content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from django.shortcuts import render, redirect from .forms import RegistrationForm from .models import Account from django.contrib import messages, auth from django.contrib.auth.decorators import login_required from django.http import HttpResponse from carts.models import Cart, CartItem from carts.views import _cart_id import requests # verification imports from django.contrib.sites.shortcuts import get_current_site from django.template.loader import render_to_string from django.utils.http import urlsafe_base64_encode, urlsafe_base64_decode from django.utils.encoding import force_bytes from django.contrib.auth.tokens import default_token_generator from django.core.mail import EmailMessage # Create your views here. @login_required(login_url='login') @login_required(login_url='login')
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 6738, 764, 23914, 1330, 24610, 8479, 198, 6738, 764, 27530, 1330, 10781, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 11, 6284, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 44355, 13, 27530, 1330, 13690, 11, 13690, 7449, 198, 6738, 44355, 13, 33571, 1330, 4808, 26674, 62, 312, 198, 11748, 7007, 198, 198, 2, 19637, 17944, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 19509, 23779, 1330, 651, 62, 14421, 62, 15654, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 6738, 42625, 14208, 13, 26791, 13, 4023, 1330, 2956, 7278, 8635, 62, 8692, 2414, 62, 268, 8189, 11, 2956, 7278, 8635, 62, 8692, 2414, 62, 12501, 1098, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 33661, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 83, 482, 641, 1330, 4277, 62, 30001, 62, 8612, 1352, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 12837, 198, 198, 2, 13610, 534, 5009, 994, 13, 628, 198, 198, 31, 38235, 62, 35827, 7, 38235, 62, 6371, 11639, 38235, 11537, 628, 198, 198, 31, 38235, 62, 35827, 7, 38235, 62, 6371, 11639, 38235, 11537, 628, 628 ]
3.480519
231
begin_unit comment|'# Copyright 2010 United States Government as represented by the' nl|'\n' comment|'# Administrator of the National Aeronautics and Space Administration.' nl|'\n' comment|'# All Rights Reserved.' nl|'\n' comment|'#' nl|'\n' comment|'# Licensed under the Apache License, Version 2.0 (the "License"); you may' nl|'\n' comment|'# not use this file except in compliance with the License. You may obtain' nl|'\n' comment|'# a copy of the License at' nl|'\n' comment|'#' nl|'\n' comment|'# http://www.apache.org/licenses/LICENSE-2.0' nl|'\n' comment|'#' nl|'\n' comment|'# Unless required by applicable law or agreed to in writing, software' nl|'\n' comment|'# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT' nl|'\n' comment|'# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the' nl|'\n' comment|'# License for the specific language governing permissions and limitations' nl|'\n' comment|'# under the License.' nl|'\n' nl|'\n' name|'from' name|'oslo_log' name|'import' name|'log' name|'as' name|'logging' newline|'\n' name|'from' name|'oslo_log' name|'import' name|'versionutils' newline|'\n' nl|'\n' name|'from' name|'nova' op|'.' name|'i18n' name|'import' name|'_LW' newline|'\n' nl|'\n' DECL|variable|LOG name|'LOG' op|'=' name|'logging' op|'.' name|'getLogger' op|'(' name|'__name__' op|')' newline|'\n' nl|'\n' nl|'\n' DECL|class|CloudController name|'class' name|'CloudController' op|'(' name|'object' op|')' op|':' newline|'\n' DECL|member|__init__ indent|' ' name|'def' name|'__init__' op|'(' name|'self' op|')' op|':' newline|'\n' indent|' ' name|'versionutils' op|'.' name|'report_deprecated_feature' op|'(' nl|'\n' name|'LOG' op|',' nl|'\n' name|'_LW' op|'(' string|"'The in tree EC2 API has been removed in Mitaka. '" nl|'\n' string|"'Please remove entries from api-paste.ini and use '" nl|'\n' string|"'the OpenStack ec2-api project '" nl|'\n' string|"'http://git.openstack.org/cgit/openstack/ec2-api/'" op|')' nl|'\n' op|')' newline|'\n' dedent|'' dedent|'' endmarker|'' end_unit
[ 27471, 62, 20850, 198, 23893, 91, 6, 2, 15069, 3050, 1578, 1829, 5070, 355, 7997, 416, 262, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 22998, 286, 262, 2351, 15781, 261, 2306, 873, 290, 4687, 8694, 2637, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 1439, 6923, 33876, 2637, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 23893, 91, 6, 2, 220, 220, 220, 739, 262, 13789, 2637, 198, 21283, 91, 6, 59, 77, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 3672, 91, 6, 6738, 6, 198, 3672, 91, 6, 418, 5439, 62, 6404, 6, 198, 3672, 91, 6, 11748, 6, 198, 3672, 91, 6, 6404, 6, 198, 3672, 91, 6, 292, 6, 198, 3672, 91, 6, 6404, 2667, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 3672, 91, 6, 6738, 6, 198, 3672, 91, 6, 418, 5439, 62, 6404, 6, 198, 3672, 91, 6, 11748, 6, 198, 3672, 91, 6, 9641, 26791, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 3672, 91, 6, 6738, 6, 198, 3672, 91, 6, 38438, 6, 198, 404, 91, 6, 2637, 198, 3672, 91, 6, 72, 1507, 77, 6, 198, 3672, 91, 6, 11748, 6, 198, 3672, 91, 6, 62, 43, 54, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 41374, 43, 91, 45286, 91, 25294, 198, 3672, 91, 6, 25294, 6, 198, 404, 91, 6, 11639, 198, 3672, 91, 6, 6404, 2667, 6, 198, 404, 91, 6, 2637, 198, 3672, 91, 6, 1136, 11187, 1362, 6, 198, 404, 91, 6, 10786, 198, 3672, 91, 6, 834, 3672, 834, 6, 198, 404, 91, 11537, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 41374, 43, 91, 4871, 91, 18839, 22130, 198, 3672, 91, 6, 4871, 6, 198, 3672, 91, 6, 18839, 22130, 6, 198, 404, 91, 6, 10786, 198, 3672, 91, 6, 15252, 6, 198, 404, 91, 11537, 6, 198, 404, 91, 10354, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 41374, 43, 91, 19522, 91, 834, 15003, 834, 198, 521, 298, 91, 6, 220, 220, 220, 705, 198, 3672, 91, 6, 4299, 6, 198, 3672, 91, 6, 834, 15003, 834, 6, 198, 404, 91, 6, 10786, 198, 3672, 91, 6, 944, 6, 198, 404, 91, 11537, 6, 198, 404, 91, 10354, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 521, 298, 91, 6, 220, 220, 220, 220, 220, 220, 220, 705, 198, 3672, 91, 6, 9641, 26791, 6, 198, 404, 91, 6, 2637, 198, 3672, 91, 6, 13116, 62, 10378, 31023, 62, 30053, 6, 198, 404, 91, 6, 10786, 198, 21283, 91, 6, 59, 77, 6, 198, 3672, 91, 6, 25294, 6, 198, 404, 91, 41707, 198, 21283, 91, 6, 59, 77, 6, 198, 3672, 91, 6, 62, 43, 54, 6, 198, 404, 91, 6, 10786, 198, 8841, 91, 30543, 464, 287, 5509, 13182, 17, 7824, 468, 587, 4615, 287, 11707, 8130, 13, 705, 1, 198, 21283, 91, 6, 59, 77, 6, 198, 8841, 91, 30543, 5492, 4781, 12784, 422, 40391, 12, 34274, 13, 5362, 290, 779, 705, 1, 198, 21283, 91, 6, 59, 77, 6, 198, 8841, 91, 30543, 1169, 4946, 25896, 9940, 17, 12, 15042, 1628, 705, 1, 198, 21283, 91, 6, 59, 77, 6, 198, 8841, 91, 30543, 4023, 1378, 18300, 13, 9654, 25558, 13, 2398, 14, 66, 18300, 14, 9654, 25558, 14, 721, 17, 12, 15042, 14, 29653, 198, 404, 91, 11537, 6, 198, 21283, 91, 6, 59, 77, 6, 198, 404, 91, 11537, 6, 198, 3605, 1370, 91, 6, 59, 77, 6, 198, 9395, 298, 91, 7061, 198, 9395, 298, 91, 7061, 198, 437, 4102, 263, 91, 7061, 198, 437, 62, 20850, 198 ]
2.262136
927
import io from google.cloud import vision # Prepare image to be classified # Get the labels for an image
[ 11748, 33245, 198, 6738, 23645, 13, 17721, 1330, 5761, 628, 220, 220, 220, 1303, 43426, 2939, 284, 307, 10090, 628, 220, 220, 220, 1303, 3497, 262, 14722, 329, 281, 2939, 198 ]
3.709677
31
from django.db import models from django.db.models.signals import pre_save from user.models import CustomUser # Signals pre_save.connect(caculate_university_overall_score, sender=UniversityRate) pre_save.connect(caculate_professor_overall_score, sender=ProfessorRate)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12683, 874, 1330, 662, 62, 21928, 198, 6738, 2836, 13, 27530, 1330, 8562, 12982, 628, 628, 628, 628, 628, 198, 2, 5865, 874, 628, 198, 198, 3866, 62, 21928, 13, 8443, 7, 66, 330, 5039, 62, 403, 1608, 62, 2502, 439, 62, 26675, 11, 29788, 28, 21009, 32184, 8, 198, 3866, 62, 21928, 13, 8443, 7, 66, 330, 5039, 62, 5577, 5987, 62, 2502, 439, 62, 26675, 11, 29788, 28, 25031, 32184, 8, 198 ]
3.122222
90
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json import logging import sys from argparse import ArgumentParser from six import PY2 import yaml from . import ( __url__, __version__, api, ) from .provider import ProviderError from .serializer import ( get_json_encoder, get_yaml_dumper, ) from .utils import recurse_paths logging.basicConfig(stream=sys.stdout, format='%(message)s') logging.getLogger('CONSOLE').setLevel(logging.INFO) logging.getLogger('knowit').setLevel(logging.ERROR) console = logging.getLogger('CONSOLE') logger = logging.getLogger('knowit') def build_argument_parser(): """Build the argument parser. :return: the argument parser :rtype: ArgumentParser """ opts = ArgumentParser() opts.add_argument(dest='videopath', help='Path to the video to introspect', nargs='*') provider_opts = opts.add_argument_group('Providers') provider_opts.add_argument('-p', '--provider', dest='provider', help='The provider to be used: mediainfo, ffmpeg or enzyme.') output_opts = opts.add_argument_group('Output') output_opts.add_argument('--debug', action='store_true', dest='debug', help='Print useful information for debugging knowit and for reporting bugs.') output_opts.add_argument('--report', action='store_true', dest='report', help='Parse media and report all non-detected values') output_opts.add_argument('-y', '--yaml', action='store_true', dest='yaml', help='Display output in yaml format') output_opts.add_argument('-N', '--no-units', action='store_true', dest='no_units', help='Display output without units') output_opts.add_argument('-P', '--profile', dest='profile', help='Display values according to specified profile: code, default, human, technical') conf_opts = opts.add_argument_group('Configuration') conf_opts.add_argument('--mediainfo', dest='mediainfo', help='The location to search for MediaInfo binaries') conf_opts.add_argument('--ffmpeg', dest='ffmpeg', help='The location to search for FFmpeg (ffprobe) binaries') information_opts = opts.add_argument_group('Information') information_opts.add_argument('--version', dest='version', action='store_true', help='Display knowit version.') return opts def knowit(video_path, options, context): """Extract video metadata.""" context['path'] = video_path if not options.report: console.info('For: %s', video_path) else: console.info('Parsing: %s', video_path) info = api.know(video_path, context) if not options.report: console.info('Knowit %s found: ', __version__) console.info(dump(info, options, context)) return info def dump(info, options, context): """Convert info to string using json or yaml format.""" if options.yaml: data = {info['path']: info} if 'path' in info else info result = yaml.dump(data, Dumper=get_yaml_dumper(context), default_flow_style=False, allow_unicode=True) if PY2: result = result.decode('utf-8') else: result = json.dumps(info, cls=get_json_encoder(context), indent=4, ensure_ascii=False) return result def main(args=None): """Execute main function for entry point.""" argument_parser = build_argument_parser() args = args or sys.argv[1:] options = argument_parser.parse_args(args) if options.debug: logger.setLevel(logging.DEBUG) logging.getLogger('enzyme').setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) paths = recurse_paths(options.videopath) if paths: report = {} for i, videopath in enumerate(paths): try: context = dict(vars(options)) if options.report: context['report'] = report else: del context['report'] knowit(videopath, options, context) except ProviderError: logger.exception('Error when processing video') except OSError: logger.exception('OS error when processing video') except UnicodeError: logger.exception('Character encoding error when processing video') except api.KnowitException as e: logger.error(e) if options.report and i % 20 == 19 and report: console.info('Unknown values so far:') console.info(dump(report, options, vars(options))) if options.report: if report: console.info('Knowit %s found unknown values:', __version__) console.info(dump(report, options, vars(options))) console.info('Please report them at %s', __url__) else: console.info('Knowit %s knows everything. :-)', __version__) elif options.version: console.info(api.debug_info()) else: argument_parser.print_help() if __name__ == '__main__': main(sys.argv[1:])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 25064, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 198, 6738, 2237, 1330, 350, 56, 17, 198, 11748, 331, 43695, 198, 198, 6738, 764, 1330, 357, 198, 220, 220, 220, 11593, 6371, 834, 11, 198, 220, 220, 220, 11593, 9641, 834, 11, 198, 220, 220, 220, 40391, 11, 198, 8, 198, 6738, 764, 15234, 1304, 1330, 32549, 12331, 198, 6738, 764, 46911, 7509, 1330, 357, 198, 220, 220, 220, 651, 62, 17752, 62, 12685, 12342, 11, 198, 220, 220, 220, 651, 62, 88, 43695, 62, 67, 15829, 11, 198, 8, 198, 6738, 764, 26791, 1330, 664, 12321, 62, 6978, 82, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 5532, 28, 17597, 13, 19282, 448, 11, 5794, 11639, 4, 7, 20500, 8, 82, 11537, 198, 6404, 2667, 13, 1136, 11187, 1362, 10786, 10943, 15821, 2538, 27691, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 6404, 2667, 13, 1136, 11187, 1362, 10786, 16275, 270, 27691, 2617, 4971, 7, 6404, 2667, 13, 24908, 8, 198, 198, 41947, 796, 18931, 13, 1136, 11187, 1362, 10786, 10943, 15821, 2538, 11537, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 16275, 270, 11537, 628, 198, 4299, 1382, 62, 49140, 62, 48610, 33529, 198, 220, 220, 220, 37227, 15580, 262, 4578, 30751, 13, 628, 220, 220, 220, 1058, 7783, 25, 262, 4578, 30751, 198, 220, 220, 220, 1058, 81, 4906, 25, 45751, 46677, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2172, 82, 796, 45751, 46677, 3419, 198, 220, 220, 220, 2172, 82, 13, 2860, 62, 49140, 7, 16520, 11639, 85, 485, 18569, 3256, 1037, 11639, 15235, 284, 262, 2008, 284, 18951, 4443, 3256, 299, 22046, 11639, 9, 11537, 628, 220, 220, 220, 10131, 62, 404, 912, 796, 2172, 82, 13, 2860, 62, 49140, 62, 8094, 10786, 15946, 4157, 11537, 198, 220, 220, 220, 10131, 62, 404, 912, 13, 2860, 62, 49140, 10786, 12, 79, 3256, 705, 438, 15234, 1304, 3256, 2244, 11639, 15234, 1304, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 464, 10131, 284, 307, 973, 25, 16957, 391, 6513, 11, 31246, 43913, 393, 27679, 2637, 8, 628, 220, 220, 220, 5072, 62, 404, 912, 796, 2172, 82, 13, 2860, 62, 49140, 62, 8094, 10786, 26410, 11537, 198, 220, 220, 220, 5072, 62, 404, 912, 13, 2860, 62, 49140, 10786, 438, 24442, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 24442, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 18557, 4465, 1321, 329, 28769, 760, 270, 290, 329, 6447, 11316, 2637, 8, 198, 220, 220, 220, 5072, 62, 404, 912, 13, 2860, 62, 49140, 10786, 438, 13116, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 13116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 10044, 325, 2056, 290, 989, 477, 1729, 12, 15255, 11197, 3815, 11537, 198, 220, 220, 220, 5072, 62, 404, 912, 13, 2860, 62, 49140, 10786, 12, 88, 3256, 705, 438, 88, 43695, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 88, 43695, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 23114, 5072, 287, 331, 43695, 5794, 11537, 198, 220, 220, 220, 5072, 62, 404, 912, 13, 2860, 62, 49140, 10786, 12, 45, 3256, 705, 438, 3919, 12, 41667, 3256, 2223, 11639, 8095, 62, 7942, 3256, 2244, 11639, 3919, 62, 41667, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 23114, 5072, 1231, 4991, 11537, 198, 220, 220, 220, 5072, 62, 404, 912, 13, 2860, 62, 49140, 10786, 12, 47, 3256, 705, 438, 13317, 3256, 2244, 11639, 13317, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 23114, 3815, 1864, 284, 7368, 7034, 25, 2438, 11, 4277, 11, 1692, 11, 6276, 11537, 628, 220, 220, 220, 1013, 62, 404, 912, 796, 2172, 82, 13, 2860, 62, 49140, 62, 8094, 10786, 38149, 11537, 198, 220, 220, 220, 1013, 62, 404, 912, 13, 2860, 62, 49140, 10786, 438, 2379, 391, 6513, 3256, 2244, 11639, 2379, 391, 6513, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 464, 4067, 284, 2989, 329, 6343, 12360, 38640, 11537, 198, 220, 220, 220, 1013, 62, 404, 912, 13, 2860, 62, 49140, 10786, 438, 487, 43913, 3256, 2244, 11639, 487, 43913, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 464, 4067, 284, 2989, 329, 18402, 43913, 357, 487, 1676, 1350, 8, 38640, 11537, 628, 220, 220, 220, 1321, 62, 404, 912, 796, 2172, 82, 13, 2860, 62, 49140, 62, 8094, 10786, 21918, 11537, 198, 220, 220, 220, 1321, 62, 404, 912, 13, 2860, 62, 49140, 10786, 438, 9641, 3256, 2244, 11639, 9641, 3256, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 23114, 760, 270, 2196, 2637, 8, 628, 220, 220, 220, 1441, 2172, 82, 628, 198, 4299, 760, 270, 7, 15588, 62, 6978, 11, 3689, 11, 4732, 2599, 198, 220, 220, 220, 37227, 11627, 974, 2008, 20150, 526, 15931, 198, 220, 220, 220, 4732, 17816, 6978, 20520, 796, 2008, 62, 6978, 198, 220, 220, 220, 611, 407, 3689, 13, 13116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 1890, 25, 4064, 82, 3256, 2008, 62, 6978, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 47, 945, 278, 25, 4064, 82, 3256, 2008, 62, 6978, 8, 198, 220, 220, 220, 7508, 796, 40391, 13, 16275, 7, 15588, 62, 6978, 11, 4732, 8, 198, 220, 220, 220, 611, 407, 3689, 13, 13116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 23812, 270, 4064, 82, 1043, 25, 46083, 11593, 9641, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 7, 39455, 7, 10951, 11, 3689, 11, 4732, 4008, 628, 220, 220, 220, 1441, 7508, 628, 198, 4299, 10285, 7, 10951, 11, 3689, 11, 4732, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 7508, 284, 4731, 1262, 33918, 393, 331, 43695, 5794, 526, 15931, 198, 220, 220, 220, 611, 3689, 13, 88, 43695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 10951, 17816, 6978, 6, 5974, 7508, 92, 611, 705, 6978, 6, 287, 7508, 2073, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 331, 43695, 13, 39455, 7, 7890, 11, 360, 15829, 28, 1136, 62, 88, 43695, 62, 67, 15829, 7, 22866, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 11125, 62, 7635, 28, 25101, 11, 1249, 62, 46903, 1098, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 350, 56, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 13, 12501, 1098, 10786, 40477, 12, 23, 11537, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 33918, 13, 67, 8142, 7, 10951, 11, 537, 82, 28, 1136, 62, 17752, 62, 12685, 12342, 7, 22866, 828, 33793, 28, 19, 11, 4155, 62, 292, 979, 72, 28, 25101, 8, 628, 220, 220, 220, 1441, 1255, 628, 198, 4299, 1388, 7, 22046, 28, 14202, 2599, 198, 220, 220, 220, 37227, 23002, 1133, 1388, 2163, 329, 5726, 966, 526, 15931, 198, 220, 220, 220, 4578, 62, 48610, 796, 1382, 62, 49140, 62, 48610, 3419, 198, 220, 220, 220, 26498, 796, 26498, 393, 25064, 13, 853, 85, 58, 16, 47715, 198, 220, 220, 220, 3689, 796, 4578, 62, 48610, 13, 29572, 62, 22046, 7, 22046, 8, 628, 220, 220, 220, 611, 3689, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 1136, 11187, 1362, 10786, 268, 24266, 27691, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 31502, 8, 628, 220, 220, 220, 13532, 796, 664, 12321, 62, 6978, 82, 7, 25811, 13, 85, 485, 18569, 8, 628, 220, 220, 220, 611, 13532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 989, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 18784, 18569, 287, 27056, 378, 7, 6978, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 796, 8633, 7, 85, 945, 7, 25811, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 13116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 17816, 13116, 20520, 796, 989, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 4732, 17816, 13116, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 760, 270, 7, 85, 485, 18569, 11, 3689, 11, 4732, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 32549, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 12331, 618, 7587, 2008, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 2640, 4049, 618, 7587, 2008, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 34371, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 1069, 4516, 10786, 27275, 21004, 4049, 618, 7587, 2008, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 40391, 13, 23812, 270, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 13116, 290, 1312, 4064, 1160, 6624, 678, 290, 989, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 20035, 3815, 523, 1290, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 7, 39455, 7, 13116, 11, 3689, 11, 410, 945, 7, 25811, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 13, 13116, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 989, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 23812, 270, 4064, 82, 1043, 6439, 3815, 25, 3256, 11593, 9641, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 7, 39455, 7, 13116, 11, 3689, 11, 410, 945, 7, 25811, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 5492, 989, 606, 379, 4064, 82, 3256, 11593, 6371, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 10786, 23812, 270, 4064, 82, 4206, 2279, 13, 47226, 3256, 11593, 9641, 834, 8, 628, 220, 220, 220, 1288, 361, 3689, 13, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8624, 13, 10951, 7, 15042, 13, 24442, 62, 10951, 28955, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 62, 48610, 13, 4798, 62, 16794, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198 ]
2.338028
2,272
from unittest import TestCase from string_utils.generation import roman_range
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 4731, 62, 26791, 13, 20158, 1330, 374, 5185, 62, 9521, 628 ]
3.809524
21
""" Copyright (C) 2011 Mads Chr. Olesen <[email protected]> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ #----------------------------------------------------------------- # Based on pycparser: _build_tables.py, Copyright (C) 2008-2011, Eli Bendersky # # A dummy for generating the lexing/parsing tables and and # compiling them into .pyc for faster execution in optimized mode. # Should be called from the installation directory. # #----------------------------------------------------------------- # Generate c_ast.py # #from pyuppaal.ulp import systemdec_parser # Generates the tables # systemdec_parser.SystemDeclarationParser('', lex_optimize=True, yacc_debug=False, yacc_optimize=True) # Load to compile into .pyc # #import lextab import systemdec_parser_yacctab
[ 37811, 220, 198, 220, 220, 220, 15069, 357, 34, 8, 2813, 198, 220, 220, 220, 4627, 82, 49369, 13, 440, 829, 268, 1279, 76, 354, 305, 31, 6359, 13, 64, 559, 13, 34388, 29, 628, 220, 220, 220, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 220, 220, 220, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 220, 220, 220, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 220, 220, 220, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 628, 220, 220, 220, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 220, 220, 220, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 220, 220, 220, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 220, 220, 220, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 628, 220, 220, 220, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 220, 220, 220, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 37227, 198, 198, 2, 10097, 12, 198, 2, 13403, 319, 12972, 13155, 28198, 25, 4808, 11249, 62, 83, 2977, 13, 9078, 11, 15069, 357, 34, 8, 3648, 12, 9804, 11, 25204, 347, 7338, 2584, 198, 2, 198, 2, 317, 31548, 329, 15453, 262, 31191, 278, 14, 79, 945, 278, 8893, 290, 290, 220, 198, 2, 33393, 606, 656, 764, 9078, 66, 329, 5443, 9706, 287, 23392, 4235, 13, 198, 2, 10358, 307, 1444, 422, 262, 9988, 8619, 13, 198, 2, 198, 2, 10097, 12, 198, 198, 2, 2980, 378, 269, 62, 459, 13, 9078, 198, 2, 198, 198, 2, 6738, 12972, 7211, 64, 282, 13, 29528, 220, 198, 11748, 1080, 12501, 62, 48610, 198, 198, 2, 2980, 689, 262, 8893, 198, 2, 198, 10057, 12501, 62, 48610, 13, 11964, 37835, 10186, 46677, 10786, 3256, 198, 220, 220, 220, 31191, 62, 40085, 1096, 28, 17821, 11, 220, 198, 220, 220, 220, 331, 4134, 62, 24442, 28, 25101, 11, 220, 198, 220, 220, 220, 331, 4134, 62, 40085, 1096, 28, 17821, 8, 198, 198, 2, 8778, 284, 17632, 656, 764, 9078, 66, 198, 2, 198, 2, 11748, 443, 742, 397, 198, 11748, 1080, 12501, 62, 48610, 62, 88, 330, 310, 397, 198 ]
3.428224
411
from org.nsclient4j import NSClient4j, NSClient4JException
[ 6738, 8745, 13, 5907, 16366, 19, 73, 1330, 10896, 11792, 19, 73, 11, 10896, 11792, 19, 41, 16922, 201 ]
3.105263
19
import string import random import time from flask import Flask, Response from flask.json import jsonify app = Flask(__name__) @app.route('/') if __name__ == '__main__': app.run()
[ 11748, 4731, 198, 11748, 4738, 198, 11748, 640, 198, 198, 6738, 42903, 1330, 46947, 11, 18261, 198, 6738, 42903, 13, 17752, 1330, 33918, 1958, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 3419, 198 ]
2.716216
74
from fastapi.testclient import TestClient from dogapp.app import app client = TestClient(app)
[ 6738, 3049, 15042, 13, 9288, 16366, 1330, 6208, 11792, 198, 198, 6738, 3290, 1324, 13, 1324, 1330, 598, 198, 16366, 796, 6208, 11792, 7, 1324, 8 ]
3.615385
26
import math # Import appropriate version of tkinter try: import Tkinter as tk except ImportError: import tkinter as tk import numpy as np import matplotlib as mpl import matplotlib.backends.backend_tkagg as backend_tkagg import faraday_numerics import entry_boxes import options if __name__ == '__main__': main()
[ 11748, 10688, 198, 198, 2, 17267, 5035, 2196, 286, 256, 74, 3849, 198, 28311, 25, 198, 220, 220, 220, 1330, 309, 74, 3849, 355, 256, 74, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 256, 74, 3849, 355, 256, 74, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 11748, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 30488, 9460, 355, 30203, 62, 30488, 9460, 198, 11748, 1290, 43593, 62, 77, 6975, 873, 198, 11748, 5726, 62, 29305, 198, 11748, 3689, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.955357
112
comanda = "" while comanda != "quit": comanda = input("> ").lower() if comanda == "start": print("Masina a pornit") elif comanda == "stop": print("Masina sa oprit") elif comanda == "help": print(''' Start - Masina porneste Stop - Masina se opreste quit - A iesi ''') else: print('Nu intaleg asta')
[ 785, 5282, 796, 13538, 198, 4514, 401, 5282, 14512, 366, 47391, 1298, 198, 220, 220, 401, 5282, 796, 5128, 7, 5320, 366, 737, 21037, 3419, 198, 220, 220, 611, 401, 5282, 6624, 366, 9688, 1298, 198, 220, 220, 220, 220, 220, 220, 3601, 7203, 38224, 1437, 257, 8483, 270, 4943, 198, 220, 220, 1288, 361, 401, 5282, 6624, 366, 11338, 1298, 198, 220, 220, 220, 220, 220, 220, 3601, 7203, 38224, 1437, 473, 1034, 799, 4943, 198, 220, 220, 1288, 361, 401, 5282, 6624, 366, 16794, 1298, 198, 220, 220, 220, 220, 220, 220, 3601, 7, 7061, 6, 220, 198, 220, 220, 220, 220, 220, 220, 7253, 532, 11066, 1437, 8483, 29872, 198, 220, 220, 220, 220, 220, 220, 13707, 532, 11066, 1437, 384, 1034, 2118, 68, 198, 220, 220, 220, 220, 220, 220, 11238, 532, 317, 220, 444, 72, 198, 220, 220, 220, 220, 220, 220, 705, 7061, 8, 198, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 3601, 10786, 45, 84, 493, 1000, 70, 6468, 64, 11537, 628, 198 ]
2.137931
174
# -*- coding: utf-8 -*- # global import from xlwt import * # local import # global vars header_names = [ u"影片名称", u"片长", u"语言", u"开映时间", u"结束时间", u"场间", ] ## HEADER STYLE header_pat = Pattern() header_pat.pattern = header_pat.SOLID_PATTERN header_pat.pattern_fore_colour = 1 header_pat.pattern_back_colour = 1 # header alignment header_align = Alignment() header_align.horz = header_align.HORZ_CENTER header_align.vert = header_align.VERT_CENTER # header border header_border = Borders() header_border.top = header_border.MEDIUM header_border.left = header_border.MEDIUM header_border.right = header_border.MEDIUM header_border.bottom = header_border.MEDIUM header_style = XFStyle() header_style.pattern = header_pat header_style.alignment = header_align header_style.borders = header_border ## LEFT STYLE left_border = Borders() left_border.left = left_border.MEDIUM left_style = XFStyle() left_style.borders = left_border ## RIGHT STYLE right_border = Borders() right_border.right = right_border.MEDIUM right_style = XFStyle() right_style.borders = right_border ## BOTTOM LEFT STYLE bottom_border = Borders() bottom_border.left = bottom_border.MEDIUM bottom_border.bottom = bottom_border.MEDIUM bottolleft_style = XFStyle() bottolleft_style.borders = bottom_border ## BOTTOM RIGHT STYLE bottom_border = Borders() bottom_border.right = bottom_border.MEDIUM bottom_border.bottom = bottom_border.MEDIUM bottomright_style = XFStyle() bottomright_style.borders = bottom_border ## BOTTOM CENTER STYLE bottom_border = Borders() bottom_border.bottom = bottom_border.MEDIUM bottomcenter_style = XFStyle() bottomcenter_style.borders = bottom_border
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 3298, 1330, 198, 6738, 2124, 75, 46569, 1330, 1635, 198, 198, 2, 1957, 1330, 198, 198, 2, 3298, 410, 945, 198, 25677, 62, 14933, 796, 685, 198, 220, 220, 220, 334, 1, 37605, 109, 31965, 229, 28938, 235, 163, 100, 108, 1600, 198, 220, 220, 220, 334, 1, 31965, 229, 165, 243, 123, 1600, 198, 220, 220, 220, 334, 1, 46237, 255, 164, 101, 222, 1600, 198, 220, 220, 220, 334, 1, 28156, 222, 23626, 254, 33768, 114, 29785, 112, 1600, 198, 220, 220, 220, 334, 1, 163, 119, 241, 30266, 253, 33768, 114, 29785, 112, 1600, 198, 220, 220, 220, 334, 1, 28839, 118, 29785, 112, 1600, 198, 60, 628, 198, 2235, 39837, 1137, 3563, 56, 2538, 198, 25677, 62, 8071, 796, 23939, 3419, 198, 25677, 62, 8071, 13, 33279, 796, 13639, 62, 8071, 13, 50, 3535, 2389, 62, 47, 1404, 31800, 198, 25677, 62, 8071, 13, 33279, 62, 754, 62, 49903, 796, 352, 198, 25677, 62, 8071, 13, 33279, 62, 1891, 62, 49903, 796, 352, 198, 2, 13639, 19114, 198, 25677, 62, 31494, 796, 978, 16747, 3419, 198, 25677, 62, 31494, 13, 17899, 89, 796, 13639, 62, 31494, 13, 39, 1581, 57, 62, 43960, 1137, 198, 25677, 62, 31494, 13, 1851, 796, 13639, 62, 31494, 13, 15858, 62, 43960, 1137, 198, 2, 13639, 4865, 198, 25677, 62, 20192, 796, 40934, 3419, 198, 25677, 62, 20192, 13, 4852, 796, 13639, 62, 20192, 13, 30733, 41796, 198, 25677, 62, 20192, 13, 9464, 796, 13639, 62, 20192, 13, 30733, 41796, 198, 25677, 62, 20192, 13, 3506, 796, 13639, 62, 20192, 13, 30733, 41796, 198, 25677, 62, 20192, 13, 22487, 796, 13639, 62, 20192, 13, 30733, 41796, 198, 25677, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 25677, 62, 7635, 13, 33279, 796, 13639, 62, 8071, 198, 25677, 62, 7635, 13, 282, 16747, 796, 13639, 62, 31494, 198, 25677, 62, 7635, 13, 65, 6361, 796, 13639, 62, 20192, 198, 198, 2235, 12509, 9792, 3563, 56, 2538, 198, 9464, 62, 20192, 796, 40934, 3419, 198, 9464, 62, 20192, 13, 9464, 796, 1364, 62, 20192, 13, 30733, 41796, 198, 9464, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 9464, 62, 7635, 13, 65, 6361, 796, 1364, 62, 20192, 198, 198, 2235, 33621, 3563, 56, 2538, 198, 3506, 62, 20192, 796, 40934, 3419, 198, 3506, 62, 20192, 13, 3506, 796, 826, 62, 20192, 13, 30733, 41796, 198, 3506, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 3506, 62, 7635, 13, 65, 6361, 796, 826, 62, 20192, 198, 198, 2235, 347, 29089, 2662, 12509, 9792, 3563, 56, 2538, 198, 22487, 62, 20192, 796, 40934, 3419, 198, 22487, 62, 20192, 13, 9464, 796, 4220, 62, 20192, 13, 30733, 41796, 198, 22487, 62, 20192, 13, 22487, 796, 4220, 62, 20192, 13, 30733, 41796, 198, 10985, 349, 9464, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 10985, 349, 9464, 62, 7635, 13, 65, 6361, 796, 4220, 62, 20192, 198, 198, 2235, 347, 29089, 2662, 33621, 3563, 56, 2538, 198, 22487, 62, 20192, 796, 40934, 3419, 198, 22487, 62, 20192, 13, 3506, 796, 4220, 62, 20192, 13, 30733, 41796, 198, 22487, 62, 20192, 13, 22487, 796, 4220, 62, 20192, 13, 30733, 41796, 198, 22487, 3506, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 22487, 3506, 62, 7635, 13, 65, 6361, 796, 4220, 62, 20192, 198, 2235, 347, 29089, 2662, 33269, 1137, 3563, 56, 2538, 198, 22487, 62, 20192, 796, 40934, 3419, 198, 22487, 62, 20192, 13, 22487, 796, 4220, 62, 20192, 13, 30733, 41796, 198, 22487, 16159, 62, 7635, 796, 1395, 10652, 774, 293, 3419, 198, 22487, 16159, 62, 7635, 13, 65, 6361, 796, 4220, 62, 20192, 198 ]
2.704362
619
import _dk_core as core # interpolation type CATMULL_ROM = 0 UNIFORM_CUBIC = 1 HERMITE = 2 BEZIER = 3 Spline = core.Spline class Spline2: '''spline for Vector2''' class Spline3: '''spline for Vector3''' class Spline4: '''spline for Vector4'''
[ 11748, 4808, 34388, 62, 7295, 355, 4755, 198, 198, 2, 39555, 341, 2099, 198, 34, 1404, 44, 9994, 62, 33676, 796, 657, 198, 4944, 5064, 1581, 44, 62, 34, 10526, 2149, 796, 352, 198, 16879, 44, 12709, 796, 362, 198, 12473, 57, 38311, 796, 513, 628, 198, 26568, 500, 796, 4755, 13, 26568, 500, 198, 198, 4871, 13341, 500, 17, 25, 198, 220, 220, 220, 705, 7061, 22018, 500, 329, 20650, 17, 7061, 6, 198, 198, 4871, 13341, 500, 18, 25, 198, 220, 220, 220, 705, 7061, 22018, 500, 329, 20650, 18, 7061, 6, 198, 198, 4871, 13341, 500, 19, 25, 198, 220, 220, 220, 705, 7061, 22018, 500, 329, 20650, 19, 7061, 6, 628 ]
2.278261
115
# Lint as: python3 """LIT wrappers for T5, supporting both HuggingFace and SavedModel formats.""" import re from typing import List import attr from lit_nlp.api import model as lit_model from lit_nlp.api import types as lit_types from lit_nlp.examples.models import model_utils from lit_nlp.lib import utils import tensorflow as tf # tensorflow_text is required for T5 SavedModel import tensorflow_text # pylint: disable=unused-import import transformers from rouge_score import rouge_scorer JsonDict = lit_types.JsonDict def masked_token_mean(vectors, masks): """Mean over tokens. Args: vectors: <tf.float32>[batch_size, num_tokens, emb_dim] masks: <tf.int32>[batch_size, num_tokens] Returns: <tf.float32>[batch_size, emb_dim] """ masks = tf.cast(masks, tf.float32) weights = masks / tf.reduce_sum(masks, axis=1, keepdims=True) return tf.reduce_sum(vectors * tf.expand_dims(weights, axis=-1), axis=1) @attr.s(auto_attribs=True, kw_only=True) class T5ModelConfig(object): """Config options for a T5 generation model.""" # Input options inference_batch_size: int = 4 # Generation options beam_size: int = 4 max_gen_length: int = 50 num_to_generate: int = 1 # Decoding options token_top_k: int = 10 output_attention: bool = False def validate_t5_model(model: lit_model.Model) -> lit_model.Model: """Validate that a given model looks like a T5 model. This checks the model spec at runtime; it is intended to be used before server start, such as in the __init__() method of a wrapper class. Args: model: a LIT model Returns: model: the same model Raises: AssertionError: if the model's spec does not match that expected for a T5 model. """ # Check inputs ispec = model.input_spec() assert "input_text" in ispec assert isinstance(ispec["input_text"], lit_types.TextSegment) if "target_text" in ispec: assert isinstance(ispec["target_text"], lit_types.TextSegment) # Check outputs ospec = model.output_spec() assert "output_text" in ospec assert isinstance( ospec["output_text"], (lit_types.GeneratedText, lit_types.GeneratedTextCandidates)) assert ospec["output_text"].parent == "target_text" return model class T5SavedModel(lit_model.Model): """T5 from a TensorFlow SavedModel, for black-box access. To create a SavedModel from a regular T5 checkpoint, see https://github.com/google-research/text-to-text-transfer-transformer#export """ ## # LIT API implementations def predict_minibatch(self, inputs): """Predict on a single minibatch of examples.""" model_inputs = tf.constant([ex["input_text"] for ex in inputs]) model_outputs = self.model.signatures["serving_default"](model_inputs) return [{ "output_text": m.decode("utf-8") } for m in model_outputs["outputs"].numpy()] class T5HFModel(lit_model.Model): """T5 using HuggingFace Transformers and Keras. This version supports embeddings, attention, and force-decoding of the target text, as well as more options to control decoding (such as beam search). """ @property def _force_decode(self, encoded_inputs, encoded_targets): """Get predictions for a batch of tokenized examples. Each forward pass produces the following: logits: batch_size x dec_len x vocab_size decoder_past_key_value_states: tuple with cached outputs. dec_states: tuple[len:dec_layers]: batch_size x dec_len x hid_size dec_attn: [optional] tuple[len:dec_layers+1] batch_size x num_heads x dec_len x dec_len enc_final_state: batch_size x enc_len x hid_size enc_states: tuple[len:enc_layers]: batch_size x enc_len x hid_size enc_attn: [optional] tuple[len:enc_layers+1] batch_size x num_heads x enc_len x enc_len The two optional attention fields are only returned if config.output_attention is set. Args: encoded_inputs: Dict as returned from Tokenizer for inputs. encoded_targets: Dict as returned from Tokenizer for outputs Returns: batched_outputs: Dict[str, tf.Tensor] """ results = self.model( input_ids=encoded_inputs["input_ids"], decoder_input_ids=encoded_targets["input_ids"], attention_mask=encoded_inputs["attention_mask"], decoder_attention_mask=encoded_targets["attention_mask"]) model_probs = tf.nn.softmax(results.logits, axis=-1) top_k = tf.math.top_k( model_probs, k=self.config.token_top_k, sorted=True, name=None) batched_outputs = { "input_ids": encoded_inputs["input_ids"], "input_ntok": tf.reduce_sum(encoded_inputs["attention_mask"], axis=1), "target_ids": encoded_targets["input_ids"], "target_ntok": tf.reduce_sum(encoded_targets["attention_mask"], axis=1), "top_k_indices": top_k.indices, "top_k_probs": top_k.values, } # encoder_last_hidden_state is <float>[batch_size, num_tokens, emb_dim] # take the mean over real tokens to get <float>[batch_size, emb_dim] batched_outputs["encoder_final_embedding"] = masked_token_mean( results.encoder_last_hidden_state, encoded_inputs["attention_mask"]) if self.config.output_attention: for i in range(len(results.decoder_attentions)): batched_outputs[ f"decoder_layer_{i+1:d}_attention"] = results.decoder_attentions[i] for i in range(len(results.encoder_attentions)): batched_outputs[ f"encoder_layer_{i+1:d}_attention"] = results.encoder_attentions[i] return batched_outputs def _postprocess(self, preds): """Post-process single-example preds. Operates on numpy arrays.""" # Return tokenization for input text. input_ntok = preds.pop("input_ntok") input_ids = preds.pop("input_ids")[:input_ntok] preds["input_tokens"] = self.tokenizer.convert_ids_to_tokens(input_ids) # Return tokenization for target text. target_ntok = preds.pop("target_ntok") target_ids = preds.pop("target_ids")[:target_ntok] preds["target_tokens"] = self.tokenizer.convert_ids_to_tokens(target_ids) # Decode predicted top-k tokens. # token_topk_preds will be a List[List[(word, prob)]] # Initialize prediction for 0th token as N/A. token_topk_preds = [[("N/A", 1.)]] pred_ids = preds.pop("top_k_indices")[:target_ntok] # <int>[num_tokens, k] pred_probs = preds.pop( "top_k_probs")[:target_ntok] # <float32>[num_tokens, k] for token_pred_ids, token_pred_probs in zip(pred_ids, pred_probs): token_pred_words = self.tokenizer.convert_ids_to_tokens(token_pred_ids) token_topk_preds.append(list(zip(token_pred_words, token_pred_probs))) preds["pred_tokens"] = token_topk_preds # Decode generated ids candidates = [ self.tokenizer.decode(ids, skip_special_tokens=True) for ids in preds.pop("generated_ids") ] if self.config.num_to_generate > 1: preds["output_text"] = [(s, None) for s in candidates] else: preds["output_text"] = candidates[0] # Process attention fields, if present. for key in preds: if not re.match(r"\w+_layer_(\d+)/attention", key): continue if key.startswith("encoder_"): ntok = input_ntok elif key.startswith("decoder_"): ntok = target_ntok else: raise ValueError(f"Invalid attention key: '{key}'") # Select only real tokens, since most of this matrix is padding. # <float32>[num_heads, max_seq_length, max_seq_length] # -> <float32>[num_heads, num_tokens, num_tokens] preds[key] = preds[key][:, :ntok, :ntok].transpose((0, 2, 1)) # Make a copy of this array to avoid memory leaks, since NumPy otherwise # keeps a pointer around that prevents the source array from being GCed. preds[key] = preds[key].copy() return preds ## # LIT API implementations def predict_minibatch(self, inputs): """Run model on a single batch. Args: inputs: List[Dict] with fields as described by input_spec() Returns: outputs: List[Dict] with fields as described by output_spec() """ # Text as sequence of sentencepiece ID"s. encoded_inputs = self._encode_texts([ex["input_text"] for ex in inputs]) encoded_targets = self._encode_texts( [ex.get("target_text", "") for ex in inputs]) ## # Force-decode on target text, and also get encoder embs and attention. batched_outputs = self._force_decode(encoded_inputs, encoded_targets) # Get the conditional generation from the model. # Workaround for output_hidden not being compatible with generate. # See https://github.com/huggingface/transformers/issues/8361 self.model.config.output_hidden_states = False generated_ids = self.model.generate( encoded_inputs.input_ids, num_beams=self.config.beam_size, attention_mask=encoded_inputs.attention_mask, max_length=self.config.max_gen_length, num_return_sequences=self.config.num_to_generate) # [batch_size*num_return_sequences, num_steps] # -> [batch_size, num_return_sequences, num_steps] batched_outputs["generated_ids"] = tf.reshape( generated_ids, [-1, self.config.num_to_generate, generated_ids.shape[-1]]) self.model.config.output_hidden_states = True # Convert to numpy for post-processing. detached_outputs = {k: v.numpy() for k, v in batched_outputs.items()} # Split up batched outputs, then post-process each example. unbatched_outputs = utils.unbatch_preds(detached_outputs) return list(map(self._postprocess, unbatched_outputs)) ## # Task-specific wrapper classes. class TranslationWrapper(lit_model.ModelWrapper): """Wrapper class for machine translation.""" # Mapping from generic T5 fields to this task FIELD_RENAMES = { "input_text": "source", "target_text": "target", "output_text": "translation", } # From Appendix D of https://arxiv.org/pdf/1910.10683.pdf. # Add more of these if your model supports them. LANGCODE_TO_NAME = { "en": "English", "de": "German", "fr": "French", "ro": "Romanian", } INPUT_TEMPLATE = "translate {source_language} to {target_language}: {source}" ## # LIT API implementation # TODO(b/170662608): remove these after batching API is cleaned up. def predict(self, inputs): """Predict on a single minibatch of examples.""" model_inputs = (self.preprocess(ex) for ex in inputs) outputs = self.wrapped.predict(model_inputs) return (utils.remap_dict(mo, self.FIELD_RENAMES) for mo in outputs) def predict_with_metadata(self, indexed_inputs): """As predict(), but inputs are IndexedInput.""" return self.predict((ex["data"] for ex in indexed_inputs)) class SummarizationWrapper(lit_model.ModelWrapper): """Wrapper class to perform a summarization task.""" # Mapping from generic T5 fields to this task FIELD_RENAMES = { "input_text": "document", "target_text": "reference", } ## # LIT API implementation # TODO(b/170662608): remove these after batching API is cleaned up. def predict(self, inputs): """Predict on a single minibatch of examples.""" inputs = list(inputs) # needs to be referenced below, so keep full list model_inputs = (self.preprocess(ex) for ex in inputs) outputs = self.wrapped.predict(model_inputs) outputs = (utils.remap_dict(mo, self.FIELD_RENAMES) for mo in outputs) # TODO(gehrmann): temp solution to get ROUGE scores in data table. for ex, mo in zip(inputs, outputs): score = self._scorer.score( target=ex["reference"], prediction=self._get_pred_string(mo["output_text"])) mo["rougeL"] = float(score["rougeL"].fmeasure) yield mo def predict_with_metadata(self, indexed_inputs): """As predict(), but inputs are IndexedInput.""" return self.predict((ex["data"] for ex in indexed_inputs))
[ 2, 406, 600, 355, 25, 21015, 18, 198, 37811, 43, 2043, 7917, 11799, 329, 309, 20, 11, 6493, 1111, 12905, 2667, 32388, 290, 8858, 276, 17633, 17519, 526, 15931, 198, 11748, 302, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 708, 81, 198, 6738, 6578, 62, 21283, 79, 13, 15042, 1330, 2746, 355, 6578, 62, 19849, 198, 6738, 6578, 62, 21283, 79, 13, 15042, 1330, 3858, 355, 6578, 62, 19199, 198, 6738, 6578, 62, 21283, 79, 13, 1069, 12629, 13, 27530, 1330, 2746, 62, 26791, 198, 6738, 6578, 62, 21283, 79, 13, 8019, 1330, 3384, 4487, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 2, 11192, 273, 11125, 62, 5239, 318, 2672, 329, 309, 20, 8858, 276, 17633, 198, 11748, 11192, 273, 11125, 62, 5239, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198, 11748, 6121, 364, 198, 198, 6738, 13805, 469, 62, 26675, 1330, 13805, 469, 62, 1416, 11934, 198, 198, 41, 1559, 35, 713, 796, 6578, 62, 19199, 13, 41, 1559, 35, 713, 628, 198, 4299, 29229, 62, 30001, 62, 32604, 7, 303, 5217, 11, 20680, 2599, 198, 220, 37227, 5308, 272, 625, 16326, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 30104, 25, 1279, 27110, 13, 22468, 2624, 36937, 43501, 62, 7857, 11, 997, 62, 83, 482, 641, 11, 4072, 62, 27740, 60, 198, 220, 220, 220, 20680, 25, 1279, 27110, 13, 600, 2624, 36937, 43501, 62, 7857, 11, 997, 62, 83, 482, 641, 60, 628, 220, 16409, 25, 198, 220, 220, 220, 1279, 27110, 13, 22468, 2624, 36937, 43501, 62, 7857, 11, 4072, 62, 27740, 60, 198, 220, 37227, 198, 220, 20680, 796, 48700, 13, 2701, 7, 5356, 591, 11, 48700, 13, 22468, 2624, 8, 198, 220, 19590, 796, 20680, 1220, 48700, 13, 445, 7234, 62, 16345, 7, 5356, 591, 11, 16488, 28, 16, 11, 1394, 67, 12078, 28, 17821, 8, 198, 220, 1441, 48700, 13, 445, 7234, 62, 16345, 7, 303, 5217, 1635, 48700, 13, 11201, 392, 62, 67, 12078, 7, 43775, 11, 16488, 10779, 16, 828, 16488, 28, 16, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 8, 198, 4871, 309, 20, 17633, 16934, 7, 15252, 2599, 198, 220, 37227, 16934, 3689, 329, 257, 309, 20, 5270, 2746, 526, 15931, 198, 220, 1303, 23412, 3689, 198, 220, 32278, 62, 43501, 62, 7857, 25, 493, 796, 604, 198, 220, 1303, 16588, 3689, 198, 220, 15584, 62, 7857, 25, 493, 796, 604, 198, 220, 3509, 62, 5235, 62, 13664, 25, 493, 796, 2026, 198, 220, 997, 62, 1462, 62, 8612, 378, 25, 493, 796, 352, 198, 220, 1303, 4280, 7656, 3689, 198, 220, 11241, 62, 4852, 62, 74, 25, 493, 796, 838, 198, 220, 5072, 62, 1078, 1463, 25, 20512, 796, 10352, 628, 198, 4299, 26571, 62, 83, 20, 62, 19849, 7, 19849, 25, 6578, 62, 19849, 13, 17633, 8, 4613, 6578, 62, 19849, 13, 17633, 25, 198, 220, 37227, 7762, 20540, 326, 257, 1813, 2746, 3073, 588, 257, 309, 20, 2746, 13, 628, 220, 770, 8794, 262, 2746, 1020, 379, 19124, 26, 340, 318, 5292, 284, 307, 973, 878, 4382, 198, 220, 923, 11, 884, 355, 287, 262, 11593, 15003, 834, 3419, 2446, 286, 257, 29908, 1398, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 2746, 25, 257, 406, 2043, 2746, 628, 220, 16409, 25, 198, 220, 220, 220, 2746, 25, 262, 976, 2746, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 2195, 861, 295, 12331, 25, 611, 262, 2746, 338, 1020, 857, 407, 2872, 326, 2938, 329, 257, 309, 20, 198, 220, 220, 220, 2746, 13, 198, 220, 37227, 198, 220, 1303, 6822, 17311, 198, 220, 318, 43106, 796, 2746, 13, 15414, 62, 16684, 3419, 198, 220, 6818, 366, 15414, 62, 5239, 1, 287, 318, 43106, 198, 220, 6818, 318, 39098, 7, 271, 43106, 14692, 15414, 62, 5239, 33116, 6578, 62, 19199, 13, 8206, 41030, 434, 8, 198, 220, 611, 366, 16793, 62, 5239, 1, 287, 318, 43106, 25, 198, 220, 220, 220, 6818, 318, 39098, 7, 271, 43106, 14692, 16793, 62, 5239, 33116, 6578, 62, 19199, 13, 8206, 41030, 434, 8, 628, 220, 1303, 6822, 23862, 198, 220, 267, 16684, 796, 2746, 13, 22915, 62, 16684, 3419, 198, 220, 6818, 366, 22915, 62, 5239, 1, 287, 267, 16684, 198, 220, 6818, 318, 39098, 7, 198, 220, 220, 220, 220, 220, 267, 16684, 14692, 22915, 62, 5239, 33116, 198, 220, 220, 220, 220, 220, 357, 18250, 62, 19199, 13, 8645, 515, 8206, 11, 6578, 62, 19199, 13, 8645, 515, 8206, 41572, 37051, 4008, 198, 220, 6818, 267, 16684, 14692, 22915, 62, 5239, 1, 4083, 8000, 6624, 366, 16793, 62, 5239, 1, 628, 220, 1441, 2746, 628, 198, 4871, 309, 20, 50, 9586, 17633, 7, 18250, 62, 19849, 13, 17633, 2599, 198, 220, 37227, 51, 20, 422, 257, 309, 22854, 37535, 8858, 276, 17633, 11, 329, 2042, 12, 3524, 1895, 13, 628, 220, 1675, 2251, 257, 8858, 276, 17633, 422, 257, 3218, 309, 20, 26954, 11, 766, 198, 220, 3740, 1378, 12567, 13, 785, 14, 13297, 12, 34033, 14, 5239, 12, 1462, 12, 5239, 12, 39437, 12, 7645, 16354, 2, 39344, 198, 220, 37227, 628, 220, 22492, 198, 220, 1303, 406, 2043, 7824, 25504, 628, 220, 825, 4331, 62, 1084, 571, 963, 7, 944, 11, 17311, 2599, 198, 220, 220, 220, 37227, 47, 17407, 319, 257, 2060, 949, 571, 963, 286, 6096, 526, 15931, 198, 220, 220, 220, 2746, 62, 15414, 82, 796, 48700, 13, 9979, 415, 26933, 1069, 14692, 15414, 62, 5239, 8973, 329, 409, 287, 17311, 12962, 198, 220, 220, 220, 2746, 62, 22915, 82, 796, 2116, 13, 19849, 13, 12683, 6691, 14692, 31293, 62, 12286, 8973, 7, 19849, 62, 15414, 82, 8, 198, 220, 220, 220, 1441, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22915, 62, 5239, 1298, 285, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 198, 220, 220, 220, 1782, 329, 285, 287, 2746, 62, 22915, 82, 14692, 22915, 82, 1, 4083, 77, 32152, 3419, 60, 628, 198, 4871, 309, 20, 29567, 17633, 7, 18250, 62, 19849, 13, 17633, 2599, 198, 220, 37227, 51, 20, 1262, 12905, 2667, 32388, 39185, 290, 17337, 292, 13, 628, 220, 770, 2196, 6971, 11525, 67, 654, 11, 3241, 11, 290, 2700, 12, 12501, 7656, 286, 262, 2496, 198, 220, 2420, 11, 355, 880, 355, 517, 3689, 284, 1630, 39938, 357, 10508, 355, 15584, 2989, 737, 198, 220, 37227, 628, 220, 2488, 26745, 628, 220, 825, 4808, 3174, 62, 12501, 1098, 7, 944, 11, 30240, 62, 15414, 82, 11, 30240, 62, 83, 853, 1039, 2599, 198, 220, 220, 220, 37227, 3855, 16277, 329, 257, 15458, 286, 11241, 1143, 6096, 13, 628, 220, 220, 220, 5501, 2651, 1208, 11073, 262, 1708, 25, 198, 220, 220, 220, 220, 220, 2604, 896, 25, 15458, 62, 7857, 2124, 875, 62, 11925, 2124, 12776, 397, 62, 7857, 198, 220, 220, 220, 220, 220, 875, 12342, 62, 30119, 62, 2539, 62, 8367, 62, 27219, 25, 46545, 351, 39986, 23862, 13, 198, 220, 220, 220, 220, 220, 875, 62, 27219, 25, 46545, 58, 11925, 25, 12501, 62, 75, 6962, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 2124, 875, 62, 11925, 2124, 24519, 62, 7857, 198, 220, 220, 220, 220, 220, 875, 62, 1078, 77, 25, 685, 25968, 60, 46545, 58, 11925, 25, 12501, 62, 75, 6962, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 2124, 997, 62, 16600, 2124, 875, 62, 11925, 2124, 875, 62, 11925, 198, 220, 220, 220, 220, 220, 2207, 62, 20311, 62, 5219, 25, 15458, 62, 7857, 2124, 2207, 62, 11925, 2124, 24519, 62, 7857, 198, 220, 220, 220, 220, 220, 2207, 62, 27219, 25, 46545, 58, 11925, 25, 12685, 62, 75, 6962, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 2124, 2207, 62, 11925, 2124, 24519, 62, 7857, 198, 220, 220, 220, 220, 220, 2207, 62, 1078, 77, 25, 685, 25968, 60, 46545, 58, 11925, 25, 12685, 62, 75, 6962, 10, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 2124, 997, 62, 16600, 2124, 2207, 62, 11925, 2124, 2207, 62, 11925, 628, 220, 220, 220, 383, 734, 11902, 3241, 7032, 389, 691, 4504, 611, 198, 220, 220, 220, 4566, 13, 22915, 62, 1078, 1463, 318, 900, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 30240, 62, 15414, 82, 25, 360, 713, 355, 4504, 422, 29130, 7509, 329, 17311, 13, 198, 220, 220, 220, 220, 220, 30240, 62, 83, 853, 1039, 25, 360, 713, 355, 4504, 422, 29130, 7509, 329, 23862, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 7365, 1740, 62, 22915, 82, 25, 360, 713, 58, 2536, 11, 48700, 13, 51, 22854, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2482, 796, 2116, 13, 19849, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2340, 28, 12685, 9043, 62, 15414, 82, 14692, 15414, 62, 2340, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 875, 12342, 62, 15414, 62, 2340, 28, 12685, 9043, 62, 83, 853, 1039, 14692, 15414, 62, 2340, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 3241, 62, 27932, 28, 12685, 9043, 62, 15414, 82, 14692, 1078, 1463, 62, 27932, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 875, 12342, 62, 1078, 1463, 62, 27932, 28, 12685, 9043, 62, 83, 853, 1039, 14692, 1078, 1463, 62, 27932, 8973, 8, 628, 220, 220, 220, 2746, 62, 1676, 1443, 796, 48700, 13, 20471, 13, 4215, 9806, 7, 43420, 13, 6404, 896, 11, 16488, 10779, 16, 8, 198, 220, 220, 220, 1353, 62, 74, 796, 48700, 13, 11018, 13, 4852, 62, 74, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 1676, 1443, 11, 479, 28, 944, 13, 11250, 13, 30001, 62, 4852, 62, 74, 11, 23243, 28, 17821, 11, 1438, 28, 14202, 8, 198, 220, 220, 220, 7365, 1740, 62, 22915, 82, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15414, 62, 2340, 1298, 30240, 62, 15414, 82, 14692, 15414, 62, 2340, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15414, 62, 429, 482, 1298, 48700, 13, 445, 7234, 62, 16345, 7, 12685, 9043, 62, 15414, 82, 14692, 1078, 1463, 62, 27932, 33116, 16488, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16793, 62, 2340, 1298, 30240, 62, 83, 853, 1039, 14692, 15414, 62, 2340, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16793, 62, 429, 482, 1298, 48700, 13, 445, 7234, 62, 16345, 7, 12685, 9043, 62, 83, 853, 1039, 14692, 1078, 1463, 62, 27932, 33116, 16488, 28, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4852, 62, 74, 62, 521, 1063, 1298, 1353, 62, 74, 13, 521, 1063, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4852, 62, 74, 62, 1676, 1443, 1298, 1353, 62, 74, 13, 27160, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 2207, 12342, 62, 12957, 62, 30342, 62, 5219, 318, 1279, 22468, 36937, 43501, 62, 7857, 11, 997, 62, 83, 482, 641, 11, 4072, 62, 27740, 60, 198, 220, 220, 220, 1303, 1011, 262, 1612, 625, 1103, 16326, 284, 651, 1279, 22468, 36937, 43501, 62, 7857, 11, 4072, 62, 27740, 60, 198, 220, 220, 220, 7365, 1740, 62, 22915, 82, 14692, 12685, 12342, 62, 20311, 62, 20521, 12083, 8973, 796, 29229, 62, 30001, 62, 32604, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 12685, 12342, 62, 12957, 62, 30342, 62, 5219, 11, 30240, 62, 15414, 82, 14692, 1078, 1463, 62, 27932, 8973, 8, 628, 220, 220, 220, 611, 2116, 13, 11250, 13, 22915, 62, 1078, 1463, 25, 198, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 43420, 13, 12501, 12342, 62, 1078, 298, 507, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7365, 1740, 62, 22915, 82, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 12501, 12342, 62, 29289, 23330, 72, 10, 16, 25, 67, 92, 62, 1078, 1463, 8973, 796, 2482, 13, 12501, 12342, 62, 1078, 298, 507, 58, 72, 60, 198, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 43420, 13, 12685, 12342, 62, 1078, 298, 507, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7365, 1740, 62, 22915, 82, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 12685, 12342, 62, 29289, 23330, 72, 10, 16, 25, 67, 92, 62, 1078, 1463, 8973, 796, 2482, 13, 12685, 12342, 62, 1078, 298, 507, 58, 72, 60, 628, 220, 220, 220, 1441, 7365, 1740, 62, 22915, 82, 628, 220, 825, 4808, 7353, 14681, 7, 944, 11, 2747, 82, 2599, 198, 220, 220, 220, 37227, 6307, 12, 14681, 2060, 12, 20688, 2747, 82, 13, 6564, 689, 319, 299, 32152, 26515, 526, 15931, 198, 220, 220, 220, 1303, 8229, 11241, 1634, 329, 5128, 2420, 13, 198, 220, 220, 220, 5128, 62, 429, 482, 796, 2747, 82, 13, 12924, 7203, 15414, 62, 429, 482, 4943, 198, 220, 220, 220, 5128, 62, 2340, 796, 2747, 82, 13, 12924, 7203, 15414, 62, 2340, 4943, 58, 25, 15414, 62, 429, 482, 60, 198, 220, 220, 220, 2747, 82, 14692, 15414, 62, 83, 482, 641, 8973, 796, 2116, 13, 30001, 7509, 13, 1102, 1851, 62, 2340, 62, 1462, 62, 83, 482, 641, 7, 15414, 62, 2340, 8, 198, 220, 220, 220, 1303, 8229, 11241, 1634, 329, 2496, 2420, 13, 198, 220, 220, 220, 2496, 62, 429, 482, 796, 2747, 82, 13, 12924, 7203, 16793, 62, 429, 482, 4943, 198, 220, 220, 220, 2496, 62, 2340, 796, 2747, 82, 13, 12924, 7203, 16793, 62, 2340, 4943, 58, 25, 16793, 62, 429, 482, 60, 198, 220, 220, 220, 2747, 82, 14692, 16793, 62, 83, 482, 641, 8973, 796, 2116, 13, 30001, 7509, 13, 1102, 1851, 62, 2340, 62, 1462, 62, 83, 482, 641, 7, 16793, 62, 2340, 8, 628, 220, 220, 220, 1303, 4280, 1098, 11001, 1353, 12, 74, 16326, 13, 198, 220, 220, 220, 1303, 11241, 62, 4852, 74, 62, 28764, 82, 481, 307, 257, 7343, 58, 8053, 58, 7, 4775, 11, 1861, 8, 11907, 198, 220, 220, 220, 1303, 20768, 1096, 17724, 329, 657, 400, 11241, 355, 399, 14, 32, 13, 198, 220, 220, 220, 11241, 62, 4852, 74, 62, 28764, 82, 796, 16410, 7203, 45, 14, 32, 1600, 352, 2014, 11907, 198, 220, 220, 220, 2747, 62, 2340, 796, 2747, 82, 13, 12924, 7203, 4852, 62, 74, 62, 521, 1063, 4943, 58, 25, 16793, 62, 429, 482, 60, 220, 1303, 1279, 600, 36937, 22510, 62, 83, 482, 641, 11, 479, 60, 198, 220, 220, 220, 2747, 62, 1676, 1443, 796, 2747, 82, 13, 12924, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4852, 62, 74, 62, 1676, 1443, 4943, 58, 25, 16793, 62, 429, 482, 60, 220, 1303, 1279, 22468, 2624, 36937, 22510, 62, 83, 482, 641, 11, 479, 60, 198, 220, 220, 220, 329, 11241, 62, 28764, 62, 2340, 11, 11241, 62, 28764, 62, 1676, 1443, 287, 19974, 7, 28764, 62, 2340, 11, 2747, 62, 1676, 1443, 2599, 198, 220, 220, 220, 220, 220, 11241, 62, 28764, 62, 10879, 796, 2116, 13, 30001, 7509, 13, 1102, 1851, 62, 2340, 62, 1462, 62, 83, 482, 641, 7, 30001, 62, 28764, 62, 2340, 8, 198, 220, 220, 220, 220, 220, 11241, 62, 4852, 74, 62, 28764, 82, 13, 33295, 7, 4868, 7, 13344, 7, 30001, 62, 28764, 62, 10879, 11, 11241, 62, 28764, 62, 1676, 1443, 22305, 198, 220, 220, 220, 2747, 82, 14692, 28764, 62, 83, 482, 641, 8973, 796, 11241, 62, 4852, 74, 62, 28764, 82, 628, 220, 220, 220, 1303, 4280, 1098, 7560, 220, 2340, 198, 220, 220, 220, 5871, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 7509, 13, 12501, 1098, 7, 2340, 11, 14267, 62, 20887, 62, 83, 482, 641, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 220, 2340, 287, 2747, 82, 13, 12924, 7203, 27568, 62, 2340, 4943, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 611, 2116, 13, 11250, 13, 22510, 62, 1462, 62, 8612, 378, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 2747, 82, 14692, 22915, 62, 5239, 8973, 796, 47527, 82, 11, 6045, 8, 329, 264, 287, 5871, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2747, 82, 14692, 22915, 62, 5239, 8973, 796, 5871, 58, 15, 60, 628, 220, 220, 220, 1303, 10854, 3241, 7032, 11, 611, 1944, 13, 198, 220, 220, 220, 329, 1994, 287, 2747, 82, 25, 198, 220, 220, 220, 220, 220, 611, 407, 302, 13, 15699, 7, 81, 1, 59, 86, 10, 62, 29289, 62, 38016, 67, 10, 20679, 1078, 1463, 1600, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 611, 1994, 13, 9688, 2032, 342, 7203, 12685, 12342, 62, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 796, 5128, 62, 429, 482, 198, 220, 220, 220, 220, 220, 1288, 361, 1994, 13, 9688, 2032, 342, 7203, 12501, 12342, 62, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 796, 2496, 62, 429, 482, 198, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 1, 44651, 3241, 1994, 25, 705, 90, 2539, 92, 6, 4943, 198, 220, 220, 220, 220, 220, 1303, 9683, 691, 1103, 16326, 11, 1201, 749, 286, 428, 17593, 318, 24511, 13, 198, 220, 220, 220, 220, 220, 1303, 1279, 22468, 2624, 36937, 22510, 62, 16600, 11, 3509, 62, 41068, 62, 13664, 11, 3509, 62, 41068, 62, 13664, 60, 198, 220, 220, 220, 220, 220, 1303, 4613, 1279, 22468, 2624, 36937, 22510, 62, 16600, 11, 997, 62, 83, 482, 641, 11, 997, 62, 83, 482, 641, 60, 198, 220, 220, 220, 220, 220, 2747, 82, 58, 2539, 60, 796, 2747, 82, 58, 2539, 7131, 45299, 1058, 429, 482, 11, 1058, 429, 482, 4083, 7645, 3455, 19510, 15, 11, 362, 11, 352, 4008, 198, 220, 220, 220, 220, 220, 1303, 6889, 257, 4866, 286, 428, 7177, 284, 3368, 4088, 17316, 11, 1201, 31835, 20519, 4306, 198, 220, 220, 220, 220, 220, 1303, 7622, 257, 17562, 1088, 326, 15174, 262, 2723, 7177, 422, 852, 20145, 276, 13, 198, 220, 220, 220, 220, 220, 2747, 82, 58, 2539, 60, 796, 2747, 82, 58, 2539, 4083, 30073, 3419, 628, 220, 220, 220, 1441, 2747, 82, 628, 220, 22492, 198, 220, 1303, 406, 2043, 7824, 25504, 628, 220, 825, 4331, 62, 1084, 571, 963, 7, 944, 11, 17311, 2599, 198, 220, 220, 220, 37227, 10987, 2746, 319, 257, 2060, 15458, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 17311, 25, 7343, 58, 35, 713, 60, 351, 7032, 355, 3417, 416, 5128, 62, 16684, 3419, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 23862, 25, 7343, 58, 35, 713, 60, 351, 7032, 355, 3417, 416, 5072, 62, 16684, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 8255, 355, 8379, 286, 6827, 12239, 4522, 1, 82, 13, 198, 220, 220, 220, 30240, 62, 15414, 82, 796, 2116, 13557, 268, 8189, 62, 5239, 82, 26933, 1069, 14692, 15414, 62, 5239, 8973, 329, 409, 287, 17311, 12962, 198, 220, 220, 220, 30240, 62, 83, 853, 1039, 796, 2116, 13557, 268, 8189, 62, 5239, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 1069, 13, 1136, 7203, 16793, 62, 5239, 1600, 366, 4943, 329, 409, 287, 17311, 12962, 628, 220, 220, 220, 22492, 198, 220, 220, 220, 1303, 5221, 12, 12501, 1098, 319, 2496, 2420, 11, 290, 635, 651, 2207, 12342, 795, 1443, 290, 3241, 13, 198, 220, 220, 220, 7365, 1740, 62, 22915, 82, 796, 2116, 13557, 3174, 62, 12501, 1098, 7, 12685, 9043, 62, 15414, 82, 11, 30240, 62, 83, 853, 1039, 8, 198, 220, 220, 220, 1303, 3497, 262, 26340, 5270, 422, 262, 2746, 13, 198, 220, 220, 220, 1303, 5521, 14145, 329, 5072, 62, 30342, 407, 852, 11670, 351, 7716, 13, 198, 220, 220, 220, 1303, 4091, 3740, 1378, 12567, 13, 785, 14, 71, 1018, 2667, 2550, 14, 35636, 364, 14, 37165, 14, 23, 35195, 198, 220, 220, 220, 2116, 13, 19849, 13, 11250, 13, 22915, 62, 30342, 62, 27219, 796, 10352, 198, 220, 220, 220, 7560, 62, 2340, 796, 2116, 13, 19849, 13, 8612, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30240, 62, 15414, 82, 13, 15414, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1350, 4105, 28, 944, 13, 11250, 13, 40045, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3241, 62, 27932, 28, 12685, 9043, 62, 15414, 82, 13, 1078, 1463, 62, 27932, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 13664, 28, 944, 13, 11250, 13, 9806, 62, 5235, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 7783, 62, 3107, 3007, 28, 944, 13, 11250, 13, 22510, 62, 1462, 62, 8612, 378, 8, 198, 220, 220, 220, 1303, 685, 43501, 62, 7857, 9, 22510, 62, 7783, 62, 3107, 3007, 11, 997, 62, 20214, 60, 198, 220, 220, 220, 1303, 4613, 685, 43501, 62, 7857, 11, 997, 62, 7783, 62, 3107, 3007, 11, 997, 62, 20214, 60, 198, 220, 220, 220, 7365, 1740, 62, 22915, 82, 14692, 27568, 62, 2340, 8973, 796, 48700, 13, 3447, 1758, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7560, 62, 2340, 11, 198, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 11, 2116, 13, 11250, 13, 22510, 62, 1462, 62, 8612, 378, 11, 7560, 62, 2340, 13, 43358, 58, 12, 16, 11907, 8, 198, 220, 220, 220, 2116, 13, 19849, 13, 11250, 13, 22915, 62, 30342, 62, 27219, 796, 6407, 628, 220, 220, 220, 1303, 38240, 284, 299, 32152, 329, 1281, 12, 36948, 13, 198, 220, 220, 220, 30795, 62, 22915, 82, 796, 1391, 74, 25, 410, 13, 77, 32152, 3419, 329, 479, 11, 410, 287, 7365, 1740, 62, 22915, 82, 13, 23814, 3419, 92, 198, 220, 220, 220, 1303, 27758, 510, 7365, 1740, 23862, 11, 788, 1281, 12, 14681, 1123, 1672, 13, 198, 220, 220, 220, 555, 8664, 1740, 62, 22915, 82, 796, 3384, 4487, 13, 403, 43501, 62, 28764, 82, 7, 15255, 2317, 62, 22915, 82, 8, 198, 220, 220, 220, 1441, 1351, 7, 8899, 7, 944, 13557, 7353, 14681, 11, 555, 8664, 1740, 62, 22915, 82, 4008, 628, 198, 2235, 198, 2, 15941, 12, 11423, 29908, 6097, 13, 628, 198, 4871, 33322, 36918, 2848, 7, 18250, 62, 19849, 13, 17633, 36918, 2848, 2599, 198, 220, 37227, 36918, 2848, 1398, 329, 4572, 11059, 526, 15931, 628, 220, 1303, 337, 5912, 422, 14276, 309, 20, 7032, 284, 428, 4876, 198, 220, 18930, 24639, 62, 49, 1677, 29559, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 15414, 62, 5239, 1298, 366, 10459, 1600, 198, 220, 220, 220, 220, 220, 366, 16793, 62, 5239, 1298, 366, 16793, 1600, 198, 220, 220, 220, 220, 220, 366, 22915, 62, 5239, 1298, 366, 41519, 1600, 198, 220, 1782, 628, 220, 1303, 3574, 30378, 360, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1129, 940, 13, 940, 47521, 13, 12315, 13, 198, 220, 1303, 3060, 517, 286, 777, 611, 534, 2746, 6971, 606, 13, 198, 220, 406, 15567, 34, 16820, 62, 10468, 62, 20608, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 268, 1298, 366, 15823, 1600, 198, 220, 220, 220, 220, 220, 366, 2934, 1298, 366, 16010, 1600, 198, 220, 220, 220, 220, 220, 366, 8310, 1298, 366, 24111, 1600, 198, 220, 220, 220, 220, 220, 366, 305, 1298, 366, 32454, 666, 1600, 198, 220, 1782, 628, 220, 3268, 30076, 62, 51, 3620, 6489, 6158, 796, 366, 7645, 17660, 1391, 10459, 62, 16129, 92, 284, 1391, 16793, 62, 16129, 38362, 1391, 10459, 36786, 628, 220, 22492, 198, 220, 1303, 406, 2043, 7824, 7822, 628, 220, 1303, 16926, 46, 7, 65, 14, 17279, 2791, 21719, 23, 2599, 4781, 777, 706, 15458, 278, 7824, 318, 20750, 510, 13, 628, 220, 825, 4331, 7, 944, 11, 17311, 2599, 198, 220, 220, 220, 37227, 47, 17407, 319, 257, 2060, 949, 571, 963, 286, 6096, 526, 15931, 198, 220, 220, 220, 2746, 62, 15414, 82, 796, 357, 944, 13, 3866, 14681, 7, 1069, 8, 329, 409, 287, 17311, 8, 198, 220, 220, 220, 23862, 796, 2116, 13, 29988, 1496, 13, 79, 17407, 7, 19849, 62, 15414, 82, 8, 198, 220, 220, 220, 1441, 357, 26791, 13, 2787, 499, 62, 11600, 7, 5908, 11, 2116, 13, 44603, 62, 49, 1677, 29559, 8, 329, 6941, 287, 23862, 8, 628, 220, 825, 4331, 62, 4480, 62, 38993, 7, 944, 11, 41497, 62, 15414, 82, 2599, 198, 220, 220, 220, 37227, 1722, 4331, 22784, 475, 17311, 389, 12901, 276, 20560, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13, 79, 17407, 19510, 1069, 14692, 7890, 8973, 329, 409, 287, 41497, 62, 15414, 82, 4008, 628, 198, 4871, 5060, 3876, 1634, 36918, 2848, 7, 18250, 62, 19849, 13, 17633, 36918, 2848, 2599, 198, 220, 37227, 36918, 2848, 1398, 284, 1620, 257, 15676, 1634, 4876, 526, 15931, 628, 220, 1303, 337, 5912, 422, 14276, 309, 20, 7032, 284, 428, 4876, 198, 220, 18930, 24639, 62, 49, 1677, 29559, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 15414, 62, 5239, 1298, 366, 22897, 1600, 198, 220, 220, 220, 220, 220, 366, 16793, 62, 5239, 1298, 366, 35790, 1600, 198, 220, 1782, 628, 220, 22492, 198, 220, 1303, 406, 2043, 7824, 7822, 628, 220, 1303, 16926, 46, 7, 65, 14, 17279, 2791, 21719, 23, 2599, 4781, 777, 706, 15458, 278, 7824, 318, 20750, 510, 13, 628, 220, 825, 4331, 7, 944, 11, 17311, 2599, 198, 220, 220, 220, 37227, 47, 17407, 319, 257, 2060, 949, 571, 963, 286, 6096, 526, 15931, 198, 220, 220, 220, 17311, 796, 1351, 7, 15414, 82, 8, 220, 1303, 2476, 284, 307, 20717, 2174, 11, 523, 1394, 1336, 1351, 198, 220, 220, 220, 2746, 62, 15414, 82, 796, 357, 944, 13, 3866, 14681, 7, 1069, 8, 329, 409, 287, 17311, 8, 198, 220, 220, 220, 23862, 796, 2116, 13, 29988, 1496, 13, 79, 17407, 7, 19849, 62, 15414, 82, 8, 198, 220, 220, 220, 23862, 796, 357, 26791, 13, 2787, 499, 62, 11600, 7, 5908, 11, 2116, 13, 44603, 62, 49, 1677, 29559, 8, 329, 6941, 287, 23862, 8, 628, 220, 220, 220, 1303, 16926, 46, 7, 469, 11840, 9038, 2599, 20218, 4610, 284, 651, 371, 2606, 8264, 8198, 287, 1366, 3084, 13, 198, 220, 220, 220, 329, 409, 11, 6941, 287, 19974, 7, 15414, 82, 11, 23862, 2599, 198, 220, 220, 220, 220, 220, 4776, 796, 2116, 13557, 1416, 11934, 13, 26675, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 28, 1069, 14692, 35790, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 28, 944, 13557, 1136, 62, 28764, 62, 8841, 7, 5908, 14692, 22915, 62, 5239, 8973, 4008, 198, 220, 220, 220, 220, 220, 6941, 14692, 472, 469, 43, 8973, 796, 12178, 7, 26675, 14692, 472, 469, 43, 1, 4083, 69, 1326, 5015, 8, 198, 220, 220, 220, 220, 220, 7800, 6941, 628, 220, 825, 4331, 62, 4480, 62, 38993, 7, 944, 11, 41497, 62, 15414, 82, 2599, 198, 220, 220, 220, 37227, 1722, 4331, 22784, 475, 17311, 389, 12901, 276, 20560, 526, 15931, 198, 220, 220, 220, 1441, 2116, 13, 79, 17407, 19510, 1069, 14692, 7890, 8973, 329, 409, 287, 41497, 62, 15414, 82, 4008, 198 ]
2.585776
4,640
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-18 14:49 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 19, 319, 2177, 12, 486, 12, 1507, 1478, 25, 2920, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.736842
57
from .methods import Randomizer from .plots import oned, twod from .utils import * __version__ = "0.1.4"
[ 6738, 764, 24396, 82, 1330, 14534, 7509, 198, 6738, 764, 489, 1747, 1330, 319, 276, 11, 665, 375, 198, 6738, 764, 26791, 1330, 1635, 628, 198, 834, 9641, 834, 796, 366, 15, 13, 16, 13, 19, 1, 198 ]
2.815789
38
##Script to prepare data for pollination analyses ##Before running, you must have the NLCD and CDL rasters for your year(s) of analysis and the states raster in one folder # Import modules, reset environments import arcpy arcpy.CheckOutExtension("spatial") arcpy.ResetEnvironments() import tkFileDialog # Select geodatabase where input datasets (NLCD, CDL, and state rasters) are stored inputFolder = tkFileDialog.askdirectory(initialdir="/", title='Please select the geodatabase where the NLCD, CDL, and state rasters are stored.') #Set input folder as working directory arcpy.env.workspace = inputFolder # Set years of analysis years = raw_input("Enter years of analysis separated by spaces:") years_list = years.split() #Get states dataset states = inputFolder+"/studystates" #Loop rest of processing through each year of analysis for year in years_list: # Set input datasets rawCDL = inputFolder+"/CDL_" + year rawNLCD = inputFolder+"/NLCD_" + year #Resample NLCD to 56 m, using states as snap raster arcpy.env.snapRaster = states NLCD = arcpy.Resample_management(rawNLCD, "NLCD_56m_" + year, 56, "MAJORITY") #Resample CDL to 56 m, using states as snap raster arcpy.env.snapRaster = states CDL = arcpy.Resample_management(rawCDL, "CDL_56m_" + year, 56, "MAJORITY")
[ 2235, 7391, 284, 8335, 1366, 329, 3278, 1883, 13523, 201, 198, 2235, 8421, 2491, 11, 345, 1276, 423, 262, 399, 5639, 35, 290, 6458, 43, 374, 7060, 329, 534, 614, 7, 82, 8, 286, 3781, 290, 262, 2585, 374, 1603, 287, 530, 9483, 201, 198, 201, 198, 2, 17267, 13103, 11, 13259, 12493, 201, 198, 11748, 10389, 9078, 201, 198, 5605, 9078, 13, 9787, 7975, 11627, 3004, 7203, 2777, 34961, 4943, 201, 198, 5605, 9078, 13, 4965, 316, 4834, 12103, 3419, 201, 198, 201, 198, 11748, 256, 74, 8979, 44204, 201, 198, 201, 198, 2, 9683, 4903, 375, 265, 5754, 810, 5128, 40522, 357, 45, 5639, 35, 11, 6458, 43, 11, 290, 1181, 374, 7060, 8, 389, 8574, 201, 198, 15414, 41092, 796, 256, 74, 8979, 44204, 13, 2093, 34945, 7, 36733, 15908, 35922, 1600, 3670, 11639, 5492, 2922, 262, 4903, 375, 265, 5754, 810, 262, 399, 5639, 35, 11, 6458, 43, 11, 290, 1181, 374, 7060, 389, 8574, 2637, 8, 201, 198, 201, 198, 2, 7248, 5128, 9483, 355, 1762, 8619, 201, 198, 5605, 9078, 13, 24330, 13, 5225, 10223, 796, 5128, 41092, 201, 198, 201, 198, 2, 5345, 812, 286, 3781, 201, 198, 19002, 796, 8246, 62, 15414, 7203, 17469, 812, 286, 3781, 11266, 416, 9029, 25, 4943, 201, 198, 19002, 62, 4868, 796, 812, 13, 35312, 3419, 201, 198, 201, 198, 2, 3855, 2585, 27039, 201, 198, 27219, 796, 5128, 41092, 10, 1, 14, 44517, 27219, 1, 201, 198, 201, 198, 2, 39516, 1334, 286, 7587, 832, 1123, 614, 286, 3781, 201, 198, 1640, 614, 287, 812, 62, 4868, 25, 201, 198, 220, 220, 220, 1303, 5345, 5128, 40522, 201, 198, 220, 220, 220, 8246, 8610, 43, 796, 5128, 41092, 10, 1, 14, 8610, 43, 62, 1, 1343, 614, 201, 198, 220, 220, 220, 8246, 45, 5639, 35, 796, 5128, 41092, 10, 1, 14, 45, 5639, 35, 62, 1, 1343, 614, 201, 198, 201, 198, 220, 220, 220, 1303, 4965, 1403, 399, 5639, 35, 284, 7265, 285, 11, 1262, 2585, 355, 11495, 374, 1603, 201, 198, 220, 220, 220, 10389, 9078, 13, 24330, 13, 45380, 49, 1603, 796, 2585, 201, 198, 220, 220, 220, 399, 5639, 35, 796, 10389, 9078, 13, 4965, 1403, 62, 27604, 7, 1831, 45, 5639, 35, 11, 366, 45, 5639, 35, 62, 3980, 76, 62, 1, 1343, 614, 11, 7265, 11, 366, 5673, 41, 1581, 9050, 4943, 201, 198, 201, 198, 220, 220, 220, 1303, 4965, 1403, 6458, 43, 284, 7265, 285, 11, 1262, 2585, 355, 11495, 374, 1603, 201, 198, 220, 220, 220, 10389, 9078, 13, 24330, 13, 45380, 49, 1603, 796, 2585, 201, 198, 220, 220, 220, 6458, 43, 796, 10389, 9078, 13, 4965, 1403, 62, 27604, 7, 1831, 8610, 43, 11, 366, 8610, 43, 62, 3980, 76, 62, 1, 1343, 614, 11, 7265, 11, 366, 5673, 41, 1581, 9050, 4943, 201, 198, 201, 198, 220, 220, 220, 201, 198 ]
2.832985
479
from keprekars_constant import find_keprekars_constant_steps import unittest if __name__ == "__main__": unittest.main()
[ 6738, 885, 3866, 74, 945, 62, 9979, 415, 1330, 1064, 62, 365, 3866, 74, 945, 62, 9979, 415, 62, 20214, 198, 11748, 555, 715, 395, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.591837
49
import cv2 from qualipy.utils.focus_measure import * IMAGE = cv2.imread('tests/images/lama.jpg', 0) BLURRED = cv2.blur(IMAGE, (10, 10))
[ 11748, 269, 85, 17, 198, 198, 6738, 4140, 541, 88, 13, 26791, 13, 37635, 62, 1326, 5015, 1330, 1635, 198, 198, 3955, 11879, 796, 269, 85, 17, 13, 320, 961, 10786, 41989, 14, 17566, 14, 75, 1689, 13, 9479, 3256, 657, 8, 198, 9148, 4261, 22083, 796, 269, 85, 17, 13, 2436, 333, 7, 3955, 11879, 11, 357, 940, 11, 838, 4008, 628, 628, 198 ]
2.184615
65
from .api import API
[ 6738, 764, 15042, 1330, 7824, 628 ]
3.666667
6
from utils import cpp, table_reader if __name__ == "__main__": main()
[ 6738, 3384, 4487, 1330, 269, 381, 11, 3084, 62, 46862, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.566667
30
"""Send file for not5oclock_bot""" import argparse from os import path import botskeleton if __name__ == "__main__": SECRETS_DIR = path.join(path.abspath(path.dirname(__file__)), "SECRETS") botskeleton = botskeleton.BotSkeleton(SECRETS_DIR, bot_name="not5oclock_bot") # Get arg. # Could probably do it more simply - this is doing it properly but half-assed. parser = argparse.ArgumentParser(description="Send a tweet.") parser.add_argument("text", metavar="TWEET", type=str, help="The tweet to send") args = parser.parse_args() tweet = vars(args)["text"] botskeleton.send(tweet)
[ 37811, 25206, 2393, 329, 407, 20, 420, 5354, 62, 13645, 37811, 198, 198, 11748, 1822, 29572, 198, 6738, 28686, 1330, 3108, 198, 198, 11748, 29641, 38800, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 10729, 2200, 4694, 62, 34720, 796, 3108, 13, 22179, 7, 6978, 13, 397, 2777, 776, 7, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 366, 23683, 2200, 4694, 4943, 198, 220, 220, 220, 29641, 38800, 796, 29641, 38800, 13, 20630, 50, 38800, 7, 23683, 2200, 4694, 62, 34720, 11, 10214, 62, 3672, 2625, 1662, 20, 420, 5354, 62, 13645, 4943, 628, 220, 220, 220, 1303, 3497, 1822, 13, 198, 220, 220, 220, 1303, 10347, 2192, 466, 340, 517, 2391, 532, 428, 318, 1804, 340, 6105, 475, 2063, 12, 21390, 13, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 25206, 257, 6126, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 5239, 1600, 1138, 615, 283, 2625, 51, 8845, 2767, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 464, 6126, 284, 3758, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 6126, 796, 410, 945, 7, 22046, 8, 14692, 5239, 8973, 628, 220, 220, 220, 29641, 38800, 13, 21280, 7, 83, 7277, 8, 198 ]
2.617886
246
""" stanCode Breakout Project Adapted from Eric Roberts's Breakout by Sonja Johnson-Yu, Kylie Jue, Nick Bowman, and Jerry Liao. This is a breakout game with loading animation, two levels of games, and a score board """ from campy.gui.events.timer import pause from breakoutgraphics import BreakoutGraphics FRAME_RATE = 1000 / 120 # 120 frames per second if __name__ == '__main__': main()
[ 37811, 198, 14192, 10669, 12243, 448, 4935, 198, 48003, 276, 422, 7651, 10918, 338, 12243, 448, 416, 198, 31056, 6592, 5030, 12, 40728, 11, 39859, 494, 449, 518, 11, 8047, 38774, 11, 198, 392, 13075, 406, 13481, 13, 198, 198, 1212, 318, 257, 31661, 983, 351, 11046, 11034, 11, 734, 2974, 286, 1830, 11, 290, 257, 4776, 3096, 198, 37811, 198, 198, 6738, 1413, 88, 13, 48317, 13, 31534, 13, 45016, 1330, 14985, 198, 6738, 31661, 70, 11549, 1330, 12243, 448, 18172, 198, 198, 10913, 10067, 62, 49, 6158, 796, 8576, 1220, 7982, 220, 1303, 7982, 13431, 583, 1218, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.352941
119
import os.path as osp import mmcv from tools_yuan.convert_data.utils import parse_xml from tools_yuan.convert_data.utils import track_progress_yuan import getpass """ Author: Yuan Yuan Date:2018/12/16 Location:SCU """ if __name__ == '__main__': main()
[ 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 8085, 33967, 198, 6738, 4899, 62, 88, 7258, 13, 1102, 1851, 62, 7890, 13, 26791, 1330, 21136, 62, 19875, 198, 6738, 4899, 62, 88, 7258, 13, 1102, 1851, 62, 7890, 13, 26791, 1330, 2610, 62, 33723, 62, 88, 7258, 198, 11748, 651, 6603, 198, 37811, 198, 13838, 25, 34071, 34071, 198, 10430, 25, 7908, 14, 1065, 14, 1433, 198, 14749, 25, 6173, 52, 198, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.755319
94
#!/usr/bin/env python from control.msg import heaveFeedback, heaveAction, heaveResult import rospy import time import actionlib if __name__ == '__main__': rospy.init_node('heaveServer') server = Heave(rospy.get_name()) rospy.spin()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 1630, 13, 19662, 1330, 339, 1015, 18332, 1891, 11, 339, 1015, 12502, 11, 339, 1015, 23004, 198, 11748, 686, 2777, 88, 198, 11748, 640, 198, 11748, 2223, 8019, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 686, 2777, 88, 13, 15003, 62, 17440, 10786, 258, 1015, 10697, 11537, 198, 220, 220, 220, 4382, 796, 679, 1015, 7, 305, 2777, 88, 13, 1136, 62, 3672, 28955, 198, 220, 220, 220, 686, 2777, 88, 13, 39706, 3419, 198 ]
2.606383
94
import numpy as np from net_utils import net_catalogue from net_utils.local_settings import gpu_available from utils import resize_image
[ 11748, 299, 32152, 355, 45941, 198, 6738, 2010, 62, 26791, 1330, 2010, 62, 9246, 30326, 198, 6738, 2010, 62, 26791, 13, 12001, 62, 33692, 1330, 308, 19944, 62, 15182, 198, 6738, 3384, 4487, 1330, 47558, 62, 9060, 628, 628, 628 ]
3.55
40
from itertools import product as it_product import tqdm from scipy import sparse from provided_code.constants_class import ModelParameters from provided_code.data_loader import DataLoader from provided_code.general_functions import get_paths, get_predictions_to_optimize from provided_code.optimizer import PlanningModel from provided_code.resources import Patient if __name__ == '__main__': # Define project constants cs = ModelParameters() # Run extra inverse planning experiments inverse_planning_experiments = False # Prepare data loader for optimization testing_plan_paths = get_paths(cs.reference_data_dir, ext='') # gets the path of each patient's directory data_loader = DataLoader(testing_plan_paths, mode_name='optimization') # Select the set of predictions to plan for predictions_to_optimize, _ = get_predictions_to_optimize(cs) predictions_to_optimize = predictions_to_optimize[0:13] # Iterate through each set of predictions for prediction_path in predictions_to_optimize: # Define hold out set hold_out_plan_paths = get_paths(prediction_path, ext='') # list of paths used for held out validation prediction_name = prediction_path.split('/')[-1] # Predict dose for the held out set dose_loader = DataLoader(hold_out_plan_paths, mode_name='predicted_dose') # Prepare files for idx in tqdm.tqdm(range(dose_loader.number_of_batches())): print('Patient {} of {}'.format(idx + 1, dose_loader.number_of_batches())) # Get other patient info pat_data = data_loader.get_batch(idx) # Load prediction data all_predicted_data = dose_loader.get_batch(patient_list=pat_data['patient_list']) predicted_dose = all_predicted_data[dose_loader.mode_name] # Build a patient object with the predicted dose patient = Patient(cs, pat_data['patient_list'][0], # Patient ID pat_data['patient_path_list'][0], # Path where patient data is stored predicted_dose.squeeze(), # Dose for patient pat_data['structure_masks'][0], # Structure mask sparse.csr_matrix(pat_data['dij'][0]), # Full dose influence matrix pat_data['voxel_dimensions'][0], # Dimensions of a voxel (in units of mm) pat_data['beamlet_indices'][0].values, # Beamlet indices on fluence map ) cs.set_patient(patient.identifier) for rel_or_abs, max_or_mean in it_product(['relative', 'absolute'], ['mean', 'max']): cs.set_directories_for_new_io(prediction_name, opt_name=f'{rel_or_abs}_{max_or_mean}') # Optimize if dose not already present if not cs.check_patient(): model = PlanningModel(patient, cs, relative_or_absolute=rel_or_abs, mean_or_max=max_or_mean) model.solve(quick_test=False) model.save_fluence_and_dose() # Generate an inverse planning plan with the weights generated above (based on theory from paper) cs.set_directories_for_new_io(prediction_name, opt_name=f'inverse_{rel_or_abs}_{max_or_mean}') if inverse_planning_experiments and not cs.check_patient(): patient.update_weights() inverse_model = PlanningModel(patient, cs, relative_or_absolute=rel_or_abs, mean_or_max=max_or_mean, inverse_plan=True) inverse_model.solve() inverse_model.save_fluence_and_dose()
[ 6738, 340, 861, 10141, 1330, 1720, 355, 340, 62, 11167, 198, 198, 11748, 256, 80, 36020, 198, 6738, 629, 541, 88, 1330, 29877, 198, 198, 6738, 2810, 62, 8189, 13, 9979, 1187, 62, 4871, 1330, 9104, 48944, 198, 6738, 2810, 62, 8189, 13, 7890, 62, 29356, 1330, 6060, 17401, 198, 6738, 2810, 62, 8189, 13, 24622, 62, 12543, 2733, 1330, 651, 62, 6978, 82, 11, 651, 62, 28764, 9278, 62, 1462, 62, 40085, 1096, 198, 6738, 2810, 62, 8189, 13, 40085, 7509, 1330, 21913, 17633, 198, 6738, 2810, 62, 8189, 13, 37540, 1330, 35550, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1303, 2896, 500, 1628, 38491, 198, 220, 220, 220, 50115, 796, 9104, 48944, 3419, 628, 220, 220, 220, 1303, 5660, 3131, 34062, 5410, 10256, 198, 220, 220, 220, 34062, 62, 11578, 768, 62, 23100, 6800, 796, 10352, 628, 220, 220, 220, 1303, 43426, 1366, 40213, 329, 23989, 198, 220, 220, 220, 4856, 62, 11578, 62, 6978, 82, 796, 651, 62, 6978, 82, 7, 6359, 13, 35790, 62, 7890, 62, 15908, 11, 1070, 28, 7061, 8, 220, 1303, 3011, 262, 3108, 286, 1123, 5827, 338, 8619, 198, 220, 220, 220, 1366, 62, 29356, 796, 6060, 17401, 7, 33407, 62, 11578, 62, 6978, 82, 11, 4235, 62, 3672, 11639, 40085, 1634, 11537, 628, 220, 220, 220, 1303, 9683, 262, 900, 286, 16277, 284, 1410, 329, 198, 220, 220, 220, 16277, 62, 1462, 62, 40085, 1096, 11, 4808, 796, 651, 62, 28764, 9278, 62, 1462, 62, 40085, 1096, 7, 6359, 8, 198, 220, 220, 220, 16277, 62, 1462, 62, 40085, 1096, 796, 16277, 62, 1462, 62, 40085, 1096, 58, 15, 25, 1485, 60, 198, 220, 220, 220, 1303, 40806, 378, 832, 1123, 900, 286, 16277, 198, 220, 220, 220, 329, 17724, 62, 6978, 287, 16277, 62, 1462, 62, 40085, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 1745, 503, 900, 198, 220, 220, 220, 220, 220, 220, 220, 1745, 62, 448, 62, 11578, 62, 6978, 82, 796, 651, 62, 6978, 82, 7, 28764, 2867, 62, 6978, 11, 1070, 28, 7061, 8, 220, 1303, 1351, 286, 13532, 973, 329, 2714, 503, 21201, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 3672, 796, 17724, 62, 6978, 13, 35312, 10786, 14, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49461, 10742, 329, 262, 2714, 503, 900, 198, 220, 220, 220, 220, 220, 220, 220, 10742, 62, 29356, 796, 6060, 17401, 7, 2946, 62, 448, 62, 11578, 62, 6978, 82, 11, 4235, 62, 3672, 11639, 28764, 5722, 62, 34436, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43426, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 256, 80, 36020, 13, 83, 80, 36020, 7, 9521, 7, 34436, 62, 29356, 13, 17618, 62, 1659, 62, 8664, 2052, 28955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12130, 1153, 23884, 286, 23884, 4458, 18982, 7, 312, 87, 1343, 352, 11, 10742, 62, 29356, 13, 17618, 62, 1659, 62, 8664, 2052, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 584, 5827, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 796, 1366, 62, 29356, 13, 1136, 62, 43501, 7, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 17724, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 28764, 5722, 62, 7890, 796, 10742, 62, 29356, 13, 1136, 62, 43501, 7, 26029, 62, 4868, 28, 8071, 62, 7890, 17816, 26029, 62, 4868, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 34436, 796, 477, 62, 28764, 5722, 62, 7890, 58, 34436, 62, 29356, 13, 14171, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10934, 257, 5827, 2134, 351, 262, 11001, 10742, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5827, 796, 35550, 7, 6359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 17816, 26029, 62, 4868, 6, 7131, 15, 4357, 220, 1303, 35550, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 17816, 26029, 62, 6978, 62, 4868, 6, 7131, 15, 4357, 220, 1303, 10644, 810, 5827, 1366, 318, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 34436, 13, 16485, 1453, 2736, 22784, 220, 1303, 360, 577, 329, 5827, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 17816, 301, 5620, 62, 5356, 591, 6, 7131, 15, 4357, 220, 1303, 32522, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29877, 13, 6359, 81, 62, 6759, 8609, 7, 8071, 62, 7890, 17816, 67, 2926, 6, 7131, 15, 46570, 220, 1303, 6462, 10742, 4588, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 17816, 85, 1140, 417, 62, 27740, 5736, 6, 7131, 15, 4357, 220, 1303, 41265, 286, 257, 410, 1140, 417, 357, 259, 4991, 286, 8085, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1458, 62, 7890, 17816, 40045, 1616, 62, 521, 1063, 6, 7131, 15, 4083, 27160, 11, 220, 1303, 25855, 1616, 36525, 319, 6562, 594, 3975, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 2617, 62, 26029, 7, 26029, 13, 738, 7483, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 823, 62, 273, 62, 8937, 11, 3509, 62, 273, 62, 32604, 287, 340, 62, 11167, 7, 17816, 43762, 3256, 705, 48546, 6, 4357, 37250, 32604, 3256, 705, 9806, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 2617, 62, 12942, 1749, 62, 1640, 62, 3605, 62, 952, 7, 28764, 2867, 62, 3672, 11, 2172, 62, 3672, 28, 69, 6, 90, 2411, 62, 273, 62, 8937, 92, 23330, 9806, 62, 273, 62, 32604, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30011, 1096, 611, 10742, 407, 1541, 1944, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 50115, 13, 9122, 62, 26029, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 21913, 17633, 7, 26029, 11, 50115, 11, 3585, 62, 273, 62, 48546, 28, 2411, 62, 273, 62, 8937, 11, 1612, 62, 273, 62, 9806, 28, 9806, 62, 273, 62, 32604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 82, 6442, 7, 24209, 62, 9288, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 21928, 62, 69, 23079, 62, 392, 62, 34436, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 281, 34062, 5410, 1410, 351, 262, 19590, 7560, 2029, 357, 3106, 319, 4583, 422, 3348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 13, 2617, 62, 12942, 1749, 62, 1640, 62, 3605, 62, 952, 7, 28764, 2867, 62, 3672, 11, 2172, 62, 3672, 28, 69, 6, 259, 4399, 23330, 2411, 62, 273, 62, 8937, 92, 23330, 9806, 62, 273, 62, 32604, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 34062, 62, 11578, 768, 62, 23100, 6800, 290, 407, 50115, 13, 9122, 62, 26029, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5827, 13, 19119, 62, 43775, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34062, 62, 19849, 796, 21913, 17633, 7, 26029, 11, 50115, 11, 3585, 62, 273, 62, 48546, 28, 2411, 62, 273, 62, 8937, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 273, 62, 9806, 28, 9806, 62, 273, 62, 32604, 11, 34062, 62, 11578, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34062, 62, 19849, 13, 82, 6442, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34062, 62, 19849, 13, 21928, 62, 69, 23079, 62, 392, 62, 34436, 3419, 628 ]
2.259524
1,680
"""Implementation of ALI-G in tensorflow 1.""" import tensorflow as tf def minimize(optimizer, loss, global_step=None, var_list=None, gate_gradients=tf.compat.v1.train.Optimizer.GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None): """ Re-write of tf.train.Optimizer.minimize """ # first part of method is identical to tf grads_and_vars = optimizer.compute_gradients( loss, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, grad_loss=grad_loss) vars_with_grad = [v for g, v in grads_and_vars if g is not None] if not vars_with_grad: raise ValueError( "No gradients provided for any variable, check your graph for ops" " that do not support gradients, between variables %s and loss %s." % ([str(v) for _, v in grads_and_vars], loss)) # compute step-size here grad_sqrd_norm = sum(tf.norm(grad) ** 2 for grad, _ in grads_and_vars) optimizer._learning_rate = loss / (grad_sqrd_norm + optimizer.eps) if optimizer._max_lr is not None: optimizer._learning_rate = tf.clip_by_value(optimizer._learning_rate, clip_value_min=0, clip_value_max=optimizer._max_lr) return optimizer.apply_gradients(grads_and_vars, global_step=global_step, name=name) class AliGwithMomentum(tf.compat.v1.train.MomentumOptimizer): """Optimizer that implements the AliG algorithm. """ class AliGwithoutMomentum(tf.compat.v1.train.GradientDescentOptimizer): """Optimizer that implements the AliG algorithm. """
[ 37811, 3546, 32851, 286, 8355, 40, 12, 38, 287, 11192, 273, 11125, 352, 526, 15931, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4299, 17775, 7, 40085, 7509, 11, 2994, 11, 3298, 62, 9662, 28, 14202, 11, 1401, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8946, 62, 9744, 2334, 28, 27110, 13, 5589, 265, 13, 85, 16, 13, 27432, 13, 27871, 320, 7509, 13, 38, 6158, 62, 3185, 11, 46500, 62, 24396, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 13369, 62, 9744, 2334, 62, 4480, 62, 2840, 28, 25101, 11, 1438, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3915, 62, 22462, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 797, 12, 13564, 286, 48700, 13, 27432, 13, 27871, 320, 7509, 13, 1084, 48439, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 717, 636, 286, 2446, 318, 10411, 284, 48700, 198, 220, 220, 220, 3915, 82, 62, 392, 62, 85, 945, 796, 6436, 7509, 13, 5589, 1133, 62, 9744, 2334, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 1401, 62, 4868, 28, 7785, 62, 4868, 11, 8946, 62, 9744, 2334, 28, 10494, 62, 9744, 2334, 11, 198, 220, 220, 220, 220, 220, 220, 220, 46500, 62, 24396, 28, 9460, 43068, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 951, 13369, 62, 9744, 2334, 62, 4480, 62, 2840, 28, 4033, 13369, 62, 9744, 2334, 62, 4480, 62, 2840, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3915, 62, 22462, 28, 9744, 62, 22462, 8, 628, 220, 220, 220, 410, 945, 62, 4480, 62, 9744, 796, 685, 85, 329, 308, 11, 410, 287, 3915, 82, 62, 392, 62, 85, 945, 611, 308, 318, 407, 6045, 60, 198, 220, 220, 220, 611, 407, 410, 945, 62, 4480, 62, 9744, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2949, 3915, 2334, 2810, 329, 597, 7885, 11, 2198, 534, 4823, 329, 39628, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 326, 466, 407, 1104, 3915, 2334, 11, 1022, 9633, 4064, 82, 290, 2994, 4064, 82, 526, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 2536, 7, 85, 8, 329, 4808, 11, 410, 287, 3915, 82, 62, 392, 62, 85, 945, 4357, 2994, 4008, 628, 220, 220, 220, 1303, 24061, 2239, 12, 7857, 994, 198, 220, 220, 220, 3915, 62, 31166, 4372, 62, 27237, 796, 2160, 7, 27110, 13, 27237, 7, 9744, 8, 12429, 362, 329, 3915, 11, 4808, 287, 3915, 82, 62, 392, 62, 85, 945, 8, 198, 220, 220, 220, 6436, 7509, 13557, 40684, 62, 4873, 796, 2994, 1220, 357, 9744, 62, 31166, 4372, 62, 27237, 1343, 6436, 7509, 13, 25386, 8, 198, 220, 220, 220, 611, 6436, 7509, 13557, 9806, 62, 14050, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13557, 40684, 62, 4873, 796, 48700, 13, 15036, 62, 1525, 62, 8367, 7, 40085, 7509, 13557, 40684, 62, 4873, 11, 10651, 62, 8367, 62, 1084, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 8367, 62, 9806, 28, 40085, 7509, 13557, 9806, 62, 14050, 8, 628, 220, 220, 220, 1441, 6436, 7509, 13, 39014, 62, 9744, 2334, 7, 2164, 5643, 62, 392, 62, 85, 945, 11, 3298, 62, 9662, 28, 20541, 62, 9662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 3672, 8, 628, 198, 4871, 12104, 38, 4480, 29252, 298, 388, 7, 27110, 13, 5589, 265, 13, 85, 16, 13, 27432, 13, 29252, 298, 388, 27871, 320, 7509, 2599, 198, 220, 220, 220, 37227, 27871, 320, 7509, 326, 23986, 262, 12104, 38, 11862, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 12104, 38, 19419, 29252, 298, 388, 7, 27110, 13, 5589, 265, 13, 85, 16, 13, 27432, 13, 42731, 1153, 5960, 1087, 27871, 320, 7509, 2599, 198, 220, 220, 220, 37227, 27871, 320, 7509, 326, 23986, 262, 12104, 38, 11862, 13, 198, 220, 220, 220, 37227, 628 ]
2.310567
776
from . trace_form import Trace from . average_form import Average from . extension_form import Extension from . restriction_form import Restriction from . injection_form import Injection from . point_trace_form import PointTrace from . xii_assembly import assemble as ii_assemble from . average_shape import Square, SquareRim, Circle, Disk from . block_form import block_form
[ 6738, 764, 12854, 62, 687, 1330, 34912, 198, 6738, 764, 2811, 62, 687, 1330, 13475, 198, 6738, 764, 7552, 62, 687, 1330, 27995, 198, 6738, 764, 17504, 62, 687, 1330, 37163, 295, 198, 6738, 764, 16954, 62, 687, 1330, 554, 29192, 198, 6738, 764, 966, 62, 40546, 62, 687, 1330, 6252, 2898, 558, 198, 6738, 764, 2124, 4178, 62, 41873, 1330, 25432, 355, 21065, 62, 292, 15140, 198, 6738, 764, 2811, 62, 43358, 1330, 9276, 11, 9276, 49, 320, 11, 16291, 11, 31664, 198, 6738, 764, 2512, 62, 687, 1330, 2512, 62, 687, 198 ]
4
94
#!/bin/python3 # https://www.DIVD.nl # Developed by Hidde Smit & Wietse Boonstra # Usage: cat ips.txt | python3 ip-whois-mail.py # ips.txt 1 ip per line # Debugging: sys.stdin = ['1.1.1.1', '8.8.8.8'] from ipwhois import IPWhois import sys for line in sys.stdin: try: ip = line.strip('\n') obj = IPWhois(ip) rdap = obj.lookup_rdap(depth=2) result = rdap['objects'] abusemails = [] for key, value in result.items(): if value['roles'] and 'abuse' in value['roles']: for abusemail in value['contact']['email']: abusemails.append(abusemail['value']) abusemails = list(dict.fromkeys(abusemails)) print (ip,str(abusemails)[1:-1].replace(' ', ''),sep=',') except Exception as e: print ("Failed with ip: {}; error {}".format(ip, e)) pass
[ 2, 48443, 8800, 14, 29412, 18, 198, 2, 3740, 1378, 2503, 13, 33569, 35, 13, 21283, 198, 2, 6013, 276, 416, 367, 1638, 68, 2439, 270, 1222, 370, 1155, 325, 347, 2049, 12044, 198, 2, 29566, 25, 3797, 220, 2419, 13, 14116, 930, 21015, 18, 20966, 12, 8727, 271, 12, 4529, 13, 9078, 198, 2, 220, 2419, 13, 14116, 352, 20966, 583, 1627, 198, 2, 31687, 2667, 25, 25064, 13, 19282, 259, 796, 37250, 16, 13, 16, 13, 16, 13, 16, 3256, 705, 23, 13, 23, 13, 23, 13, 23, 20520, 198, 198, 6738, 20966, 8727, 271, 1330, 6101, 8241, 271, 198, 11748, 25064, 198, 198, 1640, 1627, 287, 25064, 13, 19282, 259, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 796, 1627, 13, 36311, 10786, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 796, 6101, 8241, 271, 7, 541, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 67, 499, 796, 26181, 13, 5460, 929, 62, 4372, 499, 7, 18053, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 374, 67, 499, 17816, 48205, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 5076, 26165, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 1255, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 17816, 305, 829, 20520, 290, 705, 47158, 6, 287, 1988, 17816, 305, 829, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5076, 4529, 287, 1988, 17816, 32057, 6, 7131, 6, 12888, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5076, 26165, 13, 33295, 7, 47158, 4529, 17816, 8367, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5076, 26165, 796, 1351, 7, 11600, 13, 6738, 13083, 7, 47158, 26165, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 541, 11, 2536, 7, 47158, 26165, 38381, 16, 21912, 16, 4083, 33491, 10786, 46083, 10148, 828, 325, 79, 28, 3256, 11537, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 5855, 37, 6255, 351, 20966, 25, 1391, 19629, 4049, 23884, 1911, 18982, 7, 541, 11, 304, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.127451
408
#!/usr/bin/python # -*- coding: utf-8 -*- # ProDy: A Python Package for Protein Dynamics Analysis # # Copyright (C) 2010-2012 Ahmet Bakan # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> """ProDy test suite. Usage:: from prody import * prody.test() Testing will use :mod:`nose` if it is available, otherwise it will use :mod:`unittest`.""" __author__ = 'Ahmet Bakan' __copyright__ = 'Copyright (C) 2010-2012 Ahmet Bakan' from glob import glob from os.path import abspath, split, join, relpath, splitext from os.path import sep as dirsep import inspect import tempfile try: import unittest2 as unittest from unittest2 import TestCase, skipIf, skipUnless except ImportError: import unittest from unittest import TestCase, skipIf, skipUnless from prody.utilities import PLATFORM from prody import LOGGER from prody.utilities import which NOPRODYCMD = which('prody') is None WINDOWS = PLATFORM == 'Windows' try: import matplotlib matplotlib.use('Agg') except ImportError: MATPLOTLIB = False else: try: from matplotlib import pyplot except ImportError: MATPLOTLIB = False else: MATPLOTLIB = True TESTDIR = abspath(split(inspect.getfile(inspect.currentframe()))[0]) TEMPDIR = tempfile.gettempdir() MODULES = dict() PREFIX = 'prody.tests.' for pyfile in glob(join(TESTDIR, '*', '*.py')): pyfile = splitext(relpath(pyfile, TESTDIR))[0] items = pyfile.split(dirsep) if items[-1] == '__init__': items = items[:-1] if items[-1].startswith('test_'): MODULES['.'.join([i[5:] for i in items])] = PREFIX + '.'.join(items) if __name__ == '__main__': runTests()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 1041, 35, 88, 25, 317, 11361, 15717, 329, 31702, 33806, 14691, 198, 2, 198, 2, 15069, 357, 34, 8, 3050, 12, 6999, 7900, 4164, 17466, 272, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 198, 2, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 198, 198, 37811, 2964, 35, 88, 1332, 18389, 13, 220, 29566, 3712, 628, 220, 422, 386, 9892, 1330, 1635, 198, 220, 386, 9892, 13, 9288, 3419, 198, 198, 44154, 481, 779, 1058, 4666, 25, 63, 77, 577, 63, 611, 340, 318, 1695, 11, 4306, 340, 481, 779, 198, 25, 4666, 25, 63, 403, 715, 395, 63, 526, 15931, 198, 198, 834, 9800, 834, 796, 705, 10910, 4164, 17466, 272, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 357, 34, 8, 3050, 12, 6999, 7900, 4164, 17466, 272, 6, 628, 198, 6738, 15095, 1330, 15095, 198, 6738, 28686, 13, 6978, 1330, 2352, 6978, 11, 6626, 11, 4654, 11, 823, 6978, 11, 4328, 578, 742, 198, 6738, 28686, 13, 6978, 1330, 41767, 355, 26672, 325, 79, 198, 11748, 10104, 198, 11748, 20218, 7753, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 17, 355, 555, 715, 395, 198, 220, 220, 220, 422, 555, 715, 395, 17, 1330, 6208, 20448, 11, 14267, 1532, 11, 14267, 28042, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 555, 715, 395, 198, 220, 220, 220, 422, 555, 715, 395, 1330, 6208, 20448, 11, 14267, 1532, 11, 14267, 28042, 198, 198, 6738, 386, 9892, 13, 315, 2410, 1330, 9297, 1404, 21389, 198, 6738, 386, 9892, 1330, 41605, 30373, 198, 198, 6738, 386, 9892, 13, 315, 2410, 1330, 543, 198, 45, 3185, 49, 33076, 34, 12740, 796, 543, 10786, 1676, 9892, 11537, 318, 6045, 198, 198, 33207, 796, 9297, 1404, 21389, 6624, 705, 11209, 6, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 198, 220, 220, 220, 2603, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 36775, 6489, 2394, 40347, 796, 10352, 198, 17772, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 2603, 29487, 8019, 1330, 12972, 29487, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36775, 6489, 2394, 40347, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 36775, 6489, 2394, 40347, 796, 6407, 198, 198, 51, 6465, 34720, 796, 2352, 6978, 7, 35312, 7, 1040, 806, 13, 1136, 7753, 7, 1040, 806, 13, 14421, 14535, 3419, 4008, 58, 15, 12962, 198, 51, 3620, 5760, 4663, 796, 20218, 7753, 13, 1136, 29510, 15908, 3419, 198, 198, 33365, 6239, 1546, 796, 8633, 3419, 198, 47, 31688, 10426, 796, 705, 1676, 9892, 13, 41989, 2637, 198, 198, 1640, 12972, 7753, 287, 15095, 7, 22179, 7, 51, 6465, 34720, 11, 705, 9, 3256, 705, 24620, 9078, 11537, 2599, 198, 220, 220, 220, 12972, 7753, 796, 4328, 578, 742, 7, 2411, 6978, 7, 9078, 7753, 11, 43001, 34720, 4008, 58, 15, 60, 628, 220, 220, 220, 3709, 796, 12972, 7753, 13, 35312, 7, 15908, 325, 79, 8, 198, 220, 220, 220, 611, 3709, 58, 12, 16, 60, 6624, 705, 834, 15003, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 796, 3709, 58, 21912, 16, 60, 628, 220, 220, 220, 611, 3709, 58, 12, 16, 4083, 9688, 2032, 342, 10786, 9288, 62, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19164, 6239, 1546, 17816, 2637, 13, 22179, 26933, 72, 58, 20, 47715, 329, 1312, 287, 3709, 12962, 60, 796, 22814, 47084, 1343, 705, 2637, 13, 22179, 7, 23814, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 51, 3558, 3419, 198 ]
2.838791
794
# https://atcoder.jp/contests/abc202/tasks/abc202_d A, B, K = map(int, input().split()) # memo[a][b] aがa個, bがb個の時の場合の数 memo = [[0 for _ in range(31)] for _ in range(31)] memo[0][0] = 1 for i in range(A + 1): for j in range(B + 1): if i == 0: memo[i][j] = 1 continue if j == 0: memo[i][j] = 1 continue memo[i][j] += memo[i][j - 1] + memo[i - 1][j] print(get_S(A, B, K))
[ 2, 3740, 1378, 265, 66, 12342, 13, 34523, 14, 3642, 3558, 14, 39305, 19004, 14, 83, 6791, 14, 39305, 19004, 62, 67, 198, 32, 11, 347, 11, 509, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 198, 2, 16155, 58, 64, 7131, 65, 60, 257, 35585, 64, 161, 222, 233, 11, 275, 35585, 65, 161, 222, 233, 27032, 25081, 15474, 254, 112, 28938, 230, 27032, 243, 108, 198, 11883, 78, 796, 16410, 15, 329, 4808, 287, 2837, 7, 3132, 15437, 329, 4808, 287, 2837, 7, 3132, 15437, 198, 11883, 78, 58, 15, 7131, 15, 60, 796, 352, 198, 1640, 1312, 287, 2837, 7, 32, 1343, 352, 2599, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 33, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16155, 58, 72, 7131, 73, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 611, 474, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16155, 58, 72, 7131, 73, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 16155, 58, 72, 7131, 73, 60, 15853, 16155, 58, 72, 7131, 73, 532, 352, 60, 1343, 16155, 58, 72, 532, 352, 7131, 73, 60, 628, 198, 198, 4798, 7, 1136, 62, 50, 7, 32, 11, 347, 11, 509, 4008, 198 ]
1.71374
262
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.MatMul JIT compilation.""" import numpy as np import unittest from tensorflow.compiler.mlir.tfrt.jit.python_binding import tf_cpurt cpurt = tf_cpurt.TfCpurtExecutor() # Matmul: [1, k] x [k, 1] # Matmul: [1, k] x [k, n] # Matmul: [n, k] x [k, 1] # Matmul: [m, k] x [k, n] if __name__ == "__main__": np.random.seed(0) googletest.main()
[ 2, 15069, 33448, 383, 309, 22854, 37535, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 37811, 51, 3558, 329, 48700, 13, 19044, 44, 377, 449, 2043, 23340, 526, 15931, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 555, 715, 395, 198, 6738, 11192, 273, 11125, 13, 5589, 5329, 13, 4029, 343, 13, 83, 8310, 83, 13, 45051, 13, 29412, 62, 30786, 1330, 48700, 62, 13155, 3325, 628, 198, 198, 13155, 3325, 796, 48700, 62, 13155, 3325, 13, 51, 69, 34, 79, 3325, 23002, 38409, 3419, 628, 628, 220, 1303, 6550, 76, 377, 25, 685, 16, 11, 479, 60, 2124, 685, 74, 11, 352, 60, 628, 220, 1303, 6550, 76, 377, 25, 685, 16, 11, 479, 60, 2124, 685, 74, 11, 299, 60, 628, 220, 1303, 6550, 76, 377, 25, 685, 77, 11, 479, 60, 2124, 685, 74, 11, 352, 60, 628, 220, 1303, 6550, 76, 377, 25, 685, 76, 11, 479, 60, 2124, 685, 74, 11, 299, 60, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 45941, 13, 25120, 13, 28826, 7, 15, 8, 198, 220, 467, 519, 1616, 395, 13, 12417, 3419, 198 ]
3.147929
338
from util import Util
[ 6738, 7736, 1330, 7273, 346, 198 ]
3.666667
6
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Manage automatic weight adjustments.""" import collections import datetime from base import utils from datastore import data_handler from datastore import data_types from datastore import ndb_utils from google_cloud_utils import big_query from handlers import base_handler from libs import handler from metrics import fuzzer_stats from metrics import logs QuerySpecification = collections.namedtuple( 'QuerySpecification', ['adjusted_weight', 'threshold', 'query_format', 'formatter', 'reason']) # Formatters for query specifications. def _past_day_formatter(query_format, dataset): """Simple formatter to get stats for the past day.""" end_time = utils.utcnow().date() start_time = end_time - datetime.timedelta(days=1) return query_format.format( dataset=dataset, start_time=start_time, end_time=end_time) def _new_fuzzer_formatter(query_format, dataset): """Prepare a query to check for new fuzzers from the past week.""" now = utils.utcnow().date() cutoff_time = now - datetime.timedelta(days=7) return query_format.format(dataset=dataset, cutoff_time=cutoff_time) def _coverage_formatter(query_format, dataset): """Prepare a query to check for changes in coverage week over week.""" end_date = utils.utcnow().date() - datetime.timedelta(days=1) middle_date = end_date - datetime.timedelta(days=7) start_date = end_date - datetime.timedelta(days=14) return query_format.format( dataset=dataset, start_date=start_date, middle_date=middle_date, end_date=end_date) # Most of our queries should simply average a field name to get a ratio showing # how often some behavior occurs. GENERIC_QUERY_FORMAT = """ SELECT fuzzer, job, AVG({field_name}) AS ratio FROM {{dataset}}.TestcaseRun WHERE _PARTITIONTIME BETWEEN TIMESTAMP('{{start_time}}') AND TIMESTAMP('{{end_time}}') GROUP BY fuzzer, job """ # Heavily reduce the weight for fuzzers which frequently crash on startup. This # is indicitave of a very serious problem that makes it highly unlikely that # we'll find anything during fuzzing. STARTUP_CRASH_SPECIFICATION = QuerySpecification( adjusted_weight=0.10, threshold=0.80, query_format=GENERIC_QUERY_FORMAT.format(field_name='startup_crash_count'), formatter=_past_day_formatter, reason='frequent startup crashes') # Reduce weight somewhat for fuzzers with many slow units. If a particular unit # runs for so long that we detect it as a slow unit, it usually means that the # fuzzer is not making good use of its cycles while running or needs a fix. SLOW_UNIT_SPECIFICATION = QuerySpecification( adjusted_weight=0.50, threshold=0.80, query_format=GENERIC_QUERY_FORMAT.format(field_name='slow_unit_count'), formatter=_past_day_formatter, reason='frequent slow units') # This should end up being very similar to the slow unit specification, and is # included for the same reason. TIMEOUT_SPECIFICATION = QuerySpecification( adjusted_weight=0.50, threshold=0.80, query_format=GENERIC_QUERY_FORMAT.format(field_name='timeout_count'), formatter=_past_day_formatter, reason='frequent timeouts') # Fuzzers which are crashing frequently may not be making full use of their # allotted time for fuzzing, and may end up being more effective once the known # issues are fixed. CRASH_SPECIFICATION = QuerySpecification( adjusted_weight=0.50, threshold=0.90, query_format=GENERIC_QUERY_FORMAT.format(field_name='crash_count'), formatter=_past_day_formatter, reason='frequent crashes') # Fuzzers with extremely frequent OOMs may contain leaks or other issues that # signal that they need some improvement. Run with a slightly reduced weight # until the issues are fixed. OOM_SPECIFICATION = QuerySpecification( adjusted_weight=0.50, threshold=0.90, query_format=GENERIC_QUERY_FORMAT.format(field_name='oom_count'), formatter=_past_day_formatter, reason='frequent OOMs') # New fuzzers/jobs should run much more frequently than others. In this case, we # test the fraction of days for which we have no stats for this fuzzer/job pair # and increase if it's nonzero. NEW_FUZZER_FORMAT = """ SELECT fuzzer, job, 1 as ratio, MIN(_PARTITIONTIME) as first_time FROM {dataset}.TestcaseRun GROUP BY fuzzer, job HAVING first_time >= TIMESTAMP('{cutoff_time}') """ NEW_FUZZER_SPECIFICATION = QuerySpecification( adjusted_weight=5.0, threshold=1.0, query_format=NEW_FUZZER_FORMAT, formatter=_new_fuzzer_formatter, reason='new fuzzer') # Format to query for fuzzers with minimal change in week to week coverage. COVERAGE_UNCHANGED_FORMAT = """ SELECT recent.fuzzer AS fuzzer, recent.job AS job, 1 as ratio FROM ( SELECT fuzzer, job, MAX(edge_coverage / edges_total) AS coverage FROM {dataset}.TestcaseRun WHERE _PARTITIONTIME BETWEEN TIMESTAMP('{middle_date}') AND TIMESTAMP('{end_date}') AND edges_total > 0 AND edge_coverage > 0 GROUP BY fuzzer, job HAVING coverage <= 1.0) AS recent JOIN ( SELECT fuzzer, job, MAX(edge_coverage / edges_total) AS coverage FROM {dataset}.TestcaseRun WHERE _PARTITIONTIME BETWEEN TIMESTAMP('{start_date}') AND TIMESTAMP('{middle_date}') AND edges_total > 0 AND edge_coverage > 0 GROUP BY fuzzer, job HAVING coverage <= 1.0) AS older ON recent.fuzzer = older.fuzzer AND recent.job = older.job WHERE ABS((recent.coverage - older.coverage) / recent.coverage) < 0.01 """ COVERAGE_UNCHANGED_SPECIFICATION = QuerySpecification( adjusted_weight=0.5, threshold=1.0, query_format=COVERAGE_UNCHANGED_FORMAT, formatter=_coverage_formatter, reason='coverage flat over past 2 weeks') # Mappings for which specifications to use for which LIBFUZZER_SPECIFICATIONS = [ COVERAGE_UNCHANGED_SPECIFICATION, CRASH_SPECIFICATION, NEW_FUZZER_SPECIFICATION, OOM_SPECIFICATION, SLOW_UNIT_SPECIFICATION, STARTUP_CRASH_SPECIFICATION, TIMEOUT_SPECIFICATION, ] AFL_SPECIFICATIONS = [ CRASH_SPECIFICATION, NEW_FUZZER_SPECIFICATION, STARTUP_CRASH_SPECIFICATION, ] # Special specification used to modify previously altered weights to their # default values when they no longer match any other specifications. RESTORE_DEFAULT_SPECIFICATION = QuerySpecification( adjusted_weight=1.0, threshold=None, query_format=None, formatter=None, reason='no longer matches any weight adjustment specifications') def _query_helper(client, query): """Helper function to get fuzzer stats.""" return client.query(query=query).rows def _update_match(matched_specifications, fuzzer, job, specification): """Update the weight for a fuzzer/job.""" key = (fuzzer, job) old_match = matched_specifications.get(key, RESTORE_DEFAULT_SPECIFICATION) new_weight = specification.adjusted_weight old_weight = old_match.adjusted_weight # Always update the weight if the previous value is the default. This is # required to deal with specifications that are meant to set the weight above # 1.0. Otherwise, prioritize only the most penalizing match for this pairing. if old_match == RESTORE_DEFAULT_SPECIFICATION or new_weight < old_weight: matched_specifications[key] = specification def update_weight_for_target(fuzz_target_name, job, specification): """Set the weight for a particular target.""" target_job = data_handler.get_fuzz_target_job(fuzz_target_name, job) if not target_job: logs.log_error('FuzzTargetJob for target %s and job %s does not exist.' % (fuzz_target_name, job)) return weight = specification.adjusted_weight logs.log('Adjusted weight to %f for target %s and job %s (%s).' % (weight, fuzz_target_name, job, specification.reason)) target_job.weight = weight target_job.put() def update_matches_for_specification(specification, client, engine, matched_specifications, run_set): """Run a query and adjust weights based on a given query specification.""" query = specification.formatter(specification.query_format, fuzzer_stats.dataset_name(engine)) results = _query_helper(client, query) for result in results: fuzzer = result['fuzzer'] job = result['job'] ratio = result['ratio'] run_set.add((fuzzer, job)) if ratio >= specification.threshold: _update_match(matched_specifications, fuzzer, job, specification) def update_target_weights_for_engine(client, engine, specifications): """Update all fuzz target weights for the specified engine.""" matched_specifications = {} run_set = set() # All fuzzers with non-default weights must be tracked with a special # specification. This ensures that they will be restored to normal weight # once conditions causing adjustments are no longer met. target_jobs = data_types.FuzzTargetJob.query( data_types.FuzzTarget.engine == engine).filter( data_types.FuzzTargetJob.weight != 1.0) for target_job in target_jobs: matched_specifications[(target_job.fuzz_target_name, target_job.job)] = RESTORE_DEFAULT_SPECIFICATION for specification in specifications: update_matches_for_specification(specification, client, engine, matched_specifications, run_set) for (fuzzer, job), specification in matched_specifications.iteritems(): if (fuzzer, job) not in run_set: # This ensures that we don't reset weights for fuzzers with problems if # they didn't run in the time covered by our queries. continue update_weight_for_target(fuzzer, job, specification) logs.log('Weight adjustments complete for engine %s.' % engine) def store_current_weights_in_bigquery(): """Update a bigquery table containing the daily stats.""" rows = [] target_jobs = ndb_utils.get_all_from_model(data_types.FuzzTargetJob) for target_job in target_jobs: row = { 'fuzzer': target_job.fuzz_target_name, 'job': target_job.job, 'weight': target_job.weight } rows.append(big_query.Insert(row=row, insert_id=None)) client = big_query.Client(dataset_id='main', table_id='fuzzer_weights') client.insert(rows) class Handler(base_handler.Handler): """Handler to periodically update fuzz target weights based on performance.""" @handler.check_cron() def get(self): """Process all fuzz targets and update FuzzTargetJob weights.""" client = big_query.Client() update_target_weights_for_engine(client, 'libFuzzer', LIBFUZZER_SPECIFICATIONS) update_target_weights_for_engine(client, 'afl', AFL_SPECIFICATIONS) store_current_weights_in_bigquery()
[ 2, 15069, 13130, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 5124, 496, 11353, 3463, 16895, 526, 15931, 198, 198, 11748, 17268, 198, 11748, 4818, 8079, 198, 198, 6738, 2779, 1330, 3384, 4487, 198, 6738, 4818, 459, 382, 1330, 1366, 62, 30281, 198, 6738, 4818, 459, 382, 1330, 1366, 62, 19199, 198, 6738, 4818, 459, 382, 1330, 299, 9945, 62, 26791, 198, 6738, 23645, 62, 17721, 62, 26791, 1330, 1263, 62, 22766, 198, 6738, 32847, 1330, 2779, 62, 30281, 198, 6738, 9195, 82, 1330, 21360, 198, 6738, 20731, 1330, 26080, 263, 62, 34242, 198, 6738, 20731, 1330, 17259, 198, 198, 20746, 22882, 2649, 796, 17268, 13, 13190, 83, 29291, 7, 198, 220, 220, 220, 705, 20746, 22882, 2649, 3256, 198, 220, 220, 220, 37250, 29117, 62, 6551, 3256, 705, 400, 10126, 3256, 705, 22766, 62, 18982, 3256, 705, 687, 1436, 3256, 705, 41181, 6, 12962, 628, 198, 2, 18980, 1010, 329, 12405, 20640, 13, 198, 4299, 4808, 30119, 62, 820, 62, 687, 1436, 7, 22766, 62, 18982, 11, 27039, 2599, 198, 220, 37227, 26437, 1296, 1436, 284, 651, 9756, 329, 262, 1613, 1110, 526, 15931, 198, 220, 886, 62, 2435, 796, 3384, 4487, 13, 315, 66, 2197, 22446, 4475, 3419, 198, 220, 923, 62, 2435, 796, 886, 62, 2435, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 16, 8, 198, 220, 1441, 12405, 62, 18982, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 27039, 28, 19608, 292, 316, 11, 923, 62, 2435, 28, 9688, 62, 2435, 11, 886, 62, 2435, 28, 437, 62, 2435, 8, 628, 198, 4299, 4808, 3605, 62, 69, 4715, 263, 62, 687, 1436, 7, 22766, 62, 18982, 11, 27039, 2599, 198, 220, 37227, 37534, 533, 257, 12405, 284, 2198, 329, 649, 26080, 364, 422, 262, 1613, 1285, 526, 15931, 198, 220, 783, 796, 3384, 4487, 13, 315, 66, 2197, 22446, 4475, 3419, 198, 220, 45616, 62, 2435, 796, 783, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 22, 8, 198, 220, 1441, 12405, 62, 18982, 13, 18982, 7, 19608, 292, 316, 28, 19608, 292, 316, 11, 45616, 62, 2435, 28, 8968, 2364, 62, 2435, 8, 628, 198, 4299, 4808, 1073, 1857, 62, 687, 1436, 7, 22766, 62, 18982, 11, 27039, 2599, 198, 220, 37227, 37534, 533, 257, 12405, 284, 2198, 329, 2458, 287, 5197, 1285, 625, 1285, 526, 15931, 198, 220, 886, 62, 4475, 796, 3384, 4487, 13, 315, 66, 2197, 22446, 4475, 3419, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 16, 8, 198, 220, 3504, 62, 4475, 796, 886, 62, 4475, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 22, 8, 198, 220, 923, 62, 4475, 796, 886, 62, 4475, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 12545, 28, 1415, 8, 198, 220, 1441, 12405, 62, 18982, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 27039, 28, 19608, 292, 316, 11, 198, 220, 220, 220, 220, 220, 923, 62, 4475, 28, 9688, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 3504, 62, 4475, 28, 27171, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 886, 62, 4475, 28, 437, 62, 4475, 8, 628, 198, 2, 4042, 286, 674, 20743, 815, 2391, 2811, 257, 2214, 1438, 284, 651, 257, 8064, 4478, 198, 2, 703, 1690, 617, 4069, 8833, 13, 198, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 796, 37227, 198, 46506, 198, 220, 26080, 263, 11, 198, 220, 1693, 11, 198, 220, 35224, 15090, 3245, 62, 3672, 30072, 7054, 8064, 198, 10913, 2662, 198, 220, 22935, 19608, 292, 316, 11709, 13, 14402, 7442, 10987, 198, 47357, 198, 220, 4808, 30709, 17941, 34694, 38651, 8845, 1677, 31742, 6465, 23518, 10786, 27007, 9688, 62, 2435, 11709, 11537, 198, 220, 5357, 31742, 6465, 23518, 10786, 27007, 437, 62, 2435, 11709, 11537, 198, 46846, 11050, 198, 220, 26080, 263, 11, 198, 220, 1693, 198, 37811, 198, 198, 2, 679, 615, 813, 4646, 262, 3463, 329, 26080, 364, 543, 6777, 7014, 319, 13693, 13, 770, 198, 2, 318, 2699, 270, 1015, 286, 257, 845, 2726, 1917, 326, 1838, 340, 4047, 7485, 326, 198, 2, 356, 1183, 1064, 1997, 1141, 26080, 278, 13, 198, 2257, 7227, 8577, 62, 9419, 11211, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 940, 11, 198, 220, 220, 220, 11387, 28, 15, 13, 1795, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 13, 18982, 7, 3245, 62, 3672, 11639, 9688, 929, 62, 6098, 1077, 62, 9127, 33809, 198, 220, 220, 220, 1296, 1436, 28, 62, 30119, 62, 820, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 69, 46018, 13693, 17616, 11537, 198, 198, 2, 44048, 3463, 6454, 329, 26080, 364, 351, 867, 3105, 4991, 13, 1002, 257, 1948, 4326, 198, 2, 4539, 329, 523, 890, 326, 356, 4886, 340, 355, 257, 3105, 4326, 11, 340, 3221, 1724, 326, 262, 198, 2, 26080, 263, 318, 407, 1642, 922, 779, 286, 663, 16006, 981, 2491, 393, 2476, 257, 4259, 13, 198, 8634, 3913, 62, 4944, 2043, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 1120, 11, 198, 220, 220, 220, 11387, 28, 15, 13, 1795, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 13, 18982, 7, 3245, 62, 3672, 11639, 38246, 62, 20850, 62, 9127, 33809, 198, 220, 220, 220, 1296, 1436, 28, 62, 30119, 62, 820, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 69, 46018, 3105, 4991, 11537, 198, 198, 2, 770, 815, 886, 510, 852, 845, 2092, 284, 262, 3105, 4326, 20855, 11, 290, 318, 198, 2, 3017, 329, 262, 976, 1738, 13, 198, 34694, 12425, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 1120, 11, 198, 220, 220, 220, 11387, 28, 15, 13, 1795, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 13, 18982, 7, 3245, 62, 3672, 11639, 48678, 62, 9127, 33809, 198, 220, 220, 220, 1296, 1436, 28, 62, 30119, 62, 820, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 69, 46018, 640, 5269, 11537, 198, 198, 2, 376, 4715, 364, 543, 389, 21899, 6777, 743, 407, 307, 1642, 1336, 779, 286, 511, 198, 2, 44554, 640, 329, 26080, 278, 11, 290, 743, 886, 510, 852, 517, 4050, 1752, 262, 1900, 198, 2, 2428, 389, 5969, 13, 198, 9419, 11211, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 1120, 11, 198, 220, 220, 220, 11387, 28, 15, 13, 3829, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 13, 18982, 7, 3245, 62, 3672, 11639, 6098, 1077, 62, 9127, 33809, 198, 220, 220, 220, 1296, 1436, 28, 62, 30119, 62, 820, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 69, 46018, 17616, 11537, 198, 198, 2, 376, 4715, 364, 351, 4457, 10792, 440, 2662, 82, 743, 3994, 17316, 393, 584, 2428, 326, 198, 2, 6737, 326, 484, 761, 617, 9025, 13, 5660, 351, 257, 4622, 5322, 3463, 198, 2, 1566, 262, 2428, 389, 5969, 13, 198, 46, 2662, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 1120, 11, 198, 220, 220, 220, 11387, 28, 15, 13, 3829, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 35353, 1137, 2149, 62, 10917, 19664, 62, 21389, 1404, 13, 18982, 7, 3245, 62, 3672, 11639, 4207, 62, 9127, 33809, 198, 220, 220, 220, 1296, 1436, 28, 62, 30119, 62, 820, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 69, 46018, 440, 2662, 82, 11537, 198, 198, 2, 968, 26080, 364, 14, 43863, 815, 1057, 881, 517, 6777, 621, 1854, 13, 554, 428, 1339, 11, 356, 198, 2, 1332, 262, 13390, 286, 1528, 329, 543, 356, 423, 645, 9756, 329, 428, 26080, 263, 14, 21858, 5166, 198, 2, 290, 2620, 611, 340, 338, 1729, 22570, 13, 198, 13965, 62, 38989, 30148, 1137, 62, 21389, 1404, 796, 37227, 198, 46506, 198, 220, 26080, 263, 11, 198, 220, 1693, 11, 198, 220, 352, 355, 8064, 11, 198, 220, 20625, 28264, 30709, 17941, 34694, 8, 355, 717, 62, 2435, 198, 10913, 2662, 198, 220, 1391, 19608, 292, 316, 27422, 14402, 7442, 10987, 198, 46846, 11050, 198, 220, 26080, 263, 11, 198, 220, 1693, 198, 7801, 53, 2751, 198, 220, 717, 62, 2435, 18189, 31742, 6465, 23518, 10786, 90, 8968, 2364, 62, 2435, 92, 11537, 198, 37811, 198, 198, 13965, 62, 38989, 30148, 1137, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 20, 13, 15, 11, 198, 220, 220, 220, 11387, 28, 16, 13, 15, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 13965, 62, 38989, 30148, 1137, 62, 21389, 1404, 11, 198, 220, 220, 220, 1296, 1436, 28, 62, 3605, 62, 69, 4715, 263, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 3605, 26080, 263, 11537, 198, 198, 2, 18980, 284, 12405, 329, 26080, 364, 351, 10926, 1487, 287, 1285, 284, 1285, 5197, 13, 198, 8220, 5959, 11879, 62, 47461, 15567, 1961, 62, 21389, 1404, 796, 37227, 198, 46506, 198, 220, 2274, 13, 69, 4715, 263, 7054, 26080, 263, 11, 198, 220, 2274, 13, 21858, 7054, 1693, 11, 198, 220, 352, 355, 8064, 198, 10913, 2662, 357, 198, 220, 33493, 198, 220, 220, 220, 26080, 263, 11, 198, 220, 220, 220, 1693, 11, 198, 220, 220, 220, 25882, 7, 14907, 62, 1073, 1857, 1220, 13015, 62, 23350, 8, 7054, 5197, 198, 220, 16034, 198, 220, 220, 220, 1391, 19608, 292, 316, 27422, 14402, 7442, 10987, 198, 220, 33411, 198, 220, 220, 220, 4808, 30709, 17941, 34694, 38651, 8845, 1677, 31742, 6465, 23518, 10786, 90, 27171, 62, 4475, 92, 11537, 198, 220, 220, 220, 5357, 31742, 6465, 23518, 10786, 90, 437, 62, 4475, 92, 11537, 198, 220, 220, 220, 5357, 13015, 62, 23350, 1875, 657, 198, 220, 220, 220, 5357, 5743, 62, 1073, 1857, 1875, 657, 198, 220, 44441, 11050, 198, 220, 220, 220, 26080, 263, 11, 198, 220, 220, 220, 1693, 198, 220, 367, 10116, 2751, 198, 220, 220, 220, 5197, 19841, 352, 13, 15, 8, 7054, 2274, 198, 45006, 1268, 357, 198, 220, 33493, 198, 220, 220, 220, 26080, 263, 11, 198, 220, 220, 220, 1693, 11, 198, 220, 220, 220, 25882, 7, 14907, 62, 1073, 1857, 1220, 13015, 62, 23350, 8, 7054, 5197, 198, 220, 16034, 198, 220, 220, 220, 1391, 19608, 292, 316, 27422, 14402, 7442, 10987, 198, 220, 33411, 198, 220, 220, 220, 4808, 30709, 17941, 34694, 38651, 8845, 1677, 31742, 6465, 23518, 10786, 90, 9688, 62, 4475, 92, 11537, 198, 220, 220, 220, 5357, 31742, 6465, 23518, 10786, 90, 27171, 62, 4475, 92, 11537, 198, 220, 220, 220, 5357, 13015, 62, 23350, 1875, 657, 198, 220, 220, 220, 5357, 5743, 62, 1073, 1857, 1875, 657, 198, 220, 44441, 11050, 198, 220, 220, 220, 26080, 263, 11, 198, 220, 220, 220, 1693, 198, 220, 367, 10116, 2751, 198, 220, 220, 220, 5197, 19841, 352, 13, 15, 8, 7054, 4697, 198, 1340, 198, 220, 2274, 13, 69, 4715, 263, 796, 4697, 13, 69, 4715, 263, 198, 220, 5357, 2274, 13, 21858, 796, 4697, 13, 21858, 198, 47357, 198, 220, 29950, 19510, 49921, 13, 1073, 1857, 532, 4697, 13, 1073, 1857, 8, 1220, 2274, 13, 1073, 1857, 8, 1279, 657, 13, 486, 198, 37811, 198, 198, 8220, 5959, 11879, 62, 47461, 15567, 1961, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 15, 13, 20, 11, 198, 220, 220, 220, 11387, 28, 16, 13, 15, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 8220, 5959, 11879, 62, 47461, 15567, 1961, 62, 21389, 1404, 11, 198, 220, 220, 220, 1296, 1436, 28, 62, 1073, 1857, 62, 687, 1436, 11, 198, 220, 220, 220, 1738, 11639, 1073, 1857, 6228, 625, 1613, 362, 2745, 11537, 198, 198, 2, 337, 39242, 329, 543, 20640, 284, 779, 329, 543, 198, 40347, 38989, 30148, 1137, 62, 48451, 30643, 18421, 796, 685, 198, 220, 220, 220, 47902, 11879, 62, 47461, 15567, 1961, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 8740, 11211, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 12682, 62, 38989, 30148, 1137, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 440, 2662, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 12419, 3913, 62, 4944, 2043, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 33303, 8577, 62, 9419, 11211, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 20460, 12425, 62, 48451, 30643, 6234, 11, 198, 60, 198, 198, 32, 3697, 62, 48451, 30643, 18421, 796, 685, 198, 220, 220, 220, 8740, 11211, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 12682, 62, 38989, 30148, 1137, 62, 48451, 30643, 6234, 11, 198, 220, 220, 220, 33303, 8577, 62, 9419, 11211, 62, 48451, 30643, 6234, 11, 198, 60, 198, 198, 2, 6093, 20855, 973, 284, 13096, 4271, 14294, 19590, 284, 511, 198, 2, 4277, 3815, 618, 484, 645, 2392, 2872, 597, 584, 20640, 13, 198, 49, 6465, 6965, 62, 7206, 38865, 62, 48451, 30643, 6234, 796, 43301, 22882, 2649, 7, 198, 220, 220, 220, 12328, 62, 6551, 28, 16, 13, 15, 11, 198, 220, 220, 220, 11387, 28, 14202, 11, 198, 220, 220, 220, 12405, 62, 18982, 28, 14202, 11, 198, 220, 220, 220, 1296, 1436, 28, 14202, 11, 198, 220, 220, 220, 1738, 11639, 3919, 2392, 7466, 597, 3463, 15068, 20640, 11537, 628, 198, 4299, 4808, 22766, 62, 2978, 525, 7, 16366, 11, 12405, 2599, 198, 220, 37227, 47429, 2163, 284, 651, 26080, 263, 9756, 526, 15931, 198, 220, 1441, 5456, 13, 22766, 7, 22766, 28, 22766, 737, 8516, 628, 198, 4299, 4808, 19119, 62, 15699, 7, 31409, 62, 16684, 6637, 11, 26080, 263, 11, 1693, 11, 20855, 2599, 198, 220, 37227, 10260, 262, 3463, 329, 257, 26080, 263, 14, 21858, 526, 15931, 198, 220, 1994, 796, 357, 69, 4715, 263, 11, 1693, 8, 198, 220, 1468, 62, 15699, 796, 14451, 62, 16684, 6637, 13, 1136, 7, 2539, 11, 30617, 6965, 62, 7206, 38865, 62, 48451, 30643, 6234, 8, 628, 220, 649, 62, 6551, 796, 20855, 13, 29117, 62, 6551, 198, 220, 1468, 62, 6551, 796, 1468, 62, 15699, 13, 29117, 62, 6551, 628, 220, 1303, 16622, 4296, 262, 3463, 611, 262, 2180, 1988, 318, 262, 4277, 13, 770, 318, 198, 220, 1303, 2672, 284, 1730, 351, 20640, 326, 389, 4001, 284, 900, 262, 3463, 2029, 198, 220, 1303, 352, 13, 15, 13, 15323, 11, 32980, 691, 262, 749, 23634, 2890, 2872, 329, 428, 27356, 13, 198, 220, 611, 1468, 62, 15699, 6624, 30617, 6965, 62, 7206, 38865, 62, 48451, 30643, 6234, 393, 649, 62, 6551, 1279, 1468, 62, 6551, 25, 198, 220, 220, 220, 14451, 62, 16684, 6637, 58, 2539, 60, 796, 20855, 628, 198, 4299, 4296, 62, 6551, 62, 1640, 62, 16793, 7, 69, 4715, 62, 16793, 62, 3672, 11, 1693, 11, 20855, 2599, 198, 220, 37227, 7248, 262, 3463, 329, 257, 1948, 2496, 526, 15931, 198, 220, 2496, 62, 21858, 796, 1366, 62, 30281, 13, 1136, 62, 69, 4715, 62, 16793, 62, 21858, 7, 69, 4715, 62, 16793, 62, 3672, 11, 1693, 8, 628, 220, 611, 407, 2496, 62, 21858, 25, 198, 220, 220, 220, 17259, 13, 6404, 62, 18224, 10786, 37, 4715, 21745, 33308, 329, 2496, 4064, 82, 290, 1693, 4064, 82, 857, 407, 2152, 2637, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 69, 4715, 62, 16793, 62, 3672, 11, 1693, 4008, 198, 220, 220, 220, 1441, 628, 220, 3463, 796, 20855, 13, 29117, 62, 6551, 198, 220, 17259, 13, 6404, 10786, 39668, 276, 3463, 284, 4064, 69, 329, 2496, 4064, 82, 290, 1693, 4064, 82, 37633, 82, 737, 6, 4064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 6551, 11, 26080, 62, 16793, 62, 3672, 11, 1693, 11, 20855, 13, 41181, 4008, 628, 220, 2496, 62, 21858, 13, 6551, 796, 3463, 198, 220, 2496, 62, 21858, 13, 1996, 3419, 628, 198, 4299, 4296, 62, 6759, 2052, 62, 1640, 62, 16684, 2649, 7, 16684, 2649, 11, 5456, 11, 3113, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 62, 16684, 6637, 11, 1057, 62, 2617, 2599, 198, 220, 37227, 10987, 257, 12405, 290, 4532, 19590, 1912, 319, 257, 1813, 12405, 20855, 526, 15931, 198, 220, 12405, 796, 20855, 13, 687, 1436, 7, 16684, 2649, 13, 22766, 62, 18982, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26080, 263, 62, 34242, 13, 19608, 292, 316, 62, 3672, 7, 18392, 4008, 198, 220, 2482, 796, 4808, 22766, 62, 2978, 525, 7, 16366, 11, 12405, 8, 198, 220, 329, 1255, 287, 2482, 25, 198, 220, 220, 220, 26080, 263, 796, 1255, 17816, 69, 4715, 263, 20520, 198, 220, 220, 220, 1693, 796, 1255, 17816, 21858, 20520, 198, 220, 220, 220, 8064, 796, 1255, 17816, 10366, 952, 20520, 628, 220, 220, 220, 1057, 62, 2617, 13, 2860, 19510, 69, 4715, 263, 11, 1693, 4008, 198, 220, 220, 220, 611, 8064, 18189, 20855, 13, 400, 10126, 25, 198, 220, 220, 220, 220, 220, 4808, 19119, 62, 15699, 7, 31409, 62, 16684, 6637, 11, 26080, 263, 11, 1693, 11, 20855, 8, 628, 198, 4299, 4296, 62, 16793, 62, 43775, 62, 1640, 62, 18392, 7, 16366, 11, 3113, 11, 20640, 2599, 198, 220, 37227, 10260, 477, 26080, 2496, 19590, 329, 262, 7368, 3113, 526, 15931, 198, 220, 14451, 62, 16684, 6637, 796, 23884, 198, 220, 1057, 62, 2617, 796, 900, 3419, 628, 220, 1303, 1439, 26080, 364, 351, 1729, 12, 12286, 19590, 1276, 307, 18283, 351, 257, 2041, 198, 220, 1303, 20855, 13, 770, 19047, 326, 484, 481, 307, 15032, 284, 3487, 3463, 198, 220, 1303, 1752, 3403, 6666, 16895, 389, 645, 2392, 1138, 13, 198, 220, 2496, 62, 43863, 796, 1366, 62, 19199, 13, 37, 4715, 21745, 33308, 13, 22766, 7, 198, 220, 220, 220, 220, 220, 1366, 62, 19199, 13, 37, 4715, 21745, 13, 18392, 6624, 3113, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 19199, 13, 37, 4715, 21745, 33308, 13, 6551, 14512, 352, 13, 15, 8, 628, 220, 329, 2496, 62, 21858, 287, 2496, 62, 43863, 25, 198, 220, 220, 220, 14451, 62, 16684, 6637, 58, 7, 16793, 62, 21858, 13, 69, 4715, 62, 16793, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 21858, 13, 21858, 15437, 796, 30617, 6965, 62, 7206, 38865, 62, 48451, 30643, 6234, 628, 220, 329, 20855, 287, 20640, 25, 198, 220, 220, 220, 4296, 62, 6759, 2052, 62, 1640, 62, 16684, 2649, 7, 16684, 2649, 11, 5456, 11, 3113, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14451, 62, 16684, 6637, 11, 1057, 62, 2617, 8, 628, 220, 329, 357, 69, 4715, 263, 11, 1693, 828, 20855, 287, 14451, 62, 16684, 6637, 13, 2676, 23814, 33529, 198, 220, 220, 220, 611, 357, 69, 4715, 263, 11, 1693, 8, 407, 287, 1057, 62, 2617, 25, 198, 220, 220, 220, 220, 220, 1303, 770, 19047, 326, 356, 836, 470, 13259, 19590, 329, 26080, 364, 351, 2761, 611, 198, 220, 220, 220, 220, 220, 1303, 484, 1422, 470, 1057, 287, 262, 640, 5017, 416, 674, 20743, 13, 198, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 4296, 62, 6551, 62, 1640, 62, 16793, 7, 69, 4715, 263, 11, 1693, 11, 20855, 8, 628, 220, 17259, 13, 6404, 10786, 25844, 16895, 1844, 329, 3113, 4064, 82, 2637, 4064, 3113, 8, 628, 198, 4299, 3650, 62, 14421, 62, 43775, 62, 259, 62, 14261, 22766, 33529, 198, 220, 37227, 10260, 257, 1263, 22766, 3084, 7268, 262, 4445, 9756, 526, 15931, 198, 220, 15274, 796, 17635, 198, 220, 2496, 62, 43863, 796, 299, 9945, 62, 26791, 13, 1136, 62, 439, 62, 6738, 62, 19849, 7, 7890, 62, 19199, 13, 37, 4715, 21745, 33308, 8, 198, 220, 329, 2496, 62, 21858, 287, 2496, 62, 43863, 25, 198, 220, 220, 220, 5752, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4715, 263, 10354, 2496, 62, 21858, 13, 69, 4715, 62, 16793, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21858, 10354, 2496, 62, 21858, 13, 21858, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6551, 10354, 2496, 62, 21858, 13, 6551, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 15274, 13, 33295, 7, 14261, 62, 22766, 13, 44402, 7, 808, 28, 808, 11, 7550, 62, 312, 28, 14202, 4008, 628, 220, 5456, 796, 1263, 62, 22766, 13, 11792, 7, 19608, 292, 316, 62, 312, 11639, 12417, 3256, 3084, 62, 312, 11639, 69, 4715, 263, 62, 43775, 11537, 198, 220, 5456, 13, 28463, 7, 8516, 8, 628, 198, 4871, 32412, 7, 8692, 62, 30281, 13, 25060, 2599, 198, 220, 37227, 25060, 284, 26034, 4296, 26080, 2496, 19590, 1912, 319, 2854, 526, 15931, 628, 220, 2488, 30281, 13, 9122, 62, 66, 1313, 3419, 198, 220, 825, 651, 7, 944, 2599, 198, 220, 220, 220, 37227, 18709, 477, 26080, 6670, 290, 4296, 376, 4715, 21745, 33308, 19590, 526, 15931, 198, 220, 220, 220, 5456, 796, 1263, 62, 22766, 13, 11792, 3419, 198, 220, 220, 220, 4296, 62, 16793, 62, 43775, 62, 1640, 62, 18392, 7, 16366, 11, 705, 8019, 37, 4715, 263, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45651, 38989, 30148, 1137, 62, 48451, 30643, 18421, 8, 198, 220, 220, 220, 4296, 62, 16793, 62, 43775, 62, 1640, 62, 18392, 7, 16366, 11, 705, 1878, 75, 3256, 25363, 62, 48451, 30643, 18421, 8, 628, 220, 220, 220, 3650, 62, 14421, 62, 43775, 62, 259, 62, 14261, 22766, 3419, 198 ]
2.910929
3,907
from __future__ import ( unicode_literals, absolute_import, print_function, division, ) import sys from PySide2 import QtCore import avb if str is not bytes: unicode = str if __name__ == "__main__": from PySide2 import QtWidgets from optparse import OptionParser parser = OptionParser() parser.add_option('-m','--mobs',action="store_true", default=False) parser.add_option('-t','--toplevel',action="store_true", default=False) (options, args) = parser.parse_args() if not args: parser.error("not enough arguments") file_path = args[0] f = avb.open(file_path) root = f.content if options.toplevel: root = list(f.content.toplevel()) if options.mobs: root = list(f.content.mobs) app = QtWidgets.QApplication(sys.argv) model = AVBModel(root) use_column = False if use_column: tree = QtWidgets.QColumnView() tree.setModel(model) else: tree = QtWidgets.QTreeView() tree.setModel(model) tree.setUniformRowHeights(True) tree.expandToDepth(1) tree.resizeColumnToContents(0) tree.resizeColumnToContents(1) tree.resize(700,600) tree.setAlternatingRowColors(True) tree.show() sys.exit(app.exec_())
[ 6738, 11593, 37443, 834, 1330, 357, 198, 220, 220, 220, 28000, 1098, 62, 17201, 874, 11, 198, 220, 220, 220, 4112, 62, 11748, 11, 198, 220, 220, 220, 3601, 62, 8818, 11, 198, 220, 220, 220, 7297, 11, 198, 220, 220, 220, 1267, 198, 11748, 25064, 198, 6738, 9485, 24819, 17, 1330, 33734, 14055, 198, 198, 11748, 1196, 65, 198, 198, 361, 965, 318, 407, 9881, 25, 198, 220, 220, 220, 28000, 1098, 796, 965, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 422, 9485, 24819, 17, 1330, 33734, 54, 312, 11407, 198, 220, 220, 220, 422, 2172, 29572, 1330, 16018, 46677, 628, 220, 220, 220, 30751, 796, 16018, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 76, 41707, 438, 76, 8158, 3256, 2673, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 18076, 10786, 12, 83, 41707, 438, 83, 643, 626, 3256, 2673, 2625, 8095, 62, 7942, 1600, 4277, 28, 25101, 8, 628, 220, 220, 220, 357, 25811, 11, 26498, 8, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 407, 26498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 18224, 7203, 1662, 1576, 7159, 4943, 628, 220, 220, 220, 2393, 62, 6978, 796, 26498, 58, 15, 60, 628, 220, 220, 220, 277, 796, 1196, 65, 13, 9654, 7, 7753, 62, 6978, 8, 628, 220, 220, 220, 6808, 796, 277, 13, 11299, 198, 220, 220, 220, 611, 3689, 13, 83, 643, 626, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 1351, 7, 69, 13, 11299, 13, 83, 643, 626, 28955, 198, 220, 220, 220, 611, 3689, 13, 76, 8158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 796, 1351, 7, 69, 13, 11299, 13, 76, 8158, 8, 628, 220, 220, 220, 598, 796, 33734, 54, 312, 11407, 13, 48, 23416, 7, 17597, 13, 853, 85, 8, 628, 220, 220, 220, 2746, 796, 14661, 33, 17633, 7, 15763, 8, 628, 220, 220, 220, 779, 62, 28665, 796, 10352, 628, 220, 220, 220, 611, 779, 62, 28665, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 33734, 54, 312, 11407, 13, 48, 39470, 7680, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 2617, 17633, 7, 19849, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 796, 33734, 54, 312, 11407, 13, 48, 27660, 7680, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 2617, 17633, 7, 19849, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 2617, 3118, 6933, 25166, 1544, 2337, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 11201, 392, 2514, 48791, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 411, 1096, 39470, 2514, 15842, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5509, 13, 411, 1096, 39470, 2514, 15842, 7, 16, 8, 628, 220, 220, 220, 5509, 13, 411, 1096, 7, 9879, 11, 8054, 8, 198, 220, 220, 220, 5509, 13, 2617, 23081, 803, 25166, 5216, 669, 7, 17821, 8, 628, 220, 220, 220, 5509, 13, 12860, 3419, 628, 220, 220, 220, 25064, 13, 37023, 7, 1324, 13, 18558, 62, 28955, 198 ]
2.343525
556
from pytensor.network.variable import * from pytensor.network.parameter import * from pytensor.network.operation import *
[ 6738, 12972, 83, 22854, 13, 27349, 13, 45286, 1330, 1635, 198, 6738, 12972, 83, 22854, 13, 27349, 13, 17143, 2357, 1330, 1635, 198, 6738, 12972, 83, 22854, 13, 27349, 13, 27184, 1330, 1635, 198 ]
3.588235
34
"""Common shell interaction logic shared between different shells""" from __future__ import print_function import os import sys import inspect import subprocess import pyparsing as pp from six.moves import input from friendlyshell.command_parsers import default_line_parser # Path where configuration data is stored for friendly shells CONFIG_FOLDER = os.path.expanduser(os.path.join("~", ".friendlyshell")) # pylint: disable=no-member class BaseShell(object): """Common base class for all Friendly Shells Defines basic IO and interactive shell logic common to all Friendly Shells """ @property def return_code(self): """error / return code generated by operations run by this shell :rtype: :class:`int` """ return self._return_code @property def _config_folder(self): """Gets the folder where config and log files should be stored :rtype: :class:`str` """ # Create our config folder with restricted access to everyone but the # owner. This is just in case we write secrets to a log / history file # by accident then only the current user can see it. if not os.path.exists(CONFIG_FOLDER): os.makedirs(CONFIG_FOLDER, 0o700) return CONFIG_FOLDER def _process_error(self, err_code): """Helper method used to track error codes When running in batch mode this helper method with terminate the running shell session under the assumption that any subsequent operations that may be performed by the shell will likely fail as a result of the first failure anyway. :param int err_code: return code to set in the shell instance""" self._return_code = err_code # See if we're running in batch mode and terminate the shell if we are if self._input_stream: self.do_exit() def _get_input(self): """Gets input to be processed from the appropriate source :returns: the input line retrieved from the source :rtype: :class:`str` """ try: if self._input_stream: line = self._input_stream.readline() if not line: self._input_stream = None else: line = line.strip() self.info(self.prompt + line) else: line = input(self.prompt) if line: line = line.strip() return line except KeyboardInterrupt: # When the user enters CTRL+C to terminate the shell, we just # terminate the currently running shell. That way if there is # a parent shell in play control can be returned to it so the # user can attempt to recover from whatever operation they # tried to abort self._done = True return None except Exception as err: # pylint: disable=broad-except self.error( 'Unexpected error during input sequence: %s', err ) # Reserve the detailed debug info / stack trace to the debug # output only. This avoids spitting out lots of technical # garbage to the user self.debug(err, exc_info=True) self._done = True self._process_error(1) return None def _execute_command(self, func, parser): """Calls a command function with a set of parsed parameters :param func: the command function to execute :param parser: The parsed command parameters to pass to the command """ try: if not parser.params: func() return params_to_pass = parser.params num_params_total = self._count_params(func) if len(params_to_pass) > num_params_total: # If we have more tokens than parameters on the command function # we concatenate the extraneous tokens with the last parameter # assuming the command function is going to parse the tokens # itself or otherwise perform it's logic on the unparsed # input self.debug("too many tokens - concatenating extras") num_params_to_compress = \ len(params_to_pass) - num_params_total + 1 self.debug("params to compress %s", num_params_to_compress) compressed = " ".join(params_to_pass[-num_params_to_compress:]) self.debug("compressed params: %s", compressed) params_to_pass = params_to_pass[:-num_params_to_compress] params_to_pass.append(compressed) func(*params_to_pass) except Exception as err: # pylint: disable=broad-except # Log summary info about the error to standard error output self.error('Unknown error detected: %s', err) # Reserve the detailed debug info / stack trace to the debug # output only. This avoids spitting out lots of technical # garbage to the user self.debug(str(err), exc_info=True) self._process_error(1) except KeyboardInterrupt: self.debug("User interrupted operation...") # Typically, when a user cancels an operation there will be at # least some partial output generated by the command so we # write out a blank to ensure the interactive prompt appears on # the line below self.info("") def do_native_shell(self, cmd): """Executes a shell command within the Friendly Shell environment""" self.debug("Running shell command %s", cmd) try: output = subprocess.check_output( cmd, shell=True, stderr=subprocess.STDOUT) self.info(output.decode("utf-8")) except subprocess.CalledProcessError as err: self.info("Failed to run command %s: %s", err.cmd, err.returncode) self.info(err.output) self._process_error(1) except KeyboardInterrupt: self.debug("User interrupted operation...") # Typically, when a user cancels an operation there will be at # least some partial output generated by the command so we # write out a blank to ensure the interactive prompt appears on # the line below self.info("") @staticmethod def alias_native_shell(): """Gets the shorthand character for the 'native_shell' command :rtype: :class:`str` """ return "!" def run_subshell(self, subshell): """Launches a child process for another shell under this one :param subshell: the new Friendly Shell to be launched""" subshell.run(input_stream=self._input_stream, parent=self) # save the return code from our child shell here in the parent so it # may be propagated back to the shell if needed self._return_code = subshell.return_code def run(self, *_args, **kwargs): """Main entry point function that launches our command line interpreter This method will wait for input to be given via the command line, and process each command provided until a request to terminate the shell is given. :param input_stream: optional Python input stream object where commands should be loaded from. Typically this will be a file-like object containing commands to be run, but any input stream object should work. If not provided, input will be read from stdin using :meth:`input` :param parent: Optional parent shell which owns this shell. If none provided this shell is assumed to be a parent or first level shell session with no ancestry """ self._input_stream = \ kwargs.pop("input_stream") if "input_stream" in kwargs else None self._parent = kwargs.pop("parent") if "parent" in kwargs else None if self.banner_text: self.info(self.banner_text) while not self._done: line = self._get_input() if not line: continue if line.startswith(self.comment_delimiter): self.debug("Skipping comment line %s", line) continue # Before we process our command input, see if we need to # substitute any environment variables that may be used line = os.path.expandvars(line) parser = self._parse_line(line) if parser is None: self._process_error(1) continue func = self._find_command(parser.command) if not func: self.error("Command not found: %s", parser.command) self._process_error(1) continue if not self._check_params(func, parser): self._process_error(1) continue self._execute_command(func, parser) def _check_params(self, func, parser): """Are there sufficient tokens to populate command parameters :param func: command function to be called :param parser: parsed tokens rom the shell :returns: true if there are sufficient parameters to call the command, false if not :rtype: :class:`bool` """ num_tokens = len(parser.params) if parser.params else 0 num_required_params = self._count_required_params(func) total_num_params = self._count_params(func) if total_num_params == 0 and num_tokens != 0: msg = "Command %s accepts no parameters but %s provided." self.error( msg, func.__name__.replace("do_", ""), num_tokens ) return False if num_tokens < num_required_params: msg = 'Command %s requires %s parameters but %s provided.' self.error( msg, func.__name__.replace("do_", ""), num_required_params, num_tokens) return False return True def _count_required_params(self, cmd_method): """Gets the number of required parameters from a command method :param cmd_method: :class:`inspect.Signature` for method to analyse :returns: Number of required parameters (ie: parameters without default values) for the given method :rtype: :class:`int` """ if sys.version_info < (3, 3): params = inspect.getargspec(cmd_method) # pylint: disable=deprecated-method self.debug( 'Command %s params are: %s', cmd_method.__name__, params) tmp = params.args if 'self' in tmp: tmp.remove('self') return len(tmp) - (len(params.defaults) if params.defaults else 0) func_sig = inspect.signature(cmd_method) # pylint: disable=no-member retval = 0 for cur_param in func_sig.parameters.values(): if cur_param.default is inspect.Parameter.empty: # pylint: disable=no-member retval += 1 return retval def _count_params(self, cmd_method): """Gets the total number of parameters from a command method :param cmd_method: :class:`inspect.Signature` for method to analyse :returns: Number of parameters supported by the given method :rtype: :class:`int` """ if sys.version_info < (3, 3): params = inspect.getargspec(cmd_method) # pylint: disable=deprecated-method self.debug( 'Command %s params are: %s', cmd_method.__name__, params) tmp = params.args if 'self' in tmp: tmp.remove('self') return len(tmp) func_sig = inspect.signature(cmd_method) # pylint: disable=no-member return len(func_sig.parameters) def _parse_line(self, line): """Parses a single line of command text and returns the parsed output :param str line: line of command text to be parsed :returns: Parser object describing all of the parsed command tokens :rtype: :class:`pyparsing.ParseResults`""" self.debug('Parsing command input "%s"...', line) try: retval = self._parser.parseString(line, parseAll=True) except pp.ParseException as err: self.error('Parsing error:') self.error('\t%s', err.pstr) self.error('\t%s^', ' ' * (err.col-1)) self.debug('Details: %s', err) return None self.debug('Parsed command line is "%s"', retval) return retval def _find_command(self, command_name): """Attempts to locate the command handler for a given command :param str command_name: The name of the command to find the handler for :returns: Reference to the method to be called to execute the command Returns None if no command method found :rtype: :class:`meth` """ self.debug("looking for command method...") # Gather all class methods, including static methods all_methods = inspect.getmembers(self, inspect.ismethod) all_methods.extend(inspect.getmembers(self, inspect.isfunction)) # See if we can find a 'do_' method for our command... for cur_method in all_methods: self.debug("Processing %s", cur_method) if cur_method[0] == 'do_' + command_name: self.debug("command method found: %s", cur_method[0]) return cur_method[1] # if no command method can be found for the specified token, # try looking up an alias for the command as well: self.debug("Looking for alias...") for cur_method in all_methods: if not cur_method[0].startswith("alias_"): continue self.debug("Found alias method %s", cur_method[0]) if cur_method[1]() == command_name: orig_cmd_name = cur_method[0][len("alias_"):] self.debug("Recursing to find alias command %s", orig_cmd_name) return self._find_command(orig_cmd_name) self.debug("No command found with name " + command_name) return None def do_exit(self): """Terminates the command interpreter""" self.debug('Terminating interpreter...') self._done = True # See if our shell has any parents, and force them to quit too if self._parent: self._parent.do_exit() def do_close(self): """Terminates the currently running shell""" self.debug( 'Closing shell %s (%s)', self.__class__.__name__, self.prompt) # Return control back to the parent Friendly Shell or the console, # whichever comes next in the shell's ancestry self._done = True @staticmethod def help_close(): """Extended help for close method""" return """If the current shell is a sub-shell spawned by another """\ """Friendly Shell instance, control will return to the """\ """parent shell which will continue running""" @staticmethod def info(message, *args, **_kwargs): """Displays an info message to the default output stream Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior. See :class:`friendlyshell.basic_logger_mixin.BasicLoggerMixin` for examples. :param str message: text to be displayed""" print(message % args) @staticmethod def warning(message, *args, **_kwargs): """Displays a non-critical warning message to the default output stream Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior. See :class:`friendlyshell.basic_logger_mixin.BasicLoggerMixin` for examples. :param str message: text to be displayed""" print(message % args) @staticmethod def error(message, *args, **_kwargs): """Displays a critical error message to the default output stream Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior. See :class:`friendlyshell.basic_logger_mixin.BasicLoggerMixin` for examples. :param str message: text to be displayed""" print(message % args) @staticmethod def debug(message, *args, **_kwargs): """Displays an internal-use-only debug message to verbose log file Default implementation hides all debug output. Use a logging mixin class to customize this behavior. See :class:`friendlyshell.basic_logger_mixin.BasicLoggerMixin` for examples. :param str message: text to be displayed""" if __name__ == "__main__": pass
[ 37811, 17227, 7582, 10375, 9156, 4888, 1022, 1180, 19679, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 10104, 198, 11748, 850, 14681, 198, 11748, 279, 4464, 945, 278, 355, 9788, 198, 6738, 2237, 13, 76, 5241, 1330, 5128, 198, 6738, 8030, 29149, 13, 21812, 62, 79, 945, 364, 1330, 4277, 62, 1370, 62, 48610, 198, 198, 2, 10644, 810, 8398, 1366, 318, 8574, 329, 8030, 19679, 198, 10943, 16254, 62, 37, 3535, 14418, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7, 418, 13, 6978, 13, 22179, 7203, 93, 1600, 27071, 13120, 29149, 48774, 628, 198, 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 4871, 7308, 23248, 7, 15252, 2599, 198, 220, 220, 220, 37227, 17227, 2779, 1398, 329, 477, 38683, 17537, 82, 628, 220, 220, 220, 2896, 1127, 4096, 24418, 290, 14333, 7582, 9156, 2219, 284, 477, 38683, 17537, 82, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1441, 62, 8189, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18224, 1220, 1441, 2438, 7560, 416, 4560, 1057, 416, 428, 7582, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7783, 62, 8189, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 11250, 62, 43551, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 9483, 810, 4566, 290, 2604, 3696, 815, 307, 8574, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 674, 4566, 9483, 351, 10770, 1895, 284, 2506, 475, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4870, 13, 770, 318, 655, 287, 1339, 356, 3551, 13141, 284, 257, 2604, 1220, 2106, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 416, 5778, 788, 691, 262, 1459, 2836, 460, 766, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 10943, 16254, 62, 37, 3535, 14418, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 10943, 16254, 62, 37, 3535, 14418, 11, 657, 78, 9879, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 25626, 62, 37, 3535, 14418, 628, 220, 220, 220, 825, 4808, 14681, 62, 18224, 7, 944, 11, 11454, 62, 8189, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47429, 2446, 973, 284, 2610, 4049, 12416, 628, 220, 220, 220, 220, 220, 220, 220, 1649, 2491, 287, 15458, 4235, 428, 31904, 2446, 351, 23654, 262, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 7582, 6246, 739, 262, 13196, 326, 597, 8840, 4560, 326, 198, 220, 220, 220, 220, 220, 220, 220, 743, 307, 6157, 416, 262, 7582, 481, 1884, 2038, 355, 257, 1255, 286, 262, 717, 198, 220, 220, 220, 220, 220, 220, 220, 5287, 6949, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 493, 11454, 62, 8189, 25, 1441, 2438, 284, 900, 287, 262, 7582, 4554, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8189, 796, 11454, 62, 8189, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 611, 356, 821, 2491, 287, 15458, 4235, 290, 23654, 262, 7582, 611, 356, 389, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 15414, 62, 5532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4598, 62, 37023, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 15414, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 5128, 284, 307, 13686, 422, 262, 5035, 2723, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 262, 5128, 1627, 29517, 422, 262, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 15414, 62, 5532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 2116, 13557, 15414, 62, 5532, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 5532, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7, 944, 13, 16963, 457, 1343, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 5128, 7, 944, 13, 16963, 457, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1649, 262, 2836, 14170, 45249, 10, 34, 284, 23654, 262, 7582, 11, 356, 655, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23654, 262, 3058, 2491, 7582, 13, 1320, 835, 611, 612, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 2560, 7582, 287, 711, 1630, 460, 307, 4504, 284, 340, 523, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2836, 460, 2230, 284, 8551, 422, 4232, 4905, 484, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3088, 284, 15614, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28060, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 11454, 25, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36654, 12, 16341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 42072, 4049, 1141, 5128, 8379, 25, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11454, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12224, 262, 6496, 14257, 7508, 1220, 8931, 12854, 284, 262, 14257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5072, 691, 13, 770, 30940, 46266, 503, 6041, 286, 6276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15413, 284, 262, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7, 8056, 11, 2859, 62, 10951, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28060, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 825, 4808, 41049, 62, 21812, 7, 944, 11, 25439, 11, 30751, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 34, 5691, 257, 3141, 2163, 351, 257, 900, 286, 44267, 10007, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25439, 25, 262, 3141, 2163, 284, 12260, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30751, 25, 383, 44267, 3141, 10007, 284, 1208, 284, 262, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 30751, 13, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 1462, 62, 6603, 796, 30751, 13, 37266, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37266, 62, 23350, 796, 2116, 13557, 9127, 62, 37266, 7, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37266, 62, 1462, 62, 6603, 8, 1875, 997, 62, 37266, 62, 23350, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 423, 517, 16326, 621, 10007, 319, 262, 3141, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 1673, 36686, 378, 262, 22820, 11655, 16326, 351, 262, 938, 11507, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13148, 262, 3141, 2163, 318, 1016, 284, 21136, 262, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2346, 393, 4306, 1620, 340, 338, 9156, 319, 262, 8593, 945, 276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5128, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 18820, 867, 16326, 532, 1673, 36686, 803, 33849, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37266, 62, 1462, 62, 5589, 601, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 37266, 62, 1462, 62, 6603, 8, 532, 997, 62, 37266, 62, 23350, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 37266, 284, 27413, 4064, 82, 1600, 997, 62, 37266, 62, 1462, 62, 5589, 601, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25388, 796, 366, 27071, 22179, 7, 37266, 62, 1462, 62, 6603, 58, 12, 22510, 62, 37266, 62, 1462, 62, 5589, 601, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 5589, 2790, 42287, 25, 4064, 82, 1600, 25388, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 1462, 62, 6603, 796, 42287, 62, 1462, 62, 6603, 58, 21912, 22510, 62, 37266, 62, 1462, 62, 5589, 601, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 62, 1462, 62, 6603, 13, 33295, 7, 5589, 2790, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 46491, 37266, 62, 1462, 62, 6603, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 11454, 25, 220, 1303, 279, 2645, 600, 25, 15560, 28, 36654, 12, 16341, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5972, 10638, 7508, 546, 262, 4049, 284, 3210, 4049, 5072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 20035, 4049, 12326, 25, 4064, 82, 3256, 11454, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12224, 262, 6496, 14257, 7508, 1220, 8931, 12854, 284, 262, 14257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5072, 691, 13, 770, 30940, 46266, 503, 6041, 286, 6276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15413, 284, 262, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7, 2536, 7, 8056, 828, 2859, 62, 10951, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 12982, 19072, 4905, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27095, 11, 618, 257, 2836, 14241, 82, 281, 4905, 612, 481, 307, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1551, 617, 13027, 5072, 7560, 416, 262, 3141, 523, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 503, 257, 9178, 284, 4155, 262, 14333, 6152, 3568, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1627, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7203, 4943, 628, 220, 220, 220, 825, 466, 62, 30191, 62, 29149, 7, 944, 11, 23991, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23002, 1769, 257, 7582, 3141, 1626, 262, 38683, 17537, 2858, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 28768, 7582, 3141, 4064, 82, 1600, 23991, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 850, 14681, 13, 9122, 62, 22915, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7, 22915, 13, 12501, 1098, 7203, 40477, 12, 23, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 850, 14681, 13, 34, 4262, 18709, 12331, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7203, 37, 6255, 284, 1057, 3141, 4064, 82, 25, 4064, 82, 1600, 11454, 13, 28758, 11, 11454, 13, 7783, 8189, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7, 8056, 13, 22915, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 12982, 19072, 4905, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27095, 11, 618, 257, 2836, 14241, 82, 281, 4905, 612, 481, 307, 379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1551, 617, 13027, 5072, 7560, 416, 262, 3141, 523, 356, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3551, 503, 257, 9178, 284, 4155, 262, 14333, 6152, 3568, 319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1627, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7203, 4943, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 16144, 62, 30191, 62, 29149, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 45883, 2095, 329, 262, 705, 30191, 62, 29149, 6, 3141, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 2536, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 2474, 628, 220, 220, 220, 825, 1057, 62, 7266, 29149, 7, 944, 11, 6352, 12758, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46182, 2052, 257, 1200, 1429, 329, 1194, 7582, 739, 428, 530, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6352, 12758, 25, 262, 649, 38683, 17537, 284, 307, 5611, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 6352, 12758, 13, 5143, 7, 15414, 62, 5532, 28, 944, 13557, 15414, 62, 5532, 11, 2560, 28, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 262, 1441, 2438, 422, 674, 1200, 7582, 994, 287, 262, 2560, 523, 340, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 743, 307, 8928, 515, 736, 284, 262, 7582, 611, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8189, 796, 6352, 12758, 13, 7783, 62, 8189, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 1635, 62, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13383, 5726, 966, 2163, 326, 18617, 674, 3141, 1627, 28846, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 481, 4043, 329, 5128, 284, 307, 1813, 2884, 262, 3141, 1627, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 1123, 3141, 2810, 1566, 257, 2581, 284, 23654, 262, 7582, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5128, 62, 5532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11902, 11361, 5128, 4269, 2134, 810, 9729, 815, 307, 9639, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 13, 27095, 428, 481, 307, 257, 2393, 12, 2339, 2134, 7268, 9729, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 307, 1057, 11, 475, 597, 5128, 4269, 2134, 815, 670, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 2810, 11, 5128, 481, 307, 1100, 422, 14367, 259, 1262, 1058, 76, 2788, 25, 63, 15414, 63, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2560, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32233, 2560, 7582, 543, 12216, 428, 7582, 13, 1002, 4844, 2810, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 318, 9672, 284, 307, 257, 2560, 393, 717, 1241, 7582, 6246, 351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 29171, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15414, 62, 5532, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 13, 12924, 7203, 15414, 62, 5532, 4943, 611, 366, 15414, 62, 5532, 1, 287, 479, 86, 22046, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8000, 796, 479, 86, 22046, 13, 12924, 7203, 8000, 4943, 611, 366, 8000, 1, 287, 479, 86, 22046, 2073, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3820, 1008, 62, 5239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 7, 944, 13, 3820, 1008, 62, 5239, 8, 628, 220, 220, 220, 220, 220, 220, 220, 981, 407, 2116, 13557, 28060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 2116, 13557, 1136, 62, 15414, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7, 944, 13, 23893, 62, 12381, 320, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 50, 4106, 2105, 2912, 1627, 4064, 82, 1600, 1627, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7413, 356, 1429, 674, 3141, 5128, 11, 766, 611, 356, 761, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15373, 597, 2858, 9633, 326, 743, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 28686, 13, 6978, 13, 11201, 392, 85, 945, 7, 1370, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30751, 796, 2116, 13557, 29572, 62, 1370, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30751, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 796, 2116, 13557, 19796, 62, 21812, 7, 48610, 13, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 25439, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7203, 21575, 407, 1043, 25, 4064, 82, 1600, 30751, 13, 21812, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 9122, 62, 37266, 7, 20786, 11, 30751, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 18224, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 41049, 62, 21812, 7, 20786, 11, 30751, 8, 628, 220, 220, 220, 825, 4808, 9122, 62, 37266, 7, 944, 11, 25439, 11, 30751, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8491, 612, 6751, 16326, 284, 48040, 3141, 10007, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25439, 25, 3141, 2163, 284, 307, 1444, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30751, 25, 44267, 16326, 9267, 262, 7582, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2081, 611, 612, 389, 6751, 10007, 284, 869, 262, 3141, 11, 3991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 30388, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 83, 482, 641, 796, 18896, 7, 48610, 13, 37266, 8, 611, 30751, 13, 37266, 2073, 657, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 35827, 62, 37266, 796, 2116, 13557, 9127, 62, 35827, 62, 37266, 7, 20786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22510, 62, 37266, 796, 2116, 13557, 9127, 62, 37266, 7, 20786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2472, 62, 22510, 62, 37266, 6624, 657, 290, 997, 62, 83, 482, 641, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 21575, 4064, 82, 18178, 645, 10007, 475, 4064, 82, 2810, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 834, 3672, 834, 13, 33491, 7203, 4598, 62, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 83, 482, 641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 997, 62, 83, 482, 641, 1279, 997, 62, 35827, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 705, 21575, 4064, 82, 4433, 4064, 82, 10007, 475, 4064, 82, 2810, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 834, 3672, 834, 13, 33491, 7203, 4598, 62, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 35827, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 83, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 4808, 9127, 62, 35827, 62, 37266, 7, 944, 11, 23991, 62, 24396, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1271, 286, 2672, 10007, 422, 257, 3141, 2446, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 23991, 62, 24396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 1040, 806, 13, 11712, 1300, 63, 329, 2446, 284, 39552, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 2672, 10007, 357, 494, 25, 10007, 1231, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 8, 329, 262, 1813, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25064, 13, 9641, 62, 10951, 1279, 357, 18, 11, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 10104, 13, 1136, 853, 16684, 7, 28758, 62, 24396, 8, 220, 1303, 279, 2645, 600, 25, 15560, 28, 10378, 31023, 12, 24396, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21575, 4064, 82, 42287, 389, 25, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 62, 24396, 13, 834, 3672, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 42287, 13, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 944, 6, 287, 45218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 28956, 10786, 944, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 22065, 8, 532, 357, 11925, 7, 37266, 13, 12286, 82, 8, 611, 42287, 13, 12286, 82, 2073, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 25439, 62, 82, 328, 796, 10104, 13, 12683, 1300, 7, 28758, 62, 24396, 8, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1090, 62, 17143, 287, 25439, 62, 82, 328, 13, 17143, 7307, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 17143, 13, 12286, 318, 10104, 13, 36301, 13, 28920, 25, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 628, 220, 220, 220, 825, 4808, 9127, 62, 37266, 7, 944, 11, 23991, 62, 24396, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 2472, 1271, 286, 10007, 422, 257, 3141, 2446, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 23991, 62, 24396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 1040, 806, 13, 11712, 1300, 63, 329, 2446, 284, 39552, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 10007, 4855, 416, 262, 1813, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 600, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25064, 13, 9641, 62, 10951, 1279, 357, 18, 11, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 10104, 13, 1136, 853, 16684, 7, 28758, 62, 24396, 8, 220, 1303, 279, 2645, 600, 25, 15560, 28, 10378, 31023, 12, 24396, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21575, 4064, 82, 42287, 389, 25, 4064, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 62, 24396, 13, 834, 3672, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 42287, 13, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 944, 6, 287, 45218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 28956, 10786, 944, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 22065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 25439, 62, 82, 328, 796, 10104, 13, 12683, 1300, 7, 28758, 62, 24396, 8, 220, 1303, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 20786, 62, 82, 328, 13, 17143, 7307, 8, 628, 220, 220, 220, 825, 4808, 29572, 62, 1370, 7, 944, 11, 1627, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47, 945, 274, 257, 2060, 1627, 286, 3141, 2420, 290, 5860, 262, 44267, 5072, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 1627, 25, 1627, 286, 3141, 2420, 284, 307, 44267, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 23042, 263, 2134, 12059, 477, 286, 262, 44267, 3141, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 79, 4464, 945, 278, 13, 10044, 325, 25468, 63, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 10786, 47, 945, 278, 3141, 5128, 36521, 82, 26214, 3256, 1627, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 2100, 796, 2116, 13557, 48610, 13, 29572, 10100, 7, 1370, 11, 21136, 3237, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 9788, 13, 10044, 325, 16922, 355, 11454, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 47, 945, 278, 4049, 25, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 59, 83, 4, 82, 3256, 11454, 13, 79, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18224, 10786, 59, 83, 4, 82, 61, 3256, 705, 705, 1635, 357, 8056, 13, 4033, 12, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 10786, 24259, 25, 4064, 82, 3256, 11454, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 10786, 47, 945, 276, 3141, 1627, 318, 36521, 82, 1, 3256, 1005, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 628, 220, 220, 220, 825, 4808, 19796, 62, 21812, 7, 944, 11, 3141, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48452, 284, 17276, 262, 3141, 21360, 329, 257, 1813, 3141, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3141, 62, 3672, 25, 383, 1438, 286, 262, 3141, 284, 1064, 262, 21360, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 20984, 284, 262, 2446, 284, 307, 1444, 284, 12260, 262, 3141, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 6045, 611, 645, 3141, 2446, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1058, 4871, 25, 63, 76, 2788, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 11534, 329, 3141, 2446, 9313, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 1032, 477, 1398, 5050, 11, 1390, 9037, 5050, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 24396, 82, 796, 10104, 13, 1136, 30814, 7, 944, 11, 10104, 13, 1042, 316, 2065, 8, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 24396, 82, 13, 2302, 437, 7, 1040, 806, 13, 1136, 30814, 7, 944, 11, 10104, 13, 4468, 4575, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 611, 356, 460, 1064, 257, 705, 4598, 62, 6, 2446, 329, 674, 3141, 986, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1090, 62, 24396, 287, 477, 62, 24396, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 18709, 278, 4064, 82, 1600, 1090, 62, 24396, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 24396, 58, 15, 60, 6624, 705, 4598, 62, 6, 1343, 3141, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 21812, 2446, 1043, 25, 4064, 82, 1600, 1090, 62, 24396, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1090, 62, 24396, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 645, 3141, 2446, 460, 307, 1043, 329, 262, 7368, 11241, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 2045, 510, 281, 16144, 329, 262, 3141, 355, 880, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 15784, 329, 16144, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1090, 62, 24396, 287, 477, 62, 24396, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1090, 62, 24396, 58, 15, 4083, 9688, 2032, 342, 7203, 26011, 62, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 21077, 16144, 2446, 4064, 82, 1600, 1090, 62, 24396, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1090, 62, 24396, 58, 16, 60, 3419, 6624, 3141, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 28758, 62, 3672, 796, 1090, 62, 24396, 58, 15, 7131, 11925, 7203, 26011, 62, 1, 2599, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 6690, 1834, 278, 284, 1064, 16144, 3141, 4064, 82, 1600, 1796, 62, 28758, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 19796, 62, 21812, 7, 11612, 62, 28758, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7203, 2949, 3141, 1043, 351, 1438, 366, 1343, 3141, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 825, 466, 62, 37023, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44798, 689, 262, 3141, 28846, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 10786, 44798, 803, 28846, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28060, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4091, 611, 674, 7582, 468, 597, 3397, 11, 290, 2700, 606, 284, 11238, 1165, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 8000, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8000, 13, 4598, 62, 37023, 3419, 628, 220, 220, 220, 825, 466, 62, 19836, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44798, 689, 262, 3058, 2491, 7582, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2601, 2752, 7582, 4064, 82, 37633, 82, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16963, 457, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8229, 1630, 736, 284, 262, 2560, 38683, 17537, 393, 262, 8624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26204, 2058, 1306, 287, 262, 7582, 338, 29171, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 28060, 796, 6407, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 1037, 62, 19836, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11627, 1631, 1037, 329, 1969, 2446, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 37227, 1532, 262, 1459, 7582, 318, 257, 850, 12, 29149, 29013, 416, 1194, 37227, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 23331, 306, 17537, 4554, 11, 1630, 481, 1441, 284, 262, 37227, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 8000, 7582, 543, 481, 2555, 2491, 37811, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 7508, 7, 20500, 11, 1635, 22046, 11, 12429, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7279, 26024, 281, 7508, 3275, 284, 262, 4277, 5072, 4269, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 7822, 655, 32254, 5072, 284, 14367, 448, 13, 5765, 257, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 259, 1398, 284, 24184, 428, 4069, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 1058, 4871, 25, 63, 13120, 29149, 13, 35487, 62, 6404, 1362, 62, 19816, 259, 13, 26416, 11187, 1362, 35608, 259, 63, 329, 198, 220, 220, 220, 220, 220, 220, 220, 6096, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3275, 25, 2420, 284, 307, 9066, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20500, 4064, 26498, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 6509, 7, 20500, 11, 1635, 22046, 11, 12429, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7279, 26024, 257, 1729, 12, 34666, 6509, 3275, 284, 262, 4277, 5072, 4269, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 7822, 655, 32254, 5072, 284, 14367, 448, 13, 5765, 257, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 259, 1398, 284, 24184, 428, 4069, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 1058, 4871, 25, 63, 13120, 29149, 13, 35487, 62, 6404, 1362, 62, 19816, 259, 13, 26416, 11187, 1362, 35608, 259, 63, 329, 198, 220, 220, 220, 220, 220, 220, 220, 6096, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3275, 25, 2420, 284, 307, 9066, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20500, 4064, 26498, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4049, 7, 20500, 11, 1635, 22046, 11, 12429, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7279, 26024, 257, 4688, 4049, 3275, 284, 262, 4277, 5072, 4269, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 7822, 655, 32254, 5072, 284, 14367, 448, 13, 5765, 257, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 259, 1398, 284, 24184, 428, 4069, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 1058, 4871, 25, 63, 13120, 29149, 13, 35487, 62, 6404, 1362, 62, 19816, 259, 13, 26416, 11187, 1362, 35608, 259, 63, 329, 198, 220, 220, 220, 220, 220, 220, 220, 6096, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3275, 25, 2420, 284, 307, 9066, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 20500, 4064, 26498, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 14257, 7, 20500, 11, 1635, 22046, 11, 12429, 62, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7279, 26024, 281, 5387, 12, 1904, 12, 8807, 14257, 3275, 284, 15942, 577, 2604, 2393, 628, 220, 220, 220, 220, 220, 220, 220, 15161, 7822, 30768, 477, 14257, 5072, 13, 5765, 257, 18931, 5022, 259, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 284, 24184, 428, 4069, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 1058, 4871, 25, 63, 13120, 29149, 13, 35487, 62, 6404, 1362, 62, 19816, 259, 13, 26416, 11187, 1362, 35608, 259, 63, 329, 198, 220, 220, 220, 220, 220, 220, 220, 6096, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3275, 25, 2420, 284, 307, 9066, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1208, 198 ]
2.364155
7,365
#!/usr/bin/env python # -*- coding: utf-8 -*- #----------------------------------------------------------------------------- # Copyright (c) 2015, IBM Corp. # All rights reserved. # # Distributed under the terms of the BSD Simplified License. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- """ Test module for IdaGeoSeries """ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from future import standard_library standard_library.install_aliases() import pandas import pytest import six from ibmdbpy import IdaSeries from ibmdbpy import IdaGeoSeries from ibmdbpy.exceptions import IdaGeoDataFrameError
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 10097, 32501, 198, 2, 15069, 357, 66, 8, 1853, 11, 19764, 11421, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 347, 10305, 45157, 1431, 13789, 13, 198, 2, 198, 2, 383, 1336, 5964, 318, 287, 262, 38559, 24290, 2393, 11, 9387, 351, 428, 3788, 13, 198, 2, 10097, 32501, 198, 198, 37811, 198, 14402, 8265, 329, 5121, 64, 10082, 78, 27996, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 2003, 1330, 3210, 62, 32016, 198, 20307, 62, 32016, 13, 17350, 62, 7344, 1386, 3419, 198, 198, 11748, 19798, 292, 198, 11748, 12972, 9288, 198, 11748, 2237, 198, 198, 6738, 24283, 9132, 65, 9078, 1330, 5121, 64, 27996, 198, 6738, 24283, 9132, 65, 9078, 1330, 5121, 64, 10082, 78, 27996, 198, 6738, 24283, 9132, 65, 9078, 13, 1069, 11755, 1330, 5121, 64, 10082, 78, 6601, 19778, 12331, 628, 198, 220, 220, 220, 220 ]
3.9375
208
import os import wandb import pytorch_lightning as pl import argparse from thanos.trainers.lit_detector import LitGestureTransformer from thanos.trainers import load_config if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("config", type=str, help="Path to config py file") args = parser.parse_args() config = load_config(args.config) lit_model = LitGestureTransformer(config) trainer = pl.Trainer(**config.trainer_config()) trainer.fit(lit_model, config.train_dataloader(), config.val_dataloader()) # save the config file to wandb cloud wandb.save(config.config_path)
[ 11748, 28686, 198, 11748, 11569, 65, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 11748, 1822, 29572, 198, 198, 6738, 621, 418, 13, 27432, 364, 13, 18250, 62, 15255, 9250, 1330, 25659, 38, 395, 495, 8291, 16354, 198, 6738, 621, 418, 13, 27432, 364, 1330, 3440, 62, 11250, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 11250, 1600, 2099, 28, 2536, 11, 1037, 2625, 15235, 284, 4566, 12972, 2393, 4943, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 4566, 796, 3440, 62, 11250, 7, 22046, 13, 11250, 8, 198, 220, 220, 220, 6578, 62, 19849, 796, 25659, 38, 395, 495, 8291, 16354, 7, 11250, 8, 198, 220, 220, 220, 21997, 796, 458, 13, 2898, 10613, 7, 1174, 11250, 13, 2213, 10613, 62, 11250, 28955, 198, 220, 220, 220, 21997, 13, 11147, 7, 18250, 62, 19849, 11, 4566, 13, 27432, 62, 67, 10254, 1170, 263, 22784, 4566, 13, 2100, 62, 67, 10254, 1170, 263, 28955, 198, 220, 220, 220, 1303, 3613, 262, 4566, 2393, 284, 11569, 65, 6279, 198, 220, 220, 220, 11569, 65, 13, 21928, 7, 11250, 13, 11250, 62, 6978, 8 ]
2.895928
221
# Rotate String if __name__ == "__main__": sol = Solution() s = "abcde" goal = "cdeab" s = "abcde" goal = "abced" s = "bbbacddceeb" goal = "ceebbbbacdd" print(sol.rotateString(s, goal))
[ 2, 18481, 378, 10903, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1540, 796, 28186, 3419, 198, 220, 220, 220, 264, 796, 366, 39305, 2934, 1, 198, 220, 220, 220, 3061, 796, 366, 66, 2934, 397, 1, 198, 220, 220, 220, 264, 796, 366, 39305, 2934, 1, 198, 220, 220, 220, 3061, 796, 366, 397, 771, 1, 198, 220, 220, 220, 264, 796, 366, 11848, 65, 330, 1860, 344, 1765, 1, 198, 220, 220, 220, 3061, 796, 366, 344, 1765, 11848, 65, 330, 1860, 1, 198, 220, 220, 220, 3601, 7, 34453, 13, 10599, 378, 10100, 7, 82, 11, 3061, 4008, 198 ]
1.990909
110
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
[ 2, 15069, 12131, 43208, 21852, 1766, 1539, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2000, 2777, 382, 13, 22866, 355, 4732, 198, 11748, 2000, 2777, 382, 13, 20471, 355, 299, 77, 198, 6738, 2000, 2777, 382, 1330, 309, 22854, 198, 6738, 2000, 2777, 382, 13, 11321, 1330, 288, 4906, 355, 285, 301, 2981, 198, 6738, 2000, 2777, 382, 13, 2840, 1330, 4560, 355, 350, 198, 198, 22866, 13, 2617, 62, 22866, 7, 14171, 28, 22866, 13, 10761, 31300, 62, 49058, 11, 3335, 62, 16793, 11639, 36037, 11537, 628, 198 ]
3.961864
236
"""bugfix: correct active to is_active Revision ID: cb98a72750ab Revises: 7685fd00e696 Create Date: 2021-12-03 12:16:09.979253 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cb98a72750ab' down_revision = '7685fd00e696' branch_labels = None depends_on = None
[ 37811, 25456, 13049, 25, 3376, 4075, 284, 318, 62, 5275, 198, 198, 18009, 1166, 4522, 25, 269, 65, 4089, 64, 47760, 1120, 397, 198, 18009, 2696, 25, 767, 35978, 16344, 405, 68, 38205, 198, 16447, 7536, 25, 33448, 12, 1065, 12, 3070, 1105, 25, 1433, 25, 2931, 13, 24, 3720, 28592, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 21101, 4089, 64, 47760, 1120, 397, 6, 198, 2902, 62, 260, 10178, 796, 705, 30610, 20, 16344, 405, 68, 38205, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.609756
123
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import codecs from unidecode import unidecode from itertools import product SUBSTITUTIONS = { u'a': u'áảàãạâấẩẫầậăắẳẵằặ', u'á': u'aảàãạâấẩẫầậăắẳẵằặ', u'ả': u'aáàãạâấẩẫầậăắẳẵằặ', u'à': u'aáảãạâấẩẫầậăắẳẵằặ', u'ã': u'aáảàạâấẩẫầậăắẳẵằặ', u'ạ': u'aáảàãâấẩẫầậăắẳẵằặ', u'â': u'aáảàãạấẩẫầậăắẳẵằặ', u'ấ': u'aáảàãạâẩẫầậăắẳẵằặ', u'ẩ': u'aáảàãạâấẫầậăắẳẵằặ', u'ẫ': u'aáảàãạâấẩầậăắẳẵằặ', u'ầ': u'aáảàãạâấẩẫậăắẳẵằặ', u'ậ': u'aáảàãạâấẩẫầăắẳẵằặ', u'ă': u'aáảàãạâấẩẫầậắẳẵằặ', u'ắ': u'aáảàãạâấẩẫầậăẳẵằặ', u'ẳ': u'aáảàãạâấẩẫầậăắẵằặ', u'ẵ': u'aáảàãạâấẩẫầậăắẳằặ', u'ằ': u'aáảàãạâấẩẫầậăắẳẵặ', u'ặ': u'aáảàãạâấẩẫầậăắẳẵằ', u'd': u'đ', u'đ': u'd', u'e': u'ẹẻèéẽêệểềếễ', u'ẹ': u'eẻèéẽêệểềếễ', u'ẻ': u'eẹèéẽêệểềếễ', u'è': u'eẹẻéẽêệểềếễ', u'é': u'eẹẻèẽêệểềếễ', u'ẽ': u'eẹẻèéêệểềếễ', u'ê': u'eẹẻèéẽệểềếễ', u'ệ': u'eẹẻèéẽêểềếễ', u'ể': u'eẹẻèéẽêệềếễ', u'ề': u'eẹẻèéẽêệểếễ', u'ế': u'eẹẻèéẽêệểềễ', u'ễ': u'eẹẻèéẽêệểềế', u'i': u'ịỉìíĩ', u'ị': u'iỉìíĩ', u'ỉ': u'iịìíĩ', u'ì': u'iịỉíĩ', u'í': u'iịỉìĩ', u'ĩ': u'iịỉìí', u'o': u'ọỏòóõơợởờớỡôổốồỗộ', u'ọ': u'oỏòóõơợởờớỡôổốồỗộ', u'ỏ': u'oọòóõơợởờớỡôổốồỗộ', u'ò': u'oọỏóõơợởờớỡôổốồỗộ', u'ó': u'oọỏòõơợởờớỡôổốồỗộ', u'õ': u'oọỏòóơợởờớỡôổốồỗộ', u'ơ': u'oọỏòóõợởờớỡôổốồỗộ', u'ợ': u'oọỏòóõơợờớỡôổốồỗộ', u'ở': u'oọỏòóõơợờớỡôổốồỗộ', u'ờ': u'oọỏòóõơợởớỡôổốồỗộ', u'ớ': u'oọỏòóõơợởờỡôổốồỗộ', u'ỡ': u'oọỏòóõơợởờớôổốồỗộ', u'ô': u'oọỏòóõơợởờớỡổốồỗộ', u'ổ': u'oọỏòóõơợởờớỡôốồỗộ', u'ố': u'oọỏòóõơợởờớỡôổồỗộ', u'ồ': u'oọỏòóõơợởờớỡôổốỗộ', u'ỗ': u'oọỏòóõơợởờớỡôổốồộ', u'ộ': u'oọỏòóõơợởờớỡôổốồỗ', u'u': u'ụủùúũưựửừứữ', u'ụ': u'uủùúũưựửừứữ', u'ủ': u'uụùúũưựửừứữ', u'ù': u'uụủúũưựửừứữ', u'ú': u'uụủùũưựửừứữ', u'ũ': u'uụủùúưựửừứữ', u'ư': u'uụủùúũựửừứữ', u'ự': u'uụủùúũưửừứữ', u'ử': u'uụủùúũưựừứữ', u'ừ': u'uụủùúũưựửứữ', u'ứ': u'uụủùúũưựửừữ', u'ữ': u'uụủùúũưựửừứ', u'y': u'ỵỷỳýỹ', u'ỵ': u'yỷỳýỹ', u'ỷ': u'yỵỳýỹ', u'ỳ': u'yỵỷýỹ', u'ý': u'yỵỷỳỹ', u'ỹ': u'yỵỷỳý' } VN_LOWERCASE = u'aạảàáã' \ u'âậẩầấẫ' \ u'ăặẳằắẵ' \ u'bcdđ' \ u'eẹẻèéẽ' \ u'êệểềếễ' \ u'fgh' \ u'iịỉìíĩ' \ u'jklmn' \ u'oọỏòóõ' \ u'ôộổồốỗ' \ u'ơợởờớỡ' \ u'pqrst' \ u'uụủùúũ' \ u'ưựửừứữ' \ u'vwx' \ u'yỵỷỳýỹ' \ u'z' VN_UPPERCASE = u'AẠẢÀÁÃ' \ u'ÂẬẨẦẤẪ' \ u'ĂẶẮẰẮẴ' \ u'BCDĐ' \ u'EẸẺÈÉẼ' \ u'ÊỆỂỀẾỄ' \ u'FGH' \ u'IỊỈÌÍĨ' \ u'JKLMN' \ u'OỌỎÒÓÕ' \ u'ÔỘỔỒỐỖ' \ u'ƠỢỞỜỚỠ' \ u'PQRST' \ u'UỤỦÙÚŨ' \ u'ƯỰỬỪỨỮ' \ u'VWX' \ u'YỴỶỲÝỸ' \ u'Z' VN_COMBINE_ACCENT_REPLACE = { u'à': u'à', u'á': u'á', u'ã': u'ã', u'ả': u'ả', u'ạ': u'ạ', u'è': u'è', u'é': u'é', u'ẽ': u'ẽ', u'ẻ': u'ẻ', u'ẹ': u'ẹ', u'ì': u'ì', u'í': u'í', u'ĩ': u'ĩ', u'ỉ': u'ỉ', u'ị': u'ị', u'ò': u'ò', u'ó': u'ó', u'õ': u'õ', u'ỏ': u'ỏ', u'ọ': u'ọ', u'ờ': u'ờ', u'ớ': u'ớ', u'ỡ': u'ỡ', u'ở': u'ở', u'ợ': u'ợ', u'ù': u'ù', u'ú': u'ú', u'ũ': u'ũ', u'ủ': u'ủ', u'ụ': u'ụ', u'ỳ': u'ỳ', u'ý': u'ý', u'ỹ': u'ỹ', u'ỷ': u'ỷ', u'ỵ': u'ỵ', u'â': u'â', u'ầ': u'ầ', u'ấ': u'ấ', u'ẫ': u'ẫ', u'ẩ': u'ẩ', u'ậ': u'ậ', u'ằ': u'ằ', u'ắ': u'ắ', u'ẵ': u'ẵ', u'ẳ': u'ẳ', u'ặ': u'ặ', u'ừ': u'ừ', u'ứ': u'ứ', u'ữ': u'ữ', u'ử': u'ử', u'ự': u'ự', u'ê': u'ê', u'ề': u'ề', u'ế': u'ế', u'ễ': u'ễ', u'ể': u'ể', u'ệ': u'ệ', u'ô': u'ô', u'ồ': u'ồ', u'ố': u'ố', u'ỗ': u'ỗ', u'ổ': u'ổ', u'ộ': u'ộ' } VN_CHARACTERS = VN_LOWERCASE + VN_UPPERCASE DIGIT = u'0123456789' SPEC_CHARACTERS = u'`~!@$%^&*()_=\|]}[{"\';:/?.>,<“”‘’…' ADDITIONAL_CHARACTERS = u'`~!@#$%^&*()-_=+\|]}[{"\';:/?.>,<“”‘’…' _DIGIT = set([x for x in DIGIT]) _ADDITIONAL_CHARACTERS = set([x for x in ADDITIONAL_CHARACTERS]) _VN_LOWERCASE = set([x for x in VN_LOWERCASE]) def vn_islowercase(char): """Check is lowercase for a vn character :param char: a unicode character :return: """ if char in _DIGIT or char in _ADDITIONAL_CHARACTERS: return True return char in VN_LOWERCASE def vn_isuppercase(char): """Check is uppercase for a vn character :param char: a unicode character :return: """ if char in DIGIT or char in ADDITIONAL_CHARACTERS: return True return char in VN_UPPERCASE def vn_tolowercase(s): """To lower case a vn string :param s: a unicode vn string :return: """ ls = list(s) for c in range(0, len(ls)): if ls[c] in _DIGIT or ls[c] in _ADDITIONAL_CHARACTERS: continue if vn_isuppercase(ls[c]): ic = VN_UPPERCASE.index(ls[c]) ls[c] = VN_LOWERCASE[ic] return u''.join(ls) def vn_touppercase(s): """To upper case a vn string :param s: a unicode vn string :return: """ ls = list(s) for c in range(0, len(ls)): if ls[c] in _DIGIT or ls[c] in _ADDITIONAL_CHARACTERS: continue if vn_isuppercase(ls[c]): ic = VN_LOWERCASE.index(ls[c]) ls[c] = VN_UPPERCASE[ic] return u''.join(ls) def vn_combine_accent_replace(s): """ convert ascii+combine_accent -> unicode_char :param s: :return: """ ss = set([x for x in s]) for k, v in VN_COMBINE_ACCENT_REPLACE.items(): if k in ss: s = s.replace(k, v) return s def load_vocab(vocab_path): """ Loading a vocabulary file :param vocab_path: Path to vocabulary file :return: Array contains words """ with codecs.open(vocab_path, encoding="utf-8") as fobj: vocab = fobj.readlines() return vocab
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 40481, 82, 198, 6738, 555, 485, 8189, 1330, 555, 485, 8189, 198, 6738, 340, 861, 10141, 1330, 1720, 628, 198, 50, 10526, 2257, 2043, 3843, 11053, 796, 1391, 198, 220, 220, 220, 334, 6, 64, 10354, 334, 6, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 6557, 10354, 334, 6, 64, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 96, 10354, 334, 6, 64, 6557, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 24247, 10354, 334, 6, 64, 6557, 157, 118, 96, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 26102, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 94, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 22940, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 98, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 102, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 104, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 100, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 255, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 107, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 111, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 111, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 113, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 113, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 109, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 109, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 115, 10354, 334, 6, 64, 6557, 157, 118, 96, 24247, 26102, 157, 118, 94, 22940, 157, 118, 98, 157, 118, 102, 157, 118, 104, 157, 118, 100, 157, 118, 255, 128, 225, 157, 118, 107, 157, 118, 111, 157, 118, 113, 157, 118, 109, 3256, 198, 220, 220, 220, 334, 1549, 10354, 334, 6, 128, 239, 3256, 198, 220, 220, 220, 334, 6, 128, 239, 10354, 334, 1549, 3256, 198, 220, 220, 220, 334, 6, 68, 10354, 334, 6, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 117, 10354, 334, 6, 68, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 119, 10354, 334, 6, 68, 157, 118, 117, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 14064, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 2634, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 121, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 25792, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 229, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 225, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 223, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 223, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 118, 123, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 118, 123, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 227, 10354, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 3256, 198, 220, 220, 220, 334, 6, 72, 10354, 334, 6, 157, 119, 233, 157, 119, 231, 127, 105, 8836, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 233, 10354, 334, 6, 72, 157, 119, 231, 127, 105, 8836, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 231, 10354, 334, 6, 72, 157, 119, 233, 127, 105, 8836, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 127, 105, 10354, 334, 6, 72, 157, 119, 233, 157, 119, 231, 8836, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 8836, 10354, 334, 6, 72, 157, 119, 233, 157, 119, 231, 127, 105, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 128, 102, 10354, 334, 6, 72, 157, 119, 233, 157, 119, 231, 127, 105, 8836, 3256, 198, 220, 220, 220, 334, 6, 78, 10354, 334, 6, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 235, 10354, 334, 6, 78, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 237, 10354, 334, 6, 78, 157, 119, 235, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 127, 110, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 10205, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 127, 113, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 96, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 253, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 251, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 249, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 94, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 27083, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 243, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 239, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 239, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 241, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 241, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 245, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 245, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 247, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 247, 10354, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 27083, 157, 119, 243, 157, 119, 239, 157, 119, 241, 157, 119, 245, 3256, 198, 220, 220, 220, 334, 6, 84, 10354, 334, 6, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 98, 10354, 334, 6, 84, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 100, 10354, 334, 6, 84, 157, 119, 98, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 127, 117, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 21356, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 129, 102, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 109, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 255, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 104, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 104, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 102, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 102, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 107, 10354, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 3256, 198, 220, 220, 220, 334, 6, 88, 10354, 334, 6, 157, 119, 113, 157, 119, 115, 157, 119, 111, 127, 121, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 113, 10354, 334, 6, 88, 157, 119, 115, 157, 119, 111, 127, 121, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 115, 10354, 334, 6, 88, 157, 119, 113, 157, 119, 111, 127, 121, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 111, 10354, 334, 6, 88, 157, 119, 113, 157, 119, 115, 127, 121, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 127, 121, 10354, 334, 6, 88, 157, 119, 113, 157, 119, 115, 157, 119, 111, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 157, 119, 117, 10354, 334, 6, 88, 157, 119, 113, 157, 119, 115, 157, 119, 111, 127, 121, 6, 198, 92, 198, 198, 53, 45, 62, 43, 36048, 34, 11159, 796, 334, 6, 64, 157, 118, 94, 157, 118, 96, 24247, 6557, 26102, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 22940, 157, 118, 255, 157, 118, 102, 157, 118, 100, 157, 118, 98, 157, 118, 104, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 128, 225, 157, 118, 115, 157, 118, 111, 157, 118, 109, 157, 118, 107, 157, 118, 113, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 65, 10210, 128, 239, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 68, 157, 118, 117, 157, 118, 119, 14064, 2634, 157, 118, 121, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 25792, 157, 119, 229, 157, 119, 225, 157, 119, 223, 157, 118, 123, 157, 119, 227, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 69, 456, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 72, 157, 119, 233, 157, 119, 231, 127, 105, 8836, 128, 102, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 73, 41582, 10295, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 78, 157, 119, 235, 157, 119, 237, 127, 110, 10205, 127, 113, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 27083, 157, 119, 247, 157, 119, 243, 157, 119, 241, 157, 119, 239, 157, 119, 245, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 130, 94, 157, 119, 96, 157, 119, 253, 157, 119, 251, 157, 119, 249, 157, 119, 94, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 79, 80, 81, 301, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 84, 157, 119, 98, 157, 119, 100, 127, 117, 21356, 129, 102, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 130, 108, 157, 119, 109, 157, 119, 255, 157, 119, 104, 157, 119, 102, 157, 119, 107, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 85, 49345, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 88, 157, 119, 113, 157, 119, 115, 157, 119, 111, 127, 121, 157, 119, 117, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 89, 6, 198, 198, 53, 45, 62, 8577, 18973, 34, 11159, 796, 334, 6, 32, 157, 118, 254, 157, 118, 95, 127, 222, 127, 223, 5746, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 5523, 157, 118, 105, 157, 118, 101, 157, 118, 99, 157, 118, 97, 157, 118, 103, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 128, 224, 157, 118, 114, 157, 118, 106, 157, 118, 108, 157, 118, 106, 157, 118, 112, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 2749, 35, 128, 238, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 36, 157, 118, 116, 157, 118, 118, 127, 230, 38351, 157, 118, 120, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 127, 232, 157, 119, 228, 157, 119, 224, 157, 119, 222, 157, 118, 122, 157, 119, 226, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 37, 17511, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 40, 157, 119, 232, 157, 119, 230, 127, 234, 38638, 128, 101, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 41, 42, 31288, 45, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 46, 157, 119, 234, 157, 119, 236, 127, 240, 127, 241, 127, 243, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 127, 242, 157, 119, 246, 157, 119, 242, 157, 36596, 157, 119, 238, 157, 119, 244, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 130, 254, 157, 119, 95, 157, 119, 252, 157, 119, 250, 157, 119, 248, 157, 119, 254, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 47, 48, 49, 2257, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 52, 157, 119, 97, 157, 119, 99, 127, 247, 127, 248, 129, 101, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 130, 107, 157, 119, 108, 157, 119, 105, 157, 119, 103, 157, 119, 101, 157, 119, 106, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 30133, 55, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 56, 157, 119, 112, 157, 119, 114, 157, 119, 110, 127, 251, 157, 119, 116, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 57, 6, 198, 198, 53, 45, 62, 9858, 33, 8881, 62, 26861, 3525, 62, 2200, 6489, 11598, 796, 1391, 198, 220, 220, 220, 334, 6, 64, 136, 222, 10354, 334, 6, 24247, 3256, 198, 220, 220, 220, 334, 6, 64, 136, 223, 10354, 334, 6, 6557, 3256, 198, 220, 220, 220, 334, 6, 64, 136, 225, 10354, 334, 6, 26102, 3256, 198, 220, 220, 220, 334, 6, 64, 136, 231, 10354, 334, 6, 157, 118, 96, 3256, 198, 220, 220, 220, 334, 6, 64, 136, 96, 10354, 334, 6, 157, 118, 94, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 222, 10354, 334, 6, 14064, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 223, 10354, 334, 6, 2634, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 225, 10354, 334, 6, 157, 118, 121, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 231, 10354, 334, 6, 157, 118, 119, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 96, 10354, 334, 6, 157, 118, 117, 3256, 198, 220, 220, 220, 334, 6, 72, 136, 222, 10354, 334, 6, 127, 105, 3256, 198, 220, 220, 220, 334, 6, 72, 136, 223, 10354, 334, 6, 8836, 3256, 198, 220, 220, 220, 334, 6, 72, 136, 225, 10354, 334, 6, 128, 102, 3256, 198, 220, 220, 220, 334, 6, 72, 136, 231, 10354, 334, 6, 157, 119, 231, 3256, 198, 220, 220, 220, 334, 6, 72, 136, 96, 10354, 334, 6, 157, 119, 233, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 222, 10354, 334, 6, 127, 110, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 223, 10354, 334, 6, 10205, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 225, 10354, 334, 6, 127, 113, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 231, 10354, 334, 6, 157, 119, 237, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 96, 10354, 334, 6, 157, 119, 235, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 136, 222, 10354, 334, 6, 157, 119, 251, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 136, 223, 10354, 334, 6, 157, 119, 249, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 136, 225, 10354, 334, 6, 157, 119, 94, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 136, 231, 10354, 334, 6, 157, 119, 253, 3256, 198, 220, 220, 220, 334, 6, 130, 94, 136, 96, 10354, 334, 6, 157, 119, 96, 3256, 198, 220, 220, 220, 334, 6, 84, 136, 222, 10354, 334, 6, 127, 117, 3256, 198, 220, 220, 220, 334, 6, 84, 136, 223, 10354, 334, 6, 21356, 3256, 198, 220, 220, 220, 334, 6, 84, 136, 225, 10354, 334, 6, 129, 102, 3256, 198, 220, 220, 220, 334, 6, 84, 136, 231, 10354, 334, 6, 157, 119, 100, 3256, 198, 220, 220, 220, 334, 6, 84, 136, 96, 10354, 334, 6, 157, 119, 98, 3256, 198, 220, 220, 220, 334, 6, 88, 136, 222, 10354, 334, 6, 157, 119, 111, 3256, 198, 220, 220, 220, 334, 6, 88, 136, 223, 10354, 334, 6, 127, 121, 3256, 198, 220, 220, 220, 334, 6, 88, 136, 225, 10354, 334, 6, 157, 119, 117, 3256, 198, 220, 220, 220, 334, 6, 88, 136, 231, 10354, 334, 6, 157, 119, 115, 3256, 198, 220, 220, 220, 334, 6, 88, 136, 96, 10354, 334, 6, 157, 119, 113, 3256, 198, 220, 220, 220, 334, 6, 64, 136, 224, 10354, 334, 6, 22940, 3256, 198, 220, 220, 220, 334, 6, 22940, 136, 222, 10354, 334, 6, 157, 118, 100, 3256, 198, 220, 220, 220, 334, 6, 22940, 136, 223, 10354, 334, 6, 157, 118, 98, 3256, 198, 220, 220, 220, 334, 6, 22940, 136, 225, 10354, 334, 6, 157, 118, 104, 3256, 198, 220, 220, 220, 334, 6, 22940, 136, 231, 10354, 334, 6, 157, 118, 102, 3256, 198, 220, 220, 220, 334, 6, 22940, 136, 96, 10354, 334, 6, 157, 118, 255, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 136, 222, 10354, 334, 6, 157, 118, 109, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 136, 223, 10354, 334, 6, 157, 118, 107, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 136, 225, 10354, 334, 6, 157, 118, 113, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 136, 231, 10354, 334, 6, 157, 118, 111, 3256, 198, 220, 220, 220, 334, 6, 128, 225, 136, 96, 10354, 334, 6, 157, 118, 115, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 136, 222, 10354, 334, 6, 157, 119, 104, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 136, 223, 10354, 334, 6, 157, 119, 102, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 136, 225, 10354, 334, 6, 157, 119, 107, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 136, 231, 10354, 334, 6, 157, 119, 255, 3256, 198, 220, 220, 220, 334, 6, 130, 108, 136, 96, 10354, 334, 6, 157, 119, 109, 3256, 198, 220, 220, 220, 334, 6, 68, 136, 224, 10354, 334, 6, 25792, 3256, 198, 220, 220, 220, 334, 6, 25792, 136, 222, 10354, 334, 6, 157, 119, 223, 3256, 198, 220, 220, 220, 334, 6, 25792, 136, 223, 10354, 334, 6, 157, 118, 123, 3256, 198, 220, 220, 220, 334, 6, 25792, 136, 225, 10354, 334, 6, 157, 119, 227, 3256, 198, 220, 220, 220, 334, 6, 25792, 136, 231, 10354, 334, 6, 157, 119, 225, 3256, 198, 220, 220, 220, 334, 6, 25792, 136, 96, 10354, 334, 6, 157, 119, 229, 3256, 198, 220, 220, 220, 334, 6, 78, 136, 224, 10354, 334, 6, 27083, 3256, 198, 220, 220, 220, 334, 6, 27083, 136, 222, 10354, 334, 6, 157, 119, 241, 3256, 198, 220, 220, 220, 334, 6, 27083, 136, 223, 10354, 334, 6, 157, 119, 239, 3256, 198, 220, 220, 220, 334, 6, 27083, 136, 225, 10354, 334, 6, 157, 119, 245, 3256, 198, 220, 220, 220, 334, 6, 27083, 136, 231, 10354, 334, 6, 157, 119, 243, 3256, 198, 220, 220, 220, 334, 6, 27083, 136, 96, 10354, 334, 6, 157, 119, 247, 6, 198, 92, 198, 198, 53, 45, 62, 38019, 10659, 4877, 796, 569, 45, 62, 43, 36048, 34, 11159, 1343, 569, 45, 62, 8577, 18973, 34, 11159, 198, 35, 3528, 2043, 796, 334, 6, 486, 1954, 2231, 3134, 4531, 6, 198, 48451, 62, 38019, 10659, 4877, 796, 334, 6, 63, 93, 0, 31, 3, 4, 61, 5, 9, 3419, 62, 28, 59, 91, 48999, 58, 4895, 59, 17020, 14079, 30, 13, 22330, 27, 447, 250, 447, 251, 447, 246, 447, 247, 1399, 6, 198, 29266, 17941, 1847, 62, 38019, 10659, 4877, 796, 334, 6, 63, 93, 0, 31, 29953, 4, 61, 5, 9, 3419, 12, 62, 28, 10, 59, 91, 48999, 58, 4895, 59, 17020, 14079, 30, 13, 22330, 27, 447, 250, 447, 251, 447, 246, 447, 247, 1399, 6, 198, 198, 62, 35, 3528, 2043, 796, 900, 26933, 87, 329, 2124, 287, 360, 3528, 2043, 12962, 198, 62, 29266, 17941, 1847, 62, 38019, 10659, 4877, 796, 900, 26933, 87, 329, 2124, 287, 27841, 17941, 1847, 62, 38019, 10659, 4877, 12962, 198, 62, 53, 45, 62, 43, 36048, 34, 11159, 796, 900, 26933, 87, 329, 2124, 287, 569, 45, 62, 43, 36048, 34, 11159, 12962, 628, 198, 4299, 410, 77, 62, 3044, 789, 7442, 7, 10641, 2599, 198, 220, 220, 220, 37227, 9787, 318, 2793, 7442, 329, 257, 410, 77, 2095, 628, 220, 220, 220, 1058, 17143, 1149, 25, 257, 28000, 1098, 2095, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1149, 287, 4808, 35, 3528, 2043, 393, 1149, 287, 4808, 29266, 17941, 1847, 62, 38019, 10659, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1441, 1149, 287, 569, 45, 62, 43, 36048, 34, 11159, 628, 198, 4299, 410, 77, 62, 271, 7211, 2798, 589, 7, 10641, 2599, 198, 220, 220, 220, 37227, 9787, 318, 334, 39921, 589, 329, 257, 410, 77, 2095, 628, 220, 220, 220, 1058, 17143, 1149, 25, 257, 28000, 1098, 2095, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1149, 287, 360, 3528, 2043, 393, 1149, 287, 27841, 17941, 1847, 62, 38019, 10659, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1441, 1149, 287, 569, 45, 62, 8577, 18973, 34, 11159, 628, 198, 4299, 410, 77, 62, 83, 349, 789, 7442, 7, 82, 2599, 198, 220, 220, 220, 37227, 2514, 2793, 1339, 257, 410, 77, 4731, 628, 220, 220, 220, 1058, 17143, 264, 25, 257, 28000, 1098, 410, 77, 4731, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43979, 796, 1351, 7, 82, 8, 198, 220, 220, 220, 329, 269, 287, 2837, 7, 15, 11, 18896, 7, 7278, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 43979, 58, 66, 60, 287, 4808, 35, 3528, 2043, 393, 43979, 58, 66, 60, 287, 4808, 29266, 17941, 1847, 62, 38019, 10659, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 410, 77, 62, 271, 7211, 2798, 589, 7, 7278, 58, 66, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 796, 569, 45, 62, 8577, 18973, 34, 11159, 13, 9630, 7, 7278, 58, 66, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43979, 58, 66, 60, 796, 569, 45, 62, 43, 36048, 34, 11159, 58, 291, 60, 628, 220, 220, 220, 1441, 334, 35384, 22179, 7, 7278, 8, 628, 198, 4299, 410, 77, 62, 83, 280, 39921, 589, 7, 82, 2599, 198, 220, 220, 220, 37227, 2514, 6727, 1339, 257, 410, 77, 4731, 628, 220, 220, 220, 1058, 17143, 264, 25, 257, 28000, 1098, 410, 77, 4731, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43979, 796, 1351, 7, 82, 8, 198, 220, 220, 220, 329, 269, 287, 2837, 7, 15, 11, 18896, 7, 7278, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 43979, 58, 66, 60, 287, 4808, 35, 3528, 2043, 393, 43979, 58, 66, 60, 287, 4808, 29266, 17941, 1847, 62, 38019, 10659, 4877, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 410, 77, 62, 271, 7211, 2798, 589, 7, 7278, 58, 66, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14158, 796, 569, 45, 62, 43, 36048, 34, 11159, 13, 9630, 7, 7278, 58, 66, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43979, 58, 66, 60, 796, 569, 45, 62, 8577, 18973, 34, 11159, 58, 291, 60, 628, 220, 220, 220, 1441, 334, 35384, 22179, 7, 7278, 8, 628, 198, 4299, 410, 77, 62, 24011, 500, 62, 330, 1087, 62, 33491, 7, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10385, 355, 979, 72, 10, 24011, 500, 62, 330, 1087, 4613, 28000, 1098, 62, 10641, 198, 220, 220, 220, 1058, 17143, 264, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37786, 796, 900, 26933, 87, 329, 2124, 287, 264, 12962, 198, 220, 220, 220, 329, 479, 11, 410, 287, 569, 45, 62, 9858, 33, 8881, 62, 26861, 3525, 62, 2200, 6489, 11598, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 287, 37786, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 796, 264, 13, 33491, 7, 74, 11, 410, 8, 198, 220, 220, 220, 1441, 264, 628, 198, 4299, 3440, 62, 18893, 397, 7, 18893, 397, 62, 6978, 2599, 198, 220, 220, 220, 37227, 12320, 257, 25818, 2393, 628, 220, 220, 220, 1058, 17143, 12776, 397, 62, 6978, 25, 10644, 284, 25818, 2393, 198, 220, 220, 220, 1058, 7783, 25, 15690, 4909, 2456, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 40481, 82, 13, 9654, 7, 18893, 397, 62, 6978, 11, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 26801, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 796, 277, 26801, 13, 961, 6615, 3419, 198, 220, 220, 220, 1441, 12776, 397, 628, 628, 198 ]
1.016159
6,374
"""Dataloaders for MNIST, FashionMNIST, CIFAR10""" from typing import Tuple import torchvision from torch.utils.data import DataLoader from opacus.utils.uniform_sampler import UniformWithReplacementSampler
[ 37811, 35, 10254, 1170, 364, 329, 29060, 8808, 11, 30958, 39764, 8808, 11, 327, 5064, 1503, 940, 37811, 198, 198, 6738, 19720, 1330, 309, 29291, 198, 11748, 28034, 10178, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 1034, 48628, 13, 26791, 13, 403, 6933, 62, 37687, 20053, 1330, 35712, 3152, 39232, 5592, 16305, 20053, 628, 628, 198 ]
3.459016
61
import logging from django.db import models from django.template.defaultfilters import floatformat from django.urls import reverse from django.utils import timezone from django.contrib.auth.models import User from django.contrib.postgres.fields import JSONField from django_rq import get_connection, job from iso639 import languages from rq.job import Job, NoSuchJobError from lemmatization.lemmatizer import Lemmatizer @job("default", timeout=600) # this is for representing the lemmatized text
[ 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 5530, 3390, 265, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 1330, 19449, 15878, 198, 198, 6738, 42625, 14208, 62, 81, 80, 1330, 651, 62, 38659, 11, 1693, 198, 6738, 47279, 21, 2670, 1330, 8950, 198, 6738, 374, 80, 13, 21858, 1330, 15768, 11, 1400, 16678, 33308, 12331, 198, 198, 6738, 443, 3020, 265, 1634, 13, 293, 3020, 265, 7509, 1330, 20607, 6759, 7509, 628, 198, 198, 31, 21858, 7203, 12286, 1600, 26827, 28, 8054, 8, 628, 198, 2, 428, 318, 329, 10200, 262, 443, 3020, 265, 1143, 2420, 628 ]
3.418919
148
#! /usr/bin/env python """ the html test reporter """ import sys, os, re import pprint import py from pypy.tool.pytest import result from pypy.tool.pytest.overview import ResultCache # # various interesting path objects # html = py.xml.html NBSP = py.xml.raw("&nbsp;") # # rendering # # generate html files # mydir = py.path.local(__file__).dirpath()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 1169, 27711, 1332, 9095, 220, 198, 198, 37811, 198, 11748, 25064, 11, 28686, 11, 302, 198, 11748, 279, 4798, 198, 11748, 12972, 220, 198, 6738, 279, 4464, 88, 13, 25981, 13, 9078, 9288, 1330, 1255, 198, 6738, 279, 4464, 88, 13, 25981, 13, 9078, 9288, 13, 2502, 1177, 1330, 25414, 30562, 220, 198, 198, 2, 220, 198, 2, 2972, 3499, 3108, 5563, 220, 198, 2, 198, 198, 6494, 796, 12972, 13, 19875, 13, 6494, 198, 32819, 4303, 796, 12972, 13, 19875, 13, 1831, 7203, 5, 77, 24145, 26, 4943, 628, 220, 220, 220, 1303, 220, 198, 220, 220, 220, 1303, 14837, 220, 198, 220, 220, 220, 1303, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7716, 27711, 3696, 220, 198, 220, 220, 220, 1303, 198, 198, 1820, 15908, 796, 12972, 13, 6978, 13, 12001, 7, 834, 7753, 834, 737, 15908, 6978, 3419, 198 ]
2.459119
159
from simpleWebServer import SimpleWebServer #--------------------------------------------------- usersCount = 0 estonianPopulation = { "tallinn" : 441000, "tartu" : 94000, "narva" : 58000, "parnu" : 41000 } #--------------------------------------------------- SimpleWebServer().serve(8088, getPopulation)
[ 6738, 2829, 13908, 10697, 1330, 17427, 13908, 10697, 198, 198, 2, 47232, 6329, 198, 198, 18417, 12332, 796, 657, 198, 198, 19115, 666, 45251, 796, 1391, 198, 220, 220, 220, 366, 35429, 3732, 1, 1058, 604, 3901, 830, 11, 198, 220, 220, 220, 366, 83, 433, 84, 1, 1058, 10048, 830, 11, 198, 220, 220, 220, 366, 23955, 6862, 1, 1058, 7618, 830, 11, 198, 220, 220, 220, 366, 79, 1501, 84, 1, 1058, 6073, 830, 198, 92, 628, 198, 2, 47232, 6329, 198, 198, 26437, 13908, 10697, 22446, 2655, 303, 7, 1795, 3459, 11, 651, 45251, 8 ]
3.326531
98
import logging import _thread from threading import Timer from . import hpim_globals from .metric import AssertMetric, Metric from .tree_interface import TreeInterface from .non_root_state_machine import SFMRNonRootState from .assert_state import AssertState, SFMRAssertABC from .downstream_state import SFMRPruneState, SFMRDownstreamStateABC
[ 11748, 18931, 198, 11748, 4808, 16663, 198, 6738, 4704, 278, 1330, 5045, 263, 198, 198, 6738, 764, 1330, 27673, 320, 62, 4743, 672, 874, 198, 6738, 764, 4164, 1173, 1330, 2195, 861, 9171, 1173, 11, 3395, 1173, 198, 6738, 764, 21048, 62, 39994, 1330, 12200, 39317, 198, 6738, 764, 13159, 62, 15763, 62, 5219, 62, 30243, 1330, 14362, 13599, 15419, 30016, 9012, 198, 6738, 764, 30493, 62, 5219, 1330, 2195, 861, 9012, 11, 14362, 44, 3861, 824, 861, 24694, 198, 6738, 764, 2902, 5532, 62, 5219, 1330, 14362, 13599, 6836, 1726, 9012, 11, 14362, 13599, 8048, 5532, 9012, 24694, 198 ]
3.44
100
from Automator import Automator position_dictionary = { "skill_1": (54, 432), "skill_2": (123, 432), "skill_3": (192, 432), "skill_4": (291, 432), "skill_5": (362, 432), "skill_6": (432, 432), "skill_7": (530, 432), "skill_8": (600, 432), "skill_9": (672, 432), "master_skill_option": (896, 273), "skill_master_1": (680, 230), "skill_master_2": (747, 230), "skill_master_3": (813, 230), "change_3": (400, 400), "change_4": (550, 400), "change_confirm": (482, 473), "skill_select_1": (240, 350), "skill_select_2": (480, 350), "skill_select_3": (710, 350), "noble_fantasy_1": (300, 150), "noble_fantasy_2": (480, 150), "noble_fantasy_3": (660, 150), "arbitrary_command_card_1": (300, 380), "arbitrary_command_card_2": (490, 380), "return": (10, 10), "attack": (850, 450), } wait_select = 0.6 wait_effect = 0.6 wait_loading_fight = 10 ctl = Automator()
[ 6738, 17406, 1352, 1330, 17406, 1352, 201, 198, 201, 198, 9150, 62, 67, 14188, 796, 1391, 201, 198, 220, 220, 220, 366, 42401, 62, 16, 1298, 357, 4051, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 17, 1298, 357, 10163, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 18, 1298, 357, 17477, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 19, 1298, 357, 33551, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 20, 1298, 357, 35667, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 21, 1298, 357, 45331, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 22, 1298, 357, 38612, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 23, 1298, 357, 8054, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 24, 1298, 357, 43864, 11, 46393, 828, 201, 198, 220, 220, 220, 366, 9866, 62, 42401, 62, 18076, 1298, 357, 48712, 11, 38549, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 9866, 62, 16, 1298, 357, 37397, 11, 18395, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 9866, 62, 17, 1298, 357, 48882, 11, 18395, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 9866, 62, 18, 1298, 357, 23, 1485, 11, 18395, 828, 201, 198, 220, 220, 220, 366, 3803, 62, 18, 1298, 357, 7029, 11, 7337, 828, 201, 198, 220, 220, 220, 366, 3803, 62, 19, 1298, 357, 22730, 11, 7337, 828, 201, 198, 220, 220, 220, 366, 3803, 62, 10414, 2533, 1298, 357, 40149, 11, 604, 4790, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 19738, 62, 16, 1298, 357, 16102, 11, 13803, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 19738, 62, 17, 1298, 357, 22148, 11, 13803, 828, 201, 198, 220, 220, 220, 366, 42401, 62, 19738, 62, 18, 1298, 357, 43147, 11, 13803, 828, 201, 198, 220, 220, 220, 366, 34952, 293, 62, 69, 34921, 62, 16, 1298, 357, 6200, 11, 6640, 828, 201, 198, 220, 220, 220, 366, 34952, 293, 62, 69, 34921, 62, 17, 1298, 357, 22148, 11, 6640, 828, 201, 198, 220, 220, 220, 366, 34952, 293, 62, 69, 34921, 62, 18, 1298, 357, 39885, 11, 6640, 828, 201, 198, 220, 220, 220, 366, 283, 2545, 11619, 62, 21812, 62, 9517, 62, 16, 1298, 357, 6200, 11, 29101, 828, 201, 198, 220, 220, 220, 366, 283, 2545, 11619, 62, 21812, 62, 9517, 62, 17, 1298, 357, 31503, 11, 29101, 828, 201, 198, 220, 220, 220, 366, 7783, 1298, 357, 940, 11, 838, 828, 201, 198, 220, 220, 220, 366, 20358, 1298, 357, 25764, 11, 18523, 828, 201, 198, 201, 198, 92, 201, 198, 17077, 62, 19738, 796, 657, 13, 21, 201, 198, 17077, 62, 10760, 796, 657, 13, 21, 201, 198, 17077, 62, 25138, 62, 15481, 796, 838, 201, 198, 34168, 796, 17406, 1352, 3419, 201, 198 ]
2.047521
484
from counterfit_connection import CounterFitConnection CounterFitConnection.init('127.0.0.1', 5000) import time from counterfit_shims_rpi_vl53l0x.vl53l0x import VL53L0X distance_sensor = VL53L0X() distance_sensor.begin() while True: distance_sensor.wait_ready() print(f'Distance = {distance_sensor.get_distance()} mm') time.sleep(1)
[ 6738, 3753, 11147, 62, 38659, 1330, 15034, 31805, 32048, 198, 31694, 31805, 32048, 13, 15003, 10786, 16799, 13, 15, 13, 15, 13, 16, 3256, 23336, 8, 198, 198, 11748, 640, 198, 198, 6738, 3753, 11147, 62, 1477, 12078, 62, 81, 14415, 62, 19279, 4310, 75, 15, 87, 13, 19279, 4310, 75, 15, 87, 1330, 569, 43, 4310, 43, 15, 55, 198, 198, 30246, 62, 82, 22854, 796, 569, 43, 4310, 43, 15, 55, 3419, 198, 30246, 62, 82, 22854, 13, 27471, 3419, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 5253, 62, 82, 22854, 13, 17077, 62, 1493, 3419, 198, 220, 220, 220, 3601, 7, 69, 6, 45767, 796, 1391, 30246, 62, 82, 22854, 13, 1136, 62, 30246, 3419, 92, 8085, 11537, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8 ]
2.616541
133
from Database import DatabaseContext
[ 6738, 24047, 1330, 24047, 21947 ]
7.2
5
import re
[ 11748, 302 ]
4.5
2
# -*- coding: utf-8 -*- """Active user in game. Greyd Rule: 1xx """ import logging from datetime import datetime, timedelta from greyd.db import session from greyd.models.user import User from greyd.models.lobby import Lobby from greyd.models.user_to_lobby import UserToLobby from greyd.models.chat import Chat from greyd.models.user_location import UserLocation class ActiveUser(): """Active game greyd rules handler. This class contains user transaction on game. Decide of game rotation (continue, finish) with request data. If game finish regular ways then find winnner user. """ logger = logging.getLogger(__name__) def entry(self): """Decide of the game request way. Response json. Greyd Rule - Entry Style 101 - User on a game. 102 - User wait in the lobby. """ greyd_rule = self.request["greydRule"] if greyd_rule == 101: response = self._refresh_game() elif greyd_rule == 102: response = self._refresh_lobby() else: error_type = "Wrong greyRule Game request." response = {"success": False, "errorType": error_type} self.logger.error("%s GreydId: %s", error_type, self.request["greydId"]) return response def _refresh_game(self): """Use user location, is taken bait or not? If user is lobby owner then check is game end? Return other lobby users information(chat, users.id etc.) in game. """ self._add_chat() if self.lobby.is_bait_taken(self.request["location"]): self._points_inc_dec() bait_taken = True else: bait_taken = False location = UserLocation(session_id=self.session_id, location=self.request["location"], time=self.time_now, bait_location=self.lobby.bait_location, is_bait_taken=bait_taken) session.add(location) session.commit() # Check game is end or continue. self._is_game_end() return {"success": True, "greydRule": self.request["greydRule"], "greydId": self.request["greydId"], "lobbyId": self.lobby.id, "currentBaitLocation": self.lobby.bait_location, "lobbyStatus": self.lobby.status, "users": self._user_info_same_lobby()} def _refresh_lobby(self): """Use Chat request and return other users chat information.""" self._add_chat() if self.lobby.bait_location is None: bait_location = "" else: bait_location = self.lobby.bait_location return {"success": True, "greydRule": self.request["greydRule"], "greydId": self.request["greydId"], "lobbyId": self.request["lobbyId"], "lobbyStatus": self.lobby.status, "baitLocation": bait_location, "users": self._user_info_same_lobby()} def _get_lobby(self): """Return lobby.""" return session.query(Lobby).filter( Lobby.id == self.request["lobbyId"]).first() def _get_session_id(self): """Return session id.""" return session.query(UserToLobby.id).filter( UserToLobby.lobby_id == self.request["lobbyId"]).filter( UserToLobby.user_id == self.request["greydId"]).first()[0] def _add_chat(self): """Add database chat content.""" if "lobbyChat" in self.request.keys(): for chat_content in self.request["lobbyChat"]: chat = Chat(session_id=self.session_id, content=chat_content, time=self.time_now) session.add(chat) session.commit() def _user_info_same_lobby(self): """Get other users info and chat info.""" lobby_users = session.query(UserToLobby).join(UserToLobby.user).filter( UserToLobby.lobby_id == self.request["lobbyId"]).all() user_list = [] for lobby_user in lobby_users: # Find how many taken bait in this lobby. user_taken_bait = session.query(UserLocation).filter( UserLocation.session_id == lobby_user.id).filter( UserLocation.is_bait_taken).count() user_info = {"userGreydId": lobby_user.user.id, "userFacebookId": lobby_user.user.facebook_id, "userFullName": lobby_user.user.full_name, "userScore": lobby_user.user.total_score, "userLocation": lobby_user.user.location, "userTotalBait": user_taken_bait} # Add chat data in response chats = session.query(Chat).filter( Chat.session_id == lobby_user.id).filter( Chat.id > self.request["lastSeenChatId"]).all() user_chat = [] for chat in chats: chat_info = {"chatId": chat.id, "chatTime": chat.time, "chatContent": chat.content} user_chat.append(chat_info) user_list.append(user_info) return user_list def _game_result(self): """Game Result. Find winner user.""" self.lobby.end_game() winner_session = session.query(UserToLobby).order_by( UserToLobby.collected_bait.desc()).first() winner_session.is_game_won = True session.commit() def _is_game_end(self): """Control of game. Control authorization only lobby creator.""" if self.lobby.creator_id != self.request["greydId"]: return # Check time ending start_time = datetime.strptime(self.lobby.start_time, '%m/%d/%Y %H:%M') expecting_end_time = start_time + \ timedelta(minutes=self.lobby.max_time) if expecting_end_time <= datetime.now(): self._game_result() # Check life ending # How many user have more than 0 life user_still_playing = session.query(UserToLobby).filter( UserToLobby.lobby_id == self.lobby.id).filter( UserToLobby.remaining_life > 0).count() if user_still_playing < 0: self._game_result() def _points_inc_dec(self): """Add 1 point for bait taken user and other user lost 1 life.""" user = session.query(User).filter( User.id == self.request["greydId"]).first() user.add_point() users_session = session.query(UserToLobby).filter( UserToLobby.lobby_id == self.lobby.id).filter( UserToLobby.remaining_life > 0).all() for user_session in users_session: # User is won the bait then increase the collected bait # else then user lose the life. if user_session.id == self.session_id: user_session.collected_bait = user_session.collected_bait + 1 else: user_session.remaining_life = user_session.remaining_life - 1 session.commit()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 13739, 2836, 287, 983, 13, 198, 49141, 67, 14330, 25, 352, 5324, 198, 37811, 198, 198, 11748, 18931, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 6738, 13791, 67, 13, 9945, 1330, 6246, 198, 6738, 13791, 67, 13, 27530, 13, 7220, 1330, 11787, 198, 6738, 13791, 67, 13, 27530, 13, 75, 11369, 1330, 35068, 198, 6738, 13791, 67, 13, 27530, 13, 7220, 62, 1462, 62, 75, 11369, 1330, 11787, 2514, 43, 11369, 198, 6738, 13791, 67, 13, 27530, 13, 17006, 1330, 24101, 198, 6738, 13791, 67, 13, 27530, 13, 7220, 62, 24886, 1330, 11787, 14749, 628, 198, 4871, 14199, 12982, 33529, 198, 220, 220, 220, 37227, 13739, 983, 13791, 67, 3173, 21360, 13, 198, 220, 220, 220, 770, 1398, 4909, 2836, 8611, 319, 983, 13, 198, 220, 220, 220, 4280, 485, 286, 983, 13179, 357, 43043, 11, 5461, 8, 351, 2581, 1366, 13, 198, 220, 220, 220, 1002, 983, 5461, 3218, 2842, 788, 1064, 1592, 77, 1008, 2836, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 220, 220, 220, 825, 5726, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10707, 485, 286, 262, 983, 2581, 835, 13, 18261, 33918, 13, 628, 220, 220, 220, 220, 220, 220, 220, 13980, 67, 14330, 220, 532, 220, 220, 21617, 17738, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8949, 220, 220, 220, 220, 532, 220, 220, 11787, 319, 257, 983, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15143, 220, 220, 220, 220, 532, 220, 220, 11787, 4043, 287, 262, 10866, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13791, 67, 62, 25135, 796, 2116, 13, 25927, 14692, 49502, 67, 31929, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 13791, 67, 62, 25135, 6624, 8949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13557, 5420, 3447, 62, 6057, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 13791, 67, 62, 25135, 6624, 15143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2116, 13557, 5420, 3447, 62, 75, 11369, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 4906, 796, 366, 39213, 506, 13791, 31929, 3776, 2581, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19779, 13138, 1298, 10352, 11, 366, 18224, 6030, 1298, 4049, 62, 4906, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 18224, 7203, 4, 82, 13980, 67, 7390, 25, 4064, 82, 1600, 4049, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25927, 14692, 49502, 67, 7390, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 628, 220, 220, 220, 825, 4808, 5420, 3447, 62, 6057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11041, 2836, 4067, 11, 318, 2077, 26536, 393, 407, 30, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 2836, 318, 10866, 4870, 788, 2198, 318, 983, 886, 30, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 584, 10866, 2985, 1321, 7, 17006, 11, 2985, 13, 312, 3503, 2014, 287, 983, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17006, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 75, 11369, 13, 271, 62, 65, 4548, 62, 83, 1685, 7, 944, 13, 25927, 14692, 24886, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13033, 62, 1939, 62, 12501, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26536, 62, 83, 1685, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26536, 62, 83, 1685, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 4067, 796, 11787, 14749, 7, 29891, 62, 312, 28, 944, 13, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 944, 13, 25927, 14692, 24886, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 28, 944, 13, 2435, 62, 2197, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26536, 62, 24886, 28, 944, 13, 75, 11369, 13, 65, 4548, 62, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 65, 4548, 62, 83, 1685, 28, 65, 4548, 62, 83, 1685, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 2860, 7, 24886, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 983, 318, 886, 393, 2555, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 271, 62, 6057, 62, 437, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 19779, 13138, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49502, 67, 31929, 1298, 2116, 13, 25927, 14692, 49502, 67, 31929, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49502, 67, 7390, 1298, 2116, 13, 25927, 14692, 49502, 67, 7390, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 11369, 7390, 1298, 2116, 13, 75, 11369, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14421, 33, 4548, 14749, 1298, 2116, 13, 75, 11369, 13, 65, 4548, 62, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 11369, 19580, 1298, 2116, 13, 75, 11369, 13, 13376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 1298, 2116, 13557, 7220, 62, 10951, 62, 31642, 62, 75, 11369, 3419, 92, 628, 220, 220, 220, 825, 4808, 5420, 3447, 62, 75, 11369, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11041, 24101, 2581, 290, 1441, 584, 2985, 8537, 1321, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 2860, 62, 17006, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 75, 11369, 13, 65, 4548, 62, 24886, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26536, 62, 24886, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26536, 62, 24886, 796, 2116, 13, 75, 11369, 13, 65, 4548, 62, 24886, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 19779, 13138, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49502, 67, 31929, 1298, 2116, 13, 25927, 14692, 49502, 67, 31929, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 49502, 67, 7390, 1298, 2116, 13, 25927, 14692, 49502, 67, 7390, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 11369, 7390, 1298, 2116, 13, 25927, 14692, 75, 11369, 7390, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 11369, 19580, 1298, 2116, 13, 75, 11369, 13, 13376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 65, 4548, 14749, 1298, 26536, 62, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18417, 1298, 2116, 13557, 7220, 62, 10951, 62, 31642, 62, 75, 11369, 3419, 92, 628, 220, 220, 220, 825, 4808, 1136, 62, 75, 11369, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 10866, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6246, 13, 22766, 7, 43, 11369, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35068, 13, 312, 6624, 2116, 13, 25927, 14692, 75, 11369, 7390, 8973, 737, 11085, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 29891, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 6246, 4686, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6246, 13, 22766, 7, 12982, 2514, 43, 11369, 13, 312, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 75, 11369, 62, 312, 6624, 2116, 13, 25927, 14692, 75, 11369, 7390, 8973, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 7220, 62, 312, 6624, 2116, 13, 25927, 14692, 49502, 67, 7390, 8973, 737, 11085, 3419, 58, 15, 60, 628, 220, 220, 220, 825, 4808, 2860, 62, 17006, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 6831, 8537, 2695, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 75, 11369, 30820, 1, 287, 2116, 13, 25927, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 8537, 62, 11299, 287, 2116, 13, 25927, 14692, 75, 11369, 30820, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8537, 796, 24101, 7, 29891, 62, 312, 28, 944, 13, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 28, 17006, 62, 11299, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 28, 944, 13, 2435, 62, 2197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 2860, 7, 17006, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 41509, 3419, 628, 220, 220, 220, 825, 4808, 7220, 62, 10951, 62, 31642, 62, 75, 11369, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 584, 2985, 7508, 290, 8537, 7508, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 10866, 62, 18417, 796, 6246, 13, 22766, 7, 12982, 2514, 43, 11369, 737, 22179, 7, 12982, 2514, 43, 11369, 13, 7220, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 75, 11369, 62, 312, 6624, 2116, 13, 25927, 14692, 75, 11369, 7390, 8973, 737, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10866, 62, 7220, 287, 10866, 62, 18417, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 703, 867, 2077, 26536, 287, 428, 10866, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 83, 1685, 62, 65, 4548, 796, 6246, 13, 22766, 7, 12982, 14749, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 14749, 13, 29891, 62, 312, 6624, 10866, 62, 7220, 13, 312, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 14749, 13, 271, 62, 65, 4548, 62, 83, 1685, 737, 9127, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 10951, 796, 19779, 7220, 49141, 67, 7390, 1298, 10866, 62, 7220, 13, 7220, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 12025, 7390, 1298, 10866, 62, 7220, 13, 7220, 13, 19024, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 13295, 5376, 1298, 10866, 62, 7220, 13, 7220, 13, 12853, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 26595, 1298, 10866, 62, 7220, 13, 7220, 13, 23350, 62, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 14749, 1298, 10866, 62, 7220, 13, 7220, 13, 24886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7220, 14957, 33, 4548, 1298, 2836, 62, 83, 1685, 62, 65, 4548, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 8537, 1366, 287, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40815, 796, 6246, 13, 22766, 7, 30820, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24101, 13, 29891, 62, 312, 6624, 10866, 62, 7220, 13, 312, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24101, 13, 312, 1875, 2116, 13, 25927, 14692, 12957, 4653, 268, 30820, 7390, 8973, 737, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 17006, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 8537, 287, 40815, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8537, 62, 10951, 796, 19779, 17006, 7390, 1298, 8537, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17006, 7575, 1298, 8537, 13, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17006, 19746, 1298, 8537, 13, 11299, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 17006, 13, 33295, 7, 17006, 62, 10951, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 4868, 13, 33295, 7, 7220, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2836, 62, 4868, 628, 220, 220, 220, 825, 4808, 6057, 62, 20274, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8777, 25414, 13, 9938, 8464, 2836, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 75, 11369, 13, 437, 62, 6057, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8464, 62, 29891, 796, 6246, 13, 22766, 7, 12982, 2514, 43, 11369, 737, 2875, 62, 1525, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 4033, 12609, 62, 65, 4548, 13, 20147, 3419, 737, 11085, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 8464, 62, 29891, 13, 271, 62, 6057, 62, 26502, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 41509, 3419, 628, 220, 220, 220, 825, 4808, 271, 62, 6057, 62, 437, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15988, 286, 983, 13, 6779, 19601, 691, 10866, 13172, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 75, 11369, 13, 45382, 62, 312, 14512, 2116, 13, 25927, 14692, 49502, 67, 7390, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 640, 7464, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 4818, 8079, 13, 2536, 457, 524, 7, 944, 13, 75, 11369, 13, 9688, 62, 2435, 11, 705, 4, 76, 14, 4, 67, 14, 4, 56, 4064, 39, 25, 4, 44, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 12451, 62, 437, 62, 2435, 796, 923, 62, 2435, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28805, 12514, 7, 1084, 1769, 28, 944, 13, 75, 11369, 13, 9806, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 12451, 62, 437, 62, 2435, 19841, 4818, 8079, 13, 2197, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 62, 20274, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 1204, 7464, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1374, 867, 2836, 423, 517, 621, 657, 1204, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 24219, 62, 17916, 796, 6246, 13, 22766, 7, 12982, 2514, 43, 11369, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 75, 11369, 62, 312, 6624, 2116, 13, 75, 11369, 13, 312, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 2787, 1397, 62, 6042, 1875, 657, 737, 9127, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 24219, 62, 17916, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6057, 62, 20274, 3419, 628, 220, 220, 220, 825, 4808, 13033, 62, 1939, 62, 12501, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 352, 966, 329, 26536, 2077, 2836, 290, 584, 2836, 2626, 352, 1204, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 6246, 13, 22766, 7, 12982, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 13, 312, 6624, 2116, 13, 25927, 14692, 49502, 67, 7390, 8973, 737, 11085, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 13, 2860, 62, 4122, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2985, 62, 29891, 796, 6246, 13, 22766, 7, 12982, 2514, 43, 11369, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 75, 11369, 62, 312, 6624, 2116, 13, 75, 11369, 13, 312, 737, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 2514, 43, 11369, 13, 2787, 1397, 62, 6042, 1875, 657, 737, 439, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2836, 62, 29891, 287, 2985, 62, 29891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11787, 318, 1839, 262, 26536, 788, 2620, 262, 7723, 26536, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 788, 2836, 4425, 262, 1204, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 29891, 13, 312, 6624, 2116, 13, 29891, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 29891, 13, 4033, 12609, 62, 65, 4548, 796, 2836, 62, 29891, 13, 4033, 12609, 62, 65, 4548, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 29891, 13, 2787, 1397, 62, 6042, 796, 2836, 62, 29891, 13, 2787, 1397, 62, 6042, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 13, 41509, 3419, 198 ]
2.081916
3,528
#!/usr/bin/env python from argparse import ArgumentParser import sys if __name__ == '__main__': arg_parser = ArgumentParser(description='compute primes') arg_parser.add_argument('implmentation', choices=['python', 'numba' 'python_array', 'numba_array'], default='python', nargs='?', help='implementation to run') arg_parser.add_argument('--n', type=int, default=10, help='number of primes') options = arg_parser.parse_args() if options.implmentation == 'python': from primes_vanilla import primes elif options.implmentation == 'numba': from primes_numba import primes results = primes(options.n) print(', '.join(map(str, results)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 11748, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1822, 62, 48610, 796, 45751, 46677, 7, 11213, 11639, 5589, 1133, 778, 999, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 23928, 14374, 3256, 7747, 28, 17816, 29412, 3256, 705, 77, 2178, 64, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 62, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 2178, 64, 62, 18747, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 11639, 29412, 3256, 299, 22046, 11639, 30, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 320, 32851, 284, 1057, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 438, 77, 3256, 2099, 28, 600, 11, 4277, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 17618, 286, 778, 999, 11537, 198, 220, 220, 220, 3689, 796, 1822, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 611, 3689, 13, 23928, 14374, 6624, 705, 29412, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 422, 778, 999, 62, 10438, 5049, 1330, 778, 999, 198, 220, 220, 220, 1288, 361, 3689, 13, 23928, 14374, 6624, 705, 77, 2178, 64, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 422, 778, 999, 62, 77, 2178, 64, 1330, 778, 999, 198, 220, 220, 220, 2482, 796, 778, 999, 7, 25811, 13, 77, 8, 198, 220, 220, 220, 3601, 7, 3256, 45302, 22179, 7, 8899, 7, 2536, 11, 2482, 22305, 198 ]
2.020785
433
# Generated by Django 3.1.7 on 2021-04-08 07:14 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 22, 319, 33448, 12, 3023, 12, 2919, 8753, 25, 1415, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
from django.db.models.query import QuerySet from rest_framework import generics, mixins, viewsets from rest_framework import filters import django_filters.rest_framework from django.http import JsonResponse from rest_framework.renderers import JSONRenderer from django.shortcuts import get_object_or_404 from fiche_produit.models import Employee, Product, ProductCard, Order, Facture, ProductCardAnnexe5, Project, Specification, Declaration, Tds, Coo, Routage, \ OrderItem, FactureItem, Lot from .serializers import FPModelSerializer, ProductModelSerializer, OrderModelSerializer, FactureModelSerializer, \ SpecificationModelSerializer, DeclarationModelSerializer, TdsModelSerializer, CooModelSerializer, RoutageModelSerializer, \ RoutageModelSerializer, OrderItemModelSerializer, FactureItemModelSerializer, FPNewNumberSerializer, \ ProductCardAnnexe5ModelSerializer class EnablePartialUpdateMixin: """Enable partial updates Override partial kwargs in UpdateModelMixin class https://github.com/encode/django-rest-framework/blob/91916a4db14cd6a06aca13fb9a46fc667f6c0682/rest_framework/mixins.py#L64 """
[ 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 22766, 1330, 43301, 7248, 198, 6738, 1334, 62, 30604, 1330, 1152, 873, 11, 5022, 1040, 11, 5009, 1039, 198, 6738, 1334, 62, 30604, 1330, 16628, 198, 11748, 42625, 14208, 62, 10379, 1010, 13, 2118, 62, 30604, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 198, 6738, 1334, 62, 30604, 13, 10920, 19288, 1330, 19449, 49, 437, 11882, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 651, 62, 15252, 62, 273, 62, 26429, 198, 198, 6738, 277, 14234, 62, 18230, 270, 13, 27530, 1330, 36824, 11, 8721, 11, 8721, 16962, 11, 8284, 11, 19020, 495, 11, 8721, 16962, 2025, 12413, 68, 20, 11, 4935, 11, 18291, 2649, 11, 24720, 11, 309, 9310, 11, 1766, 78, 11, 39602, 496, 11, 3467, 198, 220, 220, 220, 8284, 7449, 11, 19020, 495, 7449, 11, 15099, 198, 6738, 764, 46911, 11341, 1330, 31459, 17633, 32634, 7509, 11, 8721, 17633, 32634, 7509, 11, 8284, 17633, 32634, 7509, 11, 19020, 495, 17633, 32634, 7509, 11, 3467, 198, 220, 220, 220, 18291, 2649, 17633, 32634, 7509, 11, 24720, 17633, 32634, 7509, 11, 309, 9310, 17633, 32634, 7509, 11, 1766, 78, 17633, 32634, 7509, 11, 39602, 496, 17633, 32634, 7509, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 39602, 496, 17633, 32634, 7509, 11, 8284, 7449, 17633, 32634, 7509, 11, 19020, 495, 7449, 17633, 32634, 7509, 11, 31459, 3791, 15057, 32634, 7509, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8721, 16962, 2025, 12413, 68, 20, 17633, 32634, 7509, 628, 198, 4871, 27882, 7841, 498, 10260, 35608, 259, 25, 198, 220, 220, 220, 37227, 36695, 13027, 5992, 628, 220, 220, 220, 3827, 13154, 13027, 479, 86, 22046, 287, 10133, 17633, 35608, 259, 1398, 198, 220, 220, 220, 3740, 1378, 12567, 13, 785, 14, 268, 8189, 14, 28241, 14208, 12, 2118, 12, 30604, 14, 2436, 672, 14, 24, 1129, 1433, 64, 19, 9945, 1415, 10210, 21, 64, 3312, 22260, 1485, 21855, 24, 64, 3510, 16072, 28933, 69, 21, 66, 15, 43950, 14, 2118, 62, 30604, 14, 19816, 1040, 13, 9078, 2, 43, 2414, 198, 220, 220, 220, 37227, 628, 628, 628, 628, 628, 628, 198 ]
3.203857
363
# flake8: noqa import warnings from .drf_urls import * warnings.warn( "drf-urls.py is not a valid module name and will be " "removed in a future version, use drf_urls.py instead", PendingDeprecationWarning )
[ 2, 781, 539, 23, 25, 645, 20402, 198, 11748, 14601, 198, 6738, 764, 7109, 69, 62, 6371, 82, 1330, 1635, 198, 198, 40539, 654, 13, 40539, 7, 198, 220, 220, 220, 366, 7109, 69, 12, 6371, 82, 13, 9078, 318, 407, 257, 4938, 8265, 1438, 290, 481, 307, 366, 198, 220, 220, 220, 366, 2787, 2668, 287, 257, 2003, 2196, 11, 779, 1553, 69, 62, 6371, 82, 13, 9078, 2427, 1600, 198, 220, 220, 220, 350, 1571, 12156, 8344, 341, 20361, 198, 8, 198 ]
2.630952
84
import logging import socket from concurrent.futures import Executor from time import time import cv2 import numpy as np from adbutils import AdbDevice from .raw_socket import send_raw logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 11748, 17802, 198, 6738, 24580, 13, 69, 315, 942, 1330, 8393, 38409, 198, 6738, 640, 1330, 640, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 512, 4360, 4487, 1330, 1215, 65, 24728, 198, 198, 6738, 764, 1831, 62, 44971, 1330, 3758, 62, 1831, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628 ]
3.304348
69
# Test of phase Module (Manual) import numpy as np import math as math import data as data import phase as phase import matplotlib.pyplot as plt import statistics ########################################################## # Test Difference of identical phase # 1 ########################################################## # Generate data to be passed through phase data_em_test_1 = data.EMdata() x1 = np.linspace(0, 255, 256) y1 = np.linspace(0, 255, 256) mx1, my1 = np.meshgrid(x1, y1) data_em_test_1.holo_1 = np.sin(mx1 * 2 * np.pi / 16) data_em_test_1.holo_2_aligned = data_em_test_1.holo_1 data_em_test_1.holo_ref = data_em_test_1.holo_1 # Circle of radius 1 centered around coordinate (192, 128) r1 = 1 center1 = (144, 128) # Pass through phase phase.phase(center1, r1, data_em_test_1) # Display results fig_test_1_2d = plt.figure() fig_test_1_2d_ax1 = fig_test_1_2d.add_subplot(2, 2, 1) fig_test_1_2d_ax2 = fig_test_1_2d.add_subplot(2, 2, 2) fig_test_1_2d_ax3 = fig_test_1_2d.add_subplot(2, 2, 3) fig_test_1_2d_ax4 = fig_test_1_2d.add_subplot(2, 2, 4) fig_test_1_2d_ax1.imshow(data_em_test_1.phase_1) fig_test_1_2d_ax2.imshow(data_em_test_1.phase_2) fig_test_1_2d_ax3.imshow(data_em_test_1.phase_ref) fig_test_1_2d_ax4.imshow(data_em_test_1.diff_2_1_not_cor) fig_test_1_2d_ax1.set_title('Unwrap-1') fig_test_1_2d_ax2.set_title('Unwrap-2') fig_test_1_2d_ax3.set_title('Unwrap-Ref') fig_test_1_2d_ax4.set_title('2-1-uncor') fig_test_1_1d = plt.figure() fig_test_1_1d_ax1 = fig_test_1_1d.add_subplot(2, 2, 1) fig_test_1_1d_ax2 = fig_test_1_1d.add_subplot(2, 2, 2) fig_test_1_1d_ax3 = fig_test_1_1d.add_subplot(2, 2, 3) fig_test_1_1d_ax4 = fig_test_1_1d.add_subplot(2, 2, 4) fig_test_1_1d_ax1.plot(data_em_test_1.diff_1_ref[128, :]) # fig_test_1_1d_ax1.set_ylim(-np.pi, np.pi) fig_test_1_1d_ax2.plot(data_em_test_1.diff_2_ref[128, :]) # fig_test_1_1d_ax2.set_ylim(-np.pi, np.pi) fig_test_1_1d_ax3.plot(data_em_test_1.diff_2_1_cor[128, :]) # fig_test_1_1d_ax3.set_ylim(-np.pi, np.pi) fig_test_1_1d_ax4.plot(data_em_test_1.diff_2_1_not_cor[128, :]) # fig_test_1_1d_ax4.set_ylim(-np.pi, np.pi) fig_test_1_1d_ax1.set_title('1-Ref') fig_test_1_1d_ax2.set_title('2-Ref') fig_test_1_1d_ax3.set_title('2-1-cor') fig_test_1_1d_ax4.set_title('2-1-uncor') plt.show() ########################################################## # Test Difference of known phase images # 2 ########################################################## # Generate data to be passed through phase data_em_test_2 = data.EMdata() x2 = np.linspace(0, 255, 256) y2 = np.linspace(0, 255, 256) mx2, my2 = np.meshgrid(x2, y2) a2 = 4 b2 = 4.5 data_em_test_2.holo_1 = np.sin(mx2 * 2 * np.pi / a2) data_em_test_2.holo_2_aligned = np.sin(mx2 * 2 * np.pi / b2) data_em_test_2.holo_ref = data_em_test_2.holo_1 # Circle of radius 1 centered around coordinate (192, 128) r2 = 20 center2 = (192, 128) # Pass through phase phase.phase(center2, r2, data_em_test_2) # Display results fig_test_2_2d = plt.figure() fig_test_2_2d_ax1 = fig_test_2_2d.add_subplot(2, 2, 1) fig_test_2_2d_ax2 = fig_test_2_2d.add_subplot(2, 2, 2) fig_test_2_2d_ax3 = fig_test_2_2d.add_subplot(2, 2, 3) fig_test_2_2d_ax4 = fig_test_2_2d.add_subplot(2, 2, 4) fig_test_2_2d_ax1.imshow(data_em_test_2.phase_1) fig_test_2_2d_ax2.imshow(data_em_test_2.phase_2) fig_test_2_2d_ax3.imshow(data_em_test_2.phase_ref) fig_test_2_2d_ax4.imshow(data_em_test_2.diff_2_1_not_cor) fig_test_2_2d_ax1.set_title('Unwrap-1') fig_test_2_2d_ax2.set_title('Unwrap-2') fig_test_2_2d_ax3.set_title('Unwrap-Ref') fig_test_2_2d_ax4.set_title('2-1-uncor') fig_test_2_1d = plt.figure() fig_test_2_1d_ax1 = fig_test_2_1d.add_subplot(2, 2, 1) fig_test_2_1d_ax2 = fig_test_2_1d.add_subplot(2, 2, 2) fig_test_2_1d_ax3 = fig_test_2_1d.add_subplot(2, 2, 3) fig_test_2_1d_ax4 = fig_test_2_1d.add_subplot(2, 2, 4) fig_test_2_1d_ax1.plot(data_em_test_2.diff_1_ref[128, :]) # fig_test_1_1d_ax1.set_ylim(-np.pi, np.pi) fig_test_2_1d_ax2.plot(data_em_test_2.diff_2_ref[128, :]) # fig_test_1_1d_ax2.set_ylim(-np.pi, np.pi) fig_test_2_1d_ax3.plot(data_em_test_2.diff_2_1_cor[128, :]) # fig_test_1_1d_ax3.set_ylim(-np.pi, np.pi) fig_test_2_1d_ax4.plot(data_em_test_2.diff_2_1_not_cor[128, :]) # fig_test_1_1d_ax4.set_ylim(-np.pi, np.pi) fig_test_2_1d_ax1.set_title('1-Ref') fig_test_2_1d_ax2.set_title('2-Ref') fig_test_2_1d_ax3.set_title('2-1-cor') fig_test_2_1d_ax4.set_title('2-1-uncor') slope_th = (2 * np.pi / b2) - (2 * np.pi / a2) slope_exp = (data_em_test_2.diff_2_1_not_cor[128, 253] - data_em_test_2.diff_2_1_not_cor[128, 2]) / 251 error_slope = abs(slope_th - slope_exp) print('Theoretical slope ', slope_th) print('Experimental slope ', slope_exp) print('Slope error ', error_slope) plt.show()
[ 2, 6208, 286, 7108, 19937, 357, 5124, 723, 8, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 355, 10688, 198, 11748, 1366, 355, 1366, 198, 11748, 7108, 355, 7108, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 7869, 198, 198, 29113, 14468, 7804, 2235, 198, 2, 6208, 43795, 286, 10411, 7108, 1303, 352, 198, 29113, 14468, 7804, 2235, 198, 198, 2, 2980, 378, 1366, 284, 307, 3804, 832, 7108, 198, 7890, 62, 368, 62, 9288, 62, 16, 796, 1366, 13, 3620, 7890, 3419, 198, 198, 87, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14280, 11, 17759, 8, 198, 88, 16, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14280, 11, 17759, 8, 198, 36802, 16, 11, 616, 16, 796, 45941, 13, 76, 5069, 25928, 7, 87, 16, 11, 331, 16, 8, 198, 7890, 62, 368, 62, 9288, 62, 16, 13, 3937, 78, 62, 16, 796, 45941, 13, 31369, 7, 36802, 16, 1635, 362, 1635, 45941, 13, 14415, 1220, 1467, 8, 198, 7890, 62, 368, 62, 9288, 62, 16, 13, 3937, 78, 62, 17, 62, 41634, 796, 1366, 62, 368, 62, 9288, 62, 16, 13, 3937, 78, 62, 16, 198, 7890, 62, 368, 62, 9288, 62, 16, 13, 3937, 78, 62, 5420, 796, 1366, 62, 368, 62, 9288, 62, 16, 13, 3937, 78, 62, 16, 198, 198, 2, 16291, 286, 16874, 352, 19254, 1088, 20435, 357, 17477, 11, 13108, 8, 198, 81, 16, 796, 352, 198, 16159, 16, 796, 357, 18444, 11, 13108, 8, 198, 198, 2, 6251, 832, 7108, 198, 40715, 13, 40715, 7, 16159, 16, 11, 374, 16, 11, 1366, 62, 368, 62, 9288, 62, 16, 8, 198, 198, 2, 16531, 2482, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 796, 458, 83, 13, 26875, 3419, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 16, 796, 2336, 62, 9288, 62, 16, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 352, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 17, 796, 2336, 62, 9288, 62, 16, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 362, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 18, 796, 2336, 62, 9288, 62, 16, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 513, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 19, 796, 2336, 62, 9288, 62, 16, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 604, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 16, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 40715, 62, 16, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 17, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 40715, 62, 17, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 18, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 40715, 62, 5420, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 19, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 8, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 16, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 16, 11537, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 17, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 17, 11537, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 18, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 16, 62, 17, 67, 62, 897, 19, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 403, 10215, 11537, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 796, 458, 83, 13, 26875, 3419, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 16, 796, 2336, 62, 9288, 62, 16, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 352, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 17, 796, 2336, 62, 9288, 62, 16, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 362, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 18, 796, 2336, 62, 9288, 62, 16, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 513, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 19, 796, 2336, 62, 9288, 62, 16, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 604, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 16, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 26069, 62, 16, 62, 5420, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 16, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 17, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 26069, 62, 17, 62, 5420, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 17, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 18, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 26069, 62, 17, 62, 16, 62, 10215, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 18, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 19, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 16, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 19, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 16, 13, 2617, 62, 7839, 10786, 16, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 17, 13, 2617, 62, 7839, 10786, 17, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 18, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 10215, 11537, 198, 5647, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 19, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 403, 10215, 11537, 198, 198, 489, 83, 13, 12860, 3419, 198, 198, 29113, 14468, 7804, 2235, 198, 2, 6208, 43795, 286, 1900, 7108, 4263, 1303, 362, 198, 29113, 14468, 7804, 2235, 198, 198, 2, 2980, 378, 1366, 284, 307, 3804, 832, 7108, 198, 7890, 62, 368, 62, 9288, 62, 17, 796, 1366, 13, 3620, 7890, 3419, 198, 198, 87, 17, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14280, 11, 17759, 8, 198, 88, 17, 796, 45941, 13, 21602, 10223, 7, 15, 11, 14280, 11, 17759, 8, 198, 36802, 17, 11, 616, 17, 796, 45941, 13, 76, 5069, 25928, 7, 87, 17, 11, 331, 17, 8, 198, 64, 17, 796, 604, 198, 65, 17, 796, 604, 13, 20, 198, 7890, 62, 368, 62, 9288, 62, 17, 13, 3937, 78, 62, 16, 796, 45941, 13, 31369, 7, 36802, 17, 1635, 362, 1635, 45941, 13, 14415, 1220, 257, 17, 8, 198, 7890, 62, 368, 62, 9288, 62, 17, 13, 3937, 78, 62, 17, 62, 41634, 796, 45941, 13, 31369, 7, 36802, 17, 1635, 362, 1635, 45941, 13, 14415, 1220, 275, 17, 8, 198, 7890, 62, 368, 62, 9288, 62, 17, 13, 3937, 78, 62, 5420, 796, 1366, 62, 368, 62, 9288, 62, 17, 13, 3937, 78, 62, 16, 198, 198, 2, 16291, 286, 16874, 352, 19254, 1088, 20435, 357, 17477, 11, 13108, 8, 198, 81, 17, 796, 1160, 198, 16159, 17, 796, 357, 17477, 11, 13108, 8, 198, 198, 2, 6251, 832, 7108, 198, 40715, 13, 40715, 7, 16159, 17, 11, 374, 17, 11, 1366, 62, 368, 62, 9288, 62, 17, 8, 198, 198, 2, 16531, 2482, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 796, 458, 83, 13, 26875, 3419, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 16, 796, 2336, 62, 9288, 62, 17, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 352, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 17, 796, 2336, 62, 9288, 62, 17, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 362, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 18, 796, 2336, 62, 9288, 62, 17, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 513, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 19, 796, 2336, 62, 9288, 62, 17, 62, 17, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 604, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 16, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 40715, 62, 16, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 17, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 40715, 62, 17, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 18, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 40715, 62, 5420, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 19, 13, 320, 12860, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 8, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 16, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 16, 11537, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 17, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 17, 11537, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 18, 13, 2617, 62, 7839, 10786, 3118, 37150, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 17, 62, 17, 67, 62, 897, 19, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 403, 10215, 11537, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 796, 458, 83, 13, 26875, 3419, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 16, 796, 2336, 62, 9288, 62, 17, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 352, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 17, 796, 2336, 62, 9288, 62, 17, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 362, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 18, 796, 2336, 62, 9288, 62, 17, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 513, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 19, 796, 2336, 62, 9288, 62, 17, 62, 16, 67, 13, 2860, 62, 7266, 29487, 7, 17, 11, 362, 11, 604, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 16, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 16, 62, 5420, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 16, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 17, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 5420, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 17, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 18, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 16, 62, 10215, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 18, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 19, 13, 29487, 7, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 58, 12762, 11, 1058, 12962, 198, 2, 2336, 62, 9288, 62, 16, 62, 16, 67, 62, 897, 19, 13, 2617, 62, 88, 2475, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 8, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 16, 13, 2617, 62, 7839, 10786, 16, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 17, 13, 2617, 62, 7839, 10786, 17, 12, 8134, 11537, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 18, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 10215, 11537, 198, 5647, 62, 9288, 62, 17, 62, 16, 67, 62, 897, 19, 13, 2617, 62, 7839, 10786, 17, 12, 16, 12, 403, 10215, 11537, 198, 198, 6649, 3008, 62, 400, 796, 357, 17, 1635, 45941, 13, 14415, 1220, 275, 17, 8, 532, 357, 17, 1635, 45941, 13, 14415, 1220, 257, 17, 8, 198, 6649, 3008, 62, 11201, 796, 357, 7890, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 58, 12762, 11, 32056, 60, 532, 1366, 62, 368, 62, 9288, 62, 17, 13, 26069, 62, 17, 62, 16, 62, 1662, 62, 10215, 58, 12762, 11, 362, 12962, 1220, 34489, 198, 18224, 62, 6649, 3008, 796, 2352, 7, 6649, 3008, 62, 400, 532, 22638, 62, 11201, 8, 198, 4798, 10786, 464, 9997, 605, 22638, 46083, 22638, 62, 400, 8, 198, 4798, 10786, 20468, 9134, 22638, 46083, 22638, 62, 11201, 8, 198, 4798, 10786, 11122, 3008, 4049, 46083, 4049, 62, 6649, 3008, 8, 198, 198, 489, 83, 13, 12860, 3419 ]
1.991946
2,359
#!/usr/bin/python3 import sys import os sys.path.append( os.path.dirname( os.path.realpath(__file__) ) + '/../..' ) from shared import Ipv4Validator from common import Parameter import unittest import mock if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 33295, 7, 28686, 13, 6978, 13, 15908, 3672, 7, 28686, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 8, 1267, 1343, 31051, 40720, 492, 6, 1267, 198, 6738, 4888, 1330, 314, 79, 85, 19, 47139, 1352, 198, 6738, 2219, 1330, 25139, 2357, 220, 198, 11748, 555, 715, 395, 198, 11748, 15290, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.712766
94
""" @brief test log(time=1s) """ import sys import os import unittest from datetime import datetime from pyquickhelper.loghelper import fLOG try: import src except ImportError: path = os.path.normpath( os.path.abspath( os.path.join( os.path.split(__file__)[0], "..", ".."))) if path not in sys.path: sys.path.append(path) import src from src.ensae_teaching_cs.td_1a.classiques import racine_carree, commentaire_accentues, dix_entiers_carre from src.ensae_teaching_cs.td_1a.classiques import repetition_a_eviter, str2date if __name__ == "__main__": unittest.main()
[ 37811, 198, 31, 65, 3796, 220, 220, 220, 220, 220, 1332, 2604, 7, 2435, 28, 16, 82, 8, 198, 37811, 628, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 12972, 24209, 2978, 525, 13, 6404, 2978, 525, 1330, 277, 25294, 628, 198, 28311, 25, 198, 220, 220, 220, 1330, 12351, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 27237, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 397, 2777, 776, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 35312, 7, 834, 7753, 834, 38381, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 492, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 492, 1, 22305, 198, 220, 220, 220, 611, 3108, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 6978, 8, 198, 220, 220, 220, 1330, 12351, 198, 198, 6738, 12351, 13, 641, 3609, 62, 660, 8103, 62, 6359, 13, 8671, 62, 16, 64, 13, 4871, 6368, 1330, 3444, 500, 62, 7718, 631, 11, 2912, 7626, 62, 330, 1087, 947, 11, 288, 844, 62, 298, 3183, 62, 7718, 260, 198, 6738, 12351, 13, 641, 3609, 62, 660, 8103, 62, 6359, 13, 8671, 62, 16, 64, 13, 4871, 6368, 1330, 29693, 62, 64, 62, 1990, 2676, 11, 965, 17, 4475, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.163987
311
from dataclasses import dataclass from typing import List, Generic from datetime import datetime import Adafruit_ADS1x15 from app.sensors.sensor import Sensor @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 7343, 11, 42044, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 1215, 1878, 4872, 62, 47149, 16, 87, 1314, 198, 198, 6738, 598, 13, 82, 641, 669, 13, 82, 22854, 1330, 35367, 628, 198, 31, 19608, 330, 31172, 628 ]
3.301887
53
import pygame from pygame.sprite import Sprite
[ 11748, 12972, 6057, 198, 6738, 12972, 6057, 13, 34975, 578, 1330, 33132 ]
3.833333
12
############################################################################################ # # Project: Peter Moss Acute Myeloid & Lymphoblastic Leukemia AI Research Project # Repository: ALL Detection System 2019 # Project: Facial Authentication Server # # Author: Adam Milton-Barker (AdamMiltonBarker.com) # Contributors: # Title: Data Class # Description: Data class for the ALL Detection System 2019 NCS1 Classifier. # License: MIT License # Last Modified: 2020-07-16 # ############################################################################################ import cv2, glob, json, math, os, pathlib, random, sys, time import numpy as np import tensorflow as tf from datetime import datetime from PIL import Image from sys import argv from Classes.Helpers import Helpers class Data(): """ Data Helper Class Core data management class for the ALL Detection System 2019 NCS1 Classifier """ def __init__(self): """ Initializes the Data Class. """ self.Helpers = Helpers("DataProcessor") self.confs = self.Helpers.confs self.Helpers.logger.info("Data helper class initialization complete.") def getLabelsAndDirectories(self): """ Returns a list of classes/labels and directories. """ labels = [name for name in os.listdir(self.confs["Classifier"]["DatasetDir"]) if os.path.isdir( os.path.join(self.confs["Classifier"]["DatasetDir"], name)) and name != '.ipynb_checkpoints'] directories = [] for dirName in os.listdir(self.confs["Classifier"]["DatasetDir"]): if dirName != '.ipynb_checkpoints': path = os.path.join( self.confs["Classifier"]["DatasetDir"], dirName) if os.path.isdir(path): directories.append(path) return labels, directories def processFilesAndClasses(self): """ Returns a list of filenames and classes/labels. """ labels, directories = self.getLabelsAndDirectories() data = [] for directory in directories: for filename in os.listdir(directory): if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png') or filename.endswith('.gif'): data.append(os.path.join(directory, filename)) else: continue return data, sorted(labels) def writeLabels(self, labels_to_labels): """ Writes a file with the list of class names. Args: labels_to_labels: A map of (integer) labels to class names. filename: The filename where the class names are written. """ labelsFile = os.path.join( self.confs["Classifier"]["DatasetDir"], self.confs["Classifier"]["Labels"]) classesFile = os.path.join( self.confs["Classifier"]["DatasetDir"], self.confs["Classifier"]["Classes"]) with tf.gfile.Open(classesFile, 'w') as f: for label in labels_to_labels: f.write('%s\n' % (label)) with tf.gfile.Open(labelsFile, 'w') as f: for label in labels_to_labels: class_name = labels_to_labels[label] f.write('%d:%s\n' % (label, class_name)) def convertToTFRecord(self, split_name, filenames, labels_to_ids): """ Converts the given filenames to a TFRecord dataset. """ assert split_name in ['train', 'validation'] num_per_shard = int( math.ceil(len(filenames) / float(self.confs["Classifier"]["Shards"]))) self.Helpers.logger.info("Files: " + str(len(filenames))) self.Helpers.logger.info("Files per shard: " + str(num_per_shard)) with tf.Graph().as_default(): image_reader = ImageReader() with tf.Session('') as sess: for shard_id in range(self.confs["Classifier"]["Shards"]): output_filename = self.getDatasetFilename( split_name, shard_id) self.Helpers.logger.info( "Saving shard: " + output_filename) with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: start_ndx = shard_id * num_per_shard end_ndx = min( (shard_id+1) * num_per_shard, len(filenames)) for i in range(start_ndx, end_ndx): sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( i+1, len(filenames), shard_id)) sys.stdout.flush() image_data = tf.gfile.FastGFile( filenames[i], 'rb').read() height, width = image_reader.read_image_dims( sess, image_data) class_name = os.path.basename( os.path.dirname(filenames[i])) class_id = labels_to_ids[class_name] example = self.imageToTFExample( image_data, b'jpg', height, width, class_id) tfrecord_writer.write(example.SerializeToString()) sys.stdout.write('\n') sys.stdout.flush() def getDatasetFilename(self, split_name, shard_id): """ Gets the model TFRecordFile. """ output_filename = '%s_%s_%05d-of-%05d.tfrecord' % ( self.confs["Classifier"]["TFRecordFile"], split_name, shard_id, self.confs["Classifier"]["Shards"]) return os.path.join(self.confs["Classifier"]["DatasetDir"], output_filename) def int64Feature(self, values): """ Returns a TF-Feature of int64s. Args: values: A scalar or list of values. Returns: a TF-Feature. """ if not isinstance(values, (tuple, list)): values = [values] return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) def bytesFeature(self, values): """ Returns a TF-Feature of bytes. Args: values: A string. Returns: a TF-Feature. """ return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values])) def cropTestDataset(self): """ Crops the testing dataset. """ data_dir = pathlib.Path( self.confs["Classifier"]["TestImagePath"]) data = list(data_dir.glob('*.jpg')) for ipath in data: fpath = str(ipath) image = Image.open(fpath) image = image.resize((600, 600)) image.save(fpath) self.Helpers.logger.info("Test data resized.") class ImageReader(object): """ ImageReader Helper Class Provides TensorFlow image coding utilities """ def __init__(self): """ Initializes ImageReader Class """ self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_image( self._decode_jpeg_data, channels=3) def read_image_dims(self, sess, image_data): """ Gets the dimensions of image_data """ image = self.decode_jpeg(sess, image_data) return image.shape[0], image.shape[1] def decode_jpeg(self, sess, image_data): """ Decodes image_data (jpeg)""" image = sess.run(self._decode_jpeg, feed_dict={ self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image
[ 29113, 29113, 14468, 7804, 4242, 198, 2, 198, 2, 4935, 25, 220, 220, 220, 220, 220, 220, 5613, 19935, 4013, 1133, 2011, 417, 1868, 1222, 406, 20896, 45292, 3477, 1004, 43505, 9552, 4992, 4935, 198, 2, 1432, 13264, 25, 220, 220, 220, 11096, 46254, 4482, 13130, 198, 2, 4935, 25, 220, 220, 220, 220, 220, 220, 13585, 498, 48191, 9652, 198, 2, 198, 2, 6434, 25, 220, 220, 220, 220, 220, 220, 220, 7244, 30979, 12, 33, 668, 263, 357, 23159, 44, 9044, 33, 668, 263, 13, 785, 8, 198, 2, 25767, 669, 25, 198, 2, 11851, 25, 220, 220, 220, 220, 220, 220, 220, 220, 6060, 5016, 198, 2, 12489, 25, 220, 220, 6060, 1398, 329, 262, 11096, 46254, 4482, 13130, 399, 7902, 16, 5016, 7483, 13, 198, 2, 13789, 25, 220, 220, 220, 220, 220, 220, 17168, 13789, 198, 2, 4586, 40499, 25, 12131, 12, 2998, 12, 1433, 198, 2, 198, 29113, 29113, 14468, 7804, 4242, 198, 198, 11748, 269, 85, 17, 11, 15095, 11, 33918, 11, 10688, 11, 28686, 11, 3108, 8019, 11, 4738, 11, 25064, 11, 640, 220, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 25064, 1330, 1822, 85, 198, 198, 6738, 38884, 13, 12621, 19276, 1330, 10478, 364, 628, 198, 4871, 6060, 33529, 198, 220, 220, 220, 37227, 6060, 5053, 525, 5016, 628, 220, 220, 220, 7231, 1366, 4542, 1398, 329, 262, 11096, 46254, 4482, 13130, 399, 7902, 16, 5016, 7483, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20768, 4340, 262, 6060, 5016, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 796, 10478, 364, 7203, 6601, 18709, 273, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 796, 2116, 13, 12621, 19276, 13, 1102, 9501, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 13, 6404, 1362, 13, 10951, 7203, 6601, 31904, 1398, 37588, 1844, 19570, 628, 220, 220, 220, 825, 651, 17822, 1424, 1870, 13470, 1749, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 1351, 286, 6097, 14, 23912, 1424, 290, 29196, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 685, 3672, 329, 1438, 287, 28686, 13, 4868, 15908, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 8973, 8, 611, 28686, 13, 6978, 13, 9409, 343, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 33116, 1438, 4008, 290, 1438, 14512, 45302, 541, 2047, 65, 62, 9122, 13033, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 29196, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 5376, 287, 28686, 13, 4868, 15908, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26672, 5376, 14512, 45302, 541, 2047, 65, 62, 9122, 13033, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 33116, 26672, 5376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29196, 13, 33295, 7, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 14722, 11, 29196, 628, 220, 220, 220, 825, 1429, 25876, 1870, 9487, 274, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 1351, 286, 1226, 268, 1047, 290, 6097, 14, 23912, 1424, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14722, 11, 29196, 796, 2116, 13, 1136, 17822, 1424, 1870, 13470, 1749, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8619, 287, 29196, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 28686, 13, 4868, 15908, 7, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 13, 437, 2032, 342, 7, 4458, 9479, 11537, 393, 29472, 13, 437, 2032, 342, 7, 4458, 73, 22071, 11537, 393, 29472, 13, 437, 2032, 342, 7, 4458, 11134, 11537, 393, 29472, 13, 437, 2032, 342, 7, 4458, 27908, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 34945, 11, 29472, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 11, 23243, 7, 23912, 1424, 8, 628, 220, 220, 220, 825, 3551, 17822, 1424, 7, 944, 11, 14722, 62, 1462, 62, 23912, 1424, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 12257, 274, 257, 2393, 351, 262, 1351, 286, 1398, 3891, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 1462, 62, 23912, 1424, 25, 317, 3975, 286, 357, 41433, 8, 14722, 284, 1398, 3891, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 25, 383, 29472, 810, 262, 1398, 3891, 389, 3194, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 14722, 8979, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 33116, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 17822, 1424, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6097, 8979, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 33116, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 9487, 274, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 70, 7753, 13, 11505, 7, 37724, 8979, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6167, 287, 14722, 62, 1462, 62, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 4, 82, 59, 77, 6, 4064, 357, 18242, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 70, 7753, 13, 11505, 7, 23912, 1424, 8979, 11, 705, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6167, 287, 14722, 62, 1462, 62, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 3672, 796, 14722, 62, 1462, 62, 23912, 1424, 58, 18242, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 4, 67, 25, 4, 82, 59, 77, 6, 4064, 357, 18242, 11, 1398, 62, 3672, 4008, 628, 220, 220, 220, 825, 10385, 2514, 10234, 23739, 7, 944, 11, 6626, 62, 3672, 11, 1226, 268, 1047, 11, 14722, 62, 1462, 62, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1482, 24040, 262, 1813, 1226, 268, 1047, 284, 257, 24958, 23739, 27039, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 6626, 62, 3672, 287, 37250, 27432, 3256, 705, 12102, 341, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 997, 62, 525, 62, 1477, 446, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 13, 344, 346, 7, 11925, 7, 10379, 268, 1047, 8, 1220, 12178, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 2484, 1371, 8973, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 13, 6404, 1362, 13, 10951, 7203, 25876, 25, 366, 1343, 965, 7, 11925, 7, 10379, 268, 1047, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 13, 6404, 1362, 13, 10951, 7203, 25876, 583, 427, 446, 25, 366, 1343, 965, 7, 22510, 62, 525, 62, 1477, 446, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 37065, 22446, 292, 62, 12286, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 46862, 796, 7412, 33634, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 36044, 7, 7061, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 427, 446, 62, 312, 287, 2837, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 2484, 1371, 8973, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 34345, 796, 2116, 13, 1136, 27354, 292, 316, 35063, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 3672, 11, 427, 446, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 13, 6404, 1362, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 2703, 427, 446, 25, 366, 1343, 5072, 62, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 29412, 62, 952, 13, 10234, 23739, 34379, 7, 22915, 62, 34345, 8, 355, 48700, 22105, 62, 16002, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 358, 87, 796, 427, 446, 62, 312, 1635, 997, 62, 525, 62, 1477, 446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 358, 87, 796, 949, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1477, 446, 62, 312, 10, 16, 8, 1635, 997, 62, 525, 62, 1477, 446, 11, 18896, 7, 10379, 268, 1047, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 9688, 62, 358, 87, 11, 886, 62, 358, 87, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 59, 81, 4211, 35602, 889, 2939, 4064, 67, 14, 4, 67, 427, 446, 4064, 67, 6, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 10, 16, 11, 18896, 7, 10379, 268, 1047, 828, 427, 446, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 7890, 796, 48700, 13, 70, 7753, 13, 22968, 38, 8979, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 58, 72, 4357, 705, 26145, 27691, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6001, 11, 9647, 796, 2939, 62, 46862, 13, 961, 62, 9060, 62, 67, 12078, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 2939, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 3672, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 10379, 268, 1047, 58, 72, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 312, 796, 14722, 62, 1462, 62, 2340, 58, 4871, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1672, 796, 2116, 13, 9060, 2514, 10234, 16281, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 7890, 11, 275, 6, 9479, 3256, 6001, 11, 9647, 11, 1398, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48700, 22105, 62, 16002, 13, 13564, 7, 20688, 13, 32634, 1096, 2514, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 825, 651, 27354, 292, 316, 35063, 7, 944, 11, 6626, 62, 3672, 11, 427, 446, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29620, 262, 2746, 24958, 23739, 8979, 13, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 34345, 796, 705, 4, 82, 62, 4, 82, 62, 4, 2713, 67, 12, 1659, 12, 4, 2713, 67, 13, 27110, 22105, 6, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 10234, 23739, 8979, 33116, 6626, 62, 3672, 11, 427, 446, 62, 312, 11, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 2484, 1371, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 944, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 27354, 292, 316, 35277, 33116, 5072, 62, 34345, 8, 628, 220, 220, 220, 825, 493, 2414, 38816, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 24958, 12, 38816, 286, 493, 2414, 82, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 25, 317, 16578, 283, 393, 1351, 286, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 24958, 12, 38816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 27160, 11, 357, 83, 29291, 11, 1351, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 685, 27160, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48700, 13, 27432, 13, 38816, 7, 600, 2414, 62, 4868, 28, 27110, 13, 27432, 13, 5317, 2414, 8053, 7, 8367, 28, 27160, 4008, 628, 220, 220, 220, 825, 9881, 38816, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 24958, 12, 38816, 286, 9881, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 25, 317, 4731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 24958, 12, 38816, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 48700, 13, 27432, 13, 38816, 7, 33661, 62, 4868, 28, 27110, 13, 27432, 13, 45992, 8053, 7, 8367, 41888, 27160, 60, 4008, 628, 220, 220, 220, 825, 13833, 14402, 27354, 292, 316, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9325, 862, 262, 4856, 27039, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 15908, 796, 3108, 8019, 13, 15235, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1102, 9501, 14692, 9487, 7483, 1, 7131, 1, 14402, 5159, 15235, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1351, 7, 7890, 62, 15908, 13, 4743, 672, 10786, 24620, 9479, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 20966, 776, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6978, 796, 965, 7, 541, 776, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 7412, 13, 9654, 7, 69, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 13, 411, 1096, 19510, 8054, 11, 10053, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 21928, 7, 69, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12621, 19276, 13, 6404, 1362, 13, 10951, 7203, 14402, 1366, 581, 1143, 19570, 628, 198, 4871, 7412, 33634, 7, 15252, 2599, 198, 220, 220, 220, 37227, 7412, 33634, 5053, 525, 5016, 628, 220, 220, 220, 47081, 309, 22854, 37535, 2939, 19617, 20081, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 20768, 4340, 7412, 33634, 5016, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12501, 1098, 62, 73, 22071, 62, 7890, 796, 48700, 13, 5372, 13829, 7, 67, 4906, 28, 27110, 13, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12501, 1098, 62, 73, 22071, 796, 48700, 13, 9060, 13, 12501, 1098, 62, 9060, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12501, 1098, 62, 73, 22071, 62, 7890, 11, 9619, 28, 18, 8, 628, 220, 220, 220, 825, 1100, 62, 9060, 62, 67, 12078, 7, 944, 11, 264, 408, 11, 2939, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29620, 262, 15225, 286, 2939, 62, 7890, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 12501, 1098, 62, 73, 22071, 7, 82, 408, 11, 2939, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 13, 43358, 58, 15, 4357, 2939, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 825, 36899, 62, 73, 22071, 7, 944, 11, 264, 408, 11, 2939, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4280, 4147, 2939, 62, 7890, 357, 73, 22071, 8, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 264, 408, 13, 5143, 7, 944, 13557, 12501, 1098, 62, 73, 22071, 11, 3745, 62, 11600, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12501, 1098, 62, 73, 22071, 62, 7890, 25, 2939, 62, 7890, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 9060, 13, 43358, 8, 6624, 513, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2939, 13, 43358, 58, 17, 60, 6624, 513, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2939, 198 ]
2.115942
3,657
# File content is auto-generated. Do not modify. # pylint: skip-file from ._internal import NDArrayBase from ..base import _Null def ElementWiseSum(*args, **kwargs): r"""Adds all input arguments element-wise. .. math:: add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n ``add_n`` is potentially more efficient than calling ``add`` by `n` times. The storage type of ``add_n`` output depends on storage types of inputs - add_n(row_sparse, row_sparse, ..) = row_sparse - otherwise, ``add_n`` generates output with default storage Defined in src/operator/tensor/elemwise_sum.cc:L123 Parameters ---------- args : NDArray[] Positional input arguments out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def abs(data=None, out=None, name=None, **kwargs): r"""Returns element-wise absolute value of the input. Example:: abs([-2, 0, 3]) = [2, 0, 3] The storage type of ``abs`` output depends upon the input storage type: - abs(default) = default - abs(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L385 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def adam_update(weight=None, grad=None, mean=None, var=None, lr=_Null, beta1=_Null, beta2=_Null, epsilon=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, out=None, name=None, **kwargs): r"""Update function for Adam optimizer. Adam is seen as a generalization of AdaGrad. Adam update consists of the following steps, where g represents gradient and m, v are 1st and 2nd order moment estimates (mean and variance). .. math:: g_t = \nabla J(W_{t-1})\\ m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t\\ v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2\\ W_t = W_{t-1} - \alpha \frac{ m_t }{ \sqrt{ v_t } + \epsilon } It updates the weights using:: m = beta1*m + (1-beta1)*grad v = beta2*v + (1-beta2)*(grad**2) w += - learning_rate * m / (sqrt(v) + epsilon) If w, m and v are all of ``row_sparse`` storage type, only the row slices whose indices appear in grad.indices are updated (for w, m and v):: for row in grad.indices: m[row] = beta1*m[row] + (1-beta1)*grad[row] v[row] = beta2*v[row] + (1-beta2)*(grad[row]**2) w[row] += - learning_rate * m[row] / (sqrt(v[row]) + epsilon) Defined in src/operator/optimizer_op.cc:L383 Parameters ---------- weight : NDArray Weight grad : NDArray Gradient mean : NDArray Moving mean var : NDArray Moving variance lr : float, required Learning rate beta1 : float, optional, default=0.9 The decay rate for the 1st moment estimates. beta2 : float, optional, default=0.999 The decay rate for the 2nd moment estimates. epsilon : float, optional, default=1e-08 A small constant for numerical stability. wd : float, optional, default=0 Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight. rescale_grad : float, optional, default=1 Rescale gradient to grad = rescale_grad*grad. clip_gradient : float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient). out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def add_n(*args, **kwargs): r"""Adds all input arguments element-wise. .. math:: add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n ``add_n`` is potentially more efficient than calling ``add`` by `n` times. The storage type of ``add_n`` output depends on storage types of inputs - add_n(row_sparse, row_sparse, ..) = row_sparse - otherwise, ``add_n`` generates output with default storage Defined in src/operator/tensor/elemwise_sum.cc:L123 Parameters ---------- args : NDArray[] Positional input arguments out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arccos(data=None, out=None, name=None, **kwargs): r"""Returns element-wise inverse cosine of the input array. The input should be in range `[-1, 1]`. The output is in the closed interval :math:`[0, \pi]` .. math:: arccos([-1, -.707, 0, .707, 1]) = [\pi, 3\pi/4, \pi/2, \pi/4, 0] The storage type of ``arccos`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L123 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arccosh(data=None, out=None, name=None, **kwargs): r"""Returns the element-wise inverse hyperbolic cosine of the input array, \ computed element-wise. The storage type of ``arccosh`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L264 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arcsin(data=None, out=None, name=None, **kwargs): r"""Returns element-wise inverse sine of the input array. The input should be in the range `[-1, 1]`. The output is in the closed interval of [:math:`-\pi/2`, :math:`\pi/2`]. .. math:: arcsin([-1, -.707, 0, .707, 1]) = [-\pi/2, -\pi/4, 0, \pi/4, \pi/2] The storage type of ``arcsin`` output depends upon the input storage type: - arcsin(default) = default - arcsin(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L104 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arcsinh(data=None, out=None, name=None, **kwargs): r"""Returns the element-wise inverse hyperbolic sine of the input array, \ computed element-wise. The storage type of ``arcsinh`` output depends upon the input storage type: - arcsinh(default) = default - arcsinh(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L250 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arctan(data=None, out=None, name=None, **kwargs): r"""Returns element-wise inverse tangent of the input array. The output is in the closed interval :math:`[-\pi/2, \pi/2]` .. math:: arctan([-1, 0, 1]) = [-\pi/4, 0, \pi/4] The storage type of ``arctan`` output depends upon the input storage type: - arctan(default) = default - arctan(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L144 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def arctanh(data=None, out=None, name=None, **kwargs): r"""Returns the element-wise inverse hyperbolic tangent of the input array, \ computed element-wise. The storage type of ``arctanh`` output depends upon the input storage type: - arctanh(default) = default - arctanh(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L281 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def cast_storage(data=None, stype=_Null, out=None, name=None, **kwargs): r"""Casts tensor storage type to the new type. When an NDArray with default storage type is cast to csr or row_sparse storage, the result is compact, which means: - for csr, zero values will not be retained - for row_sparse, row slices of all zeros will not be retained The storage type of ``cast_storage`` output depends on stype parameter: - cast_storage(csr, 'default') = default - cast_storage(row_sparse, 'default') = default - cast_storage(default, 'csr') = csr - cast_storage(default, 'row_sparse') = row_sparse Example:: dense = [[ 0., 1., 0.], [ 2., 0., 3.], [ 0., 0., 0.], [ 0., 0., 0.]] # cast to row_sparse storage type rsp = cast_storage(dense, 'row_sparse') rsp.indices = [0, 1] rsp.values = [[ 0., 1., 0.], [ 2., 0., 3.]] # cast to csr storage type csr = cast_storage(dense, 'csr') csr.indices = [1, 0, 2] csr.values = [ 1., 2., 3.] csr.indptr = [0, 1, 3, 3, 3] Defined in src/operator/tensor/cast_storage.cc:L69 Parameters ---------- data : NDArray The input. stype : {'csr', 'default', 'row_sparse'}, required Output storage type. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def ceil(data=None, out=None, name=None, **kwargs): r"""Returns element-wise ceiling of the input. The ceil of the scalar x is the smallest integer i, such that i >= x. Example:: ceil([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 2., 2., 3.] The storage type of ``ceil`` output depends upon the input storage type: - ceil(default) = default - ceil(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L463 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def clip(data=None, a_min=_Null, a_max=_Null, out=None, name=None, **kwargs): r"""Clips (limits) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. Clipping ``x`` between `a_min` and `a_x` would be:: clip(x, a_min, a_max) = max(min(x, a_max), a_min)) Example:: x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.] The storage type of ``clip`` output depends on storage types of inputs and the a_min, a_max \ parameter values: - clip(default) = default - clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse - clip(csr, a_min <= 0, a_max >= 0) = csr - clip(row_sparse, a_min < 0, a_max < 0) = default - clip(row_sparse, a_min > 0, a_max > 0) = default - clip(csr, a_min < 0, a_max < 0) = csr - clip(csr, a_min > 0, a_max > 0) = csr Defined in src/operator/tensor/matrix_op.cc:L486 Parameters ---------- data : NDArray Input array. a_min : float, required Minimum value a_max : float, required Maximum value out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def cos(data=None, out=None, name=None, **kwargs): r"""Computes the element-wise cosine of the input array. The input should be in radians (:math:`2\pi` rad equals 360 degrees). .. math:: cos([0, \pi/4, \pi/2]) = [1, 0.707, 0] The storage type of ``cos`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L63 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def cosh(data=None, out=None, name=None, **kwargs): r"""Returns the hyperbolic cosine of the input array, computed element-wise. .. math:: cosh(x) = 0.5\times(exp(x) + exp(-x)) The storage type of ``cosh`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L216 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def degrees(data=None, out=None, name=None, **kwargs): r"""Converts each element of the input array from radians to degrees. .. math:: degrees([0, \pi/2, \pi, 3\pi/2, 2\pi]) = [0, 90, 180, 270, 360] The storage type of ``degrees`` output depends upon the input storage type: - degrees(default) = default - degrees(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L163 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def dot(lhs=None, rhs=None, transpose_a=_Null, transpose_b=_Null, out=None, name=None, **kwargs): r"""Dot product of two arrays. ``dot``'s behavior depends on the input array dimensions: - 1-D arrays: inner product of vectors - 2-D arrays: matrix multiplication - N-D arrays: a sum product over the last axis of the first input and the first axis of the second input For example, given 3-D ``x`` with shape `(n,m,k)` and ``y`` with shape `(k,r,s)`, the result array will have shape `(n,m,r,s)`. It is computed by:: dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b]) Example:: x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) dot(x,y)[0,0,1,1] = 0 sum(x[0,0,:]*y[:,1,1]) = 0 The storage type of ``dot`` output depends on storage types of inputs and transpose options: - dot(csr, default) = default - dot(csr.T, default) = row_sparse - dot(csr, row_sparse) = default - dot(default, csr) = csr - otherwise, ``dot`` generates output with default storage Defined in src/operator/tensor/dot.cc:L62 Parameters ---------- lhs : NDArray The first input rhs : NDArray The second input transpose_a : boolean, optional, default=0 If true then transpose the first input before dot. transpose_b : boolean, optional, default=0 If true then transpose the second input before dot. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def elemwise_add(lhs=None, rhs=None, out=None, name=None, **kwargs): r"""Adds arguments element-wise. The storage type of ``elemwise_add`` output depends on storage types of inputs - elemwise_add(row_sparse, row_sparse) = row_sparse - elemwise_add(csr, csr) = csr - otherwise, ``elemwise_add`` generates output with default storage Parameters ---------- lhs : NDArray first input rhs : NDArray second input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def elemwise_div(lhs=None, rhs=None, out=None, name=None, **kwargs): r"""Divides arguments element-wise. The storage type of ``elemwise_div`` output is always dense Parameters ---------- lhs : NDArray first input rhs : NDArray second input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def elemwise_mul(lhs=None, rhs=None, out=None, name=None, **kwargs): r"""Multiplies arguments element-wise. The storage type of ``elemwise_mul`` output depends on storage types of inputs - elemwise_mul(default, default) = default - elemwise_mul(row_sparse, row_sparse) = row_sparse - elemwise_mul(default, row_sparse) = default - elemwise_mul(row_sparse, default) = default - elemwise_mul(csr, csr) = csr - otherwise, ``elemwise_mul`` generates output with default storage Parameters ---------- lhs : NDArray first input rhs : NDArray second input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def elemwise_sub(lhs=None, rhs=None, out=None, name=None, **kwargs): r"""Subtracts arguments element-wise. The storage type of ``elemwise_sub`` output depends on storage types of inputs - elemwise_sub(row_sparse, row_sparse) = row_sparse - elemwise_sub(csr, csr) = csr - otherwise, ``elemwise_sub`` generates output with default storage Parameters ---------- lhs : NDArray first input rhs : NDArray second input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def exp(data=None, out=None, name=None, **kwargs): r"""Returns element-wise exponential value of the input. .. math:: exp(x) = e^x \approx 2.718^x Example:: exp([0, 1, 2]) = [1., 2.71828175, 7.38905621] The storage type of ``exp`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L641 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def expm1(data=None, out=None, name=None, **kwargs): r"""Returns ``exp(x) - 1`` computed element-wise on the input. This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. The storage type of ``expm1`` output depends upon the input storage type: - expm1(default) = default - expm1(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L720 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def fix(data=None, out=None, name=None, **kwargs): r"""Returns element-wise rounded value to the nearest \ integer towards zero of the input. Example:: fix([-2.1, -1.9, 1.9, 2.1]) = [-2., -1., 1., 2.] The storage type of ``fix`` output depends upon the input storage type: - fix(default) = default - fix(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L520 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def floor(data=None, out=None, name=None, **kwargs): r"""Returns element-wise floor of the input. The floor of the scalar x is the largest integer i, such that i <= x. Example:: floor([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-3., -2., 1., 1., 2.] The storage type of ``floor`` output depends upon the input storage type: - floor(default) = default - floor(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L482 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def ftrl_update(weight=None, grad=None, z=None, n=None, lr=_Null, lamda1=_Null, beta=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, out=None, name=None, **kwargs): r"""Update function for Ftrl optimizer. Referenced from *Ad Click Prediction: a View from the Trenches*, available at http://dl.acm.org/citation.cfm?id=2488200. It updates the weights using:: rescaled_grad = clip(grad * rescale_grad, clip_gradient) z += rescaled_grad - (sqrt(n + rescaled_grad**2) - sqrt(n)) * weight / learning_rate n += rescaled_grad**2 w = (sign(z) * lamda1 - z) / ((beta + sqrt(n)) / learning_rate + wd) * (abs(z) > lamda1) If w, z and n are all of ``row_sparse`` storage type, only the row slices whose indices appear in grad.indices are updated (for w, z and n):: for row in grad.indices: rescaled_grad[row] = clip(grad[row] * rescale_grad, clip_gradient) z[row] += rescaled_grad[row] - (sqrt(n[row] + rescaled_grad[row]**2) - sqrt(n[row])) * weight[row] / learning_rate n[row] += rescaled_grad[row]**2 w[row] = (sign(z[row]) * lamda1 - z[row]) / ((beta + sqrt(n[row])) / learning_rate + wd) * (abs(z[row]) > lamda1) Defined in src/operator/optimizer_op.cc:L520 Parameters ---------- weight : NDArray Weight grad : NDArray Gradient z : NDArray z n : NDArray Square of grad lr : float, required Learning rate lamda1 : float, optional, default=0.01 The L1 regularization coefficient. beta : float, optional, default=1 Per-Coordinate Learning Rate beta. wd : float, optional, default=0 Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight. rescale_grad : float, optional, default=1 Rescale gradient to grad = rescale_grad*grad. clip_gradient : float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient). out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def gamma(data=None, out=None, name=None, **kwargs): r"""Returns the gamma function (extension of the factorial function \ to the reals), computed element-wise on the input array. The storage type of ``gamma`` output is always dense Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def gammaln(data=None, out=None, name=None, **kwargs): r"""Returns element-wise log of the absolute value of the gamma function \ of the input. The storage type of ``gammaln`` output is always dense Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def log(data=None, out=None, name=None, **kwargs): r"""Returns element-wise Natural logarithmic value of the input. The natural logarithm is logarithm in base *e*, so that ``log(exp(x)) = x`` The storage type of ``log`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L653 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def log10(data=None, out=None, name=None, **kwargs): r"""Returns element-wise Base-10 logarithmic value of the input. ``10**log10(x) = x`` The storage type of ``log10`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L665 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def log1p(data=None, out=None, name=None, **kwargs): r"""Returns element-wise ``log(1 + x)`` value of the input. This function is more accurate than ``log(1 + x)`` for small ``x`` so that :math:`1+x\approx 1` The storage type of ``log1p`` output depends upon the input storage type: - log1p(default) = default - log1p(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L702 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def log2(data=None, out=None, name=None, **kwargs): r"""Returns element-wise Base-2 logarithmic value of the input. ``2**log2(x) = x`` The storage type of ``log2`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L677 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def make_loss(data=None, out=None, name=None, **kwargs): r"""Make your own loss function in network construction. This operator accepts a customized loss function symbol as a terminal loss and the symbol should be an operator with no backward dependency. The output of this function is the gradient of loss with respect to the input data. For example, if you are a making a cross entropy loss function. Assume ``out`` is the predicted output and ``label`` is the true label, then the cross entropy can be defined as:: cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = make_loss(cross_entropy) We will need to use ``make_loss`` when we are creating our own loss function or we want to combine multiple loss functions. Also we may want to stop some variables' gradients from backpropagation. See more detail in ``BlockGrad`` or ``stop_gradient``. The storage type of ``make_loss`` output depends upon the input storage type: - make_loss(default) = default - make_loss(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L199 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def mean(data=None, axis=_Null, keepdims=_Null, exclude=_Null, out=None, name=None, **kwargs): r"""Computes the mean of array elements over given axes. Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L101 Parameters ---------- data : NDArray The input axis : Shape(tuple), optional, default=[] The axis or axes along which to perform the reduction. The default, `axis=()`, will compute over all elements into a scalar array with shape `(1,)`. If `axis` is int, a reduction is performed on a particular axis. If `axis` is a tuple of ints, a reduction is performed on all the axes specified in the tuple. If `exclude` is true, reduction will be performed on the axes that are NOT in axis instead. Negative values means indexing from right to left. keepdims : boolean, optional, default=0 If this is set to `True`, the reduced axes are left in the result as dimension with size one. exclude : boolean, optional, default=0 Whether to perform reduction on axis that are NOT in axis instead. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def negative(data=None, out=None, name=None, **kwargs): r"""Numerical negative of the argument, element-wise. The storage type of ``negative`` output depends upon the input storage type: - negative(default) = default - negative(row_sparse) = row_sparse - negative(csr) = csr Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def norm(data=None, out=None, name=None, **kwargs): r"""Flattens the input array and then computes the l2 norm. Examples:: x = [[1, 2], [3, 4]] norm(x) = [5.47722578] rsp = x.cast_storage('row_sparse') norm(rsp) = [5.47722578] csr = x.cast_storage('csr') norm(csr) = [5.47722578] Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L266 Parameters ---------- data : NDArray Source input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def radians(data=None, out=None, name=None, **kwargs): r"""Converts each element of the input array from degrees to radians. .. math:: radians([0, 90, 180, 270, 360]) = [0, \pi/2, \pi, 3\pi/2, 2\pi] The storage type of ``radians`` output depends upon the input storage type: - radians(default) = default - radians(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L182 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def relu(data=None, out=None, name=None, **kwargs): r"""Computes rectified linear. .. math:: max(features, 0) The storage type of ``relu`` output depends upon the input storage type: - relu(default) = default - relu(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L83 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def retain(data=None, indices=None, out=None, name=None, **kwargs): r"""pick rows specified by user input index array from a row sparse matrix and save them in the output sparse matrix. Example:: data = [[1, 2], [3, 4], [5, 6]] indices = [0, 1, 3] shape = (4, 2) rsp_in = row_sparse(data, indices) to_retain = [0, 3] rsp_out = retain(rsp_in, to_retain) rsp_out.values = [[1, 2], [5, 6]] rsp_out.indices = [0, 3] The storage type of ``retain`` output depends on storage types of inputs - retain(row_sparse, default) = row_sparse - otherwise, ``retain`` is not supported Defined in src/operator/tensor/sparse_retain.cc:L53 Parameters ---------- data : NDArray The input array for sparse_retain operator. indices : NDArray The index array of rows ids that will be retained. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def rint(data=None, out=None, name=None, **kwargs): r"""Returns element-wise rounded value to the nearest integer of the input. .. note:: - For input ``n.5`` ``rint`` returns ``n`` while ``round`` returns ``n+1``. - For input ``-n.5`` both ``rint`` and ``round`` returns ``-n-1``. Example:: rint([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 1., -2., 2., 2.] The storage type of ``rint`` output depends upon the input storage type: - rint(default) = default - rint(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L444 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def round(data=None, out=None, name=None, **kwargs): r"""Returns element-wise rounded value to the nearest integer of the input. Example:: round([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 2., -2., 2., 2.] The storage type of ``round`` output depends upon the input storage type: - round(default) = default - round(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L423 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def rsqrt(data=None, out=None, name=None, **kwargs): r"""Returns element-wise inverse square-root value of the input. .. math:: rsqrt(x) = 1/\sqrt{x} Example:: rsqrt([4,9,16]) = [0.5, 0.33333334, 0.25] The storage type of ``rsqrt`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L584 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sgd_mom_update(weight=None, grad=None, mom=None, lr=_Null, momentum=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, out=None, name=None, **kwargs): r"""Momentum update function for Stochastic Gradient Descent (SDG) optimizer. Momentum update has better convergence rates on neural networks. Mathematically it looks like below: .. math:: v_1 = \alpha * \nabla J(W_0)\\ v_t = \gamma v_{t-1} - \alpha * \nabla J(W_{t-1})\\ W_t = W_{t-1} + v_t It updates the weights using:: v = momentum * v - learning_rate * gradient weight += v Where the parameter ``momentum`` is the decay rate of momentum estimates at each epoch. If weight and grad are both of ``row_sparse`` storage type and momentum is of ``default`` storage type, standard update is applied. If weight, grad and momentum are all of ``row_sparse`` storage type, only the row slices whose indices appear in grad.indices are updated (for both weight and momentum):: for row in gradient.indices: v[row] = momentum[row] * v[row] - learning_rate * gradient[row] weight[row] += v[row] Defined in src/operator/optimizer_op.cc:L265 Parameters ---------- weight : NDArray Weight grad : NDArray Gradient mom : NDArray Momentum lr : float, required Learning rate momentum : float, optional, default=0 The decay rate of momentum estimates at each epoch. wd : float, optional, default=0 Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight. rescale_grad : float, optional, default=1 Rescale gradient to grad = rescale_grad*grad. clip_gradient : float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient). out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sgd_update(weight=None, grad=None, lr=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, out=None, name=None, **kwargs): r"""Update function for Stochastic Gradient Descent (SDG) optimizer. It updates the weights using:: weight = weight - learning_rate * gradient If weight is of ``row_sparse`` storage type, only the row slices whose indices appear in grad.indices are updated:: for row in gradient.indices: weight[row] = weight[row] - learning_rate * gradient[row] Defined in src/operator/optimizer_op.cc:L222 Parameters ---------- weight : NDArray Weight grad : NDArray Gradient lr : float, required Learning rate wd : float, optional, default=0 Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight. rescale_grad : float, optional, default=1 Rescale gradient to grad = rescale_grad*grad. clip_gradient : float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient). out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sigmoid(data=None, out=None, name=None, **kwargs): r"""Computes sigmoid of x element-wise. .. math:: y = 1 / (1 + exp(-x)) The storage type of ``sigmoid`` output is always dense Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L102 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sign(data=None, out=None, name=None, **kwargs): r"""Returns element-wise sign of the input. Example:: sign([-2, 0, 3]) = [-1, 0, 1] The storage type of ``sign`` output depends upon the input storage type: - sign(default) = default - sign(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L404 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sin(data=None, out=None, name=None, **kwargs): r"""Computes the element-wise sine of the input array. The input should be in radians (:math:`2\pi` rad equals 360 degrees). .. math:: sin([0, \pi/4, \pi/2]) = [0, 0.707, 1] The storage type of ``sin`` output depends upon the input storage type: - sin(default) = default - sin(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L46 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sinh(data=None, out=None, name=None, **kwargs): r"""Returns the hyperbolic sine of the input array, computed element-wise. .. math:: sinh(x) = 0.5\times(exp(x) - exp(-x)) The storage type of ``sinh`` output depends upon the input storage type: - sinh(default) = default - sinh(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L201 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def slice(data=None, begin=_Null, end=_Null, step=_Null, out=None, name=None, **kwargs): r"""Slices a region of the array. .. note:: ``crop`` is deprecated. Use ``slice`` instead. This function returns a sliced array between the indices given by `begin` and `end` with the corresponding `step`. For an input array of ``shape=(d_0, d_1, ..., d_n-1)``, slice operation with ``begin=(b_0, b_1...b_m-1)``, ``end=(e_0, e_1, ..., e_m-1)``, and ``step=(s_0, s_1, ..., s_m-1)``, where m <= n, results in an array with the shape ``(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)``. The resulting array's *k*-th dimension contains elements from the *k*-th dimension of the input array starting from index ``b_k`` (inclusive) with step ``s_k`` until reaching ``e_k`` (exclusive). If the *k*-th elements are `None` in the sequence of `begin`, `end`, and `step`, the following rule will be used to set default values. If `s_k` is `None`, set `s_k=1`. If `s_k > 0`, set `b_k=0`, `e_k=d_k`; else, set `b_k=d_k-1`, `e_k=-1`. The storage type of ``slice`` output depends on storage types of inputs - slice(csr) = csr - otherwise, ``slice`` generates output with default storage .. note:: When input data storage type is csr, it only supports step=(), or step=(None,), or step=(1,) to generate a csr output. For other step parameter values, it falls back to slicing a dense tensor. Example:: x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.], [ 6., 7., 8.]] slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.], [5., 7.], [1., 3.]] Defined in src/operator/tensor/matrix_op.cc:L355 Parameters ---------- data : NDArray Source input begin : Shape(tuple), required starting indices for the slice operation, supports negative indices. end : Shape(tuple), required ending indices for the slice operation, supports negative indices. step : Shape(tuple), optional, default=[] step for the slice operation, supports negative values. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sqrt(data=None, out=None, name=None, **kwargs): r"""Returns element-wise square-root value of the input. .. math:: \textrm{sqrt}(x) = \sqrt{x} Example:: sqrt([4, 9, 16]) = [2, 3, 4] The storage type of ``sqrt`` output depends upon the input storage type: - sqrt(default) = default - sqrt(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L564 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def square(data=None, out=None, name=None, **kwargs): r"""Returns element-wise squared value of the input. .. math:: square(x) = x^2 Example:: square([2, 3, 4]) = [4, 9, 16] The storage type of ``square`` output depends upon the input storage type: - square(default) = default - square(row_sparse) = row_sparse - square(csr) = csr Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L541 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def stop_gradient(data=None, out=None, name=None, **kwargs): r"""Stops gradient computation. Stops the accumulated gradient of the inputs from flowing through this operator in the backward direction. In other words, this operator prevents the contribution of its inputs to be taken into account for computing gradients. Example:: v1 = [1, 2] v2 = [0, 1] a = Variable('a') b = Variable('b') b_stop_grad = stop_gradient(3 * b) loss = MakeLoss(b_stop_grad + a) executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2) executor.outputs [ 1. 5.] executor.backward() executor.grad_arrays [ 0. 0.] [ 1. 1.] Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L166 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def sum(data=None, axis=_Null, keepdims=_Null, exclude=_Null, out=None, name=None, **kwargs): r"""Computes the sum of array elements over given axes. .. Note:: `sum` and `sum_axis` are equivalent. For ndarray of csr storage type summation along axis 0 and axis 1 is supported. Setting keepdims or exclude to True will cause a fallback to dense operator. Example:: data = [[[1,2],[2,3],[1,3]], [[1,4],[4,3],[5,2]], [[7,1],[7,2],[7,3]]] sum(data, axis=1) [[ 4. 8.] [ 10. 9.] [ 21. 6.]] sum(data, axis=[1,2]) [ 12. 19. 27.] data = [[1,2,0], [3,0,1], [4,1,0]] csr = cast_storage(data, 'csr') sum(csr, axis=0) [ 8. 3. 1.] sum(csr, axis=1) [ 3. 4. 5.] Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L85 Parameters ---------- data : NDArray The input axis : Shape(tuple), optional, default=[] The axis or axes along which to perform the reduction. The default, `axis=()`, will compute over all elements into a scalar array with shape `(1,)`. If `axis` is int, a reduction is performed on a particular axis. If `axis` is a tuple of ints, a reduction is performed on all the axes specified in the tuple. If `exclude` is true, reduction will be performed on the axes that are NOT in axis instead. Negative values means indexing from right to left. keepdims : boolean, optional, default=0 If this is set to `True`, the reduced axes are left in the result as dimension with size one. exclude : boolean, optional, default=0 Whether to perform reduction on axis that are NOT in axis instead. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def tan(data=None, out=None, name=None, **kwargs): r"""Computes the element-wise tangent of the input array. The input should be in radians (:math:`2\pi` rad equals 360 degrees). .. math:: tan([0, \pi/4, \pi/2]) = [0, 1, -inf] The storage type of ``tan`` output depends upon the input storage type: - tan(default) = default - tan(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L83 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def tanh(data=None, out=None, name=None, **kwargs): r"""Returns the hyperbolic tangent of the input array, computed element-wise. .. math:: tanh(x) = sinh(x) / cosh(x) The storage type of ``tanh`` output depends upon the input storage type: - tanh(default) = default - tanh(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L234 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def trunc(data=None, out=None, name=None, **kwargs): r"""Return the element-wise truncated value of the input. The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional part of the signed number x is discarded. Example:: trunc([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 1., 1., 2.] The storage type of ``trunc`` output depends upon the input storage type: - trunc(default) = default - trunc(row_sparse) = row_sparse Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L502 Parameters ---------- data : NDArray The input array. out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) def zeros_like(data=None, out=None, name=None, **kwargs): r"""Return an array of zeros with the same shape and type as the input array. The storage type of ``zeros_like`` output depends on the storage type of the input - zeros_like(row_sparse) = row_sparse - zeros_like(csr) = csr - zeros_like(default) = default Examples:: x = [[ 1., 1., 1.], [ 1., 1., 1.]] zeros_like(x) = [[ 0., 0., 0.], [ 0., 0., 0.]] Parameters ---------- data : NDArray The input out : NDArray, optional The output NDArray to hold the result. Returns ------- out : NDArray or list of NDArrays The output of this function. """ return (0,) __all__ = ['ElementWiseSum', 'abs', 'adam_update', 'add_n', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctanh', 'cast_storage', 'ceil', 'clip', 'cos', 'cosh', 'degrees', 'dot', 'elemwise_add', 'elemwise_div', 'elemwise_mul', 'elemwise_sub', 'exp', 'expm1', 'fix', 'floor', 'ftrl_update', 'gamma', 'gammaln', 'log', 'log10', 'log1p', 'log2', 'make_loss', 'mean', 'negative', 'norm', 'radians', 'relu', 'retain', 'rint', 'round', 'rsqrt', 'sgd_mom_update', 'sgd_update', 'sigmoid', 'sign', 'sin', 'sinh', 'slice', 'sqrt', 'square', 'stop_gradient', 'sum', 'tan', 'tanh', 'trunc', 'zeros_like']
[ 2, 9220, 2695, 318, 8295, 12, 27568, 13, 2141, 407, 13096, 13, 198, 2, 279, 2645, 600, 25, 14267, 12, 7753, 198, 6738, 47540, 32538, 1330, 25524, 19182, 14881, 198, 6738, 11485, 8692, 1330, 4808, 35067, 198, 198, 4299, 11703, 54, 786, 13065, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 46245, 477, 5128, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 751, 59, 62, 77, 7, 64, 62, 16, 11, 257, 62, 17, 11, 2644, 11, 257, 62, 77, 8, 796, 257, 62, 16, 1343, 257, 62, 17, 1343, 2644, 1343, 257, 62, 77, 628, 220, 220, 220, 7559, 2860, 62, 77, 15506, 318, 6196, 517, 6942, 621, 4585, 7559, 2860, 15506, 416, 4600, 77, 63, 1661, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 2860, 62, 77, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 532, 751, 62, 77, 7, 808, 62, 82, 29572, 11, 5752, 62, 82, 29572, 11, 11485, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 532, 4306, 11, 7559, 2860, 62, 77, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 16345, 13, 535, 25, 43, 10163, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 26498, 1058, 25524, 19182, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 18574, 1859, 5128, 7159, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2352, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 4112, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 2352, 26933, 12, 17, 11, 657, 11, 513, 12962, 796, 685, 17, 11, 657, 11, 513, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 8937, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 2352, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 2352, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 27203, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 23197, 62, 19119, 7, 6551, 28, 14202, 11, 3915, 28, 14202, 11, 1612, 28, 14202, 11, 1401, 28, 14202, 11, 300, 81, 28, 62, 35067, 11, 12159, 16, 28, 62, 35067, 11, 12159, 17, 28, 62, 35067, 11, 304, 862, 33576, 28, 62, 35067, 11, 266, 67, 28, 62, 35067, 11, 6811, 1000, 62, 9744, 28, 62, 35067, 11, 10651, 62, 49607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 10260, 2163, 329, 7244, 6436, 7509, 13, 7244, 318, 1775, 355, 257, 2276, 1634, 198, 220, 220, 220, 286, 47395, 42731, 13, 628, 220, 220, 220, 7244, 4296, 10874, 286, 262, 1708, 4831, 11, 810, 308, 6870, 31312, 290, 285, 11, 410, 198, 220, 220, 220, 389, 352, 301, 290, 362, 358, 1502, 2589, 7746, 357, 32604, 290, 24198, 737, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 308, 62, 83, 796, 3467, 77, 397, 5031, 449, 7, 54, 23330, 83, 12, 16, 30072, 6852, 198, 220, 220, 220, 220, 285, 62, 83, 796, 3467, 31361, 62, 16, 285, 23330, 83, 12, 16, 92, 1343, 357, 16, 532, 3467, 31361, 62, 16, 8, 308, 62, 83, 6852, 198, 220, 220, 220, 220, 410, 62, 83, 796, 3467, 31361, 62, 17, 410, 23330, 83, 12, 16, 92, 1343, 357, 16, 532, 3467, 31361, 62, 17, 8, 308, 62, 83, 61, 17, 6852, 198, 220, 220, 220, 220, 370, 62, 83, 796, 370, 23330, 83, 12, 16, 92, 532, 3467, 26591, 3467, 31944, 90, 285, 62, 83, 1782, 90, 3467, 31166, 17034, 90, 410, 62, 83, 1782, 1343, 3467, 538, 18217, 261, 1782, 628, 220, 220, 220, 632, 5992, 262, 19590, 1262, 3712, 628, 220, 220, 220, 220, 285, 796, 12159, 16, 9, 76, 1343, 357, 16, 12, 31361, 16, 27493, 9744, 198, 220, 220, 220, 220, 410, 796, 12159, 17, 9, 85, 1343, 357, 16, 12, 31361, 17, 27493, 7, 9744, 1174, 17, 8, 198, 220, 220, 220, 220, 266, 15853, 532, 4673, 62, 4873, 1635, 285, 1220, 357, 31166, 17034, 7, 85, 8, 1343, 304, 862, 33576, 8, 628, 220, 220, 220, 1002, 266, 11, 285, 290, 410, 389, 477, 286, 7559, 808, 62, 82, 29572, 15506, 6143, 2099, 11, 198, 220, 220, 220, 691, 262, 5752, 24314, 3025, 36525, 1656, 287, 3915, 13, 521, 1063, 389, 6153, 357, 1640, 266, 11, 285, 290, 410, 2599, 25, 628, 220, 220, 220, 220, 329, 5752, 287, 3915, 13, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 285, 58, 808, 60, 796, 12159, 16, 9, 76, 58, 808, 60, 1343, 357, 16, 12, 31361, 16, 27493, 9744, 58, 808, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 410, 58, 808, 60, 796, 12159, 17, 9, 85, 58, 808, 60, 1343, 357, 16, 12, 31361, 17, 27493, 7, 9744, 58, 808, 60, 1174, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 808, 60, 15853, 532, 4673, 62, 4873, 1635, 285, 58, 808, 60, 1220, 357, 31166, 17034, 7, 85, 58, 808, 12962, 1343, 304, 862, 33576, 8, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 40085, 7509, 62, 404, 13, 535, 25, 43, 34741, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3463, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 198, 220, 220, 220, 3915, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 17701, 1153, 198, 220, 220, 220, 1612, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 26768, 1612, 198, 220, 220, 220, 1401, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 26768, 24198, 198, 220, 220, 220, 300, 81, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 18252, 2494, 198, 220, 220, 220, 12159, 16, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 13, 24, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22119, 2494, 329, 262, 352, 301, 2589, 7746, 13, 198, 220, 220, 220, 12159, 17, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 13, 17032, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22119, 2494, 329, 262, 362, 358, 2589, 7746, 13, 198, 220, 220, 220, 304, 862, 33576, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 68, 12, 2919, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1402, 6937, 329, 29052, 10159, 13, 198, 220, 220, 220, 266, 67, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 22119, 16339, 902, 262, 9432, 2163, 351, 257, 3218, 1634, 3381, 326, 23634, 4340, 1588, 19590, 13, 383, 7389, 16252, 351, 262, 6616, 286, 262, 14735, 286, 1123, 3463, 13, 198, 220, 220, 220, 6811, 1000, 62, 9744, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1874, 38765, 31312, 284, 3915, 796, 6811, 1000, 62, 9744, 9, 9744, 13, 198, 220, 220, 220, 10651, 62, 49607, 1058, 12178, 11, 11902, 11, 4277, 10779, 16, 198, 220, 220, 220, 220, 220, 220, 220, 42512, 31312, 284, 262, 2837, 286, 25915, 15036, 62, 49607, 11, 10651, 62, 49607, 60, 1002, 10651, 62, 49607, 19841, 657, 11, 31312, 45013, 318, 2900, 572, 13, 3915, 796, 3509, 7, 1084, 7, 9744, 11, 10651, 62, 49607, 828, 532, 15036, 62, 49607, 737, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 751, 62, 77, 46491, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 46245, 477, 5128, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 751, 59, 62, 77, 7, 64, 62, 16, 11, 257, 62, 17, 11, 2644, 11, 257, 62, 77, 8, 796, 257, 62, 16, 1343, 257, 62, 17, 1343, 2644, 1343, 257, 62, 77, 628, 220, 220, 220, 7559, 2860, 62, 77, 15506, 318, 6196, 517, 6942, 621, 4585, 7559, 2860, 15506, 416, 4600, 77, 63, 1661, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 2860, 62, 77, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 532, 751, 62, 77, 7, 808, 62, 82, 29572, 11, 5752, 62, 82, 29572, 11, 11485, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 532, 4306, 11, 7559, 2860, 62, 77, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 16345, 13, 535, 25, 43, 10163, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 26498, 1058, 25524, 19182, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 18574, 1859, 5128, 7159, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 610, 535, 418, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 34062, 8615, 500, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5128, 815, 307, 287, 2837, 4600, 58, 12, 16, 11, 352, 60, 44646, 198, 220, 220, 220, 383, 5072, 318, 287, 262, 4838, 16654, 1058, 11018, 25, 63, 58, 15, 11, 3467, 14415, 60, 63, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 610, 535, 418, 26933, 12, 16, 11, 532, 13, 24038, 11, 657, 11, 764, 24038, 11, 352, 12962, 796, 685, 59, 14415, 11, 513, 59, 14415, 14, 19, 11, 3467, 14415, 14, 17, 11, 3467, 14415, 14, 19, 11, 657, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 283, 535, 418, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 10163, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 610, 535, 3768, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 5002, 12, 3083, 34062, 8718, 65, 4160, 8615, 500, 286, 262, 5128, 7177, 11, 3467, 198, 220, 220, 220, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 283, 535, 3768, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 18897, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 44606, 259, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 34062, 264, 500, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5128, 815, 307, 287, 262, 2837, 4600, 58, 12, 16, 11, 352, 60, 44646, 198, 220, 220, 220, 383, 5072, 318, 287, 262, 4838, 16654, 286, 685, 25, 11018, 25, 63, 12, 59, 14415, 14, 17, 47671, 1058, 11018, 25, 63, 59, 14415, 14, 17, 63, 4083, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 44606, 259, 26933, 12, 16, 11, 532, 13, 24038, 11, 657, 11, 764, 24038, 11, 352, 12962, 796, 25915, 59, 14415, 14, 17, 11, 532, 59, 14415, 14, 19, 11, 657, 11, 3467, 14415, 14, 19, 11, 3467, 14415, 14, 17, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 5605, 31369, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 44606, 259, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 44606, 259, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 13464, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 44606, 259, 71, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 5002, 12, 3083, 34062, 8718, 65, 4160, 264, 500, 286, 262, 5128, 7177, 11, 3467, 198, 220, 220, 220, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 5605, 31369, 71, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 44606, 259, 71, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 44606, 259, 71, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 9031, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 610, 310, 272, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 34062, 13875, 298, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5072, 318, 287, 262, 4838, 16654, 1058, 11018, 25, 63, 58, 12, 59, 14415, 14, 17, 11, 3467, 14415, 14, 17, 60, 63, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 610, 310, 272, 26933, 12, 16, 11, 657, 11, 352, 12962, 796, 25915, 59, 14415, 14, 19, 11, 657, 11, 3467, 14415, 14, 19, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 283, 310, 272, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 610, 310, 272, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 610, 310, 272, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 18444, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 610, 310, 272, 71, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 5002, 12, 3083, 34062, 8718, 65, 4160, 13875, 298, 286, 262, 5128, 7177, 11, 3467, 198, 220, 220, 220, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 283, 310, 272, 71, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 610, 310, 272, 71, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 610, 310, 272, 71, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 30368, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 3350, 62, 35350, 7, 7890, 28, 14202, 11, 336, 2981, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 34, 5773, 11192, 273, 6143, 2099, 284, 262, 649, 2099, 13, 628, 220, 220, 220, 1649, 281, 25524, 19182, 351, 4277, 6143, 2099, 318, 3350, 284, 269, 27891, 393, 5752, 62, 82, 29572, 6143, 11, 198, 220, 220, 220, 262, 1255, 318, 16001, 11, 543, 1724, 25, 628, 220, 220, 220, 532, 329, 269, 27891, 11, 6632, 3815, 481, 407, 307, 17383, 198, 220, 220, 220, 532, 329, 5752, 62, 82, 29572, 11, 5752, 24314, 286, 477, 1976, 27498, 481, 407, 307, 17383, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 2701, 62, 35350, 15506, 5072, 8338, 319, 336, 2981, 11507, 25, 628, 220, 220, 220, 532, 3350, 62, 35350, 7, 6359, 81, 11, 705, 12286, 11537, 796, 4277, 198, 220, 220, 220, 532, 3350, 62, 35350, 7, 808, 62, 82, 29572, 11, 705, 12286, 11537, 796, 4277, 198, 220, 220, 220, 532, 3350, 62, 35350, 7, 12286, 11, 705, 6359, 81, 11537, 796, 269, 27891, 198, 220, 220, 220, 532, 3350, 62, 35350, 7, 12286, 11, 705, 808, 62, 82, 29572, 11537, 796, 5752, 62, 82, 29572, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 15715, 796, 16410, 657, 1539, 220, 352, 1539, 220, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 362, 1539, 220, 657, 1539, 220, 513, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 1539, 220, 657, 1539, 220, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 1539, 220, 657, 1539, 220, 657, 8183, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3350, 284, 5752, 62, 82, 29572, 6143, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 796, 3350, 62, 35350, 7, 67, 1072, 11, 705, 808, 62, 82, 29572, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 13, 521, 1063, 796, 685, 15, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 374, 2777, 13, 27160, 796, 16410, 657, 1539, 220, 352, 1539, 220, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 362, 1539, 220, 657, 1539, 220, 513, 8183, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3350, 284, 269, 27891, 6143, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 269, 27891, 796, 3350, 62, 35350, 7, 67, 1072, 11, 705, 6359, 81, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 269, 27891, 13, 521, 1063, 796, 685, 16, 11, 657, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 27891, 13, 27160, 796, 685, 352, 1539, 220, 362, 1539, 220, 513, 8183, 198, 220, 220, 220, 220, 220, 220, 220, 269, 27891, 13, 521, 20692, 796, 685, 15, 11, 352, 11, 513, 11, 513, 11, 513, 60, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 2701, 62, 35350, 13, 535, 25, 43, 3388, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 13, 198, 220, 220, 220, 336, 2981, 1058, 1391, 6, 6359, 81, 3256, 705, 12286, 3256, 705, 808, 62, 82, 29572, 6, 5512, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 25235, 6143, 2099, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2906, 346, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 13387, 286, 262, 5128, 13, 628, 220, 220, 220, 383, 2906, 346, 286, 262, 16578, 283, 2124, 318, 262, 18197, 18253, 1312, 11, 884, 326, 1312, 18189, 2124, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 2906, 346, 26933, 12, 17, 13, 16, 11, 532, 16, 13, 24, 11, 352, 13, 20, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 17, 1539, 532, 16, 1539, 220, 362, 1539, 220, 362, 1539, 220, 513, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 344, 346, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 2906, 346, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 2906, 346, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 38380, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 10651, 7, 7890, 28, 14202, 11, 257, 62, 1084, 28, 62, 35067, 11, 257, 62, 9806, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 2601, 2419, 357, 49196, 8, 262, 3815, 287, 281, 7177, 13, 628, 220, 220, 220, 11259, 281, 16654, 11, 3815, 2354, 262, 16654, 389, 49305, 284, 262, 16654, 13015, 13, 198, 220, 220, 220, 1012, 4501, 7559, 87, 15506, 1022, 4600, 64, 62, 1084, 63, 290, 4600, 64, 62, 87, 63, 561, 307, 3712, 628, 220, 220, 220, 220, 220, 220, 10651, 7, 87, 11, 257, 62, 1084, 11, 257, 62, 9806, 8, 796, 3509, 7, 1084, 7, 87, 11, 257, 62, 9806, 828, 257, 62, 1084, 4008, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 685, 15, 11, 352, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 11, 807, 11, 860, 60, 628, 220, 220, 220, 220, 220, 220, 220, 10651, 7, 87, 11, 16, 11, 23, 8, 796, 685, 352, 1539, 220, 352, 1539, 220, 362, 1539, 220, 513, 1539, 220, 604, 1539, 220, 642, 1539, 220, 718, 1539, 220, 767, 1539, 220, 807, 1539, 220, 807, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 15036, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 290, 262, 257, 62, 1084, 11, 257, 62, 9806, 3467, 198, 220, 220, 220, 11507, 3815, 25, 628, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 808, 62, 82, 29572, 11, 257, 62, 1084, 19841, 657, 11, 257, 62, 9806, 18189, 657, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 6359, 81, 11, 257, 62, 1084, 19841, 657, 11, 257, 62, 9806, 18189, 657, 8, 796, 269, 27891, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 808, 62, 82, 29572, 11, 257, 62, 1084, 1279, 657, 11, 257, 62, 9806, 1279, 657, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 808, 62, 82, 29572, 11, 257, 62, 1084, 1875, 657, 11, 257, 62, 9806, 1875, 657, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 6359, 81, 11, 257, 62, 1084, 1279, 657, 11, 257, 62, 9806, 1279, 657, 8, 796, 269, 27891, 198, 220, 220, 220, 220, 220, 220, 532, 10651, 7, 6359, 81, 11, 257, 62, 1084, 1875, 657, 11, 257, 62, 9806, 1875, 657, 8, 796, 269, 27891, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 6759, 8609, 62, 404, 13, 535, 25, 43, 34251, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 7177, 13, 198, 220, 220, 220, 257, 62, 1084, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 26265, 1988, 198, 220, 220, 220, 257, 62, 9806, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 1988, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 8615, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 262, 5002, 12, 3083, 8615, 500, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5128, 815, 307, 287, 2511, 1547, 357, 25, 11018, 25, 63, 17, 59, 14415, 63, 2511, 21767, 11470, 7370, 737, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 8615, 26933, 15, 11, 3467, 14415, 14, 19, 11, 3467, 14415, 14, 17, 12962, 796, 685, 16, 11, 657, 13, 24038, 11, 657, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6966, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 5066, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 269, 3768, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 8718, 65, 4160, 8615, 500, 220, 286, 262, 5128, 7177, 11, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 269, 3768, 7, 87, 8, 796, 657, 13, 20, 59, 22355, 7, 11201, 7, 87, 8, 1343, 1033, 32590, 87, 4008, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 66, 3768, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 20666, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 7370, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 3103, 24040, 1123, 5002, 286, 262, 5128, 7177, 422, 2511, 1547, 284, 7370, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 7370, 26933, 15, 11, 3467, 14415, 14, 17, 11, 3467, 14415, 11, 513, 59, 14415, 14, 17, 11, 362, 59, 14415, 12962, 796, 685, 15, 11, 4101, 11, 11546, 11, 20479, 11, 11470, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 13500, 6037, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 7370, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 7370, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 24136, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 16605, 7, 75, 11994, 28, 14202, 11, 9529, 82, 28, 14202, 11, 1007, 3455, 62, 64, 28, 62, 35067, 11, 1007, 3455, 62, 65, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35, 313, 1720, 286, 734, 26515, 13, 628, 220, 220, 220, 7559, 26518, 15506, 6, 82, 4069, 8338, 319, 262, 5128, 7177, 15225, 25, 628, 220, 220, 220, 532, 352, 12, 35, 26515, 25, 8434, 1720, 286, 30104, 198, 220, 220, 220, 532, 362, 12, 35, 26515, 25, 17593, 48473, 198, 220, 220, 220, 532, 399, 12, 35, 26515, 25, 257, 2160, 1720, 625, 262, 938, 16488, 286, 262, 717, 5128, 290, 262, 717, 198, 220, 220, 220, 220, 220, 16488, 286, 262, 1218, 5128, 628, 220, 220, 220, 220, 220, 1114, 1672, 11, 1813, 513, 12, 35, 7559, 87, 15506, 351, 5485, 4600, 7, 77, 11, 76, 11, 74, 8, 63, 290, 7559, 88, 15506, 351, 5485, 4600, 7, 74, 11, 81, 11, 82, 8, 47671, 262, 198, 220, 220, 220, 220, 220, 1255, 7177, 481, 423, 5485, 4600, 7, 77, 11, 76, 11, 81, 11, 82, 8, 44646, 632, 318, 29231, 416, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 16605, 7, 87, 11, 88, 38381, 72, 11, 73, 11, 64, 11, 65, 60, 796, 2160, 7, 87, 58, 72, 11, 73, 11, 47715, 9, 88, 58, 45299, 64, 11, 65, 12962, 628, 220, 220, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 27179, 1758, 26933, 15, 11, 16, 11, 17, 11, 18, 11, 19, 11, 20, 11, 21, 11, 22, 4357, 5485, 16193, 17, 11, 17, 11, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 27179, 1758, 26933, 22, 11, 21, 11, 20, 11, 19, 11, 18, 11, 17, 11, 16, 11, 15, 4357, 5485, 16193, 17, 11, 17, 11, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 16605, 7, 87, 11, 88, 38381, 15, 11, 15, 11, 16, 11, 16, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2160, 7, 87, 58, 15, 11, 15, 11, 47715, 9, 88, 58, 45299, 16, 11, 16, 12962, 796, 657, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 26518, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 290, 1007, 3455, 3689, 25, 628, 220, 220, 220, 532, 16605, 7, 6359, 81, 11, 4277, 8, 796, 4277, 198, 220, 220, 220, 532, 16605, 7, 6359, 81, 13, 51, 11, 4277, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 532, 16605, 7, 6359, 81, 11, 5752, 62, 82, 29572, 8, 796, 4277, 198, 220, 220, 220, 532, 16605, 7, 12286, 11, 269, 27891, 8, 796, 269, 27891, 198, 220, 220, 220, 532, 4306, 11, 7559, 26518, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 26518, 13, 535, 25, 43, 5237, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11994, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 717, 5128, 198, 220, 220, 220, 9529, 82, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1218, 5128, 198, 220, 220, 220, 1007, 3455, 62, 64, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 2081, 788, 1007, 3455, 262, 717, 5128, 878, 16605, 13, 198, 220, 220, 220, 1007, 3455, 62, 65, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 2081, 788, 1007, 3455, 262, 1218, 5128, 878, 16605, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 9766, 76, 3083, 62, 2860, 7, 75, 11994, 28, 14202, 11, 9529, 82, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 46245, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 68, 10671, 3083, 62, 2860, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 2860, 7, 808, 62, 82, 29572, 11, 5752, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 2860, 7, 6359, 81, 11, 269, 27891, 8, 796, 269, 27891, 198, 220, 220, 220, 220, 220, 220, 532, 4306, 11, 7559, 68, 10671, 3083, 62, 2860, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11994, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 717, 5128, 198, 220, 220, 220, 9529, 82, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 9766, 76, 3083, 62, 7146, 7, 75, 11994, 28, 14202, 11, 9529, 82, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 24095, 1460, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 68, 10671, 3083, 62, 7146, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11994, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 717, 5128, 198, 220, 220, 220, 9529, 82, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 9766, 76, 3083, 62, 76, 377, 7, 75, 11994, 28, 14202, 11, 9529, 82, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 15205, 24705, 444, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 68, 10671, 3083, 62, 76, 377, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 76, 377, 7, 12286, 11, 4277, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 76, 377, 7, 808, 62, 82, 29572, 11, 5752, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 76, 377, 7, 12286, 11, 5752, 62, 82, 29572, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 76, 377, 7, 808, 62, 82, 29572, 11, 4277, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 76, 377, 7, 6359, 81, 11, 269, 27891, 8, 796, 269, 27891, 198, 220, 220, 220, 220, 220, 220, 532, 4306, 11, 7559, 68, 10671, 3083, 62, 76, 377, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11994, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 717, 5128, 198, 220, 220, 220, 9529, 82, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 9766, 76, 3083, 62, 7266, 7, 75, 11994, 28, 14202, 11, 9529, 82, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7004, 83, 974, 82, 7159, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 68, 10671, 3083, 62, 7266, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 7266, 7, 808, 62, 82, 29572, 11, 5752, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 9766, 76, 3083, 62, 7266, 7, 6359, 81, 11, 269, 27891, 8, 796, 269, 27891, 198, 220, 220, 220, 220, 220, 220, 532, 4306, 11, 7559, 68, 10671, 3083, 62, 7266, 15506, 18616, 5072, 351, 4277, 6143, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 300, 11994, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 717, 5128, 198, 220, 220, 220, 9529, 82, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 1033, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 39682, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 1033, 7, 87, 8, 796, 304, 61, 87, 3467, 1324, 13907, 362, 13, 45720, 61, 87, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 1033, 26933, 15, 11, 352, 11, 362, 12962, 796, 685, 16, 1539, 362, 13, 45720, 2078, 17430, 11, 767, 13, 29769, 2713, 21, 2481, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 11201, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 42759, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 1033, 76, 16, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 7559, 11201, 7, 87, 8, 532, 352, 15506, 29231, 5002, 12, 3083, 319, 262, 5128, 13, 628, 220, 220, 220, 770, 2163, 3769, 3744, 15440, 621, 7559, 11201, 7, 87, 8, 532, 352, 15506, 329, 1402, 3815, 286, 7559, 87, 15506, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 1069, 4426, 16, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 1033, 76, 16, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 1033, 76, 16, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 23906, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 4259, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 19273, 1988, 284, 262, 16936, 3467, 198, 220, 220, 220, 18253, 3371, 6632, 286, 262, 5128, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 4259, 26933, 12, 17, 13, 16, 11, 532, 16, 13, 24, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 17, 1539, 532, 16, 1539, 220, 352, 1539, 362, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 13049, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 4259, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 4259, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 31211, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 4314, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 4314, 286, 262, 5128, 13, 628, 220, 220, 220, 383, 4314, 286, 262, 16578, 283, 2124, 318, 262, 4387, 18253, 1312, 11, 884, 326, 1312, 19841, 2124, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 4314, 26933, 12, 17, 13, 16, 11, 532, 16, 13, 24, 11, 352, 13, 20, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 18, 1539, 532, 17, 1539, 220, 352, 1539, 220, 352, 1539, 220, 362, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 28300, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 4314, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 4314, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 40149, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 277, 14859, 62, 19119, 7, 6551, 28, 14202, 11, 3915, 28, 14202, 11, 1976, 28, 14202, 11, 299, 28, 14202, 11, 300, 81, 28, 62, 35067, 11, 30592, 6814, 16, 28, 62, 35067, 11, 12159, 28, 62, 35067, 11, 266, 67, 28, 62, 35067, 11, 6811, 1000, 62, 9744, 28, 62, 35067, 11, 10651, 62, 49607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 10260, 2163, 329, 376, 14859, 6436, 7509, 13, 198, 220, 220, 220, 6524, 14226, 771, 422, 1635, 2782, 6914, 46690, 25, 257, 3582, 422, 262, 309, 33650, 25666, 1695, 379, 198, 220, 220, 220, 2638, 1378, 25404, 13, 330, 76, 13, 2398, 14, 66, 3780, 13, 12993, 76, 30, 312, 28, 1731, 3459, 2167, 13, 628, 220, 220, 220, 632, 5992, 262, 19590, 1262, 3712, 628, 220, 220, 220, 220, 6811, 3021, 62, 9744, 796, 10651, 7, 9744, 1635, 6811, 1000, 62, 9744, 11, 10651, 62, 49607, 8, 198, 220, 220, 220, 220, 1976, 15853, 6811, 3021, 62, 9744, 532, 357, 31166, 17034, 7, 77, 1343, 6811, 3021, 62, 9744, 1174, 17, 8, 532, 19862, 17034, 7, 77, 4008, 1635, 3463, 1220, 4673, 62, 4873, 198, 220, 220, 220, 220, 299, 15853, 6811, 3021, 62, 9744, 1174, 17, 198, 220, 220, 220, 220, 266, 796, 357, 12683, 7, 89, 8, 1635, 30592, 6814, 16, 532, 1976, 8, 1220, 14808, 31361, 1343, 19862, 17034, 7, 77, 4008, 1220, 4673, 62, 4873, 1343, 266, 67, 8, 1635, 357, 8937, 7, 89, 8, 1875, 30592, 6814, 16, 8, 628, 220, 220, 220, 1002, 266, 11, 1976, 290, 299, 389, 477, 286, 7559, 808, 62, 82, 29572, 15506, 6143, 2099, 11, 198, 220, 220, 220, 691, 262, 5752, 24314, 3025, 36525, 1656, 287, 3915, 13, 521, 1063, 389, 6153, 357, 1640, 266, 11, 1976, 290, 299, 2599, 25, 628, 220, 220, 220, 220, 329, 5752, 287, 3915, 13, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 6811, 3021, 62, 9744, 58, 808, 60, 796, 10651, 7, 9744, 58, 808, 60, 1635, 6811, 1000, 62, 9744, 11, 10651, 62, 49607, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 58, 808, 60, 15853, 6811, 3021, 62, 9744, 58, 808, 60, 532, 357, 31166, 17034, 7, 77, 58, 808, 60, 1343, 6811, 3021, 62, 9744, 58, 808, 60, 1174, 17, 8, 532, 19862, 17034, 7, 77, 58, 808, 60, 4008, 1635, 3463, 58, 808, 60, 1220, 4673, 62, 4873, 198, 220, 220, 220, 220, 220, 220, 220, 220, 299, 58, 808, 60, 15853, 6811, 3021, 62, 9744, 58, 808, 60, 1174, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 266, 58, 808, 60, 796, 357, 12683, 7, 89, 58, 808, 12962, 1635, 30592, 6814, 16, 532, 1976, 58, 808, 12962, 1220, 14808, 31361, 1343, 19862, 17034, 7, 77, 58, 808, 60, 4008, 1220, 4673, 62, 4873, 1343, 266, 67, 8, 1635, 357, 8937, 7, 89, 58, 808, 12962, 1875, 30592, 6814, 16, 8, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 40085, 7509, 62, 404, 13, 535, 25, 43, 31211, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3463, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 198, 220, 220, 220, 3915, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 17701, 1153, 198, 220, 220, 220, 1976, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 198, 220, 220, 220, 299, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 9276, 286, 3915, 198, 220, 220, 220, 300, 81, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 18252, 2494, 198, 220, 220, 220, 30592, 6814, 16, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 383, 406, 16, 3218, 1634, 35381, 13, 198, 220, 220, 220, 12159, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2448, 12, 7222, 45480, 18252, 14806, 12159, 13, 198, 220, 220, 220, 266, 67, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 22119, 16339, 902, 262, 9432, 2163, 351, 257, 3218, 1634, 3381, 326, 23634, 4340, 1588, 19590, 13, 383, 7389, 16252, 351, 262, 6616, 286, 262, 14735, 286, 1123, 3463, 13, 198, 220, 220, 220, 6811, 1000, 62, 9744, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1874, 38765, 31312, 284, 3915, 796, 6811, 1000, 62, 9744, 9, 9744, 13, 198, 220, 220, 220, 10651, 62, 49607, 1058, 12178, 11, 11902, 11, 4277, 10779, 16, 198, 220, 220, 220, 220, 220, 220, 220, 42512, 31312, 284, 262, 2837, 286, 25915, 15036, 62, 49607, 11, 10651, 62, 49607, 60, 1002, 10651, 62, 49607, 19841, 657, 11, 31312, 45013, 318, 2900, 572, 13, 3915, 796, 3509, 7, 1084, 7, 9744, 11, 10651, 62, 49607, 828, 532, 15036, 62, 49607, 737, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 34236, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 34236, 2163, 357, 2302, 3004, 286, 262, 1109, 5132, 2163, 3467, 198, 220, 220, 220, 284, 262, 302, 874, 828, 29231, 5002, 12, 3083, 319, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 28483, 2611, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 308, 6475, 282, 77, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 2604, 286, 262, 4112, 1988, 286, 262, 34236, 2163, 3467, 198, 220, 220, 220, 286, 262, 5128, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 70, 6475, 282, 77, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2604, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 12068, 2604, 283, 342, 9383, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 383, 3288, 2604, 283, 342, 76, 318, 2604, 283, 342, 76, 287, 2779, 1635, 68, 25666, 523, 326, 7559, 6404, 7, 11201, 7, 87, 4008, 796, 2124, 15506, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6404, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 46435, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2604, 940, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 7308, 12, 940, 2604, 283, 342, 9383, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 7559, 940, 1174, 6404, 940, 7, 87, 8, 796, 2124, 15506, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6404, 940, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 36879, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2604, 16, 79, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 7559, 6404, 7, 16, 1343, 2124, 8, 15506, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 770, 2163, 318, 517, 7187, 621, 7559, 6404, 7, 16, 1343, 2124, 8, 15506, 220, 329, 1402, 7559, 87, 15506, 523, 326, 198, 220, 220, 220, 1058, 11018, 25, 63, 16, 10, 87, 59, 1324, 13907, 352, 63, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6404, 16, 79, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 2604, 16, 79, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 2604, 16, 79, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 36680, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2604, 17, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 7308, 12, 17, 2604, 283, 342, 9383, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 7559, 17, 1174, 6404, 17, 7, 87, 8, 796, 2124, 15506, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6404, 17, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 40179, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 787, 62, 22462, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 12050, 534, 898, 2994, 2163, 287, 3127, 5103, 13, 628, 220, 220, 220, 770, 10088, 18178, 257, 27658, 2994, 2163, 6194, 355, 257, 12094, 2994, 290, 198, 220, 220, 220, 262, 6194, 815, 307, 281, 10088, 351, 645, 19528, 20203, 13, 198, 220, 220, 220, 383, 5072, 286, 428, 2163, 318, 262, 31312, 286, 2994, 351, 2461, 284, 262, 5128, 1366, 13, 628, 220, 220, 220, 1114, 1672, 11, 611, 345, 389, 257, 1642, 257, 3272, 40709, 2994, 2163, 13, 2195, 2454, 7559, 448, 15506, 318, 262, 198, 220, 220, 220, 11001, 5072, 290, 7559, 18242, 15506, 318, 262, 2081, 6167, 11, 788, 262, 3272, 40709, 460, 307, 5447, 355, 3712, 628, 220, 220, 220, 220, 220, 3272, 62, 298, 28338, 796, 6167, 1635, 2604, 7, 448, 8, 1343, 357, 16, 532, 6167, 8, 1635, 2604, 7, 16, 532, 503, 8, 198, 220, 220, 220, 220, 220, 2994, 796, 787, 62, 22462, 7, 19692, 62, 298, 28338, 8, 628, 220, 220, 220, 775, 481, 761, 284, 779, 7559, 15883, 62, 22462, 15506, 618, 356, 389, 4441, 674, 898, 2994, 2163, 393, 356, 765, 284, 198, 220, 220, 220, 12082, 3294, 2994, 5499, 13, 4418, 356, 743, 765, 284, 2245, 617, 9633, 6, 3915, 2334, 198, 220, 220, 220, 422, 736, 22930, 363, 341, 13, 4091, 517, 3703, 287, 7559, 12235, 42731, 15506, 393, 7559, 11338, 62, 49607, 15506, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 15883, 62, 22462, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 787, 62, 22462, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 787, 62, 22462, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 19104, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 1612, 7, 7890, 28, 14202, 11, 16488, 28, 62, 35067, 11, 1394, 67, 12078, 28, 62, 35067, 11, 19607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 262, 1612, 286, 7177, 4847, 625, 1813, 34197, 13, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 36654, 2701, 62, 445, 7234, 62, 404, 62, 8367, 13, 535, 25, 43, 8784, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 198, 220, 220, 220, 16488, 1058, 25959, 7, 83, 29291, 828, 11902, 11, 4277, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16488, 393, 34197, 1863, 543, 284, 1620, 262, 7741, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 11, 4600, 22704, 28, 3419, 47671, 481, 24061, 625, 477, 4847, 656, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 283, 7177, 351, 5485, 4600, 7, 16, 35751, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 22704, 63, 318, 493, 11, 257, 7741, 318, 6157, 319, 257, 1948, 16488, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 22704, 63, 318, 257, 46545, 286, 493, 82, 11, 257, 7741, 318, 6157, 319, 477, 262, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7368, 287, 262, 46545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 1069, 9152, 63, 318, 2081, 11, 7741, 481, 307, 6157, 319, 262, 34197, 326, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5626, 287, 16488, 2427, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36183, 3815, 1724, 6376, 278, 422, 826, 284, 1364, 13, 198, 220, 220, 220, 1394, 67, 12078, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 428, 318, 900, 284, 4600, 17821, 47671, 262, 5322, 34197, 389, 1364, 287, 262, 1255, 355, 15793, 351, 2546, 530, 13, 198, 220, 220, 220, 19607, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 1620, 7741, 319, 16488, 326, 389, 5626, 287, 16488, 2427, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 4633, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 45, 6975, 605, 4633, 286, 262, 4578, 11, 5002, 12, 3083, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 31591, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 4633, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 4633, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 4633, 7, 6359, 81, 8, 796, 269, 27891, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2593, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7414, 1078, 641, 262, 5128, 7177, 290, 788, 552, 1769, 262, 300, 17, 2593, 13, 628, 220, 220, 220, 21066, 3712, 628, 220, 220, 220, 220, 220, 2124, 796, 16410, 16, 11, 362, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 18, 11, 604, 11907, 628, 220, 220, 220, 220, 220, 2593, 7, 87, 8, 796, 685, 20, 13, 2857, 4761, 1495, 3695, 60, 628, 220, 220, 220, 220, 220, 374, 2777, 796, 2124, 13, 2701, 62, 35350, 10786, 808, 62, 82, 29572, 11537, 628, 220, 220, 220, 220, 220, 2593, 7, 81, 2777, 8, 796, 685, 20, 13, 2857, 4761, 1495, 3695, 60, 628, 220, 220, 220, 220, 220, 269, 27891, 796, 2124, 13, 2701, 62, 35350, 10786, 6359, 81, 11537, 628, 220, 220, 220, 220, 220, 2593, 7, 6359, 81, 8, 796, 685, 20, 13, 2857, 4761, 1495, 3695, 60, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 36654, 2701, 62, 445, 7234, 62, 404, 62, 8367, 13, 535, 25, 43, 25540, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 8090, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2511, 1547, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 3103, 24040, 1123, 5002, 286, 262, 5128, 7177, 422, 7370, 284, 2511, 1547, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 2511, 1547, 26933, 15, 11, 4101, 11, 11546, 11, 20479, 11, 11470, 12962, 796, 685, 15, 11, 3467, 14415, 14, 17, 11, 3467, 14415, 11, 513, 59, 14415, 14, 17, 11, 362, 59, 14415, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 6335, 1547, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 2511, 1547, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 2511, 1547, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 24294, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 823, 84, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 13621, 1431, 14174, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 3509, 7, 40890, 11, 657, 8, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 260, 2290, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 823, 84, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 823, 84, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 5999, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 12377, 7, 7890, 28, 14202, 11, 36525, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 27729, 15274, 7368, 416, 2836, 5128, 6376, 7177, 422, 257, 5752, 29877, 17593, 198, 220, 220, 220, 290, 3613, 606, 287, 262, 5072, 29877, 17593, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 1366, 796, 16410, 16, 11, 362, 4357, 685, 18, 11, 604, 4357, 685, 20, 11, 718, 11907, 198, 220, 220, 220, 220, 220, 36525, 796, 685, 15, 11, 352, 11, 513, 60, 198, 220, 220, 220, 220, 220, 5485, 796, 357, 19, 11, 362, 8, 198, 220, 220, 220, 220, 220, 374, 2777, 62, 259, 796, 5752, 62, 82, 29572, 7, 7890, 11, 36525, 8, 198, 220, 220, 220, 220, 220, 284, 62, 1186, 391, 796, 685, 15, 11, 513, 60, 198, 220, 220, 220, 220, 220, 374, 2777, 62, 448, 796, 12377, 7, 81, 2777, 62, 259, 11, 284, 62, 1186, 391, 8, 198, 220, 220, 220, 220, 220, 374, 2777, 62, 448, 13, 27160, 796, 16410, 16, 11, 362, 4357, 685, 20, 11, 718, 11907, 198, 220, 220, 220, 220, 220, 374, 2777, 62, 448, 13, 521, 1063, 796, 685, 15, 11, 513, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 1186, 391, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 532, 12377, 7, 808, 62, 82, 29572, 11, 4277, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 532, 4306, 11, 7559, 1186, 391, 15506, 318, 407, 4855, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 82, 29572, 62, 1186, 391, 13, 535, 25, 43, 4310, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 329, 29877, 62, 1186, 391, 10088, 13, 198, 220, 220, 220, 36525, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6376, 7177, 286, 15274, 220, 2340, 326, 481, 307, 17383, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 374, 600, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 19273, 1988, 284, 262, 16936, 18253, 286, 262, 5128, 13, 628, 220, 220, 220, 11485, 3465, 3712, 198, 220, 220, 220, 220, 220, 220, 532, 1114, 5128, 7559, 77, 13, 20, 15506, 7559, 22272, 15506, 5860, 7559, 77, 15506, 981, 7559, 744, 15506, 5860, 7559, 77, 10, 16, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 532, 1114, 5128, 7559, 12, 77, 13, 20, 15506, 1111, 7559, 22272, 15506, 290, 7559, 744, 15506, 5860, 7559, 12, 77, 12, 16, 15506, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 374, 600, 26933, 12, 16, 13, 20, 11, 352, 13, 20, 11, 532, 16, 13, 24, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 17, 1539, 220, 352, 1539, 532, 17, 1539, 220, 362, 1539, 220, 362, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 22272, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 374, 600, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 374, 600, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 30272, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2835, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 19273, 1988, 284, 262, 16936, 18253, 286, 262, 5128, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 2835, 26933, 12, 16, 13, 20, 11, 352, 13, 20, 11, 532, 16, 13, 24, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 17, 1539, 220, 362, 1539, 532, 17, 1539, 220, 362, 1539, 220, 362, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 744, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 532, 2835, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 532, 2835, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 43356, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 374, 31166, 17034, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 34062, 6616, 12, 15763, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 374, 31166, 17034, 7, 87, 8, 796, 352, 14, 59, 31166, 17034, 90, 87, 92, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 374, 31166, 17034, 26933, 19, 11, 24, 11, 1433, 12962, 796, 685, 15, 13, 20, 11, 657, 13, 24840, 2091, 2682, 11, 657, 13, 1495, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 3808, 80, 17034, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 46352, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 264, 21287, 62, 32542, 62, 19119, 7, 6551, 28, 14202, 11, 3915, 28, 14202, 11, 1995, 28, 14202, 11, 300, 81, 28, 62, 35067, 11, 12858, 28, 62, 35067, 11, 266, 67, 28, 62, 35067, 11, 6811, 1000, 62, 9744, 28, 62, 35067, 11, 10651, 62, 49607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 29252, 298, 388, 4296, 2163, 329, 520, 5374, 3477, 17701, 1153, 2935, 1087, 357, 10305, 38, 8, 6436, 7509, 13, 628, 220, 220, 220, 29278, 388, 4296, 468, 1365, 40826, 3965, 319, 17019, 7686, 13, 6550, 46558, 340, 3073, 198, 220, 220, 220, 588, 2174, 25, 628, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 410, 62, 16, 796, 3467, 26591, 1635, 3467, 77, 397, 5031, 449, 7, 54, 62, 15, 8, 6852, 198, 220, 220, 220, 220, 220, 410, 62, 83, 796, 3467, 28483, 2611, 410, 23330, 83, 12, 16, 92, 532, 3467, 26591, 1635, 3467, 77, 397, 5031, 449, 7, 54, 23330, 83, 12, 16, 30072, 6852, 198, 220, 220, 220, 220, 220, 370, 62, 83, 796, 370, 23330, 83, 12, 16, 92, 1343, 410, 62, 83, 628, 220, 220, 220, 632, 5992, 262, 19590, 1262, 3712, 628, 220, 220, 220, 220, 220, 410, 796, 12858, 1635, 410, 532, 4673, 62, 4873, 1635, 31312, 198, 220, 220, 220, 220, 220, 3463, 15853, 410, 628, 220, 220, 220, 6350, 262, 11507, 7559, 32542, 298, 388, 15506, 318, 262, 22119, 2494, 286, 12858, 7746, 379, 1123, 36835, 13, 628, 220, 220, 220, 1002, 3463, 290, 3915, 389, 1111, 286, 7559, 808, 62, 82, 29572, 15506, 6143, 2099, 290, 12858, 318, 286, 7559, 12286, 15506, 6143, 2099, 11, 198, 220, 220, 220, 3210, 4296, 318, 5625, 13, 628, 220, 220, 220, 1002, 3463, 11, 3915, 290, 12858, 389, 477, 286, 7559, 808, 62, 82, 29572, 15506, 6143, 2099, 11, 198, 220, 220, 220, 691, 262, 5752, 24314, 3025, 36525, 1656, 287, 3915, 13, 521, 1063, 389, 6153, 357, 1640, 1111, 3463, 290, 12858, 2599, 25, 628, 220, 220, 220, 220, 220, 329, 5752, 287, 31312, 13, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 58, 808, 60, 796, 12858, 58, 808, 60, 1635, 410, 58, 808, 60, 532, 4673, 62, 4873, 1635, 31312, 58, 808, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 58, 808, 60, 15853, 410, 58, 808, 60, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 40085, 7509, 62, 404, 13, 535, 25, 43, 22980, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3463, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 198, 220, 220, 220, 3915, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 17701, 1153, 198, 220, 220, 220, 1995, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 29278, 388, 198, 220, 220, 220, 300, 81, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 18252, 2494, 198, 220, 220, 220, 12858, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22119, 2494, 286, 12858, 7746, 379, 1123, 36835, 13, 198, 220, 220, 220, 266, 67, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 22119, 16339, 902, 262, 9432, 2163, 351, 257, 3218, 1634, 3381, 326, 23634, 4340, 1588, 19590, 13, 383, 7389, 16252, 351, 262, 6616, 286, 262, 14735, 286, 1123, 3463, 13, 198, 220, 220, 220, 6811, 1000, 62, 9744, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1874, 38765, 31312, 284, 3915, 796, 6811, 1000, 62, 9744, 9, 9744, 13, 198, 220, 220, 220, 10651, 62, 49607, 1058, 12178, 11, 11902, 11, 4277, 10779, 16, 198, 220, 220, 220, 220, 220, 220, 220, 42512, 31312, 284, 262, 2837, 286, 25915, 15036, 62, 49607, 11, 10651, 62, 49607, 60, 1002, 10651, 62, 49607, 19841, 657, 11, 31312, 45013, 318, 2900, 572, 13, 3915, 796, 3509, 7, 1084, 7, 9744, 11, 10651, 62, 49607, 828, 532, 15036, 62, 49607, 737, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 264, 21287, 62, 19119, 7, 6551, 28, 14202, 11, 3915, 28, 14202, 11, 300, 81, 28, 62, 35067, 11, 266, 67, 28, 62, 35067, 11, 6811, 1000, 62, 9744, 28, 62, 35067, 11, 10651, 62, 49607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 10260, 2163, 329, 520, 5374, 3477, 17701, 1153, 2935, 1087, 357, 10305, 38, 8, 6436, 7509, 13, 628, 220, 220, 220, 632, 5992, 262, 19590, 1262, 3712, 628, 220, 220, 220, 220, 3463, 796, 3463, 532, 4673, 62, 4873, 1635, 31312, 628, 220, 220, 220, 1002, 3463, 318, 286, 7559, 808, 62, 82, 29572, 15506, 6143, 2099, 11, 198, 220, 220, 220, 691, 262, 5752, 24314, 3025, 36525, 1656, 287, 3915, 13, 521, 1063, 389, 6153, 3712, 628, 220, 220, 220, 220, 329, 5752, 287, 31312, 13, 521, 1063, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 58, 808, 60, 796, 3463, 58, 808, 60, 532, 4673, 62, 4873, 1635, 31312, 58, 808, 60, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 40085, 7509, 62, 404, 13, 535, 25, 43, 23148, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3463, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 198, 220, 220, 220, 3915, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 17701, 1153, 198, 220, 220, 220, 300, 81, 1058, 12178, 11, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 18252, 2494, 198, 220, 220, 220, 266, 67, 1058, 12178, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 14331, 22119, 16339, 902, 262, 9432, 2163, 351, 257, 3218, 1634, 3381, 326, 23634, 4340, 1588, 19590, 13, 383, 7389, 16252, 351, 262, 6616, 286, 262, 14735, 286, 1123, 3463, 13, 198, 220, 220, 220, 6811, 1000, 62, 9744, 1058, 12178, 11, 11902, 11, 4277, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1874, 38765, 31312, 284, 3915, 796, 6811, 1000, 62, 9744, 9, 9744, 13, 198, 220, 220, 220, 10651, 62, 49607, 1058, 12178, 11, 11902, 11, 4277, 10779, 16, 198, 220, 220, 220, 220, 220, 220, 220, 42512, 31312, 284, 262, 2837, 286, 25915, 15036, 62, 49607, 11, 10651, 62, 49607, 60, 1002, 10651, 62, 49607, 19841, 657, 11, 31312, 45013, 318, 2900, 572, 13, 3915, 796, 3509, 7, 1084, 7, 9744, 11, 10651, 62, 49607, 828, 532, 15036, 62, 49607, 737, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 264, 17225, 1868, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 264, 17225, 1868, 286, 2124, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 331, 796, 352, 1220, 357, 16, 1343, 1033, 32590, 87, 4008, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 82, 17225, 1868, 15506, 5072, 318, 1464, 15715, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 15377, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 1051, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 1051, 286, 262, 5128, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 1051, 26933, 12, 17, 11, 657, 11, 513, 12962, 796, 25915, 16, 11, 657, 11, 352, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 12683, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 1051, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 1051, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 26429, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 7813, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 262, 5002, 12, 3083, 264, 500, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5128, 815, 307, 287, 2511, 1547, 357, 25, 11018, 25, 63, 17, 59, 14415, 63, 2511, 21767, 11470, 7370, 737, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 7813, 26933, 15, 11, 3467, 14415, 14, 19, 11, 3467, 14415, 14, 17, 12962, 796, 685, 15, 11, 657, 13, 24038, 11, 352, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 31369, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 7813, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 7813, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 3510, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 7813, 71, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 8718, 65, 4160, 264, 500, 286, 262, 5128, 7177, 11, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 7813, 71, 7, 87, 8, 796, 657, 13, 20, 59, 22355, 7, 11201, 7, 87, 8, 532, 1033, 32590, 87, 4008, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 31369, 71, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 7813, 71, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 7813, 71, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 1264, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 16416, 7, 7890, 28, 14202, 11, 2221, 28, 62, 35067, 11, 886, 28, 62, 35067, 11, 2239, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 50, 677, 274, 257, 3814, 286, 262, 7177, 13, 628, 220, 220, 220, 11485, 3465, 3712, 7559, 31476, 15506, 318, 39224, 13, 5765, 7559, 48369, 15506, 2427, 13, 628, 220, 220, 220, 770, 2163, 5860, 257, 26790, 7177, 1022, 262, 36525, 1813, 198, 220, 220, 220, 416, 4600, 27471, 63, 290, 4600, 437, 63, 351, 262, 11188, 4600, 9662, 44646, 628, 220, 220, 220, 1114, 281, 5128, 7177, 286, 7559, 43358, 16193, 67, 62, 15, 11, 288, 62, 16, 11, 2644, 11, 288, 62, 77, 12, 16, 8, 15506, 11, 198, 220, 220, 220, 16416, 4905, 351, 7559, 27471, 16193, 65, 62, 15, 11, 275, 62, 16, 986, 65, 62, 76, 12, 16, 8, 15506, 11, 198, 220, 220, 220, 7559, 437, 16193, 68, 62, 15, 11, 304, 62, 16, 11, 2644, 11, 304, 62, 76, 12, 16, 8, 15506, 11, 290, 7559, 9662, 16193, 82, 62, 15, 11, 264, 62, 16, 11, 2644, 11, 264, 62, 76, 12, 16, 8, 15506, 11, 198, 220, 220, 220, 810, 285, 19841, 299, 11, 2482, 287, 281, 7177, 351, 262, 5485, 198, 220, 220, 220, 11592, 91, 68, 62, 15, 12, 65, 62, 15, 91, 14, 91, 82, 62, 15, 91, 11, 2644, 11, 930, 68, 62, 76, 12, 16, 12, 65, 62, 76, 12, 16, 91, 14, 91, 82, 62, 76, 12, 16, 91, 11, 288, 62, 76, 11, 2644, 11, 288, 62, 77, 12, 16, 8, 15506, 13, 628, 220, 220, 220, 383, 7186, 7177, 338, 1635, 74, 9, 12, 400, 15793, 4909, 4847, 198, 220, 220, 220, 422, 262, 1635, 74, 9, 12, 400, 15793, 286, 262, 5128, 7177, 3599, 198, 220, 220, 220, 422, 6376, 7559, 65, 62, 74, 15506, 357, 259, 5731, 8, 351, 2239, 7559, 82, 62, 74, 15506, 198, 220, 220, 220, 1566, 8978, 7559, 68, 62, 74, 15506, 357, 41195, 737, 628, 220, 220, 220, 1002, 262, 1635, 74, 9, 12, 400, 4847, 389, 4600, 14202, 63, 287, 262, 8379, 286, 4600, 27471, 47671, 4600, 437, 47671, 198, 220, 220, 220, 290, 4600, 9662, 47671, 262, 1708, 3896, 481, 307, 973, 284, 900, 4277, 3815, 13, 198, 220, 220, 220, 1002, 4600, 82, 62, 74, 63, 318, 4600, 14202, 47671, 900, 4600, 82, 62, 74, 28, 16, 44646, 1002, 4600, 82, 62, 74, 1875, 657, 47671, 900, 4600, 65, 62, 74, 28, 15, 47671, 4600, 68, 62, 74, 28, 67, 62, 74, 63, 26, 198, 220, 220, 220, 2073, 11, 900, 4600, 65, 62, 74, 28, 67, 62, 74, 12, 16, 47671, 4600, 68, 62, 74, 10779, 16, 44646, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 48369, 15506, 5072, 8338, 319, 6143, 3858, 286, 17311, 628, 220, 220, 220, 532, 16416, 7, 6359, 81, 8, 796, 269, 27891, 198, 220, 220, 220, 532, 4306, 11, 7559, 48369, 15506, 18616, 5072, 351, 4277, 6143, 628, 220, 220, 220, 11485, 3465, 3712, 1649, 5128, 1366, 6143, 2099, 318, 269, 27891, 11, 340, 691, 6971, 198, 220, 220, 220, 2239, 16193, 828, 393, 2239, 16193, 14202, 11, 828, 393, 2239, 16193, 16, 35751, 284, 7716, 257, 269, 27891, 5072, 13, 198, 220, 220, 220, 1114, 584, 2239, 11507, 3815, 11, 340, 8953, 736, 284, 49289, 198, 220, 220, 220, 257, 15715, 11192, 273, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 2124, 796, 16410, 220, 352, 1539, 220, 220, 362, 1539, 220, 220, 513, 1539, 220, 220, 604, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 220, 642, 1539, 220, 220, 718, 1539, 220, 220, 767, 1539, 220, 220, 807, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 220, 860, 1539, 220, 838, 1539, 220, 1367, 1539, 220, 1105, 8183, 60, 628, 220, 220, 220, 220, 220, 16416, 7, 87, 11, 2221, 16193, 15, 11, 16, 828, 886, 16193, 17, 11, 19, 4008, 796, 16410, 362, 1539, 220, 513, 1539, 220, 604, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 718, 1539, 220, 767, 1539, 220, 807, 8183, 60, 198, 220, 220, 220, 220, 220, 16416, 7, 87, 11, 2221, 16193, 14202, 11, 657, 828, 886, 16193, 14202, 11, 513, 828, 2239, 16193, 12, 16, 11, 362, 4008, 796, 16410, 24, 1539, 1367, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 20, 1539, 220, 767, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 1539, 220, 513, 8183, 60, 628, 198, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 6759, 8609, 62, 404, 13, 535, 25, 43, 28567, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 8090, 5128, 198, 220, 220, 220, 2221, 1058, 25959, 7, 83, 29291, 828, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 3599, 36525, 329, 262, 16416, 4905, 11, 6971, 4633, 36525, 13, 198, 220, 220, 220, 886, 1058, 25959, 7, 83, 29291, 828, 2672, 198, 220, 220, 220, 220, 220, 220, 220, 7464, 36525, 329, 262, 16416, 4905, 11, 6971, 4633, 36525, 13, 198, 220, 220, 220, 2239, 1058, 25959, 7, 83, 29291, 828, 11902, 11, 4277, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 329, 262, 16416, 4905, 11, 6971, 4633, 3815, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 19862, 17034, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 6616, 12, 15763, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 3467, 5239, 26224, 90, 31166, 17034, 92, 7, 87, 8, 796, 3467, 31166, 17034, 90, 87, 92, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 19862, 17034, 26933, 19, 11, 860, 11, 1467, 12962, 796, 685, 17, 11, 513, 11, 604, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 31166, 17034, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 19862, 17034, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 19862, 17034, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 20, 2414, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 6616, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 5002, 12, 3083, 44345, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 6616, 7, 87, 8, 796, 2124, 61, 17, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 6616, 26933, 17, 11, 513, 11, 604, 12962, 796, 685, 19, 11, 860, 11, 1467, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 23415, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 6616, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 6616, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 220, 220, 220, 532, 6616, 7, 6359, 81, 8, 796, 269, 27891, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 20, 3901, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2245, 62, 49607, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 1273, 2840, 31312, 29964, 13, 628, 220, 220, 220, 520, 2840, 262, 22425, 31312, 286, 262, 17311, 422, 17609, 832, 428, 10088, 198, 220, 220, 220, 287, 262, 19528, 4571, 13, 554, 584, 2456, 11, 428, 10088, 15174, 262, 10156, 198, 220, 220, 220, 286, 663, 17311, 284, 307, 2077, 656, 1848, 329, 14492, 3915, 2334, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 410, 16, 796, 685, 16, 11, 362, 60, 198, 220, 220, 220, 220, 220, 410, 17, 796, 685, 15, 11, 352, 60, 198, 220, 220, 220, 220, 220, 257, 796, 35748, 10786, 64, 11537, 198, 220, 220, 220, 220, 220, 275, 796, 35748, 10786, 65, 11537, 198, 220, 220, 220, 220, 220, 275, 62, 11338, 62, 9744, 796, 2245, 62, 49607, 7, 18, 1635, 275, 8, 198, 220, 220, 220, 220, 220, 2994, 796, 6889, 43, 793, 7, 65, 62, 11338, 62, 9744, 1343, 257, 8, 628, 220, 220, 220, 220, 220, 3121, 273, 796, 2994, 13, 36439, 62, 21653, 7, 49464, 28, 36166, 22784, 257, 16193, 16, 11, 17, 828, 275, 16193, 16, 11, 17, 4008, 198, 220, 220, 220, 220, 220, 3121, 273, 13, 11813, 7, 271, 62, 27432, 28, 17821, 11, 257, 28, 85, 16, 11, 275, 28, 85, 17, 8, 198, 220, 220, 220, 220, 220, 3121, 273, 13, 22915, 82, 198, 220, 220, 220, 220, 220, 685, 352, 13, 220, 642, 8183, 628, 220, 220, 220, 220, 220, 3121, 273, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 3121, 273, 13, 9744, 62, 3258, 592, 198, 220, 220, 220, 220, 220, 685, 657, 13, 220, 657, 8183, 198, 220, 220, 220, 220, 220, 685, 352, 13, 220, 352, 8183, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 23055, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 2160, 7, 7890, 28, 14202, 11, 16488, 28, 62, 35067, 11, 1394, 67, 12078, 28, 62, 35067, 11, 19607, 28, 62, 35067, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 262, 2160, 286, 7177, 4847, 625, 1813, 34197, 13, 628, 220, 220, 220, 11485, 5740, 3712, 628, 220, 220, 220, 220, 220, 4600, 16345, 63, 290, 4600, 16345, 62, 22704, 63, 389, 7548, 13, 198, 220, 220, 220, 220, 220, 1114, 299, 67, 18747, 286, 269, 27891, 6143, 2099, 30114, 341, 1863, 16488, 657, 290, 16488, 352, 318, 4855, 13, 198, 220, 220, 220, 220, 220, 25700, 1394, 67, 12078, 393, 19607, 284, 6407, 481, 2728, 257, 2121, 1891, 284, 15715, 10088, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 1366, 796, 16410, 58, 16, 11, 17, 38430, 17, 11, 18, 38430, 16, 11, 18, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 16, 11, 19, 38430, 19, 11, 18, 38430, 20, 11, 17, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 22, 11, 16, 38430, 22, 11, 17, 38430, 22, 11, 18, 11907, 60, 628, 220, 220, 220, 220, 220, 2160, 7, 7890, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 16410, 220, 604, 13, 220, 220, 807, 8183, 198, 220, 220, 220, 220, 220, 220, 685, 838, 13, 220, 220, 860, 8183, 198, 220, 220, 220, 220, 220, 220, 685, 2310, 13, 220, 220, 718, 8183, 60, 628, 220, 220, 220, 220, 220, 2160, 7, 7890, 11, 16488, 41888, 16, 11, 17, 12962, 198, 220, 220, 220, 220, 220, 685, 1105, 13, 220, 678, 13, 220, 2681, 8183, 628, 220, 220, 220, 220, 220, 1366, 796, 16410, 16, 11, 17, 11, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 18, 11, 15, 11, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 19, 11, 16, 11, 15, 11907, 628, 220, 220, 220, 220, 220, 269, 27891, 796, 3350, 62, 35350, 7, 7890, 11, 705, 6359, 81, 11537, 628, 220, 220, 220, 220, 220, 2160, 7, 6359, 81, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 685, 807, 13, 220, 513, 13, 220, 352, 8183, 628, 220, 220, 220, 220, 220, 2160, 7, 6359, 81, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 685, 513, 13, 220, 604, 13, 220, 642, 8183, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 36654, 2701, 62, 445, 7234, 62, 404, 62, 8367, 13, 535, 25, 43, 5332, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 198, 220, 220, 220, 16488, 1058, 25959, 7, 83, 29291, 828, 11902, 11, 4277, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 383, 16488, 393, 34197, 1863, 543, 284, 1620, 262, 7741, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 11, 4600, 22704, 28, 3419, 47671, 481, 24061, 625, 477, 4847, 656, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16578, 283, 7177, 351, 5485, 4600, 7, 16, 35751, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 22704, 63, 318, 493, 11, 257, 7741, 318, 6157, 319, 257, 1948, 16488, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 22704, 63, 318, 257, 46545, 286, 493, 82, 11, 257, 7741, 318, 6157, 319, 477, 262, 34197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7368, 287, 262, 46545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 1069, 9152, 63, 318, 2081, 11, 7741, 481, 307, 6157, 319, 262, 34197, 326, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5626, 287, 16488, 2427, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36183, 3815, 1724, 6376, 278, 422, 826, 284, 1364, 13, 198, 220, 220, 220, 1394, 67, 12078, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 428, 318, 900, 284, 4600, 17821, 47671, 262, 5322, 34197, 389, 1364, 287, 262, 1255, 355, 15793, 351, 2546, 530, 13, 198, 220, 220, 220, 19607, 1058, 25131, 11, 11902, 11, 4277, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 1620, 7741, 319, 16488, 326, 389, 5626, 287, 16488, 2427, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 25706, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 7293, 1769, 262, 5002, 12, 3083, 13875, 298, 286, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 5128, 815, 307, 287, 2511, 1547, 357, 25, 11018, 25, 63, 17, 59, 14415, 63, 2511, 21767, 11470, 7370, 737, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 25706, 26933, 15, 11, 3467, 14415, 14, 19, 11, 3467, 14415, 14, 17, 12962, 796, 685, 15, 11, 352, 11, 532, 10745, 60, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 38006, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 25706, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 25706, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 5999, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 25706, 71, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 35561, 262, 8718, 65, 4160, 13875, 298, 286, 262, 5128, 7177, 11, 29231, 5002, 12, 3083, 13, 628, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 25706, 71, 7, 87, 8, 796, 7813, 71, 7, 87, 8, 1220, 269, 3768, 7, 87, 8, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 38006, 71, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 25706, 71, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 25706, 71, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 2213, 328, 13, 535, 25, 43, 24409, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 40122, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 13615, 262, 5002, 12, 3083, 40122, 515, 1988, 286, 262, 5128, 13, 628, 220, 220, 220, 383, 40122, 515, 1988, 286, 262, 16578, 283, 2124, 318, 262, 16936, 18253, 1312, 543, 318, 5699, 284, 198, 220, 220, 220, 6632, 621, 2124, 318, 13, 554, 1790, 11, 262, 13390, 282, 636, 286, 262, 4488, 1271, 2124, 318, 25148, 13, 628, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 40122, 26933, 12, 17, 13, 16, 11, 532, 16, 13, 24, 11, 352, 13, 20, 11, 352, 13, 24, 11, 362, 13, 16, 12962, 796, 25915, 17, 1539, 532, 16, 1539, 220, 352, 1539, 220, 352, 1539, 220, 362, 8183, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 2213, 19524, 15506, 5072, 8338, 2402, 262, 5128, 6143, 2099, 25, 628, 220, 220, 220, 220, 220, 220, 532, 40122, 7, 12286, 8, 796, 4277, 198, 220, 220, 220, 220, 220, 220, 532, 40122, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 628, 628, 220, 220, 220, 2896, 1389, 287, 12351, 14, 46616, 14, 83, 22854, 14, 68, 10671, 3083, 62, 403, 560, 62, 404, 62, 35487, 13, 535, 25, 43, 35126, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 7177, 13, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 4299, 1976, 27498, 62, 2339, 7, 7890, 28, 14202, 11, 503, 28, 14202, 11, 1438, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 13615, 281, 7177, 286, 1976, 27498, 351, 262, 976, 5485, 290, 2099, 198, 220, 220, 220, 355, 262, 5128, 7177, 13, 628, 220, 220, 220, 383, 6143, 2099, 286, 7559, 9107, 418, 62, 2339, 15506, 5072, 8338, 319, 262, 6143, 2099, 286, 262, 5128, 628, 220, 220, 220, 532, 1976, 27498, 62, 2339, 7, 808, 62, 82, 29572, 8, 796, 5752, 62, 82, 29572, 198, 220, 220, 220, 532, 1976, 27498, 62, 2339, 7, 6359, 81, 8, 796, 269, 27891, 198, 220, 220, 220, 532, 1976, 27498, 62, 2339, 7, 12286, 8, 796, 4277, 628, 220, 220, 220, 21066, 3712, 628, 220, 220, 220, 220, 220, 2124, 796, 16410, 352, 1539, 220, 352, 1539, 220, 352, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 352, 1539, 220, 352, 1539, 220, 352, 8183, 60, 628, 220, 220, 220, 220, 220, 1976, 27498, 62, 2339, 7, 87, 8, 796, 16410, 657, 1539, 220, 657, 1539, 220, 657, 13, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 657, 1539, 220, 657, 1539, 220, 657, 8183, 60, 628, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 25524, 19182, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 628, 220, 220, 220, 503, 1058, 25524, 19182, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 25524, 19182, 284, 1745, 262, 1255, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 1058, 25524, 19182, 393, 1351, 286, 25524, 3163, 20477, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5072, 286, 428, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 15, 35751, 198, 198, 834, 439, 834, 796, 37250, 20180, 54, 786, 13065, 3256, 705, 8937, 3256, 705, 324, 321, 62, 19119, 3256, 705, 2860, 62, 77, 3256, 705, 283, 535, 418, 3256, 705, 283, 535, 3768, 3256, 705, 5605, 31369, 3256, 705, 5605, 31369, 71, 3256, 705, 283, 310, 272, 3256, 705, 283, 310, 272, 71, 3256, 705, 2701, 62, 35350, 3256, 705, 344, 346, 3256, 705, 15036, 3256, 705, 6966, 3256, 705, 66, 3768, 3256, 705, 13500, 6037, 3256, 705, 26518, 3256, 705, 68, 10671, 3083, 62, 2860, 3256, 705, 68, 10671, 3083, 62, 7146, 3256, 705, 68, 10671, 3083, 62, 76, 377, 3256, 705, 68, 10671, 3083, 62, 7266, 3256, 705, 11201, 3256, 705, 1069, 4426, 16, 3256, 705, 13049, 3256, 705, 28300, 3256, 705, 701, 45895, 62, 19119, 3256, 705, 28483, 2611, 3256, 705, 70, 6475, 282, 77, 3256, 705, 6404, 3256, 705, 6404, 940, 3256, 705, 6404, 16, 79, 3256, 705, 6404, 17, 3256, 705, 15883, 62, 22462, 3256, 705, 32604, 3256, 705, 31591, 3256, 705, 27237, 3256, 705, 6335, 1547, 3256, 705, 260, 2290, 3256, 705, 1186, 391, 3256, 705, 22272, 3256, 705, 744, 3256, 705, 3808, 80, 17034, 3256, 705, 82, 21287, 62, 32542, 62, 19119, 3256, 705, 82, 21287, 62, 19119, 3256, 705, 82, 17225, 1868, 3256, 705, 12683, 3256, 705, 31369, 3256, 705, 31369, 71, 3256, 705, 48369, 3256, 705, 31166, 17034, 3256, 705, 23415, 3256, 705, 11338, 62, 49607, 3256, 705, 16345, 3256, 705, 38006, 3256, 705, 38006, 71, 3256, 705, 2213, 19524, 3256, 705, 9107, 418, 62, 2339, 20520 ]
2.514054
21,311
# Module for platform specific stuff. from . import map_platform_specifics
[ 2, 19937, 329, 3859, 2176, 3404, 13, 198, 6738, 764, 1330, 3975, 62, 24254, 62, 11423, 82, 628 ]
4.222222
18
from rest_framework import viewsets from rest_framework import filters from rest_framework.permissions import IsAuthenticated from rest_framework.pagination import PageNumberPagination from .serializers import ItemSerializer from .models import Item class CustomSearchFilter(filters.SearchFilter): """ Filter that only allows users to see their own objects. """ class ItemViewSet(viewsets.ModelViewSet): """ API endpoint that allows organizations to be viewed or edited. """ queryset = Item.objects.all().order_by('_id') serializer_class = ItemSerializer permission_classes = [IsAuthenticated] http_method_names = ['get'] # pagination pagination_class = ItemResultsSetPagination # search and filter filter_backends = [filters.SearchFilter, CustomSearchFilter] search_fields = ['Location', 'Zone', 'Plant', 'Part_Number', 'Part_Description', 'Serial_Number', 'Condition', 'Category', 'Owner', 'Unit_of_Measure']
[ 6738, 1334, 62, 30604, 1330, 5009, 1039, 198, 6738, 1334, 62, 30604, 1330, 16628, 198, 6738, 1334, 62, 30604, 13, 525, 8481, 1330, 1148, 47649, 3474, 198, 6738, 1334, 62, 30604, 13, 79, 363, 1883, 1330, 7873, 15057, 47, 363, 1883, 198, 198, 6738, 764, 46911, 11341, 1330, 9097, 32634, 7509, 198, 6738, 764, 27530, 1330, 9097, 628, 628, 198, 4871, 8562, 18243, 22417, 7, 10379, 1010, 13, 18243, 22417, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25853, 326, 691, 3578, 2985, 284, 766, 511, 898, 5563, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 9097, 7680, 7248, 7, 1177, 28709, 13, 17633, 7680, 7248, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 36123, 326, 3578, 5745, 284, 307, 9569, 393, 13012, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42517, 893, 316, 796, 9097, 13, 48205, 13, 439, 22446, 2875, 62, 1525, 10786, 62, 312, 11537, 198, 220, 220, 220, 11389, 7509, 62, 4871, 796, 9097, 32634, 7509, 198, 220, 220, 220, 7170, 62, 37724, 796, 685, 3792, 47649, 3474, 60, 198, 220, 220, 220, 2638, 62, 24396, 62, 14933, 796, 37250, 1136, 20520, 198, 220, 220, 220, 1303, 42208, 1883, 198, 220, 220, 220, 42208, 1883, 62, 4871, 796, 9097, 25468, 7248, 47, 363, 1883, 198, 220, 220, 220, 1303, 2989, 290, 8106, 198, 220, 220, 220, 8106, 62, 1891, 2412, 796, 685, 10379, 1010, 13, 18243, 22417, 11, 8562, 18243, 22417, 60, 198, 220, 220, 220, 2989, 62, 25747, 796, 37250, 14749, 3256, 705, 26961, 3256, 705, 3646, 415, 3256, 705, 7841, 62, 15057, 3256, 705, 7841, 62, 11828, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32634, 62, 15057, 3256, 705, 48362, 3256, 705, 27313, 3256, 705, 42419, 3256, 705, 26453, 62, 1659, 62, 47384, 20520, 198 ]
3.171429
315
#!/usr/bin/env python # PYTHON_ARGCOMPLETE_OK import argparse from textwrap import dedent from glob import glob import matlab2cpp hstring = "*** Matlab2cpp version " + str(matlab2cpp.__version__) + " ***\n\n" + """\ The toolbox frontend of the Matlab2cpp library. Use this to try to do automatic and semi-automatic translation. The program will create files with the same name as the input, but with various extra extensions. Scripts will receive the extension `.cpp`, headers and modules `.hpp`. A file containing data type and header information will be stored in a `.py` file. Any errors will be stored in `.log`. """ parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=dedent(hstring)) parser.add_argument("filename", help="File containing valid Matlab code.").completer=\ lambda prefix, **kws: glob("*.m") parser.add_argument("-o", '--original', action="store_true", help="Include original Matlab code line as comment before the C++ translation of the code line") parser.add_argument("-c", '--comments', action="store_true", help="""\ Include Matlab comments in the generated C++ files.""") parser.add_argument("-s", '--suggest', action="store_true", help="""\ Automatically populate the `<filename>.py` file with datatype with suggestions if possible.""") parser.add_argument("-S", '--matlab-suggest', action="store_true", help="""Creates a folder m2cpp_temp. In the folder the matlab file(s) to be translated are also put. \ These matlab file(s) are slightly modified so that they output data-type information of the variables \ to file(s). This output can then be used to set the datatypes for the translation.""") parser.add_argument("-r", '--reset', action="store_true", help="""\ Ignore the content of `<filename>.py` and make a fresh translation.""") parser.add_argument("-t", '--tree', action="store_true", help="""\ Print the underlying node tree. Each line in the output represents a node and is formated as follows: `<codeline> <position> <class> <backend> <datatype> <name> <translation>` The indentation represents the tree structure. """) parser.add_argument("-T", "--tree-full", action="store_true", help="""\ Same as -t, but the full node tree, but include meta-nodes.""") parser.add_argument("-d", '--disp', action="store_true", help="""\ Print out the progress of the translation process.""") parser.add_argument("-p", "--paths_file", type=str, dest="paths_file", help="""\ Flag and paths_file (-p path_to_pathsfile). m2cpp will look for matlab files in the location specified \ in the paths_file""") parser.add_argument("-omp", '--enable-omp', action="store_true", help="""\ OpenMP code is inserted for Parfor and loops marked with the pragma %%#PARFOR (in Matlab code) when this \ flag is set.""") parser.add_argument("-tbb", '--enable-tbb', action="store_true", help="""\ TBB code is inserted for Parfor and loops marked with the pragma %%#PARFOR (in Matlab code) when this flag is set.""") parser.add_argument("-ref", '--reference', action="store_true", help="""\ For the generated C++ code, function input parameters are "copied by value" as default. With this flag some \ input parameters in the generated code can be const references. There can be some performance advantage of using const references instead of "copied by value". Note that Matlab "copies by value". \ The Matlab code you try to translate to C++ code could try read as well as write to this input variable. \ The code generator doesn't perform an analysis to detect this and then "copy by value" for this variable.""") parser.add_argument("-l", '--line', type=int, dest="line", help="Only display code related to code line number `<line>`.") parser.add_argument("-n", '--nargin', action="store_true", help="Don't remove if and switch branches which use nargin variable.") try: import argcomplete argcomplete.autocomplete(parser) except: pass if __name__ == "__main__": args = parser.parse_args() matlab2cpp.main(args)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 350, 56, 4221, 1340, 62, 1503, 38, 41335, 9328, 62, 11380, 198, 198, 11748, 1822, 29572, 198, 6738, 2420, 37150, 1330, 4648, 298, 198, 6738, 15095, 1330, 15095, 198, 11748, 2603, 23912, 17, 20322, 198, 198, 71, 8841, 796, 366, 8162, 6550, 23912, 17, 20322, 2196, 366, 1343, 965, 7, 6759, 23912, 17, 20322, 13, 834, 9641, 834, 8, 1343, 366, 17202, 59, 77, 59, 77, 1, 1343, 37227, 59, 198, 464, 2891, 3524, 2166, 437, 286, 262, 6550, 23912, 17, 20322, 5888, 13, 220, 5765, 428, 284, 1949, 284, 466, 11353, 198, 392, 10663, 12, 37800, 11059, 13, 220, 383, 1430, 481, 2251, 3696, 351, 262, 976, 198, 3672, 355, 262, 5128, 11, 475, 351, 2972, 3131, 18366, 13, 220, 12327, 82, 481, 3328, 262, 198, 2302, 3004, 4600, 13, 20322, 47671, 24697, 290, 13103, 4600, 13, 71, 381, 44646, 220, 317, 2393, 7268, 1366, 2099, 290, 198, 25677, 1321, 481, 307, 8574, 287, 257, 4600, 13, 9078, 63, 2393, 13, 4377, 8563, 481, 307, 8574, 287, 198, 44646, 6404, 44646, 198, 37811, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 1296, 1436, 62, 4871, 28, 853, 29572, 13, 27369, 11828, 22087, 8479, 1436, 11, 198, 220, 220, 220, 6764, 28, 9395, 298, 7, 71, 8841, 4008, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 34345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8979, 7268, 4938, 6550, 23912, 2438, 526, 737, 785, 1154, 353, 28, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 21231, 11, 12429, 74, 18504, 25, 15095, 7203, 24620, 76, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 78, 1600, 705, 438, 14986, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 818, 9152, 2656, 6550, 23912, 2438, 1627, 355, 2912, 878, 262, 327, 4880, 11059, 286, 262, 2438, 1627, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 705, 438, 15944, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 818, 9152, 6550, 23912, 3651, 287, 262, 7560, 327, 4880, 3696, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 82, 1600, 705, 438, 47811, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 38062, 4142, 48040, 262, 4600, 27, 34345, 28401, 9078, 63, 2393, 351, 4818, 265, 2981, 351, 11776, 198, 361, 1744, 32203, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 50, 1600, 705, 438, 6759, 23912, 12, 47811, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 16719, 274, 257, 9483, 285, 17, 20322, 62, 29510, 13, 554, 262, 9483, 262, 2603, 23912, 2393, 7, 82, 8, 284, 307, 14251, 389, 635, 1234, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 2312, 2603, 23912, 2393, 7, 82, 8, 389, 4622, 9518, 523, 326, 484, 5072, 1366, 12, 4906, 1321, 286, 262, 9633, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 284, 2393, 7, 82, 737, 770, 5072, 460, 788, 307, 973, 284, 900, 262, 4818, 265, 9497, 329, 262, 11059, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 81, 1600, 705, 438, 42503, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 32916, 382, 262, 2695, 286, 4600, 27, 34345, 28401, 9078, 63, 290, 787, 257, 4713, 11059, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 83, 1600, 705, 438, 21048, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 18557, 262, 10238, 10139, 5509, 13, 5501, 1627, 287, 262, 5072, 6870, 257, 10139, 290, 198, 271, 1296, 515, 355, 5679, 25, 198, 198, 63, 27, 19815, 4470, 29, 1279, 9150, 29, 1279, 4871, 29, 1279, 1891, 437, 29, 1279, 19608, 265, 2981, 29, 1279, 3672, 29, 1279, 41519, 29, 63, 198, 198, 464, 33793, 341, 6870, 262, 5509, 4645, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 51, 1600, 366, 438, 21048, 12, 12853, 1600, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 30556, 355, 532, 83, 11, 475, 262, 1336, 10139, 5509, 11, 475, 2291, 13634, 12, 77, 4147, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 67, 1600, 705, 438, 6381, 79, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 18557, 503, 262, 4371, 286, 262, 11059, 1429, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 79, 1600, 366, 438, 6978, 82, 62, 7753, 1600, 2099, 28, 2536, 11, 2244, 2625, 6978, 82, 62, 7753, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 34227, 290, 13532, 62, 7753, 13841, 79, 3108, 62, 1462, 62, 6978, 82, 7753, 737, 285, 17, 20322, 481, 804, 329, 2603, 23912, 3696, 287, 262, 4067, 7368, 3467, 198, 259, 262, 13532, 62, 7753, 15931, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 3361, 1600, 705, 438, 21633, 12, 3361, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 11505, 7378, 2438, 318, 18846, 329, 2547, 1640, 290, 23607, 7498, 351, 262, 23864, 2611, 43313, 2, 27082, 13775, 357, 259, 6550, 23912, 2438, 8, 618, 428, 3467, 198, 32109, 318, 900, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 83, 11848, 1600, 705, 438, 21633, 12, 83, 11848, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 51, 15199, 2438, 318, 18846, 329, 2547, 1640, 290, 23607, 7498, 351, 262, 23864, 2611, 43313, 2, 27082, 13775, 357, 259, 6550, 23912, 2438, 8, 618, 428, 6056, 318, 900, 32203, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 5420, 1600, 705, 438, 35790, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 59, 198, 1890, 262, 7560, 327, 4880, 2438, 11, 2163, 5128, 10007, 389, 366, 22163, 798, 416, 1988, 1, 355, 4277, 13, 2080, 428, 6056, 617, 3467, 198, 15414, 10007, 287, 262, 7560, 2438, 460, 307, 1500, 10288, 13, 1318, 460, 307, 617, 2854, 4621, 286, 1262, 198, 9979, 10288, 2427, 286, 366, 22163, 798, 416, 1988, 1911, 5740, 326, 6550, 23912, 366, 22163, 444, 416, 1988, 1911, 3467, 198, 464, 6550, 23912, 2438, 345, 1949, 284, 15772, 284, 327, 4880, 2438, 714, 1949, 1100, 355, 880, 355, 3551, 284, 428, 5128, 7885, 13, 3467, 198, 464, 2438, 17301, 1595, 470, 1620, 281, 3781, 284, 4886, 428, 290, 788, 366, 30073, 416, 1988, 1, 329, 428, 7885, 32203, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 75, 1600, 705, 438, 1370, 3256, 2099, 28, 600, 11, 2244, 2625, 1370, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 10049, 3359, 2438, 3519, 284, 2438, 1627, 1271, 4600, 27, 1370, 29, 63, 19570, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 77, 1600, 705, 438, 77, 853, 259, 3256, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 3987, 470, 4781, 611, 290, 5078, 13737, 543, 779, 299, 853, 259, 7885, 19570, 628, 628, 198, 28311, 25, 198, 220, 220, 220, 1330, 1822, 20751, 198, 220, 220, 220, 1822, 20751, 13, 2306, 42829, 6677, 7, 48610, 8, 198, 16341, 25, 198, 220, 220, 220, 1208, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 2603, 23912, 17, 20322, 13, 12417, 7, 22046, 8, 628 ]
3.037464
1,388
import torch def rademacher(shape, gpu=True): """ Creates a random tensor of size [shape] under the Rademacher distribution (P(x=1) == P(x=-1) == 0.5) """ x = torch.empty(shape) if gpu: x = x.cuda() x.random_(0, 2) x[x == 0] = -1 return x def second_directional_derivative(G, z, c, x, G_z, epsilon, w=None, Q=None): """ Computes the second directional derivative of G w.r.t. its input at z in the direction x """ if w is None: # Apply the Hessian Penalty in Z-space return (G(z + x, c, Q=Q) - 2 * G_z + G(z - x, c, Q=Q)) / (epsilon ** 2) else: # Apply it in W-space return (G(z, c, w=w+x, Q=Q) - 2 * G_z + G(z, c, w=w-x, Q=Q)) / (epsilon ** 2) def multi_layer_second_directional_derivative(G, z, c, x, G_z, epsilon, w=None, Q=None): """ Same as second_directional_derivative, but assumes G returns multiple outputs in a list """ if w is None: _, G_to_x = G(z + x, c, return_bn=True, Q=Q) _, G_from_x = G(z - x, c, return_bn=True, Q=Q) else: _, G_to_x = G(z, c, w=w+x, return_bn=True, Q=Q) _, G_from_x = G(z, c, w=w-x, return_bn=True, Q=Q) eps_sqr = epsilon ** 2 sdd = [(G2x - 2 * G_z_base + Gfx) / eps_sqr for G2x, G_z_base, Gfx in zip(G_to_x, G_z, G_from_x)] return sdd def hessian_penalty(G, z, c, w=None, G_z=None, k=2, epsilon=0.1, reduction=torch.mean, multiple_layers=True, return_separately=False, Q=None): """ Version of the Hessian Penalty that allows taking the Hessian w.r.t. the w input instead of z Note: w here refers to the coefficients for the learned directions in Q, it has nothing to do with W-space as in StyleGAN, etc. :param G: Function that maps z to either a tensor or a size-N list of tensors (activations) :param z: (N, dim_z) input to G :param c: Class label input to G (not regularized in this version of hessian penalty) :param w: (N, ndirs) tensor that represents how far to move z in each of the ndirs directions stored in Q. If specified, Hessian is taken w.r.t. w instead of w.r.t. z. :param k: Number of Hessian directions to sample (must be >= 2) :param G_z: Pre-cached G(z) computation (i.e., a size-N list) :param epsilon: Amount to blur G before estimating Hessian (must be > 0) :param reduction: Many-to-one function to reduce each pixel's individual hessian penalty into a final loss :param multiple_layers: If True, G is expected to return a list of tensors that are all regularized jointly :param return_separately: If True, returns hessian penalty for each layer separately, rather than combining them :param Q: (ndirs, nz) matrix of directions (rows correspond to directions) :return: A differentiable scalar (the hessian penalty), or a list of hessian penalties if return_separately is True """ if G_z is None: G_z = G(z, c, w=w, return_bn=multiple_layers, Q=Q) if multiple_layers: G_z = G_z[1] if w is not None: xs = rademacher(torch.Size((k, *w.size()))) * epsilon else: xs = rademacher(torch.Size((k, *z.size()))) * epsilon second_orders = [] for i in range(k): x = xs[i] if multiple_layers: central_second_order = multi_layer_second_directional_derivative(G, z, c, x, G_z, epsilon, w=w, Q=Q) else: central_second_order = second_directional_derivative(G, z, c, x, G_z, epsilon, w=w, Q=Q) second_orders.append(central_second_order) if multiple_layers: penalty = multi_stack_var_and_reduce(second_orders, reduction, return_separately) else: penalty = stack_var_and_reduce(second_orders, reduction) return penalty
[ 11748, 28034, 628, 198, 4299, 2511, 368, 3493, 7, 43358, 11, 308, 19944, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 4738, 11192, 273, 286, 2546, 685, 43358, 60, 739, 262, 5325, 368, 3493, 6082, 357, 47, 7, 87, 28, 16, 8, 6624, 350, 7, 87, 10779, 16, 8, 6624, 657, 13, 20, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 796, 28034, 13, 28920, 7, 43358, 8, 198, 220, 220, 220, 611, 308, 19944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2124, 13, 66, 15339, 3419, 198, 220, 220, 220, 2124, 13, 25120, 41052, 15, 11, 362, 8, 198, 220, 220, 220, 2124, 58, 87, 6624, 657, 60, 796, 532, 16, 198, 220, 220, 220, 1441, 2124, 628, 198, 4299, 1218, 62, 37295, 282, 62, 1082, 452, 876, 7, 38, 11, 1976, 11, 269, 11, 2124, 11, 402, 62, 89, 11, 304, 862, 33576, 11, 266, 28, 14202, 11, 1195, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1769, 262, 1218, 47424, 27255, 286, 402, 266, 13, 81, 13, 83, 13, 663, 5128, 379, 1976, 287, 262, 4571, 2124, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 266, 318, 6045, 25, 220, 1303, 27967, 262, 46305, 666, 41676, 287, 1168, 12, 13200, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 38, 7, 89, 1343, 2124, 11, 269, 11, 1195, 28, 48, 8, 532, 362, 1635, 402, 62, 89, 1343, 402, 7, 89, 532, 2124, 11, 269, 11, 1195, 28, 48, 4008, 1220, 357, 538, 18217, 261, 12429, 362, 8, 198, 220, 220, 220, 2073, 25, 220, 1303, 27967, 340, 287, 370, 12, 13200, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 38, 7, 89, 11, 269, 11, 266, 28, 86, 10, 87, 11, 1195, 28, 48, 8, 532, 362, 1635, 402, 62, 89, 1343, 402, 7, 89, 11, 269, 11, 266, 28, 86, 12, 87, 11, 1195, 28, 48, 4008, 1220, 357, 538, 18217, 261, 12429, 362, 8, 628, 198, 4299, 5021, 62, 29289, 62, 12227, 62, 37295, 282, 62, 1082, 452, 876, 7, 38, 11, 1976, 11, 269, 11, 2124, 11, 402, 62, 89, 11, 304, 862, 33576, 11, 266, 28, 14202, 11, 1195, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16766, 355, 1218, 62, 37295, 282, 62, 1082, 452, 876, 11, 475, 18533, 402, 5860, 3294, 23862, 287, 257, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 266, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 402, 62, 1462, 62, 87, 796, 402, 7, 89, 1343, 2124, 11, 269, 11, 1441, 62, 9374, 28, 17821, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 402, 62, 6738, 62, 87, 796, 402, 7, 89, 532, 2124, 11, 269, 11, 1441, 62, 9374, 28, 17821, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 402, 62, 1462, 62, 87, 796, 402, 7, 89, 11, 269, 11, 266, 28, 86, 10, 87, 11, 1441, 62, 9374, 28, 17821, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 402, 62, 6738, 62, 87, 796, 402, 7, 89, 11, 269, 11, 266, 28, 86, 12, 87, 11, 1441, 62, 9374, 28, 17821, 11, 1195, 28, 48, 8, 628, 220, 220, 220, 304, 862, 62, 31166, 81, 796, 304, 862, 33576, 12429, 362, 198, 220, 220, 220, 264, 1860, 796, 47527, 38, 17, 87, 532, 362, 1635, 402, 62, 89, 62, 8692, 1343, 402, 21373, 8, 1220, 304, 862, 62, 31166, 81, 329, 402, 17, 87, 11, 402, 62, 89, 62, 8692, 11, 402, 21373, 287, 19974, 7, 38, 62, 1462, 62, 87, 11, 402, 62, 89, 11, 402, 62, 6738, 62, 87, 15437, 198, 220, 220, 220, 1441, 264, 1860, 628, 628, 198, 4299, 339, 824, 666, 62, 3617, 6017, 7, 38, 11, 1976, 11, 269, 11, 266, 28, 14202, 11, 402, 62, 89, 28, 14202, 11, 479, 28, 17, 11, 304, 862, 33576, 28, 15, 13, 16, 11, 7741, 28, 13165, 354, 13, 32604, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3294, 62, 75, 6962, 28, 17821, 11, 1441, 62, 25512, 1286, 28, 25101, 11, 1195, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10628, 286, 262, 46305, 666, 41676, 326, 3578, 2263, 262, 46305, 666, 266, 13, 81, 13, 83, 13, 262, 266, 5128, 2427, 286, 1976, 198, 220, 220, 220, 5740, 25, 266, 994, 10229, 284, 262, 44036, 329, 262, 4499, 11678, 287, 1195, 11, 340, 468, 2147, 284, 466, 351, 370, 12, 13200, 198, 220, 220, 220, 355, 287, 17738, 45028, 11, 3503, 13, 628, 220, 220, 220, 1058, 17143, 402, 25, 15553, 326, 8739, 1976, 284, 2035, 257, 11192, 273, 393, 257, 2546, 12, 45, 1351, 286, 11192, 669, 357, 15791, 602, 8, 198, 220, 220, 220, 1058, 17143, 1976, 25, 357, 45, 11, 5391, 62, 89, 8, 5128, 284, 402, 198, 220, 220, 220, 1058, 17143, 269, 25, 5016, 6167, 5128, 284, 402, 357, 1662, 3218, 1143, 287, 428, 2196, 286, 339, 824, 666, 7389, 8, 198, 220, 220, 220, 1058, 17143, 266, 25, 357, 45, 11, 299, 15908, 82, 8, 11192, 273, 326, 6870, 703, 1290, 284, 1445, 1976, 287, 1123, 286, 262, 299, 15908, 82, 11678, 8574, 287, 1195, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 7368, 11, 46305, 666, 318, 2077, 266, 13, 81, 13, 83, 13, 266, 2427, 286, 266, 13, 81, 13, 83, 13, 1976, 13, 198, 220, 220, 220, 1058, 17143, 479, 25, 7913, 286, 46305, 666, 11678, 284, 6291, 357, 27238, 307, 18189, 362, 8, 198, 220, 220, 220, 1058, 17143, 402, 62, 89, 25, 3771, 12, 66, 2317, 402, 7, 89, 8, 29964, 357, 72, 13, 68, 1539, 257, 2546, 12, 45, 1351, 8, 198, 220, 220, 220, 1058, 17143, 304, 862, 33576, 25, 26308, 284, 23671, 402, 878, 39539, 46305, 666, 357, 27238, 307, 1875, 657, 8, 198, 220, 220, 220, 1058, 17143, 7741, 25, 4650, 12, 1462, 12, 505, 2163, 284, 4646, 1123, 17465, 338, 1981, 339, 824, 666, 7389, 656, 257, 2457, 2994, 198, 220, 220, 220, 1058, 17143, 3294, 62, 75, 6962, 25, 1002, 6407, 11, 402, 318, 2938, 284, 1441, 257, 1351, 286, 11192, 669, 326, 389, 477, 3218, 1143, 26913, 198, 220, 220, 220, 1058, 17143, 1441, 62, 25512, 1286, 25, 1002, 6407, 11, 5860, 339, 824, 666, 7389, 329, 1123, 7679, 13869, 11, 2138, 621, 19771, 606, 198, 220, 220, 220, 1058, 17143, 1195, 25, 357, 358, 17062, 11, 299, 89, 8, 17593, 286, 11678, 357, 8516, 6053, 284, 11678, 8, 628, 220, 220, 220, 1058, 7783, 25, 317, 1180, 3379, 16578, 283, 357, 1169, 339, 824, 666, 7389, 828, 393, 257, 1351, 286, 339, 824, 666, 12970, 611, 1441, 62, 25512, 1286, 318, 6407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 402, 62, 89, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 402, 62, 89, 796, 402, 7, 89, 11, 269, 11, 266, 28, 86, 11, 1441, 62, 9374, 28, 48101, 62, 75, 6962, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3294, 62, 75, 6962, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 62, 89, 796, 402, 62, 89, 58, 16, 60, 198, 220, 220, 220, 611, 266, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 82, 796, 2511, 368, 3493, 7, 13165, 354, 13, 10699, 19510, 74, 11, 1635, 86, 13, 7857, 3419, 22305, 1635, 304, 862, 33576, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 82, 796, 2511, 368, 3493, 7, 13165, 354, 13, 10699, 19510, 74, 11, 1635, 89, 13, 7857, 3419, 22305, 1635, 304, 862, 33576, 198, 220, 220, 220, 1218, 62, 6361, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 74, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2124, 82, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3294, 62, 75, 6962, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4318, 62, 12227, 62, 2875, 796, 5021, 62, 29289, 62, 12227, 62, 37295, 282, 62, 1082, 452, 876, 7, 38, 11, 1976, 11, 269, 11, 2124, 11, 402, 62, 89, 11, 304, 862, 33576, 11, 266, 28, 86, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4318, 62, 12227, 62, 2875, 796, 1218, 62, 37295, 282, 62, 1082, 452, 876, 7, 38, 11, 1976, 11, 269, 11, 2124, 11, 402, 62, 89, 11, 304, 862, 33576, 11, 266, 28, 86, 11, 1195, 28, 48, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 62, 6361, 13, 33295, 7, 31463, 62, 12227, 62, 2875, 8, 198, 220, 220, 220, 611, 3294, 62, 75, 6962, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7389, 796, 5021, 62, 25558, 62, 7785, 62, 392, 62, 445, 7234, 7, 12227, 62, 6361, 11, 7741, 11, 1441, 62, 25512, 1286, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7389, 796, 8931, 62, 7785, 62, 392, 62, 445, 7234, 7, 12227, 62, 6361, 11, 7741, 8, 198, 220, 220, 220, 1441, 7389, 628 ]
2.331269
1,615
from __future__ import annotations from io import BytesIO from unittest.mock import Mock import pytest from vine import promise import t.skip from kombu.asynchronous import http from kombu.asynchronous.http.base import BaseClient, normalize_header from kombu.exceptions import HttpError from t.mocks import PromiseMock @pytest.mark.usefixtures('hub') @pytest.mark.usefixtures('hub') @t.skip.if_pypy
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 33245, 1330, 2750, 4879, 9399, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 44123, 198, 198, 11748, 12972, 9288, 198, 6738, 17793, 1330, 6991, 198, 198, 11748, 256, 13, 48267, 198, 6738, 479, 2381, 84, 13, 292, 31301, 1330, 2638, 198, 6738, 479, 2381, 84, 13, 292, 31301, 13, 4023, 13, 8692, 1330, 7308, 11792, 11, 3487, 1096, 62, 25677, 198, 6738, 479, 2381, 84, 13, 1069, 11755, 1330, 367, 29281, 12331, 198, 6738, 256, 13, 76, 3320, 1330, 34920, 44, 735, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 40140, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 40140, 11537, 628, 198, 198, 31, 83, 13, 48267, 13, 361, 62, 79, 4464, 88, 198 ]
3.037037
135
#!/usr/bin/env python # -*- coding: utf8 -*- """ Copyright (c) 2011 Tyler Kenendy <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ try: import json except ImportError: import simplejson as json import traceback import six import six.moves.urllib.request from burger import website from .topping import Topping from jawa.constants import * RESOURCES_SITE = "http://resources.download.minecraft.net/%(short_hash)s/%(hash)s" def get_sounds(asset_index, resources_site=RESOURCES_SITE): """Downloads the sounds.json file from the assets index""" hash = asset_index["objects"]["minecraft/sounds.json"]["hash"] short_hash = hash[0:2] sounds_url = resources_site % {'hash': hash, 'short_hash': short_hash} sounds_file = six.moves.urllib.request.urlopen(sounds_url) try: return json.load(sounds_file) finally: sounds_file.close() class SoundTopping(Topping): """Finds all named sound effects which are both used in the server and available for download.""" PROVIDES = [ "sounds" ] DEPENDS = [ "identify.sounds.list", "identify.sounds.event", "version.name", "language" ] @staticmethod
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 23, 532, 9, 12, 198, 37811, 198, 15269, 357, 66, 8, 2813, 14886, 7148, 437, 88, 1279, 30488, 31, 30488, 660, 13, 354, 29, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 439, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 10970, 47466, 13, 198, 37811, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 33918, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1330, 2829, 17752, 355, 33918, 198, 198, 11748, 12854, 1891, 198, 198, 11748, 2237, 198, 11748, 2237, 13, 76, 5241, 13, 333, 297, 571, 13, 25927, 198, 198, 6738, 26593, 1330, 3052, 198, 6738, 764, 1462, 2105, 1330, 1675, 2105, 198, 198, 6738, 474, 6909, 13, 9979, 1187, 1330, 1635, 198, 198, 19535, 2606, 7397, 1546, 62, 50, 12709, 796, 366, 4023, 1378, 37540, 13, 15002, 13, 17761, 13, 3262, 14, 4, 7, 19509, 62, 17831, 8, 82, 14, 4, 7, 17831, 8, 82, 1, 198, 198, 4299, 651, 62, 82, 3733, 7, 562, 316, 62, 9630, 11, 4133, 62, 15654, 28, 19535, 2606, 7397, 1546, 62, 50, 12709, 2599, 198, 220, 220, 220, 37227, 10002, 82, 262, 5238, 13, 17752, 2393, 422, 262, 6798, 6376, 37811, 198, 220, 220, 220, 12234, 796, 11171, 62, 9630, 14692, 48205, 1, 7131, 1, 17761, 14, 82, 3733, 13, 17752, 1, 7131, 1, 17831, 8973, 198, 220, 220, 220, 1790, 62, 17831, 796, 12234, 58, 15, 25, 17, 60, 198, 220, 220, 220, 5238, 62, 6371, 796, 4133, 62, 15654, 4064, 1391, 6, 17831, 10354, 12234, 11, 705, 19509, 62, 17831, 10354, 1790, 62, 17831, 92, 628, 220, 220, 220, 5238, 62, 7753, 796, 2237, 13, 76, 5241, 13, 333, 297, 571, 13, 25927, 13, 6371, 9654, 7, 82, 3733, 62, 6371, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 2220, 7, 82, 3733, 62, 7753, 8, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5238, 62, 7753, 13, 19836, 3419, 198, 198, 4871, 9506, 2514, 2105, 7, 2514, 2105, 2599, 198, 220, 220, 220, 37227, 16742, 82, 477, 3706, 2128, 3048, 543, 389, 1111, 973, 287, 262, 4382, 290, 198, 220, 220, 220, 220, 220, 220, 1695, 329, 4321, 526, 15931, 628, 220, 220, 220, 36592, 42538, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 3733, 1, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 5550, 47, 1677, 5258, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 738, 1958, 13, 82, 3733, 13, 4868, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 738, 1958, 13, 82, 3733, 13, 15596, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 13, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16129, 1, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
3.010929
732
#!/usr/bin/env python3 # Copyright (c) 2015-2020 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. """ Simpler version of the ground simulation script """ import argparse import dateutil.parser import os import pickle import sys import traceback import numpy as np from toast.mpi import get_world, Comm from toast.dist import distribute_uniform, Data from toast.utils import Logger, Environment, memreport from toast.timing import function_timer, GlobalTimers, Timer, gather_timers from toast.timing import dump as dump_timing import toast.qarray as qa from toast.tod import OpCacheCopy, plot_focalplane, OpCacheClear from toast.todmap import TODGround from toast.pipeline_tools import ( add_dist_args, add_debug_args, get_time_communicators, get_comm, add_polyfilter_args, apply_polyfilter, add_groundfilter_args, apply_groundfilter, add_atmosphere_args, add_noise_args, simulate_noise, add_gainscrambler_args, scramble_gains, add_pointing_args, expand_pointing, add_madam_args, setup_madam, apply_madam, add_sky_map_args, add_pysm_args, scan_sky_signal, simulate_sky_signal, copy_signal, add_tidas_args, output_tidas, add_spt3g_args, output_spt3g, add_todground_args, get_breaks, Focalplane, load_schedule, add_mc_args, add_binner_args, init_binner, apply_binner, ) def create_observations(args, comm, schedule): """ Simulate constant elevation scans. Simulate constant elevation scans at "site" matching entries in "all_ces". Each operational day is assigned to a different process group to allow making day maps. """ timer = Timer() log = Logger.get() data = Data(comm) telescope = schedule.telescope site = telescope.site focalplane = telescope.focalplane all_ces = schedule.ceslist nces = len(all_ces) breaks = get_breaks(comm, all_ces, args) nbreak = len(breaks) groupdist = distribute_uniform(nces, comm.ngroups, breaks=breaks) group_firstobs = groupdist[comm.group][0] group_numobs = groupdist[comm.group][1] if comm.comm_group is not None: ndetrank = comm.comm_group.size else: ndetrank = 1 for ices in range(group_firstobs, group_firstobs + group_numobs): ces = all_ces[ices] totsamples = int((ces.stop_time - ces.start_time) * args.sample_rate) # create the single TOD for this observation try: tod = TODGround( comm.comm_group, focalplane.detquats, totsamples, detranks=ndetrank, firsttime=ces.start_time, rate=args.sample_rate, site_lon=site.lon, site_lat=site.lat, site_alt=site.alt, azmin=ces.azmin, azmax=ces.azmax, el=ces.el, scanrate=args.scan_rate, scan_accel=args.scan_accel, cosecant_modulation=args.scan_cosecant_modulate, CES_start=None, CES_stop=None, sun_angle_min=args.sun_angle_min, coord=args.coord, sampsizes=None, report_timing=args.debug, ) except RuntimeError as e: raise RuntimeError("Failed to create the CES scan: {}".format(e)) # Create the (single) observation ob = {} ob["name"] = "CES-{}-{}-{}".format(ces.name, ces.scan, ces.subscan) ob["tod"] = tod if len(tod.subscans) > 0: ob["intervals"] = tod.subscans else: raise RuntimeError("{} has no valid intervals".format(ob["name"])) ob["baselines"] = None ob["noise"] = focalplane.noise ob["id"] = int(ces.mjdstart * 10000) data.obs.append(ob) for ob in data.obs: tod = ob["tod"] tod.free_azel_quats() if comm.comm_world is None or comm.comm_group.rank == 0: log.info("Group # {:4} has {} observations.".format(comm.group, len(data.obs))) if len(data.obs) == 0: raise RuntimeError( "Too many tasks. Every MPI task must " "be assigned to at least one observation." ) if comm.world_rank == 0: timer.report_clear("Simulate scans") return data def setup_sigcopy(args, comm, signalname): """ Setup for copying the signal so we can run filter+bin and Madam. """ if args.use_madam: signalname_madam = "signal_madam" sigcopy_madam = OpCacheCopy(signalname, signalname_madam) sigclear = OpCacheClear(signalname) else: signalname_madam = signalname sigcopy_madam = None sigclear = None return signalname_madam, sigcopy_madam, sigclear def copy_signal_madam(args, comm, data, sigcopy_madam): """ Make a copy of the TOD for Madam. """ if sigcopy_madam is not None: if comm.world_rank == 0: print("Making a copy of the TOD for Madam", flush=args.flush) sigcopy_madam.exec(data) return if __name__ == "__main__": try: main() except Exception: # We have an unhandled exception on at least one process. Print a stack # trace for this process and then abort so that all processes terminate. mpiworld, procs, rank = get_world() if procs == 1: raise exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) lines = ["Proc {}: {}".format(rank, x) for x in lines] print("".join(lines), flush=True) if mpiworld is not None: mpiworld.Abort(6)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 15069, 357, 66, 8, 1853, 12, 42334, 416, 262, 4671, 5610, 287, 262, 37195, 20673, 2393, 13, 198, 2, 1439, 2489, 10395, 13, 220, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 198, 2, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 198, 8890, 20053, 2196, 286, 262, 2323, 18640, 4226, 198, 37811, 198, 198, 11748, 1822, 29572, 198, 11748, 3128, 22602, 13, 48610, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 27805, 13, 3149, 72, 1330, 651, 62, 6894, 11, 1520, 198, 198, 6738, 27805, 13, 17080, 1330, 14983, 62, 403, 6933, 11, 6060, 198, 198, 6738, 27805, 13, 26791, 1330, 5972, 1362, 11, 9344, 11, 1066, 13116, 198, 198, 6738, 27805, 13, 16514, 278, 1330, 2163, 62, 45016, 11, 8060, 14967, 364, 11, 5045, 263, 11, 6431, 62, 16514, 364, 198, 6738, 27805, 13, 16514, 278, 1330, 10285, 355, 10285, 62, 16514, 278, 198, 198, 11748, 27805, 13, 80, 18747, 355, 10662, 64, 198, 6738, 27805, 13, 83, 375, 1330, 8670, 30562, 29881, 11, 7110, 62, 69, 4374, 14382, 11, 8670, 30562, 19856, 198, 6738, 27805, 13, 83, 375, 8899, 1330, 16926, 35539, 198, 198, 6738, 27805, 13, 79, 541, 4470, 62, 31391, 1330, 357, 198, 220, 220, 220, 751, 62, 17080, 62, 22046, 11, 198, 220, 220, 220, 751, 62, 24442, 62, 22046, 11, 198, 220, 220, 220, 651, 62, 2435, 62, 10709, 44549, 11, 198, 220, 220, 220, 651, 62, 9503, 11, 198, 220, 220, 220, 751, 62, 35428, 24455, 62, 22046, 11, 198, 220, 220, 220, 4174, 62, 35428, 24455, 11, 198, 220, 220, 220, 751, 62, 2833, 24455, 62, 22046, 11, 198, 220, 220, 220, 4174, 62, 2833, 24455, 11, 198, 220, 220, 220, 751, 62, 265, 6384, 1456, 62, 22046, 11, 198, 220, 220, 220, 751, 62, 3919, 786, 62, 22046, 11, 198, 220, 220, 220, 29308, 62, 3919, 786, 11, 198, 220, 220, 220, 751, 62, 70, 1299, 66, 859, 43400, 62, 22046, 11, 198, 220, 220, 220, 36755, 62, 70, 1299, 11, 198, 220, 220, 220, 751, 62, 4122, 278, 62, 22046, 11, 198, 220, 220, 220, 4292, 62, 4122, 278, 11, 198, 220, 220, 220, 751, 62, 9937, 321, 62, 22046, 11, 198, 220, 220, 220, 9058, 62, 9937, 321, 11, 198, 220, 220, 220, 4174, 62, 9937, 321, 11, 198, 220, 220, 220, 751, 62, 15688, 62, 8899, 62, 22046, 11, 198, 220, 220, 220, 751, 62, 79, 893, 76, 62, 22046, 11, 198, 220, 220, 220, 9367, 62, 15688, 62, 12683, 282, 11, 198, 220, 220, 220, 29308, 62, 15688, 62, 12683, 282, 11, 198, 220, 220, 220, 4866, 62, 12683, 282, 11, 198, 220, 220, 220, 751, 62, 83, 24496, 62, 22046, 11, 198, 220, 220, 220, 5072, 62, 83, 24496, 11, 198, 220, 220, 220, 751, 62, 82, 457, 18, 70, 62, 22046, 11, 198, 220, 220, 220, 5072, 62, 82, 457, 18, 70, 11, 198, 220, 220, 220, 751, 62, 83, 375, 2833, 62, 22046, 11, 198, 220, 220, 220, 651, 62, 30058, 11, 198, 220, 220, 220, 376, 4374, 14382, 11, 198, 220, 220, 220, 3440, 62, 15952, 5950, 11, 198, 220, 220, 220, 751, 62, 23209, 62, 22046, 11, 198, 220, 220, 220, 751, 62, 65, 5083, 62, 22046, 11, 198, 220, 220, 220, 2315, 62, 65, 5083, 11, 198, 220, 220, 220, 4174, 62, 65, 5083, 11, 198, 8, 628, 628, 198, 4299, 2251, 62, 672, 3168, 602, 7, 22046, 11, 725, 11, 7269, 2599, 198, 220, 220, 220, 37227, 3184, 5039, 6937, 22910, 23824, 13, 628, 220, 220, 220, 3184, 5039, 6937, 22910, 23824, 379, 366, 15654, 1, 12336, 12784, 287, 198, 220, 220, 220, 366, 439, 62, 728, 1911, 220, 5501, 13919, 1110, 318, 8686, 284, 257, 1180, 198, 220, 220, 220, 1429, 1448, 284, 1249, 1642, 1110, 8739, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 19781, 796, 5045, 263, 3419, 198, 220, 220, 220, 2604, 796, 5972, 1362, 13, 1136, 3419, 628, 220, 220, 220, 1366, 796, 6060, 7, 9503, 8, 628, 220, 220, 220, 24344, 796, 7269, 13, 37524, 3798, 3008, 198, 220, 220, 220, 2524, 796, 24344, 13, 15654, 198, 220, 220, 220, 25397, 14382, 796, 24344, 13, 69, 4374, 14382, 198, 220, 220, 220, 477, 62, 728, 796, 7269, 13, 728, 4868, 198, 220, 220, 220, 299, 728, 796, 18896, 7, 439, 62, 728, 8, 628, 220, 220, 220, 9457, 796, 651, 62, 30058, 7, 9503, 11, 477, 62, 728, 11, 26498, 8, 628, 220, 220, 220, 299, 9032, 796, 18896, 7, 30058, 8, 628, 220, 220, 220, 1448, 17080, 796, 14983, 62, 403, 6933, 7, 3179, 11, 725, 13, 782, 14459, 11, 9457, 28, 30058, 8, 198, 220, 220, 220, 1448, 62, 11085, 8158, 796, 1448, 17080, 58, 9503, 13, 8094, 7131, 15, 60, 198, 220, 220, 220, 1448, 62, 22510, 8158, 796, 1448, 17080, 58, 9503, 13, 8094, 7131, 16, 60, 628, 220, 220, 220, 611, 725, 13, 9503, 62, 8094, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15255, 43027, 796, 725, 13, 9503, 62, 8094, 13, 7857, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15255, 43027, 796, 352, 628, 220, 220, 220, 329, 220, 1063, 287, 2837, 7, 8094, 62, 11085, 8158, 11, 1448, 62, 11085, 8158, 1343, 1448, 62, 22510, 8158, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 274, 796, 477, 62, 728, 58, 1063, 60, 198, 220, 220, 220, 220, 220, 220, 220, 284, 912, 12629, 796, 493, 19510, 728, 13, 11338, 62, 2435, 532, 269, 274, 13, 9688, 62, 2435, 8, 1635, 26498, 13, 39873, 62, 4873, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 262, 2060, 16926, 329, 428, 13432, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 67, 796, 16926, 35539, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 725, 13, 9503, 62, 8094, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25397, 14382, 13, 15255, 421, 1381, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 912, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1062, 81, 2283, 28, 358, 21879, 962, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 2435, 28, 728, 13, 9688, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2494, 28, 22046, 13, 39873, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 62, 14995, 28, 15654, 13, 14995, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 62, 15460, 28, 15654, 13, 15460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2524, 62, 2501, 28, 15654, 13, 2501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35560, 1084, 28, 728, 13, 1031, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35560, 9806, 28, 728, 13, 1031, 9806, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 28, 728, 13, 417, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9367, 4873, 28, 22046, 13, 35836, 62, 4873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9367, 62, 330, 5276, 28, 22046, 13, 35836, 62, 330, 5276, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 577, 66, 415, 62, 4666, 1741, 28, 22046, 13, 35836, 62, 66, 577, 66, 415, 62, 4666, 5039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42700, 62, 9688, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42700, 62, 11338, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4252, 62, 9248, 62, 1084, 28, 22046, 13, 19155, 62, 9248, 62, 1084, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 28, 22046, 13, 37652, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 9430, 4340, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 62, 16514, 278, 28, 22046, 13, 24442, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 43160, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 37, 6255, 284, 2251, 262, 42700, 9367, 25, 23884, 1911, 18982, 7, 68, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 357, 29762, 8, 13432, 628, 220, 220, 220, 220, 220, 220, 220, 909, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 3672, 8973, 796, 366, 34, 1546, 12, 90, 92, 12, 90, 92, 12, 90, 92, 1911, 18982, 7, 728, 13, 3672, 11, 269, 274, 13, 35836, 11, 269, 274, 13, 7266, 35836, 8, 198, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 83, 375, 8973, 796, 284, 67, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 83, 375, 13, 7266, 1416, 504, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 3849, 12786, 8973, 796, 284, 67, 13, 7266, 1416, 504, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7203, 90, 92, 468, 645, 4938, 20016, 1911, 18982, 7, 672, 14692, 3672, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 12093, 20655, 8973, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 3919, 786, 8973, 796, 25397, 14382, 13, 3919, 786, 198, 220, 220, 220, 220, 220, 220, 220, 909, 14692, 312, 8973, 796, 493, 7, 728, 13, 76, 73, 67, 9688, 1635, 33028, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 8158, 13, 33295, 7, 672, 8, 628, 220, 220, 220, 329, 909, 287, 1366, 13, 8158, 25, 198, 220, 220, 220, 220, 220, 220, 220, 284, 67, 796, 909, 14692, 83, 375, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 284, 67, 13, 5787, 62, 41319, 62, 421, 1381, 3419, 628, 220, 220, 220, 611, 725, 13, 9503, 62, 6894, 318, 6045, 393, 725, 13, 9503, 62, 8094, 13, 43027, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 13247, 1303, 46110, 19, 92, 468, 23884, 13050, 526, 13, 18982, 7, 9503, 13, 8094, 11, 18896, 7, 7890, 13, 8158, 22305, 628, 220, 220, 220, 611, 18896, 7, 7890, 13, 8158, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 43160, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23307, 867, 8861, 13, 3887, 4904, 40, 4876, 1276, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1350, 8686, 284, 379, 1551, 530, 13432, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 611, 725, 13, 6894, 62, 43027, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 19781, 13, 13116, 62, 20063, 7203, 8890, 5039, 23824, 4943, 628, 220, 220, 220, 1441, 1366, 628, 198, 4299, 9058, 62, 82, 328, 30073, 7, 22046, 11, 725, 11, 6737, 3672, 2599, 198, 220, 220, 220, 37227, 31122, 329, 23345, 262, 6737, 523, 356, 460, 1057, 8106, 10, 8800, 290, 4627, 321, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 26498, 13, 1904, 62, 9937, 321, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 3672, 62, 9937, 321, 796, 366, 12683, 282, 62, 9937, 321, 1, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 30073, 62, 9937, 321, 796, 8670, 30562, 29881, 7, 12683, 282, 3672, 11, 6737, 3672, 62, 9937, 321, 8, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 20063, 796, 8670, 30562, 19856, 7, 12683, 282, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6737, 3672, 62, 9937, 321, 796, 6737, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 30073, 62, 9937, 321, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 20063, 796, 6045, 628, 220, 220, 220, 1441, 6737, 3672, 62, 9937, 321, 11, 43237, 30073, 62, 9937, 321, 11, 43237, 20063, 628, 198, 198, 4299, 4866, 62, 12683, 282, 62, 9937, 321, 7, 22046, 11, 725, 11, 1366, 11, 43237, 30073, 62, 9937, 321, 2599, 198, 220, 220, 220, 37227, 6889, 257, 4866, 286, 262, 16926, 329, 4627, 321, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 43237, 30073, 62, 9937, 321, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 725, 13, 6894, 62, 43027, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 23874, 257, 4866, 286, 262, 16926, 329, 4627, 321, 1600, 24773, 28, 22046, 13, 25925, 8, 198, 220, 220, 220, 220, 220, 220, 220, 43237, 30073, 62, 9937, 321, 13, 18558, 7, 7890, 8, 628, 220, 220, 220, 1441, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 423, 281, 555, 38788, 6631, 319, 379, 1551, 530, 1429, 13, 220, 12578, 257, 8931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12854, 329, 428, 1429, 290, 788, 15614, 523, 326, 477, 7767, 23654, 13, 198, 220, 220, 220, 220, 220, 220, 220, 285, 14415, 6894, 11, 386, 6359, 11, 4279, 796, 651, 62, 6894, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 386, 6359, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 220, 220, 220, 220, 220, 220, 220, 2859, 62, 4906, 11, 2859, 62, 8367, 11, 2859, 62, 40546, 1891, 796, 25064, 13, 41194, 62, 10951, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 12854, 1891, 13, 18982, 62, 1069, 4516, 7, 41194, 62, 4906, 11, 2859, 62, 8367, 11, 2859, 62, 40546, 1891, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 14631, 2964, 66, 23884, 25, 23884, 1911, 18982, 7, 43027, 11, 2124, 8, 329, 2124, 287, 3951, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1911, 22179, 7, 6615, 828, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 285, 14415, 6894, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 14415, 6894, 13, 4826, 419, 7, 21, 8, 198 ]
2.235628
2,644
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Type checking functions for datetime related types for use with arparse.""" from argparse import ArgumentTypeError
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 6030, 10627, 5499, 329, 4818, 8079, 3519, 3858, 329, 779, 351, 610, 29572, 526, 15931, 198, 198, 6738, 1822, 29572, 1330, 45751, 6030, 12331, 628 ]
3.34
50
#!/usr/bin/env python3 # coding=utf-8 # author: @netmanchris # -*- coding: utf-8 -*- """ This module contains functions for working with the device capabilities of the HPE IMC NMS platform using the RESTful API """ # This section imports required libraries import json import requests from pyhpeimc.auth import HEADERS # This section contains functions which operate at the system level # This whole section has been moved to pyhpeimc.plat.system - functions left here for legacy. # Intention is to remove by version 1.0.60 or greater. Please modify any scripts using functions # in this section to use the new functions in the new module # TODO Delete function when version => 1.60 def get_system_vendors(auth, url): """Takes string no input to issue RESTUL call to HP IMC\n :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dictionaries where each dictionary represents a single vendor :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> vendors = get_system_vendors(auth.creds, auth.url) >>> assert type(vendors) is list >>> assert 'name' in vendors[0] """ f_url = url + '/imcrs/plat/res/vendor?start=0&size=10000&orderBy=id&desc=false&total=false' response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: system_vendors = (json.loads(response.text)) return system_vendors['deviceVendor'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_details: An Error has occured" # TODO remove function when version => 1.60 def get_system_category(auth, url): """Takes string no input to issue RESTUL call to HP IMC\n :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dictionaries where each dictionary represents a single device category :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> categories = get_system_category(auth.creds, auth.url) >>> assert type(categories) is list >>> assert 'name' in categories[0] """ f_url = url + '/imcrs/plat/res/category?start=0&size=10000&orderBy=id&desc=false&total=false' response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: system_category = (json.loads(response.text)) return system_category['deviceCategory'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_details: An Error has occured" # TODO Delete function when version => 1.60 def get_system_device_models(auth, url): """Takes string no input to issue RESTUL call to HP IMC\n :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dictionaries where each dictionary represents a single device model :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> device_models = get_system_device_models(auth.creds, auth.url) >>> assert type(device_models) is list >>> assert 'virtualDeviceName' in device_models[0] """ f_url = url + '/imcrs/plat/res/model?start=0&size=10000&orderBy=id&desc=false&total=false' response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: system_device_model = (json.loads(response.text)) return system_device_model['deviceModel'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_details: An Error has occured" # TODO Delete function when version => 1.60 def get_system_series(auth, url): """Takes string no input to issue RESTUL call to HP IMC\n :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dictionaries where each dictionary represents a single device series :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> series = get_system_series(auth.creds, auth.url) >>> assert type(series) is list >>> assert 'name' in series[0] """ f_url = url + '/imcrs/plat/res/series?managedOnly=false&start=0&size=10000&orderBy=id&desc' \ '=false&total=false' response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: system_series = (json.loads(response.text)) return system_series['deviceSeries'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_series: An Error has occured" # This section contains functions which operate at the device level. def get_all_devs(auth, url, network_address=None, category=None, label=None): """Takes string input of IP address to issue RESTUL call to HP IMC\n :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param network_address: str IPv4 Network Address :param category: str or int corresponding to device category (0=router, 1=switches, see API docs for other examples) :return: dictionary of device details :rtype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_list = get_all_devs( auth.creds, auth.url, network_address= '10.11.') >>> assert type(dev_list) is list >>> assert 'sysName' in dev_list[0] """ base_url = "/imcrs/plat/res/device?resPrivilegeFilter=false" end_url = "&start=0&size=1000&orderBy=id&desc=false&total=false" if network_address: network_address = "&ip=" + str(network_address) else: network_address = '' if label: label = "&label=" + str(label) else: label = '' if category: category = "&category" + category else: category = '' f_url = url + base_url + str(network_address) + str(label) + str(category) + end_url print(f_url) response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: dev_details = (json.loads(response.text)) if len(dev_details) == 0: print("Device not found") return "Device not found" elif type(dev_details['device']) is dict: return [dev_details['device']] else: return dev_details['device'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_details: An Error has occured" def get_dev_details(ip_address, auth, url): """Takes string input of IP address to issue RESTUL call to HP IMC :param ip_address: string object of dotted decimal notation of IPv4 address :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: dictionary of device details :rtype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_1 = get_dev_details('10.101.0.221', auth.creds, auth.url) >>> assert type(dev_1) is dict >>> assert 'sysName' in dev_1 >>> dev_2 = get_dev_details('8.8.8.8', auth.creds, auth.url) Device not found >>> assert type(dev_2) is str """ get_dev_details_url = "/imcrs/plat/res/device?resPrivilegeFilter=false&ip=" + \ str(ip_address) + "&start=0&size=1000&orderBy=id&desc=false&total=false" f_url = url + get_dev_details_url response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: dev_details = (json.loads(response.text)) if len(dev_details) == 0: print("Device not found") return "Device not found" elif isinstance(dev_details['device'], list): for i in dev_details['device']: if i['ip'] == ip_address: dev_details = i return dev_details elif isinstance(dev_details['device'], dict): return dev_details['device'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_details: An Error has occured" def get_dev_interface(auth, url, devid=None, devip=None): """ Function takes devid as input to RESTFUL call to HP IMC platform and returns list of device interfaces :param devid: optional devid as the input :param devip: str of ipv4 address of the target device :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list object which contains a dictionary per interface :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_interfaces = get_dev_interface(auth.creds, auth.url, devid='15') >>> dev_interfaces = get_dev_interface(auth.creds, auth.url, devip='10.101.0.221') >>> assert type(dev_interfaces) is list >>> assert 'ifAlias' in dev_interfaces[0] """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] get_dev_interface_url = "/imcrs/plat/res/device/" + str(devid) + \ "/interface?start=0&size=1000&desc=false&total=false" f_url = url + get_dev_interface_url response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: int_list = json.loads(response.text) if 'interface' in int_list: return int_list['interface'] else: return [] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_interface: An Error has occured" def get_dev_run_config(auth, url, devid=None, devip=None): """ function takes the devId of a specific device and issues a RESTFUL call to get the most current running config file as known by the HP IMC Base Platform ICC module for the target device. :param devid: int or str value of the target device :param devip: str of ipv4 address of the target device :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: str which contains the entire content of the target device running configuration. If the device is not currently supported in the HP IMC Base Platform ICC module, this call returns a string of "This feature is not supported on this device" :rtype: str >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> run_config = get_dev_run_config(auth.creds, auth.url, devid='10') >>> run_config = get_dev_run_config(auth.creds, auth.url, devip='10.101.0.221') >>> assert type(run_config) is str """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] f_url = url + "/imcrs/icc/deviceCfg/" + str(devid) + "/currentRun" response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: run_conf = (json.loads(response.text))['content'] return run_conf elif response.status_code == 404: return "This features is no supported on this device" except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_run_config: An Error has occured" def get_dev_latest_run_config(auth, url, devid=None, devip=None): """ function takes the devId of a specific device and issues a RESTFUL call to get the most current existing backup of the running config file as known by the HP IMC Base Platform ICC module for the target device. :param devid: int or str value of the target device :param devip: str of ipv4 address of the target device :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: str which contains the entire content of the target device running configuration. If the device is not currently supported in the HP IMC Base Platform ICC module, this call returns a string of "This feature is not supported on this device" :rtype: str >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> run_config = get_dev_run_config(auth.creds, auth.url, devid='10') >>> run_config = get_dev_run_config(auth.creds, auth.url, devip='10.101.0.221') >>> assert type(run_config) is str """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] f_url = url + "/imcrs/icc/deviceCfg/" + str(devid) + "/latestRun" response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: run_conf = (json.loads(response.text))['content'] return run_conf elif response.status_code == 404: return "This features is no supported on this device" except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_run_config: An Error has occured" def get_dev_start_config(auth, url, devid=None, devip=None): """ function takes the devId of a specific device and issues a RESTFUL call to get the most current startup config file as known by the HP IMC Base Platform ICC module for the target device. :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param devid: optional int or str value of the target device :param devip: optional ipv4 address of the target device :return: str which contains the entire content of the target device startup configuration. If the device is not currently supported in the HP IMC Base Platform ICC module, this call returns a string of "This feature is not supported on this device" :retype: str >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> start_config = get_dev_start_config(auth.creds, auth.url, devId='10') >>> start_config = get_dev_start_config(auth.creds, auth.url, devip='10.101.0.221') >>> assert type(start_config) is str """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] f_url = url + "/imcrs/icc/deviceCfg/" + str(devid) + "/currentStart" response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: start_conf = (json.loads(response.text))['content'] return start_conf elif response.status_code == 404: return "This features is no supported on this device" except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_start_config: An Error has occured" def get_dev_latest_start_config(auth, url, devid=None, devip=None): """ function takes the devId of a specific device and issues a RESTFUL call to get the most current startup config file as known by the HP IMC Base Platform ICC module for the target device. :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param devid: optional int or str value of the target device :param devip: optional ipv4 address of the target device :return: str which contains the entire content of the target device startup configuration. If the device is not currently supported in the HP IMC Base Platform ICC module, this call returns a string of "This feature is not supported on this device" :retype: str >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> start_config = get_dev_start_config(auth.creds, auth.url, devId='10') >>> start_config = get_dev_start_config(auth.creds, auth.url, devip='10.101.0.221') >>> assert type(start_config) is str """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] f_url = url + "/imcrs/icc/deviceCfg/" + str(devid) + "/latestStart" response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: start_conf = (json.loads(response.text))['content'] return start_conf elif response.status_code == 404: return "This features is no supported on this device" except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_start_config: An Error has occured" def get_dev_mac_learn(auth, url, devid=None, devip=None): """ function takes devid of specific device and issues a RESTFUL call to gather the current IP-MAC learning entries on the target device. :param devid: int value of the target device :param devip: ipv4 address of the target device :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: list of dict objects which contain the mac learn table of target device id :rtype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> dev_mac_learn = get_dev_mac_learn( auth.creds, auth.url, devid='10') >>> dev_mac_learn = get_dev_mac_learn( auth.creds, auth.url, devip='10.101.0.221') >>> assert type(dev_mac_learn) is list >>> assert 'deviceId' in dev_mac_learn[0] """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] f_url = url + '/imcrs/res/access/ipMacLearn/' + str(devid) try: response = requests.get(f_url, auth=auth, headers=HEADERS) if response.status_code == 200: if len(json.loads(response.text)) < 1: mac_learn_query = [] return mac_learn_query else: mac_learn_query = (json.loads(response.text))['ipMacLearnResult'] if isinstance(mac_learn_query, dict): mac_learn_query = [mac_learn_query] return mac_learn_query except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_dev_mac_learn: An Error has occured" def run_dev_cmd(cmd_list, auth, url, devid=None, devip=None): """ Function takes devid of target device and a sequential list of strings which define the specific commands to be run on the target device and returns a str object containing the output of the commands. :param devid: int devid of the target device :param cmd_list: list of strings :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param devip: str of ipv4 address of the target device :return: str containing the response of the commands >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> cmd_list = ['display version'] >>> cmd_output = run_dev_cmd( cmd_list, auth.creds, auth.url, devid ='10') >>> cmd_output = run_dev_cmd( cmd_list, auth.creds, auth.url, devip='10.101.0.221') >>> assert type(cmd_output) is dict >>> assert 'cmdlist' in cmd_output >>> assert 'success' in cmd_output """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] run_dev_cmd_url = '/imcrs/icc/confFile/executeCmd' f_url = url + run_dev_cmd_url cmd_list = _make_cmd_list(cmd_list) payload = '''{ "deviceId" : "''' + str(devid) + '''", "cmdlist" : { "cmd" : [''' + cmd_list + '''] } }''' try: response = requests.post(f_url, data=payload, auth=auth, headers=HEADERS) if response.status_code == 200: if len(response.text) < 1: return '' else: return json.loads(response.text) except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " run_dev_cmd: An Error has occured" # This section contains functions which operate at the interface level def get_all_interface_details(auth, url, devid=None, devip=None): """ function takes the devId of a specific device and the ifindex value assigned to a specific interface and issues a RESTFUL call to get the interface details file as known by the HP IMC Base Platform ICC module for the target device. :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param devid: int or str value of the devId of the target device :param devip: ipv4 address of the target device :return: list of dict objects which contains the details of all interfaces on the target device :retype: list >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> all_interface_details = get_all_interface_details( auth.creds, auth.url, devId='10') >>> all_interface_details = get_all_interface_details( auth.creds, auth.url, devip='10.101.0.221') >>> assert type(all_interface_details) is list >>> assert 'ifAlias' in all_interface_details[0] """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] get_all_interface_details_url = "/imcrs/plat/res/device/" + str( devid) + "/interface/?start=0&size=1000&desc=false&total=false" f_url = url + get_all_interface_details_url response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: dev_details = (json.loads(response.text)) return dev_details['interface'] except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_all_interface_details: An Error has occured" def get_interface_details(ifindex, auth, url, devid=None, devip=None): """ function takes the devId of a specific device and the ifindex value assigned to a specific interface and issues a RESTFUL call to get the interface details file as known by the HP IMC Base Platform ICC module for the target device. :param ifindex: int or str value of the ifIndex of the target interface :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :param devid: int or str value of the devId of the target device :param devip: str of ipv4 address of the target device :return: dict which contains the details of the target interface" :retype: dict >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> interface_details = get_interface_details('1', auth.creds, auth.url, devId = '10') >>> interface_details = get_interface_details('1', auth.creds, auth.url, devip = '10.101.0.221') >>> assert type(interface_details) is dict >>> assert 'ifAlias' in interface_details """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] get_interface_details_url = "/imcrs/plat/res/device/" + str(devid) + "/interface/" + \ str(ifindex) f_url = url + get_interface_details_url response = requests.get(f_url, auth=auth, headers=HEADERS) try: if response.status_code == 200: dev_details = (json.loads(response.text)) return dev_details except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " get_interface_details: An Error has occured" def set_interface_down(ifindex, auth, url, devid=None, devip=None): """ function takest devid and ifindex of specific device and interface and issues a RESTFUL call to " shut" the specified interface on the target device. :param devid: int or str value of the target device :param devip: ipv4 address of the target devices :param ifindex: int or str value of the target interface :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: HTTP status code 204 with no values. :rtype:int >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> int_up_response = set_inteface_up('9', auth.creds, auth.url, devip = '10.101.0.221') >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devid = '10') 204 >>> int_up_response = set_inteface_up('9', auth.creds, auth.url, devip = '10.101.0.221') >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devip = '10.101.0.221') 204 >>> assert type(int_down_response) is int >>> assert int_down_response is 204 >>> int_up_response = set_inteface_up('9', auth.creds, auth.url, devip = '10.101.0.221') """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] set_int_down_url = "/imcrs/plat/res/device/" + str(devid) + "/interface/" + str(ifindex) + \ "/down" f_url = url + set_int_down_url try: response = requests.put(f_url, auth=auth, headers=HEADERS) print(response.status_code) if response.status_code == 204: return response.status_code except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " set_inteface_down: An Error has occured" def set_inteface_up(ifindex, auth, url, devid=None, devip=None): """ function takest devid and ifindex of specific device and interface and issues a RESTFUL call to "undo shut" the specified interface on the target device. :param devid: int or str value of the target device :param devip: ipv4 address of the target devices :param ifindex: int or str value of the target interface :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: HTTP status code 204 with no values. :rype: int >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devid = '10') 204 >>> int_up_response = set_inteface_up( '9', auth.creds, auth.url, devid = '10') >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devid = '10') 204 >>> int_up_response = set_inteface_up('9', auth.creds, auth.url, devip = '10.101.0.221') >>> assert type(int_up_response) is int >>> assert int_up_response is 204 """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] set_int_up_url = "/imcrs/plat/res/device/" + str(devid) + "/interface/" + str(ifindex) + "/up" f_url = url + set_int_up_url try: response = requests.put(f_url, auth=auth, headers=HEADERS) if response.status_code == 204: return response.status_code except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " set_inteface_up: An Error has occured" def set_interface_up(ifindex, auth, url, devid=None, devip=None): """ function takest devid and ifindex of specific device and interface and issues a RESTFUL call to "undo shut" the specified interface on the target device. :param devid: int or str value of the target device :param devip: ipv4 address of the target devices :param ifindex: int or str value of the target interface :param auth: requests auth object #usually auth.creds from auth pyhpeimc.auth.class :param url: base url of IMC RS interface #usually auth.url from pyhpeimc.auth.authclass :return: HTTP status code 204 with no values. :rype: int >>> from pyhpeimc.auth import * >>> from pyhpeimc.plat.device import * >>> auth = IMCAuth("http://", "10.101.0.203", "8080", "admin", "admin") >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devid = '10') 204 >>> int_up_response = set_interface_up( '9', auth.creds, auth.url, devid = '10') >>> int_down_response = set_interface_down( '9', auth.creds, auth.url, devid = '10') 204 >>> int_up_response = set_interface_up('9', auth.creds, auth.url, devip = '10.101.0.221') >>> assert type(int_up_response) is int >>> assert int_up_response is 204 """ if devip is not None: devid = get_dev_details(devip, auth, url)['id'] set_int_up_url = "/imcrs/plat/res/device/" + str(devid) + "/interface/" + str(ifindex) + "/up" f_url = url + set_int_up_url try: response = requests.put(f_url, auth=auth, headers=HEADERS) if response.status_code == 204: return response.status_code except requests.exceptions.RequestException as error: return "Error:\n" + str(error) + " set_interface_up: An Error has occured" def _make_cmd_list(cmd_list): """ Helper function to easily create the proper json formated string from a list of strs :param cmd_list: list of strings :return: str json formatted """ cmd = '' for i in cmd_list: cmd = cmd + '"' + i + '",' cmd = cmd[:-1] return cmd
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 19617, 28, 40477, 12, 23, 198, 2, 1772, 25, 2488, 3262, 805, 354, 2442, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 1212, 8265, 4909, 5499, 329, 1762, 351, 262, 3335, 9889, 198, 1659, 262, 6574, 36, 8959, 34, 399, 5653, 3859, 1262, 262, 30617, 913, 7824, 198, 198, 37811, 198, 198, 2, 770, 2665, 17944, 2672, 12782, 198, 11748, 33918, 198, 198, 11748, 7007, 198, 198, 6738, 12972, 71, 431, 320, 66, 13, 18439, 1330, 39837, 4877, 628, 198, 2, 770, 2665, 4909, 5499, 543, 8076, 379, 262, 1080, 1241, 198, 2, 770, 2187, 2665, 468, 587, 3888, 284, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 10057, 532, 5499, 1364, 994, 329, 10655, 13, 198, 2, 2558, 1463, 318, 284, 4781, 416, 2196, 352, 13, 15, 13, 1899, 393, 3744, 13, 4222, 13096, 597, 14750, 1262, 5499, 198, 2, 287, 428, 2665, 284, 779, 262, 649, 5499, 287, 262, 649, 8265, 628, 198, 198, 2, 16926, 46, 23520, 2163, 618, 2196, 5218, 352, 13, 1899, 198, 4299, 651, 62, 10057, 62, 85, 437, 669, 7, 18439, 11, 19016, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 645, 5128, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 59, 77, 628, 220, 220, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 48589, 3166, 810, 1123, 22155, 6870, 257, 2060, 18371, 628, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 220, 220, 13163, 17192, 796, 651, 62, 10057, 62, 85, 437, 669, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 628, 220, 220, 220, 220, 220, 13163, 6818, 2099, 7, 85, 437, 669, 8, 318, 1351, 628, 220, 220, 220, 220, 220, 13163, 6818, 705, 3672, 6, 287, 17192, 58, 15, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 31051, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 85, 18738, 30, 9688, 28, 15, 5, 7857, 28, 49388, 5, 2875, 3886, 28, 312, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 6, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 62, 85, 437, 669, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1080, 62, 85, 437, 669, 17816, 25202, 53, 18738, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 2, 16926, 46, 4781, 2163, 618, 2196, 5218, 352, 13, 1899, 198, 4299, 651, 62, 10057, 62, 22872, 7, 18439, 11, 19016, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 645, 5128, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 59, 77, 628, 220, 220, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 48589, 3166, 810, 1123, 22155, 6870, 257, 2060, 3335, 6536, 628, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 220, 220, 13163, 9376, 796, 651, 62, 10057, 62, 22872, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 628, 220, 220, 220, 220, 220, 13163, 6818, 2099, 7, 66, 26129, 8, 318, 1351, 628, 220, 220, 220, 220, 220, 13163, 6818, 705, 3672, 6, 287, 9376, 58, 15, 60, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 31051, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 22872, 30, 9688, 28, 15, 5, 7857, 28, 49388, 5, 2875, 3886, 28, 312, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 6, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 62, 22872, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1080, 62, 22872, 17816, 25202, 27313, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 2, 16926, 46, 23520, 2163, 618, 2196, 5218, 352, 13, 1899, 198, 4299, 651, 62, 10057, 62, 25202, 62, 27530, 7, 18439, 11, 19016, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 645, 5128, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 59, 77, 628, 220, 220, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 48589, 3166, 810, 1123, 22155, 6870, 257, 2060, 3335, 2746, 628, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 220, 220, 13163, 3335, 62, 27530, 796, 651, 62, 10057, 62, 25202, 62, 27530, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 628, 220, 220, 220, 220, 220, 13163, 6818, 2099, 7, 25202, 62, 27530, 8, 318, 1351, 628, 220, 220, 220, 220, 220, 13163, 6818, 705, 32844, 24728, 5376, 6, 287, 3335, 62, 27530, 58, 15, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 31051, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 19849, 30, 9688, 28, 15, 5, 7857, 28, 49388, 5, 2875, 3886, 28, 312, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 6, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 62, 25202, 62, 19849, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1080, 62, 25202, 62, 19849, 17816, 25202, 17633, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 2, 16926, 46, 23520, 2163, 618, 2196, 5218, 352, 13, 1899, 198, 4299, 651, 62, 10057, 62, 25076, 7, 18439, 11, 19016, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 645, 5128, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 59, 77, 628, 220, 220, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 286, 48589, 3166, 810, 1123, 22155, 6870, 257, 2060, 3335, 2168, 628, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 220, 220, 13163, 2168, 796, 651, 62, 10057, 62, 25076, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 628, 220, 220, 220, 220, 220, 13163, 6818, 2099, 7, 25076, 8, 318, 1351, 628, 220, 220, 220, 220, 220, 13163, 6818, 705, 3672, 6, 287, 2168, 58, 15, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 31051, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25076, 30, 39935, 10049, 28, 9562, 5, 9688, 28, 15, 5, 7857, 28, 49388, 5, 2875, 3886, 28, 312, 5, 20147, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28, 9562, 5, 23350, 28, 9562, 6, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1080, 62, 25076, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1080, 62, 25076, 17816, 25202, 27996, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 25076, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 2, 770, 2665, 4909, 5499, 543, 8076, 379, 262, 3335, 1241, 13, 628, 198, 4299, 651, 62, 439, 62, 7959, 82, 7, 18439, 11, 19016, 11, 3127, 62, 21975, 28, 14202, 11, 6536, 28, 14202, 11, 6167, 28, 14202, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 5128, 286, 6101, 2209, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 59, 77, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 198, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 198, 220, 220, 220, 1058, 17143, 3127, 62, 21975, 25, 965, 25961, 19, 7311, 17917, 198, 220, 220, 220, 1058, 17143, 6536, 25, 965, 393, 493, 11188, 284, 3335, 6536, 357, 15, 28, 472, 353, 11, 352, 28, 2032, 9249, 11, 766, 7824, 34165, 329, 584, 6096, 8, 198, 220, 220, 220, 1058, 7783, 25, 22155, 286, 3335, 3307, 198, 220, 220, 220, 1058, 81, 4906, 25, 8633, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1614, 62, 4868, 796, 651, 62, 439, 62, 7959, 82, 7, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 3127, 62, 21975, 28, 705, 940, 13, 1157, 2637, 8, 628, 220, 220, 220, 13163, 6818, 2099, 7, 7959, 62, 4868, 8, 318, 1351, 628, 220, 220, 220, 13163, 6818, 705, 17597, 5376, 6, 287, 1614, 62, 4868, 58, 15, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2779, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30, 411, 20184, 41866, 22417, 28, 9562, 1, 198, 220, 220, 220, 886, 62, 6371, 796, 366, 5, 9688, 28, 15, 5, 7857, 28, 12825, 5, 2875, 3886, 28, 312, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 1, 198, 220, 220, 220, 611, 3127, 62, 21975, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 21975, 796, 366, 5, 541, 2625, 1343, 965, 7, 27349, 62, 21975, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 62, 21975, 796, 10148, 198, 220, 220, 220, 611, 6167, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 366, 5, 18242, 2625, 1343, 965, 7, 18242, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 10148, 198, 220, 220, 220, 611, 6536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6536, 796, 366, 5, 22872, 1, 1343, 6536, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6536, 796, 10148, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 2779, 62, 6371, 1343, 965, 7, 27349, 62, 21975, 8, 1343, 965, 7, 18242, 8, 1343, 965, 7, 22872, 8, 1343, 886, 62, 6371, 198, 220, 220, 220, 3601, 7, 69, 62, 6371, 8, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 36604, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7959, 62, 36604, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24728, 407, 1043, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 24728, 407, 1043, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2099, 7, 7959, 62, 36604, 17816, 25202, 6, 12962, 318, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 7959, 62, 36604, 17816, 25202, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1614, 62, 36604, 17816, 25202, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 36604, 7, 541, 62, 21975, 11, 6284, 11, 19016, 2599, 198, 220, 220, 220, 37227, 51, 1124, 4731, 5128, 286, 6101, 2209, 284, 2071, 30617, 6239, 869, 284, 6574, 8959, 34, 628, 220, 220, 220, 1058, 17143, 20966, 62, 21975, 25, 4731, 2134, 286, 38745, 32465, 33274, 286, 25961, 19, 2209, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 22155, 286, 3335, 3307, 628, 220, 220, 220, 1058, 81, 4906, 25, 8633, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1614, 62, 16, 796, 220, 651, 62, 7959, 62, 36604, 10786, 940, 13, 8784, 13, 15, 13, 26115, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 628, 220, 220, 220, 13163, 6818, 2099, 7, 7959, 62, 16, 8, 318, 8633, 628, 220, 220, 220, 13163, 6818, 705, 17597, 5376, 6, 287, 1614, 62, 16, 628, 220, 220, 220, 13163, 1614, 62, 17, 796, 651, 62, 7959, 62, 36604, 10786, 23, 13, 23, 13, 23, 13, 23, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 8, 198, 220, 220, 220, 16232, 407, 1043, 628, 220, 220, 220, 13163, 6818, 2099, 7, 7959, 62, 17, 8, 318, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 651, 62, 7959, 62, 36604, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30, 411, 20184, 41866, 22417, 28, 9562, 5, 541, 2625, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 541, 62, 21975, 8, 1343, 366, 5, 9688, 28, 15, 5, 7857, 28, 12825, 5, 2875, 3886, 28, 312, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 651, 62, 7959, 62, 36604, 62, 6371, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 36604, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7959, 62, 36604, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 24728, 407, 1043, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 24728, 407, 1043, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 7959, 62, 36604, 17816, 25202, 6, 4357, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 1614, 62, 36604, 17816, 25202, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 17816, 541, 20520, 6624, 20966, 62, 21975, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 36604, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1614, 62, 36604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 7959, 62, 36604, 17816, 25202, 6, 4357, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1614, 62, 36604, 17816, 25202, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 39994, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 2753, 1614, 312, 355, 5128, 284, 30617, 46476, 869, 284, 6574, 8959, 34, 3859, 290, 5860, 1351, 286, 3335, 198, 220, 220, 220, 20314, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 11902, 1614, 312, 355, 262, 5128, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 965, 286, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 198, 220, 220, 220, 1058, 7783, 25, 1351, 2134, 543, 4909, 257, 22155, 583, 7071, 628, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1614, 62, 3849, 32186, 796, 651, 62, 7959, 62, 39994, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 11639, 1314, 11537, 628, 220, 220, 220, 13163, 1614, 62, 3849, 32186, 796, 651, 62, 7959, 62, 39994, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 7959, 62, 3849, 32186, 8, 318, 1351, 628, 220, 220, 220, 13163, 6818, 705, 361, 40489, 6, 287, 1614, 62, 3849, 32186, 58, 15, 60, 628, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 651, 62, 7959, 62, 39994, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12813, 39994, 30, 9688, 28, 15, 5, 7857, 28, 12825, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 651, 62, 7959, 62, 39994, 62, 6371, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 62, 4868, 796, 33918, 13, 46030, 7, 26209, 13, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 39994, 6, 287, 493, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 62, 4868, 17816, 39994, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 39994, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 5143, 62, 11250, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 749, 198, 220, 220, 220, 1459, 220, 2491, 4566, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 329, 262, 2496, 198, 220, 220, 220, 3335, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 965, 286, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 965, 543, 4909, 262, 2104, 2695, 286, 262, 2496, 3335, 2491, 8398, 13, 198, 220, 220, 220, 1002, 262, 3335, 318, 407, 3058, 4855, 287, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 11, 428, 869, 198, 220, 220, 220, 5860, 257, 4731, 286, 366, 1212, 3895, 318, 407, 4855, 319, 428, 3335, 1, 628, 220, 220, 220, 1058, 81, 4906, 25, 965, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1057, 62, 11250, 796, 651, 62, 7959, 62, 5143, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 11639, 940, 11537, 628, 220, 220, 220, 13163, 1057, 62, 11250, 796, 651, 62, 7959, 62, 5143, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 5143, 62, 11250, 8, 318, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 12813, 320, 66, 3808, 14, 44240, 14, 25202, 34, 40616, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 14421, 10987, 1, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 10414, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 17816, 11299, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1057, 62, 10414, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1212, 3033, 318, 645, 4855, 319, 428, 3335, 1, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 5143, 62, 11250, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 42861, 62, 5143, 62, 11250, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 749, 198, 220, 220, 220, 1459, 4683, 11559, 286, 262, 2491, 4566, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 329, 262, 2496, 198, 220, 220, 220, 3335, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 965, 286, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 965, 543, 4909, 262, 2104, 2695, 286, 262, 2496, 3335, 2491, 8398, 13, 198, 220, 220, 220, 1002, 262, 3335, 318, 407, 3058, 4855, 287, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 11, 428, 869, 198, 220, 220, 220, 5860, 257, 4731, 286, 366, 1212, 3895, 318, 407, 4855, 319, 428, 3335, 1, 628, 220, 220, 220, 1058, 81, 4906, 25, 965, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1057, 62, 11250, 796, 651, 62, 7959, 62, 5143, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 11639, 940, 11537, 628, 220, 220, 220, 13163, 1057, 62, 11250, 796, 651, 62, 7959, 62, 5143, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 5143, 62, 11250, 8, 318, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 12813, 320, 66, 3808, 14, 44240, 14, 25202, 34, 40616, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 42861, 10987, 1, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 10414, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 17816, 11299, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1057, 62, 10414, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1212, 3033, 318, 645, 4855, 319, 428, 3335, 1, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 5143, 62, 11250, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 9688, 62, 11250, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 749, 198, 220, 220, 220, 1459, 13693, 4566, 220, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 329, 262, 2496, 198, 220, 220, 220, 3335, 13, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 11902, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 220, 11902, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 7783, 25, 965, 543, 4909, 262, 2104, 2695, 286, 262, 2496, 3335, 13693, 8398, 13, 198, 220, 220, 220, 1002, 262, 3335, 318, 407, 3058, 4855, 287, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 11, 428, 869, 198, 220, 220, 220, 5860, 257, 4731, 286, 366, 1212, 3895, 318, 407, 4855, 319, 428, 3335, 1, 628, 220, 220, 220, 1058, 260, 4906, 25, 965, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 923, 62, 11250, 796, 651, 62, 7959, 62, 9688, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 7390, 11639, 940, 11537, 628, 220, 220, 220, 13163, 923, 62, 11250, 796, 651, 62, 7959, 62, 9688, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 9688, 62, 11250, 8, 318, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 12813, 320, 66, 3808, 14, 44240, 14, 25202, 34, 40616, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 14421, 10434, 1, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 10414, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 17816, 11299, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 923, 62, 10414, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1212, 3033, 318, 645, 4855, 319, 428, 3335, 1, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 9688, 62, 11250, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 42861, 62, 9688, 62, 11250, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 749, 198, 220, 220, 220, 1459, 13693, 4566, 220, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 329, 262, 2496, 198, 220, 220, 220, 3335, 13, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 11902, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 220, 11902, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 7783, 25, 965, 543, 4909, 262, 2104, 2695, 286, 262, 2496, 3335, 13693, 8398, 13, 198, 220, 220, 220, 1002, 262, 3335, 318, 407, 3058, 4855, 287, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 11, 428, 869, 198, 220, 220, 220, 5860, 257, 4731, 286, 366, 1212, 3895, 318, 407, 4855, 319, 428, 3335, 1, 628, 220, 220, 220, 1058, 260, 4906, 25, 965, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 923, 62, 11250, 796, 651, 62, 7959, 62, 9688, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 7390, 11639, 940, 11537, 628, 220, 220, 220, 13163, 923, 62, 11250, 796, 651, 62, 7959, 62, 9688, 62, 11250, 7, 18439, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 9688, 62, 11250, 8, 318, 965, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 12813, 320, 66, 3808, 14, 44240, 14, 25202, 34, 40616, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 42861, 10434, 1, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 10414, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 17816, 11299, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 923, 62, 10414, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2882, 13, 13376, 62, 8189, 6624, 32320, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1212, 3033, 318, 645, 4855, 319, 428, 3335, 1, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 9688, 62, 11250, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 7959, 62, 20285, 62, 35720, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 1614, 312, 286, 2176, 3335, 290, 2428, 257, 30617, 46476, 869, 284, 6431, 262, 1459, 198, 220, 220, 220, 6101, 12, 44721, 220, 4673, 12784, 319, 262, 2496, 3335, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 493, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 1351, 286, 8633, 5563, 543, 3994, 262, 8352, 2193, 3084, 286, 2496, 3335, 4686, 628, 220, 220, 220, 1058, 81, 4906, 25, 1351, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 1614, 62, 20285, 62, 35720, 796, 651, 62, 7959, 62, 20285, 62, 35720, 7, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 11639, 940, 11537, 628, 220, 220, 220, 13163, 1614, 62, 20285, 62, 35720, 796, 651, 62, 7959, 62, 20285, 62, 35720, 7, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 7959, 62, 20285, 62, 35720, 8, 318, 1351, 628, 220, 220, 220, 13163, 6818, 705, 25202, 7390, 6, 287, 1614, 62, 20285, 62, 35720, 58, 15, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 31051, 320, 66, 3808, 14, 411, 14, 15526, 14, 541, 14155, 20238, 14, 6, 1343, 965, 7, 7959, 312, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 62, 35720, 62, 22766, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8352, 62, 35720, 62, 22766, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 62, 35720, 62, 22766, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 17816, 541, 14155, 20238, 23004, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 20285, 62, 35720, 62, 22766, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8352, 62, 35720, 62, 22766, 796, 685, 20285, 62, 35720, 62, 22766, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8352, 62, 35720, 62, 22766, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 7959, 62, 20285, 62, 35720, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 1057, 62, 7959, 62, 28758, 7, 28758, 62, 4868, 11, 6284, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 2753, 1614, 312, 286, 2496, 3335, 290, 257, 35582, 1351, 286, 13042, 543, 8160, 262, 198, 220, 220, 220, 2176, 9729, 284, 307, 1057, 319, 262, 2496, 3335, 290, 5860, 257, 965, 2134, 7268, 262, 198, 220, 220, 220, 5072, 286, 262, 9729, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 493, 1614, 312, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 23991, 62, 4868, 25, 1351, 286, 13042, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 965, 286, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 7783, 25, 965, 7268, 262, 2882, 286, 262, 9729, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 23991, 62, 4868, 796, 37250, 13812, 2196, 20520, 628, 220, 220, 220, 13163, 23991, 62, 22915, 796, 1057, 62, 7959, 62, 28758, 7, 23991, 62, 4868, 11, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 6, 940, 11537, 628, 220, 220, 220, 13163, 23991, 62, 22915, 796, 1057, 62, 7959, 62, 28758, 7, 23991, 62, 4868, 11, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 28758, 62, 22915, 8, 318, 8633, 628, 220, 220, 220, 13163, 6818, 705, 28758, 4868, 6, 287, 23991, 62, 22915, 628, 220, 220, 220, 13163, 6818, 705, 13138, 6, 287, 23991, 62, 22915, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 1057, 62, 7959, 62, 28758, 62, 6371, 796, 31051, 320, 66, 3808, 14, 44240, 14, 10414, 8979, 14, 41049, 40109, 6, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 1057, 62, 7959, 62, 28758, 62, 6371, 198, 220, 220, 220, 23991, 62, 4868, 796, 4808, 15883, 62, 28758, 62, 4868, 7, 28758, 62, 4868, 8, 198, 220, 220, 220, 21437, 796, 705, 7061, 90, 366, 25202, 7390, 1, 1058, 366, 7061, 6, 1343, 965, 7, 7959, 312, 8, 1343, 705, 7061, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28758, 4868, 1, 1058, 1391, 366, 28758, 1, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7061, 6, 1343, 23991, 62, 4868, 1343, 705, 7061, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 7061, 6, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 7353, 7, 69, 62, 6371, 11, 1366, 28, 15577, 2220, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 26209, 13, 5239, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 46030, 7, 26209, 13, 5239, 8, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 1057, 62, 7959, 62, 28758, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 2, 770, 2665, 4909, 5499, 543, 8076, 379, 262, 7071, 1241, 628, 198, 4299, 651, 62, 439, 62, 39994, 62, 36604, 7, 18439, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 262, 611, 9630, 1988, 8686, 284, 257, 2176, 198, 220, 220, 220, 7071, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 7071, 3307, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 198, 220, 220, 220, 7308, 19193, 32300, 8265, 329, 262, 2496, 3335, 13, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 493, 393, 965, 1988, 286, 262, 1614, 7390, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 7783, 25, 1351, 286, 8633, 5563, 543, 4909, 262, 3307, 286, 477, 20314, 319, 262, 2496, 3335, 628, 220, 220, 220, 1058, 260, 4906, 25, 1351, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 477, 62, 39994, 62, 36604, 796, 651, 62, 439, 62, 39994, 62, 36604, 7, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 7390, 11639, 940, 11537, 628, 220, 220, 220, 13163, 477, 62, 39994, 62, 36604, 796, 651, 62, 439, 62, 39994, 62, 36604, 7, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 541, 11639, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 439, 62, 39994, 62, 36604, 8, 318, 1351, 628, 220, 220, 220, 13163, 6818, 705, 361, 40489, 6, 287, 477, 62, 39994, 62, 36604, 58, 15, 60, 628, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 651, 62, 439, 62, 39994, 62, 36604, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 8, 1343, 12813, 39994, 20924, 9688, 28, 15, 5, 7857, 28, 12825, 5, 20147, 28, 9562, 5, 23350, 28, 9562, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 651, 62, 439, 62, 39994, 62, 36604, 62, 6371, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 36604, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1614, 62, 36604, 17816, 39994, 20520, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 439, 62, 39994, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 651, 62, 39994, 62, 36604, 7, 361, 9630, 11, 6284, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 2753, 262, 1614, 7390, 286, 257, 2176, 3335, 290, 262, 611, 9630, 1988, 8686, 284, 257, 2176, 198, 220, 220, 220, 7071, 220, 290, 2428, 257, 30617, 46476, 869, 284, 651, 262, 7071, 3307, 198, 220, 220, 220, 2393, 355, 1900, 416, 262, 6574, 8959, 34, 7308, 19193, 32300, 8265, 329, 262, 2496, 3335, 13, 628, 220, 220, 220, 1058, 17143, 611, 9630, 25, 493, 393, 965, 1988, 286, 262, 611, 15732, 286, 262, 2496, 7071, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 220, 493, 393, 965, 1988, 286, 262, 1614, 7390, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 965, 286, 20966, 85, 19, 2209, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 7783, 25, 8633, 543, 4909, 262, 3307, 286, 262, 2496, 7071, 1, 628, 220, 220, 220, 1058, 260, 4906, 25, 8633, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 7071, 62, 36604, 796, 651, 62, 39994, 62, 36604, 10786, 16, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 7390, 796, 705, 940, 11537, 628, 220, 220, 220, 13163, 7071, 62, 36604, 796, 651, 62, 39994, 62, 36604, 10786, 16, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 39994, 62, 36604, 8, 318, 8633, 628, 220, 220, 220, 13163, 6818, 705, 361, 40489, 6, 287, 7071, 62, 36604, 628, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 651, 62, 39994, 62, 36604, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 39994, 30487, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 361, 9630, 8, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 651, 62, 39994, 62, 36604, 62, 6371, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 939, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 36604, 796, 357, 17752, 13, 46030, 7, 26209, 13, 5239, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1614, 62, 36604, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 651, 62, 39994, 62, 36604, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 900, 62, 39994, 62, 2902, 7, 361, 9630, 11, 6284, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 256, 461, 395, 1614, 312, 290, 611, 9630, 286, 2176, 3335, 290, 7071, 290, 2428, 257, 30617, 46476, 869, 198, 220, 220, 220, 284, 366, 4423, 1, 262, 7368, 7071, 319, 262, 2496, 3335, 13, 198, 220, 220, 220, 1058, 17143, 1614, 312, 25, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 20966, 85, 19, 2209, 286, 262, 2496, 4410, 628, 220, 220, 220, 1058, 17143, 611, 9630, 25, 493, 393, 965, 1988, 286, 262, 2496, 7071, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 14626, 3722, 2438, 26956, 351, 645, 3815, 13, 628, 220, 220, 220, 1058, 81, 4906, 25, 600, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 600, 891, 558, 62, 929, 10786, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 600, 891, 558, 62, 929, 10786, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 6818, 2099, 7, 600, 62, 2902, 62, 26209, 8, 318, 493, 628, 220, 220, 220, 13163, 6818, 493, 62, 2902, 62, 26209, 318, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 600, 891, 558, 62, 929, 10786, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 900, 62, 600, 62, 2902, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 39994, 30487, 1343, 965, 7, 361, 9630, 8, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12813, 2902, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 900, 62, 600, 62, 2902, 62, 6371, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1996, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 26209, 13, 13376, 62, 8189, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 13, 13376, 62, 8189, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 900, 62, 600, 891, 558, 62, 2902, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 900, 62, 600, 891, 558, 62, 929, 7, 361, 9630, 11, 6284, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 256, 461, 395, 1614, 312, 290, 611, 9630, 286, 2176, 3335, 290, 7071, 290, 2428, 257, 30617, 46476, 869, 198, 220, 220, 220, 284, 366, 41204, 4423, 1, 262, 7368, 7071, 319, 262, 2496, 3335, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 20966, 85, 19, 2209, 286, 262, 2496, 4410, 628, 220, 220, 220, 1058, 17143, 611, 9630, 25, 493, 393, 965, 1988, 286, 262, 2496, 7071, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 14626, 3722, 2438, 26956, 351, 645, 3815, 13, 628, 220, 220, 220, 1058, 563, 431, 25, 493, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 600, 891, 558, 62, 929, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 600, 891, 558, 62, 929, 10786, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 600, 62, 929, 62, 26209, 8, 318, 493, 628, 220, 220, 220, 13163, 6818, 493, 62, 929, 62, 26209, 318, 26956, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 900, 62, 600, 62, 929, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 39994, 30487, 1343, 965, 7, 361, 9630, 8, 1343, 12813, 929, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 900, 62, 600, 62, 929, 62, 6371, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1996, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 13, 13376, 62, 8189, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 900, 62, 600, 891, 558, 62, 929, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 900, 62, 39994, 62, 929, 7, 361, 9630, 11, 6284, 11, 19016, 11, 1614, 312, 28, 14202, 11, 1614, 541, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2163, 256, 461, 395, 1614, 312, 290, 611, 9630, 286, 2176, 3335, 290, 7071, 290, 2428, 257, 30617, 46476, 869, 198, 220, 220, 220, 284, 366, 41204, 4423, 1, 262, 7368, 7071, 319, 262, 2496, 3335, 13, 628, 220, 220, 220, 1058, 17143, 1614, 312, 25, 493, 393, 965, 1988, 286, 262, 2496, 3335, 628, 220, 220, 220, 1058, 17143, 1614, 541, 25, 20966, 85, 19, 2209, 286, 262, 2496, 4410, 628, 220, 220, 220, 1058, 17143, 611, 9630, 25, 493, 393, 965, 1988, 286, 262, 2496, 7071, 628, 220, 220, 220, 1058, 17143, 6284, 25, 7007, 6284, 2134, 1303, 23073, 6284, 13, 66, 445, 82, 422, 6284, 12972, 71, 431, 320, 66, 13, 18439, 13, 4871, 628, 220, 220, 220, 1058, 17143, 19016, 25, 2779, 19016, 286, 8959, 34, 19340, 7071, 1303, 23073, 6284, 13, 6371, 422, 12972, 71, 431, 320, 66, 13, 18439, 13, 18439, 4871, 628, 220, 220, 220, 1058, 7783, 25, 14626, 3722, 2438, 26956, 351, 645, 3815, 13, 628, 220, 220, 220, 1058, 563, 431, 25, 493, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 18439, 1330, 1635, 628, 220, 220, 220, 13163, 422, 12972, 71, 431, 320, 66, 13, 489, 265, 13, 25202, 1330, 1635, 628, 220, 220, 220, 13163, 6284, 796, 8959, 8141, 1071, 7203, 4023, 1378, 1600, 366, 940, 13, 8784, 13, 15, 13, 22416, 1600, 366, 1795, 1795, 1600, 366, 28482, 1600, 366, 28482, 4943, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 39994, 62, 929, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 628, 220, 220, 220, 13163, 493, 62, 2902, 62, 26209, 796, 900, 62, 39994, 62, 2902, 7, 705, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 312, 796, 705, 940, 11537, 198, 220, 220, 220, 26956, 628, 220, 220, 220, 13163, 493, 62, 929, 62, 26209, 796, 900, 62, 39994, 62, 929, 10786, 24, 3256, 6284, 13, 66, 445, 82, 11, 6284, 13, 6371, 11, 1614, 541, 796, 705, 940, 13, 8784, 13, 15, 13, 26115, 11537, 628, 220, 220, 220, 13163, 6818, 2099, 7, 600, 62, 929, 62, 26209, 8, 318, 493, 628, 220, 220, 220, 13163, 6818, 493, 62, 929, 62, 26209, 318, 26956, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1614, 541, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 312, 796, 651, 62, 7959, 62, 36604, 7, 7959, 541, 11, 6284, 11, 19016, 8, 17816, 312, 20520, 198, 220, 220, 220, 900, 62, 600, 62, 929, 62, 6371, 796, 12813, 320, 66, 3808, 14, 489, 265, 14, 411, 14, 25202, 30487, 1343, 965, 7, 7959, 312, 8, 1343, 12813, 39994, 30487, 1343, 965, 7, 361, 9630, 8, 1343, 12813, 929, 1, 198, 220, 220, 220, 277, 62, 6371, 796, 19016, 1343, 900, 62, 600, 62, 929, 62, 6371, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1996, 7, 69, 62, 6371, 11, 6284, 28, 18439, 11, 24697, 28, 37682, 4877, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 26956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 13, 13376, 62, 8189, 198, 220, 220, 220, 2845, 7007, 13, 1069, 11755, 13, 18453, 16922, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 12331, 7479, 77, 1, 1343, 965, 7, 18224, 8, 1343, 366, 900, 62, 39994, 62, 929, 25, 1052, 13047, 468, 1609, 1522, 1, 628, 198, 4299, 4808, 15883, 62, 28758, 62, 4868, 7, 28758, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 3538, 2251, 262, 1774, 33918, 1296, 515, 4731, 422, 257, 1351, 286, 965, 82, 198, 220, 220, 220, 1058, 17143, 23991, 62, 4868, 25, 1351, 286, 13042, 198, 220, 220, 220, 1058, 7783, 25, 965, 33918, 39559, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23991, 796, 10148, 198, 220, 220, 220, 329, 1312, 287, 23991, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 23991, 1343, 705, 30543, 1343, 1312, 1343, 705, 1600, 6, 198, 220, 220, 220, 23991, 796, 23991, 58, 21912, 16, 60, 198, 220, 220, 220, 1441, 23991, 198 ]
2.624469
12,236
from .base import ( CPObject, TextField, ObjectField, BooleanField, LinkField, CollectionField ) from .qualifier import Qualifier
[ 6738, 764, 8692, 1330, 357, 198, 220, 220, 220, 16932, 10267, 11, 8255, 15878, 11, 9515, 15878, 11, 41146, 15878, 11, 7502, 15878, 11, 12251, 15878, 198, 8, 198, 6738, 764, 13255, 7483, 1330, 9537, 7483, 628 ]
3.648649
37
from pydp.algorithms import laplacian as dp import numpy as np import pandas as pd import time import os import psutil from utils import * epsilon = pd.read_pickle('epsilon.pkl') library_name = 'pydp'
[ 6738, 279, 5173, 79, 13, 282, 7727, 907, 1330, 8591, 489, 330, 666, 355, 288, 79, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 19798, 292, 355, 279, 67, 220, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 26692, 22602, 198, 6738, 3384, 4487, 1330, 1635, 198, 538, 18217, 261, 796, 279, 67, 13, 961, 62, 27729, 293, 10786, 538, 18217, 261, 13, 79, 41582, 11537, 198, 198, 32016, 62, 3672, 796, 705, 79, 5173, 79, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.329787
94
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
import io from pathlib import Path import re import responses from shutil import copy from testpath import MockCommand, modified_env, assert_isfile, assert_isdir from testpath.tempdir import TemporaryWorkingDirectory from zipfile import ZipFile from nsist import main from nsist.util import CACHE_ENV_VAR from .utils import test_dir example_dir = Path(test_dir, 'console_example') @responses.activate
[ 11748, 33245, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 302, 198, 11748, 9109, 198, 6738, 4423, 346, 1330, 4866, 198, 6738, 1332, 6978, 1330, 44123, 21575, 11, 9518, 62, 24330, 11, 6818, 62, 4468, 576, 11, 6818, 62, 9409, 343, 198, 6738, 1332, 6978, 13, 29510, 15908, 1330, 46042, 28516, 43055, 198, 6738, 19974, 7753, 1330, 38636, 8979, 198, 198, 6738, 36545, 396, 1330, 1388, 198, 6738, 36545, 396, 13, 22602, 1330, 327, 2246, 13909, 62, 1677, 53, 62, 53, 1503, 198, 6738, 764, 26791, 1330, 1332, 62, 15908, 198, 198, 20688, 62, 15908, 796, 10644, 7, 9288, 62, 15908, 11, 705, 41947, 62, 20688, 11537, 198, 198, 31, 16733, 274, 13, 39022, 198 ]
3.513043
115
""" .. Copyright (c) 2014-2017, Magni developers. All rights reserved. See LICENSE.rst for further information. Module providing a robust configger class. Routine listings ---------------- Configger(object) Provide functionality to access a set of configuration options. Notes ----- This module does not itself contain any configuration options and thus has no access to any configuration options unlike the other config modules of `magni`. """ from __future__ import division from itertools import chain from magni.utils.validation import decorate_validation as _decorate_validation from magni.utils.validation import validate_generic as _generic from magni.utils.validation import validate_levels as _levels from magni.utils.validation import validate_numeric as _numeric class Configger(object): """ Provide functionality to access a set of configuration options. The set of configuration options, their default values, and their validation schemes are specified upon initialisation. Parameters ---------- params : dict The configuration options and their default values. valids : dict The validation schemes of the configuration options. See Also -------- magni.utils.validation : Validation. Notes ----- `valids` must contain the same keys as `params`. For each key in 'valids', the first value is the validation function ('generic', 'levels', or 'numeric'), whereas the remaining values are passed to that validation function. Examples -------- Instantiate Configger with the parameter 'key' with default value 'default' which can only assume string values. >>> import magni >>> from magni.utils.config import Configger >>> valid = magni.utils.validation.validate_generic(None, 'string') >>> config = Configger({'key': 'default'}, {'key': valid}) The number of parameters can be retrieved as the length: >>> len(config) 1 That parameter can be retrieved in a number of ways: >>> config['key'] 'default' >>> for key, value in config.items(): ... print('key: {!r}, value: {!r}'.format(key, value)) key: 'key', value: 'default' >>> for key in config.keys(): ... print('key: {!r}'.format(key)) key: 'key' >>> for value in config.values(): ... print('value: {!r}'.format(value)) value: 'default' Likewise, the parameter can be changed in a number of ways: >>> config['key'] = 'value' >>> config['key'] 'value' >>> config.update({'key': 'value changed by dict'}) >>> config['key'] 'value changed by dict' >>> config.update(key='value changed by keyword') >>> config['key'] 'value changed by keyword' Finally, the parameter can be reset to the default value at any point: >>> config.reset() >>> config['key'] 'default' """ _funcs = {'generic': _generic, 'levels': _levels, 'numeric': _numeric} def __getitem__(self, name): """ Get the value of a configuration parameter. Parameters ---------- name : str The name of the parameter. Returns ------- value : None The value of the parameter. """ @_decorate_validation validate_input() return self._params[name] def __len__(self): """ Get the number of configuration parameters. Returns ------- length : int The number of parameters. """ return len(self._params) def __setitem__(self, name, value): """ Set the value of a configuration parameter. The value is validated according to the validation scheme of that parameter. Parameters ---------- name : str The name of the parameter. value : None The new value of the parameter. """ @_decorate_validation validate_input() self._params[name] = value def get(self, key=None): """ Deprecated method. See Also -------- Configger.__getitem__ : Replacing method. Configger.items : Replacing method. Configger.keys : Replacing method. Configger.values : Replacing method. """ raise DeprecationWarning("'get' will be removed in version 1.3.0 - " "use 'var[name]', 'items', 'keys', or " "'values' instead.") if key is None: return dict(self.items()) else: return self[key] def items(self): """ Get the configuration parameters as key, value pairs. Returns ------- items : set-like The list of parameters. """ for key in self.keys(): yield (key, self[key]) def keys(self): """ Get the configuration parameter keys. Returns ------- keys : set-like The keys. """ return self._params.keys() def reset(self): """ Reset the parameter values to the default values. """ self._params = self._default.copy() def set(self, dictionary={}, **kwargs): """ Deprecated method. See Also -------- Configger.__setitem__ : Replacing function. """ raise DeprecationWarning("'set' will be removed in version 1.3.0 - " "use 'var[name] = value' or 'update' " "instead.") self.update(dictionary, **kwargs) def update(self, params={}, **kwargs): """ Update the value of one or more configuration parameters. Each value is validated according to the validation scheme of that parameter. Parameters ---------- params : dict, optional A dictionary containing the key and values to update. (the default value is an empty dictionary) kwargs : dict Keyword arguments being the key and values to update. """ @_decorate_validation validate_input() if params is not None: for key, value in params.items(): self[key] = value if len(kwargs) > 0: for key, value in kwargs.items(): self[key] = value def values(self): """ Get the configuration parameter values. Returns ------- values : set-like The values. """ for key in self.keys(): yield self[key]
[ 37811, 198, 492, 198, 220, 220, 220, 15069, 357, 66, 8, 1946, 12, 5539, 11, 2944, 8461, 6505, 13, 198, 220, 220, 220, 1439, 2489, 10395, 13, 198, 220, 220, 220, 4091, 38559, 24290, 13, 81, 301, 329, 2252, 1321, 13, 198, 198, 26796, 4955, 257, 12373, 4566, 1362, 1398, 13, 198, 198, 49, 28399, 26890, 198, 1783, 198, 16934, 1362, 7, 15252, 8, 198, 220, 220, 220, 44290, 11244, 284, 1895, 257, 900, 286, 8398, 3689, 13, 198, 198, 16130, 198, 30934, 198, 1212, 8265, 857, 407, 2346, 3994, 597, 8398, 3689, 290, 4145, 468, 645, 198, 15526, 284, 597, 8398, 3689, 5023, 262, 584, 4566, 13103, 286, 4600, 76, 4660, 72, 44646, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 340, 861, 10141, 1330, 6333, 198, 198, 6738, 7842, 72, 13, 26791, 13, 12102, 341, 1330, 11705, 378, 62, 12102, 341, 355, 4808, 12501, 16262, 62, 12102, 341, 198, 6738, 7842, 72, 13, 26791, 13, 12102, 341, 1330, 26571, 62, 41357, 355, 4808, 41357, 198, 6738, 7842, 72, 13, 26791, 13, 12102, 341, 1330, 26571, 62, 46170, 355, 4808, 46170, 198, 6738, 7842, 72, 13, 26791, 13, 12102, 341, 1330, 26571, 62, 77, 39223, 355, 4808, 77, 39223, 628, 198, 4871, 17056, 1362, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44290, 11244, 284, 1895, 257, 900, 286, 8398, 3689, 13, 628, 220, 220, 220, 383, 900, 286, 8398, 3689, 11, 511, 4277, 3815, 11, 290, 511, 198, 220, 220, 220, 21201, 16546, 389, 7368, 2402, 4238, 5612, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 42287, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 8398, 3689, 290, 511, 4277, 3815, 13, 198, 220, 220, 220, 1188, 2340, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 383, 21201, 16546, 286, 262, 8398, 3689, 13, 628, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 7842, 72, 13, 26791, 13, 12102, 341, 1058, 3254, 24765, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 4600, 2100, 2340, 63, 1276, 3994, 262, 976, 8251, 355, 4600, 37266, 44646, 1114, 1123, 1994, 287, 705, 2100, 2340, 3256, 198, 220, 220, 220, 262, 717, 1988, 318, 262, 21201, 2163, 19203, 41357, 3256, 705, 46170, 3256, 393, 198, 220, 220, 220, 705, 77, 39223, 33809, 9472, 262, 5637, 3815, 389, 3804, 284, 326, 21201, 198, 220, 220, 220, 2163, 13, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 24470, 9386, 17056, 1362, 351, 262, 11507, 705, 2539, 6, 351, 4277, 1988, 705, 12286, 6, 198, 220, 220, 220, 543, 460, 691, 7048, 4731, 3815, 13, 628, 220, 220, 220, 13163, 1330, 7842, 72, 198, 220, 220, 220, 13163, 422, 7842, 72, 13, 26791, 13, 11250, 1330, 17056, 1362, 198, 220, 220, 220, 13163, 4938, 796, 7842, 72, 13, 26791, 13, 12102, 341, 13, 12102, 378, 62, 41357, 7, 14202, 11, 705, 8841, 11537, 198, 220, 220, 220, 13163, 4566, 796, 17056, 1362, 15090, 6, 2539, 10354, 705, 12286, 6, 5512, 1391, 6, 2539, 10354, 4938, 30072, 628, 220, 220, 220, 383, 1271, 286, 10007, 460, 307, 29517, 355, 262, 4129, 25, 628, 220, 220, 220, 13163, 18896, 7, 11250, 8, 198, 220, 220, 220, 352, 628, 220, 220, 220, 1320, 11507, 460, 307, 29517, 287, 257, 1271, 286, 2842, 25, 628, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 198, 220, 220, 220, 705, 12286, 6, 628, 220, 220, 220, 13163, 329, 1994, 11, 1988, 287, 4566, 13, 23814, 33529, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 10786, 2539, 25, 1391, 0, 81, 5512, 1988, 25, 1391, 0, 81, 92, 4458, 18982, 7, 2539, 11, 1988, 4008, 198, 220, 220, 220, 1994, 25, 705, 2539, 3256, 1988, 25, 705, 12286, 6, 628, 220, 220, 220, 13163, 329, 1994, 287, 4566, 13, 13083, 33529, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 10786, 2539, 25, 1391, 0, 81, 92, 4458, 18982, 7, 2539, 4008, 198, 220, 220, 220, 1994, 25, 705, 2539, 6, 628, 220, 220, 220, 13163, 329, 1988, 287, 4566, 13, 27160, 33529, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 3601, 10786, 8367, 25, 1391, 0, 81, 92, 4458, 18982, 7, 8367, 4008, 198, 220, 220, 220, 1988, 25, 705, 12286, 6, 628, 220, 220, 220, 22660, 11, 262, 11507, 460, 307, 3421, 287, 257, 1271, 286, 2842, 25, 628, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 796, 705, 8367, 6, 198, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 198, 220, 220, 220, 705, 8367, 6, 628, 220, 220, 220, 13163, 4566, 13, 19119, 15090, 6, 2539, 10354, 705, 8367, 3421, 416, 8633, 6, 30072, 198, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 198, 220, 220, 220, 705, 8367, 3421, 416, 8633, 6, 628, 220, 220, 220, 13163, 4566, 13, 19119, 7, 2539, 11639, 8367, 3421, 416, 21179, 11537, 198, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 198, 220, 220, 220, 705, 8367, 3421, 416, 21179, 6, 628, 220, 220, 220, 9461, 11, 262, 11507, 460, 307, 13259, 284, 262, 4277, 1988, 379, 597, 966, 25, 628, 220, 220, 220, 13163, 4566, 13, 42503, 3419, 198, 220, 220, 220, 13163, 4566, 17816, 2539, 20520, 198, 220, 220, 220, 705, 12286, 6, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 12543, 6359, 796, 1391, 6, 41357, 10354, 4808, 41357, 11, 705, 46170, 10354, 4808, 46170, 11, 705, 77, 39223, 10354, 4808, 77, 39223, 92, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1988, 286, 257, 8398, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 1058, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 286, 262, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 62, 12501, 16262, 62, 12102, 341, 628, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 15414, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 37266, 58, 3672, 60, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1271, 286, 8398, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13557, 37266, 8, 628, 220, 220, 220, 825, 11593, 2617, 9186, 834, 7, 944, 11, 1438, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 262, 1988, 286, 257, 8398, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 318, 31031, 1864, 284, 262, 21201, 7791, 286, 326, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 1058, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 649, 1988, 286, 262, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 62, 12501, 16262, 62, 12102, 341, 628, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 15414, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 58, 3672, 60, 796, 1988, 628, 220, 220, 220, 825, 651, 7, 944, 11, 1994, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2129, 31023, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 1362, 13, 834, 1136, 9186, 834, 1058, 18407, 4092, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 1362, 13, 23814, 1058, 18407, 4092, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 1362, 13, 13083, 1058, 18407, 4092, 2446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 1362, 13, 27160, 1058, 18407, 4092, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 2129, 8344, 341, 20361, 7203, 6, 1136, 6, 481, 307, 4615, 287, 2196, 352, 13, 18, 13, 15, 532, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 705, 7785, 58, 3672, 60, 3256, 705, 23814, 3256, 705, 13083, 3256, 393, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 27160, 6, 2427, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8633, 7, 944, 13, 23814, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 58, 2539, 60, 628, 220, 220, 220, 825, 3709, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 8398, 10007, 355, 1994, 11, 1988, 14729, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 1058, 900, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1351, 286, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 357, 2539, 11, 2116, 58, 2539, 12962, 628, 220, 220, 220, 825, 8251, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 8398, 11507, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 1058, 900, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 37266, 13, 13083, 3419, 628, 220, 220, 220, 825, 13259, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30027, 262, 11507, 3815, 284, 262, 4277, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 796, 2116, 13557, 12286, 13, 30073, 3419, 628, 220, 220, 220, 825, 900, 7, 944, 11, 22155, 34758, 5512, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2129, 31023, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 4418, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 17056, 1362, 13, 834, 2617, 9186, 834, 1058, 18407, 4092, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 2129, 8344, 341, 20361, 7203, 6, 2617, 6, 481, 307, 4615, 287, 2196, 352, 13, 18, 13, 15, 532, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 705, 7785, 58, 3672, 60, 796, 1988, 6, 393, 705, 19119, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38070, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 7, 67, 14188, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 42287, 34758, 5512, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10133, 262, 1988, 286, 530, 393, 517, 8398, 10007, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5501, 1988, 318, 31031, 1864, 284, 262, 21201, 7791, 286, 326, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 1058, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 22155, 7268, 262, 1994, 290, 3815, 284, 4296, 13, 357, 1169, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 318, 281, 6565, 22155, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 7159, 852, 262, 1994, 290, 3815, 284, 4296, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 62, 12501, 16262, 62, 12102, 341, 628, 220, 220, 220, 220, 220, 220, 220, 26571, 62, 15414, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 42287, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 2539, 60, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 46265, 22046, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 479, 86, 22046, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 58, 2539, 60, 796, 1988, 628, 220, 220, 220, 825, 3815, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 8398, 11507, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 1058, 900, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 2116, 58, 2539, 60, 198 ]
2.507784
2,698
""" Grouped boxplots ================ """ import seaborn as sns sns.set(style="ticks") tips = sns.load_dataset("tips") sns.boxplot("day", "total_bill", "sex", tips, palette="PRGn") sns.despine(offset=10, trim=True)
[ 37811, 198, 13247, 276, 3091, 489, 1747, 198, 4770, 198, 198, 37811, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 82, 5907, 13, 2617, 7, 7635, 2625, 83, 3378, 4943, 198, 198, 41315, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 7203, 41315, 4943, 198, 82, 5907, 13, 3524, 29487, 7203, 820, 1600, 366, 23350, 62, 35546, 1600, 366, 8044, 1600, 9040, 11, 27043, 2625, 4805, 38, 77, 4943, 198, 82, 5907, 13, 8906, 23908, 7, 28968, 28, 940, 11, 15797, 28, 17821, 8, 198 ]
2.494253
87
import gspread.utils from django.contrib import admin from django.utils.safestring import mark_safe from .models import ( Campaign, Preparedness, Surge, Round, Config, CountryUsersGroup, URLCache, SpreadSheetImport, LQASIMCache, IMStatsCache, ) admin.site.register(Campaign, CampaignAdmin) admin.site.register(Preparedness, PreparednessAdmin) admin.site.register(Config) admin.site.register(Surge) admin.site.register(Round) admin.site.register(CountryUsersGroup) admin.site.register(URLCache) admin.site.register(SpreadSheetImport, SpreadSheetImportAdmin) admin.site.register(LQASIMCache) admin.site.register(IMStatsCache)
[ 11748, 308, 43639, 13, 26791, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 198, 6738, 764, 27530, 1330, 357, 198, 220, 220, 220, 13718, 11, 198, 220, 220, 220, 19141, 1144, 1108, 11, 198, 220, 220, 220, 46774, 11, 198, 220, 220, 220, 10485, 11, 198, 220, 220, 220, 17056, 11, 198, 220, 220, 220, 12946, 14490, 13247, 11, 198, 220, 220, 220, 37902, 5639, 4891, 11, 198, 220, 220, 220, 31843, 3347, 316, 20939, 11, 198, 220, 220, 220, 406, 48, 1921, 3955, 30562, 11, 198, 220, 220, 220, 8959, 29668, 30562, 11, 198, 8, 628, 628, 198, 198, 28482, 13, 15654, 13, 30238, 7, 46102, 11, 13718, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 6719, 29190, 1108, 11, 19141, 1144, 1108, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 16934, 8, 198, 28482, 13, 15654, 13, 30238, 7, 14214, 469, 8, 198, 28482, 13, 15654, 13, 30238, 7, 22685, 8, 198, 28482, 13, 15654, 13, 30238, 7, 33921, 14490, 13247, 8, 198, 28482, 13, 15654, 13, 30238, 7, 4261, 5639, 4891, 8, 198, 28482, 13, 15654, 13, 30238, 7, 44458, 3347, 316, 20939, 11, 31843, 3347, 316, 20939, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 43, 48, 1921, 3955, 30562, 8, 198, 28482, 13, 15654, 13, 30238, 7, 3955, 29668, 30562, 8, 198 ]
2.838983
236
import numpy as np
[ 11748, 299, 32152, 355, 45941 ]
3.6
5
import cv2 def read(path, video): """ @get path, video as string @return void """ realpath = path + video i = 0 myvideo = cv2.VideoCapture(realpath) while(myvideo.isOpened()): ret, frame = myvideo.read() i += 1 cv2.imshow('frame', frame) if (cv2.waitKey(0) == ord('c')): cv2.imwrite('data/'+str(i)+'.png', frame) if (cv2.waitKey(0) == ord('q')): break myvideo.release() cv2.destroyAllWindows() path = './mua/khmer/' video = 'Khmer-Chol-Chnam-Thmay.webm' read(path, video)
[ 11748, 269, 85, 17, 628, 198, 4299, 1100, 7, 6978, 11, 2008, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 1136, 220, 3108, 11, 2008, 355, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 2488, 7783, 7951, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1103, 6978, 796, 3108, 1343, 2008, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 616, 15588, 796, 269, 85, 17, 13, 10798, 49630, 7, 5305, 6978, 8, 198, 220, 220, 220, 981, 7, 1820, 15588, 13, 271, 18257, 2945, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 5739, 796, 616, 15588, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 14535, 3256, 5739, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 33967, 17, 13, 17077, 9218, 7, 15, 8, 6624, 2760, 10786, 66, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 10786, 7890, 14, 6, 10, 2536, 7, 72, 47762, 4458, 11134, 3256, 5739, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 33967, 17, 13, 17077, 9218, 7, 15, 8, 6624, 2760, 10786, 80, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 616, 15588, 13, 20979, 3419, 198, 220, 220, 220, 269, 85, 17, 13, 41659, 3237, 11209, 3419, 198, 198, 6978, 796, 705, 19571, 76, 6413, 14, 14636, 647, 14, 6, 198, 15588, 796, 705, 33155, 647, 12, 1925, 349, 12, 1925, 7402, 12, 817, 11261, 13, 12384, 76, 6, 198, 198, 961, 7, 6978, 11, 2008, 8, 198 ]
1.976667
300
import os from pathlib import Path from typing import List import pytest
[ 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 12972, 9288, 628, 198 ]
3.8
20
# coding=utf-8 # Copyright 2021 The Balloon Learning Environment Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A wrapper for training the Dopamine QR-DQN agent.""" import functools from typing import Callable, Optional, Sequence, Union from absl import logging from balloon_learning_environment.agents import agent from balloon_learning_environment.agents import dopamine_utils from balloon_learning_environment.agents import exploration from balloon_learning_environment.agents import marco_polo_exploration # pylint: disable=unused-import from balloon_learning_environment.agents import perciatelli44 from dopamine.jax.agents.quantile import quantile_agent import flax from flax import linen as nn import gin import jax import jax.numpy as jnp import numpy as np @gin.configurable(allowlist=['network', 'exploration_wrapper_constructor', 'checkpoint_duration', 'reload_perciatelli']) class QuantileAgent(agent.Agent, quantile_agent.JaxQuantileAgent): """A wrapper for training the Dopamine QR-DQN agent.""" def __init__( self, num_actions: int, observation_shape: Sequence[int], *, # Everything after this is a keyword-only argument. seed: Optional[int] = None, network: nn.Module = gin.REQUIRED, exploration_wrapper_constructor: Callable[ [int, Sequence[int]], exploration.Exploration] = gin.REQUIRED, checkpoint_duration: Optional[int] = gin.REQUIRED, reload_perciatelli: bool = gin.REQUIRED): """Create the Agent. This agent enables one to wrap action selection with another agent, such as for exploratory policies. The exploratory agent is in charge of deciding whether it will pick the action, or the calling QuantileAgent will. Args: num_actions: Number of actions. observation_shape: Shape of input observations. seed: Optional seed for the PRNG. network: Network to use for training and inference. exploration_wrapper_constructor: Exploration wrapper for action selection. checkpoint_duration: Optional duration of checkpoints for garbage collection. reload_perciatelli: Whether to reload the weights from the Perciatelli44 agent. """ self._checkpoint_duration = checkpoint_duration # Although Python MRO goes from left to right, we call each __init__ # function explicitly as opposed to using `super()` (which would just call # agent.Agent's init) to avoid confusion. agent.Agent.__init__(self, num_actions, observation_shape) quantile_agent.JaxQuantileAgent.__init__( self, num_actions, observation_shape=observation_shape, observation_dtype=jnp.float32, stack_size=1, network=network, seed=seed) self._exploration_wrapper = exploration_wrapper_constructor( num_actions, observation_shape) if reload_perciatelli: self.online_params = self.load_perciatelli_weights() self.target_network_params = self.online_params logging.info('Successfully loaded Perciatelli44 parameters.') def save_checkpoint(self, checkpoint_dir: str, iteration_number: int) -> None: """Checkpoint agent parameters as a pickled dict.""" dopamine_utils.save_checkpoint( checkpoint_dir, iteration_number, functools.partial(quantile_agent.JaxQuantileAgent.bundle_and_checkpoint, self)) # Get rid of old checkpoints if necessary. if self._checkpoint_duration is not None: dopamine_utils.clean_up_old_checkpoints( checkpoint_dir, iteration_number, checkpoint_duration=self._checkpoint_duration) def load_checkpoint(self, checkpoint_dir: str, iteration_number: int) -> None: """Checkpoint agent parameters as a pickled dict.""" dopamine_utils.load_checkpoint( checkpoint_dir, iteration_number, functools.partial(quantile_agent.JaxQuantileAgent.unbundle, self)) @staticmethod def load_perciatelli_weights() -> flax.core.FrozenDict: """Load the Perciatelli weights and convert to a JAX array.""" sess = perciatelli44.load_perciatelli_session() layer_names = [n.name for n in sess.graph.as_graph_def().node if 'Online' in n.name] param_dict = {} for name in layer_names: if not ('weights' in name or 'biases' in name) or 'read' in name: continue params = sess.run(sess.graph.get_tensor_by_name(f'{name}:0')) param_dict[name] = params jax_params = { 'params': { 'Dense_0': { 'kernel': param_dict['Online/fully_connected/weights'], 'bias': param_dict['Online/fully_connected/biases'], }, 'Dense_1': { 'kernel': param_dict['Online/fully_connected_1/weights'], 'bias': param_dict['Online/fully_connected_1/biases'], }, 'Dense_2': { 'kernel': param_dict['Online/fully_connected_2/weights'], 'bias': param_dict['Online/fully_connected_2/biases'], }, 'Dense_3': { 'kernel': param_dict['Online/fully_connected_3/weights'], 'bias': param_dict['Online/fully_connected_3/biases'], }, 'Dense_4': { 'kernel': param_dict['Online/fully_connected_4/weights'], 'bias': param_dict['Online/fully_connected_4/biases'], }, 'Dense_5': { 'kernel': param_dict['Online/fully_connected_5/weights'], 'bias': param_dict['Online/fully_connected_5/biases'], }, 'Dense_6': { 'kernel': param_dict['Online/fully_connected_6/weights'], 'bias': param_dict['Online/fully_connected_6/biases'], }, 'Dense_7': { 'kernel': param_dict['Online/fully_connected_7/weights'], 'bias': param_dict['Online/fully_connected_7/biases'], }, } } jax_params = jax.tree_map(jnp.asarray, jax_params) return flax.core.FrozenDict(jax_params)
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33448, 383, 47821, 18252, 9344, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 32, 29908, 329, 3047, 262, 360, 404, 9862, 42137, 12, 35, 48, 45, 5797, 526, 15931, 198, 198, 11748, 1257, 310, 10141, 198, 6738, 19720, 1330, 4889, 540, 11, 32233, 11, 45835, 11, 4479, 198, 198, 6738, 2352, 75, 1330, 18931, 198, 6738, 21190, 62, 40684, 62, 38986, 13, 49638, 1330, 5797, 198, 6738, 21190, 62, 40684, 62, 38986, 13, 49638, 1330, 26252, 62, 26791, 198, 6738, 21190, 62, 40684, 62, 38986, 13, 49638, 1330, 13936, 198, 6738, 21190, 62, 40684, 62, 38986, 13, 49638, 1330, 1667, 1073, 62, 79, 14057, 62, 20676, 6944, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198, 6738, 21190, 62, 40684, 62, 38986, 13, 49638, 1330, 583, 979, 7528, 72, 2598, 198, 6738, 26252, 13, 73, 897, 13, 49638, 13, 40972, 576, 1330, 5554, 576, 62, 25781, 198, 11748, 781, 897, 198, 6738, 781, 897, 1330, 41822, 355, 299, 77, 198, 11748, 39733, 198, 11748, 474, 897, 198, 11748, 474, 897, 13, 77, 32152, 355, 474, 37659, 198, 11748, 299, 32152, 355, 45941, 628, 198, 31, 1655, 13, 11250, 11970, 7, 12154, 4868, 28, 17816, 27349, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20676, 6944, 62, 48553, 62, 41571, 273, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9122, 4122, 62, 32257, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 2220, 62, 525, 979, 7528, 72, 6, 12962, 198, 4871, 16972, 576, 36772, 7, 25781, 13, 36772, 11, 5554, 576, 62, 25781, 13, 41, 897, 24915, 576, 36772, 2599, 198, 220, 37227, 32, 29908, 329, 3047, 262, 360, 404, 9862, 42137, 12, 35, 48, 45, 5797, 526, 15931, 628, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 997, 62, 4658, 25, 493, 11, 198, 220, 220, 220, 220, 220, 13432, 62, 43358, 25, 45835, 58, 600, 4357, 198, 220, 220, 220, 220, 220, 1635, 11, 220, 1303, 11391, 706, 428, 318, 257, 21179, 12, 8807, 4578, 13, 198, 220, 220, 220, 220, 220, 9403, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 3127, 25, 299, 77, 13, 26796, 796, 39733, 13, 2200, 10917, 37819, 11, 198, 220, 220, 220, 220, 220, 13936, 62, 48553, 62, 41571, 273, 25, 4889, 540, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 600, 11, 45835, 58, 600, 60, 4357, 13936, 13, 18438, 6944, 60, 796, 39733, 13, 2200, 10917, 37819, 11, 198, 220, 220, 220, 220, 220, 26954, 62, 32257, 25, 32233, 58, 600, 60, 796, 39733, 13, 2200, 10917, 37819, 11, 198, 220, 220, 220, 220, 220, 18126, 62, 525, 979, 7528, 72, 25, 20512, 796, 39733, 13, 2200, 10917, 37819, 2599, 198, 220, 220, 220, 37227, 16447, 262, 15906, 13, 628, 220, 220, 220, 770, 5797, 13536, 530, 284, 14441, 2223, 6356, 351, 1194, 5797, 11, 884, 198, 220, 220, 220, 355, 329, 39180, 2870, 4788, 13, 383, 39180, 2870, 5797, 318, 287, 3877, 286, 14615, 198, 220, 220, 220, 1771, 340, 481, 2298, 262, 2223, 11, 393, 262, 4585, 16972, 576, 36772, 481, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 997, 62, 4658, 25, 7913, 286, 4028, 13, 198, 220, 220, 220, 220, 220, 13432, 62, 43358, 25, 25959, 286, 5128, 13050, 13, 198, 220, 220, 220, 220, 220, 9403, 25, 32233, 9403, 329, 262, 4810, 10503, 13, 198, 220, 220, 220, 220, 220, 3127, 25, 7311, 284, 779, 329, 3047, 290, 32278, 13, 198, 220, 220, 220, 220, 220, 13936, 62, 48553, 62, 41571, 273, 25, 36806, 29908, 329, 2223, 6356, 13, 198, 220, 220, 220, 220, 220, 26954, 62, 32257, 25, 32233, 9478, 286, 36628, 329, 15413, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 13, 198, 220, 220, 220, 220, 220, 18126, 62, 525, 979, 7528, 72, 25, 10127, 284, 18126, 262, 19590, 422, 262, 2448, 979, 7528, 72, 2598, 198, 220, 220, 220, 220, 220, 220, 220, 5797, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13557, 9122, 4122, 62, 32257, 796, 26954, 62, 32257, 198, 220, 220, 220, 1303, 4900, 11361, 337, 13252, 2925, 422, 1364, 284, 826, 11, 356, 869, 1123, 11593, 15003, 834, 198, 220, 220, 220, 1303, 2163, 11777, 355, 6886, 284, 1262, 4600, 16668, 3419, 63, 357, 4758, 561, 655, 869, 198, 220, 220, 220, 1303, 5797, 13, 36772, 338, 2315, 8, 284, 3368, 10802, 13, 198, 220, 220, 220, 5797, 13, 36772, 13, 834, 15003, 834, 7, 944, 11, 997, 62, 4658, 11, 13432, 62, 43358, 8, 198, 220, 220, 220, 5554, 576, 62, 25781, 13, 41, 897, 24915, 576, 36772, 13, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 4658, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13432, 62, 43358, 28, 672, 3168, 341, 62, 43358, 11, 198, 220, 220, 220, 220, 220, 220, 220, 13432, 62, 67, 4906, 28, 73, 37659, 13, 22468, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 62, 7857, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 28, 27349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 28826, 8, 198, 220, 220, 220, 2116, 13557, 20676, 6944, 62, 48553, 796, 13936, 62, 48553, 62, 41571, 273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 4658, 11, 13432, 62, 43358, 8, 198, 220, 220, 220, 611, 18126, 62, 525, 979, 7528, 72, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 25119, 62, 37266, 796, 2116, 13, 2220, 62, 525, 979, 7528, 72, 62, 43775, 3419, 198, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 27349, 62, 37266, 796, 2116, 13, 25119, 62, 37266, 198, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 33244, 2759, 9639, 2448, 979, 7528, 72, 2598, 10007, 2637, 8, 628, 220, 825, 3613, 62, 9122, 4122, 7, 944, 11, 26954, 62, 15908, 25, 965, 11, 24415, 62, 17618, 25, 493, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 9787, 4122, 5797, 10007, 355, 257, 2298, 992, 8633, 526, 15931, 198, 220, 220, 220, 26252, 62, 26791, 13, 21928, 62, 9122, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 11, 24415, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 40972, 576, 62, 25781, 13, 41, 897, 24915, 576, 36772, 13, 65, 31249, 62, 392, 62, 9122, 4122, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 4008, 198, 220, 220, 220, 1303, 3497, 5755, 286, 1468, 36628, 611, 3306, 13, 198, 220, 220, 220, 611, 2116, 13557, 9122, 4122, 62, 32257, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 26252, 62, 26791, 13, 27773, 62, 929, 62, 727, 62, 9122, 13033, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 11, 24415, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 32257, 28, 944, 13557, 9122, 4122, 62, 32257, 8, 628, 220, 825, 3440, 62, 9122, 4122, 7, 944, 11, 26954, 62, 15908, 25, 965, 11, 24415, 62, 17618, 25, 493, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 9787, 4122, 5797, 10007, 355, 257, 2298, 992, 8633, 526, 15931, 198, 220, 220, 220, 26252, 62, 26791, 13, 2220, 62, 9122, 4122, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26954, 62, 15908, 11, 24415, 62, 17618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1257, 310, 10141, 13, 47172, 7, 40972, 576, 62, 25781, 13, 41, 897, 24915, 576, 36772, 13, 403, 65, 31249, 11, 2116, 4008, 628, 220, 2488, 12708, 24396, 198, 220, 825, 3440, 62, 525, 979, 7528, 72, 62, 43775, 3419, 4613, 781, 897, 13, 7295, 13, 37, 42005, 35, 713, 25, 198, 220, 220, 220, 37227, 8912, 262, 2448, 979, 7528, 72, 19590, 290, 10385, 284, 257, 449, 25922, 7177, 526, 15931, 198, 220, 220, 220, 264, 408, 796, 583, 979, 7528, 72, 2598, 13, 2220, 62, 525, 979, 7528, 72, 62, 29891, 3419, 198, 220, 220, 220, 7679, 62, 14933, 796, 685, 77, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 264, 408, 13, 34960, 13, 292, 62, 34960, 62, 4299, 22446, 17440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 14439, 6, 287, 299, 13, 3672, 60, 628, 220, 220, 220, 5772, 62, 11600, 796, 23884, 198, 220, 220, 220, 329, 1438, 287, 7679, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 611, 407, 19203, 43775, 6, 287, 1438, 393, 705, 8482, 1386, 6, 287, 1438, 8, 393, 705, 961, 6, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 42287, 796, 264, 408, 13, 5143, 7, 82, 408, 13, 34960, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 7, 69, 6, 90, 3672, 38362, 15, 6, 4008, 198, 220, 220, 220, 220, 220, 5772, 62, 11600, 58, 3672, 60, 796, 42287, 198, 220, 220, 220, 474, 897, 62, 37266, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 37266, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 15, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 16, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 16, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 16, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 17, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 17, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 17, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 18, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 18, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 18, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 19, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 19, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 19, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 20, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 20, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 20, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 21, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 21, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 21, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35, 1072, 62, 22, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 33885, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 22, 14, 43775, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 4448, 10354, 5772, 62, 11600, 17816, 14439, 14, 2759, 62, 15236, 62, 22, 14, 8482, 1386, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 474, 897, 62, 37266, 796, 474, 897, 13, 21048, 62, 8899, 7, 73, 37659, 13, 292, 18747, 11, 474, 897, 62, 37266, 8, 198, 220, 220, 220, 1441, 781, 897, 13, 7295, 13, 37, 42005, 35, 713, 7, 73, 897, 62, 37266, 8, 198 ]
2.505035
2,681
""" Process settlement layer Written by Ed Oughton. December 2020 """ import os import configparser import json import math import glob import numpy as np import pandas as pd import geopandas as gpd import pyproj from shapely.geometry import Point, LineString, Polygon, MultiPolygon, shape, mapping, box from shapely.ops import unary_union, nearest_points, transform import rasterio from rasterio.warp import calculate_default_transform, reproject, Resampling from rasterio.mask import mask from rasterstats import zonal_stats, gen_zonal_stats from tqdm import tqdm CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_INTERMEDIATE = os.path.join(BASE_PATH, 'intermediate') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def find_country_list(continent_list): """ This function produces country information by continent. Parameters ---------- continent_list : list Contains the name of the desired continent, e.g. ['Africa'] Returns ------- countries : list of dicts Contains all desired country information for countries in the stated continent. """ path = os.path.join(DATA_RAW, 'gadm36_levels_shp', 'gadm36_0.shp') countries = gpd.read_file(path) glob_info_path = os.path.join(DATA_RAW, '..', 'global_information.csv') load_glob_info = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") countries = countries.merge(load_glob_info, left_on='GID_0', right_on='ISO_3digit') if len(continent_list) > 0: selected_countries = countries.loc[countries['continent'].isin(continent_list)] else: selected_countries = countries.loc[countries['global'] == 1] countries = [] for index, country in selected_countries.iterrows(): countries.append({ 'country_name': country['country'], 'iso3': country['GID_0'], 'iso2': country['ISO_2digit'], 'regional_level': country['gid_region'], }) return countries def process_country_shapes(country): """ Creates a single national boundary for the desired country. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] path = os.path.join(DATA_INTERMEDIATE, iso3) if os.path.exists(os.path.join(path, 'national_outline.shp')): return 'Completed national outline processing' if not os.path.exists(path): # print('Creating directory {}'.format(path)) os.makedirs(path) shape_path = os.path.join(path, 'national_outline.shp') # print('Loading all country shapes') path = os.path.join(DATA_RAW, 'gadm36_levels_shp', 'gadm36_0.shp') countries = gpd.read_file(path) # print('Getting specific country shape for {}'.format(iso3)) single_country = countries[countries.GID_0 == iso3] # print('Excluding small shapes') single_country['geometry'] = single_country.apply( exclude_small_shapes, axis=1) # print('Adding ISO country code and other global information') glob_info_path = os.path.join(DATA_RAW, 'global_information.csv') load_glob_info = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") single_country = single_country.merge( load_glob_info,left_on='GID_0', right_on='ISO_3digit') single_country.to_file(shape_path, driver='ESRI Shapefile') return def process_regions(country): """ Function for processing the lowest desired subnational regions for the chosen country. Parameters ---------- country : string Three digit ISO country code. """ regions = [] iso3 = country['iso3'] level = country['regional_level'] for regional_level in range(1, level + 1): filename = 'regions_{}_{}.shp'.format(regional_level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path_processed = os.path.join(folder, filename) if os.path.exists(path_processed): continue if not os.path.exists(folder): os.mkdir(folder) filename = 'gadm36_{}.shp'.format(regional_level) path_regions = os.path.join(DATA_RAW, 'gadm36_levels_shp', filename) regions = gpd.read_file(path_regions) regions = regions[regions.GID_0 == iso3] regions['geometry'] = regions.apply(exclude_small_shapes, axis=1) try: regions.to_file(path_processed, driver='ESRI Shapefile') except: pass return def process_settlement_layer(country): """ Clip the settlement layer to the chosen country boundary and place in desired country folder. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] path_settlements = os.path.join(DATA_RAW,'settlement_layer', 'ppp_2020_1km_Aggregated.tif') settlements = rasterio.open(path_settlements, 'r+') settlements.nodata = 255 settlements.crs = {"init": "epsg:4326"} iso3 = country['iso3'] path_country = os.path.join(DATA_INTERMEDIATE, iso3, 'national_outline.shp') if os.path.exists(path_country): country = gpd.read_file(path_country) else: print('Must generate national_outline.shp first for {}'.format(iso3) ) path_country = os.path.join(DATA_INTERMEDIATE, iso3) shape_path = os.path.join(path_country, 'settlements.tif') if os.path.exists(shape_path): return bbox = country.envelope geo = gpd.GeoDataFrame() geo = gpd.GeoDataFrame({'geometry': bbox}) coords = [json.loads(geo.to_json())['features'][0]['geometry']] #chop on coords out_img, out_transform = mask(settlements, coords, crop=True) # Copy the metadata out_meta = settlements.meta.copy() out_meta.update({"driver": "GTiff", "height": out_img.shape[1], "width": out_img.shape[2], "transform": out_transform, "crs": 'epsg:4326'}) with rasterio.open(shape_path, "w", **out_meta) as dest: dest.write(out_img) return def exclude_small_shapes(x): """ Remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': return x.geometry # if its a multipolygon, we start trying to simplify # and remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': area1 = 0.01 area2 = 50 # dont remove shapes if total area is already very small if x.geometry.area < area1: return x.geometry # remove bigger shapes if country is really big if x['GID_0'] in ['CHL','IDN']: threshold = 0.01 elif x['GID_0'] in ['RUS','GRL','CAN','USA']: threshold = 0.01 elif x.geometry.area > area2: threshold = 0.1 else: threshold = 0.001 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def create_pop_regional_lookup(country): """ Extract regional luminosity and population data. Parameters ---------- country : string Three digit ISO country code. """ level = country['regional_level'] iso3 = country['iso3'] GID_level = 'GID_{}'.format(level) filename = 'population_lookup_level_{}.csv'.format(level) path_output = os.path.join(DATA_INTERMEDIATE, iso3, filename) if os.path.exists(path_output): output = pd.read_csv(path_output).to_dict('records') return output filename = 'settlements.tif' path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, filename) filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') regions = gpd.read_file(os.path.join(folder, filename), crs='epsg:4326') output = [] for index, region in regions.iterrows(): area_km = get_area(region['geometry']) population = find_population(region, path_settlements) if not isinstance(population, float): continue if population > 0: pop_density_km2 = population / area_km else: pop_density_km2 = 0 output.append({ 'iso3': iso3, 'regions': region[GID_level], 'population': population, 'area_m': area_km, 'pop_density_km2': pop_density_km2, }) output_pandas = pd.DataFrame(output) output_pandas.to_csv(path_output, index=False) return output def find_population(region, path_settlements): """ """ with rasterio.open(path_settlements) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], affine=affine)][0] return population def get_area(modeling_region_geom): """ Return the area in square km. """ project = pyproj.Transformer.from_crs('epsg:4326', 'epsg:3857', always_xy=True).transform new_geom = transform(project, modeling_region_geom) area_km = new_geom.area / 1e6 return area_km if __name__ == '__main__': countries = find_country_list([])#[:2] #['Africa'] output = [] for country in tqdm(countries): print('-Working on {}: {}'.format(country['country_name'], country['iso3'])) process_country_shapes(country) process_regions(country) process_settlement_layer(country) results = create_pop_regional_lookup(country) output = output + results path_output = os.path.join(DATA_INTERMEDIATE, 'global_regional_population_lookup.csv') output = pd.DataFrame(output) output.to_csv(path_output, index=False) print('Preprocessing complete')
[ 37811, 198, 18709, 9443, 7679, 198, 198, 25354, 416, 1717, 440, 6724, 1122, 13, 198, 198, 20588, 12131, 198, 198, 37811, 198, 11748, 28686, 198, 11748, 4566, 48610, 198, 11748, 33918, 198, 11748, 10688, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 30324, 392, 292, 355, 27809, 67, 198, 11748, 12972, 1676, 73, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 6252, 11, 6910, 10100, 11, 12280, 14520, 11, 15237, 34220, 14520, 11, 5485, 11, 16855, 11, 3091, 198, 6738, 5485, 306, 13, 2840, 1330, 555, 560, 62, 24592, 11, 16936, 62, 13033, 11, 6121, 198, 11748, 374, 1603, 952, 198, 6738, 374, 1603, 952, 13, 86, 5117, 1330, 15284, 62, 12286, 62, 35636, 11, 43969, 752, 11, 1874, 321, 11347, 198, 6738, 374, 1603, 952, 13, 27932, 1330, 9335, 198, 6738, 374, 1603, 34242, 1330, 1976, 20996, 62, 34242, 11, 2429, 62, 89, 20996, 62, 34242, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 10943, 16254, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 10943, 16254, 13, 961, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 12048, 62, 11250, 13, 5362, 6, 4008, 198, 33, 11159, 62, 34219, 796, 25626, 17816, 7753, 62, 17946, 602, 6, 7131, 6, 8692, 62, 6978, 20520, 198, 198, 26947, 62, 20530, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34219, 11, 705, 1831, 11537, 198, 26947, 62, 41358, 30733, 40, 6158, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34219, 11, 705, 3849, 13857, 11537, 198, 26947, 62, 4805, 4503, 7597, 1961, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34219, 11, 705, 14681, 276, 11537, 628, 198, 4299, 1064, 62, 19315, 62, 4868, 7, 3642, 7233, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 11073, 1499, 1321, 416, 15549, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 15549, 62, 4868, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 49850, 262, 1438, 286, 262, 10348, 15549, 11, 304, 13, 70, 13, 37250, 17584, 30997, 20520, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2678, 1058, 1351, 286, 8633, 82, 198, 220, 220, 220, 220, 220, 220, 220, 49850, 477, 10348, 1499, 1321, 329, 2678, 287, 198, 220, 220, 220, 220, 220, 220, 220, 262, 5081, 15549, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 11, 705, 70, 324, 76, 2623, 62, 46170, 62, 1477, 79, 3256, 705, 70, 324, 76, 2623, 62, 15, 13, 1477, 79, 11537, 198, 220, 220, 220, 2678, 796, 27809, 67, 13, 961, 62, 7753, 7, 6978, 8, 628, 220, 220, 220, 15095, 62, 10951, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 11, 705, 492, 3256, 705, 20541, 62, 17018, 13, 40664, 11537, 198, 220, 220, 220, 3440, 62, 4743, 672, 62, 10951, 796, 279, 67, 13, 961, 62, 40664, 7, 4743, 672, 62, 10951, 62, 6978, 11, 21004, 796, 366, 40734, 12, 3459, 3270, 12, 16, 4943, 198, 220, 220, 220, 2678, 796, 2678, 13, 647, 469, 7, 2220, 62, 4743, 672, 62, 10951, 11, 1364, 62, 261, 11639, 38, 2389, 62, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 826, 62, 261, 11639, 40734, 62, 18, 27003, 11537, 628, 220, 220, 220, 611, 18896, 7, 3642, 7233, 62, 4868, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 9127, 1678, 796, 2678, 13, 17946, 58, 9127, 1678, 17816, 3642, 7233, 6, 4083, 45763, 7, 3642, 7233, 62, 4868, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 9127, 1678, 796, 2678, 13, 17946, 58, 9127, 1678, 17816, 20541, 20520, 6624, 352, 60, 628, 220, 220, 220, 2678, 796, 17635, 628, 220, 220, 220, 329, 6376, 11, 1499, 287, 6163, 62, 9127, 1678, 13, 2676, 8516, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 2678, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19315, 62, 3672, 10354, 1499, 17816, 19315, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26786, 18, 10354, 1499, 17816, 38, 2389, 62, 15, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26786, 17, 10354, 1499, 17816, 40734, 62, 17, 27003, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 1538, 62, 5715, 10354, 1499, 17816, 70, 312, 62, 36996, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 1441, 2678, 628, 198, 4299, 1429, 62, 19315, 62, 1477, 7916, 7, 19315, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 2060, 2260, 18645, 329, 262, 10348, 1499, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1499, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7683, 16839, 19694, 1499, 2438, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 47279, 18, 796, 1499, 17816, 26786, 18, 20520, 628, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 8, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 705, 14648, 62, 448, 1370, 13, 1477, 79, 11537, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 43768, 2260, 19001, 7587, 6, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 32071, 8619, 23884, 4458, 18982, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 6978, 8, 628, 220, 220, 220, 5485, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 705, 14648, 62, 448, 1370, 13, 1477, 79, 11537, 628, 220, 220, 220, 1303, 3601, 10786, 19031, 477, 1499, 15268, 11537, 198, 220, 220, 220, 3108, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 11, 705, 70, 324, 76, 2623, 62, 46170, 62, 1477, 79, 3256, 705, 70, 324, 76, 2623, 62, 15, 13, 1477, 79, 11537, 198, 220, 220, 220, 2678, 796, 27809, 67, 13, 961, 62, 7753, 7, 6978, 8, 628, 220, 220, 220, 1303, 3601, 10786, 20570, 2176, 1499, 5485, 329, 23884, 4458, 18982, 7, 26786, 18, 4008, 198, 220, 220, 220, 2060, 62, 19315, 796, 2678, 58, 9127, 1678, 13, 38, 2389, 62, 15, 6624, 47279, 18, 60, 628, 220, 220, 220, 1303, 3601, 10786, 3109, 6360, 1402, 15268, 11537, 198, 220, 220, 220, 2060, 62, 19315, 17816, 469, 15748, 20520, 796, 2060, 62, 19315, 13, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 17470, 62, 1477, 7916, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 1303, 3601, 10786, 32901, 19694, 1499, 2438, 290, 584, 3298, 1321, 11537, 198, 220, 220, 220, 15095, 62, 10951, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 11, 705, 20541, 62, 17018, 13, 40664, 11537, 198, 220, 220, 220, 3440, 62, 4743, 672, 62, 10951, 796, 279, 67, 13, 961, 62, 40664, 7, 4743, 672, 62, 10951, 62, 6978, 11, 21004, 796, 366, 40734, 12, 3459, 3270, 12, 16, 4943, 198, 220, 220, 220, 2060, 62, 19315, 796, 2060, 62, 19315, 13, 647, 469, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 4743, 672, 62, 10951, 11, 9464, 62, 261, 11639, 38, 2389, 62, 15, 3256, 826, 62, 261, 11639, 40734, 62, 18, 27003, 11537, 628, 220, 220, 220, 2060, 62, 19315, 13, 1462, 62, 7753, 7, 43358, 62, 6978, 11, 4639, 11639, 1546, 7112, 25959, 7753, 11537, 628, 220, 220, 220, 1441, 628, 198, 4299, 1429, 62, 2301, 507, 7, 19315, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 329, 7587, 262, 9016, 10348, 850, 14648, 7652, 329, 262, 198, 220, 220, 220, 7147, 1499, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1499, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7683, 16839, 19694, 1499, 2438, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 7652, 796, 17635, 628, 220, 220, 220, 47279, 18, 796, 1499, 17816, 26786, 18, 20520, 198, 220, 220, 220, 1241, 796, 1499, 17816, 2301, 1538, 62, 5715, 20520, 628, 220, 220, 220, 329, 7915, 62, 5715, 287, 2837, 7, 16, 11, 1241, 1343, 352, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 705, 2301, 507, 23330, 92, 23330, 27422, 1477, 79, 4458, 18982, 7, 2301, 1538, 62, 5715, 11, 47279, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9483, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 11, 705, 2301, 507, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 14681, 276, 796, 28686, 13, 6978, 13, 22179, 7, 43551, 11, 29472, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 62, 14681, 276, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 43551, 8, 628, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 705, 70, 324, 76, 2623, 23330, 27422, 1477, 79, 4458, 18982, 7, 2301, 1538, 62, 5715, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 2301, 507, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 11, 705, 70, 324, 76, 2623, 62, 46170, 62, 1477, 79, 3256, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 27809, 67, 13, 961, 62, 7753, 7, 6978, 62, 2301, 507, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7652, 796, 7652, 58, 2301, 507, 13, 38, 2389, 62, 15, 6624, 47279, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 7652, 17816, 469, 15748, 20520, 796, 7652, 13, 39014, 7, 1069, 9152, 62, 17470, 62, 1477, 7916, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7652, 13, 1462, 62, 7753, 7, 6978, 62, 14681, 276, 11, 4639, 11639, 1546, 7112, 25959, 7753, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 1441, 628, 198, 4299, 1429, 62, 17744, 1732, 62, 29289, 7, 19315, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42512, 262, 9443, 7679, 284, 262, 7147, 1499, 18645, 290, 1295, 287, 198, 220, 220, 220, 10348, 1499, 9483, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1499, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7683, 16839, 19694, 1499, 2438, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 47279, 18, 796, 1499, 17816, 26786, 18, 20520, 628, 220, 220, 220, 3108, 62, 17744, 3639, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 20530, 4032, 17744, 1732, 62, 29289, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 381, 79, 62, 42334, 62, 16, 13276, 62, 46384, 2301, 515, 13, 49929, 11537, 628, 220, 220, 220, 18573, 796, 374, 1603, 952, 13, 9654, 7, 6978, 62, 17744, 3639, 11, 705, 81, 10, 11537, 198, 220, 220, 220, 18573, 13, 77, 375, 1045, 796, 14280, 198, 220, 220, 220, 18573, 13, 66, 3808, 796, 19779, 15003, 1298, 366, 25386, 70, 25, 3559, 2075, 20662, 628, 220, 220, 220, 47279, 18, 796, 1499, 17816, 26786, 18, 20520, 198, 220, 220, 220, 3108, 62, 19315, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14648, 62, 448, 1370, 13, 1477, 79, 11537, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 62, 19315, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1499, 796, 27809, 67, 13, 961, 62, 7753, 7, 6978, 62, 19315, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 34320, 7716, 2260, 62, 448, 1370, 13, 1477, 79, 717, 329, 23884, 4458, 18982, 7, 26786, 18, 8, 1267, 628, 220, 220, 220, 3108, 62, 19315, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 8, 198, 220, 220, 220, 5485, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 62, 19315, 11, 705, 17744, 3639, 13, 49929, 11537, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 43358, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 275, 3524, 796, 1499, 13, 268, 1091, 68, 198, 220, 220, 220, 40087, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 3419, 628, 220, 220, 220, 40087, 796, 27809, 67, 13, 10082, 78, 6601, 19778, 15090, 6, 469, 15748, 10354, 275, 3524, 30072, 628, 220, 220, 220, 763, 3669, 796, 685, 17752, 13, 46030, 7, 469, 78, 13, 1462, 62, 17752, 28955, 17816, 40890, 6, 7131, 15, 7131, 6, 469, 15748, 6, 11907, 628, 220, 220, 220, 1303, 354, 404, 319, 763, 3669, 198, 220, 220, 220, 503, 62, 9600, 11, 503, 62, 35636, 796, 9335, 7, 17744, 3639, 11, 763, 3669, 11, 13833, 28, 17821, 8, 628, 220, 220, 220, 1303, 17393, 262, 20150, 198, 220, 220, 220, 503, 62, 28961, 796, 18573, 13, 28961, 13, 30073, 3419, 628, 220, 220, 220, 503, 62, 28961, 13, 19119, 7, 4895, 26230, 1298, 366, 19555, 733, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17015, 1298, 503, 62, 9600, 13, 43358, 58, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 10394, 1298, 503, 62, 9600, 13, 43358, 58, 17, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 35636, 1298, 503, 62, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 66, 3808, 1298, 705, 25386, 70, 25, 3559, 2075, 6, 30072, 628, 220, 220, 220, 351, 374, 1603, 952, 13, 9654, 7, 43358, 62, 6978, 11, 366, 86, 1600, 12429, 448, 62, 28961, 8, 355, 2244, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 13, 13564, 7, 448, 62, 9600, 8, 628, 220, 220, 220, 1441, 628, 198, 4299, 19607, 62, 17470, 62, 1477, 7916, 7, 87, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 1402, 18540, 3366, 14520, 15268, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 2124, 1058, 7514, 14520, 198, 220, 220, 220, 220, 220, 220, 220, 27018, 284, 30276, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 15237, 34220, 14520, 1058, 15237, 34220, 14520, 198, 220, 220, 220, 220, 220, 220, 220, 25959, 306, 15237, 34220, 14520, 22939, 1231, 7009, 15268, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 611, 663, 257, 2060, 7514, 14520, 11, 655, 1441, 262, 7514, 14520, 22939, 198, 220, 220, 220, 611, 2124, 13, 469, 15748, 13, 469, 296, 62, 4906, 6624, 705, 34220, 14520, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 13, 469, 15748, 628, 220, 220, 220, 1303, 611, 663, 257, 18540, 3366, 14520, 11, 356, 923, 2111, 284, 30276, 198, 220, 220, 220, 1303, 290, 4781, 15268, 611, 663, 1165, 1263, 13, 198, 220, 220, 220, 1288, 361, 2124, 13, 469, 15748, 13, 469, 296, 62, 4906, 6624, 705, 29800, 34220, 14520, 10354, 628, 220, 220, 220, 220, 220, 220, 220, 1989, 16, 796, 657, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 1989, 17, 796, 2026, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17666, 4781, 15268, 611, 2472, 1989, 318, 1541, 845, 1402, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 469, 15748, 13, 20337, 1279, 1989, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 13, 469, 15748, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4781, 5749, 15268, 611, 1499, 318, 1107, 1263, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 17816, 38, 2389, 62, 15, 20520, 287, 37250, 3398, 43, 41707, 2389, 45, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 657, 13, 486, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 17816, 38, 2389, 62, 15, 20520, 287, 37250, 49, 2937, 41707, 38, 7836, 41707, 44565, 41707, 14053, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 657, 13, 486, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 13, 469, 15748, 13, 20337, 1875, 1989, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 657, 13, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 657, 13, 8298, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 5637, 25052, 684, 355, 649, 18540, 3366, 14520, 329, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 2176, 1499, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 469, 296, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2124, 13, 469, 15748, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 13, 20337, 1875, 11387, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 469, 296, 13, 33295, 7, 88, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 15237, 34220, 14520, 7, 3605, 62, 469, 296, 8, 628, 198, 4299, 2251, 62, 12924, 62, 2301, 1538, 62, 5460, 929, 7, 19315, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 7915, 29763, 16579, 290, 3265, 1366, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 1499, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 7683, 16839, 19694, 1499, 2438, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1241, 796, 1499, 17816, 2301, 1538, 62, 5715, 20520, 198, 220, 220, 220, 47279, 18, 796, 1499, 17816, 26786, 18, 20520, 198, 220, 220, 220, 402, 2389, 62, 5715, 796, 705, 38, 2389, 23330, 92, 4458, 18982, 7, 5715, 8, 628, 220, 220, 220, 29472, 796, 705, 39748, 62, 5460, 929, 62, 5715, 23330, 27422, 40664, 4458, 18982, 7, 5715, 8, 198, 220, 220, 220, 3108, 62, 22915, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 11, 29472, 8, 628, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 6978, 62, 22915, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 62, 22915, 737, 1462, 62, 11600, 10786, 8344, 3669, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5072, 628, 220, 220, 220, 29472, 796, 705, 17744, 3639, 13, 49929, 6, 198, 220, 220, 220, 3108, 62, 17744, 3639, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 11, 29472, 8, 628, 220, 220, 220, 29472, 796, 705, 2301, 507, 23330, 92, 23330, 27422, 1477, 79, 4458, 18982, 7, 5715, 11, 47279, 18, 8, 198, 220, 220, 220, 9483, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 47279, 18, 11, 705, 2301, 507, 11537, 198, 220, 220, 220, 7652, 796, 27809, 67, 13, 961, 62, 7753, 7, 418, 13, 6978, 13, 22179, 7, 43551, 11, 29472, 828, 1067, 82, 11639, 25386, 70, 25, 3559, 2075, 11537, 628, 220, 220, 220, 5072, 796, 17635, 628, 220, 220, 220, 329, 6376, 11, 3814, 287, 7652, 13, 2676, 8516, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 1989, 62, 13276, 796, 651, 62, 20337, 7, 36996, 17816, 469, 15748, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 3265, 796, 1064, 62, 39748, 7, 36996, 11, 3108, 62, 17744, 3639, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 39748, 11, 12178, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3265, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 43337, 62, 13276, 17, 796, 3265, 1220, 1989, 62, 13276, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1461, 62, 43337, 62, 13276, 17, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 26786, 18, 10354, 47279, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 507, 10354, 3814, 58, 38, 2389, 62, 5715, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39748, 10354, 3265, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20337, 62, 76, 10354, 1989, 62, 13276, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12924, 62, 43337, 62, 13276, 17, 10354, 1461, 62, 43337, 62, 13276, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 5072, 62, 79, 392, 292, 796, 279, 67, 13, 6601, 19778, 7, 22915, 8, 628, 220, 220, 220, 5072, 62, 79, 392, 292, 13, 1462, 62, 40664, 7, 6978, 62, 22915, 11, 6376, 28, 25101, 8, 628, 220, 220, 220, 1441, 5072, 628, 198, 4299, 1064, 62, 39748, 7, 36996, 11, 3108, 62, 17744, 3639, 2599, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 374, 1603, 952, 13, 9654, 7, 6978, 62, 17744, 3639, 8, 355, 12351, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1527, 500, 796, 12351, 13, 35636, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 12351, 13, 961, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 58, 18747, 19841, 657, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 3265, 796, 685, 67, 17816, 16345, 20520, 329, 288, 287, 1976, 20996, 62, 34242, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3814, 17816, 469, 15748, 6, 4357, 7177, 11, 9756, 28, 17816, 16345, 6, 4357, 1527, 500, 28, 2001, 500, 8, 7131, 15, 60, 628, 220, 220, 220, 1441, 3265, 628, 198, 4299, 651, 62, 20337, 7, 4666, 10809, 62, 36996, 62, 469, 296, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 1989, 287, 6616, 10571, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1628, 796, 12972, 1676, 73, 13, 8291, 16354, 13, 6738, 62, 66, 3808, 10786, 25386, 70, 25, 3559, 2075, 3256, 705, 25386, 70, 25, 2548, 3553, 3256, 1464, 62, 5431, 28, 17821, 737, 35636, 198, 220, 220, 220, 649, 62, 469, 296, 796, 6121, 7, 16302, 11, 21128, 62, 36996, 62, 469, 296, 8, 198, 220, 220, 220, 1989, 62, 13276, 796, 649, 62, 469, 296, 13, 20337, 1220, 352, 68, 21, 628, 220, 220, 220, 1441, 1989, 62, 13276, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 2678, 796, 1064, 62, 19315, 62, 4868, 26933, 12962, 2, 58, 25, 17, 60, 1303, 17816, 17584, 30997, 20520, 628, 220, 220, 220, 5072, 796, 17635, 628, 220, 220, 220, 329, 1499, 287, 256, 80, 36020, 7, 9127, 1678, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 12, 28516, 319, 23884, 25, 23884, 4458, 18982, 7, 19315, 17816, 19315, 62, 3672, 6, 4357, 1499, 17816, 26786, 18, 20520, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 19315, 62, 1477, 7916, 7, 19315, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 2301, 507, 7, 19315, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 17744, 1732, 62, 29289, 7, 19315, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2251, 62, 12924, 62, 2301, 1538, 62, 5460, 929, 7, 19315, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 5072, 1343, 2482, 628, 220, 220, 220, 3108, 62, 22915, 796, 28686, 13, 6978, 13, 22179, 7, 26947, 62, 41358, 30733, 40, 6158, 11, 705, 20541, 62, 2301, 1538, 62, 39748, 62, 5460, 929, 13, 40664, 11537, 198, 220, 220, 220, 5072, 796, 279, 67, 13, 6601, 19778, 7, 22915, 8, 198, 220, 220, 220, 5072, 13, 1462, 62, 40664, 7, 6978, 62, 22915, 11, 6376, 28, 25101, 8, 628, 220, 220, 220, 3601, 10786, 6719, 36948, 1844, 11537, 198 ]
2.430433
4,298
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(9, 3)) cols = ['vp', 'vs', 'rho'] labels = ['$V_p$ (m/s)', '$V_s$ (m/s)', 'Density (kg/m$^3$)'] for i, ax in enumerate(axes): ax.hist(df[cols[i]], density=True, edgecolor='k', linewidth=0.5) ax.set_xlabel(labels[i]) ax.set_ylabel('Probability') plt.tight_layout() plt.savefig('material_dists.pdf') plt.show()
[ 5647, 11, 34197, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 16, 11, 299, 4033, 82, 28, 18, 11, 2336, 7857, 16193, 24, 11, 513, 4008, 198, 4033, 82, 796, 37250, 36133, 3256, 705, 14259, 3256, 705, 81, 8873, 20520, 198, 23912, 1424, 796, 37250, 3, 53, 62, 79, 3, 357, 76, 14, 82, 8, 3256, 705, 3, 53, 62, 82, 3, 357, 76, 14, 82, 8, 3256, 705, 35, 6377, 357, 10025, 14, 76, 3, 61, 18, 3, 8, 20520, 198, 1640, 1312, 11, 7877, 287, 27056, 378, 7, 897, 274, 2599, 198, 220, 220, 220, 7877, 13, 10034, 7, 7568, 58, 4033, 82, 58, 72, 60, 4357, 12109, 28, 17821, 11, 5743, 8043, 11639, 74, 3256, 9493, 413, 5649, 28, 15, 13, 20, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 23912, 1424, 58, 72, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 2964, 65, 1799, 11537, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 21928, 5647, 10786, 33665, 62, 67, 1023, 13, 12315, 11537, 198, 489, 83, 13, 12860, 3419, 198 ]
1.973545
189
import re import json from functools import reduce from operator import itemgetter from ip2loc import ip2loc, ip2loc_bulk from funcs import count_occurence, folding, get_events_before_timestamp, get_timestamp, get_first_timestamp, get_unique_values LOG_FILE_PATH = 'honey.log' COUNTRY_STAT_HEADER_FORMAT = '{:<25s}\t{:<10s}\t{:<12s}' COUNTRY_STAT_FORMAT = '{:<25s}\t{:<10d}\t{:<12.2f}' REGION_STAT_HEADER_FORMAT = '{:<25s}\t{:<10s}\t{:<12s}' REGION_STAT_FORMAT = '{:<25s}\t{:<10d}\t{:<12.2f}' TIME_STAT_HEADER_FORMAT = '{:<25s}\t{:<10s}\t{:<12s}' TIME_STAT_FORMAT = '{:<25s}\t{:<10d}\t{:<12.2f}' # configurations NUM_OF_COUNTRY_TO_DISPLAY = 3 NUM_OF_REGION_TO_DISPLAY = 5 NUM_OF_HOUR_TO_DISPLAY = 8 with open(LOG_FILE_PATH, 'r') as f: data = f.read() data = data.splitlines() data = list(map(lambda x: json.loads(x), data)) ################################ Try ################################ connect_events = list(filter(lambda x: x.get('eventid') == 'cowrie.session.connect', data)) unique_ips = list(get_unique_values('src_ip', connect_events)) locations_by_ip = ip2loc_bulk(unique_ips) total_num_of_attcks = len(connect_events) print('TOTAL ATTACKS: ', total_num_of_attcks) print('\n') connect_events = list( map(lambda x: update( x, { 'region': locations_by_ip.get(x.get('src_ip')).get('region_name'), 'country': locations_by_ip.get(x.get('src_ip')).get('country_name') } ), connect_events ) ) # aggregate attacks by country connect_events_count_by_country = reduce(count_occurence('country'), connect_events, {}) connect_events_count_by_country = sorted(connect_events_count_by_country.items(), key=itemgetter(1), reverse=True) connect_events_by_country = reduce(folding('country'), connect_events, {}) # overall info num_of_countries = len(connect_events_count_by_country) print(COUNTRY_STAT_HEADER_FORMAT.format('COUNTRY', 'ATTACKS', 'PERCENTAGE %')) for country, num_of_attack in connect_events_count_by_country[:min(NUM_OF_COUNTRY_TO_DISPLAY, num_of_countries)]: print(COUNTRY_STAT_FORMAT.format(country, num_of_attack, 100 * num_of_attack / total_num_of_attcks)) # detailed breakdown by country for country, num_of_attack in connect_events_count_by_country[:min(NUM_OF_COUNTRY_TO_DISPLAY, num_of_countries)]: same_country_connect_events = connect_events_by_country.get(country) connect_events_count_by_region = reduce(count_occurence('region'), same_country_connect_events, {}) connect_events_count_by_region = sorted(connect_events_count_by_region.items(), key=itemgetter(1), reverse=True) connect_events_by_region = reduce(folding('region'), same_country_connect_events, {}) print('\n') print(str.upper(country)) print('-'*100) print(REGION_STAT_HEADER_FORMAT.format('REGION', 'ATTACKS', 'PERCENTAGE %')) num_of_region = len(connect_events_count_by_region) [print(REGION_STAT_FORMAT.format(r, n, 100 * n / num_of_attack)) for r, n in connect_events_count_by_region[:min(NUM_OF_REGION_TO_DISPLAY, num_of_region)]] target_country_connect_timestamps = [{'hour':get_timestamp(x).strftime('%H')} for x in same_country_connect_events] target_country_connect_hour_count = reduce(count_occurence('hour'), target_country_connect_timestamps, {}) target_country_connect_hour_count = sorted(target_country_connect_hour_count.items(), key=itemgetter(1), reverse=True) num_of_hours = len(target_country_connect_hour_count) print('') print(TIME_STAT_HEADER_FORMAT.format('HOUR', 'ATTACKS', 'PERCENTAGE %')) [print(TIME_STAT_FORMAT.format(t, n, 100 * n / num_of_attack)) for t, n in target_country_connect_hour_count[:min(NUM_OF_HOUR_TO_DISPLAY, num_of_hours)]] #################################################################### # source locations # attack times # number of attacks by location
[ 11748, 302, 201, 198, 11748, 33918, 201, 198, 6738, 1257, 310, 10141, 1330, 4646, 201, 198, 6738, 10088, 1330, 2378, 1136, 353, 201, 198, 6738, 20966, 17, 17946, 1330, 20966, 17, 17946, 11, 20966, 17, 17946, 62, 65, 12171, 201, 198, 6738, 1257, 6359, 1330, 954, 62, 13966, 495, 1198, 11, 29909, 11, 651, 62, 31534, 62, 19052, 62, 16514, 27823, 11, 651, 62, 16514, 27823, 11, 651, 62, 11085, 62, 16514, 27823, 11, 651, 62, 34642, 62, 27160, 201, 198, 201, 198, 25294, 62, 25664, 62, 34219, 796, 705, 71, 1419, 13, 6404, 6, 201, 198, 34, 19385, 40405, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 82, 32239, 83, 90, 25, 27, 1065, 82, 92, 6, 201, 198, 34, 19385, 40405, 62, 35744, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 67, 32239, 83, 90, 25, 27, 1065, 13, 17, 69, 92, 6, 201, 198, 201, 198, 31553, 2849, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 82, 32239, 83, 90, 25, 27, 1065, 82, 92, 6, 201, 198, 31553, 2849, 62, 35744, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 67, 32239, 83, 90, 25, 27, 1065, 13, 17, 69, 92, 6, 201, 198, 201, 198, 34694, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 82, 32239, 83, 90, 25, 27, 1065, 82, 92, 6, 201, 198, 34694, 62, 35744, 62, 21389, 1404, 796, 705, 90, 25, 27, 1495, 82, 32239, 83, 90, 25, 27, 940, 67, 32239, 83, 90, 25, 27, 1065, 13, 17, 69, 92, 6, 201, 198, 201, 198, 2, 25412, 201, 198, 41359, 62, 19238, 62, 34, 19385, 40405, 62, 10468, 62, 26288, 31519, 796, 513, 201, 198, 41359, 62, 19238, 62, 31553, 2849, 62, 10468, 62, 26288, 31519, 796, 642, 201, 198, 41359, 62, 19238, 62, 39, 11698, 62, 10468, 62, 26288, 31519, 796, 807, 201, 198, 201, 198, 4480, 1280, 7, 25294, 62, 25664, 62, 34219, 11, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 1366, 796, 277, 13, 961, 3419, 201, 198, 201, 198, 7890, 796, 1366, 13, 35312, 6615, 3419, 201, 198, 7890, 796, 1351, 7, 8899, 7, 50033, 2124, 25, 33918, 13, 46030, 7, 87, 828, 1366, 4008, 201, 198, 201, 198, 29113, 9993, 1303, 14468, 7804, 4242, 21017, 201, 198, 8443, 62, 31534, 796, 1351, 7, 24455, 7, 50033, 2124, 25, 2124, 13, 1136, 10786, 15596, 312, 11537, 6624, 705, 8232, 5034, 13, 29891, 13, 8443, 3256, 1366, 4008, 201, 198, 34642, 62, 2419, 796, 1351, 7, 1136, 62, 34642, 62, 27160, 10786, 10677, 62, 541, 3256, 2018, 62, 31534, 4008, 201, 198, 17946, 602, 62, 1525, 62, 541, 796, 20966, 17, 17946, 62, 65, 12171, 7, 34642, 62, 2419, 8, 201, 198, 23350, 62, 22510, 62, 1659, 62, 1078, 4657, 796, 18896, 7, 8443, 62, 31534, 8, 201, 198, 4798, 10786, 51, 27510, 26195, 8120, 50, 25, 46083, 2472, 62, 22510, 62, 1659, 62, 1078, 4657, 8, 201, 198, 4798, 10786, 59, 77, 11537, 201, 198, 201, 198, 8443, 62, 31534, 796, 1351, 7, 201, 198, 220, 220, 220, 3975, 7, 50033, 2124, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 10354, 7064, 62, 1525, 62, 541, 13, 1136, 7, 87, 13, 1136, 10786, 10677, 62, 541, 11537, 737, 1136, 10786, 36996, 62, 3672, 33809, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19315, 10354, 7064, 62, 1525, 62, 541, 13, 1136, 7, 87, 13, 1136, 10786, 10677, 62, 541, 11537, 737, 1136, 10786, 19315, 62, 3672, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 201, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2018, 62, 31534, 201, 198, 220, 220, 220, 1267, 201, 198, 8, 201, 198, 201, 198, 2, 19406, 3434, 416, 1499, 201, 198, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 796, 4646, 7, 9127, 62, 13966, 495, 1198, 10786, 19315, 33809, 2018, 62, 31534, 11, 23884, 8, 201, 198, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 796, 23243, 7, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 13, 23814, 22784, 1994, 28, 9186, 1136, 353, 7, 16, 828, 9575, 28, 17821, 8, 201, 198, 8443, 62, 31534, 62, 1525, 62, 19315, 796, 4646, 7, 11379, 278, 10786, 19315, 33809, 2018, 62, 31534, 11, 23884, 8, 201, 198, 201, 198, 2, 4045, 7508, 201, 198, 22510, 62, 1659, 62, 9127, 1678, 796, 18896, 7, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 8, 201, 198, 4798, 7, 34, 19385, 40405, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 13, 18982, 10786, 34, 19385, 40405, 3256, 705, 17139, 8120, 50, 3256, 705, 18973, 43960, 11879, 4064, 6, 4008, 201, 198, 1640, 1499, 11, 997, 62, 1659, 62, 20358, 287, 2018, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 58, 25, 1084, 7, 41359, 62, 19238, 62, 34, 19385, 40405, 62, 10468, 62, 26288, 31519, 11, 997, 62, 1659, 62, 9127, 1678, 8, 5974, 201, 198, 220, 220, 220, 3601, 7, 34, 19385, 40405, 62, 35744, 62, 21389, 1404, 13, 18982, 7, 19315, 11, 997, 62, 1659, 62, 20358, 11, 1802, 1635, 997, 62, 1659, 62, 20358, 1220, 2472, 62, 22510, 62, 1659, 62, 1078, 4657, 4008, 201, 198, 201, 198, 2, 6496, 14608, 416, 1499, 201, 198, 1640, 1499, 11, 997, 62, 1659, 62, 20358, 287, 2018, 62, 31534, 62, 9127, 62, 1525, 62, 19315, 58, 25, 1084, 7, 41359, 62, 19238, 62, 34, 19385, 40405, 62, 10468, 62, 26288, 31519, 11, 997, 62, 1659, 62, 9127, 1678, 8, 5974, 201, 198, 220, 220, 220, 976, 62, 19315, 62, 8443, 62, 31534, 796, 2018, 62, 31534, 62, 1525, 62, 19315, 13, 1136, 7, 19315, 8, 201, 198, 220, 220, 220, 2018, 62, 31534, 62, 9127, 62, 1525, 62, 36996, 796, 4646, 7, 9127, 62, 13966, 495, 1198, 10786, 36996, 33809, 976, 62, 19315, 62, 8443, 62, 31534, 11, 23884, 8, 201, 198, 220, 220, 220, 2018, 62, 31534, 62, 9127, 62, 1525, 62, 36996, 796, 23243, 7, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 36996, 13, 23814, 22784, 1994, 28, 9186, 1136, 353, 7, 16, 828, 9575, 28, 17821, 8, 201, 198, 220, 220, 220, 2018, 62, 31534, 62, 1525, 62, 36996, 796, 4646, 7, 11379, 278, 10786, 36996, 33809, 976, 62, 19315, 62, 8443, 62, 31534, 11, 23884, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 3601, 10786, 59, 77, 11537, 201, 198, 220, 220, 220, 3601, 7, 2536, 13, 45828, 7, 19315, 4008, 201, 198, 220, 220, 220, 3601, 10786, 19355, 9, 3064, 8, 201, 198, 220, 220, 220, 3601, 7, 31553, 2849, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 13, 18982, 10786, 31553, 2849, 3256, 705, 17139, 8120, 50, 3256, 705, 18973, 43960, 11879, 4064, 6, 4008, 201, 198, 220, 220, 220, 997, 62, 1659, 62, 36996, 796, 18896, 7, 8443, 62, 31534, 62, 9127, 62, 1525, 62, 36996, 8, 201, 198, 220, 220, 220, 685, 4798, 7, 31553, 2849, 62, 35744, 62, 21389, 1404, 13, 18982, 7, 81, 11, 299, 11, 1802, 1635, 299, 1220, 997, 62, 1659, 62, 20358, 4008, 329, 374, 11, 299, 287, 2018, 62, 31534, 62, 9127, 62, 1525, 62, 36996, 58, 25, 1084, 7, 41359, 62, 19238, 62, 31553, 2849, 62, 10468, 62, 26288, 31519, 11, 997, 62, 1659, 62, 36996, 8, 11907, 201, 198, 201, 198, 220, 220, 220, 2496, 62, 19315, 62, 8443, 62, 16514, 395, 9430, 796, 685, 90, 6, 9769, 10354, 1136, 62, 16514, 27823, 7, 87, 737, 2536, 31387, 10786, 4, 39, 11537, 92, 329, 2124, 287, 976, 62, 19315, 62, 8443, 62, 31534, 60, 201, 198, 220, 220, 220, 2496, 62, 19315, 62, 8443, 62, 9769, 62, 9127, 796, 4646, 7, 9127, 62, 13966, 495, 1198, 10786, 9769, 33809, 2496, 62, 19315, 62, 8443, 62, 16514, 395, 9430, 11, 23884, 8, 201, 198, 220, 220, 220, 2496, 62, 19315, 62, 8443, 62, 9769, 62, 9127, 796, 23243, 7, 16793, 62, 19315, 62, 8443, 62, 9769, 62, 9127, 13, 23814, 22784, 1994, 28, 9186, 1136, 353, 7, 16, 828, 9575, 28, 17821, 8, 201, 198, 201, 198, 220, 220, 220, 997, 62, 1659, 62, 24425, 796, 18896, 7, 16793, 62, 19315, 62, 8443, 62, 9769, 62, 9127, 8, 201, 198, 220, 220, 220, 3601, 7, 7061, 8, 201, 198, 220, 220, 220, 3601, 7, 34694, 62, 35744, 62, 37682, 1137, 62, 21389, 1404, 13, 18982, 10786, 39, 11698, 3256, 705, 17139, 8120, 50, 3256, 705, 18973, 43960, 11879, 4064, 6, 4008, 201, 198, 220, 220, 220, 685, 4798, 7, 34694, 62, 35744, 62, 21389, 1404, 13, 18982, 7, 83, 11, 299, 11, 1802, 1635, 299, 1220, 997, 62, 1659, 62, 20358, 4008, 329, 256, 11, 299, 287, 2496, 62, 19315, 62, 8443, 62, 9769, 62, 9127, 58, 25, 1084, 7, 41359, 62, 19238, 62, 39, 11698, 62, 10468, 62, 26288, 31519, 11, 997, 62, 1659, 62, 24425, 8, 11907, 201, 198, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 29113, 29113, 4242, 201, 198, 2, 2723, 7064, 201, 198, 2, 1368, 1661, 201, 198, 201, 198, 2, 1271, 286, 3434, 416, 4067 ]
2.438532
1,635
from imutils import face_utils from imutils.face_utils import FaceAligner import numpy as np import imutils import dlib import cv2 from skimage.metrics import structural_similarity as ssim #import os import glob #import time from tkinter import * import tkinter as tk from tkinter import filedialog from pandas import DataFrame #import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # loading models for face detection and set defaults net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_iter_140000.caffemodel') camera = cv2.VideoCapture(0) main_option=1 # initialize dlib's face detector (HOG-based) and then create the facial landmark predictor detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') fa = FaceAligner(predictor, desiredFaceWidth=256) #Beginning GUI gui = Tk(className=' LLRR_Facial_Similarity') # set window size and position it at center of screen windowWidth=800 windowHeight=400 positionRight = int(gui.winfo_screenwidth()/2 - windowWidth/2) positionDown = int(gui.winfo_screenheight()/2 - windowHeight/2) gui.geometry("{}x{}+{}+{}".format(windowWidth,windowHeight,positionRight,positionDown)) xx=gui.winfo_screenwidth()/2 w = Label(gui, text="\nWelcome! \n\nThis tool helps to analyze similarity of dynamic composite faces\n",font=("Helvetica", 15)) w.pack() v = IntVar()# identifies which one is selected Label(gui, text="Select one of the following ways of capturing a video:",justify = LEFT,padx = 20).pack() Radiobutton(gui, text="Real-time Analysis via webcam",padx = 20, variable=v, value=1).pack(anchor=W) Radiobutton(gui, text="Analysis of a pre-recorded video",padx = 20, variable=v, value=2).pack(anchor=W) button = Button(gui, text='Confirm', width=25, command=helloCallBack) button.pack() gui.mainloop() # starting video streaming cv2.namedWindow('TestVideo') cv2.namedWindow('Aligned') cv2.namedWindow('LL RR composites') cv2.moveWindow('TestVideo', int(xx-400),75)# width wise centerscreen tlt = 25 # number of pixels of tilt allowance (allow if <tlt) t_pass = [] frms=0 sim_list = [] while camera.isOpened(): ret, frame = camera.read()# by default the webcam reads at around 30fps, can be changed by other codes if ret==False: break #reading the frame frame = imutils.resize(frame,width=800) if main_option==1: frame = cv2.flip(frame, 1) frameClone = frame.copy() frameClone = cv2.putText(frameClone, 'Press Q to stop',(500, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2, cv2.LINE_AA) t_pass.append(frms) sim_list.append(-0.1) frms = frms+1 if cv2.waitKey(1) & 0xFF == ord('q'):# press q to stop break ###-------------begin finding 68 facial landmarks using dlib ## this section checks for correct facial alignment gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # detect faces in the grayscale image (dlib object for dlib shape prediction) rects = detector(gray_frame, 1) if len(rects)!=0: # determine the facial landmarks for the face region, then # convert the facial landmark (x, y)-coordinates to a NumPy array shape = predictor(gray_frame, rects[0]) shape = face_utils.shape_to_np(shape) # loop over the (x, y)-coordinates for the facial landmarks # and draw them on the image for (x, y) in shape: cv2.circle(frameClone, (x, y), 1, (0, 0, 255), -1) ### ADD CODE for checking alignment ylj = shape[0][1] # y coordinate of left jaw yrj = shape[16][1] # y coordinate of right jaw xtn = shape[27][0] # x coordinate of top of nose xbn = shape[30][0] # x coordinate of bottom of nose faceAligned = fa.align(frame, gray_frame, rects[0]) cv2.imshow('Aligned',faceAligned) if abs(ylj-yrj)>=tlt or abs(xtn-xbn)>=tlt: cv2.imshow('TestVideo', frameClone) continue # convert dlib's rectangle to a OpenCV-style bounding box [i.e., (x, y, w, h)], then draw the face bounding box (x, y, w, h) = face_utils.rect_to_bb(rects[0]) cv2.rectangle(frameClone, (x, y), (x + w, y + h), (0, 255, 0), 1) ###-------------end finding 68 facial landmarks using dlib ### using CNN : (if face is well aligned) # grab the frame dimensions and convert it to a blob (h, w) = faceAligned.shape[:2] #blob = cv2.dnn.blobFromImage(cv2.resize(faceAligned, (300, 300)), 1.0,(300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the detections and predictions #net.setInput(blob) #detections = net.forward() #if detections[0, 0, 0, 2] > 0.75: # 75% confidence of a face existing in the frame # compute the (x, y)-coordinates of the bounding box for the object #box = detections[0, 0, 0, 3:7] * np.array([w, h, w, h]) #(startX, startY, endX, endY) = box.astype("int") #(fX, fY, fW, fH) = (startX, startY, endX-startX, endY-startY) #cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),(255, 0, 0), 1) #crop_face = faceAligned.copy()#[startY:endY, startX:endX] crop_face = faceAligned[h//10:h*9//10, w//10:w*9//10] #----------------------LL RR-------------- (hh,ww,dd) = crop_face.shape if ww%2==0: ww1=ww//2-1 else: ww1=ww//2 flipHorizontal = cv2.flip(crop_face, 1) img1 = crop_face[:,0:ww1] img2 = flipHorizontal[:,ww1+1:] LL = np.concatenate((img1, img2), axis=1) img1 = flipHorizontal[:,0:ww1] img2 = crop_face[:,ww1+1:] RR = np.concatenate((img1, img2), axis=1) llrr = np.concatenate((LL,RR),axis=0) cv2.imshow('LL RR composites',llrr) # calculate similarity index (0-1) (least - identical) sim_index = ssim(cv2.cvtColor(LL, cv2.COLOR_BGR2GRAY), cv2.cvtColor(RR, cv2.COLOR_BGR2GRAY)) sim_list[frms-1] = sim_index cv2.imshow('TestVideo', frameClone) else: cv2.imshow('TestVideo', frameClone) continue camera.release() cv2.destroyAllWindows() t_passn =np.array(t_pass) t_passn =100*t_passn/t_pass[-1] sim_listn = 100*np.array(sim_list) # percentage data = {'Time': t_passn, 'Similarity_index': sim_listn } df2 = DataFrame(data,columns=['Time','Similarity_index']) res = Tk(className=' Final Results') # set window size and position it at center of screen #winWidth=900 #winHeight=550 #posRight = int(res.winfo_screenwidth()/2 - winWidth/2) #posDown = int(res.winfo_screenheight()/2 - winHeight/2) #res.geometry("{}x{}+{}+{}".format(winWidth,winHeight,posRight,posDown)) figure2 = plt.Figure(figsize=(8,6), dpi=100) ax2 = figure2.add_subplot(111) line2 = FigureCanvasTkAgg(figure2, res)# using toplevel for graph line2.get_tk_widget().pack(side=tk.LEFT, fill=tk.BOTH) df2 = df2[['Time','Similarity_index']].groupby('Time').sum() df2.plot(kind='line', legend=True, ax=ax2,fontsize=10) ax2.set_title('Variation of Similarity index over captured frames') res.mainloop()
[ 198, 6738, 545, 26791, 1330, 1986, 62, 26791, 198, 6738, 545, 26791, 13, 2550, 62, 26791, 1330, 15399, 2348, 570, 263, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 545, 26791, 198, 11748, 288, 8019, 198, 11748, 269, 85, 17, 198, 6738, 1341, 9060, 13, 4164, 10466, 1330, 13204, 62, 38610, 414, 355, 264, 14323, 198, 2, 11748, 28686, 198, 11748, 15095, 198, 2, 11748, 640, 198, 6738, 256, 74, 3849, 1330, 1635, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 256, 74, 3849, 1330, 5717, 498, 519, 198, 6738, 19798, 292, 1330, 6060, 19778, 198, 2, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 30488, 9460, 1330, 11291, 6090, 11017, 51, 74, 46384, 198, 198, 2, 11046, 4981, 329, 1986, 13326, 290, 900, 26235, 198, 3262, 796, 269, 85, 17, 13, 67, 20471, 13, 961, 7934, 4863, 34, 21223, 10786, 2934, 1420, 13, 11235, 313, 742, 13, 14116, 3256, 705, 411, 940, 62, 6200, 87, 6200, 62, 824, 67, 62, 2676, 62, 1415, 2388, 13, 66, 2001, 368, 375, 417, 11537, 198, 25695, 796, 269, 85, 17, 13, 10798, 49630, 7, 15, 8, 198, 12417, 62, 18076, 28, 16, 198, 2, 41216, 288, 8019, 338, 1986, 31029, 357, 39, 7730, 12, 3106, 8, 290, 788, 2251, 262, 16324, 20533, 41568, 198, 15255, 9250, 796, 288, 8019, 13, 1136, 62, 8534, 282, 62, 2550, 62, 15255, 9250, 3419, 198, 79, 17407, 273, 796, 288, 8019, 13, 43358, 62, 79, 17407, 273, 10786, 43358, 62, 79, 17407, 273, 62, 3104, 62, 2550, 62, 1044, 14306, 13, 19608, 11537, 198, 13331, 796, 15399, 2348, 570, 263, 7, 79, 17407, 273, 11, 10348, 32388, 30916, 28, 11645, 8, 198, 198, 2, 45198, 25757, 198, 48317, 796, 309, 74, 7, 4871, 5376, 11639, 27140, 21095, 62, 37, 18150, 62, 18925, 414, 11537, 198, 2, 900, 4324, 2546, 290, 2292, 340, 379, 3641, 286, 3159, 198, 17497, 30916, 28, 7410, 198, 17497, 23106, 28, 7029, 198, 9150, 11028, 796, 493, 7, 48317, 13, 5404, 6513, 62, 9612, 10394, 3419, 14, 17, 532, 4324, 30916, 14, 17, 8, 198, 9150, 8048, 796, 493, 7, 48317, 13, 5404, 6513, 62, 9612, 17015, 3419, 14, 17, 532, 4324, 23106, 14, 17, 8, 198, 48317, 13, 469, 15748, 7203, 90, 92, 87, 90, 92, 10, 90, 92, 10, 90, 92, 1911, 18982, 7, 17497, 30916, 11, 17497, 23106, 11, 9150, 11028, 11, 9150, 8048, 4008, 198, 5324, 28, 48317, 13, 5404, 6513, 62, 9612, 10394, 3419, 14, 17, 198, 198, 86, 796, 36052, 7, 48317, 11, 2420, 2625, 59, 77, 14618, 0, 3467, 77, 59, 77, 1212, 2891, 5419, 284, 16602, 26789, 286, 8925, 24185, 6698, 59, 77, 1600, 10331, 28, 7203, 39, 32667, 3970, 1600, 1315, 4008, 198, 86, 13, 8002, 3419, 198, 85, 796, 2558, 19852, 3419, 2, 21079, 543, 530, 318, 6163, 198, 198, 33986, 7, 48317, 11, 2420, 2625, 17563, 530, 286, 262, 1708, 2842, 286, 21430, 257, 2008, 25, 1600, 3137, 1958, 796, 12509, 9792, 11, 15636, 87, 796, 1160, 737, 8002, 3419, 198, 49, 9189, 672, 21115, 7, 48317, 11, 2420, 2625, 15633, 12, 2435, 14691, 2884, 49823, 1600, 15636, 87, 796, 1160, 11, 7885, 28, 85, 11, 1988, 28, 16, 737, 8002, 7, 3702, 273, 28, 54, 8, 198, 49, 9189, 672, 21115, 7, 48317, 11, 2420, 2625, 32750, 286, 257, 662, 12, 47398, 2008, 1600, 15636, 87, 796, 1160, 11, 7885, 28, 85, 11, 1988, 28, 17, 737, 8002, 7, 3702, 273, 28, 54, 8, 628, 198, 16539, 796, 20969, 7, 48317, 11, 2420, 11639, 18546, 2533, 3256, 9647, 28, 1495, 11, 3141, 28, 31373, 14134, 7282, 8, 198, 16539, 13, 8002, 3419, 198, 198, 48317, 13, 12417, 26268, 3419, 198, 198, 2, 3599, 2008, 11305, 198, 33967, 17, 13, 13190, 27703, 10786, 14402, 10798, 11537, 198, 33967, 17, 13, 13190, 27703, 10786, 2348, 3916, 11537, 198, 33967, 17, 13, 13190, 27703, 10786, 3069, 26067, 18882, 2737, 11537, 198, 33967, 17, 13, 21084, 27703, 10786, 14402, 10798, 3256, 493, 7, 5324, 12, 7029, 828, 2425, 8, 2, 9647, 10787, 10399, 32060, 198, 83, 2528, 796, 1679, 1303, 1271, 286, 17848, 286, 26500, 24930, 357, 12154, 611, 1279, 83, 2528, 8, 198, 83, 62, 6603, 796, 17635, 198, 8310, 907, 28, 15, 198, 14323, 62, 4868, 796, 17635, 198, 198, 4514, 4676, 13, 271, 18257, 2945, 33529, 198, 220, 220, 220, 1005, 11, 5739, 796, 4676, 13, 961, 3419, 2, 416, 4277, 262, 49823, 9743, 379, 1088, 1542, 29647, 11, 460, 307, 3421, 416, 584, 12416, 198, 220, 220, 220, 611, 1005, 855, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1303, 25782, 262, 5739, 198, 220, 220, 220, 5739, 796, 545, 26791, 13, 411, 1096, 7, 14535, 11, 10394, 28, 7410, 8, 198, 220, 220, 220, 611, 1388, 62, 18076, 855, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 269, 85, 17, 13, 2704, 541, 7, 14535, 11, 352, 8, 198, 220, 220, 220, 5739, 2601, 505, 796, 5739, 13, 30073, 3419, 198, 220, 220, 220, 5739, 2601, 505, 796, 269, 85, 17, 13, 1996, 8206, 7, 14535, 2601, 505, 11, 705, 13800, 1195, 284, 2245, 3256, 7, 4059, 11, 1542, 828, 269, 85, 17, 13, 37, 35830, 62, 39, 4877, 13909, 56, 62, 48913, 16437, 55, 11, 657, 13, 22, 11, 357, 15, 11, 14280, 11, 657, 828, 362, 11, 269, 85, 17, 13, 24027, 62, 3838, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 256, 62, 6603, 13, 33295, 7, 8310, 907, 8, 198, 220, 220, 220, 985, 62, 4868, 13, 33295, 32590, 15, 13, 16, 8, 198, 220, 220, 220, 1216, 907, 796, 1216, 907, 10, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 1222, 657, 87, 5777, 6624, 2760, 10786, 80, 6, 2599, 2, 1803, 10662, 284, 2245, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 44386, 32501, 27471, 4917, 8257, 16324, 41532, 1262, 288, 8019, 628, 220, 220, 220, 22492, 428, 2665, 8794, 329, 3376, 16324, 19114, 198, 220, 220, 220, 12768, 62, 14535, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 14535, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 8, 198, 220, 220, 220, 1303, 4886, 6698, 287, 262, 1036, 592, 38765, 2939, 357, 67, 8019, 2134, 329, 288, 8019, 5485, 17724, 8, 198, 220, 220, 220, 13621, 82, 796, 31029, 7, 44605, 62, 14535, 11, 352, 8, 198, 220, 220, 220, 611, 18896, 7, 2554, 82, 31520, 28, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 262, 16324, 41532, 329, 262, 1986, 3814, 11, 788, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 262, 16324, 20533, 357, 87, 11, 331, 13219, 37652, 17540, 284, 257, 31835, 20519, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 41568, 7, 44605, 62, 14535, 11, 13621, 82, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 1986, 62, 26791, 13, 43358, 62, 1462, 62, 37659, 7, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9052, 625, 262, 357, 87, 11, 331, 13219, 37652, 17540, 329, 262, 16324, 41532, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 3197, 606, 319, 262, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 87, 11, 331, 8, 287, 5485, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 45597, 7, 14535, 2601, 505, 11, 357, 87, 11, 331, 828, 352, 11, 357, 15, 11, 657, 11, 14280, 828, 532, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 44386, 27841, 42714, 329, 10627, 19114, 198, 220, 220, 220, 220, 220, 220, 220, 331, 75, 73, 796, 5485, 58, 15, 7131, 16, 60, 1303, 331, 20435, 286, 1364, 19218, 198, 220, 220, 220, 220, 220, 220, 220, 42635, 73, 796, 5485, 58, 1433, 7131, 16, 60, 1303, 331, 20435, 286, 826, 19218, 198, 220, 220, 220, 220, 220, 220, 220, 220, 742, 77, 796, 5485, 58, 1983, 7131, 15, 60, 1303, 2124, 20435, 286, 1353, 286, 9686, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 9374, 796, 5485, 58, 1270, 7131, 15, 60, 1303, 2124, 20435, 286, 4220, 286, 9686, 628, 220, 220, 220, 220, 220, 220, 220, 1986, 2348, 3916, 796, 24685, 13, 31494, 7, 14535, 11, 12768, 62, 14535, 11, 13621, 82, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 2348, 3916, 3256, 2550, 2348, 3916, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2352, 7, 2645, 73, 12, 2417, 73, 8, 29, 28, 83, 2528, 393, 2352, 7, 742, 77, 12, 87, 9374, 8, 29, 28, 83, 2528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 14402, 10798, 3256, 5739, 2601, 505, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10385, 288, 8019, 338, 35991, 284, 257, 4946, 33538, 12, 7635, 5421, 278, 3091, 685, 72, 13, 68, 1539, 357, 87, 11, 331, 11, 266, 11, 289, 8, 4357, 788, 3197, 262, 1986, 5421, 278, 3091, 198, 220, 220, 220, 220, 220, 220, 220, 357, 87, 11, 331, 11, 266, 11, 289, 8, 796, 1986, 62, 26791, 13, 2554, 62, 1462, 62, 11848, 7, 2554, 82, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 2554, 9248, 7, 14535, 2601, 505, 11, 357, 87, 11, 331, 828, 357, 87, 1343, 266, 11, 331, 1343, 289, 828, 357, 15, 11, 14280, 11, 657, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44386, 32501, 437, 4917, 8257, 16324, 41532, 1262, 288, 8019, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 44386, 1262, 8100, 1058, 357, 361, 1986, 318, 880, 19874, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5552, 262, 5739, 15225, 290, 10385, 340, 284, 257, 44812, 198, 220, 220, 220, 220, 220, 220, 220, 357, 71, 11, 266, 8, 796, 1986, 2348, 3916, 13, 43358, 58, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2436, 672, 796, 269, 85, 17, 13, 67, 20471, 13, 2436, 672, 4863, 5159, 7, 33967, 17, 13, 411, 1096, 7, 2550, 2348, 3916, 11, 357, 6200, 11, 5867, 36911, 352, 13, 15, 11, 7, 6200, 11, 5867, 828, 357, 13464, 13, 15, 11, 26607, 13, 15, 11, 17031, 13, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1208, 262, 44812, 832, 262, 3127, 290, 7330, 262, 4886, 507, 290, 16277, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3262, 13, 2617, 20560, 7, 2436, 672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15255, 478, 507, 796, 2010, 13, 11813, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 4886, 507, 58, 15, 11, 657, 11, 657, 11, 362, 60, 1875, 657, 13, 2425, 25, 1303, 5441, 4, 6628, 286, 257, 1986, 4683, 287, 262, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24061, 262, 357, 87, 11, 331, 13219, 37652, 17540, 286, 262, 5421, 278, 3091, 329, 262, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3524, 796, 4886, 507, 58, 15, 11, 657, 11, 657, 11, 513, 25, 22, 60, 1635, 45941, 13, 18747, 26933, 86, 11, 289, 11, 266, 11, 289, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 9688, 55, 11, 923, 56, 11, 886, 55, 11, 886, 56, 8, 796, 3091, 13, 459, 2981, 7203, 600, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7, 69, 55, 11, 277, 56, 11, 277, 54, 11, 277, 39, 8, 796, 357, 9688, 55, 11, 923, 56, 11, 886, 55, 12, 9688, 55, 11, 886, 56, 12, 9688, 56, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 33967, 17, 13, 2554, 9248, 7, 14535, 2601, 505, 11, 357, 69, 55, 11, 277, 56, 828, 357, 69, 55, 1343, 277, 54, 11, 277, 56, 1343, 277, 39, 828, 7, 13381, 11, 657, 11, 657, 828, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 31476, 62, 2550, 796, 1986, 2348, 3916, 13, 30073, 3419, 2, 58, 9688, 56, 25, 437, 56, 11, 923, 55, 25, 437, 55, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 2550, 796, 1986, 2348, 3916, 58, 71, 1003, 940, 25, 71, 9, 24, 1003, 940, 11, 266, 1003, 940, 25, 86, 9, 24, 1003, 940, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19351, 438, 3069, 26067, 26171, 198, 220, 220, 220, 220, 220, 220, 220, 357, 12337, 11, 1383, 11, 1860, 8, 796, 13833, 62, 2550, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 611, 266, 86, 4, 17, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 86, 16, 28, 1383, 1003, 17, 12, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 86, 16, 28, 1383, 1003, 17, 198, 220, 220, 220, 220, 220, 220, 220, 14283, 27991, 38342, 796, 269, 85, 17, 13, 2704, 541, 7, 31476, 62, 2550, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 16, 796, 13833, 62, 2550, 58, 45299, 15, 25, 1383, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 17, 796, 14283, 27991, 38342, 58, 45299, 1383, 16, 10, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 27140, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 9600, 16, 11, 33705, 17, 828, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 16, 796, 14283, 27991, 38342, 58, 45299, 15, 25, 1383, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 17, 796, 13833, 62, 2550, 58, 45299, 1383, 16, 10, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 26067, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 9600, 16, 11, 33705, 17, 828, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 21062, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 3069, 11, 21095, 828, 22704, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 3069, 26067, 18882, 2737, 3256, 297, 21062, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 26789, 6376, 357, 15, 12, 16, 8, 357, 293, 459, 532, 10411, 8, 198, 220, 220, 220, 220, 220, 220, 220, 985, 62, 9630, 796, 264, 14323, 7, 33967, 17, 13, 33967, 83, 10258, 7, 3069, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 828, 269, 85, 17, 13, 33967, 83, 10258, 7, 21095, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 38, 30631, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 985, 62, 4868, 58, 8310, 907, 12, 16, 60, 796, 985, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 14402, 10798, 3256, 5739, 2601, 505, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 14402, 10798, 3256, 5739, 2601, 505, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 25695, 13, 20979, 3419, 198, 33967, 17, 13, 41659, 3237, 11209, 3419, 198, 198, 83, 62, 6603, 77, 796, 37659, 13, 18747, 7, 83, 62, 6603, 8, 198, 83, 62, 6603, 77, 796, 3064, 9, 83, 62, 6603, 77, 14, 83, 62, 6603, 58, 12, 16, 60, 198, 14323, 62, 4868, 77, 796, 1802, 9, 37659, 13, 18747, 7, 14323, 62, 4868, 8, 1303, 5873, 198, 198, 7890, 796, 1391, 6, 7575, 10354, 256, 62, 6603, 77, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18925, 414, 62, 9630, 10354, 985, 62, 4868, 77, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 7568, 17, 796, 6060, 19778, 7, 7890, 11, 28665, 82, 28, 17816, 7575, 41707, 18925, 414, 62, 9630, 6, 12962, 198, 198, 411, 796, 309, 74, 7, 4871, 5376, 11639, 8125, 15691, 11537, 198, 2, 900, 4324, 2546, 290, 2292, 340, 379, 3641, 286, 3159, 198, 2, 5404, 30916, 28, 12865, 198, 2, 5404, 23106, 28, 22730, 198, 2, 1930, 11028, 796, 493, 7, 411, 13, 5404, 6513, 62, 9612, 10394, 3419, 14, 17, 532, 1592, 30916, 14, 17, 8, 198, 2, 1930, 8048, 796, 493, 7, 411, 13, 5404, 6513, 62, 9612, 17015, 3419, 14, 17, 532, 1592, 23106, 14, 17, 8, 198, 2, 411, 13, 469, 15748, 7203, 90, 92, 87, 90, 92, 10, 90, 92, 10, 90, 92, 1911, 18982, 7, 5404, 30916, 11, 5404, 23106, 11, 1930, 11028, 11, 1930, 8048, 4008, 198, 198, 26875, 17, 796, 458, 83, 13, 11337, 7, 5647, 7857, 16193, 23, 11, 21, 828, 288, 14415, 28, 3064, 8, 198, 897, 17, 796, 3785, 17, 13, 2860, 62, 7266, 29487, 7, 16243, 8, 198, 1370, 17, 796, 11291, 6090, 11017, 51, 74, 46384, 7, 26875, 17, 11, 581, 8, 2, 1262, 284, 1154, 626, 329, 4823, 198, 1370, 17, 13, 1136, 62, 30488, 62, 42655, 22446, 8002, 7, 1589, 28, 30488, 13, 2538, 9792, 11, 6070, 28, 30488, 13, 33, 26946, 8, 198, 7568, 17, 796, 47764, 17, 58, 17816, 7575, 41707, 18925, 414, 62, 9630, 20520, 4083, 8094, 1525, 10786, 7575, 27691, 16345, 3419, 198, 7568, 17, 13, 29487, 7, 11031, 11639, 1370, 3256, 8177, 28, 17821, 11, 7877, 28, 897, 17, 11, 10331, 7857, 28, 940, 8, 198, 897, 17, 13, 2617, 62, 7839, 10786, 23907, 341, 286, 11014, 414, 6376, 625, 7907, 13431, 11537, 198, 198, 411, 13, 12417, 26268, 3419 ]
2.349838
3,090
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_scraper.ipynb (unless otherwise specified). __all__ = ['Scraper', 'print_something'] # Cell # Cell from fastcore.foundation import patch from facebook_scraper import get_posts @patch # Cell
[ 2, 47044, 7730, 1677, 1137, 11617, 0, 8410, 5626, 48483, 0, 9220, 284, 4370, 25, 3571, 62, 1416, 38545, 13, 541, 2047, 65, 357, 25252, 4306, 7368, 737, 198, 198, 834, 439, 834, 796, 37250, 3351, 38545, 3256, 705, 4798, 62, 18927, 20520, 198, 198, 2, 12440, 198, 198, 2, 12440, 198, 6738, 3049, 7295, 13, 42526, 1330, 8529, 198, 6738, 23960, 62, 1416, 38545, 1330, 651, 62, 24875, 198, 198, 31, 17147, 198, 198, 2, 12440 ]
3.12987
77
# Copyright 2010 New Relic, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import starlette import pytest from testing_support.fixtures import ( validate_transaction_metrics, validate_transaction_errors, capture_transaction_metrics, override_ignore_status_codes, ) FRAMEWORK_METRIC = ("Python/Framework/Starlette/%s" % starlette.__version__, 1) DEFAULT_MIDDLEWARE_METRICS = [ ("Function/starlette.middleware.errors:ServerErrorMiddleware.__call__", 1), ("Function/starlette.exceptions:ExceptionMiddleware.__call__", 1), ] MIDDLEWARE_METRICS = [ ("Function/_target_application:middleware_factory.<locals>.middleware", 2), ("Function/_target_application:middleware_decorator", 1), ] + DEFAULT_MIDDLEWARE_METRICS @pytest.mark.parametrize("app_name", ("no_error_handler",)) @validate_transaction_metrics( "_target_application:index", scoped_metrics=MIDDLEWARE_METRICS + [("Function/_target_application:index", 1)], rollup_metrics=[FRAMEWORK_METRIC], ) @pytest.mark.parametrize("app_name", ("no_error_handler",)) @validate_transaction_metrics( "_target_application:non_async", scoped_metrics=MIDDLEWARE_METRICS + [("Function/_target_application:non_async", 1)], rollup_metrics=[FRAMEWORK_METRIC], ) @pytest.mark.parametrize("app_name, transaction_name", ( ("no_error_handler", "starlette.exceptions:ExceptionMiddleware.__call__"), ("non_async_error_handler_no_middleware", "starlette.exceptions:ExceptionMiddleware.__call__"), )) @pytest.mark.parametrize("app_name", ("no_error_handler",)) @validate_transaction_metrics( "_target_application:middleware_factory.<locals>.middleware", scoped_metrics=[("Function/_target_application:middleware_factory.<locals>.middleware", 1)], rollup_metrics=[FRAMEWORK_METRIC], ) @pytest.mark.parametrize("app_name,transaction_name,path,scoped_metrics", ( ("non_async_error_handler_no_middleware", "_target_application:runtime_error", "/runtime_error", []), ("async_error_handler_no_middleware", "_target_application:runtime_error", "/runtime_error", [("Function/_target_application:async_error_handler", 1)]), ("no_middleware", "_target_application:runtime_error", "/runtime_error", [("Function/starlette.middleware.errors:ServerErrorMiddleware.error_response", 1)]), ("debug_no_middleware", "_target_application:runtime_error", "/runtime_error", [("Function/starlette.middleware.errors:ServerErrorMiddleware.debug_response", 1)]), ("no_middleware", "_target_application:CustomRoute", "/raw_runtime_error", []), )) @validate_transaction_errors(errors=["builtins:RuntimeError"]) @pytest.mark.parametrize("app_name,transaction_name,path,error", ( ("async_error_handler_no_middleware", "_target_application:handled_error", "/handled_error", "_target_application:HandledError"), ("non_async_error_handler_no_middleware", "_target_application:non_async_handled_error", "/non_async_handled_error", "_target_application:NonAsyncHandledError") )) @pytest.mark.parametrize("app_name,transaction_name,path", ( ("async_error_handler_no_middleware", "_target_application:handled_error", "/handled_error"), ("non_async_error_handler_no_middleware", "_target_application:non_async_handled_error", "/non_async_handled_error") )) @override_ignore_status_codes(set((500,))) @pytest.mark.parametrize("app_name,scoped_metrics", ( ("no_middleware", [("Function/starlette.exceptions:ExceptionMiddleware.http_exception", 1)]), ("teapot_exception_handler_no_middleware", [("Function/_target_application:teapot_handler", 1)]) )) @pytest.mark.parametrize("app_name", ("no_middleware",)) @validate_transaction_errors(errors=["builtins:RuntimeError"]) @validate_transaction_metrics( "_target_application:CustomRoute", rollup_metrics=[FRAMEWORK_METRIC] ) @pytest.mark.parametrize("app_name", ("no_error_handler",))
[ 2, 15069, 3050, 968, 43437, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 3491, 21348, 198, 11748, 12972, 9288, 198, 6738, 4856, 62, 11284, 13, 69, 25506, 1330, 357, 198, 220, 220, 220, 26571, 62, 7645, 2673, 62, 4164, 10466, 11, 198, 220, 220, 220, 26571, 62, 7645, 2673, 62, 48277, 11, 198, 220, 220, 220, 8006, 62, 7645, 2673, 62, 4164, 10466, 11, 198, 220, 220, 220, 20957, 62, 46430, 62, 13376, 62, 40148, 11, 198, 8, 198, 198, 10913, 2390, 6217, 14670, 62, 47123, 41132, 796, 5855, 37906, 14, 21055, 6433, 14, 8248, 21348, 14, 4, 82, 1, 4064, 3491, 21348, 13, 834, 9641, 834, 11, 352, 8, 198, 7206, 38865, 62, 44, 2389, 35, 2538, 33746, 62, 47123, 49, 19505, 796, 685, 198, 220, 220, 220, 5855, 22203, 14, 7364, 21348, 13, 27171, 1574, 13, 48277, 25, 10697, 12331, 34621, 1574, 13, 834, 13345, 834, 1600, 352, 828, 198, 220, 220, 220, 5855, 22203, 14, 7364, 21348, 13, 1069, 11755, 25, 16922, 34621, 1574, 13, 834, 13345, 834, 1600, 352, 828, 198, 60, 198, 44, 2389, 35, 2538, 33746, 62, 47123, 49, 19505, 796, 685, 198, 220, 220, 220, 5855, 22203, 47835, 16793, 62, 31438, 25, 27171, 1574, 62, 69, 9548, 29847, 17946, 874, 28401, 27171, 1574, 1600, 362, 828, 198, 220, 220, 220, 5855, 22203, 47835, 16793, 62, 31438, 25, 27171, 1574, 62, 12501, 273, 1352, 1600, 352, 828, 198, 60, 1343, 5550, 38865, 62, 44, 2389, 35, 2538, 33746, 62, 47123, 49, 19505, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 1600, 5855, 3919, 62, 18224, 62, 30281, 1600, 4008, 198, 31, 12102, 378, 62, 7645, 2673, 62, 4164, 10466, 7, 198, 220, 220, 220, 45434, 16793, 62, 31438, 25, 9630, 1600, 198, 220, 220, 220, 629, 19458, 62, 4164, 10466, 28, 44, 2389, 35, 2538, 33746, 62, 47123, 49, 19505, 1343, 685, 7203, 22203, 47835, 16793, 62, 31438, 25, 9630, 1600, 352, 8, 4357, 198, 220, 220, 220, 4836, 929, 62, 4164, 10466, 41888, 10913, 2390, 6217, 14670, 62, 47123, 41132, 4357, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 1600, 5855, 3919, 62, 18224, 62, 30281, 1600, 4008, 198, 31, 12102, 378, 62, 7645, 2673, 62, 4164, 10466, 7, 198, 220, 220, 220, 45434, 16793, 62, 31438, 25, 13159, 62, 292, 13361, 1600, 198, 220, 220, 220, 629, 19458, 62, 4164, 10466, 28, 44, 2389, 35, 2538, 33746, 62, 47123, 49, 19505, 1343, 685, 7203, 22203, 47835, 16793, 62, 31438, 25, 13159, 62, 292, 13361, 1600, 352, 8, 4357, 198, 220, 220, 220, 4836, 929, 62, 4164, 10466, 41888, 10913, 2390, 6217, 14670, 62, 47123, 41132, 4357, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 11, 8611, 62, 3672, 1600, 357, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 3919, 62, 18224, 62, 30281, 1600, 366, 7364, 21348, 13, 1069, 11755, 25, 16922, 34621, 1574, 13, 834, 13345, 834, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 13159, 62, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 366, 7364, 21348, 13, 1069, 11755, 25, 16922, 34621, 1574, 13, 834, 13345, 834, 12340, 198, 220, 220, 220, 15306, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 1600, 5855, 3919, 62, 18224, 62, 30281, 1600, 4008, 220, 220, 220, 220, 198, 31, 12102, 378, 62, 7645, 2673, 62, 4164, 10466, 7, 198, 220, 220, 220, 45434, 16793, 62, 31438, 25, 27171, 1574, 62, 69, 9548, 29847, 17946, 874, 28401, 27171, 1574, 1600, 198, 220, 220, 220, 629, 19458, 62, 4164, 10466, 41888, 7203, 22203, 47835, 16793, 62, 31438, 25, 27171, 1574, 62, 69, 9548, 29847, 17946, 874, 28401, 27171, 1574, 1600, 352, 8, 4357, 198, 220, 220, 220, 4836, 929, 62, 4164, 10466, 41888, 10913, 2390, 6217, 14670, 62, 47123, 41132, 4357, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 11, 7645, 2673, 62, 3672, 11, 6978, 11, 1416, 19458, 62, 4164, 10466, 1600, 357, 198, 220, 220, 220, 5855, 13159, 62, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 43282, 62, 18224, 1600, 12813, 43282, 62, 18224, 1600, 17635, 828, 198, 220, 220, 220, 5855, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 43282, 62, 18224, 1600, 12813, 43282, 62, 18224, 1600, 685, 7203, 22203, 47835, 16793, 62, 31438, 25, 292, 13361, 62, 18224, 62, 30281, 1600, 352, 15437, 828, 198, 220, 220, 220, 5855, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 43282, 62, 18224, 1600, 12813, 43282, 62, 18224, 1600, 685, 7203, 22203, 14, 7364, 21348, 13, 27171, 1574, 13, 48277, 25, 10697, 12331, 34621, 1574, 13, 18224, 62, 26209, 1600, 352, 15437, 828, 198, 220, 220, 220, 5855, 24442, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 43282, 62, 18224, 1600, 12813, 43282, 62, 18224, 1600, 685, 7203, 22203, 14, 7364, 21348, 13, 27171, 1574, 13, 48277, 25, 10697, 12331, 34621, 1574, 13, 24442, 62, 26209, 1600, 352, 15437, 828, 198, 220, 220, 220, 5855, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 15022, 43401, 1600, 12813, 1831, 62, 43282, 62, 18224, 1600, 17635, 828, 198, 4008, 198, 31, 12102, 378, 62, 7645, 2673, 62, 48277, 7, 48277, 28, 14692, 18780, 1040, 25, 41006, 12331, 8973, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 11, 7645, 2673, 62, 3672, 11, 6978, 11, 18224, 1600, 357, 198, 220, 220, 220, 5855, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 38788, 62, 18224, 1600, 12813, 38788, 62, 18224, 1600, 45434, 16793, 62, 31438, 25, 12885, 992, 12331, 12340, 198, 220, 220, 220, 5855, 13159, 62, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 13159, 62, 292, 13361, 62, 38788, 62, 18224, 1600, 12813, 13159, 62, 292, 13361, 62, 38788, 62, 18224, 1600, 45434, 16793, 62, 31438, 25, 15419, 42367, 12885, 992, 12331, 4943, 198, 4008, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 11, 7645, 2673, 62, 3672, 11, 6978, 1600, 357, 198, 220, 220, 220, 5855, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 38788, 62, 18224, 1600, 12813, 38788, 62, 18224, 12340, 198, 220, 220, 220, 5855, 13159, 62, 292, 13361, 62, 18224, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 45434, 16793, 62, 31438, 25, 13159, 62, 292, 13361, 62, 38788, 62, 18224, 1600, 12813, 13159, 62, 292, 13361, 62, 38788, 62, 18224, 4943, 198, 4008, 198, 31, 2502, 13154, 62, 46430, 62, 13376, 62, 40148, 7, 2617, 19510, 4059, 11, 22305, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 11, 1416, 19458, 62, 4164, 10466, 1600, 357, 198, 220, 220, 220, 5855, 3919, 62, 27171, 1574, 1600, 685, 7203, 22203, 14, 7364, 21348, 13, 1069, 11755, 25, 16922, 34621, 1574, 13, 4023, 62, 1069, 4516, 1600, 352, 15437, 828, 198, 220, 220, 220, 5855, 660, 499, 313, 62, 1069, 4516, 62, 30281, 62, 3919, 62, 27171, 1574, 1600, 685, 7203, 22203, 47835, 16793, 62, 31438, 25, 660, 499, 313, 62, 30281, 1600, 352, 8, 12962, 198, 4008, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 1600, 5855, 3919, 62, 27171, 1574, 1600, 4008, 198, 31, 12102, 378, 62, 7645, 2673, 62, 48277, 7, 48277, 28, 14692, 18780, 1040, 25, 41006, 12331, 8973, 8, 198, 31, 12102, 378, 62, 7645, 2673, 62, 4164, 10466, 7, 198, 220, 220, 220, 45434, 16793, 62, 31438, 25, 15022, 43401, 1600, 4836, 929, 62, 4164, 10466, 41888, 10913, 2390, 6217, 14670, 62, 47123, 41132, 60, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 1324, 62, 3672, 1600, 5855, 3919, 62, 18224, 62, 30281, 1600, 4008, 628, 198 ]
2.903974
1,510
import jira __URL = "http://jira.example.com" __USER = "my_user" __PASS = "my_pass" __ISSUE = "VOL-1234" my_jira = jira.Jira(__URL, __USER, __PASS) my_issue = my_jira.get_issue(__ISSUE) print(my_issue.summary)
[ 11748, 474, 8704, 198, 198, 834, 21886, 796, 366, 4023, 1378, 73, 8704, 13, 20688, 13, 785, 1, 198, 834, 29904, 796, 366, 1820, 62, 7220, 1, 198, 834, 47924, 796, 366, 1820, 62, 6603, 1, 198, 834, 16744, 8924, 796, 366, 44558, 12, 1065, 2682, 1, 198, 198, 1820, 62, 73, 8704, 796, 474, 8704, 13, 41, 8704, 7, 834, 21886, 11, 11593, 29904, 11, 11593, 47924, 8, 198, 1820, 62, 21949, 796, 616, 62, 73, 8704, 13, 1136, 62, 21949, 7, 834, 16744, 8924, 8, 198, 4798, 7, 1820, 62, 21949, 13, 49736, 8 ]
2.197917
96
import os from typing import List import cv2 from fastapi import APIRouter, Depends, HTTPException, status from fastapi.requests import Request from fastapi.responses import FileResponse from natsort import os_sorted from pydantic import BaseModel, validator from .projects import ProjectType from ..config import Settings, get_settings from ..managers import get_label_manager, LabelManager, LabelsModel from ..responses import VideoResponse from ..utils import QueryModel, get_project_path router = APIRouter() @router.get("", response_model=List[VideoItemResponse]) @router.get("/{video}", response_model=VideoDetailResponse) @router.get("/{video}/stream") @router.get("/{video}/frames") @router.get("/{video}/frames/{frame}") @router.post("/{video}/frames", response_model=List[str]) @router.get("/{video}/labels", response_model=LabelsModel) @router.put("/{video}/labels")
[ 11748, 28686, 198, 6738, 19720, 1330, 7343, 198, 198, 11748, 269, 85, 17, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 2129, 2412, 11, 14626, 16922, 11, 3722, 198, 6738, 3049, 15042, 13, 8897, 3558, 1330, 19390, 198, 6738, 3049, 15042, 13, 16733, 274, 1330, 9220, 31077, 198, 6738, 299, 1381, 419, 1330, 28686, 62, 82, 9741, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 11, 4938, 1352, 198, 198, 6738, 764, 42068, 1330, 4935, 6030, 198, 6738, 11485, 11250, 1330, 16163, 11, 651, 62, 33692, 198, 6738, 11485, 805, 10321, 1330, 651, 62, 18242, 62, 37153, 11, 36052, 13511, 11, 3498, 1424, 17633, 198, 6738, 11485, 16733, 274, 1330, 7623, 31077, 198, 6738, 11485, 26791, 1330, 43301, 17633, 11, 651, 62, 16302, 62, 6978, 198, 198, 472, 353, 796, 3486, 4663, 39605, 3419, 628, 198, 198, 31, 472, 353, 13, 1136, 7203, 1600, 2882, 62, 19849, 28, 8053, 58, 10798, 7449, 31077, 12962, 628, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 90, 15588, 92, 1600, 2882, 62, 19849, 28, 10798, 11242, 603, 31077, 8, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 90, 15588, 92, 14, 5532, 4943, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 90, 15588, 92, 14, 37805, 4943, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 90, 15588, 92, 14, 37805, 14, 90, 14535, 92, 4943, 628, 198, 198, 31, 472, 353, 13, 7353, 7203, 14, 90, 15588, 92, 14, 37805, 1600, 2882, 62, 19849, 28, 8053, 58, 2536, 12962, 628, 198, 31, 472, 353, 13, 1136, 7203, 14, 90, 15588, 92, 14, 23912, 1424, 1600, 2882, 62, 19849, 28, 17822, 1424, 17633, 8, 628, 198, 31, 472, 353, 13, 1996, 7203, 14, 90, 15588, 92, 14, 23912, 1424, 4943, 198 ]
3.085616
292
r = range(8) for x in r: for y in r: for x1 in r: if x < x1: print '(nCell %d east %d %d %d %d)' % (x1-x, x, y, x1, y) elif x > x1: print '(nCell %d west %d %d %d %d)' % (x-x1, x, y, x1, y) for y1 in r: if y < y1: print '(nCell %d south %d %d %d %d)' % (y1-y, x, y, x, y1) elif y > y1: print '(nCell %d north %d %d %d %d)' % (y-y1, x, y, x, y1)
[ 81, 796, 2837, 7, 23, 8, 198, 1640, 2124, 287, 374, 25, 198, 197, 1640, 331, 287, 374, 25, 198, 197, 197, 1640, 2124, 16, 287, 374, 25, 198, 197, 197, 197, 361, 2124, 1279, 2124, 16, 25, 198, 197, 197, 197, 197, 4798, 29513, 77, 28780, 4064, 67, 7627, 4064, 67, 4064, 67, 4064, 67, 4064, 67, 33047, 4064, 357, 87, 16, 12, 87, 11, 2124, 11, 331, 11, 2124, 16, 11, 331, 8, 198, 197, 197, 197, 417, 361, 2124, 1875, 2124, 16, 25, 198, 197, 197, 197, 197, 4798, 29513, 77, 28780, 4064, 67, 7421, 4064, 67, 4064, 67, 4064, 67, 4064, 67, 33047, 4064, 357, 87, 12, 87, 16, 11, 2124, 11, 331, 11, 2124, 16, 11, 331, 8, 198, 197, 197, 1640, 331, 16, 287, 374, 25, 198, 197, 197, 197, 361, 331, 1279, 331, 16, 25, 198, 197, 197, 197, 197, 4798, 29513, 77, 28780, 4064, 67, 5366, 4064, 67, 4064, 67, 4064, 67, 4064, 67, 33047, 4064, 357, 88, 16, 12, 88, 11, 2124, 11, 331, 11, 2124, 11, 331, 16, 8, 198, 197, 197, 197, 417, 361, 331, 1875, 331, 16, 25, 198, 197, 197, 197, 197, 4798, 29513, 77, 28780, 4064, 67, 5093, 4064, 67, 4064, 67, 4064, 67, 4064, 67, 33047, 4064, 357, 88, 12, 88, 16, 11, 2124, 11, 331, 11, 2124, 11, 331, 16, 8, 198 ]
1.657895
228
# -*- coding: utf-8 -*- import json from datetime import datetime, timedelta import requests import lxml from pykml.factory import KML_ElementMaker as KML URL = 'http://iss-positioner.nkoshelev.tech/lst' NOW = datetime.utcnow() PARAMS = dict(start_dt=NOW.isoformat(), end_dt=(NOW + timedelta(days=21)).isoformat(), dist='250', units='km', sun_angle=json.dumps({'$between': [1, 90]})) FILES = dict(lst=open('uragan.lst', 'rb')) if __name__ == '__main__': main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 33918, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 198, 11748, 7007, 198, 11748, 300, 19875, 198, 6738, 12972, 74, 4029, 13, 69, 9548, 1330, 509, 5805, 62, 20180, 48890, 355, 509, 5805, 198, 198, 21886, 796, 705, 4023, 1378, 747, 12, 9150, 263, 13, 77, 46150, 258, 2768, 13, 13670, 14, 75, 301, 6, 198, 45669, 796, 4818, 8079, 13, 315, 66, 2197, 3419, 198, 198, 27082, 40834, 796, 8633, 7, 9688, 62, 28664, 28, 45669, 13, 26786, 18982, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 28664, 16193, 45669, 1343, 28805, 12514, 7, 12545, 28, 2481, 29720, 26786, 18982, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1233, 11639, 9031, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 11639, 13276, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4252, 62, 9248, 28, 17752, 13, 67, 8142, 15090, 6, 3, 23395, 10354, 685, 16, 11, 4101, 48999, 4008, 198, 46700, 1546, 796, 8633, 7, 75, 301, 28, 9654, 10786, 333, 7329, 13, 75, 301, 3256, 705, 26145, 6, 4008, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.209205
239
""" Module for implementation Naive Bayes Classifier. """ import string from collections import Counter from typing import Dict from bayesian_classifier import * import pandas as pd from nltk.corpus import stopwords from nltk.tokenize import word_tokenize def process_data(data_file): """ Function for data processing and split it into X and y sets. :param data_file: str - train data :return: pd.DataFrame|list, pd.DataFrame|list - X and y data frames or lists """ data = pd.read_csv(data_file) data = data.loc[:, ~data.columns.str.contains('^Unnamed')] data = data.drop('id', 1) X = [] y = data['author'] banwords = stopwords.words('english') for index, row in data.iterrows(): row['text'] = row['text'].translate(str.maketrans('', '', string.punctuation)) X.append(dict(Counter([word.lower() for word in word_tokenize(row['text']) if word not in banwords]))) return X, y def merge_dicts(dict1, dict2): """ Merges all the dictionaries, so in result bag of words can be created. """ if len(dict1) < len(dict2): dict1, dict2 = dict2, dict1 for key, value in dict2.items(): dict1[key] = dict1.get(key, 0) + value return dict1 if __name__ == '__main__': train_X, train_y = process_data("data/train.csv") print("Train parse done") test_X, test_y = process_data("data/test.csv") print("Test parse done") classifier = BayesianClassifier() classifier.fit(train_X, train_y) print(f"Model score: {classifier.score(test_X, test_y)}")
[ 37811, 198, 26796, 329, 7822, 11013, 425, 4696, 274, 5016, 7483, 13, 198, 37811, 198, 11748, 4731, 198, 6738, 17268, 1330, 15034, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 15489, 35610, 62, 4871, 7483, 1330, 1635, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 1573, 62, 30001, 1096, 628, 198, 4299, 1429, 62, 7890, 7, 7890, 62, 7753, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 329, 1366, 7587, 290, 6626, 340, 656, 1395, 290, 331, 5621, 13, 198, 220, 220, 220, 1058, 17143, 1366, 62, 7753, 25, 965, 532, 4512, 1366, 198, 220, 220, 220, 1058, 7783, 25, 279, 67, 13, 6601, 19778, 91, 4868, 11, 279, 67, 13, 6601, 19778, 91, 4868, 532, 1395, 290, 331, 1366, 13431, 393, 8341, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 279, 67, 13, 961, 62, 40664, 7, 7890, 62, 7753, 8, 198, 220, 220, 220, 1366, 796, 1366, 13, 17946, 58, 45299, 5299, 7890, 13, 28665, 82, 13, 2536, 13, 3642, 1299, 10786, 61, 3118, 13190, 11537, 60, 198, 220, 220, 220, 1366, 796, 1366, 13, 14781, 10786, 312, 3256, 352, 8, 628, 220, 220, 220, 1395, 796, 17635, 198, 220, 220, 220, 331, 796, 1366, 17816, 9800, 20520, 198, 220, 220, 220, 3958, 10879, 796, 2245, 10879, 13, 10879, 10786, 39126, 11537, 198, 220, 220, 220, 329, 6376, 11, 5752, 287, 1366, 13, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 17816, 5239, 20520, 796, 5752, 17816, 5239, 6, 4083, 7645, 17660, 7, 2536, 13, 76, 461, 21879, 504, 10786, 3256, 705, 3256, 4731, 13, 79, 16260, 2288, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 13, 33295, 7, 11600, 7, 31694, 26933, 4775, 13, 21037, 3419, 329, 1573, 287, 1573, 62, 30001, 1096, 7, 808, 17816, 5239, 6, 12962, 611, 1573, 407, 287, 3958, 10879, 60, 22305, 198, 220, 220, 220, 1441, 1395, 11, 331, 628, 198, 4299, 20121, 62, 11600, 82, 7, 11600, 16, 11, 8633, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4638, 3212, 477, 262, 48589, 3166, 11, 523, 287, 1255, 6131, 286, 2456, 460, 307, 2727, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 11600, 16, 8, 1279, 18896, 7, 11600, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 16, 11, 8633, 17, 796, 8633, 17, 11, 8633, 16, 628, 220, 220, 220, 329, 1994, 11, 1988, 287, 8633, 17, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 16, 58, 2539, 60, 796, 8633, 16, 13, 1136, 7, 2539, 11, 657, 8, 1343, 1988, 198, 220, 220, 220, 1441, 8633, 16, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4512, 62, 55, 11, 4512, 62, 88, 796, 1429, 62, 7890, 7203, 7890, 14, 27432, 13, 40664, 4943, 198, 220, 220, 220, 3601, 7203, 44077, 21136, 1760, 4943, 198, 220, 220, 220, 1332, 62, 55, 11, 1332, 62, 88, 796, 1429, 62, 7890, 7203, 7890, 14, 9288, 13, 40664, 4943, 198, 220, 220, 220, 3601, 7203, 14402, 21136, 1760, 4943, 628, 220, 220, 220, 1398, 7483, 796, 4696, 35610, 9487, 7483, 3419, 198, 220, 220, 220, 1398, 7483, 13, 11147, 7, 27432, 62, 55, 11, 4512, 62, 88, 8, 198, 220, 220, 220, 3601, 7, 69, 1, 17633, 4776, 25, 1391, 4871, 7483, 13, 26675, 7, 9288, 62, 55, 11, 1332, 62, 88, 38165, 4943, 198 ]
2.622705
599
#!/usr/bin/env python # -*-python-*- # # Copyright (C) 1999-2013 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- # # CGI script to process and display queries to CVSdb # # This script is part of the ViewVC package. More information can be # found at http://viewvc.org # # ----------------------------------------------------------------------- import os import sys import string import time from common import _item, TemplateData import cvsdb import viewvc import ezt import debug import urllib import fnmatch ## returns a tuple-list (mod-str, string) def prev_rev(rev): '''Returns a string representing the previous revision of the argument.''' r = rev.split('.') # decrement final revision component r[-1] = str(int(r[-1]) - 1) # prune if we pass the beginning of the branch if len(r) > 2 and r[-1] == '0': r = r[:-2] return '.'.join(r) def is_forbidden(cfg, cvsroot_name, module): '''Return 1 if MODULE in CVSROOT_NAME is forbidden; return 0 otherwise.''' # CVSROOT_NAME might be None here if the data comes from an # unconfigured root. This interfaces doesn't care that the root # isn't configured, but if that's the case, it will consult only # the base and per-vhost configuration for authorizer and # authorizer parameters. if cvsroot_name: cfg = cfg.get_root_config(cvsroot_name) authorizer = cfg.options.authorizer params = cfg.get_authorizer_params() # If CVSROOT_NAME isn't configured to use an authorizer, nothing # is forbidden. If it's configured to use something other than # the 'forbidden' authorizer, complain. Otherwise, check for # forbiddenness per the PARAMS as expected. if not authorizer: return 0 if authorizer != 'forbidden': raise Exception("The 'forbidden' authorizer is the only one supported " "by this interface. The '%s' root is configured to " "use a different one." % (cvsroot_name)) forbidden = params.get('forbidden', '') forbidden = map(lambda x: x.strip(), filter(None, forbidden.split(','))) default = 0 for pat in forbidden: if pat[0] == '!': default = 1 if fnmatch.fnmatchcase(module, pat[1:]): return 0 elif fnmatch.fnmatchcase(module, pat): return 1 return default
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 29412, 12, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 7358, 12, 6390, 383, 3582, 34, 20304, 4912, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 2750, 1262, 428, 2393, 11, 345, 4236, 284, 262, 2846, 290, 3403, 900, 6071, 287, 198, 2, 262, 38559, 24290, 13, 6494, 2393, 543, 460, 307, 1043, 379, 262, 1353, 1241, 286, 262, 3582, 15922, 198, 2, 6082, 393, 379, 2638, 1378, 1177, 28435, 13, 2398, 14, 43085, 12, 16, 13, 6494, 13, 198, 2, 198, 2, 1114, 517, 1321, 11, 3187, 2638, 1378, 1177, 28435, 13, 2398, 14, 198, 2, 198, 2, 16529, 26866, 198, 2, 198, 2, 36378, 4226, 284, 1429, 290, 3359, 20743, 284, 327, 20304, 9945, 198, 2, 198, 2, 770, 4226, 318, 636, 286, 262, 3582, 15922, 5301, 13, 3125, 1321, 460, 307, 198, 2, 1043, 379, 2638, 1378, 1177, 28435, 13, 2398, 198, 2, 198, 2, 16529, 26866, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 4731, 198, 11748, 640, 198, 198, 6738, 2219, 1330, 4808, 9186, 11, 37350, 6601, 198, 11748, 269, 14259, 9945, 198, 11748, 1570, 28435, 198, 11748, 304, 89, 83, 198, 11748, 14257, 198, 11748, 2956, 297, 571, 198, 11748, 24714, 15699, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2235, 5860, 257, 46545, 12, 4868, 357, 4666, 12, 2536, 11, 4731, 8, 198, 198, 4299, 8654, 62, 18218, 7, 18218, 2599, 198, 220, 220, 220, 705, 7061, 35561, 257, 4731, 10200, 262, 2180, 18440, 286, 262, 4578, 2637, 7061, 198, 220, 220, 220, 374, 796, 2710, 13, 35312, 10786, 2637, 8, 198, 220, 220, 220, 1303, 5255, 434, 2457, 18440, 7515, 198, 220, 220, 220, 374, 58, 12, 16, 60, 796, 965, 7, 600, 7, 81, 58, 12, 16, 12962, 532, 352, 8, 198, 220, 220, 220, 1303, 778, 1726, 611, 356, 1208, 262, 3726, 286, 262, 8478, 198, 220, 220, 220, 611, 18896, 7, 81, 8, 1875, 362, 290, 374, 58, 12, 16, 60, 6624, 705, 15, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 374, 796, 374, 58, 21912, 17, 60, 198, 220, 220, 220, 1441, 705, 2637, 13, 22179, 7, 81, 8, 198, 198, 4299, 318, 62, 1640, 37978, 7, 37581, 11, 269, 14259, 15763, 62, 3672, 11, 8265, 2599, 198, 220, 220, 220, 705, 7061, 13615, 352, 611, 33893, 287, 26196, 12562, 46, 2394, 62, 20608, 318, 19467, 26, 1441, 657, 4306, 2637, 7061, 628, 220, 220, 220, 1303, 26196, 12562, 46, 2394, 62, 20608, 1244, 307, 6045, 994, 611, 262, 1366, 2058, 422, 281, 198, 220, 220, 220, 1303, 555, 11250, 1522, 6808, 13, 220, 770, 20314, 1595, 470, 1337, 326, 262, 6808, 198, 220, 220, 220, 1303, 2125, 470, 17839, 11, 475, 611, 326, 338, 262, 1339, 11, 340, 481, 5725, 691, 198, 220, 220, 220, 1303, 262, 2779, 290, 583, 12, 85, 4774, 8398, 329, 1772, 7509, 290, 198, 220, 220, 220, 1303, 1772, 7509, 10007, 13, 198, 220, 220, 220, 611, 269, 14259, 15763, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30218, 70, 796, 30218, 70, 13, 1136, 62, 15763, 62, 11250, 7, 66, 14259, 15763, 62, 3672, 8, 198, 220, 220, 220, 1772, 7509, 796, 30218, 70, 13, 25811, 13, 9800, 7509, 198, 220, 220, 220, 42287, 796, 30218, 70, 13, 1136, 62, 9800, 7509, 62, 37266, 3419, 628, 220, 220, 220, 1303, 1002, 26196, 12562, 46, 2394, 62, 20608, 2125, 470, 17839, 284, 779, 281, 1772, 7509, 11, 2147, 198, 220, 220, 220, 1303, 318, 19467, 13, 220, 1002, 340, 338, 17839, 284, 779, 1223, 584, 621, 198, 220, 220, 220, 1303, 262, 705, 1640, 37978, 6, 1772, 7509, 11, 13121, 13, 220, 15323, 11, 2198, 329, 198, 220, 220, 220, 1303, 19467, 1108, 583, 262, 29463, 40834, 355, 2938, 13, 198, 220, 220, 220, 611, 407, 1772, 7509, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 611, 1772, 7509, 14512, 705, 1640, 37978, 10354, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 464, 705, 1640, 37978, 6, 1772, 7509, 318, 262, 691, 530, 4855, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1525, 428, 7071, 13, 220, 383, 705, 4, 82, 6, 6808, 318, 17839, 284, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 257, 1180, 530, 526, 4064, 357, 66, 14259, 15763, 62, 3672, 4008, 198, 220, 220, 220, 19467, 796, 42287, 13, 1136, 10786, 1640, 37978, 3256, 10148, 8, 198, 220, 220, 220, 19467, 796, 3975, 7, 50033, 2124, 25, 2124, 13, 36311, 22784, 8106, 7, 14202, 11, 19467, 13, 35312, 7, 41707, 22305, 198, 220, 220, 220, 4277, 796, 657, 198, 220, 220, 220, 329, 1458, 287, 19467, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1458, 58, 15, 60, 6624, 705, 0, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 24714, 15699, 13, 22184, 15699, 7442, 7, 21412, 11, 1458, 58, 16, 47715, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 24714, 15699, 13, 22184, 15699, 7442, 7, 21412, 11, 1458, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 198, 220, 220, 220, 1441, 4277, 198 ]
2.840671
954
try: import pkg_resources pkg_resources.declare_namespace(__name__) except ImportError: # don't prevent use of paste if pkg_resources isn't installed from pkgutil import extend_path __path__ = extend_path(__path__, __name__) try: import modulefinder except ImportError: pass else: for p in __path__: modulefinder.AddPackagePath(__name__, p)
[ 28311, 25, 198, 220, 220, 220, 1330, 279, 10025, 62, 37540, 198, 220, 220, 220, 279, 10025, 62, 37540, 13, 32446, 533, 62, 14933, 10223, 7, 834, 3672, 834, 8, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 836, 470, 2948, 779, 286, 17008, 611, 279, 10025, 62, 37540, 2125, 470, 6589, 198, 220, 220, 220, 422, 279, 10025, 22602, 1330, 9117, 62, 6978, 198, 220, 220, 220, 11593, 6978, 834, 796, 9117, 62, 6978, 7, 834, 6978, 834, 11, 11593, 3672, 834, 8, 220, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 8265, 22805, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 17772, 25, 198, 220, 220, 220, 329, 279, 287, 11593, 6978, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 22805, 13, 4550, 27813, 15235, 7, 834, 3672, 834, 11, 279, 8, 198 ]
2.659722
144