 64, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 32071, 2393, 4064, 82, 284, 3551, 1366, 284, 1, 4064, 7753, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 18257, 796, 366, 86, 1, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 18257, 796, 3038, 13, 21037, 3419, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 15235, 11, 2393, 18257, 8, 355, 376, 39, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 18257, 6624, 366, 64, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 39, 13, 36163, 7, 15, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6030, 13, 21037, 3419, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17752, 13, 39455, 7, 17752, 13, 46030, 7, 7890, 828, 376, 39, 11, 3297, 62, 13083, 796, 6407, 11, 33793, 796, 604, 11, 4155, 62, 292, 979, 72, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 7890, 11, 376, 39, 11, 3297, 62, 13083, 796, 6407, 11, 33793, 796, 604, 11, 4155, 62, 292, 979, 72, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 6030, 13, 21037, 3419, 6624, 366, 14116, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 39, 13, 8933, 20655, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2393, 6030, 13, 21037, 3419, 6624, 366, 40664, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13564, 62, 40664, 796, 269, 21370, 13, 16002, 7, 44602, 11, 23637, 11639, 1069, 5276, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 40664, 796, 269, 21370, 13, 16002, 7, 44602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 62, 40664, 13, 16002, 1666, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 44651, 2393, 6030, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 10352, 198, 220, 220, 220, 2845, 24418, 12331, 355, 2393, 62, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 8979, 19430, 13047, 25, 4064, 82, 1, 4, 7753, 62, 18224, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 10352, 198, 220, 220, 220, 1441, 1255, 198, 198, 4299, 21136, 42035, 33529, 198, 220, 220, 220, 37227, 38, 1032, 82, 401, 392, 1627, 3689, 329, 262, 4226, 11, 18616, 1037, 2420, 290, 17706, 617, 4049, 10627, 37811, 198, 220, 220, 220, 1303, 17056, 495, 262, 3038, 30751, 329, 43749, 3689, 284, 262, 4226, 198, 220, 220, 220, 8748, 796, 366, 26060, 25, 4064, 1676, 70, 685, 25811, 60, 2836, 5376, 9206, 4566, 1616, 2124, 1652, 576, 1, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 3109, 5276, 9220, 284, 19449, 17056, 1616, 35869, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 7220, 5376, 1600, 1037, 11639, 5842, 13292, 284, 2604, 656, 327, 8859, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 28712, 1600, 1037, 11639, 35215, 329, 327, 8859, 2836, 284, 17594, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 16793, 1600, 299, 22046, 2625, 9, 1600, 1138, 615, 283, 11639, 51, 46095, 3256, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 8053, 286, 327, 8859, 29834, 284, 651, 27479, 422, 10289, 11, 21886, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 45380, 9442, 1600, 1037, 11639, 34, 8859, 16026, 9442, 1438, 7268, 2672, 1366, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 12957, 1600, 4277, 2625, 17821, 1600, 1037, 2625, 17821, 532, 5514, 651, 3452, 27479, 329, 1123, 3335, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1441, 2198, 42035, 7, 26498, 1267, 198, 198, 4299, 1265, 14478, 7, 2836, 11, 2583, 15179, 198, 220, 220, 220, 37227, 26437, 2163, 284, 651, 4814, 9206, 611, 407, 664, 39591, 355, 257, 43749, 3038, 37811, 198, 220, 220, 220, 6152, 796, 366, 35215, 329, 2836, 23884, 319, 2583, 23884, 25, 27071, 18982, 7, 2836, 11, 2583, 1267, 198, 220, 220, 220, 9206, 796, 651, 6603, 13, 1136, 6603, 7, 6152, 1267, 198, 220, 220, 220, 1441, 9206, 198, 198, 4299, 2198, 42035, 7, 26498, 15179, 198, 220, 220, 220, 37227, 9122, 262, 29409, 286, 262, 5128, 7159, 37811, 198, 220, 220, 220, 1303, 5345, 2558, 498, 15965, 2977, 2672, 198, 220, 220, 220, 651, 34, 36133, 15457, 796, 10352, 198, 220, 220, 220, 2244, 8053, 796, 17635, 628, 220, 220, 220, 1303, 21492, 284, 262, 3689, 2810, 628, 220, 220, 220, 1303, 327, 8859, 50069, 329, 4226, 284, 779, 198, 220, 220, 220, 611, 26498, 13, 7220, 5376, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 651, 34, 36133, 15457, 796, 6407, 628, 220, 220, 220, 1303, 327, 8859, 30275, 329, 4226, 284, 779, 198, 220, 220, 220, 611, 26498, 13, 28712, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 651, 34, 36133, 15457, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22046, 13, 28712, 58, 15, 60, 6624, 26498, 13, 28712, 58, 12, 16, 12962, 290, 26498, 13, 28712, 13, 9688, 2032, 342, 7, 7203, 6, 1600, 705, 1, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 26498, 13, 28712, 58, 16, 21912, 16, 60, 628, 220, 220, 220, 611, 651, 34, 36133, 15457, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 7220, 5376, 796, 8246, 62, 15414, 7203, 12982, 6530, 284, 8798, 327, 8859, 25, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 28712, 796, 1265, 14478, 7, 26498, 13, 7220, 5376, 11, 366, 34, 8859, 1, 1267, 628, 220, 220, 220, 1303, 327, 8859, 29834, 284, 651, 23429, 1747, 422, 198, 220, 220, 220, 611, 407, 26498, 13, 16793, 25, 198, 220, 220, 220, 220, 220, 220, 220, 45248, 15057, 796, 493, 7, 1831, 62, 15414, 7203, 15057, 286, 327, 8859, 39100, 3610, 284, 779, 25, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 981, 9052, 1279, 45248, 15057, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 16793, 13, 33295, 7, 1831, 62, 15414, 7203, 34, 8859, 39100, 3610, 4064, 82, 25, 366, 4064, 7, 26268, 10, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9052, 15853, 352, 628, 220, 220, 220, 1303, 12744, 27479, 198, 220, 220, 220, 611, 26498, 13, 45380, 9442, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 45380, 9442, 796, 8246, 62, 15414, 7203, 5376, 286, 16026, 9442, 284, 19818, 25, 366, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 22046, 13, 45380, 9442, 58, 15, 60, 6624, 26498, 13, 45380, 9442, 58, 12, 16, 12962, 290, 26498, 13, 45380, 9442, 13, 9688, 2032, 342, 7, 7203, 6, 1600, 705, 1, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 45380, 9442, 796, 26498, 13, 45380, 9442, 58, 16, 21912, 16, 60, 628, 220, 220, 220, 1303, 3497, 4586, 16026, 9442, 198, 220, 220, 220, 611, 26498, 13, 12957, 13, 21037, 3419, 6624, 366, 7942, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 12957, 796, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 12957, 796, 10352, 628, 220, 220, 220, 1441, 26498, 628, 198, 2, 8774, 12327, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.549626
3,073
# Space: O(1) # Time: O(n)
[ 198, 2, 4687, 25, 440, 7, 16, 8, 198, 2, 3862, 25, 440, 7, 77, 8, 628, 628, 198 ]
1.684211
19
#!/usr/bin/env python import rospy from mavros_msgs.msg import PositionTarget from geometry_msgs.msg import PoseStamped from std_msgs.msg import Float32, String, Bool if __name__ == '__main__': rospy.init_node('checker_1') server = Server() rospy.Subscriber("/uav1/mavros/local_position/pose", PoseStamped , server.curpos_callback) rospy.Subscriber("/uav1/mavros/setpoint_raw/local", PositionTarget, server.targetwp_callback) rospy.spin()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 686, 2777, 88, 198, 6738, 285, 615, 4951, 62, 907, 14542, 13, 19662, 1330, 23158, 21745, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 37557, 1273, 13322, 198, 6738, 14367, 62, 907, 14542, 13, 19662, 1330, 48436, 2624, 11, 10903, 11, 347, 970, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 10786, 9122, 263, 62, 16, 11537, 628, 220, 220, 220, 4382, 796, 9652, 3419, 628, 220, 220, 220, 686, 2777, 88, 13, 7004, 1416, 24735, 7203, 14, 84, 615, 16, 14, 76, 615, 4951, 14, 12001, 62, 9150, 14, 3455, 1600, 37557, 1273, 13322, 837, 4382, 13, 22019, 1930, 62, 47423, 8, 198, 220, 220, 220, 686, 2777, 88, 13, 7004, 1416, 24735, 7203, 14, 84, 615, 16, 14, 76, 615, 4951, 14, 2617, 4122, 62, 1831, 14, 12001, 1600, 23158, 21745, 11, 4382, 13, 16793, 24142, 62, 47423, 8, 628, 220, 220, 220, 686, 2777, 88, 13, 39706, 3419, 198 ]
2.606742
178
"""Models!""" from pathlib import Path import re import glob from django.db import models from django.urls import reverse from gbt_archive.utils import get_archive_path class History(models.Model): """Stores history of CSV exports, intended for AAT consumption""" historyid = models.AutoField(db_column="historyID", primary_key=True) archivaldate = models.DateField(db_column="archivalDate") aatfilename = models.CharField(db_column="aatFilename", max_length=256) version = models.CharField(max_length=12) # class TestOfflineOld(models.Model): # errorid = models.AutoField(db_column="errorID", primary_key=True) # errormsg = models.CharField(db_column="errorMsg", max_length=64) # severity = models.IntegerField() # class Meta: # managed = False # db_table = "test_offline_old"
[ 37811, 5841, 1424, 2474, 15931, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 302, 198, 11748, 15095, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 198, 6738, 308, 18347, 62, 17474, 13, 26791, 1330, 651, 62, 17474, 62, 6978, 628, 628, 198, 198, 4871, 7443, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 1273, 2850, 2106, 286, 44189, 15319, 11, 5292, 329, 317, 1404, 7327, 37811, 628, 220, 220, 220, 2106, 312, 796, 4981, 13, 27722, 15878, 7, 9945, 62, 28665, 2625, 23569, 2389, 1600, 4165, 62, 2539, 28, 17821, 8, 198, 220, 220, 220, 3934, 452, 1940, 378, 796, 4981, 13, 10430, 15878, 7, 9945, 62, 28665, 2625, 998, 2473, 10430, 4943, 198, 220, 220, 220, 257, 265, 34345, 796, 4981, 13, 12441, 15878, 7, 9945, 62, 28665, 2625, 64, 265, 35063, 1600, 3509, 62, 13664, 28, 11645, 8, 198, 220, 220, 220, 2196, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1065, 8, 628, 628, 628, 198, 2, 1398, 6208, 28657, 19620, 7, 27530, 13, 17633, 2599, 198, 2, 220, 220, 220, 220, 4049, 312, 796, 4981, 13, 27722, 15878, 7, 9945, 62, 28665, 2625, 18224, 2389, 1600, 4165, 62, 2539, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 11454, 579, 45213, 796, 4981, 13, 12441, 15878, 7, 9945, 62, 28665, 2625, 18224, 50108, 1600, 3509, 62, 13664, 28, 2414, 8, 198, 2, 220, 220, 220, 220, 19440, 796, 4981, 13, 46541, 15878, 3419, 198, 198, 2, 220, 220, 220, 220, 1398, 30277, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 5257, 796, 10352, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 11487, 796, 366, 9288, 62, 2364, 1370, 62, 727, 1, 198 ]
2.83557
298
from talon import ctrl, noise, actions noise.register( "pop", lambda m: ctrl.mouse_click() if actions.speech.enabled() else actions.speech.enable(), )
[ 6738, 3305, 261, 1330, 269, 14859, 11, 7838, 11, 4028, 198, 198, 3919, 786, 13, 30238, 7, 198, 220, 220, 220, 366, 12924, 1600, 198, 220, 220, 220, 37456, 285, 25, 269, 14859, 13, 35888, 62, 12976, 3419, 198, 220, 220, 220, 611, 4028, 13, 45862, 13, 25616, 3419, 198, 220, 220, 220, 2073, 4028, 13, 45862, 13, 21633, 22784, 198, 8, 198 ]
2.666667
63
from PIL import Image from io import BytesIO from base64 import b64decode import numpy import re import cv2 import random from collections import namedtuple from math import hypot if cv2.__version__.split()[0] == '3': old_find_contours = cv2.findContours cv2.findContours = new_find_contours RotatedRect = namedtuple("RotatedRect", "center, size, angle") DEFAULT_SIZE = (40, 50) def read_base64(data_url): "Read and binarize an image from data_url." image_str = re.fullmatch("data:image/jpg;base64,(.+)", data_url).group(1) pil_image = Image.open(BytesIO(b64decode(image_str))) raw_image = ~cv2.cvtColor(numpy.array(pil_image), cv2.COLOR_RGB2GRAY) _, binary_image = cv2.threshold(raw_image, 10, 255, cv2.THRESH_BINARY) return binary_image def get_angle(rrect): "Get the nearest angle to make the rectangle up-right." return rrect.angle if rrect.angle > -45 else 90 + rrect.angle def findContours(image): "Work around the difference between opencv 3 and opencv 4." return cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] def find_chars(image): "Find the characters in image, return them as rotated rectangles." contours = findContours(image) # print(contours) rrects = [RotatedRect(*cv2.minAreaRect(c)) for c in contours] if len(contours) != 4: # i and j if len(contours) < 4: # some lost character raise CharacterTooComplicated() dot_indices = filter( lambda i: get_area(rrects[i]) < 40, range(len(rrects))) body_indices = list(filter( lambda i: get_area(rrects[i]) >= 40, range(len(rrects)))) if len(body_indices) != 4: raise CharacterTooComplicated() for di in dot_indices: nearest = min(body_indices, key=get_distance) # print(nearest) joined_contour = numpy.concatenate( (contours[di], contours[nearest])) rrects[nearest] = RotatedRect(*cv2.minAreaRect(joined_contour)) rrects = [rrects[i] for i in body_indices] return rrects def crop_rrect(image, rrect, margin): "Crop a rotated rectangle from image." mat = cv2.getRotationMatrix2D(rrect.center, get_angle(rrect), 1) size = int(rrect.size[0]+margin*2), int(rrect.size[1]+margin*2) if rrect.angle <= -45: size = size[1], size[0] for i in (0, 1): mat[i, 2] += size[i] / 2 - rrect.center[i] dst = cv2.warpAffine(image, mat, size, cv2.INTER_LINEAR) # print(get_angle(rrect), size, rrect) return dst def isolate_chars(image, margin=0): "Find the characters in the image, return them as images." rrects = sorted(find_chars(image), key=lambda rrect: rrect.center) cropped = [crop_rrect(image, rrect, margin) for rrect in rrects] return cropped def concat_chars(chars, size=DEFAULT_SIZE): "Concatenate the characters to form a whole picture for use in tesseract." canvas = numpy.zeros((size[1], size[0]*4), numpy.uint8) for i in range(4): char_size = chars[i].shape high = (size[1]+char_size[0])//2, (size[0]+char_size[1])//2 low = high[0]-char_size[0], high[1]-char_size[1] canvas[ low[0]: high[0], size[0]*i + low[1]: size[0]*i + high[1], ] = chars[i] return canvas if __name__ == "__main__": image_url = "" image = read_base64(image_url) cv2.imshow("src", image) chars = isolate_chars(image) for i in range(4): cv2.imshow(f"character {i}", chars[i]) concat = concat_chars(chars) cv2.imshow("concat", concat) # cv2.imwrite("c.png", ~concat) cv2.waitKey()
[ 6738, 350, 4146, 1330, 7412, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 6738, 2779, 2414, 1330, 275, 2414, 12501, 1098, 198, 11748, 299, 32152, 198, 11748, 302, 198, 11748, 269, 85, 17, 198, 11748, 4738, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 10688, 1330, 8813, 628, 198, 361, 269, 85, 17, 13, 834, 9641, 834, 13, 35312, 3419, 58, 15, 60, 6624, 705, 18, 10354, 198, 220, 220, 220, 1468, 62, 19796, 62, 3642, 4662, 796, 269, 85, 17, 13, 19796, 4264, 4662, 198, 220, 220, 220, 269, 85, 17, 13, 19796, 4264, 4662, 796, 649, 62, 19796, 62, 3642, 4662, 628, 198, 198, 24864, 515, 45474, 796, 3706, 83, 29291, 7203, 24864, 515, 45474, 1600, 366, 16159, 11, 2546, 11, 9848, 4943, 628, 198, 7206, 38865, 62, 33489, 796, 357, 1821, 11, 2026, 8, 628, 198, 4299, 1100, 62, 8692, 2414, 7, 7890, 62, 6371, 2599, 198, 220, 220, 220, 366, 5569, 290, 9874, 283, 1096, 281, 2939, 422, 1366, 62, 6371, 526, 198, 220, 220, 220, 2939, 62, 2536, 796, 302, 13, 12853, 15699, 7203, 7890, 25, 9060, 14, 9479, 26, 8692, 2414, 11, 7, 13, 28988, 1600, 1366, 62, 6371, 737, 8094, 7, 16, 8, 198, 220, 220, 220, 5560, 62, 9060, 796, 7412, 13, 9654, 7, 45992, 9399, 7, 65, 2414, 12501, 1098, 7, 9060, 62, 2536, 22305, 198, 220, 220, 220, 8246, 62, 9060, 796, 5299, 33967, 17, 13, 33967, 83, 10258, 7, 77, 32152, 13, 18747, 7, 79, 346, 62, 9060, 828, 269, 85, 17, 13, 46786, 62, 36982, 17, 38, 30631, 8, 198, 220, 220, 220, 4808, 11, 13934, 62, 9060, 796, 269, 85, 17, 13, 400, 10126, 7, 1831, 62, 9060, 11, 838, 11, 14280, 11, 269, 85, 17, 13, 4221, 19535, 39, 62, 33, 1268, 13153, 8, 198, 220, 220, 220, 1441, 13934, 62, 9060, 628, 198, 198, 4299, 651, 62, 9248, 7, 81, 2554, 2599, 198, 220, 220, 220, 366, 3855, 262, 16936, 9848, 284, 787, 262, 35991, 510, 12, 3506, 526, 198, 220, 220, 220, 1441, 374, 2554, 13, 9248, 611, 374, 2554, 13, 9248, 1875, 532, 2231, 2073, 4101, 1343, 374, 2554, 13, 9248, 198, 198, 4299, 1064, 4264, 4662, 7, 9060, 2599, 198, 220, 220, 220, 366, 12468, 1088, 262, 3580, 1022, 1280, 33967, 513, 290, 1280, 33967, 604, 526, 198, 220, 220, 220, 1441, 269, 85, 17, 13, 19796, 4264, 4662, 7, 9060, 11, 269, 85, 17, 13, 2200, 5446, 62, 6369, 31800, 1847, 11, 269, 85, 17, 13, 3398, 29833, 62, 2969, 31190, 55, 62, 45, 11651, 38381, 12, 17, 60, 198, 198, 4299, 1064, 62, 354, 945, 7, 9060, 2599, 198, 220, 220, 220, 366, 16742, 262, 3435, 287, 2939, 11, 1441, 606, 355, 38375, 13621, 27787, 526, 198, 220, 220, 220, 542, 4662, 796, 1064, 4264, 4662, 7, 9060, 8, 198, 220, 220, 220, 1303, 3601, 7, 3642, 4662, 8, 198, 220, 220, 220, 374, 2554, 82, 796, 685, 24864, 515, 45474, 46491, 33967, 17, 13, 1084, 30547, 45474, 7, 66, 4008, 329, 269, 287, 542, 4662, 60, 198, 220, 220, 220, 611, 18896, 7, 3642, 4662, 8, 14512, 604, 25, 220, 1303, 1312, 290, 474, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 3642, 4662, 8, 1279, 604, 25, 220, 1303, 617, 2626, 2095, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 15684, 23307, 38143, 3474, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16605, 62, 521, 1063, 796, 8106, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 1312, 25, 651, 62, 20337, 7, 81, 2554, 82, 58, 72, 12962, 1279, 2319, 11, 2837, 7, 11925, 7, 81, 2554, 82, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 521, 1063, 796, 1351, 7, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 1312, 25, 651, 62, 20337, 7, 81, 2554, 82, 58, 72, 12962, 18189, 2319, 11, 2837, 7, 11925, 7, 81, 2554, 82, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 2618, 62, 521, 1063, 8, 14512, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 15684, 23307, 38143, 3474, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2566, 287, 16605, 62, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16936, 796, 949, 7, 2618, 62, 521, 1063, 11, 1994, 28, 1136, 62, 30246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 710, 12423, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5399, 62, 3642, 454, 796, 299, 32152, 13, 1102, 9246, 268, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3642, 4662, 58, 10989, 4357, 542, 4662, 58, 710, 12423, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 2554, 82, 58, 710, 12423, 60, 796, 18481, 515, 45474, 46491, 33967, 17, 13, 1084, 30547, 45474, 7, 46416, 62, 3642, 454, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2554, 82, 796, 685, 81, 2554, 82, 58, 72, 60, 329, 1312, 287, 1767, 62, 521, 1063, 60, 198, 220, 220, 220, 1441, 374, 2554, 82, 628, 198, 4299, 13833, 62, 81, 2554, 7, 9060, 11, 374, 2554, 11, 10330, 2599, 198, 220, 220, 220, 366, 34, 1773, 257, 38375, 35991, 422, 2939, 526, 198, 220, 220, 220, 2603, 796, 269, 85, 17, 13, 1136, 49, 14221, 46912, 17, 35, 7, 81, 2554, 13, 16159, 11, 651, 62, 9248, 7, 81, 2554, 828, 352, 8, 198, 220, 220, 220, 2546, 796, 493, 7, 81, 2554, 13, 7857, 58, 15, 48688, 36153, 9, 17, 828, 493, 7, 81, 2554, 13, 7857, 58, 16, 48688, 36153, 9, 17, 8, 198, 220, 220, 220, 611, 374, 2554, 13, 9248, 19841, 532, 2231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 2546, 58, 16, 4357, 2546, 58, 15, 60, 198, 220, 220, 220, 329, 1312, 287, 357, 15, 11, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 58, 72, 11, 362, 60, 15853, 2546, 58, 72, 60, 1220, 362, 532, 374, 2554, 13, 16159, 58, 72, 60, 628, 220, 220, 220, 29636, 796, 269, 85, 17, 13, 86, 5117, 35191, 500, 7, 9060, 11, 2603, 11, 2546, 11, 269, 85, 17, 13, 41358, 62, 24027, 1503, 8, 198, 220, 220, 220, 1303, 3601, 7, 1136, 62, 9248, 7, 81, 2554, 828, 2546, 11, 374, 2554, 8, 198, 220, 220, 220, 1441, 29636, 628, 198, 4299, 28091, 62, 354, 945, 7, 9060, 11, 10330, 28, 15, 2599, 198, 220, 220, 220, 366, 16742, 262, 3435, 287, 262, 2939, 11, 1441, 606, 355, 4263, 526, 198, 220, 220, 220, 374, 2554, 82, 796, 23243, 7, 19796, 62, 354, 945, 7, 9060, 828, 1994, 28, 50033, 374, 2554, 25, 374, 2554, 13, 16159, 8, 198, 220, 220, 220, 48998, 796, 685, 31476, 62, 81, 2554, 7, 9060, 11, 374, 2554, 11, 10330, 8, 329, 374, 2554, 287, 374, 2554, 82, 60, 198, 220, 220, 220, 1441, 48998, 628, 198, 4299, 1673, 265, 62, 354, 945, 7, 354, 945, 11, 2546, 28, 7206, 38865, 62, 33489, 2599, 198, 220, 220, 220, 366, 3103, 9246, 268, 378, 262, 3435, 284, 1296, 257, 2187, 4286, 329, 779, 287, 256, 408, 263, 529, 526, 198, 220, 220, 220, 21978, 796, 299, 32152, 13, 9107, 418, 19510, 7857, 58, 16, 4357, 2546, 58, 15, 60, 9, 19, 828, 299, 32152, 13, 28611, 23, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1149, 62, 7857, 796, 34534, 58, 72, 4083, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 796, 357, 7857, 58, 16, 48688, 10641, 62, 7857, 58, 15, 12962, 1003, 17, 11, 357, 7857, 58, 15, 48688, 10641, 62, 7857, 58, 16, 12962, 1003, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 796, 1029, 58, 15, 45297, 10641, 62, 7857, 58, 15, 4357, 1029, 58, 16, 45297, 10641, 62, 7857, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 21978, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 58, 15, 5974, 1029, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 58, 15, 60, 9, 72, 1343, 1877, 58, 16, 5974, 2546, 58, 15, 60, 9, 72, 1343, 1029, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 796, 34534, 58, 72, 60, 198, 220, 220, 220, 1441, 21978, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2939, 62, 6371, 796, 366, 7890, 25, 9060, 14, 9479, 26, 8692, 2414, 11, 72, 44526, 1581, 86, 15, 42, 38, 2188, 29697, 1565, 12564, 71, 19684, 70, 3838, 2390, 70, 3838, 6242, 4851, 32, 3539, 32, 2246, 8579, 35, 22, 47, 3838, 8120, 47920, 36, 48, 13024, 3682, 84, 18, 65, 86, 52, 18, 3620, 15199, 38, 19, 57, 49, 8068, 24, 82, 39, 75, 53, 6242, 36, 73, 4825, 70, 51, 80, 1219, 51, 2149, 79, 17, 72, 33906, 19930, 1828, 6322, 14, 17, 39, 75, 47, 84, 2200, 41, 42, 38353, 56, 87, 45, 20, 75, 54, 56, 74, 66, 39213, 70, 36, 2749, 86, 22495, 70, 38, 5639, 37, 70, 3698, 20185, 8845, 65, 4462, 24, 14, 43, 10, 86, 15, 52, 10116, 9132, 50, 2078, 39, 53, 8579, 57, 77, 5842, 2246, 4528, 10128, 65, 4760, 27654, 10917, 1477, 71, 8356, 32, 5842, 56, 76, 71, 41, 56, 55, 16, 14, 14761, 22, 32886, 67, 37, 70, 42, 86, 41, 54, 24334, 5332, 22495, 56, 3861, 57, 56, 22, 81, 3185, 41, 86, 89, 76, 89, 49136, 33191, 40, 21, 86, 41697, 41, 76, 41, 2390, 82, 43, 16, 12114, 48382, 41, 6239, 16, 2584, 80, 54, 519, 32, 80, 8505, 88, 53, 48, 742, 3697, 35, 3020, 75, 53, 88, 18293, 86, 33, 42, 80, 10, 85, 71, 21, 56, 17, 73, 7792, 5842, 22, 80, 14, 20, 71, 65, 52, 69, 2417, 48, 701, 89, 69, 48528, 55, 57, 40202, 73, 88, 41, 10, 32, 24, 5639, 2934, 322, 10, 83, 40, 2645, 85, 55, 77, 57, 35543, 53, 22, 44947, 17, 1565, 47, 65, 51, 8874, 51, 77, 87, 5488, 42, 53, 57, 33, 76, 519, 76, 36609, 54, 20362, 53, 67, 1350, 1065, 10652, 67, 86, 23820, 14, 7745, 88, 36, 16, 66, 21, 9019, 38850, 80, 81, 13534, 2417, 45, 81, 53, 48, 42, 563, 16, 48, 65, 34, 24, 57, 10468, 80, 5237, 43, 70, 39, 260, 36, 42, 38584, 25492, 86, 40, 660, 41, 14, 8845, 1652, 44, 69, 80, 79, 1073, 1921, 14, 72, 8874, 56, 70, 38, 8845, 57, 56, 39, 53, 55, 53, 17, 71, 33018, 45, 20, 4303, 404, 37, 70, 20, 67, 2290, 21, 42, 21, 80, 55, 40, 87, 17, 36, 21, 85, 17, 38, 57, 66, 46, 16, 85, 710, 80, 21762, 54, 74, 21, 79, 23303, 41, 19, 68, 17, 85, 53, 70, 23, 11230, 74, 33538, 34369, 51, 19, 45, 258, 56, 23, 81, 1820, 30743, 83, 52, 18504, 38, 79, 5662, 40, 2436, 38227, 81, 54, 53, 85, 87, 8896, 54, 57, 56, 74, 67, 24, 84, 17, 18690, 41, 36820, 53, 6413, 16, 52, 15, 35, 88, 23548, 15, 34, 80, 33, 20, 487, 1443, 20, 38, 21, 33, 42, 86, 56, 54, 19, 14, 17, 47, 86, 45, 4933, 64, 1065, 67, 89, 48, 16, 43, 41, 18274, 40760, 7278, 57, 69, 893, 15, 43, 57, 19, 75, 44, 10374, 20, 31653, 36, 10, 71, 17887, 46, 18, 14, 38227, 80, 33707, 53, 3134, 80, 54, 8068, 85, 23, 54, 73, 39568, 17, 54, 22, 33, 16, 81, 3980, 56, 54, 75, 80, 301, 35755, 55, 64, 52, 80, 19, 42, 65, 48, 75, 71, 19, 321, 9527, 27824, 10426, 46, 78, 1273, 72, 34, 42, 70, 40, 54, 76, 86, 85, 26830, 80, 70, 34, 6732, 4792, 53, 23, 32, 64, 15199, 65, 18, 9527, 11994, 43, 70, 8001, 89, 35660, 39, 22, 20185, 54, 20892, 3546, 1503, 82, 40, 72, 1503, 66, 32, 72, 56, 12473, 23286, 19, 29499, 86, 34, 2149, 37, 70, 8763, 70, 20114, 74, 21, 70, 10, 37, 57, 46, 15, 73, 42, 7355, 85, 18, 17922, 6242, 44817, 52, 20, 9139, 74, 41, 1130, 70, 855, 1, 198, 220, 220, 220, 2939, 796, 1100, 62, 8692, 2414, 7, 9060, 62, 6371, 8, 198, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 10677, 1600, 2939, 8, 198, 220, 220, 220, 34534, 796, 28091, 62, 354, 945, 7, 9060, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7, 69, 1, 22769, 1391, 72, 92, 1600, 34534, 58, 72, 12962, 198, 220, 220, 220, 1673, 265, 796, 1673, 265, 62, 354, 945, 7, 354, 945, 8, 198, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 1102, 9246, 1600, 1673, 265, 8, 198, 220, 220, 220, 1303, 269, 85, 17, 13, 320, 13564, 7203, 66, 13, 11134, 1600, 5299, 1102, 9246, 8, 198, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 3419, 198 ]
2.010254
2,243
import ubelt as ub import numpy as np from . import embeding from . import util __all__ = ['InteractiveIter'] INDEXABLE_TYPES = (list, tuple, np.ndarray) class InteractiveIter(object): """ Choose next value interactively iterable should be a list, not a generator. sorry """ def __init__(iiter, iterable=None, enabled=True, startx=0, default_action='next', custom_actions=[], wraparound=False, display_item=False, verbose=True): r""" Args: iterable (None): (default = None) enabled (bool): (default = True) startx (int): (default = 0) default_action (str): (default = 'next') custom_actions (list): list of 4-tuple (name, actions, help, func) (default = []) wraparound (bool): (default = False) display_item (bool): (default = True) verbose (bool): verbosity flag(default = True) Example: >>> # DISABLE_DOCTEST >>> from xdev.interactive_iter import * # NOQA >>> iterable = [1, 2, 3] >>> enabled = True >>> startx = 0 >>> default_action = 'next' >>> custom_actions = [] >>> wraparound = False >>> display_item = True >>> verbose = True >>> iiter = InteractiveIter(iterable, enabled, startx, default_action, custom_actions, wraparound, display_item, verbose) >>> for _ in iiter: >>> pass Example: >>> # DISABLE_DOCTEST >>> # Interactive matplotlib stuff >>> from xdev.interactive_iter import * # NOQA >>> import kwimage >>> import kwplot >>> kwplot.autompl() >>> keys = list(kwimage.grab_test_image.keys()) >>> iterable = [kwimage.grab_test_image(key) for key in keys] >>> iiter = InteractiveIter(iterable) >>> for img in iiter: >>> kwplot.imshow(img) >>> InteractiveIter.draw() """ iiter.wraparound = wraparound iiter.enabled = enabled iiter.iterable = iterable for actiontup in custom_actions: if isinstance(custom_actions, tuple): pass else: pass iiter.custom_actions = util.take_column(custom_actions, [0, 1, 2]) iiter.custom_funcs = util.take_column(custom_actions, 3) iiter.action_tuples = [ # (name, list, help) ('next', ['n'], 'move to the next index'), ('prev', ['p'], 'move to the previous index'), ('reload', ['r'], 'stay at the same index'), ('index', ['x', 'i', 'index'], 'move to that index'), ('set', ['set'], 'set current index value'), ('ipy', ['ipy', 'ipython', 'cmd'], 'start IPython'), ('quit', ['q', 'exit', 'quit'], 'quit'), ] + iiter.custom_actions default_action_index = util.take_column(iiter.action_tuples, 0).index(default_action) iiter.action_tuples[default_action_index][1].append('') iiter.action_keys = {tup[0]: tup[1] for tup in iiter.action_tuples} iiter.index = startx iiter.display_item = display_item iiter.verbose = verbose @classmethod def eventloop(cls, custom_actions=[]): """ For use outside of iteration wrapping. Makes an interactive event loop custom_actions should be specified in format [dispname, keys, desc, func] """ iiter = cls([None], custom_actions=custom_actions, verbose=False) print('[IITER] Begining interactive main loop') for _ in iiter: pass return iiter def handle_ans(iiter, ans_): """ preforms an actionm based on a user answer """ ans = ans_.strip(' ') # Handle standard actions if ans in iiter.action_keys['quit']: raise StopIteration() elif ans in iiter.action_keys['prev']: iiter.index -= 1 elif ans in iiter.action_keys['next']: iiter.index += 1 elif ans in iiter.action_keys['reload']: iiter.index += 0 elif chack_if_answer_was(iiter.action_keys['index']): try: iiter.index = int(parse_str_value(ans)) except ValueError: print('Unknown ans=%r' % (ans,)) elif chack_if_answer_was(iiter.action_keys['set']): try: iiter.iterable[iiter.index] = eval(parse_str_value(ans)) except ValueError: print('Unknown ans=%r' % (ans,)) elif ans in iiter.action_keys['ipy']: return 'IPython' else: # Custom interactions for func, tup in zip(iiter.custom_funcs, iiter.custom_actions): key = tup[0] if chack_if_answer_was(iiter.action_keys[key]): value = parse_str_value(ans) # cal custom function print('Calling custom action func') import inspect argspec = inspect.getfullargspec(func) if len(argspec.args) == 3: # Forgot why I had custom functions take args in the first place func(iiter, key, value) else: func() # Custom funcs dont cause iteration return False print('Unknown ans=%r' % (ans,)) return False return True @classmethod def draw(iiter): """ in the common case where InteractiveIter is used to view matplotlib figures, you will have to draw the figure manually. This is a helper for that task. """ from matplotlib import pyplot as plt fig = plt.gcf() fig.canvas.draw()
[ 11748, 20967, 2120, 355, 20967, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 764, 1330, 11525, 278, 198, 6738, 764, 1330, 7736, 198, 198, 834, 439, 834, 796, 37250, 9492, 5275, 29993, 20520, 628, 198, 12115, 6369, 17534, 62, 9936, 47, 1546, 796, 357, 4868, 11, 46545, 11, 45941, 13, 358, 18747, 8, 628, 198, 4871, 21365, 29993, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17489, 1306, 1988, 9427, 2280, 628, 220, 220, 220, 11629, 540, 815, 307, 257, 1351, 11, 407, 257, 17301, 13, 7926, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 72, 2676, 11, 11629, 540, 28, 14202, 11, 9343, 28, 17821, 11, 923, 87, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 2673, 11639, 19545, 3256, 2183, 62, 4658, 41888, 4357, 7917, 1845, 633, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 9186, 28, 25101, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11629, 540, 357, 14202, 2599, 357, 12286, 796, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9343, 357, 30388, 2599, 357, 12286, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 87, 357, 600, 2599, 357, 12286, 796, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 2673, 357, 2536, 2599, 357, 12286, 796, 705, 19545, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2183, 62, 4658, 357, 4868, 2599, 1351, 286, 604, 12, 83, 29291, 357, 3672, 11, 4028, 11, 1037, 11, 25439, 8, 357, 12286, 796, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7917, 1845, 633, 357, 30388, 2599, 357, 12286, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 62, 9186, 357, 30388, 2599, 357, 12286, 796, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 357, 30388, 2599, 220, 15942, 16579, 6056, 7, 12286, 796, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1303, 13954, 17534, 62, 18227, 4177, 6465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 2124, 7959, 13, 3849, 5275, 62, 2676, 1330, 1635, 220, 1303, 8005, 48, 32, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 11629, 540, 796, 685, 16, 11, 362, 11, 513, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 9343, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 923, 87, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 4277, 62, 2673, 796, 705, 19545, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 2183, 62, 4658, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 7917, 1845, 633, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 3359, 62, 9186, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 15942, 577, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1312, 2676, 796, 21365, 29993, 7, 2676, 540, 11, 9343, 11, 923, 87, 11, 4277, 62, 2673, 11, 2183, 62, 4658, 11, 7917, 1845, 633, 11, 3359, 62, 9186, 11, 15942, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 329, 4808, 287, 1312, 2676, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1303, 13954, 17534, 62, 18227, 4177, 6465, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1303, 21365, 2603, 29487, 8019, 3404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 2124, 7959, 13, 3849, 5275, 62, 2676, 1330, 1635, 220, 1303, 8005, 48, 32, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 479, 86, 9060, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1330, 479, 86, 29487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 479, 86, 29487, 13, 2306, 6316, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 8251, 796, 1351, 7, 46265, 9060, 13, 32393, 62, 9288, 62, 9060, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 11629, 540, 796, 685, 46265, 9060, 13, 32393, 62, 9288, 62, 9060, 7, 2539, 8, 329, 1994, 287, 8251, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 1312, 2676, 796, 21365, 29993, 7, 2676, 540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 329, 33705, 287, 1312, 2676, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 220, 220, 220, 220, 479, 86, 29487, 13, 320, 12860, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13163, 220, 220, 220, 220, 21365, 29993, 13, 19334, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 29988, 1845, 633, 796, 7917, 1845, 633, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 25616, 796, 9343, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 2676, 540, 796, 11629, 540, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 83, 929, 287, 2183, 62, 4658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 23144, 62, 4658, 11, 46545, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 23144, 62, 4658, 796, 7736, 13, 20657, 62, 28665, 7, 23144, 62, 4658, 11, 685, 15, 11, 352, 11, 362, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 23144, 62, 12543, 6359, 796, 7736, 13, 20657, 62, 28665, 7, 23144, 62, 4658, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 2673, 62, 28047, 2374, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 3672, 11, 1351, 11, 1037, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 19545, 3256, 220, 220, 37250, 77, 6, 4357, 705, 21084, 284, 262, 1306, 6376, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 47050, 3256, 220, 220, 37250, 79, 6, 4357, 705, 21084, 284, 262, 2180, 6376, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 260, 2220, 3256, 37250, 81, 6, 4357, 705, 31712, 379, 262, 976, 6376, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 9630, 3256, 220, 37250, 87, 3256, 705, 72, 3256, 705, 9630, 6, 4357, 705, 21084, 284, 326, 6376, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 2617, 3256, 220, 220, 220, 37250, 2617, 6, 4357, 705, 2617, 1459, 6376, 1988, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 541, 88, 3256, 220, 220, 220, 37250, 541, 88, 3256, 705, 541, 7535, 3256, 705, 28758, 6, 4357, 705, 9688, 6101, 7535, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 47391, 3256, 220, 220, 37250, 80, 3256, 705, 37023, 3256, 705, 47391, 6, 4357, 705, 47391, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 1343, 1312, 2676, 13, 23144, 62, 4658, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 2673, 62, 9630, 796, 7736, 13, 20657, 62, 28665, 7, 72, 2676, 13, 2673, 62, 28047, 2374, 11, 657, 737, 9630, 7, 12286, 62, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 2673, 62, 28047, 2374, 58, 12286, 62, 2673, 62, 9630, 7131, 16, 4083, 33295, 7, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 2673, 62, 13083, 796, 1391, 83, 929, 58, 15, 5974, 256, 929, 58, 16, 60, 329, 256, 929, 287, 1312, 2676, 13, 2673, 62, 28047, 2374, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 9630, 796, 923, 87, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 13812, 62, 9186, 796, 3359, 62, 9186, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 19011, 577, 796, 15942, 577, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 1785, 26268, 7, 565, 82, 11, 2183, 62, 4658, 28, 21737, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 779, 2354, 286, 24415, 27074, 13, 27433, 281, 14333, 1785, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 2183, 62, 4658, 815, 307, 7368, 287, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 685, 6381, 79, 3672, 11, 8251, 11, 1715, 11, 25439, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 796, 537, 82, 26933, 14202, 4357, 2183, 62, 4658, 28, 23144, 62, 4658, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 58, 40, 2043, 1137, 60, 16623, 278, 14333, 1388, 9052, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 1312, 2676, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1312, 2676, 628, 220, 220, 220, 825, 5412, 62, 504, 7, 72, 2676, 11, 9093, 62, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 662, 23914, 281, 2223, 76, 1912, 319, 257, 2836, 3280, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 9093, 44807, 36311, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33141, 3210, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9093, 287, 1312, 2676, 13, 2673, 62, 13083, 17816, 47391, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 13707, 29993, 341, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 287, 1312, 2676, 13, 2673, 62, 13083, 17816, 47050, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 9630, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 287, 1312, 2676, 13, 2673, 62, 13083, 17816, 19545, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 9630, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 287, 1312, 2676, 13, 2673, 62, 13083, 17816, 260, 2220, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 9630, 15853, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 442, 441, 62, 361, 62, 41484, 62, 9776, 7, 72, 2676, 13, 2673, 62, 13083, 17816, 9630, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 9630, 796, 493, 7, 29572, 62, 2536, 62, 8367, 7, 504, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 20035, 9093, 28, 4, 81, 6, 4064, 357, 504, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 442, 441, 62, 361, 62, 41484, 62, 9776, 7, 72, 2676, 13, 2673, 62, 13083, 17816, 2617, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 2676, 13, 2676, 540, 58, 72, 2676, 13, 9630, 60, 796, 5418, 7, 29572, 62, 2536, 62, 8367, 7, 504, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 20035, 9093, 28, 4, 81, 6, 4064, 357, 504, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 287, 1312, 2676, 13, 2673, 62, 13083, 17816, 541, 88, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4061, 7535, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8562, 12213, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 25439, 11, 256, 929, 287, 19974, 7, 72, 2676, 13, 23144, 62, 12543, 6359, 11, 1312, 2676, 13, 23144, 62, 4658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 256, 929, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 442, 441, 62, 361, 62, 41484, 62, 9776, 7, 72, 2676, 13, 2673, 62, 13083, 58, 2539, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 220, 796, 21136, 62, 2536, 62, 8367, 7, 504, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2386, 2183, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 48593, 2183, 2223, 25439, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 10104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1822, 16684, 796, 10104, 13, 1136, 12853, 853, 16684, 7, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 853, 16684, 13, 22046, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 23442, 1521, 314, 550, 2183, 5499, 1011, 26498, 287, 262, 717, 1295, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 7, 72, 2676, 11, 1994, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8562, 1257, 6359, 17666, 2728, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 20035, 9093, 28, 4, 81, 6, 4064, 357, 504, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 3197, 7, 72, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 287, 262, 2219, 1339, 810, 21365, 29993, 318, 973, 284, 1570, 2603, 29487, 8019, 198, 220, 220, 220, 220, 220, 220, 220, 5538, 11, 345, 481, 423, 284, 3197, 262, 3785, 14500, 13, 770, 318, 257, 31904, 198, 220, 220, 220, 220, 220, 220, 220, 329, 326, 4876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 70, 12993, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 5171, 11017, 13, 19334, 3419, 198 ]
2.043153
2,943
import cv2 as cv import numpy as np import kociemba DEBUG = False eps = 0.00001 firstRead = [] secondRead = [] firstDone = False cam = cv.VideoCapture(0) cam.set(cv.CAP_PROP_FRAME_HEIGHT, 720) W, H = int(cam.get(cv.CAP_PROP_FRAME_WIDTH)), int(cam.get(cv.CAP_PROP_FRAME_HEIGHT)) if W != 1280 or H != 720: print("WARNING!!! This software was prepared according to 1280x720 camera resolution, but your resolution is %dx%d, this may or may not cause problems" % (W, H)) color_white = (255, 255, 255) color_yellow = (0, 255, 255) color_red = (0, 0, 255) color_orange = (0, 162, 255) color_green = (0, 255, 0) color_blue = (255, 0, 0) while True: isTrue, raw = cam.read() if isTrue == False: break raw = cv.flip(raw, 1) if firstDone == False: raw = cv.rectangle(raw, (0, H-40), (W, H), (55, 55, 55), -1) raw = cv.putText(raw, "Show one corner of the cube to the camera, Q to exit", (10, H-12), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) else: raw = cv.circle(raw, (40, H-50), 100, (255, 255, 255), -1) raw = cv.line(raw, (40, H-50), (100, H-110), (0, 150, 0), 10) raw = cv.line(raw, (10, H-80), (40, H-50), (0, 150, 0), 10) raw = cv.rectangle(raw, (0, H-40), (W, H), (55, 55, 55), -1) raw = cv.putText(raw, "Now show the opposite corner to the camera, Q to exit", (10, H-12), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) #* canny edge detection blur = cv.medianBlur(raw, 7) canny = cv.Canny(blur, 50, 150) scanning_areas = canny.copy() canny_gray = canny.copy() canny = cv.cvtColor(canny, cv.COLOR_GRAY2BGR) #* Draw cube skeleton pts = np.array([ [665, 115], [885, 200], [855, 428], [675, 571], [490, 434], [454, 211] ], np.int32) pts.reshape((-1, 1, 2)) if DEBUG: canny = cv.polylines(canny, [pts], True, (0, 255, 0), 3) canny = cv.circle(canny, (675, 342), 30, (0, 0, 255)) canny = cv.circle(canny, (675, 342), 50, (0, 0, 255)) else: raw = cv.polylines(raw, [pts], True, (0, 255, 0), 3) raw = cv.line(raw, (885, 200), (675, 342), (0, 255, 0), 3) raw = cv.line(raw, (675, 571), (675, 342), (0, 255, 0), 3) raw = cv.line(raw, (454, 211), (675, 342), (0, 255, 0), 3) cube_area = area(pts) #* Draw two circles centered at the corner, find intersection points with edges little_circle_points = [] big_circle_points = [] points = cv.ellipse2Poly((675, 342), (30, 30), 0, 0, 360, 1) for (x, y) in points: if canny_gray[y, x] == 255: if len(little_circle_points) == 0 or distance((x, y), little_circle_points[-1]) > 30: little_circle_points.append((x, y)) points = cv.ellipse2Poly((675, 342), (50, 50), 0, 0, 360, 1) for (x, y) in points: if canny_gray[y, x] == 255: if len(big_circle_points) == 0 or distance((x, y), big_circle_points[-1]) > 30: big_circle_points.append((x, y)) all_edges_found = False if len(little_circle_points) > 0 and len(big_circle_points) > 0 and distance(little_circle_points[0], big_circle_points[0]) < 22: canny = cv.line(canny, little_circle_points[0], big_circle_points[0], (0, 255, 0), 2) if len(little_circle_points) > 1 and len(big_circle_points) > 1 and distance(little_circle_points[1], big_circle_points[1]) < 22: canny = cv.line(canny, little_circle_points[1], big_circle_points[1], (0, 255, 0), 2) if len(little_circle_points) > 2 and len(big_circle_points) > 2 and distance(little_circle_points[2], big_circle_points[2]) < 22: canny = cv.line(canny, little_circle_points[2], big_circle_points[2], (0, 255, 0), 2) all_edges_found = True if all_edges_found: #* All found points x1, y1 = little_circle_points[0][0] + eps, little_circle_points[0][1] + eps x2, y2 = big_circle_points[0][0], big_circle_points[0][1] x3, y3 = little_circle_points[1][0] + eps, little_circle_points[1][1] + eps x4, y4 = big_circle_points[1][0], big_circle_points[1][1] x5, y5 = little_circle_points[2][0] + eps, little_circle_points[2][1] + eps x6, y6 = big_circle_points[2][0], big_circle_points[2][1] #* Find middle corner axis1, center_y1 = intersection(x1, y1, x2, y2, x3, y3, x4, y4) axis2, center_y2 = intersection(x3, y3, x4, y4, x5, y5, x6, y6) center_x3, center_y3 = intersection(x5, y5, x6, y6, x1, y1, x2, y2) center_x, center_y = (axis1 + axis2 + center_x3)/3, (center_y1 + center_y2 + center_y3)/3 center = int(center_x), int(center_y) if center_x > 100000 or center_y > 100000: continue if DEBUG and 0 < center_x < 1000 and 0 < center_y < 1000: canny = cv.circle(canny, center, 5, (255, 255, 0), -1) #* Find corners near middle corner dilated_edges = cv.dilate(canny, np.ones((10, 10), np.uint8)) dx, dy = big_circle_points[0][0] - little_circle_points[0][0], big_circle_points[0][1] - little_circle_points[0][1] dx, dy = dx/length((dx, dy)), dy/length((dx, dy)) corner1_x, corner1_y = center_x + dx*200, center_y + dy*200 while 0 < corner1_x < W and 0 < corner1_y < H: if dilated_edges[int(corner1_y), int(corner1_x)].all() == 0: break corner1_x += dx corner1_y += dy corner1_x -= 5*dx corner1_y -= 5*dy dx, dy = big_circle_points[1][0] - little_circle_points[1][0], big_circle_points[1][1] - little_circle_points[1][1] dx, dy = dx/length((dx, dy)), dy/length((dx, dy)) corner2_x, corner2_y = center_x + dx*200, center_y + dy*200 canny = cv.circle(canny, (int(corner2_x), int(corner2_y)), 10, (0, 0, 255)) while 0 < corner2_x < W and 0 < corner2_y < H: if dilated_edges[int(corner2_y), int(corner2_x)].all() == 0: break corner2_x += dx corner2_y += dy corner2_x -= 5*dx corner2_y -= 5*dy dx, dy = big_circle_points[2][0] - little_circle_points[2][0], big_circle_points[2][1] - little_circle_points[2][1] dx, dy = dx/length((dx, dy)), dy/length((dx, dy)) corner3_x, corner3_y = center_x + dx*200, center_y + dy*200 while 0 < corner3_x < W and 0 < corner3_y < H: if dilated_edges[int(corner3_y), int(corner3_x)].all() == 0: break corner3_x += dx corner3_y += dy corner3_x -= 5*dx corner3_y -= 5*dy corner1 = (int(corner1_x), int(corner1_y)) corner2 = (int(corner2_x), int(corner2_y)) corner3 = (int(corner3_x), int(corner3_y)) if DEBUG: canny = cv.circle(canny, corner1, 10, (0, 0, 255)) canny = cv.circle(canny, corner2, 10, (0, 0, 255)) canny = cv.circle(canny, corner3, 10, (0, 0, 255)) #* Estimate other corners far_corner1 = plus(minus(corner1, center), corner2) far_corner2 = plus(minus(corner2, center), corner3) far_corner3 = plus(minus(corner3, center), corner1) far_corner1 = minus(far_corner1, times(0.13, minus(far_corner1, center))) far_corner2 = minus(far_corner2, times(0.13, minus(far_corner2, center))) far_corner3 = minus(far_corner3, times(0.13, minus(far_corner3, center))) far_corner1 = (int(far_corner1[0]), int(far_corner1[1])) far_corner2 = (int(far_corner2[0]), int(far_corner2[1])) far_corner3 = (int(far_corner3[0]), int(far_corner3[1])) #* Check if calculated area and skeleton area matches unsuccessful = False calculated_area = area([corner1, far_corner1, corner2, far_corner2, corner3, far_corner3]) error = abs(calculated_area - cube_area)/cube_area if error < 0.1: if DEBUG: canny = cv.circle(canny, far_corner1, 10, (0, 0, 255)) canny = cv.circle(canny, far_corner2, 10, (0, 0, 255)) canny = cv.circle(canny, far_corner3, 10, (0, 0, 255)) scanning_areas = cv.circle(scanning_areas, corner1, 10, (255, 255, 255)) scanning_areas = cv.circle(scanning_areas, corner2, 10, (255, 255, 255)) scanning_areas = cv.circle(scanning_areas, corner3, 10, (255, 255, 255)) scanning_areas = cv.circle(scanning_areas, far_corner1, 10, (255, 255, 255)) scanning_areas = cv.circle(scanning_areas, far_corner2, 10, (255, 255, 255)) scanning_areas = cv.circle(scanning_areas, far_corner3, 10, (255, 255, 255)) #* Divide faces and extract colors read = [] for faces in range(3): if faces == 0: axis1 = minus(corner1, center) axis2 = minus(corner2, center) elif faces == 1: axis1 = minus(corner2, center) axis2 = minus(corner3, center) else: axis1 = minus(corner3, center) axis2 = minus(corner1, center) for i in range(3): for j in range(3): piece_corner1 = plus(center, plus(times( i /3, axis1), times( j /3, axis2))) piece_corner2 = plus(center, plus(times((i+1)/3, axis1), times( j /3, axis2))) piece_corner3 = plus(center, plus(times( i /3, axis1), times((j+1)/3, axis2))) piece_corner4 = plus(center, plus(times((i+1)/3, axis1), times((j+1)/3, axis2))) piece_corner1 = minus(piece_corner1, times(0.13*min(i , j )/3, minus(piece_corner1, center))) piece_corner2 = minus(piece_corner2, times(0.13*min(i+1, j )/3, minus(piece_corner2, center))) piece_corner3 = minus(piece_corner3, times(0.13*min(i , j+1)/3, minus(piece_corner3, center))) piece_corner4 = minus(piece_corner4, times(0.13*min(i+1, j+1)/3, minus(piece_corner4, center))) piece_mask = np.zeros((canny.shape[0], canny.shape[1]), np.uint8) pts = np.array([ [piece_corner1[0], piece_corner1[1]], [piece_corner2[0], piece_corner2[1]], [piece_corner4[0], piece_corner4[1]], [piece_corner3[0], piece_corner3[1]] ], np.int32) pts.reshape((-1, 1, 2)) piece_mask = cv.fillPoly(piece_mask, [pts], (255, 255, 255)) piece_mask = cv.erode(piece_mask, np.ones((35,35), np.uint8)) # erode to prevent little misplacements scanning_areas = cv.bitwise_or(scanning_areas, piece_mask) # uncomment for higher accuracy but hard match # edge_check = cv.mean(canny, piece_mask) # if edge_check[0] > 0: # olmadi = True #* If color picking area is so small, retreat cube_area = cv.mean(piece_mask) if cube_area[0] < 0.005: unsuccessful = True read_color = cv.mean(raw, piece_mask) if DEBUG: canny = cv.fillPoly(canny, [pts], (int(read_color[0]), int(read_color[1]), int(read_color[2]))) read.append((read_color[0], read_color[1], read_color[2])) if DEBUG: cv.imshow('scanning_areas', scanning_areas) if unsuccessful: continue if not firstRead: firstRead = read firstDone = True if DEBUG: cv.imshow('first read', canny) cv.imshow('first read raw', raw) else: difference = 0 for i in range(len(read)): for j in range(3): difference += (firstRead[i][j] - read[i][j])**2 if difference > 270000: secondRead = read reads = firstRead + secondRead if DEBUG: cv.imshow('ikinci okuma', canny) cv.imshow('ikinci okuma raw', raw) print(reads) #* Determine which color which color_groups = [[], [], [], [], [], []] reads = turnHSV(reads) # First 9 least saturated color is white reads = reads[reads[:,1].argsort()] for i in range(9): color_groups[0].append(int(reads[i][3])) reads = reads[9:] # Other colors are determined according to their hue value reads = reads[reads[:,0].argsort()] for j in range(1, 6): for i in range(9): color_groups[j].append(int(reads[(j-1)*9 + i][3])) where = [] for i in range(54): where.append(-1) for i in range(6): for j in range(9): where[color_groups[i][j]] = i cube_list = [] for i in range(54): cube_list.append(-1) #* Find places of pieces and fill fill(cube_list, where[0:9], where[13]) fill(cube_list, where[9:18], where[22]) fill(cube_list, where[18:27], where[4]) fill(cube_list, where[27:36], where[40]) fill(cube_list, where[36:45], where[49]) fill(cube_list, where[45:54], where[31]) #* Create result image result = np.zeros((H, W, 3), np.uint8) seperatorThickness = 2 for i in range(3): for j in range(3): px = 10 + 150 + 10 py = 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) for i in range(3): for j in range(3): px = 10 py = 10 + 150 + 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[9+i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) for i in range(3): for j in range(3): px = 10 + 150 + 10 py = 10 + 150 + 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[18+i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) for i in range(3): for j in range(3): px = 10 + 150 + 10 + 150 + 10 py = 10 + 150 + 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[27+i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) for i in range(3): for j in range(3): px = 10 + 150 + 10 + 150 + 10 + 150 + 10 py = 10 + 150 + 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[36+i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) for i in range(3): for j in range(3): px = 10 + 150 + 10 py = 10 + 150 + 10 + 150 + 10 result = cv.rectangle(result, (px + i*50, py + j*50), (px + (i+1)*50, py + (j+1)*50), getcolor(cube_list[45+i+j*3]), -1) result = cv.rectangle(result, (px, py), (px + 100, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px + 50, py), (px + 150, py + 150), (0, 0, 0), seperatorThickness) result = cv.rectangle(result, (px, py + 50), (px + 150, py + 100), (0, 0, 0), seperatorThickness) kociemba_input_style = cube_list[0:9] + cube_list[27:36] + cube_list[18:27] + cube_list[45:54] + cube_list[9:18] + cube_list[36:45] kociemba_text = str(kociemba_input_style).replace('[', '').replace(']', '').replace(',', '').replace(' ', '') kociemba_text = kociemba_text.replace('0', 'U') kociemba_text = kociemba_text.replace('1', 'B') kociemba_text = kociemba_text.replace('2', 'F') kociemba_text = kociemba_text.replace('3', 'D') kociemba_text = kociemba_text.replace('4', 'R') kociemba_text = kociemba_text.replace('5', 'L') solution = "" try: solution = kociemba.solve(kociemba_text) except: solution = "Sorry, this cube cannot be solved. Try again" result = cv.putText(result, "White on top, Orange in front", (10, 520), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) result = cv.putText(result, solution, (10, 560), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) result = cv.putText(result, "R to retry, Q to quit", (10, 600), cv.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) dx = (W - 650) // 6 dy = 500 // 4 if solution[0] != 'S': solution_array = solution.split() for j in range(4): for i in range(6): number = j*6 + i if len(solution_array) <= number: break center = 650 + i*dx + dx//2, j*dy + dy//2 minax = min(dx, dy) color = (0, 0, 0) if solution_array[number][0] == 'U': color = color_white[0], color_white[1], color_white[2] elif solution_array[number][0] == 'L': color = color_blue[0], color_blue[1], color_blue[2] elif solution_array[number][0] == 'F': color = color_orange[0], color_orange[1], color_orange[2] elif solution_array[number][0] == 'R': color = color_green[0], color_green[1], color_green[2] elif solution_array[number][0] == 'B': color = color_red[0], color_red[1], color_red[2] elif solution_array[number][0] == 'D': color = color_yellow[0], color_yellow[1], color_yellow[2] result = cv.rectangle(result, (center[0] - int(minax*0.2), center[1] - int(minax*0.2)), (center[0] + int(minax*0.2), center[1] + int(minax*0.2)), color, -1) if len(solution_array[number]) == 1: result = cv.ellipse(result, center, (int(minax*0.4), int(minax*0.4)), 0, -90, 0, (0, 255, 0), 3) result = cv.line(result, (center[0] + int(minax*0.4), center[1]), (center[0] + int(minax*0.4) + int(minax*0.05), center[1] - int(minax*0.05)), (0, 255, 0), 3) result = cv.line(result, (center[0] + int(minax*0.4), center[1]), (center[0] + int(minax*0.4) - int(minax*0.05), center[1] - int(minax*0.05)), (0, 255, 0), 3) elif solution_array[number][1] == "'": result = cv.ellipse(result, center, (int(minax*0.4), int(minax*0.4)), 0, -90, -180, (0, 255, 0), 3) result = cv.line(result, (center[0] - int(minax*0.4), center[1]), (center[0] - int(minax*0.4) + int(minax*0.05), center[1] - int(minax*0.05)), (0, 255, 0), 3) result = cv.line(result, (center[0] - int(minax*0.4), center[1]), (center[0] - int(minax*0.4) - int(minax*0.05), center[1] - int(minax*0.05)), (0, 255, 0), 3) else: result = cv.ellipse(result, center, (int(minax*0.4), int(minax*0.4)), 0, -90, 90, (0, 255, 0), 3) result = cv.line(result, (center[0], center[1] + int(minax*0.4)), (center[0] + int(minax*0.05), center[1] + int(minax*0.4) - int(minax*0.05)), (0, 255, 0), 3) result = cv.line(result, (center[0], center[1] + int(minax*0.4)), (center[0] + int(minax*0.05), center[1] + int(minax*0.4) + int(minax*0.05)), (0, 255, 0), 3) cv.imshow("Rubik's Cube Solver", result) while True: option = cv.waitKey() & 0xff if option == ord('r') or option == ord('R'): firstDone = False firstRead = [] secondRead = [] break elif option == ord('q') or option == ord('Q'): exit(0) if DEBUG: cv.imshow('canny', canny) else: cv.imshow("Rubik's Cube Solver", raw) key = cv.waitKey(20) if key == ord('q') or key == ord('Q'): break
[ 11748, 269, 85, 17, 355, 269, 85, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 479, 1733, 368, 7012, 198, 198, 30531, 796, 10352, 198, 25386, 796, 657, 13, 2388, 16, 198, 11085, 5569, 796, 17635, 198, 12227, 5569, 796, 17635, 198, 11085, 45677, 796, 10352, 198, 198, 20991, 796, 269, 85, 13, 10798, 49630, 7, 15, 8, 198, 20991, 13, 2617, 7, 33967, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 13909, 9947, 11, 26250, 8, 198, 54, 11, 367, 796, 493, 7, 20991, 13, 1136, 7, 33967, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 54, 2389, 4221, 36911, 493, 7, 20991, 13, 1136, 7, 33967, 13, 33177, 62, 4805, 3185, 62, 10913, 10067, 62, 13909, 9947, 4008, 198, 361, 370, 14512, 37674, 393, 367, 14512, 26250, 25, 198, 220, 220, 220, 3601, 7203, 31502, 10185, 770, 3788, 373, 5597, 1864, 284, 37674, 87, 23906, 4676, 6323, 11, 475, 534, 6323, 318, 4064, 34350, 4, 67, 11, 428, 743, 393, 743, 407, 2728, 2761, 1, 4064, 357, 54, 11, 367, 4008, 198, 198, 8043, 62, 11186, 796, 357, 13381, 11, 14280, 11, 14280, 8, 198, 8043, 62, 36022, 796, 357, 15, 11, 14280, 11, 14280, 8, 198, 8043, 62, 445, 796, 357, 15, 11, 657, 11, 14280, 8, 198, 8043, 62, 43745, 796, 357, 15, 11, 25090, 11, 14280, 8, 198, 8043, 62, 14809, 796, 357, 15, 11, 14280, 11, 657, 8, 198, 8043, 62, 17585, 796, 357, 13381, 11, 657, 11, 657, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 318, 17821, 11, 8246, 796, 12172, 13, 961, 3419, 198, 220, 220, 220, 611, 318, 17821, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 8246, 796, 269, 85, 13, 2704, 541, 7, 1831, 11, 352, 8, 628, 220, 220, 220, 611, 717, 45677, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 2554, 9248, 7, 1831, 11, 357, 15, 11, 367, 12, 1821, 828, 357, 54, 11, 367, 828, 357, 2816, 11, 5996, 11, 5996, 828, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1996, 8206, 7, 1831, 11, 366, 15307, 530, 5228, 286, 262, 23441, 284, 262, 4676, 11, 1195, 284, 8420, 1600, 357, 940, 11, 367, 12, 1065, 828, 269, 85, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 45597, 7, 1831, 11, 357, 1821, 11, 367, 12, 1120, 828, 1802, 11, 357, 13381, 11, 14280, 11, 14280, 828, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1370, 7, 1831, 11, 357, 1821, 11, 367, 12, 1120, 828, 357, 3064, 11, 367, 12, 11442, 828, 357, 15, 11, 6640, 11, 657, 828, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1370, 7, 1831, 11, 357, 940, 11, 367, 12, 1795, 828, 357, 1821, 11, 367, 12, 1120, 828, 357, 15, 11, 6640, 11, 657, 828, 838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 2554, 9248, 7, 1831, 11, 357, 15, 11, 367, 12, 1821, 828, 357, 54, 11, 367, 828, 357, 2816, 11, 5996, 11, 5996, 828, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1996, 8206, 7, 1831, 11, 366, 3844, 905, 262, 6697, 5228, 284, 262, 4676, 11, 1195, 284, 8420, 1600, 357, 940, 11, 367, 12, 1065, 828, 269, 85, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 628, 220, 220, 220, 1303, 9, 460, 3281, 5743, 13326, 198, 220, 220, 220, 23671, 796, 269, 85, 13, 1150, 666, 3629, 333, 7, 1831, 11, 767, 8, 198, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 34, 7737, 7, 2436, 333, 11, 2026, 11, 6640, 8, 198, 220, 220, 220, 21976, 62, 533, 292, 796, 460, 3281, 13, 30073, 3419, 198, 220, 220, 220, 460, 3281, 62, 44605, 796, 460, 3281, 13, 30073, 3419, 198, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 33967, 83, 10258, 7, 66, 7737, 11, 269, 85, 13, 46786, 62, 38, 30631, 17, 33, 10761, 8, 628, 220, 220, 220, 1303, 9, 15315, 23441, 18328, 198, 220, 220, 220, 43344, 796, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 685, 36879, 11, 12279, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 44230, 11, 939, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 45432, 11, 45063, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 42444, 11, 642, 4869, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 31503, 11, 604, 2682, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 685, 34229, 11, 28714, 60, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 45941, 13, 600, 2624, 8, 198, 220, 220, 220, 43344, 13, 3447, 1758, 19510, 12, 16, 11, 352, 11, 362, 4008, 198, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 35428, 6615, 7, 66, 7737, 11, 685, 457, 82, 4357, 6407, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 357, 42444, 11, 44341, 828, 1542, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 357, 42444, 11, 44341, 828, 2026, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 35428, 6615, 7, 1831, 11, 685, 457, 82, 4357, 6407, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1370, 7, 1831, 11, 357, 44230, 11, 939, 828, 357, 42444, 11, 44341, 828, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1370, 7, 1831, 11, 357, 42444, 11, 642, 4869, 828, 357, 42444, 11, 44341, 828, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8246, 796, 269, 85, 13, 1370, 7, 1831, 11, 357, 34229, 11, 28714, 828, 357, 42444, 11, 44341, 828, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 23441, 62, 20337, 796, 1989, 7, 457, 82, 8, 628, 220, 220, 220, 1303, 9, 15315, 734, 13332, 19254, 379, 262, 5228, 11, 1064, 16246, 2173, 351, 13015, 198, 220, 220, 220, 1310, 62, 45597, 62, 13033, 796, 17635, 198, 220, 220, 220, 1263, 62, 45597, 62, 13033, 796, 17635, 198, 220, 220, 220, 2173, 796, 269, 85, 13, 695, 541, 325, 17, 34220, 19510, 42444, 11, 44341, 828, 357, 1270, 11, 1542, 828, 657, 11, 657, 11, 11470, 11, 352, 8, 198, 220, 220, 220, 329, 357, 87, 11, 331, 8, 287, 2173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 460, 3281, 62, 44605, 58, 88, 11, 2124, 60, 6624, 14280, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 31629, 62, 45597, 62, 13033, 8, 6624, 657, 393, 5253, 19510, 87, 11, 331, 828, 1310, 62, 45597, 62, 13033, 58, 12, 16, 12962, 1875, 1542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1310, 62, 45597, 62, 13033, 13, 33295, 19510, 87, 11, 331, 4008, 198, 220, 220, 220, 2173, 796, 269, 85, 13, 695, 541, 325, 17, 34220, 19510, 42444, 11, 44341, 828, 357, 1120, 11, 2026, 828, 657, 11, 657, 11, 11470, 11, 352, 8, 198, 220, 220, 220, 329, 357, 87, 11, 331, 8, 287, 2173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 460, 3281, 62, 44605, 58, 88, 11, 2124, 60, 6624, 14280, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 14261, 62, 45597, 62, 13033, 8, 6624, 657, 393, 5253, 19510, 87, 11, 331, 828, 1263, 62, 45597, 62, 13033, 58, 12, 16, 12962, 1875, 1542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1263, 62, 45597, 62, 13033, 13, 33295, 19510, 87, 11, 331, 4008, 628, 220, 220, 220, 477, 62, 276, 3212, 62, 9275, 796, 10352, 198, 220, 220, 220, 611, 18896, 7, 31629, 62, 45597, 62, 13033, 8, 1875, 657, 290, 18896, 7, 14261, 62, 45597, 62, 13033, 8, 1875, 657, 290, 5253, 7, 31629, 62, 45597, 62, 13033, 58, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 15, 12962, 1279, 2534, 25, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 1370, 7, 66, 7737, 11, 1310, 62, 45597, 62, 13033, 58, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 15, 4357, 357, 15, 11, 14280, 11, 657, 828, 362, 8, 198, 220, 220, 220, 611, 18896, 7, 31629, 62, 45597, 62, 13033, 8, 1875, 352, 290, 18896, 7, 14261, 62, 45597, 62, 13033, 8, 1875, 352, 290, 5253, 7, 31629, 62, 45597, 62, 13033, 58, 16, 4357, 1263, 62, 45597, 62, 13033, 58, 16, 12962, 1279, 2534, 25, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 1370, 7, 66, 7737, 11, 1310, 62, 45597, 62, 13033, 58, 16, 4357, 1263, 62, 45597, 62, 13033, 58, 16, 4357, 357, 15, 11, 14280, 11, 657, 828, 362, 8, 198, 220, 220, 220, 611, 18896, 7, 31629, 62, 45597, 62, 13033, 8, 1875, 362, 290, 18896, 7, 14261, 62, 45597, 62, 13033, 8, 1875, 362, 290, 5253, 7, 31629, 62, 45597, 62, 13033, 58, 17, 4357, 1263, 62, 45597, 62, 13033, 58, 17, 12962, 1279, 2534, 25, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 1370, 7, 66, 7737, 11, 1310, 62, 45597, 62, 13033, 58, 17, 4357, 1263, 62, 45597, 62, 13033, 58, 17, 4357, 357, 15, 11, 14280, 11, 657, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 276, 3212, 62, 9275, 796, 6407, 628, 220, 220, 220, 611, 477, 62, 276, 3212, 62, 9275, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 1439, 1043, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 11, 331, 16, 796, 1310, 62, 45597, 62, 13033, 58, 15, 7131, 15, 60, 1343, 304, 862, 11, 1310, 62, 45597, 62, 13033, 58, 15, 7131, 16, 60, 1343, 304, 862, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 11, 331, 17, 796, 1263, 62, 45597, 62, 13033, 58, 15, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 15, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 18, 11, 331, 18, 796, 1310, 62, 45597, 62, 13033, 58, 16, 7131, 15, 60, 1343, 304, 862, 11, 1310, 62, 45597, 62, 13033, 58, 16, 7131, 16, 60, 1343, 304, 862, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 19, 11, 331, 19, 796, 1263, 62, 45597, 62, 13033, 58, 16, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 16, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 20, 11, 331, 20, 796, 1310, 62, 45597, 62, 13033, 58, 17, 7131, 15, 60, 1343, 304, 862, 11, 1310, 62, 45597, 62, 13033, 58, 17, 7131, 16, 60, 1343, 304, 862, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 21, 11, 331, 21, 796, 1263, 62, 45597, 62, 13033, 58, 17, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 17, 7131, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 9938, 3504, 5228, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 16, 11, 3641, 62, 88, 16, 796, 16246, 7, 87, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 11, 2124, 18, 11, 331, 18, 11, 2124, 19, 11, 331, 19, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16488, 17, 11, 3641, 62, 88, 17, 796, 16246, 7, 87, 18, 11, 331, 18, 11, 2124, 19, 11, 331, 19, 11, 2124, 20, 11, 331, 20, 11, 2124, 21, 11, 331, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 87, 18, 11, 3641, 62, 88, 18, 796, 16246, 7, 87, 20, 11, 331, 20, 11, 2124, 21, 11, 331, 21, 11, 2124, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 62, 87, 11, 3641, 62, 88, 796, 357, 22704, 16, 1343, 16488, 17, 1343, 3641, 62, 87, 18, 20679, 18, 11, 357, 16159, 62, 88, 16, 1343, 3641, 62, 88, 17, 1343, 3641, 62, 88, 18, 20679, 18, 198, 220, 220, 220, 220, 220, 220, 220, 3641, 796, 493, 7, 16159, 62, 87, 828, 493, 7, 16159, 62, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3641, 62, 87, 1875, 1802, 830, 393, 3641, 62, 88, 1875, 1802, 830, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 290, 657, 1279, 3641, 62, 87, 1279, 8576, 290, 657, 1279, 3641, 62, 88, 1279, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 3641, 11, 642, 11, 357, 13381, 11, 14280, 11, 657, 828, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 9938, 14371, 1474, 3504, 5228, 198, 220, 220, 220, 220, 220, 220, 220, 11844, 515, 62, 276, 3212, 796, 269, 85, 13, 67, 346, 378, 7, 66, 7737, 11, 45941, 13, 1952, 19510, 940, 11, 838, 828, 45941, 13, 28611, 23, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 1263, 62, 45597, 62, 13033, 58, 15, 7131, 15, 60, 532, 1310, 62, 45597, 62, 13033, 58, 15, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 15, 7131, 16, 60, 532, 1310, 62, 45597, 62, 13033, 58, 15, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 44332, 14, 13664, 19510, 34350, 11, 20268, 36911, 20268, 14, 13664, 19510, 34350, 11, 20268, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 62, 87, 11, 5228, 16, 62, 88, 796, 3641, 62, 87, 1343, 44332, 9, 2167, 11, 3641, 62, 88, 1343, 20268, 9, 2167, 198, 220, 220, 220, 220, 220, 220, 220, 981, 657, 1279, 5228, 16, 62, 87, 1279, 370, 290, 657, 1279, 5228, 16, 62, 88, 1279, 367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11844, 515, 62, 276, 3212, 58, 600, 7, 10215, 1008, 16, 62, 88, 828, 493, 7, 10215, 1008, 16, 62, 87, 25295, 439, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 62, 87, 15853, 44332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 62, 88, 15853, 20268, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 62, 87, 48185, 642, 9, 34350, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 62, 88, 48185, 642, 9, 9892, 628, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 1263, 62, 45597, 62, 13033, 58, 16, 7131, 15, 60, 532, 1310, 62, 45597, 62, 13033, 58, 16, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 16, 7131, 16, 60, 532, 1310, 62, 45597, 62, 13033, 58, 16, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 44332, 14, 13664, 19510, 34350, 11, 20268, 36911, 20268, 14, 13664, 19510, 34350, 11, 20268, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 62, 87, 11, 5228, 17, 62, 88, 796, 3641, 62, 87, 1343, 44332, 9, 2167, 11, 3641, 62, 88, 1343, 20268, 9, 2167, 198, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 357, 600, 7, 10215, 1008, 17, 62, 87, 828, 493, 7, 10215, 1008, 17, 62, 88, 36911, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 981, 657, 1279, 5228, 17, 62, 87, 1279, 370, 290, 657, 1279, 5228, 17, 62, 88, 1279, 367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11844, 515, 62, 276, 3212, 58, 600, 7, 10215, 1008, 17, 62, 88, 828, 493, 7, 10215, 1008, 17, 62, 87, 25295, 439, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 62, 87, 15853, 44332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 62, 88, 15853, 20268, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 62, 87, 48185, 642, 9, 34350, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 62, 88, 48185, 642, 9, 9892, 628, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 1263, 62, 45597, 62, 13033, 58, 17, 7131, 15, 60, 532, 1310, 62, 45597, 62, 13033, 58, 17, 7131, 15, 4357, 1263, 62, 45597, 62, 13033, 58, 17, 7131, 16, 60, 532, 1310, 62, 45597, 62, 13033, 58, 17, 7131, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 44332, 14, 13664, 19510, 34350, 11, 20268, 36911, 20268, 14, 13664, 19510, 34350, 11, 20268, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 62, 87, 11, 5228, 18, 62, 88, 796, 3641, 62, 87, 1343, 44332, 9, 2167, 11, 3641, 62, 88, 1343, 20268, 9, 2167, 198, 220, 220, 220, 220, 220, 220, 220, 981, 657, 1279, 5228, 18, 62, 87, 1279, 370, 290, 657, 1279, 5228, 18, 62, 88, 1279, 367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11844, 515, 62, 276, 3212, 58, 600, 7, 10215, 1008, 18, 62, 88, 828, 493, 7, 10215, 1008, 18, 62, 87, 25295, 439, 3419, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 62, 87, 15853, 44332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 62, 88, 15853, 20268, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 62, 87, 48185, 642, 9, 34350, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 62, 88, 48185, 642, 9, 9892, 628, 220, 220, 220, 220, 220, 220, 220, 5228, 16, 796, 357, 600, 7, 10215, 1008, 16, 62, 87, 828, 493, 7, 10215, 1008, 16, 62, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 17, 796, 357, 600, 7, 10215, 1008, 17, 62, 87, 828, 493, 7, 10215, 1008, 17, 62, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5228, 18, 796, 357, 600, 7, 10215, 1008, 18, 62, 87, 828, 493, 7, 10215, 1008, 18, 62, 88, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 5228, 16, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 5228, 17, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 5228, 18, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 10062, 1920, 584, 14371, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 16, 796, 5556, 7, 40191, 7, 10215, 1008, 16, 11, 3641, 828, 5228, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 17, 796, 5556, 7, 40191, 7, 10215, 1008, 17, 11, 3641, 828, 5228, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 18, 796, 5556, 7, 40191, 7, 10215, 1008, 18, 11, 3641, 828, 5228, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 16, 796, 20208, 7, 16370, 62, 10215, 1008, 16, 11, 1661, 7, 15, 13, 1485, 11, 20208, 7, 16370, 62, 10215, 1008, 16, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 17, 796, 20208, 7, 16370, 62, 10215, 1008, 17, 11, 1661, 7, 15, 13, 1485, 11, 20208, 7, 16370, 62, 10215, 1008, 17, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 18, 796, 20208, 7, 16370, 62, 10215, 1008, 18, 11, 1661, 7, 15, 13, 1485, 11, 20208, 7, 16370, 62, 10215, 1008, 18, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 16, 796, 357, 600, 7, 16370, 62, 10215, 1008, 16, 58, 15, 46570, 493, 7, 16370, 62, 10215, 1008, 16, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 17, 796, 357, 600, 7, 16370, 62, 10215, 1008, 17, 58, 15, 46570, 493, 7, 16370, 62, 10215, 1008, 17, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1290, 62, 10215, 1008, 18, 796, 357, 600, 7, 16370, 62, 10215, 1008, 18, 58, 15, 46570, 493, 7, 16370, 62, 10215, 1008, 18, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 6822, 611, 10488, 1989, 290, 18328, 1989, 7466, 198, 220, 220, 220, 220, 220, 220, 220, 23993, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 10488, 62, 20337, 796, 1989, 26933, 10215, 1008, 16, 11, 1290, 62, 10215, 1008, 16, 11, 5228, 17, 11, 1290, 62, 10215, 1008, 17, 11, 5228, 18, 11, 1290, 62, 10215, 1008, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 796, 2352, 7, 9948, 49262, 62, 20337, 532, 23441, 62, 20337, 20679, 40296, 62, 20337, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 1279, 657, 13, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 1290, 62, 10215, 1008, 16, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 1290, 62, 10215, 1008, 17, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 45597, 7, 66, 7737, 11, 1290, 62, 10215, 1008, 18, 11, 838, 11, 357, 15, 11, 657, 11, 14280, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 5228, 16, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 5228, 17, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 5228, 18, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 1290, 62, 10215, 1008, 16, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 1290, 62, 10215, 1008, 17, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 45597, 7, 35836, 768, 62, 533, 292, 11, 1290, 62, 10215, 1008, 18, 11, 838, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 46894, 6698, 290, 7925, 7577, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1100, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6698, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6698, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 16, 796, 20208, 7, 10215, 1008, 16, 11, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 17, 796, 20208, 7, 10215, 1008, 17, 11, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6698, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 16, 796, 20208, 7, 10215, 1008, 17, 11, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 17, 796, 20208, 7, 10215, 1008, 18, 11, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 16, 796, 20208, 7, 10215, 1008, 18, 11, 3641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 17, 796, 20208, 7, 10215, 1008, 16, 11, 3641, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 16, 796, 5556, 7, 16159, 11, 5556, 7, 22355, 7, 1312, 220, 220, 1220, 18, 11, 16488, 16, 828, 1661, 7, 474, 220, 220, 1220, 18, 11, 16488, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 17, 796, 5556, 7, 16159, 11, 5556, 7, 22355, 19510, 72, 10, 16, 20679, 18, 11, 16488, 16, 828, 1661, 7, 474, 220, 220, 1220, 18, 11, 16488, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 18, 796, 5556, 7, 16159, 11, 5556, 7, 22355, 7, 1312, 220, 220, 1220, 18, 11, 16488, 16, 828, 1661, 19510, 73, 10, 16, 20679, 18, 11, 16488, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 19, 796, 5556, 7, 16159, 11, 5556, 7, 22355, 19510, 72, 10, 16, 20679, 18, 11, 16488, 16, 828, 1661, 19510, 73, 10, 16, 20679, 18, 11, 16488, 17, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 16, 796, 20208, 7, 12239, 62, 10215, 1008, 16, 11, 1661, 7, 15, 13, 1485, 9, 1084, 7, 72, 220, 837, 474, 220, 1267, 14, 18, 11, 20208, 7, 12239, 62, 10215, 1008, 16, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 17, 796, 20208, 7, 12239, 62, 10215, 1008, 17, 11, 1661, 7, 15, 13, 1485, 9, 1084, 7, 72, 10, 16, 11, 474, 220, 1267, 14, 18, 11, 20208, 7, 12239, 62, 10215, 1008, 17, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 18, 796, 20208, 7, 12239, 62, 10215, 1008, 18, 11, 1661, 7, 15, 13, 1485, 9, 1084, 7, 72, 220, 837, 474, 10, 16, 20679, 18, 11, 20208, 7, 12239, 62, 10215, 1008, 18, 11, 3641, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 10215, 1008, 19, 796, 20208, 7, 12239, 62, 10215, 1008, 19, 11, 1661, 7, 15, 13, 1485, 9, 1084, 7, 72, 10, 16, 11, 474, 10, 16, 20679, 18, 11, 20208, 7, 12239, 62, 10215, 1008, 19, 11, 3641, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 27932, 796, 45941, 13, 9107, 418, 19510, 66, 7737, 13, 43358, 58, 15, 4357, 460, 3281, 13, 43358, 58, 16, 46570, 45941, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43344, 796, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12239, 62, 10215, 1008, 16, 58, 15, 4357, 3704, 62, 10215, 1008, 16, 58, 16, 60, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12239, 62, 10215, 1008, 17, 58, 15, 4357, 3704, 62, 10215, 1008, 17, 58, 16, 60, 4357, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12239, 62, 10215, 1008, 19, 58, 15, 4357, 3704, 62, 10215, 1008, 19, 58, 16, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12239, 62, 10215, 1008, 18, 58, 15, 4357, 3704, 62, 10215, 1008, 18, 58, 16, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 45941, 13, 600, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43344, 13, 3447, 1758, 19510, 12, 16, 11, 352, 11, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 27932, 796, 269, 85, 13, 20797, 34220, 7, 12239, 62, 27932, 11, 685, 457, 82, 4357, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3704, 62, 27932, 796, 269, 85, 13, 263, 1098, 7, 12239, 62, 27932, 11, 45941, 13, 1952, 19510, 2327, 11, 2327, 828, 45941, 13, 28611, 23, 4008, 1303, 1931, 1098, 284, 2948, 1310, 2984, 489, 28613, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21976, 62, 533, 292, 796, 269, 85, 13, 2545, 3083, 62, 273, 7, 35836, 768, 62, 533, 292, 11, 3704, 62, 27932, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8820, 434, 329, 2440, 9922, 475, 1327, 2872, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5743, 62, 9122, 796, 269, 85, 13, 32604, 7, 66, 7737, 11, 3704, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 5743, 62, 9122, 58, 15, 60, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 25776, 76, 9189, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 1002, 3124, 10868, 1989, 318, 523, 1402, 11, 13703, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23441, 62, 20337, 796, 269, 85, 13, 32604, 7, 12239, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23441, 62, 20337, 58, 15, 60, 1279, 657, 13, 22544, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23993, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1100, 62, 8043, 796, 269, 85, 13, 32604, 7, 1831, 11, 3704, 62, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 3281, 796, 269, 85, 13, 20797, 34220, 7, 66, 7737, 11, 685, 457, 82, 4357, 357, 600, 7, 961, 62, 8043, 58, 15, 46570, 493, 7, 961, 62, 8043, 58, 16, 46570, 493, 7, 961, 62, 8043, 58, 17, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1100, 13, 33295, 19510, 961, 62, 8043, 58, 15, 4357, 1100, 62, 8043, 58, 16, 4357, 1100, 62, 8043, 58, 17, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 35836, 768, 62, 533, 292, 3256, 21976, 62, 533, 292, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 23993, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 717, 5569, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 5569, 796, 1100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 45677, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 11085, 1100, 3256, 460, 3281, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 11085, 1100, 8246, 3256, 8246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3580, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 961, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3580, 15853, 357, 11085, 5569, 58, 72, 7131, 73, 60, 532, 1100, 58, 72, 7131, 73, 12962, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3580, 1875, 2681, 2388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 5569, 796, 1100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9743, 796, 717, 5569, 1343, 1218, 5569, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 1134, 259, 979, 12876, 7487, 3256, 460, 3281, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 1134, 259, 979, 12876, 7487, 8246, 3256, 8246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 40779, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 45559, 3810, 543, 3124, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 24432, 796, 16410, 4357, 685, 4357, 685, 4357, 685, 4357, 685, 4357, 685, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9743, 796, 1210, 7998, 53, 7, 40779, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 860, 1551, 24725, 3124, 318, 2330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9743, 796, 9743, 58, 40779, 58, 45299, 16, 4083, 22046, 419, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 24, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 24432, 58, 15, 4083, 33295, 7, 600, 7, 40779, 58, 72, 7131, 18, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9743, 796, 9743, 58, 24, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3819, 7577, 389, 5295, 1864, 284, 511, 37409, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9743, 796, 9743, 58, 40779, 58, 45299, 15, 4083, 22046, 419, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 718, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 24, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 24432, 58, 73, 4083, 33295, 7, 600, 7, 40779, 58, 7, 73, 12, 16, 27493, 24, 1343, 1312, 7131, 18, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 4051, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 13, 33295, 32590, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 21, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 24, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 58, 8043, 62, 24432, 58, 72, 7131, 73, 11907, 796, 1312, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23441, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 4051, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23441, 62, 4868, 13, 33295, 32590, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 9938, 4113, 286, 5207, 290, 6070, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 15, 25, 24, 4357, 810, 58, 1485, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 24, 25, 1507, 4357, 810, 58, 1828, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 1507, 25, 1983, 4357, 810, 58, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 1983, 25, 2623, 4357, 810, 58, 1821, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 2623, 25, 2231, 4357, 810, 58, 2920, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 7, 40296, 62, 4868, 11, 810, 58, 2231, 25, 4051, 4357, 810, 58, 3132, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9, 13610, 1255, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 45941, 13, 9107, 418, 19510, 39, 11, 370, 11, 513, 828, 45941, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 384, 525, 1352, 817, 624, 1108, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 24, 10, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 1507, 10, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 1343, 6640, 1343, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 1983, 10, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 1343, 6640, 1343, 838, 1343, 6640, 1343, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 2623, 10, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 838, 1343, 6640, 1343, 838, 1343, 6640, 1343, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 1312, 9, 1120, 11, 12972, 1343, 474, 9, 1120, 828, 357, 8416, 1343, 357, 72, 10, 16, 27493, 1120, 11, 12972, 1343, 357, 73, 10, 16, 27493, 1120, 828, 651, 8043, 7, 40296, 62, 4868, 58, 2231, 10, 72, 10, 73, 9, 18, 46570, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 828, 357, 8416, 1343, 1802, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 1343, 2026, 11, 12972, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 6640, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 8416, 11, 12972, 1343, 2026, 828, 357, 8416, 1343, 6640, 11, 12972, 1343, 1802, 828, 357, 15, 11, 657, 11, 657, 828, 384, 525, 1352, 817, 624, 1108, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 15414, 62, 7635, 796, 23441, 62, 4868, 58, 15, 25, 24, 60, 1343, 23441, 62, 4868, 58, 1983, 25, 2623, 60, 1343, 23441, 62, 4868, 58, 1507, 25, 1983, 60, 1343, 23441, 62, 4868, 58, 2231, 25, 4051, 60, 1343, 23441, 62, 4868, 58, 24, 25, 1507, 60, 1343, 23441, 62, 4868, 58, 2623, 25, 2231, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 965, 7, 74, 1733, 368, 7012, 62, 15414, 62, 7635, 737, 33491, 10786, 58, 3256, 10148, 737, 33491, 10786, 60, 3256, 10148, 737, 33491, 7, 3256, 3256, 10148, 737, 33491, 10786, 46083, 10148, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 15, 3256, 705, 52, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 16, 3256, 705, 33, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 17, 3256, 705, 37, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 18, 3256, 705, 35, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 19, 3256, 705, 49, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 1733, 368, 7012, 62, 5239, 796, 479, 1733, 368, 7012, 62, 5239, 13, 33491, 10786, 20, 3256, 705, 43, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 796, 479, 1733, 368, 7012, 13, 82, 6442, 7, 74, 1733, 368, 7012, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 796, 366, 14385, 11, 428, 23441, 2314, 307, 16019, 13, 9993, 757, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1996, 8206, 7, 20274, 11, 366, 12256, 319, 1353, 11, 11942, 287, 2166, 1600, 357, 940, 11, 36141, 828, 269, 85, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1996, 8206, 7, 20274, 11, 4610, 11, 357, 940, 11, 38089, 828, 269, 85, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1996, 8206, 7, 20274, 11, 366, 49, 284, 1005, 563, 11, 1195, 284, 11238, 1600, 357, 940, 11, 10053, 828, 269, 85, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 352, 11, 357, 13381, 11, 14280, 11, 14280, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 357, 54, 532, 22626, 8, 3373, 718, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 5323, 3373, 604, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4610, 58, 15, 60, 14512, 705, 50, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4610, 62, 18747, 796, 4610, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 21, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 474, 9, 21, 1343, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 82, 2122, 62, 18747, 8, 19841, 1271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3641, 796, 22626, 1343, 1312, 9, 34350, 1343, 44332, 1003, 17, 11, 474, 9, 9892, 1343, 20268, 1003, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 897, 796, 949, 7, 34350, 11, 20268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 357, 15, 11, 657, 11, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 52, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 11186, 58, 15, 4357, 3124, 62, 11186, 58, 16, 4357, 3124, 62, 11186, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 43, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 17585, 58, 15, 4357, 3124, 62, 17585, 58, 16, 4357, 3124, 62, 17585, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 37, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 43745, 58, 15, 4357, 3124, 62, 43745, 58, 16, 4357, 3124, 62, 43745, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 49, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 14809, 58, 15, 4357, 3124, 62, 14809, 58, 16, 4357, 3124, 62, 14809, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 33, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 445, 58, 15, 4357, 3124, 62, 445, 58, 16, 4357, 3124, 62, 445, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 15, 60, 6624, 705, 35, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 796, 3124, 62, 36022, 58, 15, 4357, 3124, 62, 36022, 58, 16, 4357, 3124, 62, 36022, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 2554, 9248, 7, 20274, 11, 357, 16159, 58, 15, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 17, 828, 3641, 58, 16, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 17, 36911, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 17, 828, 3641, 58, 16, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 17, 36911, 3124, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 82, 2122, 62, 18747, 58, 17618, 12962, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 695, 541, 325, 7, 20274, 11, 3641, 11, 357, 600, 7, 1084, 897, 9, 15, 13, 19, 828, 493, 7, 1084, 897, 9, 15, 13, 19, 36911, 657, 11, 532, 3829, 11, 657, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 828, 3641, 58, 16, 46570, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 1343, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 828, 3641, 58, 16, 46570, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4610, 62, 18747, 58, 17618, 7131, 16, 60, 6624, 24018, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 695, 541, 325, 7, 20274, 11, 3641, 11, 357, 600, 7, 1084, 897, 9, 15, 13, 19, 828, 493, 7, 1084, 897, 9, 15, 13, 19, 36911, 657, 11, 532, 3829, 11, 532, 15259, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 19, 828, 3641, 58, 16, 46570, 357, 16159, 58, 15, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 1343, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 19, 828, 3641, 58, 16, 46570, 357, 16159, 58, 15, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 695, 541, 325, 7, 20274, 11, 3641, 11, 357, 600, 7, 1084, 897, 9, 15, 13, 19, 828, 493, 7, 1084, 897, 9, 15, 13, 19, 36911, 657, 11, 532, 3829, 11, 4101, 11, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 4357, 3641, 58, 16, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 36911, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 532, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 269, 85, 13, 1370, 7, 20274, 11, 357, 16159, 58, 15, 4357, 3641, 58, 16, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 36911, 357, 16159, 58, 15, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 2713, 828, 3641, 58, 16, 60, 1343, 493, 7, 1084, 897, 9, 15, 13, 19, 8, 1343, 493, 7, 1084, 897, 9, 15, 13, 2713, 36911, 357, 15, 11, 14280, 11, 657, 828, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 7203, 21312, 1134, 338, 23315, 4294, 332, 1600, 1255, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3038, 796, 269, 85, 13, 17077, 9218, 3419, 1222, 657, 47596, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3038, 6624, 2760, 10786, 81, 11537, 393, 3038, 6624, 2760, 10786, 49, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 45677, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 5569, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1218, 5569, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3038, 6624, 2760, 10786, 80, 11537, 393, 3038, 6624, 2760, 10786, 48, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 15, 8, 628, 220, 220, 220, 611, 16959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 10786, 66, 7737, 3256, 460, 3281, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 12860, 7203, 21312, 1134, 338, 23315, 4294, 332, 1600, 8246, 8, 220, 220, 220, 220, 628, 220, 220, 220, 1994, 796, 269, 85, 13, 17077, 9218, 7, 1238, 8, 198, 220, 220, 220, 611, 1994, 6624, 2760, 10786, 80, 11537, 393, 1994, 6624, 2760, 10786, 48, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198 ]
1.767335
13,556
#!/usr/bin/env python # -*- coding: utf-8 -*- __metaclss__=type import random import math import collections from PIL import Image, ImageDraw, ImageFont from utils.font import FontObj from utils.color import Color import skimage.util import numpy as np import cv2 import matplotlib.pyplot as plt import sys import time if __name__ == '__main__': pass
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 4164, 37779, 824, 834, 28, 4906, 198, 198, 11748, 4738, 198, 11748, 10688, 198, 11748, 17268, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 11, 7412, 23252, 198, 6738, 3384, 4487, 13, 10331, 1330, 24060, 49201, 198, 6738, 3384, 4487, 13, 8043, 1330, 5315, 198, 11748, 1341, 9060, 13, 22602, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 25064, 198, 11748, 640, 628, 197, 197, 628, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 6603 ]
2.897638
127
from dimacs import load_file
[ 6738, 5391, 16436, 1330, 3440, 62, 7753, 198 ]
3.625
8
# Code behind module for DCAL_Custom_Mosaics.ipynb ################################ ## ## Import Statments ## ################################ # Import standard Python modules import sys import datacube # Import DCAL utilities containing function definitions used generally across DCAL sys.path.append('../DCAL_utils') ################################ ## ## Function Definitions ## ################################ # None.
[ 2, 6127, 2157, 8265, 329, 6257, 1847, 62, 15022, 62, 44, 8546, 873, 13, 541, 2047, 65, 198, 198, 29113, 198, 2235, 198, 2235, 17267, 5133, 902, 198, 2235, 198, 29113, 198, 198, 2, 17267, 3210, 11361, 13103, 198, 11748, 25064, 198, 11748, 4818, 330, 3266, 198, 198, 2, 17267, 6257, 1847, 20081, 7268, 2163, 17336, 973, 4143, 1973, 6257, 1847, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 9697, 1847, 62, 26791, 11537, 628, 198, 29113, 198, 2235, 198, 2235, 15553, 45205, 198, 2235, 198, 29113, 198, 198, 2, 6045, 13, 628 ]
4.623656
93
import fulfillment fulfillment.core.api_key = 'YOUR_API_KEY_GOES_HERE' # set debug to true to get print json fulfillment.core.Debug = True fulfillment.Warehouse.retrieveALL()
[ 11748, 32402, 198, 198, 913, 20797, 434, 13, 7295, 13, 15042, 62, 2539, 796, 705, 56, 11698, 62, 17614, 62, 20373, 62, 11230, 1546, 62, 39, 9338, 6, 198, 2, 900, 14257, 284, 2081, 284, 651, 3601, 33918, 198, 913, 20797, 434, 13, 7295, 13, 27509, 796, 6407, 198, 198, 913, 20797, 434, 13, 38824, 4803, 13, 1186, 30227, 7036, 3419, 198 ]
2.854839
62
r""" Solve Poisson equation in 2D with periodic bcs in one direction and homogeneous Neumann in the other \nabla^2 u = f, Use Fourier basis for the periodic direction and Shen's Neumann basis for the non-periodic direction. The equation to solve is (\nabla^2 u, v) = (f, v) """ import sys import os from sympy import symbols, cos, sin, pi import numpy as np from shenfun import inner, div, grad, TestFunction, TrialFunction, \ TensorProductSpace, FunctionSpace, Array, Function, comm, la, dx, \ chebyshev # Collect basis and solver from either Chebyshev or Legendre submodules assert len(sys.argv) == 3, "Call with two command-line arguments" assert sys.argv[-1].lower() in ('legendre', 'chebyshev') assert isinstance(int(sys.argv[-2]), int) family = sys.argv[-1].lower() Solver = chebyshev.la.Helmholtz if family == 'chebyshev' else la.SolverGeneric1ND # Use sympy to compute a rhs, given an analytical solution x, y = symbols("x,y", real=True) #ue = (1-x**3)*cos(2*y) ue = cos(2*pi*x) fe = -ue.diff(x, 2)-ue.diff(y, 2) # Size of discretization N = int(sys.argv[-2]) N = (N, N) bc = {'left': ('N', ue.diff(x, 1).subs(x, -1)), 'right': ('N', ue.diff(x, 1).subs(x, 1))} SN = FunctionSpace(N[0], family=family, bc=bc) K1 = FunctionSpace(N[1], family='F', dtype='d') T = TensorProductSpace(comm, (SN, K1), axes=(0, 1)) u = TrialFunction(T) v = TestFunction(T) # Get f on quad points fj = Array(T, buffer=fe) # Compute right hand side of Poisson equation f_hat = inner(v, fj) # Get left hand side of Poisson equation matrices = inner(v, -div(grad(u))) # Create Helmholtz linear algebra solver sol = Solver(matrices) constraint = ((0, dx(Array(T, buffer=ue), weighted=True)/dx(Array(T, val=1), weighted=True)),) # Solve and transform to real space u_hat = Function(T).set_boundary_dofs() # Solution spectral space u_hat = sol(f_hat, u_hat, constraints=constraint) uq = T.backward(u_hat).copy() # Compare with analytical solution uj = Array(T, buffer=ue) print(abs(uj-uq).max()) assert np.allclose(uj, uq) if 'pytest' not in os.environ: import matplotlib.pyplot as plt plt.figure() X = T.local_mesh(True) # With broadcasting=True the shape of X is local_shape, even though the number of datapoints are still the same as in 1D plt.contourf(X[0], X[1], uq) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uj) plt.colorbar() plt.figure() plt.contourf(X[0], X[1], uq-uj) plt.colorbar() plt.title('Error') plt.show()
[ 81, 37811, 198, 50, 6442, 7695, 30927, 16022, 287, 362, 35, 351, 27458, 275, 6359, 287, 530, 4571, 198, 392, 3488, 32269, 3169, 40062, 287, 262, 584, 628, 220, 220, 220, 3467, 77, 397, 5031, 61, 17, 334, 796, 277, 11, 198, 198, 11041, 34296, 5277, 4308, 329, 262, 27458, 4571, 290, 22323, 338, 3169, 40062, 4308, 329, 262, 198, 13159, 12, 41007, 291, 4571, 13, 198, 198, 464, 16022, 284, 8494, 318, 628, 220, 220, 220, 220, 357, 59, 77, 397, 5031, 61, 17, 334, 11, 410, 8, 796, 357, 69, 11, 410, 8, 198, 198, 37811, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 10558, 88, 1330, 14354, 11, 8615, 11, 7813, 11, 31028, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 673, 77, 12543, 1330, 8434, 11, 2659, 11, 3915, 11, 6208, 22203, 11, 21960, 22203, 11, 3467, 198, 220, 220, 220, 309, 22854, 15667, 14106, 11, 15553, 14106, 11, 15690, 11, 15553, 11, 725, 11, 8591, 11, 44332, 11, 3467, 198, 220, 220, 220, 1125, 48209, 258, 85, 198, 198, 2, 9745, 4308, 290, 1540, 332, 422, 2035, 2580, 48209, 258, 85, 393, 9883, 260, 850, 18170, 198, 30493, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 11, 366, 14134, 351, 734, 3141, 12, 1370, 7159, 1, 198, 30493, 25064, 13, 853, 85, 58, 12, 16, 4083, 21037, 3419, 287, 19203, 1455, 437, 260, 3256, 705, 2395, 48209, 258, 85, 11537, 198, 30493, 318, 39098, 7, 600, 7, 17597, 13, 853, 85, 58, 12, 17, 46570, 493, 8, 198, 198, 17989, 796, 25064, 13, 853, 85, 58, 12, 16, 4083, 21037, 3419, 198, 50, 14375, 796, 1125, 48209, 258, 85, 13, 5031, 13, 12621, 76, 3937, 22877, 611, 1641, 6624, 705, 2395, 48209, 258, 85, 6, 2073, 8591, 13, 50, 14375, 46189, 16, 8575, 198, 198, 2, 5765, 10558, 88, 284, 24061, 257, 9529, 82, 11, 1813, 281, 30063, 4610, 198, 87, 11, 331, 796, 14354, 7203, 87, 11, 88, 1600, 1103, 28, 17821, 8, 198, 2, 518, 796, 357, 16, 12, 87, 1174, 18, 27493, 6966, 7, 17, 9, 88, 8, 198, 518, 796, 8615, 7, 17, 9, 14415, 9, 87, 8, 198, 5036, 796, 532, 518, 13, 26069, 7, 87, 11, 362, 13219, 518, 13, 26069, 7, 88, 11, 362, 8, 198, 198, 2, 12849, 286, 1221, 1186, 1634, 198, 45, 796, 493, 7, 17597, 13, 853, 85, 58, 12, 17, 12962, 198, 45, 796, 357, 45, 11, 399, 8, 198, 15630, 796, 1391, 6, 9464, 10354, 19203, 45, 3256, 334, 68, 13, 26069, 7, 87, 11, 352, 737, 7266, 82, 7, 87, 11, 532, 16, 36911, 705, 3506, 10354, 19203, 45, 3256, 334, 68, 13, 26069, 7, 87, 11, 352, 737, 7266, 82, 7, 87, 11, 352, 4008, 92, 198, 15571, 796, 15553, 14106, 7, 45, 58, 15, 4357, 1641, 28, 17989, 11, 47125, 28, 15630, 8, 198, 42, 16, 796, 15553, 14106, 7, 45, 58, 16, 4357, 1641, 11639, 37, 3256, 288, 4906, 11639, 67, 11537, 198, 51, 796, 309, 22854, 15667, 14106, 7, 9503, 11, 357, 15571, 11, 509, 16, 828, 34197, 16193, 15, 11, 352, 4008, 198, 84, 796, 21960, 22203, 7, 51, 8, 198, 85, 796, 6208, 22203, 7, 51, 8, 198, 198, 2, 3497, 277, 319, 15094, 2173, 198, 69, 73, 796, 15690, 7, 51, 11, 11876, 28, 5036, 8, 198, 198, 2, 3082, 1133, 826, 1021, 1735, 286, 7695, 30927, 16022, 198, 69, 62, 5183, 796, 8434, 7, 85, 11, 277, 73, 8, 198, 198, 2, 3497, 1364, 1021, 1735, 286, 7695, 30927, 16022, 198, 6759, 45977, 796, 8434, 7, 85, 11, 532, 7146, 7, 9744, 7, 84, 22305, 198, 198, 2, 13610, 28351, 3937, 22877, 14174, 37139, 1540, 332, 198, 34453, 796, 4294, 332, 7, 6759, 45977, 8, 198, 198, 1102, 2536, 2913, 796, 14808, 15, 11, 44332, 7, 19182, 7, 51, 11, 11876, 28, 518, 828, 26356, 28, 17821, 20679, 34350, 7, 19182, 7, 51, 11, 1188, 28, 16, 828, 26356, 28, 17821, 36911, 8, 198, 198, 2, 4294, 303, 290, 6121, 284, 1103, 2272, 198, 84, 62, 5183, 796, 15553, 7, 51, 737, 2617, 62, 7784, 560, 62, 67, 1659, 82, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28186, 37410, 2272, 198, 84, 62, 5183, 796, 1540, 7, 69, 62, 5183, 11, 334, 62, 5183, 11, 17778, 28, 1102, 2536, 2913, 8, 198, 198, 84, 80, 796, 309, 13, 1891, 904, 7, 84, 62, 5183, 737, 30073, 3419, 198, 198, 2, 27814, 351, 30063, 4610, 198, 23577, 796, 15690, 7, 51, 11, 11876, 28, 518, 8, 198, 4798, 7, 8937, 7, 23577, 12, 84, 80, 737, 9806, 28955, 198, 30493, 45941, 13, 439, 19836, 7, 23577, 11, 334, 80, 8, 198, 198, 361, 705, 9078, 9288, 6, 407, 287, 28686, 13, 268, 2268, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 1395, 796, 309, 13, 12001, 62, 76, 5069, 7, 17821, 8, 1303, 2080, 22978, 28, 17821, 262, 5485, 286, 1395, 318, 1957, 62, 43358, 11, 772, 996, 262, 1271, 286, 4818, 499, 1563, 82, 389, 991, 262, 976, 355, 287, 352, 35, 198, 220, 220, 220, 458, 83, 13, 3642, 454, 69, 7, 55, 58, 15, 4357, 1395, 58, 16, 4357, 334, 80, 8, 198, 220, 220, 220, 458, 83, 13, 8043, 5657, 3419, 628, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 3642, 454, 69, 7, 55, 58, 15, 4357, 1395, 58, 16, 4357, 334, 73, 8, 198, 220, 220, 220, 458, 83, 13, 8043, 5657, 3419, 628, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 3642, 454, 69, 7, 55, 58, 15, 4357, 1395, 58, 16, 4357, 334, 80, 12, 23577, 8, 198, 220, 220, 220, 458, 83, 13, 8043, 5657, 3419, 198, 220, 220, 220, 458, 83, 13, 7839, 10786, 12331, 11537, 628, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.505988
1,002
import subprocess import itertools command="xrandr --listmonitors" output = subprocess.run(command.split(), stdout=subprocess.PIPE, check=True, text=True) output = output.stdout displays_lines = output.split('\n')[1:-1] displays = [] for line in displays_lines: displays.append(line.split()[-1]) options = [] for L in range(1, len(displays)): for subset in itertools.combinations(displays, L): options.append(subset) for item in itertools.permutations(displays): options.append(item) #print(options) for option in options: if len(option) == 1: print(option[0] + " ONLY") else: to_print = option[0] for i in range(1, len(option)): to_print = to_print + " + " + option[i] print(to_print) print("All the same")
[ 11748, 850, 14681, 198, 11748, 340, 861, 10141, 198, 198, 21812, 2625, 87, 25192, 81, 1377, 4868, 2144, 6742, 1, 198, 198, 22915, 796, 850, 14681, 13, 5143, 7, 21812, 13, 35312, 22784, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 2198, 28, 17821, 11, 2420, 28, 17821, 8, 198, 22915, 796, 5072, 13, 19282, 448, 198, 198, 6381, 26024, 62, 6615, 796, 5072, 13, 35312, 10786, 59, 77, 11537, 58, 16, 21912, 16, 60, 198, 198, 6381, 26024, 796, 17635, 198, 1640, 1627, 287, 11298, 62, 6615, 25, 198, 220, 220, 220, 11298, 13, 33295, 7, 1370, 13, 35312, 3419, 58, 12, 16, 12962, 198, 198, 25811, 796, 17635, 198, 1640, 406, 287, 2837, 7, 16, 11, 18896, 7, 6381, 26024, 8, 2599, 198, 220, 220, 220, 329, 24637, 287, 340, 861, 10141, 13, 24011, 7352, 7, 6381, 26024, 11, 406, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 13, 33295, 7, 7266, 2617, 8, 198, 198, 1640, 2378, 287, 340, 861, 10141, 13, 16321, 32855, 7, 6381, 26024, 2599, 198, 220, 220, 220, 3689, 13, 33295, 7, 9186, 8, 198, 198, 2, 4798, 7, 25811, 8, 198, 198, 1640, 3038, 287, 3689, 25, 198, 220, 220, 220, 611, 18896, 7, 18076, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 18076, 58, 15, 60, 1343, 366, 22224, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 4798, 796, 3038, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 18896, 7, 18076, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 4798, 796, 284, 62, 4798, 1343, 366, 1343, 366, 1343, 3038, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1462, 62, 4798, 8, 198, 4798, 7203, 3237, 262, 976, 4943, 198 ]
2.454829
321
from random import randint import threading # Variavel global n_populacao = [] # funcoes if __name__ == '__main__': # Leitura do arquivo externo (instancias) file = open("100.txt") arquivo = file.read() # ler a cadeia de caracteres do arquivo .txt instancias = arquivo.split() # separar e agrupar os caracteres # manipulando a entrada dos dados qtd_instancias = (len(instancias)) valor = [] peso = [] # salvar as infos do valor na lista valor for i in range(2, qtd_instancias, 2): valor.append(int(instancias[i])) # salvar as infors do peso na lista peso for i in range(3,qtd_instancias,2): peso.append(int(instancias[i])) # Variaveis tam_pop = 2000 # pode ser alterada pelo usuário max_geracao = 10 processos = 2 tx_mutacao = 5 # pode ser alterada pelo usuario (qtd de itens a sofrer mutação) cap_max = int(instancias[1]) qtd_itens = int(instancias[0]) geracao_atual = 1 populacao = [] # Inicio do algoritmo # 1 - Gerar a população inicial populacao = gerar_pop(tam_pop, peso, valor, cap_max, qtd_itens) # 2 - Avaliar a população while (geracao_atual != max_geracao+1): print("Geracao: ", geracao_atual) #definir 6 processos if (processos == 1): itens = tam_pop/processos i0=i1=0 x1=0 i1=int(i0+itens) while(i1<=(tam_pop-1)): i1=i1+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() if (t1.is_alive()==False): del populacao populacao = n_populacao elif (processos == 2): itens = tam_pop/processos i0=i1=i2=0 i1=int(i0+itens) i2=int(i1+itens) while(i2<=(tam_pop-1)): i2=i2+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() # Processo 2 t2 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i1,i2)) t2.start() t2.join() if (t1.is_alive()==t2.is_alive()==False): del populacao populacao = n_populacao elif (processos==3): itens = tam_pop/processos i0=i1=i2=i3=0 i1=int(i0+itens) i2=int(i1+itens) i3=int(i2+itens) while(i3<=(tam_pop-1)): i3=i3+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() # Processo 2 t2 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i1,i2)) t2.start() # Processo 3 t3 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i2,i3)) t3.start() t2.join() t3.join() if (t1.is_alive()==t2.is_alive()==t3.is_alive()==False): del populacao populacao = n_populacao elif (processos==4): itens = tam_pop/processos i0=i1=i2=i3=i4=0 i1=int(i0+itens) i2=int(i1+itens) i3=int(i2+itens) i4=int(i3+itens) while(i4<=(tam_pop-1)): i4=i4+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() # Processo 2 t2 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i1,i2)) t2.start() # Processo 3 t3 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i2,i3)) t3.start() # Processo 4 t4 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i3,i4)) t4.start() t2.join() t3.join() t4.join() if (t1.is_alive()==t2.is_alive()==t3.is_alive()==t4.is_alive()==False): del populacao populacao = n_populacao elif (processos==5): itens = tam_pop/processos i0=i1=i2=i3=i4=i5=0 i1=int(i0+itens) i2=int(i1+itens) i3=int(i2+itens) i4=int(i3+itens) i5=int(i4+itens) while(i5<=(tam_pop-1)): i5=i5+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() # Processo 2 t2 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i1,i2)) t2.start() # Processo 3 t3 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i2,i3)) t3.start() # Processo 4 t4 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i3,i4)) t4.start() # Processo 5 t5 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i4,i5)) t5.start() t2.join() t3.join() t4.join() t5.join() if (t1.is_alive()==t2.is_alive()==t3.is_alive()==t4.is_alive()==t5.is_alive()==False): del populacao populacao = n_populacao elif (processos==6): itens = tam_pop/processos i0=i1=i2=i3=i4=i5=i6=0 i1=int(i0+itens) i2=int(i1+itens) i3=int(i2+itens) i4=int(i3+itens) i5=int(i4+itens) i6=int(i5+itens) while(i6<=(tam_pop-1)): i6=i6+1 # Processo 1 t1 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i0,i1)) t1.start() t1.join() # Processo 2 t2 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i1,i2)) t2.start() # Processo 3 t3 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i2,i3)) t3.start() # Processo 4 t4 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i3,i4)) t4.start() # Processo 5 t5 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i4,i5)) t5.start() # Processo 6 t6 = threading.Thread(target=crossover, args=(populacao, tx_mutacao, peso, valor, cap_max, i5,i6)) t6.start() t2.join() t3.join() t4.join() t5.join() t6.join() if (t1.is_alive()==t2.is_alive()==t3.is_alive()==t4.is_alive()==t5.is_alive()==t6.is_alive()==False): del populacao populacao = n_populacao geracao_atual += 1 if geracao_atual == max_geracao: populacao.sort(reverse=True) print("Processos:", processos) print("Melhor solucao da geracao ", geracao_atual-1) print("Valor: ",populacao[0][0]," Peso: ",populacao[0][1]) print("Cromossomo", populacao[0][2:]) """ import threading from multiprocessing import Queue def dobro(x, que): x = x*x que.put(x) print(x) queue1 = Queue() t1 = threading.Thread(target=dobro, args=(2,queue1)) t1.start() print(t1) #t1.join() x = queue1.get() print(x) print(t1) """
[ 6738, 4738, 1330, 43720, 600, 198, 11748, 4704, 278, 198, 2, 569, 10312, 626, 3298, 198, 77, 62, 12924, 377, 330, 5488, 796, 17635, 198, 2, 1257, 1073, 274, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 2, 1004, 270, 5330, 466, 610, 421, 23593, 409, 759, 78, 357, 8625, 272, 979, 292, 8, 220, 198, 197, 7753, 796, 1280, 7203, 3064, 13, 14116, 4943, 198, 197, 283, 421, 23593, 796, 2393, 13, 961, 3419, 1303, 300, 263, 257, 269, 671, 544, 390, 1097, 529, 68, 411, 466, 610, 421, 23593, 764, 14116, 198, 197, 8625, 272, 979, 292, 796, 610, 421, 23593, 13, 35312, 3419, 1303, 2880, 283, 304, 556, 622, 1845, 28686, 1097, 529, 68, 411, 198, 197, 2, 7704, 377, 25440, 257, 24481, 4763, 23430, 9955, 418, 198, 197, 80, 8671, 62, 8625, 272, 979, 292, 796, 357, 11925, 7, 8625, 272, 979, 292, 4008, 198, 197, 2100, 273, 796, 17635, 198, 197, 12272, 78, 796, 17635, 198, 197, 2, 3664, 7785, 355, 1167, 418, 466, 1188, 273, 12385, 1351, 64, 1188, 273, 220, 198, 197, 1640, 1312, 287, 2837, 7, 17, 11, 10662, 8671, 62, 8625, 272, 979, 292, 11, 362, 2599, 198, 197, 220, 220, 220, 1188, 273, 13, 33295, 7, 600, 7, 8625, 272, 979, 292, 58, 72, 60, 4008, 198, 197, 2, 3664, 7785, 355, 1167, 669, 466, 32317, 78, 12385, 1351, 64, 32317, 78, 198, 197, 1640, 1312, 287, 2837, 7, 18, 11, 80, 8671, 62, 8625, 272, 979, 292, 11, 17, 2599, 198, 197, 220, 220, 220, 32317, 78, 13, 33295, 7, 600, 7, 8625, 272, 979, 292, 58, 72, 60, 4008, 198, 197, 2, 569, 10312, 303, 271, 198, 197, 83, 321, 62, 12924, 796, 4751, 1303, 279, 1098, 1055, 8343, 4763, 16176, 78, 514, 84, 6557, 27250, 198, 197, 9806, 62, 1362, 330, 5488, 796, 838, 198, 197, 14681, 418, 796, 362, 198, 197, 17602, 62, 21973, 330, 5488, 796, 642, 220, 1303, 279, 1098, 1055, 8343, 4763, 16176, 78, 514, 84, 4982, 357, 80, 8671, 390, 340, 641, 257, 523, 69, 11751, 4517, 64, 16175, 28749, 8, 198, 197, 11128, 62, 9806, 796, 493, 7, 8625, 272, 979, 292, 58, 16, 12962, 198, 197, 80, 8671, 62, 270, 641, 796, 493, 7, 8625, 272, 979, 292, 58, 15, 12962, 198, 197, 1362, 330, 5488, 62, 265, 723, 796, 352, 198, 197, 12924, 377, 330, 5488, 796, 17635, 628, 197, 2, 554, 46441, 466, 435, 7053, 270, 5908, 198, 197, 2, 352, 532, 13573, 283, 257, 1461, 4712, 16175, 28749, 287, 6652, 198, 197, 12924, 377, 330, 5488, 796, 27602, 283, 62, 12924, 7, 83, 321, 62, 12924, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 10662, 8671, 62, 270, 641, 8, 198, 197, 2, 362, 532, 23587, 12571, 257, 1461, 4712, 16175, 28749, 198, 197, 4514, 357, 1362, 330, 5488, 62, 265, 723, 14512, 3509, 62, 1362, 330, 5488, 10, 16, 2599, 198, 197, 197, 4798, 7203, 38069, 330, 5488, 25, 33172, 27602, 330, 5488, 62, 265, 723, 8, 198, 197, 197, 2, 4299, 259, 343, 718, 1429, 418, 198, 197, 197, 361, 357, 14681, 418, 6624, 352, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 15, 198, 197, 197, 197, 197, 87, 16, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 16, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 16, 28, 72, 16, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 198, 197, 197, 417, 361, 357, 14681, 418, 6624, 362, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 72, 17, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 17, 28, 600, 7, 72, 16, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 17, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 17, 28, 72, 17, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 362, 198, 197, 197, 197, 197, 83, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 16, 11, 72, 17, 4008, 198, 197, 197, 197, 197, 83, 17, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 17, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 83, 17, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 628, 197, 197, 417, 361, 357, 14681, 418, 855, 18, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 72, 17, 28, 72, 18, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 17, 28, 600, 7, 72, 16, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 18, 28, 600, 7, 72, 17, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 18, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 18, 28, 72, 18, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 362, 198, 197, 197, 197, 197, 83, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 16, 11, 72, 17, 4008, 198, 197, 197, 197, 197, 83, 17, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 513, 198, 197, 197, 197, 197, 83, 18, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 17, 11, 72, 18, 4008, 198, 197, 197, 197, 197, 83, 18, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 17, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 18, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 83, 17, 13, 271, 62, 282, 425, 3419, 855, 83, 18, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 198, 197, 197, 417, 361, 357, 14681, 418, 855, 19, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 72, 17, 28, 72, 18, 28, 72, 19, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 17, 28, 600, 7, 72, 16, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 18, 28, 600, 7, 72, 17, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 19, 28, 600, 7, 72, 18, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 19, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 19, 28, 72, 19, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 362, 198, 197, 197, 197, 197, 83, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 16, 11, 72, 17, 4008, 198, 197, 197, 197, 197, 83, 17, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 513, 198, 197, 197, 197, 197, 83, 18, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 17, 11, 72, 18, 4008, 198, 197, 197, 197, 197, 83, 18, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 604, 198, 197, 197, 197, 197, 83, 19, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 18, 11, 72, 19, 4008, 198, 197, 197, 197, 197, 83, 19, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 17, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 18, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 19, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 83, 17, 13, 271, 62, 282, 425, 3419, 855, 83, 18, 13, 271, 62, 282, 425, 3419, 855, 83, 19, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 628, 197, 197, 417, 361, 357, 14681, 418, 855, 20, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 72, 17, 28, 72, 18, 28, 72, 19, 28, 72, 20, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 17, 28, 600, 7, 72, 16, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 18, 28, 600, 7, 72, 17, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 19, 28, 600, 7, 72, 18, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 20, 28, 600, 7, 72, 19, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 20, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 20, 28, 72, 20, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 362, 198, 197, 197, 197, 197, 83, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 16, 11, 72, 17, 4008, 198, 197, 197, 197, 197, 83, 17, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 513, 198, 197, 197, 197, 197, 83, 18, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 17, 11, 72, 18, 4008, 198, 197, 197, 197, 197, 83, 18, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 604, 198, 197, 197, 197, 197, 83, 19, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 18, 11, 72, 19, 4008, 198, 197, 197, 197, 197, 83, 19, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 642, 198, 197, 197, 197, 197, 83, 20, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 19, 11, 72, 20, 4008, 198, 197, 197, 197, 197, 83, 20, 13, 9688, 3419, 628, 197, 197, 197, 197, 83, 17, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 18, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 19, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 20, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 83, 17, 13, 271, 62, 282, 425, 3419, 855, 83, 18, 13, 271, 62, 282, 425, 3419, 855, 83, 19, 13, 271, 62, 282, 425, 3419, 855, 83, 20, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 198, 197, 197, 417, 361, 357, 14681, 418, 855, 21, 2599, 198, 197, 197, 197, 197, 270, 641, 796, 21885, 62, 12924, 14, 14681, 418, 198, 197, 197, 197, 197, 72, 15, 28, 72, 16, 28, 72, 17, 28, 72, 18, 28, 72, 19, 28, 72, 20, 28, 72, 21, 28, 15, 198, 197, 197, 197, 197, 72, 16, 28, 600, 7, 72, 15, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 17, 28, 600, 7, 72, 16, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 18, 28, 600, 7, 72, 17, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 19, 28, 600, 7, 72, 18, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 20, 28, 600, 7, 72, 19, 10, 270, 641, 8, 198, 197, 197, 197, 197, 72, 21, 28, 600, 7, 72, 20, 10, 270, 641, 8, 198, 197, 197, 197, 197, 4514, 7, 72, 21, 27, 16193, 83, 321, 62, 12924, 12, 16, 8, 2599, 198, 197, 197, 197, 197, 197, 72, 21, 28, 72, 21, 10, 16, 198, 197, 197, 197, 197, 2, 10854, 78, 352, 198, 197, 197, 197, 197, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 15, 11, 72, 16, 4008, 198, 197, 197, 197, 197, 83, 16, 13, 9688, 3419, 198, 197, 197, 197, 197, 83, 16, 13, 22179, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 362, 198, 197, 197, 197, 197, 83, 17, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 16, 11, 72, 17, 4008, 198, 197, 197, 197, 197, 83, 17, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 513, 198, 197, 197, 197, 197, 83, 18, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 17, 11, 72, 18, 4008, 198, 197, 197, 197, 197, 83, 18, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 604, 198, 197, 197, 197, 197, 83, 19, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 18, 11, 72, 19, 4008, 198, 197, 197, 197, 197, 83, 19, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 642, 198, 197, 197, 197, 197, 83, 20, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 19, 11, 72, 20, 4008, 198, 197, 197, 197, 197, 83, 20, 13, 9688, 3419, 198, 197, 197, 197, 197, 2, 10854, 78, 718, 198, 197, 197, 197, 197, 83, 21, 796, 4704, 278, 13, 16818, 7, 16793, 28, 66, 23954, 11, 26498, 16193, 12924, 377, 330, 5488, 11, 27765, 62, 21973, 330, 5488, 11, 32317, 78, 11, 1188, 273, 11, 1451, 62, 9806, 11, 1312, 20, 11, 72, 21, 4008, 198, 197, 197, 197, 197, 83, 21, 13, 9688, 3419, 628, 197, 197, 197, 197, 83, 17, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 18, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 19, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 20, 13, 22179, 3419, 198, 197, 197, 197, 197, 83, 21, 13, 22179, 3419, 198, 197, 197, 197, 197, 361, 357, 83, 16, 13, 271, 62, 282, 425, 3419, 855, 83, 17, 13, 271, 62, 282, 425, 3419, 855, 83, 18, 13, 271, 62, 282, 425, 3419, 855, 83, 19, 13, 271, 62, 282, 425, 3419, 855, 83, 20, 13, 271, 62, 282, 425, 3419, 855, 83, 21, 13, 271, 62, 282, 425, 3419, 855, 25101, 2599, 198, 197, 197, 197, 197, 197, 12381, 16595, 330, 5488, 198, 197, 197, 197, 197, 197, 12924, 377, 330, 5488, 796, 299, 62, 12924, 377, 330, 5488, 628, 197, 197, 1362, 330, 5488, 62, 265, 723, 15853, 352, 198, 197, 197, 361, 27602, 330, 5488, 62, 265, 723, 6624, 3509, 62, 1362, 330, 5488, 25, 198, 197, 197, 197, 12924, 377, 330, 5488, 13, 30619, 7, 50188, 28, 17821, 8, 198, 197, 4798, 7203, 18709, 418, 25, 1600, 1429, 418, 8, 198, 197, 4798, 7203, 21102, 17899, 1540, 1229, 5488, 12379, 27602, 330, 5488, 33172, 27602, 330, 5488, 62, 265, 723, 12, 16, 8, 198, 197, 4798, 7203, 7762, 273, 25, 33172, 12924, 377, 330, 5488, 58, 15, 7131, 15, 17241, 38434, 78, 25, 33172, 12924, 377, 330, 5488, 58, 15, 7131, 16, 12962, 198, 197, 4798, 7203, 34, 398, 793, 17902, 1600, 16595, 330, 5488, 58, 15, 7131, 17, 25, 12962, 198, 198, 37811, 198, 11748, 4704, 278, 198, 6738, 18540, 305, 919, 278, 1330, 4670, 518, 198, 4299, 466, 7957, 7, 87, 11, 8358, 2599, 198, 197, 87, 796, 2124, 9, 87, 198, 197, 4188, 13, 1996, 7, 87, 8, 198, 197, 4798, 7, 87, 8, 198, 198, 36560, 16, 796, 4670, 518, 3419, 198, 83, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 67, 672, 305, 11, 26498, 16193, 17, 11, 36560, 16, 4008, 198, 83, 16, 13, 9688, 3419, 198, 4798, 7, 83, 16, 8, 198, 2, 83, 16, 13, 22179, 3419, 198, 87, 796, 16834, 16, 13, 1136, 3419, 198, 4798, 7, 87, 8, 198, 4798, 7, 83, 16, 8, 198, 198, 37811 ]
1.867358
3,566
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-07-25 11:53 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 319, 2177, 12, 2998, 12, 1495, 1367, 25, 4310, 201, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 201, 198, 201, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 201, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 201, 198, 201, 198 ]
2.586667
75
# Generated by Django 3.0 on 2020-10-16 11:43 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 319, 12131, 12, 940, 12, 1433, 1367, 25, 3559, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.966667
30
#!/usr/bin/env python # # Copyright @2014 [email protected] # Licensed: see Python license """Utility module""" import json import uuid import hashlib from decimal import Decimal from datetime import date, datetime from tornado import concurrent, ioloop from concurrent.futures import ThreadPoolExecutor def generate_hash(password, random_key=None): """Membuat password hash dengan random key 'random_key' menggunakan sha512 dari hashlib""" if not random_key: random_key = uuid.uuid4().hex hashed_pass = hashlib.sha512(str(password).encode() + random_key.encode()).hexdigest() return hashed_pass, random_key def verify_password(password, hashed_password, key): """Verify password""" computed_hash, key = generate_hash(password, key) return computed_hash == hashed_password # Some data types we want to check for. # Turn a good precise decimal into a more JavaScript-friendly float. # Use an isoformat string for dates and times. # # from http://nchls.com/post/serializing-complex-python-data-json/
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 2488, 4967, 2042, 15600, 14664, 2475, 31, 40774, 13, 785, 198, 2, 49962, 25, 766, 11361, 5964, 198, 198, 37811, 18274, 879, 8265, 37811, 198, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 11748, 12234, 8019, 198, 198, 6738, 32465, 1330, 4280, 4402, 198, 6738, 4818, 8079, 1330, 3128, 11, 4818, 8079, 198, 6738, 33718, 1330, 24580, 11, 1312, 349, 11224, 198, 6738, 24580, 13, 69, 315, 942, 1330, 14122, 27201, 23002, 38409, 628, 198, 4299, 7716, 62, 17831, 7, 28712, 11, 4738, 62, 2539, 28, 14202, 2599, 198, 220, 220, 220, 37227, 13579, 11110, 265, 9206, 12234, 2853, 1030, 4738, 1994, 705, 25120, 62, 2539, 6, 1450, 1130, 403, 461, 272, 427, 64, 25836, 288, 2743, 12234, 8019, 37811, 198, 220, 220, 220, 611, 407, 4738, 62, 2539, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 2539, 796, 334, 27112, 13, 12303, 312, 19, 22446, 33095, 198, 220, 220, 220, 468, 704, 62, 6603, 796, 12234, 8019, 13, 26270, 25836, 7, 2536, 7, 28712, 737, 268, 8189, 3419, 1343, 4738, 62, 2539, 13, 268, 8189, 3419, 737, 33095, 12894, 395, 3419, 198, 220, 220, 220, 1441, 468, 704, 62, 6603, 11, 4738, 62, 2539, 628, 198, 4299, 11767, 62, 28712, 7, 28712, 11, 468, 704, 62, 28712, 11, 1994, 2599, 198, 220, 220, 220, 37227, 13414, 1958, 9206, 37811, 198, 220, 220, 220, 29231, 62, 17831, 11, 1994, 796, 7716, 62, 17831, 7, 28712, 11, 1994, 8, 198, 220, 220, 220, 1441, 29231, 62, 17831, 6624, 468, 704, 62, 28712, 628, 198, 2, 2773, 1366, 3858, 356, 765, 284, 2198, 329, 13, 628, 198, 198, 2, 6756, 257, 922, 7141, 32465, 656, 257, 517, 11933, 12, 13120, 12178, 13, 628, 198, 2, 5765, 281, 47279, 18982, 4731, 329, 9667, 290, 1661, 13, 628, 198, 2, 1303, 422, 2638, 1378, 77, 354, 7278, 13, 785, 14, 7353, 14, 46911, 2890, 12, 41887, 12, 29412, 12, 7890, 12, 17752, 14, 198 ]
3.151786
336
from main import summation,summation1
[ 6738, 1388, 1330, 30114, 341, 11, 82, 13929, 341, 16, 628 ]
3.545455
11
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # В строке могут присутствовать скобки как круглые, так и квадратные скобки. Каждой # открывающей скобке соответствует закрывающая того же типа (круглой – круглая, # квадратной- квадратная). Напишите рекурсивную функцию, проверяющую правильность # расстановки скобок в этом случае. if __name__ == '__main__': # Проверка print(task(input()))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 2, 12466, 240, 220, 21727, 20375, 21169, 25443, 118, 16843, 12466, 120, 25443, 111, 35072, 20375, 12466, 123, 21169, 18849, 21727, 35072, 20375, 21727, 20375, 38857, 25443, 110, 16142, 20375, 45367, 220, 21727, 31583, 25443, 109, 31583, 18849, 12466, 118, 16142, 31583, 12466, 118, 21169, 35072, 140, 111, 30143, 45035, 16843, 11, 220, 20375, 16142, 31583, 12466, 116, 12466, 118, 38857, 16142, 43666, 21169, 16142, 20375, 22177, 45035, 16843, 220, 21727, 31583, 25443, 109, 31583, 18849, 13, 12466, 248, 16142, 140, 114, 43666, 25443, 117, 201, 198, 2, 12466, 122, 20375, 31583, 21169, 45035, 38857, 16142, 141, 236, 141, 231, 16843, 140, 117, 220, 21727, 31583, 25443, 109, 31583, 16843, 220, 21727, 15166, 15166, 20375, 38857, 16843, 20375, 21727, 20375, 38857, 35072, 16843, 20375, 12466, 115, 16142, 31583, 21169, 45035, 38857, 16142, 141, 236, 141, 231, 16142, 40623, 220, 20375, 25443, 111, 15166, 12466, 114, 16843, 220, 20375, 18849, 140, 123, 16142, 357, 31583, 21169, 35072, 140, 111, 30143, 25443, 117, 784, 12466, 118, 21169, 35072, 140, 111, 30143, 16142, 40623, 11, 201, 198, 2, 12466, 118, 38857, 16142, 43666, 21169, 16142, 20375, 22177, 25443, 117, 12, 12466, 118, 38857, 16142, 43666, 21169, 16142, 20375, 22177, 16142, 40623, 737, 12466, 251, 16142, 140, 123, 18849, 141, 230, 18849, 20375, 16843, 220, 21169, 16843, 31583, 35072, 21169, 21727, 18849, 38857, 22177, 35072, 141, 236, 220, 141, 226, 35072, 22177, 31583, 141, 228, 18849, 141, 236, 11, 12466, 123, 21169, 25443, 110, 16843, 21169, 40623, 141, 236, 141, 231, 35072, 141, 236, 12466, 123, 21169, 16142, 38857, 18849, 30143, 45367, 22177, 15166, 21727, 20375, 45367, 201, 198, 2, 220, 21169, 16142, 21727, 21727, 20375, 16142, 22177, 25443, 110, 31583, 18849, 220, 21727, 31583, 25443, 109, 25443, 118, 12466, 110, 220, 141, 235, 20375, 25443, 120, 220, 21727, 30143, 35072, 141, 229, 16142, 16843, 13, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 201, 198, 201, 198, 220, 220, 220, 1303, 12466, 253, 21169, 25443, 110, 16843, 21169, 31583, 16142, 201, 198, 201, 198, 201, 198, 220, 220, 220, 3601, 7, 35943, 7, 15414, 3419, 4008, 201, 198 ]
1.094987
379
from functools import partial, reduce from itertools import chain, product from math import sqrt def cluster_iter(clustered, point, threshold): """Add a point to a grid-like cluster structure. This allows comparing point distances only to clusters from nearby grids, not to all clusters. Useful when there are many clusters expected.""" coords, object_ = point point_grid_cell = get_grid_cell(*coords, threshold=threshold) nearby_grid_cells = get_nearby_grid_cells(point_grid_cell) possible_nearby_cluster_locations = chain( *[(location for location in clustered.get(grid_cell, {})) for grid_cell in nearby_grid_cells] ) nearest_cluster_with_distance = reduce(nearest_location, possible_nearby_cluster_locations, None) if nearest_cluster_with_distance: nearest_cluster_location, _nearest_cluster_distance = nearest_cluster_with_distance else: nearest_cluster_location = None if nearest_cluster_location: cluster_grid_cell = get_grid_cell(*nearest_cluster_location, threshold=threshold) cluster = clustered[cluster_grid_cell].pop(nearest_cluster_location) cluster_object_count = len(cluster) new_cluster_location = ( (nearest_cluster_location[0] * cluster_object_count + coords[0]) / (cluster_object_count + 1), (nearest_cluster_location[1] * cluster_object_count + coords[1]) / (cluster_object_count + 1), ) else: cluster = [] new_cluster_location = coords cluster.append(point) new_cluster_grid_cell = get_grid_cell(*new_cluster_location, threshold=threshold) clustered.setdefault(new_cluster_grid_cell, {}) clustered[new_cluster_grid_cell][new_cluster_location] = cluster return clustered def cluster(points, threshold): """Cluster points using distance-based clustering algorithm. Arguments: points — an iterable of two-element point tuples, each containing: • a two-element tuple with X and Y coordinates, • the actual object being clustered; threshold — if a point is included into a cluster, it must be closer to its centroid than this value. Return value: an iterable of two-element cluster tuples, each containing: • a two-element tuple with X and Y coordinates of the cluster centroid; • a list of objects belonging to the cluster. Cluster’s centroid is defined as average coordinates of the cluster’s members. """ cluster_iter_for_threshold = partial(cluster_iter, threshold=threshold) clustered = reduce(cluster_iter_for_threshold, points, {}) return chain( *[((location, [object_ for coords, object_ in points]) for location, points in grid_clusters.items()) for grid_clusters in clustered.values()] )
[ 6738, 1257, 310, 10141, 1330, 13027, 11, 4646, 198, 6738, 340, 861, 10141, 1330, 6333, 11, 1720, 198, 6738, 10688, 1330, 19862, 17034, 628, 628, 198, 200, 198, 4299, 13946, 62, 2676, 7, 565, 436, 1068, 11, 966, 11, 11387, 2599, 198, 220, 220, 220, 37227, 4550, 257, 966, 284, 257, 10706, 12, 2339, 13946, 4645, 13, 628, 220, 220, 220, 770, 3578, 14176, 966, 18868, 691, 284, 23163, 422, 6716, 50000, 11, 407, 284, 477, 23163, 13, 49511, 618, 612, 389, 867, 23163, 2938, 526, 15931, 198, 220, 220, 220, 763, 3669, 11, 2134, 62, 796, 966, 198, 220, 220, 220, 966, 62, 25928, 62, 3846, 796, 651, 62, 25928, 62, 3846, 46491, 1073, 3669, 11, 11387, 28, 400, 10126, 8, 198, 220, 220, 220, 6716, 62, 25928, 62, 46342, 796, 651, 62, 40093, 1525, 62, 25928, 62, 46342, 7, 4122, 62, 25928, 62, 3846, 8, 198, 220, 220, 220, 1744, 62, 40093, 1525, 62, 565, 5819, 62, 17946, 602, 796, 6333, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 58, 7, 24886, 329, 4067, 287, 49480, 13, 1136, 7, 25928, 62, 3846, 11, 23884, 4008, 329, 10706, 62, 3846, 287, 6716, 62, 25928, 62, 46342, 60, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 16936, 62, 565, 5819, 62, 4480, 62, 30246, 796, 4646, 7, 710, 12423, 62, 24886, 11, 1744, 62, 40093, 1525, 62, 565, 5819, 62, 17946, 602, 11, 6045, 8, 198, 220, 220, 220, 611, 16936, 62, 565, 5819, 62, 4480, 62, 30246, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16936, 62, 565, 5819, 62, 24886, 11, 4808, 710, 12423, 62, 565, 5819, 62, 30246, 796, 16936, 62, 565, 5819, 62, 4480, 62, 30246, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16936, 62, 565, 5819, 62, 24886, 796, 6045, 628, 220, 220, 220, 611, 16936, 62, 565, 5819, 62, 24886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 25928, 62, 3846, 796, 651, 62, 25928, 62, 3846, 46491, 710, 12423, 62, 565, 5819, 62, 24886, 11, 11387, 28, 400, 10126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 796, 49480, 58, 565, 5819, 62, 25928, 62, 3846, 4083, 12924, 7, 710, 12423, 62, 565, 5819, 62, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 15252, 62, 9127, 796, 18896, 7, 565, 5819, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 5819, 62, 24886, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 710, 12423, 62, 565, 5819, 62, 24886, 58, 15, 60, 1635, 13946, 62, 15252, 62, 9127, 1343, 763, 3669, 58, 15, 12962, 1220, 357, 565, 5819, 62, 15252, 62, 9127, 1343, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 710, 12423, 62, 565, 5819, 62, 24886, 58, 16, 60, 1635, 13946, 62, 15252, 62, 9127, 1343, 763, 3669, 58, 16, 12962, 1220, 357, 565, 5819, 62, 15252, 62, 9127, 1343, 352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 565, 5819, 62, 24886, 796, 763, 3669, 198, 220, 220, 220, 13946, 13, 33295, 7, 4122, 8, 198, 220, 220, 220, 649, 62, 565, 5819, 62, 25928, 62, 3846, 796, 651, 62, 25928, 62, 3846, 46491, 3605, 62, 565, 5819, 62, 24886, 11, 11387, 28, 400, 10126, 8, 198, 220, 220, 220, 49480, 13, 2617, 12286, 7, 3605, 62, 565, 5819, 62, 25928, 62, 3846, 11, 23884, 8, 198, 220, 220, 220, 49480, 58, 3605, 62, 565, 5819, 62, 25928, 62, 3846, 7131, 3605, 62, 565, 5819, 62, 24886, 60, 796, 13946, 628, 220, 220, 220, 1441, 49480, 628, 200, 198, 4299, 13946, 7, 13033, 11, 11387, 2599, 198, 220, 220, 220, 37227, 2601, 5819, 2173, 1262, 5253, 12, 3106, 32966, 1586, 11862, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2173, 851, 281, 11629, 540, 286, 734, 12, 30854, 966, 12777, 2374, 11, 1123, 7268, 25, 198, 220, 220, 220, 220, 220, 5595, 257, 734, 12, 30854, 46545, 351, 1395, 290, 575, 22715, 11, 198, 220, 220, 220, 220, 220, 5595, 262, 4036, 2134, 852, 49480, 26, 198, 220, 220, 220, 11387, 851, 611, 257, 966, 318, 3017, 656, 257, 13946, 11, 340, 1276, 307, 5699, 284, 663, 1247, 3882, 621, 428, 1988, 13, 628, 220, 220, 220, 8229, 1988, 25, 198, 220, 220, 220, 281, 11629, 540, 286, 734, 12, 30854, 13946, 12777, 2374, 11, 1123, 7268, 25, 198, 220, 220, 220, 220, 220, 5595, 257, 734, 12, 30854, 46545, 351, 1395, 290, 575, 22715, 286, 262, 13946, 1247, 3882, 26, 198, 220, 220, 220, 220, 220, 5595, 257, 1351, 286, 5563, 16686, 284, 262, 13946, 13, 628, 220, 220, 220, 38279, 447, 247, 82, 1247, 3882, 318, 5447, 355, 2811, 22715, 286, 262, 13946, 447, 247, 82, 1866, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13946, 62, 2676, 62, 1640, 62, 400, 10126, 796, 13027, 7, 565, 5819, 62, 2676, 11, 11387, 28, 400, 10126, 8, 198, 220, 220, 220, 49480, 796, 4646, 7, 565, 5819, 62, 2676, 62, 1640, 62, 400, 10126, 11, 2173, 11, 23884, 8, 198, 220, 220, 220, 1441, 6333, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 58, 19510, 24886, 11, 685, 15252, 62, 329, 763, 3669, 11, 2134, 62, 287, 2173, 12962, 329, 4067, 11, 2173, 287, 10706, 62, 565, 13654, 13, 23814, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10706, 62, 565, 13654, 287, 49480, 13, 27160, 3419, 60, 198, 220, 220, 220, 1267, 198 ]
2.902287
962
from django.http import HttpResponse from django.shortcuts import render, render_to_response, RequestContext from uno.models import Question_m from django.views.generic import FormView from uno.forms import Question_f import requests #rom uno.info import information from copy import deepcopy from uno.a import info1 as information #from django.template.defaulttags import register pro = [] ''' @register.filter def get_item(dictionary, key): return dictionary.get(key) '''
[ 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 201, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 8543, 62, 1462, 62, 26209, 11, 19390, 21947, 201, 198, 6738, 555, 78, 13, 27530, 1330, 18233, 62, 76, 201, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 5178, 7680, 201, 198, 6738, 555, 78, 13, 23914, 1330, 18233, 62, 69, 201, 198, 11748, 7007, 201, 198, 2, 398, 555, 78, 13, 10951, 1330, 1321, 201, 198, 6738, 4866, 1330, 2769, 30073, 201, 198, 6738, 555, 78, 13, 64, 1330, 7508, 16, 355, 1321, 201, 198, 2, 6738, 42625, 14208, 13, 28243, 13, 12286, 31499, 1330, 7881, 201, 198, 201, 198, 1676, 796, 17635, 201, 198, 7061, 6, 201, 198, 31, 30238, 13, 24455, 201, 198, 4299, 651, 62, 9186, 7, 67, 14188, 11, 1994, 2599, 201, 198, 220, 220, 220, 1441, 22155, 13, 1136, 7, 2539, 8, 201, 198, 7061, 6, 201, 198 ]
3.2
155
from .user_id import UserID from .channel_id import ChannelID from .enum_converter import EnumConverter from .boolean_converter import BooleanConverter from .colour_converter import ColourConverter from .filtered_user import FilteredUser, FilteredMember from .number_converter import NumberConverter
[ 6738, 764, 7220, 62, 312, 1330, 11787, 2389, 198, 6738, 764, 17620, 62, 312, 1330, 11102, 2389, 198, 6738, 764, 44709, 62, 1102, 332, 353, 1330, 2039, 388, 3103, 332, 353, 198, 6738, 764, 2127, 21052, 62, 1102, 332, 353, 1330, 41146, 3103, 332, 353, 198, 6738, 764, 49903, 62, 1102, 332, 353, 1330, 38773, 3103, 332, 353, 198, 6738, 764, 10379, 4400, 62, 7220, 1330, 7066, 4400, 12982, 11, 7066, 4400, 27608, 198, 6738, 764, 17618, 62, 1102, 332, 353, 1330, 7913, 3103, 332, 353, 198 ]
3.448276
87
import torch as t from torch import nn import math as m import torchvision.models as models import numpy as np import matplotlib.pyplot as plt import copy '''neural_net.py: Custom network object deriving from nn.Module to track the architecture ''' __author__ = "Luis Quinones" __email__ = "[email protected]" __status__ = "Prototype" class Neural_Network(nn.Module): ''' The neural network object sits a level above the classifier to store relevant properties and values. The classifier uses nn.LogSoftmax so use the negative log likelihood loss criterion nn.NLLLoss Args: inputs (int): The number of inputs. hidden_sizes (list of ints): The hidden layer sizes. outputs (int): The number of outputs. hidden_activation (str): The hidden layer activation functions (ex. relu, sigmoid, tahn). device (str): The gpu or the cpu. optimizer_name (str): The optimizer name ('sgd' or 'adam') to update the weights and gradients dropout (float): The dropout rate, value to randomly drop input units through training. learn_rate (float): The learning rate value, used along with the gradient to update the weights, small values ensure that the weight update steps are small enough. Attributes: inputs (int): This is where we store the input count, hidden_sizes (list of int): This is where we store the hidden layer sizes, outputs (int): This is where we store the output size, hidden_activation (str): This is where we store the hidden activation type, dropout (float): This is where we store the random input unit dropout rate, learn_rate (float): This is where we store the learn rate value, processing_device (str): This is where we store the device to calculate the results, linear_layers (list): This is where we store the values to sequentially build the classifier, model (torch.nn.module or torchvision model): Where either the generated classifier or the loaded model is stored, optimizer (torch.optim): This is where we store the optimizer used, criterior (torch.nn.module.loss): This is where we store the loss function type, device (str): This is where we store the device, epochs_completed (int): This is where we store how many total epochs of training this model has. ''' def generate_classifier(self): '''Generates the nn.module container Sequential classfier as the default for this class. Args: None. Raises: TODO: Update exceptions with error_handling class. Returns: None. ''' self.linear_layers = [] n = len(self.data) for i in range(n-1): self.linear_layers.append(nn.Linear(self.data[i],self.data[(i + 1) % n])) if i != n-2: if self.hidden_activation == 'relu': self.linear_layers.append(nn.ReLU()) elif self.hidden_activation == 'sigmoid': self.linear_layers.append(nn.Sigmoid()) elif self.hidden_activation == 'tanh': self.linear_layers.append(nn.Tanh()) self.linear_layers.append(nn.Dropout(self.dropout)) self.linear_layers.append(nn.LogSoftmax(dim = 1)) # expand the list into sequential args self.model = nn.Sequential(*self.linear_layers) def train_network(self, train_data, validation_data, epochs = 1, load_best_params = False, plot = False): '''Trains the model, requires the criterion and optimizer to be passed into the class args before hand. TODO: add exception handling for optimizer and criterion as None values. Args: train_data (torch.utils.data.dataloader.DataLoader): The training torch data loader. validation_data (torch.utils.data.dataloader.DataLoader): The validation torch data loader. epochs (int): The number of epochs for training. load_best_params (bool): If true then we will load the model_state_dict from the highest accuracy iteration plot (bool): If true we plot both losses. Raises: TODO: Add exceptions. Returns: None. ''' # move the model to whatever device we have self.model.to(self.device) # if we loaded the model in eval mode and want to train switch it if not self.model.training: self.model.train() iteration, running_loss = 0, 0 highest_accuracy, high_acc_iter, high_acc_epoch = 0, 0, 0 training_loss_set, validation_loss_set = [], [] best_params = None for epoch in range(epochs): batch_iteration = 0 for x, y_labels in train_data: # move to whatever device we have x, y_labels = x.to(self.device), y_labels.to(self.device) # zero out the gradients self.optimizer.zero_grad() # forward pass - get the log probabilities (logits / scores) output = self.model(x) # calculate the loss loss = self.criterion(output, y_labels) # backprop - calculate the gradients for the parameters loss.backward() # parameter update based on gradient self.optimizer.step() # update stats running_loss += loss.item() iteration += 1 batch_iteration += 1 else: # Validation Process validation_loss, accuracy = self.validate_network(validation_data) training_loss = running_loss/len(train_data) print('Model has a total of {} training epochs completed.'.format(self.epochs_completed)) print('Active session Epoch {} out of {}'.format(epoch + 1, epochs)) print('Currently model has Accuracy of {}% \nCurrent training loss is {} \ \nCurrent validation loss is {}'.format(accuracy, training_loss, validation_loss)) training_loss_set.append(training_loss) validation_loss_set.append(validation_loss) print('-------------') running_loss = 0 # Track best run if accuracy > highest_accuracy: highest_accuracy = accuracy high_acc_iter = batch_iteration high_acc_epoch = epoch + 1 if load_best_params: best_params = copy.deepcopy(self.model.state_dict()) # Set the model back to train mode, enable dropout again self.model.train() self.epochs_completed += 1 t_slope, v_slope = self.check_overfitting(training_loss_set, validation_loss_set, plot) print('Slope of linear reg training curve fit is {} \nSlope of linear reg Validation curve fit is {}'.format(t_slope, v_slope)) print('Training session highest accuracy was {} on epoch {} batch iteration {}'.format(highest_accuracy, high_acc_epoch, high_acc_iter)) if load_best_params: self.model.load_state_dict(best_params) print('Params from {} epoch, {} batch iteration were loaded'.format(high_acc_epoch, high_acc_iter)) def validate_network(self, data): '''Validate our model to check the loss and accuracy. Args: data (torch.utils.data.dataloader.DataLoader): The data we want to validate as torch data loader. Raises: TODO: Add exceptions. Returns: loss,accuracy (tuple): The loss and accuracy of the validation. ''' # enable eval mode, turn off dropout self.model.eval() # turn off the gradients since we are not updating params with t.no_grad(): batch_loss = 0 batch_accuracy = 0 # validation pass for x, y_labels in data: # move to device x, y_labels = x.to(self.device), y_labels.to(self.device) output = self.model(x) # update loss and extract tensor as python float batch_loss += self.criterion(output, y_labels).item() # calculate the probability probability = t.exp(output) # get the top n indexes and values _, top_class = probability.topk(1, dim=1) # reshape top class to match label and get binary value from equals, # check if the prediction matches label equals = top_class == y_labels.view(*top_class.shape) # have to convert byte tensor to float tensor and get accuracy batch_accuracy += t.mean(equals.type(t.FloatTensor)).item() test_accuracy = (batch_accuracy / len(data))*100 test_loss = batch_loss / len(data) return test_loss, test_accuracy def check_overfitting(self, train_losses, validation_losses, plot = False): '''Validate our model to check the loss and accuracy Args: train_losses (list of floats): The list of training losses per epoch. validation_losses (list of floats): The list of validation losses per epoch. plot (bool): If true we plot both losses. Raises: TODO: Add exceptions. Returns: slopes (tuple): The slopes of the linear reg curve fits for both validation/training. ''' # Data tl_x_val = np.arange(0, len(train_losses)) vl_x_val = np.arange(0, len(validation_losses)) # To numpy train_data = np.array([tl_x_val, train_losses]) validate_data = np.array([vl_x_val, validation_losses]) # Least squares polynomial fit. train_slope, train_intercept = np.polyfit(train_data[0], train_data[1], 1) validation_slope, validation_intercept = np.polyfit(validate_data[0], validate_data[1], 1) if plot: plt.plot(train_data[0], train_data[1], 'o', label='training loss') plt.plot(validate_data[0], validate_data[1], 'o', label='validation loss') plt.plot(train_data[0], train_intercept + train_slope*train_data[0], 'r', label='train_regg') plt.plot(validate_data[0], validation_intercept + validation_slope*validate_data[0], 'r', label='val_regg') plt.legend() plt.show() return train_slope, validation_slope def save_model_checkpoint(self, full_path, training_class_to_idx): '''Save the model checkpoint. Args: full_path (str): The full path to save the checkpoint to training_class_to_idx (dic of ints): This is where we store the dictionary mapping the name of the class to the index (label) Raises: TODO: Add exceptions Returns: None ''' net_data_dic = {'input_count': self.inputs, 'hidden_sizes': self.hidden_sizes, 'outputs': self.outputs, 'h_activation': self.hidden_activation, 'dropout': self.dropout, 'learn_rate': self.learn_rate, 'epochs_completed' : self.epochs_completed} checkpoint = {'data' : net_data_dic, 'model' : self.model, 'classifier' : self.model.classifier, 'optimizer.state_dict' : self.optimizer.state_dict(), 'state_dict' : self.model.state_dict(), 'device' : self.device, 'class_to_idx': training_class_to_idx} t.save (checkpoint, full_path)
[ 11748, 28034, 355, 256, 198, 6738, 28034, 1330, 299, 77, 198, 11748, 10688, 355, 285, 198, 11748, 28034, 10178, 13, 27530, 355, 4981, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 4866, 198, 198, 7061, 6, 710, 1523, 62, 3262, 13, 9078, 25, 8562, 3127, 2134, 4587, 1412, 422, 299, 77, 13, 26796, 284, 2610, 262, 10959, 705, 7061, 198, 834, 9800, 834, 796, 366, 25596, 271, 29338, 1952, 1, 198, 834, 12888, 834, 796, 366, 2290, 271, 31, 23855, 3628, 47635, 13, 785, 1, 198, 834, 13376, 834, 796, 366, 19703, 8690, 1, 198, 198, 4871, 47986, 62, 26245, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 383, 17019, 3127, 2134, 10718, 257, 1241, 2029, 262, 1398, 7483, 284, 198, 220, 220, 220, 3650, 5981, 6608, 290, 3815, 13, 383, 1398, 7483, 3544, 299, 77, 13, 11187, 18380, 9806, 523, 779, 262, 220, 198, 220, 220, 220, 4633, 2604, 14955, 2994, 34054, 299, 77, 13, 45, 3069, 43, 793, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 357, 600, 2599, 383, 1271, 286, 17311, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 82, 4340, 357, 4868, 286, 493, 82, 2599, 383, 7104, 7679, 10620, 13, 198, 220, 220, 220, 220, 220, 220, 220, 23862, 357, 600, 2599, 383, 1271, 286, 23862, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 48545, 357, 2536, 2599, 383, 7104, 7679, 14916, 5499, 357, 1069, 13, 823, 84, 11, 264, 17225, 1868, 11, 256, 15386, 737, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 2536, 2599, 383, 308, 19944, 393, 262, 42804, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 62, 3672, 357, 2536, 2599, 383, 6436, 7509, 1438, 19203, 82, 21287, 6, 393, 705, 324, 321, 11537, 284, 4296, 262, 19590, 290, 3915, 2334, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 357, 22468, 2599, 383, 4268, 448, 2494, 11, 1988, 284, 15456, 4268, 5128, 4991, 832, 3047, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2193, 62, 4873, 357, 22468, 2599, 383, 4673, 2494, 1988, 11, 973, 1863, 351, 262, 31312, 284, 4296, 262, 19590, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1402, 3815, 4155, 326, 262, 3463, 4296, 4831, 389, 1402, 1576, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 357, 600, 2599, 770, 318, 810, 356, 3650, 262, 5128, 954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 82, 4340, 357, 4868, 286, 493, 2599, 770, 318, 810, 356, 3650, 262, 7104, 7679, 10620, 11, 198, 220, 220, 220, 220, 220, 220, 220, 23862, 357, 600, 2599, 770, 318, 810, 356, 3650, 262, 5072, 2546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7104, 62, 48545, 357, 2536, 2599, 770, 318, 810, 356, 3650, 262, 7104, 14916, 2099, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 357, 22468, 2599, 770, 318, 810, 356, 3650, 262, 4738, 5128, 4326, 4268, 448, 2494, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2193, 62, 4873, 357, 22468, 2599, 770, 318, 810, 356, 3650, 262, 2193, 2494, 1988, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7587, 62, 25202, 357, 2536, 2599, 770, 318, 810, 356, 3650, 262, 3335, 284, 15284, 262, 2482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14174, 62, 75, 6962, 357, 4868, 2599, 770, 318, 810, 356, 3650, 262, 3815, 284, 4726, 3746, 1382, 262, 1398, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 13165, 354, 13, 20471, 13, 21412, 393, 28034, 10178, 2746, 2599, 6350, 2035, 262, 7560, 1398, 7483, 393, 262, 9639, 2746, 318, 8574, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 357, 13165, 354, 13, 40085, 2599, 770, 318, 810, 356, 3650, 262, 6436, 7509, 973, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1955, 263, 1504, 357, 13165, 354, 13, 20471, 13, 21412, 13, 22462, 2599, 770, 318, 810, 356, 3650, 262, 2994, 2163, 2099, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 357, 2536, 2599, 770, 318, 810, 356, 3650, 262, 3335, 11, 198, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 62, 785, 16838, 357, 600, 2599, 770, 318, 810, 356, 3650, 703, 867, 2472, 36835, 82, 286, 3047, 428, 2746, 468, 13, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 7716, 62, 4871, 7483, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 8645, 689, 262, 299, 77, 13, 21412, 9290, 24604, 1843, 1398, 69, 959, 355, 262, 4277, 329, 428, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 10133, 13269, 351, 4049, 62, 4993, 1359, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 18896, 7, 944, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 12, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 14993, 451, 7, 944, 13, 7890, 58, 72, 4357, 944, 13, 7890, 58, 7, 72, 1343, 352, 8, 4064, 299, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 14512, 299, 12, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 30342, 62, 48545, 6624, 705, 260, 2290, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 3041, 41596, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 30342, 62, 48545, 6624, 705, 82, 17225, 1868, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 50, 17225, 1868, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 30342, 62, 48545, 6624, 705, 38006, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 45557, 71, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 26932, 448, 7, 944, 13, 14781, 448, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 62, 75, 6962, 13, 33295, 7, 20471, 13, 11187, 18380, 9806, 7, 27740, 796, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4292, 262, 1351, 656, 35582, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 796, 299, 77, 13, 44015, 1843, 46491, 944, 13, 29127, 62, 75, 6962, 8, 628, 220, 220, 220, 825, 4512, 62, 27349, 7, 944, 11, 4512, 62, 7890, 11, 21201, 62, 7890, 11, 36835, 82, 796, 352, 11, 3440, 62, 13466, 62, 37266, 796, 10352, 11, 7110, 796, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 2898, 1299, 262, 2746, 11, 4433, 262, 34054, 290, 6436, 7509, 284, 307, 3804, 656, 262, 1398, 26498, 878, 1021, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 751, 6631, 9041, 329, 6436, 7509, 290, 34054, 355, 6045, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 357, 13165, 354, 13, 26791, 13, 7890, 13, 67, 10254, 1170, 263, 13, 6601, 17401, 2599, 383, 3047, 28034, 1366, 40213, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 357, 13165, 354, 13, 26791, 13, 7890, 13, 67, 10254, 1170, 263, 13, 6601, 17401, 2599, 383, 21201, 28034, 1366, 40213, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 357, 600, 2599, 383, 1271, 286, 36835, 82, 329, 3047, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 13466, 62, 37266, 357, 30388, 2599, 1002, 2081, 788, 356, 481, 3440, 262, 2746, 62, 5219, 62, 11600, 422, 262, 4511, 9922, 24415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 357, 30388, 2599, 1002, 2081, 356, 7110, 1111, 9089, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 3060, 13269, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1445, 262, 2746, 284, 4232, 3335, 356, 423, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 1462, 7, 944, 13, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 356, 9639, 262, 2746, 287, 5418, 4235, 290, 765, 284, 4512, 5078, 340, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 19849, 13, 34409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 27432, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 24415, 11, 2491, 62, 22462, 796, 657, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 4511, 62, 4134, 23843, 11, 1029, 62, 4134, 62, 2676, 11, 1029, 62, 4134, 62, 538, 5374, 796, 657, 11, 657, 11, 657, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22462, 62, 2617, 11, 21201, 62, 22462, 62, 2617, 796, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 37266, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 329, 36835, 287, 2837, 7, 538, 5374, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 2676, 341, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 11, 331, 62, 23912, 1424, 287, 4512, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1445, 284, 4232, 3335, 356, 423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 62, 23912, 1424, 796, 2124, 13, 1462, 7, 944, 13, 25202, 828, 331, 62, 23912, 1424, 13, 1462, 7, 944, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6632, 503, 262, 3915, 2334, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2651, 1208, 532, 651, 262, 2604, 39522, 357, 6404, 896, 1220, 8198, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 19849, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 262, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 2116, 13, 22213, 28019, 7, 22915, 11, 331, 62, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 736, 22930, 532, 15284, 262, 3915, 2334, 329, 262, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11507, 4296, 1912, 319, 31312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40085, 7509, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 9756, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 62, 22462, 15853, 2994, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24415, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 2676, 341, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3254, 24765, 10854, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 22462, 11, 9922, 796, 2116, 13, 12102, 378, 62, 27349, 7, 12102, 341, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22462, 796, 2491, 62, 22462, 14, 11925, 7, 27432, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 17633, 468, 257, 2472, 286, 23884, 3047, 36835, 82, 5668, 2637, 13, 18982, 7, 944, 13, 538, 5374, 82, 62, 785, 16838, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 13739, 6246, 4551, 5374, 23884, 503, 286, 23884, 4458, 18982, 7, 538, 5374, 1343, 352, 11, 36835, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 21327, 2746, 468, 33222, 286, 23884, 4, 3467, 77, 11297, 3047, 2994, 318, 23884, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3467, 77, 11297, 21201, 2994, 318, 23884, 4458, 18982, 7, 4134, 23843, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22462, 11, 21201, 62, 22462, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 22462, 62, 2617, 13, 33295, 7, 34409, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 22462, 62, 2617, 13, 33295, 7, 12102, 341, 62, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 32501, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2491, 62, 22462, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 17762, 1266, 1057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9922, 1875, 4511, 62, 4134, 23843, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4511, 62, 4134, 23843, 796, 9922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 4134, 62, 2676, 796, 15458, 62, 2676, 341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 4134, 62, 538, 5374, 796, 36835, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3440, 62, 13466, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 37266, 796, 4866, 13, 22089, 30073, 7, 944, 13, 19849, 13, 5219, 62, 11600, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 2746, 736, 284, 4512, 4235, 11, 7139, 4268, 448, 757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 27432, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 538, 5374, 82, 62, 785, 16838, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 256, 62, 6649, 3008, 11, 410, 62, 6649, 3008, 796, 2116, 13, 9122, 62, 2502, 32232, 7, 34409, 62, 22462, 62, 2617, 11, 21201, 62, 22462, 62, 2617, 11, 7110, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11122, 3008, 286, 14174, 842, 3047, 12133, 4197, 318, 23884, 3467, 77, 11122, 3008, 286, 14174, 842, 3254, 24765, 12133, 4197, 318, 23884, 4458, 18982, 7, 83, 62, 6649, 3008, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 6649, 3008, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 44357, 6246, 4511, 9922, 373, 23884, 319, 36835, 23884, 15458, 24415, 23884, 4458, 18982, 7, 35323, 62, 4134, 23843, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 4134, 62, 538, 5374, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 4134, 62, 2676, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3440, 62, 13466, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 2220, 62, 5219, 62, 11600, 7, 13466, 62, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 10044, 4105, 422, 23884, 36835, 11, 23884, 15458, 24415, 547, 9639, 4458, 18982, 7, 8929, 62, 4134, 62, 538, 5374, 11, 1029, 62, 4134, 62, 2676, 4008, 628, 220, 220, 220, 825, 26571, 62, 27349, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7762, 20540, 674, 2746, 284, 2198, 262, 2994, 290, 9922, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 357, 13165, 354, 13, 26791, 13, 7890, 13, 67, 10254, 1170, 263, 13, 6601, 17401, 2599, 383, 1366, 356, 765, 284, 26571, 355, 28034, 1366, 40213, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 3060, 13269, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 4134, 23843, 357, 83, 29291, 2599, 383, 2994, 290, 9922, 286, 262, 21201, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7139, 5418, 4235, 11, 1210, 572, 4268, 448, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 18206, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1210, 572, 262, 3915, 2334, 1201, 356, 389, 407, 19698, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 351, 256, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22462, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 4134, 23843, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 21201, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 11, 331, 62, 23912, 1424, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1445, 284, 3335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 62, 23912, 1424, 796, 2124, 13, 1462, 7, 944, 13, 25202, 828, 331, 62, 23912, 1424, 13, 1462, 7, 944, 13, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2116, 13, 19849, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 2994, 290, 7925, 11192, 273, 355, 21015, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 22462, 15853, 2116, 13, 22213, 28019, 7, 22915, 11, 331, 62, 23912, 1424, 737, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 262, 12867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12867, 796, 256, 13, 11201, 7, 22915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 1353, 299, 39199, 290, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 1353, 62, 4871, 796, 12867, 13, 4852, 74, 7, 16, 11, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27179, 1758, 1353, 1398, 284, 2872, 6167, 290, 651, 13934, 1988, 422, 21767, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 611, 262, 17724, 7466, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21767, 796, 1353, 62, 4871, 6624, 331, 62, 23912, 1424, 13, 1177, 46491, 4852, 62, 4871, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 423, 284, 10385, 18022, 11192, 273, 284, 12178, 11192, 273, 290, 651, 9922, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 4134, 23843, 15853, 256, 13, 32604, 7, 4853, 874, 13, 4906, 7, 83, 13, 43879, 51, 22854, 29720, 9186, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 4134, 23843, 796, 357, 43501, 62, 4134, 23843, 1220, 18896, 7, 7890, 4008, 9, 3064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 22462, 796, 15458, 62, 22462, 1220, 18896, 7, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1332, 62, 22462, 11, 1332, 62, 4134, 23843, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2198, 62, 2502, 32232, 7, 944, 11, 4512, 62, 22462, 274, 11, 21201, 62, 22462, 274, 11, 7110, 796, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 7762, 20540, 674, 2746, 284, 2198, 262, 2994, 290, 9922, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 22462, 274, 357, 4868, 286, 36016, 2599, 383, 1351, 286, 3047, 9089, 583, 36835, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 22462, 274, 357, 4868, 286, 36016, 2599, 383, 1351, 286, 21201, 9089, 583, 36835, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7110, 357, 30388, 2599, 1002, 2081, 356, 7110, 1111, 9089, 13, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 3060, 13269, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35082, 357, 83, 29291, 2599, 383, 35082, 286, 262, 14174, 842, 12133, 11414, 329, 1111, 21201, 14, 34409, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6060, 220, 198, 220, 220, 220, 220, 220, 220, 220, 256, 75, 62, 87, 62, 2100, 796, 45941, 13, 283, 858, 7, 15, 11, 18896, 7, 27432, 62, 22462, 274, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 410, 75, 62, 87, 62, 2100, 796, 45941, 13, 283, 858, 7, 15, 11, 18896, 7, 12102, 341, 62, 22462, 274, 4008, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 299, 32152, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 796, 45941, 13, 18747, 26933, 28781, 62, 87, 62, 2100, 11, 4512, 62, 22462, 274, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 7890, 796, 45941, 13, 18747, 26933, 19279, 62, 87, 62, 2100, 11, 21201, 62, 22462, 274, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1004, 459, 24438, 745, 6213, 49070, 4197, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 6649, 3008, 11, 4512, 62, 3849, 984, 796, 45941, 13, 35428, 11147, 7, 27432, 62, 7890, 58, 15, 4357, 4512, 62, 7890, 58, 16, 4357, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 6649, 3008, 11, 21201, 62, 3849, 984, 796, 45941, 13, 35428, 11147, 7, 12102, 378, 62, 7890, 58, 15, 4357, 26571, 62, 7890, 58, 16, 4357, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 27432, 62, 7890, 58, 15, 4357, 4512, 62, 7890, 58, 16, 4357, 705, 78, 3256, 6167, 11639, 34409, 2994, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 12102, 378, 62, 7890, 58, 15, 4357, 26571, 62, 7890, 58, 16, 4357, 705, 78, 3256, 6167, 11639, 12102, 341, 2994, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 27432, 62, 7890, 58, 15, 4357, 4512, 62, 3849, 984, 1343, 4512, 62, 6649, 3008, 9, 27432, 62, 7890, 58, 15, 4357, 705, 81, 3256, 6167, 11639, 27432, 62, 260, 1130, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 12102, 378, 62, 7890, 58, 15, 4357, 21201, 62, 3849, 984, 1343, 21201, 62, 6649, 3008, 9, 12102, 378, 62, 7890, 58, 15, 4357, 705, 81, 3256, 6167, 11639, 2100, 62, 260, 1130, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4512, 62, 6649, 3008, 11, 21201, 62, 6649, 3008, 628, 220, 220, 220, 825, 3613, 62, 19849, 62, 9122, 4122, 7, 944, 11, 1336, 62, 6978, 11, 3047, 62, 4871, 62, 1462, 62, 312, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 16928, 262, 2746, 26954, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 6978, 357, 2536, 2599, 383, 1336, 3108, 284, 3613, 262, 26954, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3047, 62, 4871, 62, 1462, 62, 312, 87, 357, 67, 291, 286, 493, 82, 2599, 770, 318, 810, 356, 3650, 262, 22155, 16855, 262, 1438, 286, 262, 1398, 284, 262, 6376, 357, 18242, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 3060, 13269, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 62, 7890, 62, 67, 291, 796, 1391, 6, 15414, 62, 9127, 10354, 2116, 13, 15414, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 82, 4340, 10354, 2116, 13, 30342, 62, 82, 4340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22915, 82, 10354, 2116, 13, 22915, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 71, 62, 48545, 10354, 2116, 13, 30342, 62, 48545, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14781, 448, 10354, 2116, 13, 14781, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35720, 62, 4873, 10354, 2116, 13, 35720, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 538, 5374, 82, 62, 785, 16838, 6, 1058, 2116, 13, 538, 5374, 82, 62, 785, 16838, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 796, 1391, 6, 7890, 6, 1058, 2010, 62, 7890, 62, 67, 291, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 6, 1058, 2116, 13, 19849, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 7483, 6, 1058, 2116, 13, 19849, 13, 4871, 7483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40085, 7509, 13, 5219, 62, 11600, 6, 1058, 2116, 13, 40085, 7509, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5219, 62, 11600, 6, 1058, 2116, 13, 19849, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 6, 1058, 2116, 13, 25202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 62, 1462, 62, 312, 87, 10354, 3047, 62, 4871, 62, 1462, 62, 312, 87, 92, 628, 220, 220, 220, 220, 220, 220, 220, 256, 13, 21928, 357, 9122, 4122, 11, 1336, 62, 6978, 8, 628, 198 ]
2.182765
5,663
import argparse import logging import os import unittest from keras.layers import recurrent import numpy as np from shcomplete.model2correct import Seq2seq, generate_model, get_chars, train_correct from shcomplete.model2correct import generator_misprints, dislpay_sample_correction if __name__ == '__main__': unittest.main()
[ 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 42465, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 427, 20751, 13, 19849, 17, 30283, 1330, 1001, 80, 17, 41068, 11, 7716, 62, 19849, 11, 651, 62, 354, 945, 11, 4512, 62, 30283, 198, 6738, 427, 20751, 13, 19849, 17, 30283, 1330, 17301, 62, 25413, 17190, 11, 19621, 15577, 62, 39873, 62, 10215, 8243, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.284314
102
import unittest from draftjs_exporter.error import ConfigException from draftjs_exporter.options import Options
[ 11748, 555, 715, 395, 198, 198, 6738, 4538, 8457, 62, 1069, 26634, 13, 18224, 1330, 17056, 16922, 198, 6738, 4538, 8457, 62, 1069, 26634, 13, 25811, 1330, 18634, 628 ]
3.931034
29
import unittest from zope.testing import doctest, module import zc.set if __name__ == '__main__': unittest.main(defaultTest='test_suite')
[ 11748, 555, 715, 395, 198, 198, 6738, 1976, 3008, 13, 33407, 1330, 10412, 395, 11, 8265, 198, 11748, 1976, 66, 13, 2617, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 12286, 14402, 11639, 9288, 62, 2385, 578, 11537, 198 ]
2.735849
53
import os import tarfile output = os.path.splitext(input)[0] try: os.makedirs(output) except OSError: if not os.path.exists(output): raise with tarfile.open(input, 'r') as tf: tf.extractall(output)
[ 11748, 28686, 198, 11748, 13422, 7753, 628, 198, 22915, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 15414, 38381, 15, 60, 198, 198, 28311, 25, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22915, 8, 198, 16341, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 198, 4480, 13422, 7753, 13, 9654, 7, 15414, 11, 705, 81, 11537, 355, 48700, 25, 198, 220, 220, 220, 48700, 13, 2302, 974, 439, 7, 22915, 8, 198 ]
2.265306
98
import enum import struct from .abstract import AbstractNode from .utils import ValuedNodeMixin, NodeContext
[ 11748, 33829, 198, 11748, 2878, 198, 198, 6738, 764, 397, 8709, 1330, 27741, 19667, 198, 6738, 764, 26791, 1330, 3254, 1739, 19667, 35608, 259, 11, 19081, 21947, 628, 628, 628, 628 ]
3.774194
31
from gevent import monkey monkey.patch_time() monkey.patch_socket() import abc import datetime import time from rx.concurrency.eventloopscheduler import EventLoopScheduler from rx.concurrency.historicalscheduler import HistoricalScheduler from rx.concurrency.mainloopscheduler import GEventScheduler from rx.concurrency.newthreadscheduler import NewThreadScheduler from algotrader.trading.event import MarketDataEventHandler from algotrader.utils.logging import logger from algotrader.utils.date import unixtimemillis_to_datetime from algotrader import Startable, HasId, Context
[ 6738, 4903, 1151, 1330, 21657, 198, 198, 49572, 13, 17147, 62, 2435, 3419, 198, 49572, 13, 17147, 62, 44971, 3419, 198, 198, 11748, 450, 66, 198, 11748, 4818, 8079, 198, 11748, 640, 198, 198, 6738, 374, 87, 13, 1102, 34415, 13, 15596, 26268, 1416, 704, 18173, 1330, 8558, 39516, 50, 1740, 18173, 198, 6738, 374, 87, 13, 1102, 34415, 13, 10034, 12409, 1416, 704, 18173, 1330, 23121, 50, 1740, 18173, 198, 6738, 374, 87, 13, 1102, 34415, 13, 12417, 26268, 1416, 704, 18173, 1330, 402, 9237, 50, 1740, 18173, 198, 6738, 374, 87, 13, 1102, 34415, 13, 3605, 16663, 1416, 704, 18173, 1330, 968, 16818, 50, 1740, 18173, 198, 198, 6738, 435, 23442, 81, 5067, 13, 2213, 4980, 13, 15596, 1330, 5991, 6601, 9237, 25060, 198, 6738, 435, 23442, 81, 5067, 13, 26791, 13, 6404, 2667, 1330, 49706, 198, 6738, 435, 23442, 81, 5067, 13, 26791, 13, 4475, 1330, 555, 6346, 320, 368, 359, 271, 62, 1462, 62, 19608, 8079, 198, 6738, 435, 23442, 81, 5067, 1330, 7253, 540, 11, 7875, 7390, 11, 30532, 628, 628, 628 ]
3.322034
177
# coding: utf-8 # Node class based on the book "Inteligencia Artificial - Fundamentos, práctica y aplicaciones" by Alberto García Serrano
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 19081, 1398, 1912, 319, 262, 1492, 366, 24123, 9324, 33743, 35941, 532, 7557, 3263, 418, 11, 778, 6557, 28914, 331, 257, 489, 291, 49443, 274, 1, 416, 40649, 16364, 29690, 2930, 35823 ]
3.341463
41
numero = int(input("Fatorial de: ") ) resultado=1 count=1 while count <= numero: resultado *= count count --1 print(resultado)
[ 22510, 3529, 796, 493, 7, 15414, 7203, 37, 21592, 390, 25, 366, 8, 1267, 198, 198, 20274, 4533, 28, 16, 198, 9127, 28, 16, 198, 198, 4514, 954, 19841, 997, 3529, 25, 198, 220, 220, 220, 1255, 4533, 1635, 28, 954, 198, 220, 220, 220, 954, 1377, 16, 198, 198, 4798, 7, 20274, 4533, 8, 198 ]
2.464286
56
import torch import os import torch.nn as nn import logging import time from sklearn.metrics import f1_score, classification_report, confusion_matrix from transformers import BertForSequenceClassification
[ 11748, 28034, 198, 11748, 28686, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 18931, 198, 11748, 640, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 277, 16, 62, 26675, 11, 17923, 62, 13116, 11, 10802, 62, 6759, 8609, 198, 6738, 6121, 364, 1330, 22108, 1890, 44015, 594, 9487, 2649, 628 ]
3.961538
52
import numpy as np from scipy import signal import matplotlib.pyplot as plt import cv2 numDem=500 numRep=500 numColumns=50 numRows=50 numGrid=numColumns*numRows windowSize=3 kernel=np.ones((windowSize,windowSize)) kernel[(windowSize-1)/2,(windowSize-1)/2]=0 numIter=100 valueThreshold=0.375*((windowSize**2)-1) #Slightly xenophilic, 37.5% corresponds to a threshold of 3 populationGrid=randomPopulationGrid() emptyHouses=np.asarray(np.asarray(np.where(populationGrid==0)).transpose()) print(np.shape(emptyHouses)) cv2.namedWindow('Population Grid') cv2.namedWindow('Dem Value Grid') cv2.namedWindow('Rep Value Grid') for iter in range(0,numIter): print("Iteration "+ str(iter)) populationGridOne=np.copy(populationGrid) populationGridOne[np.where(populationGridOne==-1)]=0 #Masking out opposition populationGridNegativeOne=np.copy(populationGrid) populationGridNegativeOne[np.where(populationGridNegativeOne==1)]=0 #Masking out opposition valueGridOne=signal.fftconvolve(populationGridOne, kernel, mode='same')#gives a map of the number of similar individuals -satisfaction valueGridNegativeOne=-1*signal.fftconvolve(populationGridNegativeOne, kernel, mode='same')#gives a map of the number of dissimilar individuals -satisfaction cv2.imshow('Dem Value Grid', (valueGridOne)/((windowSize**2)-1)) cv2.imshow('Rep Value Grid', (valueGridNegativeOne)/((windowSize**2)-1)) cv2.imshow('Population Grid', visualMap(populationGrid)) cv2.waitKey(1) repopulationGrid=populationGrid if((iter%10)==0): cv2.imwrite('iteration'+str(iter)+'.bmp', visualMap(populationGrid)*(2**8)) numSatisfied=0 for i in range(0,numRows): for j in range(0,numColumns): if(repopulationGrid[i,j]==1): valueGrid=valueGridOne if(repopulationGrid[i,j]==-1): valueGrid=valueGridNegativeOne if(repopulationGrid[i,j]==0 or valueGrid[i,j]>valueThreshold): numSatisfied+=1 continue numSatisfied+=1 emptyIndex=np.random.randint(0,numGrid-numDem-numRep) shiftIndex=emptyHouses[emptyIndex][:] repopulationGrid[i,j], repopulationGrid[shiftIndex[0],shiftIndex[1]]=repopulationGrid[shiftIndex[0],shiftIndex[1]], repopulationGrid[i,j] emptyHouses[0:-1,:]=np.append(emptyHouses[0:emptyIndex,:], emptyHouses[emptyIndex+1:,:], axis=0) emptyHouses[-1,:]=(np.array([i, j])) populationGrid=repopulationGrid cv2.imwrite('iteration99.bmp', visualMap(populationGrid)*(2**8)) cv2.waitKey() cv2.destroyAllWindows()
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 6737, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 269, 85, 17, 198, 198, 22510, 11522, 28, 4059, 198, 22510, 6207, 28, 4059, 198, 198, 22510, 39470, 82, 28, 1120, 198, 22510, 49, 1666, 28, 1120, 198, 198, 22510, 41339, 28, 22510, 39470, 82, 9, 22510, 49, 1666, 198, 198, 17497, 10699, 28, 18, 198, 198, 33885, 28, 37659, 13, 1952, 19510, 17497, 10699, 11, 17497, 10699, 4008, 198, 33885, 58, 7, 17497, 10699, 12, 16, 20679, 17, 11, 7, 17497, 10699, 12, 16, 20679, 17, 22241, 15, 198, 198, 22510, 29993, 28, 3064, 198, 198, 8367, 817, 10126, 28, 15, 13, 22318, 9, 19510, 17497, 10699, 1174, 17, 13219, 16, 8, 1303, 50, 30945, 27132, 2522, 41896, 11, 5214, 13, 20, 4, 24866, 284, 257, 11387, 286, 513, 198, 198, 39748, 41339, 28, 25120, 45251, 41339, 3419, 198, 28920, 39, 11370, 28, 37659, 13, 292, 18747, 7, 37659, 13, 292, 18747, 7, 37659, 13, 3003, 7, 39748, 41339, 855, 15, 29720, 7645, 3455, 28955, 198, 4798, 7, 37659, 13, 43358, 7, 28920, 39, 11370, 4008, 198, 198, 33967, 17, 13, 13190, 27703, 10786, 45251, 24846, 11537, 198, 33967, 17, 13, 13190, 27703, 10786, 11522, 11052, 24846, 11537, 198, 33967, 17, 13, 13190, 27703, 10786, 6207, 11052, 24846, 11537, 198, 198, 1640, 11629, 287, 2837, 7, 15, 11, 22510, 29993, 2599, 198, 197, 4798, 7203, 29993, 341, 43825, 965, 7, 2676, 4008, 628, 197, 39748, 41339, 3198, 28, 37659, 13, 30073, 7, 39748, 41339, 8, 198, 197, 39748, 41339, 3198, 58, 37659, 13, 3003, 7, 39748, 41339, 3198, 855, 12, 16, 15437, 28, 15, 197, 2, 44, 30463, 503, 5471, 198, 197, 198, 197, 39748, 41339, 32863, 876, 3198, 28, 37659, 13, 30073, 7, 39748, 41339, 8, 198, 197, 39748, 41339, 32863, 876, 3198, 58, 37659, 13, 3003, 7, 39748, 41339, 32863, 876, 3198, 855, 16, 15437, 28, 15, 197, 2, 44, 30463, 503, 5471, 628, 197, 8367, 41339, 3198, 28, 12683, 282, 13, 487, 83, 42946, 6442, 7, 39748, 41339, 3198, 11, 9720, 11, 4235, 11639, 31642, 11537, 2, 70, 1083, 257, 3975, 286, 262, 1271, 286, 2092, 3925, 532, 82, 17403, 2673, 198, 197, 8367, 41339, 32863, 876, 3198, 10779, 16, 9, 12683, 282, 13, 487, 83, 42946, 6442, 7, 39748, 41339, 32863, 876, 3198, 11, 9720, 11, 4235, 11639, 31642, 11537, 2, 70, 1083, 257, 3975, 286, 262, 1271, 286, 6249, 49941, 3925, 532, 82, 17403, 2673, 198, 197, 197, 198, 197, 33967, 17, 13, 320, 12860, 10786, 11522, 11052, 24846, 3256, 357, 8367, 41339, 3198, 20679, 19510, 17497, 10699, 1174, 17, 13219, 16, 4008, 198, 197, 33967, 17, 13, 320, 12860, 10786, 6207, 11052, 24846, 3256, 357, 8367, 41339, 32863, 876, 3198, 20679, 19510, 17497, 10699, 1174, 17, 13219, 16, 4008, 198, 197, 33967, 17, 13, 320, 12860, 10786, 45251, 24846, 3256, 5874, 13912, 7, 39748, 41339, 4008, 198, 197, 198, 197, 33967, 17, 13, 17077, 9218, 7, 16, 8, 628, 197, 7856, 404, 1741, 41339, 28, 39748, 41339, 628, 197, 361, 19510, 2676, 4, 940, 8, 855, 15, 2599, 198, 197, 197, 33967, 17, 13, 320, 13564, 10786, 2676, 341, 6, 10, 2536, 7, 2676, 47762, 4458, 65, 3149, 3256, 5874, 13912, 7, 39748, 41339, 27493, 7, 17, 1174, 23, 4008, 198, 197, 198, 197, 22510, 50, 17403, 798, 28, 15, 198, 197, 1640, 1312, 287, 2837, 7, 15, 11, 22510, 49, 1666, 2599, 198, 197, 197, 1640, 474, 287, 2837, 7, 15, 11, 22510, 39470, 82, 2599, 628, 197, 197, 197, 361, 7, 7856, 404, 1741, 41339, 58, 72, 11, 73, 60, 855, 16, 2599, 198, 197, 197, 197, 197, 8367, 41339, 28, 8367, 41339, 3198, 197, 198, 197, 197, 198, 197, 197, 197, 361, 7, 7856, 404, 1741, 41339, 58, 72, 11, 73, 60, 855, 12, 16, 2599, 198, 197, 197, 197, 197, 8367, 41339, 28, 8367, 41339, 32863, 876, 3198, 198, 197, 197, 197, 198, 197, 197, 197, 361, 7, 7856, 404, 1741, 41339, 58, 72, 11, 73, 60, 855, 15, 393, 1988, 41339, 58, 72, 11, 73, 60, 29, 8367, 817, 10126, 2599, 198, 197, 197, 197, 197, 22510, 50, 17403, 798, 47932, 16, 198, 197, 197, 197, 197, 43043, 628, 197, 197, 197, 22510, 50, 17403, 798, 47932, 16, 198, 197, 198, 197, 197, 197, 28920, 15732, 28, 37659, 13, 25120, 13, 25192, 600, 7, 15, 11, 22510, 41339, 12, 22510, 11522, 12, 22510, 6207, 8, 198, 197, 197, 197, 30846, 15732, 28, 28920, 39, 11370, 58, 28920, 15732, 7131, 47715, 628, 197, 197, 197, 7856, 404, 1741, 41339, 58, 72, 11, 73, 4357, 1128, 404, 1741, 41339, 58, 30846, 15732, 58, 15, 4357, 30846, 15732, 58, 16, 11907, 28, 7856, 404, 1741, 41339, 58, 30846, 15732, 58, 15, 4357, 30846, 15732, 58, 16, 60, 4357, 1128, 404, 1741, 41339, 58, 72, 11, 73, 60, 628, 197, 197, 197, 28920, 39, 11370, 58, 15, 21912, 16, 11, 25, 22241, 37659, 13, 33295, 7, 28920, 39, 11370, 58, 15, 25, 28920, 15732, 11, 25, 4357, 6565, 39, 11370, 58, 28920, 15732, 10, 16, 45299, 25, 4357, 16488, 28, 15, 8, 198, 197, 197, 197, 28920, 39, 11370, 58, 12, 16, 11, 47715, 16193, 37659, 13, 18747, 26933, 72, 11, 474, 60, 4008, 628, 197, 197, 197, 39748, 41339, 28, 7856, 404, 1741, 41339, 198, 198, 33967, 17, 13, 320, 13564, 10786, 2676, 341, 2079, 13, 65, 3149, 3256, 5874, 13912, 7, 39748, 41339, 27493, 7, 17, 1174, 23, 4008, 198, 198, 33967, 17, 13, 17077, 9218, 3419, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 198 ]
2.644468
931
#!/usr/bin/env python # -*- coding: utf-8 -*- # # download some test data to run example notebook # # Author: M. Giomi ([email protected]) import os from urllib.request import urlretrieve from shutil import unpack_archive
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 4321, 617, 1332, 1366, 284, 1057, 1672, 20922, 198, 2, 198, 2, 6434, 25, 337, 13, 8118, 12753, 357, 6759, 660, 78, 13, 12397, 12753, 31, 8906, 88, 13, 2934, 8, 198, 198, 11748, 28686, 198, 198, 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 1186, 30227, 198, 6738, 4423, 346, 1330, 555, 8002, 62, 17474, 628, 198 ]
2.72619
84
import plasma import plasmafx from plasmafx import plugins import time FPS = 60 NUM_LIGHTS = 10 plasma.set_light_count(10) sequence = plasmafx.Sequence(NUM_LIGHTS) for x in range(NUM_LIGHTS): sequence.set_plugin(x, plugins.FXCycle( speed=2, spread=5, offset=(360.0/NUM_LIGHTS) * x )) sequence.set_plugin(0, plugins.Pulse([ (0, 0, 0), (255, 0, 255) ])) sequence.set_plugin(1, plugins.Pulse([ (255, 0, 0), (0, 0, 255), (0, 0, 0) ], speed=0.5)) while True: values = sequence.get_leds() for index, rgb in enumerate(values): # print("Setting pixel: {} to {}:{}:{}".format(index, *rgb)) plasma.set_pixel(index, *rgb) plasma.show() time.sleep(1.0 / FPS)
[ 11748, 16074, 198, 11748, 458, 8597, 1878, 87, 198, 6738, 458, 8597, 1878, 87, 1330, 20652, 198, 11748, 640, 198, 198, 37, 3705, 796, 3126, 198, 41359, 62, 43, 34874, 796, 838, 198, 198, 489, 11797, 13, 2617, 62, 2971, 62, 9127, 7, 940, 8, 198, 198, 43167, 796, 458, 8597, 1878, 87, 13, 44015, 594, 7, 41359, 62, 43, 34874, 8, 198, 198, 1640, 2124, 287, 2837, 7, 41359, 62, 43, 34874, 2599, 198, 220, 220, 220, 8379, 13, 2617, 62, 33803, 7, 87, 11, 20652, 13, 17213, 20418, 2375, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2866, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4104, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11677, 16193, 15277, 13, 15, 14, 41359, 62, 43, 34874, 8, 1635, 2124, 198, 220, 220, 220, 15306, 198, 198, 43167, 13, 2617, 62, 33803, 7, 15, 11, 20652, 13, 47, 9615, 26933, 198, 197, 7, 15, 11, 657, 11, 657, 828, 198, 197, 7, 13381, 11, 657, 11, 14280, 8, 198, 60, 4008, 198, 198, 43167, 13, 2617, 62, 33803, 7, 16, 11, 20652, 13, 47, 9615, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 357, 13381, 11, 657, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 657, 11, 14280, 828, 198, 220, 220, 220, 220, 220, 220, 220, 357, 15, 11, 657, 11, 657, 8, 198, 4357, 2866, 28, 15, 13, 20, 4008, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 3815, 796, 8379, 13, 1136, 62, 992, 82, 3419, 628, 220, 220, 220, 329, 6376, 11, 46140, 287, 27056, 378, 7, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 34149, 17465, 25, 23884, 284, 23884, 29164, 92, 29164, 92, 1911, 18982, 7, 9630, 11, 1635, 81, 22296, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16074, 13, 2617, 62, 32515, 7, 9630, 11, 1635, 81, 22296, 8, 198, 220, 220, 220, 16074, 13, 12860, 3419, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 13, 15, 1220, 22082, 8, 198 ]
2.122507
351
# Copyright 2020 Akamai Technologies, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Conversions from strings returned by Athena to Python types. """ from __future__ import annotations import datetime as dt import json from abc import ABCMeta, abstractmethod from decimal import Decimal from typing import Dict, Generic, Iterable, List, Optional, Sequence, TypeVar from pallas._compat import numpy as np from pallas._compat import pandas as pd T_co = TypeVar("T_co", covariant=True) class Converter(Generic[T_co], metaclass=ABCMeta): """ Convert values returned by Athena to Python types. """ @property @abstractmethod def dtype(self) -> object: """Pandas dtype""" def read(self, value: Optional[str]) -> Optional[T_co]: """ Read value returned from Athena. Expect a string or ``None`` because optional strings are what Athena returns at its API and that is also what can be parsed from CSV stored in S3. """ if value is None: return None return self.read_str(value) @abstractmethod def read_str(self, value: str) -> T_co: """ Read value from string To be implemented in subclasses. """ def read_array( self, values: Iterable[Optional[str]], dtype: Optional[object] = None, ) -> object: # Pandas array """ Convert values returned from Athena to Pandas array. :param values: Iterable yielding strings and ``None`` :param dtype: optional Pandas dtype to force """ if dtype is None: dtype = self.dtype converted = [self.read(value) for value in values] return _pd_array(converted, dtype=dtype) class ArrayConverter(Converter[List[str]]): """ Parse string returned by Athena to a list. Array parsing has multiple limitations because of the serialization format that Athena uses: - Always returns a list of strings because Athena does not send more details about item types. - It is not possible to distinguish comma in values from an item separator. We assume that values do not contain the comma. - We are not able to distinguish an empty array and an array with one empty string. This converter returns an empty array in that case. """ @property class MapConverter(Converter[Dict[str, str]]): """ Convert string value returned from Athena to a dictionary. Map parsing has multiple limitations because of the serialization format that Athena uses: - Always returns a mapping from strings to strings because Athena does not send more details about item types. - It is not possible to distinguish a comma or an equal sign in values from control characters. We assume that values do not contain the comma or the equal sign. """ @property default_converter = TextConverter() CONVERTERS: Dict[str, Converter[object]] = { "boolean": BooleanConverter(), "tinyint": IntConverter(8), "smallint": IntConverter(16), "integer": IntConverter(32), "bigint": IntConverter(64), "float": FloatConverter(32), "double": FloatConverter(64), "decimal": DecimalConverter(), "date": DateConverter(), "timestamp": DateTimeConverter(), "varbinary": BinaryConverter(), "array": ArrayConverter(), "map": MapConverter(), "json": JSONConverter(), } def get_converter(column_type: str) -> Converter[object]: """ Return a converter for a column type. :param column_type: a column type as reported by Athena :return: a converter instance. """ return CONVERTERS.get(column_type, default_converter)
[ 2, 15069, 12131, 9084, 1689, 72, 21852, 11, 3457, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 198, 3103, 47178, 422, 13042, 4504, 416, 21341, 284, 11361, 3858, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 11748, 4818, 8079, 355, 288, 83, 198, 11748, 33918, 198, 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 198, 6738, 32465, 1330, 4280, 4402, 198, 6738, 19720, 1330, 360, 713, 11, 42044, 11, 40806, 540, 11, 7343, 11, 32233, 11, 45835, 11, 5994, 19852, 198, 198, 6738, 279, 7826, 13557, 5589, 265, 1330, 299, 32152, 355, 45941, 198, 6738, 279, 7826, 13557, 5589, 265, 1330, 19798, 292, 355, 279, 67, 198, 198, 51, 62, 1073, 796, 5994, 19852, 7203, 51, 62, 1073, 1600, 44829, 415, 28, 17821, 8, 628, 198, 198, 4871, 35602, 353, 7, 46189, 58, 51, 62, 1073, 4357, 1138, 330, 31172, 28, 24694, 48526, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 3815, 4504, 416, 21341, 284, 11361, 3858, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 288, 4906, 7, 944, 8, 4613, 2134, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47206, 292, 288, 4906, 37811, 628, 220, 220, 220, 825, 1100, 7, 944, 11, 1988, 25, 32233, 58, 2536, 12962, 4613, 32233, 58, 51, 62, 1073, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4149, 1988, 4504, 422, 21341, 13, 628, 220, 220, 220, 220, 220, 220, 220, 23600, 257, 4731, 393, 7559, 14202, 15506, 780, 11902, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 389, 644, 21341, 5860, 379, 663, 7824, 290, 326, 318, 635, 198, 220, 220, 220, 220, 220, 220, 220, 644, 460, 307, 44267, 422, 44189, 8574, 287, 311, 18, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 961, 62, 2536, 7, 8367, 8, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 1100, 62, 2536, 7, 944, 11, 1988, 25, 965, 8, 4613, 309, 62, 1073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4149, 1988, 422, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 1675, 307, 9177, 287, 850, 37724, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1100, 62, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 3815, 25, 40806, 540, 58, 30719, 58, 2536, 60, 4357, 288, 4906, 25, 32233, 58, 15252, 60, 796, 6045, 11, 198, 220, 220, 220, 1267, 4613, 2134, 25, 220, 1303, 16492, 292, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 3815, 4504, 422, 21341, 284, 16492, 292, 7177, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3815, 25, 40806, 540, 39127, 13042, 290, 7559, 14202, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 4906, 25, 11902, 16492, 292, 288, 4906, 284, 2700, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 2116, 13, 67, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 11513, 796, 685, 944, 13, 961, 7, 8367, 8, 329, 1988, 287, 3815, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 30094, 62, 18747, 7, 1102, 13658, 11, 288, 4906, 28, 67, 4906, 8, 628, 628, 628, 628, 628, 198, 4871, 15690, 3103, 332, 353, 7, 3103, 332, 353, 58, 8053, 58, 2536, 11907, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 325, 4731, 4504, 416, 21341, 284, 257, 1351, 13, 628, 220, 220, 220, 15690, 32096, 468, 3294, 11247, 780, 286, 262, 198, 220, 220, 220, 11389, 1634, 5794, 326, 21341, 3544, 25, 628, 220, 220, 220, 220, 532, 16622, 5860, 257, 1351, 286, 13042, 780, 21341, 857, 198, 220, 220, 220, 220, 220, 220, 407, 3758, 517, 3307, 546, 2378, 3858, 13, 198, 220, 220, 220, 220, 532, 632, 318, 407, 1744, 284, 15714, 39650, 287, 3815, 422, 198, 220, 220, 220, 220, 220, 220, 281, 2378, 2880, 1352, 13, 775, 7048, 326, 3815, 466, 407, 3994, 262, 39650, 13, 198, 220, 220, 220, 220, 532, 775, 389, 407, 1498, 284, 15714, 281, 6565, 7177, 198, 220, 220, 220, 220, 220, 220, 290, 281, 7177, 351, 530, 6565, 4731, 13, 198, 220, 220, 220, 220, 220, 220, 770, 38394, 5860, 281, 6565, 7177, 287, 326, 1339, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 198, 4871, 9347, 3103, 332, 353, 7, 3103, 332, 353, 58, 35, 713, 58, 2536, 11, 965, 11907, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38240, 4731, 1988, 4504, 422, 21341, 284, 257, 22155, 13, 628, 220, 220, 220, 9347, 32096, 468, 3294, 11247, 780, 286, 262, 198, 220, 220, 220, 11389, 1634, 5794, 326, 21341, 3544, 25, 628, 220, 220, 220, 532, 16622, 5860, 257, 16855, 422, 13042, 284, 13042, 780, 198, 220, 220, 220, 220, 220, 21341, 857, 407, 3758, 517, 3307, 546, 2378, 3858, 13, 198, 220, 220, 220, 532, 632, 318, 407, 1744, 284, 15714, 257, 39650, 393, 281, 4961, 1051, 198, 220, 220, 220, 220, 220, 287, 3815, 422, 1630, 3435, 13, 198, 220, 220, 220, 220, 220, 775, 7048, 326, 3815, 466, 407, 3994, 262, 39650, 393, 262, 4961, 1051, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 198, 198, 12286, 62, 1102, 332, 353, 796, 8255, 3103, 332, 353, 3419, 198, 198, 10943, 15858, 4877, 25, 360, 713, 58, 2536, 11, 35602, 353, 58, 15252, 11907, 796, 1391, 198, 220, 220, 220, 366, 2127, 21052, 1298, 41146, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 44152, 600, 1298, 2558, 3103, 332, 353, 7, 23, 828, 198, 220, 220, 220, 366, 17470, 600, 1298, 2558, 3103, 332, 353, 7, 1433, 828, 198, 220, 220, 220, 366, 41433, 1298, 2558, 3103, 332, 353, 7, 2624, 828, 198, 220, 220, 220, 366, 14261, 600, 1298, 2558, 3103, 332, 353, 7, 2414, 828, 198, 220, 220, 220, 366, 22468, 1298, 48436, 3103, 332, 353, 7, 2624, 828, 198, 220, 220, 220, 366, 23352, 1298, 48436, 3103, 332, 353, 7, 2414, 828, 198, 220, 220, 220, 366, 12501, 4402, 1298, 4280, 4402, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 4475, 1298, 7536, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 16514, 27823, 1298, 7536, 7575, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 7785, 39491, 1298, 45755, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 18747, 1298, 15690, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 8899, 1298, 9347, 3103, 332, 353, 22784, 198, 220, 220, 220, 366, 17752, 1298, 19449, 3103, 332, 353, 22784, 198, 92, 628, 198, 4299, 651, 62, 1102, 332, 353, 7, 28665, 62, 4906, 25, 965, 8, 4613, 35602, 353, 58, 15252, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 38394, 329, 257, 5721, 2099, 13, 628, 220, 220, 220, 1058, 17143, 5721, 62, 4906, 25, 257, 5721, 2099, 355, 2098, 416, 21341, 198, 220, 220, 220, 1058, 7783, 25, 257, 38394, 4554, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 7102, 15858, 4877, 13, 1136, 7, 28665, 62, 4906, 11, 4277, 62, 1102, 332, 353, 8, 198 ]
2.950729
1,441
load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
[ 2220, 7203, 31, 65, 41319, 62, 31391, 1003, 31391, 14, 11249, 62, 4299, 82, 14, 260, 7501, 25, 26791, 13, 65, 48274, 1600, 366, 25991, 4943, 198, 2220, 7203, 31, 65, 41319, 62, 31391, 1003, 31391, 14, 11249, 62, 4299, 82, 14, 260, 7501, 25, 4023, 13, 65, 48274, 1600, 366, 4023, 62, 17474, 4943, 198 ]
2.357143
56
url = r"onlinelibrary.wiley.com/journal/{ID}/(?P<ISSN>\(ISSN\)[\d-]*)" extractor_args = dict(restrict_text=[r"author\s*guidelines"]) template = ( "https://onlinelibrary.wiley.com/page/journal/{ID}/{ISSN}/homepage/forauthors.html" )
[ 6371, 796, 374, 1, 261, 2815, 417, 4115, 13, 86, 9618, 13, 785, 14, 24891, 14, 90, 2389, 92, 29006, 30, 47, 27, 1797, 15571, 29, 59, 7, 1797, 15571, 22725, 58, 59, 67, 12, 60, 9, 16725, 198, 2302, 40450, 62, 22046, 796, 8633, 7, 2118, 2012, 62, 5239, 41888, 81, 1, 9800, 59, 82, 9, 5162, 7984, 8973, 8, 198, 28243, 796, 357, 198, 220, 220, 220, 366, 5450, 1378, 261, 2815, 417, 4115, 13, 86, 9618, 13, 785, 14, 7700, 14, 24891, 14, 90, 2389, 92, 14, 90, 1797, 15571, 92, 14, 11195, 7700, 14, 1640, 41617, 13, 6494, 1, 198, 8, 198 ]
2.226415
106
import json from flask import Flask, request, jsonify, make_response from flask_restful import Api, Resource, reqparse from simplexml import dumps from estimator import estimator app = Flask(__name__) api = Api(app, default_mediatype=None) @api.representation('application/json') def output_xml(data, code, headers=None): """Make a Flask response with a XML encoded body""" resp = make_response(dumps({'response': data}), code) resp.headers.extend(headers or {}) return resp @app.after_request api.add_resource(Covid19EstimatorApi, '/api/v1/on-covid-19') api.add_resource(Covid19EstimatorApi, '/api/v1/on-covid-19/json', resource_class_kwargs={'representations': {'application/json': output_json}}, endpoint='covid19_estimator_api_json' ) api.add_resource(Covid19EstimatorApi, '/api/v1/on-covid-19/xml', resource_class_kwargs={'representations': {'application/xml': output_xml}}, endpoint='covid19_estimator_api_xml' ) app.run(debug=True)
[ 11748, 33918, 198, 6738, 42903, 1330, 46947, 11, 2581, 11, 33918, 1958, 11, 787, 62, 26209, 198, 6738, 42903, 62, 2118, 913, 1330, 5949, 72, 11, 20857, 11, 43089, 29572, 198, 6738, 2829, 19875, 1330, 45514, 198, 6738, 3959, 1352, 1330, 3959, 1352, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 15042, 796, 5949, 72, 7, 1324, 11, 4277, 62, 2379, 265, 2981, 28, 14202, 8, 198, 198, 31, 15042, 13, 15603, 341, 10786, 31438, 14, 17752, 11537, 198, 198, 4299, 5072, 62, 19875, 7, 7890, 11, 2438, 11, 24697, 28, 14202, 2599, 198, 220, 220, 220, 37227, 12050, 257, 46947, 2882, 351, 257, 23735, 30240, 1767, 37811, 198, 220, 220, 220, 1217, 796, 787, 62, 26209, 7, 67, 8142, 15090, 6, 26209, 10354, 1366, 92, 828, 2438, 8, 198, 220, 220, 220, 1217, 13, 50145, 13, 2302, 437, 7, 50145, 393, 23884, 8, 628, 220, 220, 220, 1441, 1217, 198, 198, 31, 1324, 13, 8499, 62, 25927, 198, 198, 15042, 13, 2860, 62, 31092, 7, 34, 709, 312, 1129, 22362, 320, 1352, 32, 14415, 11, 31051, 15042, 14, 85, 16, 14, 261, 12, 66, 709, 312, 12, 1129, 11537, 198, 15042, 13, 2860, 62, 31092, 7, 34, 709, 312, 1129, 22362, 320, 1352, 32, 14415, 11, 31051, 15042, 14, 85, 16, 14, 261, 12, 66, 709, 312, 12, 1129, 14, 17752, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8271, 62, 4871, 62, 46265, 22046, 34758, 6, 15603, 602, 10354, 1391, 6, 31438, 14, 17752, 10354, 5072, 62, 17752, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 11639, 66, 709, 312, 1129, 62, 395, 320, 1352, 62, 15042, 62, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 15042, 13, 2860, 62, 31092, 7, 34, 709, 312, 1129, 22362, 320, 1352, 32, 14415, 11, 31051, 15042, 14, 85, 16, 14, 261, 12, 66, 709, 312, 12, 1129, 14, 19875, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8271, 62, 4871, 62, 46265, 22046, 34758, 6, 15603, 602, 10354, 1391, 6, 31438, 14, 19875, 10354, 5072, 62, 19875, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36123, 11639, 66, 709, 312, 1129, 62, 395, 320, 1352, 62, 15042, 62, 19875, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 1324, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.157895
532
import torch import torch.nn as nn import torch.nn.functional as F import sys from .layers import PixelShuffle_ICNR
[ 201, 198, 11748, 28034, 201, 198, 11748, 28034, 13, 20471, 355, 299, 77, 201, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 201, 198, 11748, 25064, 201, 198, 6738, 764, 75, 6962, 1330, 11349, 2484, 18137, 62, 2149, 24723, 220, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.421053
57
import os import pandas as pd df = pd.read_csv( "{}/practice-pandas/data/test-participant.csv".format(os.getcwd()), sep=',', engine='python', verbose=True) df_grouped = df.groupby("GENRE_CODE").count() df_sorted = df_grouped["ID"].sort_values(ascending=False) # Top 1000. print(df_sorted.head(1000)) """ GENRE_CODE Blue 14 Green 10 Yellow 8 Red 8 White 4 Orange 3 Black 3 Violet 2 Pink 2 Gray 2 YellowGreen 1 SkyBlue 1 Purple 1 Brown 1 Name: ID, dtype: int64 """ print("Info : Finished.")
[ 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 198, 220, 220, 220, 45144, 92, 14, 39541, 12, 79, 392, 292, 14, 7890, 14, 9288, 12, 48013, 415, 13, 40664, 1911, 18982, 7, 418, 13, 1136, 66, 16993, 3419, 828, 41767, 28, 3256, 3256, 3113, 11639, 29412, 3256, 15942, 577, 28, 17821, 8, 198, 198, 7568, 62, 8094, 276, 796, 47764, 13, 8094, 1525, 7203, 35353, 2200, 62, 34, 16820, 11074, 9127, 3419, 198, 7568, 62, 82, 9741, 796, 47764, 62, 8094, 276, 14692, 2389, 1, 4083, 30619, 62, 27160, 7, 3372, 1571, 28, 25101, 8, 198, 198, 2, 5849, 8576, 13, 198, 4798, 7, 7568, 62, 82, 9741, 13, 2256, 7, 12825, 4008, 198, 198, 37811, 198, 35353, 2200, 62, 34, 16820, 198, 14573, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1478, 198, 13719, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 198, 39499, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 198, 7738, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 807, 198, 12256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 604, 198, 40141, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 198, 9915, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 198, 53, 19194, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 198, 41912, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 198, 46130, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 198, 39499, 13719, 220, 220, 220, 220, 352, 198, 22308, 14573, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 30026, 1154, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 20644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 198, 5376, 25, 4522, 11, 288, 4906, 25, 493, 2414, 198, 37811, 198, 198, 4798, 7203, 12360, 220, 220, 220, 1058, 42931, 19570, 198 ]
1.886567
335
from vietocr.tool.translate import build_model, translate, translate_beam_search, process_input, predict from vietocr.tool.utils import download_weights from vietocr.tool.config import Cfg import sys import os import cv2 import numpy as np import math import pandas as pd import torch import time from cropper import Cropper from detector import Detector from format_info import format_information ###multi threading #from threading import Thread if __name__ == "__main__": cropper = Cropper() detector = Detector() reader = Reader() type_img = ['jpg', 'png'] image_folder = 'test_images/' images = os.listdir(image_folder) for image_file in images: if image_file[-3:] in type_img: start = time.time() path = image_folder + image_file image = cv2.imread(path) H, W = image.shape[:2] image_resized = cv2.resize(image, (416, int(416 * H/W))) cv2.imshow("raw_image", image_resized) dictInformationText = dict() dictInformationImage = dict() return_code, aligned_image = cropper.crop_and_align_image(image) #print('cropper: ', time.time() - start) tmp = 0 if return_code == 0: for c in detector.classes: dictInformationText[c] = 'N/A' print (dictInformationText) elif return_code == 2: tmp = 1 index = 0 aligned_image = image while(index < 4): dictInformationImage = detector.detect_information(aligned_image) keys = dictInformationImage.keys() if 'id' in keys and 'ho_ten' in keys and 'ngay_sinh' in keys: tmp = 2 break else: aligned_image = cv2.rotate(aligned_image, cv2.cv2.ROTATE_90_CLOCKWISE) index+=1 if tmp == 0: dictInformationImage = detector.detect_information(aligned_image) if tmp == 1: for c in detector.classes: dictInformationText[c] = 'N/A' print(dictInformationText) #print('detector: ', time.time() - start) for key in dictInformationImage.keys(): dictInformationText[key] = reader.read_information(dictInformationImage[key]) #cv2.imwrite('images_uploaded/' + dictInformationText['id'] + '.jpg', image) output_dict = format_information(dictInformationText) print('Time processing: ', time.time() - start) for key in output_dict.keys(): info = key + ': ' + output_dict[key] print(info) #print(output_dict) cv2.waitKey() cv2.destroyAllWindows()
[ 6738, 410, 1155, 1696, 13, 25981, 13, 7645, 17660, 1330, 1382, 62, 19849, 11, 15772, 11, 15772, 62, 40045, 62, 12947, 11, 1429, 62, 15414, 11, 4331, 198, 6738, 410, 1155, 1696, 13, 25981, 13, 26791, 1330, 4321, 62, 43775, 198, 6738, 410, 1155, 1696, 13, 25981, 13, 11250, 1330, 327, 40616, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 198, 11748, 640, 198, 6738, 6763, 2848, 1330, 9325, 2848, 198, 6738, 31029, 1330, 4614, 9250, 198, 6738, 5794, 62, 10951, 1330, 5794, 62, 17018, 198, 21017, 41684, 4704, 278, 198, 2, 6738, 4704, 278, 1330, 14122, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6763, 2848, 796, 9325, 2848, 3419, 198, 220, 220, 220, 31029, 796, 4614, 9250, 3419, 198, 220, 220, 220, 9173, 796, 25342, 3419, 198, 220, 220, 220, 2099, 62, 9600, 796, 37250, 9479, 3256, 705, 11134, 20520, 198, 220, 220, 220, 2939, 62, 43551, 796, 705, 9288, 62, 17566, 14, 6, 198, 220, 220, 220, 4263, 796, 28686, 13, 4868, 15908, 7, 9060, 62, 43551, 8, 198, 220, 220, 220, 329, 2939, 62, 7753, 287, 4263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 62, 7753, 58, 12, 18, 47715, 287, 2099, 62, 9600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 2939, 62, 43551, 1343, 2939, 62, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 320, 961, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 367, 11, 370, 796, 2939, 13, 43358, 58, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 411, 1143, 796, 269, 85, 17, 13, 411, 1096, 7, 9060, 11, 357, 35218, 11, 493, 7, 35218, 1635, 367, 14, 54, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 7203, 1831, 62, 9060, 1600, 2939, 62, 411, 1143, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 8206, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 5159, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 8189, 11, 19874, 62, 9060, 796, 6763, 2848, 13, 31476, 62, 392, 62, 31494, 62, 9060, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 19915, 2848, 25, 46083, 640, 13, 2435, 3419, 532, 923, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 8189, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 31029, 13, 37724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 8206, 58, 66, 60, 796, 705, 45, 14, 32, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 11600, 21918, 8206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1441, 62, 8189, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19874, 62, 9060, 796, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 7, 9630, 1279, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 5159, 796, 31029, 13, 15255, 478, 62, 17018, 7, 41634, 62, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 8633, 21918, 5159, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 8251, 290, 705, 8873, 62, 1452, 6, 287, 8251, 290, 705, 782, 323, 62, 31369, 71, 6, 287, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19874, 62, 9060, 796, 269, 85, 17, 13, 10599, 378, 7, 41634, 62, 9060, 11, 269, 85, 17, 13, 33967, 17, 13, 49, 2394, 6158, 62, 3829, 62, 5097, 11290, 54, 24352, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45218, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 5159, 796, 31029, 13, 15255, 478, 62, 17018, 7, 41634, 62, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45218, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 31029, 13, 37724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 8206, 58, 66, 60, 796, 705, 45, 14, 32, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 11600, 21918, 8206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 15255, 9250, 25, 46083, 640, 13, 2435, 3419, 532, 923, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 8633, 21918, 5159, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 21918, 8206, 58, 2539, 60, 796, 9173, 13, 961, 62, 17018, 7, 11600, 21918, 5159, 58, 2539, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 33967, 17, 13, 320, 13564, 10786, 17566, 62, 25850, 276, 14, 6, 1343, 8633, 21918, 8206, 17816, 312, 20520, 1343, 45302, 9479, 3256, 2939, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 11600, 796, 5794, 62, 17018, 7, 11600, 21918, 8206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 7575, 7587, 25, 46083, 640, 13, 2435, 3419, 532, 923, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 5072, 62, 11600, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 1994, 1343, 705, 25, 705, 1343, 5072, 62, 11600, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7, 22915, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 3419, 198, 220, 220, 220, 269, 85, 17, 13, 41659, 3237, 11209, 3419 ]
2.052817
1,420
a= 30 a //= 2 print(a)
[ 64, 28, 1542, 201, 198, 64, 3373, 28, 362, 201, 198, 4798, 7, 64, 8, 201, 198 ]
1.529412
17
##script used to combine multiple files into a matrix import os, sys import pandas as pd import numpy as np sum_matrix = open(sys.argv[1]+"_binary.matrix.txt","w") # open with pandas df = pd.read_csv(sys.argv[1], sep='\t', index_col = 0) #get first line as title list col_list= list(df.columns.values) print (col_list) #title_list = start_inp.readline() #turn column to array, get each column and add their unique categorical value to make a title list final_list = [] for i in range(0,len(col_list)): print (i) colname= col_list[i] print(colname) dfx= df.as_matrix([df.columns[i]]) dfx_un= np.unique(dfx) for j in dfx_un: if str(j) == 'nan': pass else: string= str(df.columns[i]) + "."+str(j) if string not in final_list: final_list.append(string) print (final_list) final_str = "\t".join(str(j) for j in final_list) sum_matrix.write("gene\t%s\n" % (final_str)) start_inp = open(sys.argv[1], "r") #categorical matrix #loop through directory for each file to add input D={} add_data_to_dict(start_inp,D) print(D) y = len(final_list) for gene in D: feature_list= [] for i in range(y): feature_list.append(0) #feature_list= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] #print(feature_list) data_list= D[gene] for data in data_list: for xx in final_list: ind= final_list.index(xx) x1= xx.split(".")[0] #print (x1) x2= xx.split(".")[1] #print (x2) for x in col_list: if x1 == x: if x2 == data: feature_list[ind] = 1 elif data == 'NA': feature_list[ind] = 'NA' #print (feature_list) feat_str= "\t".join(str(k) for k in feature_list) sum_matrix.write("%s\t%s\n" % (gene, feat_str)) sum_matrix.close()
[ 2235, 12048, 973, 284, 12082, 3294, 3696, 656, 257, 17593, 198, 11748, 28686, 11, 25064, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 628, 198, 16345, 62, 6759, 8609, 796, 1280, 7, 17597, 13, 853, 85, 58, 16, 48688, 1, 62, 39491, 13, 6759, 8609, 13, 14116, 2430, 86, 4943, 198, 2, 1280, 351, 19798, 292, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 17597, 13, 853, 85, 58, 16, 4357, 41767, 11639, 59, 83, 3256, 6376, 62, 4033, 796, 657, 8, 198, 198, 2, 1136, 717, 1627, 355, 3670, 1351, 198, 4033, 62, 4868, 28, 1351, 7, 7568, 13, 28665, 82, 13, 27160, 8, 198, 4798, 357, 4033, 62, 4868, 8, 198, 2, 7839, 62, 4868, 796, 923, 62, 259, 79, 13, 961, 1370, 3419, 198, 198, 2, 15344, 5721, 284, 7177, 11, 651, 1123, 5721, 290, 751, 511, 3748, 4253, 12409, 1988, 284, 787, 257, 3670, 1351, 198, 20311, 62, 4868, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 15, 11, 11925, 7, 4033, 62, 4868, 8, 2599, 198, 220, 220, 220, 3601, 357, 72, 8, 198, 220, 220, 220, 951, 3672, 28, 951, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 3601, 7, 4033, 3672, 8, 198, 220, 220, 220, 288, 21373, 28, 47764, 13, 292, 62, 6759, 8609, 26933, 7568, 13, 28665, 82, 58, 72, 11907, 8, 198, 220, 220, 220, 288, 21373, 62, 403, 28, 45941, 13, 34642, 7, 48753, 8, 198, 220, 220, 220, 329, 474, 287, 288, 21373, 62, 403, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 73, 8, 6624, 705, 12647, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 28, 965, 7, 7568, 13, 28665, 82, 58, 72, 12962, 1343, 366, 526, 10, 2536, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4731, 407, 287, 2457, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 4868, 13, 33295, 7, 8841, 8, 198, 4798, 357, 20311, 62, 4868, 8, 198, 20311, 62, 2536, 796, 37082, 83, 1911, 22179, 7, 2536, 7, 73, 8, 329, 474, 287, 2457, 62, 4868, 8, 198, 16345, 62, 6759, 8609, 13, 13564, 7203, 70, 1734, 59, 83, 4, 82, 59, 77, 1, 4064, 357, 20311, 62, 2536, 4008, 198, 198, 9688, 62, 259, 79, 796, 1280, 7, 17597, 13, 853, 85, 58, 16, 4357, 366, 81, 4943, 1303, 66, 2397, 12409, 17593, 198, 2, 26268, 832, 8619, 329, 1123, 2393, 284, 751, 5128, 198, 35, 34758, 92, 198, 198, 2860, 62, 7890, 62, 1462, 62, 11600, 7, 9688, 62, 259, 79, 11, 35, 8, 198, 4798, 7, 35, 8, 198, 88, 796, 18896, 7, 20311, 62, 4868, 8, 198, 1640, 9779, 287, 360, 25, 198, 220, 220, 220, 3895, 62, 4868, 28, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 88, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 4868, 13, 33295, 7, 15, 8, 198, 220, 220, 220, 1303, 30053, 62, 4868, 28, 685, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 11, 15, 60, 198, 220, 220, 220, 1303, 4798, 7, 30053, 62, 4868, 8, 198, 220, 220, 220, 1366, 62, 4868, 28, 360, 58, 70, 1734, 60, 198, 220, 220, 220, 329, 1366, 287, 1366, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 31383, 287, 2457, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 773, 28, 2457, 62, 4868, 13, 9630, 7, 5324, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 16, 28, 31383, 13, 35312, 7203, 19570, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 87, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 17, 28, 31383, 13, 35312, 7203, 19570, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 357, 87, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 951, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 16, 6624, 2124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 17, 6624, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 4868, 58, 521, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1366, 6624, 705, 4535, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 4868, 58, 521, 60, 796, 705, 4535, 6, 198, 220, 220, 220, 1303, 4798, 357, 30053, 62, 4868, 8, 198, 220, 220, 220, 2218, 62, 2536, 28, 37082, 83, 1911, 22179, 7, 2536, 7, 74, 8, 329, 479, 287, 3895, 62, 4868, 8, 198, 220, 220, 220, 2160, 62, 6759, 8609, 13, 13564, 7203, 4, 82, 59, 83, 4, 82, 59, 77, 1, 4064, 357, 70, 1734, 11, 2218, 62, 2536, 4008, 198, 198, 16345, 62, 6759, 8609, 13, 19836, 3419 ]
1.983385
963
from django.urls import path from .views import index, TodoDetailView from django.conf import settings urlpatterns = [ path('', index), path('edit/<int:pk>', TodoDetailView.as_view()), path('delete/<int:pk>', TodoDetailView.as_view()), ] react_routes = getattr(settings, 'REACT_ROUTES', []) for route in react_routes: urlpatterns += [ path('{}'.format(route), index) ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 764, 33571, 1330, 6376, 11, 309, 24313, 11242, 603, 7680, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 6376, 828, 198, 220, 220, 220, 3108, 10786, 19312, 14, 27, 600, 25, 79, 74, 29, 3256, 309, 24313, 11242, 603, 7680, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 33678, 14, 27, 600, 25, 79, 74, 29, 3256, 309, 24313, 11242, 603, 7680, 13, 292, 62, 1177, 3419, 828, 198, 60, 628, 198, 198, 45018, 62, 81, 448, 274, 796, 651, 35226, 7, 33692, 11, 705, 2200, 10659, 62, 49, 12425, 1546, 3256, 685, 12962, 198, 198, 1640, 6339, 287, 6324, 62, 81, 448, 274, 25, 198, 220, 220, 220, 19016, 33279, 82, 15853, 685, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 10786, 90, 92, 4458, 18982, 7, 38629, 828, 6376, 8, 198, 220, 220, 220, 2361, 628, 198 ]
2.39645
169
#!/usr/bin/python # # Copyright (c) 2017, United States Government, as represented by the # Administrator of the National Aeronautics and Space Administration. # # All rights reserved. # # The Astrobee platform is licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Generates a groundtruth map for a given input bagfile. The groundtruth map creation process merges images from the input bagfile with an existing map. This is the first step for groundtruth creation, where once a groundtruth map is created for a bagfile the bagfile can then be localized using the groundtruth map to generate groundtruth poses. """ import argparse import os import shutil import sys import utilities if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("bagfile", help="Input bagfile to generate groundtruth for.") parser.add_argument( "base_surf_map", help="Existing map to use as basis for groundtruth. Should largely overlap area covered in input bagfile.", ) parser.add_argument( "maps_directory", help="Location of images used for each bagfile use to generate base_surf_map.", ) parser.add_argument( "-o", "--output-directory", default="groundtruth_creation_output" ) parser.add_argument("-w", "--world", default="iss") parser.add_argument("-r", "--robot-name", default="bumble") parser.add_argument("-m", "--map-name", default="groundtruth") args = parser.parse_args() if not os.path.isfile(args.bagfile): print("Bag file " + args.bagfile + " does not exist.") sys.exit() if not os.path.isfile(args.base_surf_map): print("Base surf map " + args.base_surf_map + " does not exist.") sys.exit() if not os.path.isdir(args.maps_directory): print("Maps directory " + args.maps_directory + " does not exist.") sys.exit() if os.path.isdir(args.output_directory): print("Output directory " + args.output_directory + " already exists.") sys.exit() bagfile = os.path.abspath(args.bagfile) base_surf_map = os.path.abspath(args.base_surf_map) maps_directory = os.path.abspath(args.maps_directory) os.mkdir(args.output_directory) os.chdir(args.output_directory) create_groundtruth( bagfile, base_surf_map, maps_directory, args.map_name, args.world, args.robot_name, )
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 11, 1578, 1829, 5070, 11, 355, 7997, 416, 262, 198, 2, 22998, 286, 262, 2351, 15781, 261, 2306, 873, 290, 4687, 8694, 13, 198, 2, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 383, 35167, 20963, 3859, 318, 11971, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 198, 2, 13789, 13, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 37811, 198, 8645, 689, 257, 2323, 35310, 3975, 329, 257, 1813, 5128, 6131, 7753, 13, 383, 2323, 35310, 3975, 198, 38793, 1429, 4017, 3212, 4263, 422, 262, 5128, 6131, 7753, 351, 281, 4683, 3975, 13, 220, 220, 198, 1212, 318, 262, 717, 2239, 329, 2323, 35310, 6282, 11, 810, 1752, 257, 2323, 35310, 3975, 220, 198, 271, 2727, 329, 257, 6131, 7753, 262, 6131, 7753, 460, 788, 307, 36618, 1262, 262, 2323, 35310, 198, 8899, 284, 7716, 2323, 35310, 17313, 13, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 198, 11748, 20081, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 834, 15390, 834, 11, 1296, 1436, 62, 4871, 28, 853, 29572, 13, 27369, 11828, 22087, 8479, 1436, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 21454, 7753, 1600, 1037, 2625, 20560, 6131, 7753, 284, 7716, 2323, 35310, 329, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8692, 62, 11793, 69, 62, 8899, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3109, 9665, 3975, 284, 779, 355, 4308, 329, 2323, 35310, 13, 220, 10358, 5688, 21721, 1989, 5017, 287, 5128, 6131, 7753, 33283, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 31803, 62, 34945, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 14749, 286, 4263, 973, 329, 1123, 6131, 7753, 779, 284, 7716, 2779, 62, 11793, 69, 62, 8899, 33283, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 78, 1600, 366, 438, 22915, 12, 34945, 1600, 4277, 2625, 2833, 35310, 62, 38793, 62, 22915, 1, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 86, 1600, 366, 438, 6894, 1600, 4277, 2625, 747, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 366, 438, 305, 13645, 12, 3672, 1600, 4277, 2625, 4435, 903, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 12, 76, 1600, 366, 438, 8899, 12, 3672, 1600, 4277, 2625, 2833, 35310, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 22046, 13, 21454, 7753, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33, 363, 2393, 366, 1343, 26498, 13, 21454, 7753, 1343, 366, 857, 407, 2152, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 22046, 13, 8692, 62, 11793, 69, 62, 8899, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 14881, 9053, 3975, 366, 1343, 26498, 13, 8692, 62, 11793, 69, 62, 8899, 1343, 366, 857, 407, 2152, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 22046, 13, 31803, 62, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 47010, 8619, 366, 1343, 26498, 13, 31803, 62, 34945, 1343, 366, 857, 407, 2152, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 22046, 13, 22915, 62, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 26410, 8619, 366, 1343, 26498, 13, 22915, 62, 34945, 1343, 366, 1541, 7160, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 6131, 7753, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 21454, 7753, 8, 198, 220, 220, 220, 2779, 62, 11793, 69, 62, 8899, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 8692, 62, 11793, 69, 62, 8899, 8, 198, 220, 220, 220, 8739, 62, 34945, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 22046, 13, 31803, 62, 34945, 8, 628, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22046, 13, 22915, 62, 34945, 8, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 22046, 13, 22915, 62, 34945, 8, 628, 220, 220, 220, 2251, 62, 2833, 35310, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6131, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 11793, 69, 62, 8899, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8739, 62, 34945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 8899, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 6894, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 305, 13645, 62, 3672, 11, 198, 220, 220, 220, 1267, 198 ]
2.885906
1,043
from datetime import timedelta from flask import request, current_app from flask_jwt_extended import jwt_required, create_access_token, get_jwt_identity from marshmallow.exceptions import ValidationError from sqlalchemy import or_ from app.api.utils import success_response, error_response, get_items_per_page, get_request_page from app.api.v1.main import api_v1 from app.api.models import User from app.api.v1.user.serializer import user_schema, users_schema from app.ext.db import db @api_v1.route('/users', methods=['GET']) @jwt_required @api_v1.route('/users', methods=['POST']) @api_v1.route('/auth/login', methods=['POST'])
[ 6738, 4818, 8079, 1330, 28805, 12514, 198, 198, 6738, 42903, 1330, 2581, 11, 1459, 62, 1324, 198, 6738, 42903, 62, 73, 46569, 62, 2302, 1631, 1330, 474, 46569, 62, 35827, 11, 2251, 62, 15526, 62, 30001, 11, 651, 62, 73, 46569, 62, 738, 414, 198, 6738, 22397, 42725, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 44161, 282, 26599, 1330, 393, 62, 198, 198, 6738, 598, 13, 15042, 13, 26791, 1330, 1943, 62, 26209, 11, 4049, 62, 26209, 11, 651, 62, 23814, 62, 525, 62, 7700, 11, 651, 62, 25927, 62, 7700, 198, 6738, 598, 13, 15042, 13, 85, 16, 13, 12417, 1330, 40391, 62, 85, 16, 198, 6738, 598, 13, 15042, 13, 27530, 1330, 11787, 198, 6738, 598, 13, 15042, 13, 85, 16, 13, 7220, 13, 46911, 7509, 1330, 2836, 62, 15952, 2611, 11, 2985, 62, 15952, 2611, 198, 6738, 598, 13, 2302, 13, 9945, 1330, 20613, 198, 198, 31, 15042, 62, 85, 16, 13, 38629, 10786, 14, 18417, 3256, 5050, 28, 17816, 18851, 6, 12962, 198, 31, 73, 46569, 62, 35827, 198, 198, 31, 15042, 62, 85, 16, 13, 38629, 10786, 14, 18417, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 15042, 62, 85, 16, 13, 38629, 10786, 14, 18439, 14, 38235, 3256, 5050, 28, 17816, 32782, 6, 12962 ]
2.96729
214
import os import torch import warnings warnings.filterwarnings('ignore') from hpbandster.core.worker import Worker from nes.ensemble_selection.create_baselearners import create_baselearner
[ 11748, 28686, 198, 11748, 28034, 198, 11748, 14601, 198, 40539, 654, 13, 24455, 40539, 654, 10786, 46430, 11537, 198, 198, 6738, 27673, 3903, 1706, 13, 7295, 13, 28816, 1330, 35412, 198, 6738, 299, 274, 13, 1072, 11306, 62, 49283, 13, 17953, 62, 8692, 35720, 364, 1330, 2251, 62, 8692, 3238, 1008, 628, 628 ]
3.641509
53
import tkinter from tkinter import ttk mainclass()
[ 11748, 256, 74, 3849, 201, 198, 6738, 256, 74, 3849, 1330, 256, 30488, 201, 198, 201, 198, 201, 198, 201, 198, 12417, 4871, 3419, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198 ]
1.772727
44
#!/usr/bin/env python3 from math import sqrt # init conds x = [15, 15, f(15, 15)] lamb = 2 xold = [99, 99, f(99, 99)] while dist(xold, x) > 0.5 and lamb >= 0.0001: print("x:", x) print("xold", xold) xnew = grad(*x) xnew = [x[0] - lamb * xnew[0], x[1] - lamb * xnew[1], 0] xnew[2] = f(xnew[0], xnew[1]) print("xnew:", xnew) if (f(x[0], x[1]) > f(xnew[0], xnew[1])): lamb *= 2 else: lamb /= 2 xold = x.copy() x = xnew.copy() print("result:", x)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 10688, 1330, 19862, 17034, 628, 628, 198, 198, 2, 2315, 1779, 82, 198, 87, 796, 685, 1314, 11, 1315, 11, 277, 7, 1314, 11, 1315, 15437, 198, 2543, 65, 796, 362, 198, 198, 87, 727, 796, 685, 2079, 11, 7388, 11, 277, 7, 2079, 11, 7388, 15437, 198, 4514, 1233, 7, 87, 727, 11, 2124, 8, 1875, 657, 13, 20, 290, 19343, 18189, 657, 13, 18005, 25, 198, 220, 220, 220, 3601, 7203, 87, 25, 1600, 2124, 8, 198, 220, 220, 220, 3601, 7203, 87, 727, 1600, 2124, 727, 8, 198, 220, 220, 220, 2124, 3605, 796, 3915, 46491, 87, 8, 198, 220, 220, 220, 2124, 3605, 796, 685, 87, 58, 15, 60, 532, 19343, 1635, 2124, 3605, 58, 15, 4357, 2124, 58, 16, 60, 532, 19343, 1635, 2124, 3605, 58, 16, 4357, 657, 60, 198, 220, 220, 220, 2124, 3605, 58, 17, 60, 796, 277, 7, 87, 3605, 58, 15, 4357, 2124, 3605, 58, 16, 12962, 198, 220, 220, 220, 3601, 7203, 87, 3605, 25, 1600, 2124, 3605, 8, 628, 220, 220, 220, 611, 357, 69, 7, 87, 58, 15, 4357, 2124, 58, 16, 12962, 1875, 277, 7, 87, 3605, 58, 15, 4357, 2124, 3605, 58, 16, 12962, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 1635, 28, 362, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 1220, 28, 362, 628, 220, 220, 220, 2124, 727, 796, 2124, 13, 30073, 3419, 198, 220, 220, 220, 2124, 796, 2124, 3605, 13, 30073, 3419, 198, 198, 4798, 7203, 20274, 25, 1600, 2124, 8, 198 ]
1.857664
274
# coding=utf-8 """ Definition of models. """ from django.contrib.auth.models import User from django.db import models from django.urls import reverse
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 36621, 286, 4981, 13, 198, 37811, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 628, 628, 198 ]
3.208333
48
from PyQt5.QtCore import Qt from PyQt5.QtWidgets import (QSlider, QStyleOptionSlider, QStyle) import time
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 33734, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 357, 48, 11122, 1304, 11, 1195, 21466, 19722, 11122, 1304, 11, 1195, 21466, 8, 198, 11748, 640, 628 ]
2.547619
42
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from .. import _utilities, _tables __all__ = [ 'ConfigurationAggregatorAccountAggregationSourceArgs', 'ConfigurationAggregatorOrganizationAggregationSourceArgs', 'ConformancePackInputParameterArgs', 'DeliveryChannelSnapshotDeliveryPropertiesArgs', 'RecorderRecordingGroupArgs', 'RemediationConfigurationParameterArgs', 'RuleScopeArgs', 'RuleSourceArgs', 'RuleSourceSourceDetailArgs', ] @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type @pulumi.input_type
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 17202, 39410, 25, 428, 2393, 373, 7560, 416, 262, 21624, 12994, 24118, 687, 10290, 357, 27110, 5235, 8, 16984, 13, 17202, 198, 2, 17202, 2141, 407, 4370, 416, 1021, 4556, 345, 821, 1728, 345, 760, 644, 345, 389, 1804, 0, 17202, 198, 198, 11748, 14601, 198, 11748, 17472, 12994, 198, 11748, 17472, 12994, 13, 43282, 198, 6738, 19720, 1330, 4377, 11, 337, 5912, 11, 32233, 11, 45835, 11, 4479, 198, 6738, 11485, 1330, 4808, 315, 2410, 11, 4808, 83, 2977, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 38149, 46384, 2301, 1352, 30116, 46384, 43068, 7416, 42035, 3256, 198, 220, 220, 220, 705, 38149, 46384, 2301, 1352, 26121, 1634, 46384, 43068, 7416, 42035, 3256, 198, 220, 220, 220, 705, 3103, 10367, 11869, 20560, 36301, 42035, 3256, 198, 220, 220, 220, 705, 33129, 29239, 43826, 9442, 33129, 2964, 18200, 42035, 3256, 198, 220, 220, 220, 705, 6690, 2875, 6690, 1284, 13247, 42035, 3256, 198, 220, 220, 220, 705, 8413, 276, 3920, 38149, 36301, 42035, 3256, 198, 220, 220, 220, 705, 31929, 43642, 42035, 3256, 198, 220, 220, 220, 705, 31929, 7416, 42035, 3256, 198, 220, 220, 220, 705, 31929, 7416, 7416, 11242, 603, 42035, 3256, 198, 60, 198, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198, 31, 79, 377, 12994, 13, 15414, 62, 4906, 628, 198 ]
3.03
300
from django import forms from django.utils.translation import gettext_lazy as _ from rusel.base.forms import BaseCreateForm, BaseEditForm from rusel.widgets import DateInput, Select, NumberInput, UrlsInput from task.const import NUM_ROLE_SERVICE, APART_SERVICE from task.models import Task from apart.config import app_config role = 'price' #---------------------------------- #----------------------------------
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 7422, 741, 13, 8692, 13, 23914, 1330, 7308, 16447, 8479, 11, 7308, 18378, 8479, 198, 6738, 7422, 741, 13, 28029, 11407, 1330, 7536, 20560, 11, 9683, 11, 7913, 20560, 11, 8799, 7278, 20560, 198, 6738, 4876, 13, 9979, 1330, 36871, 62, 13252, 2538, 62, 35009, 27389, 11, 3486, 7227, 62, 35009, 27389, 198, 6738, 4876, 13, 27530, 1330, 15941, 198, 6738, 5475, 13, 11250, 1330, 598, 62, 11250, 198, 198, 18090, 796, 705, 20888, 6, 198, 198, 2, 3880, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 3880, 438, 198 ]
3.601695
118
import sensor, time, image # Reset sensor sensor.reset() # Sensor settings sensor.set_contrast(1) sensor.set_gainceiling(16) sensor.set_framesize(sensor.QCIF) sensor.set_pixformat(sensor.GRAYSCALE) # Load Haar Cascade # By default this will use all stages, lower satges is faster but less accurate. face_cascade = image.HaarCascade("frontalface", stages=16) print(face_cascade) # FPS clock clock = time.clock() while (True): clock.tick() # Capture snapshot img = sensor.snapshot() # Find objects. # Note: Lower scale factor scales-down the image more and detects smaller objects. # Higher threshold results in a higher detection rate, with more false positives. objects = img.find_features(face_cascade, threshold=0.65, scale=1.65) # Draw objects for r in objects: img.draw_rectangle(r) if (len(objects)): # Add a small delay to see the drawing on the FB time.sleep(100) # Print FPS. # Note: Actual FPS is higher, streaming the FB makes it slower. print(clock.fps())
[ 11748, 12694, 11, 640, 11, 2939, 198, 198, 2, 30027, 12694, 198, 82, 22854, 13, 42503, 3419, 198, 198, 2, 35367, 6460, 198, 82, 22854, 13, 2617, 62, 3642, 5685, 7, 16, 8, 198, 82, 22854, 13, 2617, 62, 48544, 344, 4386, 7, 1433, 8, 198, 82, 22854, 13, 2617, 62, 37805, 1096, 7, 82, 22854, 13, 48, 34, 5064, 8, 198, 82, 22854, 13, 2617, 62, 79, 844, 18982, 7, 82, 22854, 13, 38, 30631, 6173, 21358, 8, 198, 198, 2, 8778, 9398, 283, 48788, 198, 2, 2750, 4277, 428, 481, 779, 477, 9539, 11, 2793, 3332, 3212, 318, 5443, 475, 1342, 7187, 13, 198, 2550, 62, 66, 28966, 796, 2939, 13, 23303, 283, 34, 28966, 7203, 8534, 1604, 558, 1600, 9539, 28, 1433, 8, 198, 4798, 7, 2550, 62, 66, 28966, 8, 198, 198, 2, 22082, 8801, 198, 15750, 796, 640, 13, 15750, 3419, 198, 198, 4514, 357, 17821, 2599, 198, 220, 220, 220, 8801, 13, 42298, 3419, 628, 220, 220, 220, 1303, 31793, 27479, 198, 220, 220, 220, 33705, 796, 12694, 13, 45380, 9442, 3419, 628, 220, 220, 220, 1303, 9938, 5563, 13, 198, 220, 220, 220, 1303, 5740, 25, 16048, 5046, 5766, 16252, 12, 2902, 262, 2939, 517, 290, 39382, 4833, 5563, 13, 198, 220, 220, 220, 1303, 16038, 11387, 2482, 287, 257, 2440, 13326, 2494, 11, 351, 517, 3991, 38548, 13, 198, 220, 220, 220, 5563, 796, 33705, 13, 19796, 62, 40890, 7, 2550, 62, 66, 28966, 11, 11387, 28, 15, 13, 2996, 11, 5046, 28, 16, 13, 2996, 8, 628, 220, 220, 220, 1303, 15315, 5563, 198, 220, 220, 220, 329, 374, 287, 5563, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 13, 19334, 62, 2554, 9248, 7, 81, 8, 628, 220, 220, 220, 611, 357, 11925, 7, 48205, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 257, 1402, 5711, 284, 766, 262, 8263, 319, 262, 13186, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 3064, 8, 628, 220, 220, 220, 1303, 12578, 22082, 13, 198, 220, 220, 220, 1303, 5740, 25, 33520, 22082, 318, 2440, 11, 11305, 262, 13186, 1838, 340, 13611, 13, 198, 220, 220, 220, 3601, 7, 15750, 13, 29647, 28955, 198 ]
2.838275
371
from rti_python.Ensemble.Ensemble import Ensemble import logging class InstrumentVelocity: """ Instrument Velocity DataSet. [Bin x Beam] data. """ def decode(self, data): """ Take the data bytearray. Decode the data to populate the velocities. :param data: Bytearray for the dataset. """ packetpointer = Ensemble.GetBaseDataSize(self.name_len) for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): self.Velocities[bin_num][beam] = Ensemble.GetFloat(packetpointer, Ensemble().BytesInFloat, data) packetpointer += Ensemble().BytesInFloat logging.debug(self.Velocities) def encode(self): """ Encode the data into RTB format. :return: """ result = [] # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Add the data for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): val = self.Velocities[bin_num][beam] result += Ensemble.float_to_bytes(val) return result def encode_csv(self, dt, ss_code, ss_config, blank, bin_size): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or First bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): # Get the value val = self.Velocities[bin_num][beam] # Create the CSV string str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_INSTR_VEL, ss_code, ss_config, bin_num, beam, blank, bin_size, val)) return str_result
[ 6738, 374, 20259, 62, 29412, 13, 4834, 15140, 13, 4834, 15140, 1330, 2039, 15140, 201, 198, 11748, 18931, 201, 198, 201, 198, 4871, 42410, 46261, 11683, 25, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 42410, 43137, 6060, 7248, 13, 201, 198, 220, 220, 220, 685, 33, 259, 2124, 25855, 60, 1366, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 825, 36899, 7, 944, 11, 1366, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7214, 262, 1366, 416, 83, 451, 2433, 13, 220, 4280, 1098, 262, 1366, 284, 48040, 201, 198, 220, 220, 220, 220, 220, 220, 220, 262, 11555, 420, 871, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1366, 25, 2750, 83, 451, 2433, 329, 262, 27039, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 19638, 29536, 796, 2039, 15140, 13, 3855, 14881, 6601, 10699, 7, 944, 13, 3672, 62, 11925, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15584, 287, 2837, 7, 944, 13, 30854, 62, 47945, 959, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9874, 62, 22510, 287, 2837, 7, 944, 13, 22510, 62, 68, 3639, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46261, 420, 871, 58, 8800, 62, 22510, 7131, 40045, 60, 796, 2039, 15140, 13, 3855, 43879, 7, 8002, 316, 29536, 11, 2039, 15140, 22446, 45992, 818, 43879, 11, 1366, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19638, 29536, 15853, 2039, 15140, 22446, 45992, 818, 43879, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 24442, 7, 944, 13, 46261, 420, 871, 8, 201, 198, 201, 198, 220, 220, 220, 825, 37773, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2039, 8189, 262, 1366, 656, 11923, 33, 5794, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 17635, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 13639, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 2039, 15140, 13, 8612, 378, 62, 25677, 7, 944, 13, 9310, 62, 4906, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 68, 3639, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30854, 62, 47945, 959, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9060, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 11925, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5376, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 1366, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15584, 287, 2837, 7, 944, 13, 30854, 62, 47945, 959, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9874, 62, 22510, 287, 2837, 7, 944, 13, 22510, 62, 68, 3639, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 2116, 13, 46261, 420, 871, 58, 8800, 62, 22510, 7131, 40045, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 2039, 15140, 13, 22468, 62, 1462, 62, 33661, 7, 2100, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 201, 198, 201, 198, 220, 220, 220, 825, 37773, 62, 40664, 7, 944, 11, 288, 83, 11, 37786, 62, 8189, 11, 37786, 62, 11250, 11, 9178, 11, 9874, 62, 7857, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2039, 8189, 656, 44189, 5794, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 288, 83, 25, 16092, 8079, 2134, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 37786, 62, 8189, 25, 3834, 10057, 2438, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 37786, 62, 11250, 25, 3834, 10057, 28373, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9178, 25, 31990, 393, 3274, 9874, 2292, 287, 10700, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9874, 62, 7857, 25, 20828, 2546, 287, 10700, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7343, 286, 44189, 3951, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 965, 62, 20274, 796, 17635, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 15584, 287, 2837, 7, 944, 13, 30854, 62, 47945, 959, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9874, 62, 22510, 287, 2837, 7, 944, 13, 22510, 62, 68, 3639, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 1988, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 2116, 13, 46261, 420, 871, 58, 8800, 62, 22510, 7131, 40045, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 44189, 4731, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 62, 20274, 13, 33295, 7, 4834, 15140, 13, 5235, 62, 40664, 62, 1370, 7, 28664, 11, 2039, 15140, 13, 7902, 53, 62, 1268, 18601, 62, 18697, 11, 37786, 62, 8189, 11, 37786, 62, 11250, 11, 9874, 62, 22510, 11, 15584, 11, 9178, 11, 9874, 62, 7857, 11, 1188, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 965, 62, 20274, 201, 198, 201, 198 ]
1.936637
1,231
from django.core.management.base import BaseCommand, CommandError from odds.domain.models.manager.betTypeManager import BetTypeManager from odds.domain.models.bet import Bet from odds.domain.models.sureBet import SureBet from odds.domain.models.manager.SureBetManager import SureBetManager from odds.domain.models.event import Event
[ 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 11, 9455, 12331, 198, 198, 6738, 10402, 13, 27830, 13, 27530, 13, 37153, 13, 11181, 6030, 13511, 1330, 5147, 6030, 13511, 198, 6738, 10402, 13, 27830, 13, 27530, 13, 11181, 1330, 5147, 198, 6738, 10402, 13, 27830, 13, 27530, 13, 19532, 13056, 1330, 10889, 13056, 198, 6738, 10402, 13, 27830, 13, 27530, 13, 37153, 13, 19457, 13056, 13511, 1330, 10889, 13056, 13511, 198, 6738, 10402, 13, 27830, 13, 27530, 13, 15596, 1330, 8558, 628 ]
3.895349
86
# -*- coding: utf-8 -*- # flake8: noqa """ Defintion of the campaign and datasets for 2016 legacy rereco data. """ import order as od from analysis.config.processes import * # campaign campaign_name = "Run2_pp_13TeV_Legacy16" campaign = od.Campaign( campaign_name, 2, ecm=13, bx=25, ) # datasets dataset_data_B_ee = od.Dataset( "data_B_ee", 1, campaign=campaign, is_data=True, n_files=922, keys=["/DoubleEG/Run2016B-17Jul2018_ver2-v1/MINIAOD"], context=campaign_name, ) dataset_data_C_ee = od.Dataset( "data_C_ee", 2, campaign=campaign, is_data=True, n_files=427, keys=["/DoubleEG/Run2016C-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_D_ee = od.Dataset( "data_D_ee", 3, campaign=campaign, is_data=True, n_files=471, keys=["/DoubleEG/Run2016D-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_E_ee = od.Dataset( "data_E_ee", 4, campaign=campaign, is_data=True, n_files=375, keys=["/DoubleEG/Run2016E-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_F_ee = od.Dataset( "data_F_ee", 5, campaign=campaign, is_data=True, n_files=309, keys=["/DoubleEG/Run2016F-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_G_ee = od.Dataset( "data_G_ee", 6, campaign=campaign, is_data=True, n_files=715, keys=["/DoubleEG/Run2016G-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_H_ee = od.Dataset( "data_H_ee", 7, campaign=campaign, is_data=True, n_files=736, keys=["/DoubleEG/Run2016H-17Jul2018-v1/MINIAOD"], context=campaign_name, ) datasets_data_ee = [ dataset_data_B_ee, dataset_data_C_ee, dataset_data_D_ee, dataset_data_E_ee, dataset_data_F_ee, dataset_data_G_ee, dataset_data_H_ee ] dataset_data_B_emu = od.Dataset( "data_B_emu", 11, campaign=campaign, is_data=True, n_files=249, keys=["/MuonEG/Run2016B-17Jul2018_ver2-v1/MINIAOD"], context=campaign_name, ) dataset_data_C_emu = od.Dataset( "data_C_emu", 12, campaign=campaign, is_data=True, n_files=112, keys=["/MuonEG/Run2016C-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_D_emu = od.Dataset( "data_D_emu", 13, campaign=campaign, is_data=True, n_files=192, keys=["/MuonEG/Run2016D-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_E_emu = od.Dataset( "data_E_emu", 14, campaign=campaign, is_data=True, n_files=209, keys=["/MuonEG/Run2016E-17Jul2018-v2/MINIAOD"], context=campaign_name, ) dataset_data_F_emu = od.Dataset( "data_F_emu", 15, campaign=campaign, is_data=True, n_files=159, keys=["/MuonEG/Run2016F-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_G_emu = od.Dataset( "data_G_emu", 16, campaign=campaign, is_data=True, n_files=302, keys=["/MuonEG/Run2016G-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_H_emu = od.Dataset( "data_H_emu", 17, campaign=campaign, is_data=True, n_files=267, keys=["/MuonEG/Run2016H-17Jul2018-v1/MINIAOD"], context=campaign_name, ) datasets_data_emu = [ dataset_data_B_emu, dataset_data_C_emu, dataset_data_D_emu, dataset_data_E_emu, dataset_data_F_emu, dataset_data_G_emu, dataset_data_H_emu ] dataset_data_B_mumu = od.Dataset( "data_B_mumu", 21, campaign=campaign, is_data=True, n_files=451, keys=["/DoubleMuon/Run2016B-17Jul2018_ver2-v1/MINIAOD"], context=campaign_name, ) dataset_data_C_mumu = od.Dataset( "data_C_mumu", 22, campaign=campaign, is_data=True, n_files=203, keys=["/DoubleMuon/Run2016C-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_D_mumu = od.Dataset( "data_D_mumu", 23, campaign=campaign, is_data=True, n_files=215, keys=["/DoubleMuon/Run2016D-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_E_mumu = od.Dataset( "data_E_mumu", 24, campaign=campaign, is_data=True, n_files=186, keys=["/DoubleMuon/Run2016E-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_F_mumu = od.Dataset( "data_F_mumu", 25, campaign=campaign, is_data=True, n_files=155, keys=["/DoubleMuon/Run2016F-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_G_mumu = od.Dataset( "data_G_mumu", 26, campaign=campaign, is_data=True, n_files=346, keys=["/DoubleMuon/Run2016G-17Jul2018-v1/MINIAOD"], context=campaign_name, ) dataset_data_H_mumu = od.Dataset( "data_H_mumu", 27, campaign=campaign, is_data=True, n_files=378, keys=["/DoubleMuon/Run2016H-17Jul2018-v1/MINIAOD"], context=campaign_name, ) datasets_data_mumu = [ dataset_data_B_mumu, dataset_data_C_mumu, dataset_data_D_mumu, dataset_data_E_mumu, dataset_data_F_mumu, dataset_data_G_mumu, dataset_data_H_mumu ] # single electron dataset_data_B_e = od.Dataset( "data_B_e", 31, campaign = campaign, n_files=11+1560, keys=["/SingleElectron/Run2016B-17Jul2018_ver1-v1/MINIAOD", "/SingleElectron/Run2016B-17Jul2018_ver2-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_C_e = od.Dataset( "data_C_e", 32, campaign = campaign, n_files=674, keys=["/SingleElectron/Run2016C-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_D_e = od.Dataset( "data_D_e", 33, campaign = campaign, n_files=966, keys=["/SingleElectron/Run2016D-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_E_e = od.Dataset( "data_E_e", 34, campaign = campaign, n_files=819, keys=["/SingleElectron/Run2016E-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_F_e = od.Dataset( "data_F_e", 35, campaign = campaign, n_files=499, keys=["/SingleElectron/Run2016F-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_G_e = od.Dataset( "data_G_e", 36, campaign = campaign, n_files=1188, keys=["/SingleElectron/Run2016G-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_H_e = od.Dataset( "data_H_e", 37, campaign = campaign, n_files=968, keys=["/SingleElectron/Run2016H-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) datasets_data_e = [ dataset_data_B_e, dataset_data_C_e, dataset_data_D_e, dataset_data_E_e, dataset_data_F_e, dataset_data_G_e, dataset_data_H_e ] # single muon dataset_data_B_mu = od.Dataset( "data_B_mu", 41, campaign = campaign, n_files=19+915, keys=["/SingleMuon/Run2016B-17Jul2018_ver1-v1/MINIAOD", "/SingleMuon/Run2016B-17Jul2018_ver2-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_C_mu = od.Dataset( "data_C_mu", 42, campaign = campaign, n_files=369, keys=["/SingleMuon/Run2016C-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_D_mu = od.Dataset( "data_D_mu", 43, campaign = campaign, n_files=670, keys=["/SingleMuon/Run2016D-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_E_mu = od.Dataset( "data_E_mu", 44, campaign = campaign, n_files=565, keys=["/SingleMuon/Run2016E-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_F_mu = od.Dataset( "data_F_mu", 45, campaign = campaign, n_files=462, keys=["/SingleMuon/Run2016F-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_G_mu = od.Dataset( "data_G_mu", 46, campaign = campaign, n_files=963, keys=["/SingleMuon/Run2016G-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) dataset_data_H_mu = od.Dataset( "data_H_mu", 47, campaign = campaign, n_files=1131, keys=["/SingleMuon/Run2016H-17Jul2018-v1/MINIAOD"], is_data=True, context=campaign_name, ) datasets_data_mu = [ dataset_data_B_mu, dataset_data_C_mu, dataset_data_D_mu, dataset_data_E_mu, dataset_data_F_mu, dataset_data_G_mu, dataset_data_H_mu ] # MC datasets # tt dataset_tt_dl = od.Dataset( "tt_dl", 101, campaign=campaign, n_files=777, keys=[ "/TTTo2L2Nu_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_tt_sl = od.Dataset( "tt_sl", 102, campaign=campaign, n_files=1105, keys=[ "/TTToSemiLeptonic_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) # Drell-Yan dataset_dy_lep_10To50 = od.Dataset( "dy_lep_10To50", 2230, campaign=campaign, n_files=264, keys=[ "/DYJetsToLL_M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", ], context=campaign_name, ) dataset_dy_lep_50ToInf = od.Dataset( "dy_lep_50ToInf", 2231, campaign=campaign, n_files=360+701, keys=[ "/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext1-v2/MINIAODSIM", "/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v2/MINIAODSIM", ], context=campaign_name, ) # single top # s-channel dataset_st_s_lep = od.Dataset( "st_s_lep", 300, campaign=campaign, n_files=104, keys=[ "/ST_s-channel_4f_leptonDecays_TuneCP5_PSweights_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) # t-channel dataset_st_t_t = od.Dataset( "st_t_t", 301, campaign=campaign, n_files=307, keys= [ "/ST_t-channel_top_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_st_t_tbar = od.Dataset( "st_t_tbar", 302, campaign=campaign, n_files=224, keys= [ "/ST_t-channel_antitop_4f_InclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) # tW-channel dataset_st_tW_t = od.Dataset( "st_tW_t", 321, campaign=campaign, n_files=65, keys=[ "/ST_tW_top_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_st_tW_tbar = od.Dataset( "st_tW_tbar", 322, campaign=campaign, n_files=98, keys=[ "/ST_tW_antitop_5f_inclusiveDecays_TuneCP5_PSweights_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) # diboson dataset_WW = od.Dataset( "WW", 401, campaign=campaign, n_files=7+53, keys=[ "/WW_TuneCUETP8M1_13TeV-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", "/WW_TuneCUETP8M1_13TeV-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext1-v2/MINIAODSIM", ], context=campaign_name, ) dataset_WZ = od.Dataset( "WZ", 402, campaign=campaign, n_files=8+29, keys=[ "/WZ_TuneCUETP8M1_13TeV-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", "/WZ_TuneCUETP8M1_13TeV-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext1-v2/MINIAODSIM", ], context=campaign_name, ) dataset_ZZ = od.Dataset( "ZZ", 403, campaign=campaign, n_files=7, keys=[ "/ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", ], context=campaign_name, ) # W + jets dataset_W_lep = od.Dataset( "W_lep", 500, campaign=campaign, n_files=215+410, keys=[ "/WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", "/WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v2/MINIAODSIM" ], context=campaign_name, ) # tt+X dataset_ttH_bb = od.Dataset( "ttH_bb", 601, campaign=campaign, n_files=188, keys=[ "/ttHTobb_M125_TuneCP5_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_ttH_nonbb = od.Dataset( "ttH_nonbb", 602, campaign=campaign, n_files=143, keys=[ "/ttHToNonbb_M125_TuneCP5_13TeV-powheg-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_ttWJets_lep = od.Dataset( "ttWJets_lep", 700, campaign=campaign, n_files=31, keys=[ "/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v1/MINIAODSIM", ], context=campaign_name, ) dataset_ttWJets_had = od.Dataset( "ttWJets_had", 701, campaign=campaign, n_files=7, keys=[ "/TTWJetsToQQ_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", ], context=campaign_name, ) dataset_ttZJets_lep = od.Dataset( "ttZJets_lep", 710, campaign=campaign, n_files=49+48, keys=[ "/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext2-v1/MINIAODSIM", "/TTZToLLNuNu_M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3_ext3-v1/MINIAODSIM", ], context=campaign_name, ) dataset_ttZJets_had = od.Dataset( "ttZJets_had", 711, campaign=campaign, n_files=7, keys=[ "/TTZToQQ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM", ], context=campaign_name, ) # link processes to datasets for d in datasets_data_ee: d.add_process(process_data_ee) for d in datasets_data_emu: d.add_process(process_data_emu) for d in datasets_data_mumu: d.add_process(process_data_mumu) for d in datasets_data_e: d.add_process(process_data_e) for d in datasets_data_mu: d.add_process(process_data_mu) dataset_tt_dl.add_process(process_tt_dl) dataset_tt_sl.add_process(process_tt_sl) dataset_dy_lep_10To50.add_process(process_dy_lep_10To50) dataset_dy_lep_50ToInf.add_process(process_dy_lep_50ToInf) dataset_st_s_lep.add_process(process_st_s_lep) dataset_st_t_t.add_process(process_st_t_t) dataset_st_t_tbar.add_process(process_st_t_tbar) dataset_st_tW_t.add_process(process_st_tW_t) dataset_st_tW_tbar.add_process(process_st_tW_tbar) dataset_WW.add_process(process_WW) dataset_WZ.add_process(process_WZ) dataset_ZZ.add_process(process_ZZ) dataset_W_lep.add_process(process_W_lep) dataset_ttH_bb.add_process(process_ttH_bb) dataset_ttH_nonbb.add_process(process_ttH_nonbb) dataset_ttWJets_lep.add_process(process_ttWJets_lep) dataset_ttWJets_had.add_process(process_ttWJets_had) dataset_ttZJets_lep.add_process(process_ttZJets_lep) dataset_ttZJets_had.add_process(process_ttZJets_had)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 781, 539, 23, 25, 645, 20402, 198, 198, 37811, 198, 7469, 600, 295, 286, 262, 1923, 290, 40522, 329, 1584, 10655, 302, 260, 1073, 1366, 13, 198, 37811, 628, 198, 11748, 1502, 355, 16298, 198, 198, 6738, 3781, 13, 11250, 13, 14681, 274, 1330, 1635, 628, 198, 2, 1923, 198, 35012, 62, 3672, 796, 366, 10987, 17, 62, 381, 62, 1485, 6767, 53, 62, 11484, 1590, 1433, 1, 198, 35012, 796, 16298, 13, 46102, 7, 198, 220, 220, 220, 1923, 62, 3672, 11, 362, 11, 198, 220, 220, 220, 9940, 76, 28, 1485, 11, 198, 220, 220, 220, 275, 87, 28, 1495, 11, 198, 8, 198, 198, 2, 40522, 198, 198, 19608, 292, 316, 62, 7890, 62, 33, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 33, 62, 1453, 1600, 352, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 24, 1828, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 17, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 34, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 34, 62, 1453, 1600, 362, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 42363, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 34, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 35, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 35, 62, 1453, 1600, 513, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 38339, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 35, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 36, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 36, 62, 1453, 1600, 604, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22318, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 36, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 37, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 37, 62, 1453, 1600, 642, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 26895, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 37, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 38, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 38, 62, 1453, 1600, 718, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22, 1314, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 38, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 39, 62, 1453, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 39, 62, 1453, 1600, 767, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 49150, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 7156, 14, 10987, 5304, 39, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 1039, 62, 7890, 62, 1453, 796, 685, 198, 220, 220, 220, 27039, 62, 7890, 62, 33, 62, 1453, 11, 27039, 62, 7890, 62, 34, 62, 1453, 11, 27039, 62, 7890, 62, 35, 62, 1453, 11, 27039, 62, 7890, 62, 36, 62, 1453, 11, 198, 220, 220, 220, 27039, 62, 7890, 62, 37, 62, 1453, 11, 27039, 62, 7890, 62, 38, 62, 1453, 11, 27039, 62, 7890, 62, 39, 62, 1453, 198, 60, 198, 198, 19608, 292, 316, 62, 7890, 62, 33, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 33, 62, 368, 84, 1600, 1367, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 21626, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 17, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 34, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 34, 62, 368, 84, 1600, 1105, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 14686, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 34, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 35, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 35, 62, 368, 84, 1600, 1511, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 17477, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 35, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 36, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 36, 62, 368, 84, 1600, 1478, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22567, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 36, 12, 1558, 16980, 7908, 12, 85, 17, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 37, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 37, 62, 368, 84, 1600, 1315, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 19707, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 37, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 38, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 38, 62, 368, 84, 1600, 1467, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22709, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 38, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 39, 62, 368, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 39, 62, 368, 84, 1600, 1596, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 25674, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 33239, 261, 7156, 14, 10987, 5304, 39, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 1039, 62, 7890, 62, 368, 84, 796, 685, 198, 220, 220, 220, 27039, 62, 7890, 62, 33, 62, 368, 84, 11, 27039, 62, 7890, 62, 34, 62, 368, 84, 11, 27039, 62, 7890, 62, 35, 62, 368, 84, 11, 27039, 62, 7890, 62, 36, 62, 368, 84, 11, 198, 220, 220, 220, 27039, 62, 7890, 62, 37, 62, 368, 84, 11, 27039, 62, 7890, 62, 38, 62, 368, 84, 11, 27039, 62, 7890, 62, 39, 62, 368, 84, 198, 60, 198, 198, 19608, 292, 316, 62, 7890, 62, 33, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 33, 62, 76, 388, 84, 1600, 2310, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 36330, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 17, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 34, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 34, 62, 76, 388, 84, 1600, 2534, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22416, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 34, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 35, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 35, 62, 76, 388, 84, 1600, 2242, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 23349, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 35, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 36, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 36, 62, 76, 388, 84, 1600, 1987, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 25096, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 36, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 37, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 37, 62, 76, 388, 84, 1600, 1679, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 18742, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 37, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 38, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 38, 62, 76, 388, 84, 1600, 2608, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 30557, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 38, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 39, 62, 76, 388, 84, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 39, 62, 76, 388, 84, 1600, 2681, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 30695, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 25628, 33239, 261, 14, 10987, 5304, 39, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 1039, 62, 7890, 62, 76, 388, 84, 796, 685, 198, 220, 220, 220, 27039, 62, 7890, 62, 33, 62, 76, 388, 84, 11, 27039, 62, 7890, 62, 34, 62, 76, 388, 84, 11, 27039, 62, 7890, 62, 35, 62, 76, 388, 84, 11, 27039, 62, 7890, 62, 36, 62, 76, 388, 84, 11, 198, 220, 220, 220, 27039, 62, 7890, 62, 37, 62, 76, 388, 84, 11, 27039, 62, 7890, 62, 38, 62, 76, 388, 84, 11, 27039, 62, 7890, 62, 39, 62, 76, 388, 84, 198, 60, 198, 198, 2, 2060, 11538, 198, 198, 19608, 292, 316, 62, 7890, 62, 33, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 33, 62, 68, 1600, 3261, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 1157, 10, 1314, 1899, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 16, 12, 85, 16, 14, 23678, 3539, 3727, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 28008, 19453, 1313, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 17, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 34, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 34, 62, 68, 1600, 3933, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 45385, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 34, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 35, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 35, 62, 68, 1600, 4747, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 24, 2791, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 35, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 36, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 36, 62, 68, 1600, 4974, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 23, 1129, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 36, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 37, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 37, 62, 68, 1600, 3439, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 28324, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 37, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 38, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 38, 62, 68, 1600, 4570, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 1157, 3459, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 38, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 39, 62, 68, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 39, 62, 68, 1600, 5214, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 38956, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 19453, 1313, 14, 10987, 5304, 39, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 1039, 62, 7890, 62, 68, 796, 685, 198, 220, 220, 220, 27039, 62, 7890, 62, 33, 62, 68, 11, 27039, 62, 7890, 62, 34, 62, 68, 11, 27039, 62, 7890, 62, 35, 62, 68, 11, 27039, 62, 7890, 62, 36, 62, 68, 11, 198, 220, 220, 220, 27039, 62, 7890, 62, 37, 62, 68, 11, 27039, 62, 7890, 62, 38, 62, 68, 11, 27039, 62, 7890, 62, 39, 62, 68, 198, 60, 198, 198, 2, 2060, 38779, 261, 198, 198, 19608, 292, 316, 62, 7890, 62, 33, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 33, 62, 30300, 1600, 6073, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 1129, 10, 40248, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 16, 12, 85, 16, 14, 23678, 3539, 3727, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 28008, 33239, 261, 14, 10987, 5304, 33, 12, 1558, 16980, 7908, 62, 332, 17, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 34, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 34, 62, 30300, 1600, 5433, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 30803, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 34, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 35, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 35, 62, 30300, 1600, 5946, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 43798, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 35, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 36, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 36, 62, 30300, 1600, 5846, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 47372, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 36, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 37, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 37, 62, 30300, 1600, 4153, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 39997, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 37, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 38, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 38, 62, 30300, 1600, 6337, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 4846, 18, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 38, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 7890, 62, 39, 62, 30300, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 7890, 62, 39, 62, 30300, 1600, 6298, 11, 198, 220, 220, 220, 1923, 796, 1923, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 1157, 3132, 11, 198, 220, 220, 220, 8251, 28, 14692, 14, 28008, 33239, 261, 14, 10987, 5304, 39, 12, 1558, 16980, 7908, 12, 85, 16, 14, 23678, 3539, 3727, 33116, 198, 220, 220, 220, 318, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 1039, 62, 7890, 62, 30300, 796, 685, 198, 220, 220, 220, 27039, 62, 7890, 62, 33, 62, 30300, 11, 27039, 62, 7890, 62, 34, 62, 30300, 11, 27039, 62, 7890, 62, 35, 62, 30300, 11, 27039, 62, 7890, 62, 36, 62, 30300, 11, 198, 220, 220, 220, 27039, 62, 7890, 62, 37, 62, 30300, 11, 27039, 62, 7890, 62, 38, 62, 30300, 11, 27039, 62, 7890, 62, 39, 62, 30300, 198, 60, 198, 198, 2, 13122, 40522, 198, 198, 2, 256, 83, 198, 198, 19608, 292, 316, 62, 926, 62, 25404, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 62, 25404, 1600, 8949, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 29331, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 2514, 17, 43, 17, 45, 84, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 62, 6649, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 62, 6649, 1600, 15143, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 11442, 20, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 2514, 13900, 72, 3123, 457, 9229, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 360, 11252, 12, 49664, 198, 198, 19608, 292, 316, 62, 9892, 62, 293, 79, 62, 940, 2514, 1120, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 9892, 62, 293, 79, 62, 940, 2514, 1120, 1600, 2534, 1270, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 18897, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 35, 56, 41, 1039, 2514, 3069, 62, 44, 12, 940, 1462, 1120, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 9937, 34960, 5805, 44, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 9892, 62, 293, 79, 62, 1120, 2514, 18943, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 9892, 62, 293, 79, 62, 1120, 2514, 18943, 1600, 362, 25667, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 15277, 10, 41583, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 35, 56, 41, 1039, 2514, 3069, 62, 44, 12, 1120, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 9937, 34960, 5805, 44, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 16, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 35, 56, 41, 1039, 2514, 3069, 62, 44, 12, 1120, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 9937, 34960, 5805, 44, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 17, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 2060, 1353, 198, 198, 2, 264, 12, 17620, 198, 19608, 292, 316, 62, 301, 62, 82, 62, 293, 79, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 301, 62, 82, 62, 293, 79, 1600, 5867, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 13464, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 2257, 62, 82, 12, 17620, 62, 19, 69, 62, 293, 10972, 10707, 592, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 256, 12, 17620, 198, 19608, 292, 316, 62, 301, 62, 83, 62, 83, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 301, 62, 83, 62, 83, 1600, 25643, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22996, 11, 198, 220, 220, 220, 8251, 28, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 2257, 62, 83, 12, 17620, 62, 4852, 62, 19, 69, 62, 818, 5731, 10707, 592, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 301, 62, 83, 62, 83, 5657, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 301, 62, 83, 62, 83, 5657, 1600, 32591, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 24137, 11, 198, 220, 220, 220, 8251, 28, 685, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 2257, 62, 83, 12, 17620, 62, 415, 270, 404, 62, 19, 69, 62, 818, 5731, 10707, 592, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 628, 198, 2, 256, 54, 12, 17620, 198, 19608, 292, 316, 62, 301, 62, 83, 54, 62, 83, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 301, 62, 83, 54, 62, 83, 1600, 39595, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 2996, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 2257, 62, 83, 54, 62, 4852, 62, 20, 69, 62, 259, 5731, 10707, 592, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 301, 62, 83, 54, 62, 83, 5657, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 301, 62, 83, 54, 62, 83, 5657, 1600, 38831, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 4089, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 2257, 62, 83, 54, 62, 415, 270, 404, 62, 20, 69, 62, 259, 5731, 10707, 592, 62, 51, 1726, 8697, 20, 62, 3705, 43775, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 288, 571, 418, 261, 198, 198, 19608, 292, 316, 62, 17947, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 17947, 1600, 22219, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22, 10, 4310, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 17947, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 17947, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 16, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 54, 57, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 54, 57, 1600, 42622, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 23, 10, 1959, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 54, 57, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 54, 57, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 16, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 30148, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 30148, 1600, 38210, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 30148, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 370, 1343, 20792, 198, 198, 19608, 292, 316, 62, 54, 62, 293, 79, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 54, 62, 293, 79, 1600, 5323, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 23349, 10, 33289, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 54, 41, 1039, 2514, 43, 45, 84, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 9937, 34960, 5805, 44, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 54, 41, 1039, 2514, 43, 45, 84, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 9937, 34960, 5805, 44, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 17, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 256, 83, 10, 55, 198, 198, 19608, 292, 316, 62, 926, 39, 62, 11848, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 39, 62, 11848, 1600, 49231, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 20356, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 926, 6535, 21963, 62, 44, 11623, 62, 51, 1726, 8697, 20, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 39, 62, 13159, 11848, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 39, 62, 13159, 11848, 1600, 718, 2999, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 21139, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 926, 39, 2514, 15419, 11848, 62, 44, 11623, 62, 51, 1726, 8697, 20, 62, 1485, 6767, 53, 12, 79, 322, 258, 70, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 54, 41, 1039, 62, 293, 79, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 54, 41, 1039, 62, 293, 79, 1600, 13037, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 3132, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 54, 41, 1039, 2514, 43, 45, 84, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 17213, 17213, 12, 9937, 39706, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 17, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 54, 41, 1039, 62, 18108, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 54, 41, 1039, 62, 18108, 1600, 48173, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 54, 41, 1039, 2514, 48, 48, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 17213, 17213, 12, 9937, 39706, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 57, 41, 1039, 62, 293, 79, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 57, 41, 1039, 62, 293, 79, 1600, 767, 940, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 2920, 10, 2780, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 57, 2514, 3069, 45, 84, 45, 84, 62, 44, 12, 940, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 17, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 57, 2514, 3069, 45, 84, 45, 84, 62, 44, 12, 940, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 62, 2302, 18, 12, 85, 16, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 19608, 292, 316, 62, 926, 57, 41, 1039, 62, 18108, 796, 16298, 13, 27354, 292, 316, 7, 198, 220, 220, 220, 366, 926, 57, 41, 1039, 62, 18108, 1600, 767, 1157, 11, 198, 220, 220, 220, 1923, 28, 35012, 11, 198, 220, 220, 220, 299, 62, 16624, 28, 22, 11, 198, 220, 220, 220, 8251, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 12813, 15751, 57, 2514, 48, 48, 62, 51, 1726, 43633, 2767, 47, 23, 44, 16, 62, 1485, 6767, 53, 12, 321, 9246, 77, 5439, 12, 79, 5272, 544, 23, 14, 10987, 40, 1797, 31647, 1433, 39234, 32, 3727, 85, 18, 12, 5105, 20044, 295, 67, 1558, 62, 5824, 55, 62, 23209, 10987, 17, 62, 4107, 76, 457, 6210, 62, 85, 18, 12, 85, 17, 14, 23678, 3539, 3727, 48913, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 4732, 28, 35012, 62, 3672, 11, 198, 8, 198, 198, 2, 2792, 7767, 284, 40522, 198, 1640, 288, 287, 40522, 62, 7890, 62, 1453, 25, 198, 220, 220, 220, 288, 13, 2860, 62, 14681, 7, 14681, 62, 7890, 62, 1453, 8, 198, 1640, 288, 287, 40522, 62, 7890, 62, 368, 84, 25, 198, 220, 220, 220, 288, 13, 2860, 62, 14681, 7, 14681, 62, 7890, 62, 368, 84, 8, 198, 1640, 288, 287, 40522, 62, 7890, 62, 76, 388, 84, 25, 198, 220, 220, 220, 288, 13, 2860, 62, 14681, 7, 14681, 62, 7890, 62, 76, 388, 84, 8, 198, 1640, 288, 287, 40522, 62, 7890, 62, 68, 25, 198, 220, 220, 220, 288, 13, 2860, 62, 14681, 7, 14681, 62, 7890, 62, 68, 8, 198, 1640, 288, 287, 40522, 62, 7890, 62, 30300, 25, 198, 220, 220, 220, 288, 13, 2860, 62, 14681, 7, 14681, 62, 7890, 62, 30300, 8, 198, 198, 19608, 292, 316, 62, 926, 62, 25404, 13, 2860, 62, 14681, 7, 14681, 62, 926, 62, 25404, 8, 198, 19608, 292, 316, 62, 926, 62, 6649, 13, 2860, 62, 14681, 7, 14681, 62, 926, 62, 6649, 8, 198, 19608, 292, 316, 62, 9892, 62, 293, 79, 62, 940, 2514, 1120, 13, 2860, 62, 14681, 7, 14681, 62, 9892, 62, 293, 79, 62, 940, 2514, 1120, 8, 198, 19608, 292, 316, 62, 9892, 62, 293, 79, 62, 1120, 2514, 18943, 13, 2860, 62, 14681, 7, 14681, 62, 9892, 62, 293, 79, 62, 1120, 2514, 18943, 8, 198, 19608, 292, 316, 62, 301, 62, 82, 62, 293, 79, 13, 2860, 62, 14681, 7, 14681, 62, 301, 62, 82, 62, 293, 79, 8, 198, 19608, 292, 316, 62, 301, 62, 83, 62, 83, 13, 2860, 62, 14681, 7, 14681, 62, 301, 62, 83, 62, 83, 8, 198, 19608, 292, 316, 62, 301, 62, 83, 62, 83, 5657, 13, 2860, 62, 14681, 7, 14681, 62, 301, 62, 83, 62, 83, 5657, 8, 198, 19608, 292, 316, 62, 301, 62, 83, 54, 62, 83, 13, 2860, 62, 14681, 7, 14681, 62, 301, 62, 83, 54, 62, 83, 8, 198, 19608, 292, 316, 62, 301, 62, 83, 54, 62, 83, 5657, 13, 2860, 62, 14681, 7, 14681, 62, 301, 62, 83, 54, 62, 83, 5657, 8, 198, 19608, 292, 316, 62, 17947, 13, 2860, 62, 14681, 7, 14681, 62, 17947, 8, 198, 19608, 292, 316, 62, 54, 57, 13, 2860, 62, 14681, 7, 14681, 62, 54, 57, 8, 198, 19608, 292, 316, 62, 30148, 13, 2860, 62, 14681, 7, 14681, 62, 30148, 8, 198, 19608, 292, 316, 62, 54, 62, 293, 79, 13, 2860, 62, 14681, 7, 14681, 62, 54, 62, 293, 79, 8, 198, 19608, 292, 316, 62, 926, 39, 62, 11848, 13, 2860, 62, 14681, 7, 14681, 62, 926, 39, 62, 11848, 8, 198, 19608, 292, 316, 62, 926, 39, 62, 13159, 11848, 13, 2860, 62, 14681, 7, 14681, 62, 926, 39, 62, 13159, 11848, 8, 198, 19608, 292, 316, 62, 926, 54, 41, 1039, 62, 293, 79, 13, 2860, 62, 14681, 7, 14681, 62, 926, 54, 41, 1039, 62, 293, 79, 8, 198, 19608, 292, 316, 62, 926, 54, 41, 1039, 62, 18108, 13, 2860, 62, 14681, 7, 14681, 62, 926, 54, 41, 1039, 62, 18108, 8, 198, 19608, 292, 316, 62, 926, 57, 41, 1039, 62, 293, 79, 13, 2860, 62, 14681, 7, 14681, 62, 926, 57, 41, 1039, 62, 293, 79, 8, 198, 19608, 292, 316, 62, 926, 57, 41, 1039, 62, 18108, 13, 2860, 62, 14681, 7, 14681, 62, 926, 57, 41, 1039, 62, 18108, 8, 198 ]
1.936888
8,065
#!/usr/bin/env python import csv import argparse import numpy as np import pandas as pd import tqdm # Modified from: CosmiQ Solaris # https://github.com/CosmiQ/solaris/blob/master/solaris/preproc/sar.py def haversine(lat1, lon1, lat2, lon2, rad=False, radius=6.371E6): """ Haversine formula for distance between two points given their latitude and longitude, assuming a spherical earth. """ if not rad: lat1 = np.radians(lat1) lon1 = np.radians(lon1) lat2 = np.radians(lat2) lon2 = np.radians(lon2) dlat = lat2 - lat1 dlon = lon2 - lon1 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2 return 2 * radius * np.arcsin(np.sqrt(a)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('input_path') parser.add_argument('output_path') parser.add_argument('threshold', nargs='?', type=float, default=10.) args = parser.parse_args() main(args.input_path, args.output_path, args.threshold)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 269, 21370, 198, 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 256, 80, 36020, 198, 198, 2, 40499, 422, 25, 10437, 11632, 48, 12347, 271, 198, 2, 3740, 1378, 12567, 13, 785, 14, 36734, 11632, 48, 14, 82, 6192, 271, 14, 2436, 672, 14, 9866, 14, 82, 6192, 271, 14, 3866, 36942, 14, 82, 283, 13, 9078, 198, 4299, 387, 690, 500, 7, 15460, 16, 11, 300, 261, 16, 11, 3042, 17, 11, 300, 261, 17, 11, 2511, 28, 25101, 11, 16874, 28, 21, 13, 38056, 36, 21, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9398, 690, 500, 10451, 329, 5253, 1022, 734, 2173, 1813, 511, 198, 220, 220, 220, 32477, 290, 890, 3984, 11, 13148, 257, 43180, 4534, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 2511, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3042, 16, 796, 45941, 13, 6335, 1547, 7, 15460, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 261, 16, 796, 45941, 13, 6335, 1547, 7, 14995, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3042, 17, 796, 45941, 13, 6335, 1547, 7, 15460, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 261, 17, 796, 45941, 13, 6335, 1547, 7, 14995, 17, 8, 198, 220, 220, 220, 288, 15460, 796, 3042, 17, 532, 3042, 16, 198, 220, 220, 220, 288, 14995, 796, 300, 261, 17, 532, 300, 261, 16, 198, 220, 220, 220, 257, 796, 45941, 13, 31369, 7, 67, 15460, 14, 17, 8, 1174, 17, 1343, 45941, 13, 6966, 7, 15460, 16, 8, 1635, 45941, 13, 6966, 7, 15460, 17, 8, 1635, 45941, 13, 31369, 7, 67, 14995, 14, 17, 8, 1174, 17, 198, 220, 220, 220, 1441, 362, 1635, 16874, 1635, 45941, 13, 5605, 31369, 7, 37659, 13, 31166, 17034, 7, 64, 4008, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 15414, 62, 6978, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 22915, 62, 6978, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 400, 10126, 3256, 299, 22046, 11639, 30, 3256, 2099, 28, 22468, 11, 4277, 28, 940, 2014, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 22046, 13, 15414, 62, 6978, 11, 26498, 13, 22915, 62, 6978, 11, 26498, 13, 400, 10126, 8, 198 ]
2.327314
443
# import the main window object (mw) from aqt from aqt import mw # import the "show info" tool from utils.py from aqt.utils import showInfo # import all of the Qt GUI library from aqt.qt import * # We're going to add a menu item below. First we want to create a function to # be called when the menu item is activated. # create a new menu item, "test" action = QAction("test", mw) # set it to call testFunction when it's clicked action.triggered.connect(add_note) # and add it to the tools menu mw.form.menuTools.addAction(action) action.setShortcut(QKeySequence("Ctrl+t"))
[ 2, 1330, 262, 1388, 4324, 2134, 357, 76, 86, 8, 422, 257, 39568, 198, 6738, 257, 39568, 1330, 285, 86, 198, 2, 1330, 262, 366, 12860, 7508, 1, 2891, 422, 3384, 4487, 13, 9078, 198, 6738, 257, 39568, 13, 26791, 1330, 905, 12360, 198, 2, 1330, 477, 286, 262, 33734, 25757, 5888, 198, 6738, 257, 39568, 13, 39568, 1330, 1635, 628, 198, 2, 775, 821, 1016, 284, 751, 257, 6859, 2378, 2174, 13, 3274, 356, 765, 284, 2251, 257, 2163, 284, 198, 2, 307, 1444, 618, 262, 6859, 2378, 318, 13906, 13, 628, 628, 198, 2, 2251, 257, 649, 6859, 2378, 11, 366, 9288, 1, 198, 2673, 796, 1195, 12502, 7203, 9288, 1600, 285, 86, 8, 198, 2, 900, 340, 284, 869, 1332, 22203, 618, 340, 338, 28384, 198, 2673, 13, 2213, 328, 10446, 13, 8443, 7, 2860, 62, 11295, 8, 198, 2, 290, 751, 340, 284, 262, 4899, 6859, 198, 76, 86, 13, 687, 13, 26272, 33637, 13, 2860, 12502, 7, 2673, 8, 198, 2673, 13, 2617, 16438, 8968, 7, 48, 9218, 44015, 594, 7203, 40069, 10, 83, 48774, 198 ]
3.20442
181
from __future__ import absolute_import import logging from flask import current_app from changes.api.build_index import BuildIndexAPIView from changes.models import ProjectStatus, Project, ProjectConfigError, ProjectOptionsHelper, Revision from changes.utils.diff_parser import DiffParser from changes.utils.project_trigger import files_changed_should_trigger_project from changes.vcs.base import UnknownRevision
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 18931, 198, 198, 6738, 42903, 1330, 1459, 62, 1324, 198, 6738, 2458, 13, 15042, 13, 11249, 62, 9630, 1330, 10934, 15732, 2969, 3824, 769, 198, 6738, 2458, 13, 27530, 1330, 4935, 19580, 11, 4935, 11, 4935, 16934, 12331, 11, 4935, 29046, 47429, 11, 46604, 198, 6738, 2458, 13, 26791, 13, 26069, 62, 48610, 1330, 10631, 46677, 198, 6738, 2458, 13, 26791, 13, 16302, 62, 46284, 1330, 3696, 62, 40985, 62, 21754, 62, 46284, 62, 16302, 198, 6738, 2458, 13, 85, 6359, 13, 8692, 1330, 16185, 18009, 1166, 628, 198 ]
4.17
100
import timeit import selenium.webdriver from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC import time import pandas as pd driver_path = 'msedgedriver.exe' constituents_url = 'https://www.stoxx.com/index-details?symbol=SXXP' table_id = "stoxx_index_detail_component" constituents = {} driver = webdriver.Edge(driver_path) driver.get(url=constituents_url) components = driver.find_element_by_link_text('Components') components.click() driver.implicitly_wait(2) table = driver.find_element_by_id('component-table') for row in table.find_elements_by_xpath(".//tr"): try: href = row.find_element_by_xpath("./td[1]/input") constituents[row.text] = href.get_property('value') except: # TODO: Add Logger continue WebDriverWait(driver, 10).until(EC.element_to_be_clickable((By.XPATH,'//*[@id="onetrust-accept-btn-handler"]'))).click() button_list = driver.find_elements_by_xpath("//*/li[contains(@onclick,'paginate')]") counter = len(button_list) driver.implicitly_wait(2) idx = 0 while idx < counter: print("Loading page {0}".format(idx)) button_list = driver.find_elements_by_xpath("//*/li[contains(@onclick,'paginate')]") button_list[idx].click() time.sleep(2) WebDriverWait(driver, 10).until(EC.presence_of_element_located((By.ID,'component-table'))) table = driver.find_element_by_id('component-table') rows = table.find_elements_by_xpath(".//tr") print(len(rows)) for row in rows: driver.implicitly_wait(2) try: href = row.find_element_by_xpath("./td[1]/input") constituents[row.text] = href.get_property('value') except Exception as err: print("Issue: {0}".format(err))# TODO: Add Logger driver.implicitly_wait(2) continue idx = idx+1 href = constituents.popitem()[1] driver.get(href) table = driver.find_element_by_class_name('flat-table') static_data = table.text.split('\n') output = [] for key_value in static_data: key, value = key_value.split(': ', 1) if not output or key in output[-1]: output.append({}) output[-1][key] = value
[ 11748, 640, 270, 198, 198, 11748, 384, 11925, 1505, 13, 12384, 26230, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 17077, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 198, 11748, 640, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 26230, 62, 6978, 796, 705, 907, 48916, 38291, 13, 13499, 6, 198, 198, 9979, 34272, 658, 62, 6371, 796, 705, 5450, 1378, 2503, 13, 301, 1140, 87, 13, 785, 14, 9630, 12, 36604, 30, 1837, 23650, 28, 50, 8051, 47, 6, 198, 198, 11487, 62, 312, 796, 366, 301, 1140, 87, 62, 9630, 62, 49170, 62, 42895, 1, 198, 198, 9979, 34272, 658, 796, 23884, 198, 198, 26230, 796, 3992, 26230, 13, 37021, 7, 26230, 62, 6978, 8, 198, 26230, 13, 1136, 7, 6371, 28, 9979, 34272, 658, 62, 6371, 8, 198, 198, 5589, 3906, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 8726, 62, 5239, 10786, 7293, 3906, 11537, 198, 5589, 3906, 13, 12976, 3419, 198, 198, 26230, 13, 23928, 3628, 306, 62, 17077, 7, 17, 8, 198, 198, 11487, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 312, 10786, 42895, 12, 11487, 11537, 198, 1640, 5752, 287, 3084, 13, 19796, 62, 68, 3639, 62, 1525, 62, 87, 6978, 7, 1911, 1003, 2213, 1, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13291, 796, 5752, 13, 19796, 62, 30854, 62, 1525, 62, 87, 6978, 7, 1911, 14, 8671, 58, 16, 60, 14, 15414, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 22573, 58, 808, 13, 5239, 60, 796, 13291, 13, 1136, 62, 26745, 10786, 8367, 11537, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 3060, 5972, 1362, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 198, 13908, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 2943, 13, 30854, 62, 1462, 62, 1350, 62, 12976, 540, 19510, 3886, 13, 27481, 12599, 4032, 1003, 9, 58, 31, 312, 2625, 36823, 11469, 12, 13635, 12, 46118, 12, 30281, 8973, 6, 4008, 737, 12976, 3419, 198, 198, 16539, 62, 4868, 796, 4639, 13, 19796, 62, 68, 3639, 62, 1525, 62, 87, 6978, 7203, 1003, 16208, 4528, 58, 3642, 1299, 7, 31, 261, 12976, 4032, 79, 363, 4559, 11537, 60, 4943, 198, 24588, 796, 18896, 7, 16539, 62, 4868, 8, 198, 26230, 13, 23928, 3628, 306, 62, 17077, 7, 17, 8, 198, 312, 87, 796, 657, 198, 4514, 4686, 87, 1279, 3753, 25, 198, 220, 220, 220, 3601, 7203, 19031, 2443, 1391, 15, 92, 1911, 18982, 7, 312, 87, 4008, 628, 220, 220, 220, 4936, 62, 4868, 796, 4639, 13, 19796, 62, 68, 3639, 62, 1525, 62, 87, 6978, 7203, 1003, 16208, 4528, 58, 3642, 1299, 7, 31, 261, 12976, 4032, 79, 363, 4559, 11537, 60, 4943, 198, 220, 220, 220, 4936, 62, 4868, 58, 312, 87, 4083, 12976, 3419, 628, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 628, 220, 220, 220, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 2943, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 2389, 4032, 42895, 12, 11487, 6, 22305, 198, 220, 220, 220, 3084, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 312, 10786, 42895, 12, 11487, 11537, 198, 220, 220, 220, 15274, 796, 3084, 13, 19796, 62, 68, 3639, 62, 1525, 62, 87, 6978, 7, 1911, 1003, 2213, 4943, 628, 220, 220, 220, 3601, 7, 11925, 7, 8516, 4008, 198, 220, 220, 220, 329, 5752, 287, 15274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 23928, 3628, 306, 62, 17077, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13291, 796, 5752, 13, 19796, 62, 30854, 62, 1525, 62, 87, 6978, 7, 1911, 14, 8671, 58, 16, 60, 14, 15414, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22573, 58, 808, 13, 5239, 60, 796, 13291, 13, 1136, 62, 26745, 10786, 8367, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 45147, 25, 1391, 15, 92, 1911, 18982, 7, 8056, 4008, 2, 16926, 46, 25, 3060, 5972, 1362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 23928, 3628, 306, 62, 17077, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 4686, 87, 796, 4686, 87, 10, 16, 198, 198, 33257, 796, 22573, 13, 12924, 9186, 3419, 58, 16, 60, 198, 26230, 13, 1136, 7, 33257, 8, 198, 11487, 796, 4639, 13, 19796, 62, 30854, 62, 1525, 62, 4871, 62, 3672, 10786, 38568, 12, 11487, 11537, 198, 12708, 62, 7890, 796, 3084, 13, 5239, 13, 35312, 10786, 59, 77, 11537, 198, 198, 22915, 796, 17635, 198, 1640, 1994, 62, 8367, 287, 9037, 62, 7890, 25, 198, 220, 220, 220, 1994, 11, 1988, 796, 1994, 62, 8367, 13, 35312, 7, 10354, 46083, 352, 8, 198, 220, 220, 220, 611, 407, 5072, 393, 1994, 287, 5072, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 15090, 30072, 198, 220, 220, 220, 5072, 58, 12, 16, 7131, 2539, 60, 796, 1988 ]
2.470339
944
import sys import logging import time import tensorflow as tf tf.compat.v1.enable_v2_behavior() from tf_agents.drivers import dynamic_step_driver from tf_agents.drivers import dynamic_episode_driver from modules.runtime.commons.parameters import ParameterServer from tf_agents.metrics import tf_metrics from tf_agents.eval import metric_utils from tf_agents.utils import common from tf_agents.trajectories import time_step as ts from src.runners.base_runner import BaseRunner logger = logging.getLogger() # NOTE(@hart): this will print all statements # logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) class TFARunner(BaseRunner): """Runner that takes the runtime and agent and runs the training and evaluation as specified. """ def get_initial_collection_driver(self): """Sets the initial collection driver for tf-agents. """ self._initial_collection_driver = [] for agent in self._agent: self._initial_collection_driver.append(dynamic_episode_driver.DynamicEpisodeDriver( env=self._runtime, policy=agent._agent.collect_policy, observers=[agent._replay_buffer.add_batch], num_episodes=self._params["ML"]["Runner"]["initial_collection_steps"])) def get_collection_driver(self): """Sets the collection driver for tf-agents. """ self._collection_driver = [] for agent in self._agent: self._collection_driver.append(dynamic_step_driver.DynamicStepDriver( env=self._runtime, policy=agent._agent.collect_policy, # this is the agents policy observers=[agent._replay_buffer.add_batch], num_steps = 1 )) def collect_initial_episodes(self): """Function that collects the initial episodes """ for i in range(len(self._initial_collection_driver)): self._initial_collection_driver[i].run() def train(self): """Wrapper that sets the summary writer. This enables a seamingless integration with TensorBoard. """ # collect initial episodes self.collect_initial_episodes() # main training cycle if self._summary_writer is not None: with self._summary_writer.as_default(): self._train() else: self._train() def _train(self): """Trains the agent as specified in the parameter file """ pass def evaluate(self): """Evaluates the agent """ global_iteration = self._agent._agent._train_step_counter.numpy() logger.info("Evaluating the agent's performance in {} episodes." .format(str(self._params["ML"]["Runner"]["evaluation_steps"]))) metric_utils.eager_compute( self._eval_metrics, self._runtime, self._agent._agent.policy, num_episodes=self._params["ML"]["Runner"]["evaluation_steps"]) metric_utils.log_metrics(self._eval_metrics) tf.summary.scalar("mean_reward", self._eval_metrics[0].result().numpy(), step=global_iteration) tf.summary.scalar("mean_steps", self._eval_metrics[1].result().numpy(), step=global_iteration) logger.info( "The agent achieved on average {} reward and {} steps in \ {} episodes." \ .format(str(self._eval_metrics[0].result().numpy()), str(self._eval_metrics[1].result().numpy()), str(self._params["ML"]["Runner"]["evaluation_steps"])))
[ 11748, 25064, 198, 11748, 18931, 198, 11748, 640, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 27110, 13, 5589, 265, 13, 85, 16, 13, 21633, 62, 85, 17, 62, 46571, 3419, 198, 198, 6738, 48700, 62, 49638, 13, 36702, 1330, 8925, 62, 9662, 62, 26230, 198, 6738, 48700, 62, 49638, 13, 36702, 1330, 8925, 62, 38668, 62, 26230, 198, 6738, 13103, 13, 43282, 13, 9503, 684, 13, 17143, 7307, 1330, 25139, 2357, 10697, 198, 198, 6738, 48700, 62, 49638, 13, 4164, 10466, 1330, 48700, 62, 4164, 10466, 198, 6738, 48700, 62, 49638, 13, 18206, 1330, 18663, 62, 26791, 198, 6738, 48700, 62, 49638, 13, 26791, 1330, 2219, 198, 6738, 48700, 62, 49638, 13, 9535, 752, 1749, 1330, 640, 62, 9662, 355, 40379, 198, 198, 6738, 12351, 13, 36740, 13, 8692, 62, 16737, 1330, 7308, 49493, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 2, 24550, 7, 31, 18647, 2599, 428, 481, 3601, 477, 6299, 198, 2, 18931, 13, 35487, 16934, 7, 5532, 28, 17597, 13, 19282, 448, 11, 1241, 28, 6404, 2667, 13, 30531, 8, 198, 198, 4871, 24958, 1503, 403, 1008, 7, 14881, 49493, 2599, 198, 220, 37227, 49493, 326, 2753, 262, 19124, 290, 5797, 198, 220, 220, 220, 220, 290, 4539, 262, 3047, 290, 12660, 355, 7368, 13, 198, 220, 37227, 628, 220, 825, 651, 62, 36733, 62, 43681, 62, 26230, 7, 944, 2599, 198, 220, 220, 220, 37227, 50, 1039, 262, 4238, 4947, 4639, 329, 48700, 12, 49638, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 36733, 62, 43681, 62, 26230, 796, 17635, 198, 220, 220, 220, 329, 5797, 287, 2116, 13557, 25781, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 36733, 62, 43681, 62, 26230, 13, 33295, 7, 67, 28995, 62, 38668, 62, 26230, 13, 44090, 23758, 32103, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 944, 13557, 43282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2450, 28, 25781, 13557, 25781, 13, 33327, 62, 30586, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17984, 41888, 25781, 13557, 260, 1759, 62, 22252, 13, 2860, 62, 43501, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 538, 8052, 28, 944, 13557, 37266, 14692, 5805, 1, 7131, 1, 49493, 1, 7131, 1, 36733, 62, 43681, 62, 20214, 8973, 4008, 628, 220, 825, 651, 62, 43681, 62, 26230, 7, 944, 2599, 198, 220, 220, 220, 37227, 50, 1039, 262, 4947, 4639, 329, 48700, 12, 49638, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 43681, 62, 26230, 796, 17635, 198, 220, 220, 220, 329, 5797, 287, 2116, 13557, 25781, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 43681, 62, 26230, 13, 33295, 7, 67, 28995, 62, 9662, 62, 26230, 13, 44090, 8600, 32103, 7, 198, 220, 220, 220, 220, 220, 220, 220, 17365, 28, 944, 13557, 43282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2450, 28, 25781, 13557, 25781, 13, 33327, 62, 30586, 11, 1303, 428, 318, 262, 6554, 2450, 198, 220, 220, 220, 220, 220, 220, 220, 17984, 41888, 25781, 13557, 260, 1759, 62, 22252, 13, 2860, 62, 43501, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 20214, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 825, 2824, 62, 36733, 62, 538, 8052, 7, 944, 2599, 198, 220, 220, 220, 37227, 22203, 326, 26609, 262, 4238, 8640, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13557, 36733, 62, 43681, 62, 26230, 8, 2599, 198, 220, 220, 220, 220, 220, 2116, 13557, 36733, 62, 43681, 62, 26230, 58, 72, 4083, 5143, 3419, 628, 220, 825, 4512, 7, 944, 2599, 198, 220, 220, 220, 37227, 36918, 2848, 326, 5621, 262, 10638, 6260, 13, 198, 220, 220, 220, 220, 220, 220, 770, 13536, 257, 384, 3723, 1203, 11812, 351, 309, 22854, 29828, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2824, 4238, 8640, 198, 220, 220, 220, 2116, 13, 33327, 62, 36733, 62, 538, 8052, 3419, 198, 220, 220, 220, 1303, 1388, 3047, 6772, 198, 220, 220, 220, 611, 2116, 13557, 49736, 62, 16002, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 351, 2116, 13557, 49736, 62, 16002, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 27432, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13557, 27432, 3419, 628, 220, 825, 4808, 27432, 7, 944, 2599, 198, 220, 220, 220, 37227, 2898, 1299, 262, 5797, 355, 7368, 287, 262, 11507, 2393, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1208, 628, 220, 825, 13446, 7, 944, 2599, 198, 220, 220, 220, 37227, 36, 2100, 12632, 262, 5797, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3298, 62, 2676, 341, 796, 2116, 13557, 25781, 13557, 25781, 13557, 27432, 62, 9662, 62, 24588, 13, 77, 32152, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7203, 36, 2100, 11927, 262, 5797, 338, 2854, 287, 23884, 8640, 526, 198, 220, 220, 220, 220, 220, 764, 18982, 7, 2536, 7, 944, 13557, 37266, 14692, 5805, 1, 7131, 1, 49493, 1, 7131, 1, 18206, 2288, 62, 20214, 8973, 22305, 198, 220, 220, 220, 18663, 62, 26791, 13, 68, 3536, 62, 5589, 1133, 7, 198, 220, 220, 220, 220, 220, 2116, 13557, 18206, 62, 4164, 10466, 11, 198, 220, 220, 220, 220, 220, 2116, 13557, 43282, 11, 198, 220, 220, 220, 220, 220, 2116, 13557, 25781, 13557, 25781, 13, 30586, 11, 198, 220, 220, 220, 220, 220, 997, 62, 538, 8052, 28, 944, 13557, 37266, 14692, 5805, 1, 7131, 1, 49493, 1, 7131, 1, 18206, 2288, 62, 20214, 8973, 8, 198, 220, 220, 220, 18663, 62, 26791, 13, 6404, 62, 4164, 10466, 7, 944, 13557, 18206, 62, 4164, 10466, 8, 198, 220, 220, 220, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 32604, 62, 260, 904, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18206, 62, 4164, 10466, 58, 15, 4083, 20274, 22446, 77, 32152, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 20541, 62, 2676, 341, 8, 198, 220, 220, 220, 48700, 13, 49736, 13, 1416, 282, 283, 7203, 32604, 62, 20214, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18206, 62, 4164, 10466, 58, 16, 4083, 20274, 22446, 77, 32152, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 20541, 62, 2676, 341, 8, 198, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 366, 464, 5797, 8793, 319, 2811, 23884, 6721, 290, 23884, 4831, 287, 3467, 198, 220, 220, 220, 220, 220, 23884, 8640, 526, 3467, 198, 220, 220, 220, 220, 220, 764, 18982, 7, 2536, 7, 944, 13557, 18206, 62, 4164, 10466, 58, 15, 4083, 20274, 22446, 77, 32152, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 944, 13557, 18206, 62, 4164, 10466, 58, 16, 4083, 20274, 22446, 77, 32152, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 944, 13557, 37266, 14692, 5805, 1, 7131, 1, 49493, 1, 7131, 1, 18206, 2288, 62, 20214, 8973, 22305 ]
2.683835
1,262
#!/usr/bin/env python from setuptools import setup, find_packages import versioneer INSTALL_REQUIRES = open("requirements.txt").readlines() setup( name="lagtraj", version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Python trajectory code for Lagrangian simulations", url="https://github.com/EUREC4A-UK/lagtraj", maintainer="Leif Denby", maintainer_email="[email protected]", py_modules=["lagtraj"], packages=find_packages(), package_data={"": ["*.csv", "*.yml", "*.html", "*.dat", "*.yaml"]}, include_package_data=True, install_requires=INSTALL_REQUIRES, long_description=open("README.md").read(), long_description_content_type="text/markdown", zip_safe=False, )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 11748, 2196, 28153, 198, 198, 38604, 7036, 62, 2200, 10917, 4663, 1546, 796, 1280, 7203, 8897, 18883, 13, 14116, 11074, 961, 6615, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 30909, 9535, 73, 1600, 198, 220, 220, 220, 2196, 28, 690, 7935, 263, 13, 1136, 62, 9641, 22784, 198, 220, 220, 220, 23991, 4871, 28, 690, 7935, 263, 13, 1136, 62, 28758, 4871, 22784, 198, 220, 220, 220, 6764, 2625, 37906, 22942, 2438, 329, 21003, 36985, 666, 27785, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 36, 11335, 34, 19, 32, 12, 15039, 14, 30909, 9535, 73, 1600, 198, 220, 220, 220, 5529, 263, 2625, 3123, 361, 5601, 1525, 1600, 198, 220, 220, 220, 5529, 263, 62, 12888, 2625, 75, 13, 66, 13, 6559, 1525, 31, 293, 5379, 13, 330, 13, 2724, 1600, 198, 220, 220, 220, 12972, 62, 18170, 28, 14692, 30909, 9535, 73, 33116, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 5301, 62, 7890, 28, 4895, 1298, 14631, 24620, 40664, 1600, 366, 24620, 88, 4029, 1600, 366, 24620, 6494, 1600, 366, 24620, 19608, 1600, 366, 24620, 88, 43695, 8973, 5512, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 2721, 62, 47911, 28, 38604, 7036, 62, 2200, 10917, 4663, 1546, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 9654, 7203, 15675, 11682, 13, 9132, 11074, 961, 22784, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 8, 198 ]
2.60274
292
#executar um audio mp3 import pygame pygame.init() pygame.mixer.music.load('BlackDog.mp3') pygame.mixer.music.play() pygame.event.wait()
[ 2, 18558, 315, 283, 23781, 6597, 29034, 18, 198, 198, 11748, 12972, 6057, 198, 9078, 6057, 13, 15003, 3419, 198, 9078, 6057, 13, 19816, 263, 13, 28965, 13, 2220, 10786, 9915, 32942, 13, 3149, 18, 11537, 198, 9078, 6057, 13, 19816, 263, 13, 28965, 13, 1759, 3419, 198, 9078, 6057, 13, 15596, 13, 17077, 3419, 198 ]
2.464286
56
from dataclasses import dataclass from bindings.gmd.geometric_complex_type import GeometricComplexType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 34111, 13, 70, 9132, 13, 469, 16996, 62, 41887, 62, 4906, 1330, 2269, 16996, 5377, 11141, 6030, 198, 198, 834, 45, 29559, 47, 11598, 834, 796, 366, 4023, 1378, 2503, 13, 404, 1516, 271, 13, 3262, 14, 70, 4029, 1, 628, 198, 31, 19608, 330, 31172, 198 ]
2.842105
57
from .base import registered_device_types # noqa from .kettle_redmond import RedmondKettle # noqa from .xiaomi_ht import XiaomiHumidityTemperatureV1 # noqa from .xiaomi_lywsd03 import XiaomiHumidityTemperatureLYWSD # noqa
[ 6738, 764, 8692, 1330, 6823, 62, 25202, 62, 19199, 220, 1303, 645, 20402, 198, 6738, 764, 74, 23570, 62, 445, 6327, 1330, 49420, 42, 23570, 220, 1303, 645, 20402, 198, 6738, 764, 36072, 12753, 62, 4352, 1330, 46726, 32661, 17995, 42492, 53, 16, 220, 1303, 645, 20402, 198, 6738, 764, 36072, 12753, 62, 306, 18504, 67, 3070, 1330, 46726, 32661, 17995, 42492, 11319, 54, 10305, 220, 1303, 645, 20402, 198 ]
3.228571
70
import sys, getopt, subprocess from src.common.load_h5 import H5COUNTS from src.preprocess.build_h5_GSE103224 import build_h5 import pandas as pd # # Load data # scRNAdata = H5COUNTS('data/GSE103224.h5') # # Preprocess data # scRNAdata.preprocess_data(log_normalize=True, filter_genes=False, n_neighbors=False, umap=False) # # Add clustering results # scRNAdata.add_clustering_results(path='data/interim/', tumor_ids=[1, 2, 3, 4, 5, 6, 7, 8]) # # # Get a list of biomarkers associated to Glioma survival # BIOMARKER_F = "data/glioma_survival_associated_genes_Fatai.csv" # biomarkers_df = pd.read_table(BIOMARKER_F, ) # biomarkers = pd.Index(scRNAdata.GENE_NAMES) & biomarkers_df["Gene"].unique() # # # Aggregate all cell expressions to find clusters with the biomarkers expressed # scRNAdata.get_aggregated_cluster_expression(biomarkers, quantile_threshold=0.75,) # # # Run GSEA on all the DE genes for each cluster # from src.analysis.gsea_analysis import GSEA_Analysis # gsea = GSEA_Analysis(scRNAdata, path='data/interim/', threshold=0.05,) # path leads the file with the DE genes list for each cluster # gsea.get_gsea_result() # # # Get the GSEA results of only the clusters which have a query biomarker expressed # query_biomarker = ["CDC6"] # result = gsea.get_gsea_result_by_cluster(scRNAdata.get_clusters_with_biomarker_expression(query_biomarker)) # # # Visualize # from src.visualization import heatmap # heatmap(result, height=1000, width=600) if __name__== "__main__": main(sys.argv[1:])
[ 11748, 25064, 11, 651, 8738, 11, 850, 14681, 198, 6738, 12351, 13, 11321, 13, 2220, 62, 71, 20, 1330, 367, 20, 34, 19385, 4694, 198, 6738, 12351, 13, 3866, 14681, 13, 11249, 62, 71, 20, 62, 38, 5188, 940, 2624, 1731, 1330, 1382, 62, 71, 20, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 1303, 8778, 1366, 198, 2, 629, 42336, 2782, 1045, 796, 367, 20, 34, 19385, 4694, 10786, 7890, 14, 38, 5188, 940, 2624, 1731, 13, 71, 20, 11537, 198, 2, 1303, 3771, 14681, 1366, 198, 2, 629, 42336, 2782, 1045, 13, 3866, 14681, 62, 7890, 7, 6404, 62, 11265, 1096, 28, 17821, 11, 8106, 62, 5235, 274, 28, 25101, 11, 299, 62, 710, 394, 32289, 28, 25101, 11, 334, 8899, 28, 25101, 8, 198, 2, 1303, 3060, 32966, 1586, 2482, 198, 2, 629, 42336, 2782, 1045, 13, 2860, 62, 565, 436, 1586, 62, 43420, 7, 6978, 11639, 7890, 14, 3849, 320, 14, 3256, 22359, 62, 2340, 41888, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 12962, 198, 2, 198, 2, 1303, 3497, 257, 1351, 286, 49951, 364, 3917, 284, 2671, 72, 6086, 9441, 198, 2, 20068, 2662, 14175, 1137, 62, 37, 796, 366, 7890, 14, 70, 4528, 6086, 62, 48846, 2473, 62, 32852, 62, 5235, 274, 62, 37, 1045, 72, 13, 40664, 1, 198, 2, 49951, 364, 62, 7568, 796, 279, 67, 13, 961, 62, 11487, 7, 3483, 2662, 14175, 1137, 62, 37, 11, 1267, 198, 2, 49951, 364, 796, 279, 67, 13, 15732, 7, 1416, 42336, 2782, 1045, 13, 35353, 36, 62, 45, 29559, 8, 1222, 49951, 364, 62, 7568, 14692, 39358, 1, 4083, 34642, 3419, 198, 2, 198, 2, 1303, 19015, 49373, 477, 2685, 14700, 284, 1064, 23163, 351, 262, 49951, 364, 6241, 198, 2, 629, 42336, 2782, 1045, 13, 1136, 62, 9460, 2301, 515, 62, 565, 5819, 62, 38011, 7, 8482, 296, 668, 364, 11, 5554, 576, 62, 400, 10126, 28, 15, 13, 2425, 35751, 198, 2, 198, 2, 1303, 5660, 402, 46887, 319, 477, 262, 5550, 10812, 329, 1123, 13946, 198, 2, 422, 12351, 13, 20930, 13, 70, 8583, 62, 20930, 1330, 402, 46887, 62, 32750, 198, 2, 308, 8583, 796, 402, 46887, 62, 32750, 7, 1416, 42336, 2782, 1045, 11, 3108, 11639, 7890, 14, 3849, 320, 14, 3256, 11387, 28, 15, 13, 2713, 35751, 1303, 3108, 5983, 262, 2393, 351, 262, 5550, 10812, 1351, 329, 1123, 13946, 198, 2, 308, 8583, 13, 1136, 62, 70, 8583, 62, 20274, 3419, 198, 2, 198, 2, 1303, 3497, 262, 402, 46887, 2482, 286, 691, 262, 23163, 543, 423, 257, 12405, 49951, 263, 6241, 198, 2, 12405, 62, 8482, 296, 668, 263, 796, 14631, 47667, 21, 8973, 198, 2, 1255, 796, 308, 8583, 13, 1136, 62, 70, 8583, 62, 20274, 62, 1525, 62, 565, 5819, 7, 1416, 42336, 2782, 1045, 13, 1136, 62, 565, 13654, 62, 4480, 62, 8482, 296, 668, 263, 62, 38011, 7, 22766, 62, 8482, 296, 668, 263, 4008, 198, 2, 198, 2, 1303, 15612, 1096, 198, 2, 422, 12351, 13, 41464, 1634, 1330, 4894, 8899, 198, 2, 4894, 8899, 7, 20274, 11, 6001, 28, 12825, 11, 9647, 28, 8054, 8, 628, 198, 198, 361, 11593, 3672, 834, 855, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 58, 16, 25, 12962 ]
2.720217
554