content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import pytest from html_form_to_dict import html_form_to_dict
[ 11748, 12972, 9288, 198, 6738, 27711, 62, 687, 62, 1462, 62, 11600, 1330, 27711, 62, 687, 62, 1462, 62, 11600, 628, 628, 628, 628, 628, 198 ]
2.769231
26
import os from asgan.output_generator import pretty_number
[ 11748, 28686, 198, 6738, 355, 1030, 13, 22915, 62, 8612, 1352, 1330, 2495, 62, 17618, 628, 628 ]
3.647059
17
from asyncio import sleep from datetime import datetime from traitlets.config import LoggingConfigurable from traitlets import Any, Bool, Integer from tornado.log import app_log class Builder(LoggingConfigurable): """Base class for building a dashboard, e.g. by cloning an existing server which is a Docker container. Subclass this, and override the following methods: - start """ dashboard = None cdsconfig = None # private attributes for tracking status _build_pending = False _build_future = None event_queue = [] @property def _failed(self): """Did the last build fail?""" return ( not self.active and self._build_future and self._build_future.done() and self._build_future.exception() ) @property def _log_name(self): """Return username:dashboard_urlname """ if self.dashboard: return '%s:%s' % (self.dashboard.user.name, self.dashboard.urlname) else: return 'Dashboard Builder {}'.format(self) @property def pending(self): """Return the current pending event, if any Return False if nothing is pending. """ if self._build_pending: return 'build' return None @property def ready(self): """Is this builder finished, up to assigning a spawner (which may still be starting up) A builder is not ready if an event is pending. """ if self.pending: return False if self.dashboard is None: return False if self.dashboard.final_spawner is None: return False if self._build_future and self._build_future.done() and self._build_future.exception(): return False return True @property def active(self): """Return True if the server is active. This includes fully running and ready or any pending start/stop event. """ return bool(self.pending or self.ready) # options passed by constructor orm_builder = Any() db = Any() log = Any(default_value=app_log).tag(config=True) user = Any() @property consecutive_failure_limit = Integer( 0, help=""" Maximum number of consecutive failures to allow before shutting down JupyterHub. This helps JupyterHub recover from a certain class of problem preventing launch in contexts where the Hub is automatically restarted (e.g. systemd, docker, kubernetes). A limit of 0 means no limit and consecutive failures will not be tracked. """, ).tag(config=True) start_timeout = Integer( 60, help=""" Timeout (in seconds) before giving up on starting of single-user server. This is the timeout for start to return, not the timeout for the server to respond. Callers of spawner.start will assume that startup has failed if it takes longer than this. start should return when the server process is started and its location is known. """, ).tag(config=True) debug = Bool(False, help="Enable debug-logging of the single-user server").tag( config=True ) async def _generate_progress(self): """Private wrapper of progress generator This method is always an async generator and will always yield at least one event. """ if not self._build_pending: self.log.warning( #"Build not pending, can't generate progress for %s", self._log_name "Build not pending, can't generate progress" ) return yield {"progress": 0, "message": "Builder requested"} from async_generator import aclosing async with aclosing(self.progress()) as progress: async for event in progress: yield event async def progress(self): """Async generator for progress events Must be an async generator Should yield messages of the form: :: { "progress": 80, # integer, out of 100 "message": text, # text message (will be escaped for HTML) "html_message": html_text, # optional html-formatted message (may have links) } In HTML contexts, html_message will be displayed instead of message if present. Progress will be updated if defined. To update messages without progress omit the progress field. """ next_event = 0 break_while_loop = False while True: # Ensure we always capture events following the start_future # signal has fired. if self._build_future.done(): break_while_loop = True event_queue = self.event_queue len_events = len(event_queue) if next_event < len_events: for i in range(next_event, len_events): event = event_queue[i] yield event next_event = len_events if break_while_loop: break await sleep(1) async def start(self, dashboard, dashboard_user, db): """Start the dashboard Returns: (str, str): the (new_server_name, new_server_options) of the new dashboard server. """ raise NotImplementedError( "You must specify a c.CDSDashboardsConfig.builder_class in your JupyterHub jupyterhub_config.py file." ) allow_named_servers = True # TODO take from main app config def template_namespace(self): """Return the template namespace for format-string formatting. Subclasses may add items to the available namespace. The default implementation includes:: { 'urlname': dashboard.urlname, 'date': <current date in YYmmdd format>, 'time': <current date in HHMMSS format>, } Returns: ns (dict): namespace for string formatting. """ date = datetime.today().strftime('%Y%m%d') time = datetime.today().strftime('%H%M%S') d = { 'urlname': self.dashboard.urlname, 'date': date, 'time': time } return d def format_string(self, s, ns=None): """Render a Python format string Uses :meth:`Builder.template_namespace` to populate format namespace, based on self.dashboard. Optionally provide the namespace as ns. Args: s (str): Python format-string to be formatted. Returns: str: Formatted string, rendered """ if ns is None: ns = self.template_namespace() return s.format(**ns)
[ 6738, 30351, 952, 1330, 3993, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 1291, 2578, 912, 13, 11250, 1330, 5972, 2667, 16934, 11970, 198, 6738, 1291, 2578, 912, 1330, 4377, 11, 347, 970, 11, 34142, 198, 6738, 33718, 13, 6404, 1330, 598, 62, 6404, 628, 198, 4871, 35869, 7, 11187, 2667, 16934, 11970, 2599, 198, 220, 220, 220, 37227, 14881, 1398, 329, 2615, 257, 30415, 11, 304, 13, 70, 13, 416, 45973, 281, 4683, 4382, 543, 318, 257, 25716, 9290, 13, 628, 220, 220, 220, 3834, 4871, 428, 11, 290, 20957, 262, 1708, 5050, 25, 628, 220, 220, 220, 532, 923, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 30415, 796, 6045, 628, 220, 220, 220, 269, 9310, 11250, 796, 6045, 628, 220, 220, 220, 1303, 2839, 12608, 329, 9646, 3722, 198, 220, 220, 220, 4808, 11249, 62, 79, 1571, 796, 10352, 198, 220, 220, 220, 4808, 11249, 62, 37443, 796, 6045, 628, 220, 220, 220, 1785, 62, 36560, 796, 17635, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 47904, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11633, 262, 938, 1382, 2038, 1701, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 2116, 13, 5275, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13557, 11249, 62, 37443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13557, 11249, 62, 37443, 13, 28060, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13557, 11249, 62, 37443, 13, 1069, 4516, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4808, 6404, 62, 3672, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 20579, 25, 42460, 3526, 62, 6371, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 42460, 3526, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4, 82, 25, 4, 82, 6, 4064, 357, 944, 13, 42460, 3526, 13, 7220, 13, 3672, 11, 2116, 13, 42460, 3526, 13, 6371, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 43041, 3526, 35869, 23884, 4458, 18982, 7, 944, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 13310, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 1459, 13310, 1785, 11, 611, 597, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 10352, 611, 2147, 318, 13310, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11249, 62, 79, 1571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 11249, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 3492, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3792, 428, 27098, 5201, 11, 510, 284, 38875, 257, 10922, 263, 357, 4758, 743, 991, 307, 3599, 510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 317, 27098, 318, 407, 3492, 611, 281, 1785, 318, 13310, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 79, 1571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 42460, 3526, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 42460, 3526, 13, 20311, 62, 48183, 263, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11249, 62, 37443, 290, 2116, 13557, 11249, 62, 37443, 13, 28060, 3419, 290, 2116, 13557, 11249, 62, 37443, 13, 1069, 4516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 4075, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 6407, 611, 262, 4382, 318, 4075, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 3407, 3938, 2491, 290, 3492, 393, 597, 13310, 923, 14, 11338, 1785, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20512, 7, 944, 13, 79, 1571, 393, 2116, 13, 1493, 8, 628, 220, 220, 220, 1303, 3689, 3804, 416, 23772, 198, 220, 220, 220, 393, 76, 62, 38272, 796, 4377, 3419, 198, 220, 220, 220, 20613, 796, 4377, 3419, 628, 220, 220, 220, 2604, 796, 4377, 7, 12286, 62, 8367, 28, 1324, 62, 6404, 737, 12985, 7, 11250, 28, 17821, 8, 628, 220, 220, 220, 2836, 796, 4377, 3419, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 12785, 62, 32165, 495, 62, 32374, 796, 34142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 1271, 286, 12785, 15536, 284, 1249, 878, 198, 220, 220, 220, 220, 220, 220, 220, 25136, 866, 449, 929, 88, 353, 16066, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 5419, 449, 929, 88, 353, 16066, 8551, 422, 257, 1728, 1398, 286, 1917, 12174, 4219, 198, 220, 220, 220, 220, 220, 220, 220, 287, 26307, 810, 262, 14699, 318, 6338, 15765, 276, 357, 68, 13, 70, 13, 31490, 11, 36253, 11, 479, 18478, 3262, 274, 737, 628, 220, 220, 220, 220, 220, 220, 220, 317, 4179, 286, 657, 1724, 645, 4179, 290, 12785, 15536, 481, 407, 307, 18283, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 6739, 12985, 7, 11250, 28, 17821, 8, 628, 220, 220, 220, 923, 62, 48678, 796, 34142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3126, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 448, 357, 259, 4201, 8, 878, 3501, 510, 319, 3599, 286, 2060, 12, 7220, 4382, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 26827, 329, 923, 284, 1441, 11, 407, 262, 26827, 329, 262, 4382, 284, 3031, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4889, 364, 286, 10922, 263, 13, 9688, 481, 7048, 326, 13693, 468, 4054, 611, 340, 2753, 2392, 621, 428, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 815, 1441, 618, 262, 4382, 1429, 318, 2067, 290, 663, 4067, 318, 1900, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 6739, 12985, 7, 11250, 28, 17821, 8, 628, 220, 220, 220, 14257, 796, 347, 970, 7, 25101, 11, 1037, 2625, 36695, 14257, 12, 6404, 2667, 286, 262, 2060, 12, 7220, 4382, 11074, 12985, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30351, 825, 4808, 8612, 378, 62, 33723, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 29067, 29908, 286, 4371, 17301, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 1464, 281, 30351, 17301, 290, 481, 1464, 7800, 379, 1551, 530, 1785, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 11249, 62, 79, 1571, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 15580, 407, 13310, 11, 460, 470, 7716, 4371, 329, 4064, 82, 1600, 2116, 13557, 6404, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15580, 407, 13310, 11, 460, 470, 7716, 4371, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 7800, 19779, 33723, 1298, 657, 11, 366, 20500, 1298, 366, 32875, 9167, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 422, 30351, 62, 8612, 1352, 1330, 257, 565, 2752, 628, 220, 220, 220, 220, 220, 220, 220, 30351, 351, 257, 565, 2752, 7, 944, 13, 33723, 28955, 355, 4371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 329, 1785, 287, 4371, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 1785, 628, 220, 220, 220, 30351, 825, 4371, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42367, 17301, 329, 4371, 2995, 628, 220, 220, 220, 220, 220, 220, 220, 12039, 307, 281, 30351, 17301, 628, 220, 220, 220, 220, 220, 220, 220, 10358, 7800, 6218, 286, 262, 1296, 25, 628, 220, 220, 220, 220, 220, 220, 220, 7904, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33723, 1298, 4019, 11, 1303, 18253, 11, 503, 286, 1802, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20500, 1298, 2420, 11, 1303, 2420, 3275, 357, 10594, 307, 13537, 329, 11532, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6494, 62, 20500, 1298, 27711, 62, 5239, 11, 1303, 11902, 27711, 12, 687, 16898, 3275, 357, 11261, 423, 6117, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 554, 11532, 26307, 11, 27711, 62, 20500, 481, 307, 9066, 2427, 286, 3275, 611, 1944, 13, 198, 220, 220, 220, 220, 220, 220, 220, 18387, 481, 307, 6153, 611, 5447, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 4296, 6218, 1231, 4371, 42848, 262, 4371, 2214, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 15596, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2270, 62, 4514, 62, 26268, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 48987, 356, 1464, 8006, 2995, 1708, 262, 923, 62, 37443, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6737, 468, 6294, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 11249, 62, 37443, 13, 28060, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 62, 4514, 62, 26268, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 36560, 796, 2116, 13, 15596, 62, 36560, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 62, 31534, 796, 18896, 7, 15596, 62, 36560, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1306, 62, 15596, 1279, 18896, 62, 31534, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 19545, 62, 15596, 11, 18896, 62, 31534, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 796, 1785, 62, 36560, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 1785, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 15596, 796, 18896, 62, 31534, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2270, 62, 4514, 62, 26268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 3993, 7, 16, 8, 628, 220, 220, 220, 30351, 825, 923, 7, 944, 11, 30415, 11, 30415, 62, 7220, 11, 20613, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10434, 262, 30415, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 11, 965, 2599, 262, 357, 3605, 62, 15388, 62, 3672, 11, 649, 62, 15388, 62, 25811, 8, 286, 262, 649, 30415, 4382, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1639, 1276, 11986, 257, 269, 13, 34, 5258, 43041, 12821, 16934, 13, 38272, 62, 4871, 287, 534, 449, 929, 88, 353, 16066, 474, 929, 88, 353, 40140, 62, 11250, 13, 9078, 2393, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1249, 62, 13190, 62, 2655, 690, 796, 6407, 1303, 16926, 46, 1011, 422, 1388, 598, 4566, 628, 220, 220, 220, 825, 11055, 62, 14933, 10223, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 11055, 25745, 329, 5794, 12, 8841, 33313, 13, 628, 220, 220, 220, 220, 220, 220, 220, 3834, 37724, 743, 751, 3709, 284, 262, 1695, 25745, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 7822, 3407, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 3672, 10354, 30415, 13, 6371, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 1279, 14421, 3128, 287, 575, 56, 3020, 1860, 5794, 22330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 10354, 1279, 14421, 3128, 287, 47138, 12038, 5432, 5794, 22330, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 357, 11600, 2599, 25745, 329, 4731, 33313, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 796, 4818, 8079, 13, 40838, 22446, 2536, 31387, 10786, 4, 56, 4, 76, 4, 67, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 4818, 8079, 13, 40838, 22446, 2536, 31387, 10786, 4, 39, 4, 44, 4, 50, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6371, 3672, 10354, 2116, 13, 42460, 3526, 13, 6371, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 10354, 3128, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 10354, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 628, 220, 220, 220, 825, 5794, 62, 8841, 7, 944, 11, 264, 11, 36545, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 45819, 257, 11361, 5794, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 36965, 1058, 76, 2788, 25, 63, 32875, 13, 28243, 62, 14933, 10223, 63, 284, 48040, 5794, 25745, 11, 1912, 319, 2116, 13, 42460, 3526, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16018, 453, 2148, 262, 25745, 355, 36545, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 357, 2536, 2599, 11361, 5794, 12, 8841, 284, 307, 39559, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 25, 5178, 16898, 4731, 11, 15111, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 36545, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36545, 796, 2116, 13, 28243, 62, 14933, 10223, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 13, 18982, 7, 1174, 5907, 8, 628, 198 ]
2.423699
2,844
from typing import Dict from feast.entity import Entity from feast.feature_view import FeatureView from google.protobuf.json_format import MessageToDict from more_itertools import flatten from odd_models.models import DataEntity, DataSet, DataEntityType from oddrn_generator import FeastGenerator from . import metadata_extractor, dataset_field_mapper
[ 6738, 19720, 1330, 360, 713, 198, 198, 6738, 26951, 13, 26858, 1330, 20885, 198, 6738, 26951, 13, 30053, 62, 1177, 1330, 27018, 7680, 198, 6738, 23645, 13, 11235, 672, 3046, 13, 17752, 62, 18982, 1330, 16000, 2514, 35, 713, 198, 6738, 517, 62, 270, 861, 10141, 1330, 27172, 268, 198, 6738, 5629, 62, 27530, 13, 27530, 1330, 6060, 32398, 11, 6060, 7248, 11, 6060, 32398, 6030, 198, 6738, 5629, 35906, 62, 8612, 1352, 1330, 42936, 8645, 1352, 198, 198, 6738, 764, 1330, 20150, 62, 2302, 40450, 11, 27039, 62, 3245, 62, 76, 11463, 628 ]
3.776596
94
#!python import sqlite3 import time,datetime import traceback import cgi hide_column = 1 print("content-type:text/html") print("") print("<meta http-equiv = 'refresh' content = 30 />") ddns_count_show()
[ 2, 0, 29412, 198, 11748, 44161, 578, 18, 198, 11748, 640, 11, 19608, 8079, 198, 11748, 12854, 1891, 198, 11748, 269, 12397, 198, 198, 24717, 62, 28665, 796, 352, 198, 4798, 7203, 11299, 12, 4906, 25, 5239, 14, 6494, 4943, 198, 4798, 7203, 4943, 198, 4798, 7203, 27, 28961, 2638, 12, 4853, 452, 796, 705, 5420, 3447, 6, 2695, 796, 1542, 11037, 4943, 198, 1860, 5907, 62, 9127, 62, 12860, 3419, 198 ]
2.833333
72
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for array_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import tensorflow.python.platform import numpy as np from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import googletest if __name__ == '__main__': googletest.main()
[ 2, 15069, 1853, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 28, 198, 198, 37811, 51, 3558, 329, 7177, 62, 2840, 526, 15931, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 10688, 198, 198, 11748, 11192, 273, 11125, 13, 29412, 13, 24254, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 1332, 62, 22602, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 2840, 1330, 7177, 62, 2840, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 467, 519, 1616, 395, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 467, 519, 1616, 395, 13, 12417, 3419, 198 ]
3.877698
278
########################################################################## # Copyright (c) 2017, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Haldeneggsteig 4, CH-8092 Zurich. Attn: Systems Group. ########################################################################## import re, datetime import debug, tests import subprocess import os import socket, struct, fcntl import thread from common import TestCommon, TimeoutError from results import RowResults, PassFailResult TEST_TIMEOUT = datetime.timedelta(minutes=8) mac = {'babybel1': 130587495626, 'babybel2': 130587510022, 'babybel3': 130587512798, 'babybel4': 130589790232, 'ziger2': 65817495764, 'ziger1': 116527143012, } # Fallback if gethostip does not work ip = {'babybel1': 174982272, 'babybel2': 174982270, 'babybel3': 174982271, 'ziger2': 174982183, 'ziger1': 174982183, } @tests.add_test class DevifNetTxSF(DevifTests): ''' Devif Net TX Test''' name = "devif_nettx_sf" OP = "net_tx" CARD = "sfn5122f" @tests.add_test class DevifNetTxE10k(DevifTests): ''' Devif Net TX Test''' name = "devif_nettx_e10k" OP = "net_tx" CARD = "e10k" @tests.add_test class DevifNetRxSF(DevifTests): ''' Devif Net RX Test''' name = "devif_netrx_sf" OP = "net_rx" CARD = "sfn5122f" @tests.add_test class DevifNetRxE10k(DevifTests): ''' Devif Net RX Test''' name = "devif_netrx_e10k" OP = "net_rx" CARD = "e10k" @tests.add_test class DevifIdcTest(DevifTests): ''' Devif IDC Test''' name = "devif_idc_test" OP = "idc" CARD = "none" @tests.add_test class DevifDebug(DevifTests): ''' Devif Debug Backend Test''' name = "devif_debug" @tests.add_test class DevifUDP(DevifTests): ''' Devif UDP Backend Test''' name = "devif_udp" data = ("Data Data Data Data") #@tests.add_test #class DevifUPDecho(DevifUDP): # ''' Devif Debug Backend Test''' # name = "devif_udp_echo" # # def get_module_name(self): # return "devif_echo"
[ 29113, 29113, 7804, 2235, 198, 2, 15069, 357, 66, 8, 2177, 11, 35920, 43412, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 2393, 318, 9387, 739, 262, 2846, 287, 262, 7223, 38559, 24290, 2393, 13, 198, 2, 1002, 345, 466, 407, 1064, 428, 2393, 11, 9088, 460, 307, 1043, 416, 3597, 284, 25, 198, 2, 35920, 43412, 360, 12, 1268, 26236, 11, 367, 1940, 1734, 1130, 4169, 328, 604, 11, 5870, 12, 1795, 5892, 43412, 13, 3460, 77, 25, 11998, 4912, 13, 198, 29113, 29113, 7804, 2235, 198, 198, 11748, 302, 11, 4818, 8079, 198, 11748, 14257, 11, 5254, 198, 11748, 850, 14681, 198, 11748, 28686, 198, 11748, 17802, 11, 2878, 11, 277, 66, 429, 75, 198, 11748, 4704, 198, 6738, 2219, 1330, 6208, 17227, 11, 3862, 448, 12331, 198, 6738, 2482, 1330, 11314, 25468, 11, 6251, 39044, 23004, 198, 198, 51, 6465, 62, 34694, 12425, 796, 4818, 8079, 13, 16514, 276, 12514, 7, 1084, 1769, 28, 23, 8, 198, 198, 20285, 796, 1391, 6, 40252, 6667, 16, 10354, 11323, 44617, 2920, 3980, 2075, 11, 220, 198, 220, 220, 220, 220, 220, 220, 705, 40252, 6667, 17, 10354, 11323, 3365, 2425, 3064, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 705, 40252, 6667, 18, 10354, 11323, 3365, 2425, 1065, 43240, 11, 198, 220, 220, 220, 220, 220, 220, 705, 40252, 6667, 19, 10354, 11323, 44169, 37750, 24339, 11, 198, 220, 220, 220, 220, 220, 220, 705, 89, 8254, 17, 10354, 718, 3365, 1558, 2920, 3553, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 705, 89, 8254, 16, 10354, 1367, 2996, 1983, 1415, 18938, 17, 11, 1782, 198, 198, 2, 7218, 1891, 611, 651, 4774, 541, 857, 407, 670, 198, 541, 796, 1391, 6, 40252, 6667, 16, 10354, 1596, 36260, 1828, 4761, 11, 220, 198, 220, 220, 220, 220, 220, 220, 705, 40252, 6667, 17, 10354, 1596, 36260, 1828, 2154, 11, 198, 220, 220, 220, 220, 220, 220, 705, 40252, 6667, 18, 10354, 1596, 36260, 1828, 4869, 11, 198, 220, 220, 220, 220, 220, 220, 705, 89, 8254, 17, 10354, 1596, 2920, 6469, 24839, 11, 198, 220, 220, 220, 220, 220, 220, 705, 89, 8254, 16, 10354, 1596, 2920, 6469, 24839, 11, 1782, 628, 628, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 7934, 46047, 20802, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 3433, 15326, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 77, 3087, 87, 62, 28202, 1, 198, 220, 220, 220, 13349, 796, 366, 3262, 62, 17602, 1, 198, 220, 220, 220, 48731, 796, 366, 82, 22184, 20, 18376, 69, 1, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 7934, 46047, 36, 940, 74, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 3433, 15326, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 77, 3087, 87, 62, 68, 940, 74, 1, 198, 220, 220, 220, 13349, 796, 366, 3262, 62, 17602, 1, 198, 220, 220, 220, 48731, 796, 366, 68, 940, 74, 1, 628, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 7934, 49, 87, 20802, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 3433, 24202, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 3262, 40914, 62, 28202, 1, 198, 220, 220, 220, 13349, 796, 366, 3262, 62, 40914, 1, 198, 220, 220, 220, 48731, 796, 366, 82, 22184, 20, 18376, 69, 1, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 7934, 49, 87, 36, 940, 74, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 3433, 24202, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 3262, 40914, 62, 68, 940, 74, 1, 198, 220, 220, 220, 13349, 796, 366, 3262, 62, 40914, 1, 198, 220, 220, 220, 48731, 796, 366, 68, 940, 74, 1, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 7390, 66, 14402, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 4522, 34, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 312, 66, 62, 9288, 1, 198, 220, 220, 220, 13349, 796, 366, 312, 66, 1, 198, 220, 220, 220, 48731, 796, 366, 23108, 1, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 27509, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 31687, 5157, 437, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 24442, 1, 198, 198, 31, 41989, 13, 2860, 62, 9288, 198, 4871, 6245, 361, 52, 6322, 7, 13603, 361, 51, 3558, 2599, 198, 220, 220, 220, 705, 7061, 6245, 361, 36428, 5157, 437, 6208, 7061, 6, 198, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 463, 79, 1, 198, 220, 220, 220, 1366, 796, 5855, 6601, 6060, 6060, 6060, 4943, 198, 198, 2, 31, 41989, 13, 2860, 62, 9288, 198, 2, 4871, 6245, 361, 52, 5760, 30328, 7, 13603, 361, 52, 6322, 2599, 198, 2, 220, 220, 220, 705, 7061, 6245, 361, 31687, 5157, 437, 6208, 7061, 6, 198, 2, 220, 220, 220, 1438, 796, 366, 7959, 361, 62, 463, 79, 62, 30328, 1, 198, 2, 198, 2, 220, 220, 220, 825, 651, 62, 21412, 62, 3672, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 7959, 361, 62, 30328, 1, 628, 628 ]
2.375269
930
from google.appengine.ext import db from models import User # Blog db # check if blog exist, if so return blog
[ 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 20613, 198, 6738, 4981, 1330, 11787, 628, 198, 2, 14001, 20613, 628, 198, 2, 2198, 611, 4130, 2152, 11, 611, 523, 1441, 4130, 628, 198 ]
3.545455
33
"""textanalyzerpy URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ import django from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from django.urls import path, include, re_path from django.contrib.auth import views as auth_views from . import views from django.views.static import serve admin.site.site_header="Text Analyzer Admin" admin.site.site_title="Text Analyzer Admin Panel" admin.site.index_title="Welcome to Text Analyzer Admin Panel" urlpatterns = [ # ADMIN path('admin/', admin.site.urls), # STATIC AND MEDIA re_path(r'^static/(?P<path>.*)$', serve,{'document_root': settings.STATIC_ROOT}), re_path(r'^media/(?P<path>.*)$', serve,{'document_root': settings.MEDIA_ROOT}), # MAIN WEBSITE PAGES AND LOGICS path('', views.index, name='index'), path('about/', views.about, name='about'), path('analyzer/', views.analyzer, name='analyzer'), path('analyzed', views.analyzed, name='analyzed'), path('editor/', views.designer, name='editor'), path('styler/', views.styler, name='styler'), path('contact/', views.contact, name='contact'), path('submit', views.submit, name='submit'), # BLOGS RELATED path('blog/', include('blog.urls')), path('search', views.search, name="search"), # LOGIN, LOGOUT, REGISTER path('signup', views.handleSignUp, name="handleSignUp"), path('login', views.handeLogin, name="handeLogin"), path('logout', views.handelLogout, name="handelLogout"), # PROFILE AND ACCOUNT DETAILS UPDATION path('profile/', views.UserEditingView.as_view(), name="profile"), path('profile/v2', views.profilev2, name="profilev2"), path('password/', views.UpdatingPasswordView.as_view(), name="password"), path('password_success/', views.password_success, name="password_sucess"), # DELETE ACCOUNT FUNCTION path("delete_account", views.delete_account, name="delete_account"), # ADDITIONAL PROFILE DETAILS CHANGER path('change_photo', views.change_photo, name="change_photo"), # FORGOT PASSWORD path('password_reset/', auth_views.PasswordResetView.as_view(template_name="auth/password-reset.html"), name='password_reset'), path('password_reset/done/', auth_views.PasswordResetDoneView.as_view(template_name="auth/password-reset-sent.html"), name='password_reset_done'), path('reset/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.as_view(template_name='auth/password_confirm.html'), name='password_reset_confirm'), path('reset/done/', auth_views.PasswordResetCompleteView.as_view(template_name="auth/password_changed.html"), name='password_reset_complete'), ] handler404 = 'textanalyzerpy.views.error_404_views' handler500 = 'textanalyzerpy.views.error_500_views'
[ 37811, 5239, 38200, 9107, 9078, 10289, 28373, 198, 198, 464, 4600, 6371, 33279, 82, 63, 1351, 11926, 32336, 284, 5009, 13, 1114, 517, 1321, 3387, 766, 25, 198, 220, 220, 220, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 18, 13, 17, 14, 4852, 873, 14, 4023, 14, 6371, 82, 14, 198, 27730, 25, 198, 22203, 5009, 198, 220, 220, 220, 352, 13, 3060, 281, 1330, 25, 220, 422, 616, 62, 1324, 1330, 5009, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 3256, 5009, 13, 11195, 11, 1438, 11639, 11195, 11537, 198, 9487, 12, 3106, 5009, 198, 220, 220, 220, 352, 13, 3060, 281, 1330, 25, 220, 422, 584, 62, 1324, 13, 33571, 1330, 5995, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 3256, 5995, 13, 292, 62, 1177, 22784, 1438, 11639, 11195, 11537, 198, 818, 6360, 1194, 10289, 10414, 198, 220, 220, 220, 352, 13, 17267, 262, 2291, 3419, 2163, 25, 422, 42625, 14208, 13, 6371, 82, 1330, 2291, 11, 3108, 198, 220, 220, 220, 362, 13, 3060, 257, 10289, 284, 19016, 33279, 82, 25, 220, 3108, 10786, 14036, 14, 3256, 2291, 10786, 14036, 13, 6371, 82, 6, 4008, 198, 37811, 198, 11748, 42625, 14208, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 13, 12708, 1330, 9037, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 2291, 11, 302, 62, 6978, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5009, 355, 6284, 62, 33571, 198, 6738, 764, 1330, 5009, 198, 6738, 42625, 14208, 13, 33571, 13, 12708, 1330, 4691, 198, 198, 28482, 13, 15654, 13, 15654, 62, 25677, 2625, 8206, 16213, 9107, 32053, 1, 198, 28482, 13, 15654, 13, 15654, 62, 7839, 2625, 8206, 16213, 9107, 32053, 18810, 1, 198, 28482, 13, 15654, 13, 9630, 62, 7839, 2625, 14618, 284, 8255, 16213, 9107, 32053, 18810, 1, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 1303, 5984, 23678, 198, 220, 220, 220, 3108, 10786, 28482, 14, 3256, 13169, 13, 15654, 13, 6371, 82, 828, 628, 220, 220, 220, 1303, 15486, 2149, 5357, 26112, 3539, 198, 220, 220, 220, 302, 62, 6978, 7, 81, 6, 61, 12708, 29006, 30, 47, 27, 6978, 29, 15885, 8, 3, 3256, 4691, 11, 90, 6, 22897, 62, 15763, 10354, 6460, 13, 35744, 2149, 62, 13252, 2394, 92, 828, 198, 220, 220, 220, 302, 62, 6978, 7, 81, 6, 61, 11431, 29006, 30, 47, 27, 6978, 29, 15885, 8, 3, 3256, 4691, 11, 90, 6, 22897, 62, 15763, 10354, 6460, 13, 30733, 3539, 62, 13252, 2394, 92, 828, 628, 220, 220, 220, 1303, 8779, 1268, 12887, 4462, 12709, 350, 25552, 5357, 41605, 19505, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 9630, 11, 1438, 11639, 9630, 33809, 628, 220, 220, 220, 3108, 10786, 10755, 14, 3256, 5009, 13, 10755, 11, 1438, 11639, 10755, 33809, 628, 220, 220, 220, 3108, 10786, 38200, 9107, 14, 3256, 5009, 13, 38200, 9107, 11, 1438, 11639, 38200, 9107, 33809, 628, 220, 220, 220, 3108, 10786, 38200, 8863, 3256, 5009, 13, 38200, 8863, 11, 1438, 11639, 38200, 8863, 33809, 628, 220, 220, 220, 3108, 10786, 35352, 14, 3256, 5009, 13, 26124, 263, 11, 1438, 11639, 35352, 33809, 628, 220, 220, 220, 3108, 10786, 34365, 1754, 14, 3256, 5009, 13, 34365, 1754, 11, 1438, 11639, 34365, 1754, 33809, 628, 220, 220, 220, 3108, 10786, 32057, 14, 3256, 5009, 13, 32057, 11, 1438, 11639, 32057, 33809, 628, 220, 220, 220, 3108, 10786, 46002, 3256, 5009, 13, 46002, 11, 1438, 11639, 46002, 33809, 628, 220, 220, 220, 1303, 9878, 7730, 50, 29749, 11617, 198, 220, 220, 220, 3108, 10786, 14036, 14, 3256, 2291, 10786, 14036, 13, 6371, 82, 11537, 828, 628, 220, 220, 220, 3108, 10786, 12947, 3256, 5009, 13, 12947, 11, 1438, 2625, 12947, 12340, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 41605, 1268, 11, 41605, 12425, 11, 23337, 41517, 198, 220, 220, 220, 3108, 10786, 12683, 929, 3256, 5009, 13, 28144, 11712, 4933, 11, 1438, 2625, 28144, 11712, 4933, 12340, 628, 220, 220, 220, 3108, 10786, 38235, 3256, 5009, 13, 4993, 68, 47790, 11, 1438, 2625, 4993, 68, 47790, 12340, 628, 220, 220, 220, 3108, 10786, 6404, 448, 3256, 5009, 13, 4993, 417, 11187, 448, 11, 1438, 2625, 4993, 417, 11187, 448, 12340, 628, 220, 220, 220, 1303, 21965, 25664, 5357, 15859, 28270, 360, 20892, 45484, 471, 5760, 6234, 198, 220, 220, 220, 3108, 10786, 13317, 14, 3256, 5009, 13, 12982, 7407, 1780, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 13317, 12340, 628, 220, 220, 220, 3108, 10786, 13317, 14, 85, 17, 3256, 5009, 13, 13317, 85, 17, 11, 1438, 2625, 13317, 85, 17, 12340, 628, 220, 220, 220, 3108, 10786, 28712, 14, 3256, 5009, 13, 4933, 38734, 35215, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 28712, 12340, 628, 220, 220, 220, 3108, 10786, 28712, 62, 13138, 14, 3256, 5009, 13, 28712, 62, 13138, 11, 1438, 2625, 28712, 62, 2385, 919, 12340, 628, 220, 220, 220, 1303, 5550, 2538, 9328, 15859, 28270, 29397, 4177, 2849, 198, 220, 220, 220, 3108, 7203, 33678, 62, 23317, 1600, 5009, 13, 33678, 62, 23317, 11, 1438, 2625, 33678, 62, 23317, 12340, 198, 220, 220, 220, 198, 220, 220, 220, 1303, 27841, 17941, 1847, 21965, 25664, 360, 20892, 45484, 5870, 15567, 1137, 198, 220, 220, 220, 3108, 10786, 3803, 62, 23074, 3256, 5009, 13, 3803, 62, 23074, 11, 1438, 2625, 3803, 62, 23074, 12340, 628, 220, 220, 220, 1303, 7473, 38, 2394, 41752, 54, 12532, 198, 220, 220, 220, 3108, 10786, 28712, 62, 42503, 14, 3256, 6284, 62, 33571, 13, 35215, 4965, 316, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 2625, 18439, 14, 28712, 12, 42503, 13, 6494, 12340, 1438, 11639, 28712, 62, 42503, 33809, 628, 220, 220, 220, 3108, 10786, 28712, 62, 42503, 14, 28060, 14, 3256, 6284, 62, 33571, 13, 35215, 4965, 316, 45677, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 2625, 18439, 14, 28712, 12, 42503, 12, 34086, 13, 6494, 12340, 1438, 11639, 28712, 62, 42503, 62, 28060, 33809, 628, 220, 220, 220, 3108, 10786, 42503, 14, 27, 27112, 65, 2414, 29, 14, 27, 30001, 29, 14, 3256, 6284, 62, 33571, 13, 35215, 4965, 316, 18546, 2533, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 11639, 18439, 14, 28712, 62, 10414, 2533, 13, 6494, 33809, 1438, 11639, 28712, 62, 42503, 62, 10414, 2533, 33809, 628, 220, 220, 220, 3108, 10786, 42503, 14, 28060, 14, 3256, 6284, 62, 33571, 13, 35215, 4965, 316, 20988, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 2625, 18439, 14, 28712, 62, 40985, 13, 6494, 12340, 1438, 11639, 28712, 62, 42503, 62, 20751, 33809, 628, 2361, 198, 198, 30281, 26429, 796, 705, 5239, 38200, 9107, 9078, 13, 33571, 13, 18224, 62, 26429, 62, 33571, 6, 198, 30281, 4059, 796, 705, 5239, 38200, 9107, 9078, 13, 33571, 13, 18224, 62, 4059, 62, 33571, 6, 628 ]
2.88491
1,173
# template for "Guess the number" mini-project # input will come from buttons and an input field # all output for the game will be printed in the console import simplegui import random import math number_range = 100 player_guess = 0 secret_number = 0 number_of_guesses = 7 counter = 7 # helper function to start and restart the game # define event handlers for control panel # create frame f = simplegui.create_frame('Guess the Number', 200, 200) # register event handlers for control elements and start frame f.add_button('Range is [0, 100)', range100, 200) f.add_button('Range is [0, 1000)', range1000, 200) f.add_input('Enter a guess', input_guess, 200) # call new_game new_game() # always remember to check your completed program against the grading rubric
[ 2, 11055, 329, 366, 8205, 408, 262, 1271, 1, 9927, 12, 16302, 201, 198, 2, 5128, 481, 1282, 422, 12163, 290, 281, 5128, 2214, 201, 198, 2, 477, 5072, 329, 262, 983, 481, 307, 10398, 287, 262, 8624, 201, 198, 201, 198, 11748, 2829, 48317, 201, 198, 11748, 4738, 201, 198, 11748, 10688, 201, 198, 201, 198, 17618, 62, 9521, 796, 1802, 201, 198, 7829, 62, 5162, 408, 796, 657, 201, 198, 21078, 62, 17618, 796, 657, 201, 198, 17618, 62, 1659, 62, 5162, 44667, 796, 767, 201, 198, 24588, 796, 767, 201, 198, 2, 31904, 2163, 284, 923, 290, 15765, 262, 983, 201, 198, 201, 198, 201, 198, 2, 8160, 1785, 32847, 329, 1630, 6103, 201, 198, 220, 220, 220, 220, 201, 198, 2, 2251, 5739, 201, 198, 69, 796, 2829, 48317, 13, 17953, 62, 14535, 10786, 8205, 408, 262, 7913, 3256, 939, 11, 939, 8, 201, 198, 201, 198, 2, 7881, 1785, 32847, 329, 1630, 4847, 290, 923, 5739, 201, 198, 69, 13, 2860, 62, 16539, 10786, 17257, 318, 685, 15, 11, 1802, 8, 3256, 2837, 3064, 11, 939, 8, 201, 198, 69, 13, 2860, 62, 16539, 10786, 17257, 318, 685, 15, 11, 8576, 8, 3256, 2837, 12825, 11, 939, 8, 201, 198, 69, 13, 2860, 62, 15414, 10786, 17469, 257, 4724, 3256, 5128, 62, 5162, 408, 11, 939, 8, 201, 198, 201, 198, 2, 869, 649, 62, 6057, 220, 201, 198, 3605, 62, 6057, 3419, 201, 198, 201, 198, 201, 198, 2, 1464, 3505, 284, 2198, 534, 5668, 1430, 1028, 262, 43165, 6437, 1173, 201, 198 ]
3.111969
259
#!/usr/bin/env python # -*- coding: utf-8 -*- # ============================================================================= # @file rootshelve.py # # This is shelve-like database with ROOT.TFile as internal storage # # @see zipshelve # @see sqliteshelve # # # Create new DB: # # @code # # >>> import rootshelve as DBASE ## import the RootShelve module # >>> db = DBASE.open ('a_db', 'n') ## create new DB # ... # >>> abcde = ... # >>> db['some_key'] = abcde ## add information to DB # ... # >>> db.close() # # @endcode # # Access to DB in read-only mode : # # @code # # >>> import rootshelve as DBASE ## import the ZipShelve module # >>> db = DBASE.open ('a_db' , 'r' ) ## access existing dbase in read-only mode # ... # >>> for key in db : print(key) # ... # >>> abcd = db['some_key'] # # @endcode # # Access existing DB in update mode : # # @code # # >>> import rootshelve as DBASE ## import the ZipShelve module # >>> db = DBASE.open ('a_db' ) ## access existing dbase in update mode # ... # >>> for key in db : print(key) # ... # >>> abcd = db['some_key'] # # @endcode # # @attention: When one tries to read the database with pickled ROOT object using newer # version of ROOT, one could get a ROOT read error, # in case of evoltuion in ROOT streamers for some classes, e.g. <code>ROOT.TH1D</code>> # @code # Error in <TBufferFile::ReadClassBuffer>: Could not find the StreamerInfo for version 2 of the class TH1D, object skipped at offset 19 # Error in <TBufferFile::CheckByteCount>: object of class TH1D read too few bytes: 2 instead of 878 # @endcode # The solution is simple and described in file ostap.io.dump_root # @see ostap.io.dump_root # # @author Vanya BELYAEV [email protected] # @date 2015-07-31 # # ============================================================================= """ This is ROOT-based version of shelve database. Create new DB: >>> import rootshelve as DBASE ## import the ZipShelve module >>> db = DBASE.open ('a_db', 'n') ## create new DB ... >>> abcde = ... >>> db['some_key'] = abcde ## add information to DB ... >>> db.close() Access to DB in read-only mode : >>> import rootshelve as DBASE ## import the ZipShelve module >>> db = DBASE.open ('a_db' , 'r' ) ## access existing dbase in read-only mode ... >>> for key in db : print(key) ... >>> abcd = db['some_key'] Access existing DB in update mode : >>> import rootshelve as DBASE ## import the RootShelve module >>> db = DBASE.open ('a_db' ) ## access existing dbase in update mode ... >>> for key in db : print(key) ... >>> abcd = db['some_key'] Attention: When one tries to read the database with pickled ROOT object using newer version of ROOT, one could get a ROOT read error, in case of evoltuion in ROOT streamers for some classes, e.g. ROOT.TH1D > Error in <TBufferFile::ReadClassBuffer>: Could not find the StreamerInfo for version 2 of the class TH1D, object skipped at offset 19 > Error in <TBufferFile::CheckByteCount>: object of class TH1D read too few bytes: 2 instead of 878 The solution is simple and described in file ostap.io.dump_root - see ostap.io.dump_root """ # ============================================================================= __author__ = "Vanya BELYAEV [email protected]" __date__ = "2015-07-31" __version__ = "$Revision$" # ============================================================================= __all__ = ( 'RootShelf' , ## The DB-itself 'RootOnlyShelf' , ## "data base" for ROOT-only objects 'open' , ## helper function to hide the actual DB 'tmpdb' , ## helper function to create TEMPORARY RootShelve database ) # ============================================================================= import ROOT, shelve, zlib, os import ostap.io.root_file from sys import version_info as python_version # ============================================================================= try : from cPickle import Pickler, Unpickler, HIGHEST_PROTOCOL except ImportError : from pickle import Pickler, Unpickler, HIGHEST_PROTOCOL # ============================================================================= try : from io import BytesIO except ImportError : from shelve import StringIO as BytesIO # ============================================================================= from ostap.io.dbase import TmpDB # ============================================================================= from ostap.logger.logger import getLogger if '__main__' == __name__ : logger = getLogger ( 'ostap.io.rootshelve' ) else : logger = getLogger ( __name__ ) logger.debug ( "Simple generic ROOT-based shelve-like-database" ) # ============================================================================= PROTOCOL = 2 # ============================================================================= ## @class RootOnlyShelf # Plain vanilla DBASE for ROOT-object (only) # essentially it is nothing more than just shelve-like interface for ROOT-files # @author Vanya BELYAEV [email protected] # @date 2015-07-31 # @attention It CRUCIALLY depends on the proper TFile-decorations # from ostap.io.root_file module # @code # db = RootOnlyShelf('mydb.root','c') # h1 = ... # db ['histogram'] = h1 # db.ls() # @endcode # @see Ostap.TFileDeco class RootOnlyShelf(shelve.Shelf): """Plain vanilla DBASE for ROOT-object (only) Essentially it is nothing more than just shelve-like interface for ROOT-files Attention: It CRUCIALLY depends on the proper TFile-decorations from ostap.io.root_file module >>> db = RooOnlyShelf('mydb.root','c') >>> h1 = ... >>> db ['histogram'] = h1 >>> db.ls() """ ## constructors # @attention it depends on proper TFile-decorations in ostap.io.root_file module def __init__( self , filename , mode , writeback = False , args = () ) : """ Create Root-only database >>> db = RooOnlyShelf('mydb.root','c') >>> h1 = ... """ self.__filename = filename from ostap.io.root_file import ROOTCWD, open_mode with ROOTCWD() : ## NB: preserve current directory in ROOT! rfile = ROOT.TFile.Open ( filename , open_mode ( mode ) , *args ) shelve.Shelf.__init__ ( self , rfile , writeback ) self.nominal_dbname = filename # ========================================================================= ## clone the database into new one # @code # db = ... # ndb = db.clone ( 'new_file.db' ) # @endcode def clone ( self , new_name , keys = () ) : """ Clone the database into new one >>> old_db = ... >>> new_db = new_db.clone ( 'new_file.db' ) """ new_db = RootOnlyShelf ( new_name , mode = 'c' , writeback = self.writeback ) ## copy the content if keys : for key in self.keys () : if key in keys : new_db [ key ] = self [ key ] else : for key in self.keys () : new_db [ key ] = self [ key ] new_db.sync () return new_db # ========================================================================= ## Iterator over avilable keys (patterns included). # Pattern matching is performed accoriding to # fnmatch/glob/shell rules (default) or regex # @code # db = ... # for k in db.ikeys('*MC*') : print(k) # @endcode def ikeys ( self , pattern = '' , regex = False ) : """Iterator over avilable keys (patterns included). Pattern matching is performed according to fnmatch/glob/shell rules (default) or regex >>> db = ... >>> for k in db.ikeys('*MC*') : print(k) """ keys_ = self.keys() if not pattern : good = lambda k : True elif regex : import re re_cmp = re.compile ( pattern ) good = lambda k : re_cmp.match ( k ) else : import fnmatch good = lambda s : fnmatch.fnmatchcase ( k , pattern ) keys_ = self.keys() for k in sorted ( keys_ ) : if good ( k ) : yield k @property def filename ( self ) : """``filename'' : the file name for root-database""" return self.__filename # ============================================================================= ## get item from ROOT-file # @code # obj = db['A/B/C/histo'] # @endcode # @author Vanya BELYAEV [email protected] # @date 2015-07-31 def __getitem__ ( self , key ) : """Get the item from ROOT-file >>> obj = db['A/B/C/histo'] """ try: value = self.cache [ key ] except KeyError: value = self.dict [ key ] if self.writeback: self.cache [ key ] = value return value # ============================================================================= ## put item into ROOT-file # @code # db['A/B/C/histo'] = obj # @endcode # @author Vanya BELYAEV [email protected] # @date 2015-07-31 def __setitem__ ( self , key , value ) : """ Put item into ROOT-file >>> db ['A/B/C/histo'] = obj """ if self.writeback : self.cache [ key ] = value self.dict [ key ] = value ## close the database def close ( self ) : """Close the database """ shelve.Shelf.close ( self ) # ============================================================================= ## need to disable endcode/decode for the keys if python_version.major > 2 : RootOnlyShelf.__iter__ = _ros_iter_ RootOnlyShelf.__contains__ = _ros_contains_ RootOnlyShelf.__ros_get__ = _ros_get_ RootOnlyShelf.__delitem__ = _ros_delitem_ # ============================================================================= ## @class RootShelf # The actual class for ROOT-based shelve-like data base # it implement shelve-interface with underlying ROOT-file as storage # - ROOT-objects are stored directly in the ROOT-file, # - other objects are pickled and stored via ROOT.TObjString # @code # db = RootShelf( 'mydb.root' , 'c' ) # db['histo'] = h1 # db['tuple'] = ('a',1,h1) # @endcode # @see RootOnlyShelf # @author Vanya BELYAEV [email protected] # @date 2015-07-31 class RootShelf(RootOnlyShelf): """ The actual class for ROOT-based shelve-like data base it implement shelve-interface with underlyinog ROOT-fiel storage - ROOT-object are store ddirectly in the ROOT-file, - other objects are pickled and stored in ROOT.TObjString >>> db = RootShelf( 'mydb.root' , 'c' ) >>> db['histo'] = h1 >>> db['tuple'] = ('a',1,h1) """ # ========================================================================= ## clone the database into new one # @code # db = ... # ndb = db.clone ( 'new_file.db' ) # @endcode def clone ( self , new_name , keys = () ) : """ Clone the database into new one >>> old_db = ... >>> new_db = new_db.clone ( 'new_file.db' ) """ new_db = RootShelf ( new_name , mode = 'c' , protocol = self.protocol , compress = self.compresslevel ) ## copy the content if keys : for key in self.keys() : if key in keys : new_db [ key ] = self [ key ] else : for key in self.keys() : new_db [ key ] = self [ key ] new_db.sync () return new_db @property def protocol ( self ) : """``protocol'' : pickle protocol""" return self.__protocol @property def compresslevel ( self ) : """``compresslevel'' : zlib compression level """ return self.__compresslevel # ============================================================================= ## get object (unpickle if needed) from dbase # @code # obj = db['A/B/C'] # @endcode # @author Vanya BELYAEV [email protected] # @date 2015-07-31 def __getitem__ ( self , key ): """ Get object (unpickle if needed) from dbase >>> obj = db['A/B/C'] """ try: value = self.cache [ key ] except KeyError: ## value = self.dict [ key ] tkey , value = self.dict.get_key_object ( key ) self.__sizes [ key ] = tkey.GetNbytes() ## blob ? from ostap.core.core import Ostap if isinstance ( value , Ostap.BLOB ) : ## unpack it! z = Ostap.blob_to_bytes ( value ) u = zlib.decompress ( z ) ## unpickle it! f = BytesIO ( u ) value = Unpickler(f).load() del z , u , f if self.writeback: self.cache[key] = value return value # ============================================================================= ## Add object (pickle if needed) to dbase # @code # db['A/B/C'] = obj # @endcode # @author Vanya BELYAEV [email protected] # @date 2015-07-31 def __setitem__ ( self , key , value ) : """ Add object (pickle if needed) to dbase >>> db['A/B/C'] = obj """ if self.writeback: self.cache [ key ] = value ## not TObject? pickle it and convert to Ostap.BLOB if not isinstance ( value , ROOT.TObject ) : ## (1) pickle it f = BytesIO ( ) p = Pickler ( f , self.protocol ) p.dump ( value ) ## (2) zip it z = zlib.compress ( f.getvalue() , self.compresslevel ) self.__sizes [ key ] = len ( z ) ## (3) put it into BLOB from ostap.core.core import Ostap blob = Ostap.BLOB ( key ) status = Ostap.blob_from_bytes ( blob , z ) value = blob del z , f , p ## finally use ROOT self.dict [ key ] = value # ========================================================================= ## list the avilable keys def ls ( self , pattern = '' , load = True ) : """List the available keys (patterns included). Pattern matching is performed accoriding to fnmatch/glob/shell rules [it is not regex!] >>> db = ... >>> db.ls() ## all keys >>> db.ls ('*MC*') """ n = os.path.basename ( self.filename ) ap = os.path.abspath ( self.filename ) try : fs = os.path.getsize ( self.filename ) except : fs = -1 if fs < 0 : size = "???" elif fs < 1024 : size = str(fs) elif fs < 1024 * 1024 : size = '%.2fkB' % ( float ( fs ) / 1024 ) elif fs < 1024 * 1024 * 1024 : size = '%.2fMB' % ( float ( fs ) / ( 1024 * 1024 ) ) else : size = '%.2fGB' % ( float ( fs ) / ( 1024 * 1024 * 1024 ) ) keys = [] for k in self.ikeys ( pattern ): keys.append ( k ) keys.sort() if keys : mlen = max ( [ len(k) for k in keys] ) + 2 else : mlen = 2 fmt = ' --> %%-%ds : %%s' % mlen table = [ ( 'Key' , 'type' , ' size ') ] for k in keys : size = '' ss = self.__sizes.get ( k , -1 ) if ss < 0 : size = '' elif ss < 1024 : size = '%7d ' % ss elif ss < 1024 * 1024 : size = '%7.2f kB' % ( float ( ss ) / 1024 ) elif ss < 1024 * 1024 * 1024 : size = '%7.2f MB' % ( float ( ss ) / ( 1024 * 1024 ) ) else : size = '%7.2f GB' % ( float ( ss ) / ( 1024 * 1024 * 1024 ) ) ot = type ( self [ k ] ) otype = ot.__cppname__ if hasattr ( ot , '__cppname__' ) else ot.__name__ row = '{:15}'.format ( k ) , '{:15}'.format ( otype ) , size table.append ( row ) import ostap.logger.table as T t = self.__class__.__name__ title = '%s:%s' % ( t , n ) maxlen = 0 for row in table : rowlen = 0 for i in row : rowlen += len ( i ) maxlen = max ( maxlen, rowlen ) if maxlen + 3 <= len ( title ) : title = '<.>' + title [ -maxlen : ] table = T.table ( table , title = title , prefix = '# ' ) ll = getLogger ( n ) line = 'Database %s:%s #keys: %d size: %s' % ( t , ap , len ( self ) , size ) ll.info ( '%s\n%s' % ( line , table ) ) ## close the database def close ( self ) : """Close the database """ RootOnlyShelf.close ( self ) # ============================================================================= ## helper function to open RootShelve data base # @code # import RootShelve as DBASE # db = DBASE.open ( 'mydb.root' , 'c' ) # @endcode # @author Vanya BELYAEV [email protected] # @date 2010-04-30 def open ( filename , mode = 'c' , writeback = False , *args ) : """ Helper function to open RootShelve data base >>> import RootShelve as DBASE >>> db = DBASE.open ( 'mydb.root' , 'c' ) """ return RootShelf ( filename , mode , writeback , * args ) # ============================================================================= ## @class TmpRootShelf # TEMPORARY The actual class for ROOT-based shelve-like data base # it implements shelve-interface with underlying ROOT-file as a storage # - ROOT-objects are stored directly in the ROOT-file, # - other objects are pickled and stored in ROOT.TObjString # @code # db = TmmRootShelf() # db['histo'] = h1 # db['tuple'] = ('a',1,h1) # @endcode # @see RootShelf # @author Vanya BELYAEV [email protected] # @date 2015-07-31 class TmpRootShelf(RootShelf,TmpDB): """The actual class for TEMPORARY ROOT-based shelve-like data base it implement shelve-intergase with underlyinog ROOT-fiel storage - ROOT-object are stored directly in the ROOT-file, - other objects are pickled and stored via ROOT.TObjString see RootShelf """ ## close and delete the file # ============================================================================= ## helper function to open RootShelve data base # @code # import RootShelve as DBASE # db = DBASE.open ( 'mydb.root' , 'c' ) # @endcode # @author Vanya BELYAEV [email protected] # @date 2010-04-30 def tmpdb ( protocol = HIGHEST_PROTOCOL , compress = zlib.Z_DEFAULT_COMPRESSION , remove = True , ## immediate remove keep = False , *args ) : ## keep it """ Helper function to open TEMPPORARY RootShelve data base >>> import RootShelve as DBASE >>> db = DBASE.tmpdb() """ return TmpRootShelf ( protocol = protocol , compress = compress , remove = remove , keep = keep , *args ) # ============================================================================= if '__main__' == __name__ : from ostap.utils.docme import docme docme ( __name__ , logger = logger ) # ============================================================================= ## The END # =============================================================================
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 38093, 25609, 198, 2, 2488, 7753, 11135, 2978, 303, 13, 9078, 198, 2, 220, 198, 2, 770, 318, 7497, 303, 12, 2339, 6831, 351, 15107, 2394, 13, 51, 8979, 355, 5387, 6143, 220, 198, 2, 198, 2, 2488, 3826, 1976, 2419, 2978, 303, 198, 2, 2488, 3826, 44161, 2737, 2978, 303, 198, 2, 198, 2, 198, 2, 13610, 649, 20137, 25, 198, 2, 198, 2, 2488, 8189, 198, 2, 198, 2, 13163, 1330, 11135, 2978, 303, 355, 20137, 11159, 220, 220, 22492, 1330, 262, 20410, 50, 2978, 303, 8265, 220, 198, 2, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 3256, 705, 77, 11537, 220, 220, 220, 22492, 2251, 649, 20137, 198, 2, 2644, 198, 2, 13163, 450, 66, 2934, 796, 2644, 198, 2, 13163, 20613, 17816, 11246, 62, 2539, 20520, 796, 220, 450, 66, 2934, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 751, 1321, 284, 20137, 198, 2, 2644, 198, 2, 13163, 20613, 13, 19836, 3419, 198, 2, 198, 2, 2488, 437, 8189, 220, 198, 2, 198, 2, 8798, 284, 20137, 287, 1100, 12, 8807, 4235, 1058, 198, 2, 198, 2, 2488, 8189, 198, 2, 198, 2, 13163, 1330, 11135, 2978, 303, 220, 355, 20137, 11159, 22492, 1330, 262, 38636, 50, 2978, 303, 8265, 220, 198, 2, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 6, 837, 705, 81, 6, 1267, 220, 220, 220, 22492, 1895, 4683, 288, 8692, 287, 1100, 12, 8807, 4235, 198, 2, 2644, 198, 2, 13163, 329, 1994, 287, 20613, 1058, 3601, 7, 2539, 8, 198, 2, 2644, 198, 2, 13163, 450, 10210, 796, 20613, 17816, 11246, 62, 2539, 20520, 198, 2, 198, 2, 2488, 437, 8189, 220, 198, 2, 198, 2, 8798, 4683, 20137, 287, 4296, 4235, 1058, 198, 2, 198, 2, 2488, 8189, 198, 2, 198, 2, 13163, 1330, 11135, 2978, 303, 355, 20137, 11159, 220, 22492, 1330, 262, 38636, 50, 2978, 303, 8265, 220, 198, 2, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 6, 1267, 220, 220, 220, 22492, 1895, 4683, 288, 8692, 287, 4296, 4235, 198, 2, 2644, 198, 2, 13163, 329, 1994, 287, 20613, 1058, 3601, 7, 2539, 8, 198, 2, 2644, 198, 2, 13163, 450, 10210, 796, 20613, 17816, 11246, 62, 2539, 20520, 198, 2, 198, 2, 2488, 437, 8189, 220, 198, 2, 198, 2, 2488, 1078, 1463, 25, 1649, 530, 8404, 284, 1100, 262, 6831, 351, 2298, 992, 15107, 2394, 2134, 1262, 15064, 198, 2, 2196, 286, 15107, 2394, 11, 530, 714, 651, 257, 15107, 2394, 1100, 4049, 11, 198, 2, 287, 1339, 286, 819, 5978, 84, 295, 287, 15107, 2394, 4269, 364, 329, 617, 220, 6097, 11, 304, 13, 70, 13, 1279, 8189, 29, 13252, 2394, 13, 4221, 16, 35, 3556, 8189, 4211, 198, 2, 2488, 8189, 220, 198, 2, 13047, 287, 1279, 22737, 13712, 8979, 3712, 5569, 9487, 28632, 31175, 10347, 407, 1064, 262, 13860, 263, 12360, 329, 2196, 362, 286, 262, 1398, 2320, 16, 35, 11, 2134, 26684, 379, 11677, 678, 198, 2, 13047, 287, 1279, 22737, 13712, 8979, 3712, 9787, 40778, 12332, 31175, 2134, 286, 1398, 2320, 16, 35, 1100, 1165, 1178, 9881, 25, 362, 2427, 286, 807, 3695, 198, 2, 2488, 437, 8189, 198, 2, 383, 4610, 318, 2829, 290, 3417, 287, 220, 2393, 23619, 499, 13, 952, 13, 39455, 62, 15763, 198, 2, 2488, 3826, 23619, 499, 13, 952, 13, 39455, 62, 15763, 198, 2, 220, 198, 2, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 198, 2, 220, 198, 2, 38093, 25609, 198, 37811, 770, 318, 15107, 2394, 12, 3106, 2196, 286, 7497, 303, 6831, 13, 628, 13610, 649, 20137, 25, 628, 13163, 1330, 11135, 2978, 303, 355, 20137, 11159, 22492, 1330, 262, 38636, 50, 2978, 303, 8265, 220, 198, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 3256, 705, 77, 11537, 220, 220, 220, 22492, 2251, 649, 20137, 198, 2644, 198, 13163, 450, 66, 2934, 796, 2644, 198, 13163, 20613, 17816, 11246, 62, 2539, 20520, 796, 220, 450, 66, 2934, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 751, 1321, 284, 20137, 198, 2644, 198, 13163, 20613, 13, 19836, 3419, 628, 8798, 284, 20137, 287, 1100, 12, 8807, 4235, 1058, 628, 13163, 1330, 11135, 2978, 303, 355, 20137, 11159, 220, 22492, 1330, 262, 38636, 50, 2978, 303, 8265, 220, 198, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 6, 837, 705, 81, 6, 1267, 220, 220, 220, 22492, 1895, 4683, 288, 8692, 287, 1100, 12, 8807, 4235, 198, 2644, 198, 13163, 329, 1994, 287, 20613, 1058, 3601, 7, 2539, 8, 198, 2644, 198, 13163, 450, 10210, 796, 20613, 17816, 11246, 62, 2539, 20520, 628, 8798, 4683, 20137, 287, 4296, 4235, 1058, 628, 13163, 1330, 11135, 2978, 303, 355, 20137, 11159, 220, 220, 22492, 1330, 262, 20410, 50, 2978, 303, 8265, 220, 198, 13163, 20613, 796, 20137, 11159, 13, 9654, 19203, 64, 62, 9945, 6, 1267, 220, 220, 220, 22492, 1895, 4683, 288, 8692, 287, 4296, 4235, 198, 2644, 198, 13163, 329, 1994, 287, 20613, 1058, 3601, 7, 2539, 8, 198, 2644, 198, 13163, 450, 10210, 796, 20613, 17816, 11246, 62, 2539, 20520, 628, 47406, 25, 1649, 530, 8404, 284, 1100, 262, 6831, 351, 2298, 992, 15107, 2394, 2134, 1262, 15064, 198, 2196, 286, 15107, 2394, 11, 530, 714, 651, 257, 15107, 2394, 1100, 4049, 11, 198, 287, 1339, 286, 819, 5978, 84, 295, 287, 15107, 2394, 4269, 364, 329, 617, 220, 6097, 11, 304, 13, 70, 13, 15107, 2394, 13, 4221, 16, 35, 198, 1875, 13047, 287, 1279, 22737, 13712, 8979, 3712, 5569, 9487, 28632, 31175, 10347, 407, 1064, 262, 13860, 263, 12360, 329, 2196, 362, 286, 262, 1398, 2320, 16, 35, 11, 2134, 26684, 379, 11677, 678, 198, 1875, 13047, 287, 1279, 22737, 13712, 8979, 3712, 9787, 40778, 12332, 31175, 2134, 286, 1398, 2320, 16, 35, 1100, 1165, 1178, 9881, 25, 362, 2427, 286, 807, 3695, 198, 383, 4610, 318, 2829, 290, 3417, 287, 220, 2393, 23619, 499, 13, 952, 13, 39455, 62, 15763, 198, 532, 766, 23619, 499, 13, 952, 13, 39455, 62, 15763, 220, 198, 37811, 198, 2, 38093, 25609, 198, 834, 9800, 834, 220, 796, 366, 53, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 270, 538, 13, 622, 1, 198, 834, 4475, 834, 220, 220, 220, 796, 366, 4626, 12, 2998, 12, 3132, 1, 198, 834, 9641, 834, 796, 17971, 18009, 1166, 3, 1, 220, 198, 2, 38093, 25609, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 705, 30016, 3347, 1652, 6, 220, 220, 220, 220, 837, 22492, 383, 20137, 12, 270, 944, 198, 220, 220, 220, 705, 30016, 10049, 3347, 1652, 6, 837, 22492, 366, 7890, 2779, 1, 329, 15107, 2394, 12, 8807, 5563, 198, 220, 220, 220, 705, 9654, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 22492, 31904, 2163, 284, 7808, 262, 4036, 20137, 198, 220, 220, 220, 705, 22065, 9945, 6, 220, 220, 220, 220, 220, 220, 220, 220, 837, 22492, 31904, 2163, 284, 2251, 309, 39494, 1581, 13153, 220, 20410, 50, 2978, 303, 6831, 220, 198, 220, 220, 220, 1267, 198, 2, 38093, 25609, 198, 11748, 15107, 2394, 11, 7497, 303, 11, 1976, 8019, 11, 28686, 220, 198, 11748, 23619, 499, 13, 952, 13, 15763, 62, 7753, 198, 6738, 220, 220, 25064, 1330, 2196, 62, 10951, 355, 21015, 62, 9641, 220, 198, 2, 38093, 25609, 198, 28311, 1058, 220, 198, 220, 220, 220, 422, 269, 31686, 293, 1330, 12346, 1754, 11, 791, 27729, 1754, 11, 34677, 6465, 62, 4805, 2394, 4503, 3535, 198, 16341, 17267, 12331, 1058, 220, 198, 220, 220, 220, 422, 220, 2298, 293, 1330, 12346, 1754, 11, 791, 27729, 1754, 11, 34677, 6465, 62, 4805, 2394, 4503, 3535, 198, 2, 38093, 25609, 220, 220, 220, 220, 198, 28311, 1058, 198, 220, 220, 220, 422, 33245, 220, 220, 220, 220, 1330, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2750, 4879, 9399, 220, 198, 16341, 17267, 12331, 1058, 220, 198, 220, 220, 220, 422, 7497, 303, 1330, 10903, 9399, 355, 2750, 4879, 9399, 198, 2, 38093, 25609, 198, 6738, 220, 220, 23619, 499, 13, 952, 13, 67, 8692, 1330, 309, 3149, 11012, 220, 198, 2, 38093, 25609, 198, 6738, 23619, 499, 13, 6404, 1362, 13, 6404, 1362, 1330, 651, 11187, 1362, 198, 361, 705, 834, 12417, 834, 6, 6624, 11593, 3672, 834, 1058, 49706, 796, 651, 11187, 1362, 357, 705, 455, 499, 13, 952, 13, 19150, 2978, 303, 6, 1267, 198, 17772, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 49706, 796, 651, 11187, 1362, 357, 11593, 3672, 834, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 6404, 1362, 13, 24442, 357, 366, 26437, 14276, 15107, 2394, 12, 3106, 7497, 303, 12, 2339, 12, 48806, 1, 1267, 198, 2, 38093, 25609, 198, 4805, 2394, 4503, 3535, 796, 362, 198, 2, 38093, 25609, 198, 2235, 2488, 4871, 20410, 10049, 3347, 1652, 198, 2, 220, 28847, 16858, 20137, 11159, 329, 15107, 2394, 12, 15252, 357, 8807, 8, 198, 2, 220, 6986, 340, 318, 2147, 517, 621, 655, 7497, 303, 12, 2339, 7071, 329, 15107, 2394, 12, 16624, 198, 2, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 198, 2, 220, 2488, 1078, 1463, 632, 8740, 9598, 40, 19807, 8338, 319, 262, 1774, 309, 8979, 12, 12501, 273, 602, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 23619, 499, 13, 952, 13, 15763, 62, 7753, 8265, 198, 2, 220, 2488, 8189, 198, 2, 220, 20613, 796, 20410, 10049, 3347, 1652, 10786, 1820, 9945, 13, 15763, 41707, 66, 11537, 198, 2, 220, 289, 16, 796, 2644, 198, 2, 220, 20613, 37250, 10034, 21857, 20520, 796, 289, 16, 198, 2, 220, 20613, 13, 7278, 3419, 198, 2, 220, 2488, 437, 8189, 220, 198, 2, 220, 2488, 3826, 38919, 499, 13, 51, 8979, 10707, 78, 198, 4871, 20410, 10049, 3347, 1652, 7, 82, 2978, 303, 13, 3347, 1652, 2599, 198, 220, 220, 220, 37227, 3646, 391, 16858, 20137, 11159, 329, 15107, 2394, 12, 15252, 357, 8807, 8, 198, 220, 220, 220, 34039, 340, 318, 2147, 517, 621, 655, 7497, 303, 12, 2339, 198, 220, 220, 220, 7071, 329, 15107, 2394, 12, 16624, 198, 220, 220, 220, 47406, 25, 632, 8740, 9598, 40, 19807, 8338, 319, 262, 1774, 198, 220, 220, 220, 309, 8979, 12, 12501, 273, 602, 422, 23619, 499, 13, 952, 13, 15763, 62, 7753, 8265, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 20613, 796, 371, 2238, 10049, 3347, 1652, 10786, 1820, 9945, 13, 15763, 41707, 66, 11537, 198, 220, 220, 220, 13163, 289, 16, 796, 2644, 198, 220, 220, 220, 13163, 20613, 37250, 10034, 21857, 20520, 796, 289, 16, 198, 220, 220, 220, 13163, 20613, 13, 7278, 3419, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 22492, 5678, 669, 220, 198, 220, 220, 220, 1303, 220, 2488, 1078, 1463, 340, 8338, 319, 1774, 309, 8979, 12, 12501, 273, 602, 287, 23619, 499, 13, 952, 13, 15763, 62, 7753, 8265, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 2116, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 1891, 220, 220, 796, 10352, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 220, 220, 220, 220, 220, 220, 220, 796, 7499, 220, 220, 220, 220, 220, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13610, 20410, 12, 8807, 6831, 220, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 796, 371, 2238, 10049, 3347, 1652, 10786, 1820, 9945, 13, 15763, 41707, 66, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 289, 16, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 34345, 796, 29472, 220, 198, 220, 220, 220, 220, 220, 220, 220, 422, 23619, 499, 13, 952, 13, 15763, 62, 7753, 1330, 15107, 2394, 34, 22332, 11, 1280, 62, 14171, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15107, 2394, 34, 22332, 3419, 1058, 22492, 41354, 25, 12201, 1459, 8619, 287, 15107, 2394, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 7753, 796, 15107, 2394, 13, 51, 8979, 13, 11505, 357, 29472, 220, 220, 837, 1280, 62, 14171, 357, 4235, 1267, 837, 1635, 22046, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7497, 303, 13, 3347, 1652, 13, 834, 15003, 834, 357, 2116, 837, 374, 7753, 837, 3551, 1891, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26601, 1292, 62, 9945, 3672, 796, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 2559, 198, 220, 220, 220, 22492, 17271, 262, 6831, 656, 649, 530, 198, 220, 220, 220, 1303, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 20613, 220, 796, 2644, 198, 220, 220, 220, 1303, 220, 299, 9945, 796, 20613, 13, 21018, 357, 705, 3605, 62, 7753, 13, 9945, 6, 1267, 198, 220, 220, 220, 1303, 220, 2488, 437, 8189, 198, 220, 220, 220, 825, 17271, 357, 2116, 837, 649, 62, 3672, 837, 8251, 796, 7499, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30698, 262, 6831, 656, 649, 530, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1468, 62, 9945, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 649, 62, 9945, 796, 649, 62, 9945, 13, 21018, 357, 705, 3605, 62, 7753, 13, 9945, 6, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9945, 796, 20410, 10049, 3347, 1652, 357, 649, 62, 3672, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 220, 220, 220, 220, 220, 220, 220, 796, 220, 705, 66, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 1891, 220, 220, 796, 2116, 13, 13564, 1891, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 4866, 262, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8251, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 7499, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 8251, 220, 220, 220, 220, 220, 1058, 649, 62, 9945, 685, 1994, 2361, 796, 2116, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 7499, 1058, 649, 62, 9945, 685, 1994, 2361, 796, 2116, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9945, 13, 27261, 7499, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 9945, 220, 628, 220, 220, 220, 1303, 38093, 2559, 198, 220, 220, 220, 22492, 220, 40806, 1352, 625, 1196, 346, 540, 8251, 357, 33279, 82, 3017, 737, 198, 220, 220, 220, 1303, 220, 220, 23939, 12336, 318, 6157, 697, 273, 2530, 284, 198, 220, 220, 220, 1303, 220, 220, 24714, 15699, 14, 4743, 672, 14, 29149, 3173, 357, 12286, 8, 393, 40364, 220, 198, 220, 220, 220, 1303, 220, 220, 2488, 8189, 220, 220, 198, 220, 220, 220, 1303, 220, 220, 20613, 796, 2644, 198, 220, 220, 220, 1303, 220, 220, 329, 479, 287, 20613, 13, 522, 893, 10786, 9, 9655, 9, 11537, 1058, 3601, 7, 74, 8, 198, 220, 220, 220, 1303, 220, 220, 2488, 437, 8189, 220, 220, 198, 220, 220, 220, 825, 220, 522, 893, 357, 2116, 837, 3912, 796, 10148, 837, 40364, 796, 10352, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37787, 625, 1196, 346, 540, 8251, 357, 33279, 82, 3017, 737, 198, 220, 220, 220, 220, 220, 220, 220, 23939, 12336, 318, 6157, 1864, 284, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 15699, 14, 4743, 672, 14, 29149, 3173, 357, 12286, 8, 393, 40364, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 329, 479, 287, 20613, 13, 522, 893, 10786, 9, 9655, 9, 11537, 1058, 3601, 7, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 796, 2116, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3912, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 922, 796, 37456, 479, 1058, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 40364, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 302, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 62, 48991, 796, 302, 13, 5589, 576, 357, 3912, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 922, 796, 37456, 479, 220, 1058, 302, 62, 48991, 13, 15699, 357, 479, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 24714, 15699, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 922, 796, 37456, 264, 1058, 24714, 15699, 13, 22184, 15699, 7442, 357, 479, 837, 3912, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 796, 2116, 13, 13083, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 23243, 357, 8251, 62, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 922, 357, 479, 1267, 1058, 7800, 479, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 29472, 220, 220, 220, 357, 2116, 220, 220, 220, 220, 220, 220, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15506, 34345, 7061, 1058, 262, 2393, 1438, 329, 6808, 12, 48806, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 34345, 628, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 651, 2378, 422, 15107, 2394, 12, 7753, 198, 220, 220, 220, 1303, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 26181, 796, 20613, 17816, 32, 14, 33, 14, 34, 14, 10034, 78, 20520, 198, 220, 220, 220, 1303, 220, 2488, 437, 8189, 220, 198, 220, 220, 220, 1303, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 220, 220, 220, 1303, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 220, 220, 220, 825, 11593, 1136, 9186, 834, 357, 2116, 837, 1994, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 2378, 422, 15107, 2394, 12, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 796, 20613, 17816, 32, 14, 33, 14, 34, 14, 10034, 78, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 23870, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 11600, 685, 1994, 2361, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13564, 1891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23870, 685, 1994, 2361, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 1234, 2378, 656, 15107, 2394, 12, 7753, 220, 198, 220, 220, 220, 1303, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 20613, 17816, 32, 14, 33, 14, 34, 14, 10034, 78, 20520, 796, 26181, 198, 220, 220, 220, 1303, 220, 2488, 437, 8189, 220, 198, 220, 220, 220, 1303, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 220, 220, 220, 1303, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 220, 220, 220, 825, 11593, 2617, 9186, 834, 357, 2116, 837, 1994, 837, 1988, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5930, 2378, 656, 15107, 2394, 12, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 37250, 32, 14, 33, 14, 34, 14, 10034, 78, 20520, 796, 26181, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13564, 1891, 1058, 2116, 13, 23870, 685, 1994, 2361, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11600, 685, 1994, 2361, 796, 1988, 220, 628, 220, 220, 220, 22492, 1969, 262, 6831, 220, 198, 220, 220, 220, 825, 1969, 357, 2116, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26125, 262, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7497, 303, 13, 3347, 1652, 13, 19836, 357, 2116, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 38093, 25609, 198, 2235, 761, 284, 15560, 886, 8189, 14, 12501, 1098, 329, 262, 8251, 220, 198, 361, 21015, 62, 9641, 13, 22478, 1875, 362, 1058, 628, 220, 220, 220, 20410, 10049, 3347, 1652, 13, 834, 2676, 834, 220, 220, 220, 220, 796, 4808, 4951, 62, 2676, 62, 220, 198, 220, 220, 220, 20410, 10049, 3347, 1652, 13, 834, 3642, 1299, 834, 796, 4808, 4951, 62, 3642, 1299, 62, 198, 220, 220, 220, 20410, 10049, 3347, 1652, 13, 834, 4951, 62, 1136, 834, 220, 796, 4808, 4951, 62, 1136, 62, 198, 220, 220, 220, 20410, 10049, 3347, 1652, 13, 834, 12381, 9186, 834, 220, 796, 4808, 4951, 62, 12381, 9186, 62, 198, 220, 220, 220, 220, 198, 2, 38093, 25609, 198, 2235, 2488, 4871, 20410, 3347, 1652, 198, 2, 220, 383, 4036, 1398, 329, 15107, 2394, 12, 3106, 7497, 303, 12, 2339, 1366, 2779, 198, 2, 220, 340, 3494, 7497, 303, 12, 39994, 351, 10238, 15107, 2394, 12, 7753, 355, 6143, 198, 2, 220, 532, 15107, 2394, 12, 48205, 389, 8574, 3264, 287, 262, 15107, 2394, 12, 7753, 11, 198, 2, 220, 532, 584, 5563, 389, 2298, 992, 290, 8574, 2884, 15107, 2394, 13, 51, 49201, 10100, 198, 2, 220, 2488, 8189, 198, 2, 220, 20613, 796, 20410, 3347, 1652, 7, 705, 1820, 9945, 13, 15763, 6, 837, 705, 66, 6, 1267, 198, 2, 220, 20613, 17816, 10034, 78, 20520, 796, 289, 16, 198, 2, 220, 20613, 17816, 83, 29291, 20520, 796, 19203, 64, 3256, 16, 11, 71, 16, 8, 220, 198, 2, 220, 2488, 437, 8189, 198, 2, 220, 2488, 3826, 20410, 10049, 3347, 1652, 220, 198, 2, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 4871, 20410, 3347, 1652, 7, 30016, 10049, 3347, 1652, 2599, 198, 220, 220, 220, 37227, 383, 4036, 1398, 329, 15107, 2394, 12, 3106, 7497, 303, 12, 2339, 1366, 2779, 198, 220, 220, 220, 340, 3494, 7497, 303, 12, 39994, 351, 739, 306, 259, 519, 15107, 2394, 12, 69, 8207, 6143, 198, 220, 220, 220, 532, 15107, 2394, 12, 15252, 389, 3650, 288, 12942, 306, 287, 262, 15107, 2394, 12, 7753, 11, 198, 220, 220, 220, 532, 584, 5563, 389, 2298, 992, 290, 8574, 287, 15107, 2394, 13, 51, 49201, 10100, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 20613, 796, 20410, 3347, 1652, 7, 705, 1820, 9945, 13, 15763, 6, 837, 705, 66, 6, 1267, 198, 220, 220, 220, 13163, 20613, 17816, 10034, 78, 20520, 796, 289, 16, 198, 220, 220, 220, 13163, 20613, 17816, 83, 29291, 20520, 796, 19203, 64, 3256, 16, 11, 71, 16, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 2559, 198, 220, 220, 220, 22492, 17271, 262, 6831, 656, 649, 530, 198, 220, 220, 220, 1303, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 20613, 220, 796, 2644, 198, 220, 220, 220, 1303, 220, 299, 9945, 796, 20613, 13, 21018, 357, 705, 3605, 62, 7753, 13, 9945, 6, 1267, 198, 220, 220, 220, 1303, 220, 2488, 437, 8189, 198, 220, 220, 220, 825, 17271, 357, 2116, 837, 649, 62, 3672, 837, 8251, 796, 7499, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30698, 262, 6831, 656, 649, 530, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1468, 62, 9945, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 649, 62, 9945, 796, 649, 62, 9945, 13, 21018, 357, 705, 3605, 62, 7753, 13, 9945, 6, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9945, 796, 20410, 3347, 1652, 357, 649, 62, 3672, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 220, 220, 220, 220, 220, 220, 220, 796, 220, 705, 66, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8435, 220, 220, 220, 796, 2116, 13, 11235, 4668, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27413, 220, 220, 220, 796, 2116, 13, 5589, 601, 5715, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 4866, 262, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8251, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 3419, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 287, 8251, 220, 220, 220, 220, 1058, 649, 62, 9945, 685, 1994, 2361, 796, 2116, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 2116, 13, 13083, 3419, 1058, 649, 62, 9945, 685, 1994, 2361, 796, 2116, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9945, 13, 27261, 7499, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 9945, 220, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8435, 357, 2116, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15506, 11235, 4668, 7061, 1058, 2298, 293, 8435, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 11235, 4668, 198, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 27413, 5715, 357, 2116, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15506, 5589, 601, 5715, 7061, 1058, 1976, 8019, 19794, 1241, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 5589, 601, 5715, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 220, 651, 2134, 357, 403, 27729, 293, 611, 2622, 8, 220, 422, 288, 8692, 198, 220, 220, 220, 1303, 220, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 220, 26181, 796, 20613, 17816, 32, 14, 33, 14, 34, 20520, 198, 220, 220, 220, 1303, 220, 220, 2488, 437, 8189, 198, 220, 220, 220, 1303, 220, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 220, 220, 220, 1303, 220, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 220, 220, 220, 825, 11593, 1136, 9186, 834, 357, 2116, 837, 1994, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3497, 2134, 357, 403, 27729, 293, 611, 2622, 8, 220, 422, 288, 8692, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 796, 20613, 17816, 32, 14, 33, 14, 34, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 23870, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 1988, 796, 2116, 13, 11600, 685, 1994, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 2539, 837, 1988, 796, 2116, 13, 11600, 13, 1136, 62, 2539, 62, 15252, 357, 1994, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 82, 4340, 685, 1994, 2361, 796, 256, 2539, 13, 3855, 45, 33661, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 44812, 5633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 220, 23619, 499, 13, 7295, 13, 7295, 1330, 220, 38919, 499, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 357, 1988, 837, 38919, 499, 13, 9148, 9864, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 555, 8002, 340, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 220, 220, 220, 220, 796, 38919, 499, 13, 2436, 672, 62, 1462, 62, 33661, 357, 1988, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 220, 220, 220, 220, 796, 1976, 8019, 13, 12501, 3361, 601, 357, 1976, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 8593, 39423, 340, 0, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 220, 220, 220, 220, 796, 2750, 4879, 9399, 357, 334, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 791, 27729, 1754, 7, 69, 737, 2220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1976, 837, 334, 837, 277, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13564, 1891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23870, 58, 2539, 60, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38093, 25609, 198, 220, 220, 220, 22492, 220, 3060, 2134, 357, 27729, 293, 611, 2622, 8, 220, 284, 288, 8692, 198, 220, 220, 220, 1303, 220, 220, 2488, 8189, 198, 220, 220, 220, 1303, 220, 220, 20613, 17816, 32, 14, 33, 14, 34, 20520, 796, 26181, 198, 220, 220, 220, 1303, 220, 220, 2488, 437, 8189, 198, 220, 220, 220, 1303, 220, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 220, 220, 220, 1303, 220, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 220, 220, 220, 825, 11593, 2617, 9186, 834, 357, 2116, 837, 1994, 837, 1988, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3060, 2134, 357, 27729, 293, 611, 2622, 8, 220, 284, 288, 8692, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 17816, 32, 14, 33, 14, 34, 20520, 796, 26181, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 13564, 1891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23870, 685, 1994, 2361, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 407, 5390, 65, 752, 30, 2298, 293, 340, 290, 10385, 284, 38919, 499, 13, 9148, 9864, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 220, 357, 1988, 837, 15107, 2394, 13, 51, 10267, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 357, 16, 8, 2298, 293, 340, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 2750, 4879, 9399, 220, 220, 220, 357, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 12346, 1754, 220, 220, 220, 357, 277, 837, 2116, 13, 11235, 4668, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 13, 39455, 357, 1988, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 357, 17, 8, 19974, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 220, 220, 220, 220, 220, 796, 1976, 8019, 13, 5589, 601, 357, 277, 13, 1136, 8367, 3419, 837, 2116, 13, 5589, 601, 5715, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 82, 4340, 685, 1994, 2361, 796, 18896, 357, 1976, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 357, 18, 8, 1234, 340, 656, 220, 9878, 9864, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 220, 23619, 499, 13, 7295, 13, 7295, 1330, 220, 38919, 499, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44812, 220, 220, 796, 38919, 499, 13, 9148, 9864, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1994, 220, 220, 220, 220, 220, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 38919, 499, 13, 2436, 672, 62, 6738, 62, 33661, 357, 44812, 837, 1976, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 220, 796, 44812, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1976, 837, 277, 837, 279, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22492, 3443, 779, 15107, 2394, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11600, 685, 1994, 2361, 796, 1988, 628, 220, 220, 220, 1303, 38093, 2559, 198, 220, 220, 220, 22492, 1351, 262, 1196, 346, 540, 8251, 220, 198, 220, 220, 220, 825, 43979, 220, 220, 220, 357, 2116, 837, 3912, 796, 10148, 837, 3440, 796, 6407, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8053, 262, 1695, 8251, 357, 33279, 82, 3017, 737, 198, 220, 220, 220, 220, 220, 220, 220, 23939, 12336, 318, 6157, 697, 273, 2530, 284, 198, 220, 220, 220, 220, 220, 220, 220, 24714, 15699, 14, 4743, 672, 14, 29149, 3173, 685, 270, 318, 407, 40364, 36463, 220, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 796, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 13, 7278, 3419, 22492, 477, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 20613, 13, 7278, 19203, 9, 9655, 9, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 220, 796, 28686, 13, 6978, 13, 12093, 12453, 357, 2116, 13, 34345, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2471, 796, 28686, 13, 6978, 13, 397, 2777, 776, 220, 357, 2116, 13, 34345, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43458, 796, 28686, 13, 6978, 13, 11407, 1096, 357, 2116, 13, 34345, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43458, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 220, 220, 220, 43458, 1279, 657, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 2546, 796, 366, 3548, 1701, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 43458, 1279, 28119, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 2546, 796, 965, 7, 9501, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 43458, 1279, 28119, 220, 1635, 28119, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 7225, 17, 69, 38841, 6, 4064, 357, 12178, 357, 43458, 1267, 1220, 28119, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 43458, 1279, 28119, 220, 1635, 28119, 1635, 28119, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 7225, 17, 69, 10744, 6, 4064, 357, 12178, 357, 43458, 1267, 1220, 357, 28119, 1635, 28119, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 7225, 17, 69, 4579, 6, 4064, 357, 12178, 357, 43458, 1267, 1220, 357, 28119, 1635, 28119, 1635, 28119, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 17635, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2116, 13, 522, 893, 357, 3912, 15179, 8251, 13, 33295, 357, 479, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 13, 30619, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8251, 1058, 285, 11925, 796, 3509, 357, 685, 18896, 7, 74, 8, 329, 479, 287, 8251, 60, 1267, 1343, 362, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 220, 220, 220, 1058, 285, 11925, 796, 362, 220, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 705, 14610, 4064, 33963, 4, 9310, 1058, 43313, 82, 6, 4064, 285, 11925, 628, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 685, 357, 705, 9218, 6, 837, 705, 4906, 6, 837, 705, 220, 220, 2546, 220, 220, 705, 8, 2361, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 8251, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 10148, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37786, 220, 220, 796, 220, 220, 2116, 13, 834, 82, 4340, 13, 1136, 357, 479, 837, 532, 16, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 220, 220, 220, 37786, 1279, 657, 220, 220, 220, 1058, 2546, 796, 10148, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 37786, 1279, 28119, 1058, 2546, 796, 705, 4, 22, 67, 220, 220, 705, 4064, 37786, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 37786, 1279, 28119, 1635, 28119, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 4, 22, 13, 17, 69, 479, 33, 6, 4064, 220, 357, 12178, 357, 37786, 1267, 1220, 28119, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 220, 37786, 1279, 28119, 1635, 28119, 1635, 28119, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 4, 22, 13, 17, 69, 10771, 6, 4064, 220, 357, 12178, 357, 37786, 1267, 1220, 357, 28119, 1635, 28119, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 705, 4, 22, 13, 17, 69, 13124, 6, 4064, 220, 357, 12178, 357, 37786, 1267, 1220, 357, 28119, 1635, 28119, 1635, 28119, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30972, 220, 220, 220, 796, 2099, 357, 2116, 685, 479, 2361, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 4906, 796, 30972, 13, 834, 20322, 3672, 834, 611, 468, 35226, 357, 30972, 837, 705, 834, 20322, 3672, 834, 6, 1267, 2073, 30972, 13, 834, 3672, 834, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 705, 90, 25, 1314, 92, 4458, 18982, 357, 479, 1267, 837, 705, 90, 25, 1314, 92, 4458, 18982, 357, 267, 4906, 1267, 837, 2546, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 13, 33295, 357, 5752, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 23619, 499, 13, 6404, 1362, 13, 11487, 355, 309, 198, 220, 220, 220, 220, 220, 220, 220, 256, 220, 220, 220, 220, 220, 796, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 220, 796, 705, 4, 82, 25, 4, 82, 6, 4064, 357, 256, 220, 837, 299, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 11925, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5752, 287, 3084, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 11925, 796, 657, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 5752, 1058, 5752, 11925, 15853, 18896, 357, 1312, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 11925, 796, 3509, 357, 3509, 11925, 11, 5752, 11925, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 11925, 1343, 513, 19841, 18896, 357, 3670, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 705, 27, 13, 29, 6, 1343, 3670, 685, 532, 9806, 11925, 1058, 2361, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 309, 13, 11487, 357, 3084, 837, 3670, 796, 3670, 837, 21231, 796, 705, 2, 705, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 220, 220, 220, 796, 651, 11187, 1362, 357, 299, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 220, 796, 705, 38105, 4064, 82, 25, 4, 82, 1303, 13083, 25, 4064, 67, 2546, 25, 4064, 82, 6, 4064, 357, 256, 837, 2471, 837, 18896, 357, 2116, 1267, 837, 2546, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 13, 10951, 357, 220, 705, 4, 82, 59, 77, 4, 82, 6, 4064, 220, 357, 1627, 837, 3084, 1267, 1267, 628, 220, 220, 220, 22492, 1969, 262, 6831, 220, 198, 220, 220, 220, 825, 1969, 357, 2116, 1267, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26125, 262, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20410, 10049, 3347, 1652, 13, 19836, 357, 2116, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 38093, 25609, 198, 2235, 31904, 2163, 284, 1280, 20410, 50, 2978, 303, 1366, 2779, 198, 2, 220, 2488, 8189, 198, 2, 220, 1330, 20410, 50, 2978, 303, 355, 20137, 11159, 198, 2, 220, 20613, 796, 20137, 11159, 13, 9654, 357, 705, 1820, 9945, 13, 15763, 6, 837, 705, 66, 6, 1267, 198, 2, 220, 2488, 437, 8189, 220, 198, 2, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 220, 2488, 4475, 220, 220, 3050, 12, 3023, 12, 1270, 198, 4299, 1280, 357, 29472, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 705, 66, 6, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 1891, 220, 220, 220, 220, 796, 10352, 837, 1635, 22046, 1267, 1058, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5053, 525, 2163, 284, 1280, 20410, 50, 2978, 303, 1366, 2779, 198, 220, 220, 220, 13163, 1330, 20410, 50, 2978, 303, 355, 20137, 11159, 198, 220, 220, 220, 13163, 20613, 796, 20137, 11159, 13, 9654, 357, 705, 1820, 9945, 13, 15763, 6, 837, 705, 66, 6, 1267, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 20410, 3347, 1652, 357, 29472, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3551, 1891, 837, 1635, 26498, 1267, 198, 198, 2, 38093, 25609, 198, 2235, 2488, 4871, 309, 3149, 30016, 3347, 1652, 198, 2, 220, 309, 39494, 1581, 13153, 383, 4036, 1398, 329, 15107, 2394, 12, 3106, 7497, 303, 12, 2339, 1366, 2779, 198, 2, 220, 340, 23986, 7497, 303, 12, 39994, 351, 10238, 15107, 2394, 12, 7753, 355, 257, 6143, 198, 2, 220, 532, 15107, 2394, 12, 48205, 389, 8574, 3264, 287, 262, 15107, 2394, 12, 7753, 11, 198, 2, 220, 532, 584, 5563, 389, 2298, 992, 290, 8574, 287, 15107, 2394, 13, 51, 49201, 10100, 198, 2, 220, 2488, 8189, 198, 2, 220, 20613, 796, 309, 3020, 30016, 3347, 1652, 3419, 198, 2, 220, 20613, 17816, 10034, 78, 20520, 796, 289, 16, 198, 2, 220, 20613, 17816, 83, 29291, 20520, 796, 19203, 64, 3256, 16, 11, 71, 16, 8, 220, 198, 2, 220, 2488, 437, 8189, 198, 2, 220, 2488, 3826, 20410, 3347, 1652, 220, 198, 2, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 220, 2488, 4475, 220, 220, 1853, 12, 2998, 12, 3132, 220, 198, 4871, 309, 3149, 30016, 3347, 1652, 7, 30016, 3347, 1652, 11, 51, 3149, 11012, 2599, 198, 220, 220, 220, 37227, 464, 4036, 1398, 329, 309, 39494, 1581, 13153, 15107, 2394, 12, 3106, 7497, 303, 12, 2339, 1366, 2779, 198, 220, 220, 220, 340, 3494, 7497, 303, 12, 3849, 70, 589, 351, 739, 306, 259, 519, 15107, 2394, 12, 69, 8207, 6143, 198, 220, 220, 220, 532, 15107, 2394, 12, 15252, 389, 8574, 3264, 287, 262, 15107, 2394, 12, 7753, 11, 198, 220, 220, 220, 532, 584, 5563, 389, 2298, 992, 290, 8574, 2884, 220, 15107, 2394, 13, 51, 49201, 10100, 198, 220, 220, 220, 766, 20410, 3347, 1652, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22492, 1969, 290, 12233, 262, 2393, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 38093, 25609, 198, 2235, 31904, 2163, 284, 1280, 20410, 50, 2978, 303, 1366, 2779, 198, 2, 220, 2488, 8189, 198, 2, 220, 1330, 20410, 50, 2978, 303, 355, 20137, 11159, 198, 2, 220, 20613, 796, 20137, 11159, 13, 9654, 357, 705, 1820, 9945, 13, 15763, 6, 837, 705, 66, 6, 1267, 198, 2, 220, 2488, 437, 8189, 220, 198, 2, 220, 2488, 9800, 569, 34183, 29991, 56, 14242, 53, 21798, 13, 3856, 306, 64, 1990, 31, 30903, 13, 354, 198, 2, 220, 2488, 4475, 220, 220, 3050, 12, 3023, 12, 1270, 198, 4299, 45218, 9945, 357, 8435, 220, 796, 34677, 6465, 62, 4805, 2394, 4503, 3535, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27413, 220, 796, 1976, 8019, 13, 57, 62, 7206, 38865, 62, 9858, 32761, 2849, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 220, 220, 220, 796, 6407, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 7103, 4781, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 220, 220, 220, 220, 220, 796, 10352, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 1058, 22492, 1394, 340, 220, 198, 220, 220, 220, 37227, 5053, 525, 2163, 284, 1280, 309, 3620, 10246, 1581, 13153, 20410, 50, 2978, 303, 1366, 2779, 198, 220, 220, 220, 13163, 1330, 20410, 50, 2978, 303, 355, 20137, 11159, 198, 220, 220, 220, 13163, 20613, 796, 20137, 11159, 13, 22065, 9945, 3419, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 309, 3149, 30016, 3347, 1652, 357, 8435, 796, 8435, 837, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27413, 796, 27413, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 220, 220, 796, 4781, 220, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 220, 220, 220, 220, 796, 1394, 220, 220, 220, 220, 837, 1635, 22046, 1267, 220, 628, 198, 198, 2, 38093, 25609, 198, 361, 705, 834, 12417, 834, 6, 6624, 11593, 3672, 834, 1058, 198, 220, 220, 220, 220, 198, 220, 220, 220, 422, 23619, 499, 13, 26791, 13, 15390, 1326, 1330, 2205, 1326, 198, 220, 220, 220, 2205, 1326, 357, 11593, 3672, 834, 837, 49706, 796, 49706, 1267, 198, 220, 220, 220, 220, 198, 2, 38093, 25609, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 23578, 220, 198, 2, 38093, 25609, 198 ]
2.300311
9,004
pytest_plugins = ["model_runner.validator._tests.validator_test_fixtures"]
[ 9078, 9288, 62, 37390, 796, 14631, 19849, 62, 16737, 13, 12102, 1352, 13557, 41989, 13, 12102, 1352, 62, 9288, 62, 69, 25506, 8973, 198 ]
3.125
24
#!/usr/bin/python """ INPUT: A file named specified from the command line The file is a single line JSON format like this: ["424344455354X738492939495", "424344535463X738492939495"] each element represents a game canvass map INTERMEDIATE OUTPUT: a series of png files numbered from 0 like 0.png, 1.png, 2.png, etc. OUTPUT: an animated GIF named 'animated.gif' with 1 frame per sec and infinite play loop EXAMPLE: ./gen_gif.py TODO: 1. output file naem through comand line argument 2. list through command line argument 3. a switch to save/not-save intermediate results """ import os import sys import json from PIL import Image, ImageSequence FILENAME = sys.argv[1] with open(FILENAME) as fp: for line in fp: line = line.strip() map_list = json.loads(line) n = len(map_list) idx = 0 for mapkey in map_list: print 'Generating %d of %d canvass maps...' % (idx+1, n) os.system('./draw_canvass.R %s %s.png %d %d &>/dev/null' % (mapkey, idx, n, idx)) #os.system('./draw_canvass.R %s %s.png %d %d' % (mapkey, idx, n, idx)) idx += 1 print 'Generating animated GIF for the %d canvass maps...' % n os.system('convert -delay 100 -loop 0 *.png animated.gif')
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 37811, 198, 1268, 30076, 25, 317, 2393, 3706, 7368, 422, 262, 3141, 1627, 198, 220, 220, 220, 220, 220, 220, 383, 2393, 318, 257, 2060, 1627, 19449, 5794, 588, 428, 25, 198, 220, 220, 220, 220, 220, 220, 14631, 19, 26660, 2598, 30505, 32182, 55, 22, 2548, 2920, 1959, 2670, 33781, 1600, 366, 40090, 2682, 2231, 2327, 38380, 55, 22, 2548, 2920, 1959, 2670, 33781, 8973, 198, 220, 220, 220, 220, 220, 220, 1123, 5002, 6870, 257, 983, 39614, 562, 3975, 198, 198, 41358, 30733, 40, 6158, 16289, 30076, 25, 257, 2168, 286, 279, 782, 3696, 25840, 422, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 588, 657, 13, 11134, 11, 352, 13, 11134, 11, 362, 13, 11134, 11, 3503, 13, 198, 198, 2606, 7250, 3843, 25, 281, 15108, 24984, 3706, 705, 11227, 515, 13, 27908, 6, 198, 220, 220, 220, 220, 220, 220, 220, 351, 352, 5739, 583, 792, 290, 15541, 711, 9052, 198, 198, 6369, 2390, 16437, 25, 24457, 5235, 62, 27908, 13, 9078, 198, 198, 51, 3727, 46, 25, 220, 198, 220, 352, 13, 5072, 2393, 12385, 368, 832, 401, 392, 1627, 4578, 198, 220, 362, 13, 1351, 832, 3141, 1627, 4578, 198, 220, 513, 13, 257, 5078, 284, 3613, 14, 1662, 12, 21928, 19898, 2482, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 44015, 594, 198, 198, 46700, 1677, 10067, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 198, 4480, 1280, 7, 46700, 1677, 10067, 8, 355, 277, 79, 25, 198, 220, 329, 1627, 287, 277, 79, 25, 198, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 3975, 62, 4868, 796, 33918, 13, 46030, 7, 1370, 8, 628, 220, 220, 220, 299, 796, 18896, 7, 8899, 62, 4868, 8, 198, 220, 220, 220, 4686, 87, 796, 657, 628, 220, 220, 220, 329, 3975, 2539, 287, 3975, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 3601, 705, 8645, 803, 4064, 67, 286, 4064, 67, 39614, 562, 8739, 986, 6, 4064, 357, 312, 87, 10, 16, 11, 299, 8, 198, 220, 220, 220, 220, 220, 28686, 13, 10057, 7, 4458, 14, 19334, 62, 5171, 85, 562, 13, 49, 4064, 82, 4064, 82, 13, 11134, 4064, 67, 4064, 67, 1222, 29, 14, 7959, 14, 8423, 6, 4064, 357, 8899, 2539, 11, 4686, 87, 11, 299, 11, 4686, 87, 4008, 198, 220, 220, 220, 220, 220, 1303, 418, 13, 10057, 7, 4458, 14, 19334, 62, 5171, 85, 562, 13, 49, 4064, 82, 4064, 82, 13, 11134, 4064, 67, 4064, 67, 6, 4064, 357, 8899, 2539, 11, 4686, 87, 11, 299, 11, 4686, 87, 4008, 198, 220, 220, 220, 220, 220, 4686, 87, 15853, 352, 628, 220, 220, 220, 3601, 705, 8645, 803, 15108, 24984, 329, 262, 4064, 67, 39614, 562, 8739, 986, 6, 4064, 299, 198, 220, 220, 220, 28686, 13, 10057, 10786, 1102, 1851, 532, 40850, 1802, 532, 26268, 657, 46866, 11134, 15108, 13, 27908, 11537, 628 ]
2.444231
520
import sys import argparse from transtory.flight import logger, switch_to_test_mode from transtory.flight import get_public_data_app from transtory.flight import FlightRecorder, FlightTripStats, FlightPlaneStats parser = argparse.ArgumentParser(description="Flight database command.") parser.add_argument("--testmode", action="store_const", const=True, default=False) parser.add_argument("--record", action="store_const", const=True, default=False) parser.add_argument("--update", action="store_const", const=True, default=False) parser.add_argument("--stat", action="store_const", const=True, default=False) parser.add_argument("--publicdata", action="store_const", const=True, default=False) args = parser.parse_args(sys.argv[1:]) if args.testmode: logger.info("Running test mode") switch_to_test_mode() if args.record: pass recorder = FlightRecorder() recorder.record_trips_from_json() save_all_stats() elif args.update: # TODO: add update functionality pass elif args.stat: save_all_stats() elif args.publicdata: app = get_public_data_app() app.save_public_data() else: logger.info("Flight module did nothing.")
[ 11748, 25064, 198, 11748, 1822, 29572, 198, 198, 6738, 491, 272, 13571, 13, 22560, 1330, 49706, 11, 5078, 62, 1462, 62, 9288, 62, 14171, 198, 6738, 491, 272, 13571, 13, 22560, 1330, 651, 62, 11377, 62, 7890, 62, 1324, 198, 6738, 491, 272, 13571, 13, 22560, 1330, 13365, 6690, 2875, 11, 13365, 51, 5528, 29668, 11, 13365, 3646, 1531, 29668, 628, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 43069, 6831, 3141, 19570, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 9288, 14171, 1600, 2223, 2625, 8095, 62, 9979, 1600, 1500, 28, 17821, 11, 4277, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 22105, 1600, 2223, 2625, 8095, 62, 9979, 1600, 1500, 28, 17821, 11, 4277, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 19119, 1600, 2223, 2625, 8095, 62, 9979, 1600, 1500, 28, 17821, 11, 4277, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 14269, 1600, 2223, 2625, 8095, 62, 9979, 1600, 1500, 28, 17821, 11, 4277, 28, 25101, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 11377, 7890, 1600, 2223, 2625, 8095, 62, 9979, 1600, 1500, 28, 17821, 11, 4277, 28, 25101, 8, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198, 198, 361, 26498, 13, 9288, 14171, 25, 198, 220, 220, 220, 49706, 13, 10951, 7203, 28768, 1332, 4235, 4943, 198, 220, 220, 220, 5078, 62, 1462, 62, 9288, 62, 14171, 3419, 198, 198, 361, 26498, 13, 22105, 25, 198, 220, 220, 220, 1208, 198, 220, 220, 220, 38156, 796, 13365, 6690, 2875, 3419, 198, 220, 220, 220, 38156, 13, 22105, 62, 28461, 862, 62, 6738, 62, 17752, 3419, 198, 220, 220, 220, 3613, 62, 439, 62, 34242, 3419, 198, 417, 361, 26498, 13, 19119, 25, 198, 220, 220, 220, 1303, 16926, 46, 25, 751, 4296, 11244, 198, 220, 220, 220, 1208, 198, 417, 361, 26498, 13, 14269, 25, 198, 220, 220, 220, 3613, 62, 439, 62, 34242, 3419, 198, 417, 361, 26498, 13, 11377, 7890, 25, 198, 220, 220, 220, 598, 796, 651, 62, 11377, 62, 7890, 62, 1324, 3419, 198, 220, 220, 220, 598, 13, 21928, 62, 11377, 62, 7890, 3419, 198, 17772, 25, 198, 220, 220, 220, 49706, 13, 10951, 7203, 43069, 8265, 750, 2147, 19570, 198 ]
3.023256
387
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.select import Select from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.common.keys import Keys import selenium.webdriver.chrome.service as service import traceback import inspect import time from postman_tests import PostmanTests # https://github.com/a85/POSTMan-Chrome-Extension/issues/174 # https://github.com/a85/POSTMan-Chrome-Extension/issues/165 PostmanTestsRequests().run()
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 19738, 1330, 9683, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 2673, 62, 38861, 1330, 7561, 1925, 1299, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 13083, 1330, 26363, 198, 11748, 384, 11925, 1505, 13, 12384, 26230, 13, 46659, 13, 15271, 355, 2139, 198, 11748, 12854, 1891, 220, 220, 220, 220, 220, 198, 11748, 10104, 198, 11748, 640, 198, 6738, 1281, 805, 62, 41989, 1330, 2947, 805, 51, 3558, 628, 628, 220, 220, 220, 1303, 3740, 1378, 12567, 13, 785, 14, 64, 5332, 14, 32782, 5124, 12, 1925, 5998, 12, 11627, 3004, 14, 37165, 14, 22985, 628, 220, 220, 220, 1303, 3740, 1378, 12567, 13, 785, 14, 64, 5332, 14, 32782, 5124, 12, 1925, 5998, 12, 11627, 3004, 14, 37165, 14, 20986, 198, 198, 6307, 805, 51, 3558, 16844, 3558, 22446, 5143, 3419, 198 ]
3.201149
174
import hugectr from mpi4py import MPI solver = hugectr.CreateSolver(max_eval_batches = 1000, batchsize_eval = 2770, batchsize = 17548, lr = 0.0045, vvgpu = [[0]], metrics_spec = {hugectr.MetricsType.HitRate: 0.8, hugectr.MetricsType.AverageLoss:0.0, hugectr.MetricsType.AUC: 1.0}, repeat_dataset = True) reader = hugectr.DataReaderParams(data_reader_type = hugectr.DataReaderType_t.Norm, source = ["./data/ml-20m/train_filelist.txt"], eval_source = "./data/ml-20m/test_filelist.txt", check_type = hugectr.Check_t.Non, num_workers = 10) optimizer = hugectr.CreateOptimizer(optimizer_type = hugectr.Optimizer_t.Adam, update_type = hugectr.Update_t.Global, beta1 = 0.25, beta2 = 0.5, epsilon = 0.0000001) model = hugectr.Model(solver, reader, optimizer) model.add(hugectr.Input(label_dim = 1, label_name = "label", dense_dim = 1, dense_name = "dense", data_reader_sparse_param_array = [hugectr.DataReaderSparseParam("data", 1, True, 2)])) model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash, workspace_size_per_gpu_in_mb = 20, embedding_vec_size = 16, combiner = "sum", sparse_embedding_name = "gmf_embedding", bottom_name = "data", optimizer = optimizer)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape, bottom_names = ["gmf_embedding"], top_names = ["reshape1"], leading_dim=32)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Slice, bottom_names = ["reshape1"], top_names = ["user", "item"], ranges=[(0,15),(16,31)])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ElementwiseMultiply, bottom_names = ["user", "item"], top_names = ["multiply1"])) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct, bottom_names = ["multiply1"], top_names = ["gmf_out"], num_output=1)) model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.BinaryCrossEntropyLoss, bottom_names = ["gmf_out", "label"], top_names = ["loss"])) model.graph_to_json("/onnx_converter/graph_files/gmf.json") model.compile() model.summary() model.fit(max_iter = 2100, display = 200, eval_interval = 1000, snapshot = 2000, snapshot_prefix = "/onnx_converter/hugectr_models//gmf")
[ 11748, 3236, 24087, 198, 6738, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 82, 14375, 796, 3236, 24087, 13, 16447, 50, 14375, 7, 9806, 62, 18206, 62, 8664, 2052, 796, 8576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7857, 62, 18206, 796, 2681, 2154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 7857, 796, 19038, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 796, 657, 13, 405, 2231, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 45119, 19944, 796, 16410, 15, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 62, 16684, 796, 1391, 40878, 24087, 13, 9171, 10466, 6030, 13, 17889, 32184, 25, 657, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3236, 24087, 13, 9171, 10466, 6030, 13, 26287, 43, 793, 25, 15, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3236, 24087, 13, 9171, 10466, 6030, 13, 32, 9598, 25, 352, 13, 15, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9585, 62, 19608, 292, 316, 796, 6407, 8, 198, 46862, 796, 3236, 24087, 13, 6601, 33634, 10044, 4105, 7, 7890, 62, 46862, 62, 4906, 796, 3236, 24087, 13, 6601, 33634, 6030, 62, 83, 13, 35393, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 685, 1911, 14, 7890, 14, 4029, 12, 1238, 76, 14, 27432, 62, 7753, 4868, 13, 14116, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 10459, 796, 366, 19571, 7890, 14, 4029, 12, 1238, 76, 14, 9288, 62, 7753, 4868, 13, 14116, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 4906, 796, 3236, 24087, 13, 9787, 62, 83, 13, 15419, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 796, 838, 8, 198, 40085, 7509, 796, 3236, 24087, 13, 16447, 27871, 320, 7509, 7, 40085, 7509, 62, 4906, 796, 3236, 24087, 13, 27871, 320, 7509, 62, 83, 13, 23159, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 4906, 796, 3236, 24087, 13, 10260, 62, 83, 13, 22289, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12159, 16, 796, 657, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12159, 17, 796, 657, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 862, 33576, 796, 657, 13, 2388, 8298, 8, 198, 19849, 796, 3236, 24087, 13, 17633, 7, 82, 14375, 11, 9173, 11, 6436, 7509, 8, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 20560, 7, 18242, 62, 27740, 796, 352, 11, 6167, 62, 3672, 796, 366, 18242, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15715, 62, 27740, 796, 352, 11, 15715, 62, 3672, 796, 366, 67, 1072, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 46862, 62, 82, 29572, 62, 17143, 62, 18747, 796, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 40878, 24087, 13, 6601, 33634, 50, 29572, 22973, 7203, 7890, 1600, 352, 11, 6407, 11, 362, 15437, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 50, 29572, 31567, 6048, 278, 7, 20521, 12083, 62, 4906, 796, 3236, 24087, 13, 31567, 6048, 278, 62, 83, 13, 20344, 6169, 38963, 50, 29572, 31567, 6048, 278, 26257, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44573, 62, 7857, 62, 525, 62, 46999, 62, 259, 62, 2022, 796, 1160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 12083, 62, 35138, 62, 7857, 796, 1467, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1974, 7274, 796, 366, 16345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29877, 62, 20521, 12083, 62, 3672, 796, 366, 39870, 69, 62, 20521, 12083, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 3672, 796, 366, 7890, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 796, 6436, 7509, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 35, 1072, 49925, 7, 29289, 62, 4906, 796, 3236, 24087, 13, 49925, 62, 83, 13, 4965, 71, 1758, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 14933, 796, 14631, 39870, 69, 62, 20521, 12083, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 14933, 796, 14631, 3447, 1758, 16, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3756, 62, 27740, 28, 2624, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 35, 1072, 49925, 7, 29289, 62, 4906, 796, 3236, 24087, 13, 49925, 62, 83, 13, 11122, 501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 14933, 796, 14631, 3447, 1758, 16, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 14933, 796, 14631, 7220, 1600, 366, 9186, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16069, 41888, 7, 15, 11, 1314, 828, 7, 1433, 11, 3132, 15437, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 35, 1072, 49925, 7, 29289, 62, 4906, 796, 3236, 24087, 13, 49925, 62, 83, 13, 20180, 3083, 15205, 541, 306, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 14933, 796, 14631, 7220, 1600, 366, 9186, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 14933, 796, 14631, 16680, 541, 306, 16, 8973, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 35, 1072, 49925, 7, 29289, 62, 4906, 796, 3236, 24087, 13, 49925, 62, 83, 13, 818, 1008, 15667, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 14933, 796, 14631, 16680, 541, 306, 16, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 14933, 796, 14631, 39870, 69, 62, 448, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22915, 28, 16, 4008, 198, 19849, 13, 2860, 7, 40878, 24087, 13, 35, 1072, 49925, 7, 29289, 62, 4906, 796, 3236, 24087, 13, 49925, 62, 83, 13, 33, 3219, 21544, 14539, 28338, 43, 793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4220, 62, 14933, 796, 14631, 39870, 69, 62, 448, 1600, 366, 18242, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 14933, 796, 14631, 22462, 8973, 4008, 198, 19849, 13, 34960, 62, 1462, 62, 17752, 7203, 14, 261, 77, 87, 62, 1102, 332, 353, 14, 34960, 62, 16624, 14, 39870, 69, 13, 17752, 4943, 220, 198, 19849, 13, 5589, 576, 3419, 198, 19849, 13, 49736, 3419, 198, 19849, 13, 11147, 7, 9806, 62, 2676, 796, 38123, 11, 3359, 796, 939, 11, 5418, 62, 3849, 2100, 796, 8576, 11, 27479, 796, 4751, 11, 27479, 62, 40290, 796, 12813, 261, 77, 87, 62, 1102, 332, 353, 14, 40878, 24087, 62, 27530, 1003, 39870, 69, 4943, 198 ]
1.694785
1,956
from django.conf.urls import patterns, url, include from dajaxice.core import dajaxice_autodiscover, dajaxice_config from django.contrib.staticfiles.urls import staticfiles_urlpatterns dajaxice_autodiscover() urlpatterns = patterns('', url(dajaxice_config.dajaxice_url, include('dajaxice.urls')), url(r'^$', 'Brownian.view.views.query', name='query'), url(r'^notices/$', 'Brownian.view.views.alerts', name='alerts'), url(r'^health/$', 'Brownian.view.views.health', name='health'), ) urlpatterns += staticfiles_urlpatterns()
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 7572, 11, 19016, 11, 2291, 198, 6738, 288, 1228, 897, 501, 13, 7295, 1330, 288, 1228, 897, 501, 62, 2306, 375, 29392, 11, 288, 1228, 897, 501, 62, 11250, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 12708, 16624, 13, 6371, 82, 1330, 9037, 16624, 62, 6371, 33279, 82, 198, 198, 67, 1228, 897, 501, 62, 2306, 375, 29392, 3419, 198, 198, 6371, 33279, 82, 796, 7572, 10786, 3256, 198, 220, 220, 220, 19016, 7, 67, 1228, 897, 501, 62, 11250, 13, 67, 1228, 897, 501, 62, 6371, 11, 2291, 10786, 67, 1228, 897, 501, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 705, 20644, 666, 13, 1177, 13, 33571, 13, 22766, 3256, 1438, 11639, 22766, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1662, 1063, 32624, 3256, 705, 20644, 666, 13, 1177, 13, 33571, 13, 44598, 82, 3256, 1438, 11639, 44598, 82, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 13948, 32624, 3256, 705, 20644, 666, 13, 1177, 13, 33571, 13, 13948, 3256, 1438, 11639, 13948, 33809, 198, 8, 198, 198, 6371, 33279, 82, 15853, 9037, 16624, 62, 6371, 33279, 82, 3419 ]
2.656863
204
#!/usr/bin/env python # coding:utf-8 from gevent import monkey monkey.patch_all() from gevent.pool import Pool from app.libs.PyMysqlPool import PyMysqlPool from app.script.config import * import pymysql import time from bs4 import BeautifulSoup import re thread_number = 40 pool = Pool(size=thread_number) netflix_pool = PyMysqlPool(netflix_config, initial_size=1, max_size=thread_number * 2) if __name__ == '__main__': parse_main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 40477, 12, 23, 198, 6738, 4903, 1151, 1330, 21657, 198, 198, 49572, 13, 17147, 62, 439, 3419, 198, 198, 6738, 4903, 1151, 13, 7742, 1330, 19850, 198, 6738, 598, 13, 8019, 82, 13, 20519, 44, 893, 13976, 27201, 1330, 9485, 44, 893, 13976, 27201, 198, 6738, 598, 13, 12048, 13, 11250, 1330, 1635, 198, 11748, 279, 4948, 893, 13976, 198, 11748, 640, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 302, 198, 198, 16663, 62, 17618, 796, 2319, 198, 7742, 796, 19850, 7, 7857, 28, 16663, 62, 17618, 8, 198, 198, 36977, 62, 7742, 796, 9485, 44, 893, 13976, 27201, 7, 36977, 62, 11250, 11, 4238, 62, 7857, 28, 16, 11, 3509, 62, 7857, 28, 16663, 62, 17618, 1635, 362, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 21136, 62, 12417, 3419, 198 ]
2.805031
159
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() description = "reconstruct the shape of a 2D point cloud." setup(name="alpha_shapes", description=description, author="Panagiotis Zestanakis", author_email="[email protected]", packages=find_packages(), version='0.0.1', install_requires=['numpy', 'shapely', 'matplotlib'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Information Analysis", ], long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/panosz/alpha_shapes", python_requires='>=3.7', )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 11213, 796, 366, 260, 41571, 262, 5485, 286, 257, 362, 35, 966, 6279, 526, 198, 198, 40406, 7, 3672, 2625, 26591, 62, 1477, 7916, 1600, 198, 220, 220, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 220, 220, 1772, 2625, 15730, 363, 5151, 271, 1168, 395, 272, 27321, 1600, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 2625, 6839, 418, 89, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 17816, 77, 32152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43358, 306, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 29487, 8019, 6, 4357, 198, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 513, 532, 12995, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 5800, 14, 25104, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 22060, 14, 13798, 1586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 22060, 14, 13798, 1586, 7904, 6188, 14691, 1600, 198, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 6839, 418, 89, 14, 26591, 62, 1477, 7916, 1600, 198, 220, 220, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 1267, 198 ]
2.367347
441
from lxml import etree import glob from collections import defaultdict, Counter import json def get_entries(xmlfile): "Get entries from an XML file." root = etree.parse(xmlfile) return root.xpath('//entry') def count_templates(filename): "Count the templates for each predicate in a file." template_counter = defaultdict(list) entries = get_entries(filename) for entry in entries: otriples = entry.xpath('./originaltripleset/otriple') assert len(otriples) == 1 # check to make sure we don't miss anything. otriple = otriples[0] predicate = otriple.text.split(' | ')[1] templates = [template.text for template in entry.xpath('.//template')] template_counter[predicate].extend(templates) return template_counter def gather_all(xmlfiles): "Gather all templates in one index." main_index = defaultdict(list) for filename in xmlfiles: result = count_templates(filename) for predicate, templates in result.items(): main_index[predicate].extend(templates) return main_index def compute_ratios(index): "Compute ratio of unique templates to total templates." rows = [] for predicate, templates in index.items(): unique_templates = len(set(templates)) all_templates = len(templates) ratio = unique_templates/all_templates row = [predicate, unique_templates, all_templates, f"{ratio:.2f}"] rows.append(row) rows = sorted(rows, key=lambda row:row[-1], reverse=True) return rows def select_ratios(rows, max_per_category, add_last): "Select rows with ratios along the entire range of ratios." selection = [] last = None for row in rows: ratio = row[-1] relevant_digit = ratio[-2] if relevant_digit != last: selection.append(row) count = 1 last = relevant_digit elif count < max_per_category: selection.append(row) count += 1 if add_last: selection.append(rows[-1]) return selection def make_latex(table): """ Quick and dirty LaTeX solution to generate the contents of a table. """ lines = [' & '.join(map(str,row))+'\\\\' for row in table] table = '\n'.join(lines) print(table) if __name__=="__main__": xmlfiles = glob.glob('./webnlg-master/final/en/train/1triples/*.xml') index = gather_all(xmlfiles) ratios = compute_ratios(index) selected_ratios = select_ratios(ratios, max_per_category=2, add_last=True) make_latex(selected_ratios)
[ 6738, 300, 19875, 1330, 2123, 631, 198, 11748, 15095, 198, 6738, 17268, 1330, 4277, 11600, 11, 15034, 198, 11748, 33918, 628, 198, 4299, 651, 62, 298, 1678, 7, 87, 76, 1652, 576, 2599, 198, 220, 220, 220, 366, 3855, 12784, 422, 281, 23735, 2393, 526, 198, 220, 220, 220, 6808, 796, 2123, 631, 13, 29572, 7, 87, 76, 1652, 576, 8, 198, 220, 220, 220, 1441, 6808, 13, 87, 6978, 10786, 1003, 13000, 11537, 628, 198, 4299, 954, 62, 11498, 17041, 7, 34345, 2599, 198, 220, 220, 220, 366, 12332, 262, 24019, 329, 1123, 44010, 287, 257, 2393, 526, 198, 220, 220, 220, 11055, 62, 24588, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 12784, 796, 651, 62, 298, 1678, 7, 34345, 8, 198, 220, 220, 220, 329, 5726, 287, 12784, 25, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28461, 2374, 796, 5726, 13, 87, 6978, 7, 4458, 14, 14986, 28461, 2374, 316, 14, 313, 380, 1154, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 313, 380, 2374, 8, 6624, 352, 1303, 2198, 284, 787, 1654, 356, 836, 470, 2051, 1997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 267, 28461, 1154, 796, 267, 28461, 2374, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 44010, 796, 267, 28461, 1154, 13, 5239, 13, 35312, 10786, 930, 705, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 24019, 796, 685, 28243, 13, 5239, 329, 11055, 287, 5726, 13, 87, 6978, 7, 4458, 1003, 28243, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 24588, 58, 28764, 5344, 4083, 2302, 437, 7, 11498, 17041, 8, 198, 220, 220, 220, 1441, 11055, 62, 24588, 628, 198, 4299, 6431, 62, 439, 7, 87, 76, 1652, 2915, 2599, 198, 220, 220, 220, 366, 38, 1032, 477, 24019, 287, 530, 6376, 526, 198, 220, 220, 220, 1388, 62, 9630, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 329, 29472, 287, 2124, 76, 1652, 2915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 954, 62, 11498, 17041, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 44010, 11, 24019, 287, 1255, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1388, 62, 9630, 58, 28764, 5344, 4083, 2302, 437, 7, 11498, 17041, 8, 198, 220, 220, 220, 1441, 1388, 62, 9630, 628, 198, 4299, 24061, 62, 10366, 4267, 7, 9630, 2599, 198, 220, 220, 220, 366, 7293, 1133, 8064, 286, 3748, 24019, 284, 2472, 24019, 526, 198, 220, 220, 220, 15274, 796, 17635, 198, 220, 220, 220, 329, 44010, 11, 24019, 287, 6376, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 62, 11498, 17041, 796, 18896, 7, 2617, 7, 11498, 17041, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 11498, 17041, 796, 18896, 7, 11498, 17041, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8064, 796, 3748, 62, 11498, 17041, 14, 439, 62, 11498, 17041, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 685, 28764, 5344, 11, 3748, 62, 11498, 17041, 11, 477, 62, 11498, 17041, 11, 277, 1, 90, 10366, 952, 25, 13, 17, 69, 92, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 15274, 796, 23243, 7, 8516, 11, 1994, 28, 50033, 5752, 25, 808, 58, 12, 16, 4357, 9575, 28, 17821, 8, 198, 220, 220, 220, 1441, 15274, 628, 198, 4299, 2922, 62, 10366, 4267, 7, 8516, 11, 3509, 62, 525, 62, 22872, 11, 751, 62, 12957, 2599, 198, 220, 220, 220, 366, 17563, 15274, 351, 22423, 1863, 262, 2104, 2837, 286, 22423, 526, 198, 220, 220, 220, 6356, 796, 17635, 198, 220, 220, 220, 938, 796, 6045, 198, 220, 220, 220, 329, 5752, 287, 15274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8064, 796, 5752, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5981, 62, 27003, 796, 8064, 58, 12, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5981, 62, 27003, 14512, 938, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6356, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 796, 5981, 62, 27003, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 954, 1279, 3509, 62, 525, 62, 22872, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6356, 13, 33295, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 198, 220, 220, 220, 611, 751, 62, 12957, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6356, 13, 33295, 7, 8516, 58, 12, 16, 12962, 198, 220, 220, 220, 1441, 6356, 628, 198, 4299, 787, 62, 17660, 87, 7, 11487, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12029, 290, 11841, 4689, 49568, 4610, 284, 7716, 262, 10154, 286, 257, 3084, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 37250, 1222, 45302, 22179, 7, 8899, 7, 2536, 11, 808, 4008, 10, 6, 13426, 6, 329, 5752, 287, 3084, 60, 198, 220, 220, 220, 3084, 796, 705, 59, 77, 4458, 22179, 7, 6615, 8, 198, 220, 220, 220, 3601, 7, 11487, 8, 628, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 2124, 76, 1652, 2915, 796, 15095, 13, 4743, 672, 7, 4458, 14, 732, 9374, 75, 70, 12, 9866, 14, 20311, 14, 268, 14, 27432, 14, 16, 28461, 2374, 15211, 13, 19875, 11537, 198, 220, 220, 220, 6376, 796, 6431, 62, 439, 7, 87, 76, 1652, 2915, 8, 198, 220, 220, 220, 22423, 796, 24061, 62, 10366, 4267, 7, 9630, 8, 198, 220, 220, 220, 6163, 62, 10366, 4267, 796, 2922, 62, 10366, 4267, 7, 10366, 4267, 11, 3509, 62, 525, 62, 22872, 28, 17, 11, 751, 62, 12957, 28, 17821, 8, 198, 220, 220, 220, 787, 62, 17660, 87, 7, 34213, 62, 10366, 4267, 8, 198 ]
2.507752
1,032
from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Rate from car.tests.test_cars_api import sample_car RATE_URL = reverse('car:rate-list') class PublicRateApiTests(TestCase): """Test the publicly available rate API""" def test_create_rate_successful(self): """Test a new rate creation successful""" payload = {"car": sample_car(), "rate": 4} self.client.post(RATE_URL, payload) exists = Rate.objects.filter( car=payload['car'] ).exists self.assertTrue(exists) def test_create_rate_invalid(self): """Test a new rate creation failed""" payload = {"car": None, "rate": 4} res = self.client.post(RATE_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_rate_value_validation(self): """Test validation rate is between 1-5""" payload = { "car": sample_car(), "rate": 7 } res = self.client.post(RATE_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST)
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 9288, 1330, 3486, 2149, 75, 1153, 198, 198, 6738, 4755, 13, 27530, 1330, 14806, 198, 198, 6738, 1097, 13, 41989, 13, 9288, 62, 37993, 62, 15042, 1330, 6291, 62, 7718, 198, 198, 49, 6158, 62, 21886, 796, 9575, 10786, 7718, 25, 4873, 12, 4868, 11537, 628, 198, 4871, 5094, 32184, 32, 14415, 51, 3558, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 262, 7271, 1695, 2494, 7824, 37811, 628, 220, 220, 220, 825, 1332, 62, 17953, 62, 4873, 62, 17212, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 257, 649, 2494, 6282, 4388, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 19779, 7718, 1298, 6291, 62, 7718, 22784, 366, 4873, 1298, 604, 92, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16366, 13, 7353, 7, 49, 6158, 62, 21886, 11, 21437, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7160, 796, 14806, 13, 48205, 13, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1097, 28, 15577, 2220, 17816, 7718, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 1069, 1023, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 1069, 1023, 8, 628, 220, 220, 220, 825, 1332, 62, 17953, 62, 4873, 62, 259, 12102, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 257, 649, 2494, 6282, 4054, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 19779, 7718, 1298, 6045, 11, 366, 4873, 1298, 604, 92, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 16366, 13, 7353, 7, 49, 6158, 62, 21886, 11, 21437, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 411, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 7029, 62, 33, 2885, 62, 2200, 35780, 8, 628, 220, 220, 220, 825, 1332, 62, 4873, 62, 8367, 62, 12102, 341, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 21201, 2494, 318, 1022, 352, 12, 20, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7718, 1298, 6291, 62, 7718, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4873, 1298, 767, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 16366, 13, 7353, 7, 49, 6158, 62, 21886, 11, 21437, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 411, 13, 13376, 62, 8189, 11, 3722, 13, 40717, 62, 7029, 62, 33, 2885, 62, 2200, 35780, 8 ]
2.467213
488
# Copyright 2012 Google Inc. All Rights Reserved. """Project representation. A project is a module (or set of modules) that provides a namespace of rules. Rules may refer to each other and will be resolved in the project namespace. """ __author__ = '[email protected] (Ben Vanik)' import base64 import os import pickle import re import stat import string from anvil.module import ModuleLoader from anvil.rule import RuleNamespace import anvil.util class Project(object): """Project type that contains rules. Projects, once constructed, are designed to be immutable. Many duplicate build processes may run over the same project instance and all expect it to be in the state it was when first created. """ def __init__(self, name='Project', rule_namespace=None, module_resolver=None, modules=None): """Initializes an empty project. Args: name: A human-readable name for the project that will be used for logging. rule_namespace: Rule namespace to use when loading modules. If omitted a default one is used. module_resolver: A module resolver to use when attempt to dynamically resolve modules by path. modules: A list of modules to add to the project. Raises: NameError: The name given is not valid. """ self.name = name if rule_namespace: self.rule_namespace = rule_namespace else: self.rule_namespace = RuleNamespace() self.rule_namespace.discover() if module_resolver: self.module_resolver = module_resolver else: self.module_resolver = StaticModuleResolver() self.modules = {} if modules and len(modules): self.add_modules(modules) def add_module(self, module): """Adds a module to the project. Args: module: A module to add. Raises: KeyError: A module with the given name already exists in the project. """ self.add_modules([module]) def add_modules(self, modules): """Adds a list of modules to the project. Args: modules: A list of modules to add. Raises: KeyError: A module with the given name already exists in the project. """ for module in modules: if self.modules.get(module.path, None): raise KeyError('A module with the path "%s" is already defined' % ( module.path)) for module in modules: self.modules[module.path] = module def get_module(self, module_path): """Gets a module by path. Args: module_path: Name of the module to find. Returns: The module with the given path or None if it was not found. """ return self.modules.get(module_path, None) def module_list(self): """Gets a list of all modules in the project. Returns: A list of all modules. """ return self.modules.values() def module_iter(self): """Iterates over all modules in the project.""" for module_path in self.modules: yield self.modules[module_path] def resolve_rule(self, rule_path, requesting_module=None): """Gets a rule by path, supporting module lookup and dynamic loading. Args: rule_path: Path of the rule to find. Must include a semicolon. requesting_module: The module that is requesting the given rule. If not provided then no local rule paths (':foo') or relative paths are allowed. Returns: The rule with the given name or None if it was not found. Raises: NameError: The given rule name was not valid. KeyError: The given rule was not found. IOError: Unable to load referenced module. """ if not anvil.util.is_rule_path(rule_path): raise NameError('The rule path "%s" is missing a semicolon' % (rule_path)) (module_path, rule_name) = string.rsplit(rule_path, ':', 1) if self.module_resolver.can_resolve_local: if not len(module_path) and not requesting_module: module_path = '.' if not len(module_path) and not requesting_module: raise KeyError('Local rule "%s" given when no resolver defined' % ( rule_path)) module = requesting_module if len(module_path): requesting_path = None if requesting_module: requesting_path = os.path.dirname(requesting_module.path) full_path = self.module_resolver.resolve_module_path( module_path, requesting_path) module = self.modules.get(full_path, None) if not module: # Module not yet loaded - need to grab it module = self.module_resolver.load_module( full_path, self.rule_namespace) if module: self.add_module(module) else: raise IOError('Module "%s" not found', module_path) return module.get_rule(rule_name) class ModuleResolver(object): """A type to use for resolving modules. This is used to get a module when a project tries to resolve a rule in a module that has not yet been loaded. """ def __init__(self, *args, **kwargs): """Initializes a module resolver.""" self.can_resolve_local = False def resolve_module_path(self, path, working_path=None): """Resolves a module path to its full, absolute path. This is used by the project system to disambugate modules and check the cache before actually performing a load. The path returned from this will be passed to load_module. Args: path: Path of the module (may be relative/etc). working_path: Path relative paths should be pased off of. If not provided then relative paths may fail. Returns: An absolute path that can be used as a cache key and passed to load_module. """ raise NotImplementedError() def load_module(self, full_path, rule_namespace): """Loads a module from the given path. Args: full_path: Absolute path of the module as returned by resolve_module_path. rule_namespace: Rule namespace to use when loading modules. Returns: A Module representing the given path or None if it could not be found. Raises: IOError: The module could not be found. """ raise NotImplementedError() class StaticModuleResolver(ModuleResolver): """A static module resolver that can resolve from a list of modules. """ def __init__(self, modules=None, *args, **kwargs): """Initializes a static module resolver. Args: modules: A list of modules that can be resolved. """ super(StaticModuleResolver, self).__init__(*args, **kwargs) self.modules = {} if modules: for module in modules: self.modules[os.path.normpath(module.path)] = module class FileModuleResolver(ModuleResolver): """A file-system backed module resolver. Rules are searched for with relative paths from a defined root path. If the module path given is a directory, the resolver will attempt to load a BUILD file from that directory - otherwise the file specified will be treated as the module. """ def __init__(self, root_path, *args, **kwargs): """Initializes a file-system module resolver. Args: root_path: Root filesystem path to treat as the base for all resolutions. Raises: IOError: The given root path is not found or is not a directory. """ super(FileModuleResolver, self).__init__(*args, **kwargs) self.can_resolve_local = True self.root_path = os.path.normpath(root_path) if not os.path.isdir(self.root_path): raise IOError('Root path "%s" not found' % (self.root_path))
[ 2, 15069, 2321, 3012, 3457, 13, 1439, 6923, 33876, 13, 198, 198, 37811, 16775, 10552, 13, 198, 198, 32, 1628, 318, 257, 8265, 357, 273, 900, 286, 13103, 8, 326, 3769, 257, 25745, 286, 3173, 13, 198, 37766, 743, 3522, 284, 1123, 584, 290, 481, 307, 12939, 287, 262, 1628, 25745, 13, 198, 37811, 198, 198, 834, 9800, 834, 796, 705, 11722, 10438, 1134, 31, 13297, 13, 785, 357, 11696, 6656, 1134, 33047, 628, 198, 11748, 2779, 2414, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 302, 198, 11748, 1185, 198, 11748, 4731, 198, 198, 6738, 281, 2991, 13, 21412, 1330, 19937, 17401, 198, 6738, 281, 2991, 13, 25135, 1330, 14330, 36690, 10223, 198, 11748, 281, 2991, 13, 22602, 628, 198, 4871, 4935, 7, 15252, 2599, 198, 220, 37227, 16775, 2099, 326, 4909, 3173, 13, 198, 220, 29898, 11, 1752, 12006, 11, 389, 3562, 284, 307, 40139, 13, 4650, 23418, 198, 220, 1382, 7767, 743, 1057, 625, 262, 976, 1628, 4554, 290, 477, 1607, 340, 284, 198, 220, 307, 287, 262, 1181, 340, 373, 618, 717, 2727, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 1438, 11639, 16775, 3256, 3896, 62, 14933, 10223, 28, 14202, 11, 8265, 62, 411, 14375, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13103, 28, 14202, 2599, 198, 220, 220, 220, 37227, 24243, 4340, 281, 6565, 1628, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1438, 25, 317, 1692, 12, 46155, 1438, 329, 262, 1628, 326, 481, 307, 973, 329, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 198, 220, 220, 220, 220, 220, 3896, 62, 14933, 10223, 25, 14330, 25745, 284, 779, 618, 11046, 13103, 13, 1002, 22532, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 530, 318, 973, 13, 198, 220, 220, 220, 220, 220, 8265, 62, 411, 14375, 25, 317, 8265, 581, 14375, 284, 779, 618, 2230, 284, 32366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10568, 13103, 416, 3108, 13, 198, 220, 220, 220, 220, 220, 13103, 25, 317, 1351, 286, 13103, 284, 751, 284, 262, 1628, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 6530, 12331, 25, 383, 1438, 1813, 318, 407, 4938, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 3672, 796, 1438, 628, 220, 220, 220, 611, 3896, 62, 14933, 10223, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 25135, 62, 14933, 10223, 796, 3896, 62, 14933, 10223, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 25135, 62, 14933, 10223, 796, 14330, 36690, 10223, 3419, 198, 220, 220, 220, 220, 220, 2116, 13, 25135, 62, 14933, 10223, 13, 67, 29392, 3419, 628, 220, 220, 220, 611, 8265, 62, 411, 14375, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 21412, 62, 411, 14375, 796, 8265, 62, 411, 14375, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 21412, 62, 411, 14375, 796, 36125, 26796, 4965, 14375, 3419, 628, 220, 220, 220, 2116, 13, 18170, 796, 23884, 198, 220, 220, 220, 611, 13103, 290, 18896, 7, 18170, 2599, 198, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 18170, 7, 18170, 8, 628, 220, 825, 751, 62, 21412, 7, 944, 11, 8265, 2599, 198, 220, 220, 220, 37227, 46245, 257, 8265, 284, 262, 1628, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 8265, 25, 317, 8265, 284, 751, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 7383, 12331, 25, 317, 8265, 351, 262, 1813, 1438, 1541, 7160, 287, 262, 1628, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 2860, 62, 18170, 26933, 21412, 12962, 628, 220, 825, 751, 62, 18170, 7, 944, 11, 13103, 2599, 198, 220, 220, 220, 37227, 46245, 257, 1351, 286, 13103, 284, 262, 1628, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 13103, 25, 317, 1351, 286, 13103, 284, 751, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 7383, 12331, 25, 317, 8265, 351, 262, 1813, 1438, 1541, 7160, 287, 262, 1628, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 8265, 287, 13103, 25, 198, 220, 220, 220, 220, 220, 611, 2116, 13, 18170, 13, 1136, 7, 21412, 13, 6978, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 10786, 32, 8265, 351, 262, 3108, 36521, 82, 1, 318, 1541, 5447, 6, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 13, 6978, 4008, 198, 220, 220, 220, 329, 8265, 287, 13103, 25, 198, 220, 220, 220, 220, 220, 2116, 13, 18170, 58, 21412, 13, 6978, 60, 796, 8265, 628, 220, 825, 651, 62, 21412, 7, 944, 11, 8265, 62, 6978, 2599, 198, 220, 220, 220, 37227, 38, 1039, 257, 8265, 416, 3108, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 8265, 62, 6978, 25, 6530, 286, 262, 8265, 284, 1064, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 8265, 351, 262, 1813, 3108, 393, 6045, 611, 340, 373, 407, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2116, 13, 18170, 13, 1136, 7, 21412, 62, 6978, 11, 6045, 8, 628, 220, 825, 8265, 62, 4868, 7, 944, 2599, 198, 220, 220, 220, 37227, 38, 1039, 257, 1351, 286, 477, 13103, 287, 262, 1628, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 1351, 286, 477, 13103, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2116, 13, 18170, 13, 27160, 3419, 628, 220, 825, 8265, 62, 2676, 7, 944, 2599, 198, 220, 220, 220, 37227, 29993, 689, 625, 477, 13103, 287, 262, 1628, 526, 15931, 198, 220, 220, 220, 329, 8265, 62, 6978, 287, 2116, 13, 18170, 25, 198, 220, 220, 220, 220, 220, 7800, 2116, 13, 18170, 58, 21412, 62, 6978, 60, 628, 220, 825, 10568, 62, 25135, 7, 944, 11, 3896, 62, 6978, 11, 20623, 62, 21412, 28, 14202, 2599, 198, 220, 220, 220, 37227, 38, 1039, 257, 3896, 416, 3108, 11, 6493, 8265, 35847, 290, 8925, 11046, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 3896, 62, 6978, 25, 10644, 286, 262, 3896, 284, 1064, 13, 12039, 2291, 257, 5026, 27045, 261, 13, 198, 220, 220, 220, 220, 220, 20623, 62, 21412, 25, 383, 8265, 326, 318, 20623, 262, 1813, 3896, 13, 1002, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2810, 788, 645, 1957, 3896, 13532, 357, 10354, 21943, 11537, 393, 3585, 13532, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3142, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 3896, 351, 262, 1813, 1438, 393, 6045, 611, 340, 373, 407, 1043, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 6530, 12331, 25, 383, 1813, 3896, 1438, 373, 407, 4938, 13, 198, 220, 220, 220, 220, 220, 7383, 12331, 25, 383, 1813, 3896, 373, 407, 1043, 13, 198, 220, 220, 220, 220, 220, 24418, 12331, 25, 27319, 284, 3440, 20717, 8265, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 281, 2991, 13, 22602, 13, 271, 62, 25135, 62, 6978, 7, 25135, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 5298, 6530, 12331, 10786, 464, 3896, 3108, 36521, 82, 1, 318, 4814, 257, 5026, 27045, 261, 6, 4064, 357, 25135, 62, 6978, 4008, 198, 220, 220, 220, 357, 21412, 62, 6978, 11, 3896, 62, 3672, 8, 796, 4731, 13, 3808, 489, 270, 7, 25135, 62, 6978, 11, 705, 25, 3256, 352, 8, 198, 220, 220, 220, 611, 2116, 13, 21412, 62, 411, 14375, 13, 5171, 62, 411, 6442, 62, 12001, 25, 198, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 21412, 62, 6978, 8, 290, 407, 20623, 62, 21412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 6978, 796, 705, 2637, 198, 220, 220, 220, 611, 407, 18896, 7, 21412, 62, 6978, 8, 290, 407, 20623, 62, 21412, 25, 198, 220, 220, 220, 220, 220, 5298, 7383, 12331, 10786, 14565, 3896, 36521, 82, 1, 1813, 618, 645, 581, 14375, 5447, 6, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3896, 62, 6978, 4008, 628, 220, 220, 220, 8265, 796, 20623, 62, 21412, 198, 220, 220, 220, 611, 18896, 7, 21412, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 20623, 62, 6978, 796, 6045, 198, 220, 220, 220, 220, 220, 611, 20623, 62, 21412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20623, 62, 6978, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 25927, 278, 62, 21412, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 1336, 62, 6978, 796, 2116, 13, 21412, 62, 411, 14375, 13, 411, 6442, 62, 21412, 62, 6978, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8265, 62, 6978, 11, 20623, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 8265, 796, 2116, 13, 18170, 13, 1136, 7, 12853, 62, 6978, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 611, 407, 8265, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19937, 407, 1865, 9639, 532, 761, 284, 5552, 340, 198, 220, 220, 220, 220, 220, 220, 220, 8265, 796, 2116, 13, 21412, 62, 411, 14375, 13, 2220, 62, 21412, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 6978, 11, 2116, 13, 25135, 62, 14933, 10223, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8265, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 21412, 7, 21412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 10786, 26796, 36521, 82, 1, 407, 1043, 3256, 8265, 62, 6978, 8, 628, 220, 220, 220, 1441, 8265, 13, 1136, 62, 25135, 7, 25135, 62, 3672, 8, 628, 198, 4871, 19937, 4965, 14375, 7, 15252, 2599, 198, 220, 37227, 32, 2099, 284, 779, 329, 31038, 13103, 13, 198, 220, 770, 318, 973, 284, 651, 257, 8265, 618, 257, 1628, 8404, 284, 10568, 257, 3896, 287, 257, 198, 220, 8265, 326, 468, 407, 1865, 587, 9639, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 24243, 4340, 257, 8265, 581, 14375, 526, 15931, 198, 220, 220, 220, 2116, 13, 5171, 62, 411, 6442, 62, 12001, 796, 10352, 628, 220, 825, 10568, 62, 21412, 62, 6978, 7, 944, 11, 3108, 11, 1762, 62, 6978, 28, 14202, 2599, 198, 220, 220, 220, 37227, 4965, 9010, 257, 8265, 3108, 284, 663, 1336, 11, 4112, 3108, 13, 198, 220, 220, 220, 770, 318, 973, 416, 262, 1628, 1080, 284, 595, 4131, 1018, 378, 13103, 290, 2198, 262, 198, 220, 220, 220, 12940, 878, 1682, 9489, 257, 3440, 13, 198, 220, 220, 220, 383, 3108, 4504, 422, 428, 481, 307, 3804, 284, 3440, 62, 21412, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 3108, 25, 10644, 286, 262, 8265, 357, 11261, 307, 3585, 14, 14784, 737, 198, 220, 220, 220, 220, 220, 1762, 62, 6978, 25, 10644, 3585, 13532, 815, 307, 279, 839, 572, 286, 13, 1002, 407, 2810, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 788, 3585, 13532, 743, 2038, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 1052, 4112, 3108, 326, 460, 307, 973, 355, 257, 12940, 1994, 290, 3804, 284, 198, 220, 220, 220, 220, 220, 3440, 62, 21412, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 825, 3440, 62, 21412, 7, 944, 11, 1336, 62, 6978, 11, 3896, 62, 14933, 10223, 2599, 198, 220, 220, 220, 37227, 8912, 82, 257, 8265, 422, 262, 1813, 3108, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 1336, 62, 6978, 25, 36532, 3108, 286, 262, 8265, 355, 4504, 416, 10568, 62, 21412, 62, 6978, 13, 198, 220, 220, 220, 220, 220, 3896, 62, 14933, 10223, 25, 14330, 25745, 284, 779, 618, 11046, 13103, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 317, 19937, 10200, 262, 1813, 3108, 393, 6045, 611, 340, 714, 407, 307, 1043, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 24418, 12331, 25, 383, 8265, 714, 407, 307, 1043, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 198, 4871, 36125, 26796, 4965, 14375, 7, 26796, 4965, 14375, 2599, 198, 220, 37227, 32, 9037, 8265, 581, 14375, 326, 460, 10568, 422, 257, 1351, 286, 13103, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 13103, 28, 14202, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 24243, 4340, 257, 9037, 8265, 581, 14375, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 13103, 25, 317, 1351, 286, 13103, 326, 460, 307, 12939, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 7, 45442, 26796, 4965, 14375, 11, 2116, 737, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 2116, 13, 18170, 796, 23884, 198, 220, 220, 220, 611, 13103, 25, 198, 220, 220, 220, 220, 220, 329, 8265, 287, 13103, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18170, 58, 418, 13, 6978, 13, 27237, 6978, 7, 21412, 13, 6978, 15437, 796, 8265, 628, 198, 4871, 9220, 26796, 4965, 14375, 7, 26796, 4965, 14375, 2599, 198, 220, 37227, 32, 2393, 12, 10057, 9763, 8265, 581, 14375, 13, 628, 220, 14252, 389, 16499, 329, 351, 3585, 13532, 422, 257, 5447, 6808, 3108, 13, 198, 220, 1002, 262, 8265, 3108, 1813, 318, 257, 8619, 11, 262, 581, 14375, 481, 2230, 284, 3440, 198, 220, 257, 20571, 26761, 2393, 422, 326, 8619, 532, 4306, 262, 2393, 7368, 481, 307, 198, 220, 5716, 355, 262, 8265, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 6808, 62, 6978, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 24243, 4340, 257, 2393, 12, 10057, 8265, 581, 14375, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 6808, 62, 6978, 25, 20410, 29905, 3108, 284, 2190, 355, 262, 2779, 329, 477, 21811, 13, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 24418, 12331, 25, 383, 1813, 6808, 3108, 318, 407, 1043, 393, 318, 407, 257, 8619, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2208, 7, 8979, 26796, 4965, 14375, 11, 2116, 737, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 2116, 13, 5171, 62, 411, 6442, 62, 12001, 796, 6407, 628, 220, 220, 220, 2116, 13, 15763, 62, 6978, 796, 28686, 13, 6978, 13, 27237, 6978, 7, 15763, 62, 6978, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 944, 13, 15763, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 5298, 24418, 12331, 10786, 30016, 3108, 36521, 82, 1, 407, 1043, 6, 4064, 357, 944, 13, 15763, 62, 6978, 4008, 198 ]
2.885736
2,608
from talon import Module, ui, registry, skia, actions, cron from talon.canvas import Canvas import re import webbrowser import math mod = Module() mod.mode("cursorless_cheat_sheet", "Mode for showing cursorless cheat sheet gui") cheat_sheet = None instructions_url = "https://github.com/pokey/cursorless-talon/tree/master/docs" instructions_text = "Full docs" line_height = 34 outer_padding = 27 text_size = 16 url_text_size = 30 close_size = 24 header_size = 22 padding = 4 command_font = "monospace" text_font = "" background_color = "fafafa" border_color = "000000" text_color = "444444" header_color = "000000" command_background_color = "e9e9e9" command_text_color = "282828" url_color = "0046c9" @mod.action_class
[ 6738, 3305, 261, 1330, 19937, 11, 334, 72, 11, 20478, 11, 1341, 544, 11, 4028, 11, 1067, 261, 198, 6738, 3305, 261, 13, 5171, 11017, 1330, 1680, 11017, 198, 11748, 302, 198, 11748, 3992, 40259, 198, 11748, 10688, 198, 198, 4666, 796, 19937, 3419, 198, 4666, 13, 14171, 7203, 66, 21471, 1203, 62, 46799, 62, 21760, 1600, 366, 19076, 329, 4478, 23493, 1203, 22705, 9629, 11774, 4943, 198, 46799, 62, 21760, 796, 6045, 198, 198, 259, 7249, 507, 62, 6371, 796, 366, 5450, 1378, 12567, 13, 785, 14, 35924, 88, 14, 66, 21471, 1203, 12, 39240, 261, 14, 21048, 14, 9866, 14, 31628, 1, 198, 259, 7249, 507, 62, 5239, 796, 366, 13295, 34165, 1, 198, 1370, 62, 17015, 796, 4974, 198, 39605, 62, 39231, 796, 2681, 198, 5239, 62, 7857, 796, 1467, 198, 6371, 62, 5239, 62, 7857, 796, 1542, 198, 19836, 62, 7857, 796, 1987, 198, 25677, 62, 7857, 796, 2534, 198, 39231, 796, 604, 198, 198, 21812, 62, 10331, 796, 366, 2144, 24912, 1, 198, 5239, 62, 10331, 796, 13538, 198, 198, 25249, 62, 8043, 796, 366, 69, 1878, 28485, 1, 198, 20192, 62, 8043, 796, 366, 10535, 1, 198, 5239, 62, 8043, 796, 366, 2598, 2598, 2598, 1, 198, 25677, 62, 8043, 796, 366, 10535, 1, 198, 21812, 62, 25249, 62, 8043, 796, 366, 68, 24, 68, 24, 68, 24, 1, 198, 21812, 62, 5239, 62, 8043, 796, 366, 2078, 2078, 2078, 1, 198, 6371, 62, 8043, 796, 366, 405, 3510, 66, 24, 1, 628, 198, 198, 31, 4666, 13, 2673, 62, 4871, 628, 628, 628, 628, 628, 198 ]
2.802281
263
# -*- coding:utf-8 -*- import logging from multiprocessing import Pool from operator import itemgetter from collections import OrderedDict from service.doc_etl import doc_etl from service.api.tencent_ai import tencent_ai from service.api.baidu_ai import baidu_ai from service.api.jd_ai import jd_ai from service.api.faceplusplus_ai import faceplusplus_ai from service.api.netease_ai import netease_ai from settings import FACEPLUSPLUS_TEMPLATE from util.readImage import readImage from util.text_connector import TextConnector from templates.loadTemplate import ocrTemplate
[ 2, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 11748, 18931, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 2139, 13, 15390, 62, 316, 75, 1330, 2205, 62, 316, 75, 198, 6738, 2139, 13, 15042, 13, 1452, 1087, 62, 1872, 1330, 3478, 1087, 62, 1872, 198, 6738, 2139, 13, 15042, 13, 65, 1698, 84, 62, 1872, 1330, 275, 1698, 84, 62, 1872, 198, 6738, 2139, 13, 15042, 13, 73, 67, 62, 1872, 1330, 474, 67, 62, 1872, 198, 6738, 2139, 13, 15042, 13, 2550, 9541, 9541, 62, 1872, 1330, 1986, 9541, 9541, 62, 1872, 198, 6738, 2139, 13, 15042, 13, 3262, 68, 589, 62, 1872, 1330, 2010, 68, 589, 62, 1872, 198, 6738, 6460, 1330, 46587, 6489, 2937, 6489, 2937, 62, 51, 3620, 6489, 6158, 198, 6738, 7736, 13, 961, 5159, 1330, 1100, 5159, 198, 6738, 7736, 13, 5239, 62, 8443, 273, 1330, 8255, 34525, 198, 6738, 24019, 13, 2220, 30800, 1330, 267, 6098, 30800, 628 ]
3.248588
177
from PIL import ImageGrab import numpy as np import cv2 from win32api import GetSystemMetrics width = GetSystemMetrics(0) height = GetSystemMetrics(1) forcecc = cv2.VideoWriter_fourcc('m','p','4','v') captured_video = cv2.VideoWriter('output.mp4', forcecc, 20.0, (width, height)) while True: img = ImageGrab.grab(bbox=(0, 0 ,width, height)) img_np = np.array(img) img_final = cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB) cv2.imshow('Secrete Capture', img_final) captured_video.write(img_final) if cv2.waitKey(10) == ord('q'): break
[ 6738, 350, 4146, 1330, 7412, 48400, 201, 198, 11748, 299, 32152, 355, 45941, 220, 201, 198, 11748, 269, 85, 17, 201, 198, 6738, 1592, 2624, 15042, 1330, 3497, 11964, 9171, 10466, 201, 198, 201, 198, 10394, 796, 3497, 11964, 9171, 10466, 7, 15, 8, 201, 198, 17015, 796, 3497, 11964, 9171, 10466, 7, 16, 8, 201, 198, 3174, 535, 796, 269, 85, 17, 13, 10798, 34379, 62, 14337, 535, 10786, 76, 41707, 79, 41707, 19, 41707, 85, 11537, 201, 198, 27144, 1522, 62, 15588, 796, 269, 85, 17, 13, 10798, 34379, 10786, 22915, 13, 3149, 19, 3256, 2700, 535, 11, 1160, 13, 15, 11, 357, 10394, 11, 6001, 4008, 201, 198, 4514, 6407, 25, 201, 198, 220, 220, 220, 33705, 796, 7412, 48400, 13, 32393, 7, 65, 3524, 16193, 15, 11, 657, 837, 10394, 11, 6001, 4008, 201, 198, 220, 220, 220, 33705, 62, 37659, 796, 45941, 13, 18747, 7, 9600, 8, 201, 198, 220, 220, 220, 33705, 62, 20311, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 9600, 62, 37659, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 36982, 8, 201, 198, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 6558, 8374, 31793, 3256, 33705, 62, 20311, 8, 201, 198, 220, 220, 220, 7907, 62, 15588, 13, 13564, 7, 9600, 62, 20311, 8, 201, 198, 220, 220, 220, 611, 269, 85, 17, 13, 17077, 9218, 7, 940, 8, 6624, 2760, 10786, 80, 6, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2270 ]
2.304
250
import random from java.lang import String from org.myrobotlab.net import BareBonesBrowserLaunch holygrail = Runtime.createAndStart("holygrail", "WebGui") wksr = Runtime.createAndStart("webkitspeechrecognition", "WebkitSpeechRecognition") alice2 = Runtime.createAndStart("alice2", "ProgramAB") alice2.startSession("C:/mrl2/myrobotlab/ProgramAB", "default", "alice2") htmlfilter = Runtime.createAndStart("htmlfilter", "HtmlFilter") mouth = Runtime.createAndStart("i01.mouth", "MarySpeech") wksr.addTextListener(alice2) alice2.addTextListener(htmlfilter) htmlfilter.addTextListener(mouth) meco1 = 0 meco2 = 0 meco3 = 0
[ 11748, 4738, 198, 6738, 20129, 13, 17204, 1330, 10903, 198, 6738, 8745, 13, 1820, 305, 13645, 23912, 13, 3262, 1330, 38234, 33, 1952, 46532, 38296, 198, 44287, 70, 30224, 796, 43160, 13, 17953, 1870, 10434, 7203, 44287, 70, 30224, 1600, 366, 13908, 8205, 72, 4943, 198, 86, 591, 81, 796, 43160, 13, 17953, 1870, 10434, 7203, 12384, 74, 896, 431, 3055, 26243, 653, 1600, 366, 13908, 15813, 5248, 3055, 6690, 2360, 653, 4943, 198, 282, 501, 17, 796, 43160, 13, 17953, 1870, 10434, 7203, 282, 501, 17, 1600, 366, 15167, 6242, 4943, 198, 282, 501, 17, 13, 9688, 36044, 7203, 34, 14079, 43395, 75, 17, 14, 1820, 305, 13645, 23912, 14, 15167, 6242, 1600, 366, 12286, 1600, 366, 282, 501, 17, 4943, 198, 19211, 1652, 346, 353, 796, 43160, 13, 17953, 1870, 10434, 7203, 19211, 1652, 346, 353, 1600, 366, 39, 20369, 22417, 4943, 198, 14775, 796, 43160, 13, 17953, 1870, 10434, 7203, 72, 486, 13, 14775, 1600, 366, 24119, 5248, 3055, 4943, 198, 86, 591, 81, 13, 2860, 8206, 33252, 7, 282, 501, 17, 8, 198, 282, 501, 17, 13, 2860, 8206, 33252, 7, 19211, 1652, 346, 353, 8, 198, 19211, 1652, 346, 353, 13, 2860, 8206, 33252, 7, 14775, 8, 198, 198, 76, 47704, 16, 796, 657, 198, 76, 47704, 17, 796, 657, 198, 76, 47704, 18, 796, 657, 198 ]
2.783784
222
# Lint as: python3 # pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Simple matplotlib rendering of a rollout prediction against ground truth. Usage (from parent directory): `python -m learning_to_simulate.render_rollout --rollout_path={OUTPUT_PATH}/rollout_test_1.pkl` Where {OUTPUT_PATH} is the output path passed to `train.py` in "eval_rollout" mode. It may require installing Tkinter with `sudo apt-get install python3.7-tk`. """ # pylint: disable=line-too-long import pickle from absl import app from absl import flags from matplotlib import animation import matplotlib.pyplot as plt import numpy as np flags.DEFINE_string("rollout_path", None, help="Path to rollout pickle file") flags.DEFINE_integer("step_stride", 3, help="Stride of steps to skip.") flags.DEFINE_boolean("block_on_show", True, help="For test purposes.") FLAGS = flags.FLAGS TYPE_TO_COLOR = { 3: "black", # Boundary particles. 0: "green", # Rigid solids. 7: "magenta", # Goop. 6: "gold", # Sand. 5: "blue", # Water. } if __name__ == "__main__": app.run(main)
[ 2, 406, 600, 355, 25, 21015, 18, 198, 2, 279, 2645, 600, 25, 15560, 28, 70, 12, 14774, 12, 7753, 12, 25677, 198, 2, 15069, 12131, 10766, 28478, 21852, 15302, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 220, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 37811, 26437, 2603, 29487, 8019, 14837, 286, 257, 38180, 17724, 1028, 2323, 3872, 13, 198, 198, 28350, 357, 6738, 2560, 8619, 2599, 198, 198, 63, 29412, 532, 76, 4673, 62, 1462, 62, 14323, 5039, 13, 13287, 62, 2487, 448, 1377, 2487, 448, 62, 6978, 34758, 2606, 7250, 3843, 62, 34219, 92, 14, 2487, 448, 62, 9288, 62, 16, 13, 79, 41582, 63, 198, 198, 8496, 1391, 2606, 7250, 3843, 62, 34219, 92, 318, 262, 5072, 3108, 3804, 284, 4600, 27432, 13, 9078, 63, 287, 366, 18206, 62, 2487, 448, 1, 198, 14171, 13, 198, 198, 1026, 743, 2421, 15975, 309, 74, 3849, 351, 4600, 24032, 15409, 12, 1136, 2721, 21015, 18, 13, 22, 12, 30488, 44646, 198, 198, 37811, 220, 1303, 279, 2645, 600, 25, 15560, 28, 1370, 12, 18820, 12, 6511, 198, 198, 11748, 2298, 293, 198, 198, 6738, 2352, 75, 1330, 598, 198, 6738, 2352, 75, 1330, 9701, 198, 198, 6738, 2603, 29487, 8019, 1330, 11034, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 2487, 448, 62, 6978, 1600, 6045, 11, 1037, 2625, 15235, 284, 38180, 2298, 293, 2393, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 9662, 62, 2536, 485, 1600, 513, 11, 1037, 2625, 1273, 13154, 286, 4831, 284, 14267, 19570, 198, 33152, 13, 7206, 29940, 62, 2127, 21052, 7203, 9967, 62, 261, 62, 12860, 1600, 6407, 11, 1037, 2625, 1890, 1332, 4959, 19570, 198, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 25216, 62, 10468, 62, 46786, 796, 1391, 198, 220, 220, 220, 513, 25, 366, 13424, 1600, 220, 1303, 30149, 560, 13166, 13, 198, 220, 220, 220, 657, 25, 366, 14809, 1600, 220, 1303, 24666, 312, 1540, 2340, 13, 198, 220, 220, 220, 767, 25, 366, 19726, 29188, 1600, 220, 1303, 1514, 404, 13, 198, 220, 220, 220, 718, 25, 366, 24267, 1600, 220, 1303, 3837, 13, 198, 220, 220, 220, 642, 25, 366, 17585, 1600, 220, 1303, 5638, 13, 198, 92, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 598, 13, 5143, 7, 12417, 8, 198 ]
3.231618
544
# encoding: utf-8 from six import text_type from sqlalchemy import orm, types, Column, Table, ForeignKey from sqlalchemy.ext.associationproxy import association_proxy import meta import core import package as _package import extension import domain_object import types as _types import ckan.lib.dictization import activity __all__ = ['PackageExtra', 'package_extra_table'] package_extra_table = Table('package_extra', meta.metadata, Column('id', types.UnicodeText, primary_key=True, default=_types.make_uuid), # NB: only (package, key) pair is unique Column('package_id', types.UnicodeText, ForeignKey('package.id')), Column('key', types.UnicodeText), Column('value', types.UnicodeText), Column('state', types.UnicodeText, default=core.State.ACTIVE), ) meta.mapper(PackageExtra, package_extra_table, properties={ 'package': orm.relation(_package.Package, backref=orm.backref('_extras', collection_class=orm.collections.attribute_mapped_collection(u'key'), cascade='all, delete, delete-orphan', ), ), }, order_by=[package_extra_table.c.package_id, package_extra_table.c.key], extension=[extension.PluginMapperExtension()], ) _package.Package.extras = association_proxy( '_extras', 'value', creator=_create_extra)
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 6738, 2237, 1330, 2420, 62, 4906, 198, 6738, 44161, 282, 26599, 1330, 393, 76, 11, 3858, 11, 29201, 11, 8655, 11, 8708, 9218, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 562, 41003, 36436, 1330, 8112, 62, 36436, 198, 198, 11748, 13634, 198, 11748, 4755, 198, 11748, 5301, 355, 4808, 26495, 198, 11748, 7552, 198, 11748, 7386, 62, 15252, 198, 11748, 3858, 355, 4808, 19199, 198, 11748, 269, 27541, 13, 8019, 13, 11600, 1634, 198, 11748, 3842, 198, 198, 834, 439, 834, 796, 37250, 27813, 27726, 3256, 705, 26495, 62, 26086, 62, 11487, 20520, 198, 198, 26495, 62, 26086, 62, 11487, 796, 8655, 10786, 26495, 62, 26086, 3256, 13634, 13, 38993, 11, 198, 220, 220, 220, 29201, 10786, 312, 3256, 3858, 13, 3118, 291, 1098, 8206, 11, 4165, 62, 2539, 28, 17821, 11, 4277, 28, 62, 19199, 13, 15883, 62, 12303, 312, 828, 198, 220, 220, 220, 1303, 41354, 25, 691, 357, 26495, 11, 1994, 8, 5166, 318, 3748, 198, 220, 220, 220, 29201, 10786, 26495, 62, 312, 3256, 3858, 13, 3118, 291, 1098, 8206, 11, 8708, 9218, 10786, 26495, 13, 312, 11537, 828, 198, 220, 220, 220, 29201, 10786, 2539, 3256, 3858, 13, 3118, 291, 1098, 8206, 828, 198, 220, 220, 220, 29201, 10786, 8367, 3256, 3858, 13, 3118, 291, 1098, 8206, 828, 198, 220, 220, 220, 29201, 10786, 5219, 3256, 3858, 13, 3118, 291, 1098, 8206, 11, 4277, 28, 7295, 13, 9012, 13, 10659, 9306, 828, 198, 8, 628, 198, 198, 28961, 13, 76, 11463, 7, 27813, 27726, 11, 5301, 62, 26086, 62, 11487, 11, 6608, 34758, 198, 220, 220, 220, 705, 26495, 10354, 393, 76, 13, 49501, 28264, 26495, 13, 27813, 11, 198, 220, 220, 220, 220, 220, 220, 220, 736, 5420, 28, 579, 13, 1891, 5420, 10786, 62, 2302, 8847, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 4871, 28, 579, 13, 4033, 26448, 13, 42348, 62, 76, 6320, 62, 43681, 7, 84, 6, 2539, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44847, 11639, 439, 11, 12233, 11, 12233, 12, 13425, 272, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1502, 62, 1525, 41888, 26495, 62, 26086, 62, 11487, 13, 66, 13, 26495, 62, 312, 11, 5301, 62, 26086, 62, 11487, 13, 66, 13, 2539, 4357, 198, 220, 220, 220, 7552, 41888, 2302, 3004, 13, 37233, 44, 11463, 11627, 3004, 3419, 4357, 198, 8, 628, 198, 62, 26495, 13, 27813, 13, 2302, 8847, 796, 8112, 62, 36436, 7, 198, 220, 220, 220, 705, 62, 2302, 8847, 3256, 705, 8367, 3256, 13172, 28, 62, 17953, 62, 26086, 8, 198 ]
2.814103
468
from .NamedObject import NamedObject from ..enums import AudioType, AudioCompressionFormat, AUDIO_TYPE_EXTEMSION from ..export import AudioClipConverter from ..helpers.ResourceReader import get_resource_data
[ 6738, 764, 45, 2434, 10267, 1330, 34441, 10267, 198, 6738, 11485, 268, 5700, 1330, 13491, 6030, 11, 13491, 7293, 2234, 26227, 11, 41260, 9399, 62, 25216, 62, 13918, 39201, 2849, 198, 6738, 11485, 39344, 1330, 13491, 2601, 541, 3103, 332, 353, 198, 6738, 11485, 16794, 364, 13, 26198, 33634, 1330, 651, 62, 31092, 62, 7890, 628 ]
3.732143
56
import unittest from core_lib.core_lib import CoreLib from core_lib.data_layers.data_access.data_access import DataAccess from core_lib.core_lib_listener import CoreLibListener from core_lib.data_layers.service.service import Service
[ 11748, 555, 715, 395, 198, 198, 6738, 4755, 62, 8019, 13, 7295, 62, 8019, 1330, 7231, 25835, 198, 6738, 4755, 62, 8019, 13, 7890, 62, 75, 6962, 13, 7890, 62, 15526, 13, 7890, 62, 15526, 1330, 6060, 15457, 198, 6738, 4755, 62, 8019, 13, 7295, 62, 8019, 62, 4868, 877, 1330, 7231, 25835, 33252, 198, 6738, 4755, 62, 8019, 13, 7890, 62, 75, 6962, 13, 15271, 13, 15271, 1330, 4809, 628, 628, 198 ]
3.273973
73
# coding=utf-8 # Copyright 2021-present, the Recognai S.L. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from typing import Any, ClassVar, Dict, List, Optional, Union from pydantic import BaseModel, Field, root_validator, validator from rubrix.server.commons.helpers import flatten_dict from rubrix.server.datasets.model import UpdateDatasetRequest from rubrix.server.tasks.commons.api.model import ( BaseAnnotation, BaseRecord, PredictionStatus, ScoreRange, SortableField, TaskStatus, TaskType, ) from rubrix._constants import MAX_KEYWORD_LENGTH class ClassPrediction(BaseModel): """ Single class prediction Attributes: ----------- class_label: Union[str, int] the predicted class score: float the predicted class score. For human-supervised annotations, this probability should be 1.0 """ class_label: Union[str, int] = Field(alias="class") score: float = Field(default=1.0, ge=0.0, le=1.0) @validator("class_label") # See <https://pydantic-docs.helpmanual.io/usage/model_config> class TextClassificationAnnotation(BaseAnnotation): """ Annotation class for text classification tasks Attributes: ----------- labels: List[LabelPrediction] list of annotated labels with score """ labels: List[ClassPrediction] @validator("labels") def sort_labels(cls, labels: List[ClassPrediction]): """Sort provided labels by score""" return sorted(labels, key=lambda x: x.score, reverse=True) class TokenAttributions(BaseModel): """ The token attributions explaining predicted labels Attributes: ----------- token: str The input token attributions: Dict[str, float] A dictionary containing label class-attribution pairs """ token: str attributions: Dict[str, float] = Field(default_factory=dict) class CreationTextClassificationRecord(BaseRecord[TextClassificationAnnotation]): """ Text classification record Attributes: ----------- inputs: Dict[str, Union[str, List[str]]] The input data text multi_label: bool Enable text classification with multiple predicted/annotated labels. Default=False explanation: Dict[str, List[TokenAttributions]] Token attribution list explaining predicted classes per token input. The dictionary key must be aligned with provided record text. Optional """ inputs: Dict[str, Union[str, List[str]]] multi_label: bool = False explanation: Dict[str, List[TokenAttributions]] = None _SCORE_DEVIATION_ERROR: ClassVar[float] = 0.001 @root_validator def validate_record(cls, values): """fastapi validator method""" prediction = values.get("prediction", None) multi_label = values.get("multi_label", False) cls._check_score_integrity(prediction, multi_label) return values @classmethod def _check_score_integrity( cls, prediction: TextClassificationAnnotation, multi_label: bool ): """ Checks the score value integrity Parameters ---------- prediction: The prediction annotation multi_label: If multi label """ if prediction and not multi_label: assert sum([label.score for label in prediction.labels]) <= ( 1.0 + cls._SCORE_DEVIATION_ERROR ), f"Wrong score distributions: {prediction.labels}" @classmethod def task(cls) -> TaskType: """The task type""" return TaskType.text_classification @property @property @property @property @property def scores(self) -> List[float]: """Values of prediction scores""" if not self.prediction: return [] return ( [label.score for label in self.prediction.labels] if self.multi_label else [ prediction_class.score for prediction_class in [ self._max_class_prediction( self.prediction, multi_label=self.multi_label ) ] if prediction_class ] ) @validator("inputs") def validate_inputs(cls, text: Dict[str, Any]): """Applies validation over input text""" assert len(text) > 0, "No inputs provided" for t in text.values(): assert t is not None, "Cannot include None fields" return text @validator("inputs") def flatten_text(cls, text: Dict[str, Any]): """Normalizes input text to dict of strings""" flat_dict = flatten_dict(text) return flat_dict @classmethod def _labels_from_annotation( cls, annotation: TextClassificationAnnotation, multi_label: bool ) -> Union[List[str], List[int]]: """ Extracts labels values from annotation Parameters ---------- annotation: The annotation multi_label Enable/Disable multi label model Returns ------- Label values for a given annotation """ if not annotation: return [] if multi_label: return [ label.class_label for label in annotation.labels if label.score > 0.5 ] class_prediction = cls._max_class_prediction( annotation, multi_label=multi_label ) if class_prediction is None: return [] return [class_prediction.class_label] @staticmethod def _max_class_prediction( p: TextClassificationAnnotation, multi_label: bool ) -> Optional[ClassPrediction]: """ Gets the max class prediction for annotation Parameters ---------- p: The annotation multi_label: Enable/Disable multi_label mode Returns ------- The max class prediction in terms of prediction score if prediction has labels and no multi label is enabled. None, otherwise """ if multi_label or p is None or not p.labels: return None return p.labels[0] class TextClassificationRecord(CreationTextClassificationRecord): """ The main text classification task record Attributes: ----------- last_updated: datetime Last record update (read only) predicted: Optional[PredictionStatus] The record prediction status. Optional """ last_updated: datetime = None _predicted: Optional[PredictionStatus] = Field(alias="predicted") class TextClassificationBulkData(UpdateDatasetRequest): """ API bulk data for text classification Attributes: ----------- records: List[TextClassificationRecord] The text classification record list """ records: List[CreationTextClassificationRecord] class TextClassificationQuery(BaseModel): """ API Filters for text classification Attributes: ----------- ids: Optional[List[Union[str, int]]] Record ids list query_text: str Text query over inputs metadata: Optional[Dict[str, Union[str, List[str]]]] Text query over metadata fields. Default=None predicted_as: List[str] List of predicted terms annotated_as: List[str] List of annotated terms annotated_by: List[str] List of annotation agents predicted_by: List[str] List of predicted agents status: List[TaskStatus] List of task status predicted: Optional[PredictionStatus] The task prediction status """ ids: Optional[List[Union[str, int]]] query_text: str = Field(default=None, alias="query_inputs") metadata: Optional[Dict[str, Union[str, List[str]]]] = None predicted_as: List[str] = Field(default_factory=list) annotated_as: List[str] = Field(default_factory=list) annotated_by: List[str] = Field(default_factory=list) predicted_by: List[str] = Field(default_factory=list) score: Optional[ScoreRange] = Field(default=None) status: List[TaskStatus] = Field(default_factory=list) predicted: Optional[PredictionStatus] = Field(default=None, nullable=True) class TextClassificationSearchRequest(BaseModel): """ API SearchRequest request Attributes: ----------- query: TextClassificationQuery The search query configuration sort: The sort order list """ query: TextClassificationQuery = Field(default_factory=TextClassificationQuery) sort: List[SortableField] = Field(default_factory=list) class TextClassificationSearchAggregations(BaseModel): """ API for result aggregations Attributes: ----------- predicted_as: Dict[str, int] Occurrence info about more relevant predicted terms annotated_as: Dict[str, int] Occurrence info about more relevant annotated terms annotated_by: Dict[str, int] Occurrence info about more relevant annotation agent terms predicted_by: Dict[str, int] Occurrence info about more relevant prediction agent terms status: Dict[str, int] Occurrence info about task status predicted: Dict[str, int] Occurrence info about task prediction status words: Dict[str, int] The word cloud aggregations metadata: Dict[str, Dict[str, Any]] The metadata fields aggregations """ predicted_as: Dict[str, int] = Field(default_factory=dict) annotated_as: Dict[str, int] = Field(default_factory=dict) annotated_by: Dict[str, int] = Field(default_factory=dict) predicted_by: Dict[str, int] = Field(default_factory=dict) status: Dict[str, int] = Field(default_factory=dict) predicted: Dict[str, int] = Field(default_factory=dict) score: Dict[str, int] = Field(default_factory=dict) words: Dict[str, int] = Field(default_factory=dict) metadata: Dict[str, Dict[str, Any]] = Field(default_factory=dict) class TextClassificationSearchResults(BaseModel): """ API search results Attributes: ----------- total: int The total number of records records: List[TextClassificationRecord] The selected records to return aggregations: TextClassificationAggregations SearchRequest aggregations (if no pagination) """ total: int = 0 records: List[TextClassificationRecord] = Field(default_factory=list) aggregations: TextClassificationSearchAggregations = None
[ 2, 220, 19617, 28, 40477, 12, 23, 198, 2, 220, 15069, 33448, 12, 25579, 11, 262, 31517, 1872, 311, 13, 43, 13, 1074, 13, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 4377, 11, 5016, 19852, 11, 360, 713, 11, 7343, 11, 32233, 11, 4479, 198, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 11, 7663, 11, 6808, 62, 12102, 1352, 11, 4938, 1352, 198, 6738, 6437, 8609, 13, 15388, 13, 9503, 684, 13, 16794, 364, 1330, 27172, 268, 62, 11600, 198, 6738, 6437, 8609, 13, 15388, 13, 19608, 292, 1039, 13, 19849, 1330, 10133, 27354, 292, 316, 18453, 198, 6738, 6437, 8609, 13, 15388, 13, 83, 6791, 13, 9503, 684, 13, 15042, 13, 19849, 1330, 357, 198, 220, 220, 220, 7308, 2025, 38983, 11, 198, 220, 220, 220, 7308, 23739, 11, 198, 220, 220, 220, 46690, 19580, 11, 198, 220, 220, 220, 15178, 17257, 11, 198, 220, 220, 220, 33947, 540, 15878, 11, 198, 220, 220, 220, 15941, 19580, 11, 198, 220, 220, 220, 15941, 6030, 11, 198, 8, 198, 6738, 6437, 8609, 13557, 9979, 1187, 1330, 25882, 62, 20373, 54, 12532, 62, 43, 49494, 628, 198, 4871, 5016, 39156, 2867, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14206, 1398, 17724, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 1398, 62, 18242, 25, 4479, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 262, 11001, 1398, 628, 220, 220, 220, 4776, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 11001, 1398, 4776, 13, 1114, 1692, 12, 16668, 16149, 37647, 11, 198, 220, 220, 220, 220, 220, 220, 220, 428, 12867, 815, 307, 352, 13, 15, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1398, 62, 18242, 25, 4479, 58, 2536, 11, 493, 60, 796, 7663, 7, 26011, 2625, 4871, 4943, 198, 220, 220, 220, 4776, 25, 12178, 796, 7663, 7, 12286, 28, 16, 13, 15, 11, 4903, 28, 15, 13, 15, 11, 443, 28, 16, 13, 15, 8, 628, 220, 220, 220, 2488, 12102, 1352, 7203, 4871, 62, 18242, 4943, 628, 220, 220, 220, 1303, 4091, 1279, 5450, 1378, 79, 5173, 5109, 12, 31628, 13, 16794, 805, 723, 13, 952, 14, 26060, 14, 19849, 62, 11250, 29, 628, 198, 4871, 8255, 9487, 2649, 2025, 38983, 7, 14881, 2025, 38983, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1052, 38983, 1398, 329, 2420, 17923, 8861, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 14722, 25, 7343, 58, 33986, 39156, 2867, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 24708, 515, 14722, 351, 4776, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 14722, 25, 7343, 58, 9487, 39156, 2867, 60, 628, 220, 220, 220, 2488, 12102, 1352, 7203, 23912, 1424, 4943, 198, 220, 220, 220, 825, 3297, 62, 23912, 1424, 7, 565, 82, 11, 14722, 25, 7343, 58, 9487, 39156, 2867, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42758, 2810, 14722, 416, 4776, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23243, 7, 23912, 1424, 11, 1994, 28, 50033, 2124, 25, 2124, 13, 26675, 11, 9575, 28, 17821, 8, 628, 198, 4871, 29130, 8086, 2455, 507, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 11241, 24548, 507, 11170, 11001, 14722, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 11241, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 11241, 198, 220, 220, 220, 24548, 507, 25, 360, 713, 58, 2536, 11, 12178, 60, 198, 220, 220, 220, 220, 220, 220, 220, 317, 22155, 7268, 6167, 1398, 12, 1078, 3890, 14729, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11241, 25, 965, 198, 220, 220, 220, 24548, 507, 25, 360, 713, 58, 2536, 11, 12178, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 628, 198, 4871, 21582, 8206, 9487, 2649, 23739, 7, 14881, 23739, 58, 8206, 9487, 2649, 2025, 38983, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8255, 17923, 1700, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 17311, 25, 360, 713, 58, 2536, 11, 4479, 58, 2536, 11, 7343, 58, 2536, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 1366, 2420, 628, 220, 220, 220, 5021, 62, 18242, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 27882, 2420, 17923, 351, 3294, 11001, 14, 34574, 515, 14722, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15161, 28, 25101, 628, 220, 220, 220, 7468, 25, 360, 713, 58, 2536, 11, 7343, 58, 30642, 8086, 2455, 507, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 29130, 39629, 1351, 11170, 11001, 6097, 583, 11241, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 22155, 1994, 1276, 307, 19874, 351, 2810, 1700, 2420, 13, 32233, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 17311, 25, 360, 713, 58, 2536, 11, 4479, 58, 2536, 11, 7343, 58, 2536, 11907, 60, 198, 220, 220, 220, 5021, 62, 18242, 25, 20512, 796, 10352, 198, 220, 220, 220, 7468, 25, 360, 713, 58, 2536, 11, 7343, 58, 30642, 8086, 2455, 507, 11907, 796, 6045, 628, 220, 220, 220, 4808, 6173, 6965, 62, 7206, 12861, 6234, 62, 24908, 25, 5016, 19852, 58, 22468, 60, 796, 657, 13, 8298, 628, 220, 220, 220, 2488, 15763, 62, 12102, 1352, 198, 220, 220, 220, 825, 26571, 62, 22105, 7, 565, 82, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7217, 15042, 4938, 1352, 2446, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 796, 3815, 13, 1136, 7203, 28764, 2867, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 18242, 796, 3815, 13, 1136, 7203, 41684, 62, 18242, 1600, 10352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13557, 9122, 62, 26675, 62, 18908, 10138, 7, 28764, 2867, 11, 5021, 62, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3815, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 4808, 9122, 62, 26675, 62, 18908, 10138, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 17724, 25, 8255, 9487, 2649, 2025, 38983, 11, 5021, 62, 18242, 25, 20512, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 262, 4776, 1988, 11540, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 17724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 17724, 23025, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 5021, 6167, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17724, 290, 407, 5021, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2160, 26933, 18242, 13, 26675, 329, 6167, 287, 17724, 13, 23912, 1424, 12962, 19841, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 13, 15, 1343, 537, 82, 13557, 6173, 6965, 62, 7206, 12861, 6234, 62, 24908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 277, 1, 39213, 506, 4776, 24570, 25, 1391, 28764, 2867, 13, 23912, 1424, 36786, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 4876, 7, 565, 82, 8, 4613, 15941, 6030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 4876, 2099, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15941, 6030, 13, 5239, 62, 4871, 2649, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8198, 7, 944, 8, 4613, 7343, 58, 22468, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40161, 286, 17724, 8198, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 28764, 2867, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 18242, 13, 26675, 329, 6167, 287, 2116, 13, 28764, 2867, 13, 23912, 1424, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 41684, 62, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 62, 4871, 13, 26675, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 17724, 62, 4871, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9806, 62, 4871, 62, 28764, 2867, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28764, 2867, 11, 5021, 62, 18242, 28, 944, 13, 41684, 62, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17724, 62, 4871, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 12102, 1352, 7203, 15414, 82, 4943, 198, 220, 220, 220, 825, 26571, 62, 15414, 82, 7, 565, 82, 11, 2420, 25, 360, 713, 58, 2536, 11, 4377, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4677, 13508, 21201, 625, 5128, 2420, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 5239, 8, 1875, 657, 11, 366, 2949, 17311, 2810, 1, 628, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 2420, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 256, 318, 407, 6045, 11, 366, 34, 34574, 2291, 6045, 7032, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2420, 628, 220, 220, 220, 2488, 12102, 1352, 7203, 15414, 82, 4943, 198, 220, 220, 220, 825, 27172, 268, 62, 5239, 7, 565, 82, 11, 2420, 25, 360, 713, 58, 2536, 11, 4377, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26447, 4340, 5128, 2420, 284, 8633, 286, 13042, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 6228, 62, 11600, 796, 27172, 268, 62, 11600, 7, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6228, 62, 11600, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 4808, 23912, 1424, 62, 6738, 62, 1236, 14221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 23025, 25, 8255, 9487, 2649, 2025, 38983, 11, 5021, 62, 18242, 25, 20512, 198, 220, 220, 220, 1267, 4613, 4479, 58, 8053, 58, 2536, 4357, 7343, 58, 600, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29677, 82, 14722, 3815, 422, 23025, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 23025, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 23025, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27882, 14, 48893, 5021, 6167, 2746, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36052, 3815, 329, 257, 1813, 23025, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 23025, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5021, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 13, 4871, 62, 18242, 329, 6167, 287, 23025, 13, 23912, 1424, 611, 6167, 13, 26675, 1875, 657, 13, 20, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 28764, 2867, 796, 537, 82, 13557, 9806, 62, 4871, 62, 28764, 2867, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23025, 11, 5021, 62, 18242, 28, 41684, 62, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1398, 62, 28764, 2867, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 4871, 62, 28764, 2867, 13, 4871, 62, 18242, 60, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 9806, 62, 4871, 62, 28764, 2867, 7, 198, 220, 220, 220, 220, 220, 220, 220, 279, 25, 8255, 9487, 2649, 2025, 38983, 11, 5021, 62, 18242, 25, 20512, 198, 220, 220, 220, 1267, 4613, 32233, 58, 9487, 39156, 2867, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 262, 3509, 1398, 17724, 329, 23025, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 279, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 23025, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 18242, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27882, 14, 48893, 5021, 62, 18242, 4235, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3509, 1398, 17724, 287, 2846, 286, 17724, 4776, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17724, 468, 14722, 290, 645, 5021, 6167, 318, 9343, 13, 6045, 11, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5021, 62, 18242, 393, 279, 318, 6045, 393, 407, 279, 13, 23912, 1424, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 13, 23912, 1424, 58, 15, 60, 628, 198, 4871, 8255, 9487, 2649, 23739, 7, 12443, 341, 8206, 9487, 2649, 23739, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 1388, 2420, 17923, 4876, 1700, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 938, 62, 43162, 25, 4818, 8079, 198, 220, 220, 220, 220, 220, 220, 220, 4586, 1700, 4296, 357, 961, 691, 8, 198, 220, 220, 220, 11001, 25, 32233, 58, 39156, 2867, 19580, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1700, 17724, 3722, 13, 32233, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 938, 62, 43162, 25, 4818, 8079, 796, 6045, 198, 220, 220, 220, 4808, 28764, 5722, 25, 32233, 58, 39156, 2867, 19580, 60, 796, 7663, 7, 26011, 2625, 28764, 5722, 4943, 628, 198, 4871, 8255, 9487, 2649, 33, 12171, 6601, 7, 10260, 27354, 292, 316, 18453, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 11963, 1366, 329, 2420, 17923, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 4406, 25, 7343, 58, 8206, 9487, 2649, 23739, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2420, 17923, 1700, 1351, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 4406, 25, 7343, 58, 12443, 341, 8206, 9487, 2649, 23739, 60, 628, 198, 4871, 8255, 9487, 2649, 20746, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 7066, 1010, 329, 2420, 17923, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 220, 2340, 25, 32233, 58, 8053, 58, 38176, 58, 2536, 11, 493, 11907, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13266, 220, 2340, 1351, 628, 220, 220, 220, 12405, 62, 5239, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 12405, 625, 17311, 198, 220, 220, 220, 20150, 25, 32233, 58, 35, 713, 58, 2536, 11, 4479, 58, 2536, 11, 7343, 58, 2536, 11907, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 12405, 625, 20150, 7032, 13, 15161, 28, 14202, 628, 220, 220, 220, 11001, 62, 292, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 11001, 2846, 198, 220, 220, 220, 24708, 515, 62, 292, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 24708, 515, 2846, 198, 220, 220, 220, 24708, 515, 62, 1525, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 23025, 6554, 198, 220, 220, 220, 11001, 62, 1525, 25, 7343, 58, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 11001, 6554, 198, 220, 220, 220, 3722, 25, 7343, 58, 25714, 19580, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4876, 3722, 198, 220, 220, 220, 11001, 25, 32233, 58, 39156, 2867, 19580, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4876, 17724, 3722, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 2340, 25, 32233, 58, 8053, 58, 38176, 58, 2536, 11, 493, 11907, 60, 628, 220, 220, 220, 12405, 62, 5239, 25, 965, 796, 7663, 7, 12286, 28, 14202, 11, 16144, 2625, 22766, 62, 15414, 82, 4943, 198, 220, 220, 220, 20150, 25, 32233, 58, 35, 713, 58, 2536, 11, 4479, 58, 2536, 11, 7343, 58, 2536, 11907, 11907, 796, 6045, 628, 220, 220, 220, 11001, 62, 292, 25, 7343, 58, 2536, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 24708, 515, 62, 292, 25, 7343, 58, 2536, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 24708, 515, 62, 1525, 25, 7343, 58, 2536, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 11001, 62, 1525, 25, 7343, 58, 2536, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 4776, 25, 32233, 58, 26595, 17257, 60, 796, 7663, 7, 12286, 28, 14202, 8, 198, 220, 220, 220, 3722, 25, 7343, 58, 25714, 19580, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 11001, 25, 32233, 58, 39156, 2867, 19580, 60, 796, 7663, 7, 12286, 28, 14202, 11, 9242, 540, 28, 17821, 8, 628, 198, 4871, 8255, 9487, 2649, 18243, 18453, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 11140, 18453, 2581, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 12405, 25, 8255, 9487, 2649, 20746, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2989, 12405, 8398, 628, 220, 220, 220, 3297, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3297, 1502, 1351, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 12405, 25, 8255, 9487, 2649, 20746, 796, 7663, 7, 12286, 62, 69, 9548, 28, 8206, 9487, 2649, 20746, 8, 198, 220, 220, 220, 3297, 25, 7343, 58, 42758, 540, 15878, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 628, 198, 4871, 8255, 9487, 2649, 18243, 46384, 2301, 602, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 329, 1255, 13262, 602, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 11001, 62, 292, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 517, 5981, 11001, 2846, 198, 220, 220, 220, 24708, 515, 62, 292, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 517, 5981, 24708, 515, 2846, 198, 220, 220, 220, 24708, 515, 62, 1525, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 517, 5981, 23025, 5797, 2846, 198, 220, 220, 220, 11001, 62, 1525, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 517, 5981, 17724, 5797, 2846, 198, 220, 220, 220, 3722, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 4876, 3722, 198, 220, 220, 220, 11001, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 10775, 33928, 7508, 546, 4876, 17724, 3722, 198, 220, 220, 220, 2456, 25, 360, 713, 58, 2536, 11, 493, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1573, 6279, 13262, 602, 198, 220, 220, 220, 20150, 25, 360, 713, 58, 2536, 11, 360, 713, 58, 2536, 11, 4377, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 383, 20150, 7032, 13262, 602, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11001, 62, 292, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 24708, 515, 62, 292, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 24708, 515, 62, 1525, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 11001, 62, 1525, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 3722, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 11001, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 4776, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 2456, 25, 360, 713, 58, 2536, 11, 493, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 20150, 25, 360, 713, 58, 2536, 11, 360, 713, 58, 2536, 11, 4377, 11907, 796, 7663, 7, 12286, 62, 69, 9548, 28, 11600, 8, 628, 198, 4871, 8255, 9487, 2649, 18243, 25468, 7, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7824, 2989, 2482, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 24200, 6329, 628, 220, 220, 220, 2472, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 2472, 1271, 286, 4406, 198, 220, 220, 220, 4406, 25, 7343, 58, 8206, 9487, 2649, 23739, 60, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6163, 4406, 284, 1441, 198, 220, 220, 220, 13262, 602, 25, 8255, 9487, 2649, 46384, 2301, 602, 198, 220, 220, 220, 220, 220, 220, 220, 11140, 18453, 13262, 602, 357, 361, 645, 42208, 1883, 8, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2472, 25, 493, 796, 657, 198, 220, 220, 220, 4406, 25, 7343, 58, 8206, 9487, 2649, 23739, 60, 796, 7663, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 13262, 602, 25, 8255, 9487, 2649, 18243, 46384, 2301, 602, 796, 6045, 198 ]
2.638594
4,239
from .startr import Startr
[ 6738, 764, 9688, 81, 1330, 7253, 81, 198 ]
3.375
8
import io import numpy as np import json import datetime from pathlib import Path # http://stackoverflow.com/a/27050186 class SummaryEncoder(Encoder): """ Often, you may want a very short summary, just containing some shapes of numpy arrays in a Jupyter Notebook. Example usage: >>> import numpy as np >>> example = dict(a=np.random.uniform(size=(3, 4))) >>> print(json.dumps(example, cls=SummaryEncoder, indent=2)) { "a": "ndarray: shape (3, 4), dtype float64" } alternative: >>> np.set_string_function(lambda a: f'array(shape={a.shape}, dtype={a.dtype})') >>> example {'a': array(shape=(3, 4), dtype=float64)} >>> np.set_string_function(None) # needed for pytest. np.set_string_function is not properly reseted. """ def dump_json( obj, path, *, indent=2, create_path=True, sort_keys=True, **kwargs): """ Numpy types will be converted to the equivalent Python type for dumping the object. :param obj: Arbitrary object that is JSON serializable, where Numpy is allowed. :param path: String or ``pathlib.Path`` object. :param indent: See ``json.dump()``. :param kwargs: See ``json.dump()``. """ if isinstance(path, io.IOBase): json.dump(obj, path, cls=Encoder, indent=indent, sort_keys=sort_keys, **kwargs) elif isinstance(path, (str, Path)): path = Path(path).expanduser() if create_path: path.parent.mkdir(parents=True, exist_ok=True) with path.open('w') as f: json.dump(obj, f, cls=Encoder, indent=indent, sort_keys=sort_keys, **kwargs) else: raise TypeError(path) def load_json(path, **kwargs): """ Loads a JSON file and returns it as a dict. :param path: String or ``pathlib.Path`` object. :param kwargs: See ``json.dump()``. :return: Content of the JSON file. """ assert isinstance(path, (str, Path)), path path = Path(path).expanduser() with path.open() as fid: return json.load(fid, **kwargs) def loads_json(fid, **kwargs): """ Loads a JSON file and returns it as a dict. :param path: String or another object that is accepted by json.loads :param kwargs: See ``json.dump()``. :return: Content of the JSON file. """ assert isinstance(fid, str), fid return json.loads(fid, **kwargs)
[ 198, 11748, 33245, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 4818, 8079, 198, 6738, 3108, 8019, 1330, 10644, 628, 198, 2, 2638, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 1983, 2713, 486, 4521, 628, 198, 4871, 21293, 27195, 12342, 7, 27195, 12342, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18023, 11, 345, 743, 765, 257, 845, 1790, 10638, 11, 655, 7268, 617, 15268, 286, 198, 220, 220, 220, 299, 32152, 26515, 287, 257, 449, 929, 88, 353, 5740, 2070, 13, 628, 220, 220, 220, 17934, 8748, 25, 198, 220, 220, 220, 13163, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 13163, 1672, 796, 8633, 7, 64, 28, 37659, 13, 25120, 13, 403, 6933, 7, 7857, 16193, 18, 11, 604, 22305, 198, 220, 220, 220, 13163, 3601, 7, 17752, 13, 67, 8142, 7, 20688, 11, 537, 82, 28, 22093, 27195, 12342, 11, 33793, 28, 17, 4008, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 366, 64, 1298, 366, 358, 18747, 25, 5485, 357, 18, 11, 604, 828, 288, 4906, 12178, 2414, 1, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 5559, 25, 198, 220, 220, 220, 13163, 45941, 13, 2617, 62, 8841, 62, 8818, 7, 50033, 257, 25, 277, 6, 18747, 7, 43358, 34758, 64, 13, 43358, 5512, 288, 4906, 34758, 64, 13, 67, 4906, 30072, 11537, 198, 220, 220, 220, 13163, 1672, 198, 220, 220, 220, 1391, 6, 64, 10354, 7177, 7, 43358, 16193, 18, 11, 604, 828, 288, 4906, 28, 22468, 2414, 38165, 198, 220, 220, 220, 13163, 45941, 13, 2617, 62, 8841, 62, 8818, 7, 14202, 8, 220, 1303, 2622, 329, 12972, 9288, 13, 45941, 13, 2617, 62, 8841, 62, 8818, 318, 407, 6105, 13259, 276, 13, 198, 220, 220, 220, 37227, 628, 198, 198, 4299, 10285, 62, 17752, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26181, 11, 3108, 11, 1635, 11, 33793, 28, 17, 11, 2251, 62, 6978, 28, 17821, 11, 3297, 62, 13083, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 399, 32152, 3858, 481, 307, 11513, 284, 262, 7548, 11361, 2099, 329, 30231, 262, 198, 220, 220, 220, 2134, 13, 628, 220, 220, 220, 1058, 17143, 26181, 25, 33619, 11619, 2134, 326, 318, 19449, 11389, 13821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 810, 399, 32152, 318, 3142, 13, 198, 220, 220, 220, 1058, 17143, 3108, 25, 10903, 393, 7559, 6978, 8019, 13, 15235, 15506, 2134, 13, 198, 220, 220, 220, 1058, 17143, 33793, 25, 4091, 7559, 17752, 13, 39455, 3419, 15506, 13, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 4091, 7559, 17752, 13, 39455, 3419, 15506, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 6978, 11, 33245, 13, 9399, 14881, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 26801, 11, 3108, 11, 537, 82, 28, 27195, 12342, 11, 33793, 28, 521, 298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 13083, 28, 30619, 62, 13083, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 6978, 11, 357, 2536, 11, 10644, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 10644, 7, 6978, 737, 11201, 392, 7220, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2251, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 13, 8000, 13, 28015, 15908, 7, 23743, 28, 17821, 11, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 3108, 13, 9654, 10786, 86, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 26801, 11, 277, 11, 537, 82, 28, 27195, 12342, 11, 33793, 28, 521, 298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3297, 62, 13083, 28, 30619, 62, 13083, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 6978, 8, 628, 198, 4299, 3440, 62, 17752, 7, 6978, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8778, 82, 257, 19449, 2393, 290, 5860, 340, 355, 257, 8633, 13, 628, 220, 220, 220, 1058, 17143, 3108, 25, 10903, 393, 7559, 6978, 8019, 13, 15235, 15506, 2134, 13, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 4091, 7559, 17752, 13, 39455, 3419, 15506, 13, 198, 220, 220, 220, 1058, 7783, 25, 14041, 286, 262, 19449, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 6978, 11, 357, 2536, 11, 10644, 36911, 3108, 198, 220, 220, 220, 3108, 796, 10644, 7, 6978, 737, 11201, 392, 7220, 3419, 628, 220, 220, 220, 351, 3108, 13, 9654, 3419, 355, 49909, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 13, 2220, 7, 69, 312, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 15989, 62, 17752, 7, 69, 312, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8778, 82, 257, 19449, 2393, 290, 5860, 340, 355, 257, 8633, 13, 628, 220, 220, 220, 1058, 17143, 3108, 25, 10903, 393, 1194, 2134, 326, 318, 6292, 416, 33918, 13, 46030, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 4091, 7559, 17752, 13, 39455, 3419, 15506, 13, 198, 220, 220, 220, 1058, 7783, 25, 14041, 286, 262, 19449, 2393, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 39098, 7, 69, 312, 11, 965, 828, 49909, 628, 220, 220, 220, 1441, 33918, 13, 46030, 7, 69, 312, 11, 12429, 46265, 22046, 8, 198 ]
2.479424
972
import ctypes from matplotlib.backends.backend_qt5 import _BackendQT5, FigureCanvasQT from matplotlib.backends.qt_compat import QtGui from . import _util from .base import FigureCanvasCairo @_BackendQT5.export
[ 11748, 269, 19199, 198, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 1891, 437, 62, 39568, 20, 1330, 4808, 7282, 437, 48, 51, 20, 11, 11291, 6090, 11017, 48, 51, 198, 6738, 2603, 29487, 8019, 13, 1891, 2412, 13, 39568, 62, 5589, 265, 1330, 33734, 8205, 72, 198, 198, 6738, 764, 1330, 4808, 22602, 198, 6738, 764, 8692, 1330, 11291, 6090, 11017, 34, 18131, 628, 198, 198, 31, 62, 7282, 437, 48, 51, 20, 13, 39344, 198 ]
2.75641
78
""" pyrad.graph.plot_timeseries =========================== Functions to plot Pyrad datasets .. autosummary:: :toctree: generated/ plot_timeseries plot_timeseries_comp plot_monitoring_ts plot_intercomp_scores_ts plot_ml_ts plot_sun_retrieval_ts """ from warnings import warn import numpy as np import matplotlib as mpl mpl.use('Agg') # Increase a bit font size mpl.rcParams.update({'font.size': 16}) mpl.rcParams.update({'font.family': "sans-serif"}) import matplotlib.dates as mdates import matplotlib.pyplot as plt import pyart def plot_timeseries(tvec, data_list, fname_list, labelx='Time [UTC]', labely='Value', labels=['Sensor'], title='Time Series', period=0, timeformat=None, colors=None, linestyles=None, markers=None, ymin=None, ymax=None, dpi=72): """ plots a time series Parameters ---------- tvec : datetime object time of the time series data_list : list of float array values of the time series fname_list : list of str list of names of the files where to store the plot labelx : str The label of the X axis labely : str The label of the Y axis labels : array of str The label of the legend title : str The figure title period : float measurement period in seconds used to compute accumulation. If 0 no accumulation is computed timeformat : str Specifies the tvec and time format on the x axis colors : array of str Specifies the colors of each line linestyles : array of str Specifies the line style of each line markers: array of str Specify the markers to be used for each line ymin, ymax: float Lower/Upper limit of y axis dpi : int dots per inch Returns ------- fname_list : list of str list of names of the created plots History -------- 201?.??.?? -fvj- creation 2017.08.21 -jgr- modified margins and grid + minor graphical updates 2018.03.05 -jgr- added x-limit of x axis to avoid unwanted error messages """ if period > 0: for i, data in enumerate(data_list): data *= (period/3600.) data_list[i] = np.ma.cumsum(data) fig, ax = plt.subplots(figsize=[10, 6], dpi=dpi) lab = None col = None lstyle = '--' marker = 'o' for i, data in enumerate(data_list): if labels is not None: lab = labels[i] if colors is not None: col = colors[i] if linestyles is not None: lstyle = linestyles[i] if markers is not None: marker = markers[i] ax.plot(tvec, data, label=lab, color=col, linestyle=lstyle, marker=marker) ax.set_title(title) ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlim([tvec[0], tvec[-1]]) # Turn on the grid ax.grid() if timeformat is not None: ax.xaxis.set_major_formatter(mdates.DateFormatter(timeformat)) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # Make a tight layout fig.tight_layout() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list def plot_timeseries_comp(date1, value1, date2, value2, fname_list, labelx='Time [UTC]', labely='Value', label1='Sensor 1', label2='Sensor 2', titl='Time Series Comparison', period1=0, period2=0, ymin=None, ymax=None, dpi=72): """ plots 2 time series in the same graph Parameters ---------- date1 : datetime object time of the first time series value1 : float array values of the first time series date2 : datetime object time of the second time series value2 : float array values of the second time series fname_list : list of str list of names of the files where to store the plot labelx : str The label of the X axis labely : str The label of the Y axis label1, label2 : str legend label for each time series titl : str The figure title period1, period2 : float measurement period in seconds used to compute accumulation. If 0 no accumulation is computed dpi : int dots per inch ymin, ymax : float The limits of the Y-axis. None will keep the default limit. Returns ------- fname_list : list of str list of names of the created plots History -------- 201?.??.?? -fvj- created 2017.08.21 -jgr- changed some graphical aspects """ if (period1 > 0) and (period2 > 0): # TODO: document this and check (sometimes artefacts) value1 *= (period1/3600.) value1 = np.ma.cumsum(value1) value2 *= (period2/3600.) value2 = np.ma.cumsum(value2) fig, ax = plt.subplots(figsize=[10, 6.5], dpi=dpi) ax.plot(date1, value1, 'b', label=label1, linestyle='--', marker='o') ax.plot(date2, value2, 'r', label=label2, linestyle='--', marker='s') ax.legend(loc='best') ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_title(titl) ax.grid() ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlim([date2[0], date2[-1]]) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # Make a tight layout fig.tight_layout() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list def plot_monitoring_ts(date, np_t, cquant, lquant, hquant, field_name, fname_list, ref_value=None, vmin=None, vmax=None, np_min=0, labelx='Time [UTC]', labely='Value', titl='Time Series', dpi=72): """ plots a time series of monitoring data Parameters ---------- date : datetime object time of the time series np_t : int array number of points cquant, lquant, hquant : float array values of the central, low and high quantiles field_name : str name of the field fname_list : list of str list of names of the files where to store the plot ref_value : float the reference value vmin, vmax : float The limits of the y axis np_min : int minimum number of points to consider the sample plotable labelx : str The label of the X axis labely : str The label of the Y axis titl : str The figure title dpi : int dots per inch Returns ------- fname_list : list of str list of names of the created plots """ vmin_pyart, vmax_pyart = pyart.config.get_field_limits(field_name) if vmin is None: vmin = vmin_pyart if vmax is None: vmax = vmax_pyart # plot only valid data (but keep first and last date) date2 = np.array(date) isvalid = np.logical_not(np.ma.getmaskarray(cquant)) if np_min > 0: has_np = np_t > np_min isvalid = np.logical_and(isvalid, has_np) cquant_plt = cquant[isvalid] lquant_plt = lquant[isvalid] hquant_plt = hquant[isvalid] date_plt = date2[isvalid] if not isvalid[0]: cquant_plt = np.ma.append(np.ma.masked, cquant_plt) lquant_plt = np.ma.append(np.ma.masked, lquant_plt) hquant_plt = np.ma.append(np.ma.masked, hquant_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: cquant_plt = np.ma.append(cquant_plt, np.ma.masked) lquant_plt = np.ma.append(lquant_plt, np.ma.masked) hquant_plt = np.ma.append(hquant_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) fig = plt.figure(figsize=[15, 13], dpi=dpi) ax = fig.add_subplot(2, 1, 1) ax.plot(date_plt, cquant_plt, 'x-') ax.plot(date_plt, lquant_plt, 'rx-') ax.plot(date_plt, hquant_plt, 'rx-') if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt))+ref_value, 'k--') ax.set_ylabel(labely) ax.set_title(titl) ax.set_ylim([vmin, vmax]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(2, 1, 2) ax.plot(date, np_t, 'x-') if np_min is not None: ax.plot(date, np.zeros(len(date))+np_min, 'k--') ax.set_ylabel('Number of Samples') ax.set_xlabel(labelx) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() # tight x axis ax.autoscale(enable=True, axis='x', tight=True) for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list def plot_intercomp_scores_ts(date_vec, np_vec, meanbias_vec, medianbias_vec, quant25bias_vec, quant75bias_vec, modebias_vec, corr_vec, slope_vec, intercep_vec, intercep_slope1_vec, fname_list, ref_value=0., np_min=0, corr_min=0., labelx='Time UTC', titl='RADAR001-RADAR002 intercomparison', dpi=72): """ plots a time series of radar intercomparison scores Parameters ---------- date_vec : datetime object time of the time series np_vec : int array number of points meanbias_vec, medianbias_vec, modebias_vec : float array mean, median and mode bias quant25bias_vec, quant75bias_vec: 25th and 75th percentile of the bias corr_vec : float array correlation slope_vec, intercep_vec : float array slope and intercep of a linear regression intercep_slope1_vec : float the intercep point of a inear regression of slope 1 ref_value : float the reference value np_min : int The minimum number of points to consider the result valid corr_min : float The minimum correlation to consider the results valid labelx : str The label of the X axis titl : str The figure title Returns ------- fname_list : list of str list of names of the created plots """ # plot only valid data (but keep first and last date) date2 = np.array(date_vec) isvalid = np.logical_not(np.ma.getmaskarray(meanbias_vec)) isvalid_corr = np.logical_not(np.ma.getmaskarray(corr_vec)) if np_min > 0: has_np = np_vec > np_min isvalid = np.logical_and(isvalid, has_np) if corr_min > 0: has_corr_min = corr_vec > corr_min isvalid = np.logical_and(isvalid, has_corr_min) meanbias_plt = meanbias_vec[isvalid] medianbias_plt = medianbias_vec[isvalid] quant25bias_plt = quant25bias_vec[isvalid] quant75bias_plt = quant75bias_vec[isvalid] modebias_plt = modebias_vec[isvalid] intercep_plt = intercep_slope1_vec[isvalid] corr_plt = corr_vec[isvalid_corr] date_corr = date2[isvalid_corr] date_plt = date2[isvalid] if not isvalid[0]: meanbias_plt = np.ma.append(np.ma.masked, meanbias_plt) medianbias_plt = np.ma.append(np.ma.masked, medianbias_plt) quant25bias_plt = np.ma.append(np.ma.masked, quant25bias_plt) quant75bias_plt = np.ma.append(np.ma.masked, quant75bias_plt) modebias_plt = np.ma.append(np.ma.masked, modebias_plt) intercep_plt = np.ma.append(np.ma.masked, intercep_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: meanbias_plt = np.ma.append(meanbias_plt, np.ma.masked) medianbias_plt = np.ma.append(medianbias_plt, np.ma.masked) quant25bias_plt = np.ma.append(quant25bias_plt, np.ma.masked) quant75bias_plt = np.ma.append(quant75bias_plt, np.ma.masked) modebias_plt = np.ma.append(modebias_plt, np.ma.masked) intercep_plt = np.ma.append(intercep_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) if not isvalid_corr[0]: corr_plt = np.ma.append(np.ma.masked, corr_plt) date_corr = np.ma.append(date2[0], date_corr) if not isvalid_corr[-1]: corr_plt = np.ma.append(corr_plt, np.ma.masked) date_corr = np.ma.append(date_corr, date2[-1]) fig = plt.figure(figsize=[10, 20], dpi=dpi) ax = fig.add_subplot(4, 1, 1) ax.plot(date_plt, medianbias_plt, 'bx-', label='median') ax.plot(date_plt, meanbias_plt, 'rx-', label='mean') ax.plot(date_plt, modebias_plt, 'gx-', label='mode') ax.plot(date_plt, intercep_plt, 'yx-', label='intercep of slope 1 LR') if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt))+ref_value, 'k--') # plt.legend(loc='best') ax.set_ylabel('bias [dB]') ax.set_title(titl) ax.set_ylim([-5., 5.]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 2) ax.plot(date_plt, medianbias_plt, 'bx-', label='median') ax.plot(date_plt, quant25bias_plt, 'rx-', label='25-percentile') ax.plot(date_plt, quant75bias_plt, 'rx-', label='75-percentile') if ref_value is not None: ax.plot(date_plt, np.zeros(len(date_plt))+ref_value, 'k--') # plt.legend(loc='best') ax.set_ylabel('bias [dB]') ax.set_ylim([-5., 5.]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 3) ax.plot(date_corr, corr_plt, 'bx-') if corr_min > 0: ax.plot(date_corr, np.zeros(len(date_corr))+corr_min, 'k--') ax.set_ylabel('correlation') ax.set_ylim([0., 1.]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(4, 1, 4) ax.plot(date2, np_vec, 'bx-') if np_min > 0: ax.plot(date2, np.zeros(len(date2))+np_min, 'k--') ax.set_ylabel('Number of Samples') ax.set_xlabel(labelx) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list def plot_ml_ts(dt_ml_arr, ml_top_avg_arr, ml_top_std_arr, thick_avg_arr, thick_std_arr, nrays_valid_arr, nrays_total_arr, fname_list, labelx='Time UTC', titl='Melting layer time series', dpi=72): """ plots a time series of melting layer data Parameters ---------- dt_ml_arr : datetime object time of the time series np_vec : int array number of points meanbias_vec, medianbias_vec, modebias_vec : float array mean, median and mode bias quant25bias_vec, quant75bias_vec: 25th and 75th percentile of the bias corr_vec : float array correlation slope_vec, intercep_vec : float array slope and intercep of a linear regression intercep_slope1_vec : float the intercep point of a inear regression of slope 1 ref_value : float the reference value np_min : int The minimum number of points to consider the result valid corr_min : float The minimum correlation to consider the results valid labelx : str The label of the X axis titl : str The figure title Returns ------- fname_list : list of str list of names of the created plots """ fig = plt.figure(figsize=[10, 15], dpi=dpi) ax = fig.add_subplot(3, 1, 1) ax.plot(dt_ml_arr, ml_top_avg_arr, 'bx-', label='avg') ax.plot(dt_ml_arr, ml_top_avg_arr+ml_top_std_arr, 'rx-', label='avg+std') ax.plot(dt_ml_arr, ml_top_avg_arr-ml_top_std_arr, 'rx-', label='avg-std') # plt.legend(loc='best') ax.set_ylabel('Top height [m MSL]') ax.set_title(titl) ax.set_ylim([0., 6000.]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(3, 1, 2) ax.plot(dt_ml_arr, thick_avg_arr, 'bx-', label='avg') ax.plot(dt_ml_arr, thick_avg_arr+thick_std_arr, 'rx-', label='avg+std') ax.plot(dt_ml_arr, thick_avg_arr-thick_std_arr, 'rx-', label='avg-std') # plt.legend(loc='best') ax.set_ylabel('Thickness [m]') ax.set_ylim([0., 3000.]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) ax = fig.add_subplot(3, 1, 3) ax.plot(dt_ml_arr, nrays_valid_arr, 'bx-', label='N valid rays') ax.plot(dt_ml_arr, nrays_total_arr, 'rx-', label='rays total') # plt.legend(loc='best') ax.set_ylabel('Rays') ax.set_xlabel(labelx) ax.set_ylim([0, np.max(nrays_total_arr)+5]) ax.set_xlim([dt_ml_arr[0], dt_ml_arr[-1]]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list def plot_sun_retrieval_ts(sun_retrieval, data_type, fname_list, labelx='Date', titl='Sun retrieval Time Series', dpi=72): """ plots sun retrieval time series series Parameters ---------- sun_retrieval : tuple tuple containing the retrieved parameters data_type : str parameter to be plotted fname_list : list of str list of names of the files where to store the plot labelx : str the x label titl : str the title of the plot dpi : int dots per inch Returns ------- fname_list : list of str list of names of the created plots """ value_std = None ref = None date = sun_retrieval[1] if data_type == 'nhits_h': value = sun_retrieval[2] labely = 'Number of sun hits H channel' vmin = 0 vmax = np.max(sun_retrieval[2])+1 elif data_type == 'el_width_h': value = sun_retrieval[3] labely = 'Elevation beamwidth H channel (Deg)' vmin = 0. vmax = 4. elif data_type == 'az_width_h': value = sun_retrieval[4] labely = 'Azimuth beamwidth H channel (Deg)' vmin = 0. vmax = 4. elif data_type == 'el_bias_h': value = sun_retrieval[5] ref = np.zeros(len(value)) labely = 'Elevation pointing bias H channel (Deg)' vmin = -2. vmax = 2. elif data_type == 'az_bias_h': value = sun_retrieval[6] ref = np.zeros(len(value)) labely = 'Azimuth pointing bias H channel (Deg)' vmin = -2. vmax = 2. elif data_type == 'dBm_sun_est': value = sun_retrieval[7] value_std = sun_retrieval[8] labely = 'Sun Power H channel (dBm)' vmin = -110. vmax = -90. elif data_type == 'rx_bias_h': value = (10.*np.ma.log10(sun_retrieval[9]) - 10.*np.ma.log10(sun_retrieval[21])) value_std = sun_retrieval[8] ref = np.zeros(len(value)) labely = 'Receiver bias H channel (dB)' vmin = -5. vmax = 5. elif data_type == 'sf_h': value = 10.*np.ma.log10(sun_retrieval[9]) # value_std = sun_retrieval[8] ref = 10.*np.ma.log10(sun_retrieval[21]) labely = 'Observed solar flux H channel (dB(sfu))' vmin = 15. vmax = 30. elif data_type == 'nhits_v': value = sun_retrieval[10] labely = 'Number of sun hits V channel' vmin = 0 vmax = np.max(sun_retrieval[10])+1 elif data_type == 'el_width_v': value = sun_retrieval[11] labely = 'Elevation beamwidth V channel (Deg)' vmin = 0. vmax = 4. elif data_type == 'az_width_v': value = sun_retrieval[12] labely = 'Azimuth beamwidth V channel (Deg)' vmin = 0. vmax = 4. elif data_type == 'el_bias_v': value = sun_retrieval[13] ref = np.zeros(len(value)) labely = 'Elevation pointing bias V channel (Deg)' vmin = -2. vmax = 2. elif data_type == 'az_bias_v': value = sun_retrieval[14] ref = np.zeros(len(value)) labely = 'Azimuth pointing bias V channel (Deg)' vmin = -2. vmax = 2. elif data_type == 'dBmv_sun_est': value = sun_retrieval[15] value_std = sun_retrieval[16] labely = 'Sun Power V channel (dBm)' vmin = -110. vmax = -90. elif data_type == 'rx_bias_v': value = (10.*np.ma.log10(sun_retrieval[17]) - 10.*np.ma.log10(sun_retrieval[21])) value_std = sun_retrieval[16] ref = np.zeros(len(value)) labely = 'Receiver bias V channel (dB)' vmin = -5. vmax = 5. elif data_type == 'sf_v': value = 10.*np.ma.log10(sun_retrieval[17]) # value_std = sun_retrieval[16] ref = 10.*np.ma.log10(sun_retrieval[21]) labely = 'Observed solar flux V channel (dB(sfu))' vmin = 15. vmax = 30. elif data_type == 'nhits_zdr': value = sun_retrieval[18] labely = 'Number of sun hits ZDR' vmin = 0 vmax = np.max(sun_retrieval[18])+1 elif data_type == 'ZDR_sun_est': value = sun_retrieval[19] value_std = sun_retrieval[20] ref = np.zeros(len(value)) labely = 'Sun ZDR (dB)' vmin = -2. vmax = 2. mask = np.ma.getmaskarray(value) if mask.all(): warn('Unable to create figure '+' '.join(fname_list) + '. No valid data') return None # plot only valid data (but keep first and last date) isvalid = np.logical_not(mask) date2 = np.array(date) value_plt = value[isvalid] date_plt = date2[isvalid] if not isvalid[0]: value_plt = np.ma.append(np.ma.masked, value_plt) date_plt = np.ma.append(date2[0], date_plt) if not isvalid[-1]: value_plt = np.ma.append(value_plt, np.ma.masked) date_plt = np.ma.append(date_plt, date2[-1]) fig, ax = plt.subplots(figsize=[10, 6], dpi=dpi) ax.plot(date_plt, value_plt, 'x-') if value_std is not None: value_std_plt = value_std[isvalid] if not isvalid[0]: value_std_plt = np.ma.append(np.ma.masked, value_std_plt) if not isvalid[-1]: value_std_plt = np.ma.append(value_std_plt, np.ma.masked) ax.plot(date_plt, value_plt+value_std_plt, 'rx-') ax.plot(date_plt, value_plt-value_std_plt, 'rx-') if ref is not None: ref_plt = ref[isvalid] if not isvalid[0]: ref_plt = np.ma.append(ref[0], ref_plt) if not isvalid[-1]: ref_plt = np.ma.append(ref_plt, ref[-1]) ax.plot(date_plt, ref_plt, 'k--') ax.set_xlabel(labelx) ax.set_ylabel(labely) ax.set_title(titl) ax.set_ylim([vmin, vmax]) ax.set_xlim([date_plt[0], date_plt[-1]]) # tight x axis ax.autoscale(enable=True, axis='x', tight=True) ax.grid(True) # rotates and right aligns the x labels, and moves the bottom of the # axes up to make room for them fig.autofmt_xdate() for fname in fname_list: fig.savefig(fname, dpi=dpi) plt.close(fig) return fname_list
[ 37811, 198, 79, 2417, 324, 13, 34960, 13, 29487, 62, 22355, 10640, 198, 4770, 2559, 18604, 198, 198, 24629, 2733, 284, 7110, 27958, 324, 40522, 198, 198, 492, 44619, 388, 6874, 3712, 198, 220, 220, 220, 1058, 1462, 310, 631, 25, 7560, 14, 628, 220, 220, 220, 7110, 62, 22355, 10640, 198, 220, 220, 220, 7110, 62, 22355, 10640, 62, 5589, 198, 220, 220, 220, 7110, 62, 41143, 278, 62, 912, 198, 220, 220, 220, 7110, 62, 3849, 5589, 62, 1416, 2850, 62, 912, 198, 220, 220, 220, 7110, 62, 4029, 62, 912, 198, 220, 220, 220, 7110, 62, 19155, 62, 1186, 380, 18206, 62, 912, 198, 198, 37811, 198, 198, 6738, 14601, 1330, 9828, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 76, 489, 13, 1904, 10786, 46384, 11537, 198, 198, 2, 25285, 257, 1643, 10369, 2546, 198, 76, 489, 13, 6015, 10044, 4105, 13, 19119, 15090, 6, 10331, 13, 7857, 10354, 1467, 30072, 198, 76, 489, 13, 6015, 10044, 4105, 13, 19119, 15090, 6, 10331, 13, 17989, 10354, 220, 366, 82, 504, 12, 2655, 361, 20662, 8, 198, 198, 11748, 2603, 29487, 8019, 13, 19581, 355, 285, 19581, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 12972, 433, 628, 198, 4299, 7110, 62, 22355, 10640, 7, 83, 35138, 11, 1366, 62, 4868, 11, 277, 3672, 62, 4868, 11, 6167, 87, 11639, 7575, 685, 17429, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 11639, 11395, 3256, 14722, 28, 17816, 47864, 6, 4357, 3670, 11639, 7575, 7171, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2278, 28, 15, 11, 640, 18982, 28, 14202, 11, 7577, 28, 14202, 11, 9493, 42530, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19736, 28, 14202, 11, 331, 1084, 28, 14202, 11, 331, 9806, 28, 14202, 11, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 257, 640, 2168, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 256, 35138, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 640, 2168, 198, 220, 220, 220, 1366, 62, 4868, 1058, 1351, 286, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 286, 262, 640, 2168, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 3696, 810, 284, 3650, 262, 7110, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 1395, 16488, 198, 220, 220, 220, 2248, 68, 306, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 575, 16488, 198, 220, 220, 220, 14722, 1058, 7177, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 8177, 198, 220, 220, 220, 3670, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3785, 3670, 198, 220, 220, 220, 2278, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 2278, 287, 4201, 973, 284, 24061, 24106, 13, 1002, 657, 645, 198, 220, 220, 220, 220, 220, 220, 220, 24106, 318, 29231, 198, 220, 220, 220, 640, 18982, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 6945, 262, 256, 35138, 290, 640, 5794, 319, 262, 2124, 16488, 198, 220, 220, 220, 7577, 1058, 7177, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 6945, 262, 7577, 286, 1123, 1627, 198, 220, 220, 220, 9493, 42530, 1058, 7177, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 6945, 262, 1627, 3918, 286, 1123, 1627, 198, 220, 220, 220, 19736, 25, 7177, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 262, 19736, 284, 307, 973, 329, 1123, 1627, 198, 220, 220, 220, 331, 1084, 11, 331, 9806, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 16048, 14, 52, 2848, 4179, 286, 331, 16488, 198, 220, 220, 220, 288, 14415, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22969, 583, 11111, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 7443, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 580, 30, 13, 3548, 13, 3548, 532, 69, 85, 73, 12, 6282, 198, 220, 220, 220, 2177, 13, 2919, 13, 2481, 532, 73, 2164, 12, 9518, 20241, 290, 10706, 1343, 4159, 27831, 5992, 198, 220, 220, 220, 2864, 13, 3070, 13, 2713, 532, 73, 2164, 12, 2087, 2124, 12, 32374, 286, 2124, 16488, 284, 3368, 19125, 4049, 6218, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2278, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1366, 287, 27056, 378, 7, 7890, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 1635, 28, 357, 41007, 14, 2623, 405, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4868, 58, 72, 60, 796, 45941, 13, 2611, 13, 66, 5700, 388, 7, 7890, 8, 628, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 41888, 940, 11, 718, 4357, 288, 14415, 28, 67, 14415, 8, 628, 220, 220, 220, 2248, 796, 6045, 198, 220, 220, 220, 951, 796, 6045, 198, 220, 220, 220, 300, 7635, 796, 705, 438, 6, 198, 220, 220, 220, 18364, 796, 705, 78, 6, 628, 220, 220, 220, 329, 1312, 11, 1366, 287, 27056, 378, 7, 7890, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14722, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2248, 796, 14722, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7577, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 951, 796, 7577, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9493, 42530, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 7635, 796, 9493, 42530, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19736, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 796, 19736, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 83, 35138, 11, 1366, 11, 6167, 28, 23912, 11, 3124, 28, 4033, 11, 9493, 10992, 28, 75, 7635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 4102, 263, 8, 628, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 7839, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 75, 11231, 306, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 22487, 28, 88, 1084, 11, 1353, 28, 4948, 897, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 83, 35138, 58, 15, 4357, 256, 35138, 58, 12, 16, 11907, 8, 628, 220, 220, 220, 1303, 6756, 319, 262, 10706, 198, 220, 220, 220, 7877, 13, 25928, 3419, 628, 220, 220, 220, 611, 640, 18982, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 87, 22704, 13, 2617, 62, 22478, 62, 687, 1436, 7, 9132, 689, 13, 10430, 8479, 1436, 7, 2435, 18982, 4008, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 1303, 6889, 257, 5381, 12461, 198, 220, 220, 220, 2336, 13, 33464, 62, 39786, 3419, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 628, 198, 4299, 7110, 62, 22355, 10640, 62, 5589, 7, 4475, 16, 11, 1988, 16, 11, 3128, 17, 11, 1988, 17, 11, 277, 3672, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 87, 11639, 7575, 685, 17429, 60, 3256, 2248, 68, 306, 11639, 11395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 16, 11639, 47864, 352, 3256, 6167, 17, 11639, 47864, 362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5259, 75, 11639, 7575, 7171, 34420, 3256, 2278, 16, 28, 15, 11, 2278, 17, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 1084, 28, 14202, 11, 331, 9806, 28, 14202, 11, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 362, 640, 2168, 287, 262, 976, 4823, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3128, 16, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 717, 640, 2168, 198, 220, 220, 220, 1988, 16, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 286, 262, 717, 640, 2168, 198, 220, 220, 220, 3128, 17, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 1218, 640, 2168, 198, 220, 220, 220, 1988, 17, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 286, 262, 1218, 640, 2168, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 3696, 810, 284, 3650, 262, 7110, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 1395, 16488, 198, 220, 220, 220, 2248, 68, 306, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 575, 16488, 198, 220, 220, 220, 6167, 16, 11, 6167, 17, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 8177, 6167, 329, 1123, 640, 2168, 198, 220, 220, 220, 5259, 75, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3785, 3670, 198, 220, 220, 220, 220, 2278, 16, 11, 2278, 17, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 2278, 287, 4201, 973, 284, 24061, 24106, 13, 1002, 657, 645, 198, 220, 220, 220, 220, 220, 220, 220, 24106, 318, 29231, 198, 220, 220, 220, 288, 14415, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22969, 583, 11111, 198, 220, 220, 220, 331, 1084, 11, 331, 9806, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7095, 286, 262, 575, 12, 22704, 13, 6045, 481, 1394, 262, 4277, 4179, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 7443, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 580, 30, 13, 3548, 13, 3548, 532, 69, 85, 73, 12, 2727, 198, 220, 220, 220, 2177, 13, 2919, 13, 2481, 532, 73, 2164, 12, 3421, 617, 27831, 7612, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 357, 41007, 16, 1875, 657, 8, 290, 357, 41007, 17, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 3188, 428, 290, 2198, 357, 29810, 46252, 37473, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 16, 1635, 28, 357, 41007, 16, 14, 2623, 405, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 16, 796, 45941, 13, 2611, 13, 66, 5700, 388, 7, 8367, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1988, 17, 1635, 28, 357, 41007, 17, 14, 2623, 405, 2014, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 17, 796, 45941, 13, 2611, 13, 66, 5700, 388, 7, 8367, 17, 8, 628, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 41888, 940, 11, 718, 13, 20, 4357, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 16, 11, 1988, 16, 11, 705, 65, 3256, 6167, 28, 18242, 16, 11, 9493, 10992, 11639, 438, 3256, 18364, 11639, 78, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 17, 11, 1988, 17, 11, 705, 81, 3256, 6167, 28, 18242, 17, 11, 9493, 10992, 11639, 438, 3256, 18364, 11639, 82, 11537, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 75, 11231, 306, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 83, 270, 75, 8, 628, 220, 220, 220, 7877, 13, 25928, 3419, 628, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 22487, 28, 88, 1084, 11, 1353, 28, 4948, 897, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 4475, 17, 58, 15, 4357, 3128, 17, 58, 12, 16, 11907, 8, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 1303, 6889, 257, 5381, 12461, 198, 220, 220, 220, 2336, 13, 33464, 62, 39786, 3419, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 628, 198, 4299, 7110, 62, 41143, 278, 62, 912, 7, 4475, 11, 45941, 62, 83, 11, 269, 40972, 11, 300, 40972, 11, 289, 40972, 11, 2214, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 62, 4868, 11, 1006, 62, 8367, 28, 14202, 11, 410, 1084, 28, 14202, 11, 410, 9806, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 1084, 28, 15, 11, 6167, 87, 11639, 7575, 685, 17429, 60, 3256, 2248, 68, 306, 11639, 11395, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5259, 75, 11639, 7575, 7171, 3256, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 257, 640, 2168, 286, 9904, 1366, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3128, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 640, 2168, 198, 220, 220, 220, 45941, 62, 83, 1058, 493, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 2173, 198, 220, 220, 220, 269, 40972, 11, 300, 40972, 11, 289, 40972, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 286, 262, 4318, 11, 1877, 290, 1029, 5554, 2915, 198, 220, 220, 220, 2214, 62, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 286, 262, 2214, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 3696, 810, 284, 3650, 262, 7110, 198, 220, 220, 220, 1006, 62, 8367, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4941, 1988, 198, 220, 220, 220, 410, 1084, 11, 410, 9806, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7095, 286, 262, 331, 16488, 198, 220, 220, 220, 45941, 62, 1084, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5288, 1271, 286, 2173, 284, 2074, 262, 6291, 7110, 540, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 1395, 16488, 198, 220, 220, 220, 2248, 68, 306, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 575, 16488, 198, 220, 220, 220, 5259, 75, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3785, 3670, 198, 220, 220, 220, 288, 14415, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22969, 583, 11111, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 410, 1084, 62, 9078, 433, 11, 410, 9806, 62, 9078, 433, 796, 12972, 433, 13, 11250, 13, 1136, 62, 3245, 62, 49196, 7, 3245, 62, 3672, 8, 198, 220, 220, 220, 611, 410, 1084, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 410, 1084, 62, 9078, 433, 198, 220, 220, 220, 611, 410, 9806, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 410, 9806, 62, 9078, 433, 628, 220, 220, 220, 1303, 7110, 691, 4938, 1366, 357, 4360, 1394, 717, 290, 938, 3128, 8, 198, 220, 220, 220, 3128, 17, 796, 45941, 13, 18747, 7, 4475, 8, 198, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 1662, 7, 37659, 13, 2611, 13, 1136, 27932, 18747, 7, 66, 40972, 4008, 198, 220, 220, 220, 611, 45941, 62, 1084, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 468, 62, 37659, 796, 45941, 62, 83, 1875, 45941, 62, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 392, 7, 271, 12102, 11, 468, 62, 37659, 8, 628, 220, 220, 220, 269, 40972, 62, 489, 83, 796, 269, 40972, 58, 271, 12102, 60, 198, 220, 220, 220, 300, 40972, 62, 489, 83, 796, 300, 40972, 58, 271, 12102, 60, 198, 220, 220, 220, 289, 40972, 62, 489, 83, 796, 289, 40972, 58, 271, 12102, 60, 198, 220, 220, 220, 3128, 62, 489, 83, 796, 3128, 17, 58, 271, 12102, 60, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 269, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 269, 40972, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 300, 40972, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 289, 40972, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 17, 58, 15, 4357, 3128, 62, 489, 83, 8, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 269, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 66, 40972, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 75, 40972, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 40972, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 71, 40972, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 62, 489, 83, 11, 3128, 17, 58, 12, 16, 12962, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 41888, 1314, 11, 1511, 4357, 288, 14415, 28, 67, 14415, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 17, 11, 352, 11, 352, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 269, 40972, 62, 489, 83, 11, 705, 87, 12, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 300, 40972, 62, 489, 83, 11, 705, 40914, 12, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 289, 40972, 62, 489, 83, 11, 705, 40914, 12, 11537, 198, 220, 220, 220, 611, 1006, 62, 8367, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 62, 489, 83, 4008, 10, 5420, 62, 8367, 11, 705, 74, 438, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 75, 11231, 306, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 83, 270, 75, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 85, 1084, 11, 410, 9806, 12962, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 17, 11, 352, 11, 362, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 11, 45941, 62, 83, 11, 705, 87, 12, 11537, 628, 220, 220, 220, 611, 45941, 62, 1084, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 4008, 10, 37659, 62, 1084, 11, 705, 74, 438, 11537, 628, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15057, 286, 3409, 2374, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 628, 198, 4299, 7110, 62, 3849, 5589, 62, 1416, 2850, 62, 912, 7, 4475, 62, 35138, 11, 45941, 62, 35138, 11, 1612, 65, 4448, 62, 35138, 11, 14288, 65, 4448, 62, 35138, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5554, 1495, 65, 4448, 62, 35138, 11, 5554, 2425, 65, 4448, 62, 35138, 11, 953, 1765, 4448, 62, 35138, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 35138, 11, 22638, 62, 35138, 11, 987, 344, 79, 62, 35138, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 344, 79, 62, 6649, 3008, 16, 62, 35138, 11, 277, 3672, 62, 4868, 11, 1006, 62, 8367, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 1084, 28, 15, 11, 1162, 81, 62, 1084, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 87, 11639, 7575, 18119, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5259, 75, 11639, 49, 2885, 1503, 8298, 12, 49, 2885, 1503, 21601, 987, 785, 1845, 1653, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 257, 640, 2168, 286, 13428, 987, 785, 1845, 1653, 8198, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3128, 62, 35138, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 640, 2168, 198, 220, 220, 220, 45941, 62, 35138, 1058, 493, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 2173, 198, 220, 220, 220, 1612, 65, 4448, 62, 35138, 11, 14288, 65, 4448, 62, 35138, 11, 953, 1765, 4448, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 11, 14288, 290, 4235, 10690, 198, 220, 220, 220, 5554, 1495, 65, 4448, 62, 35138, 11, 5554, 2425, 65, 4448, 62, 35138, 25, 1679, 400, 290, 5441, 400, 37894, 286, 262, 10690, 198, 220, 220, 220, 1162, 81, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 16096, 198, 220, 220, 220, 22638, 62, 35138, 11, 987, 344, 79, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 22638, 290, 987, 344, 79, 286, 257, 14174, 20683, 198, 220, 220, 220, 987, 344, 79, 62, 6649, 3008, 16, 62, 35138, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 987, 344, 79, 966, 286, 257, 287, 451, 20683, 286, 22638, 352, 198, 220, 220, 220, 1006, 62, 8367, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4941, 1988, 198, 220, 220, 220, 45941, 62, 1084, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 2173, 284, 2074, 262, 1255, 4938, 198, 220, 220, 220, 1162, 81, 62, 1084, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 16096, 284, 2074, 262, 2482, 4938, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 1395, 16488, 198, 220, 220, 220, 5259, 75, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3785, 3670, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 7110, 691, 4938, 1366, 357, 4360, 1394, 717, 290, 938, 3128, 8, 198, 220, 220, 220, 3128, 17, 796, 45941, 13, 18747, 7, 4475, 62, 35138, 8, 198, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 1662, 7, 37659, 13, 2611, 13, 1136, 27932, 18747, 7, 32604, 65, 4448, 62, 35138, 4008, 198, 220, 220, 220, 318, 12102, 62, 10215, 81, 796, 45941, 13, 6404, 605, 62, 1662, 7, 37659, 13, 2611, 13, 1136, 27932, 18747, 7, 10215, 81, 62, 35138, 4008, 198, 220, 220, 220, 611, 45941, 62, 1084, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 468, 62, 37659, 796, 45941, 62, 35138, 1875, 45941, 62, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 392, 7, 271, 12102, 11, 468, 62, 37659, 8, 198, 220, 220, 220, 611, 1162, 81, 62, 1084, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 468, 62, 10215, 81, 62, 1084, 796, 1162, 81, 62, 35138, 1875, 1162, 81, 62, 1084, 198, 220, 220, 220, 220, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 392, 7, 271, 12102, 11, 468, 62, 10215, 81, 62, 1084, 8, 628, 220, 220, 220, 1612, 65, 4448, 62, 489, 83, 796, 1612, 65, 4448, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 14288, 65, 4448, 62, 489, 83, 796, 14288, 65, 4448, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 5554, 1495, 65, 4448, 62, 489, 83, 796, 5554, 1495, 65, 4448, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 5554, 2425, 65, 4448, 62, 489, 83, 796, 5554, 2425, 65, 4448, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 953, 1765, 4448, 62, 489, 83, 796, 953, 1765, 4448, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 987, 344, 79, 62, 489, 83, 796, 987, 344, 79, 62, 6649, 3008, 16, 62, 35138, 58, 271, 12102, 60, 198, 220, 220, 220, 1162, 81, 62, 489, 83, 796, 1162, 81, 62, 35138, 58, 271, 12102, 62, 10215, 81, 60, 198, 220, 220, 220, 3128, 62, 10215, 81, 796, 3128, 17, 58, 271, 12102, 62, 10215, 81, 60, 198, 220, 220, 220, 3128, 62, 489, 83, 796, 3128, 17, 58, 271, 12102, 60, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 1612, 65, 4448, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14288, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 14288, 65, 4448, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5554, 1495, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 5554, 1495, 65, 4448, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5554, 2425, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 5554, 2425, 65, 4448, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 953, 1765, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 953, 1765, 4448, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 987, 344, 79, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 987, 344, 79, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 17, 58, 15, 4357, 3128, 62, 489, 83, 8, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 32604, 65, 4448, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14288, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 1150, 666, 65, 4448, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5554, 1495, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 40972, 1495, 65, 4448, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5554, 2425, 65, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 40972, 2425, 65, 4448, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 953, 1765, 4448, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 14171, 65, 4448, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 987, 344, 79, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 3849, 344, 79, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 62, 489, 83, 11, 3128, 17, 58, 12, 16, 12962, 628, 220, 220, 220, 611, 407, 318, 12102, 62, 10215, 81, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 1162, 81, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 10215, 81, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 17, 58, 15, 4357, 3128, 62, 10215, 81, 8, 198, 220, 220, 220, 611, 407, 318, 12102, 62, 10215, 81, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 10215, 81, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 10215, 81, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 62, 10215, 81, 11, 3128, 17, 58, 12, 16, 12962, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 41888, 940, 11, 1160, 4357, 288, 14415, 28, 67, 14415, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 19, 11, 352, 11, 352, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 14288, 65, 4448, 62, 489, 83, 11, 705, 65, 87, 12, 3256, 6167, 11639, 1150, 666, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 1612, 65, 4448, 62, 489, 83, 11, 705, 40914, 12, 3256, 6167, 11639, 32604, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 953, 1765, 4448, 62, 489, 83, 11, 705, 70, 87, 12, 3256, 6167, 11639, 14171, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 987, 344, 79, 62, 489, 83, 11, 705, 28391, 12, 3256, 6167, 11639, 3849, 344, 79, 286, 22638, 352, 37491, 11537, 198, 220, 220, 220, 611, 1006, 62, 8367, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 62, 489, 83, 4008, 10, 5420, 62, 8367, 11, 705, 74, 438, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 65, 4448, 685, 36077, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 83, 270, 75, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 12, 20, 1539, 642, 8183, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 19, 11, 352, 11, 362, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 14288, 65, 4448, 62, 489, 83, 11, 705, 65, 87, 12, 3256, 6167, 11639, 1150, 666, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 5554, 1495, 65, 4448, 62, 489, 83, 11, 705, 40914, 12, 3256, 6167, 11639, 1495, 12, 25067, 576, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 5554, 2425, 65, 4448, 62, 489, 83, 11, 705, 40914, 12, 3256, 6167, 11639, 2425, 12, 25067, 576, 11537, 198, 220, 220, 220, 611, 1006, 62, 8367, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 62, 489, 83, 4008, 10, 5420, 62, 8367, 11, 705, 74, 438, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 65, 4448, 685, 36077, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 12, 20, 1539, 642, 8183, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 19, 11, 352, 11, 513, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 10215, 81, 11, 1162, 81, 62, 489, 83, 11, 705, 65, 87, 12, 11537, 628, 220, 220, 220, 611, 1162, 81, 62, 1084, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 10215, 81, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 62, 10215, 81, 4008, 10, 10215, 81, 62, 1084, 11, 705, 74, 438, 11537, 628, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 10215, 49501, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 1539, 352, 8183, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 19, 11, 352, 11, 604, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 17, 11, 45941, 62, 35138, 11, 705, 65, 87, 12, 11537, 628, 220, 220, 220, 611, 45941, 62, 1084, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 17, 11, 45941, 13, 9107, 418, 7, 11925, 7, 4475, 17, 4008, 10, 37659, 62, 1084, 11, 705, 74, 438, 11537, 628, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 15057, 286, 3409, 2374, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 628, 198, 4299, 7110, 62, 4029, 62, 912, 7, 28664, 62, 4029, 62, 3258, 11, 25962, 62, 4852, 62, 615, 70, 62, 3258, 11, 25962, 62, 4852, 62, 19282, 62, 3258, 11, 6546, 62, 615, 70, 62, 3258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6546, 62, 19282, 62, 3258, 11, 299, 20477, 62, 12102, 62, 3258, 11, 299, 20477, 62, 23350, 62, 3258, 11, 277, 3672, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 87, 11639, 7575, 18119, 3256, 5259, 75, 11639, 21102, 889, 7679, 640, 2168, 3256, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 257, 640, 2168, 286, 24203, 7679, 1366, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 288, 83, 62, 4029, 62, 3258, 1058, 4818, 8079, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 640, 286, 262, 640, 2168, 198, 220, 220, 220, 45941, 62, 35138, 1058, 493, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 2173, 198, 220, 220, 220, 1612, 65, 4448, 62, 35138, 11, 14288, 65, 4448, 62, 35138, 11, 953, 1765, 4448, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 11, 14288, 290, 4235, 10690, 198, 220, 220, 220, 5554, 1495, 65, 4448, 62, 35138, 11, 5554, 2425, 65, 4448, 62, 35138, 25, 1679, 400, 290, 5441, 400, 37894, 286, 262, 10690, 198, 220, 220, 220, 1162, 81, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 16096, 198, 220, 220, 220, 22638, 62, 35138, 11, 987, 344, 79, 62, 35138, 1058, 12178, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 22638, 290, 987, 344, 79, 286, 257, 14174, 20683, 198, 220, 220, 220, 987, 344, 79, 62, 6649, 3008, 16, 62, 35138, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 987, 344, 79, 966, 286, 257, 287, 451, 20683, 286, 22638, 352, 198, 220, 220, 220, 1006, 62, 8367, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4941, 1988, 198, 220, 220, 220, 45941, 62, 1084, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 1271, 286, 2173, 284, 2074, 262, 1255, 4938, 198, 220, 220, 220, 1162, 81, 62, 1084, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5288, 16096, 284, 2074, 262, 2482, 4938, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 6167, 286, 262, 1395, 16488, 198, 220, 220, 220, 5259, 75, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3785, 3670, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 41888, 940, 11, 1315, 4357, 288, 14415, 28, 67, 14415, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 18, 11, 352, 11, 352, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 25962, 62, 4852, 62, 615, 70, 62, 3258, 11, 705, 65, 87, 12, 3256, 6167, 11639, 615, 70, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 25962, 62, 4852, 62, 615, 70, 62, 3258, 10, 4029, 62, 4852, 62, 19282, 62, 3258, 11, 705, 40914, 12, 3256, 6167, 11639, 615, 70, 10, 19282, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 25962, 62, 4852, 62, 615, 70, 62, 3258, 12, 4029, 62, 4852, 62, 19282, 62, 3258, 11, 705, 40914, 12, 3256, 6167, 11639, 615, 70, 12, 19282, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 9126, 6001, 685, 76, 6579, 43, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 83, 270, 75, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 1539, 39064, 8183, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 28664, 62, 4029, 62, 3258, 58, 15, 4357, 288, 83, 62, 4029, 62, 3258, 58, 12, 16, 11907, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 18, 11, 352, 11, 362, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 6546, 62, 615, 70, 62, 3258, 11, 705, 65, 87, 12, 3256, 6167, 11639, 615, 70, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 6546, 62, 615, 70, 62, 3258, 10, 400, 624, 62, 19282, 62, 3258, 11, 705, 40914, 12, 3256, 6167, 11639, 615, 70, 10, 19282, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 6546, 62, 615, 70, 62, 3258, 12, 400, 624, 62, 19282, 62, 3258, 11, 705, 40914, 12, 3256, 6167, 11639, 615, 70, 12, 19282, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 817, 624, 1108, 685, 76, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 1539, 20343, 8183, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 28664, 62, 4029, 62, 3258, 58, 15, 4357, 288, 83, 62, 4029, 62, 3258, 58, 12, 16, 11907, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 18, 11, 352, 11, 513, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 299, 20477, 62, 12102, 62, 3258, 11, 705, 65, 87, 12, 3256, 6167, 11639, 45, 4938, 24823, 11537, 198, 220, 220, 220, 7877, 13, 29487, 7, 28664, 62, 4029, 62, 3258, 11, 299, 20477, 62, 23350, 62, 3258, 11, 705, 40914, 12, 3256, 6167, 11639, 20477, 2472, 11537, 198, 220, 220, 220, 1303, 458, 83, 13, 1455, 437, 7, 17946, 11639, 13466, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 49, 592, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 15, 11, 45941, 13, 9806, 7, 77, 20477, 62, 23350, 62, 3258, 47762, 20, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 28664, 62, 4029, 62, 3258, 58, 15, 4357, 288, 83, 62, 4029, 62, 3258, 58, 12, 16, 11907, 8, 628, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 628, 198, 4299, 7110, 62, 19155, 62, 1186, 380, 18206, 62, 912, 7, 19155, 62, 1186, 380, 18206, 11, 1366, 62, 4906, 11, 277, 3672, 62, 4868, 11, 6167, 87, 11639, 10430, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5259, 75, 11639, 16012, 45069, 3862, 7171, 3256, 288, 14415, 28, 4761, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21528, 4252, 45069, 640, 2168, 2168, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4252, 62, 1186, 380, 18206, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 7268, 262, 29517, 10007, 198, 220, 220, 220, 1366, 62, 4906, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 284, 307, 37515, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 3696, 810, 284, 3650, 262, 7110, 198, 220, 220, 220, 6167, 87, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 262, 2124, 6167, 198, 220, 220, 220, 5259, 75, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 262, 3670, 286, 262, 7110, 198, 220, 220, 220, 288, 14415, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22969, 583, 11111, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 277, 3672, 62, 4868, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3891, 286, 262, 2727, 21528, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1988, 62, 19282, 796, 6045, 198, 220, 220, 220, 1006, 796, 6045, 198, 220, 220, 220, 3128, 796, 4252, 62, 1186, 380, 18206, 58, 16, 60, 198, 220, 220, 220, 611, 1366, 62, 4906, 6624, 705, 77, 71, 896, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 15057, 286, 4252, 7127, 367, 6518, 6, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 45941, 13, 9806, 7, 19155, 62, 1186, 380, 18206, 58, 17, 12962, 10, 16, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 417, 62, 10394, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 36, 2768, 341, 15584, 10394, 367, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 604, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 1031, 62, 10394, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 26903, 320, 1071, 15584, 10394, 367, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 604, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 417, 62, 65, 4448, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 20, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 36, 2768, 341, 10609, 10690, 367, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 362, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 1031, 62, 65, 4448, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 21, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 26903, 320, 1071, 10609, 10690, 367, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 362, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 36077, 76, 62, 19155, 62, 395, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 22, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 16012, 4333, 367, 6518, 357, 36077, 76, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 11442, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 532, 3829, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 40914, 62, 65, 4448, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 357, 940, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 24, 12962, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 2481, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 3041, 39729, 10690, 367, 6518, 357, 36077, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 20, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 642, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 28202, 62, 71, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 24, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 23, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 2481, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 31310, 8520, 6591, 28462, 367, 6518, 357, 36077, 7, 82, 20942, 4008, 6, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 1315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 1542, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 77, 71, 896, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 940, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 15057, 286, 4252, 7127, 569, 6518, 6, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 45941, 13, 9806, 7, 19155, 62, 1186, 380, 18206, 58, 940, 12962, 10, 16, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 417, 62, 10394, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1157, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 36, 2768, 341, 15584, 10394, 569, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 604, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 1031, 62, 10394, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1065, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 26903, 320, 1071, 15584, 10394, 569, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 604, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 417, 62, 65, 4448, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1485, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 36, 2768, 341, 10609, 10690, 569, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 362, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 1031, 62, 65, 4448, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1415, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 26903, 320, 1071, 10609, 10690, 569, 6518, 357, 35, 1533, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 362, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 36077, 76, 85, 62, 19155, 62, 395, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1314, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 1433, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 16012, 4333, 569, 6518, 357, 36077, 76, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 11442, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 532, 3829, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 40914, 62, 65, 4448, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 357, 940, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 1558, 12962, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 2481, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 1433, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 3041, 39729, 10690, 569, 6518, 357, 36077, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 20, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 642, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 28202, 62, 85, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 1558, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 1433, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 838, 15885, 37659, 13, 2611, 13, 6404, 940, 7, 19155, 62, 1186, 380, 18206, 58, 2481, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 31310, 8520, 6591, 28462, 569, 6518, 357, 36077, 7, 82, 20942, 4008, 6, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 1315, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 1542, 13, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 77, 71, 896, 62, 89, 7109, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1507, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 15057, 286, 4252, 7127, 1168, 7707, 6, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 45941, 13, 9806, 7, 19155, 62, 1186, 380, 18206, 58, 1507, 12962, 10, 16, 198, 220, 220, 220, 1288, 361, 1366, 62, 4906, 6624, 705, 57, 7707, 62, 19155, 62, 395, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 4252, 62, 1186, 380, 18206, 58, 1129, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 796, 4252, 62, 1186, 380, 18206, 58, 1238, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 796, 45941, 13, 9107, 418, 7, 11925, 7, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2248, 68, 306, 796, 705, 16012, 1168, 7707, 357, 36077, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 796, 532, 17, 13, 198, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 796, 362, 13, 628, 220, 220, 220, 9335, 796, 45941, 13, 2611, 13, 1136, 27932, 18747, 7, 8367, 8, 198, 220, 220, 220, 611, 9335, 13, 439, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9828, 10786, 3118, 540, 284, 2251, 3785, 705, 10, 6, 45302, 22179, 7, 69, 3672, 62, 4868, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45302, 1400, 4938, 1366, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1303, 7110, 691, 4938, 1366, 357, 4360, 1394, 717, 290, 938, 3128, 8, 198, 220, 220, 220, 318, 12102, 796, 45941, 13, 6404, 605, 62, 1662, 7, 27932, 8, 198, 220, 220, 220, 3128, 17, 796, 45941, 13, 18747, 7, 4475, 8, 628, 220, 220, 220, 1988, 62, 489, 83, 796, 1988, 58, 271, 12102, 60, 198, 220, 220, 220, 3128, 62, 489, 83, 796, 3128, 17, 58, 271, 12102, 60, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 1988, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 17, 58, 15, 4357, 3128, 62, 489, 83, 8, 198, 220, 220, 220, 611, 407, 318, 12102, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 8367, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 4475, 62, 489, 83, 11, 3128, 17, 58, 12, 16, 12962, 628, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 41888, 940, 11, 718, 4357, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 1988, 62, 489, 83, 11, 705, 87, 12, 11537, 198, 220, 220, 220, 611, 1988, 62, 19282, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 62, 489, 83, 796, 1988, 62, 19282, 58, 271, 12102, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 12102, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 37659, 13, 2611, 13, 27932, 276, 11, 1988, 62, 19282, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 12102, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 19282, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 8367, 62, 19282, 62, 489, 83, 11, 45941, 13, 2611, 13, 27932, 276, 8, 628, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 1988, 62, 489, 83, 10, 8367, 62, 19282, 62, 489, 83, 11, 705, 40914, 12, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 1988, 62, 489, 83, 12, 8367, 62, 19282, 62, 489, 83, 11, 705, 40914, 12, 11537, 198, 220, 220, 220, 611, 1006, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 489, 83, 796, 1006, 58, 271, 12102, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 12102, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 5420, 58, 15, 4357, 1006, 62, 489, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 12102, 58, 12, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1006, 62, 489, 83, 796, 45941, 13, 2611, 13, 33295, 7, 5420, 62, 489, 83, 11, 1006, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 4475, 62, 489, 83, 11, 1006, 62, 489, 83, 11, 705, 74, 438, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7, 18242, 87, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7, 75, 11231, 306, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 83, 270, 75, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 26933, 85, 1084, 11, 410, 9806, 12962, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 26933, 4475, 62, 489, 83, 58, 15, 4357, 3128, 62, 489, 83, 58, 12, 16, 11907, 8, 198, 220, 220, 220, 1303, 5381, 2124, 16488, 198, 220, 220, 220, 7877, 13, 2306, 17500, 1000, 7, 21633, 28, 17821, 11, 16488, 11639, 87, 3256, 5381, 28, 17821, 8, 198, 220, 220, 220, 7877, 13, 25928, 7, 17821, 8, 628, 220, 220, 220, 1303, 5724, 689, 290, 826, 10548, 82, 262, 2124, 14722, 11, 290, 6100, 262, 4220, 286, 262, 198, 220, 220, 220, 1303, 34197, 510, 284, 787, 2119, 329, 606, 198, 220, 220, 220, 2336, 13, 2306, 1659, 16762, 62, 87, 4475, 3419, 628, 220, 220, 220, 329, 277, 3672, 287, 277, 3672, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7, 69, 3672, 11, 288, 14415, 28, 67, 14415, 8, 198, 220, 220, 220, 458, 83, 13, 19836, 7, 5647, 8, 628, 220, 220, 220, 1441, 277, 3672, 62, 4868, 198 ]
2.088328
11,378
# Copyright (c) 2012, James Hensman and Ricardo Andrade # Licensed under the BSD 3-clause license (see LICENSE.txt) from .kern import Kern import numpy as np from ...core.parameterization import Param from ...core.parameterization.transformations import Logexp from ...util.config import config # for assesing whether to use cython try: from . import coregionalize_cython config.set('cython', 'working', 'True') except ImportError: config.set('cython', 'working', 'False') class Coregionalize(Kern): """ Covariance function for intrinsic/linear coregionalization models This covariance has the form: .. math:: \mathbf{B} = \mathbf{W}\mathbf{W}^\top + \text{diag}(kappa) An intrinsic/linear coregionalization covariance function of the form: .. math:: k_2(x, y)=\mathbf{B} k(x, y) it is obtained as the tensor product between a covariance function k(x, y) and B. :param output_dim: number of outputs to coregionalize :type output_dim: int :param rank: number of columns of the W matrix (this parameter is ignored if parameter W is not None) :type rank: int :param W: a low rank matrix that determines the correlations between the different outputs, together with kappa it forms the coregionalization matrix B :type W: numpy array of dimensionality (num_outpus, W_columns) :param kappa: a vector which allows the outputs to behave independently :type kappa: numpy array of dimensionality (output_dim, ) .. note: see coregionalization examples in GPy.examples.regression for some usage. """
[ 2, 15069, 357, 66, 8, 2321, 11, 3700, 367, 641, 805, 290, 38847, 843, 27585, 198, 2, 49962, 739, 262, 347, 10305, 513, 12, 565, 682, 5964, 357, 3826, 38559, 24290, 13, 14116, 8, 198, 198, 6738, 764, 74, 1142, 1330, 49132, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2644, 7295, 13, 17143, 2357, 1634, 1330, 25139, 198, 6738, 2644, 7295, 13, 17143, 2357, 1634, 13, 35636, 602, 1330, 6706, 25636, 79, 198, 6738, 2644, 22602, 13, 11250, 1330, 4566, 1303, 329, 50201, 278, 1771, 284, 779, 3075, 400, 261, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 1330, 4755, 70, 1538, 1096, 62, 948, 400, 261, 198, 220, 220, 220, 4566, 13, 2617, 10786, 948, 400, 261, 3256, 705, 16090, 3256, 705, 17821, 11537, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 4566, 13, 2617, 10786, 948, 400, 261, 3256, 705, 16090, 3256, 705, 25101, 11537, 198, 198, 4871, 7231, 70, 1538, 1096, 7, 42, 1142, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 39751, 2743, 590, 2163, 329, 28327, 14, 29127, 4755, 70, 1538, 1634, 4981, 628, 220, 220, 220, 770, 44829, 590, 468, 262, 1296, 25, 198, 220, 220, 220, 11485, 10688, 3712, 198, 220, 220, 220, 220, 220, 220, 3467, 11018, 19881, 90, 33, 92, 796, 3467, 11018, 19881, 90, 54, 32239, 11018, 19881, 90, 54, 92, 61, 59, 4852, 1343, 3467, 5239, 90, 10989, 363, 92, 7, 74, 20975, 8, 628, 220, 220, 220, 1052, 28327, 14, 29127, 4755, 70, 1538, 1634, 44829, 590, 2163, 286, 262, 1296, 25, 198, 220, 220, 220, 11485, 10688, 3712, 628, 220, 220, 220, 220, 220, 220, 479, 62, 17, 7, 87, 11, 331, 47505, 59, 11018, 19881, 90, 33, 92, 479, 7, 87, 11, 331, 8, 628, 220, 220, 220, 340, 318, 6492, 355, 262, 11192, 273, 1720, 1022, 257, 44829, 590, 2163, 198, 220, 220, 220, 479, 7, 87, 11, 331, 8, 290, 347, 13, 628, 220, 220, 220, 1058, 17143, 5072, 62, 27740, 25, 1271, 286, 23862, 284, 4755, 70, 1538, 1096, 198, 220, 220, 220, 1058, 4906, 5072, 62, 27740, 25, 493, 198, 220, 220, 220, 1058, 17143, 4279, 25, 1271, 286, 15180, 286, 262, 370, 17593, 357, 5661, 11507, 318, 9514, 611, 11507, 370, 318, 407, 6045, 8, 198, 220, 220, 220, 1058, 4906, 4279, 25, 493, 198, 220, 220, 220, 1058, 17143, 370, 25, 257, 1877, 4279, 17593, 326, 15947, 262, 35811, 1022, 262, 1180, 23862, 11, 1978, 351, 479, 20975, 340, 5107, 262, 4755, 70, 1538, 1634, 17593, 347, 198, 220, 220, 220, 1058, 4906, 370, 25, 299, 32152, 7177, 286, 15793, 1483, 357, 22510, 62, 448, 79, 385, 11, 370, 62, 28665, 82, 8, 198, 220, 220, 220, 1058, 17143, 479, 20975, 25, 257, 15879, 543, 3578, 262, 23862, 284, 17438, 14799, 198, 220, 220, 220, 1058, 4906, 479, 20975, 25, 299, 32152, 7177, 286, 15793, 1483, 220, 357, 22915, 62, 27740, 11, 1267, 628, 220, 220, 220, 11485, 3465, 25, 766, 4755, 70, 1538, 1634, 6096, 287, 14714, 88, 13, 1069, 12629, 13, 2301, 2234, 329, 617, 8748, 13, 198, 220, 220, 220, 37227, 628, 628 ]
3.067179
521
import os import numpy as np import pandas as pd import torch from torch import nn from torch import optim from torch.utils import data import matplotlib import matplotlib.pyplot as plt import GEV import display from config import config import selection from train import train from construct import construct from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import KFold device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") eps = 1e-8 FILE_LIST = os.listdir(config.DATA_PATH) FILE_LIST.sort(key = lambda x: x[:-4]) file_num = 0 mAcc = 0 mG_mean = 0 Dict = {} for i, FILE_NAME in enumerate(FILE_LIST): if FILE_NAME == '.DS_Store' or FILE_NAME == 'process.py' or FILE_NAME == 'tmp.dat': continue print(i, FILE_NAME) if (i < 40): continue dataset = sampleData(FILE_NAME) dataloader = data.DataLoader(dataset, batch_size = config.batch_size, shuffle = True, drop_last = False, **config.kwargs) X_train = torch.from_numpy(dataset.train_data) Y_train = torch.from_numpy(dataset.train_label) X_test = torch.from_numpy(dataset.test_data) Y_test = torch.from_numpy(dataset.test_label) file_num += 1 sAcc = 0 sG_mean = 0 times = 0 for j in range(10): # X1 = torch.rand(X_train.shape[0], 25) # X2 = torch.rand(X_test.shape[0], 25) # y_output = SVC().fit(X1, Y_train).predict(X1) # TP, TN, FP, FN, P, R, mF1, Acc, G_mean = display.Eval(Y_train, y_output) train(X_train, Y_train, X_test, Y_test) X1, index = construct(X_train, Y_train) X2, _ = construct(X_test, Y_test) y_output = SVC().fit(X1[:, index], Y_train).predict(X2[:, index]) TP, TN, FP, FN, P, R, mF1, Acc, G_mean = display.Eval(Y_test, y_output) print(TP, TN, FP, FN) print('Acc:%.4lf' % Acc, 'G_mean:%.4lf' % G_mean) if G_mean != 0: sAcc += Acc sG_mean += G_mean # sAcc = max(sAcc, Acc) # sG_mean = max(sG_mean, G_mean) times += 1 times = max(times, 1) sAcc /= times sG_mean /= times mAcc += sAcc mG_mean += sG_mean print('sAcc:%.4lf' % sAcc, 'sG_mean:%.4lf' % sG_mean) Dict[FILE_NAME[ : -4]] = round(sG_mean, 4) outcome = pd.read_csv('origin-outcome.csv') output = outcome for i in range(outcome.shape[0]): if (output.iloc[i, 0] in Dict): output.iloc[i, 2] = Dict[output.iloc[i, 0]] output.iloc[i, 3] = round(output.iloc[i, 2] - output.iloc[i, 1], 4) output.to_csv('outcome.csv') print('mAcc:%.4lf' % (mAcc / file_num), 'mG_mean:%.4lf' % (mG_mean / file_num))
[ 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 1330, 6436, 198, 6738, 28034, 13, 26791, 1330, 1366, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 402, 20114, 198, 11748, 3359, 198, 6738, 4566, 1330, 4566, 198, 11748, 6356, 198, 6738, 4512, 1330, 4512, 198, 6738, 5678, 1330, 5678, 198, 6738, 1341, 35720, 13, 82, 14761, 1330, 311, 15922, 198, 6738, 1341, 35720, 13, 2616, 425, 62, 24406, 274, 1330, 12822, 31562, 32819, 198, 6738, 1341, 35720, 13, 21048, 1330, 26423, 27660, 9487, 7483, 198, 6738, 1341, 35720, 13, 710, 394, 32289, 1330, 509, 46445, 32289, 9487, 7483, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 509, 37, 727, 198, 198, 25202, 796, 28034, 13, 25202, 7203, 66, 15339, 25, 15, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 198, 198, 25386, 796, 352, 68, 12, 23, 198, 198, 25664, 62, 45849, 796, 28686, 13, 4868, 15908, 7, 11250, 13, 26947, 62, 34219, 8, 198, 25664, 62, 45849, 13, 30619, 7, 2539, 796, 37456, 2124, 25, 2124, 58, 21912, 19, 12962, 198, 7753, 62, 22510, 796, 657, 198, 76, 17320, 796, 657, 198, 76, 38, 62, 32604, 796, 657, 198, 35, 713, 796, 23884, 198, 198, 1640, 1312, 11, 45811, 62, 20608, 287, 27056, 378, 7, 25664, 62, 45849, 2599, 198, 197, 361, 45811, 62, 20608, 6624, 45302, 5258, 62, 22658, 6, 393, 45811, 62, 20608, 6624, 705, 14681, 13, 9078, 6, 393, 45811, 62, 20608, 6624, 705, 22065, 13, 19608, 10354, 2555, 198, 197, 4798, 7, 72, 11, 45811, 62, 20608, 8, 198, 197, 361, 357, 72, 1279, 2319, 2599, 2555, 198, 197, 19608, 292, 316, 796, 6291, 6601, 7, 25664, 62, 20608, 8, 198, 197, 67, 10254, 1170, 263, 796, 1366, 13, 6601, 17401, 7, 19608, 292, 316, 11, 15458, 62, 7857, 796, 4566, 13, 43501, 62, 7857, 11, 198, 197, 197, 1477, 18137, 796, 6407, 11, 4268, 62, 12957, 796, 10352, 11, 12429, 11250, 13, 46265, 22046, 8, 198, 197, 55, 62, 27432, 796, 28034, 13, 6738, 62, 77, 32152, 7, 19608, 292, 316, 13, 27432, 62, 7890, 8, 198, 197, 56, 62, 27432, 796, 28034, 13, 6738, 62, 77, 32152, 7, 19608, 292, 316, 13, 27432, 62, 18242, 8, 198, 197, 55, 62, 9288, 796, 28034, 13, 6738, 62, 77, 32152, 7, 19608, 292, 316, 13, 9288, 62, 7890, 8, 198, 197, 56, 62, 9288, 796, 28034, 13, 6738, 62, 77, 32152, 7, 19608, 292, 316, 13, 9288, 62, 18242, 8, 198, 197, 7753, 62, 22510, 15853, 352, 198, 197, 82, 17320, 796, 657, 198, 197, 82, 38, 62, 32604, 796, 657, 198, 197, 22355, 796, 657, 198, 197, 1640, 474, 287, 2837, 7, 940, 2599, 198, 197, 197, 2, 1395, 16, 796, 28034, 13, 25192, 7, 55, 62, 27432, 13, 43358, 58, 15, 4357, 1679, 8, 198, 197, 197, 2, 1395, 17, 796, 28034, 13, 25192, 7, 55, 62, 9288, 13, 43358, 58, 15, 4357, 1679, 8, 198, 197, 197, 2, 331, 62, 22915, 796, 311, 15922, 22446, 11147, 7, 55, 16, 11, 575, 62, 27432, 737, 79, 17407, 7, 55, 16, 8, 198, 197, 197, 2, 24525, 11, 29025, 11, 31459, 11, 44260, 11, 350, 11, 371, 11, 285, 37, 16, 11, 6366, 11, 402, 62, 32604, 796, 3359, 13, 36, 2100, 7, 56, 62, 27432, 11, 331, 62, 22915, 8, 198, 197, 197, 27432, 7, 55, 62, 27432, 11, 575, 62, 27432, 11, 1395, 62, 9288, 11, 575, 62, 9288, 8, 198, 197, 197, 55, 16, 11, 6376, 796, 5678, 7, 55, 62, 27432, 11, 575, 62, 27432, 8, 198, 197, 197, 55, 17, 11, 4808, 796, 5678, 7, 55, 62, 9288, 11, 575, 62, 9288, 8, 198, 197, 197, 88, 62, 22915, 796, 311, 15922, 22446, 11147, 7, 55, 16, 58, 45299, 6376, 4357, 575, 62, 27432, 737, 79, 17407, 7, 55, 17, 58, 45299, 6376, 12962, 198, 197, 197, 7250, 11, 29025, 11, 31459, 11, 44260, 11, 350, 11, 371, 11, 285, 37, 16, 11, 6366, 11, 402, 62, 32604, 796, 3359, 13, 36, 2100, 7, 56, 62, 9288, 11, 331, 62, 22915, 8, 198, 197, 197, 4798, 7, 7250, 11, 29025, 11, 31459, 11, 44260, 8, 198, 197, 197, 4798, 10786, 17320, 25, 7225, 19, 1652, 6, 4064, 6366, 11, 705, 38, 62, 32604, 25, 7225, 19, 1652, 6, 4064, 402, 62, 32604, 8, 198, 197, 197, 361, 402, 62, 32604, 14512, 657, 25, 198, 197, 197, 197, 82, 17320, 15853, 6366, 198, 197, 197, 197, 82, 38, 62, 32604, 15853, 402, 62, 32604, 198, 197, 197, 197, 2, 264, 17320, 796, 3509, 7, 82, 17320, 11, 6366, 8, 198, 197, 197, 197, 2, 264, 38, 62, 32604, 796, 3509, 7, 82, 38, 62, 32604, 11, 402, 62, 32604, 8, 198, 197, 197, 197, 22355, 15853, 352, 198, 197, 22355, 796, 3509, 7, 22355, 11, 352, 8, 198, 197, 82, 17320, 1220, 28, 1661, 198, 197, 82, 38, 62, 32604, 1220, 28, 1661, 198, 197, 76, 17320, 15853, 264, 17320, 198, 197, 76, 38, 62, 32604, 15853, 264, 38, 62, 32604, 198, 197, 4798, 10786, 82, 17320, 25, 7225, 19, 1652, 6, 4064, 264, 17320, 11, 705, 82, 38, 62, 32604, 25, 7225, 19, 1652, 6, 4064, 264, 38, 62, 32604, 8, 198, 197, 35, 713, 58, 25664, 62, 20608, 58, 1058, 532, 19, 11907, 796, 2835, 7, 82, 38, 62, 32604, 11, 604, 8, 198, 197, 448, 2958, 796, 279, 67, 13, 961, 62, 40664, 10786, 47103, 12, 448, 2958, 13, 40664, 11537, 198, 197, 22915, 796, 8055, 198, 197, 1640, 1312, 287, 2837, 7, 448, 2958, 13, 43358, 58, 15, 60, 2599, 198, 197, 197, 361, 357, 22915, 13, 346, 420, 58, 72, 11, 657, 60, 287, 360, 713, 2599, 198, 197, 197, 197, 22915, 13, 346, 420, 58, 72, 11, 362, 60, 796, 360, 713, 58, 22915, 13, 346, 420, 58, 72, 11, 657, 11907, 198, 197, 197, 197, 22915, 13, 346, 420, 58, 72, 11, 513, 60, 796, 2835, 7, 22915, 13, 346, 420, 58, 72, 11, 362, 60, 532, 5072, 13, 346, 420, 58, 72, 11, 352, 4357, 604, 8, 198, 197, 22915, 13, 1462, 62, 40664, 10786, 448, 2958, 13, 40664, 11537, 198, 198, 4798, 10786, 76, 17320, 25, 7225, 19, 1652, 6, 4064, 357, 76, 17320, 1220, 2393, 62, 22510, 828, 705, 76, 38, 62, 32604, 25, 7225, 19, 1652, 6, 4064, 357, 76, 38, 62, 32604, 1220, 2393, 62, 22510, 4008 ]
2.3379
1,095
#!/bin/env python3 # # Build the amp-mgms tarball for distribution # import argparse import logging import tempfile from pathlib import Path import shutil import sys import yaml from datetime import datetime import os import subprocess from amp_bootstrap_utils import run_cmd, build_package if __name__ == "__main__": main()
[ 2, 48443, 8800, 14, 24330, 21015, 18, 198, 2, 198, 2, 10934, 262, 20766, 12, 11296, 907, 13422, 1894, 329, 6082, 198, 2, 198, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 20218, 7753, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 331, 43695, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 6738, 20766, 62, 18769, 26418, 62, 26791, 1330, 1057, 62, 28758, 11, 1382, 62, 26495, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.081081
111
import os import cv2 from base_camera import BaseCamera import numpy as np import time import threading import imutils ''' Set the color of the line, 255 is white line, 0 is black line ''' lineColorSet = 255 ''' Set the reference horizontal position, the larger the value, the lower, but it cannot be greater than the vertical resolution of the video (default 480) ''' linePos = 380
[ 11748, 28686, 198, 11748, 269, 85, 17, 198, 6738, 2779, 62, 25695, 1330, 7308, 35632, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 4704, 278, 198, 11748, 545, 26791, 198, 198, 7061, 6, 198, 7248, 262, 3124, 286, 262, 1627, 11, 14280, 318, 2330, 1627, 11, 657, 318, 2042, 1627, 198, 7061, 6, 198, 1370, 10258, 7248, 796, 14280, 198, 7061, 6, 198, 7248, 262, 4941, 16021, 2292, 11, 262, 4025, 262, 1988, 11, 262, 2793, 11, 220, 198, 4360, 340, 2314, 307, 3744, 621, 262, 11723, 6323, 286, 262, 2008, 357, 12286, 23487, 8, 198, 7061, 6, 198, 1370, 21604, 796, 29101 ]
3.622642
106
from ..DB import NBADB from ..Models import (DailyBoxScore, DailyFileManager, DailyMatchup, DailySchedule, NBAPlayer, League, NBAReport) ################################################################################ ################################################################################ currentSeason = 2021 ################################################################################ ################################################################################
[ 6738, 11485, 11012, 1330, 41354, 2885, 33, 198, 6738, 11485, 5841, 1424, 1330, 357, 28545, 14253, 26595, 11, 6714, 8979, 13511, 11, 6714, 23850, 929, 11, 6714, 27054, 5950, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41354, 2969, 29289, 11, 4041, 11, 41354, 1503, 45813, 8, 628, 628, 198, 29113, 29113, 14468, 198, 29113, 29113, 14468, 198, 198, 14421, 18960, 796, 33448, 198, 198, 29113, 29113, 14468, 198, 29113, 29113, 14468, 628, 198 ]
5.648352
91
# coding=utf-8 """ Makes a PDF document from a source folder """ import shutil import urllib.parse from pathlib import Path import elib from edlm import LOGGER from edlm.convert import Context from edlm.external_tools import PANDOC from ._check_for_unused_images import check_for_unused_images from ._get_includes import get_includes from ._get_index import get_index_file from ._get_media_folders import get_media_folders from ._get_settings import get_settings from ._get_template import get_template from ._pdf_info import add_metadata_to_pdf, skip_file from ._preprocessor import process_latex, process_markdown from ._temp_folder import TempDir WIDTH_MODIFIER = 0.8 PAPER_FORMATS_WIDTH = { 'a0': 841 * WIDTH_MODIFIER, 'a1': 594 * WIDTH_MODIFIER, 'a2': 420 * WIDTH_MODIFIER, 'a3': 29 * WIDTH_MODIFIER, 'a4': 210 * WIDTH_MODIFIER, 'a5': 148 * WIDTH_MODIFIER, 'a6': 105 * WIDTH_MODIFIER, 'a7': 74 * WIDTH_MODIFIER, } BASE_URL = r'http://132virtualwing.org/docs/' def make_pdf(ctx: Context, source_folder: Path): """ Makes a PDF document from a source folder Args: ctx: Context source_folder: source folder """ _remove_artifacts() source_folder = elib.path.ensure_dir(source_folder).absolute() LOGGER.info(f'analyzing folder: "{source_folder}"') if _is_source_folder(source_folder): ctx.source_folder = source_folder _build_folder(ctx) else: for child in source_folder.iterdir(): if _is_source_folder(child): ctx.source_folder = child.absolute() _build_folder(ctx)
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 44, 1124, 257, 12960, 3188, 422, 257, 2723, 9483, 198, 37811, 198, 198, 11748, 4423, 346, 198, 11748, 2956, 297, 571, 13, 29572, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 1288, 571, 198, 198, 6738, 1225, 75, 76, 1330, 41605, 30373, 198, 6738, 1225, 75, 76, 13, 1102, 1851, 1330, 30532, 198, 6738, 1225, 75, 76, 13, 22615, 62, 31391, 1330, 350, 6981, 4503, 198, 198, 6738, 47540, 9122, 62, 1640, 62, 403, 1484, 62, 17566, 1330, 2198, 62, 1640, 62, 403, 1484, 62, 17566, 198, 6738, 47540, 1136, 62, 42813, 1330, 651, 62, 42813, 198, 6738, 47540, 1136, 62, 9630, 1330, 651, 62, 9630, 62, 7753, 198, 6738, 47540, 1136, 62, 11431, 62, 11379, 364, 1330, 651, 62, 11431, 62, 11379, 364, 198, 6738, 47540, 1136, 62, 33692, 1330, 651, 62, 33692, 198, 6738, 47540, 1136, 62, 28243, 1330, 651, 62, 28243, 198, 6738, 47540, 12315, 62, 10951, 1330, 751, 62, 38993, 62, 1462, 62, 12315, 11, 14267, 62, 7753, 198, 6738, 47540, 3866, 41341, 1330, 1429, 62, 17660, 87, 11, 1429, 62, 4102, 2902, 198, 6738, 47540, 29510, 62, 43551, 1330, 24189, 35277, 198, 198, 54, 2389, 4221, 62, 33365, 5064, 38311, 796, 657, 13, 23, 198, 198, 47, 2969, 1137, 62, 21389, 33586, 62, 54, 2389, 4221, 796, 1391, 198, 220, 220, 220, 705, 64, 15, 10354, 807, 3901, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 16, 10354, 642, 5824, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 17, 10354, 28262, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 18, 10354, 2808, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 19, 10354, 20064, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 20, 10354, 22613, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 21, 10354, 13343, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 220, 220, 220, 705, 64, 22, 10354, 8915, 1635, 370, 2389, 4221, 62, 33365, 5064, 38311, 11, 198, 92, 198, 198, 33, 11159, 62, 21886, 796, 374, 6, 4023, 1378, 19924, 32844, 5469, 13, 2398, 14, 31628, 14, 6, 628, 628, 628, 198, 198, 4299, 787, 62, 12315, 7, 49464, 25, 30532, 11, 2723, 62, 43551, 25, 10644, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27433, 257, 12960, 3188, 422, 257, 2723, 9483, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 25, 30532, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 62, 43551, 25, 2723, 9483, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 28956, 62, 50179, 3419, 628, 220, 220, 220, 2723, 62, 43551, 796, 1288, 571, 13, 6978, 13, 641, 495, 62, 15908, 7, 10459, 62, 43551, 737, 48546, 3419, 628, 220, 220, 220, 41605, 30373, 13, 10951, 7, 69, 6, 38200, 9510, 9483, 25, 45144, 10459, 62, 43551, 36786, 11537, 628, 220, 220, 220, 611, 4808, 271, 62, 10459, 62, 43551, 7, 10459, 62, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 10459, 62, 43551, 796, 2723, 62, 43551, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11249, 62, 43551, 7, 49464, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 287, 2723, 62, 43551, 13, 2676, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 271, 62, 10459, 62, 43551, 7, 9410, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 13, 10459, 62, 43551, 796, 1200, 13, 48546, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11249, 62, 43551, 7, 49464, 8, 198 ]
2.457958
666
import sys from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtPrintSupport import * import urllib.request class MainApp(QMainWindow): """ the main class of our app """ def __init__(self): """ init things here """ super().__init__() # parent class initializer # window title self.title = "NoteWord" self.setWindowTitle(self.title) # editor section self.editor = QTextEdit(self) self.setCentralWidget(self.editor) # create menubar and toolbar first self.create_menu_bar() self.create_toolbar() # after creating toolbar we can call and select font size font = QFont('Times', 12) self.editor.setFont(font) self.editor.setFontPointSize(12) # stores path self.path = '' app = QApplication(sys.argv) window = MainApp() window.show() sys.exit(app.exec_())
[ 11748, 25064, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 18557, 15514, 1330, 1635, 198, 11748, 2956, 297, 571, 13, 25927, 198, 198, 4871, 8774, 4677, 7, 48, 13383, 27703, 2599, 198, 220, 220, 220, 37227, 262, 1388, 1398, 286, 674, 598, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2315, 1243, 994, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2560, 1398, 4238, 7509, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4324, 3670, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7839, 796, 366, 6425, 26449, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 27703, 19160, 7, 944, 13, 7839, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5464, 2665, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35352, 796, 1195, 8206, 18378, 7, 944, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 30645, 38300, 7, 944, 13, 35352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 1450, 549, 283, 290, 50149, 717, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 62, 26272, 62, 5657, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 62, 25981, 5657, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 706, 4441, 50149, 356, 460, 869, 290, 2922, 10369, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 796, 1195, 23252, 10786, 28595, 3256, 1105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35352, 13, 2617, 23252, 7, 10331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35352, 13, 2617, 23252, 12727, 10699, 7, 1065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7000, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 10148, 628, 220, 220, 220, 220, 198, 198, 1324, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 17497, 796, 8774, 4677, 3419, 198, 17497, 13, 12860, 3419, 198, 17597, 13, 37023, 7, 1324, 13, 18558, 62, 28955, 198 ]
2.264977
434
from YarrrmlUtils import Yarrrml from SparqlUtils import Sparql from SqlUtils import Sql import json import sys dataset = "./test/gtfs/" queryDir = "query2/" if __name__ == '__main__': main()
[ 6738, 575, 3258, 81, 4029, 18274, 4487, 1330, 575, 3258, 81, 4029, 198, 6738, 1338, 283, 13976, 18274, 4487, 1330, 1338, 283, 13976, 198, 6738, 311, 13976, 18274, 4487, 1330, 311, 13976, 198, 11748, 33918, 198, 11748, 25064, 198, 19608, 292, 316, 796, 366, 19571, 9288, 14, 13655, 9501, 30487, 198, 22766, 35277, 220, 796, 366, 22766, 17, 30487, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.578947
76
default_app_config = 'django_rdkit.apps.DjangoRDKitConfig'
[ 12286, 62, 1324, 62, 11250, 796, 705, 28241, 14208, 62, 4372, 15813, 13, 18211, 13, 35, 73, 14208, 35257, 20827, 16934, 6, 198 ]
2.565217
23
from rest_framework import serializers from ..serializers import TranslatedModelSerializer from .models import Project, Activity, Markers, ChannelReported
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 11485, 46911, 11341, 1330, 3602, 17249, 17633, 32634, 7509, 198, 6738, 764, 27530, 1330, 4935, 11, 24641, 11, 2940, 364, 11, 11102, 6207, 9741, 628, 628, 628, 198 ]
4.351351
37
# A cryptarithm is a mathematical puzzle for which the goal is to find the correspondence between letters and digits, such that the given arithmetic equation consisting of letters holds true when the letters are converted to digits. # You have an array of strings crypt, the cryptarithm, and an an array containing the mapping of letters and digits, solution. The array crypt will contain three non-empty strings that follow the structure: [word1, word2, word3], which should be interpreted as the word1 + word2 = word3 cryptarithm. # If crypt, when it is decoded by replacing all of the letters in the cryptarithm with digits using the mapping in solution, becomes a valid arithmetic equation containing no numbers with leading zeroes, the answer is true. If it does not become a valid arithmetic solution, the answer is false. # Example # For crypt = ["SEND", "MORE", "MONEY"] and # solution = [['O', '0'], # ['M', '1'], # ['Y', '2'], # ['E', '5'], # ['N', '6'], # ['D', '7'], # ['R', '8'], # ['S', '9']] # the output should be # isCryptSolution(crypt, solution) = true. # When you decrypt "SEND", "MORE", and "MONEY" using the mapping given in crypt, you get 9567 + 1085 = 10652 which is correct and a valid arithmetic equation. # For crypt = ["TEN", "TWO", "ONE"] and # solution = [['O', '1'], # ['T', '0'], # ['W', '9'], # ['E', '5'], # ['N', '4']] # the output should be # isCryptSolution(crypt, solution) = false. # Even though 054 + 091 = 145, 054 and 091 both contain leading zeroes, meaning that this is not a valid solution.
[ 2, 317, 8194, 283, 342, 76, 318, 257, 18069, 15027, 329, 543, 262, 3061, 318, 284, 1064, 262, 22440, 1022, 7475, 290, 19561, 11, 884, 326, 262, 1813, 34768, 16022, 17747, 286, 7475, 6622, 2081, 618, 262, 7475, 389, 11513, 284, 19561, 13, 198, 2, 921, 423, 281, 7177, 286, 13042, 8194, 11, 262, 8194, 283, 342, 76, 11, 290, 281, 281, 7177, 7268, 262, 16855, 286, 7475, 290, 19561, 11, 4610, 13, 383, 7177, 8194, 481, 3994, 1115, 1729, 12, 28920, 13042, 326, 1061, 262, 4645, 25, 685, 4775, 16, 11, 1573, 17, 11, 1573, 18, 4357, 543, 815, 307, 16173, 355, 262, 1573, 16, 1343, 1573, 17, 796, 1573, 18, 8194, 283, 342, 76, 13, 198, 2, 1002, 8194, 11, 618, 340, 318, 875, 9043, 416, 13586, 477, 286, 262, 7475, 287, 262, 8194, 283, 342, 76, 351, 19561, 1262, 262, 16855, 287, 4610, 11, 4329, 257, 4938, 34768, 16022, 7268, 645, 3146, 351, 3756, 1976, 263, 3028, 11, 262, 3280, 318, 2081, 13, 1002, 340, 857, 407, 1716, 257, 4938, 34768, 4610, 11, 262, 3280, 318, 3991, 13, 198, 2, 17934, 198, 2, 1114, 8194, 796, 14631, 50, 10619, 1600, 366, 23346, 1600, 366, 44, 48399, 8973, 290, 198, 2, 4610, 796, 16410, 6, 46, 3256, 705, 15, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 44, 3256, 705, 16, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 56, 3256, 705, 17, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 36, 3256, 705, 20, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 45, 3256, 705, 21, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 35, 3256, 705, 22, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 49, 3256, 705, 23, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 50, 3256, 705, 24, 6, 11907, 198, 2, 262, 5072, 815, 307, 198, 2, 318, 23919, 46344, 7, 29609, 11, 4610, 8, 796, 2081, 13, 198, 2, 1649, 345, 42797, 366, 50, 10619, 1600, 366, 23346, 1600, 290, 366, 44, 48399, 1, 1262, 262, 16855, 1813, 287, 8194, 11, 345, 651, 6957, 3134, 1343, 838, 5332, 796, 838, 43193, 543, 318, 3376, 290, 257, 4938, 34768, 16022, 13, 198, 2, 1114, 8194, 796, 14631, 51, 1677, 1600, 366, 34551, 46, 1600, 366, 11651, 8973, 290, 198, 2, 4610, 796, 16410, 6, 46, 3256, 705, 16, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 51, 3256, 705, 15, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 54, 3256, 705, 24, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 36, 3256, 705, 20, 6, 4357, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 45, 3256, 705, 19, 6, 11907, 198, 2, 262, 5072, 815, 307, 198, 2, 318, 23919, 46344, 7, 29609, 11, 4610, 8, 796, 3991, 13, 198, 2, 3412, 996, 657, 4051, 1343, 657, 6420, 796, 20299, 11, 657, 4051, 290, 657, 6420, 1111, 3994, 3756, 1976, 263, 3028, 11, 3616, 326, 428, 318, 407, 257, 4938, 4610, 13, 198 ]
2.836735
588
import os import pathlib import shutil import tempfile import unittest from unittest.mock import patch import anndata import boto3 import numpy import pandas from moto import mock_s3 from backend.corpora.common.corpora_orm import ( CollectionVisibility, DatasetArtifactType, DatasetArtifactFileType, UploadStatus, ValidationStatus, ) from backend.corpora.common.entities.collection import Collection from backend.corpora.common.entities.dataset import Dataset from backend.corpora.dataset_processing import process
[ 11748, 28686, 198, 11748, 3108, 8019, 198, 11748, 4423, 346, 198, 11748, 20218, 7753, 198, 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 8529, 198, 198, 11748, 281, 358, 1045, 198, 11748, 275, 2069, 18, 198, 11748, 299, 32152, 198, 11748, 19798, 292, 198, 198, 6738, 285, 2069, 1330, 15290, 62, 82, 18, 198, 198, 6738, 30203, 13, 10215, 38851, 13, 11321, 13, 10215, 38851, 62, 579, 1330, 357, 198, 220, 220, 220, 12251, 15854, 2247, 11, 198, 220, 220, 220, 16092, 292, 316, 8001, 29660, 6030, 11, 198, 220, 220, 220, 16092, 292, 316, 8001, 29660, 8979, 6030, 11, 198, 220, 220, 220, 36803, 19580, 11, 198, 220, 220, 220, 3254, 24765, 19580, 11, 198, 8, 198, 6738, 30203, 13, 10215, 38851, 13, 11321, 13, 298, 871, 13, 43681, 1330, 12251, 198, 6738, 30203, 13, 10215, 38851, 13, 11321, 13, 298, 871, 13, 19608, 292, 316, 1330, 16092, 292, 316, 198, 198, 6738, 30203, 13, 10215, 38851, 13, 19608, 292, 316, 62, 36948, 1330, 1429, 628 ]
3.139535
172
import re def stripped(text): """ Removes all whitespace from a string """ return re.sub(r'\s+', '', text)
[ 11748, 302, 628, 198, 4299, 18818, 7, 5239, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3982, 5241, 477, 13216, 10223, 422, 257, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 6, 59, 82, 10, 3256, 705, 3256, 2420, 8, 198 ]
2.45098
51
# @Author: Edmund Lam <edl> # @Date: 18:44:31, 17-Apr-2018 # @Filename: __init__.py # @Last modified by: edl # @Last modified time: 10:05:18, 13-Oct-2019 # __all__=['settings', 'utilities', 'fun', 'economy', 'help', 'quiz', 'trivia', 'wolframalpha', 'ascii_art', 'regex_commands'] __all__=['moderation', 'help', 'utilities', 'wolframalpha']
[ 2, 2488, 13838, 25, 35646, 10923, 1279, 276, 75, 29, 198, 2, 2488, 10430, 25, 220, 220, 1248, 25, 2598, 25, 3132, 11, 1596, 12, 13680, 12, 7908, 198, 2, 2488, 35063, 25, 11593, 15003, 834, 13, 9078, 198, 2, 2488, 5956, 9518, 416, 25, 220, 220, 1225, 75, 198, 2, 2488, 5956, 9518, 640, 25, 838, 25, 2713, 25, 1507, 11, 1511, 12, 12349, 12, 23344, 628, 198, 2, 11593, 439, 834, 28, 17816, 33692, 3256, 705, 315, 2410, 3256, 705, 12543, 3256, 705, 13926, 88, 3256, 705, 16794, 3256, 705, 421, 528, 3256, 705, 28461, 8869, 3256, 705, 18829, 859, 26591, 3256, 705, 292, 979, 72, 62, 433, 3256, 705, 260, 25636, 62, 9503, 1746, 20520, 198, 834, 439, 834, 28, 17816, 4666, 263, 341, 3256, 705, 16794, 3256, 705, 315, 2410, 3256, 705, 18829, 859, 26591, 20520, 198 ]
2.460993
141
from io import open as io_open import os from setuptools import find_packages, setup dirname = os.path.dirname(__file__) readme_file = os.path.join(dirname, "README.md") if os.path.exists(readme_file): with io_open(readme_file, "r", encoding="utf-8") as f: long_description = f.read() else: # When this is first installed in development Docker, README.md is not available long_description = "" # major, minor, patch version_info = 0, 3, 11 # Nice string for the version __version__ = ".".join(map(str, version_info)) setup( name="localtileserver", version=__version__, description="Locally serve geospatial raster tiles in the Slippy Map standard.", long_description=long_description, long_description_content_type="text/markdown", author="Bane Sullivan", author_email="[email protected]", url="https://github.com/banesullivan/localtileserver", packages=find_packages(), include_package_data=True, zip_safe=False, classifiers=[ "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python", ], python_requires=">=3.6", install_requires=[ "click", "flask>=2.0.0", "Flask-Caching", "GDAL", "large_image", "large_image_source_gdal", "requests", "scooby", ], extras_require={ "leaflet": ["ipyleaflet"], "folium": ["folium"], "mpl": ["matplotlib"], "sources": ["large-image-source-pil", "large-image-source-tiff"], }, entry_points={ "console_scripts": [ "localtileserver = localtileserver.__main__:run_app", ], }, )
[ 6738, 33245, 1330, 1280, 355, 33245, 62, 9654, 198, 11748, 28686, 198, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 15908, 3672, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 961, 1326, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 366, 15675, 11682, 13, 9132, 4943, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 961, 1326, 62, 7753, 2599, 198, 220, 220, 220, 351, 33245, 62, 9654, 7, 961, 1326, 62, 7753, 11, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 890, 62, 11213, 796, 277, 13, 961, 3419, 198, 17772, 25, 198, 220, 220, 220, 1303, 1649, 428, 318, 717, 6589, 287, 2478, 25716, 11, 20832, 11682, 13, 9132, 318, 407, 1695, 198, 220, 220, 220, 890, 62, 11213, 796, 13538, 198, 198, 2, 1688, 11, 4159, 11, 8529, 198, 9641, 62, 10951, 796, 657, 11, 513, 11, 1367, 198, 2, 18460, 4731, 329, 262, 2196, 198, 834, 9641, 834, 796, 366, 526, 13, 22179, 7, 8899, 7, 2536, 11, 2196, 62, 10951, 4008, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 17946, 2501, 2915, 18497, 1600, 198, 220, 220, 220, 2196, 28, 834, 9641, 834, 11, 198, 220, 220, 220, 6764, 2625, 33711, 453, 4691, 4903, 2117, 34961, 374, 1603, 19867, 287, 262, 3454, 41214, 9347, 3210, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 1772, 2625, 33, 1531, 18501, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 3820, 274, 16040, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 3820, 274, 16040, 14, 17946, 2501, 2915, 18497, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 513, 532, 12995, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 21015, 62, 47911, 2625, 29, 28, 18, 13, 21, 1600, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12976, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2704, 2093, 29, 28, 17, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7414, 2093, 12, 34, 8103, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 45113, 1847, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11664, 62, 9060, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11664, 62, 9060, 62, 10459, 62, 21287, 282, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8897, 3558, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 1073, 26730, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33201, 1616, 1298, 14631, 541, 2349, 1878, 1616, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9062, 1505, 1298, 14631, 9062, 1505, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 489, 1298, 14631, 6759, 29487, 8019, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2203, 1298, 14631, 11664, 12, 9060, 12, 10459, 12, 79, 346, 1600, 366, 11664, 12, 9060, 12, 10459, 12, 83, 733, 33116, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41947, 62, 46521, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17946, 2501, 2915, 18497, 796, 1957, 83, 2915, 18497, 13, 834, 12417, 834, 25, 5143, 62, 1324, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.422425
767
from sense_hat import SenseHat sense = SenseHat() while True: acceleration = sense.get_accelerometer_raw() x = acceleration['x'] y = acceleration['y'] z = acceleration['z'] x=round(x, 0) y=round(y, 0) z=round(z, 0) print("x={0}, y={1}, z={2}".format(x, y, z))
[ 6738, 2565, 62, 5183, 1330, 24956, 40483, 198, 198, 33819, 796, 24956, 40483, 3419, 198, 198, 4514, 6407, 25, 198, 197, 330, 7015, 341, 796, 2565, 13, 1136, 62, 330, 7015, 15635, 62, 1831, 3419, 198, 197, 87, 796, 20309, 17816, 87, 20520, 198, 197, 88, 796, 20309, 17816, 88, 20520, 198, 197, 89, 796, 20309, 17816, 89, 20520, 628, 197, 87, 28, 744, 7, 87, 11, 657, 8, 198, 197, 88, 28, 744, 7, 88, 11, 657, 8, 198, 197, 89, 28, 744, 7, 89, 11, 657, 8, 628, 197, 4798, 7203, 87, 34758, 15, 5512, 331, 34758, 16, 5512, 1976, 34758, 17, 92, 1911, 18982, 7, 87, 11, 331, 11, 1976, 4008, 198 ]
2.365217
115
"""Kata url: https://www.codewars.com/kata/57126304cdbf63c6770012bd."""
[ 37811, 42, 1045, 19016, 25, 3740, 1378, 2503, 13, 19815, 413, 945, 13, 785, 14, 74, 1045, 14, 3553, 19420, 21288, 66, 9945, 69, 5066, 66, 3134, 9879, 1065, 17457, 526, 15931, 628 ]
2.212121
33
import asyncio import aioredis import uvloop from tqdm.asyncio import tqdm uvloop.install() asyncio.run(main())
[ 11748, 30351, 952, 198, 11748, 257, 72, 1850, 271, 198, 11748, 334, 85, 26268, 198, 6738, 256, 80, 36020, 13, 292, 13361, 952, 1330, 256, 80, 36020, 198, 198, 14795, 26268, 13, 17350, 3419, 628, 198, 292, 13361, 952, 13, 5143, 7, 12417, 28955, 198 ]
2.555556
45
import os from app import ds_config from flask import Flask from flask_wtf.csrf import CSRFProtect session_path = "/tmp/python_recipe_sessions" app = Flask(__name__) app.config.from_pyfile("config.py") app.secret_key = ds_config.DS_CONFIG["session_secret"] csrf = CSRFProtect(app) # See https://flask-wtf.readthedocs.io/en/stable/csrf.html if "DYNO" in os.environ: # On Heroku? import logging stream_handler = logging.StreamHandler() app.logger.addHandler(stream_handler) app.logger.setLevel(logging.INFO) app.logger.info("Recipe example startup") app.config.update(dict(PREFERRED_URL_SCHEME = "https")) from app import views
[ 11748, 28686, 198, 6738, 598, 1330, 288, 82, 62, 11250, 198, 6738, 42903, 1330, 46947, 198, 6738, 42903, 62, 86, 27110, 13, 6359, 41871, 1330, 9429, 32754, 41426, 628, 198, 29891, 62, 6978, 796, 12813, 22065, 14, 29412, 62, 29102, 431, 62, 82, 6202, 1, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 9078, 7753, 7203, 11250, 13, 9078, 4943, 198, 1324, 13, 21078, 62, 2539, 796, 288, 82, 62, 11250, 13, 5258, 62, 10943, 16254, 14692, 29891, 62, 21078, 8973, 198, 6359, 41871, 796, 9429, 32754, 41426, 7, 1324, 8, 1303, 4091, 3740, 1378, 2704, 2093, 12, 86, 27110, 13, 961, 83, 704, 420, 82, 13, 952, 14, 268, 14, 31284, 14, 6359, 41871, 13, 6494, 198, 198, 361, 366, 35, 56, 15285, 1, 287, 28686, 13, 268, 2268, 25, 220, 1303, 1550, 2332, 11601, 30, 198, 220, 220, 220, 1330, 18931, 198, 220, 220, 220, 4269, 62, 30281, 796, 18931, 13, 12124, 25060, 3419, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 2860, 25060, 7, 5532, 62, 30281, 8, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 598, 13, 6404, 1362, 13, 10951, 7203, 37523, 1672, 13693, 4943, 198, 220, 220, 220, 598, 13, 11250, 13, 19119, 7, 11600, 7, 46437, 24302, 22083, 62, 21886, 62, 50, 3398, 3620, 36, 796, 366, 5450, 48774, 198, 198, 6738, 598, 1330, 5009, 198 ]
2.666667
246
footer = "By: EJ Studios for>> EJ Studios"
[ 5898, 263, 796, 366, 3886, 25, 412, 41, 13799, 329, 4211, 412, 41, 13799, 1 ]
2.8
15
from flask import after_this_request from app.domain.permissions import company_admin from app.helpers.authentication import ( current_user, set_auth_cookies, create_access_tokens_for, AuthenticatedMutation, require_auth_with_write_access, ) import graphene from datetime import datetime, date, timedelta from sqlalchemy.orm import selectinload from uuid import uuid4 from app import app, db, mailer from app.controllers.utils import atomic_transaction, Void from app.helpers.errors import ( InvalidParamsError, InvalidTokenError, InvalidResourceError, ) from app.helpers.mail import MailjetError from app.helpers.authorization import ( with_authorization_policy, active, AuthorizationError, ) from app.models import Company, User from app.models.employment import ( EmploymentOutput, Employment, EmploymentRequestValidationStatus, ) from app.models.queries import query_activities MAX_SIZE_OF_INVITATION_BATCH = 100 MAILJET_BATCH_SEND_LIMIT = 50 class CreateEmployment(AuthenticatedMutation): """ Invitation de rattachement d'un travailleur mobile à une entreprise. L'invitation doit être approuvée par le salarié pour être effective. Retourne le rattachement. """ Output = EmploymentOutput @classmethod @with_authorization_policy( company_admin, get_target_from_args=lambda *args, **kwargs: kwargs["company_id"], ) class CreateWorkerEmploymentsFromEmails(AuthenticatedMutation): """ Invitation de rattachement d'un travailleur mobile à une entreprise. L'invitation doit être approuvée par le salarié pour être effective. Retourne le rattachement. """ Output = graphene.List(EmploymentOutput) @classmethod @with_authorization_policy( company_admin, get_target_from_args=lambda *args, **kwargs: kwargs["company_id"], ) class ValidateEmployment(AuthenticatedMutation): """ Validation d'une invitation de rattachement par le salarié. Retourne le rattachement validé. """ Output = EmploymentOutput @classmethod @with_authorization_policy(active) class RejectEmployment(AuthenticatedMutation): """ Refus d'une invitation de rattachement par le salarié. Retourne le rattachement rejeté. """ Output = EmploymentOutput @classmethod @with_authorization_policy(active) class TerminateEmployment(AuthenticatedMutation): """ Fin du rattachement d'un salarié. Retourne le rattachement. """ Output = EmploymentOutput @classmethod @with_authorization_policy( company_admin, get_target_from_args=lambda *args, **kwargs: Employment.query.get( kwargs["employment_id"] ).company_id, error_message="Actor is not authorized to terminate the employment", ) class CancelEmployment(AuthenticatedMutation): """ Annulation du rattachement d'un salarié. Supprime le rattachement qu'il soit actif ou non. Retourne le rattachement """ Output = Void @classmethod @with_authorization_policy( company_admin, get_target_from_args=lambda *args, **kwargs: Employment.query.get( kwargs["employment_id"] ).company_id, error_message="Actor is not authorized to cancel the employment", )
[ 6738, 42903, 1330, 706, 62, 5661, 62, 25927, 198, 198, 6738, 598, 13, 27830, 13, 525, 8481, 1330, 1664, 62, 28482, 198, 6738, 598, 13, 16794, 364, 13, 41299, 3299, 1330, 357, 198, 220, 220, 220, 1459, 62, 7220, 11, 198, 220, 220, 220, 900, 62, 18439, 62, 27916, 444, 11, 198, 220, 220, 220, 2251, 62, 15526, 62, 83, 482, 641, 62, 1640, 11, 198, 220, 220, 220, 31885, 3474, 44, 7094, 11, 198, 220, 220, 220, 2421, 62, 18439, 62, 4480, 62, 13564, 62, 15526, 11, 198, 8, 198, 11748, 42463, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 3128, 11, 28805, 12514, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2922, 259, 2220, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 198, 6738, 598, 1330, 598, 11, 20613, 11, 6920, 263, 198, 6738, 598, 13, 3642, 36667, 13, 26791, 1330, 17226, 62, 7645, 2673, 11, 18331, 198, 6738, 598, 13, 16794, 364, 13, 48277, 1330, 357, 198, 220, 220, 220, 17665, 10044, 4105, 12331, 11, 198, 220, 220, 220, 17665, 30642, 12331, 11, 198, 220, 220, 220, 17665, 26198, 12331, 11, 198, 8, 198, 6738, 598, 13, 16794, 364, 13, 4529, 1330, 11099, 31173, 12331, 198, 6738, 598, 13, 16794, 364, 13, 9800, 1634, 1330, 357, 198, 220, 220, 220, 351, 62, 9800, 1634, 62, 30586, 11, 198, 220, 220, 220, 4075, 11, 198, 220, 220, 220, 35263, 12331, 11, 198, 8, 198, 6738, 598, 13, 27530, 1330, 5834, 11, 11787, 198, 6738, 598, 13, 27530, 13, 28812, 1330, 357, 198, 220, 220, 220, 24656, 26410, 11, 198, 220, 220, 220, 24656, 11, 198, 220, 220, 220, 24656, 18453, 7762, 24765, 19580, 11, 198, 8, 198, 6738, 598, 13, 27530, 13, 421, 10640, 1330, 12405, 62, 15791, 871, 198, 198, 22921, 62, 33489, 62, 19238, 62, 1268, 53, 2043, 6234, 62, 33, 11417, 796, 1802, 198, 5673, 4146, 41, 2767, 62, 33, 11417, 62, 50, 10619, 62, 43, 3955, 2043, 796, 2026, 628, 198, 4871, 13610, 29733, 434, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10001, 3780, 390, 27263, 4891, 434, 288, 6, 403, 1291, 85, 603, 293, 333, 5175, 28141, 17809, 920, 260, 7919, 13, 406, 6, 16340, 3780, 466, 270, 6184, 103, 33945, 598, 472, 85, 22161, 1582, 443, 3664, 2743, 2634, 12797, 6184, 103, 33945, 4050, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 24656, 26410, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1664, 62, 28482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 16793, 62, 6738, 62, 22046, 28, 50033, 1635, 22046, 11, 12429, 46265, 22046, 25, 479, 86, 22046, 14692, 39722, 62, 312, 33116, 198, 220, 220, 220, 1267, 628, 198, 4871, 13610, 12468, 263, 29733, 902, 4863, 10161, 1768, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10001, 3780, 390, 27263, 4891, 434, 288, 6, 403, 1291, 85, 603, 293, 333, 5175, 28141, 17809, 920, 260, 7919, 13, 406, 6, 16340, 3780, 466, 270, 6184, 103, 33945, 598, 472, 85, 22161, 1582, 443, 3664, 2743, 2634, 12797, 6184, 103, 33945, 4050, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 42463, 13, 8053, 7, 29733, 434, 26410, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1664, 62, 28482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 16793, 62, 6738, 62, 22046, 28, 50033, 1635, 22046, 11, 12429, 46265, 22046, 25, 479, 86, 22046, 14692, 39722, 62, 312, 33116, 198, 220, 220, 220, 1267, 628, 198, 198, 4871, 3254, 20540, 29733, 434, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3254, 24765, 288, 6, 1726, 17023, 390, 27263, 4891, 434, 1582, 443, 3664, 2743, 2634, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 4938, 2634, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 24656, 26410, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 5275, 8, 628, 198, 4871, 797, 752, 29733, 434, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6524, 385, 288, 6, 1726, 17023, 390, 27263, 4891, 434, 1582, 443, 3664, 2743, 2634, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 302, 31173, 2634, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 24656, 26410, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 5275, 8, 628, 628, 198, 198, 4871, 15527, 378, 29733, 434, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4463, 7043, 27263, 4891, 434, 288, 6, 403, 3664, 2743, 2634, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 24656, 26410, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1664, 62, 28482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 16793, 62, 6738, 62, 22046, 28, 50033, 1635, 22046, 11, 12429, 46265, 22046, 25, 24656, 13, 22766, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 28812, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 39722, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 2625, 40277, 318, 407, 10435, 284, 23654, 262, 7184, 1600, 198, 220, 220, 220, 1267, 628, 198, 4871, 27910, 29733, 434, 7, 47649, 3474, 44, 7094, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5506, 1741, 7043, 27263, 4891, 434, 288, 6, 403, 3664, 2743, 2634, 13, 8105, 81, 524, 443, 27263, 4891, 434, 627, 6, 346, 523, 270, 719, 361, 267, 84, 1729, 13, 628, 220, 220, 220, 4990, 454, 710, 443, 27263, 4891, 434, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25235, 796, 18331, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 2488, 4480, 62, 9800, 1634, 62, 30586, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1664, 62, 28482, 11, 198, 220, 220, 220, 220, 220, 220, 220, 651, 62, 16793, 62, 6738, 62, 22046, 28, 50033, 1635, 22046, 11, 12429, 46265, 22046, 25, 24656, 13, 22766, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 14692, 28812, 62, 312, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 39722, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 2625, 40277, 318, 407, 10435, 284, 14241, 262, 7184, 1600, 198, 220, 220, 220, 1267, 628 ]
2.776119
1,206
import pytest from pheasant.renderers.number.number import Anchor, Header @pytest.fixture(scope="module") @pytest.fixture(scope="module") @pytest.fixture()
[ 11748, 12972, 9288, 198, 198, 6738, 279, 258, 8775, 13, 10920, 19288, 13, 17618, 13, 17618, 1330, 29253, 273, 11, 48900, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 198 ]
2.859649
57
from gmodetector_py import regress from gmodetector_py import find_desired_channel from gmodetector_py import slice_desired_channel from gmodetector_py import CLS_to_image import h5py import numpy as np import pandas as pd import os class WeightArray: """A 3D array containing weights for each spectral component, obtained by regression of hybercube onto design matrix :param test_matrix: An object of class XMatrix (containing normalized spectra for each known component, and intercept if applicable) :param test_cube: An object of class Hypercube (containing spectra for each pixel) :ivar wavelengths: contains the contents of ``wavelengths`` passed from ``test_matrix`` and ``test_cube`` (must be same, or will yield error) :ivar weights: 3D array containing weight values :ivar components: A list of spectral components (including intercept if applicable) – contains the contents of ``fluorophore_ID_vector`` passed through``test_matrix.components`` """ def plot(self, desired_component, color, cap): """Plot a single channel selected from a weight array produced by regression :param desired_component: A string matching the ID of the component to be plotted (e.g. 'GFP') :param color: A string equal to 'red', 'blue', or 'green' – the color that the extracted band will be plotted in :param cap: A numeric value of the spectral intensity value that will have maximum brightness in the plot. All with greater intensity will have the same level of brightness. Think of this as image exposure on a camera. """ index_of_desired_channel = find_desired_channel(self.components, desired_component) Weights_desired_peak_channel = slice_desired_channel(self.weights, index_of_desired_channel) Weights_desired_peak_channel = np.expand_dims(Weights_desired_peak_channel, axis=2) plot_out = CLS_to_image(CLS_matrix = Weights_desired_peak_channel, cap = cap, mode = 'opaque', match_size=False, color=color) return(plot_out)
[ 6738, 308, 4666, 316, 9250, 62, 9078, 1330, 50252, 198, 6738, 308, 4666, 316, 9250, 62, 9078, 1330, 1064, 62, 8906, 1202, 62, 17620, 198, 6738, 308, 4666, 316, 9250, 62, 9078, 1330, 16416, 62, 8906, 1202, 62, 17620, 198, 6738, 308, 4666, 316, 9250, 62, 9078, 1330, 39241, 62, 1462, 62, 9060, 198, 198, 11748, 289, 20, 9078, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 198, 4871, 14331, 19182, 25, 198, 220, 220, 220, 37227, 32, 513, 35, 7177, 7268, 19590, 329, 1123, 37410, 7515, 11, 6492, 416, 20683, 286, 2537, 527, 40296, 4291, 1486, 17593, 628, 220, 220, 220, 1058, 17143, 1332, 62, 6759, 8609, 25, 1052, 2134, 286, 1398, 1395, 46912, 357, 38301, 39279, 5444, 430, 329, 1123, 1900, 7515, 11, 290, 15788, 611, 9723, 8, 198, 220, 220, 220, 1058, 17143, 1332, 62, 40296, 25, 1052, 2134, 286, 1398, 15079, 40296, 357, 38301, 5444, 430, 329, 1123, 17465, 8, 198, 220, 220, 220, 1058, 452, 283, 45656, 25, 4909, 262, 10154, 286, 7559, 10247, 26623, 82, 15506, 3804, 422, 7559, 9288, 62, 6759, 8609, 15506, 290, 7559, 9288, 62, 40296, 15506, 357, 27238, 307, 976, 11, 393, 481, 7800, 4049, 8, 198, 220, 220, 220, 1058, 452, 283, 19590, 25, 513, 35, 7177, 7268, 3463, 3815, 198, 220, 220, 220, 1058, 452, 283, 6805, 25, 317, 1351, 286, 37410, 6805, 357, 8201, 15788, 611, 9723, 8, 784, 1849, 3642, 1299, 262, 10154, 286, 7559, 35522, 273, 2522, 382, 62, 2389, 62, 31364, 15506, 3804, 832, 15506, 9288, 62, 6759, 8609, 13, 5589, 3906, 15506, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 7110, 7, 944, 11, 10348, 62, 42895, 11, 3124, 11, 1451, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 43328, 257, 2060, 6518, 6163, 422, 257, 3463, 7177, 4635, 416, 20683, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10348, 62, 42895, 25, 317, 4731, 12336, 262, 4522, 286, 262, 7515, 284, 307, 37515, 357, 68, 13, 70, 13, 705, 38, 5837, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3124, 25, 317, 4731, 4961, 284, 705, 445, 3256, 705, 17585, 3256, 393, 705, 14809, 6, 784, 1849, 1169, 3124, 326, 262, 21242, 4097, 481, 307, 37515, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1451, 25, 317, 35575, 1988, 286, 262, 37410, 12245, 1988, 326, 481, 423, 5415, 22204, 287, 262, 7110, 13, 1439, 351, 3744, 12245, 481, 423, 262, 976, 1241, 286, 22204, 13, 11382, 286, 428, 355, 2939, 7111, 319, 257, 4676, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 1659, 62, 8906, 1202, 62, 17620, 796, 1064, 62, 8906, 1202, 62, 17620, 7, 944, 13, 5589, 3906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10348, 62, 42895, 8, 198, 220, 220, 220, 220, 220, 220, 220, 775, 2337, 62, 8906, 1202, 62, 36729, 62, 17620, 796, 16416, 62, 8906, 1202, 62, 17620, 7, 944, 13, 43775, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 62, 1659, 62, 8906, 1202, 62, 17620, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 775, 2337, 62, 8906, 1202, 62, 36729, 62, 17620, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 1135, 2337, 62, 8906, 1202, 62, 36729, 62, 17620, 11, 16488, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7110, 62, 448, 796, 39241, 62, 1462, 62, 9060, 7, 5097, 50, 62, 6759, 8609, 796, 775, 2337, 62, 8906, 1202, 62, 36729, 62, 17620, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1451, 796, 1451, 11, 4235, 796, 705, 404, 18251, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 7857, 28, 25101, 11, 3124, 28, 8043, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7, 29487, 62, 448, 8, 198 ]
2.670213
846
#!/usr/bin/python import ldap, logging, shelve import subprocess as sb import xml.etree.ElementTree as ET import os, time, sys, urllib2, ConfigParser, pwd from datetime import datetime, timedelta from base64 import b64encode CONFIG_FILE_INI = '/opt/zimbra/conf/zbackup.ini' ZIMBRA_ACCOUNT_STATUS = ['active', 'locked', 'closed', 'lockout', 'pending'] CONTENT_TYPES = ['message', 'contact', 'appointment', 'task', 'document'] logging_levels = { 'DEBUG' : logging.DEBUG, 'INFO' : logging.INFO, 'WARNING' : logging.WARNING, 'ERROR' : logging.ERROR, 'FATAL' : logging.FATAL } if __name__ == '__main__': zbr = ZBackupRequest('admin@c403775bc8c8', '/opt/zimbra/backup') zbr.run()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 11748, 300, 67, 499, 11, 18931, 11, 7497, 303, 198, 11748, 850, 14681, 355, 264, 65, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 11748, 28686, 11, 640, 11, 25064, 11, 2956, 297, 571, 17, 11, 17056, 46677, 11, 279, 16993, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 198, 198, 10943, 16254, 62, 25664, 62, 1268, 40, 796, 31051, 8738, 14, 89, 14107, 430, 14, 10414, 14, 89, 1891, 929, 13, 5362, 6, 198, 57, 3955, 33, 3861, 62, 26861, 28270, 62, 35744, 2937, 796, 37250, 5275, 3256, 705, 24162, 3256, 705, 20225, 3256, 705, 5354, 448, 3256, 705, 79, 1571, 20520, 198, 198, 37815, 3525, 62, 9936, 47, 1546, 796, 37250, 20500, 3256, 705, 32057, 3256, 705, 1324, 49805, 3256, 705, 35943, 3256, 705, 22897, 20520, 198, 198, 6404, 2667, 62, 46170, 796, 1391, 198, 220, 705, 30531, 6, 1058, 18931, 13, 30531, 11, 198, 220, 705, 10778, 6, 1058, 18931, 13, 10778, 11, 198, 220, 705, 31502, 6, 1058, 18931, 13, 31502, 11, 198, 220, 705, 24908, 6, 1058, 18931, 13, 24908, 11, 198, 220, 705, 37, 1404, 1847, 6, 1058, 18931, 13, 37, 1404, 1847, 198, 92, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 1976, 1671, 796, 1168, 7282, 929, 18453, 10786, 28482, 31, 66, 1821, 2718, 2425, 15630, 23, 66, 23, 3256, 31051, 8738, 14, 89, 14107, 430, 14, 1891, 929, 11537, 198, 220, 1976, 1671, 13, 5143, 3419 ]
2.617424
264
import unittest import numpy as np from preprocessing import split_data, principal_components if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 662, 36948, 1330, 6626, 62, 7890, 11, 10033, 62, 5589, 3906, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.086957
46
import pygame import sys import time from threepy.core import * import os pwd = os.path.abspath(os.path.dirname(__file__)) # set window title # WARNING: calling this method loses the original OpenGL context; # only use before calling OpenGL functions # implement by extending class # implement by extending class
[ 11748, 12972, 6057, 198, 11748, 25064, 198, 11748, 640, 198, 198, 6738, 294, 260, 538, 88, 13, 7295, 1330, 1635, 198, 11748, 28686, 198, 79, 16993, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 198, 220, 220, 220, 1303, 900, 4324, 3670, 628, 220, 220, 220, 1303, 39410, 25, 4585, 428, 2446, 14754, 262, 2656, 30672, 4732, 26, 198, 220, 220, 220, 1303, 220, 220, 691, 779, 878, 4585, 30672, 5499, 628, 220, 220, 220, 1303, 3494, 416, 16610, 1398, 628, 220, 220, 220, 1303, 3494, 416, 16610, 1398, 198 ]
3.31068
103
""" Code to specify constraints on parameters of distributions. :Authors: - Wilker Aziz """ import tensorflow as tf class Parameter: """ This class helps predict parameters by setting an appropriate activation to convert from the real line to some subset of it. """ class Location(Parameter): """ Location parameters live in the real line. """ class Scale(Parameter): """ Scale parameters live in the positive real line. """ class Rate(Parameter): """ Rate parameters live in the positive real line. """ class Shape(Parameter): """ Shape parameters live in the positive real line. """ class Probability(Parameter): """ Probability parameters live in the interval [0, 1] """
[ 37811, 198, 10669, 284, 11986, 17778, 319, 10007, 286, 24570, 13, 198, 198, 25, 30515, 669, 25, 532, 5187, 6122, 7578, 528, 198, 37811, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 4871, 25139, 2357, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 5419, 4331, 10007, 416, 4634, 281, 5035, 14916, 284, 10385, 422, 262, 1103, 1627, 198, 220, 220, 220, 284, 617, 24637, 286, 340, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 13397, 7, 36301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13397, 10007, 2107, 287, 262, 1103, 1627, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 21589, 7, 36301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21589, 10007, 2107, 287, 262, 3967, 1103, 1627, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 14806, 7, 36301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14806, 10007, 2107, 287, 262, 3967, 1103, 1627, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 25959, 7, 36301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25959, 10007, 2107, 287, 262, 3967, 1103, 1627, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 30873, 1799, 7, 36301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30873, 1799, 10007, 2107, 287, 262, 16654, 685, 15, 11, 352, 60, 198, 220, 220, 220, 37227, 198 ]
3.30303
231
def obfuscate_API_key(API_key): """ Return a mostly obfuscated version of the API Key :param API_key: input string :return: str """ if API_key is not None: return (len(API_key)-8)*'*'+API_key[-8:] def assert_is_string(value): """ Checks if the provided value is a valid string instance :param value: value to be checked :return: None """ try: # Python 2.x assert isinstance(value, basestring), "Value must be a string or unicode" except NameError: # Python 3.x assert isinstance(value, str), "Value must be a string" def assert_is_string_or_unicode(value): """ Checks if the provided value is a valid string or unicode instance On Python 3.x it just checks that the value is a string instance. :param value: value to be checked :return: None """ try: assert isinstance(value, basestring) or isinstance(value, unicode), \ "Value must be a string or unicode" except NameError: assert isinstance(value, str), "Value must be a string" def encode_to_utf8(value): """ Turns the provided value to UTF-8 encoding :param value: input value :return: UTF-8 encoded value """ try: # The OWM API expects UTF-8 encoding if not isinstance(value, unicode): return value.encode('utf8') return value except NameError: return value
[ 4299, 44080, 378, 62, 17614, 62, 2539, 7, 17614, 62, 2539, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 4632, 44080, 515, 2196, 286, 262, 7824, 7383, 628, 220, 220, 220, 1058, 17143, 7824, 62, 2539, 25, 5128, 4731, 198, 220, 220, 220, 1058, 7783, 25, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 7824, 62, 2539, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 11925, 7, 17614, 62, 2539, 13219, 23, 27493, 6, 9, 6, 10, 17614, 62, 2539, 58, 12, 23, 47715, 628, 198, 4299, 6818, 62, 271, 62, 8841, 7, 8367, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 262, 2810, 1988, 318, 257, 4938, 4731, 4554, 628, 220, 220, 220, 1058, 17143, 1988, 25, 1988, 284, 307, 10667, 198, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 220, 1303, 11361, 362, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 8367, 11, 1615, 395, 1806, 828, 366, 11395, 1276, 307, 257, 4731, 393, 28000, 1098, 1, 198, 220, 220, 220, 2845, 6530, 12331, 25, 220, 1303, 11361, 513, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 8367, 11, 965, 828, 366, 11395, 1276, 307, 257, 4731, 1, 628, 198, 4299, 6818, 62, 271, 62, 8841, 62, 273, 62, 46903, 1098, 7, 8367, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 262, 2810, 1988, 318, 257, 4938, 4731, 393, 28000, 1098, 4554, 198, 220, 220, 220, 1550, 11361, 513, 13, 87, 340, 655, 8794, 326, 262, 1988, 318, 257, 4731, 4554, 13, 198, 220, 220, 220, 1058, 17143, 1988, 25, 1988, 284, 307, 10667, 198, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 8367, 11, 1615, 395, 1806, 8, 393, 318, 39098, 7, 8367, 11, 28000, 1098, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11395, 1276, 307, 257, 4731, 393, 28000, 1098, 1, 198, 220, 220, 220, 2845, 6530, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 8367, 11, 965, 828, 366, 11395, 1276, 307, 257, 4731, 1, 628, 198, 4299, 37773, 62, 1462, 62, 40477, 23, 7, 8367, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30875, 262, 2810, 1988, 284, 41002, 12, 23, 21004, 628, 220, 220, 220, 1058, 17143, 1988, 25, 5128, 1988, 198, 220, 220, 220, 1058, 7783, 25, 41002, 12, 23, 30240, 1988, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 220, 1303, 383, 440, 22117, 7824, 13423, 41002, 12, 23, 21004, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 28000, 1098, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 13, 268, 8189, 10786, 40477, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 198, 220, 220, 220, 2845, 6530, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628 ]
2.63586
541
from warnings import warn try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict from modeltree.tree import trees SORT_DIRECTIONS = ('asc', 'desc')
[ 6738, 14601, 1330, 9828, 198, 28311, 25, 198, 220, 220, 220, 422, 17268, 1330, 14230, 1068, 35, 713, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 6149, 11600, 1330, 14230, 1068, 35, 713, 198, 6738, 953, 2120, 631, 13, 21048, 1330, 7150, 628, 198, 50, 9863, 62, 17931, 23988, 11053, 796, 19203, 3372, 3256, 705, 20147, 11537, 628, 628, 198 ]
3.290323
62
# ### Problem 1 # Ask the user to enter a number. # Using the provided list of numbers, use a for loop to iterate # the array and print out all the values that are smaller than the user input and print # out all the values that are larger than the number entered by the user. # ``` # # Start with this List list_of_many_numbers = [12, 24, 1, 34, 10, 2, 7] # ``` # Example Input/Output if the user enters the number 9: # ``` # The User entered 9 # 1 2 7 are smaller than 9 # 12 24 34 10 are larger than 9 # ``` #ASK USER FOR NUMBER and turns into an integer userNumber = int(input("Enter a number")) # initiates a new array for smaller and larger numbers smallernumbers = [] largernumbers = [] # compares the value to each number in the original array and adds that value to its respective array (smaller or larger) for eachnumber in list_of_many_numbers: if eachnumber < userNumber: smallernumbers.append(eachnumber) if eachnumber > userNumber: largernumbers.append(eachnumber) print(f"{smallernumbers} are smaller than {userNumber}") print(f"{largernumbers} are larger than {userNumber}")
[ 2, 44386, 20647, 352, 198, 2, 16981, 262, 2836, 284, 3802, 257, 1271, 13, 220, 198, 2, 8554, 262, 2810, 1351, 286, 3146, 11, 779, 257, 329, 9052, 284, 11629, 378, 198, 2, 262, 7177, 290, 3601, 503, 477, 262, 3815, 326, 389, 4833, 621, 262, 2836, 5128, 290, 3601, 198, 2, 503, 477, 262, 3815, 326, 389, 4025, 621, 262, 1271, 5982, 416, 262, 2836, 13, 198, 198, 2, 7559, 63, 198, 2, 1303, 7253, 351, 428, 7343, 198, 4868, 62, 1659, 62, 21834, 62, 77, 17024, 796, 685, 1065, 11, 1987, 11, 352, 11, 4974, 11, 838, 11, 362, 11, 767, 60, 198, 2, 7559, 63, 198, 2, 17934, 23412, 14, 26410, 611, 262, 2836, 14170, 262, 1271, 860, 25, 198, 2, 7559, 63, 198, 2, 383, 11787, 5982, 860, 198, 2, 352, 220, 362, 220, 767, 389, 4833, 621, 860, 198, 2, 1105, 220, 1987, 220, 4974, 220, 838, 389, 4025, 621, 860, 198, 2, 7559, 63, 198, 2, 1921, 42, 1294, 1137, 7473, 36871, 13246, 290, 4962, 656, 281, 18253, 198, 7220, 15057, 796, 493, 7, 15414, 7203, 17469, 257, 1271, 48774, 198, 198, 2, 5383, 689, 257, 649, 7177, 329, 4833, 290, 4025, 3146, 198, 17470, 1142, 17024, 796, 17635, 198, 15521, 1142, 17024, 796, 17635, 628, 198, 2, 23008, 262, 1988, 284, 1123, 1271, 287, 262, 2656, 7177, 290, 6673, 326, 1988, 284, 663, 11756, 7177, 357, 17470, 263, 393, 4025, 8, 198, 1640, 1123, 17618, 287, 1351, 62, 1659, 62, 21834, 62, 77, 17024, 25, 198, 220, 220, 220, 611, 1123, 17618, 1279, 2836, 15057, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1402, 1142, 17024, 13, 33295, 7, 27379, 17618, 8, 628, 220, 220, 220, 611, 1123, 17618, 1875, 2836, 15057, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2552, 1142, 17024, 13, 33295, 7, 27379, 17618, 8, 198, 4798, 7, 69, 1, 90, 17470, 1142, 17024, 92, 389, 4833, 621, 1391, 7220, 15057, 92, 4943, 198, 4798, 7, 69, 1, 90, 15521, 1142, 17024, 92, 389, 4025, 621, 1391, 7220, 15057, 92, 4943, 198 ]
3.26087
345
'''TCP ping.''' import socket import time import cping.protocols class Ping(cping.protocols.Ping): '''TCP ping. The possible results: * latency=x, error=False: successful TCP handshake * latency=x, error=True: connection failure, like TCP-RST * latency=-1, error=False: timeout ''' def __init__(self, port, *args, **kwargs): '''Constructor. Args: port (int): TCP port to ping. *args (...): Arguments passed to `cping.protocols.Ping`. **kwargs (x=y): Keyword arguments passed to `cping.protocols.Ping`. Raises: TypeError: If `port` is not a integer. ValueError: If `port` is not between 1 and 65535. ''' self.port = port super().__init__(*args, **kwargs) @property def port(self): '''TCP port to ping.''' return self._port @port.setter
[ 7061, 6, 4825, 47, 29400, 2637, 7061, 198, 11748, 17802, 198, 11748, 640, 198, 198, 11748, 269, 13886, 13, 11235, 4668, 82, 628, 198, 4871, 34263, 7, 13155, 278, 13, 11235, 4668, 82, 13, 49806, 2599, 198, 220, 220, 220, 705, 7061, 4825, 47, 29400, 13, 383, 1744, 2482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 24812, 28, 87, 11, 4049, 28, 25101, 25, 4388, 23633, 42231, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 24812, 28, 87, 11, 4049, 28, 17821, 25, 4637, 5287, 11, 588, 23633, 12, 49, 2257, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 24812, 10779, 16, 11, 4049, 28, 25101, 25, 26827, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2493, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 42316, 273, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 357, 600, 2599, 23633, 2493, 284, 29400, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 22046, 357, 986, 2599, 20559, 2886, 3804, 284, 4600, 13155, 278, 13, 11235, 4668, 82, 13, 49806, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 357, 87, 28, 88, 2599, 7383, 4775, 7159, 3804, 284, 4600, 13155, 278, 13, 11235, 4668, 82, 13, 49806, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 25, 1002, 4600, 634, 63, 318, 407, 257, 18253, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1002, 4600, 634, 63, 318, 407, 1022, 352, 290, 45021, 2327, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 634, 796, 2493, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2493, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 4825, 47, 2493, 284, 29400, 2637, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 634, 628, 220, 220, 220, 2488, 634, 13, 2617, 353, 198 ]
2.237164
409
from collections import namedtuple from modules.deco.constants import DecoConstants import math import copy from modules.deco.utilities import *
[ 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 13103, 13, 12501, 78, 13, 9979, 1187, 1330, 4280, 78, 34184, 1187, 198, 11748, 10688, 198, 11748, 4866, 198, 6738, 13103, 13, 12501, 78, 13, 315, 2410, 1330, 1635, 198 ]
3.815789
38
from django.contrib import admin from import_export.admin import ImportExportMixin from dashboard.models import Inquerito, TipoSementeGerminou, TipoAreaGerminacao, VerificacaoSementes, RowControl, Sementeira admin.site.site_header = 'Genesis App Administration' admin.site.register(Inquerito, InqueritoAdmin) admin.site.register(TipoAreaGerminacao, TipoAreaGerminacaoAdmin) admin.site.register(TipoSementeGerminou, TipoSementeGerminouAdmin) admin.site.register(VerificacaoSementes, VerificacaoSementesAdmin) admin.site.register(Sementeira, SementeiraAdmin)
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 6738, 1330, 62, 39344, 13, 28482, 1330, 17267, 43834, 35608, 259, 628, 198, 6738, 30415, 13, 27530, 1330, 554, 10819, 10094, 11, 23095, 34049, 972, 68, 38069, 1084, 280, 11, 23095, 78, 30547, 38069, 1084, 330, 5488, 11, 4643, 811, 330, 5488, 50, 972, 274, 11, 11314, 15988, 11, 311, 972, 68, 8704, 628, 628, 198, 28482, 13, 15654, 13, 15654, 62, 25677, 796, 705, 13746, 9339, 2034, 8694, 6, 198, 28482, 13, 15654, 13, 30238, 7, 818, 10819, 10094, 11, 554, 10819, 10094, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 28434, 78, 30547, 38069, 1084, 330, 5488, 11, 23095, 78, 30547, 38069, 1084, 330, 5488, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 28434, 34049, 972, 68, 38069, 1084, 280, 11, 23095, 34049, 972, 68, 38069, 1084, 280, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 13414, 811, 330, 5488, 50, 972, 274, 11, 4643, 811, 330, 5488, 50, 972, 274, 46787, 8, 198, 28482, 13, 15654, 13, 30238, 7, 50, 972, 68, 8704, 11, 311, 972, 68, 8704, 46787, 8, 198 ]
3.026882
186
# -*- coding: utf-8 -*- from __future__ import unicode_literals from rest_framework.views import exception_handler
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 1334, 62, 30604, 13, 33571, 1330, 6631, 62, 30281, 628 ]
3.162162
37
from django.urls import path from twitter_data.views import HomeView from . import views urlpatterns = [ path('', HomeView.as_view(), name='home') ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 17044, 62, 7890, 13, 33571, 1330, 5995, 7680, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 5995, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 11195, 11537, 198, 60 ]
3.06
50
"""@file deepattractornetnoise_soft_loss.py contains the DeepattractornetnoisesoftLoss""" import loss_computer from nabu.neuralnetworks.components import ops class DeepattractornetnoisesoftLoss(loss_computer.LossComputer): """A loss computer that calculates the loss""" def __call__(self, targets, logits, seq_length): """ Compute the loss Creates the operation to compute the Deep attractor network loss with adapted architecture and soft decissions Args: targets: a dictionary of [batch_size x time x ...] tensor containing the targets logits: a dictionary of [batch_size x time x ...] tensors containing the logits seq_length: a dictionary of [batch_size] vectors containing the sequence lengths Returns: loss: a scalar value containing the loss norm: a scalar value indicating how to normalize the loss """ # To which class belongs bin partioning = targets['partitioning'] # Clean spectograms of sources spectrogram_targets=targets['spectogram_targets'] # Spectogram of the original mixture, used to mask for scoring mix_to_mask = targets['mix_to_mask'] # Which bins contain enough energy energybins = targets['energybins'] seq_length = seq_length['emb_vec'] emb_vec = logits['emb_vec'] alpha = logits['alpha'] loss, norm = ops.deepattractornetnoise_soft_loss( partioning, spectrogram_targets, mix_to_mask, energybins, emb_vec, alpha, seq_length, self.batch_size) return loss, norm
[ 37811, 31, 7753, 2769, 1078, 974, 1211, 316, 3919, 786, 62, 4215, 62, 22462, 13, 9078, 198, 3642, 1299, 262, 10766, 1078, 974, 1211, 316, 3919, 2696, 11205, 43, 793, 37811, 198, 198, 11748, 2994, 62, 33215, 198, 6738, 47822, 84, 13, 710, 1523, 3262, 5225, 13, 5589, 3906, 1330, 39628, 628, 198, 4871, 10766, 1078, 974, 1211, 316, 3919, 2696, 11205, 43, 793, 7, 22462, 62, 33215, 13, 43, 793, 34556, 2599, 198, 220, 220, 220, 37227, 32, 2994, 3644, 326, 43707, 262, 2994, 37811, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 6670, 11, 2604, 896, 11, 33756, 62, 13664, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 2994, 628, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 262, 4905, 284, 24061, 262, 10766, 4729, 273, 3127, 2994, 351, 198, 220, 220, 220, 220, 220, 220, 220, 16573, 10959, 290, 2705, 875, 7717, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6670, 25, 257, 22155, 286, 685, 43501, 62, 7857, 2124, 640, 2124, 2644, 60, 11192, 273, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 6670, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 896, 25, 257, 22155, 286, 685, 43501, 62, 7857, 2124, 640, 2124, 2644, 60, 11192, 669, 7268, 262, 2604, 896, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 13664, 25, 257, 22155, 286, 685, 43501, 62, 7857, 60, 30104, 7268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8379, 20428, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 25, 257, 16578, 283, 1988, 7268, 262, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 25, 257, 16578, 283, 1988, 12739, 703, 284, 3487, 1096, 262, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 543, 1398, 14448, 9874, 198, 220, 220, 220, 220, 220, 220, 220, 636, 295, 278, 796, 6670, 17816, 3911, 653, 278, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5985, 5444, 26836, 286, 4237, 198, 220, 220, 220, 220, 220, 220, 220, 5444, 39529, 62, 83, 853, 1039, 28, 83, 853, 1039, 17816, 4443, 21857, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13058, 21857, 286, 262, 2656, 11710, 11, 973, 284, 9335, 329, 9689, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 62, 1462, 62, 27932, 796, 6670, 17816, 19816, 62, 1462, 62, 27932, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9022, 41701, 3994, 1576, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 2568, 65, 1040, 796, 6670, 17816, 22554, 65, 1040, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 13664, 796, 33756, 62, 13664, 17816, 24419, 62, 35138, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4072, 62, 35138, 796, 2604, 896, 17816, 24419, 62, 35138, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 796, 2604, 896, 17816, 26591, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 2593, 796, 39628, 13, 22089, 1078, 974, 1211, 316, 3919, 786, 62, 4215, 62, 22462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 636, 295, 278, 11, 5444, 39529, 62, 83, 853, 1039, 11, 5022, 62, 1462, 62, 27932, 11, 220, 2568, 65, 1040, 11, 4072, 62, 35138, 11, 17130, 11, 33756, 62, 13664, 11, 2116, 13, 43501, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2994, 11, 2593, 198 ]
2.557427
653
import sys from ..converter import Converter, ConversionError, ValidationError class Ginkgo(Converter): """Convert Transcriptic samples.json to sample-set schema""" VERSION = '0.0.2' FILENAME = 'ginkgo_samples' def convert(self, input_fp, output_fp=None, verbose=True, config={}, enforce_validation=True): """Do the conversion by running a method in runner.py""" from .runner import convert_ginkgo passed_config = config if config != {} else self.options return convert_ginkgo(self.targetschema, self.encoding, input_fp, verbose=verbose, config=passed_config, output_file=output_fp, enforce_validation=enforce_validation)
[ 11748, 25064, 198, 6738, 11485, 1102, 332, 353, 1330, 35602, 353, 11, 44101, 12331, 11, 3254, 24765, 12331, 198, 198, 4871, 402, 676, 2188, 7, 3103, 332, 353, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 42978, 291, 8405, 13, 17752, 284, 6291, 12, 2617, 32815, 37811, 198, 220, 220, 220, 44156, 2849, 796, 705, 15, 13, 15, 13, 17, 6, 198, 220, 220, 220, 34020, 1677, 10067, 796, 705, 70, 676, 2188, 62, 82, 12629, 6, 628, 220, 220, 220, 825, 10385, 7, 944, 11, 5128, 62, 46428, 11, 5072, 62, 46428, 28, 14202, 11, 15942, 577, 28, 17821, 11, 4566, 34758, 5512, 4605, 62, 12102, 341, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5211, 262, 11315, 416, 2491, 257, 2446, 287, 17490, 13, 9078, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 422, 764, 16737, 1330, 10385, 62, 70, 676, 2188, 198, 220, 220, 220, 220, 220, 220, 220, 3804, 62, 11250, 796, 4566, 611, 4566, 14512, 23884, 2073, 2116, 13, 25811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10385, 62, 70, 676, 2188, 7, 944, 13, 83, 853, 1039, 2395, 2611, 11, 2116, 13, 12685, 7656, 11, 5128, 62, 46428, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 19011, 577, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 28, 6603, 276, 62, 11250, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7753, 28, 22915, 62, 46428, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4605, 62, 12102, 341, 28, 268, 3174, 62, 12102, 341, 8, 198 ]
2.230986
355
'''Module containing decoders for different websited This module contains decoders for decoding information from various websites. Any new website that needs to be added will contain information about how a particular website is to be decoded over here. You should include modules here as they become important. The functions within the files over here take an HTML encoded string, and return a dictionary. This form is particularly convinient because this can be generalized in any way required. Currently the following decoders are present: | module | website | |--------|------------------------| | drugs | https://www.drugs.com | '''
[ 7061, 6, 26796, 7268, 875, 375, 364, 329, 1180, 2639, 863, 198, 198, 1212, 8265, 4909, 875, 375, 364, 329, 39938, 1321, 422, 198, 7785, 699, 9293, 13, 4377, 649, 3052, 326, 2476, 284, 307, 2087, 198, 10594, 3994, 1321, 546, 703, 257, 1948, 3052, 318, 284, 220, 198, 1350, 875, 9043, 625, 994, 13, 921, 815, 2291, 13103, 994, 355, 484, 198, 9423, 462, 1593, 13, 198, 198, 464, 5499, 1626, 262, 3696, 625, 994, 1011, 281, 11532, 30240, 198, 8841, 11, 290, 1441, 257, 22155, 13, 770, 1296, 318, 3573, 198, 1102, 7114, 1153, 780, 428, 460, 307, 38284, 287, 597, 835, 2672, 13, 198, 198, 21327, 262, 1708, 875, 375, 364, 389, 1944, 25, 198, 198, 91, 8265, 930, 3052, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 91, 982, 91, 22369, 91, 198, 91, 5010, 220, 930, 3740, 1378, 2503, 13, 30349, 82, 13, 785, 220, 930, 628, 198, 198, 7061, 6, 628, 628 ]
3.988024
167
from .globals import Renderer, WidgetHandler from .globals.constantes import *
[ 6738, 764, 4743, 672, 874, 1330, 28703, 11882, 11, 370, 17484, 25060, 198, 6738, 764, 4743, 672, 874, 13, 9979, 39781, 1330, 1635, 198 ]
3.291667
24
from listenerlibrary import listenerlibrary
[ 6738, 24783, 32016, 1330, 24783, 32016, 628 ]
6.428571
7
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next
[ 2, 30396, 329, 1702, 306, 12, 25614, 1351, 13, 198, 2, 1398, 7343, 19667, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1188, 28, 15, 11, 1306, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 1188, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19545, 796, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.105263
76
from unittest import TestCase from unittest.mock import Mock, patch from telegram.ext import ConversationHandler from civbot.commands import cmd_cancel
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 44123, 11, 8529, 198, 198, 6738, 573, 30536, 13, 2302, 1330, 42427, 25060, 198, 198, 6738, 36317, 13645, 13, 9503, 1746, 1330, 23991, 62, 66, 21130, 628 ]
3.604651
43
import numpy as np from sysmpy.entity import * from operator import add # Test ############################################################### # mn = MatrixForGraph(np.matrix([[1, 2, 3], [3, 4, 5], [6, 7, 8]])) # print(mn.sum_column())
[ 11748, 299, 32152, 355, 45941, 198, 6738, 25064, 3149, 88, 13, 26858, 1330, 1635, 198, 6738, 10088, 1330, 751, 628, 198, 2, 6208, 1303, 29113, 14468, 7804, 4242, 2235, 198, 2, 285, 77, 796, 24936, 1890, 37065, 7, 37659, 13, 6759, 8609, 26933, 58, 16, 11, 362, 11, 513, 4357, 685, 18, 11, 604, 11, 642, 4357, 685, 21, 11, 767, 11, 807, 11907, 4008, 198, 2, 3601, 7, 10295, 13, 16345, 62, 28665, 28955, 628 ]
3.144737
76
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Train a Fast R-CNN network.""" import caffe from fast_rcnn.config import cfg import roi_data_layer.roidb as rdl_roidb from utils.timer import Timer import numpy as np import os from fast_rcnn.test import im_detect import cv2 import copy import utils.cython_bbox from utils.cython_bbox import bbox_overlaps import matplotlib.pyplot as plt from caffe.proto import caffe_pb2 import google.protobuf as pb2 # from fast_rcnn.test import vis_detections import google.protobuf.text_format from utils.cython_nms import nms import random try: import cPickle as pickle except: import pickle import shutil CLASSES = ( '__background__','aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') global select_id select_id = 0 class SolverWrapper(object): """A simple wrapper around Caffe's solver. This wrapper gives us control over he snapshotting process, which we use to unnormalize the learned bounding-box regression weights. """ def __init__(self, solver_prototxt, roidb,roidb_w, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.start_iters= 15000 self.step_iter= 5000 self.object_num= 1 self._n_classes= 21 self._step_num = 2 check_roidb(roidb, True) check_roidb(roidb_w, True) self._General_roidb= roidb self._Weakly_roidb= roidb_w self._Present_roidb=[] curr_roidb= self.get_curr_roidb() self.solver.net.layers[0].set_roidb(curr_roidb) def vis_detections(self,image_name, im, class_name, dets,score, thresh=0.5): """Draw detected bounding boxes.""" # inds = np.where(dets[:, -1] >= thresh)[0] # if len(inds) == 0: # return im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(12, 12)) ax.imshow(im, aspect='equal') for i in xrange(1): bbox = dets[i, :4] score = dets[i, -1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() # save the image fig = plt.gcf() fig.savefig("images/output_"+image_name) def snapshot(self): """Take a snapshot of the network after unnormalizing the learned bounding-box regression weights. This enables easy use at test-time. """ net = self.solver.net if cfg.TRAIN.BBOX_REG: # save original values orig_0 = net.params['bbox_pred'][0].data.copy() orig_1 = net.params['bbox_pred'][1].data.copy() # scale and shift with bbox reg unnormalization; then save snapshot net.params['bbox_pred'][0].data[...] = \ (net.params['bbox_pred'][0].data * self.bbox_stds[:, np.newaxis]) net.params['bbox_pred'][1].data[...] = \ (net.params['bbox_pred'][1].data * self.bbox_stds + self.bbox_means) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX if cfg.TRAIN.SNAPSHOT_INFIX != '' else '') filename = (self.solver_param.snapshot_prefix + infix + '_iter_{:d}'.format(self.solver.iter) + '.caffemodel') filename = os.path.join(self.output_dir, filename) net.save(str(filename)) print 'Wrote snapshot to: {:s}'.format(filename) if cfg.TRAIN.BBOX_REG: # restore net to original state net.params['bbox_pred'][0].data[...] = orig_0 net.params['bbox_pred'][1].data[...] = orig_1 # def Roidb_vote(self): def train_model(self, max_iters): """Network training loop.""" last_snapshot_iter = -1 timer = Timer() while self.solver.iter < max_iters: # Make one SGD update timer.tic() self.solver.step(1) timer.toc() if self.solver.iter % (10 * self.solver_param.display) == 0: print 'speed: {:.3f}s / iter'.format(timer.average_time) if self.solver.iter % 5000 ==0: last_snapshot_iter = self.solver.iter self.snapshot() curr_roidb= self.get_curr_roidb() check_roidb(curr_roidb, False) self.solver.net.layers[0].set_roidb(curr_roidb) if last_snapshot_iter != self.solver.iter: # last snapshot before exiting self.snapshot() def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' print 'Preparing training data...' rdl_roidb.prepare_roidb(imdb) print 'done' return imdb.roidb def train_net(solver_prototxt, roidb,roidb_w,output_dir, pretrained_model=None, max_iters=70000): """Train a Fast R-CNN network.""" sw = SolverWrapper(solver_prototxt, roidb,roidb_w, output_dir, pretrained_model=pretrained_model) print 'Solving...' sw.train_model(max_iters) print 'done solving'
[ 2, 20368, 22369, 201, 198, 2, 12549, 371, 12, 18474, 201, 198, 2, 15069, 357, 66, 8, 1853, 5413, 201, 198, 2, 49962, 739, 383, 17168, 13789, 685, 3826, 38559, 24290, 329, 3307, 60, 201, 198, 2, 22503, 416, 9847, 23837, 1477, 624, 197, 201, 198, 2, 20368, 22369, 201, 198, 37811, 44077, 257, 12549, 371, 12, 18474, 3127, 526, 15931, 201, 198, 201, 198, 11748, 21121, 201, 198, 6738, 3049, 62, 6015, 20471, 13, 11250, 1330, 30218, 70, 201, 198, 11748, 686, 72, 62, 7890, 62, 29289, 13, 3882, 65, 355, 374, 25404, 62, 3882, 65, 201, 198, 6738, 3384, 4487, 13, 45016, 1330, 5045, 263, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 28686, 201, 198, 6738, 3049, 62, 6015, 20471, 13, 9288, 1330, 545, 62, 15255, 478, 220, 201, 198, 11748, 269, 85, 17, 220, 220, 201, 198, 11748, 4866, 220, 220, 201, 198, 11748, 3384, 4487, 13, 948, 400, 261, 62, 65, 3524, 220, 220, 201, 198, 6738, 3384, 4487, 13, 948, 400, 261, 62, 65, 3524, 1330, 275, 3524, 62, 2502, 75, 1686, 220, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 21121, 13, 1676, 1462, 1330, 21121, 62, 40842, 17, 201, 198, 11748, 23645, 13, 11235, 672, 3046, 355, 279, 65, 17, 201, 198, 2, 422, 3049, 62, 6015, 20471, 13, 9288, 1330, 1490, 62, 15255, 478, 507, 201, 198, 11748, 23645, 13, 11235, 672, 3046, 13, 5239, 62, 18982, 201, 198, 6738, 3384, 4487, 13, 948, 400, 261, 62, 77, 907, 1330, 299, 907, 201, 198, 11748, 4738, 201, 198, 28311, 25, 201, 198, 220, 220, 1330, 269, 31686, 293, 355, 2298, 293, 201, 198, 16341, 25, 201, 198, 220, 220, 1330, 2298, 293, 201, 198, 11748, 4423, 346, 201, 198, 31631, 1546, 796, 357, 705, 834, 25249, 834, 41707, 25534, 20106, 1531, 3256, 705, 65, 35298, 3256, 705, 16944, 3256, 705, 24482, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10985, 293, 3256, 705, 10885, 3256, 705, 7718, 3256, 705, 9246, 3256, 705, 16337, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8232, 3256, 705, 67, 3191, 11487, 3256, 705, 9703, 3256, 705, 30527, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 76, 20965, 32256, 3256, 705, 6259, 3256, 705, 79, 8426, 15060, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7091, 538, 3256, 705, 568, 13331, 3256, 705, 27432, 3256, 705, 14981, 41143, 11537, 201, 198, 20541, 2922, 62, 312, 220, 201, 198, 19738, 62, 312, 796, 657, 201, 198, 4871, 4294, 332, 36918, 2848, 7, 15252, 2599, 201, 198, 220, 220, 220, 37227, 32, 2829, 29908, 1088, 327, 21223, 338, 1540, 332, 13, 201, 198, 220, 220, 220, 770, 29908, 3607, 514, 1630, 625, 339, 27479, 889, 1429, 11, 543, 356, 201, 198, 220, 220, 220, 779, 284, 555, 11265, 1096, 262, 4499, 5421, 278, 12, 3524, 20683, 19590, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1540, 332, 62, 11235, 313, 742, 11, 686, 312, 65, 11, 3882, 65, 62, 86, 11, 5072, 62, 15908, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 62, 19849, 28, 14202, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 4294, 332, 36918, 2848, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22915, 62, 15908, 796, 5072, 62, 15908, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 796, 21121, 13, 38475, 5258, 14375, 7, 82, 14375, 62, 11235, 313, 742, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2181, 13363, 62, 19849, 318, 407, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 19203, 19031, 2181, 13363, 2746, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43775, 422, 46110, 82, 92, 27691, 18982, 7, 5310, 13363, 62, 19849, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 3262, 13, 30073, 62, 6738, 7, 5310, 13363, 62, 19849, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 62, 17143, 796, 21121, 62, 40842, 17, 13, 50, 14375, 36301, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 82, 14375, 62, 11235, 313, 742, 11, 705, 17034, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 65, 17, 13, 5239, 62, 18982, 13, 13102, 469, 7, 69, 13, 961, 22784, 2116, 13, 82, 14375, 62, 17143, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 270, 364, 28, 1315, 830, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 2676, 28, 23336, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15252, 62, 22510, 28, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 77, 62, 37724, 28, 2310, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9662, 62, 22510, 796, 362, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 3882, 65, 7, 3882, 65, 11, 6407, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 3882, 65, 7, 3882, 65, 62, 86, 11, 6407, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12218, 62, 3882, 65, 28, 686, 312, 65, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 44898, 306, 62, 3882, 65, 28, 686, 312, 65, 62, 86, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34695, 62, 3882, 65, 28, 21737, 201, 198, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 3882, 65, 28, 2116, 13, 1136, 62, 22019, 81, 62, 3882, 65, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 3262, 13, 75, 6962, 58, 15, 4083, 2617, 62, 3882, 65, 7, 22019, 81, 62, 3882, 65, 8, 220, 201, 198, 220, 220, 220, 825, 1490, 62, 15255, 478, 507, 7, 944, 11, 9060, 62, 3672, 11, 545, 11, 1398, 62, 3672, 11, 288, 1039, 11, 26675, 11, 294, 3447, 28, 15, 13, 20, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 25302, 12326, 5421, 278, 10559, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 773, 82, 796, 45941, 13, 3003, 7, 67, 1039, 58, 45299, 532, 16, 60, 18189, 294, 3447, 38381, 15, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 18896, 7, 521, 82, 8, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 545, 58, 45299, 1058, 11, 357, 17, 11, 352, 11, 657, 15437, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 5647, 7857, 16193, 1065, 11, 1105, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 320, 12860, 7, 320, 11, 4843, 11639, 40496, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2124, 9521, 7, 16, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 288, 1039, 58, 72, 11, 1058, 19, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 288, 1039, 58, 72, 11, 532, 16, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2860, 62, 17147, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 45474, 9248, 19510, 65, 3524, 58, 15, 4357, 275, 3524, 58, 16, 46570, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 17, 60, 532, 275, 3524, 58, 15, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 58, 18, 60, 532, 275, 3524, 58, 16, 4357, 6070, 28, 25101, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 8043, 11639, 445, 3256, 9493, 413, 5649, 28, 18, 13, 20, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 5239, 7, 65, 3524, 58, 15, 4357, 275, 3524, 58, 16, 60, 532, 362, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 90, 25, 82, 92, 46110, 13, 18, 69, 92, 4458, 18982, 7, 4871, 62, 3672, 11, 4776, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 28, 11600, 7, 2550, 8043, 11639, 17585, 3256, 17130, 28, 15, 13, 20, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1415, 11, 3124, 11639, 11186, 11537, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7, 10786, 90, 92, 4886, 507, 351, 705, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 15090, 92, 930, 3091, 8, 18189, 46110, 13, 16, 69, 92, 27691, 18982, 7, 4871, 62, 3672, 11, 1398, 62, 3672, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 828, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 1415, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 22704, 10786, 2364, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 33464, 62, 39786, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 19334, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 262, 2939, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 70, 12993, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 21928, 5647, 7203, 17566, 14, 22915, 62, 1, 10, 9060, 62, 3672, 8, 201, 198, 220, 220, 220, 825, 27479, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12322, 257, 27479, 286, 262, 3127, 706, 555, 11265, 2890, 262, 4499, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5421, 278, 12, 3524, 20683, 19590, 13, 770, 13536, 2562, 779, 379, 1332, 12, 2435, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 2116, 13, 82, 14375, 13, 3262, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 39758, 62, 31553, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 2656, 3815, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 15, 796, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 15, 4083, 7890, 13, 30073, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 16, 796, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 16, 4083, 7890, 13, 30073, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5046, 290, 6482, 351, 275, 3524, 842, 555, 11265, 1634, 26, 788, 3613, 27479, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 15, 4083, 7890, 58, 22345, 796, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3262, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 15, 4083, 7890, 1635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 3524, 62, 301, 9310, 58, 45299, 45941, 13, 3605, 22704, 12962, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 16, 4083, 7890, 58, 22345, 796, 3467, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3262, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 16, 4083, 7890, 1635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 3524, 62, 301, 9310, 1343, 2116, 13, 65, 3524, 62, 1326, 504, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 944, 13, 22915, 62, 15908, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 944, 13, 22915, 62, 15908, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1167, 844, 796, 19203, 62, 6, 1343, 30218, 70, 13, 51, 3861, 1268, 13, 15571, 2969, 9693, 2394, 62, 1268, 47084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 15571, 2969, 9693, 2394, 62, 1268, 47084, 14512, 10148, 2073, 10148, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 357, 944, 13, 82, 14375, 62, 17143, 13, 45380, 9442, 62, 40290, 1343, 1167, 844, 1343, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 2676, 23330, 25, 67, 92, 4458, 18982, 7, 944, 13, 82, 14375, 13, 2676, 8, 1343, 45302, 66, 2001, 368, 375, 417, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 22915, 62, 15908, 11, 29472, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 21928, 7, 2536, 7, 34345, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 54, 2519, 27479, 284, 25, 46110, 82, 92, 4458, 18982, 7, 34345, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 39758, 62, 31553, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11169, 2010, 284, 2656, 1181, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 15, 4083, 7890, 58, 22345, 796, 1796, 62, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 37266, 17816, 65, 3524, 62, 28764, 6, 7131, 16, 4083, 7890, 58, 22345, 796, 1796, 62, 16, 201, 198, 220, 220, 220, 1303, 825, 371, 1868, 65, 62, 27257, 7, 944, 2599, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 825, 4512, 62, 19849, 7, 944, 11, 3509, 62, 270, 364, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26245, 3047, 9052, 526, 15931, 201, 198, 220, 220, 220, 220, 220, 220, 220, 938, 62, 45380, 9442, 62, 2676, 796, 532, 16, 201, 198, 220, 220, 220, 220, 220, 220, 220, 19781, 796, 5045, 263, 3419, 201, 198, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 2116, 13, 82, 14375, 13, 2676, 1279, 3509, 62, 270, 364, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 530, 26147, 35, 4296, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19781, 13, 13370, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 9662, 7, 16, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19781, 13, 40301, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 82, 14375, 13, 2676, 4064, 357, 940, 1635, 2116, 13, 82, 14375, 62, 17143, 13, 13812, 8, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 12287, 25, 46110, 13, 18, 69, 92, 82, 1220, 11629, 4458, 18982, 7, 45016, 13, 23913, 62, 2435, 8, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 82, 14375, 13, 2676, 4064, 23336, 6624, 15, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 45380, 9442, 62, 2676, 796, 2116, 13, 82, 14375, 13, 2676, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45380, 9442, 3419, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 3882, 65, 28, 2116, 13, 1136, 62, 22019, 81, 62, 3882, 65, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 3882, 65, 7, 22019, 81, 62, 3882, 65, 11, 10352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 82, 14375, 13, 3262, 13, 75, 6962, 58, 15, 4083, 2617, 62, 3882, 65, 7, 22019, 81, 62, 3882, 65, 8, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 45380, 9442, 62, 2676, 14512, 2116, 13, 82, 14375, 13, 2676, 25, 1303, 938, 27479, 878, 33895, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 45380, 9442, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 201, 198, 197, 197, 197, 201, 198, 197, 197, 220, 201, 198, 201, 198, 201, 198, 4299, 651, 62, 34409, 62, 3882, 65, 7, 320, 9945, 2599, 220, 201, 198, 220, 220, 220, 37227, 35561, 257, 686, 312, 65, 357, 47371, 286, 12033, 6831, 8, 329, 779, 287, 3047, 526, 15931, 201, 198, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 19108, 62, 3697, 31444, 1961, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 4677, 1571, 36774, 12, 2704, 3949, 3047, 6096, 986, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 545, 9945, 13, 33295, 62, 2704, 3949, 62, 17566, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 28060, 6, 201, 198, 201, 198, 220, 220, 220, 3601, 705, 37534, 1723, 3047, 1366, 986, 6, 201, 198, 220, 220, 220, 374, 25404, 62, 3882, 65, 13, 46012, 533, 62, 3882, 65, 7, 320, 9945, 8, 201, 198, 220, 220, 220, 3601, 705, 28060, 6, 201, 198, 201, 198, 220, 220, 220, 1441, 545, 9945, 13, 3882, 65, 201, 198, 201, 198, 4299, 4512, 62, 3262, 7, 82, 14375, 62, 11235, 313, 742, 11, 686, 312, 65, 11, 3882, 65, 62, 86, 11, 22915, 62, 15908, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 62, 19849, 28, 14202, 11, 3509, 62, 270, 364, 28, 22, 2388, 2599, 201, 198, 220, 220, 220, 37227, 44077, 257, 12549, 371, 12, 18474, 3127, 526, 15931, 201, 198, 220, 220, 220, 1509, 796, 4294, 332, 36918, 2848, 7, 82, 14375, 62, 11235, 313, 742, 11, 686, 312, 65, 11, 3882, 65, 62, 86, 11, 5072, 62, 15908, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 62, 19849, 28, 5310, 13363, 62, 19849, 8, 201, 198, 201, 198, 220, 220, 220, 3601, 705, 50, 10890, 986, 6, 201, 198, 220, 220, 220, 1509, 13, 27432, 62, 19849, 7, 9806, 62, 270, 364, 8, 201, 198, 220, 220, 220, 3601, 705, 28060, 18120, 6, 201, 198 ]
1.938687
3,686
"""Program that monitors a Raspberry Pi attached to a minus 80 freezer. Functions --------- monitor(): Creates Board object to watch the state of an input pin. """ # Local application imports from app.Board import Board PIN = 11 def monitor(): """Creates a Board object to monitor the state of an input pin.""" # Create a Board object board = Board(PIN) # Log Board IP and hostname board.get_board_logger().info("IP: %s | Hostname: %s", \ str(board.get_ip()), str(board.get_hostname())) # Setup board: Mode and input pin board.setup() # Monitor board for events board.monitor() if __name__ == "__main__": monitor()
[ 37811, 15167, 326, 19374, 257, 24244, 13993, 7223, 284, 257, 20208, 4019, 30967, 13, 198, 198, 24629, 2733, 198, 45537, 198, 220, 220, 220, 5671, 33529, 7921, 274, 5926, 2134, 284, 2342, 262, 1181, 286, 281, 5128, 6757, 13, 198, 37811, 198, 198, 2, 10714, 3586, 17944, 198, 6738, 598, 13, 29828, 1330, 5926, 198, 198, 44032, 796, 1367, 198, 198, 4299, 5671, 33529, 198, 220, 220, 220, 37227, 16719, 274, 257, 5926, 2134, 284, 5671, 262, 1181, 286, 281, 5128, 6757, 526, 15931, 628, 220, 220, 220, 1303, 13610, 257, 5926, 2134, 198, 220, 220, 220, 3096, 796, 5926, 7, 44032, 8, 628, 220, 220, 220, 1303, 5972, 5926, 6101, 290, 2583, 3672, 198, 220, 220, 220, 3096, 13, 1136, 62, 3526, 62, 6404, 1362, 22446, 10951, 7203, 4061, 25, 4064, 82, 930, 14504, 3672, 25, 4064, 82, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 965, 7, 3526, 13, 1136, 62, 541, 3419, 828, 965, 7, 3526, 13, 1136, 62, 4774, 3672, 3419, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 31122, 3096, 25, 10363, 290, 5128, 6757, 198, 220, 220, 220, 3096, 13, 40406, 3419, 628, 220, 220, 220, 1303, 18289, 3096, 329, 2995, 198, 220, 220, 220, 3096, 13, 41143, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 5671, 3419, 198 ]
2.969432
229
import stop stop.main()
[ 11748, 2245, 198, 198, 11338, 13, 12417, 3419, 628 ]
2.888889
9
from command import Command
[ 6738, 3141, 1330, 9455, 198 ]
5.6
5
# In Byteland they have a very strange monetary system. # # Each Bytelandian gold coin has an integer number written on it. A coin n can be exchanged in a bank into # three coins: n/2, n/3 and n/4. But these numbers are all rounded down (the banks have to make a profit). # # You can also sell Bytelandian coins for American dollars. The exchange rate is 1:1. But you can not buy # Bytelandian coins. # # You have one gold coin. What is the maximum amount of American dollars you can get for it? # # Input # The input will contain several test cases (not more than 10). Each testcase is a single line with a number # n, 0 <= n <= 1 000 000 000. It is the number written on your coin. # # Output # For each test case output a single line, containing the maximum amount of American dollars you can make. # # Example # Input: # 12 # 2 # # Output: # 13 # 2 # You can change 12 into 6, 4 and 3, and then change these into $6+$4+$3 = $13. If you try changing the # coin 2 into 3 smaller coins, you will get 1, 0 and 0, and later you can get no more than $1 out of them. # It is better just to change the 2 coin directly into $2. import sys list={} for case in sys.stdin: n = int(case) print(chk(n)) #Made by Sahil Saini
[ 2, 554, 2750, 83, 8822, 484, 423, 257, 845, 6283, 15331, 1080, 13, 198, 2, 198, 2, 5501, 2750, 83, 8822, 666, 3869, 10752, 468, 281, 18253, 1271, 3194, 319, 340, 13, 317, 10752, 299, 460, 307, 22112, 287, 257, 3331, 656, 198, 2, 1115, 10796, 25, 299, 14, 17, 11, 299, 14, 18, 290, 299, 14, 19, 13, 887, 777, 3146, 389, 477, 19273, 866, 357, 1169, 6341, 423, 284, 787, 257, 7630, 737, 198, 2, 198, 2, 921, 460, 635, 3677, 2750, 83, 8822, 666, 10796, 329, 1605, 5054, 13, 383, 5163, 2494, 318, 352, 25, 16, 13, 887, 345, 460, 407, 2822, 198, 2, 2750, 83, 8822, 666, 10796, 13, 198, 2, 198, 2, 921, 423, 530, 3869, 10752, 13, 1867, 318, 262, 5415, 2033, 286, 1605, 5054, 345, 460, 651, 329, 340, 30, 198, 2, 198, 2, 23412, 198, 2, 383, 5128, 481, 3994, 1811, 1332, 2663, 357, 1662, 517, 621, 838, 737, 5501, 1332, 7442, 318, 257, 2060, 1627, 351, 257, 1271, 198, 2, 299, 11, 657, 19841, 299, 19841, 352, 12877, 12877, 12877, 13, 632, 318, 262, 1271, 3194, 319, 534, 10752, 13, 198, 2, 198, 2, 25235, 198, 2, 1114, 1123, 1332, 1339, 5072, 257, 2060, 1627, 11, 7268, 262, 5415, 2033, 286, 1605, 5054, 345, 460, 787, 13, 198, 2, 198, 2, 17934, 198, 2, 23412, 25, 198, 2, 1105, 198, 2, 362, 198, 2, 198, 2, 25235, 25, 198, 2, 1511, 198, 2, 362, 198, 2, 921, 460, 1487, 1105, 656, 718, 11, 604, 290, 513, 11, 290, 788, 1487, 777, 656, 720, 21, 10, 3, 19, 10, 3, 18, 796, 720, 1485, 13, 1002, 345, 1949, 5609, 262, 198, 2, 10752, 362, 656, 513, 4833, 10796, 11, 345, 481, 651, 352, 11, 657, 290, 657, 11, 290, 1568, 345, 460, 651, 645, 517, 621, 720, 16, 503, 286, 606, 13, 198, 2, 632, 318, 1365, 655, 284, 1487, 262, 362, 10752, 3264, 656, 720, 17, 13, 198, 198, 11748, 25064, 198, 198, 4868, 34758, 92, 198, 198, 1640, 1339, 287, 25064, 13, 19282, 259, 25, 198, 220, 220, 220, 299, 796, 493, 7, 7442, 8, 198, 220, 220, 220, 3601, 7, 354, 74, 7, 77, 4008, 198, 198, 2, 24616, 416, 22982, 346, 311, 391, 72 ]
3.257979
376
""" QuestionsSet model """ from random import random from django.db import models from polymorphic.models import PolymorphicModel class QuestionsSet(PolymorphicModel): """Abstract class, another way of regrouping question""" name = models.CharField(max_length=100) def get_branch_id(self): """get branch id, to manage diff between Branch and Questions Subset subclass""" return self.id def get_questions_shuffled(self): """return all questions from every subset, shuffled""" questions = sorted( self.get_real_instance().get_questions_set(), key=lambda x: random() ) return questions def get_user_trainings_ordered(self, request): """return all training linked to a givin user, ordered""" user_trainings = self.get_real_instance().get_user_trainings(request) if user_trainings is None: return None user_trainings = sorted( user_trainings, key=lambda training: training.training_date, ) return user_trainings
[ 37811, 198, 35741, 7248, 2746, 198, 37811, 198, 198, 6738, 4738, 1330, 4738, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 34196, 291, 13, 27530, 1330, 12280, 24503, 291, 17633, 628, 198, 4871, 20396, 7248, 7, 34220, 24503, 291, 17633, 2599, 198, 220, 220, 220, 37227, 23839, 1398, 11, 1194, 835, 286, 842, 3233, 278, 1808, 37811, 628, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 3064, 8, 628, 220, 220, 220, 825, 651, 62, 1671, 3702, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 8478, 4686, 11, 284, 6687, 814, 1022, 20551, 290, 20396, 3834, 2617, 47611, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 312, 628, 220, 220, 220, 825, 651, 62, 6138, 507, 62, 1477, 1648, 992, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7783, 477, 2683, 422, 790, 24637, 11, 32299, 992, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2683, 796, 23243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 62, 5305, 62, 39098, 22446, 1136, 62, 6138, 507, 62, 2617, 22784, 1994, 28, 50033, 2124, 25, 4738, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2683, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 27432, 654, 62, 24071, 7, 944, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7783, 477, 3047, 6692, 284, 257, 308, 452, 259, 2836, 11, 6149, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27432, 654, 796, 2116, 13, 1136, 62, 5305, 62, 39098, 22446, 1136, 62, 7220, 62, 27432, 654, 7, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 27432, 654, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27432, 654, 796, 23243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 27432, 654, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 28, 50033, 3047, 25, 3047, 13, 34409, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2836, 62, 27432, 654, 198 ]
2.671605
405
# python3 sort <http://github.com/Wind2esg/python3sort> # Copyright 2018 Wind2esg # Released under the MIT license <http://github.com/Wind2esg/python3sort/LICENSE> from _comparer import int_comparer
[ 2, 21015, 18, 3297, 1279, 4023, 1378, 12567, 13, 785, 14, 8731, 17, 274, 70, 14, 29412, 18, 30619, 29, 198, 2, 15069, 2864, 3086, 17, 274, 70, 198, 2, 28728, 739, 262, 17168, 5964, 1279, 4023, 1378, 12567, 13, 785, 14, 8731, 17, 274, 70, 14, 29412, 18, 30619, 14, 43, 2149, 24290, 29, 198, 198, 6738, 4808, 5589, 11258, 1330, 493, 62, 5589, 11258, 628 ]
3
67
__author__ = "Michael Rippey @nahamike01" __date__ = "2020/05/26" """ Author: Michael Rippey (c) 2020 Copyright 2020 Michael Rippey See LICENSE.md for details """ import httpx from bs4 import BeautifulSoup import urllib import sys scrape_news_articles('https://cybersecurity-jp.com')
[ 834, 9800, 834, 796, 366, 13256, 371, 3974, 2959, 2488, 40909, 321, 522, 486, 1, 198, 834, 4475, 834, 796, 366, 42334, 14, 2713, 14, 2075, 1, 198, 37811, 198, 13838, 25, 3899, 371, 3974, 2959, 357, 66, 8, 12131, 198, 198, 15269, 12131, 3899, 371, 3974, 2959, 198, 198, 6214, 38559, 24290, 13, 9132, 329, 3307, 198, 37811, 198, 198, 11748, 2638, 87, 220, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 11748, 2956, 297, 571, 198, 11748, 25064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 1416, 13484, 62, 10827, 62, 26845, 10786, 5450, 1378, 948, 527, 12961, 12, 34523, 13, 785, 11537 ]
2.579832
119
#!/usr/bin/env python3 """ A simple tool to send email by python References ---------- [1] http://jingyan.baidu.com/article/b24f6c822784b886bfe5dabe.html [2] email https://docs.python.org/3.4/library/email.mime.html """ import smtplib from email.mime.text import MIMEText import argparse def send_mail(from_user, from_user_pw, to_user, mail_sub, mail_msg): """ Send email by python Parameters ---------- from_user: str Email address of the sender from_user_pw: str Password of the user to_users: str list Email address of the recievers mail_sub: str Mail subject mail_msg: str The message to be sent Return ------ result: booling If email is sent successfully, return True, else, return False. """ # Basic parmaters smtp_server_postfix = from_user.split("@")[-1] smtp_server = "smtp." + smtp_server_postfix smtp_port = 25 # Build message msg = MIMEText(_text=mail_msg,_subtype='html',_charset='utf-8') msg['Subject'] = mail_sub msg['From'] = from_user msg['To'] = ";".join(to_user) # Multiple recievers # Try server try: server = smtplib.SMTP() server.connect(smtp_server,port=smtp_port) server.login(from_user.split("@")[0],from_user_pw) server.sendmail(from_user,to_user,msg.as_string()) server.quit() result = True except Exception: result = False return result def main(): """ The main method """ # Init parser = argparse.ArgumentParser(description='Send email by python.') # parmaters parser.add_argument("from_user", help="Email address of the sender.") parser.add_argument("from_user_pw",help="Password of the sender.") parser.add_argument("to_user", help="Email address list of the recievers.") parser.add_argument("mail_sub", help="Subject of the mail.") parser.add_argument("mail_msg", help="Content of the mail.") args = parser.parse_args() from_user = args.from_user from_user_pw = args.from_user_pw to_user = [] to_user.append(args.to_user) mail_sub = args.mail_sub mail_msg = args.mail_msg # send email print("Sending email from %s to %s..." % (from_user, to_user)) result = send_mail(from_user, from_user_pw, to_user, mail_sub, mail_msg) if result == True: print("Successfully sent the mail.") else: print("Error happend.") if __name__=="__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 32, 2829, 2891, 284, 3758, 3053, 416, 21015, 198, 198, 19927, 198, 35937, 198, 58, 16, 60, 2638, 1378, 49940, 4121, 13, 65, 1698, 84, 13, 785, 14, 20205, 14, 65, 1731, 69, 21, 66, 23, 1828, 37688, 65, 44980, 65, 5036, 20, 67, 11231, 13, 6494, 198, 58, 17, 60, 3053, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 13, 19, 14, 32016, 14, 12888, 13, 76, 524, 13, 6494, 198, 37811, 198, 198, 11748, 895, 83, 489, 571, 198, 6738, 3053, 13, 76, 524, 13, 5239, 1330, 337, 3955, 2767, 2302, 198, 11748, 1822, 29572, 198, 198, 4299, 3758, 62, 4529, 7, 6738, 62, 7220, 11, 422, 62, 7220, 62, 79, 86, 11, 284, 62, 7220, 11, 6920, 62, 7266, 11, 6920, 62, 19662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16290, 3053, 416, 21015, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 422, 62, 7220, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 9570, 2209, 286, 262, 29788, 198, 220, 220, 220, 422, 62, 7220, 62, 79, 86, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 30275, 286, 262, 2836, 198, 220, 220, 220, 284, 62, 18417, 25, 965, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 9570, 2209, 286, 262, 664, 30296, 198, 220, 220, 220, 6920, 62, 7266, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 11099, 2426, 198, 220, 220, 220, 6920, 62, 19662, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3275, 284, 307, 1908, 628, 220, 220, 220, 8229, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 1255, 25, 20512, 278, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 3053, 318, 1908, 7675, 11, 1441, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 11, 1441, 10352, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 14392, 220, 1582, 6759, 364, 198, 220, 220, 220, 895, 34788, 62, 15388, 62, 7353, 13049, 796, 422, 62, 7220, 13, 35312, 7203, 31, 4943, 58, 12, 16, 60, 198, 220, 220, 220, 895, 34788, 62, 15388, 796, 366, 5796, 34788, 526, 1343, 895, 34788, 62, 15388, 62, 7353, 13049, 198, 220, 220, 220, 895, 34788, 62, 634, 796, 1679, 198, 220, 220, 220, 1303, 10934, 3275, 198, 220, 220, 220, 31456, 796, 337, 3955, 2767, 2302, 28264, 5239, 28, 4529, 62, 19662, 11, 62, 7266, 4906, 11639, 6494, 3256, 62, 354, 945, 316, 11639, 40477, 12, 23, 11537, 198, 220, 220, 220, 31456, 17816, 19776, 20520, 796, 6920, 62, 7266, 198, 220, 220, 220, 31456, 17816, 4863, 20520, 796, 422, 62, 7220, 198, 220, 220, 220, 31456, 17816, 2514, 20520, 796, 366, 26, 1911, 22179, 7, 1462, 62, 7220, 8, 220, 1303, 20401, 664, 30296, 198, 220, 220, 220, 1303, 9993, 4382, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 796, 895, 83, 489, 571, 13, 12310, 7250, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 13, 8443, 7, 5796, 34788, 62, 15388, 11, 634, 28, 5796, 34788, 62, 634, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 13, 38235, 7, 6738, 62, 7220, 13, 35312, 7203, 31, 4943, 58, 15, 4357, 6738, 62, 7220, 62, 79, 86, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 13, 21280, 4529, 7, 6738, 62, 7220, 11, 1462, 62, 7220, 11, 19662, 13, 292, 62, 8841, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 4382, 13, 47391, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 6407, 198, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 10352, 628, 220, 220, 220, 1441, 1255, 198, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 1388, 2446, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 44707, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 25206, 3053, 416, 21015, 2637, 8, 198, 220, 220, 220, 1303, 1582, 6759, 364, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 6738, 62, 7220, 1600, 1037, 2625, 15333, 2209, 286, 262, 29788, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 6738, 62, 7220, 62, 79, 86, 1600, 16794, 2625, 35215, 286, 262, 29788, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 1462, 62, 7220, 1600, 1037, 2625, 15333, 2209, 1351, 286, 262, 664, 30296, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 4529, 62, 7266, 1600, 1037, 2625, 19776, 286, 262, 6920, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 4529, 62, 19662, 1600, 1037, 2625, 19746, 286, 262, 6920, 19570, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 422, 62, 7220, 796, 26498, 13, 6738, 62, 7220, 198, 220, 220, 220, 422, 62, 7220, 62, 79, 86, 796, 26498, 13, 6738, 62, 7220, 62, 79, 86, 198, 220, 220, 220, 284, 62, 7220, 796, 17635, 198, 220, 220, 220, 284, 62, 7220, 13, 33295, 7, 22046, 13, 1462, 62, 7220, 8, 198, 220, 220, 220, 6920, 62, 7266, 796, 26498, 13, 4529, 62, 7266, 198, 220, 220, 220, 6920, 62, 19662, 796, 26498, 13, 4529, 62, 19662, 628, 220, 220, 220, 1303, 3758, 3053, 198, 220, 220, 220, 3601, 7203, 50, 1571, 3053, 422, 4064, 82, 284, 4064, 82, 9313, 4064, 357, 6738, 62, 7220, 11, 284, 62, 7220, 4008, 198, 220, 220, 220, 1255, 796, 3758, 62, 4529, 7, 6738, 62, 7220, 11, 422, 62, 7220, 62, 79, 86, 11, 284, 62, 7220, 11, 6920, 62, 7266, 11, 6920, 62, 19662, 8, 198, 220, 220, 220, 611, 1255, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33244, 2759, 1908, 262, 6920, 19570, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 1147, 437, 19570, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.43314
1,032
""" Functions that help the run 'pps' command """ import functools import subprocess import inquirer import toml from .message import ( FILE_NOT_FOUND_MSG, INQUIRER_MSG, KEYBOARD_INTERRUPT_MSG, KEYWORD_NOT_FOUND_MSG, ) def exception(function): """ A decorator that wraps the passed in function and logs exceptions should one occur """ @functools.wraps(function) return wrapper def read_file(file_path): """ Read file :param file_path: File path :return: File content """ reader = open(file_path, 'r', encoding="utf8") file_content = reader.read() reader.close() return file_content def toml_parsing(toml_string): """ Parses the "toml" string and return dictionary format :param toml_string: String that is a "toml" file format. :return: Return dictionary format """ parsed_toml = toml.loads(toml_string) return parsed_toml def inquirer_prompt(choice): """ Return selected results from choices. :param choice: choices :return: Return selected result """ questions = [inquirer.List('cmd', message=INQUIRER_MSG, choices=choice)] answer = inquirer.prompt(questions) return answer def run_script(script): """ Run the script. :param script: Script to run. :return: The result of the script execution. """ p_ret_code = subprocess.call(script, shell=True) return p_ret_code
[ 37811, 198, 24629, 2733, 326, 1037, 262, 1057, 705, 41799, 6, 3141, 198, 37811, 198, 11748, 1257, 310, 10141, 198, 11748, 850, 14681, 198, 198, 11748, 38212, 81, 198, 11748, 284, 4029, 198, 198, 6738, 764, 20500, 1330, 357, 198, 220, 220, 220, 45811, 62, 11929, 62, 37, 15919, 62, 5653, 38, 11, 198, 220, 220, 220, 3268, 10917, 4663, 1137, 62, 5653, 38, 11, 198, 220, 220, 220, 35374, 8202, 9795, 62, 41358, 49, 8577, 51, 62, 5653, 38, 11, 198, 220, 220, 220, 35374, 54, 12532, 62, 11929, 62, 37, 15919, 62, 5653, 38, 11, 198, 8, 628, 198, 4299, 6631, 7, 8818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 11705, 1352, 326, 27521, 262, 3804, 287, 2163, 290, 17259, 198, 220, 220, 220, 13269, 815, 530, 3051, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12543, 310, 10141, 13, 29988, 862, 7, 8818, 8, 628, 220, 220, 220, 1441, 29908, 628, 198, 4299, 1100, 62, 7753, 7, 7753, 62, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 2393, 198, 220, 220, 220, 1058, 17143, 2393, 62, 6978, 25, 9220, 3108, 198, 220, 220, 220, 1058, 7783, 25, 9220, 2695, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9173, 796, 1280, 7, 7753, 62, 6978, 11, 705, 81, 3256, 21004, 2625, 40477, 23, 4943, 198, 220, 220, 220, 2393, 62, 11299, 796, 9173, 13, 961, 3419, 198, 220, 220, 220, 9173, 13, 19836, 3419, 628, 220, 220, 220, 1441, 2393, 62, 11299, 628, 198, 4299, 284, 4029, 62, 79, 945, 278, 7, 39532, 75, 62, 8841, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23042, 274, 262, 366, 39532, 75, 1, 4731, 290, 1441, 22155, 5794, 198, 220, 220, 220, 1058, 17143, 284, 4029, 62, 8841, 25, 10903, 326, 318, 257, 366, 39532, 75, 1, 2393, 5794, 13, 198, 220, 220, 220, 1058, 7783, 25, 8229, 22155, 5794, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44267, 62, 39532, 75, 796, 284, 4029, 13, 46030, 7, 39532, 75, 62, 8841, 8, 628, 220, 220, 220, 1441, 44267, 62, 39532, 75, 628, 198, 4299, 38212, 81, 62, 16963, 457, 7, 25541, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 6163, 2482, 422, 7747, 13, 198, 220, 220, 220, 1058, 17143, 3572, 25, 7747, 198, 220, 220, 220, 1058, 7783, 25, 8229, 6163, 1255, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2683, 796, 685, 18934, 557, 81, 13, 8053, 10786, 28758, 3256, 3275, 28, 1268, 10917, 4663, 1137, 62, 5653, 38, 11, 7747, 28, 25541, 15437, 198, 220, 220, 220, 3280, 796, 38212, 81, 13, 16963, 457, 7, 6138, 507, 8, 198, 220, 220, 220, 1441, 3280, 628, 198, 4299, 1057, 62, 12048, 7, 12048, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 262, 4226, 13, 198, 220, 220, 220, 1058, 17143, 4226, 25, 12327, 284, 1057, 13, 198, 220, 220, 220, 1058, 7783, 25, 383, 1255, 286, 262, 4226, 9706, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 279, 62, 1186, 62, 8189, 796, 850, 14681, 13, 13345, 7, 12048, 11, 7582, 28, 17821, 8, 628, 220, 220, 220, 1441, 279, 62, 1186, 62, 8189, 198 ]
2.674677
541
import ipaddress import logging import tld from collections import UserList from typing import Iterable, List, Union from urlfinderlib.url import URL from urllib.parse import urlsplit from saq.constants import *
[ 11748, 20966, 21975, 198, 11748, 18931, 198, 11748, 256, 335, 198, 198, 6738, 17268, 1330, 11787, 8053, 198, 6738, 19720, 1330, 40806, 540, 11, 7343, 11, 4479, 198, 6738, 2956, 1652, 5540, 8019, 13, 6371, 1330, 10289, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 2956, 7278, 489, 270, 198, 198, 6738, 473, 80, 13, 9979, 1187, 1330, 1635, 628, 198 ]
3.540984
61
# # Copyright 2015-2020 Andrey Galkin <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function, absolute_import import unittest import subprocess import os import sys import stat import shutil import json import platform from collections import OrderedDict from futoin.cid.util import executil CIDTEST_BIN = os.environ.get('CIDTEST_BIN', None) if CIDTEST_BIN: CIDTEST_BIN_EXT = False else : CIDTEST_BIN_EXT = True CIDTEST_BIN = os.path.dirname( __file__ ) + '/../bin/cid'
[ 2, 198, 2, 15069, 1853, 12, 42334, 843, 4364, 402, 971, 259, 1279, 392, 4364, 31, 69, 9390, 259, 13, 2398, 29, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 220, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 220, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 4112, 62, 11748, 198, 11748, 555, 715, 395, 198, 11748, 850, 14681, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 1185, 198, 11748, 4423, 346, 198, 11748, 33918, 198, 11748, 3859, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 277, 9390, 259, 13, 66, 312, 13, 22602, 1330, 3121, 346, 198, 198, 34, 2389, 51, 6465, 62, 33, 1268, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 34, 2389, 51, 6465, 62, 33, 1268, 3256, 6045, 8, 198, 198, 361, 327, 2389, 51, 6465, 62, 33, 1268, 25, 198, 220, 220, 220, 327, 2389, 51, 6465, 62, 33, 1268, 62, 13918, 796, 10352, 198, 17772, 1058, 198, 220, 220, 220, 327, 2389, 51, 6465, 62, 33, 1268, 62, 13918, 796, 6407, 198, 220, 220, 220, 327, 2389, 51, 6465, 62, 33, 1268, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 11593, 7753, 834, 1267, 1343, 31051, 40720, 8800, 14, 66, 312, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
3.052478
343
# $Filename$ # $Authors$ # Last Changed: $Date$ $Committer$ $Revision-Id$ # # Copyright (c) 2003-2011, German Aerospace Center (DLR) # All rights reserved. # # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are #met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the German Aerospace Center nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Tests for the icon module. """ import unittest from datafinder.core.configuration.icons import icon from datafinder.core.error import ConfigurationError from datafinder.persistence.error import PersistenceError from datafinder_test.mocks import SimpleMock __version__ = "$Revision-Id:$" class IconTestCase(unittest.TestCase): """ Tests the parsing of a specific directory for suitable icon files. """ def setUp(self): """ Creates test setup. """ self._directoryFileStorer = SimpleMock(identifier="/test") def testParsingSuccess(self): """ Tests the successful parsing of a directory for icon files. """ self._directoryFileStorer.value = [SimpleMock(name="a16.png"), SimpleMock(name="a24.png"), SimpleMock(name="b16.png"), SimpleMock(name="b24.png")] self.assertEquals(len(icon.parseIconDirectory(self._directoryFileStorer)), 2) self._directoryFileStorer.value = [SimpleMock(name="a6.png"), SimpleMock(name="a24.png"), SimpleMock(name="b16.png"), SimpleMock(name="b24.png")] self.assertEquals(len(icon.parseIconDirectory(self._directoryFileStorer)), 1) self._directoryFileStorer.value = [SimpleMock(name="a6.png"), SimpleMock(name="a24.png"), SimpleMock(name="b16.png"), SimpleMock(name="b24.ng")] self.assertEquals(len(icon.parseIconDirectory(self._directoryFileStorer)), 1) self._directoryFileStorer.value = [SimpleMock(name="a6.png"), SimpleMock(name="a24.png"), SimpleMock(name="b6.png"), SimpleMock(name="b24.ng")] self.assertEquals(len(icon.parseIconDirectory(self._directoryFileStorer)), 0) def testErrorHandling(self): """ Tests the error handling when parsing a directory for icon files. """ self._directoryFileStorer.value = [SimpleMock(name=""), SimpleMock(name="a24.png")] self.assertEquals(len(icon.parseIconDirectory(self._directoryFileStorer)), 0) self._directoryFileStorer.error = PersistenceError("") self.assertRaises(ConfigurationError, icon.parseIconDirectory, self._directoryFileStorer) def testIconComparison(self): """ Tests the comparison of icons. """ anIcon = icon.Icon("a", "b", "c", "d") self.assertEquals(anIcon, anIcon) anotherIcon = icon.Icon("a", "b", "c", "d") self.assertEquals(anIcon, anotherIcon) anotherIcon.baseName = "d" self.assertNotEquals(anIcon, anotherIcon) self.assertNotEquals(anIcon, None)
[ 2, 720, 35063, 3, 220, 201, 198, 2, 720, 30515, 669, 3, 201, 198, 2, 4586, 32068, 25, 720, 10430, 3, 720, 6935, 1967, 3, 720, 18009, 1166, 12, 7390, 3, 201, 198, 2, 201, 198, 2, 15069, 357, 66, 8, 5816, 12, 9804, 11, 2679, 43226, 3337, 357, 19260, 49, 8, 201, 198, 2, 1439, 2489, 10395, 13, 201, 198, 2, 201, 198, 2, 201, 198, 2, 7738, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 201, 198, 2, 4666, 2649, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 201, 198, 2, 4164, 25, 201, 198, 2, 201, 198, 2, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 220, 201, 198, 2, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 220, 201, 198, 2, 201, 198, 2, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 220, 201, 198, 2, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 220, 201, 198, 2, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 220, 201, 198, 2, 220, 220, 6082, 13, 220, 201, 198, 2, 201, 198, 2, 1635, 16126, 262, 1438, 286, 262, 2679, 43226, 3337, 4249, 262, 3891, 286, 201, 198, 2, 220, 220, 663, 20420, 743, 307, 973, 284, 11438, 393, 7719, 3186, 10944, 201, 198, 2, 220, 220, 422, 428, 3788, 1231, 2176, 3161, 3194, 7170, 13, 201, 198, 2, 201, 198, 2, 43559, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 220, 201, 198, 2, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 220, 201, 198, 2, 43, 3955, 22061, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 220, 201, 198, 2, 32, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 220, 201, 198, 2, 14165, 1137, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 220, 201, 198, 2, 48451, 12576, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 220, 201, 198, 2, 43, 3955, 22061, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 220, 201, 198, 2, 26947, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 220, 201, 198, 2, 10970, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 220, 201, 198, 2, 7, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 220, 201, 198, 2, 19238, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 220, 220, 201, 198, 201, 198, 201, 198, 37811, 220, 201, 198, 51, 3558, 329, 262, 7196, 8265, 13, 201, 198, 37811, 201, 198, 201, 198, 201, 198, 11748, 555, 715, 395, 201, 198, 201, 198, 6738, 1366, 22805, 13, 7295, 13, 11250, 3924, 13, 34280, 1330, 7196, 201, 198, 6738, 1366, 22805, 13, 7295, 13, 18224, 1330, 28373, 12331, 201, 198, 6738, 1366, 22805, 13, 19276, 13274, 13, 18224, 1330, 9467, 13274, 12331, 201, 198, 6738, 1366, 22805, 62, 9288, 13, 76, 3320, 1330, 17427, 44, 735, 201, 198, 201, 198, 201, 198, 834, 9641, 834, 796, 17971, 18009, 1166, 12, 7390, 25, 3, 1, 220, 201, 198, 201, 198, 201, 198, 4871, 26544, 14402, 20448, 7, 403, 715, 395, 13, 14402, 20448, 2599, 201, 198, 220, 220, 220, 37227, 30307, 262, 32096, 286, 257, 2176, 8619, 329, 11080, 7196, 3696, 13, 37227, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 900, 4933, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7921, 274, 1332, 9058, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 796, 17427, 44, 735, 7, 738, 7483, 35922, 9288, 4943, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 1332, 47, 945, 278, 33244, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 220, 30307, 262, 4388, 32096, 286, 257, 8619, 329, 7196, 3696, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 8367, 796, 685, 26437, 44, 735, 7, 3672, 2625, 64, 1433, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 64, 1731, 13, 11134, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 44, 735, 7, 3672, 2625, 65, 1433, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 65, 1731, 13, 11134, 4943, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 4749, 13, 29572, 19578, 43055, 7, 944, 13557, 34945, 8979, 1273, 11934, 36911, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 8367, 796, 685, 26437, 44, 735, 7, 3672, 2625, 64, 21, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 64, 1731, 13, 11134, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 44, 735, 7, 3672, 2625, 65, 1433, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 65, 1731, 13, 11134, 4943, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 4749, 13, 29572, 19578, 43055, 7, 944, 13557, 34945, 8979, 1273, 11934, 36911, 352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 8367, 796, 685, 26437, 44, 735, 7, 3672, 2625, 64, 21, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 64, 1731, 13, 11134, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 44, 735, 7, 3672, 2625, 65, 1433, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 65, 1731, 13, 782, 4943, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 4749, 13, 29572, 19578, 43055, 7, 944, 13557, 34945, 8979, 1273, 11934, 36911, 352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 8367, 796, 685, 26437, 44, 735, 7, 3672, 2625, 64, 21, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 64, 1731, 13, 11134, 12340, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17427, 44, 735, 7, 3672, 2625, 65, 21, 13, 11134, 12340, 17427, 44, 735, 7, 3672, 2625, 65, 1731, 13, 782, 4943, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 4749, 13, 29572, 19578, 43055, 7, 944, 13557, 34945, 8979, 1273, 11934, 36911, 657, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 1332, 12331, 12885, 1359, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30307, 262, 4049, 9041, 618, 32096, 257, 8619, 329, 7196, 3696, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 8367, 796, 685, 26437, 44, 735, 7, 3672, 2625, 12340, 17427, 44, 735, 7, 3672, 2625, 64, 1731, 13, 11134, 4943, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 11925, 7, 4749, 13, 29572, 19578, 43055, 7, 944, 13557, 34945, 8979, 1273, 11934, 36911, 657, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 34945, 8979, 1273, 11934, 13, 18224, 796, 9467, 13274, 12331, 7203, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 7, 38149, 12331, 11, 7196, 13, 29572, 19578, 43055, 11, 2116, 13557, 34945, 8979, 1273, 11934, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 825, 1332, 19578, 50249, 1653, 7, 944, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 30307, 262, 7208, 286, 17149, 13, 37227, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 281, 19578, 796, 7196, 13, 19578, 7203, 64, 1600, 366, 65, 1600, 366, 66, 1600, 366, 67, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 272, 19578, 11, 281, 19578, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1194, 19578, 796, 7196, 13, 19578, 7203, 64, 1600, 366, 65, 1600, 366, 66, 1600, 366, 67, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 23588, 874, 7, 272, 19578, 11, 1194, 19578, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1194, 19578, 13, 8692, 5376, 796, 366, 67, 1, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3673, 23588, 874, 7, 272, 19578, 11, 1194, 19578, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 3673, 23588, 874, 7, 272, 19578, 11, 6045, 8, 201, 198, 220, 220, 220, 220 ]
2.493392
1,816
from namsa import SupercellBuilder, MSAMPI from namsa.utils import imageTile import numpy as np from time import time import sys import h5py from mpi4py import MPI import os comm = MPI.COMM_WORLD comm_size = comm.Get_size() comm_rank = comm.Get_rank() #job_pid = os.environ.get('LS_JOBPID') #job_id = os.environ.get('LSB_JOBID') #hosts = np.array(os.environ.get('LSB_HOSTS').split(' ')) #job_hosts = np.unique(hosts) if comm_rank == 0: try: job_pid = os.environ.get('LS_JOBPID') job_id = os.environ.get('LSB_JOBID') hosts = np.array(os.environ.get('LSB_HOSTS').split(' ')) job_hosts = np.unique(hosts) print('JOB_ID:%s, JOB_PID:%s, HOSTS:%s' %(job_id, job_pid, format(job_hosts))) except: print('NO JOB VARIABLES!!!') cif_path = os.environ.get('CIF') h5_path = os.environ.get('H5F') if __name__ == '__main__': gpu_rank = int(np.mod(comm_rank,6)) if len(sys.argv) == 2: step = float(sys.argv[-1]) if len(sys.argv) == 3: step = float(sys.argv[-2]) write = bool(int(sys.argv[-1])) if write: with h5py.File(h5_path, driver='mpio', mode='w', comm=MPI.COMM_WORLD, libver='latest') as f: f.atomic = False run(h5_file=f, step=step, gpu_rank=gpu_rank) else: run(step=step, gpu_rank=gpu_rank) else: run(step=2.5, gpu_rank=gpu_rank)
[ 6738, 299, 4105, 64, 1330, 3115, 3846, 32875, 11, 6579, 2390, 11901, 198, 6738, 299, 4105, 64, 13, 26791, 1330, 2939, 35103, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 640, 1330, 640, 198, 11748, 25064, 198, 11748, 289, 20, 9078, 198, 6738, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 11748, 28686, 198, 198, 9503, 796, 4904, 40, 13, 9858, 44, 62, 45359, 11163, 198, 9503, 62, 7857, 796, 725, 13, 3855, 62, 7857, 3419, 198, 9503, 62, 43027, 796, 725, 13, 3855, 62, 43027, 3419, 198, 198, 2, 21858, 62, 35317, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 6561, 62, 41, 9864, 47, 2389, 11537, 198, 2, 21858, 62, 312, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 6561, 33, 62, 41, 9864, 2389, 11537, 198, 2, 4774, 82, 796, 45941, 13, 18747, 7, 418, 13, 268, 2268, 13, 1136, 10786, 6561, 33, 62, 39, 10892, 50, 27691, 35312, 10786, 705, 4008, 198, 2, 21858, 62, 4774, 82, 796, 45941, 13, 34642, 7, 4774, 82, 8, 628, 198, 361, 725, 62, 43027, 6624, 657, 25, 198, 220, 220, 220, 1949, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 35317, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 6561, 62, 41, 9864, 47, 2389, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 312, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 6561, 33, 62, 41, 9864, 2389, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 11453, 796, 45941, 13, 18747, 7, 418, 13, 268, 2268, 13, 1136, 10786, 6561, 33, 62, 39, 10892, 50, 27691, 35312, 10786, 705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1693, 62, 4774, 82, 796, 45941, 13, 34642, 7, 4774, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 41, 9864, 62, 2389, 25, 4, 82, 11, 449, 9864, 62, 47, 2389, 25, 4, 82, 11, 367, 10892, 50, 25, 4, 82, 6, 4064, 7, 21858, 62, 312, 11, 1693, 62, 35317, 11, 5794, 7, 21858, 62, 4774, 82, 22305, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 15285, 449, 9864, 569, 1503, 3539, 9148, 1546, 10185, 11537, 198, 198, 66, 361, 62, 6978, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 34, 5064, 11537, 198, 71, 20, 62, 6978, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 39, 20, 37, 11537, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 308, 19944, 62, 43027, 796, 493, 7, 37659, 13, 4666, 7, 9503, 62, 43027, 11, 21, 4008, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 12178, 7, 17597, 13, 853, 85, 58, 12, 16, 12962, 198, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 12178, 7, 17597, 13, 853, 85, 58, 12, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3551, 796, 20512, 7, 600, 7, 17597, 13, 853, 85, 58, 12, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3551, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 289, 20, 9078, 13, 8979, 7, 71, 20, 62, 6978, 11, 4639, 11639, 3149, 952, 3256, 4235, 11639, 86, 3256, 725, 28, 7378, 40, 13, 9858, 44, 62, 45359, 11163, 11, 9195, 332, 11639, 42861, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 47116, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 7, 71, 20, 62, 7753, 28, 69, 11, 2239, 28, 9662, 11, 308, 19944, 62, 43027, 28, 46999, 62, 43027, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 7, 9662, 28, 9662, 11, 308, 19944, 62, 43027, 28, 46999, 62, 43027, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 7, 9662, 28, 17, 13, 20, 11, 308, 19944, 62, 43027, 28, 46999, 62, 43027, 8, 628 ]
1.955617
721
import MySQLdb
[ 11748, 33476, 9945, 628 ]
4
4
import os from flask import Flask, render_template, url_for basedir = os.path.abspath(os.path.dirname(__file__)) app = Flask(__name__) # Views @app.route('/') if __name__ == "__main__": app.run(debug=True)
[ 11748, 28686, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 19016, 62, 1640, 198, 198, 3106, 343, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 2, 29978, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.488372
86
# -*- coding: utf-8 -*- # Copyright 2012 splinter authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. import sys from splinter.driver.webdriver.firefox import WebDriver as FirefoxWebDriver from splinter.driver.webdriver.remote import WebDriver as RemoteWebDriver from splinter.driver.webdriver.chrome import WebDriver as ChromeWebDriver from splinter.driver.webdriver.phantomjs import WebDriver as PhantomJSWebDriver from splinter.exceptions import DriverNotFoundError _DRIVERS = { 'firefox': FirefoxWebDriver, 'remote': RemoteWebDriver, 'chrome': ChromeWebDriver, 'phantomjs': PhantomJSWebDriver, } if sys.version_info[0] <= 2: try: from splinter.driver.zopetestbrowser import ZopeTestBrowser _DRIVERS['zope.testbrowser'] = ZopeTestBrowser except ImportError: pass try: import django # noqa from splinter.driver.djangoclient import DjangoClient _DRIVERS['django'] = DjangoClient except ImportError: pass try: import flask # noqa from splinter.driver.flaskclient import FlaskClient _DRIVERS['flask'] = FlaskClient except ImportError: pass def Browser(driver_name='firefox', *args, **kwargs): """ Returns a driver instance for the given name. When working with ``firefox``, it's possible to provide a profile name and a list of extensions. If you don't provide any driver_name, then ``firefox`` will be used. If there is no driver registered with the provided ``driver_name``, this function will raise a :class:`splinter.exceptions.DriverNotFoundError` exception. """ try: driver = _DRIVERS[driver_name] except KeyError: raise DriverNotFoundError("No driver for %s" % driver_name) return driver(*args, **kwargs)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 2321, 4328, 3849, 7035, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 198, 2, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 25064, 198, 198, 6738, 4328, 3849, 13, 26230, 13, 12384, 26230, 13, 6495, 12792, 1330, 5313, 32103, 355, 16802, 13908, 32103, 198, 6738, 4328, 3849, 13, 26230, 13, 12384, 26230, 13, 47960, 1330, 5313, 32103, 355, 21520, 13908, 32103, 198, 6738, 4328, 3849, 13, 26230, 13, 12384, 26230, 13, 46659, 1330, 5313, 32103, 355, 13282, 13908, 32103, 198, 6738, 4328, 3849, 13, 26230, 13, 12384, 26230, 13, 746, 11456, 8457, 1330, 5313, 32103, 355, 14407, 20120, 13908, 32103, 198, 6738, 4328, 3849, 13, 1069, 11755, 1330, 12434, 3673, 21077, 12331, 628, 198, 62, 7707, 30194, 796, 1391, 198, 220, 220, 220, 705, 6495, 12792, 10354, 16802, 13908, 32103, 11, 198, 220, 220, 220, 705, 47960, 10354, 21520, 13908, 32103, 11, 198, 220, 220, 220, 705, 46659, 10354, 13282, 13908, 32103, 11, 198, 220, 220, 220, 705, 746, 11456, 8457, 10354, 14407, 20120, 13908, 32103, 11, 198, 92, 198, 198, 361, 25064, 13, 9641, 62, 10951, 58, 15, 60, 19841, 362, 25, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 422, 4328, 3849, 13, 26230, 13, 89, 404, 316, 395, 40259, 1330, 1168, 3008, 14402, 46532, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 7707, 30194, 17816, 89, 3008, 13, 9288, 40259, 20520, 796, 1168, 3008, 14402, 46532, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 42625, 14208, 220, 1303, 645, 20402, 198, 220, 220, 220, 422, 4328, 3849, 13, 26230, 13, 28241, 648, 38679, 1153, 1330, 37770, 11792, 198, 220, 220, 220, 4808, 7707, 30194, 17816, 28241, 14208, 20520, 796, 37770, 11792, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 42903, 220, 1303, 645, 20402, 198, 220, 220, 220, 422, 4328, 3849, 13, 26230, 13, 2704, 2093, 16366, 1330, 46947, 11792, 198, 220, 220, 220, 4808, 7707, 30194, 17816, 2704, 2093, 20520, 796, 46947, 11792, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 628, 198, 4299, 34270, 7, 26230, 62, 3672, 11639, 6495, 12792, 3256, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 4639, 4554, 329, 262, 1813, 1438, 13, 628, 220, 220, 220, 1649, 1762, 351, 7559, 6495, 12792, 15506, 11, 340, 338, 1744, 284, 2148, 257, 7034, 1438, 198, 220, 220, 220, 290, 257, 1351, 286, 18366, 13, 628, 220, 220, 220, 1002, 345, 836, 470, 2148, 597, 4639, 62, 3672, 11, 788, 7559, 6495, 12792, 15506, 481, 307, 973, 13, 628, 220, 220, 220, 1002, 612, 318, 645, 4639, 6823, 351, 262, 2810, 7559, 26230, 62, 3672, 15506, 11, 428, 198, 220, 220, 220, 2163, 481, 5298, 257, 1058, 4871, 25, 63, 22018, 3849, 13, 1069, 11755, 13, 32103, 3673, 21077, 12331, 63, 198, 220, 220, 220, 6631, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 796, 4808, 7707, 30194, 58, 26230, 62, 3672, 60, 198, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12434, 3673, 21077, 12331, 7203, 2949, 4639, 329, 4064, 82, 1, 4064, 4639, 62, 3672, 8, 198, 220, 220, 220, 1441, 4639, 46491, 22046, 11, 12429, 46265, 22046, 8, 198 ]
3.019576
613
#!/usr/bin/env python # make_file_layout # init_paths # # align_dataset # write_dataset # write_selap_dataset # write_model # check_model # # make_model # predict_subgroups # # summarize_predictions # summarize_heatmap # summarize_subgroups # A SELAP model file contains: # mu.txt SELAPver3 nvar x nclust # sig.txt SELAPver3 nvar**2 x nclust # prob.txt SELAPver3 1 x nclust # var.txt this code Name for the variables (pathways), one per line. # clust.txt this code Name for the clusters, one per line. import os, sys if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 787, 62, 7753, 62, 39786, 198, 2, 2315, 62, 6978, 82, 198, 2, 198, 2, 10548, 62, 19608, 292, 316, 198, 2, 3551, 62, 19608, 292, 316, 198, 2, 3551, 62, 741, 499, 62, 19608, 292, 316, 198, 2, 3551, 62, 19849, 198, 2, 2198, 62, 19849, 198, 2, 220, 198, 2, 787, 62, 19849, 198, 2, 4331, 62, 7266, 24432, 198, 2, 220, 198, 2, 35743, 62, 28764, 9278, 198, 2, 35743, 62, 25080, 8899, 198, 2, 35743, 62, 7266, 24432, 628, 198, 2, 317, 311, 3698, 2969, 2746, 2393, 4909, 25, 198, 2, 38779, 13, 14116, 220, 220, 220, 220, 220, 311, 3698, 2969, 332, 18, 220, 220, 299, 7785, 2124, 299, 565, 436, 198, 2, 43237, 13, 14116, 220, 220, 220, 220, 311, 3698, 2969, 332, 18, 220, 220, 299, 7785, 1174, 17, 2124, 299, 565, 436, 198, 2, 1861, 13, 14116, 220, 220, 220, 311, 3698, 2969, 332, 18, 220, 220, 352, 2124, 299, 565, 436, 198, 2, 1401, 13, 14116, 220, 220, 220, 220, 428, 2438, 220, 220, 6530, 329, 262, 9633, 357, 6978, 1322, 828, 530, 583, 1627, 13, 198, 2, 32966, 13, 14116, 220, 220, 428, 2438, 220, 220, 6530, 329, 262, 23163, 11, 530, 583, 1627, 13, 198, 198, 11748, 28686, 11, 25064, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.452282
241
# coding:utf-8 # --author-- lanhua.zhou from __future__ import print_function import os import json import datetime import logging import zfused_api # read database DATABASE_PATH = os.path.dirname(os.path.dirname(__file__)) STEP_DATABASE_FILE = "{}/database/step.json".format(DATABASE_PATH) PROJECT_STEP_DATABASE_FILE = "{}/database/conn_project_step.json".format(DATABASE_PATH) STEP_INPUTATTR_DATABASE_FILE = "{}/database/step_attr_input.json".format(DATABASE_PATH) STEP_OUTPUTATTR_DATABASE_FILE = "{}/database/step_attr_output.json".format(DATABASE_PATH) with open(STEP_DATABASE_FILE, 'r') as f: print("read") STEP_DATABASE = json.load(f) with open(PROJECT_STEP_DATABASE_FILE, 'r') as f: print("read") PROJECT_STEP_DATABASE = json.load(f) with open(STEP_INPUTATTR_DATABASE_FILE, 'r') as f: print("read") STEP_INPUTATTR_DATABASE = json.load(f) with open(STEP_OUTPUTATTR_DATABASE_FILE, 'r') as f: print("read") STEP_OUTPUTATTR_DATABASE = json.load(f) logger = logging.getLogger(__name__) def project_steps(project_ids = []): """ get project steps """ if not project_ids: return PROJECT_STEP_DATABASE _steps = [] for _project_step in PROJECT_STEP_DATABASE: if _project_step["ProjectId"] in project_ids: _steps.append(_project_step) return _steps
[ 2, 19617, 25, 40477, 12, 23, 198, 2, 1377, 9800, 438, 26992, 33061, 13, 38536, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 4818, 8079, 198, 11748, 18931, 198, 198, 11748, 1976, 69, 1484, 62, 15042, 198, 198, 2, 1100, 6831, 198, 35, 1404, 6242, 11159, 62, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 42135, 62, 35, 1404, 6242, 11159, 62, 25664, 796, 45144, 92, 14, 48806, 14, 9662, 13, 17752, 1911, 18982, 7, 35, 1404, 6242, 11159, 62, 34219, 8, 198, 31190, 23680, 62, 42135, 62, 35, 1404, 6242, 11159, 62, 25664, 796, 45144, 92, 14, 48806, 14, 37043, 62, 16302, 62, 9662, 13, 17752, 1911, 18982, 7, 35, 1404, 6242, 11159, 62, 34219, 8, 198, 42135, 62, 1268, 30076, 1404, 5446, 62, 35, 1404, 6242, 11159, 62, 25664, 796, 45144, 92, 14, 48806, 14, 9662, 62, 35226, 62, 15414, 13, 17752, 1911, 18982, 7, 35, 1404, 6242, 11159, 62, 34219, 8, 198, 42135, 62, 2606, 7250, 3843, 1404, 5446, 62, 35, 1404, 6242, 11159, 62, 25664, 796, 45144, 92, 14, 48806, 14, 9662, 62, 35226, 62, 22915, 13, 17752, 1911, 18982, 7, 35, 1404, 6242, 11159, 62, 34219, 8, 198, 4480, 1280, 7, 42135, 62, 35, 1404, 6242, 11159, 62, 25664, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 3601, 7203, 961, 4943, 198, 220, 220, 220, 49154, 62, 35, 1404, 6242, 11159, 796, 33918, 13, 2220, 7, 69, 8, 198, 4480, 1280, 7, 31190, 23680, 62, 42135, 62, 35, 1404, 6242, 11159, 62, 25664, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 3601, 7203, 961, 4943, 198, 220, 220, 220, 21965, 23680, 62, 42135, 62, 35, 1404, 6242, 11159, 796, 33918, 13, 2220, 7, 69, 8, 198, 4480, 1280, 7, 42135, 62, 1268, 30076, 1404, 5446, 62, 35, 1404, 6242, 11159, 62, 25664, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 3601, 7203, 961, 4943, 198, 220, 220, 220, 49154, 62, 1268, 30076, 1404, 5446, 62, 35, 1404, 6242, 11159, 796, 33918, 13, 2220, 7, 69, 8, 198, 4480, 1280, 7, 42135, 62, 2606, 7250, 3843, 1404, 5446, 62, 35, 1404, 6242, 11159, 62, 25664, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 3601, 7203, 961, 4943, 198, 220, 220, 220, 49154, 62, 2606, 7250, 3843, 1404, 5446, 62, 35, 1404, 6242, 11159, 796, 33918, 13, 2220, 7, 69, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 1628, 62, 20214, 7, 16302, 62, 2340, 796, 17635, 2599, 198, 220, 220, 220, 37227, 651, 1628, 4831, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 1628, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 21965, 23680, 62, 42135, 62, 35, 1404, 6242, 11159, 198, 220, 220, 220, 4808, 20214, 796, 17635, 198, 220, 220, 220, 329, 4808, 16302, 62, 9662, 287, 21965, 23680, 62, 42135, 62, 35, 1404, 6242, 11159, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 16302, 62, 9662, 14692, 16775, 7390, 8973, 287, 1628, 62, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 20214, 13, 33295, 28264, 16302, 62, 9662, 8, 198, 220, 220, 220, 1441, 4808, 20214, 198 ]
2.356261
567
# import import random import time # main main()
[ 2, 1330, 201, 198, 11748, 4738, 201, 198, 11748, 640, 201, 198, 201, 198, 2, 1388, 201, 198, 201, 198, 12417, 3419, 201, 198, 197 ]
2.36
25
N = int(input()) for i in range(N): serial = list(map(int, input().split())) get_proportion(serial)
[ 45, 796, 493, 7, 15414, 28955, 198, 198, 1640, 1312, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 11389, 796, 1351, 7, 8899, 7, 600, 11, 5128, 22446, 35312, 3419, 4008, 198, 220, 220, 220, 651, 62, 1676, 16864, 7, 46911, 8, 198 ]
2.477273
44
# Copyright 2020 The Kraken Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import xml.etree.ElementTree as ET from . import utils from . import tool log = logging.getLogger(__name__) if __name__ == '__main__': tool.main()
[ 2, 15069, 12131, 383, 43392, 46665, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 198, 6738, 764, 1330, 3384, 4487, 198, 6738, 764, 1330, 2891, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2891, 13, 12417, 3419, 198 ]
3.574766
214