content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/python # # Copyright 2018-2022 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from polyaxon.polyaxonfile.check import ( DEFAULT_POLYAXON_FILE_EXTENSION, DEFAULT_POLYAXON_FILE_NAME, check_default_path, check_polyaxonfile, ) from polyaxon.polyaxonfile.manager import get_op_specification from polyaxon.polyaxonfile.params import parse_params from polyaxon.polyaxonfile.specs import ( BaseSpecification, CompiledOperationSpecification, ComponentSpecification, OperationSpecification, get_specification, spec_kinds, )
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 2864, 12, 1238, 1828, 12280, 897, 261, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 7514, 897, 261, 13, 35428, 897, 261, 7753, 13, 9122, 1330, 357, 198, 220, 220, 220, 5550, 38865, 62, 45472, 56, 25922, 1340, 62, 25664, 62, 13918, 16938, 2849, 11, 198, 220, 220, 220, 5550, 38865, 62, 45472, 56, 25922, 1340, 62, 25664, 62, 20608, 11, 198, 220, 220, 220, 2198, 62, 12286, 62, 6978, 11, 198, 220, 220, 220, 2198, 62, 35428, 897, 261, 7753, 11, 198, 8, 198, 6738, 7514, 897, 261, 13, 35428, 897, 261, 7753, 13, 37153, 1330, 651, 62, 404, 62, 16684, 2649, 198, 6738, 7514, 897, 261, 13, 35428, 897, 261, 7753, 13, 37266, 1330, 21136, 62, 37266, 198, 6738, 7514, 897, 261, 13, 35428, 897, 261, 7753, 13, 4125, 6359, 1330, 357, 198, 220, 220, 220, 7308, 22882, 2649, 11, 198, 220, 220, 220, 3082, 3902, 32180, 22882, 2649, 11, 198, 220, 220, 220, 35100, 22882, 2649, 11, 198, 220, 220, 220, 14680, 22882, 2649, 11, 198, 220, 220, 220, 651, 62, 16684, 2649, 11, 198, 220, 220, 220, 1020, 62, 11031, 82, 11, 198, 8, 198 ]
3.160819
342
# Generated by Django 3.1.7 on 2021-07-18 10:36 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_countries.fields
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 22, 319, 33448, 12, 2998, 12, 1507, 838, 25, 2623, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 11748, 42625, 14208, 62, 9127, 1678, 13, 25747, 628 ]
3.081967
61
from rfeed import * # Create RSS feeds import GetOldTweets3 as got # Scrape for tweets from functools import lru_cache # Cache feeds from flask import make_response # Tell Flask that it's being sent XML @lru_cache(maxsize=None)
[ 6738, 374, 12363, 1330, 1635, 1303, 13610, 25012, 21318, 198, 11748, 3497, 19620, 32665, 1039, 18, 355, 1392, 1303, 1446, 13484, 329, 12665, 198, 6738, 1257, 310, 10141, 1330, 300, 622, 62, 23870, 1303, 34088, 21318, 198, 6738, 42903, 1330, 787, 62, 26209, 1303, 14026, 46947, 326, 340, 338, 852, 1908, 23735, 198, 198, 31, 75, 622, 62, 23870, 7, 9806, 7857, 28, 14202, 8, 628 ]
3.484848
66
# Generated by Django 2.2.6 on 2019-10-21 02:18 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 21, 319, 13130, 12, 940, 12, 2481, 7816, 25, 1507, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
import asyncio import logging import time from typing import Iterable, NoReturn, Optional, Set from procrastinate import app, exceptions, jobs, signals, tasks, types logger = logging.getLogger(__name__)
[ 11748, 30351, 952, 198, 11748, 18931, 198, 11748, 640, 198, 6738, 19720, 1330, 40806, 540, 11, 1400, 13615, 11, 32233, 11, 5345, 198, 198, 6738, 13834, 5685, 4559, 1330, 598, 11, 13269, 11, 3946, 11, 10425, 11, 8861, 11, 3858, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628 ]
3.678571
56
import wx
[ 11748, 266, 87, 198 ]
2.5
4
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import tensorflow as tf import numpy as np import sys import pickle if len(sys.argv) != 2: print("[ERROR] dump_pruned_model.py needs a ckpt file as input. \n e.g. python dump_pruned_model.py model.ckpt") sys.exit(0) # Get the values of all variables in the checkpoint file, and then save the values of all variables in a pickle file by dict # The key of the dict is the name of variables # The value of the dict is the values of variables # For example, all_variables[0]=<tf.Variable 'transformer/decoder/layer_0/masked_multi_head/LayerNorm/beta:0' shape=(512,) dtype=float32_ref>, # then the key is 'transformer/decoder/layer_0/masked_multi_head/LayerNorm/beta:0'; the value is sess.run(all_variables[0]) # If you need to dump the model which has same structure but different variable name, you can convert the name of your model into opennmt's name one by one. # For example, the name of beta variable of first layer normalization in first layer of decoder is 'transformer/decoder/layer_0/masked_multi_head/LayerNorm/beta:0', # and in your model, you use other name like 'body/decoder/layer_0/self_attention/LayerNorm/beta:0' # then the key is: 'transformer/decoder/layer_0/masked_multi_head/LayerNorm/beta:0' (the model name of opennmt) # and the value is sess.run(<tf.Variable 'transformer/decoder/layer_0/masked_multi_head/LayerNorm/beta:0', shape=(512,) dtype=float32_ref>) (your variable value) ckpt_name = sys.argv[1] with tf.Session() as sess: saver = tf.train.import_meta_graph(ckpt_name + ".meta") saver.restore(sess, (ckpt_name)) all_variables = tf.trainable_variables() ckpt = {} all_val = sess.run(all_variables) for var, val in zip(all_variables, all_val): if var.name.find("Adam") == -1: ckpt[var.name] = val with open('model.pkl', 'wb') as f: pickle.dump(ckpt, f, pickle.HIGHEST_PROTOCOL)
[ 2, 15069, 357, 66, 8, 12131, 11, 15127, 23929, 44680, 6234, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 2298, 293, 220, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 14512, 362, 25, 198, 220, 220, 220, 3601, 7203, 58, 24908, 60, 10285, 62, 1050, 40881, 62, 19849, 13, 9078, 2476, 257, 269, 74, 457, 2393, 355, 5128, 13, 3467, 77, 304, 13, 70, 13, 21015, 10285, 62, 1050, 40881, 62, 19849, 13, 9078, 2746, 13, 694, 457, 4943, 198, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 198, 2, 3497, 262, 3815, 286, 477, 9633, 287, 262, 26954, 2393, 11, 290, 788, 3613, 262, 3815, 286, 477, 9633, 287, 257, 2298, 293, 2393, 416, 8633, 198, 2, 383, 1994, 286, 262, 8633, 318, 262, 1438, 286, 9633, 198, 2, 383, 1988, 286, 262, 8633, 318, 262, 3815, 286, 9633, 198, 2, 1114, 1672, 11, 477, 62, 25641, 2977, 58, 15, 22241, 27, 27110, 13, 43015, 705, 7645, 16354, 14, 12501, 12342, 14, 29289, 62, 15, 14, 27932, 276, 62, 41684, 62, 2256, 14, 49925, 35393, 14, 31361, 25, 15, 6, 5485, 16193, 25836, 35751, 288, 4906, 28, 22468, 2624, 62, 5420, 22330, 198, 2, 788, 262, 1994, 318, 705, 7645, 16354, 14, 12501, 12342, 14, 29289, 62, 15, 14, 27932, 276, 62, 41684, 62, 2256, 14, 49925, 35393, 14, 31361, 25, 15, 17020, 262, 1988, 318, 264, 408, 13, 5143, 7, 439, 62, 25641, 2977, 58, 15, 12962, 198, 198, 2, 1002, 345, 761, 284, 10285, 262, 2746, 543, 468, 976, 4645, 475, 1180, 7885, 1438, 11, 345, 460, 10385, 262, 1438, 286, 534, 2746, 656, 1280, 77, 16762, 338, 1438, 530, 416, 530, 13, 198, 2, 1114, 1672, 11, 262, 1438, 286, 12159, 7885, 286, 717, 7679, 3487, 1634, 287, 717, 7679, 286, 875, 12342, 318, 705, 7645, 16354, 14, 12501, 12342, 14, 29289, 62, 15, 14, 27932, 276, 62, 41684, 62, 2256, 14, 49925, 35393, 14, 31361, 25, 15, 3256, 198, 2, 290, 287, 534, 2746, 11, 345, 779, 584, 1438, 588, 705, 2618, 14, 12501, 12342, 14, 29289, 62, 15, 14, 944, 62, 1078, 1463, 14, 49925, 35393, 14, 31361, 25, 15, 6, 198, 2, 788, 262, 1994, 318, 25, 705, 7645, 16354, 14, 12501, 12342, 14, 29289, 62, 15, 14, 27932, 276, 62, 41684, 62, 2256, 14, 49925, 35393, 14, 31361, 25, 15, 6, 357, 1169, 2746, 1438, 286, 1280, 77, 16762, 8, 198, 2, 290, 262, 1988, 318, 264, 408, 13, 5143, 7, 27, 27110, 13, 43015, 705, 7645, 16354, 14, 12501, 12342, 14, 29289, 62, 15, 14, 27932, 276, 62, 41684, 62, 2256, 14, 49925, 35393, 14, 31361, 25, 15, 3256, 5485, 16193, 25836, 35751, 288, 4906, 28, 22468, 2624, 62, 5420, 43734, 357, 14108, 7885, 1988, 8, 198, 198, 694, 457, 62, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 220, 198, 4480, 48700, 13, 36044, 3419, 355, 264, 408, 25, 198, 220, 220, 220, 473, 332, 796, 48700, 13, 27432, 13, 11748, 62, 28961, 62, 34960, 7, 694, 457, 62, 3672, 1343, 27071, 28961, 4943, 198, 220, 220, 220, 473, 332, 13, 2118, 382, 7, 82, 408, 11, 357, 694, 457, 62, 3672, 4008, 198, 220, 220, 220, 477, 62, 25641, 2977, 796, 48700, 13, 27432, 540, 62, 25641, 2977, 3419, 198, 220, 220, 220, 269, 74, 457, 796, 23884, 198, 220, 220, 220, 220, 198, 220, 220, 220, 477, 62, 2100, 796, 264, 408, 13, 5143, 7, 439, 62, 25641, 2977, 8, 198, 220, 220, 220, 329, 1401, 11, 1188, 287, 19974, 7, 439, 62, 25641, 2977, 11, 477, 62, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1401, 13, 3672, 13, 19796, 7203, 23159, 4943, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 74, 457, 58, 7785, 13, 3672, 60, 796, 1188, 198, 220, 220, 220, 220, 198, 220, 220, 220, 351, 1280, 10786, 19849, 13, 79, 41582, 3256, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 694, 457, 11, 277, 11, 2298, 293, 13, 39, 18060, 6465, 62, 4805, 2394, 4503, 3535, 8, 198 ]
2.931871
866
# coding=utf8 import MySQLdb conn = MySQLdb.connect( host='localhost', user='root', passwd='123456', db='TeacherSchema' ) cur = conn.cursor() cur.execute("SELECT COUNT(Teacher_Name) FROM Teacher;") count = cur.fetchall() count = count[0][0] print count for i in range(count): try: sql = "SELECT Teacher_Photo FROM Teacher WHERE Teacher_ID=" + str(i) + ";" cur.execute(sql) teacher = cur.fetchone() new_photo = teacher[0][:-4] + ".jpg" print new_photo sql_update = "UPDATE Teacher SET Teacher_Photo='" + str(new_photo) + "' WHERE Teacher_ID=" + str(i) + ";" cur.execute(sql_update) conn.commit() except: continue
[ 2, 19617, 28, 40477, 23, 198, 11748, 33476, 9945, 198, 198, 37043, 796, 33476, 9945, 13, 8443, 7, 198, 197, 4774, 11639, 36750, 3256, 198, 197, 7220, 11639, 15763, 3256, 198, 197, 6603, 16993, 11639, 10163, 29228, 3256, 198, 197, 9945, 11639, 6767, 3493, 27054, 2611, 6, 198, 8, 198, 22019, 796, 48260, 13, 66, 21471, 3419, 198, 198, 22019, 13, 41049, 7203, 46506, 327, 28270, 7, 6767, 3493, 62, 5376, 8, 16034, 32019, 26, 4943, 198, 9127, 796, 1090, 13, 69, 7569, 439, 3419, 198, 9127, 796, 954, 58, 15, 7131, 15, 60, 198, 4798, 954, 198, 198, 1640, 1312, 287, 2837, 7, 9127, 2599, 198, 197, 28311, 25, 198, 197, 197, 25410, 796, 366, 46506, 32019, 62, 6191, 16034, 32019, 33411, 32019, 62, 2389, 2625, 1343, 965, 7, 72, 8, 1343, 366, 26033, 198, 197, 197, 22019, 13, 41049, 7, 25410, 8, 198, 197, 197, 660, 3493, 796, 1090, 13, 69, 7569, 505, 3419, 198, 197, 197, 3605, 62, 23074, 796, 4701, 58, 15, 7131, 21912, 19, 60, 1343, 27071, 9479, 1, 198, 197, 197, 4798, 649, 62, 23074, 198, 197, 197, 25410, 62, 19119, 796, 366, 16977, 32019, 25823, 32019, 62, 6191, 11639, 1, 1343, 965, 7, 3605, 62, 23074, 8, 1343, 24018, 33411, 32019, 62, 2389, 2625, 1343, 965, 7, 72, 8, 1343, 366, 26033, 198, 197, 197, 22019, 13, 41049, 7, 25410, 62, 19119, 8, 198, 197, 197, 37043, 13, 41509, 3419, 198, 197, 16341, 25, 198, 197, 197, 43043, 628 ]
2.601626
246
""" Setup FFMPEG before!!! https://www.ffmpeg.org/download.html#build-windows """ from pydub import AudioSegment names = [ 'shot', 'explosion', 'explosion_1' ] for name in names: sound = AudioSegment.from_mp3(f"../sound/{name}.mp3") sound.export(f"../sound/{name}.wav", format="wav")
[ 37811, 198, 40786, 18402, 7378, 7156, 878, 10185, 198, 5450, 1378, 2503, 13, 487, 43913, 13, 2398, 14, 15002, 13, 6494, 2, 11249, 12, 28457, 198, 37811, 198, 198, 6738, 279, 5173, 549, 1330, 13491, 41030, 434, 198, 198, 14933, 796, 685, 198, 220, 220, 220, 705, 9442, 3256, 198, 220, 220, 220, 705, 20676, 18442, 3256, 198, 220, 220, 220, 705, 20676, 18442, 62, 16, 6, 198, 60, 198, 198, 1640, 1438, 287, 3891, 25, 198, 220, 220, 220, 2128, 796, 13491, 41030, 434, 13, 6738, 62, 3149, 18, 7, 69, 1, 40720, 23661, 14, 90, 3672, 27422, 3149, 18, 4943, 198, 220, 220, 220, 2128, 13, 39344, 7, 69, 1, 40720, 23661, 14, 90, 3672, 27422, 45137, 1600, 5794, 2625, 45137, 4943, 198 ]
2.456
125
from django.urls import path from home.views import IndexView, BlogView, DetailView, ToolView, ToolDetailView urlpatterns = [ path('', IndexView.as_view(), name='index'), path('blog/', BlogView.as_view(), name='blog'), path('detail/', DetailView.as_view(), name='detail'), path('tool/', ToolView.as_view(), name='tool'), path('tool_detail/', ToolDetailView.as_view(), name='tool_detail'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 201, 6738, 1363, 13, 33571, 1330, 12901, 7680, 11, 14001, 7680, 11, 42585, 7680, 11, 16984, 7680, 11, 16984, 11242, 603, 7680, 201, 201, 6371, 33279, 82, 796, 685, 201, 220, 220, 220, 3108, 10786, 3256, 12901, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 9630, 33809, 201, 220, 220, 220, 3108, 10786, 14036, 14, 3256, 14001, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 14036, 33809, 201, 220, 220, 220, 3108, 10786, 49170, 14, 3256, 42585, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 49170, 33809, 201, 220, 220, 220, 3108, 10786, 25981, 14, 3256, 16984, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 25981, 33809, 201, 220, 220, 220, 3108, 10786, 25981, 62, 49170, 14, 3256, 16984, 11242, 603, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 25981, 62, 49170, 33809, 201, 60, 201 ]
2.861111
144
# Copyright 2016 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .logger import logger from . import config from . import constants import cgi import csv import json import subprocess """ Several classes are defined in this module: Result: This is used for setting a descriptive value of the outcome of a test. This class is basically an ENUM which allows readable values for test results. ResultDisplayType: This is used for setting how a test's results should be output. For example in most cases it's probably fine to only show only tests which fail. In some cases though, you'll want to see which tests were skipped and why. This class is basically an ENUM which allows more nicely readable values for this option. TestResults: An instance of this class is returned as the result of a run of a test set. TestResults is a list of test run dictionaries, each contains: - name: a descriptive name of the test - result: either a TestResult or GroupTestResult instance Once this class has been instantiated it can be used to display the results on the command line or output reports. TestResult: This class represents an individual test result. It contains two values: result - This is an item of type Result which indicates the pass status of the test that ran confidence - Indicates how certain recon is about this result. Some tests can only make a good guess. notes - This is an optional text string field which describes any remarks that the test added. This is typically used to indicate reasons why a test failed or was skipped. GroupTestResult: Some types of tests test the same thing repeatedly. Rather than list each as a separate test they can be defined as a GroupTest which returns results as a GroupTestResult. A GroupTestResult is a list of individual tests which were run as part of the group. For each sub-test the following is stored: - name: a descriptive name of the test - result: a TestResult instance """ def _build_result_string(name, result, confidence, notes, use_color, term_colors, indent, widths): """Internal utility function to build a result string :param name: Name of test :param result: Enum indicating the status of the test :param confidence: Enum indicating the confidence of the test :param notes: Associated with the test :param use_color: Boolean indicating whether color should be displayed :param indent: Boolean indicating if test name should be indented :param widths: Dict with field widths :returns: """ name_newline_str = '\n' + ' ' * widths['TEST_NAME'] # Set the output color and text result based on test result result_color = "" pass_string = "" if result == Result.PASS: result_color = term_colors['pass'] pass_string = 'PASS' elif result == Result.SKIP: result_color = term_colors['skip'] pass_string = 'SKIP' elif result == Result.FAIL: result_color = term_colors['fail'] pass_string = 'FAIL' conf_string = { Result.CONF_SURE: '', Result.CONF_GUESS: 'guess', None: '', }[confidence] tab = ' ' if indent else '' result_string = "" # Add the test name and tab if applicable result_string += '{0: <{1}}'.format(tab + name, widths['TEST_NAME']) if len(tab + name) > widths['TEST_NAME']: result_string += name_newline_str # Add the color formatter if we are outputting color if use_color: result_string += result_color # Add the result string result_string += '{0: <{1}}'.format(pass_string, widths['TEST_RESULT']) # If we're outputting color, terminate the color string if use_color: result_string += term_colors['end'] # Add the confidence string result_string += '{0: <{1}}'.format(conf_string, widths['TEST_CONFIDENCE']) # Add any notes if notes: result_string += notes return result_string def _check_display_result(result, display_mode): """Based on the display mode and the result, determine if a result should be shown. :param result: The test result :param display_mode: The display mode :returns: True/False indicating whether the result should be shown """ # if we're displaying everything, display if display_mode == ResultDisplayType.DISPLAY_ALL: return True # if we're displaying anything which failed and this failed elif(result == Result.FAIL and display_mode >= ResultDisplayType.DISPLAY_FAIL_ONLY): return True # if we're displaying anything which isn't pass, and this is skip or fail elif(result == Result.SKIP and display_mode >= ResultDisplayType.DISPLAY_NOT_PASS): return True else: return False def _create_html_result_row(result, do_indent): """Create the HTML string for a row in the results table :param result: The test result :return: HTML string for the row """ INDENT_CLASS = "result_indent" # if we're indenting, set the class style to the indent style indent_class = " class=" + INDENT_CLASS if do_indent else "" result_class = " class=" + _result_to_class(result['result'].result) row_string = "" row_string += " <tr{}>\n".format(result_class) row_string += " <td{}>{}</td>\n".format( indent_class, cgi.escape(result['name'])) row_string += " <td{}>{}</td>\n".format( result_class, _result_text(result['result'].result)) row_string += " <td>{}</td>\n".format( cgi.escape(result['result'].notes or "")) row_string += " </tr>\n" return row_string def _create_html_group_row(result): """Create the HTML string for a group row in the results table :param result: The test result :return: HTML string for the row """ result_class = " class=" + _result_to_class(result['result'].result) row_string = "" row_string += " <tr{}>\n".format(result_class) row_string += " <td>{}</td>\n".format(cgi.escape(result['name'])) row_string += " <td{}>{}</td>\n".format( result_class, _result_text(result['result'].result)) row_string += " <td></td>\n" row_string += " </tr>\n" return row_string
[ 2, 15069, 1584, 30446, 15503, 6400, 446, 14973, 7712, 18470, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 764, 6404, 1362, 1330, 49706, 198, 6738, 764, 1330, 4566, 198, 6738, 764, 1330, 38491, 198, 198, 11748, 269, 12397, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 850, 14681, 198, 198, 37811, 198, 14945, 6097, 389, 5447, 287, 428, 8265, 25, 198, 198, 23004, 25, 198, 220, 220, 220, 770, 318, 973, 329, 4634, 257, 35644, 1988, 286, 262, 8055, 286, 257, 1332, 13, 628, 220, 220, 220, 770, 1398, 318, 6209, 281, 12964, 5883, 543, 3578, 31744, 3815, 329, 1332, 198, 220, 220, 220, 2482, 13, 628, 198, 23004, 23114, 6030, 25, 198, 220, 220, 220, 770, 318, 973, 329, 4634, 703, 257, 1332, 338, 2482, 815, 307, 5072, 13, 220, 1114, 198, 220, 220, 220, 1672, 287, 749, 2663, 340, 338, 2192, 3734, 284, 691, 905, 691, 5254, 543, 198, 220, 220, 220, 2038, 13, 220, 554, 617, 2663, 996, 11, 345, 1183, 765, 284, 766, 543, 5254, 547, 26684, 198, 220, 220, 220, 290, 1521, 13, 628, 220, 220, 220, 770, 1398, 318, 6209, 281, 12964, 5883, 543, 3578, 517, 16576, 31744, 3815, 198, 220, 220, 220, 329, 428, 3038, 13, 628, 198, 14402, 25468, 25, 198, 220, 220, 220, 1052, 4554, 286, 428, 1398, 318, 4504, 355, 262, 1255, 286, 257, 1057, 286, 257, 1332, 900, 13, 628, 220, 220, 220, 6208, 25468, 318, 257, 1351, 286, 1332, 1057, 48589, 3166, 11, 1123, 4909, 25, 198, 220, 220, 220, 532, 1438, 25, 257, 35644, 1438, 286, 262, 1332, 198, 220, 220, 220, 532, 1255, 25, 2035, 257, 6208, 23004, 393, 4912, 14402, 23004, 4554, 628, 220, 220, 220, 4874, 428, 1398, 468, 587, 9113, 12931, 340, 460, 307, 973, 284, 3359, 262, 2482, 198, 220, 220, 220, 319, 262, 3141, 1627, 393, 5072, 3136, 13, 628, 198, 14402, 23004, 25, 198, 220, 220, 220, 770, 1398, 6870, 281, 1981, 1332, 1255, 13, 632, 4909, 734, 3815, 25, 628, 220, 220, 220, 1255, 532, 770, 318, 281, 2378, 286, 2099, 25414, 543, 9217, 262, 1208, 3722, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1332, 326, 4966, 198, 220, 220, 220, 6628, 532, 1423, 16856, 703, 1728, 8195, 318, 546, 428, 1255, 13, 2773, 5254, 198, 220, 220, 220, 220, 220, 220, 220, 460, 691, 787, 257, 922, 4724, 13, 198, 220, 220, 220, 4710, 532, 770, 318, 281, 11902, 2420, 4731, 2214, 543, 8477, 597, 10252, 198, 220, 220, 220, 220, 220, 220, 220, 326, 262, 1332, 2087, 13, 770, 318, 6032, 973, 284, 7603, 3840, 1521, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 4054, 393, 373, 26684, 13, 628, 198, 13247, 14402, 23004, 25, 198, 220, 220, 220, 2773, 3858, 286, 5254, 1332, 262, 976, 1517, 7830, 13, 11317, 621, 1351, 1123, 198, 220, 220, 220, 355, 257, 4553, 1332, 484, 460, 307, 5447, 355, 257, 4912, 14402, 543, 5860, 2482, 198, 220, 220, 220, 355, 257, 4912, 14402, 23004, 13, 317, 4912, 14402, 23004, 318, 257, 1351, 286, 1981, 5254, 543, 198, 220, 220, 220, 547, 1057, 355, 636, 286, 262, 1448, 13, 1114, 1123, 850, 12, 9288, 262, 1708, 318, 8574, 25, 628, 220, 220, 220, 532, 1438, 25, 257, 35644, 1438, 286, 262, 1332, 198, 220, 220, 220, 532, 1255, 25, 257, 6208, 23004, 4554, 198, 198, 37811, 628, 628, 628, 198, 198, 4299, 4808, 11249, 62, 20274, 62, 8841, 7, 3672, 11, 1255, 11, 6628, 11, 4710, 11, 779, 62, 8043, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3381, 62, 4033, 669, 11, 33793, 11, 9647, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37693, 10361, 2163, 284, 1382, 257, 1255, 4731, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1438, 25, 6530, 286, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1255, 25, 2039, 388, 12739, 262, 3722, 286, 262, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6628, 25, 2039, 388, 12739, 262, 6628, 286, 262, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4710, 25, 10575, 351, 262, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 779, 62, 8043, 25, 41146, 12739, 1771, 3124, 815, 307, 9066, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 33793, 25, 41146, 12739, 611, 1332, 1438, 815, 307, 773, 4714, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 9647, 82, 25, 360, 713, 351, 2214, 9647, 82, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 3605, 1370, 62, 2536, 796, 705, 59, 77, 6, 1343, 705, 705, 1635, 9647, 82, 17816, 51, 6465, 62, 20608, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 262, 5072, 3124, 290, 2420, 1255, 1912, 319, 1332, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8043, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 8841, 796, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 6624, 25414, 13, 47924, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8043, 796, 3381, 62, 4033, 669, 17816, 6603, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 8841, 796, 705, 47924, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 6624, 25414, 13, 18831, 4061, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8043, 796, 3381, 62, 4033, 669, 17816, 48267, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 8841, 796, 705, 18831, 4061, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1255, 6624, 25414, 13, 7708, 4146, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8043, 796, 3381, 62, 4033, 669, 17816, 32165, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 62, 8841, 796, 705, 7708, 4146, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1013, 62, 8841, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 13, 10943, 37, 62, 50, 11335, 25, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 13, 10943, 37, 62, 38022, 7597, 25, 705, 5162, 408, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 25, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 58, 39745, 60, 628, 220, 220, 220, 220, 220, 220, 220, 7400, 796, 705, 220, 220, 220, 220, 705, 611, 33793, 2073, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 796, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 1332, 1438, 290, 7400, 611, 9723, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 705, 90, 15, 25, 1279, 90, 16, 11709, 4458, 18982, 7, 8658, 1343, 1438, 11, 9647, 82, 17816, 51, 6465, 62, 20608, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 8658, 1343, 1438, 8, 1875, 9647, 82, 17816, 51, 6465, 62, 20608, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 1438, 62, 3605, 1370, 62, 2536, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 3124, 1296, 1436, 611, 356, 389, 5072, 889, 3124, 198, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 8043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 1255, 62, 8043, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 1255, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 705, 90, 15, 25, 1279, 90, 16, 11709, 4458, 18982, 7, 6603, 62, 8841, 11, 9647, 82, 17816, 51, 6465, 62, 19535, 16724, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 5072, 889, 3124, 11, 23654, 262, 3124, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 8043, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 3381, 62, 4033, 669, 17816, 437, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 6628, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 705, 90, 15, 25, 1279, 90, 16, 11709, 4458, 18982, 7, 10414, 62, 8841, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9647, 82, 17816, 51, 6465, 62, 10943, 37, 2389, 18310, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 597, 4710, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4710, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 8841, 15853, 4710, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 62, 8841, 628, 198, 4299, 4808, 9122, 62, 13812, 62, 20274, 7, 20274, 11, 3359, 62, 14171, 2599, 198, 220, 220, 220, 37227, 15001, 319, 262, 3359, 4235, 290, 262, 1255, 11, 5004, 611, 257, 1255, 815, 198, 220, 220, 220, 307, 3402, 13, 628, 220, 220, 220, 1058, 17143, 1255, 25, 383, 1332, 1255, 198, 220, 220, 220, 1058, 17143, 3359, 62, 14171, 25, 383, 3359, 4235, 198, 220, 220, 220, 1058, 7783, 82, 25, 6407, 14, 25101, 12739, 1771, 262, 1255, 815, 307, 3402, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 611, 356, 821, 19407, 2279, 11, 3359, 198, 220, 220, 220, 611, 3359, 62, 14171, 6624, 25414, 23114, 6030, 13, 26288, 31519, 62, 7036, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1303, 611, 356, 821, 19407, 1997, 543, 4054, 290, 428, 4054, 198, 220, 220, 220, 1288, 361, 7, 20274, 6624, 25414, 13, 7708, 4146, 290, 3359, 62, 14171, 18189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 23114, 6030, 13, 26288, 31519, 62, 7708, 4146, 62, 1340, 11319, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1303, 611, 356, 821, 19407, 1997, 543, 2125, 470, 1208, 11, 290, 428, 318, 14267, 393, 2038, 198, 220, 220, 220, 1288, 361, 7, 20274, 6624, 25414, 13, 18831, 4061, 290, 3359, 62, 14171, 18189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 23114, 6030, 13, 26288, 31519, 62, 11929, 62, 47924, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 198, 4299, 4808, 17953, 62, 6494, 62, 20274, 62, 808, 7, 20274, 11, 466, 62, 521, 298, 2599, 198, 220, 220, 220, 37227, 16447, 262, 11532, 4731, 329, 257, 5752, 287, 262, 2482, 3084, 628, 220, 220, 220, 1058, 17143, 1255, 25, 383, 1332, 1255, 198, 220, 220, 220, 1058, 7783, 25, 11532, 4731, 329, 262, 5752, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 24413, 3525, 62, 31631, 796, 366, 20274, 62, 521, 298, 1, 628, 220, 220, 220, 1303, 611, 356, 821, 33793, 278, 11, 900, 262, 1398, 3918, 284, 262, 33793, 3918, 198, 220, 220, 220, 33793, 62, 4871, 796, 366, 1398, 2625, 1343, 24413, 3525, 62, 31631, 611, 466, 62, 521, 298, 2073, 13538, 628, 220, 220, 220, 1255, 62, 4871, 796, 366, 1398, 2625, 1343, 4808, 20274, 62, 1462, 62, 4871, 7, 20274, 17816, 20274, 6, 4083, 20274, 8, 628, 220, 220, 220, 5752, 62, 8841, 796, 13538, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 1279, 2213, 90, 92, 29, 59, 77, 1911, 18982, 7, 20274, 62, 4871, 8, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 90, 92, 29, 90, 92, 3556, 8671, 29, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33793, 62, 4871, 11, 269, 12397, 13, 41915, 7, 20274, 17816, 3672, 20520, 4008, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 90, 92, 29, 90, 92, 3556, 8671, 29, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4871, 11, 4808, 20274, 62, 5239, 7, 20274, 17816, 20274, 6, 4083, 20274, 4008, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 29, 90, 92, 3556, 8671, 29, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 269, 12397, 13, 41915, 7, 20274, 17816, 20274, 6, 4083, 17815, 393, 13538, 4008, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 7359, 2213, 29, 59, 77, 1, 628, 220, 220, 220, 1441, 5752, 62, 8841, 628, 198, 4299, 4808, 17953, 62, 6494, 62, 8094, 62, 808, 7, 20274, 2599, 198, 220, 220, 220, 37227, 16447, 262, 11532, 4731, 329, 257, 1448, 5752, 287, 262, 2482, 3084, 628, 220, 220, 220, 1058, 17143, 1255, 25, 383, 1332, 1255, 198, 220, 220, 220, 1058, 7783, 25, 11532, 4731, 329, 262, 5752, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1255, 62, 4871, 796, 366, 1398, 2625, 1343, 4808, 20274, 62, 1462, 62, 4871, 7, 20274, 17816, 20274, 6, 4083, 20274, 8, 628, 220, 220, 220, 5752, 62, 8841, 796, 13538, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 1279, 2213, 90, 92, 29, 59, 77, 1911, 18982, 7, 20274, 62, 4871, 8, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 29, 90, 92, 3556, 8671, 29, 59, 77, 1911, 18982, 7, 37157, 13, 41915, 7, 20274, 17816, 3672, 20520, 4008, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 90, 92, 29, 90, 92, 3556, 8671, 29, 59, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4871, 11, 4808, 20274, 62, 5239, 7, 20274, 17816, 20274, 6, 4083, 20274, 4008, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 220, 220, 1279, 8671, 12240, 8671, 29, 59, 77, 1, 198, 220, 220, 220, 5752, 62, 8841, 15853, 366, 220, 7359, 2213, 29, 59, 77, 1, 628, 220, 220, 220, 1441, 5752, 62, 8841, 628, 628, 628 ]
2.767424
2,597
import os import pytest from barbell2.dicomexplorer.dicomexplorer import DicomExplorer COHORT_DIR = '/Volumes/USB_SECURE1/data/radiomics/projects/deepseg/data/mega/processed/NEWEPOC' COHORT_DCM_FILE = '/Volumes/USB_SECURE1/data/radiomics/projects/deepseg/data/mega/processed/NEWEPOC/003001_pre_PV_L3.dcm' COHORT_TAG_FILE = '/Volumes/USB_SECURE1/data/radiomics/projects/deepseg/data/mega/processed/NEWEPOC/003001_pre_PV_L3.tag' COHORT_DCM_HEADER_NR_ENTRIES = 86 COHORT_NR_FILES = 156 DICOM_DICT_NR_ENTRIES = 4253 PATIENT_ID_NR_ENTRIES = 6 @pytest.fixture
[ 11748, 28686, 198, 11748, 12972, 9288, 198, 198, 6738, 2318, 7923, 17, 13, 67, 291, 462, 87, 489, 11934, 13, 67, 291, 462, 87, 489, 11934, 1330, 360, 291, 296, 18438, 11934, 628, 198, 8220, 39, 9863, 62, 34720, 796, 31051, 16598, 8139, 14, 27155, 62, 23683, 11335, 16, 14, 7890, 14, 6335, 29005, 873, 14, 42068, 14, 22089, 325, 70, 14, 7890, 14, 13731, 14, 14681, 276, 14, 13965, 8905, 4503, 6, 198, 8220, 39, 9863, 62, 9697, 44, 62, 25664, 796, 31051, 16598, 8139, 14, 27155, 62, 23683, 11335, 16, 14, 7890, 14, 6335, 29005, 873, 14, 42068, 14, 22089, 325, 70, 14, 7890, 14, 13731, 14, 14681, 276, 14, 13965, 8905, 4503, 14, 405, 6200, 16, 62, 3866, 62, 47, 53, 62, 43, 18, 13, 67, 11215, 6, 198, 8220, 39, 9863, 62, 42197, 62, 25664, 796, 31051, 16598, 8139, 14, 27155, 62, 23683, 11335, 16, 14, 7890, 14, 6335, 29005, 873, 14, 42068, 14, 22089, 325, 70, 14, 7890, 14, 13731, 14, 14681, 276, 14, 13965, 8905, 4503, 14, 405, 6200, 16, 62, 3866, 62, 47, 53, 62, 43, 18, 13, 12985, 6, 198, 8220, 39, 9863, 62, 9697, 44, 62, 37682, 1137, 62, 24723, 62, 3525, 7112, 1546, 796, 9849, 198, 8220, 39, 9863, 62, 24723, 62, 46700, 1546, 796, 23871, 198, 35, 2149, 2662, 62, 35, 18379, 62, 24723, 62, 3525, 7112, 1546, 796, 604, 28592, 198, 47, 1404, 28495, 62, 2389, 62, 24723, 62, 3525, 7112, 1546, 796, 718, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628, 628 ]
2.193798
258
# Copyright 2020, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Low level constant code generation. This deals with constants, there creation, there access, and some checks about them. Even mutable constants should not change during the course of the program. There are shared constants, which are created for multiple modules to use, you can think of them as globals. And there are module local constants, which are for a single module only. """ import ctypes import marshal import os import sys from nuitka import Options from nuitka.__past__ import ( # pylint: disable=I0021,redefined-builtin iterItems, xrange, ) from nuitka.Constants import compareConstants, getConstantWeight, isMutable from nuitka.constants.Serialization import ConstantAccessor from nuitka.PythonVersions import python_version from nuitka.Tracing import codegen_missing from nuitka.Version import getNuitkaVersion from .ErrorCodes import getReleaseCode from .GlobalConstants import getConstantDefaultPopulation from .Namify import namifyConstant from .templates.CodeTemplatesConstants import template_constants_reading from .templates.CodeTemplatesModules import template_header_guard def generateConstantReferenceCode(to_name, expression, emit, context): """ Assign the constant behind the expression to to_name.""" getConstantAccess( to_name=to_name, constant=expression.getCompileTimeConstant(), emit=emit, context=context, ) def generateConstantNoneReferenceCode(to_name, expression, emit, context): """ Assign 'None' to to_name.""" # No context or other knowledge needed, pylint: disable=unused-argument if to_name.c_type == "nuitka_bool": emit("%s = NUITKA_BOOL_FALSE;" % to_name) else: emit("%s = Py_None;" % to_name) def generateConstantTrueReferenceCode(to_name, expression, emit, context): """ Assign 'True' to to_name.""" # No context or other knowledge needed, pylint: disable=unused-argument if to_name.c_type == "nuitka_bool": emit("%s = NUITKA_BOOL_TRUE;" % to_name) else: emit("%s = Py_True;" % to_name) def generateConstantFalseReferenceCode(to_name, expression, emit, context): """ Assign 'False' to to_name.""" # No context or other knowledge needed, pylint: disable=unused-argument if to_name.c_type == "nuitka_bool": emit("%s = NUITKA_BOOL_FALSE;" % to_name) else: emit("%s = Py_False;" % to_name) def generateConstantEllipsisReferenceCode(to_name, expression, emit, context): """ Assign 'Ellipsis' to to_name.""" # No context or other knowledge needed, pylint: disable=unused-argument if to_name.c_type == "nuitka_bool": emit("%s = NUITKA_BOOL_FALSE;" % to_name) else: emit("%s = Py_Ellipsis;" % to_name) sizeof_long = ctypes.sizeof(ctypes.c_long) max_unsigned_long = 2 ** (sizeof_long * 8) - 1 # The gcc gives a warning for -2**sizeof_long*8-1, which is still an "int", but # seems to not work (without warning) as literal, so avoid it. min_signed_long = -(2 ** (sizeof_long * 8 - 1) - 1) done = set() def decideMarshal(constant_value): """Decide of a constant can be created using "marshal" module methods. This is not the case for everything. A prominent exception is types, they are constants, but the "marshal" module refuses to work with them. """ # Many cases to deal with, pylint: disable=too-many-return-statements constant_type = type(constant_value) if constant_type is type: # Types cannot be marshaled, there is no choice about it. return False elif constant_type is dict: # Look at all the keys an values, if one of it cannot be marshaled, # or should not, that is it. for key, value in iterItems(constant_value): if not decideMarshal(key): return False if not decideMarshal(value): return False elif constant_type in (tuple, list, set, frozenset): for element_value in constant_value: if not decideMarshal(element_value): return False elif constant_type is xrange: return False elif constant_type is slice: return False return True def isMarshalConstant(constant_value): """Decide if we want to use marshal to create a constant. The reason we do this, is because creating dictionaries with 700 elements creates a lot of C code, while gaining usually no performance at all. The MSVC compiler is especially notorious about hanging like forever with this active, due to its optimizer not scaling. Therefore we use a constant "weight" (how expensive it is), and apply that to decide. If marshal is not possible, or constant "weight" is too large, we don't do it. Also, for some constants, marshal can fail, and return other values. Check that too. In that case, we have to create it. """ if not decideMarshal(constant_value): return False if getConstantWeight(constant_value) < 20: return False try: marshal_value = marshal.dumps(constant_value) except ValueError: if Options.is_debug: codegen_missing.warning("Failed to marshal constant %r." % constant_value) return False restored = marshal.loads(marshal_value) r = compareConstants(constant_value, restored) if not r: pass # TODO: Potentially warn about these, where that is not the case. return r def getConstantsDefinitionCode(): """Create the code code "__constants.c" and "__constants.h" files. This needs to create code to make all global constants (used in more than one module) and create them. """ constant_accessor = ConstantAccessor( data_filename="__constants.const", top_level_name="global_constants" ) lines = [] for constant_value in getConstantDefaultPopulation(): identifier = constant_accessor.getConstantCode(constant_value) assert "[" in identifier, (identifier, constant_value) lines.append("// %s" % repr(constant_value)) lines.append( "#define const_%s %s" % (namifyConstant(constant_value), identifier) ) sys_executable = None if not Options.shallMakeModule(): if Options.isStandaloneMode(): # The directory is added back at run time. sys_executable = constant_accessor.getConstantCode( os.path.basename(sys.executable) ) else: sys_executable = constant_accessor.getConstantCode(sys.executable) sys_prefix = None sys_base_prefix = None sys_exec_prefix = None sys_base_exec_prefix = None # TODO: This part is needed for main program only, so do it there? if not Options.shallMakeModule() and not Options.isStandaloneMode(): sys_prefix = constant_accessor.getConstantCode(sys.prefix) sys_exec_prefix = constant_accessor.getConstantCode(sys.exec_prefix) if python_version >= 0x300: sys_base_prefix = constant_accessor.getConstantCode(sys.base_prefix) sys_base_exec_prefix = constant_accessor.getConstantCode( sys.base_exec_prefix ) lines.insert( 0, "extern PyObject *global_constants[%d];" % constant_accessor.getConstantsCount(), ) header = template_header_guard % { "header_guard_name": "__NUITKA_GLOBAL_CONSTANTS_H__", "header_body": "\n".join(lines), } major, minor, micro = getNuitkaVersion().split(".")[:3] if "rc" in micro: micro = micro[: micro.find("rc")] level = "candidate" else: level = "release" body = template_constants_reading % { "global_constants_count": constant_accessor.getConstantsCount(), "sys_executable": sys_executable, "sys_prefix": sys_prefix, "sys_base_prefix": sys_base_prefix, "sys_exec_prefix": sys_exec_prefix, "sys_base_exec_prefix": sys_base_exec_prefix, "nuitka_version_major": major, "nuitka_version_minor": minor, "nuitka_version_micro": micro, "nuitka_version_level": level, } return header, body
[ 2, 220, 220, 220, 220, 15069, 12131, 11, 17356, 9075, 268, 11, 6920, 1462, 25, 5568, 13, 71, 323, 268, 31, 14816, 13, 785, 198, 2, 198, 2, 220, 220, 220, 220, 2142, 286, 366, 45, 5013, 4914, 1600, 281, 45780, 11361, 17050, 326, 318, 11670, 290, 198, 2, 220, 220, 220, 220, 48105, 351, 16932, 7535, 11, 475, 635, 2499, 319, 663, 898, 13, 198, 2, 198, 2, 220, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 37811, 7754, 1241, 6937, 2438, 5270, 13, 198, 198, 1212, 7529, 351, 38491, 11, 612, 6282, 11, 612, 1895, 11, 290, 617, 8794, 546, 198, 18855, 13, 3412, 4517, 540, 38491, 815, 407, 1487, 1141, 262, 1781, 286, 262, 198, 23065, 13, 198, 198, 1858, 389, 4888, 38491, 11, 543, 389, 2727, 329, 3294, 13103, 284, 779, 11, 345, 198, 5171, 892, 286, 606, 355, 15095, 874, 13, 843, 612, 389, 8265, 1957, 38491, 11, 543, 389, 198, 1640, 257, 2060, 8265, 691, 13, 198, 198, 37811, 198, 198, 11748, 269, 19199, 198, 11748, 22397, 282, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 299, 5013, 4914, 1330, 18634, 198, 6738, 299, 5013, 4914, 13, 834, 30119, 834, 1330, 357, 220, 1303, 279, 2645, 600, 25, 15560, 28, 40, 405, 2481, 11, 445, 18156, 12, 18780, 259, 198, 220, 220, 220, 11629, 23022, 11, 198, 220, 220, 220, 2124, 9521, 11, 198, 8, 198, 6738, 299, 5013, 4914, 13, 34184, 1187, 1330, 8996, 34184, 1187, 11, 651, 3103, 18797, 25844, 11, 318, 44, 18187, 198, 6738, 299, 5013, 4914, 13, 9979, 1187, 13, 32634, 1634, 1330, 20217, 15457, 273, 198, 6738, 299, 5013, 4914, 13, 37906, 45150, 1330, 21015, 62, 9641, 198, 6738, 299, 5013, 4914, 13, 2898, 4092, 1330, 2438, 5235, 62, 45688, 198, 6738, 299, 5013, 4914, 13, 14815, 1330, 651, 45, 5013, 4914, 14815, 198, 198, 6738, 764, 12331, 34, 4147, 1330, 651, 26362, 10669, 198, 6738, 764, 22289, 34184, 1187, 1330, 651, 3103, 18797, 19463, 45251, 198, 6738, 764, 45, 321, 1958, 1330, 299, 321, 1958, 3103, 18797, 198, 6738, 764, 11498, 17041, 13, 10669, 12966, 17041, 34184, 1187, 1330, 11055, 62, 9979, 1187, 62, 25782, 198, 6738, 764, 11498, 17041, 13, 10669, 12966, 17041, 5841, 5028, 1330, 11055, 62, 25677, 62, 14864, 628, 198, 4299, 7716, 3103, 18797, 26687, 10669, 7, 1462, 62, 3672, 11, 5408, 11, 27588, 11, 4732, 2599, 198, 220, 220, 220, 37227, 2195, 570, 262, 6937, 2157, 262, 5408, 284, 284, 62, 3672, 526, 15931, 628, 220, 220, 220, 651, 3103, 18797, 15457, 7, 198, 220, 220, 220, 220, 220, 220, 220, 284, 62, 3672, 28, 1462, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6937, 28, 38011, 13, 1136, 7293, 576, 7575, 3103, 18797, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 28, 368, 270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 28, 22866, 11, 198, 220, 220, 220, 1267, 628, 198, 4299, 7716, 3103, 18797, 14202, 26687, 10669, 7, 1462, 62, 3672, 11, 5408, 11, 27588, 11, 4732, 2599, 198, 220, 220, 220, 37227, 2195, 570, 705, 14202, 6, 284, 284, 62, 3672, 526, 15931, 628, 220, 220, 220, 1303, 1400, 4732, 393, 584, 3725, 2622, 11, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 220, 220, 220, 611, 284, 62, 3672, 13, 66, 62, 4906, 6624, 366, 77, 5013, 4914, 62, 30388, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 399, 52, 2043, 25123, 62, 8202, 3535, 62, 37, 23719, 26033, 4064, 284, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 9485, 62, 14202, 26033, 4064, 284, 62, 3672, 8, 628, 198, 4299, 7716, 3103, 18797, 17821, 26687, 10669, 7, 1462, 62, 3672, 11, 5408, 11, 27588, 11, 4732, 2599, 198, 220, 220, 220, 37227, 2195, 570, 705, 17821, 6, 284, 284, 62, 3672, 526, 15931, 628, 220, 220, 220, 1303, 1400, 4732, 393, 584, 3725, 2622, 11, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 220, 220, 220, 611, 284, 62, 3672, 13, 66, 62, 4906, 6624, 366, 77, 5013, 4914, 62, 30388, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 399, 52, 2043, 25123, 62, 8202, 3535, 62, 5446, 8924, 26033, 4064, 284, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 9485, 62, 17821, 26033, 4064, 284, 62, 3672, 8, 628, 198, 4299, 7716, 3103, 18797, 25101, 26687, 10669, 7, 1462, 62, 3672, 11, 5408, 11, 27588, 11, 4732, 2599, 198, 220, 220, 220, 37227, 2195, 570, 705, 25101, 6, 284, 284, 62, 3672, 526, 15931, 628, 220, 220, 220, 1303, 1400, 4732, 393, 584, 3725, 2622, 11, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 220, 220, 220, 611, 284, 62, 3672, 13, 66, 62, 4906, 6624, 366, 77, 5013, 4914, 62, 30388, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 399, 52, 2043, 25123, 62, 8202, 3535, 62, 37, 23719, 26033, 4064, 284, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 9485, 62, 25101, 26033, 4064, 284, 62, 3672, 8, 628, 198, 4299, 7716, 3103, 18797, 30639, 2419, 271, 26687, 10669, 7, 1462, 62, 3672, 11, 5408, 11, 27588, 11, 4732, 2599, 198, 220, 220, 220, 37227, 2195, 570, 705, 30639, 2419, 271, 6, 284, 284, 62, 3672, 526, 15931, 628, 220, 220, 220, 1303, 1400, 4732, 393, 584, 3725, 2622, 11, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 49140, 628, 220, 220, 220, 611, 284, 62, 3672, 13, 66, 62, 4906, 6624, 366, 77, 5013, 4914, 62, 30388, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 399, 52, 2043, 25123, 62, 8202, 3535, 62, 37, 23719, 26033, 4064, 284, 62, 3672, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27588, 7203, 4, 82, 796, 9485, 62, 30639, 2419, 271, 26033, 4064, 284, 62, 3672, 8, 628, 198, 7857, 1659, 62, 6511, 796, 269, 19199, 13, 7857, 1659, 7, 310, 9497, 13, 66, 62, 6511, 8, 198, 198, 9806, 62, 43375, 62, 6511, 796, 362, 12429, 357, 7857, 1659, 62, 6511, 1635, 807, 8, 532, 352, 198, 198, 2, 383, 49582, 3607, 257, 6509, 329, 532, 17, 1174, 7857, 1659, 62, 6511, 9, 23, 12, 16, 11, 543, 318, 991, 281, 366, 600, 1600, 475, 198, 2, 2331, 284, 407, 670, 357, 19419, 6509, 8, 355, 18875, 11, 523, 3368, 340, 13, 198, 1084, 62, 32696, 62, 6511, 796, 532, 7, 17, 12429, 357, 7857, 1659, 62, 6511, 1635, 807, 532, 352, 8, 532, 352, 8, 198, 198, 28060, 796, 900, 3419, 628, 198, 4299, 5409, 41984, 282, 7, 9979, 415, 62, 8367, 2599, 198, 220, 220, 220, 37227, 10707, 485, 286, 257, 6937, 460, 307, 2727, 1262, 366, 76, 5406, 282, 1, 8265, 5050, 13, 628, 220, 220, 220, 770, 318, 407, 262, 1339, 329, 2279, 13, 317, 9208, 6631, 318, 3858, 11, 198, 220, 220, 220, 484, 389, 38491, 11, 475, 262, 366, 76, 5406, 282, 1, 8265, 17567, 284, 670, 351, 198, 220, 220, 220, 606, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 4650, 2663, 284, 1730, 351, 11, 279, 2645, 600, 25, 15560, 28, 18820, 12, 21834, 12, 7783, 12, 14269, 3196, 628, 220, 220, 220, 6937, 62, 4906, 796, 2099, 7, 9979, 415, 62, 8367, 8, 628, 220, 220, 220, 611, 6937, 62, 4906, 318, 2099, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24897, 2314, 307, 22397, 3021, 11, 612, 318, 645, 3572, 546, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1288, 361, 6937, 62, 4906, 318, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6803, 379, 477, 262, 8251, 281, 3815, 11, 611, 530, 286, 340, 2314, 307, 22397, 3021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 393, 815, 407, 11, 326, 318, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 11629, 23022, 7, 9979, 415, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5409, 41984, 282, 7, 2539, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5409, 41984, 282, 7, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1288, 361, 6937, 62, 4906, 287, 357, 83, 29291, 11, 1351, 11, 900, 11, 8400, 8247, 316, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5002, 62, 8367, 287, 6937, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5409, 41984, 282, 7, 30854, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1288, 361, 6937, 62, 4906, 318, 2124, 9521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1288, 361, 6937, 62, 4906, 318, 16416, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 1441, 6407, 628, 198, 4299, 318, 41984, 282, 3103, 18797, 7, 9979, 415, 62, 8367, 2599, 198, 220, 220, 220, 37227, 10707, 485, 611, 356, 765, 284, 779, 22397, 282, 284, 2251, 257, 6937, 13, 628, 220, 220, 220, 383, 1738, 356, 466, 428, 11, 318, 780, 4441, 48589, 3166, 351, 13037, 198, 220, 220, 220, 4847, 8075, 257, 1256, 286, 327, 2438, 11, 981, 13977, 3221, 645, 2854, 198, 220, 220, 220, 379, 477, 13, 383, 6579, 15922, 17050, 318, 2592, 18192, 546, 10938, 588, 198, 220, 220, 220, 8097, 351, 428, 4075, 11, 2233, 284, 663, 6436, 7509, 407, 20796, 13, 628, 220, 220, 220, 8447, 356, 779, 257, 6937, 366, 6551, 1, 357, 4919, 5789, 340, 318, 828, 290, 4174, 198, 220, 220, 220, 326, 284, 5409, 13, 628, 220, 220, 220, 1002, 22397, 282, 318, 407, 1744, 11, 393, 6937, 366, 6551, 1, 318, 1165, 1588, 11, 356, 198, 220, 220, 220, 836, 470, 466, 340, 13, 4418, 11, 329, 617, 38491, 11, 22397, 282, 460, 2038, 11, 290, 1441, 198, 220, 220, 220, 584, 3815, 13, 6822, 326, 1165, 13, 554, 326, 1339, 11, 356, 423, 284, 2251, 340, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 5409, 41984, 282, 7, 9979, 415, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 611, 651, 3103, 18797, 25844, 7, 9979, 415, 62, 8367, 8, 1279, 1160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22397, 282, 62, 8367, 796, 22397, 282, 13, 67, 8142, 7, 9979, 415, 62, 8367, 8, 198, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18634, 13, 271, 62, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2438, 5235, 62, 45688, 13, 43917, 7203, 37, 6255, 284, 22397, 282, 6937, 4064, 81, 526, 4064, 6937, 62, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 15032, 796, 22397, 282, 13, 46030, 7, 76, 5406, 282, 62, 8367, 8, 628, 220, 220, 220, 374, 796, 8996, 34184, 1187, 7, 9979, 415, 62, 8367, 11, 15032, 8, 198, 220, 220, 220, 611, 407, 374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 6902, 3746, 9828, 546, 777, 11, 810, 326, 318, 407, 262, 1339, 13, 628, 220, 220, 220, 1441, 374, 628, 198, 198, 4299, 651, 34184, 1187, 36621, 10669, 33529, 198, 220, 220, 220, 37227, 16447, 262, 2438, 2438, 366, 834, 9979, 1187, 13, 66, 1, 290, 366, 834, 9979, 1187, 13, 71, 1, 3696, 13, 628, 220, 220, 220, 770, 2476, 284, 2251, 2438, 284, 787, 477, 3298, 38491, 357, 1484, 287, 517, 198, 220, 220, 220, 621, 530, 8265, 8, 290, 2251, 606, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 6937, 62, 15526, 273, 796, 20217, 15457, 273, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 34345, 2625, 834, 9979, 1187, 13, 9979, 1600, 1353, 62, 5715, 62, 3672, 2625, 20541, 62, 9979, 1187, 1, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 3951, 796, 17635, 628, 220, 220, 220, 329, 6937, 62, 8367, 287, 651, 3103, 18797, 19463, 45251, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 27421, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 9979, 415, 62, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6818, 12878, 1, 287, 27421, 11, 357, 738, 7483, 11, 6937, 62, 8367, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7203, 1003, 4064, 82, 1, 4064, 41575, 7, 9979, 415, 62, 8367, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3951, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25113, 13086, 1500, 62, 4, 82, 4064, 82, 1, 4064, 357, 7402, 1958, 3103, 18797, 7, 9979, 415, 62, 8367, 828, 27421, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 25064, 62, 18558, 18187, 796, 6045, 628, 220, 220, 220, 611, 407, 18634, 13, 49271, 12050, 26796, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18634, 13, 271, 1273, 7642, 505, 19076, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 8619, 318, 2087, 736, 379, 1057, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 18558, 18187, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 12093, 12453, 7, 17597, 13, 18558, 18187, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 18558, 18187, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 17597, 13, 18558, 18187, 8, 628, 220, 220, 220, 25064, 62, 40290, 796, 6045, 198, 220, 220, 220, 25064, 62, 8692, 62, 40290, 796, 6045, 198, 220, 220, 220, 25064, 62, 18558, 62, 40290, 796, 6045, 198, 220, 220, 220, 25064, 62, 8692, 62, 18558, 62, 40290, 796, 6045, 628, 220, 220, 220, 1303, 16926, 46, 25, 770, 636, 318, 2622, 329, 1388, 1430, 691, 11, 523, 466, 340, 612, 30, 198, 220, 220, 220, 611, 407, 18634, 13, 49271, 12050, 26796, 3419, 290, 407, 18634, 13, 271, 1273, 7642, 505, 19076, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 40290, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 17597, 13, 40290, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 18558, 62, 40290, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 17597, 13, 18558, 62, 40290, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 21015, 62, 9641, 18189, 657, 87, 6200, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 8692, 62, 40290, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 17597, 13, 8692, 62, 40290, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 62, 8692, 62, 18558, 62, 40290, 796, 6937, 62, 15526, 273, 13, 1136, 3103, 18797, 10669, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 8692, 62, 18558, 62, 40290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 3951, 13, 28463, 7, 198, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1069, 759, 9485, 10267, 1635, 20541, 62, 9979, 1187, 58, 4, 67, 11208, 1, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 6937, 62, 15526, 273, 13, 1136, 34184, 1187, 12332, 22784, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 13639, 796, 11055, 62, 25677, 62, 14864, 4064, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25677, 62, 14864, 62, 3672, 1298, 366, 834, 45, 52, 2043, 25123, 62, 8763, 9864, 1847, 62, 10943, 2257, 1565, 4694, 62, 39, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25677, 62, 2618, 1298, 37082, 77, 1911, 22179, 7, 6615, 828, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1688, 11, 4159, 11, 4580, 796, 651, 45, 5013, 4914, 14815, 22446, 35312, 7203, 19570, 58, 25, 18, 60, 628, 220, 220, 220, 611, 366, 6015, 1, 287, 4580, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4580, 796, 4580, 58, 25, 4580, 13, 19796, 7203, 6015, 4943, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 366, 46188, 20540, 1, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 366, 20979, 1, 628, 220, 220, 220, 1767, 796, 11055, 62, 9979, 1187, 62, 25782, 4064, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20541, 62, 9979, 1187, 62, 9127, 1298, 6937, 62, 15526, 273, 13, 1136, 34184, 1187, 12332, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 62, 18558, 18187, 1298, 25064, 62, 18558, 18187, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 62, 40290, 1298, 25064, 62, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 62, 8692, 62, 40290, 1298, 25064, 62, 8692, 62, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 62, 18558, 62, 40290, 1298, 25064, 62, 18558, 62, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 62, 8692, 62, 18558, 62, 40290, 1298, 25064, 62, 8692, 62, 18558, 62, 40290, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 5013, 4914, 62, 9641, 62, 22478, 1298, 1688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 5013, 4914, 62, 9641, 62, 1084, 273, 1298, 4159, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 5013, 4914, 62, 9641, 62, 24055, 1298, 4580, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 5013, 4914, 62, 9641, 62, 5715, 1298, 1241, 11, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1441, 13639, 11, 1767, 198 ]
2.685075
3,350
from constants.constants import FOLDER_CONFIG_FILE_REPLACE, FILE_NOTION_CONFIG, CONFIG_FOLDER from config_builder.config_builder import get_file_data import os
[ 6738, 38491, 13, 9979, 1187, 1330, 376, 3535, 14418, 62, 10943, 16254, 62, 25664, 62, 2200, 6489, 11598, 11, 45811, 62, 11929, 2849, 62, 10943, 16254, 11, 25626, 62, 37, 3535, 14418, 198, 6738, 4566, 62, 38272, 13, 11250, 62, 38272, 1330, 651, 62, 7753, 62, 7890, 198, 11748, 28686, 628 ]
3.156863
51
import socket import threading import socketserver from Player import Player from Account import Account from World import World import re from copy import deepcopy global commands commands = dict({ "room" : "Exibe a sala atual", "move <n(north), s(south), e(east), w(weast)>" : "Move o personagem para a direção desejada", "get_item <nome do item>" : "Pega um item do mapa e coloca no inventário", "inventory" : "Exibe os itens do inventário", "npc <nome do npc>" : "Interage com um npc", "equip <nome do item>" : "Equipa um item do inventário", "attack <nome do monstro>" : "Inicia uma batalha com um monstro", "me": "Informações do seu personagem", "player_info <nome do jogador>": "Informações sobre um jogador online", "exit" : "Sai do jogo" }) if __name__ == "__main__": global server server = Server("localhost", 9999) server.start()
[ 11748, 17802, 198, 11748, 4704, 278, 198, 11748, 37037, 18497, 198, 6738, 7853, 1330, 7853, 198, 6738, 10781, 1330, 10781, 198, 6738, 2159, 1330, 2159, 198, 11748, 302, 198, 6738, 4866, 1330, 2769, 30073, 198, 20541, 9729, 198, 9503, 1746, 796, 8633, 15090, 198, 220, 220, 220, 366, 3823, 1, 1058, 366, 3109, 32438, 257, 3664, 64, 379, 723, 1600, 198, 220, 220, 220, 366, 21084, 1279, 77, 7, 43588, 828, 264, 7, 35782, 828, 304, 7, 23316, 828, 266, 7, 732, 459, 8, 24618, 1058, 366, 21774, 267, 1048, 363, 368, 31215, 257, 19958, 16175, 28749, 748, 68, 73, 4763, 1600, 198, 220, 220, 220, 366, 1136, 62, 9186, 1279, 77, 462, 466, 2378, 24618, 1058, 366, 47, 26470, 23781, 2378, 466, 3975, 64, 304, 951, 11216, 645, 8067, 6557, 27250, 1600, 198, 220, 220, 220, 366, 24807, 1, 1058, 366, 3109, 32438, 28686, 340, 641, 466, 8067, 6557, 27250, 1600, 198, 220, 220, 220, 366, 77, 14751, 1279, 77, 462, 466, 299, 14751, 24618, 1058, 366, 9492, 496, 401, 23781, 299, 14751, 1600, 198, 220, 220, 220, 366, 4853, 541, 1279, 77, 462, 466, 2378, 24618, 1058, 366, 23588, 541, 64, 23781, 2378, 466, 8067, 6557, 27250, 1600, 198, 220, 220, 220, 366, 20358, 1279, 77, 462, 466, 937, 20661, 24618, 1058, 366, 818, 33577, 334, 2611, 7365, 282, 3099, 401, 23781, 937, 20661, 1600, 198, 220, 220, 220, 366, 1326, 1298, 366, 818, 687, 64, 16175, 127, 113, 274, 466, 384, 84, 1048, 363, 368, 1600, 198, 220, 220, 220, 366, 7829, 62, 10951, 1279, 77, 462, 466, 48342, 7079, 29, 1298, 366, 818, 687, 64, 16175, 127, 113, 274, 523, 4679, 23781, 48342, 7079, 2691, 1600, 198, 220, 220, 220, 366, 37023, 1, 1058, 366, 50, 1872, 466, 474, 24076, 1, 198, 30072, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 3298, 4382, 220, 220, 220, 198, 220, 4382, 796, 9652, 7203, 36750, 1600, 860, 17032, 8, 198, 220, 4382, 13, 9688, 3419 ]
2.675676
333
import mongoengine import datetime import re import socket import time from bson.errors import InvalidStringData from flask import request from utilities.flask_tracking import documents from utilities.flask_tracking.utils import WSGICopyBody from mongoengine import Document try: from flask_login import current_user except ImportError: current_user = None
[ 11748, 285, 25162, 18392, 198, 11748, 4818, 8079, 198, 11748, 302, 198, 11748, 17802, 198, 11748, 640, 198, 198, 6738, 275, 1559, 13, 48277, 1330, 17665, 10100, 6601, 198, 6738, 42903, 1330, 2581, 198, 6738, 20081, 13, 2704, 2093, 62, 36280, 1330, 4963, 198, 6738, 20081, 13, 2704, 2093, 62, 36280, 13, 26791, 1330, 25290, 38, 2149, 11081, 25842, 198, 198, 6738, 285, 25162, 18392, 1330, 16854, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 42903, 62, 38235, 1330, 1459, 62, 7220, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1459, 62, 7220, 796, 6045, 198 ]
3.755102
98
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ When an inclusion's optional argument (enclosed in square brackets: []) spans multiple lines (via comment wrapping), ensure that the LaTeX Scanner doesn't throw an IndexError. An example of this in the wild is in Thomas Heim's epsdice LaTeX package: \includegraphics[height=1.75ex,viewport= 3 4 38 39,% clip=true]{\dicefile}% In epsdice 2007/02/15, v. 2.1. """ import TestSCons _exe = TestSCons._exe test = TestSCons.TestSCons() latex = test.where_is('latex') if not latex: test.skip_test("Could not find latex; skipping test(s).\n") test.write('SConstruct', """\ import os env = Environment(ENV = { 'PATH' : os.environ['PATH'] }) env.DVI('root.tex') """) test.write('root.tex', r"""\documentclass{article} \usepackage{graphicx} \begin{document} \includegraphics[height=1.75ex,% clip=true]{square} \end{document} """) # Dummy EPS file drawing a square test.write('square.eps', r"""%!PS-Adobe-2.0 EPSF-1.2 %%BoundingBox: 0 0 20 20 newpath 5 5 moveto 15 5 lineto 15 15 lineto 5 15 lineto 5 5 lineto stroke %%EOF """) test.run(arguments = '.') test.must_exist(test.workpath('root.dvi')) test.must_exist(test.workpath('root.log')) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 11593, 34, 3185, 38162, 9947, 834, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 198, 2, 257, 4866, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 198, 2, 366, 25423, 12340, 284, 1730, 287, 262, 10442, 1231, 17504, 11, 1390, 198, 2, 1231, 17385, 262, 2489, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 198, 2, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 9088, 286, 262, 10442, 11, 290, 284, 198, 2, 8749, 6506, 284, 4150, 262, 10442, 318, 30760, 284, 466, 523, 11, 2426, 284, 198, 2, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 198, 2, 287, 477, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 198, 2, 509, 12115, 11, 7788, 32761, 6375, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 198, 2, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 198, 2, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 198, 2, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 198, 2, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 16289, 3963, 6375, 3268, 7102, 45, 24565, 198, 2, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 47466, 13, 198, 2, 198, 198, 834, 260, 10178, 834, 796, 366, 834, 25664, 834, 11593, 2200, 29817, 2849, 834, 11593, 35, 6158, 834, 11593, 7206, 18697, 31054, 834, 1, 198, 198, 37811, 198, 2215, 281, 14900, 338, 11902, 4578, 357, 268, 20225, 287, 6616, 28103, 25, 198, 58, 12962, 32727, 3294, 3951, 357, 8869, 2912, 27074, 828, 4155, 326, 262, 4689, 49568, 198, 33351, 1008, 1595, 470, 3714, 281, 12901, 12331, 13, 198, 198, 2025, 1672, 286, 428, 287, 262, 4295, 318, 287, 5658, 679, 320, 338, 304, 862, 67, 501, 4689, 49568, 5301, 25, 198, 220, 3467, 259, 758, 1533, 11549, 58, 17015, 28, 16, 13, 2425, 1069, 11, 1177, 634, 28, 513, 604, 4353, 5014, 11, 4, 198, 220, 10651, 28, 7942, 60, 31478, 67, 501, 7753, 92, 4, 198, 818, 304, 862, 67, 501, 4343, 14, 2999, 14, 1314, 11, 410, 13, 362, 13, 16, 13, 198, 37811, 198, 198, 11748, 6208, 6173, 684, 198, 198, 62, 13499, 796, 6208, 6173, 684, 13557, 13499, 198, 198, 9288, 796, 6208, 6173, 684, 13, 14402, 6173, 684, 3419, 198, 198, 17660, 87, 796, 1332, 13, 3003, 62, 271, 10786, 17660, 87, 11537, 198, 198, 361, 407, 47038, 25, 198, 220, 220, 220, 1332, 13, 48267, 62, 9288, 7203, 23722, 407, 1064, 47038, 26, 31017, 1332, 7, 82, 737, 59, 77, 4943, 198, 198, 9288, 13, 13564, 10786, 50, 42316, 3256, 37227, 59, 198, 11748, 28686, 198, 24330, 796, 9344, 7, 1677, 53, 796, 1391, 705, 34219, 6, 1058, 28686, 13, 268, 2268, 17816, 34219, 20520, 32092, 198, 24330, 13, 35, 12861, 10786, 15763, 13, 16886, 11537, 198, 15931, 4943, 198, 198, 9288, 13, 13564, 10786, 15763, 13, 16886, 3256, 198, 81, 37811, 59, 22897, 4871, 90, 20205, 92, 198, 59, 1904, 26495, 90, 70, 22262, 87, 92, 198, 59, 27471, 90, 22897, 92, 198, 220, 3467, 259, 758, 1533, 11549, 58, 17015, 28, 16, 13, 2425, 1069, 11, 4, 198, 220, 10651, 28, 7942, 60, 90, 23415, 92, 198, 59, 437, 90, 22897, 92, 198, 15931, 4943, 198, 198, 2, 360, 13513, 47013, 2393, 8263, 257, 6616, 198, 9288, 13, 13564, 10786, 23415, 13, 25386, 3256, 198, 81, 37811, 4, 0, 3705, 12, 2782, 5910, 12, 17, 13, 15, 47013, 37, 12, 16, 13, 17, 198, 16626, 33, 9969, 14253, 25, 657, 657, 1160, 1160, 198, 649, 6978, 198, 220, 642, 642, 1445, 1462, 198, 1315, 642, 9493, 27206, 198, 1315, 1315, 9493, 27206, 198, 642, 1315, 9493, 27206, 198, 642, 220, 642, 9493, 27206, 198, 14000, 198, 16626, 4720, 37, 198, 15931, 4943, 198, 198, 9288, 13, 5143, 7, 853, 2886, 796, 705, 2637, 8, 198, 198, 9288, 13, 27238, 62, 38476, 7, 9288, 13, 1818, 6978, 10786, 15763, 13, 67, 8903, 6, 4008, 198, 9288, 13, 27238, 62, 38476, 7, 9288, 13, 1818, 6978, 10786, 15763, 13, 6404, 6, 4008, 198, 198, 9288, 13, 6603, 62, 9288, 3419, 198, 198, 2, 10714, 15965, 2977, 25, 198, 2, 7400, 12, 10394, 25, 19, 198, 2, 33793, 12, 8658, 82, 12, 14171, 25, 45991, 198, 2, 5268, 25, 198, 2, 43907, 25, 900, 4292, 8658, 7400, 11338, 28, 19, 6482, 10394, 28, 19, 25, 628 ]
3.00612
817
import numpy as np from matplotlib import pyplot from matplotlib.colors import Normalize from scipy import stats from scipy.special import logsumexp from IPython.display import Markdown import seaborn as sns lamda = 0.005 kappa = 0.25 rho = 0.01 mu = 0.01 data = [] for n_dim in [10, 80, 640]: for dt in [1, 8, 64]: t = time_matrix(n_dim, dt) c_z = corr_z(t, rho, mu, lamda, kappa) data.append({'n_dim': n_dim, 'dt': dt, 'correlation': c_z}) data = pd.DataFrame(data) g = sns.FacetGrid(data, col='dt', row='n_dim', sharex=False, sharey=False, aspect=1, height=5/2.54, gridspec_kws={"wspace": 0.1, "hspace": 0.2}) g = g.map(draw_heatmap, 'correlation', cbar=False, xticklabels=False, yticklabels=False).set_titles("$N$ = {row_name} | $\Delta t$ = {col_name}").set(xlabel=None) pyplot.savefig('matrix_plots.png', dpi=300)
[ 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 198, 6738, 2603, 29487, 8019, 13, 4033, 669, 1330, 14435, 1096, 198, 6738, 629, 541, 88, 1330, 9756, 198, 6738, 629, 541, 88, 13, 20887, 1330, 2604, 16345, 11201, 198, 6738, 6101, 7535, 13, 13812, 1330, 2940, 2902, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 198, 2543, 6814, 796, 657, 13, 22544, 198, 74, 20975, 796, 657, 13, 1495, 198, 81, 8873, 796, 657, 13, 486, 198, 30300, 796, 657, 13, 486, 198, 198, 7890, 796, 17635, 198, 1640, 299, 62, 27740, 287, 685, 940, 11, 4019, 11, 33759, 5974, 198, 220, 220, 220, 329, 288, 83, 287, 685, 16, 11, 807, 11, 5598, 5974, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 256, 796, 640, 62, 6759, 8609, 7, 77, 62, 27740, 11, 288, 83, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 89, 796, 1162, 81, 62, 89, 7, 83, 11, 374, 8873, 11, 38779, 11, 30592, 6814, 11, 479, 20975, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 15090, 6, 77, 62, 27740, 10354, 299, 62, 27740, 11, 705, 28664, 10354, 288, 83, 11, 705, 10215, 49501, 10354, 269, 62, 89, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 7890, 796, 279, 67, 13, 6601, 19778, 7, 7890, 8, 198, 70, 796, 3013, 82, 13, 37, 23253, 41339, 7, 7890, 11, 951, 11639, 28664, 3256, 5752, 11639, 77, 62, 27740, 3256, 2648, 87, 28, 25101, 11, 2648, 88, 28, 25101, 11, 4843, 28, 16, 11, 6001, 28, 20, 14, 17, 13, 4051, 11, 50000, 43106, 62, 74, 18504, 28, 4895, 86, 13200, 1298, 657, 13, 16, 11, 366, 71, 13200, 1298, 657, 13, 17, 30072, 198, 70, 796, 308, 13, 8899, 7, 19334, 62, 25080, 8899, 11, 705, 10215, 49501, 3256, 269, 5657, 28, 25101, 11, 220, 742, 624, 23912, 1424, 28, 25101, 11, 331, 42298, 23912, 1424, 28, 25101, 737, 2617, 62, 83, 30540, 7203, 3, 45, 3, 796, 1391, 808, 62, 3672, 92, 930, 39280, 42430, 256, 3, 796, 1391, 4033, 62, 3672, 92, 11074, 2617, 7, 87, 18242, 28, 14202, 8, 198, 9078, 29487, 13, 21928, 5647, 10786, 6759, 8609, 62, 489, 1747, 13, 11134, 3256, 288, 14415, 28, 6200, 8 ]
2.220513
390
from .card import CardFilterSet
[ 6738, 764, 9517, 1330, 5172, 22417, 7248, 198 ]
4
8
""" This carries out dynamic and static code analysis and POSTs the results to GitHub as statuses. Without passing statuses, a pull request cannot be merged. Dynamic tests require 100% passing to be considered a success. The static tests are informational only and will always generate success if they run correctly. """ # pylint: disable=logging-fstring-interpolation import decimal import json import os import re import time import dpath import requests from requests.exceptions import MissingSchema from py_dev_hammer.utils.aws import ( connect_to_aws_resource, get_items_by_partition_key, put_with_partition_and_sort_key, get_boto_client, ) from py_dev_hammer.utils.errors import GeneralError from py_dev_hammer.utils.general import logger, load_config_file, get_certs APP_CONFIG = load_config_file(f"{os.environ.get('CONFIG_DIR')}/app_config.yml") USER_CONFIG = load_config_file(f"{os.environ.get('CONFIG_DIR')}/user_config.yml") def entry_point(): """ Allows the module to be called from the command line. """ logger.info("Starting at entry point") dynamic_test_types = list(APP_CONFIG['tests_to_run']['dynamic'].keys()) static_test_types = list(APP_CONFIG['tests_to_run']['static'].keys()) test_types = dynamic_test_types + static_test_types static_results_dir = os.path.join( APP_CONFIG['static_analysis']['root_dir'], APP_CONFIG['static_analysis']['results_dir']) test_parameters = [ _create_test_parameters_dict(test_type, static_results_dir) for test_type in test_types] target_url = _parse_url_from_arn(USER_CONFIG) os.environ['REQUESTS_CA_BUNDLE'] = get_certs() try: _execute(USER_CONFIG, test_parameters, target_url, dynamic_test_types, static_test_types) except GeneralError as gen_err: logger.error(f"GeneralError in GitHub Status Posting: {gen_err}", exc_info=True) else: logger.info("Successfully executed GitHub Status Posting")
[ 37811, 198, 1212, 10732, 503, 8925, 290, 9037, 2438, 3781, 290, 24582, 82, 262, 2482, 284, 21722, 355, 1185, 2664, 13, 198, 16249, 6427, 1185, 2664, 11, 257, 2834, 2581, 2314, 307, 23791, 13, 26977, 5254, 2421, 1802, 4, 6427, 284, 307, 198, 5936, 3089, 257, 1943, 13, 383, 9037, 5254, 389, 21524, 691, 290, 481, 1464, 7716, 1943, 611, 198, 9930, 1057, 9380, 13, 198, 37811, 198, 198, 2, 279, 2645, 600, 25, 15560, 28, 6404, 2667, 12, 69, 8841, 12, 3849, 16104, 341, 198, 198, 11748, 32465, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 640, 198, 198, 11748, 288, 6978, 198, 11748, 7007, 198, 6738, 7007, 13, 1069, 11755, 1330, 25639, 27054, 2611, 198, 198, 6738, 12972, 62, 7959, 62, 17980, 13, 26791, 13, 8356, 1330, 357, 198, 220, 220, 220, 2018, 62, 1462, 62, 8356, 62, 31092, 11, 651, 62, 23814, 62, 1525, 62, 3911, 653, 62, 2539, 11, 1234, 62, 4480, 62, 3911, 653, 62, 392, 62, 30619, 62, 2539, 11, 198, 220, 220, 220, 651, 62, 65, 2069, 62, 16366, 11, 198, 8, 198, 6738, 12972, 62, 7959, 62, 17980, 13, 26791, 13, 48277, 1330, 3611, 12331, 198, 6738, 12972, 62, 7959, 62, 17980, 13, 26791, 13, 24622, 1330, 49706, 11, 3440, 62, 11250, 62, 7753, 11, 651, 62, 22583, 82, 198, 198, 24805, 62, 10943, 16254, 796, 3440, 62, 11250, 62, 7753, 7, 69, 1, 90, 418, 13, 268, 2268, 13, 1136, 10786, 10943, 16254, 62, 34720, 11537, 92, 14, 1324, 62, 11250, 13, 88, 4029, 4943, 198, 29904, 62, 10943, 16254, 796, 3440, 62, 11250, 62, 7753, 7, 69, 1, 90, 418, 13, 268, 2268, 13, 1136, 10786, 10943, 16254, 62, 34720, 11537, 92, 14, 7220, 62, 11250, 13, 88, 4029, 4943, 628, 198, 4299, 5726, 62, 4122, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40402, 262, 8265, 284, 307, 1444, 422, 262, 3141, 1627, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 10951, 7203, 22851, 379, 5726, 966, 4943, 628, 220, 220, 220, 8925, 62, 9288, 62, 19199, 796, 1351, 7, 24805, 62, 10943, 16254, 17816, 41989, 62, 1462, 62, 5143, 6, 7131, 6, 67, 28995, 6, 4083, 13083, 28955, 198, 220, 220, 220, 9037, 62, 9288, 62, 19199, 796, 1351, 7, 24805, 62, 10943, 16254, 17816, 41989, 62, 1462, 62, 5143, 6, 7131, 6, 12708, 6, 4083, 13083, 28955, 198, 220, 220, 220, 1332, 62, 19199, 796, 8925, 62, 9288, 62, 19199, 1343, 9037, 62, 9288, 62, 19199, 628, 220, 220, 220, 9037, 62, 43420, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 220, 220, 220, 220, 43504, 62, 10943, 16254, 17816, 12708, 62, 20930, 6, 7131, 6, 15763, 62, 15908, 6, 4357, 43504, 62, 10943, 16254, 17816, 12708, 62, 20930, 6, 7131, 6, 43420, 62, 15908, 6, 12962, 198, 220, 220, 220, 1332, 62, 17143, 7307, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 17953, 62, 9288, 62, 17143, 7307, 62, 11600, 7, 9288, 62, 4906, 11, 9037, 62, 43420, 62, 15908, 8, 329, 1332, 62, 4906, 287, 1332, 62, 19199, 60, 198, 220, 220, 220, 2496, 62, 6371, 796, 4808, 29572, 62, 6371, 62, 6738, 62, 1501, 7, 29904, 62, 10943, 16254, 8, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 2200, 10917, 1546, 4694, 62, 8141, 62, 33, 4944, 35, 2538, 20520, 796, 651, 62, 22583, 82, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 41049, 7, 29904, 62, 10943, 16254, 11, 1332, 62, 17143, 7307, 11, 2496, 62, 6371, 11, 8925, 62, 9288, 62, 19199, 11, 9037, 62, 9288, 62, 19199, 8, 198, 220, 220, 220, 2845, 3611, 12331, 355, 2429, 62, 8056, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 12218, 12331, 287, 21722, 12678, 2947, 278, 25, 1391, 5235, 62, 8056, 92, 1600, 2859, 62, 10951, 28, 17821, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 33244, 2759, 10945, 21722, 12678, 2947, 278, 4943, 628, 628, 628, 628, 628, 198 ]
2.855282
691
# Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). # You may assume that the intervals were initially sorted according to their start times. # Example 1: # Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. # Example 2: # Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. # This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10]. # Definition for an interval. # class Interval: # def __init__(self, s=0, e=0): # self.start = s # self.end = e # @param {Interval[]} intervals # @param {Interval} newInterval # @return {Interval[]}
[ 2, 11259, 257, 900, 286, 1729, 12, 2502, 75, 5912, 20016, 11, 7550, 257, 649, 16654, 656, 262, 20016, 357, 647, 469, 611, 3306, 737, 198, 198, 2, 921, 743, 7048, 326, 262, 20016, 547, 7317, 23243, 1864, 284, 511, 923, 1661, 13, 198, 198, 2, 17934, 352, 25, 198, 2, 11259, 20016, 685, 16, 11, 18, 38430, 21, 11, 24, 4357, 7550, 290, 20121, 685, 17, 11, 20, 60, 287, 355, 685, 16, 11, 20, 38430, 21, 11, 24, 4083, 198, 198, 2, 17934, 362, 25, 198, 2, 11259, 685, 16, 11, 17, 38430, 18, 11, 20, 38430, 21, 11, 22, 38430, 23, 11, 940, 38430, 1065, 11, 1433, 4357, 7550, 290, 20121, 685, 19, 11, 24, 60, 287, 355, 685, 16, 11, 17, 38430, 18, 11, 940, 38430, 1065, 11, 1433, 4083, 198, 198, 2, 770, 318, 780, 262, 649, 16654, 685, 19, 11, 24, 60, 12893, 1686, 351, 685, 18, 11, 20, 38430, 21, 11, 22, 38430, 23, 11, 940, 4083, 220, 198, 198, 2, 30396, 329, 281, 16654, 13, 198, 2, 1398, 4225, 2100, 25, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 264, 28, 15, 11, 304, 28, 15, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 796, 264, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 437, 796, 304, 198, 220, 220, 220, 1303, 2488, 17143, 1391, 9492, 2100, 21737, 92, 20016, 198, 220, 220, 220, 1303, 2488, 17143, 1391, 9492, 2100, 92, 649, 9492, 2100, 198, 220, 220, 220, 1303, 2488, 7783, 1391, 9492, 2100, 21737, 92, 628 ]
2.6
270
from copy import deepcopy from dataclasses import dataclass, field from math import degrees, radians, sin, tan from typing import List from taperable_helix import Helix, HelixLocation @dataclass class HelicalThread(Helix): """ A set of fields used to represent a helical thread and passed as the parameter to `helical_thread`. Control of the size and spacing of the thread using the various fields in Helix and those below. """ angle_degs: float = 45 """angle in degrees""" major_cutoff: float = 0 """Size of of flat at the major diameter""" minor_cutoff: float = 0 """Size of flat at the minor diameter""" ext_clearance: float = 0.1 """External clearance between external and internal threads""" thread_overlap: float = 0.001 """ Amount to overlap threads with the core so the union of core and threads is a manifold """ @dataclass class ThreadHelixes: """ The helixes returned by helical_thread` that represents the internal thread, prefixed with `int_` and the external thread, prefixed with `ext_`. """ ht: HelicalThread """The basic Dimensions of the helixes""" int_helix_radius: float = 0 """The internal thread radius""" int_helixes: List[HelixLocation] = field(default_factory=list) """List of the internal helix locations""" ext_helix_radius: float = 0 """The external thread radius""" ext_helixes: List[HelixLocation] = field(default_factory=list) """List of the external helix locations""" def helical_thread(ht: HelicalThread) -> ThreadHelixes: """ Given HelicalThread compute the internal and external helixes thread and returning them in ThreadHelixes. int_hexlix_radius, int_helixes, ext_helix_radius and ext_helixes. The helixes are an array of HelixLocations that define the helixes of the thread. If minor_cutoff is 0 then the thread will be triangular and the length of the {int|ext}_helixes 3. if minor_cutoff > 0 then the thread will be a trapezoid with the length of the {int|ext}_helixes will be 4. :param ht: The basic dimensions of the helicla thread :returns: internal and external helixes necessary to use taperable-helix """ # print( # f"helical_thread:+ height={height:.3f} pitch={pitch:.3f} angle_degs={angle_degs:.3f}" # ) # print( # f"helical_thread: inset={inset:.3f} ext_clearance={ext_clearance} taper_rpos={taper_rpos:.3f}" # ) # print( # f"helical_thread: major_cutoff={major_cutoff} minor_cutoff={minor_cutoff} thread_overlap={thread_overlap:.3f} " # ) # print( # f"helical_thread: first_t={first_t} last_t={last_t} " # ) result: ThreadHelixes = ThreadHelixes(ht) angle_radians: float = radians(ht.angle_degs) tan_hangle: float = tan(angle_radians / 2) sin_hangle: float = sin(angle_radians / 2) tip_to_major_cutoff: float = ((ht.pitch - ht.major_cutoff) / 2) / tan_hangle tip_to_minor_cutoff: float = (ht.minor_cutoff / 2) / tan_hangle # print( # f"helical_thread: tip_to_major_cutoff={tip_to_major_cutoff:.3f} tip_to_minor_cutoff={tip_to_minor_cutoff:.3f}" # ) int_thread_depth: float = tip_to_major_cutoff - tip_to_minor_cutoff # print(f"helical_thread: int_thread_depth={int_thread_depth}") thread_overlap_vert_adj: float = ht.thread_overlap * tan_hangle thread_half_height_at_helix_radius: float = ( (ht.pitch - ht.major_cutoff) / 2 ) + thread_overlap_vert_adj thread_half_height_at_opposite_helix_radius: float = ht.minor_cutoff / 2 # print( # f"thh_at_r={thread_half_height_at_helix_radius} thh_at_or={thread_half_height_at_opposite_helix_radius} td={int_thread_depth}" # ) # Internal thread have helix thread radisu result.int_helix_radius = ht.radius result.int_helixes = [] # print(f"result.int_helix_radius={result.int_helix_radius}") hl = HelixLocation( radius=result.int_helix_radius + ht.thread_overlap, horz_offset=0, vert_offset=-thread_half_height_at_helix_radius, ) result.int_helixes.append(hl) hl = HelixLocation( radius=result.int_helix_radius + ht.thread_overlap, horz_offset=0, vert_offset=+thread_half_height_at_helix_radius, ) result.int_helixes.append(hl) hl = HelixLocation( radius=result.int_helix_radius, horz_offset=-int_thread_depth, vert_offset=+thread_half_height_at_opposite_helix_radius, ) result.int_helixes.append(hl) if ht.minor_cutoff > 0: hl = HelixLocation( radius=result.int_helix_radius, horz_offset=-int_thread_depth, vert_offset=-thread_half_height_at_opposite_helix_radius, ) result.int_helixes.append(hl) # Use ext_clearance to calcuate external thread values # hyp is the hypothense of the trinagle formed by a radial # line, the tip of the internal thread and the tip of the # external thread. hyp: float = ht.ext_clearance / sin_hangle # ext_vert_adj is the amount to ajdust verticaly the helix ext_vert_adj: float = (hyp - ht.ext_clearance) * tan_hangle # print(f"hyp={hyp} ext_vert_adj={ext_vert_adj}") # External thread have the helix on the minor side and # so we subtract the int_thread_depth and ext_clearance from ht.radius result.ext_helix_radius = ht.radius - int_thread_depth - ht.ext_clearance # print( # f"result.ext_helix_radius={ht.ext_helix_radius} td={int_thread_depth} ec={ht.ext_clearance}" # ) ext_thread_half_height_at_ext_helix_radius: float = ( (ht.pitch - ht.minor_cutoff) / 2 ) - ext_vert_adj ext_thread_half_height_at_ext_helix_radius_plus_tova: float = ( ext_thread_half_height_at_ext_helix_radius + thread_overlap_vert_adj ) # When major cutoff becomes smaller than the exter_vert_adj then the # external thread will only be three points and we set # ext_thrad_half_height_at_opposite_ext_helix_radius # to 0 and # compute the thread depth. Under these circumstances the clearance # from the external tip to internal core will be close to ext_clearance # or greater. See test_thread.py or test_thread_new.py. ext_thread_half_height_at_opposite_ext_helix_radius: float = ( ht.major_cutoff / 2 ) - ext_vert_adj ext_thread_depth: float = int_thread_depth if ext_thread_half_height_at_opposite_ext_helix_radius < 0: ext_thread_half_height_at_opposite_ext_helix_radius = 0 ext_thread_depth = ext_thread_half_height_at_ext_helix_radius / tan_hangle # print( # f"ext_thread_depth={ext_thread_depth} ext_thh_at_ehr={ext_thread_half_height_at_ext_helix_radius} ext_thh_at_ehr_plus_tovo={ext_thread_half_height_at_ext_helix_radius_plus_tova} ext_thh_at_oehr={ext_thread_half_height_at_opposite_ext_helix_radius}" # ) result.ext_helixes = [] hl = HelixLocation( radius=result.ext_helix_radius - ht.thread_overlap, horz_offset=0, vert_offset=-ext_thread_half_height_at_ext_helix_radius_plus_tova, ) result.ext_helixes.append(hl) hl = HelixLocation( radius=result.ext_helix_radius - ht.thread_overlap, horz_offset=0, vert_offset=+ext_thread_half_height_at_ext_helix_radius_plus_tova, ) result.ext_helixes.append(hl) hl = HelixLocation( radius=result.ext_helix_radius, horz_offset=ext_thread_depth, vert_offset=+ext_thread_half_height_at_opposite_ext_helix_radius, ) result.ext_helixes.append(hl) if ext_thread_half_height_at_opposite_ext_helix_radius > 0: hl = HelixLocation( radius=result.ext_helix_radius, horz_offset=ext_thread_depth, vert_offset=-ext_thread_half_height_at_opposite_ext_helix_radius, ) result.ext_helixes.append(hl) return result
[ 6738, 4866, 1330, 2769, 30073, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 10688, 1330, 7370, 11, 2511, 1547, 11, 7813, 11, 25706, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 256, 2136, 540, 62, 2978, 844, 1330, 5053, 844, 11, 5053, 844, 14749, 628, 198, 31, 19608, 330, 31172, 198, 4871, 5053, 605, 16818, 7, 12621, 844, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 900, 286, 7032, 973, 284, 2380, 257, 932, 605, 4704, 290, 3804, 355, 198, 220, 220, 220, 262, 11507, 284, 4600, 2978, 605, 62, 16663, 44646, 628, 220, 220, 220, 6779, 286, 262, 2546, 290, 31050, 286, 262, 4704, 1262, 262, 2972, 198, 220, 220, 220, 7032, 287, 5053, 844, 290, 883, 2174, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 9848, 62, 13500, 82, 25, 12178, 796, 4153, 198, 220, 220, 220, 37227, 9248, 287, 7370, 37811, 628, 220, 220, 220, 1688, 62, 8968, 2364, 25, 12178, 796, 657, 198, 220, 220, 220, 37227, 10699, 286, 286, 6228, 379, 262, 1688, 14753, 37811, 628, 220, 220, 220, 4159, 62, 8968, 2364, 25, 12178, 796, 657, 198, 220, 220, 220, 37227, 10699, 286, 6228, 379, 262, 4159, 14753, 37811, 628, 220, 220, 220, 1070, 62, 20063, 590, 25, 12178, 796, 657, 13, 16, 198, 220, 220, 220, 37227, 41506, 19745, 1022, 7097, 290, 5387, 14390, 37811, 628, 220, 220, 220, 4704, 62, 2502, 37796, 25, 12178, 796, 657, 13, 8298, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26308, 284, 21721, 14390, 351, 262, 4755, 523, 262, 6441, 286, 4755, 290, 198, 220, 220, 220, 14390, 318, 257, 48048, 198, 220, 220, 220, 37227, 628, 198, 31, 19608, 330, 31172, 198, 4871, 14122, 12621, 844, 274, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 932, 844, 274, 4504, 416, 932, 605, 62, 16663, 63, 326, 6870, 262, 5387, 198, 220, 220, 220, 4704, 11, 7694, 2966, 351, 4600, 600, 62, 63, 290, 262, 7097, 4704, 11, 7694, 2966, 351, 4600, 2302, 62, 44646, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 83, 25, 5053, 605, 16818, 198, 220, 220, 220, 37227, 464, 4096, 41265, 286, 262, 932, 844, 274, 37811, 628, 220, 220, 220, 493, 62, 2978, 844, 62, 42172, 25, 12178, 796, 657, 198, 220, 220, 220, 37227, 464, 5387, 4704, 16874, 37811, 628, 220, 220, 220, 493, 62, 2978, 844, 274, 25, 7343, 58, 12621, 844, 14749, 60, 796, 2214, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 37227, 8053, 286, 262, 5387, 932, 844, 7064, 37811, 628, 220, 220, 220, 1070, 62, 2978, 844, 62, 42172, 25, 12178, 796, 657, 198, 220, 220, 220, 37227, 464, 7097, 4704, 16874, 37811, 628, 220, 220, 220, 1070, 62, 2978, 844, 274, 25, 7343, 58, 12621, 844, 14749, 60, 796, 2214, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 37227, 8053, 286, 262, 7097, 932, 844, 7064, 37811, 628, 198, 4299, 932, 605, 62, 16663, 7, 4352, 25, 5053, 605, 16818, 8, 4613, 14122, 12621, 844, 274, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 5053, 605, 16818, 24061, 262, 5387, 290, 7097, 198, 220, 220, 220, 932, 844, 274, 4704, 290, 8024, 606, 287, 14122, 12621, 844, 274, 13, 198, 220, 220, 220, 493, 62, 33095, 75, 844, 62, 42172, 11, 493, 62, 2978, 844, 274, 11, 1070, 62, 2978, 844, 62, 42172, 290, 1070, 62, 2978, 844, 274, 13, 198, 220, 220, 220, 383, 932, 844, 274, 389, 281, 7177, 286, 5053, 844, 43, 20968, 326, 8160, 262, 932, 844, 274, 286, 198, 220, 220, 220, 262, 4704, 13, 1002, 4159, 62, 8968, 2364, 318, 657, 788, 262, 4704, 481, 307, 46963, 198, 220, 220, 220, 290, 262, 4129, 286, 262, 1391, 600, 91, 2302, 92, 62, 2978, 844, 274, 513, 13, 611, 4159, 62, 8968, 2364, 1875, 657, 788, 198, 220, 220, 220, 262, 4704, 481, 307, 257, 1291, 46057, 1868, 351, 262, 4129, 286, 262, 1391, 600, 91, 2302, 92, 62, 2978, 844, 274, 198, 220, 220, 220, 481, 307, 604, 13, 628, 220, 220, 220, 1058, 17143, 289, 83, 25, 383, 4096, 15225, 286, 262, 11573, 5031, 4704, 198, 220, 220, 220, 1058, 7783, 82, 25, 5387, 290, 7097, 932, 844, 274, 3306, 284, 779, 256, 2136, 540, 12, 2978, 844, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2978, 605, 62, 16663, 25, 10, 6001, 34758, 17015, 25, 13, 18, 69, 92, 7078, 34758, 79, 2007, 25, 13, 18, 69, 92, 9848, 62, 13500, 82, 34758, 9248, 62, 13500, 82, 25, 13, 18, 69, 36786, 198, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2978, 605, 62, 16663, 25, 1035, 316, 34758, 1040, 316, 25, 13, 18, 69, 92, 1070, 62, 20063, 590, 34758, 2302, 62, 20063, 590, 92, 256, 2136, 62, 81, 1930, 34758, 83, 2136, 62, 81, 1930, 25, 13, 18, 69, 36786, 198, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2978, 605, 62, 16663, 25, 1688, 62, 8968, 2364, 34758, 22478, 62, 8968, 2364, 92, 4159, 62, 8968, 2364, 34758, 1084, 273, 62, 8968, 2364, 92, 4704, 62, 2502, 37796, 34758, 16663, 62, 2502, 37796, 25, 13, 18, 69, 92, 366, 198, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2978, 605, 62, 16663, 25, 717, 62, 83, 34758, 11085, 62, 83, 92, 938, 62, 83, 34758, 12957, 62, 83, 92, 366, 198, 220, 220, 220, 1303, 1267, 628, 220, 220, 220, 1255, 25, 14122, 12621, 844, 274, 796, 14122, 12621, 844, 274, 7, 4352, 8, 628, 220, 220, 220, 9848, 62, 6335, 1547, 25, 12178, 796, 2511, 1547, 7, 4352, 13, 9248, 62, 13500, 82, 8, 198, 220, 220, 220, 25706, 62, 71, 9248, 25, 12178, 796, 25706, 7, 9248, 62, 6335, 1547, 1220, 362, 8, 198, 220, 220, 220, 7813, 62, 71, 9248, 25, 12178, 796, 7813, 7, 9248, 62, 6335, 1547, 1220, 362, 8, 198, 220, 220, 220, 8171, 62, 1462, 62, 22478, 62, 8968, 2364, 25, 12178, 796, 14808, 4352, 13, 79, 2007, 532, 289, 83, 13, 22478, 62, 8968, 2364, 8, 1220, 362, 8, 1220, 25706, 62, 71, 9248, 198, 220, 220, 220, 8171, 62, 1462, 62, 1084, 273, 62, 8968, 2364, 25, 12178, 796, 357, 4352, 13, 1084, 273, 62, 8968, 2364, 1220, 362, 8, 1220, 25706, 62, 71, 9248, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2978, 605, 62, 16663, 25, 8171, 62, 1462, 62, 22478, 62, 8968, 2364, 34758, 22504, 62, 1462, 62, 22478, 62, 8968, 2364, 25, 13, 18, 69, 92, 8171, 62, 1462, 62, 1084, 273, 62, 8968, 2364, 34758, 22504, 62, 1462, 62, 1084, 273, 62, 8968, 2364, 25, 13, 18, 69, 36786, 198, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 493, 62, 16663, 62, 18053, 25, 12178, 796, 8171, 62, 1462, 62, 22478, 62, 8968, 2364, 532, 8171, 62, 1462, 62, 1084, 273, 62, 8968, 2364, 198, 220, 220, 220, 1303, 3601, 7, 69, 1, 2978, 605, 62, 16663, 25, 493, 62, 16663, 62, 18053, 34758, 600, 62, 16663, 62, 18053, 92, 4943, 628, 220, 220, 220, 4704, 62, 2502, 37796, 62, 1851, 62, 41255, 25, 12178, 796, 289, 83, 13, 16663, 62, 2502, 37796, 1635, 25706, 62, 71, 9248, 198, 220, 220, 220, 4704, 62, 13959, 62, 17015, 62, 265, 62, 2978, 844, 62, 42172, 25, 12178, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4352, 13, 79, 2007, 532, 289, 83, 13, 22478, 62, 8968, 2364, 8, 1220, 362, 198, 220, 220, 220, 1267, 1343, 4704, 62, 2502, 37796, 62, 1851, 62, 41255, 198, 220, 220, 220, 4704, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2978, 844, 62, 42172, 25, 12178, 796, 289, 83, 13, 1084, 273, 62, 8968, 2364, 1220, 362, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 400, 71, 62, 265, 62, 81, 34758, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2978, 844, 62, 42172, 92, 294, 71, 62, 265, 62, 273, 34758, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2978, 844, 62, 42172, 92, 41560, 34758, 600, 62, 16663, 62, 18053, 36786, 198, 220, 220, 220, 1303, 1267, 628, 220, 220, 220, 1303, 18628, 4704, 423, 932, 844, 4704, 2511, 46313, 198, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 62, 42172, 796, 289, 83, 13, 42172, 198, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 274, 796, 17635, 628, 220, 220, 220, 1303, 3601, 7, 69, 1, 20274, 13, 600, 62, 2978, 844, 62, 42172, 34758, 20274, 13, 600, 62, 2978, 844, 62, 42172, 92, 4943, 198, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 600, 62, 2978, 844, 62, 42172, 1343, 289, 83, 13, 16663, 62, 2502, 37796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 10779, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 600, 62, 2978, 844, 62, 42172, 1343, 289, 83, 13, 16663, 62, 2502, 37796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 28, 10, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 600, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 10779, 600, 62, 16663, 62, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 28, 10, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 611, 289, 83, 13, 1084, 273, 62, 8968, 2364, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 600, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 10779, 600, 62, 16663, 62, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 10779, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 600, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 1303, 5765, 1070, 62, 20063, 590, 284, 42302, 4985, 7097, 4704, 3815, 628, 220, 220, 220, 1303, 5328, 318, 262, 8813, 831, 325, 286, 262, 491, 259, 19345, 7042, 416, 257, 44503, 198, 220, 220, 220, 1303, 1627, 11, 262, 8171, 286, 262, 5387, 4704, 290, 262, 8171, 286, 262, 198, 220, 220, 220, 1303, 7097, 4704, 13, 198, 220, 220, 220, 5328, 25, 12178, 796, 289, 83, 13, 2302, 62, 20063, 590, 1220, 7813, 62, 71, 9248, 628, 220, 220, 220, 1303, 1070, 62, 1851, 62, 41255, 318, 262, 2033, 284, 257, 73, 48859, 11723, 88, 262, 932, 844, 198, 220, 220, 220, 1070, 62, 1851, 62, 41255, 25, 12178, 796, 357, 36362, 532, 289, 83, 13, 2302, 62, 20063, 590, 8, 1635, 25706, 62, 71, 9248, 198, 220, 220, 220, 1303, 3601, 7, 69, 1, 36362, 34758, 36362, 92, 1070, 62, 1851, 62, 41255, 34758, 2302, 62, 1851, 62, 41255, 92, 4943, 628, 220, 220, 220, 1303, 34579, 4704, 423, 262, 932, 844, 319, 262, 4159, 1735, 290, 198, 220, 220, 220, 1303, 523, 356, 34128, 262, 493, 62, 16663, 62, 18053, 290, 1070, 62, 20063, 590, 422, 289, 83, 13, 42172, 198, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 62, 42172, 796, 289, 83, 13, 42172, 532, 493, 62, 16663, 62, 18053, 532, 289, 83, 13, 2302, 62, 20063, 590, 198, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 20274, 13, 2302, 62, 2978, 844, 62, 42172, 34758, 4352, 13, 2302, 62, 2978, 844, 62, 42172, 92, 41560, 34758, 600, 62, 16663, 62, 18053, 92, 9940, 34758, 4352, 13, 2302, 62, 20063, 590, 36786, 198, 220, 220, 220, 1303, 1267, 628, 220, 220, 220, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 25, 12178, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4352, 13, 79, 2007, 532, 289, 83, 13, 1084, 273, 62, 8968, 2364, 8, 1220, 362, 198, 220, 220, 220, 1267, 532, 1070, 62, 1851, 62, 41255, 198, 220, 220, 220, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 62, 9541, 62, 83, 10071, 25, 12178, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 1343, 4704, 62, 2502, 37796, 62, 1851, 62, 41255, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 1649, 1688, 45616, 4329, 4833, 621, 262, 409, 353, 62, 1851, 62, 41255, 788, 262, 198, 220, 220, 220, 1303, 7097, 4704, 481, 691, 307, 1115, 2173, 290, 356, 900, 198, 220, 220, 220, 1303, 1070, 62, 400, 6335, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 1303, 284, 657, 290, 198, 220, 220, 220, 1303, 24061, 262, 4704, 6795, 13, 4698, 777, 5917, 262, 19745, 198, 220, 220, 220, 1303, 422, 262, 7097, 8171, 284, 5387, 4755, 481, 307, 1969, 284, 1070, 62, 20063, 590, 198, 220, 220, 220, 1303, 393, 3744, 13, 4091, 1332, 62, 16663, 13, 9078, 393, 1332, 62, 16663, 62, 3605, 13, 9078, 13, 198, 220, 220, 220, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 25, 12178, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 289, 83, 13, 22478, 62, 8968, 2364, 1220, 362, 198, 220, 220, 220, 1267, 532, 1070, 62, 1851, 62, 41255, 198, 220, 220, 220, 1070, 62, 16663, 62, 18053, 25, 12178, 796, 493, 62, 16663, 62, 18053, 198, 220, 220, 220, 611, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1070, 62, 16663, 62, 18053, 796, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 1220, 25706, 62, 71, 9248, 628, 220, 220, 220, 1303, 3601, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 277, 1, 2302, 62, 16663, 62, 18053, 34758, 2302, 62, 16663, 62, 18053, 92, 1070, 62, 400, 71, 62, 265, 62, 68, 11840, 34758, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 92, 1070, 62, 400, 71, 62, 265, 62, 68, 11840, 62, 9541, 62, 83, 18768, 34758, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 62, 9541, 62, 83, 10071, 92, 1070, 62, 400, 71, 62, 265, 62, 2577, 11840, 34758, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 36786, 198, 220, 220, 220, 1303, 1267, 628, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 274, 796, 17635, 198, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 2302, 62, 2978, 844, 62, 42172, 532, 289, 83, 13, 16663, 62, 2502, 37796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 10779, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 62, 9541, 62, 83, 10071, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 2302, 62, 2978, 844, 62, 42172, 532, 289, 83, 13, 16663, 62, 2502, 37796, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 28, 10, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 2302, 62, 2978, 844, 62, 42172, 62, 9541, 62, 83, 10071, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 2302, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 2302, 62, 16663, 62, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 28, 10, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 611, 1070, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 289, 75, 796, 5053, 844, 14749, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 20274, 13, 2302, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3076, 89, 62, 28968, 28, 2302, 62, 16663, 62, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9421, 62, 28968, 10779, 2302, 62, 16663, 62, 13959, 62, 17015, 62, 265, 62, 10365, 5971, 62, 2302, 62, 2978, 844, 62, 42172, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 2302, 62, 2978, 844, 274, 13, 33295, 7, 18519, 8, 628, 220, 220, 220, 1441, 1255, 198 ]
2.432936
3,273
from .transparentTimer import TransparentTimer
[ 6738, 764, 7645, 8000, 48801, 1330, 3602, 8000, 48801 ]
5.111111
9
import pytest # Create your tests here. from restapi.models import Organism, Repeat @pytest.fixture @pytest.mark.django_db def test_model_can_create_an_organism(organism): """Test the organism model can create an Organism.""" old_count = Organism.objects.count() organism.save() new_count = Organism.objects.count() assert old_count != new_count @pytest.fixture @pytest.mark.django_db def test_model_can_create_a_repeat(repeat): """Test the repeat model can create an Repeat.""" old_count = Repeat.objects.count() repeat.save() new_count = Repeat.objects.count() assert old_count != new_count
[ 11748, 12972, 9288, 198, 198, 2, 13610, 534, 5254, 994, 13, 198, 6738, 1334, 15042, 13, 27530, 1330, 7221, 1042, 11, 30021, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 198, 4299, 1332, 62, 19849, 62, 5171, 62, 17953, 62, 272, 62, 9971, 1042, 7, 9971, 1042, 2599, 198, 220, 220, 220, 37227, 14402, 262, 26433, 2746, 460, 2251, 281, 7221, 1042, 526, 15931, 198, 220, 220, 220, 1468, 62, 9127, 796, 7221, 1042, 13, 48205, 13, 9127, 3419, 198, 220, 220, 220, 26433, 13, 21928, 3419, 198, 220, 220, 220, 649, 62, 9127, 796, 7221, 1042, 13, 48205, 13, 9127, 3419, 198, 220, 220, 220, 6818, 1468, 62, 9127, 14512, 649, 62, 9127, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 198, 4299, 1332, 62, 19849, 62, 5171, 62, 17953, 62, 64, 62, 44754, 7, 44754, 2599, 198, 220, 220, 220, 37227, 14402, 262, 9585, 2746, 460, 2251, 281, 30021, 526, 15931, 198, 220, 220, 220, 1468, 62, 9127, 796, 30021, 13, 48205, 13, 9127, 3419, 198, 220, 220, 220, 9585, 13, 21928, 3419, 198, 220, 220, 220, 649, 62, 9127, 796, 30021, 13, 48205, 13, 9127, 3419, 198, 220, 220, 220, 6818, 1468, 62, 9127, 14512, 649, 62, 9127, 198 ]
2.840708
226
import logging import os from clustertools import set_stdout_logging, ParameterSet, Experiment from clustertools.storage import PickleStorage from generic_threshold import TuneThresholdComputation from train_monuseg_selftrain_clustertools import env_parser if __name__ == "__main__": import sys main(sys.argv[1:])
[ 11748, 18931, 198, 11748, 28686, 198, 198, 6738, 32966, 861, 10141, 1330, 900, 62, 19282, 448, 62, 6404, 2667, 11, 25139, 2357, 7248, 11, 29544, 198, 6738, 32966, 861, 10141, 13, 35350, 1330, 12346, 293, 31425, 198, 198, 6738, 14276, 62, 400, 10126, 1330, 42587, 817, 10126, 5377, 1996, 341, 198, 6738, 4512, 62, 2144, 1904, 70, 62, 741, 701, 3201, 62, 565, 436, 861, 10141, 1330, 17365, 62, 48610, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 628, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198 ]
3.142857
105
import sys from PyQt5.QtCore import QUrl from PyQt5.QtWebEngineWidgets import QWebEngineView from PyQt5.QtWidgets import QApplication from ytdl_gui import host, port
[ 11748, 25064, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 28165, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 13908, 13798, 54, 312, 11407, 1330, 1195, 13908, 13798, 7680, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 198, 6738, 331, 8671, 75, 62, 48317, 1330, 2583, 11, 2493, 628 ]
2.737705
61
import lmdb import numpy as np import cv2 as cv from itertools import islice import time import os from os.path import sep as path_sep from os.path import join as path_join import torch import torch.nn as nn import torchvision path = '/home/xfz/Projects/PycharmProjects/TextRecognitionDataGenerator-master/trdg/out' f_nameList = os.listdir(path) for n in f_nameList: n_ = n.replace(' ', '') n = os.path.join(path, n) n_ = os.path.join(path, n_) os.rename(n, n_) print(n, '===>', n_) ################################################### import models.crnn as crnn with open('data/en.alphabet', encoding='utf-8') as f: alphabet = f.read().strip() net_crnn = crnn.CRNN_ocr34(32, 3, len(alphabet) + 1, 256, d_bug='maxpool', rudc=False).to('cuda').eval() # net_crnn = crnn.CRNN(32, 3, len(alphabet) + 1, 256).to('cuda').eval() net_crnn = net_crnn.cnn x = torch.rand([100, 3, 32, 128]).cuda() with torch.no_grad(): y = net_crnn(x) torch.cuda.synchronize() t1 = time.time() for _ in range(10): y = net_crnn(x) torch.cuda.synchronize() print('time: ', time.time() - t1) raise ValueError ################################################################## filepath = './data/lmdb_5w' # filepath = '../../datas/aug240w' outroot = path_join(*filepath.rsplit(path_sep, 1)) + '_img' outroot = outroot.replace('lmdb_5w', 'lmdb_2w') # assert not os.path.exists(outroot) # os.makedirs(outroot) # os.makedirs(path_join(outroot, 'images')) # ### 读取LMDB数据集中图片并显示出来,验证一下数据集是否制作成功 val_num = 10 with lmdb.open(filepath) as env, open(path_join(outroot, 'train.txt'), 'w', encoding='utf-8') as f: txn = env.begin() # for key, value in islice(txn.cursor(), val_num): for i, (key, value) in enumerate(txn.cursor(), start=30000): imageBuf = np.fromstring(value, dtype=np.uint8) img = cv.imdecode(imageBuf, cv.IMREAD_GRAYSCALE) if img is not None: # 得到图片对应 label key_ = key.decode().replace('image', 'label', 1).encode() label = txn.get(key_).decode() ################################ # 保存图片 cv.imwrite(path_join(outroot, 'images', str(i)) + '.png', img) # 保存label l = str(i) + '.png' + ' ' + label f.writelines(l + '\n') ################################# # print(label) # 显示图片 # cv.imshow('image', img) # cv.waitKey() else: # 标签数据,不处理 pass # print('key: %s label: %s' % (key, value))
[ 11748, 300, 9132, 65, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 355, 269, 85, 198, 6738, 340, 861, 10141, 1330, 318, 75, 501, 198, 11748, 640, 198, 198, 11748, 28686, 198, 6738, 28686, 13, 6978, 1330, 41767, 355, 3108, 62, 325, 79, 198, 6738, 28686, 13, 6978, 1330, 4654, 355, 3108, 62, 22179, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 10178, 628, 198, 6978, 796, 31051, 11195, 14, 26152, 89, 14, 16775, 82, 14, 20519, 354, 1670, 16775, 82, 14, 8206, 6690, 2360, 653, 6601, 8645, 1352, 12, 9866, 14, 2213, 67, 70, 14, 448, 6, 198, 69, 62, 3672, 8053, 796, 28686, 13, 4868, 15908, 7, 6978, 8, 198, 1640, 299, 287, 277, 62, 3672, 8053, 25, 198, 220, 220, 220, 299, 62, 796, 299, 13, 33491, 10786, 46083, 10148, 8, 198, 220, 220, 220, 299, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 299, 8, 198, 220, 220, 220, 299, 62, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 299, 62, 8, 198, 220, 220, 220, 28686, 13, 918, 480, 7, 77, 11, 299, 62, 8, 198, 220, 220, 220, 3601, 7, 77, 11, 705, 855, 14804, 3256, 299, 62, 8, 628, 198, 29113, 14468, 21017, 198, 11748, 4981, 13, 6098, 20471, 355, 1067, 20471, 198, 4480, 1280, 10786, 7890, 14, 268, 13, 17307, 8380, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 24830, 796, 277, 13, 961, 22446, 36311, 3419, 198, 198, 3262, 62, 6098, 20471, 796, 1067, 20471, 13, 9419, 6144, 62, 1696, 2682, 7, 2624, 11, 513, 11, 18896, 7, 17307, 8380, 8, 1343, 352, 11, 17759, 11, 288, 62, 25456, 11639, 9806, 7742, 3256, 28906, 66, 28, 25101, 737, 1462, 10786, 66, 15339, 27691, 18206, 3419, 198, 2, 2010, 62, 6098, 20471, 796, 1067, 20471, 13, 9419, 6144, 7, 2624, 11, 513, 11, 18896, 7, 17307, 8380, 8, 1343, 352, 11, 17759, 737, 1462, 10786, 66, 15339, 27691, 18206, 3419, 198, 198, 3262, 62, 6098, 20471, 796, 2010, 62, 6098, 20471, 13, 66, 20471, 198, 87, 796, 28034, 13, 25192, 26933, 3064, 11, 513, 11, 3933, 11, 13108, 35944, 66, 15339, 3419, 198, 198, 4480, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 331, 796, 2010, 62, 6098, 20471, 7, 87, 8, 628, 220, 220, 220, 28034, 13, 66, 15339, 13, 28869, 11413, 1096, 3419, 198, 220, 220, 220, 256, 16, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2010, 62, 6098, 20471, 7, 87, 8, 198, 220, 220, 220, 28034, 13, 66, 15339, 13, 28869, 11413, 1096, 3419, 198, 220, 220, 220, 3601, 10786, 2435, 25, 46083, 640, 13, 2435, 3419, 532, 256, 16, 8, 198, 198, 40225, 11052, 12331, 198, 198, 29113, 29113, 2235, 628, 198, 198, 7753, 6978, 796, 705, 19571, 7890, 14, 75, 9132, 65, 62, 20, 86, 6, 198, 2, 2393, 6978, 796, 705, 40720, 40720, 19608, 292, 14, 7493, 16102, 86, 6, 198, 198, 448, 15763, 796, 3108, 62, 22179, 46491, 7753, 6978, 13, 3808, 489, 270, 7, 6978, 62, 325, 79, 11, 352, 4008, 1343, 705, 62, 9600, 6, 198, 448, 15763, 796, 503, 15763, 13, 33491, 10786, 75, 9132, 65, 62, 20, 86, 3256, 705, 75, 9132, 65, 62, 17, 86, 11537, 198, 2, 6818, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 15763, 8, 198, 2, 28686, 13, 76, 4335, 17062, 7, 448, 15763, 8, 198, 2, 28686, 13, 76, 4335, 17062, 7, 6978, 62, 22179, 7, 448, 15763, 11, 705, 17566, 6, 4008, 198, 2, 44386, 5525, 107, 119, 20998, 244, 31288, 11012, 46763, 108, 162, 235, 106, 37239, 228, 40792, 32368, 122, 31965, 229, 33176, 114, 23626, 122, 163, 97, 118, 49035, 118, 30266, 98, 171, 120, 234, 165, 103, 234, 46237, 223, 31660, 10310, 233, 46763, 108, 162, 235, 106, 37239, 228, 42468, 28938, 99, 26344, 114, 43291, 22755, 238, 27950, 253, 198, 2100, 62, 22510, 796, 838, 198, 4480, 300, 9132, 65, 13, 9654, 7, 7753, 6978, 8, 355, 17365, 11, 1280, 7, 6978, 62, 22179, 7, 448, 15763, 11, 705, 27432, 13, 14116, 33809, 705, 86, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 27765, 77, 796, 17365, 13, 27471, 3419, 198, 220, 220, 220, 1303, 329, 1994, 11, 1988, 287, 318, 75, 501, 7, 17602, 77, 13, 66, 21471, 22784, 1188, 62, 22510, 2599, 198, 220, 220, 220, 329, 1312, 11, 357, 2539, 11, 1988, 8, 287, 27056, 378, 7, 17602, 77, 13, 66, 21471, 22784, 923, 28, 18, 2388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 33, 3046, 796, 45941, 13, 6738, 8841, 7, 8367, 11, 288, 4906, 28, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 269, 85, 13, 320, 12501, 1098, 7, 9060, 33, 3046, 11, 269, 85, 13, 3955, 15675, 62, 38, 30631, 6173, 21358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33705, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10263, 122, 245, 26344, 108, 32368, 122, 31965, 229, 43380, 117, 41753, 242, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 796, 1994, 13, 12501, 1098, 22446, 33491, 10786, 9060, 3256, 705, 18242, 3256, 352, 737, 268, 8189, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 27765, 77, 13, 1136, 7, 2539, 62, 737, 12501, 1098, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14468, 7804, 4242, 21017, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 46479, 251, 27764, 246, 32368, 122, 31965, 229, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 85, 13, 320, 13564, 7, 6978, 62, 22179, 7, 448, 15763, 11, 705, 17566, 3256, 965, 7, 72, 4008, 1343, 45302, 11134, 3256, 33705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 46479, 251, 27764, 246, 18242, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 796, 965, 7, 72, 8, 1343, 45302, 11134, 6, 1343, 705, 705, 1343, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 8933, 20655, 7, 75, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29113, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 246, 122, 163, 97, 118, 32368, 122, 31965, 229, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 85, 13, 320, 12860, 10786, 9060, 3256, 33705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 269, 85, 13, 17077, 9218, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 1303, 10545, 254, 229, 163, 255, 122, 46763, 108, 162, 235, 106, 171, 120, 234, 38834, 13783, 226, 49426, 228, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 10786, 2539, 25, 4064, 82, 220, 220, 220, 6167, 25, 4064, 82, 6, 4064, 357, 2539, 11, 1988, 4008, 628, 628, 628, 628, 628, 628, 198 ]
2.043582
1,262
import youtube_dl import datetime import threading import requests import re import time import os threads = [] # all threads list tasks_list = [] # all tasks list def start_received_request_action(data): """ Main function which extract task type and start proper action. Then return response. :param data: :return: response string """ if data["action"] == "check_status": dictionary = get_status_of_all_tasks() if dictionary: return get_status_of_all_tasks() else: return {"response": "No task in process"} elif data["action"] == "download_request": tasks_list.append(Task(data)) response = tasks_list[-1].response if not tasks_list[-1].download_started: os.remove(tasks_list[-1].download_dir + tasks_list[-1].filename + '.' + tasks_list[-1].extension) del tasks_list[-1] return response else: return {"response": "Invalid request action data"} def get_status_of_all_tasks(): """ Function which get information about all actual processed tasks. :return: dictionary containing information about all actual processed tasks """ response = dict() for task in tasks_list: if not task.finish: response.update(task.get_task_data()) else: del task return response
[ 11748, 35116, 62, 25404, 198, 11748, 4818, 8079, 198, 11748, 4704, 278, 198, 11748, 7007, 198, 11748, 302, 198, 11748, 640, 198, 11748, 28686, 198, 198, 16663, 82, 796, 17635, 220, 1303, 477, 14390, 1351, 198, 83, 6791, 62, 4868, 796, 17635, 220, 1303, 477, 8861, 1351, 628, 198, 4299, 923, 62, 47844, 62, 25927, 62, 2673, 7, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8774, 2163, 543, 7925, 4876, 2099, 290, 923, 1774, 2223, 13, 3244, 1441, 2882, 13, 628, 220, 220, 220, 1058, 17143, 1366, 25, 198, 220, 220, 220, 1058, 7783, 25, 2882, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1366, 14692, 2673, 8973, 6624, 366, 9122, 62, 13376, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 22155, 796, 651, 62, 13376, 62, 1659, 62, 439, 62, 83, 6791, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 22155, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 62, 13376, 62, 1659, 62, 439, 62, 83, 6791, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 19779, 26209, 1298, 366, 2949, 4876, 287, 1429, 20662, 198, 220, 220, 220, 1288, 361, 1366, 14692, 2673, 8973, 6624, 366, 15002, 62, 25927, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 8861, 62, 4868, 13, 33295, 7, 25714, 7, 7890, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 8861, 62, 4868, 58, 12, 16, 4083, 26209, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8861, 62, 4868, 58, 12, 16, 4083, 15002, 62, 46981, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 83, 6791, 62, 4868, 58, 12, 16, 4083, 15002, 62, 15908, 1343, 8861, 62, 4868, 58, 12, 16, 4083, 34345, 1343, 705, 2637, 1343, 8861, 62, 4868, 58, 12, 16, 4083, 2302, 3004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 8861, 62, 4868, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19779, 26209, 1298, 366, 44651, 2581, 2223, 1366, 20662, 628, 198, 4299, 651, 62, 13376, 62, 1659, 62, 439, 62, 83, 6791, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 543, 651, 1321, 546, 477, 4036, 13686, 8861, 13, 628, 220, 220, 220, 1058, 7783, 25, 22155, 7268, 1321, 546, 477, 4036, 13686, 8861, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2882, 796, 8633, 3419, 198, 220, 220, 220, 329, 4876, 287, 8861, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4876, 13, 15643, 680, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 19119, 7, 35943, 13, 1136, 62, 35943, 62, 7890, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 4876, 198, 220, 220, 220, 1441, 2882, 628 ]
2.611742
528
from tensorflow import keras import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.model_selection import cross_validate import numpy as np from sklearn.model_selection import train_test_split (train_input, train_target), (test_input, test_target) =\ keras.datasets.fashion_mnist.load_data() print(train_input.shape, train_target.shape) print(test_input.shape, test_target.shape) fig, axs = plt.subplots(1, 10, figsize=(10, 10)) for i in range(10): axs[i].imshow(train_input[i], cmap='gray_r') axs[i].axis('off') plt.show() print([train_target[i] for i in range(10)]) print(np.unique(train_target, return_counts=True)) train_scaled = train_input / 255.0 train_scaled = train_scaled.reshape(-1, 28*28) print(train_scaled.shape) sc = SGDClassifier(loss='log', max_iter=5, random_state=42) scores = cross_validate(sc, train_scaled, train_target, n_jobs=-1) print(np.mean(scores['test_score'])) # 인공 신경망 train_scaled, val_scaled, train_target, val_target =\ train_test_split(train_scaled, train_target, test_size=0.2, random_state=42) print(train_scaled.shape, train_target.shape) print(val_scaled.shape, val_target.shape) dense = keras.layers.Dense(10, activation='softmax', input_shape=(784,)) model = keras.Sequential(dense) print(train_target[:10]) model.compile(loss='sparse_categorical_crossentropy', metrics='accuracy') model.fit(train_scaled, train_target, epochs=5) model.evaluate(val_scaled, val_target)
[ 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 26147, 35, 9487, 7483, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 3272, 62, 12102, 378, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 628, 198, 7, 27432, 62, 15414, 11, 4512, 62, 16793, 828, 357, 9288, 62, 15414, 11, 1332, 62, 16793, 8, 796, 59, 198, 220, 220, 220, 41927, 292, 13, 19608, 292, 1039, 13, 25265, 62, 10295, 396, 13, 2220, 62, 7890, 3419, 198, 4798, 7, 27432, 62, 15414, 13, 43358, 11, 4512, 62, 16793, 13, 43358, 8, 198, 4798, 7, 9288, 62, 15414, 13, 43358, 11, 1332, 62, 16793, 13, 43358, 8, 198, 198, 5647, 11, 7877, 82, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 838, 11, 2336, 7857, 16193, 940, 11, 838, 4008, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 7877, 82, 58, 72, 4083, 320, 12860, 7, 27432, 62, 15414, 58, 72, 4357, 269, 8899, 11639, 44605, 62, 81, 11537, 198, 220, 220, 220, 7877, 82, 58, 72, 4083, 22704, 10786, 2364, 11537, 198, 489, 83, 13, 12860, 3419, 198, 198, 4798, 26933, 27432, 62, 16793, 58, 72, 60, 329, 1312, 287, 2837, 7, 940, 8, 12962, 198, 198, 4798, 7, 37659, 13, 34642, 7, 27432, 62, 16793, 11, 1441, 62, 9127, 82, 28, 17821, 4008, 198, 198, 27432, 62, 1416, 3021, 796, 4512, 62, 15414, 1220, 14280, 13, 15, 198, 27432, 62, 1416, 3021, 796, 4512, 62, 1416, 3021, 13, 3447, 1758, 32590, 16, 11, 2579, 9, 2078, 8, 198, 4798, 7, 27432, 62, 1416, 3021, 13, 43358, 8, 198, 198, 1416, 796, 26147, 35, 9487, 7483, 7, 22462, 11639, 6404, 3256, 3509, 62, 2676, 28, 20, 11, 4738, 62, 5219, 28, 3682, 8, 198, 1416, 2850, 796, 3272, 62, 12102, 378, 7, 1416, 11, 4512, 62, 1416, 3021, 11, 4512, 62, 16793, 11, 299, 62, 43863, 10779, 16, 8, 198, 4798, 7, 37659, 13, 32604, 7, 1416, 2850, 17816, 9288, 62, 26675, 20520, 4008, 198, 198, 2, 23821, 251, 116, 166, 111, 113, 23821, 233, 254, 166, 110, 121, 167, 100, 251, 198, 27432, 62, 1416, 3021, 11, 1188, 62, 1416, 3021, 11, 4512, 62, 16793, 11, 1188, 62, 16793, 796, 59, 198, 220, 220, 220, 4512, 62, 9288, 62, 35312, 7, 27432, 62, 1416, 3021, 11, 4512, 62, 16793, 11, 1332, 62, 7857, 28, 15, 13, 17, 11, 4738, 62, 5219, 28, 3682, 8, 198, 4798, 7, 27432, 62, 1416, 3021, 13, 43358, 11, 4512, 62, 16793, 13, 43358, 8, 198, 4798, 7, 2100, 62, 1416, 3021, 13, 43358, 11, 1188, 62, 16793, 13, 43358, 8, 198, 198, 67, 1072, 796, 41927, 292, 13, 75, 6962, 13, 35, 1072, 7, 940, 11, 14916, 11639, 4215, 9806, 3256, 5128, 62, 43358, 16193, 37688, 11, 4008, 198, 198, 19849, 796, 41927, 292, 13, 44015, 1843, 7, 67, 1072, 8, 198, 198, 4798, 7, 27432, 62, 16793, 58, 25, 940, 12962, 198, 198, 19849, 13, 5589, 576, 7, 22462, 11639, 82, 29572, 62, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 20731, 11639, 4134, 23843, 11537, 198, 19849, 13, 11147, 7, 27432, 62, 1416, 3021, 11, 4512, 62, 16793, 11, 36835, 82, 28, 20, 8, 198, 19849, 13, 49786, 7, 2100, 62, 1416, 3021, 11, 1188, 62, 16793, 8, 628, 198 ]
2.570435
575
from unittest import mock import decimal from webob.multidict import MultiDict from pyramid.compat import text_type, NativeIO import ptah.form from ptah.form import iso8601 from ptah.testing import strip, BaseTestCase
[ 6738, 555, 715, 395, 1330, 15290, 198, 11748, 32465, 198, 6738, 3992, 672, 13, 16680, 312, 713, 1330, 15237, 35, 713, 198, 6738, 27944, 13, 5589, 265, 1330, 2420, 62, 4906, 11, 12547, 9399, 198, 198, 11748, 42975, 993, 13, 687, 198, 6738, 42975, 993, 13, 687, 1330, 47279, 4521, 486, 198, 198, 6738, 42975, 993, 13, 33407, 1330, 10283, 11, 7308, 14402, 20448, 628, 628, 628, 628, 628, 628, 628, 628, 198 ]
3.232877
73
# Copyright (c) 2021, Moritz E. Beber. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provide a service that trims samples based on smoothed Phred quality.""" from typing import Tuple import numpy as np from plasmid_verification.domain.model import Sample from plasmid_verification.domain.service import SampleTrimmingService class ErrorProbabilitySampleTrimmingService(SampleTrimmingService): """Define a service that trims samples based on the smoothed Phred quality.""" @classmethod def trim( cls, sample: Sample, *, prefix: str = "", suffix: str = "_trimmed", cutoff: float = 0.05, **kwargs, ) -> Tuple[Sample, int, int, np.ndarray]: """ Trim a sequencing sample based on the smoothed quality values and a threshold. Implement Richard Mott's alternative trimming method for finding the maximum scoring subsequence. Please see `-trim_alt` at the following link for more information: http://www.phrap.org/phredphrap/phred.html Args: sample: A sequencing sample. prefix: suffix: cutoff: **kwargs: Returns: tuple: Sample: The trimmed sequencing sample. int: The start position of the trimmed sequence with respect to the original sample. int: The end position of the trimmed sequence with respect to the original sample. numpy.ndarray: The scores used by the trimming method. """ # Transform the quality values back to error probabilities. transform = cutoff - np.power(10.0, sample.phred_quality / -10.0) scores = cls.clamped_cumulative_sum(transform) start, end = cls.find_max_scoring_subsequence(scores) return ( Sample( identifier=f"{prefix}{sample.identifier}{suffix}", sequence=sample.sequence[start:end], phred_quality=sample.phred_quality[start:end], ), start, end, scores, ) @classmethod def clamped_cumulative_sum(cls, values: np.ndarray) -> np.ndarray: """ Compute the cumulative sum of the given values but clamp the minimum at zero. Args: values: The vector of values to sum up. Returns: Cumulative sum of the given values but sums below zero are clamped to zero. """ result = np.zeros_like(values) for idx in range(1, len(result)): result[idx] = result[idx - 1] + values[idx] if result[idx] < 0.0: result[idx] = 0.0 return result @classmethod
[ 2, 15069, 357, 66, 8, 33448, 11, 3461, 4224, 412, 13, 1355, 527, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 37811, 15946, 485, 257, 2139, 326, 491, 12078, 8405, 1912, 319, 32746, 704, 1380, 445, 3081, 526, 15931, 198, 198, 6738, 19720, 1330, 309, 29291, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 458, 8597, 312, 62, 332, 2649, 13, 27830, 13, 19849, 1330, 27565, 198, 6738, 458, 8597, 312, 62, 332, 2649, 13, 27830, 13, 15271, 1330, 27565, 2898, 27428, 16177, 628, 198, 4871, 13047, 2964, 65, 1799, 36674, 2898, 27428, 16177, 7, 36674, 2898, 27428, 16177, 2599, 198, 220, 220, 220, 37227, 7469, 500, 257, 2139, 326, 491, 12078, 8405, 1912, 319, 262, 32746, 704, 1380, 445, 3081, 526, 15931, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 15797, 7, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 25, 27565, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 11, 198, 220, 220, 220, 220, 220, 220, 220, 21231, 25, 965, 796, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 35488, 25, 965, 796, 45434, 2213, 320, 1150, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 45616, 25, 12178, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 309, 29291, 58, 36674, 11, 493, 11, 493, 11, 45941, 13, 358, 18747, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 833, 320, 257, 32841, 6291, 1912, 319, 262, 32746, 704, 3081, 3815, 290, 257, 11387, 13, 628, 220, 220, 220, 220, 220, 220, 220, 48282, 6219, 337, 1252, 338, 5559, 15797, 2229, 2446, 329, 4917, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 9689, 6399, 594, 13, 4222, 766, 4600, 12, 2213, 320, 62, 2501, 63, 379, 262, 1708, 2792, 329, 198, 220, 220, 220, 220, 220, 220, 220, 517, 1321, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 746, 2416, 13, 2398, 14, 746, 445, 746, 2416, 14, 746, 445, 13, 6494, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 25, 317, 32841, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35488, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45616, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 25, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27565, 25, 383, 40325, 32841, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 25, 383, 923, 2292, 286, 262, 40325, 8379, 351, 2461, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 25, 383, 886, 2292, 286, 262, 40325, 8379, 351, 2461, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 6291, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 13, 358, 18747, 25, 383, 8198, 973, 416, 262, 15797, 2229, 2446, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26981, 262, 3081, 3815, 736, 284, 4049, 39522, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 796, 45616, 532, 45941, 13, 6477, 7, 940, 13, 15, 11, 6291, 13, 746, 445, 62, 13237, 1220, 532, 940, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 537, 82, 13, 565, 13322, 62, 36340, 13628, 62, 16345, 7, 35636, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 11, 886, 796, 537, 82, 13, 19796, 62, 9806, 62, 46536, 62, 7266, 43167, 7, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27565, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27421, 28, 69, 1, 90, 40290, 18477, 39873, 13, 738, 7483, 18477, 37333, 844, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8379, 28, 39873, 13, 43167, 58, 9688, 25, 437, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 872, 445, 62, 13237, 28, 39873, 13, 746, 445, 62, 13237, 58, 9688, 25, 437, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8198, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 537, 13322, 62, 36340, 13628, 62, 16345, 7, 565, 82, 11, 3815, 25, 45941, 13, 358, 18747, 8, 4613, 45941, 13, 358, 18747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1133, 262, 23818, 2160, 286, 262, 1813, 3815, 475, 29405, 262, 5288, 379, 6632, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 25, 383, 15879, 286, 3815, 284, 2160, 510, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27843, 13628, 2160, 286, 262, 1813, 3815, 475, 21784, 2174, 6632, 389, 537, 13322, 284, 6632, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 45941, 13, 9107, 418, 62, 2339, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 287, 2837, 7, 16, 11, 18896, 7, 20274, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 312, 87, 60, 796, 1255, 58, 312, 87, 532, 352, 60, 1343, 3815, 58, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 58, 312, 87, 60, 1279, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 312, 87, 60, 796, 657, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 2488, 4871, 24396, 198 ]
2.441809
1,349
import requests req_url = "https://www.chinaamc.com/indexfundvalue.js" response = requests.get(req_url) print(response.apparent_encoding) response.encoding = "UTF-8" print(response.text)
[ 11748, 7007, 628, 198, 42180, 62, 6371, 796, 366, 5450, 1378, 2503, 13, 354, 1437, 321, 66, 13, 785, 14, 9630, 10990, 8367, 13, 8457, 1, 198, 198, 26209, 796, 7007, 13, 1136, 7, 42180, 62, 6371, 8, 198, 4798, 7, 26209, 13, 1324, 1580, 62, 12685, 7656, 8, 198, 26209, 13, 12685, 7656, 796, 366, 48504, 12, 23, 1, 198, 198, 4798, 7, 26209, 13, 5239, 8 ]
2.794118
68
#!/usr/bin/env python ''' Copyright (c) 2020 Modul 9/HiFiBerry Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' # !/usr/bin/env python import sys import logging from math import sqrt, log from struct import unpack_from import os import alsaaudio output_stopped = True # Which audio device to use DEVICE_NAME = 'default' # The maximum value which can be read from the input device (in other words, the value for maximum volume) SAMPLE_MAXVAL = 32768 CHANNELS = 2 # Sample rate in samples per second SAMPLE_RATE = 48000 PERIOD_SIZE = 1024 # The duration of a measurement interval (after which the thresholds will be checked) in seconds. SAMPLE_SECONDS_BEFORE_CHECK = 0.5 # The number of samples before each check SAMPLE_COUNT_BEFORE_CHECK = int((SAMPLE_RATE / CHANNELS) * SAMPLE_SECONDS_BEFORE_CHECK) # The time during which the input threshold hasn't been reached, before output is stopped. # This is useful for preventing the output device from turning off and on when there is a short silence in the input. SAMPLE_SECONDS_BEFORE_TURN_OFF = 15 # The number of checks which have to fail before audio is turned off. CHECK_NUMBER_BEFORE_TURN_OFF = int(SAMPLE_SECONDS_BEFORE_TURN_OFF / SAMPLE_SECONDS_BEFORE_CHECK) if __name__ == '__main__': start_db_threshold = 0 stop_db_threshold = 0 try: start_db_threshold = float(sys.argv[1]) if start_db_threshold > 0: start_db_threshold = -start_db_threshold # Define the stop threshold. This prevents hysteresis when the volume fluctuates just around the threshold. stop_db_threshold = start_db_threshold - 3 print("using alsaloop with input level detection {:.1f} to start, {:.1f} to stop" .format(start_db_threshold, stop_db_threshold)) except: print("using alsaloop without input level detection") input_device = open_sound(output=False) output_device = None finished = False samples = 0 sample_sum = 0 max_sample = 0 status = "-" rms_volume = 0 input_detected = False # Counter for subsequent intervals in which the threshold has not been met while playback is active count_playback_threshold_not_met = 0 while not finished: # Read data from device data_length, data = input_device.read() if data_length < 0: # Something's wrong when this happens. Just try to read again. logging.error("?") continue if (len(data) % 4) != 0: # Additional sanity test: If the length isn't a multiple of 4, something's wrong print("oops %s".format(len(data))) continue offset = 0 # Read through the currently captured audio data while offset < data_length: try: # Read the left and right channel from the data packet (sample_l, sample_r) = unpack_from('<hh', data, offset=offset) except: # logging.error("%s %s %s",l,len(data), offset) # Set a default value of zero so the program can keep running (sample_l, sample_r) = (0, 0) offset += 4 samples += 2 # Calculate the sum of all samples squared, used to determine rms later. sample_sum += sample_l * sample_l + sample_r * sample_r # Determine the max value of all samples max_sample = max(max_sample, abs(sample_l), abs(sample_r)) if samples >= SAMPLE_COUNT_BEFORE_CHECK: # Calculate RMS rms_volume = sqrt(sample_sum / samples) # Determine which threshold value to use if output_stopped: threshold = start_db_threshold else: threshold = stop_db_threshold # Check if the threshold has been exceeded if start_db_threshold == 0 or decibel(max_sample) > threshold: input_detected = True status = "P" else: input_detected = False status = "-" print("{} {:.1f} {:.1f}".format(status, decibel(rms_volume), decibel(max_sample)), flush=True) sample_sum = 0 samples = 0 max_sample = 0 if output_stopped and input_detected: del input_device logging.info("Input signal detected, pausing other players") os.system("/opt/hifiberry/bin/pause-all alsaloop") (input_device, output_device) = open_sound(output=True) output_stopped = False continue elif not output_stopped and not input_detected: count_playback_threshold_not_met += 1 logging.info(f"No input signal for {count_playback_threshold_not_met} intervals") if count_playback_threshold_not_met > CHECK_NUMBER_BEFORE_TURN_OFF: del input_device output_device = None logging.info("Input signal lost, stopping playback") input_device = open_sound(output=False) output_stopped = True continue if input_detected: # Reset counter when input detected count_playback_threshold_not_met = 0 if not output_stopped: output_device.write(data)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 7061, 6, 198, 15269, 357, 66, 8, 12131, 3401, 377, 860, 14, 17250, 10547, 25215, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 7061, 6, 198, 198, 2, 5145, 14, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 25064, 198, 11748, 18931, 198, 6738, 10688, 1330, 19862, 17034, 11, 2604, 198, 6738, 2878, 1330, 555, 8002, 62, 6738, 198, 11748, 28686, 198, 198, 11748, 435, 11400, 24051, 198, 198, 22915, 62, 301, 38333, 796, 6407, 198, 198, 2, 9022, 6597, 3335, 284, 779, 198, 7206, 27389, 62, 20608, 796, 705, 12286, 6, 198, 198, 2, 383, 5415, 1988, 543, 460, 307, 1100, 422, 262, 5128, 3335, 357, 259, 584, 2456, 11, 262, 1988, 329, 5415, 6115, 8, 198, 49302, 16437, 62, 22921, 23428, 796, 36203, 3104, 198, 198, 3398, 22846, 37142, 796, 362, 198, 2, 27565, 2494, 287, 8405, 583, 1218, 198, 49302, 16437, 62, 49, 6158, 796, 4764, 830, 198, 18973, 40, 3727, 62, 33489, 796, 28119, 198, 2, 383, 9478, 286, 257, 15558, 16654, 357, 8499, 543, 262, 40885, 481, 307, 10667, 8, 287, 4201, 13, 198, 49302, 16437, 62, 23683, 1340, 5258, 62, 12473, 30818, 62, 50084, 796, 657, 13, 20, 198, 2, 383, 1271, 286, 8405, 878, 1123, 2198, 198, 49302, 16437, 62, 34, 28270, 62, 12473, 30818, 62, 50084, 796, 493, 19510, 49302, 16437, 62, 49, 6158, 1220, 5870, 22846, 37142, 8, 1635, 28844, 16437, 62, 23683, 1340, 5258, 62, 12473, 30818, 62, 50084, 8, 198, 2, 383, 640, 1141, 543, 262, 5128, 11387, 5818, 470, 587, 4251, 11, 878, 5072, 318, 5025, 13, 198, 2, 770, 318, 4465, 329, 12174, 262, 5072, 3335, 422, 6225, 572, 290, 319, 618, 612, 318, 257, 1790, 9550, 287, 262, 5128, 13, 198, 49302, 16437, 62, 23683, 1340, 5258, 62, 12473, 30818, 62, 51, 27064, 62, 27977, 796, 1315, 198, 2, 383, 1271, 286, 8794, 543, 423, 284, 2038, 878, 6597, 318, 2900, 572, 13, 198, 50084, 62, 41359, 13246, 62, 12473, 30818, 62, 51, 27064, 62, 27977, 796, 493, 7, 49302, 16437, 62, 23683, 1340, 5258, 62, 12473, 30818, 62, 51, 27064, 62, 27977, 1220, 28844, 16437, 62, 23683, 1340, 5258, 62, 12473, 30818, 62, 50084, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 923, 62, 9945, 62, 400, 10126, 796, 657, 198, 220, 220, 220, 2245, 62, 9945, 62, 400, 10126, 796, 657, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9945, 62, 400, 10126, 796, 12178, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 9945, 62, 400, 10126, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9945, 62, 400, 10126, 796, 532, 9688, 62, 9945, 62, 400, 10126, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2896, 500, 262, 2245, 11387, 13, 770, 15174, 2537, 4169, 411, 271, 618, 262, 6115, 19180, 12632, 655, 1088, 262, 11387, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 62, 9945, 62, 400, 10126, 796, 923, 62, 9945, 62, 400, 10126, 532, 513, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3500, 435, 82, 7335, 404, 351, 5128, 1241, 13326, 46110, 13, 16, 69, 92, 284, 923, 11, 46110, 13, 16, 69, 92, 284, 2245, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 9688, 62, 9945, 62, 400, 10126, 11, 2245, 62, 9945, 62, 400, 10126, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3500, 435, 82, 7335, 404, 1231, 5128, 1241, 13326, 4943, 628, 220, 220, 220, 5128, 62, 25202, 796, 1280, 62, 23661, 7, 22915, 28, 25101, 8, 198, 220, 220, 220, 5072, 62, 25202, 796, 6045, 198, 220, 220, 220, 5201, 796, 10352, 628, 220, 220, 220, 8405, 796, 657, 198, 220, 220, 220, 6291, 62, 16345, 796, 657, 198, 220, 220, 220, 3509, 62, 39873, 796, 657, 198, 220, 220, 220, 3722, 796, 366, 21215, 198, 220, 220, 220, 374, 907, 62, 29048, 796, 657, 198, 220, 220, 220, 5128, 62, 15255, 11197, 796, 10352, 628, 220, 220, 220, 1303, 15034, 329, 8840, 20016, 287, 543, 262, 11387, 468, 407, 587, 1138, 981, 16388, 318, 4075, 198, 220, 220, 220, 954, 62, 1759, 1891, 62, 400, 10126, 62, 1662, 62, 4164, 796, 657, 628, 220, 220, 220, 981, 407, 5201, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 1366, 422, 3335, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 13664, 11, 1366, 796, 5128, 62, 25202, 13, 961, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 13664, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13742, 338, 2642, 618, 428, 4325, 13, 2329, 1949, 284, 1100, 757, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7203, 1701, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 11925, 7, 7890, 8, 4064, 604, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15891, 34182, 1332, 25, 1002, 262, 4129, 2125, 470, 257, 3294, 286, 604, 11, 1223, 338, 2642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 44860, 4064, 82, 1911, 18982, 7, 11925, 7, 7890, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 11677, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 832, 262, 3058, 7907, 6597, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 981, 11677, 1279, 1366, 62, 13664, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 262, 1364, 290, 826, 6518, 422, 262, 1366, 19638, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 39873, 62, 75, 11, 6291, 62, 81, 8, 796, 555, 8002, 62, 6738, 10786, 27, 12337, 3256, 1366, 11, 11677, 28, 28968, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18931, 13, 18224, 7203, 4, 82, 4064, 82, 4064, 82, 1600, 75, 11, 11925, 7, 7890, 828, 11677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 257, 4277, 1988, 286, 6632, 523, 262, 1430, 460, 1394, 2491, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 39873, 62, 75, 11, 6291, 62, 81, 8, 796, 357, 15, 11, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 15853, 604, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 15853, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 2160, 286, 477, 8405, 44345, 11, 973, 284, 5004, 374, 907, 1568, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 16345, 15853, 6291, 62, 75, 1635, 6291, 62, 75, 1343, 6291, 62, 81, 1635, 6291, 62, 81, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 262, 3509, 1988, 286, 477, 8405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 39873, 796, 3509, 7, 9806, 62, 39873, 11, 2352, 7, 39873, 62, 75, 828, 2352, 7, 39873, 62, 81, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8405, 18189, 28844, 16437, 62, 34, 28270, 62, 12473, 30818, 62, 50084, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 371, 5653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 907, 62, 29048, 796, 19862, 17034, 7, 39873, 62, 16345, 1220, 8405, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45559, 3810, 543, 11387, 1988, 284, 779, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 301, 38333, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 923, 62, 9945, 62, 400, 10126, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 796, 2245, 62, 9945, 62, 400, 10126, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 262, 11387, 468, 587, 20672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 923, 62, 9945, 62, 400, 10126, 6624, 657, 393, 875, 43837, 7, 9806, 62, 39873, 8, 1875, 11387, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 15255, 11197, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 366, 47, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 15255, 11197, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 366, 21215, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 92, 46110, 13, 16, 69, 92, 46110, 13, 16, 69, 92, 1911, 18982, 7, 13376, 11, 875, 43837, 7, 81, 907, 62, 29048, 828, 875, 43837, 7, 9806, 62, 39873, 36911, 24773, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 16345, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 39873, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 301, 38333, 290, 5128, 62, 15255, 11197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5128, 62, 25202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 20560, 6737, 12326, 11, 14187, 3500, 584, 1938, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 14, 8738, 14, 71, 361, 1856, 563, 14, 8800, 14, 32125, 12, 439, 435, 82, 7335, 404, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 15414, 62, 25202, 11, 5072, 62, 25202, 8, 796, 1280, 62, 23661, 7, 22915, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 301, 38333, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 5072, 62, 301, 38333, 290, 407, 5128, 62, 15255, 11197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 62, 1759, 1891, 62, 400, 10126, 62, 1662, 62, 4164, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 69, 1, 2949, 5128, 6737, 329, 1391, 9127, 62, 1759, 1891, 62, 400, 10126, 62, 1662, 62, 4164, 92, 20016, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 954, 62, 1759, 1891, 62, 400, 10126, 62, 1662, 62, 4164, 1875, 5870, 25171, 62, 41359, 13246, 62, 12473, 30818, 62, 51, 27064, 62, 27977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5128, 62, 25202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 25202, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 20560, 6737, 2626, 11, 12225, 16388, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 25202, 796, 1280, 62, 23661, 7, 22915, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 301, 38333, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 62, 15255, 11197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 30027, 3753, 618, 5128, 12326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 62, 1759, 1891, 62, 400, 10126, 62, 1662, 62, 4164, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5072, 62, 301, 38333, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 25202, 13, 13564, 7, 7890, 8, 198 ]
2.475232
2,584
import logging import hashlib import assets_pb2 as assets from sawtooth_sdk.processor.exceptions import InvalidTransaction import handler.addressing as Addressing import handler.utils as utils LOGGER = logging.getLogger(__name__)
[ 11748, 18931, 198, 11748, 12234, 8019, 198, 198, 11748, 6798, 62, 40842, 17, 355, 6798, 198, 6738, 2497, 1462, 849, 62, 21282, 74, 13, 41341, 13, 1069, 11755, 1330, 17665, 48720, 198, 11748, 21360, 13, 2860, 11697, 355, 3060, 11697, 198, 11748, 21360, 13, 26791, 355, 3384, 4487, 198, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8 ]
3.666667
63
#!/usr/bin/env python from netCDF4 import Dataset import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import cartopy.crs as crs from cartopy.feature import NaturalEarthFeature from wrf import ALL_TIMES, to_np, getvar, smooth2d, get_cartopy, cartopy_xlim, cartopy_ylim, latlon_coords # Open the NetCDF file ncfile = Dataset("/Users/zhenkunli/Dropbox/share/results/wrfout_d01_2014-07-01_00:00:00") # Get the sea level pressure LH = getvar(ncfile, "LH", timeidx=ALL_TIMES) print LH # Smooth the sea level pressure since it tends to be noisy near the mountains LH = smooth2d(LH, 3) # Get the latitude and longitude points lats, lons = latlon_coords(LH) # Get the cartopy mapping object cart_proj = get_cartopy(LH) print cart_proj # Create a figure fig = plt.figure(figsize=(8,6)) # Set the GeoAxes to the projection used by WRF ax = plt.axes(projection=cart_proj) # Download and add the states and coastlines states = NaturalEarthFeature(category='cultural', scale='50m', facecolor='none', name='admin_1_states_provinces_shp') ax.add_feature(states, linewidth=.5) ax.coastlines('50m', linewidth=0.8) # Make the contour outlines and filled contours for the smoothed sea level pressure. plt.contour(to_np(lons), to_np(lats), to_np(LH[160,:,:]), 10, colors="black", transform=crs.PlateCarree()) plt.contourf(to_np(lons), to_np(lats), to_np(LH[160,:,:]), 10, transform=crs.PlateCarree(), cmap=get_cmap("jet")) # Add a color bar plt.colorbar(ax=ax, shrink=.92) # Set the map limits. Not really necessary, but used for demonstration. ax.set_xlim(cartopy_xlim(LH)) ax.set_ylim(cartopy_ylim(LH)) # Add the gridlines ax.gridlines(color="black", linestyle="dotted") plt.title("LATENT HEAT FLUX AT THE SURFACE (W m-2)") plt.savefig('LH.png') # plt.show()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 2010, 34, 8068, 19, 1330, 16092, 292, 316, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 11215, 1330, 651, 62, 66, 8899, 198, 11748, 6383, 11081, 13, 66, 3808, 355, 1067, 82, 198, 6738, 6383, 11081, 13, 30053, 1330, 12068, 22840, 38816, 198, 198, 6738, 1319, 69, 1330, 11096, 62, 51, 3955, 1546, 11, 284, 62, 37659, 11, 651, 7785, 11, 7209, 17, 67, 11, 651, 62, 26674, 11081, 11, 6383, 11081, 62, 87, 2475, 11, 6383, 11081, 62, 88, 2475, 11, 3042, 14995, 62, 1073, 3669, 198, 198, 2, 4946, 262, 3433, 34, 8068, 2393, 198, 10782, 7753, 796, 16092, 292, 316, 7203, 14, 14490, 14, 46732, 28374, 4528, 14, 26932, 3524, 14, 20077, 14, 43420, 14, 18351, 69, 448, 62, 67, 486, 62, 4967, 12, 2998, 12, 486, 62, 405, 25, 405, 25, 405, 4943, 198, 198, 2, 3497, 262, 5417, 1241, 3833, 198, 43, 39, 796, 651, 7785, 7, 10782, 7753, 11, 366, 43, 39, 1600, 640, 312, 87, 28, 7036, 62, 51, 3955, 1546, 8, 198, 4798, 49730, 198, 198, 2, 37002, 262, 5417, 1241, 3833, 1201, 340, 12444, 284, 307, 31210, 1474, 262, 12269, 198, 43, 39, 796, 7209, 17, 67, 7, 43, 39, 11, 513, 8, 198, 198, 2, 3497, 262, 32477, 290, 890, 3984, 2173, 198, 75, 1381, 11, 300, 684, 796, 3042, 14995, 62, 1073, 3669, 7, 43, 39, 8, 198, 198, 2, 3497, 262, 6383, 11081, 16855, 2134, 198, 26674, 62, 1676, 73, 796, 651, 62, 26674, 11081, 7, 43, 39, 8, 198, 4798, 6383, 62, 1676, 73, 198, 198, 2, 13610, 257, 3785, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 23, 11, 21, 4008, 198, 2, 5345, 262, 32960, 31554, 274, 284, 262, 20128, 973, 416, 11342, 37, 198, 897, 796, 458, 83, 13, 897, 274, 7, 16302, 295, 28, 26674, 62, 1676, 73, 8, 198, 198, 2, 10472, 290, 751, 262, 2585, 290, 7051, 6615, 198, 27219, 796, 12068, 22840, 38816, 7, 22872, 11639, 30844, 3256, 5046, 11639, 1120, 76, 3256, 1986, 8043, 11639, 23108, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 28482, 62, 16, 62, 27219, 62, 1676, 7114, 728, 62, 1477, 79, 11537, 198, 897, 13, 2860, 62, 30053, 7, 27219, 11, 9493, 413, 5649, 28, 13, 20, 8, 198, 897, 13, 1073, 459, 6615, 10786, 1120, 76, 3256, 9493, 413, 5649, 28, 15, 13, 23, 8, 198, 198, 2, 6889, 262, 542, 454, 27430, 290, 5901, 542, 4662, 329, 262, 32746, 704, 5417, 1241, 3833, 13, 198, 489, 83, 13, 3642, 454, 7, 1462, 62, 37659, 7, 75, 684, 828, 284, 62, 37659, 7, 75, 1381, 828, 284, 62, 37659, 7, 43, 39, 58, 14198, 11, 45299, 25, 46570, 838, 11, 7577, 2625, 13424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 66, 3808, 13, 3646, 378, 9914, 631, 28955, 198, 489, 83, 13, 3642, 454, 69, 7, 1462, 62, 37659, 7, 75, 684, 828, 284, 62, 37659, 7, 75, 1381, 828, 284, 62, 37659, 7, 43, 39, 58, 14198, 11, 45299, 25, 46570, 838, 11, 6121, 28, 66, 3808, 13, 3646, 378, 9914, 631, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 8899, 28, 1136, 62, 66, 8899, 7203, 31173, 48774, 198, 198, 2, 3060, 257, 3124, 2318, 198, 489, 83, 13, 8043, 5657, 7, 897, 28, 897, 11, 22085, 28, 13, 5892, 8, 198, 198, 2, 5345, 262, 3975, 7095, 13, 220, 1892, 1107, 3306, 11, 475, 973, 329, 13646, 13, 198, 897, 13, 2617, 62, 87, 2475, 7, 26674, 11081, 62, 87, 2475, 7, 43, 39, 4008, 198, 897, 13, 2617, 62, 88, 2475, 7, 26674, 11081, 62, 88, 2475, 7, 43, 39, 4008, 198, 198, 2, 3060, 262, 10706, 6615, 198, 897, 13, 25928, 6615, 7, 8043, 2625, 13424, 1600, 9493, 10992, 2625, 67, 8426, 4943, 198, 198, 489, 83, 13, 7839, 7203, 43, 1404, 3525, 11179, 1404, 9977, 31235, 5161, 3336, 41016, 49836, 357, 54, 285, 12, 17, 8, 4943, 198, 198, 489, 83, 13, 21928, 5647, 10786, 43, 39, 13, 11134, 11537, 198, 198, 2, 458, 83, 13, 12860, 3419, 198 ]
2.489768
733
import os import sys import launch import launch_ros.actions from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch_ros.actions import ComposableNodeContainer from launch_ros.descriptions import ComposableNode
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 4219, 198, 11748, 4219, 62, 4951, 13, 4658, 198, 6738, 4219, 13, 4658, 1330, 16691, 533, 38296, 28100, 1713, 198, 6738, 4219, 13, 7266, 301, 270, 3508, 1330, 21225, 38149, 198, 6738, 4219, 62, 4951, 13, 4658, 1330, 29936, 540, 19667, 29869, 198, 6738, 4219, 62, 4951, 13, 20147, 1968, 507, 1330, 29936, 540, 19667, 198 ]
4.269841
63
from kivy.storage.jsonstore import JsonStore from kivy.uix.boxlayout import BoxLayout from kivy.uix.floatlayout import FloatLayout from kivy.uix.screenmanager import Screen from kivymd.app import MDApp from kivy.lang import Builder from kivymd.uix.button import MDFlatButton, MDFloatingActionButton from kivymd.uix.dialog import MDDialog from kivymd.uix.list import TwoLineAvatarIconListItem from kivymd.uix.menu import MDDropdownMenu from kivymd.uix.tab import MDTabsBase MyApp().run()
[ 6738, 479, 452, 88, 13, 35350, 13, 17752, 8095, 1330, 449, 1559, 22658, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 3524, 39786, 1330, 8315, 32517, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 22468, 39786, 1330, 48436, 32517, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 9612, 37153, 1330, 15216, 198, 6738, 479, 452, 4948, 67, 13, 1324, 1330, 10670, 4677, 198, 6738, 479, 452, 88, 13, 17204, 1330, 35869, 198, 6738, 479, 452, 4948, 67, 13, 84, 844, 13, 16539, 1330, 10670, 7414, 265, 21864, 11, 337, 8068, 5439, 803, 12502, 21864, 198, 6738, 479, 452, 4948, 67, 13, 84, 844, 13, 38969, 519, 1330, 10670, 44204, 198, 6738, 479, 452, 4948, 67, 13, 84, 844, 13, 4868, 1330, 4930, 13949, 7355, 9459, 19578, 8053, 7449, 198, 6738, 479, 452, 4948, 67, 13, 84, 844, 13, 26272, 1330, 10670, 26932, 2902, 23381, 198, 6738, 479, 452, 4948, 67, 13, 84, 844, 13, 8658, 1330, 10670, 51, 8937, 14881, 628, 628, 628, 628, 198, 3666, 4677, 22446, 5143, 3419, 198 ]
2.844828
174
from multiprocessing.sharedctypes import Value import socket import spotipy from spotipy.oauth2 import SpotifyClientCredentials HEADER = 64 PORT = 5050 FORMAT = 'utf-8' DISCONNECT_MESSAGE = "!DISCONNECT" # SERVER = socket.gethostbyname(socket.gethostname()) SERVER = "192.168.0.155" ADDR = (SERVER, PORT) """ Calls track search endpoint and populates a dictionary with results. """ try: client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(ADDR) main_display() except ConnectionRefusedError: print("[ERROR] Bad connection. You may have the wrong IP Address or the server may be down.")
[ 6738, 18540, 305, 919, 278, 13, 28710, 310, 9497, 1330, 11052, 198, 11748, 17802, 198, 11748, 4136, 541, 88, 198, 6738, 4136, 541, 88, 13, 12162, 1071, 17, 1330, 26778, 11792, 34, 445, 14817, 628, 198, 37682, 1137, 796, 5598, 198, 15490, 796, 2026, 1120, 198, 21389, 1404, 796, 705, 40477, 12, 23, 6, 198, 26288, 10943, 48842, 62, 44, 1546, 4090, 8264, 796, 366, 0, 26288, 10943, 48842, 1, 198, 2, 18871, 5959, 796, 17802, 13, 1136, 4774, 1525, 3672, 7, 44971, 13, 1136, 4774, 3672, 28955, 198, 35009, 5959, 796, 366, 17477, 13, 14656, 13, 15, 13, 18742, 1, 198, 2885, 7707, 796, 357, 35009, 5959, 11, 350, 9863, 8, 628, 628, 198, 37811, 198, 34, 5691, 2610, 2989, 36123, 290, 1461, 15968, 257, 22155, 351, 2482, 13, 198, 37811, 628, 198, 198, 28311, 25, 198, 220, 220, 220, 5456, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 220, 220, 220, 5456, 13, 8443, 7, 2885, 7707, 8, 628, 220, 220, 220, 1388, 62, 13812, 3419, 198, 16341, 26923, 8134, 1484, 12331, 25, 198, 220, 220, 220, 3601, 7203, 58, 24908, 60, 7772, 4637, 13, 921, 743, 423, 262, 2642, 6101, 17917, 393, 262, 4382, 743, 307, 866, 19570, 198 ]
2.944186
215
'''4. Write a Python program to generate groups of five consecutive numbers in a list. ''' l = [[5*i + j for j in range(1,6)] for i in range(5)] print(l) #Reference: w3resource
[ 7061, 6, 19, 13, 19430, 257, 11361, 1430, 284, 7716, 2628, 286, 1936, 12785, 3146, 287, 257, 1351, 13, 705, 7061, 198, 198, 75, 796, 16410, 20, 9, 72, 1343, 474, 329, 474, 287, 2837, 7, 16, 11, 21, 15437, 329, 1312, 287, 2837, 7, 20, 15437, 198, 4798, 7, 75, 8, 198, 198, 2, 26687, 25, 266, 18, 31092 ]
2.966667
60
#!/usr/bin/python # coding: UTF-8 # # Author: Dawid Laszuk # Contact: [email protected] # # Feel free to contact for any information. from __future__ import division, print_function import emcee import logging import numpy as np import time, datetime from .kursl_model import KurSL from .model import ModelWrapper # End of Class ###################################### # Exaple usage of program. # 1. Prepare oscillators. # 2. Adjust Kuramoto system via Bayes inference # 3. Plot results if __name__ == "__main__": import sys logfile = __file__.split('.')[0] + ".log" logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger(__file__) PLOT_RESULTS = True N = 1024*2 t = np.linspace(0, 3, N) t0, t1, dt = t[0], t[-1], t[1]-t[0] oscN = 2 # Number of oscillators nH = 1 # Number of harmonics # For generating parameters MIN_R, MAX_R = 1, 5 MIN_W, MAX_W = 10, 30 # Initial values for system W = np.random.random(oscN)*(MAX_W-MIN_W) + MIN_W R = np.random.random(oscN)*(MAX_R-MIN_R) + MIN_R Phi0 = np.random.random(oscN)*2*np.pi kMat = np.random.random((oscN, nH*(oscN-1))) # P - W(Nx1) R(Nx1) Ph(Nx1) K(Nx(M(N-1)) # P - Nx(3+M(N-1)) P = np.zeros((oscN, 3+nH*(oscN-1))) P[:,0] = W P[:,1] = Phi0 P[:,2] = R if oscN != 1: P[:,3:3+nH*(oscN-1)] = kMat noise = P*np.random.normal(0, 0.2) # Generating signal phase, amp, sInput = KurSL(P).generate(t) for i in range(oscN): sInput[i] += np.random.normal(0, 0.2*R[i], N-1) # Applying MCMC theta_init = P + noise S = np.sum(sInput, axis=0)+np.random.random(t.size-1) logger.info("Sit back and relax. This will take a while...") mcmc = KurslMCMC(theta_init, nH=nH, nwalkers=40, niter=100) mcmc.set_sampler(t, S) theta = mcmc.run() # Plot comparison between plots logger.info("Best estimate: " + str(theta)) # Plot results if PLOT_RESULTS: import pylab as plt kursl = KurSL(theta) phase, amp, rec = kursl.generate(t) plt.figure() for i in range(oscN): plt.subplot(oscN, 1, i+1) plt.plot(t[:-1], sInput[i], 'g') plt.plot(t[:-1], rec[i], 'r') plt.savefig("fit", dpi=200) plt.show()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 19617, 25, 41002, 12, 23, 198, 2, 198, 2, 6434, 25, 17552, 312, 10123, 89, 2724, 198, 2, 14039, 25, 39990, 89, 2724, 67, 707, 312, 31, 14816, 13, 785, 198, 2, 198, 2, 18571, 1479, 284, 2800, 329, 597, 1321, 13, 198, 6738, 11593, 37443, 834, 1330, 7297, 11, 3601, 62, 8818, 198, 198, 11748, 795, 344, 68, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 11, 4818, 8079, 198, 198, 6738, 764, 74, 1834, 75, 62, 19849, 1330, 18132, 8634, 198, 6738, 764, 19849, 1330, 9104, 36918, 2848, 198, 198, 2, 5268, 286, 5016, 198, 198, 29113, 4242, 2235, 198, 198, 2, 1475, 24052, 8748, 286, 1430, 13, 198, 2, 352, 13, 43426, 24969, 2024, 13, 198, 2, 362, 13, 20292, 18132, 25384, 1080, 2884, 4696, 274, 32278, 198, 2, 513, 13, 28114, 2482, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 2604, 7753, 796, 11593, 7753, 834, 13, 35312, 10786, 2637, 38381, 15, 60, 1343, 27071, 6404, 1, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5532, 28, 17597, 13, 19282, 448, 11, 1241, 28, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 7753, 834, 8, 628, 220, 220, 220, 9297, 2394, 62, 46274, 796, 6407, 628, 220, 220, 220, 399, 796, 28119, 9, 17, 198, 220, 220, 220, 256, 796, 45941, 13, 21602, 10223, 7, 15, 11, 513, 11, 399, 8, 198, 220, 220, 220, 256, 15, 11, 256, 16, 11, 288, 83, 796, 256, 58, 15, 4357, 256, 58, 12, 16, 4357, 256, 58, 16, 45297, 83, 58, 15, 60, 628, 220, 220, 220, 267, 1416, 45, 796, 362, 1303, 7913, 286, 24969, 2024, 198, 220, 220, 220, 299, 39, 796, 352, 220, 220, 1303, 7913, 286, 25625, 873, 628, 220, 220, 220, 1303, 1114, 15453, 10007, 198, 220, 220, 220, 20625, 62, 49, 11, 25882, 62, 49, 796, 352, 11, 642, 198, 220, 220, 220, 20625, 62, 54, 11, 25882, 62, 54, 796, 838, 11, 1542, 628, 220, 220, 220, 1303, 20768, 3815, 329, 1080, 198, 220, 220, 220, 370, 796, 45941, 13, 25120, 13, 25120, 7, 17500, 45, 27493, 7, 22921, 62, 54, 12, 23678, 62, 54, 8, 1343, 20625, 62, 54, 198, 220, 220, 220, 371, 796, 45941, 13, 25120, 13, 25120, 7, 17500, 45, 27493, 7, 22921, 62, 49, 12, 23678, 62, 49, 8, 1343, 20625, 62, 49, 198, 220, 220, 220, 47256, 15, 796, 45941, 13, 25120, 13, 25120, 7, 17500, 45, 27493, 17, 9, 37659, 13, 14415, 198, 220, 220, 220, 479, 19044, 796, 45941, 13, 25120, 13, 25120, 19510, 17500, 45, 11, 299, 39, 9, 7, 17500, 45, 12, 16, 22305, 628, 220, 220, 220, 1303, 350, 532, 370, 7, 45, 87, 16, 8, 371, 7, 45, 87, 16, 8, 1380, 7, 45, 87, 16, 8, 509, 7, 45, 87, 7, 44, 7, 45, 12, 16, 4008, 198, 220, 220, 220, 1303, 350, 532, 399, 87, 7, 18, 10, 44, 7, 45, 12, 16, 4008, 198, 220, 220, 220, 350, 796, 45941, 13, 9107, 418, 19510, 17500, 45, 11, 513, 10, 77, 39, 9, 7, 17500, 45, 12, 16, 22305, 198, 220, 220, 220, 350, 58, 45299, 15, 60, 796, 370, 198, 220, 220, 220, 350, 58, 45299, 16, 60, 796, 47256, 15, 198, 220, 220, 220, 350, 58, 45299, 17, 60, 796, 371, 198, 220, 220, 220, 611, 267, 1416, 45, 14512, 352, 25, 350, 58, 45299, 18, 25, 18, 10, 77, 39, 9, 7, 17500, 45, 12, 16, 15437, 796, 479, 19044, 198, 220, 220, 220, 7838, 796, 350, 9, 37659, 13, 25120, 13, 11265, 7, 15, 11, 657, 13, 17, 8, 628, 220, 220, 220, 1303, 2980, 803, 6737, 198, 220, 220, 220, 7108, 11, 20766, 11, 264, 20560, 796, 18132, 8634, 7, 47, 737, 8612, 378, 7, 83, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 17500, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 264, 20560, 58, 72, 60, 15853, 45941, 13, 25120, 13, 11265, 7, 15, 11, 657, 13, 17, 9, 49, 58, 72, 4357, 399, 12, 16, 8, 628, 220, 220, 220, 1303, 2034, 3157, 13122, 9655, 198, 220, 220, 220, 262, 8326, 62, 15003, 796, 350, 1343, 7838, 628, 220, 220, 220, 311, 796, 45941, 13, 16345, 7, 82, 20560, 11, 16488, 28, 15, 47762, 37659, 13, 25120, 13, 25120, 7, 83, 13, 7857, 12, 16, 8, 628, 220, 220, 220, 49706, 13, 10951, 7203, 46655, 736, 290, 8960, 13, 770, 481, 1011, 257, 981, 9313, 8, 198, 220, 220, 220, 285, 11215, 66, 796, 509, 1834, 75, 9655, 9655, 7, 1169, 8326, 62, 15003, 11, 299, 39, 28, 77, 39, 11, 299, 11152, 364, 28, 1821, 11, 299, 2676, 28, 3064, 8, 198, 220, 220, 220, 285, 11215, 66, 13, 2617, 62, 37687, 20053, 7, 83, 11, 311, 8, 198, 220, 220, 220, 262, 8326, 796, 285, 11215, 66, 13, 5143, 3419, 628, 220, 220, 220, 1303, 28114, 7208, 1022, 21528, 198, 220, 220, 220, 49706, 13, 10951, 7203, 13014, 8636, 25, 366, 1343, 965, 7, 1169, 8326, 4008, 628, 220, 220, 220, 1303, 28114, 2482, 198, 220, 220, 220, 611, 9297, 2394, 62, 46274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 279, 2645, 397, 355, 458, 83, 628, 220, 220, 220, 220, 220, 220, 220, 479, 1834, 75, 796, 18132, 8634, 7, 1169, 8326, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7108, 11, 20766, 11, 664, 796, 479, 1834, 75, 13, 8612, 378, 7, 83, 8, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 17500, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 17500, 45, 11, 352, 11, 1312, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 83, 58, 21912, 16, 4357, 264, 20560, 58, 72, 4357, 705, 70, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 83, 58, 21912, 16, 4357, 664, 58, 72, 4357, 705, 81, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 21928, 5647, 7203, 11147, 1600, 288, 14415, 28, 2167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.127854
1,095
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import info # make sure this path is correct PATH = "C:\Program Files (x86)\ChromeDriver\chromedriver.exe" driver = webdriver.Chrome(PATH) RTX3070LINK1 = "https://www.bestbuy.com/site/nvidia-geforce-rtx-3070-8gb-gddr6-pci-express-4-0-graphics-card-dark-platinum-and-black/6429442.p?skuId=6429442" RTX3070LINK2 = "https://www.bestbuy.com/site/gigabyte-geforce-rtx-3070-8g-gddr6-pci-express-4-0-graphics-card-black/6437912.p?skuId=6437912" XBOXONETEST = "https://www.bestbuy.com/site/microsoft-xbox-one-s-1tb-console-bundle-white/6415222.p?skuId=6415222" driver.get(RTX3070LINK1) isComplete = False while not isComplete: # find add to cart button try: atcBtn = WebDriverWait(driver, 10).until( EC.element_to_be_clickable((By.CSS_SELECTOR, ".add-to-cart-button")) ) except: driver.refresh() continue print("Add to cart button found") try: # add to cart atcBtn.click() # go to cart and begin checkout as guest driver.get("https://www.bestbuy.com/cart") checkoutBtn = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, "/html/body/div[1]/main/div/div[2]/div[1]/div/div/span/div/div[2]/div[1]/section[2]/div/div/div[3]/div/div[1]/button")) ) checkoutBtn.click() print("Successfully added to cart - beginning check out") # fill in email and password emailField = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "fld-e")) ) emailField.send_keys(info.email) pwField = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "fld-p1")) ) pwField.send_keys(info.password) # click sign in button signInBtn = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, "/html/body/div[1]/div/section/main/div[1]/div/div/div/div/form/div[3]/button")) ) signInBtn.click() print("Signing in") # fill in card cvv cvvField = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, "credit-card-cvv")) ) cvvField.send_keys(info.cvv) print("Attempting to place order") # place order placeOrderBtn = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.CSS_SELECTOR, ".button__fast-track")) ) placeOrderBtn.click() isComplete = True except: # make sure this link is the same as the link passed to driver.get() before looping driver.get(RTX3070LINK1) print("Error - restarting bot") continue print("Order successfully placed")
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 198, 198, 11748, 7508, 198, 198, 2, 787, 1654, 428, 3108, 318, 3376, 198, 34219, 796, 366, 34, 7479, 15167, 13283, 357, 87, 4521, 19415, 1925, 5998, 32103, 59, 28663, 276, 38291, 13, 13499, 1, 198, 198, 26230, 796, 3992, 26230, 13, 1925, 5998, 7, 34219, 8, 198, 198, 14181, 55, 1270, 2154, 43, 17248, 16, 796, 366, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 15654, 14, 77, 21744, 12, 469, 3174, 12, 17034, 87, 12, 1270, 2154, 12, 23, 22296, 12, 70, 1860, 81, 21, 12, 79, 979, 12, 42712, 12, 19, 12, 15, 12, 70, 11549, 12, 9517, 12, 21953, 12, 489, 16881, 12, 392, 12, 13424, 14, 2414, 1959, 39506, 13, 79, 30, 8135, 84, 7390, 28, 2414, 1959, 39506, 1, 198, 14181, 55, 1270, 2154, 43, 17248, 17, 796, 366, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 15654, 14, 70, 328, 37828, 12, 469, 3174, 12, 17034, 87, 12, 1270, 2154, 12, 23, 70, 12, 70, 1860, 81, 21, 12, 79, 979, 12, 42712, 12, 19, 12, 15, 12, 70, 11549, 12, 9517, 12, 13424, 14, 2414, 29088, 1065, 13, 79, 30, 8135, 84, 7390, 28, 2414, 29088, 1065, 1, 198, 55, 39758, 1340, 2767, 6465, 796, 366, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 15654, 14, 40485, 12, 87, 3524, 12, 505, 12, 82, 12, 16, 83, 65, 12, 41947, 12, 65, 31249, 12, 11186, 14, 2414, 1314, 23148, 13, 79, 30, 8135, 84, 7390, 28, 2414, 1314, 23148, 1, 198, 198, 26230, 13, 1136, 7, 14181, 55, 1270, 2154, 43, 17248, 16, 8, 198, 198, 271, 20988, 796, 10352, 198, 198, 4514, 407, 318, 20988, 25, 198, 220, 220, 220, 1303, 1064, 751, 284, 6383, 4936, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 379, 66, 33, 34106, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 30854, 62, 1462, 62, 1350, 62, 12976, 540, 19510, 3886, 13, 49155, 62, 46506, 1581, 11, 27071, 2860, 12, 1462, 12, 26674, 12, 16539, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 5420, 3447, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 3601, 7203, 4550, 284, 6383, 4936, 1043, 4943, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 284, 6383, 198, 220, 220, 220, 220, 220, 220, 220, 379, 66, 33, 34106, 13, 12976, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 467, 284, 6383, 290, 2221, 28006, 355, 8319, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 1136, 7203, 5450, 1378, 2503, 13, 13466, 17846, 13, 785, 14, 26674, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 28006, 33, 34106, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 27481, 12599, 11, 12813, 6494, 14, 2618, 14, 7146, 58, 16, 60, 14, 12417, 14, 7146, 14, 7146, 58, 17, 60, 14, 7146, 58, 16, 60, 14, 7146, 14, 7146, 14, 12626, 14, 7146, 14, 7146, 58, 17, 60, 14, 7146, 58, 16, 60, 14, 5458, 58, 17, 60, 14, 7146, 14, 7146, 14, 7146, 58, 18, 60, 14, 7146, 14, 7146, 58, 16, 60, 14, 16539, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 28006, 33, 34106, 13, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33244, 2759, 2087, 284, 6383, 532, 3726, 2198, 503, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6070, 287, 3053, 290, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 15878, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 2389, 11, 366, 69, 335, 12, 68, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 15878, 13, 21280, 62, 13083, 7, 10951, 13, 12888, 8, 628, 220, 220, 220, 220, 220, 220, 220, 279, 86, 15878, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 2389, 11, 366, 69, 335, 12, 79, 16, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 86, 15878, 13, 21280, 62, 13083, 7, 10951, 13, 28712, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3904, 1051, 287, 4936, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 818, 33, 34106, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 27481, 12599, 11, 12813, 6494, 14, 2618, 14, 7146, 58, 16, 60, 14, 7146, 14, 5458, 14, 12417, 14, 7146, 58, 16, 60, 14, 7146, 14, 7146, 14, 7146, 14, 7146, 14, 687, 14, 7146, 58, 18, 60, 14, 16539, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1051, 818, 33, 34106, 13, 12976, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 11712, 278, 287, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6070, 287, 2657, 269, 25093, 198, 220, 220, 220, 220, 220, 220, 220, 269, 25093, 15878, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 2389, 11, 366, 43082, 12, 9517, 12, 66, 25093, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 269, 25093, 15878, 13, 21280, 62, 13083, 7, 10951, 13, 66, 25093, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37177, 278, 284, 1295, 1502, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1295, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 1295, 18743, 33, 34106, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 49155, 62, 46506, 1581, 11, 27071, 16539, 834, 7217, 12, 11659, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1295, 18743, 33, 34106, 13, 12976, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 318, 20988, 796, 6407, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 1654, 428, 2792, 318, 262, 976, 355, 262, 2792, 3804, 284, 4639, 13, 1136, 3419, 878, 9052, 278, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 1136, 7, 14181, 55, 1270, 2154, 43, 17248, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 532, 15765, 278, 10214, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 198, 4798, 7203, 18743, 7675, 4624, 4943, 198 ]
2.212942
1,329
""" Copyright start Copyright (C) 2008 - 2021 Fortinet Inc. All rights reserved. FORTINET CONFIDENTIAL & FORTINET PROPRIETARY SOURCE CODE Copyright end """ import boto3, requests, json from connectors.core.connector import get_logger, ConnectorError logger = get_logger('aws-network-firewall') TEMP_CRED_ENDPOINT = 'http://169.254.169.254/latest/meta-data/iam/security-credentials/{}' operations = { 'get_associate_firewall_policy': get_associate_firewall_policy, 'get_associate_subnets': get_associate_subnets, 'create_firewall': create_firewall, 'create_firewall_policy': create_firewall_policy, 'create_rule_group': create_rule_group, 'delete_firewall': delete_firewall, 'delete_firewall_policy': delete_firewall_policy, 'delete_resource_policy': delete_resource_policy, 'delete_rule_group': delete_rule_group, 'describe_firewall': describe_firewall, 'describe_firewall_policy': describe_firewall_policy, 'describe_logging_configuration': describe_logging_configuration, 'describe_resource_policy': describe_resource_policy, 'describe_rule_group': describe_rule_group, 'disassociate_subnets': disassociate_subnets, 'get_list_firewalls': get_list_firewalls, 'get_list_firewall_policies': get_list_firewall_policies, 'get_list_rule_groups': get_list_rule_groups, 'get_list_tag_for_resource': get_list_tag_for_resource, 'tag_resource': tag_resource }
[ 37811, 15069, 923, 198, 220, 15069, 357, 34, 8, 3648, 532, 33448, 6401, 42504, 3457, 13, 198, 220, 1439, 2489, 10395, 13, 198, 220, 7473, 51, 1268, 2767, 7102, 37, 25256, 12576, 1222, 7473, 51, 1268, 2767, 4810, 3185, 7112, 2767, 13153, 311, 31033, 42714, 198, 220, 15069, 886, 37227, 198, 198, 11748, 275, 2069, 18, 11, 7007, 11, 33918, 198, 6738, 34472, 13, 7295, 13, 8443, 273, 1330, 651, 62, 6404, 1362, 11, 8113, 273, 12331, 198, 198, 6404, 1362, 796, 651, 62, 6404, 1362, 10786, 8356, 12, 27349, 12, 6495, 11930, 11537, 198, 198, 51, 39494, 62, 9419, 1961, 62, 1677, 6322, 46, 12394, 796, 705, 4023, 1378, 22172, 13, 24970, 13, 22172, 13, 24970, 14, 42861, 14, 28961, 12, 7890, 14, 1789, 14, 12961, 12, 66, 445, 14817, 14, 90, 92, 6, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 3575, 602, 796, 1391, 198, 220, 220, 220, 705, 1136, 62, 562, 47615, 62, 6495, 11930, 62, 30586, 10354, 651, 62, 562, 47615, 62, 6495, 11930, 62, 30586, 11, 198, 220, 220, 220, 705, 1136, 62, 562, 47615, 62, 7266, 45938, 10354, 651, 62, 562, 47615, 62, 7266, 45938, 11, 198, 220, 220, 220, 705, 17953, 62, 6495, 11930, 10354, 2251, 62, 6495, 11930, 11, 198, 220, 220, 220, 705, 17953, 62, 6495, 11930, 62, 30586, 10354, 2251, 62, 6495, 11930, 62, 30586, 11, 198, 220, 220, 220, 705, 17953, 62, 25135, 62, 8094, 10354, 2251, 62, 25135, 62, 8094, 11, 198, 220, 220, 220, 705, 33678, 62, 6495, 11930, 10354, 12233, 62, 6495, 11930, 11, 198, 220, 220, 220, 705, 33678, 62, 6495, 11930, 62, 30586, 10354, 12233, 62, 6495, 11930, 62, 30586, 11, 198, 220, 220, 220, 705, 33678, 62, 31092, 62, 30586, 10354, 12233, 62, 31092, 62, 30586, 11, 198, 220, 220, 220, 705, 33678, 62, 25135, 62, 8094, 10354, 12233, 62, 25135, 62, 8094, 11, 198, 220, 220, 220, 705, 20147, 4892, 62, 6495, 11930, 10354, 6901, 62, 6495, 11930, 11, 198, 220, 220, 220, 705, 20147, 4892, 62, 6495, 11930, 62, 30586, 10354, 6901, 62, 6495, 11930, 62, 30586, 11, 198, 220, 220, 220, 705, 20147, 4892, 62, 6404, 2667, 62, 11250, 3924, 10354, 6901, 62, 6404, 2667, 62, 11250, 3924, 11, 198, 220, 220, 220, 705, 20147, 4892, 62, 31092, 62, 30586, 10354, 6901, 62, 31092, 62, 30586, 11, 198, 220, 220, 220, 705, 20147, 4892, 62, 25135, 62, 8094, 10354, 6901, 62, 25135, 62, 8094, 11, 198, 220, 220, 220, 705, 6381, 562, 47615, 62, 7266, 45938, 10354, 595, 562, 47615, 62, 7266, 45938, 11, 198, 220, 220, 220, 705, 1136, 62, 4868, 62, 6495, 86, 5691, 10354, 651, 62, 4868, 62, 6495, 86, 5691, 11, 198, 220, 220, 220, 705, 1136, 62, 4868, 62, 6495, 11930, 62, 79, 4160, 444, 10354, 651, 62, 4868, 62, 6495, 11930, 62, 79, 4160, 444, 11, 198, 220, 220, 220, 705, 1136, 62, 4868, 62, 25135, 62, 24432, 10354, 651, 62, 4868, 62, 25135, 62, 24432, 11, 198, 220, 220, 220, 705, 1136, 62, 4868, 62, 12985, 62, 1640, 62, 31092, 10354, 651, 62, 4868, 62, 12985, 62, 1640, 62, 31092, 11, 198, 220, 220, 220, 705, 12985, 62, 31092, 10354, 7621, 62, 31092, 198, 92, 628 ]
2.71719
541
# Enter your code here. Read input from STDIN. Print output to STDOUTseen = '' from string import ascii_uppercase, digits import re for _ in range(1, int(input())+1): uid = str(input()) seen = '' valid = True if len(uid) == 10: for char in uid: if char not in seen and char.isalnum(): seen = seen + char else: valid = False break if len(re.findall(r'[A-Z]', seen)) > 1 and len(re.findall(r'[0-9]', seen)) >2 : pass else: valid = False else: valid = False print('Valid' if valid else 'Invalid')
[ 2, 6062, 534, 2438, 994, 13, 4149, 5128, 422, 48571, 1268, 13, 12578, 5072, 284, 48571, 12425, 15898, 796, 10148, 198, 6738, 4731, 1330, 355, 979, 72, 62, 7211, 2798, 589, 11, 19561, 198, 11748, 302, 198, 1640, 4808, 287, 2837, 7, 16, 11, 493, 7, 15414, 28955, 10, 16, 2599, 198, 220, 220, 220, 334, 312, 796, 965, 7, 15414, 28955, 198, 220, 220, 220, 1775, 796, 10148, 198, 220, 220, 220, 4938, 796, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 18896, 7, 27112, 8, 6624, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1149, 287, 334, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1149, 407, 287, 1775, 290, 1149, 13, 28456, 22510, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1775, 796, 1775, 1343, 1149, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 260, 13, 19796, 439, 7, 81, 6, 58, 32, 12, 57, 60, 3256, 1775, 4008, 1875, 352, 290, 18896, 7, 260, 13, 19796, 439, 7, 81, 6, 58, 15, 12, 24, 60, 3256, 1775, 4008, 1875, 17, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 796, 10352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4938, 796, 10352, 628, 220, 220, 220, 3601, 10786, 47139, 6, 611, 4938, 2073, 705, 44651, 11537, 198 ]
1.996997
333
from __future__ import with_statement import datetime import random import hashlib import base64 from decimal import Decimal from django.db import models from django_bitcoin.utils import bitcoind from django_bitcoin import settings , models from django.utils.translation import ugettext as _ from django_bitcoin.models import DepositTransaction, BitcoinAddress from django.db import transaction as db_transaction from django.core.cache import cache from django.core.mail import mail_admins import django.dispatch import jsonrpc from bitcoin import bci from BCAddressField import is_valid_btc_address from celery import shared_task from distributedlock import distributedlock, MemcachedLock, LockNotAcquiredError @shared_task @shared_task import sys from cStringIO import StringIO @shared_task
[ 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 198, 11748, 4818, 8079, 198, 11748, 4738, 198, 11748, 12234, 8019, 198, 11748, 2779, 2414, 198, 6738, 32465, 1330, 4280, 4402, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 62, 35395, 13, 26791, 1330, 1643, 1073, 521, 198, 6738, 42625, 14208, 62, 35395, 1330, 6460, 837, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 6738, 42625, 14208, 62, 35395, 13, 27530, 1330, 44158, 48720, 11, 6185, 20231, 198, 6738, 42625, 14208, 13, 9945, 1330, 8611, 355, 20613, 62, 7645, 2673, 198, 6738, 42625, 14208, 13, 7295, 13, 23870, 1330, 12940, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 6920, 62, 324, 42951, 198, 198, 11748, 42625, 14208, 13, 6381, 17147, 198, 198, 11748, 33918, 81, 14751, 198, 6738, 220, 8550, 1330, 275, 979, 198, 6738, 11843, 20231, 15878, 1330, 318, 62, 12102, 62, 18347, 66, 62, 21975, 198, 198, 6738, 18725, 1924, 1330, 4888, 62, 35943, 198, 198, 6738, 9387, 5354, 1330, 9387, 5354, 11, 4942, 66, 2317, 25392, 11, 13656, 3673, 12832, 421, 1202, 12331, 628, 198, 198, 31, 28710, 62, 35943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 31, 28710, 62, 35943, 198, 198, 11748, 25064, 198, 6738, 269, 10100, 9399, 1330, 10903, 9399, 198, 198, 31, 28710, 62, 35943, 198 ]
3.451883
239
from model.contact import Contact from model.group import Group #Главная #Выбираем контакт #Выбираем группу #Нажимаем добавить #Нажимаем перейти в группу #Получаем ид группы #- #Записываем из базы не пустую группу с нашим айдишником #Сравниваем
[ 6738, 2746, 13, 32057, 1330, 14039, 198, 6738, 2746, 13, 8094, 1330, 4912, 628, 628, 628, 628, 628, 628, 628, 628, 198, 2, 140, 241, 30143, 16142, 38857, 22177, 16142, 40623, 198, 2, 140, 240, 45035, 140, 109, 18849, 21169, 16142, 16843, 43108, 12466, 118, 15166, 22177, 20375, 16142, 31583, 20375, 198, 2, 140, 240, 45035, 140, 109, 18849, 21169, 16142, 16843, 43108, 12466, 111, 21169, 35072, 140, 123, 140, 123, 35072, 198, 2, 140, 251, 16142, 140, 114, 18849, 43108, 16142, 16843, 43108, 12466, 112, 25443, 109, 16142, 38857, 18849, 20375, 45367, 198, 2, 140, 251, 16142, 140, 114, 18849, 43108, 16142, 16843, 43108, 12466, 123, 16843, 21169, 16843, 140, 117, 20375, 18849, 12466, 110, 12466, 111, 21169, 35072, 140, 123, 140, 123, 35072, 198, 2, 140, 253, 25443, 119, 35072, 141, 229, 16142, 16843, 43108, 12466, 116, 43666, 12466, 111, 21169, 35072, 140, 123, 140, 123, 45035, 198, 2, 12, 198, 2, 140, 245, 16142, 140, 123, 18849, 21727, 45035, 38857, 16142, 16843, 43108, 12466, 116, 140, 115, 12466, 109, 16142, 140, 115, 45035, 12466, 121, 16843, 12466, 123, 35072, 21727, 20375, 35072, 141, 236, 12466, 111, 21169, 35072, 140, 123, 140, 123, 35072, 220, 21727, 12466, 121, 16142, 141, 230, 18849, 43108, 12466, 108, 140, 117, 43666, 18849, 141, 230, 22177, 18849, 31583, 25443, 120, 198, 2, 140, 94, 21169, 16142, 38857, 22177, 18849, 38857, 16142, 16843, 43108 ]
1.125541
231
import html import json import requests from django.apps import apps from django.contrib.gis.geos import GEOSGeometry, MultiPolygon, Polygon from django.conf import settings from django.core.management.base import BaseCommand from councils.models import Council class Command(BaseCommand): """ Turn off auto system check for all apps We will maunally run system checks only for the 'councils' and 'pollingstations' apps """ requires_system_checks = False def handle(self, **options): """ Manually run system checks for the 'councils' and 'pollingstations' apps Management commands can ignore checks that only apply to the apps supporting the website part of the project """ self.check([ apps.get_app_config('councils'), apps.get_app_config('pollingstations') ]) if options['teardown']: self.stdout.write('Clearing councils table..') Council.objects.all().delete() councils = [] self.stdout.write("Downloading GB boundaries from ONS...") councils = councils + self.get_councils( settings.GB_BOUNDARIES_URL, id_field='lad16cd', name_field='lad16nm') self.stdout.write("Downloading NI boundaries from ONS...") councils = councils + self.get_councils( settings.NI_BOUNDARIES_URL, id_field='LGDCode', name_field='LGDNAME') for council in councils: self.stdout.write("Getting contact info for %s from YourVoteMatters" %\ (council.council_id)) info = self.get_contact_info_from_yvm(council.council_id) council.name = info['name'] council.website = info['website'] council.email = info['email'] council.phone = info['phone'] council.address = info['address'] council.postcode = info['postcode'] self._save_council(council) self.stdout.write('..done')
[ 11748, 27711, 198, 11748, 33918, 198, 11748, 7007, 198, 6738, 42625, 14208, 13, 18211, 1330, 6725, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 70, 271, 13, 469, 418, 1330, 22319, 2640, 10082, 15748, 11, 15237, 34220, 14520, 11, 12280, 14520, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 27174, 13, 27530, 1330, 4281, 628, 198, 4871, 9455, 7, 14881, 21575, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6756, 572, 8295, 1080, 2198, 329, 477, 6725, 198, 220, 220, 220, 775, 481, 285, 1942, 453, 1057, 1080, 8794, 691, 329, 262, 198, 220, 220, 220, 705, 66, 977, 2856, 82, 6, 290, 705, 30393, 278, 301, 602, 6, 6725, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4433, 62, 10057, 62, 42116, 796, 10352, 628, 198, 220, 220, 220, 825, 5412, 7, 944, 11, 12429, 25811, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1869, 935, 1057, 1080, 8794, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 977, 2856, 82, 6, 290, 705, 30393, 278, 301, 602, 6, 6725, 198, 220, 220, 220, 220, 220, 220, 220, 8549, 9729, 460, 8856, 8794, 326, 691, 4174, 284, 198, 220, 220, 220, 220, 220, 220, 220, 262, 6725, 6493, 262, 3052, 636, 286, 262, 1628, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9122, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6725, 13, 1136, 62, 1324, 62, 11250, 10786, 66, 977, 2856, 82, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6725, 13, 1136, 62, 1324, 62, 11250, 10786, 30393, 278, 301, 602, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 33761, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 17816, 660, 446, 593, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 10786, 34349, 1723, 27174, 3084, 492, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4281, 13, 48205, 13, 439, 22446, 33678, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 27174, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 7203, 10002, 278, 13124, 13215, 422, 6177, 50, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27174, 796, 27174, 1343, 2116, 13, 1136, 62, 66, 977, 2856, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6460, 13, 4579, 62, 33, 15919, 1503, 11015, 62, 21886, 11, 4686, 62, 3245, 11639, 9435, 1433, 10210, 3256, 1438, 62, 3245, 11639, 9435, 1433, 21533, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 7203, 10002, 278, 24947, 13215, 422, 6177, 50, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27174, 796, 27174, 1343, 2116, 13, 1136, 62, 66, 977, 2856, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6460, 13, 22125, 62, 33, 15919, 1503, 11015, 62, 21886, 11, 4686, 62, 3245, 11639, 41257, 9697, 1098, 3256, 1438, 62, 3245, 11639, 41257, 35, 20608, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 329, 6745, 287, 27174, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 7203, 20570, 2800, 7508, 329, 4064, 82, 422, 3406, 37394, 19044, 1010, 1, 4064, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 66, 977, 2856, 13, 66, 977, 2856, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 1136, 62, 32057, 62, 10951, 62, 6738, 62, 88, 14761, 7, 66, 977, 2856, 13, 66, 977, 2856, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 3672, 796, 7508, 17816, 3672, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 732, 12485, 796, 7508, 17816, 732, 12485, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 12888, 796, 7508, 17816, 12888, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 4862, 796, 7508, 17816, 4862, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 21975, 796, 7508, 17816, 21975, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6745, 13, 7353, 8189, 796, 7508, 17816, 7353, 8189, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21928, 62, 66, 977, 2856, 7, 66, 977, 2856, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 10786, 492, 28060, 11537, 198 ]
2.404562
833
from pathlib import Path from tools.config import Config, ResumeConfig from tools.runner import CustomRunner if __name__ == '__main__': resume_config = ResumeConfig.cli("Pix2Pix Tensorflow 2 Keras implementation") config = Config.load(Path(resume_config.path).joinpath("config.json")) CustomRunner.resume(config=config, resume_config=resume_config)
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 4899, 13, 11250, 1330, 17056, 11, 1874, 2454, 16934, 198, 6738, 4899, 13, 16737, 1330, 8562, 49493, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 15294, 62, 11250, 796, 1874, 2454, 16934, 13, 44506, 7203, 47, 844, 17, 47, 844, 309, 22854, 11125, 362, 17337, 292, 7822, 4943, 198, 220, 220, 220, 4566, 796, 17056, 13, 2220, 7, 15235, 7, 411, 2454, 62, 11250, 13, 6978, 737, 22179, 6978, 7203, 11250, 13, 17752, 48774, 198, 220, 220, 220, 8562, 49493, 13, 411, 2454, 7, 11250, 28, 11250, 11, 15294, 62, 11250, 28, 411, 2454, 62, 11250, 8, 198 ]
3.184211
114
import re import argparse from string import punctuation from scipy.io import wavfile import torch import yaml import numpy as np from torch.utils.data import DataLoader from g2p_en import G2p from pypinyin import pinyin, Style from utils.model import get_model, get_vocoder from utils.tools import to_device, synth_samples, synth_wav from dataset import TextDataset from text import text_to_sequence, vi_number_1, vi_abbreviation import time device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") g2p = G2p() # @torch.jit.script if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--restore_step", type=int, required=True) parser.add_argument( "--mode", type=str, choices=["batch", "single", "single_wav"], required=True, help="Synthesize a whole dataset or a single sentence", ) parser.add_argument( "--source", type=str, default=None, help="path to a source file with format like train.txt and val.txt, for batch mode only", ) parser.add_argument( "--text", type=str, default=None, help="raw text to synthesize, for single-sentence mode only", ) parser.add_argument( "--speaker_id", type=int, default=0, help="speaker ID for multi-speaker synthesis, for single-sentence mode only", ) parser.add_argument( "-p", "--preprocess_config", type=str, required=True, help="path to preprocess.yaml", ) parser.add_argument( "-m", "--model_config", type=str, required=True, help="path to model.yaml" ) parser.add_argument( "-t", "--train_config", type=str, required=True, help="path to train.yaml" ) parser.add_argument( "--pitch_control", type=float, default=1.0, help="control the pitch of the whole utterance, larger value for higher pitch", ) parser.add_argument( "--energy_control", type=float, default=1.0, help="control the energy of the whole utterance, larger value for larger volume", ) parser.add_argument( "--duration_control", type=float, default=1.0, help="control the speed of the whole utterance, larger value for slower speaking rate", ) args = parser.parse_args() # Check source texts if args.mode == "batch": assert args.source is not None and args.text is None if args.mode == "single": assert args.source is None and args.text is not None # Read Config preprocess_config = yaml.load( open(args.preprocess_config, "r"), Loader=yaml.FullLoader ) model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader) train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader) configs = (preprocess_config, model_config, train_config) # Get model model = get_model(args, configs, device, train=False) # wrapped_model = torch.jit.script(model) # wrapped_model.save('script_model.pt') # model = torch.jit.load("script_model.pt") # Load vocoder vocoder = get_vocoder(model_config, device) # vocoder = torch.jit.script(vocoder) # vocoder.save('script_vocoder.pt') # vocoder = torch.jit.load('script_vocoder.pt') # exit() control_values = args.pitch_control, args.energy_control, args.duration_control # Preprocess texts if args.mode == "batch": # Get dataset _start = time.time() dataset = TextDataset(args.source, preprocess_config) batchs = DataLoader( dataset, batch_size=8, collate_fn=dataset.collate_fn, ) print(f"Loaded {len(dataset)} file after {time.time()-_start}") synthesize(model, args.restore_step, configs, vocoder, batchs, control_values) if args.mode == "single": ids = raw_texts = [args.text[:100]] speakers = np.array([args.speaker_id]) if preprocess_config["preprocessing"]["text"]["language"] == "en": texts = np.array([preprocess_english( args.text, preprocess_config)]) elif preprocess_config["preprocessing"]["text"]["language"] == "zh": texts = np.array(preprocess_mandarin( args.text, preprocess_config)) text_lens = np.array([len(texts)]) batchs = [(ids, raw_texts, speakers, texts, text_lens, max(text_lens))] synthesize(model, args.restore_step, configs, vocoder, batchs, control_values) if args.mode == "single_wav": ids = raw_texts = [args.text[:100]] speakers = torch.tensor([args.speaker_id]) if preprocess_config["preprocessing"]["text"]["language"] == "en": # texts = torch.tensor(preprocess_english(args.text, preprocess_config)) texts = torch.tensor(preprocess_vie( args.text, './lexicon/viet-tts-lexicon.txt', 'vietnamese_cleaners')) elif preprocess_config["preprocessing"]["text"]["language"] == "zh": texts = torch.tensor(preprocess_mandarin( args.text, preprocess_config)) # preprocess_vie.save('./script_preprocess_vie.pt') text_lens = torch.tensor([len(texts[0])]) batchs = [(ids, raw_texts, speakers, texts, text_lens, max(text_lens))] # synthesize_wav(model, args.restore_step, configs, vocoder, batchs, control_values) from e2e import E2E e2e_model = E2E('./script_model.pt', './script_vocoder.pt', model_config, preprocess_config) # e2e_model = torch.jit.script(e2e_model) # e2e_model.save('./script_e2e.pt') # e2e_model = torch.jit.load('./script_e2e.pt') wav_files = e2e_model(to_device(batchs[0], device)) print(wav_files)
[ 11748, 302, 201, 198, 11748, 1822, 29572, 201, 198, 6738, 4731, 1330, 21025, 2288, 201, 198, 6738, 629, 541, 88, 13, 952, 1330, 266, 615, 7753, 201, 198, 201, 198, 11748, 28034, 201, 198, 11748, 331, 43695, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 201, 198, 6738, 308, 17, 79, 62, 268, 1330, 402, 17, 79, 201, 198, 6738, 279, 4464, 3541, 259, 1330, 279, 3541, 259, 11, 17738, 201, 198, 201, 198, 6738, 3384, 4487, 13, 19849, 1330, 651, 62, 19849, 11, 651, 62, 18893, 12342, 201, 198, 6738, 3384, 4487, 13, 31391, 1330, 284, 62, 25202, 11, 33549, 62, 82, 12629, 11, 33549, 62, 45137, 201, 198, 6738, 27039, 1330, 8255, 27354, 292, 316, 201, 198, 6738, 2420, 1330, 2420, 62, 1462, 62, 43167, 11, 25357, 62, 17618, 62, 16, 11, 25357, 62, 397, 4679, 47625, 201, 198, 11748, 640, 201, 198, 25202, 796, 28034, 13, 25202, 7203, 66, 15339, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 201, 198, 2, 3335, 796, 28034, 13, 25202, 7203, 36166, 4943, 201, 198, 201, 198, 201, 198, 201, 198, 70, 17, 79, 796, 402, 17, 79, 3419, 201, 198, 201, 198, 2, 2488, 13165, 354, 13, 45051, 13, 12048, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 201, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 2118, 382, 62, 9662, 1600, 2099, 28, 600, 11, 2672, 28, 17821, 8, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 14171, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 14692, 43501, 1600, 366, 29762, 1600, 366, 29762, 62, 45137, 33116, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 13940, 429, 956, 1096, 257, 2187, 27039, 393, 257, 2060, 6827, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 10459, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 6978, 284, 257, 2723, 2393, 351, 5794, 588, 4512, 13, 14116, 290, 1188, 13, 14116, 11, 329, 15458, 4235, 691, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 5239, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1831, 2420, 284, 24983, 1096, 11, 329, 2060, 12, 34086, 594, 4235, 691, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 4125, 3110, 62, 312, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4125, 3110, 4522, 329, 5021, 12, 4125, 3110, 21263, 11, 329, 2060, 12, 34086, 594, 4235, 691, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 79, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 3866, 14681, 62, 11250, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 6978, 284, 662, 14681, 13, 88, 43695, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 76, 1600, 366, 438, 19849, 62, 11250, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 1037, 2625, 6978, 284, 2746, 13, 88, 43695, 1, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 83, 1600, 366, 438, 27432, 62, 11250, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 1037, 2625, 6978, 284, 4512, 13, 88, 43695, 1, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 79, 2007, 62, 13716, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 16, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 13716, 262, 7078, 286, 262, 2187, 10517, 590, 11, 4025, 1988, 329, 2440, 7078, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22554, 62, 13716, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 16, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 13716, 262, 2568, 286, 262, 2187, 10517, 590, 11, 4025, 1988, 329, 4025, 6115, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 32257, 62, 13716, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 22468, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 16, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 13716, 262, 2866, 286, 262, 2187, 10517, 590, 11, 4025, 1988, 329, 13611, 5486, 2494, 1600, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 6822, 2723, 13399, 201, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 43501, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 13, 10459, 318, 407, 6045, 290, 26498, 13, 5239, 318, 6045, 201, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 29762, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 26498, 13, 10459, 318, 6045, 290, 26498, 13, 5239, 318, 407, 6045, 201, 198, 201, 198, 220, 220, 220, 1303, 4149, 17056, 201, 198, 220, 220, 220, 662, 14681, 62, 11250, 796, 331, 43695, 13, 2220, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 22046, 13, 3866, 14681, 62, 11250, 11, 366, 81, 12340, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 201, 198, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 2746, 62, 11250, 796, 331, 43695, 13, 2220, 7, 9654, 7, 22046, 13, 19849, 62, 11250, 11, 366, 81, 12340, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 201, 198, 220, 220, 220, 4512, 62, 11250, 796, 331, 43695, 13, 2220, 7, 9654, 7, 22046, 13, 27432, 62, 11250, 11, 366, 81, 12340, 8778, 263, 28, 88, 43695, 13, 13295, 17401, 8, 201, 198, 220, 220, 220, 4566, 82, 796, 357, 3866, 14681, 62, 11250, 11, 2746, 62, 11250, 11, 4512, 62, 11250, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3497, 2746, 201, 198, 220, 220, 220, 2746, 796, 651, 62, 19849, 7, 22046, 11, 4566, 82, 11, 3335, 11, 4512, 28, 25101, 8, 201, 198, 220, 220, 220, 1303, 12908, 62, 19849, 796, 28034, 13, 45051, 13, 12048, 7, 19849, 8, 201, 198, 220, 220, 220, 1303, 12908, 62, 19849, 13, 21928, 10786, 12048, 62, 19849, 13, 457, 11537, 201, 198, 201, 198, 220, 220, 220, 1303, 2746, 796, 28034, 13, 45051, 13, 2220, 7203, 12048, 62, 19849, 13, 457, 4943, 201, 198, 201, 198, 220, 220, 220, 1303, 8778, 12776, 12342, 201, 198, 220, 220, 220, 12776, 12342, 796, 651, 62, 18893, 12342, 7, 19849, 62, 11250, 11, 3335, 8, 201, 198, 220, 220, 220, 1303, 12776, 12342, 796, 28034, 13, 45051, 13, 12048, 7, 18893, 12342, 8, 201, 198, 220, 220, 220, 1303, 12776, 12342, 13, 21928, 10786, 12048, 62, 18893, 12342, 13, 457, 11537, 201, 198, 220, 220, 220, 1303, 12776, 12342, 796, 28034, 13, 45051, 13, 2220, 10786, 12048, 62, 18893, 12342, 13, 457, 11537, 201, 198, 220, 220, 220, 1303, 8420, 3419, 201, 198, 201, 198, 220, 220, 220, 1630, 62, 27160, 796, 26498, 13, 79, 2007, 62, 13716, 11, 26498, 13, 22554, 62, 13716, 11, 26498, 13, 32257, 62, 13716, 201, 198, 220, 220, 220, 1303, 3771, 14681, 13399, 201, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 43501, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 27039, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 9688, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27039, 796, 8255, 27354, 292, 316, 7, 22046, 13, 10459, 11, 662, 14681, 62, 11250, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 82, 796, 6060, 17401, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27039, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 23, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2927, 378, 62, 22184, 28, 19608, 292, 316, 13, 26000, 378, 62, 22184, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 8912, 276, 1391, 11925, 7, 19608, 292, 316, 38165, 2393, 706, 1391, 2435, 13, 2435, 3419, 12, 62, 9688, 92, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 24983, 1096, 7, 19849, 11, 26498, 13, 2118, 382, 62, 9662, 11, 4566, 82, 11, 12776, 12342, 11, 15458, 82, 11, 1630, 62, 27160, 8, 201, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 29762, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 796, 8246, 62, 5239, 82, 796, 685, 22046, 13, 5239, 58, 25, 3064, 11907, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11636, 796, 45941, 13, 18747, 26933, 22046, 13, 4125, 3110, 62, 312, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 14681, 62, 11250, 14692, 3866, 36948, 1, 7131, 1, 5239, 1, 7131, 1, 16129, 8973, 6624, 366, 268, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13399, 796, 45941, 13, 18747, 26933, 3866, 14681, 62, 39126, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5239, 11, 662, 14681, 62, 11250, 8, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 662, 14681, 62, 11250, 14692, 3866, 36948, 1, 7131, 1, 5239, 1, 7131, 1, 16129, 8973, 6624, 366, 23548, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13399, 796, 45941, 13, 18747, 7, 3866, 14681, 62, 22249, 17714, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5239, 11, 662, 14681, 62, 11250, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 75, 641, 796, 45941, 13, 18747, 26933, 11925, 7, 5239, 82, 8, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 82, 796, 47527, 2340, 11, 8246, 62, 5239, 82, 11, 11636, 11, 13399, 11, 2420, 62, 75, 641, 11, 3509, 7, 5239, 62, 75, 641, 4008, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 24983, 1096, 7, 19849, 11, 26498, 13, 2118, 382, 62, 9662, 11, 4566, 82, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 12342, 11, 15458, 82, 11, 1630, 62, 27160, 8, 201, 198, 220, 220, 220, 611, 26498, 13, 14171, 6624, 366, 29762, 62, 45137, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2340, 796, 8246, 62, 5239, 82, 796, 685, 22046, 13, 5239, 58, 25, 3064, 11907, 201, 198, 220, 220, 220, 220, 220, 220, 220, 11636, 796, 28034, 13, 83, 22854, 26933, 22046, 13, 4125, 3110, 62, 312, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 662, 14681, 62, 11250, 14692, 3866, 36948, 1, 7131, 1, 5239, 1, 7131, 1, 16129, 8973, 6624, 366, 268, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13399, 796, 28034, 13, 83, 22854, 7, 3866, 14681, 62, 39126, 7, 22046, 13, 5239, 11, 662, 14681, 62, 11250, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13399, 796, 28034, 13, 83, 22854, 7, 3866, 14681, 62, 85, 494, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5239, 11, 705, 19571, 2588, 4749, 14, 85, 1155, 12, 83, 912, 12, 2588, 4749, 13, 14116, 3256, 705, 85, 1155, 22678, 62, 27773, 364, 6, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 662, 14681, 62, 11250, 14692, 3866, 36948, 1, 7131, 1, 5239, 1, 7131, 1, 16129, 8973, 6624, 366, 23548, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13399, 796, 28034, 13, 83, 22854, 7, 3866, 14681, 62, 22249, 17714, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 5239, 11, 662, 14681, 62, 11250, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 662, 14681, 62, 85, 494, 13, 21928, 7, 4458, 14, 12048, 62, 3866, 14681, 62, 85, 494, 13, 457, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 75, 641, 796, 28034, 13, 83, 22854, 26933, 11925, 7, 5239, 82, 58, 15, 12962, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 82, 796, 47527, 2340, 11, 8246, 62, 5239, 82, 11, 11636, 11, 13399, 11, 2420, 62, 75, 641, 11, 3509, 7, 5239, 62, 75, 641, 4008, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24983, 1096, 62, 45137, 7, 19849, 11, 26498, 13, 2118, 382, 62, 9662, 11, 4566, 82, 11, 12776, 12342, 11, 15458, 82, 11, 1630, 62, 27160, 8, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 422, 304, 17, 68, 1330, 412, 17, 36, 201, 198, 220, 220, 220, 220, 220, 220, 220, 304, 17, 68, 62, 19849, 796, 412, 17, 36, 7, 4458, 14, 12048, 62, 19849, 13, 457, 3256, 705, 19571, 12048, 62, 18893, 12342, 13, 457, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 11250, 11, 662, 14681, 62, 11250, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 304, 17, 68, 62, 19849, 796, 28034, 13, 45051, 13, 12048, 7, 68, 17, 68, 62, 19849, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 304, 17, 68, 62, 19849, 13, 21928, 7, 4458, 14, 12048, 62, 68, 17, 68, 13, 457, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 304, 17, 68, 62, 19849, 796, 28034, 13, 45051, 13, 2220, 7, 4458, 14, 12048, 62, 68, 17, 68, 13, 457, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 266, 615, 62, 16624, 796, 304, 17, 68, 62, 19849, 7, 1462, 62, 25202, 7, 43501, 82, 58, 15, 4357, 3335, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 45137, 62, 16624, 8, 201, 198 ]
2.212658
2,765
""" swat-s1 topology """ from mininet.topo import Topo as TopoBase from pinger import Pinger from plc2 import Plc2 from plc1 import Plc1
[ 37811, 198, 2032, 265, 12, 82, 16, 1353, 1435, 198, 37811, 198, 198, 6738, 949, 42504, 13, 4852, 78, 1330, 5849, 78, 355, 5849, 78, 14881, 198, 198, 6738, 279, 3889, 1330, 350, 3889, 198, 6738, 458, 66, 17, 1330, 1345, 66, 17, 198, 6738, 458, 66, 16, 1330, 1345, 66, 16, 628 ]
2.641509
53
import matplotlib.pyplot as plt import numpy as np from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) rc('text', usetex=True) c =0.9996 f = lambda p: 1/((1-c)+(c/p)) p_list = np.arange(1,1024) N=100 tsm = 18.4e-9 tnode = 65e-9 tproc = 0.08e-9 toff = 27e-3 T = N*N/6 dt = 0.24 plt.figure() plt.plot(p_list, p_list, label = 'Linear Speedup', color = 'k', linewidth=2) plt.plot(p_list, list(map(f,p_list)), label = 'Amdahl', color = '#cc0000',linewidth=2) N=5000 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 5000x5000 px', color = '#14a323') #color = '#1fc200') #color = '#004c99') N=3000 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 3000x3000 px', color = '#00bf13') #color = '#1fc200') #color = '#004c99') N=1500 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 1500x1500 px', color = '#00c654') #color = '#1fc200') #color = '#004c99') N=1000 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 1000x1000 px', color = '#00ce9a') #color = '#00d280') #color = '#0080ff') N=500 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 500x500 px', color = '#00c5d5') #color = '#00d9d9') #color = '#66b2ff') N=300 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 300x300 px', color = '#00a5d9') #color='#005fe5') #, color='#99ccff') N=200 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 200x200 px', color = '#0084dd') #color='#005fe5') #, color='#99ccff') N=100 plt.plot(p_list, list(map(Sth,p_list)), alpha=0.5,label = 'Spx : 100x100 px', color='#003ee5') # color='#005fe5') #, color='#99ccff') #plt.plot(p_list, list(map(S,p_list)), label = 'Hardware') plt.legend(loc = 'upper left') plt.grid(which = 'both') plt.xlim([0,1024]) plt.xlabel('Number of computing cores', fontweight = 'bold', fontsize = 12) plt.ylabel('Speedup', fontweight = 'bold', fontsize = 12) plt.title('Speedup as a function of number of cores.', fontweight = 'bold', fontsize = 14) plt.ylim([0, 1050]) plt.savefig('ThSpeedupLow.png') plt.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 2603, 29487, 8019, 1330, 48321, 198, 6015, 10786, 10331, 3256, 1174, 90, 6, 17989, 10354, 6, 82, 504, 12, 2655, 361, 41707, 82, 504, 12, 2655, 361, 10354, 17816, 39, 32667, 3970, 20520, 30072, 198, 6015, 10786, 5239, 3256, 514, 316, 1069, 28, 17821, 8, 198, 198, 66, 796, 15, 13, 2079, 4846, 198, 69, 796, 37456, 279, 25, 352, 14, 19510, 16, 12, 66, 8, 33747, 66, 14, 79, 4008, 198, 198, 79, 62, 4868, 796, 45941, 13, 283, 858, 7, 16, 11, 35500, 8, 628, 198, 45, 28, 3064, 198, 912, 76, 796, 1248, 13, 19, 68, 12, 24, 198, 83, 17440, 796, 6135, 68, 12, 24, 198, 83, 36942, 796, 657, 13, 2919, 68, 12, 24, 198, 1462, 487, 796, 2681, 68, 12, 18, 198, 51, 796, 399, 9, 45, 14, 21, 198, 28664, 796, 657, 13, 1731, 628, 628, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 279, 62, 4868, 11, 6167, 796, 705, 14993, 451, 8729, 929, 3256, 3124, 796, 705, 74, 3256, 9493, 413, 5649, 28, 17, 8, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 69, 11, 79, 62, 4868, 36911, 6167, 796, 705, 5840, 67, 15668, 3256, 3124, 796, 705, 2, 535, 2388, 3256, 2815, 413, 5649, 28, 17, 8, 198, 45, 28, 27641, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 23336, 87, 27641, 279, 87, 3256, 3124, 796, 705, 2, 1415, 64, 32637, 11537, 1303, 8043, 796, 705, 2, 16, 16072, 2167, 11537, 1303, 8043, 796, 705, 2, 22914, 66, 2079, 11537, 198, 45, 28, 23924, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 20343, 87, 23924, 279, 87, 3256, 3124, 796, 705, 2, 405, 19881, 1485, 11537, 1303, 8043, 796, 705, 2, 16, 16072, 2167, 11537, 1303, 8043, 796, 705, 2, 22914, 66, 2079, 11537, 198, 45, 28, 33698, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 20007, 87, 33698, 279, 87, 3256, 3124, 796, 705, 2, 405, 66, 39111, 11537, 1303, 8043, 796, 705, 2, 16, 16072, 2167, 11537, 1303, 8043, 796, 705, 2, 22914, 66, 2079, 11537, 198, 45, 28, 12825, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 8576, 87, 12825, 279, 87, 3256, 3124, 796, 705, 2, 405, 344, 24, 64, 11537, 1303, 8043, 796, 705, 2, 405, 67, 21033, 11537, 1303, 8043, 796, 705, 2, 405, 1795, 487, 11537, 198, 45, 28, 4059, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 5323, 87, 4059, 279, 87, 3256, 3124, 796, 705, 2, 405, 66, 20, 67, 20, 11537, 1303, 8043, 796, 705, 2, 405, 67, 24, 67, 24, 11537, 1303, 8043, 796, 705, 2, 2791, 65, 17, 487, 11537, 198, 45, 28, 6200, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 5867, 87, 6200, 279, 87, 3256, 3124, 796, 705, 2, 405, 64, 20, 67, 24, 11537, 1303, 8043, 11639, 2, 22544, 5036, 20, 11537, 1303, 11, 3124, 11639, 2, 2079, 535, 487, 11537, 198, 45, 28, 2167, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 939, 87, 2167, 279, 87, 3256, 3124, 796, 705, 2, 405, 5705, 1860, 11537, 1303, 8043, 11639, 2, 22544, 5036, 20, 11537, 1303, 11, 3124, 11639, 2, 2079, 535, 487, 11537, 198, 45, 28, 3064, 198, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 400, 11, 79, 62, 4868, 36911, 17130, 28, 15, 13, 20, 11, 18242, 796, 705, 4561, 87, 1058, 1802, 87, 3064, 279, 87, 3256, 3124, 11639, 2, 11245, 1453, 20, 11537, 1303, 3124, 11639, 2, 22544, 5036, 20, 11537, 1303, 11, 3124, 11639, 2, 2079, 535, 487, 11537, 198, 198, 2, 489, 83, 13, 29487, 7, 79, 62, 4868, 11, 1351, 7, 8899, 7, 50, 11, 79, 62, 4868, 36911, 6167, 796, 705, 49865, 11537, 198, 489, 83, 13, 1455, 437, 7, 17946, 796, 705, 45828, 1364, 11537, 198, 489, 83, 13, 25928, 7, 4758, 796, 705, 16885, 11537, 198, 489, 83, 13, 87, 2475, 26933, 15, 11, 35500, 12962, 198, 489, 83, 13, 87, 18242, 10786, 15057, 286, 14492, 21758, 3256, 10369, 6551, 796, 705, 36575, 3256, 10369, 7857, 796, 1105, 8, 198, 489, 83, 13, 2645, 9608, 10786, 22785, 929, 3256, 10369, 6551, 796, 705, 36575, 3256, 10369, 7857, 796, 1105, 8, 198, 489, 83, 13, 7839, 10786, 22785, 929, 355, 257, 2163, 286, 1271, 286, 21758, 2637, 11, 10369, 6551, 796, 705, 36575, 3256, 10369, 7857, 796, 1478, 8, 198, 489, 83, 13, 88, 2475, 26933, 15, 11, 47235, 12962, 198, 489, 83, 13, 21928, 5647, 10786, 817, 22785, 929, 20535, 13, 11134, 11537, 198, 489, 83, 13, 12860, 3419, 198 ]
2.153846
962
from urllib.request import urlopen # ------------------ MITAB FUNCTIONS ------------------ # ----------------------------------------------------- # Note that we are only going to get 10 interactions at most queryUrl = "http://www.ebi.ac.uk/Tools/webservices/psicquic/intact/webservices/current/search/query/BBC1?firstResult=0&maxResults=10"; try: fileHandle = urlopen(queryUrl) content = fileHandle.read() fileHandle.close() except IOError: print('Cannot open URL ' + urlStr) content = '' lines = content.splitlines() for line in lines: line = str(line, encoding='utf8') cols = line.split('\t') print(getXrefByDatabase(cols[0], 'uniprotkb') + ' interacts with ' + getXrefByDatabase(cols[1], 'uniprotkb'))
[ 6738, 2956, 297, 571, 13, 25927, 1330, 19016, 9654, 198, 198, 2, 34400, 438, 17168, 6242, 29397, 4177, 11053, 34400, 438, 198, 198, 2, 20368, 19351, 12, 198, 2, 5740, 326, 356, 389, 691, 1016, 284, 651, 838, 12213, 379, 749, 198, 22766, 28165, 796, 366, 4023, 1378, 2503, 13, 1765, 72, 13, 330, 13, 2724, 14, 33637, 14, 732, 1443, 712, 1063, 14, 862, 291, 421, 291, 14, 600, 529, 14, 732, 1443, 712, 1063, 14, 14421, 14, 12947, 14, 22766, 14, 33833, 16, 30, 11085, 23004, 28, 15, 5, 9806, 25468, 28, 940, 8172, 198, 198, 28311, 25, 198, 220, 220, 220, 2393, 37508, 796, 19016, 9654, 7, 22766, 28165, 8, 198, 220, 220, 220, 2695, 796, 2393, 37508, 13, 961, 3419, 198, 220, 220, 220, 2393, 37508, 13, 19836, 3419, 198, 16341, 24418, 12331, 25, 198, 220, 220, 220, 3601, 10786, 34, 34574, 1280, 10289, 705, 1343, 19016, 13290, 8, 198, 220, 220, 220, 2695, 796, 10148, 198, 198, 6615, 796, 2695, 13, 35312, 6615, 3419, 198, 198, 1640, 1627, 287, 3951, 25, 198, 220, 220, 220, 1627, 796, 965, 7, 1370, 11, 21004, 11639, 40477, 23, 11537, 198, 220, 220, 220, 951, 82, 796, 1627, 13, 35312, 10786, 59, 83, 11537, 628, 220, 220, 220, 3601, 7, 1136, 55, 5420, 3886, 38105, 7, 4033, 82, 58, 15, 4357, 705, 403, 541, 10599, 32812, 11537, 1343, 705, 44020, 351, 705, 1343, 651, 55, 5420, 3886, 38105, 7, 4033, 82, 58, 16, 4357, 705, 403, 541, 10599, 32812, 6, 4008, 628 ]
2.944664
253
# -*- coding: utf-8 -*- """ Created on Sep 6, 2020 @author: eljeffe Copyright 2020 Root the Box Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from os import urandom from hashlib import sha256 from sqlalchemy import Column, ForeignKey from sqlalchemy.types import String, Boolean, Integer from models import dbsession from models.BaseModels import DatabaseObject from libs.StringCoding import encode from datetime import datetime, timedelta class PasswordToken(DatabaseObject): """ Password token definition """ user_id = Column(Integer, ForeignKey("user.id", ondelete="CASCADE"), nullable=False) value = Column(String(32), unique=True, nullable=False) used = Column(Boolean, nullable=False, default=False) @classmethod def all(cls): """ Returns a list of all objects in the database """ return dbsession.query(cls).all() @classmethod def by_id(cls, _id): """ Returns a the object with id of _id """ return dbsession.query(cls).filter_by(id=_id).first() @classmethod def by_user_id(cls, user_id): """ Returns a the object with id of user_id """ return dbsession.query(cls).filter_by(user_id=user_id).first() @classmethod def count(cls): """ Returns a list of all objects in the database """ return dbsession.query(cls).count() @classmethod def by_value(cls, value): """ Returns a the object with value of value """ return dbsession.query(cls).filter_by(value=value).first() def is_expired(self, hours=3): """ Check if the token is expired """ now = datetime.now() expired = self.created + timedelta(hours=hours) return now > expired
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 8621, 718, 11, 12131, 198, 198, 31, 9800, 25, 1288, 73, 14822, 68, 628, 220, 220, 220, 15069, 12131, 20410, 262, 8315, 628, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 220, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 220, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 628, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 220, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 220, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 220, 220, 220, 11247, 739, 262, 13789, 13, 198, 37811, 628, 198, 6738, 28686, 1330, 2956, 3749, 198, 6738, 12234, 8019, 1330, 427, 64, 11645, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 8708, 9218, 198, 6738, 44161, 282, 26599, 13, 19199, 1330, 10903, 11, 41146, 11, 34142, 198, 6738, 4981, 1330, 288, 1443, 2521, 198, 6738, 4981, 13, 14881, 5841, 1424, 1330, 24047, 10267, 198, 6738, 9195, 82, 13, 10100, 34, 7656, 1330, 37773, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 628, 198, 4871, 30275, 30642, 7, 38105, 10267, 2599, 198, 220, 220, 220, 37227, 30275, 11241, 6770, 37227, 628, 220, 220, 220, 2836, 62, 312, 796, 29201, 7, 46541, 11, 8708, 9218, 7203, 7220, 13, 312, 1600, 319, 33678, 2625, 34, 42643, 19266, 12340, 9242, 540, 28, 25101, 8, 198, 220, 220, 220, 1988, 796, 29201, 7, 10100, 7, 2624, 828, 3748, 28, 17821, 11, 9242, 540, 28, 25101, 8, 198, 220, 220, 220, 973, 796, 29201, 7, 46120, 13087, 11, 9242, 540, 28, 25101, 11, 4277, 28, 25101, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 477, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 1351, 286, 477, 5563, 287, 262, 6831, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 1443, 2521, 13, 22766, 7, 565, 82, 737, 439, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 416, 62, 312, 7, 565, 82, 11, 4808, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 262, 2134, 351, 4686, 286, 4808, 312, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 1443, 2521, 13, 22766, 7, 565, 82, 737, 24455, 62, 1525, 7, 312, 28, 62, 312, 737, 11085, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 416, 62, 7220, 62, 312, 7, 565, 82, 11, 2836, 62, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 262, 2134, 351, 4686, 286, 2836, 62, 312, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 1443, 2521, 13, 22766, 7, 565, 82, 737, 24455, 62, 1525, 7, 7220, 62, 312, 28, 7220, 62, 312, 737, 11085, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 954, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 1351, 286, 477, 5563, 287, 262, 6831, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 1443, 2521, 13, 22766, 7, 565, 82, 737, 9127, 3419, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 416, 62, 8367, 7, 565, 82, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16409, 257, 262, 2134, 351, 1988, 286, 1988, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 1443, 2521, 13, 22766, 7, 565, 82, 737, 24455, 62, 1525, 7, 8367, 28, 8367, 737, 11085, 3419, 628, 220, 220, 220, 825, 318, 62, 1069, 6474, 7, 944, 11, 2250, 28, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 611, 262, 11241, 318, 21350, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 783, 796, 4818, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 21350, 796, 2116, 13, 25598, 1343, 28805, 12514, 7, 24425, 28, 24425, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 783, 1875, 21350, 198 ]
2.916667
768
# 0480-matrix-no-numpy-mul2.py # Multiply a matrix with a matrix # 20220216 Create this example. import matrix as mat # multiply a matrix with a matrix # define a list as two-dimension matrix m1 = [ [1, 1, 1], [1, 2, 1], ] m2 = [ [1, 1], [1, 2], [1, 1], ] m3 = mulmat2(m1, m2) # display results print("m1:") mat.printmat(m1) print("m2:") mat.printmat(m2) print("m3:") mat.printmat(m3)
[ 2, 8702, 1795, 12, 6759, 8609, 12, 3919, 12, 77, 32152, 12, 76, 377, 17, 13, 9078, 198, 2, 7854, 541, 306, 257, 17593, 351, 257, 17593, 198, 2, 1160, 17572, 20666, 13610, 428, 1672, 13, 198, 198, 11748, 17593, 355, 2603, 198, 198, 2, 29162, 257, 17593, 351, 257, 17593, 198, 198, 2, 8160, 257, 1351, 355, 734, 12, 46156, 17593, 198, 76, 16, 796, 685, 198, 220, 220, 220, 685, 16, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 685, 16, 11, 362, 11, 352, 4357, 198, 220, 220, 220, 2361, 198, 76, 17, 796, 685, 198, 220, 220, 220, 685, 16, 11, 352, 4357, 198, 220, 220, 220, 685, 16, 11, 362, 4357, 198, 220, 220, 220, 685, 16, 11, 352, 4357, 198, 220, 220, 220, 2361, 198, 198, 76, 18, 796, 35971, 6759, 17, 7, 76, 16, 11, 285, 17, 8, 198, 198, 2, 3359, 2482, 198, 4798, 7203, 76, 16, 25, 4943, 198, 6759, 13, 4798, 6759, 7, 76, 16, 8, 198, 4798, 7203, 76, 17, 25, 4943, 198, 6759, 13, 4798, 6759, 7, 76, 17, 8, 198, 4798, 7203, 76, 18, 25, 4943, 198, 6759, 13, 4798, 6759, 7, 76, 18, 8, 198 ]
2.09
200
#!/usr/bin/env python3 ''' MIT License Copyright (c) 2020 Futurewei Cloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import parse import argparse from fabric import Connection parser = argparse.ArgumentParser(description="Utility script to start/stop/kill cluster components") parser.add_argument("--config_file", help="Top-level config file that specifices a Chogori cluster") parser.add_argument("--locals_file", help="Top-level config file that specifices local environment") parser.add_argument("--username", default="user", help="Username to use when SSHing to other nodes") parser.add_argument("--start", nargs="*", default="", help="List of component names (from config_file) to be started") parser.add_argument("--remove", nargs="*", default="", help="List of component names (from config_file) to be removed") parser.add_argument("--stop", nargs="*", default="", help="List of component names (from config_file) to be stopped") parser.add_argument("--logs", nargs="*", default="", help="List of component names (from config_file) to display logs") args = parser.parse_args() args.config_file runnables = parse.parseConfig(args.locals_file, args.config_file) for r in runnables: if r.name in args.start or "all" in args.start: print("Starting:") print(r.getDockerRun()) conn = Connection(r.host, user=args.username) pull = conn.run(r.getDockerPull()) print(pull) start = conn.run(r.getDockerRun()) print(start) if r.name in args.stop or "all" in args.stop: print("Stopping:") print(r) conn = Connection(r.host, user=args.username) start = conn.run(r.getDockerStop()) print(start) if r.name in args.logs or "all" in args.logs: print("Getting logs for:") print(r) conn = Connection(r.host, user=args.username) start = conn.run(r.getDockerLogs()) print(start) if r.name in args.remove or "all" in args.remove: print("Removing:") print(r) conn = Connection(r.host, user=args.username) start = conn.run(r.getDockerRemove()) print(start)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 7061, 6, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 12131, 10898, 42990, 10130, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 7061, 6, 198, 198, 11748, 21136, 198, 11748, 1822, 29572, 198, 6738, 9664, 1330, 26923, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 18274, 879, 4226, 284, 923, 14, 11338, 14, 12728, 13946, 6805, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 11250, 62, 7753, 1600, 1037, 2625, 9126, 12, 5715, 4566, 2393, 326, 2176, 274, 257, 609, 519, 10145, 13946, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 17946, 874, 62, 7753, 1600, 1037, 2625, 9126, 12, 5715, 4566, 2393, 326, 2176, 274, 1957, 2858, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 29460, 1600, 4277, 2625, 7220, 1600, 1037, 2625, 5842, 13292, 284, 779, 618, 33825, 278, 284, 584, 13760, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 9688, 1600, 299, 22046, 2625, 9, 1600, 4277, 2625, 1600, 1037, 2625, 8053, 286, 7515, 3891, 357, 6738, 4566, 62, 7753, 8, 284, 307, 2067, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 28956, 1600, 299, 22046, 2625, 9, 1600, 4277, 2625, 1600, 1037, 2625, 8053, 286, 7515, 3891, 357, 6738, 4566, 62, 7753, 8, 284, 307, 4615, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 11338, 1600, 299, 22046, 2625, 9, 1600, 4277, 2625, 1600, 1037, 2625, 8053, 286, 7515, 3891, 357, 6738, 4566, 62, 7753, 8, 284, 307, 5025, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 6404, 82, 1600, 299, 22046, 2625, 9, 1600, 4277, 2625, 1600, 1037, 2625, 8053, 286, 7515, 3891, 357, 6738, 4566, 62, 7753, 8, 284, 3359, 17259, 4943, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 22046, 13, 11250, 62, 7753, 198, 5143, 77, 2977, 796, 21136, 13, 29572, 16934, 7, 22046, 13, 17946, 874, 62, 7753, 11, 26498, 13, 11250, 62, 7753, 8, 198, 1640, 374, 287, 1057, 77, 2977, 25, 198, 220, 220, 220, 611, 374, 13, 3672, 287, 26498, 13, 9688, 393, 366, 439, 1, 287, 26498, 13, 9688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 22851, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 13, 1136, 35, 12721, 10987, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 26923, 7, 81, 13, 4774, 11, 2836, 28, 22046, 13, 29460, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2834, 796, 48260, 13, 5143, 7, 81, 13, 1136, 35, 12721, 42940, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 31216, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 48260, 13, 5143, 7, 81, 13, 1136, 35, 12721, 10987, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9688, 8, 198, 220, 220, 220, 611, 374, 13, 3672, 287, 26498, 13, 11338, 393, 366, 439, 1, 287, 26498, 13, 11338, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1273, 33307, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 26923, 7, 81, 13, 4774, 11, 2836, 28, 22046, 13, 29460, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 48260, 13, 5143, 7, 81, 13, 1136, 35, 12721, 19485, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9688, 8, 198, 220, 220, 220, 611, 374, 13, 3672, 287, 26498, 13, 6404, 82, 393, 366, 439, 1, 287, 26498, 13, 6404, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20570, 17259, 329, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 26923, 7, 81, 13, 4774, 11, 2836, 28, 22046, 13, 29460, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 48260, 13, 5143, 7, 81, 13, 1136, 35, 12721, 11187, 82, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9688, 8, 198, 220, 220, 220, 611, 374, 13, 3672, 287, 26498, 13, 28956, 393, 366, 439, 1, 287, 26498, 13, 28956, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 8413, 5165, 25, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 26923, 7, 81, 13, 4774, 11, 2836, 28, 22046, 13, 29460, 8, 198, 220, 220, 220, 220, 220, 220, 220, 923, 796, 48260, 13, 5143, 7, 81, 13, 1136, 35, 12721, 27914, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9688, 8, 198 ]
2.993289
1,043
# Advection test evolution from models import advection from bcs import periodic from simulation import simulation from methods import minmod_lf from rk import rk2 from grid import grid Npoints = 20 Ngz = 2 interval = grid([-0.5, 0.5], Npoints, Ngz) model = advection.advection(v=1, initial_data = advection.initial_sine(period=1)) model = advection.advection(v=1, initial_data = advection.initial_square()) sim = simulation(model, interval, minmod_lf, rk2, periodic) sim.evolve(0.5)
[ 2, 1215, 303, 596, 1332, 6954, 198, 198, 6738, 4981, 1330, 512, 303, 596, 198, 6738, 275, 6359, 1330, 27458, 198, 6738, 18640, 1330, 18640, 198, 6738, 5050, 1330, 949, 4666, 62, 1652, 198, 6738, 374, 74, 1330, 374, 74, 17, 198, 6738, 10706, 1330, 10706, 198, 198, 45, 13033, 796, 1160, 198, 45, 34586, 796, 362, 198, 3849, 2100, 796, 10706, 26933, 12, 15, 13, 20, 11, 657, 13, 20, 4357, 399, 13033, 11, 399, 34586, 8, 198, 19849, 796, 512, 303, 596, 13, 324, 303, 596, 7, 85, 28, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 796, 512, 303, 596, 13, 36733, 62, 82, 500, 7, 41007, 28, 16, 4008, 198, 19849, 796, 512, 303, 596, 13, 324, 303, 596, 7, 85, 28, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4238, 62, 7890, 796, 512, 303, 596, 13, 36733, 62, 23415, 28955, 198, 14323, 796, 18640, 7, 19849, 11, 16654, 11, 949, 4666, 62, 1652, 11, 374, 74, 17, 11, 27458, 8, 198, 14323, 13, 1990, 6442, 7, 15, 13, 20, 8, 198 ]
2.40708
226
import tensorflow as tf """tf.tensordot(a, b, axes, name=None) 功能:同numpy.tensordot,根据axis计算点乘。 输入:axes=1或axes=[[1],[0]],即为矩阵乘。""" a = tf.constant([1, 2, 3, 4], shape=[2, 2], dtype=tf.float64) b = tf.constant([1, 2, 3, 4], shape=[2, 2], dtype=tf.float64) z = tf.tensordot(a, b, axes=[[1], [1]]) # 第一个矩阵的行乘上第二个矩阵的行 z1 = tf.tensordot(a, b, axes=[[1], [0]]) # 矩阵乘法第一个矩阵行乘第二个矩阵的列 z2 = tf.tensordot(a, b, axes=[[0], [1]]) # 第一个矩阵的列乘上第二个矩阵的行 sess = tf.Session() print(sess.run(z)) print(sess.run(z1)) print(sess.run(z2)) sess.close() # z==>[[5. 11.] # [11. 25.]] # z1==> [[ 7. 10.] # [ 15. 22.]] # z2==>[[ 7. 15.] # [ 10. 22.]]
[ 11748, 11192, 273, 11125, 355, 48700, 198, 198, 37811, 27110, 13, 83, 641, 585, 313, 7, 64, 11, 275, 11, 34197, 11, 1438, 28, 14202, 8, 198, 27950, 253, 47797, 121, 171, 120, 248, 28938, 234, 77, 32152, 13, 83, 641, 585, 313, 171, 120, 234, 43718, 117, 162, 235, 106, 22704, 164, 106, 94, 163, 106, 245, 163, 224, 117, 20046, 246, 16764, 198, 164, 122, 241, 17739, 98, 171, 120, 248, 897, 274, 28, 16, 22755, 244, 897, 274, 28, 30109, 16, 38430, 15, 11907, 171, 120, 234, 39355, 111, 10310, 118, 163, 253, 102, 165, 246, 113, 20046, 246, 16764, 37811, 198, 198, 64, 796, 48700, 13, 9979, 415, 26933, 16, 11, 362, 11, 513, 11, 604, 4357, 5485, 41888, 17, 11, 362, 4357, 288, 4906, 28, 27110, 13, 22468, 2414, 8, 198, 65, 796, 48700, 13, 9979, 415, 26933, 16, 11, 362, 11, 513, 11, 604, 4357, 5485, 41888, 17, 11, 362, 4357, 288, 4906, 28, 27110, 13, 22468, 2414, 8, 198, 89, 796, 48700, 13, 83, 641, 585, 313, 7, 64, 11, 275, 11, 34197, 28, 30109, 16, 4357, 685, 16, 11907, 8, 220, 220, 1303, 13328, 105, 105, 31660, 10310, 103, 163, 253, 102, 165, 246, 113, 21410, 26193, 234, 20046, 246, 41468, 163, 105, 105, 12859, 234, 10310, 103, 163, 253, 102, 165, 246, 113, 21410, 26193, 234, 198, 89, 16, 796, 48700, 13, 83, 641, 585, 313, 7, 64, 11, 275, 11, 34197, 28, 30109, 16, 4357, 685, 15, 11907, 8, 220, 1303, 13328, 253, 102, 165, 246, 113, 20046, 246, 37345, 243, 163, 105, 105, 31660, 10310, 103, 163, 253, 102, 165, 246, 113, 26193, 234, 20046, 246, 163, 105, 105, 12859, 234, 10310, 103, 163, 253, 102, 165, 246, 113, 21410, 26344, 245, 198, 89, 17, 796, 48700, 13, 83, 641, 585, 313, 7, 64, 11, 275, 11, 34197, 28, 30109, 15, 4357, 685, 16, 11907, 8, 220, 1303, 13328, 105, 105, 31660, 10310, 103, 163, 253, 102, 165, 246, 113, 21410, 26344, 245, 20046, 246, 41468, 163, 105, 105, 12859, 234, 10310, 103, 163, 253, 102, 165, 246, 113, 21410, 26193, 234, 198, 82, 408, 796, 48700, 13, 36044, 3419, 198, 4798, 7, 82, 408, 13, 5143, 7, 89, 4008, 198, 4798, 7, 82, 408, 13, 5143, 7, 89, 16, 4008, 198, 4798, 7, 82, 408, 13, 5143, 7, 89, 17, 4008, 198, 82, 408, 13, 19836, 3419, 198, 2, 1976, 855, 29, 30109, 20, 13, 220, 1367, 8183, 198, 2, 220, 220, 220, 220, 220, 685, 1157, 13, 1679, 8183, 60, 198, 2, 1976, 16, 855, 29, 16410, 220, 767, 13, 220, 838, 8183, 198, 2, 220, 220, 220, 220, 220, 220, 685, 1315, 13, 220, 2534, 8183, 60, 198, 2, 1976, 17, 855, 29, 30109, 220, 767, 13, 220, 1315, 8183, 198, 2, 220, 220, 220, 220, 220, 220, 685, 838, 13, 220, 2534, 8183, 60, 198 ]
1.35625
480
class DELpy(Exception): """ Raise this so people could easily catch the exception """ pass
[ 4871, 28163, 9078, 7, 16922, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 35123, 428, 523, 661, 714, 3538, 4929, 262, 6631, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 1208, 201, 198 ]
2.8
40
import tensorflow as tf import sys import numpy as np import json import torch import pandas as pd from tensorflow.saved_model import tag_constants from os.path import dirname, realpath # Add root directory to path file_path = realpath(__file__) file_dir = dirname(file_path) parent_dir = dirname(file_dir) sys.path.append(parent_dir) from dataset import load_data # Load datasets train_batch_size = 32 test_batch_size = 32 _, standard_test_loader = load_data(root_dir='../', deck='standard', train_batch_size=train_batch_size, test_batch_size=test_batch_size) _, batman_joker_test_loader = load_data(root_dir='../', deck='batman_joker', train_batch_size=train_batch_size, test_batch_size=test_batch_size) _, captain_america_test_loader = load_data(root_dir='../', deck='captain_america', train_batch_size=train_batch_size, test_batch_size=test_batch_size) _, adversarial_standard_test_loader = load_data(root_dir='../', deck='adversarial_standard', train_batch_size=train_batch_size, test_batch_size=test_batch_size) _, adversarial_batman_joker_test_loader = load_data(root_dir='../', deck='adversarial_batman_joker', train_batch_size=train_batch_size, test_batch_size=test_batch_size) _, adversarial_captain_america_test_loader = load_data(root_dir='../', deck='adversarial_captain_america', train_batch_size=train_batch_size, test_batch_size=test_batch_size) test_loaders = { "standard": standard_test_loader, "batman_joker": batman_joker_test_loader, "captain_america": captain_america_test_loader, "adversarial_standard": adversarial_standard_test_loader, "adversarial_batman_joker": adversarial_batman_joker_test_loader, "adversarial_captain_america": adversarial_captain_america_test_loader } cache_dir = '../../cache/card_predictions/edl_gen' g2 = tf.Graph() with g2.as_default(): with tf.Session(graph=g2) as sess: tf.saved_model.loader.load( sess, [tag_constants.SERVING], 'saved_model' ) for ts in test_loaders: preds = {} preds_for_problog = {} test_data_csv_file = pd.read_csv('../data/'+ts+'/test.csv') card_mapping = test_loaders[ts].dataset.mapping image_ids = test_loaders[ts].dataset.playing_cards for batch_idx, (data, target) in enumerate(test_loaders[ts]): X = g2.get_tensor_by_name('X:0') u = g2.get_tensor_by_name('uncertainty_out:0') prob = g2.get_tensor_by_name('prob_out:0') evidence = g2.get_tensor_by_name('evidence_out:0') flattened_data = torch.flatten(data, start_dim=1) feed_dict = {X: flattened_data} output = sess.run([u, prob, evidence], feed_dict=feed_dict) u = output[0] prob = output[1] evidence = output[2] start_num_samples = test_loaders[ts].batch_size * batch_idx batch_image_ids = image_ids.loc[start_num_samples:start_num_samples + len(data) - 1]['img'].values for idx, img_id in enumerate(batch_image_ids): preds[img_id] = (card_mapping[np.argmax(prob[idx])], np.max(prob[idx])) _all_preds_this_image = [] for pred_idx in range(52): if prob[idx][pred_idx] > 0.00001: _all_preds_this_image.append((card_mapping[pred_idx], prob[idx][pred_idx])) preds_for_problog[img_id] = _all_preds_this_image print('Finished Deck: ', ts) # Save predictions to cache with open(cache_dir + '/' + ts + '_test_set.json', 'w') as cache_out: cache_out.write(json.dumps(preds, cls=NpEncoder)) with open(cache_dir + '/' + ts + '_test_set_for_problog.json', 'w') as cache_out: cache_out.write(json.dumps(preds_for_problog, cls=NpEncoder))
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 28034, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 11192, 273, 11125, 13, 82, 9586, 62, 19849, 1330, 7621, 62, 9979, 1187, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 1103, 6978, 198, 198, 2, 3060, 6808, 8619, 284, 3108, 198, 7753, 62, 6978, 796, 1103, 6978, 7, 834, 7753, 834, 8, 198, 7753, 62, 15908, 796, 26672, 3672, 7, 7753, 62, 6978, 8, 198, 8000, 62, 15908, 796, 26672, 3672, 7, 7753, 62, 15908, 8, 198, 17597, 13, 6978, 13, 33295, 7, 8000, 62, 15908, 8, 198, 6738, 27039, 1330, 3440, 62, 7890, 198, 198, 2, 8778, 40522, 198, 27432, 62, 43501, 62, 7857, 796, 3933, 198, 9288, 62, 43501, 62, 7857, 796, 3933, 198, 62, 11, 3210, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 20307, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 62, 11, 7365, 805, 62, 73, 11020, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 8664, 805, 62, 73, 11020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 62, 11, 10654, 62, 2382, 3970, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 27144, 391, 62, 2382, 3970, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 62, 11, 16907, 36098, 62, 20307, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 324, 690, 36098, 62, 20307, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 62, 11, 16907, 36098, 62, 8664, 805, 62, 73, 11020, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 324, 690, 36098, 62, 8664, 805, 62, 73, 11020, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 62, 11, 16907, 36098, 62, 27144, 391, 62, 2382, 3970, 62, 9288, 62, 29356, 796, 3440, 62, 7890, 7, 15763, 62, 15908, 11639, 40720, 3256, 6203, 11639, 324, 690, 36098, 62, 27144, 391, 62, 2382, 3970, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 43501, 62, 7857, 28, 27432, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 9288, 62, 43501, 62, 7857, 8, 198, 198, 9288, 62, 2220, 364, 796, 1391, 198, 220, 220, 220, 366, 20307, 1298, 3210, 62, 9288, 62, 29356, 11, 198, 220, 220, 220, 366, 8664, 805, 62, 73, 11020, 1298, 7365, 805, 62, 73, 11020, 62, 9288, 62, 29356, 11, 198, 220, 220, 220, 366, 27144, 391, 62, 2382, 3970, 1298, 10654, 62, 2382, 3970, 62, 9288, 62, 29356, 11, 198, 220, 220, 220, 366, 324, 690, 36098, 62, 20307, 1298, 16907, 36098, 62, 20307, 62, 9288, 62, 29356, 11, 198, 220, 220, 220, 366, 324, 690, 36098, 62, 8664, 805, 62, 73, 11020, 1298, 16907, 36098, 62, 8664, 805, 62, 73, 11020, 62, 9288, 62, 29356, 11, 198, 220, 220, 220, 366, 324, 690, 36098, 62, 27144, 391, 62, 2382, 3970, 1298, 16907, 36098, 62, 27144, 391, 62, 2382, 3970, 62, 9288, 62, 29356, 198, 92, 198, 198, 23870, 62, 15908, 796, 705, 40720, 40720, 23870, 14, 9517, 62, 28764, 9278, 14, 276, 75, 62, 5235, 6, 198, 198, 70, 17, 796, 48700, 13, 37065, 3419, 628, 198, 198, 4480, 308, 17, 13, 292, 62, 12286, 33529, 198, 220, 220, 220, 351, 48700, 13, 36044, 7, 34960, 28, 70, 17, 8, 355, 264, 408, 25, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 82, 9586, 62, 19849, 13, 29356, 13, 2220, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 408, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 12985, 62, 9979, 1187, 13, 35009, 53, 2751, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 82, 9586, 62, 19849, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 40379, 287, 1332, 62, 2220, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 62, 1640, 62, 1676, 14036, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 62, 40664, 62, 7753, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 7890, 14, 6, 10, 912, 10, 26488, 9288, 13, 40664, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 62, 76, 5912, 796, 1332, 62, 2220, 364, 58, 912, 4083, 19608, 292, 316, 13, 76, 5912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 2340, 796, 1332, 62, 2220, 364, 58, 912, 4083, 19608, 292, 316, 13, 17916, 62, 27761, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 15458, 62, 312, 87, 11, 357, 7890, 11, 2496, 8, 287, 27056, 378, 7, 9288, 62, 2220, 364, 58, 912, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 308, 17, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 55, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 796, 308, 17, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 19524, 1425, 774, 62, 448, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1861, 796, 308, 17, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 1676, 65, 62, 448, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2370, 796, 308, 17, 13, 1136, 62, 83, 22854, 62, 1525, 62, 3672, 10786, 46817, 62, 448, 25, 15, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45096, 62, 7890, 796, 28034, 13, 2704, 41769, 7, 7890, 11, 923, 62, 27740, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3745, 62, 11600, 796, 1391, 55, 25, 45096, 62, 7890, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 264, 408, 13, 5143, 26933, 84, 11, 1861, 11, 2370, 4357, 3745, 62, 11600, 28, 12363, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 796, 5072, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1861, 796, 5072, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2370, 796, 5072, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 22510, 62, 82, 12629, 796, 1332, 62, 2220, 364, 58, 912, 4083, 43501, 62, 7857, 1635, 15458, 62, 312, 87, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 9060, 62, 2340, 796, 2939, 62, 2340, 13, 17946, 58, 9688, 62, 22510, 62, 82, 12629, 25, 9688, 62, 22510, 62, 82, 12629, 1343, 18896, 7, 7890, 8, 532, 352, 7131, 6, 9600, 6, 4083, 27160, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 33705, 62, 312, 287, 27056, 378, 7, 43501, 62, 9060, 62, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 58, 9600, 62, 312, 60, 796, 357, 9517, 62, 76, 5912, 58, 37659, 13, 853, 9806, 7, 1676, 65, 58, 312, 87, 12962, 4357, 45941, 13, 9806, 7, 1676, 65, 58, 312, 87, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 439, 62, 28764, 82, 62, 5661, 62, 9060, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2747, 62, 312, 87, 287, 2837, 7, 4309, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1861, 58, 312, 87, 7131, 28764, 62, 312, 87, 60, 1875, 657, 13, 2388, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 439, 62, 28764, 82, 62, 5661, 62, 9060, 13, 33295, 19510, 9517, 62, 76, 5912, 58, 28764, 62, 312, 87, 4357, 1861, 58, 312, 87, 7131, 28764, 62, 312, 87, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 62, 1640, 62, 1676, 14036, 58, 9600, 62, 312, 60, 796, 4808, 439, 62, 28764, 82, 62, 5661, 62, 9060, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18467, 1348, 20961, 25, 46083, 40379, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 16277, 284, 12940, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 23870, 62, 15908, 1343, 31051, 6, 1343, 40379, 1343, 705, 62, 9288, 62, 2617, 13, 17752, 3256, 705, 86, 11537, 355, 12940, 62, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 448, 13, 13564, 7, 17752, 13, 67, 8142, 7, 28764, 82, 11, 537, 82, 28, 45, 79, 27195, 12342, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 23870, 62, 15908, 1343, 31051, 6, 1343, 40379, 1343, 705, 62, 9288, 62, 2617, 62, 1640, 62, 1676, 14036, 13, 17752, 3256, 705, 86, 11537, 355, 12940, 62, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12940, 62, 448, 13, 13564, 7, 17752, 13, 67, 8142, 7, 28764, 82, 62, 1640, 62, 1676, 14036, 11, 537, 82, 28, 45, 79, 27195, 12342, 4008, 628 ]
1.883361
2,392
from itertools import izip try: from carbon.storage import loadStorageSchemas, loadAggregationSchemas SCHEMAS = loadStorageSchemas() AGGREGATION_SCHEMAS = loadAggregationSchemas() except ImportError: SCHEMAS = [] AGGREGATION_SCHEMAS = [] # Update metadata to match carbon schemas.
[ 6738, 340, 861, 10141, 1330, 220, 528, 541, 198, 198, 28311, 25, 198, 220, 422, 6588, 13, 35350, 1330, 3440, 31425, 27054, 5356, 11, 3440, 46384, 43068, 27054, 5356, 198, 220, 22374, 3620, 1921, 796, 3440, 31425, 27054, 5356, 3419, 198, 220, 317, 11190, 31553, 6234, 62, 50, 3398, 3620, 1921, 796, 3440, 46384, 43068, 27054, 5356, 3419, 198, 16341, 17267, 12331, 25, 198, 220, 22374, 3620, 1921, 796, 17635, 198, 220, 317, 11190, 31553, 6234, 62, 50, 3398, 3620, 1921, 796, 17635, 628, 198, 198, 2, 10133, 20150, 284, 2872, 6588, 3897, 5356, 13, 198 ]
3.072917
96
import numpy as np import pytest import pytest_check as check from pointcloudset import PointCloud from pointcloudset.config import OPS @pytest.mark.parametrize("op", ["<", ">=", "<="])
[ 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 11748, 12972, 9288, 62, 9122, 355, 2198, 198, 198, 6738, 966, 17721, 2617, 1330, 6252, 18839, 198, 6738, 966, 17721, 2617, 13, 11250, 1330, 40490, 628, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 404, 1600, 14631, 27, 1600, 366, 29, 28, 1600, 33490, 2625, 12962, 198 ]
3.047619
63
from django.db import models # Create your models here. #class Al_batch_output(models.Models): #class Coverage_by_base(models.Model): # patient = models.ForeignKey(Patient, on_delete=models.CASCADE) # chromosome = models.CharField(max_length=2) # genomic_coordinate = models.CharField(max_length=30) # depth_of_coverage = models.CharField(max_length=30) # def __str__(self): # cov = self.chromosome + ' ' + self.genomic_coordinate + ' ' + self.depth_of_coverage # return cov
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 2, 13610, 534, 4981, 994, 13, 198, 198, 2, 4871, 978, 62, 43501, 62, 22915, 7, 27530, 13, 5841, 1424, 2599, 198, 198, 2, 4871, 33998, 62, 1525, 62, 8692, 7, 27530, 13, 17633, 2599, 198, 2, 220, 220, 220, 5827, 796, 4981, 13, 33616, 9218, 7, 12130, 1153, 11, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 198, 2, 220, 220, 220, 34348, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 17, 8, 198, 2, 220, 220, 220, 45752, 62, 37652, 4559, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1270, 8, 198, 2, 220, 220, 220, 6795, 62, 1659, 62, 1073, 1857, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 1270, 8, 198, 198, 2, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 39849, 796, 2116, 13, 28663, 418, 462, 1343, 705, 705, 1343, 2116, 13, 5235, 10179, 62, 37652, 4559, 1343, 705, 705, 1343, 2116, 13, 18053, 62, 1659, 62, 1073, 1857, 198, 2, 220, 220, 220, 220, 220, 220, 220, 1441, 39849, 198 ]
2.605128
195
from django.conf.urls import url from django.views.generic import TemplateView from .api import ListApi, CardApi urlpatterns = [ url(r'^lists$', ListApi.as_view()), url(r'^cards$', CardApi.as_view()), url(r'^home', TemplateView.as_view(template_name="scrumboard/home.html")), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 628, 198, 6738, 764, 15042, 1330, 7343, 32, 14415, 11, 5172, 32, 14415, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 20713, 3, 3256, 7343, 32, 14415, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 27761, 3, 3256, 5172, 32, 14415, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 11195, 3256, 37350, 7680, 13, 292, 62, 1177, 7, 28243, 62, 3672, 2625, 1416, 6582, 3526, 14, 11195, 13, 6494, 4943, 828, 198, 60, 198 ]
2.504274
117
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
import os from pathlib import Path DEFAULT_ROOT_PATH = Path(os.path.expanduser(os.getenv("EQUALITY_ROOT", "~/.equality/mainnet"))).resolve()
[ 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 7206, 38865, 62, 13252, 2394, 62, 34219, 796, 10644, 7, 418, 13, 6978, 13, 11201, 392, 7220, 7, 418, 13, 1136, 24330, 7203, 36, 10917, 1847, 9050, 62, 13252, 2394, 1600, 366, 93, 11757, 48203, 14, 12417, 3262, 48774, 737, 411, 6442, 3419, 198 ]
2.62963
54
import datetime def days_in_month(year, month): """ Inputs: year - an integer between datetime.MINYEAR and datetime.MAXYEAR representing the year month - an integer between 1 and 12 representing the month Returns: The number of days in the input month. """ if month > 11: date1 = datetime.date(year,month,1) date2 = datetime.date(year+1,1,1) else: date1 = datetime.date(year,month,1) date2 = datetime.date(year,month+1,1) difference = date2-date1 return difference.days year,month=2019,12 print("Number of days:",days_in_month(year, month)) def is_valid_date(year, month, day): """ Inputs: year - an integer representing the year month - an integer representing the month day - an integer representing the day Returns: True if year-month-day is a valid date and False otherwise """ if ((datetime.MINYEAR<=year<=datetime.MAXYEAR) and (1<=month<=12) and (1<=day<=days_in_month(year, month))): return True else: return False year,month,day=2000,1,1 print(is_valid_date(year, month, day)) def days_between(year1, month1, day1, year2, month2, day2): """ Inputs: year1 - an integer representing the year of the first date month1 - an integer representing the month of the first date day1 - an integer representing the day of the first date year2 - an integer representing the year of the second date month2 - an integer representing the month of the second date day2 - an integer representing the day of the second date Returns: The number of days from the first date to the second date. Returns 0 if either date is invalid or the second date is before the first date. """ if (not is_valid_date(year1, month1, day1) or not is_valid_date(year2, month2, day2)): return 0 else: date1 = datetime.date(year1,month1,day1) date2 = datetime.date(year2,month2,day2) if date2<date1: return 0 else: diff=date2-date1 return diff.days year1,year2 = 2000,2001 month1,month2 = 1,2 day1,day2=1,2 print(days_between(year1, month1, day1, year2, month2, day2)) def age_in_days(year, month, day): """ Inputs: year - an integer representing the birthday year month - an integer representing the birthday month day - an integer representing the birthday day Returns: The age of a person with the input birthday as of today. Returns 0 if the input date is invalid or if the input date is in the future. """ if (not is_valid_date(year, month, day)): return 0 else: date1 = datetime.date(year,month,day) todays_date = datetime.date.today() if date1>todays_date: return 0 else: age = todays_date - date1 return age.days year,month,day=2019,7,12 print("Person's age is:",age_in_days(year, month, day),"days")
[ 11748, 4818, 8079, 198, 198, 4299, 1528, 62, 259, 62, 8424, 7, 1941, 11, 1227, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 614, 220, 532, 281, 18253, 1022, 4818, 8079, 13, 23678, 56, 17133, 290, 4818, 8079, 13, 22921, 56, 17133, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10200, 262, 614, 198, 220, 220, 220, 220, 220, 1227, 532, 281, 18253, 1022, 352, 290, 1105, 10200, 262, 1227, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 1271, 286, 1528, 287, 262, 5128, 1227, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1227, 1875, 1367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 16, 796, 4818, 8079, 13, 4475, 7, 1941, 11, 8424, 11, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 17, 796, 4818, 8079, 13, 4475, 7, 1941, 10, 16, 11, 16, 11, 16, 8, 198, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 16, 796, 4818, 8079, 13, 4475, 7, 1941, 11, 8424, 11, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 17, 796, 4818, 8079, 13, 4475, 7, 1941, 11, 8424, 10, 16, 11, 16, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3580, 796, 3128, 17, 12, 4475, 16, 198, 220, 220, 220, 1441, 3580, 13, 12545, 198, 198, 1941, 11, 8424, 28, 23344, 11, 1065, 198, 4798, 7203, 15057, 286, 1528, 25, 1600, 12545, 62, 259, 62, 8424, 7, 1941, 11, 1227, 4008, 628, 198, 4299, 318, 62, 12102, 62, 4475, 7, 1941, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 614, 220, 532, 281, 18253, 10200, 262, 614, 198, 220, 220, 220, 220, 220, 1227, 532, 281, 18253, 10200, 262, 1227, 198, 220, 220, 220, 220, 220, 1110, 220, 220, 532, 281, 18253, 10200, 262, 1110, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 6407, 611, 614, 12, 8424, 12, 820, 318, 257, 4938, 3128, 290, 198, 220, 220, 220, 220, 220, 10352, 4306, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 14808, 19608, 8079, 13, 23678, 56, 17133, 27, 28, 1941, 27, 28, 19608, 8079, 13, 22921, 56, 17133, 8, 290, 357, 16, 27, 28, 8424, 27, 28, 1065, 8, 290, 220, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 27, 28, 820, 27, 28, 12545, 62, 259, 62, 8424, 7, 1941, 11, 1227, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 198, 1941, 11, 8424, 11, 820, 28, 11024, 11, 16, 11, 16, 198, 4798, 7, 271, 62, 12102, 62, 4475, 7, 1941, 11, 1227, 11, 1110, 4008, 628, 198, 4299, 1528, 62, 23395, 7, 1941, 16, 11, 1227, 16, 11, 1110, 16, 11, 614, 17, 11, 1227, 17, 11, 1110, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 614, 16, 220, 532, 281, 18253, 10200, 262, 614, 286, 262, 717, 3128, 198, 220, 220, 220, 220, 220, 1227, 16, 532, 281, 18253, 10200, 262, 1227, 286, 262, 717, 3128, 198, 220, 220, 220, 220, 220, 1110, 16, 220, 220, 532, 281, 18253, 10200, 262, 1110, 286, 262, 717, 3128, 198, 220, 220, 220, 220, 220, 614, 17, 220, 532, 281, 18253, 10200, 262, 614, 286, 262, 1218, 3128, 198, 220, 220, 220, 220, 220, 1227, 17, 532, 281, 18253, 10200, 262, 1227, 286, 262, 1218, 3128, 198, 220, 220, 220, 220, 220, 1110, 17, 220, 220, 532, 281, 18253, 10200, 262, 1110, 286, 262, 1218, 3128, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 1271, 286, 1528, 422, 262, 717, 3128, 284, 262, 1218, 3128, 13, 198, 220, 220, 220, 220, 220, 16409, 657, 611, 2035, 3128, 318, 12515, 393, 262, 1218, 3128, 318, 198, 220, 220, 220, 220, 220, 878, 262, 717, 3128, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 357, 1662, 318, 62, 12102, 62, 4475, 7, 1941, 16, 11, 1227, 16, 11, 1110, 16, 8, 393, 198, 220, 220, 220, 220, 220, 220, 220, 407, 318, 62, 12102, 62, 4475, 7, 1941, 17, 11, 1227, 17, 11, 1110, 17, 8, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 220, 220, 220, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 16, 796, 4818, 8079, 13, 4475, 7, 1941, 16, 11, 8424, 16, 11, 820, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 17, 796, 4818, 8079, 13, 4475, 7, 1941, 17, 11, 8424, 17, 11, 820, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 17, 27, 4475, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 28, 4475, 17, 12, 4475, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 814, 13, 12545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 1941, 16, 11, 1941, 17, 796, 4751, 11, 14585, 198, 8424, 16, 11, 8424, 17, 796, 352, 11, 17, 198, 820, 16, 11, 820, 17, 28, 16, 11, 17, 198, 4798, 7, 12545, 62, 23395, 7, 1941, 16, 11, 1227, 16, 11, 1110, 16, 11, 614, 17, 11, 1227, 17, 11, 1110, 17, 4008, 628, 198, 4299, 2479, 62, 259, 62, 12545, 7, 1941, 11, 1227, 11, 1110, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 198, 220, 220, 220, 220, 220, 614, 220, 532, 281, 18253, 10200, 262, 10955, 614, 198, 220, 220, 220, 220, 220, 1227, 532, 281, 18253, 10200, 262, 10955, 1227, 198, 220, 220, 220, 220, 220, 1110, 220, 220, 532, 281, 18253, 10200, 262, 10955, 1110, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 383, 2479, 286, 257, 1048, 351, 262, 5128, 10955, 355, 286, 1909, 13, 198, 220, 220, 220, 220, 220, 16409, 657, 611, 262, 5128, 3128, 318, 12515, 393, 611, 262, 5128, 198, 220, 220, 220, 220, 220, 3128, 318, 287, 262, 2003, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 357, 1662, 318, 62, 12102, 62, 4475, 7, 1941, 11, 1227, 11, 1110, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3128, 16, 796, 4818, 8079, 13, 4475, 7, 1941, 11, 8424, 11, 820, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 12545, 62, 4475, 796, 4818, 8079, 13, 4475, 13, 40838, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 16, 29, 83, 375, 592, 62, 4475, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2479, 796, 284, 12545, 62, 4475, 532, 3128, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2479, 13, 12545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 1941, 11, 8424, 11, 820, 28, 23344, 11, 22, 11, 1065, 220, 220, 220, 220, 198, 4798, 7203, 15439, 338, 2479, 318, 25, 1600, 496, 62, 259, 62, 12545, 7, 1941, 11, 1227, 11, 1110, 27267, 12545, 4943, 198 ]
2.385911
1,306
import argparse import json import logging import numpy as np from datetime import datetime from os import path from webias.constants import BIAS_METRIC_LIMITS, BIAS_METRIC_ZERO, LOGGING_CONFIG def calculate_mean_values(results_per_run: list) -> float: """Calculate the mean values of each dimension for the given lists of runs. Return a list of means. Arguments: results_per_run: A list of lists, where each inner list contains evaluation results per run. """ results_by_list_length = list(zip(*results_per_run)) return np.mean(results_by_list_length, axis=1).tolist() def calculate_max_values(results_per_run: list) -> float: """Calculate the maximum values of each dimension for the given lists of runs. Return a list of maximum values. Arguments: results_per_run: A list of lists, where each inner list contains evaluation results per run. """ results_by_list_length = list(zip(*results_per_run)) return np.max(results_by_list_length, axis=1).tolist() def calculate_min_values(results_per_run: list) -> float: """Calculate the minimum values of each dimension for the given lists of runs. Return a list of minimum values. Arguments: results_per_run: A list of lists, where each inner list contains evaluation results per run. """ results_by_list_length = list(zip(*results_per_run)) return np.min(results_by_list_length, axis=1).tolist() def calculate_silhouette_area(lower_bounds: list, upper_bounds: list, x_values: list) -> float: """Calculate the silhouette area between two curves that are defined by the given bounds. Return the size of the area. Uses the numpy implementation of the trapezoidal rule to approximate the area between the two curves. Arguments: lower_bounds -- The points defining the graph of the lower bounds of the silhouette. upper_bounds -- The points defining the graph of the upper bounds of the silhouette. x_values -- The points on the x-axis at which the lower and upper bounds were measured. """ upper_graph_area = np.trapz(y=upper_bounds, x=x_values) lower_graph_area = np.trapz(y=lower_bounds, x=x_values) return upper_graph_area - lower_graph_area def calculate_graph_coverage( metric: str, x_axis_size: int, silhouette_size: float, min_y_value: int = None, max_y_value: int = None) -> float: """Calculate the percentage of the available area covered by the given silhouette. Return the percentage covered. Arguments: metric -- The metric that was used. Important to figure out upper and lower y-value bounds. x_axis_size -- The largest x-value of the measurement. silhouette_size -- The size of the area covered by the silhouette. min_y_value -- The minimum value on the y-axis. Necessary in case the metric is unknown or not applicable. max_y_value -- The maximum value on the y-axis. Necessary in case the metric is unknown or not applicable. """ if min_y_value and max_y_value: y_axis_length = max_y_value - min_y_value else: y_axis_length = BIAS_METRIC_LIMITS[metric][1] - BIAS_METRIC_LIMITS[metric][0] return silhouette_size / (x_axis_size * y_axis_length) def calculate_model_statistics(evaluation_results: dict) -> dict: """Calculate different statistics for the given evaluation data, such as graph coverage. Return a dictionary containing the different statistical results for each evaluation in the given results file. Arguments: evaluation_results -- Dictionary containing the results of a specific model for different metrics. Each top-level key is expected to be a metric name. An exception is the top-level key "model_name", which is expected to hold an identifier for the evaluated model. """ model_analysis_results = {} # For each metric evaluation of the evaluated model... for metric_name, results_by_type in evaluation_results.items(): # If the current item is not actually a metric evaluation if metric_name == "model_name": continue model_analysis_results[metric_name] = {} # For each test type of the current metric for test_type, results in results_by_type.items(): model_analysis_results[metric_name][test_type] = {} # For each shuffle type... for shuffle_type, values in results.items(): # If the current item is not actually a list of values if shuffle_type == "attribute_set_lengths" or shuffle_type == "target_set_lengths": continue shuffled_list = shuffle_type.split("_")[1] set_lengths = results[f"{shuffled_list}_set_lengths"] mean_values = calculate_mean_values(values) max_values = calculate_max_values(values) min_values = calculate_min_values(values) silhouette_size = calculate_silhouette_area( min_values, max_values, set_lengths) graph_coverage = calculate_graph_coverage( metric_name, max(set_lengths), silhouette_size) robustness_score = get_robustness_score(graph_coverage) statistics = { "mean_values": mean_values, "max_values": max_values, "min_values": min_values, "silhouette_size": silhouette_size, "graph_coverage": graph_coverage, "robustness_score": robustness_score, "x_values": set_lengths} model_analysis_results[metric_name][test_type][shuffle_type] = statistics return model_analysis_results def calculate_accuracy_scores(model_statistics: dict) -> dict: """Calcuate the area between each two mean curves in the given data. Return a dict with graph coverage (calculated area normalized by the total graph size) for each of the metrics in the given data. Arguments: model_statistics -- Dictionary holding the model statistics data. Each top-level key is expected to be a model identifier, with the value being the respective model statistics. """ accuracy_scores = {} # Extract actual statistic lists from given dict model_statistics_unpkg = [ model_statistics[model]["statistics"] for model in model_statistics.keys()] # For each metric evaluation of the evaluated model... # (here we can always just use the keys of the first models as they are supposed to be equal # for both models; otherwise this analysis wont work anyway) for metric_name in model_statistics_unpkg[0].keys(): accuracy_scores[metric_name] = {} # For each test type of the current metric... for test_type in model_statistics_unpkg[0][metric_name].keys(): accuracy_scores[metric_name][test_type] = {} # For each shuffle type... for shuffle_type in model_statistics_unpkg[0][metric_name][test_type].keys(): mean_values_model_1 = np.array( model_statistics_unpkg[0][metric_name][test_type][shuffle_type]["mean_values"]) mean_values_model_2 = np.array( model_statistics_unpkg[1][metric_name][test_type][shuffle_type]["mean_values"]) x_values = np.array( model_statistics_unpkg[0][metric_name][test_type][shuffle_type]["x_values"]) # Get the absolute values of the curves to bring them both into the same range # Necessary for measures where bias can also be negative, like WEAT abs_means_1 = np.abs(mean_values_model_1) abs_means_2 = np.abs(mean_values_model_2) area_between_means = calculate_silhouette_area(abs_means_2, abs_means_1, x_values) # Calculate graph coverage coverage = calculate_graph_coverage( metric_name, max(x_values), area_between_means, min_y_value=BIAS_METRIC_ZERO[metric_name], max_y_value=BIAS_METRIC_LIMITS[metric_name][1]) accuracy_scores[metric_name][test_type][shuffle_type] = get_accuracy_score(coverage) return accuracy_scores def get_accuracy_score(mean_silhouette_coverage: float) -> float: """Calculate the accuracy score given the coverage of the graph by the silhouette between means. Return the accuracy score. Arguments: mean_silhouette_coverage -- Coverage of the total graph by the respective silhouette between means. """ return 0.5 + (0.5 * mean_silhouette_coverage) def get_robustness_score(silhouette_coverage: float) -> float: """Calculate the robustness score given the coverage of the graph by the silhouette. Return the robustness score. Arguments: silhouette_coverage -- Coverage of the total graph by the respective silhouette. """ return 1 - silhouette_coverage if __name__ == "__main__": # Add cli parameters parser = argparse.ArgumentParser( "A script to analyze previously calculated evaluation results and prepare them for " "plotting.") parser.add_argument( "-r", "--evaluation_results", required=True, nargs="+", type=str, help="List of paths to the evaluation results files.", metavar="EVALUATION_RESULTS") parser.add_argument( "-o", "--output", required=True, type=str, help="Path to the directory where the result file should be written to.", metavar="OUTPUT_DIR") parser.add_argument( "-f", "--output_filename", type=str, default=None, help="If set, the given string will be used as filename for the output file. Otherwise, " "the default filename will be used.", metavar="OUTPUT_FILENAME") args = parser.parse_args() logging.basicConfig(**LOGGING_CONFIG) main() logging.info("Done.")
[ 11748, 1822, 29572, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 28686, 1330, 3108, 198, 198, 6738, 3992, 4448, 13, 9979, 1187, 1330, 20068, 1921, 62, 47123, 41132, 62, 43, 3955, 29722, 11, 20068, 1921, 62, 47123, 41132, 62, 57, 34812, 11, 41605, 38, 2751, 62, 10943, 16254, 628, 198, 4299, 15284, 62, 32604, 62, 27160, 7, 43420, 62, 525, 62, 5143, 25, 1351, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 1612, 3815, 286, 1123, 15793, 329, 262, 1813, 8341, 286, 4539, 13, 628, 220, 220, 220, 8229, 257, 1351, 286, 1724, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2482, 62, 525, 62, 5143, 25, 317, 1351, 286, 8341, 11, 810, 1123, 8434, 1351, 4909, 12660, 2482, 583, 1057, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2482, 62, 1525, 62, 4868, 62, 13664, 796, 1351, 7, 13344, 46491, 43420, 62, 525, 62, 5143, 4008, 628, 220, 220, 220, 1441, 45941, 13, 32604, 7, 43420, 62, 1525, 62, 4868, 62, 13664, 11, 16488, 28, 16, 737, 83, 349, 396, 3419, 628, 198, 4299, 15284, 62, 9806, 62, 27160, 7, 43420, 62, 525, 62, 5143, 25, 1351, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 5415, 3815, 286, 1123, 15793, 329, 262, 1813, 8341, 286, 4539, 13, 628, 220, 220, 220, 8229, 257, 1351, 286, 5415, 3815, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2482, 62, 525, 62, 5143, 25, 317, 1351, 286, 8341, 11, 810, 1123, 8434, 1351, 4909, 12660, 2482, 583, 1057, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2482, 62, 1525, 62, 4868, 62, 13664, 796, 1351, 7, 13344, 46491, 43420, 62, 525, 62, 5143, 4008, 628, 220, 220, 220, 1441, 45941, 13, 9806, 7, 43420, 62, 1525, 62, 4868, 62, 13664, 11, 16488, 28, 16, 737, 83, 349, 396, 3419, 628, 198, 4299, 15284, 62, 1084, 62, 27160, 7, 43420, 62, 525, 62, 5143, 25, 1351, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 5288, 3815, 286, 1123, 15793, 329, 262, 1813, 8341, 286, 4539, 13, 628, 220, 220, 220, 8229, 257, 1351, 286, 5288, 3815, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2482, 62, 525, 62, 5143, 25, 317, 1351, 286, 8341, 11, 810, 1123, 8434, 1351, 4909, 12660, 2482, 583, 1057, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2482, 62, 1525, 62, 4868, 62, 13664, 796, 1351, 7, 13344, 46491, 43420, 62, 525, 62, 5143, 4008, 628, 220, 220, 220, 1441, 45941, 13, 1084, 7, 43420, 62, 1525, 62, 4868, 62, 13664, 11, 16488, 28, 16, 737, 83, 349, 396, 3419, 628, 198, 4299, 15284, 62, 18217, 15710, 5857, 62, 20337, 7, 21037, 62, 65, 3733, 25, 1351, 11, 6727, 62, 65, 3733, 25, 1351, 11, 2124, 62, 27160, 25, 1351, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 41834, 1989, 1022, 734, 23759, 326, 389, 5447, 416, 262, 1813, 22303, 13, 628, 220, 220, 220, 8229, 262, 2546, 286, 262, 1989, 13, 628, 220, 220, 220, 36965, 262, 299, 32152, 7822, 286, 262, 1291, 46057, 47502, 3896, 284, 27665, 262, 1989, 1022, 262, 734, 198, 220, 220, 220, 23759, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2793, 62, 65, 3733, 1377, 383, 2173, 16215, 262, 4823, 286, 262, 2793, 22303, 286, 262, 41834, 13, 198, 220, 220, 220, 6727, 62, 65, 3733, 1377, 383, 2173, 16215, 262, 4823, 286, 262, 6727, 22303, 286, 262, 41834, 13, 198, 220, 220, 220, 2124, 62, 27160, 1377, 383, 2173, 319, 262, 2124, 12, 22704, 379, 543, 262, 2793, 290, 6727, 22303, 547, 8630, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6727, 62, 34960, 62, 20337, 796, 45941, 13, 46670, 89, 7, 88, 28, 45828, 62, 65, 3733, 11, 2124, 28, 87, 62, 27160, 8, 198, 220, 220, 220, 2793, 62, 34960, 62, 20337, 796, 45941, 13, 46670, 89, 7, 88, 28, 21037, 62, 65, 3733, 11, 2124, 28, 87, 62, 27160, 8, 628, 220, 220, 220, 1441, 6727, 62, 34960, 62, 20337, 532, 2793, 62, 34960, 62, 20337, 628, 198, 4299, 15284, 62, 34960, 62, 1073, 1857, 7, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 25, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 22704, 62, 7857, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 41834, 62, 7857, 25, 12178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 88, 62, 8367, 25, 493, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 8367, 25, 493, 796, 6045, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 5873, 286, 262, 1695, 1989, 5017, 416, 262, 1813, 41834, 13, 628, 220, 220, 220, 8229, 262, 5873, 5017, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 18663, 1377, 383, 18663, 326, 373, 973, 13, 28511, 284, 3785, 503, 6727, 290, 2793, 331, 12, 8367, 22303, 13, 198, 220, 220, 220, 2124, 62, 22704, 62, 7857, 1377, 383, 4387, 2124, 12, 8367, 286, 262, 15558, 13, 198, 220, 220, 220, 41834, 62, 7857, 1377, 383, 2546, 286, 262, 1989, 5017, 416, 262, 41834, 13, 198, 220, 220, 220, 949, 62, 88, 62, 8367, 1377, 383, 5288, 1988, 319, 262, 331, 12, 22704, 13, 19652, 408, 560, 287, 1339, 262, 18663, 318, 6439, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 13, 198, 220, 220, 220, 3509, 62, 88, 62, 8367, 1377, 383, 5415, 1988, 319, 262, 331, 12, 22704, 13, 19652, 408, 560, 287, 1339, 262, 18663, 318, 6439, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 949, 62, 88, 62, 8367, 290, 3509, 62, 88, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 22704, 62, 13664, 796, 3509, 62, 88, 62, 8367, 532, 949, 62, 88, 62, 8367, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 22704, 62, 13664, 796, 20068, 1921, 62, 47123, 41132, 62, 43, 3955, 29722, 58, 4164, 1173, 7131, 16, 60, 532, 20068, 1921, 62, 47123, 41132, 62, 43, 3955, 29722, 58, 4164, 1173, 7131, 15, 60, 628, 220, 220, 220, 1441, 41834, 62, 7857, 1220, 357, 87, 62, 22704, 62, 7857, 1635, 331, 62, 22704, 62, 13664, 8, 628, 198, 4299, 15284, 62, 19849, 62, 14269, 3969, 7, 18206, 2288, 62, 43420, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 1180, 7869, 329, 262, 1813, 12660, 1366, 11, 884, 355, 4823, 5197, 13, 628, 220, 220, 220, 8229, 257, 22155, 7268, 262, 1180, 13905, 2482, 329, 1123, 12660, 287, 262, 198, 220, 220, 220, 1813, 2482, 2393, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 12660, 62, 43420, 1377, 28261, 7268, 262, 2482, 286, 257, 2176, 2746, 329, 1180, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 13, 5501, 1353, 12, 5715, 1994, 318, 2938, 284, 307, 257, 18663, 1438, 13, 1052, 6631, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 262, 1353, 12, 5715, 1994, 366, 19849, 62, 3672, 1600, 543, 318, 2938, 284, 1745, 281, 27421, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 16726, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2746, 62, 20930, 62, 43420, 796, 23884, 628, 220, 220, 220, 1303, 1114, 1123, 18663, 12660, 286, 262, 16726, 2746, 986, 198, 220, 220, 220, 329, 18663, 62, 3672, 11, 2482, 62, 1525, 62, 4906, 287, 12660, 62, 43420, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 1459, 2378, 318, 407, 1682, 257, 18663, 12660, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18663, 62, 3672, 6624, 366, 19849, 62, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 20930, 62, 43420, 58, 4164, 1173, 62, 3672, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 1123, 1332, 2099, 286, 262, 1459, 18663, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1332, 62, 4906, 11, 2482, 287, 2482, 62, 1525, 62, 4906, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 20930, 62, 43420, 58, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 1123, 36273, 2099, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36273, 62, 4906, 11, 3815, 287, 2482, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 1459, 2378, 318, 407, 1682, 257, 1351, 286, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36273, 62, 4906, 6624, 366, 42348, 62, 2617, 62, 13664, 82, 1, 393, 36273, 62, 4906, 6624, 366, 16793, 62, 2617, 62, 13664, 82, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32299, 992, 62, 4868, 796, 36273, 62, 4906, 13, 35312, 7203, 62, 4943, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 62, 13664, 82, 796, 2482, 58, 69, 1, 90, 1477, 1648, 992, 62, 4868, 92, 62, 2617, 62, 13664, 82, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 27160, 796, 15284, 62, 32604, 62, 27160, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 27160, 796, 15284, 62, 9806, 62, 27160, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 27160, 796, 15284, 62, 1084, 62, 27160, 7, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41834, 62, 7857, 796, 15284, 62, 18217, 15710, 5857, 62, 20337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 27160, 11, 3509, 62, 27160, 11, 900, 62, 13664, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 62, 1073, 1857, 796, 15284, 62, 34960, 62, 1073, 1857, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 2617, 62, 13664, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41834, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12373, 1108, 62, 26675, 796, 651, 62, 22609, 436, 1108, 62, 26675, 7, 34960, 62, 1073, 1857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7869, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 32604, 62, 27160, 1298, 1612, 62, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 62, 27160, 1298, 3509, 62, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 62, 27160, 1298, 949, 62, 27160, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18217, 15710, 5857, 62, 7857, 1298, 41834, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34960, 62, 1073, 1857, 1298, 4823, 62, 1073, 1857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22609, 436, 1108, 62, 26675, 1298, 12373, 1108, 62, 26675, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 62, 27160, 1298, 900, 62, 13664, 82, 92, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 20930, 62, 43420, 58, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 7131, 1477, 18137, 62, 4906, 60, 796, 7869, 628, 220, 220, 220, 1441, 2746, 62, 20930, 62, 43420, 628, 198, 4299, 15284, 62, 4134, 23843, 62, 1416, 2850, 7, 19849, 62, 14269, 3969, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 9771, 66, 4985, 262, 1989, 1022, 1123, 734, 1612, 23759, 287, 262, 1813, 1366, 13, 628, 220, 220, 220, 8229, 257, 8633, 351, 4823, 5197, 357, 9948, 49262, 1989, 39279, 416, 262, 2472, 4823, 2546, 8, 329, 1123, 198, 220, 220, 220, 286, 262, 20731, 287, 262, 1813, 1366, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 2746, 62, 14269, 3969, 1377, 28261, 4769, 262, 2746, 7869, 1366, 13, 5501, 1353, 12, 5715, 1994, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 284, 307, 257, 2746, 27421, 11, 351, 262, 1988, 852, 262, 11756, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 7869, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9922, 62, 1416, 2850, 796, 23884, 628, 220, 220, 220, 1303, 29677, 4036, 24696, 8341, 422, 1813, 8633, 198, 220, 220, 220, 2746, 62, 14269, 3969, 62, 403, 35339, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 14269, 3969, 58, 19849, 7131, 1, 14269, 3969, 8973, 329, 2746, 287, 2746, 62, 14269, 3969, 13, 13083, 3419, 60, 628, 220, 220, 220, 1303, 1114, 1123, 18663, 12660, 286, 262, 16726, 2746, 986, 198, 220, 220, 220, 1303, 357, 1456, 356, 460, 1464, 655, 779, 262, 8251, 286, 262, 717, 4981, 355, 484, 389, 4385, 284, 307, 4961, 198, 220, 220, 220, 1303, 329, 1111, 4981, 26, 4306, 428, 3781, 28329, 670, 6949, 8, 198, 220, 220, 220, 329, 18663, 62, 3672, 287, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 15, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9922, 62, 1416, 2850, 58, 4164, 1173, 62, 3672, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 1123, 1332, 2099, 286, 262, 1459, 18663, 986, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1332, 62, 4906, 287, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 15, 7131, 4164, 1173, 62, 3672, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9922, 62, 1416, 2850, 58, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 60, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 1123, 36273, 2099, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 36273, 62, 4906, 287, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 15, 7131, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 27160, 62, 19849, 62, 16, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 15, 7131, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 7131, 1477, 18137, 62, 4906, 7131, 1, 32604, 62, 27160, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 27160, 62, 19849, 62, 17, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 16, 7131, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 7131, 1477, 18137, 62, 4906, 7131, 1, 32604, 62, 27160, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 27160, 796, 45941, 13, 18747, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 14269, 3969, 62, 403, 35339, 58, 15, 7131, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 7131, 1477, 18137, 62, 4906, 7131, 1, 87, 62, 27160, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 4112, 3815, 286, 262, 23759, 284, 2222, 606, 1111, 656, 262, 976, 2837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19652, 408, 560, 329, 5260, 810, 10690, 460, 635, 307, 4633, 11, 588, 12887, 1404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 1326, 504, 62, 16, 796, 45941, 13, 8937, 7, 32604, 62, 27160, 62, 19849, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2352, 62, 1326, 504, 62, 17, 796, 45941, 13, 8937, 7, 32604, 62, 27160, 62, 19849, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 62, 23395, 62, 1326, 504, 796, 15284, 62, 18217, 15710, 5857, 62, 20337, 7, 8937, 62, 1326, 504, 62, 17, 11, 2352, 62, 1326, 504, 62, 16, 11, 2124, 62, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 4823, 5197, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5197, 796, 15284, 62, 34960, 62, 1073, 1857, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 87, 62, 27160, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 62, 23395, 62, 1326, 504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 88, 62, 8367, 28, 3483, 1921, 62, 47123, 41132, 62, 57, 34812, 58, 4164, 1173, 62, 3672, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 88, 62, 8367, 28, 3483, 1921, 62, 47123, 41132, 62, 43, 3955, 29722, 58, 4164, 1173, 62, 3672, 7131, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9922, 62, 1416, 2850, 58, 4164, 1173, 62, 3672, 7131, 9288, 62, 4906, 7131, 1477, 18137, 62, 4906, 60, 796, 651, 62, 4134, 23843, 62, 26675, 7, 1073, 1857, 8, 628, 220, 220, 220, 1441, 9922, 62, 1416, 2850, 628, 198, 4299, 651, 62, 4134, 23843, 62, 26675, 7, 32604, 62, 18217, 15710, 5857, 62, 1073, 1857, 25, 12178, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 9922, 4776, 1813, 262, 5197, 286, 262, 4823, 416, 262, 41834, 1022, 1724, 13, 628, 220, 220, 220, 8229, 262, 9922, 4776, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 1612, 62, 18217, 15710, 5857, 62, 1073, 1857, 1377, 33998, 286, 262, 2472, 4823, 416, 262, 11756, 41834, 1022, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1724, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 657, 13, 20, 1343, 357, 15, 13, 20, 1635, 1612, 62, 18217, 15710, 5857, 62, 1073, 1857, 8, 628, 198, 4299, 651, 62, 22609, 436, 1108, 62, 26675, 7, 18217, 15710, 5857, 62, 1073, 1857, 25, 12178, 8, 4613, 12178, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 12373, 1108, 4776, 1813, 262, 5197, 286, 262, 4823, 416, 262, 41834, 13, 628, 220, 220, 220, 8229, 262, 12373, 1108, 4776, 13, 628, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 41834, 62, 1073, 1857, 1377, 33998, 286, 262, 2472, 4823, 416, 262, 11756, 41834, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 352, 532, 41834, 62, 1073, 1857, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 3060, 537, 72, 10007, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32, 4226, 284, 16602, 4271, 10488, 12660, 2482, 290, 8335, 606, 329, 366, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29487, 889, 19570, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 81, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 18206, 2288, 62, 43420, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8053, 286, 13532, 284, 262, 12660, 2482, 3696, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 20114, 1847, 52, 6234, 62, 46274, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22915, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 262, 8619, 810, 262, 1255, 2393, 815, 307, 3194, 284, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 2606, 7250, 3843, 62, 34720, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 69, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 22915, 62, 34345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 1532, 900, 11, 262, 1813, 4731, 481, 307, 973, 355, 29472, 329, 262, 5072, 2393, 13, 15323, 11, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1169, 4277, 29472, 481, 307, 973, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 2606, 7250, 3843, 62, 46700, 1677, 10067, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 1174, 25294, 38, 2751, 62, 10943, 16254, 8, 628, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 18931, 13, 10951, 7203, 45677, 19570, 198 ]
2.516715
4,128
from searcher import NCBI_searcher # this api_key is only for testing. So pls use your api_key from ur NCBI accounts, otherwise it will effect your speed api_key = '1cb4976dd163905feedacce5da0f10552309' keywords = "metabolomics" keywords_file = "propanoyl-CoA" searcher = NCBI_searcher(api_key=api_key, len_limit=0) # just search them searcher.search_from_all(keywords, keywords_file, thread_num=10, keep_cache=False, case_sensitive=False) print("finished!")
[ 6738, 9622, 2044, 1330, 8823, 3483, 62, 325, 283, 2044, 628, 198, 2, 428, 40391, 62, 2539, 318, 691, 329, 4856, 13, 1406, 458, 82, 779, 534, 40391, 62, 2539, 422, 2956, 8823, 3483, 5504, 11, 4306, 340, 481, 1245, 534, 2866, 198, 15042, 62, 2539, 796, 705, 16, 21101, 2920, 4304, 1860, 1433, 2670, 2713, 12363, 330, 344, 20, 6814, 15, 69, 940, 2816, 19214, 24, 6, 198, 198, 2539, 10879, 796, 366, 4164, 28426, 31994, 1, 198, 2539, 10879, 62, 7753, 796, 366, 1676, 6839, 726, 75, 12, 7222, 32, 1, 198, 198, 325, 283, 2044, 796, 8823, 3483, 62, 325, 283, 2044, 7, 15042, 62, 2539, 28, 15042, 62, 2539, 11, 18896, 62, 32374, 28, 15, 8, 198, 198, 2, 655, 2989, 606, 198, 325, 283, 2044, 13, 12947, 62, 6738, 62, 439, 7, 2539, 10879, 11, 26286, 62, 7753, 11, 4704, 62, 22510, 28, 940, 11, 1394, 62, 23870, 28, 25101, 11, 1339, 62, 30176, 28, 25101, 8, 198, 198, 4798, 7203, 43952, 2474, 8, 198 ]
2.735294
170
# coding: utf-8 """ CCCS No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class UsersApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def create_user(self, **kwargs): # noqa: E501 """Registration end point for a user account # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_user(async=True) >>> result = thread.get() :param async bool :param user: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.create_user_with_http_info(**kwargs) # noqa: E501 else: (data) = self.create_user_with_http_info(**kwargs) # noqa: E501 return data def create_user_with_http_info(self, **kwargs): # noqa: E501 """Registration end point for a user account # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.create_user_with_http_info(async=True) >>> result = thread.get() :param async bool :param user: :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['user'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method create_user" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'user' in params: body_params = params['user'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/register', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def delete_user(self, id, **kwargs): # noqa: E501 """Delete user (only allowed by the user themselves) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_user(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.delete_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.delete_user_with_http_info(id, **kwargs) # noqa: E501 return data def delete_user_with_http_info(self, id, **kwargs): # noqa: E501 """Delete user (only allowed by the user themselves) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.delete_user_with_http_info(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method delete_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `delete_user`") # noqa: E501 if 'id' in params and not re.search('^[a-zA-Z0-9-]+$', params['id']): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `delete_user`, must conform to the pattern `/^[a-zA-Z0-9-]+$/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['anonUser', 'apiKeyHeader'] # noqa: E501 return self.api_client.call_api( '/users/{id}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def generate(self, **kwargs): # noqa: E501 """Post auth for token response # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.generate(async=True) >>> result = thread.get() :param async bool :param token: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.generate_with_http_info(**kwargs) # noqa: E501 else: (data) = self.generate_with_http_info(**kwargs) # noqa: E501 return data def generate_with_http_info(self, **kwargs): # noqa: E501 """Post auth for token response # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.generate_with_http_info(async=True) >>> result = thread.get() :param async bool :param token: :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['token'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method generate" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'token' in params: body_params = params['token'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/authorize', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_subs(self, id, **kwargs): # noqa: E501 """Get all submissions for a user (or those matching an ID) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_subs(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: list[InlineResponse2004] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_subs_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_subs_with_http_info(id, **kwargs) # noqa: E501 return data def get_subs_with_http_info(self, id, **kwargs): # noqa: E501 """Get all submissions for a user (or those matching an ID) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_subs_with_http_info(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: list[InlineResponse2004] If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_subs" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_subs`") # noqa: E501 if 'id' in params and not re.search('^[a-zA-Z0-9-]+$', params['id']): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `get_subs`, must conform to the pattern `/^[a-zA-Z0-9-]+$/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['anonUser', 'apiKeyHeader'] # noqa: E501 return self.api_client.call_api( '/users/{id}/submissions', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[InlineResponse2004]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_user(self, id, **kwargs): # noqa: E501 """Get all users (or those matching an ID) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_user(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: object If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_user_with_http_info(id, **kwargs) # noqa: E501 return data def get_user_with_http_info(self, id, **kwargs): # noqa: E501 """Get all users (or those matching an ID) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_user_with_http_info(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :return: object If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_user`") # noqa: E501 if 'id' in params and not re.search('^[a-zA-Z0-9-]+$', params['id']): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `get_user`, must conform to the pattern `/^[a-zA-Z0-9-]+$/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['anonUser', 'apiKeyHeader'] # noqa: E501 return self.api_client.call_api( '/users/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='object', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_users(self, **kwargs): # noqa: E501 """get_users # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_users(async=True) >>> result = thread.get() :param async bool :param str search_term: :param int limit: :return: list[object] If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.get_users_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_users_with_http_info(**kwargs) # noqa: E501 return data def get_users_with_http_info(self, **kwargs): # noqa: E501 """get_users # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.get_users_with_http_info(async=True) >>> result = thread.get() :param async bool :param str search_term: :param int limit: :return: list[object] If the method is called asynchronously, returns the request thread. """ all_params = ['search_term', 'limit'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_users" % key ) params[key] = val del params['kwargs'] if 'limit' in params and params['limit'] < 0: # noqa: E501 raise ValueError("Invalid value for parameter `limit` when calling `get_users`, must be a value greater than or equal to `0`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'search_term' in params: query_params.append(('search_term', params['search_term'])) # noqa: E501 if 'limit' in params: query_params.append(('limit', params['limit'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['oauth2'] # noqa: E501 return self.api_client.call_api( '/users', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='list[object]', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def login(self, user, **kwargs): # noqa: E501 """Allow a user to login # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.login(user, async=True) >>> result = thread.get() :param async bool :param user: (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.login_with_http_info(user, **kwargs) # noqa: E501 else: (data) = self.login_with_http_info(user, **kwargs) # noqa: E501 return data def login_with_http_info(self, user, **kwargs): # noqa: E501 """Allow a user to login # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.login_with_http_info(user, async=True) >>> result = thread.get() :param async bool :param user: (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['user'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method login" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'user' is set if ('user' not in params or params['user'] is None): raise ValueError("Missing the required parameter `user` when calling `login`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'user' in params: body_params = params['user'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/login', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def reset(self, email, **kwargs): # noqa: E501 """Reset user password # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.reset(email, async=True) >>> result = thread.get() :param async bool :param str email: (required) :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.reset_with_http_info(email, **kwargs) # noqa: E501 else: (data) = self.reset_with_http_info(email, **kwargs) # noqa: E501 return data def reset_with_http_info(self, email, **kwargs): # noqa: E501 """Reset user password # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.reset_with_http_info(email, async=True) >>> result = thread.get() :param async bool :param str email: (required) :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['email'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method reset" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email' is set if ('email' not in params or params['email'] is None): raise ValueError("Missing the required parameter `email` when calling `reset`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'email' in params: query_params.append(('email', params['email'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/reset', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def update_user(self, id, **kwargs): # noqa: E501 """Update user details (change password, add details etc) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_user(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :param user: :return: object If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.update_user_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.update_user_with_http_info(id, **kwargs) # noqa: E501 return data def update_user_with_http_info(self, id, **kwargs): # noqa: E501 """Update user details (change password, add details etc) # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.update_user_with_http_info(id, async=True) >>> result = thread.get() :param async bool :param str id: The unique identifer for an Object (i.e. User, Task, Project, Submission etc) (required) :param user: :return: object If the method is called asynchronously, returns the request thread. """ all_params = ['id', 'user'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_user" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `update_user`") # noqa: E501 if 'id' in params and not re.search('^[a-zA-Z0-9-]+$', params['id']): # noqa: E501 raise ValueError("Invalid value for parameter `id` when calling `update_user`, must conform to the pattern `/^[a-zA-Z0-9-]+$/`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'user' in params: body_params = params['user'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['anonUser', 'apiKeyHeader'] # noqa: E501 return self.api_client.call_api( '/users/{id}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='object', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def validate(self, **kwargs): # noqa: E501 """OAuth2 token info # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.validate(async=True) >>> result = thread.get() :param async bool :param str key: :return: object If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.validate_with_http_info(**kwargs) # noqa: E501 else: (data) = self.validate_with_http_info(**kwargs) # noqa: E501 return data def validate_with_http_info(self, **kwargs): # noqa: E501 """OAuth2 token info # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.validate_with_http_info(async=True) >>> result = thread.get() :param async bool :param str key: :return: object If the method is called asynchronously, returns the request thread. """ all_params = ['key'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method validate" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'key' in params: query_params.append(('key', params['key'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/validate', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='object', # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def verify_reset(self, **kwargs): # noqa: E501 """Verify password reset token # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.verify_reset(async=True) >>> result = thread.get() :param async bool :param Reset reset: :return: None If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async'): return self.verify_reset_with_http_info(**kwargs) # noqa: E501 else: (data) = self.verify_reset_with_http_info(**kwargs) # noqa: E501 return data def verify_reset_with_http_info(self, **kwargs): # noqa: E501 """Verify password reset token # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.verify_reset_with_http_info(async=True) >>> result = thread.get() :param async bool :param Reset reset: :return: None If the method is called asynchronously, returns the request thread. """ all_params = ['reset'] # noqa: E501 all_params.append('async') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method verify_reset" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'reset' in params: body_params = params['reset'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/users/reset', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async=params.get('async'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 327, 4093, 50, 628, 220, 220, 220, 1400, 6764, 2810, 357, 27568, 416, 2451, 7928, 6127, 5235, 3740, 1378, 12567, 13, 785, 14, 2032, 7928, 12, 15042, 14, 2032, 7928, 12, 8189, 5235, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 4946, 17614, 1020, 2196, 25, 657, 13, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 12567, 13, 785, 14, 2032, 7928, 12, 15042, 14, 2032, 7928, 12, 8189, 5235, 13, 18300, 198, 37811, 628, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 2, 21015, 362, 290, 21015, 513, 17764, 5888, 198, 11748, 2237, 198, 198, 6738, 1509, 7928, 62, 16366, 13, 15042, 62, 16366, 1330, 5949, 72, 11792, 628, 198, 4871, 18987, 32, 14415, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 262, 1509, 7928, 2438, 17301, 1430, 13, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 6524, 25, 3740, 1378, 12567, 13, 785, 14, 2032, 7928, 12, 15042, 14, 2032, 7928, 12, 8189, 5235, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2251, 62, 7220, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47133, 886, 966, 329, 257, 2836, 1848, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 17953, 62, 7220, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 17953, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 17953, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 2251, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 47133, 886, 966, 329, 257, 2836, 1848, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 17953, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 7220, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 2251, 62, 7220, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7220, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 42287, 17816, 7220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 30238, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 12233, 62, 7220, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 2836, 357, 8807, 3142, 416, 262, 2836, 2405, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 33678, 62, 7220, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 33678, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 33678, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 12233, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 2836, 357, 8807, 3142, 416, 262, 2836, 2405, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 33678, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 12233, 62, 7220, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 312, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 312, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 312, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 312, 63, 618, 4585, 4600, 33678, 62, 7220, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 290, 407, 302, 13, 12947, 10786, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 3256, 42287, 17816, 312, 20520, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 11507, 4600, 312, 63, 618, 4585, 4600, 33678, 62, 7220, 47671, 1276, 17216, 284, 262, 3912, 4600, 14, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 14, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 17816, 312, 20520, 796, 42287, 17816, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 37250, 36902, 12982, 3256, 705, 15042, 9218, 39681, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 90, 312, 92, 3256, 705, 7206, 2538, 9328, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 7716, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6307, 6284, 329, 11241, 2882, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 8612, 378, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 11241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 8612, 378, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 8612, 378, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 7716, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6307, 6284, 329, 11241, 2882, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 8612, 378, 62, 4480, 62, 4023, 62, 10951, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 11241, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 30001, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 7716, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 30001, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 42287, 17816, 30001, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 9800, 1096, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 651, 62, 7266, 82, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 22129, 329, 257, 2836, 357, 273, 883, 12336, 281, 4522, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 7266, 82, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 58, 818, 1370, 31077, 15724, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 7266, 82, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 1136, 62, 7266, 82, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 651, 62, 7266, 82, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 22129, 329, 257, 2836, 357, 273, 883, 12336, 281, 4522, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 7266, 82, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 58, 818, 1370, 31077, 15724, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 651, 62, 7266, 82, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 312, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 312, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 312, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 312, 63, 618, 4585, 4600, 1136, 62, 7266, 82, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 290, 407, 302, 13, 12947, 10786, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 3256, 42287, 17816, 312, 20520, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 11507, 4600, 312, 63, 618, 4585, 4600, 1136, 62, 7266, 82, 47671, 1276, 17216, 284, 262, 3912, 4600, 14, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 14, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 17816, 312, 20520, 796, 42287, 17816, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 37250, 36902, 12982, 3256, 705, 15042, 9218, 39681, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 90, 312, 92, 14, 7266, 8481, 3256, 705, 18851, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 4868, 58, 818, 1370, 31077, 15724, 60, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 651, 62, 7220, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 2985, 357, 273, 883, 12336, 281, 4522, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 7220, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 1136, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 651, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 2985, 357, 273, 883, 12336, 281, 4522, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 651, 62, 7220, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 312, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 312, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 312, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 312, 63, 618, 4585, 4600, 1136, 62, 7220, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 290, 407, 302, 13, 12947, 10786, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 3256, 42287, 17816, 312, 20520, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 11507, 4600, 312, 63, 618, 4585, 4600, 1136, 62, 7220, 47671, 1276, 17216, 284, 262, 3912, 4600, 14, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 14, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 17816, 312, 20520, 796, 42287, 17816, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 37250, 36902, 12982, 3256, 705, 15042, 9218, 39681, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 90, 312, 92, 3256, 705, 18851, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 15252, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 651, 62, 18417, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 62, 18417, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 18417, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 2989, 62, 4354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 493, 4179, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 58, 15252, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1136, 62, 18417, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 1136, 62, 18417, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 651, 62, 18417, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1136, 62, 18417, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 1136, 62, 18417, 62, 4480, 62, 4023, 62, 10951, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 2989, 62, 4354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 493, 4179, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1351, 58, 15252, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 12947, 62, 4354, 3256, 705, 32374, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 651, 62, 18417, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 32374, 6, 287, 42287, 290, 42287, 17816, 32374, 20520, 1279, 657, 25, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 11507, 4600, 32374, 63, 618, 4585, 4600, 1136, 62, 18417, 47671, 1276, 307, 257, 1988, 3744, 621, 393, 4961, 284, 4600, 15, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12947, 62, 4354, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 13, 33295, 7, 10786, 12947, 62, 4354, 3256, 42287, 17816, 12947, 62, 4354, 20520, 4008, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 32374, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 13, 33295, 7, 10786, 32374, 3256, 42287, 17816, 32374, 20520, 4008, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 37250, 12162, 1071, 17, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 3256, 705, 18851, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 4868, 58, 15252, 60, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 17594, 7, 944, 11, 2836, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35265, 257, 2836, 284, 17594, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 38235, 7, 7220, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 38235, 62, 4480, 62, 4023, 62, 10951, 7, 7220, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 38235, 62, 4480, 62, 4023, 62, 10951, 7, 7220, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 17594, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 2836, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35265, 257, 2836, 284, 17594, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 38235, 62, 4480, 62, 4023, 62, 10951, 7, 7220, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 7220, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 17594, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 7220, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 7220, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 7220, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 7220, 63, 618, 4585, 4600, 38235, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7220, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 42287, 17816, 7220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 38235, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 13259, 7, 944, 11, 3053, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 2836, 9206, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 42503, 7, 12888, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3053, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 12888, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 12888, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 13259, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 3053, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4965, 316, 2836, 9206, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 12888, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 3053, 25, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 12888, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 13259, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 12888, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 12888, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 12888, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 12888, 63, 618, 4585, 4600, 42503, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 12888, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 13, 33295, 7, 10786, 12888, 3256, 42287, 17816, 12888, 20520, 4008, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 42503, 3256, 705, 18851, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 4296, 62, 7220, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 2836, 3307, 357, 3803, 9206, 11, 751, 3307, 3503, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 19119, 62, 7220, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 19119, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 19119, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 12429, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 4296, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 4686, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 2836, 3307, 357, 3803, 9206, 11, 751, 3307, 3503, 8, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 19119, 62, 7220, 62, 4480, 62, 4023, 62, 10951, 7, 312, 11, 30351, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 4686, 25, 383, 3748, 1852, 7087, 329, 281, 9515, 357, 72, 13, 68, 13, 11787, 11, 15941, 11, 4935, 11, 42641, 3503, 8, 357, 35827, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 220, 2836, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 312, 3256, 705, 7220, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 4296, 62, 7220, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11767, 262, 2672, 11507, 705, 312, 6, 318, 900, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19203, 312, 6, 407, 287, 42287, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 17816, 312, 20520, 318, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 262, 2672, 11507, 4600, 312, 63, 618, 4585, 4600, 19119, 62, 7220, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 290, 407, 302, 13, 12947, 10786, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 3256, 42287, 17816, 312, 20520, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1988, 329, 11507, 4600, 312, 63, 618, 4585, 4600, 19119, 62, 7220, 47671, 1276, 17216, 284, 262, 3912, 4600, 14, 61, 58, 64, 12, 89, 32, 12, 57, 15, 12, 24, 12, 48688, 3, 14, 63, 4943, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 312, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 17816, 312, 20520, 796, 42287, 17816, 312, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 7220, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 42287, 17816, 7220, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 37250, 36902, 12982, 3256, 705, 15042, 9218, 39681, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 90, 312, 92, 3256, 705, 30076, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 15252, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 26571, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23621, 1071, 17, 11241, 7508, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 12102, 378, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 1994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 12102, 378, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 12102, 378, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 26571, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23621, 1071, 17, 11241, 7508, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 12102, 378, 62, 4480, 62, 4023, 62, 10951, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 1994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 2539, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 26571, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2539, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 13, 33295, 7, 10786, 2539, 3256, 42287, 17816, 2539, 20520, 4008, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 12102, 378, 3256, 705, 18851, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 11639, 15252, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 628, 220, 220, 220, 825, 11767, 62, 42503, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13414, 1958, 9206, 13259, 11241, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 332, 1958, 62, 42503, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30027, 13259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 17816, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 13, 1136, 10786, 292, 13361, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 332, 1958, 62, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 7890, 8, 796, 2116, 13, 332, 1958, 62, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 1174, 46265, 22046, 8, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 825, 11767, 62, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 944, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13414, 1958, 9206, 13259, 11241, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 1838, 257, 18305, 516, 14626, 2581, 416, 4277, 13, 1675, 787, 281, 198, 220, 220, 220, 220, 220, 220, 220, 39354, 14626, 2581, 11, 3387, 1208, 30351, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 4704, 796, 40391, 13, 332, 1958, 62, 42503, 62, 4480, 62, 4023, 62, 10951, 7, 292, 13361, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1255, 796, 4704, 13, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30351, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 30027, 13259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 2446, 318, 1444, 355, 24871, 3481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 2581, 4704, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 796, 37250, 42503, 20520, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 292, 13361, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 3866, 2220, 62, 11299, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 37266, 13, 33295, 10786, 62, 25927, 62, 48678, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 17205, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1188, 287, 2237, 13, 2676, 23814, 7, 37266, 17816, 46265, 22046, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 477, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30074, 281, 10059, 21179, 4578, 705, 4, 82, 29653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 284, 2446, 11767, 62, 42503, 1, 4064, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 58, 2539, 60, 796, 1188, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 42287, 17816, 46265, 22046, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 62, 37266, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 7785, 62, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 42503, 6, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 62, 37266, 796, 42287, 17816, 42503, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 38855, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 38855, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 13635, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14626, 13639, 4600, 19746, 12, 6030, 63, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 17816, 19746, 12, 6030, 20520, 796, 2116, 13, 15042, 62, 16366, 13, 19738, 62, 25677, 62, 11299, 62, 4906, 7, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 31438, 14, 17752, 6, 12962, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 48191, 4634, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 796, 17635, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 15042, 62, 16366, 13, 13345, 62, 15042, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31051, 18417, 14, 42503, 3256, 705, 32782, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 2618, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 37266, 28, 687, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 12001, 62, 7785, 62, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 4906, 28, 14202, 11, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6284, 62, 33692, 28, 18439, 62, 33692, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 28, 37266, 13, 1136, 10786, 292, 13361, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7783, 62, 4023, 62, 7890, 62, 8807, 28, 37266, 13, 1136, 10786, 62, 7783, 62, 4023, 62, 7890, 62, 8807, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 3866, 2220, 62, 11299, 28, 37266, 13, 1136, 10786, 62, 3866, 2220, 62, 11299, 3256, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 25927, 62, 48678, 28, 37266, 13, 1136, 10786, 62, 25927, 62, 48678, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4947, 62, 687, 1381, 28, 43681, 62, 687, 1381, 8, 198 ]
2.190661
18,289
from ij import IJ from ij.gui import ShapeRoi from java.awt import Color, Polygon from java.awt.geom import PathIterator w = int(36) h = int(42) lineWidth = 2 arrowWidth = 16 image = IJ.createImage('Download arrow', 'rgb', w, h, 1) ip = image.getProcessor() ip.setLineWidth(lineWidth) ip.setColor(Color(0x65a4e3)) roi = ShapeRoi([PathIterator.SEG_MOVETO, 0, 0, PathIterator.SEG_LINETO, w, 0, PathIterator.SEG_LINETO, w, w, PathIterator.SEG_LINETO, 0, w, PathIterator.SEG_CLOSE]) lw = lineWidth roi = roi.not(ShapeRoi([PathIterator.SEG_MOVETO, lw, lw, PathIterator.SEG_LINETO, w - lw, lw, PathIterator.SEG_LINETO, w - lw, w - lw, PathIterator.SEG_LINETO, lw, w - lw, PathIterator.SEG_CLOSE])) x1 = (w - arrowWidth) / 2 x2 = (w + arrowWidth) / 2 y1 = w * 2 / 3 roi = roi.or(ShapeRoi([PathIterator.SEG_MOVETO, x1, 0, PathIterator.SEG_LINETO, x1, y1, PathIterator.SEG_LINETO, 0, y1, PathIterator.SEG_LINETO, w / 2 - 1, h, PathIterator.SEG_LINETO, w / 2, h, PathIterator.SEG_LINETO, w - 1, y1, PathIterator.SEG_LINETO, x2, y1, PathIterator.SEG_LINETO, x2, 0, PathIterator.SEG_CLOSE])) ip.fill(roi) IJ.saveAs(image, "PNG", "resources/download-arrow.png")
[ 6738, 1312, 73, 1330, 314, 41, 198, 6738, 1312, 73, 13, 48317, 1330, 25959, 15450, 72, 198, 6738, 20129, 13, 707, 83, 1330, 5315, 11, 12280, 14520, 198, 6738, 20129, 13, 707, 83, 13, 469, 296, 1330, 10644, 37787, 198, 198, 86, 796, 493, 7, 2623, 8, 198, 71, 796, 493, 7, 3682, 8, 198, 1370, 30916, 796, 362, 198, 6018, 30916, 796, 1467, 198, 198, 9060, 796, 314, 41, 13, 17953, 5159, 10786, 10002, 15452, 3256, 705, 81, 22296, 3256, 266, 11, 289, 11, 352, 8, 198, 541, 796, 2939, 13, 1136, 18709, 273, 3419, 198, 541, 13, 2617, 13949, 30916, 7, 1370, 30916, 8, 198, 541, 13, 2617, 10258, 7, 10258, 7, 15, 87, 2996, 64, 19, 68, 18, 4008, 198, 305, 72, 796, 25959, 15450, 72, 26933, 15235, 37787, 13, 5188, 38, 62, 44, 8874, 2767, 46, 11, 657, 11, 657, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 11, 657, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 11, 266, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 657, 11, 266, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 32737, 12962, 198, 75, 86, 796, 1627, 30916, 198, 305, 72, 796, 686, 72, 13, 1662, 7, 33383, 15450, 72, 26933, 15235, 37787, 13, 5188, 38, 62, 44, 8874, 2767, 46, 11, 300, 86, 11, 300, 86, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 532, 300, 86, 11, 300, 86, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 532, 300, 86, 11, 266, 532, 300, 86, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 300, 86, 11, 266, 532, 300, 86, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 32737, 60, 4008, 198, 87, 16, 796, 357, 86, 532, 15452, 30916, 8, 1220, 362, 198, 87, 17, 796, 357, 86, 1343, 15452, 30916, 8, 1220, 362, 198, 88, 16, 796, 266, 1635, 362, 1220, 513, 198, 305, 72, 796, 686, 72, 13, 273, 7, 33383, 15450, 72, 26933, 15235, 37787, 13, 5188, 38, 62, 44, 8874, 2767, 46, 11, 2124, 16, 11, 657, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 2124, 16, 11, 331, 16, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 657, 11, 331, 16, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 1220, 362, 532, 352, 11, 289, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 1220, 362, 11, 289, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 266, 532, 352, 11, 331, 16, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 2124, 17, 11, 331, 16, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 34509, 2767, 46, 11, 2124, 17, 11, 657, 11, 198, 197, 15235, 37787, 13, 5188, 38, 62, 32737, 60, 4008, 198, 541, 13, 20797, 7, 305, 72, 8, 198, 23852, 13, 21928, 1722, 7, 9060, 11, 366, 47, 10503, 1600, 366, 37540, 14, 15002, 12, 6018, 13, 11134, 4943, 198 ]
2.153137
542
"""Test LND functions""" import logging import random import json import unittest from unittest import mock from noma import lnd import noma.config as cfg class TestComplete(Exception): """Raise me to stop the test, we're done""" class Unhappy(Exception): """Something has gone wrong""" class LndCreateWalletTests(unittest.TestCase): """Test the create_wallet() function""" @classmethod @classmethod @mock.patch("noma.lnd.randompass") @mock.patch("os.path.exists") def test_uses_tempfile_if_no_controlfile(self, m_exists, m_rpass): """ Test that, if PASSWORD_FILE_PATH does not exist, and SAVE_PASS_CONTROL_FILE does not exist either, we: - generate the password with `randompass`, - open the temporary password file - write the generated password to the temp file, and - close the file """ m_exists.side_effect = exists m_open = mock.mock_open() m_rpass.return_value = random.random() handle = m_open() handle.close.side_effect = TestComplete with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): lnd.create_wallet() m_exists.assert_any_call(str(cfg.PASSWORD_FILE_PATH)) m_exists.assert_any_call(str(cfg.SAVE_PASSWORD_CONTROL_FILE)) m_rpass.assert_called_with(string_length=15) m_open.assert_called_with(str(cfg.PASSWORD_FILE_PATH), "w") handle.write.assert_called_with(m_rpass.return_value) handle.close.assert_called_with() @mock.patch("noma.lnd.randompass") @mock.patch("os.path.exists") def test_uses_sesame_if_controlfile(self, m_exists, m_rpass): """ Test that, if PASSWORD_FILE_PATH does not exist, and SAVE_PASS_CONTROL_FILE does exist, we: - generate the password with `randompass`, - open the sesame file - write the generated password to the sesame file, and - close the file """ m_exists.side_effect = exists m_open = mock.mock_open() m_rpass.return_value = random.random() handle = m_open() handle.close.side_effect = TestComplete with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): lnd.create_wallet() m_exists.assert_any_call(str(cfg.PASSWORD_FILE_PATH)) m_exists.assert_any_call(str(cfg.SAVE_PASSWORD_CONTROL_FILE)) m_rpass.assert_called_with(string_length=15) m_open.assert_called_with(str(cfg.PASSWORD_FILE_PATH), "w") handle.write.assert_called_with(m_rpass.return_value) handle.close.assert_called_with() @mock.patch("os.path.exists") def test_reads_sesame_if_exists(self, m_exists): """ Test that, if PASSWORD_FILE_PATH does exist, we: - read the password_str from PASSWORD_FILE_PATH COVERAGE IMPROVEMENT OPPORTUNITY: also test that we: - .rstrip() the password_str """ m_exists.side_effect = exists m_open = mock.mock_open() with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): lnd.create_wallet() password_call = mock.call(str(cfg.PASSWORD_FILE_PATH), "r").read() self.assertIn(password_call, m_open.mock_calls) m_exists.assert_any_call(str(cfg.PASSWORD_FILE_PATH)) m_open.assert_called_with(str(cfg.PASSWORD_FILE_PATH), "r") @mock.patch("noma.lnd.get") @mock.patch("os.path.exists") def test_generates_seed(self, m_exists, m_get): """ Test that, if PASSWORD_FILE_PATH does exist and we were able to get the password_str earlier, and the SEED_FILENAME path does not exist, we call get() to get a new seed """ m_exists.side_effect = exists m_open = mock.mock_open() m_get.side_effect = TestComplete with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): lnd.create_wallet() m_get.assert_called_with(cfg.URL_GENSEED, verify=str(cfg.TLS_CERT_PATH)) @mock.patch("noma.lnd.post") @mock.patch("noma.lnd.get") @mock.patch("os.path.exists") def test_saves_seed(self, m_exists, m_get, m_post): """ Test that, if we used get() to generate a new seed as above, and if get().status_code == 200, we: - call the .json() method on the get() return value - get the "cipher_seed_mnemnonic" key in the resulting dict - open the file at lnd.SEED_FILENAME for writing - write the seed to file, one item in the cipher_seed_mnemonic iterable per line - close the file handle COVERAGE IMPROVEMENT OPPORUNITIES: - test that we actually check the status_code and do not proceed if the code is not 200 - test that we correctly build the `data` dict """ mnemonic = ["foo", "bar", "baz"] class DummyResponse: """Mocked-up Response for our get() function""" status_code = 200 def json(self): """mock JSON method""" return {"cipher_seed_mnemonic": mnemonic} m_exists.side_effect = exists m_open = mock.mock_open() m_get.side_effect = DummyResponse m_post.side_effect = TestComplete with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): try: lnd.create_wallet() except Unhappy as exc: raise Unhappy( "{}: {}\nget: {}\npost: {}".format( exc, m_exists.mock_calls, m_get.mock_calls, m_post.mock_calls, ) ) m_get.assert_called_with(cfg.URL_GENSEED, verify=str(cfg.TLS_CERT_PATH)) handle = m_open() for mne in mnemonic: handle.write.assert_any_call(mne + "\n") handle.close.assert_called_with() @mock.patch("noma.lnd.post") @mock.patch("noma.lnd.get") @mock.patch("os.path.exists") def test_loads_seed(self, m_exists, m_get, m_post): """ Test that, if SEED_FILENAME does exist, we: - do not call requests.get() - open lnd.SEED_FILENAME for reading - load every line in the resulting file into a list, stripping newline characters - build a `data` dict with the keys: - cipher_seed_mnemonic - wallet_password - requests.post() the `data` dict to lnd.URL_INITWALLET after dumping it to JSON COVERAGE IMPROVEMENT OPPORUNITIES: - test wallet_password is correctly read (earlier in the function) """ mnemonic = ["foo", "bar", "baz"] file_contents = "\n".join(mnemonic) m_exists.side_effect = exists m_open = mock.mock_open(read_data=file_contents) m_post.side_effect = TestComplete with mock.patch("builtins.open", m_open): with self.assertRaises(TestComplete): lnd.create_wallet() m_get.assert_not_called() m_open.assert_called_with(str(cfg.SEED_FILENAME), "r") post_call = m_post.mock_calls[-1] _, args, kwargs = post_call self.assertIn(cfg.URL_INITWALLET, args) self.assertEqual(kwargs["verify"], str(cfg.TLS_CERT_PATH)) data_json = kwargs["data"] data = json.loads(data_json) self.assertEqual(data["cipher_seed_mnemonic"], mnemonic) if __name__ == "__main__": unittest.main()
[ 37811, 14402, 406, 8575, 5499, 37811, 198, 11748, 18931, 198, 11748, 4738, 198, 11748, 33918, 198, 11748, 555, 715, 395, 198, 6738, 555, 715, 395, 1330, 15290, 198, 6738, 4515, 64, 1330, 300, 358, 198, 11748, 4515, 64, 13, 11250, 355, 30218, 70, 628, 198, 4871, 6208, 20988, 7, 16922, 2599, 198, 220, 220, 220, 37227, 21762, 786, 502, 284, 2245, 262, 1332, 11, 356, 821, 1760, 37811, 628, 198, 4871, 791, 34191, 7, 16922, 2599, 198, 220, 220, 220, 37227, 22210, 468, 3750, 2642, 37811, 628, 198, 4871, 406, 358, 16447, 47152, 51, 3558, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 262, 2251, 62, 44623, 3419, 2163, 37811, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 25192, 3361, 562, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 2664, 62, 29510, 7753, 62, 361, 62, 3919, 62, 3642, 305, 1652, 576, 7, 944, 11, 285, 62, 1069, 1023, 11, 285, 62, 81, 6603, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 41752, 54, 12532, 62, 25664, 62, 34219, 857, 407, 2152, 11, 290, 14719, 6089, 62, 47924, 62, 10943, 5446, 3535, 62, 25664, 198, 220, 220, 220, 220, 220, 220, 220, 857, 407, 2152, 2035, 11, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7716, 262, 9206, 351, 4600, 25192, 3361, 562, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1280, 262, 8584, 9206, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3551, 262, 7560, 9206, 284, 262, 20218, 2393, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1969, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 81, 6603, 13, 7783, 62, 8367, 796, 4738, 13, 25120, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 285, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 19836, 13, 1589, 62, 10760, 796, 6208, 20988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 30493, 62, 1092, 62, 13345, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 30493, 62, 1092, 62, 13345, 7, 2536, 7, 37581, 13, 4090, 6089, 62, 47924, 54, 12532, 62, 10943, 5446, 3535, 62, 25664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 81, 6603, 13, 30493, 62, 7174, 62, 4480, 7, 8841, 62, 13664, 28, 1314, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 13, 30493, 62, 7174, 62, 4480, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 828, 366, 86, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 13564, 13, 30493, 62, 7174, 62, 4480, 7, 76, 62, 81, 6603, 13, 7783, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 19836, 13, 30493, 62, 7174, 62, 4480, 3419, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 25192, 3361, 562, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 2664, 62, 8448, 480, 62, 361, 62, 3642, 305, 1652, 576, 7, 944, 11, 285, 62, 1069, 1023, 11, 285, 62, 81, 6603, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 41752, 54, 12532, 62, 25664, 62, 34219, 857, 407, 2152, 11, 290, 14719, 6089, 62, 47924, 62, 10943, 5446, 3535, 62, 25664, 198, 220, 220, 220, 220, 220, 220, 220, 857, 2152, 11, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7716, 262, 9206, 351, 4600, 25192, 3361, 562, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1280, 262, 264, 34038, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3551, 262, 7560, 9206, 284, 262, 264, 34038, 2393, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1969, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 81, 6603, 13, 7783, 62, 8367, 796, 4738, 13, 25120, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 285, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 19836, 13, 1589, 62, 10760, 796, 6208, 20988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 30493, 62, 1092, 62, 13345, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 30493, 62, 1092, 62, 13345, 7, 2536, 7, 37581, 13, 4090, 6089, 62, 47924, 54, 12532, 62, 10943, 5446, 3535, 62, 25664, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 81, 6603, 13, 30493, 62, 7174, 62, 4480, 7, 8841, 62, 13664, 28, 1314, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 13, 30493, 62, 7174, 62, 4480, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 828, 366, 86, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 13564, 13, 30493, 62, 7174, 62, 4480, 7, 76, 62, 81, 6603, 13, 7783, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 19836, 13, 30493, 62, 7174, 62, 4480, 3419, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 40779, 62, 8448, 480, 62, 361, 62, 1069, 1023, 7, 944, 11, 285, 62, 1069, 1023, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 41752, 54, 12532, 62, 25664, 62, 34219, 857, 2152, 11, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1100, 262, 9206, 62, 2536, 422, 41752, 54, 12532, 62, 25664, 62, 34219, 198, 220, 220, 220, 220, 220, 220, 220, 47902, 11879, 8959, 41283, 12529, 440, 10246, 9863, 4944, 9050, 25, 635, 1332, 326, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 764, 81, 36311, 3419, 262, 9206, 62, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 62, 13345, 796, 15290, 13, 13345, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 828, 366, 81, 11074, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 818, 7, 28712, 62, 13345, 11, 285, 62, 9654, 13, 76, 735, 62, 66, 5691, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 30493, 62, 1092, 62, 13345, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 13, 30493, 62, 7174, 62, 4480, 7, 2536, 7, 37581, 13, 47924, 54, 12532, 62, 25664, 62, 34219, 828, 366, 81, 4943, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 1136, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 8612, 689, 62, 28826, 7, 944, 11, 285, 62, 1069, 1023, 11, 285, 62, 1136, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 41752, 54, 12532, 62, 25664, 62, 34219, 857, 2152, 290, 356, 547, 1498, 284, 651, 262, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 62, 2536, 2961, 11, 290, 262, 7946, 1961, 62, 46700, 1677, 10067, 3108, 857, 407, 2152, 11, 356, 198, 220, 220, 220, 220, 220, 220, 220, 869, 651, 3419, 284, 651, 257, 649, 9403, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 1589, 62, 10760, 796, 6208, 20988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 30493, 62, 7174, 62, 4480, 7, 37581, 13, 21886, 62, 38, 24290, 1961, 11, 11767, 28, 2536, 7, 37581, 13, 51, 6561, 62, 34, 17395, 62, 34219, 4008, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 7353, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 1136, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 82, 3080, 62, 28826, 7, 944, 11, 285, 62, 1069, 1023, 11, 285, 62, 1136, 11, 285, 62, 7353, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 356, 973, 651, 3419, 284, 7716, 257, 649, 9403, 355, 2029, 11, 290, 611, 198, 220, 220, 220, 220, 220, 220, 220, 651, 22446, 13376, 62, 8189, 6624, 939, 11, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 869, 262, 764, 17752, 3419, 2446, 319, 262, 651, 3419, 1441, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 651, 262, 366, 66, 10803, 62, 28826, 62, 10295, 37705, 9229, 1, 1994, 287, 262, 7186, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1280, 262, 2393, 379, 300, 358, 13, 5188, 1961, 62, 46700, 1677, 10067, 329, 3597, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3551, 262, 9403, 284, 2393, 11, 530, 2378, 287, 262, 38012, 62, 28826, 62, 10295, 50016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11629, 540, 583, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1969, 262, 2393, 5412, 628, 220, 220, 220, 220, 220, 220, 220, 47902, 11879, 8959, 41283, 12529, 440, 10246, 1581, 4944, 30383, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1332, 326, 356, 1682, 2198, 262, 3722, 62, 8189, 290, 466, 407, 5120, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2438, 318, 407, 939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1332, 326, 356, 9380, 1382, 262, 4600, 7890, 63, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 77, 50016, 796, 14631, 21943, 1600, 366, 5657, 1600, 366, 65, 1031, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1398, 360, 13513, 31077, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 44, 3543, 12, 929, 18261, 329, 674, 651, 3419, 2163, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 796, 939, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 33918, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 76, 735, 19449, 2446, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 19779, 66, 10803, 62, 28826, 62, 10295, 50016, 1298, 285, 77, 50016, 92, 628, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 1589, 62, 10760, 796, 360, 13513, 31077, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 7353, 13, 1589, 62, 10760, 796, 6208, 20988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 791, 34191, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 791, 34191, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 38362, 23884, 59, 782, 316, 25, 23884, 59, 77, 7353, 25, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2859, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 76, 735, 62, 66, 5691, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 76, 735, 62, 66, 5691, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 7353, 13, 76, 735, 62, 66, 5691, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 30493, 62, 7174, 62, 4480, 7, 37581, 13, 21886, 62, 38, 24290, 1961, 11, 11767, 28, 2536, 7, 37581, 13, 51, 6561, 62, 34, 17395, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 796, 285, 62, 9654, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 285, 710, 287, 285, 77, 50016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 13564, 13, 30493, 62, 1092, 62, 13345, 7, 76, 710, 1343, 37082, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 5412, 13, 19836, 13, 30493, 62, 7174, 62, 4480, 3419, 628, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 7353, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 77, 6086, 13, 75, 358, 13, 1136, 4943, 198, 220, 220, 220, 2488, 76, 735, 13, 17147, 7203, 418, 13, 6978, 13, 1069, 1023, 4943, 198, 220, 220, 220, 825, 1332, 62, 46030, 62, 28826, 7, 944, 11, 285, 62, 1069, 1023, 11, 285, 62, 1136, 11, 285, 62, 7353, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 326, 11, 611, 7946, 1961, 62, 46700, 1677, 10067, 857, 2152, 11, 356, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 466, 407, 869, 7007, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1280, 300, 358, 13, 5188, 1961, 62, 46700, 1677, 10067, 329, 3555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 3440, 790, 1627, 287, 262, 7186, 2393, 656, 257, 1351, 11, 37727, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 1370, 3435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1382, 257, 4600, 7890, 63, 8633, 351, 262, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 38012, 62, 28826, 62, 10295, 50016, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 13008, 62, 28712, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 7007, 13, 7353, 3419, 262, 4600, 7890, 63, 8633, 284, 300, 358, 13, 21886, 62, 1268, 2043, 54, 1847, 28882, 706, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30231, 340, 284, 19449, 198, 220, 220, 220, 220, 220, 220, 220, 47902, 11879, 8959, 41283, 12529, 440, 10246, 1581, 4944, 30383, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 1332, 13008, 62, 28712, 318, 9380, 1100, 357, 451, 2505, 287, 262, 2163, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 285, 77, 50016, 796, 14631, 21943, 1600, 366, 5657, 1600, 366, 65, 1031, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3642, 658, 796, 37082, 77, 1911, 22179, 7, 10295, 50016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1069, 1023, 13, 1589, 62, 10760, 796, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 796, 15290, 13, 76, 735, 62, 9654, 7, 961, 62, 7890, 28, 7753, 62, 3642, 658, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 7353, 13, 1589, 62, 10760, 796, 6208, 20988, 198, 220, 220, 220, 220, 220, 220, 220, 351, 15290, 13, 17147, 7203, 18780, 1040, 13, 9654, 1600, 285, 62, 9654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 14402, 20988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 358, 13, 17953, 62, 44623, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 1136, 13, 30493, 62, 1662, 62, 7174, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 9654, 13, 30493, 62, 7174, 62, 4480, 7, 2536, 7, 37581, 13, 5188, 1961, 62, 46700, 1677, 10067, 828, 366, 81, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1281, 62, 13345, 796, 285, 62, 7353, 13, 76, 735, 62, 66, 5691, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 26498, 11, 479, 86, 22046, 796, 1281, 62, 13345, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 818, 7, 37581, 13, 21886, 62, 1268, 2043, 54, 1847, 28882, 11, 26498, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 46265, 22046, 14692, 332, 1958, 33116, 965, 7, 37581, 13, 51, 6561, 62, 34, 17395, 62, 34219, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 17752, 796, 479, 86, 22046, 14692, 7890, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 33918, 13, 46030, 7, 7890, 62, 17752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 7890, 14692, 66, 10803, 62, 28826, 62, 10295, 50016, 33116, 285, 77, 50016, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.093692
3,757
#!/usr/bin/python3 from jmespath import search as queryJson import boto3 import json if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 6738, 474, 6880, 6978, 1330, 2989, 355, 12405, 41, 1559, 198, 11748, 275, 2069, 18, 198, 11748, 33918, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 12417, 3419, 198 ]
2.711111
45
# Copyright 2014 Rackspace # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import jsonschema from testtools import TestCase from trove.configuration.service import ConfigurationsController from trove.common import configurations
[ 2, 15069, 1946, 37927, 13200, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 44804, 684, 2395, 2611, 198, 6738, 1332, 31391, 1330, 6208, 20448, 198, 6738, 42377, 13, 11250, 3924, 13, 15271, 1330, 17056, 20074, 22130, 198, 6738, 42377, 13, 11321, 1330, 25412, 628, 198 ]
3.591743
218
from collections.abc import Mapping from typing import Any, Optional from .object_schema import InvalidObjectError, InvalidTypeError from .schema import Schema, SchemaError
[ 6738, 17268, 13, 39305, 1330, 337, 5912, 198, 6738, 19720, 1330, 4377, 11, 32233, 198, 198, 6738, 764, 15252, 62, 15952, 2611, 1330, 17665, 10267, 12331, 11, 17665, 6030, 12331, 198, 6738, 764, 15952, 2611, 1330, 10011, 2611, 11, 10011, 2611, 12331, 628, 198 ]
4
44
''' read_vcf Read a vcf file into pandas data frame ''' import pandas as pd from typing import TextIO, List import numpy as np def import_vcf(vcf_reader: TextIO, dataframe: pd.DataFrame = None, check_phasing: bool = False, individuals: List[str] = None) -> pd.DataFrame: ''' Read in all lines of the provided, open vcf file and concatenate with provided pandas dataframe check_phasing: if true, raises value error for any unphased haplotype that is not ./. If false, unphased haplotypes are converted to nan values, or collapsed. collapse_haplotype: if true, convert haplotypes to the sum of the genotypes. individuals: if specified, limit the imported data to only the provided individuals. Individuals not found in the file raise value errors ''' header_lines = 1 # 1-based indexing on error reporting for line in vcf_reader: header_lines += 1 if line[1] == '#': # comment string continue if line[0] == '#': # header string header = line[1:].rstrip().split('\t') break indivs = header[9:] if individuals is not None: for indiv in individuals: if indiv not in indivs: raise ValueError(f'{indiv} not in file!') indivs = [indiv for indiv in set(individuals)] header = [h.lower() for h in header[:9]] + header[9:] usecols = [header[i] for i in [0, 1, 3, 4]] + indivs # precompute this as a dictionary for hopefully faster operations phase_decoder = {} for i in range(2): for j in range(2): phase_decoder[f'{i}|{j}'] = f'{i}|{j}' phase_decoder[f'{i}/{j}'] = np.nan phase_decoder['./.'] = 0 new_frame = pd.read_csv(vcf_reader, delimiter='\t', header=None, names=header, usecols=usecols) new_frame = new_frame.loc[(new_frame.ref.str.len() == 1) & (new_frame.alt.str.len() == 1)] new_frame[indivs] = new_frame[indivs].applymap(phase_decoder.get) if check_phasing: if new_frame.isna().any(axis=None): nanrow = new_frame[new_frame.isna().any(axis=1)].iloc[0] nanind = nanrow.loc[nanrow.isna()].index[0] raise ValueError('Unexpected unphased haplotype for ' f'{nanind} on position {nanrow.pos}') if dataframe is not None: return pd.concat([dataframe, new_frame], sort=False) if len(new_frame) == 0: return None return new_frame def import_archaic_vcf(vcf_reader: TextIO, dataframe: pd.DataFrame = None, include_canc: bool = False) -> pd.DataFrame: ''' Read in all lines of the provided, open vcf file and return a pandas dataframe. Expects a single individual, does not check phasing, and returns the number of alt sites only. E.g. 0/1 -> 1, ./. -> 0, 1|1 -> 2 ''' usecols = ['chrom', 'pos', 'ref', 'alt', 'variant'] if include_canc: usecols += ['infor'] header = ['chrom', 'pos', 'id', 'ref', 'alt', 'qual', 'filter', 'infor', 'format', 'variant'] result = pd.read_csv(vcf_reader, delimiter='\t', header=None, names=header, usecols=usecols, comment='#') result = result.loc[(result.ref.str.len() == 1) & (result.alt.str.len() == 1)] if include_canc: result = result.loc[result.infor.str.contains('CAnc')] # extract CAnc into separate column, drop info result.insert(len(result.columns), "CAnc", result.infor.map(extract_canc)) result = result.drop(columns='infor') phase_decoder = {} for i in range(2): for j in range(2): phase_decoder[f'{i}|{j}'] = i + j phase_decoder[f'{i}/{j}'] = i + j phase_decoder['./.'] = 0 if include_canc: phase_decoder['./.'] = -1 # to filter later result.variant = result.variant.map(process_phase) if include_canc: result = result.loc[result.variant != -1] if dataframe is not None: return pd.concat([dataframe, result], sort=False) return result
[ 7061, 6, 198, 961, 62, 85, 12993, 198, 198, 5569, 257, 410, 12993, 2393, 656, 19798, 292, 1366, 5739, 198, 7061, 6, 628, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 19720, 1330, 8255, 9399, 11, 7343, 198, 11748, 299, 32152, 355, 45941, 628, 198, 4299, 1330, 62, 85, 12993, 7, 85, 12993, 62, 46862, 25, 8255, 9399, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 25, 279, 67, 13, 6601, 19778, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 746, 2313, 25, 20512, 796, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3925, 25, 7343, 58, 2536, 60, 796, 6045, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4149, 287, 477, 3951, 286, 262, 2810, 11, 1280, 410, 12993, 2393, 290, 1673, 36686, 378, 351, 198, 220, 220, 220, 2810, 19798, 292, 1366, 14535, 198, 220, 220, 220, 2198, 62, 746, 2313, 25, 611, 2081, 11, 12073, 1988, 4049, 329, 597, 555, 746, 839, 42519, 8690, 198, 220, 220, 220, 326, 318, 407, 764, 11757, 220, 1002, 3991, 11, 555, 746, 839, 42519, 13567, 389, 11513, 284, 15709, 3815, 11, 198, 220, 220, 220, 393, 14707, 13, 198, 220, 220, 220, 9807, 62, 3099, 489, 8690, 25, 611, 2081, 11, 10385, 42519, 13567, 284, 262, 2160, 286, 262, 198, 220, 220, 220, 2429, 13567, 13, 198, 220, 220, 220, 3925, 25, 611, 7368, 11, 4179, 262, 17392, 1366, 284, 691, 262, 2810, 198, 220, 220, 220, 3925, 13, 220, 34884, 407, 1043, 287, 262, 2393, 5298, 1988, 8563, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 13639, 62, 6615, 796, 352, 220, 1303, 352, 12, 3106, 6376, 278, 319, 4049, 6447, 198, 220, 220, 220, 329, 1627, 287, 410, 12993, 62, 46862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 6615, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 16, 60, 6624, 705, 2, 10354, 220, 1303, 2912, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 58, 15, 60, 6624, 705, 2, 10354, 220, 1303, 13639, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 1627, 58, 16, 25, 4083, 81, 36311, 22446, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 773, 452, 82, 796, 13639, 58, 24, 47715, 198, 220, 220, 220, 611, 3925, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 773, 452, 287, 3925, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 773, 452, 407, 287, 773, 452, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 69, 6, 90, 521, 452, 92, 407, 287, 2393, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 773, 452, 82, 796, 685, 521, 452, 329, 773, 452, 287, 900, 7, 43129, 82, 15437, 628, 220, 220, 220, 13639, 796, 685, 71, 13, 21037, 3419, 329, 289, 287, 13639, 58, 25, 24, 11907, 1343, 13639, 58, 24, 47715, 198, 220, 220, 220, 779, 4033, 82, 796, 685, 25677, 58, 72, 60, 329, 1312, 287, 685, 15, 11, 352, 11, 513, 11, 604, 11907, 1343, 773, 452, 82, 628, 220, 220, 220, 1303, 662, 5589, 1133, 428, 355, 257, 22155, 329, 11481, 5443, 4560, 198, 220, 220, 220, 7108, 62, 12501, 12342, 796, 23884, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 12501, 12342, 58, 69, 6, 90, 72, 92, 91, 90, 73, 92, 20520, 796, 277, 6, 90, 72, 92, 91, 90, 73, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 12501, 12342, 58, 69, 6, 90, 72, 92, 14, 90, 73, 92, 20520, 796, 45941, 13, 12647, 198, 220, 220, 220, 7108, 62, 12501, 12342, 58, 4458, 14, 2637, 60, 796, 657, 628, 220, 220, 220, 649, 62, 14535, 796, 279, 67, 13, 961, 62, 40664, 7, 85, 12993, 62, 46862, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46728, 2676, 11639, 59, 83, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 28, 25677, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 28, 1904, 4033, 82, 8, 628, 220, 220, 220, 649, 62, 14535, 796, 649, 62, 14535, 13, 17946, 58, 7, 3605, 62, 14535, 13, 5420, 13, 2536, 13, 11925, 3419, 6624, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 3605, 62, 14535, 13, 2501, 13, 2536, 13, 11925, 3419, 6624, 352, 15437, 628, 220, 220, 220, 649, 62, 14535, 58, 521, 452, 82, 60, 796, 649, 62, 14535, 58, 521, 452, 82, 4083, 39014, 8899, 7, 40715, 62, 12501, 12342, 13, 1136, 8, 628, 220, 220, 220, 611, 2198, 62, 746, 2313, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 14535, 13, 271, 2616, 22446, 1092, 7, 22704, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15709, 808, 796, 649, 62, 14535, 58, 3605, 62, 14535, 13, 271, 2616, 22446, 1092, 7, 22704, 28, 16, 25295, 346, 420, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15709, 521, 796, 15709, 808, 13, 17946, 58, 12647, 808, 13, 271, 2616, 3419, 4083, 9630, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 52, 42072, 555, 746, 839, 42519, 8690, 329, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 90, 12647, 521, 92, 319, 2292, 1391, 12647, 808, 13, 1930, 92, 11537, 628, 220, 220, 220, 611, 1366, 14535, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 1102, 9246, 26933, 7890, 14535, 11, 649, 62, 14535, 4357, 3297, 28, 25101, 8, 628, 220, 220, 220, 611, 18896, 7, 3605, 62, 14535, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1441, 649, 62, 14535, 628, 198, 4299, 1330, 62, 998, 18452, 62, 85, 12993, 7, 85, 12993, 62, 46862, 25, 8255, 9399, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 25, 279, 67, 13, 6601, 19778, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 66, 1192, 25, 20512, 796, 10352, 8, 4613, 279, 67, 13, 6601, 19778, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4149, 287, 477, 3951, 286, 262, 2810, 11, 1280, 410, 12993, 2393, 290, 1441, 257, 198, 220, 220, 220, 19798, 292, 1366, 14535, 13, 198, 220, 220, 220, 23600, 82, 257, 2060, 1981, 11, 857, 407, 2198, 872, 2313, 11, 290, 5860, 262, 198, 220, 220, 220, 1271, 286, 5988, 5043, 691, 13, 220, 412, 13, 70, 13, 657, 14, 16, 4613, 352, 11, 764, 11757, 4613, 657, 11, 352, 91, 16, 4613, 362, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 779, 4033, 82, 796, 37250, 28663, 3256, 705, 1930, 3256, 705, 5420, 3256, 705, 2501, 3256, 705, 25641, 415, 20520, 198, 220, 220, 220, 611, 2291, 62, 66, 1192, 25, 198, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 15853, 37250, 259, 1640, 20520, 198, 220, 220, 220, 13639, 796, 37250, 28663, 3256, 705, 1930, 3256, 705, 312, 3256, 705, 5420, 3256, 705, 2501, 3256, 705, 13255, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24455, 3256, 705, 259, 1640, 3256, 705, 18982, 3256, 705, 25641, 415, 20520, 198, 220, 220, 220, 1255, 796, 279, 67, 13, 961, 62, 40664, 7, 85, 12993, 62, 46862, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46728, 2676, 11639, 59, 83, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13639, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 28, 25677, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 4033, 82, 28, 1904, 4033, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2912, 11639, 2, 11537, 628, 220, 220, 220, 1255, 796, 1255, 13, 17946, 58, 7, 20274, 13, 5420, 13, 2536, 13, 11925, 3419, 6624, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 20274, 13, 2501, 13, 2536, 13, 11925, 3419, 6624, 352, 15437, 198, 220, 220, 220, 611, 2291, 62, 66, 1192, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 13, 17946, 58, 20274, 13, 259, 1640, 13, 2536, 13, 3642, 1299, 10786, 34, 2025, 66, 11537, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7925, 327, 2025, 66, 656, 4553, 5721, 11, 4268, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 28463, 7, 11925, 7, 20274, 13, 28665, 82, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34, 2025, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 259, 1640, 13, 8899, 7, 2302, 974, 62, 66, 1192, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 13, 14781, 7, 28665, 82, 11639, 259, 1640, 11537, 628, 220, 220, 220, 7108, 62, 12501, 12342, 796, 23884, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 12501, 12342, 58, 69, 6, 90, 72, 92, 91, 90, 73, 92, 20520, 796, 1312, 1343, 474, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 12501, 12342, 58, 69, 6, 90, 72, 92, 14, 90, 73, 92, 20520, 796, 1312, 1343, 474, 198, 220, 220, 220, 7108, 62, 12501, 12342, 58, 4458, 14, 2637, 60, 796, 657, 628, 220, 220, 220, 611, 2291, 62, 66, 1192, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7108, 62, 12501, 12342, 58, 4458, 14, 2637, 60, 796, 532, 16, 220, 1303, 284, 8106, 1568, 628, 220, 220, 220, 1255, 13, 25641, 415, 796, 1255, 13, 25641, 415, 13, 8899, 7, 14681, 62, 40715, 8, 628, 220, 220, 220, 611, 2291, 62, 66, 1192, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 1255, 13, 17946, 58, 20274, 13, 25641, 415, 14512, 532, 16, 60, 628, 220, 220, 220, 611, 1366, 14535, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 67, 13, 1102, 9246, 26933, 7890, 14535, 11, 1255, 4357, 3297, 28, 25101, 8, 628, 220, 220, 220, 1441, 1255, 198 ]
2.075489
2,146
import datetime import logging import string from unittest import TestCase from unittest import mock from elasticsearch_raven import exceptions from elasticsearch_raven import transport
[ 11748, 4818, 8079, 198, 11748, 18931, 198, 11748, 4731, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 555, 715, 395, 1330, 15290, 198, 198, 6738, 27468, 12947, 62, 430, 574, 1330, 13269, 198, 6738, 27468, 12947, 62, 430, 574, 1330, 4839, 628, 628, 628, 628 ]
4.12766
47
import binascii import functools import json import os from rest_framework import permissions from rest_framework import exceptions from api.exceptions import * from api.cryptor import ApiCrypto
[ 11748, 9874, 292, 979, 72, 198, 11748, 1257, 310, 10141, 198, 11748, 33918, 198, 11748, 28686, 198, 198, 6738, 1334, 62, 30604, 1330, 21627, 198, 6738, 1334, 62, 30604, 1330, 13269, 198, 198, 6738, 40391, 13, 1069, 11755, 1330, 1635, 198, 6738, 40391, 13, 29609, 273, 1330, 5949, 72, 23919, 78, 628 ]
3.807692
52
from core.models.view_tables import Edocument from core.models.core_tables import TypeDef from core.utilities.wf1_utils import generate_robot_file, generate_robot_file_wf1 #
[ 6738, 4755, 13, 27530, 13, 1177, 62, 83, 2977, 1330, 1717, 7990, 198, 6738, 4755, 13, 27530, 13, 7295, 62, 83, 2977, 1330, 5994, 7469, 198, 6738, 4755, 13, 315, 2410, 13, 86, 69, 16, 62, 26791, 1330, 7716, 62, 305, 13645, 62, 7753, 11, 7716, 62, 305, 13645, 62, 7753, 62, 86, 69, 16, 198, 198, 2, 198 ]
2.966102
59
from typing import Optional, Union import tensorflow as tf from tensorflow.python.layers.core import fully_connected from hotpot.elmo.elmo import ElmoWrapper from hotpot.elmo.lm_model import LanguageModel from hotpot.encoder import QuestionsAndParagraphsEncoder from hotpot.models.multiple_context_models import MultipleContextModel, INTERMEDIATE_LAYER_COLLECTION from hotpot.nn.embedder import WordEmbedder, CharWordEmbedder from hotpot.nn.layers import SequenceMapper, SequenceEncoder, MergeLayer, Mapper, SequenceMultiEncoder, \ MultipleMergeEncode, WeightLayer, FixedMergeLayer, get_keras_initialization, MaxPool, MeanPool from hotpot.nn.ops import VERY_NEGATIVE_NUMBER from hotpot.nn.relevance_prediction import BinaryFixedPredictor, BinaryWeightedMultipleFixedPredictor, \ BinaryNullPredictor from hotpot.nn.sentence_layers import SentencesEncoder class SingleContextMultipleEncodingModel(MultipleContextModel): """ Model for a question with a single paragraph, basically expands the basic model by creating multiple fixed size representations of the context and the question, and weights each representation depending on the question. components are as follows: 1. embeds each sequence separately 2. encodes the context and question to multiple fixed size representations 3. weights each representation, and performs a applies layer on each representation pair 4. predict by combining all representations """ class SingleContextMultipleEncodingWeightedSoftmaxModel(MultipleContextModel): """ A model very much like SingleContextMultipleEncodingModel above, but for a little but important difference: The weighting of the encoding is done after "predicting" with each one of the encodings and performing a softmax between each encodings logits. Then a weighted sum is calculated, with gives new probabilities for the classes, on which a cross-entropy is applied. """ class SingleContextMaxSentenceModel(MultipleContextModel): """ Model for a question and a single paragraph which takes into account the sentences. This model first creates an encoding for each sentence, and then performs a fully connected layer on the encodings to get each sentence's prediction. It then gets the maximum value and predicts with it. """
[ 6738, 19720, 1330, 32233, 11, 4479, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 75, 6962, 13, 7295, 1330, 3938, 62, 15236, 198, 198, 6738, 3024, 13059, 13, 417, 5908, 13, 417, 5908, 1330, 2574, 5908, 36918, 2848, 198, 6738, 3024, 13059, 13, 417, 5908, 13, 75, 76, 62, 19849, 1330, 15417, 17633, 198, 6738, 3024, 13059, 13, 12685, 12342, 1330, 20396, 1870, 10044, 6111, 82, 27195, 12342, 198, 6738, 3024, 13059, 13, 27530, 13, 48101, 62, 22866, 62, 27530, 1330, 20401, 21947, 17633, 11, 23255, 30733, 40, 6158, 62, 43, 4792, 1137, 62, 25154, 16779, 2849, 198, 6738, 3024, 13059, 13, 20471, 13, 20521, 1082, 1330, 9678, 31567, 276, 1082, 11, 3178, 26449, 31567, 276, 1082, 198, 6738, 3024, 13059, 13, 20471, 13, 75, 6962, 1330, 45835, 44, 11463, 11, 45835, 27195, 12342, 11, 39407, 49925, 11, 337, 11463, 11, 45835, 29800, 27195, 12342, 11, 3467, 198, 220, 220, 220, 20401, 13102, 469, 4834, 8189, 11, 14331, 49925, 11, 10832, 13102, 469, 49925, 11, 651, 62, 6122, 292, 62, 36733, 1634, 11, 5436, 27201, 11, 22728, 27201, 198, 6738, 3024, 13059, 13, 20471, 13, 2840, 1330, 29550, 62, 45, 7156, 37045, 62, 41359, 13246, 198, 6738, 3024, 13059, 13, 20471, 13, 260, 2768, 590, 62, 28764, 2867, 1330, 45755, 13715, 47, 17407, 273, 11, 45755, 25844, 276, 31217, 13715, 47, 17407, 273, 11, 3467, 198, 220, 220, 220, 45755, 35067, 47, 17407, 273, 198, 6738, 3024, 13059, 13, 20471, 13, 34086, 594, 62, 75, 6962, 1330, 11352, 3007, 27195, 12342, 628, 198, 4871, 14206, 21947, 31217, 27195, 7656, 17633, 7, 31217, 21947, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 329, 257, 1808, 351, 257, 2060, 7322, 11, 6209, 27513, 262, 4096, 2746, 416, 4441, 3294, 5969, 2546, 198, 220, 220, 220, 220, 24612, 286, 262, 4732, 290, 262, 1808, 11, 290, 19590, 1123, 10552, 6906, 319, 262, 1808, 13, 198, 220, 220, 220, 6805, 389, 355, 5679, 25, 198, 220, 220, 220, 352, 13, 11525, 82, 1123, 8379, 13869, 198, 220, 220, 220, 362, 13, 2207, 4147, 262, 4732, 290, 1808, 284, 3294, 5969, 2546, 24612, 198, 220, 220, 220, 513, 13, 19590, 1123, 10552, 11, 290, 17706, 257, 8991, 7679, 319, 1123, 10552, 5166, 198, 220, 220, 220, 604, 13, 4331, 416, 19771, 477, 24612, 198, 220, 220, 220, 37227, 628, 198, 4871, 14206, 21947, 31217, 27195, 7656, 25844, 276, 18380, 9806, 17633, 7, 31217, 21947, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2746, 845, 881, 588, 14206, 21947, 31217, 27195, 7656, 17633, 2029, 11, 475, 329, 257, 1310, 475, 1593, 3580, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3463, 278, 286, 262, 21004, 318, 1760, 706, 366, 79, 17407, 278, 1, 351, 1123, 530, 286, 262, 2207, 375, 654, 290, 9489, 257, 198, 220, 220, 220, 220, 220, 220, 220, 2705, 9806, 1022, 1123, 2207, 375, 654, 2604, 896, 13, 3244, 257, 26356, 2160, 318, 10488, 11, 351, 3607, 649, 39522, 198, 220, 220, 220, 220, 220, 220, 220, 329, 262, 6097, 11, 319, 543, 257, 3272, 12, 298, 28338, 318, 5625, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 14206, 21947, 11518, 31837, 594, 17633, 7, 31217, 21947, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 329, 257, 1808, 290, 257, 2060, 7322, 543, 2753, 656, 1848, 262, 13439, 13, 198, 220, 220, 220, 770, 2746, 717, 8075, 281, 21004, 329, 1123, 6827, 11, 290, 788, 17706, 257, 3938, 5884, 7679, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 375, 654, 284, 651, 1123, 6827, 338, 17724, 13, 632, 788, 3011, 262, 5415, 1988, 290, 26334, 351, 340, 13, 198, 220, 220, 220, 37227, 198 ]
3.730463
627
import urllib.request as urlreq import io,json import pandas as pd # ****************************************************************************************************************************************** def download_smiles(myList,intv=1) : """Retrieve canonical SMILES strings for a list of input INCHIKEYS. Will return only one SMILES string per INCHIKEY. If there are multiple values returned, the first is retained and the others are returned in a the discard_lst. INCHIKEYS that fail to return a SMILES string are put in the fail_lst Args: myList (list): List of INCHIKEYS intv (1) : number of INCHIKEYS to submit queries for in one request, default is 1 Returns: list of SMILES strings corresponding to INCHIKEYS list of INCHIKEYS, which failed to return a SMILES string list of CIDs and SMILES, which were returned beyond the first CID and SMILE found for input INCHIKEY """ ncmpds=len(myList) smiles_lst,cid_lst,inchikey_lst=[],[],[] sublst="" fail_lst=[] discard_lst=[] for it in range(0,ncmpds,intv) : if (it+intv) > ncmpds : upbnd=ncmpds else : upbnd=it+intv sublst=myList[it:upbnd] inchikey = ','.join(map(str,sublst)) url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/inchikey/"+inchikey+"/property/CanonicalSMILES/CSV" try : response = urlreq.urlopen(url) html = response.read() except : fail_lst.append(inchikey) continue f=io.BytesIO(html) cnt=0 for l in f : l=l.decode("utf-8") l=l.rstrip() vals=l.split(',') if vals[0] == '"CID"' : continue if cnt > 0: #print("more than one SMILES returned, discarding. Appear to be multiple CID values",vals) #print("using",cid_lst[-1],smiles_lst[-1],inchikey_lst[-1]) discard_lst.append(vals) break cid_lst.append(vals[0]) sstr=vals[1].replace('"','') smiles_lst.append(vals[1]) inchikey_lst.append(myList[it+cnt]) cnt+=1 if cnt != len(sublst) : print("warning, multiple SMILES for this inchikey key",cnt,len(sublst),sublst) save_smiles_df=pd.DataFrame( {'CID' : cid_lst, 'standard_inchi_key' :inchikey_lst, 'smiles' : smiles_lst}) return save_smiles_df,fail_lst,discard_lst #****************************************************************************************************************************************** def download_bioactivity_assay(myList,intv=1) : """Retrieve summary info on bioactivity assays. Args: myList (list): List of PubChem AIDs (bioactivity assay ids) intv (1) : number of INCHIKEYS to submit queries for in one request, default is 1 Returns: Nothing returned yet, will return basic stats to help decide whether to use assay or not """ ncmpds=len(myList) smiles_lst,cid_lst,inchikey_lst=[],[],[] sublst="" fail_lst=[] jsn_lst=[] for it in range(0,ncmpds,intv) : if (it+intv) > ncmpds : upbnd=ncmpds else : upbnd=it+intv sublst=myList[it:upbnd] inchikey = ','.join(map(str,sublst)) url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/"+inchikey+"/summary/JSON" try : response = urlreq.urlopen(url) html = response.read() except : fail_lst.append(inchikey) continue f=io.BytesIO(html) cnt=0 json_str="" for l in f : l=l.decode("utf-8") l=l.rstrip() json_str += l jsn_lst.append(json_str) return jsn_lst # save_smiles_df=pd.DataFrame( {'CID' : cid_lst, 'standard_inchi_key' :inchikey_lst, 'smiles' : smiles_lst}) # return save_smiles_df,fail_lst,discard_lst #****************************************************************************************************************************************** def download_SID_from_bioactivity_assay(bioassayid) : """Retrieve summary info on bioactivity assays. Args: a single bioactivity id: PubChem AIDs (bioactivity assay ids) Returns: Returns the sids tested on this assay """ myList=[bioassayid] ncmpds=len(myList) smiles_lst,cid_lst,inchikey_lst=[],[],[] sublst="" fail_lst=[] jsn_lst=[] intv=1 for it in range(0,ncmpds,intv) : if (it+intv) > ncmpds : upbnd=ncmpds else : upbnd=it+intv sublst=myList[it:upbnd] inchikey = ','.join(map(str,sublst)) url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/"+inchikey+"/sids/JSON" try : response = urlreq.urlopen(url) html = response.read() except : fail_lst.append(inchikey) continue f=io.BytesIO(html) cnt=0 json_str="" for l in f : l=l.decode("utf-8") l=l.rstrip() json_str += l jsn_lst.append(json_str) res=json.loads(jsn_lst[0]) res_lst=res["InformationList"]['Information'][0]['SID'] return res_lst #https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/504526/doseresponse/CSV?sid=104169547,109967232 #****************************************************************************************************************************************** def download_dose_response_from_bioactivity(aid,sidlst) : """Retrieve data for assays for a select list of sids. Args: myList (list): a bioactivity id (aid) sidlst (list): list of sids specified as integers Returns: Nothing returned yet, will return basic stats to help decide whether to use assay or not """ sidstr= "," . join(str(val) for val in sidlst) myList=[sidstr] ncmpds=len(myList) smiles_lst,cid_lst,inchikey_lst=[],[],[] sublst="" fail_lst=[] jsn_lst=[] intv=1 for it in range(0,ncmpds,intv) : if (it+intv) > ncmpds : upbnd=ncmpds else : upbnd=it+intv sublst=myList[it:upbnd] inchikey = ','.join(map(str,sublst)) url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/"+aid+"/doseresponse/CSV?sid="+inchikey try : response = urlreq.urlopen(url) html = response.read() except : fail_lst.append(inchikey) continue f=io.BytesIO(html) cnt=0 json_str="" df=pd.read_csv(f) jsn_lst.append(df) return jsn_lst #****************************************************************************************************************************************** def download_activitytype(aid,sid) : """Retrieve data for assays for a select list of sids. Args: myList (list): a bioactivity id (aid) sidlst (list): list of sids specified as integers Returns: Nothing returned yet, will return basic stats to help decide whether to use assay or not """ myList=[sid] ncmpds=len(myList) smiles_lst,cid_lst,inchikey_lst=[],[],[] sublst="" fail_lst=[] jsn_lst=[] intv=1 for it in range(0,ncmpds,intv) : if (it+intv) > ncmpds : upbnd=ncmpds else : upbnd=it+intv sublst=myList[it:upbnd] inchikey = ','.join(map(str,sublst)) url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/"+aid+"/CSV?sid="+inchikey #url="https://pubchem.ncbi.nlm.nih.gov/rest/pug/assay/aid/"+aid+"/doseresponse/CSV?sid="+inchikey try : response = urlreq.urlopen(url) html = response.read() except : fail_lst.append(inchikey) continue f=io.BytesIO(html) cnt=0 json_str="" df=pd.read_csv(f) jsn_lst.append(df) return jsn_lst
[ 11748, 2956, 297, 571, 13, 25927, 355, 19016, 42180, 198, 11748, 33245, 11, 17752, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 41906, 17174, 17174, 17174, 4557, 1174, 198, 4299, 4321, 62, 5796, 2915, 7, 1820, 8053, 11, 600, 85, 28, 16, 8, 1058, 198, 220, 220, 220, 37227, 9781, 30227, 40091, 9447, 4146, 1546, 13042, 329, 257, 1351, 286, 5128, 3268, 3398, 40, 7336, 16309, 13, 198, 220, 220, 220, 2561, 1441, 691, 530, 9447, 4146, 1546, 4731, 583, 3268, 3398, 40, 20373, 13, 220, 1002, 612, 389, 3294, 3815, 4504, 11, 262, 717, 318, 17383, 290, 262, 1854, 389, 4504, 287, 257, 262, 27537, 62, 75, 301, 13, 220, 3268, 3398, 40, 7336, 16309, 326, 2038, 284, 1441, 257, 9447, 4146, 1546, 4731, 389, 1234, 287, 262, 2038, 62, 75, 301, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 616, 8053, 357, 4868, 2599, 7343, 286, 3268, 3398, 40, 7336, 16309, 198, 220, 220, 220, 220, 220, 220, 220, 493, 85, 357, 16, 8, 1058, 1271, 286, 3268, 3398, 40, 7336, 16309, 284, 9199, 20743, 329, 287, 530, 2581, 11, 4277, 318, 352, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 9447, 4146, 1546, 13042, 11188, 284, 3268, 3398, 40, 7336, 16309, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 3268, 3398, 40, 7336, 16309, 11, 543, 4054, 284, 1441, 257, 9447, 4146, 1546, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 327, 47954, 290, 9447, 4146, 1546, 11, 543, 547, 4504, 3675, 262, 717, 327, 2389, 290, 311, 8895, 2538, 1043, 329, 5128, 3268, 3398, 40, 20373, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 48991, 9310, 28, 11925, 7, 1820, 8053, 8, 198, 220, 220, 220, 21845, 62, 75, 301, 11, 66, 312, 62, 75, 301, 11, 8589, 522, 88, 62, 75, 301, 41888, 38430, 4357, 21737, 198, 220, 220, 220, 850, 75, 301, 33151, 198, 220, 220, 220, 2038, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 27537, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 329, 340, 287, 2837, 7, 15, 11, 10782, 3149, 9310, 11, 600, 85, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 270, 10, 600, 85, 8, 1875, 299, 48991, 9310, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 10782, 3149, 9310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 270, 10, 600, 85, 198, 220, 220, 220, 220, 220, 220, 220, 850, 75, 301, 28, 1820, 8053, 58, 270, 25, 929, 65, 358, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 7266, 75, 301, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 5589, 633, 14, 8589, 522, 88, 30487, 10, 8589, 522, 88, 10, 1, 14, 26745, 14, 6090, 261, 605, 12310, 4146, 1546, 14, 7902, 53, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19016, 42180, 13, 6371, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 2882, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 62, 75, 301, 13, 33295, 7, 8589, 522, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 277, 28, 952, 13, 45992, 9399, 7, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 277, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 28, 75, 13, 35312, 7, 3256, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 410, 874, 58, 15, 60, 6624, 705, 1, 34, 2389, 30543, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 429, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 3549, 621, 530, 9447, 4146, 1546, 4504, 11, 1221, 13493, 13, 2034, 451, 284, 307, 3294, 327, 2389, 3815, 1600, 12786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 3500, 1600, 66, 312, 62, 75, 301, 58, 12, 16, 4357, 5796, 2915, 62, 75, 301, 58, 12, 16, 4357, 8589, 522, 88, 62, 75, 301, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27537, 62, 75, 301, 13, 33295, 7, 12786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 312, 62, 75, 301, 13, 33295, 7, 12786, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 2536, 28, 12786, 58, 16, 4083, 33491, 10786, 1, 3256, 7061, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21845, 62, 75, 301, 13, 33295, 7, 12786, 58, 16, 12962, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 62, 75, 301, 13, 33295, 7, 1820, 8053, 58, 270, 10, 66, 429, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 429, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 611, 269, 429, 14512, 18896, 7, 7266, 75, 301, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 43917, 11, 3294, 9447, 4146, 1546, 329, 428, 11111, 522, 88, 1994, 1600, 66, 429, 11, 11925, 7, 7266, 75, 301, 828, 7266, 75, 301, 8, 198, 220, 220, 220, 3613, 62, 5796, 2915, 62, 7568, 28, 30094, 13, 6601, 19778, 7, 1391, 6, 34, 2389, 6, 1058, 269, 312, 62, 75, 301, 11, 705, 20307, 62, 8589, 72, 62, 2539, 6, 1058, 8589, 522, 88, 62, 75, 301, 11, 705, 5796, 2915, 6, 1058, 21845, 62, 75, 301, 30072, 198, 220, 220, 220, 1441, 3613, 62, 5796, 2915, 62, 7568, 11, 32165, 62, 75, 301, 11, 15410, 446, 62, 75, 301, 628, 198, 2, 17174, 17174, 17174, 17174, 4557, 1174, 198, 4299, 4321, 62, 65, 952, 21797, 62, 562, 323, 7, 1820, 8053, 11, 600, 85, 28, 16, 8, 1058, 198, 220, 220, 220, 37227, 9781, 30227, 10638, 7508, 319, 13401, 21797, 840, 592, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 616, 8053, 357, 4868, 2599, 7343, 286, 8525, 41829, 317, 47954, 357, 65, 952, 21797, 40575, 220, 2340, 8, 198, 220, 220, 220, 220, 220, 220, 220, 493, 85, 357, 16, 8, 1058, 1271, 286, 3268, 3398, 40, 7336, 16309, 284, 9199, 20743, 329, 287, 530, 2581, 11, 4277, 318, 352, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10528, 4504, 1865, 11, 481, 1441, 4096, 9756, 284, 1037, 5409, 1771, 284, 779, 40575, 393, 407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 48991, 9310, 28, 11925, 7, 1820, 8053, 8, 198, 220, 220, 220, 21845, 62, 75, 301, 11, 66, 312, 62, 75, 301, 11, 8589, 522, 88, 62, 75, 301, 41888, 38430, 4357, 21737, 198, 220, 220, 220, 850, 75, 301, 33151, 198, 220, 220, 220, 2038, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 474, 16184, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 329, 340, 287, 2837, 7, 15, 11, 10782, 3149, 9310, 11, 600, 85, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 270, 10, 600, 85, 8, 1875, 299, 48991, 9310, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 10782, 3149, 9310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 270, 10, 600, 85, 198, 220, 220, 220, 220, 220, 220, 220, 850, 75, 301, 28, 1820, 8053, 58, 270, 25, 929, 65, 358, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 7266, 75, 301, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 30487, 10, 8589, 522, 88, 10, 1, 14, 49736, 14, 40386, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19016, 42180, 13, 6371, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 2882, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 62, 75, 301, 13, 33295, 7, 8589, 522, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 277, 28, 952, 13, 45992, 9399, 7, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 277, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 15853, 300, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 62, 75, 301, 13, 33295, 7, 17752, 62, 2536, 8, 198, 220, 220, 220, 1441, 474, 16184, 62, 75, 301, 198, 2, 220, 220, 220, 3613, 62, 5796, 2915, 62, 7568, 28, 30094, 13, 6601, 19778, 7, 1391, 6, 34, 2389, 6, 1058, 269, 312, 62, 75, 301, 11, 705, 20307, 62, 8589, 72, 62, 2539, 6, 1058, 8589, 522, 88, 62, 75, 301, 11, 705, 5796, 2915, 6, 1058, 21845, 62, 75, 301, 30072, 198, 2, 220, 220, 220, 1441, 3613, 62, 5796, 2915, 62, 7568, 11, 32165, 62, 75, 301, 11, 15410, 446, 62, 75, 301, 198, 220, 220, 220, 220, 220, 198, 2, 17174, 17174, 17174, 17174, 4557, 1174, 198, 4299, 4321, 62, 50, 2389, 62, 6738, 62, 65, 952, 21797, 62, 562, 323, 7, 65, 952, 562, 323, 312, 8, 1058, 198, 220, 220, 220, 37227, 9781, 30227, 10638, 7508, 319, 13401, 21797, 840, 592, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 13401, 21797, 4686, 25, 8525, 41829, 317, 47954, 357, 65, 952, 21797, 40575, 220, 2340, 8, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 264, 2340, 6789, 319, 428, 40575, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 616, 8053, 41888, 65, 952, 562, 323, 312, 60, 198, 220, 220, 220, 299, 48991, 9310, 28, 11925, 7, 1820, 8053, 8, 198, 220, 220, 220, 21845, 62, 75, 301, 11, 66, 312, 62, 75, 301, 11, 8589, 522, 88, 62, 75, 301, 41888, 38430, 4357, 21737, 198, 220, 220, 220, 850, 75, 301, 33151, 198, 220, 220, 220, 2038, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 474, 16184, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 493, 85, 28, 16, 198, 220, 220, 220, 329, 340, 287, 2837, 7, 15, 11, 10782, 3149, 9310, 11, 600, 85, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 270, 10, 600, 85, 8, 1875, 299, 48991, 9310, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 10782, 3149, 9310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 270, 10, 600, 85, 198, 220, 220, 220, 220, 220, 220, 220, 850, 75, 301, 28, 1820, 8053, 58, 270, 25, 929, 65, 358, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 7266, 75, 301, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 30487, 10, 8589, 522, 88, 10, 1, 14, 82, 2340, 14, 40386, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19016, 42180, 13, 6371, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 2882, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 62, 75, 301, 13, 33295, 7, 8589, 522, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 277, 28, 952, 13, 45992, 9399, 7, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 277, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 12501, 1098, 7203, 40477, 12, 23, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 28, 75, 13, 81, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 15853, 300, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 62, 75, 301, 13, 33295, 7, 17752, 62, 2536, 8, 198, 220, 220, 220, 581, 28, 17752, 13, 46030, 7, 8457, 77, 62, 75, 301, 58, 15, 12962, 198, 220, 220, 220, 581, 62, 75, 301, 28, 411, 14692, 21918, 8053, 1, 7131, 6, 21918, 6, 7131, 15, 7131, 6, 50, 2389, 20520, 198, 220, 220, 220, 1441, 581, 62, 75, 301, 198, 220, 220, 220, 220, 220, 198, 2, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 14, 1120, 2231, 2075, 14, 34436, 26209, 14, 7902, 53, 30, 30255, 28, 13464, 1433, 3865, 2857, 11, 940, 2079, 3134, 24339, 198, 198, 2, 17174, 17174, 17174, 17174, 4557, 1174, 198, 4299, 4321, 62, 34436, 62, 26209, 62, 6738, 62, 65, 952, 21797, 7, 1698, 11, 30255, 75, 301, 8, 1058, 198, 220, 220, 220, 37227, 9781, 30227, 1366, 329, 840, 592, 329, 257, 2922, 1351, 286, 264, 2340, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 616, 8053, 357, 4868, 2599, 257, 13401, 21797, 4686, 357, 1698, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9785, 75, 301, 357, 4868, 2599, 1351, 286, 264, 2340, 7368, 355, 37014, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10528, 4504, 1865, 11, 481, 1441, 4096, 9756, 284, 1037, 5409, 1771, 284, 779, 40575, 393, 407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9785, 2536, 28, 366, 553, 764, 4654, 7, 2536, 7, 2100, 8, 329, 1188, 287, 9785, 75, 301, 8, 198, 220, 220, 220, 616, 8053, 41888, 30255, 2536, 60, 198, 220, 220, 220, 299, 48991, 9310, 28, 11925, 7, 1820, 8053, 8, 198, 220, 220, 220, 21845, 62, 75, 301, 11, 66, 312, 62, 75, 301, 11, 8589, 522, 88, 62, 75, 301, 41888, 38430, 4357, 21737, 198, 220, 220, 220, 850, 75, 301, 33151, 198, 220, 220, 220, 2038, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 474, 16184, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 493, 85, 28, 16, 198, 220, 220, 220, 329, 340, 287, 2837, 7, 15, 11, 10782, 3149, 9310, 11, 600, 85, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 270, 10, 600, 85, 8, 1875, 299, 48991, 9310, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 10782, 3149, 9310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 270, 10, 600, 85, 198, 220, 220, 220, 220, 220, 220, 220, 850, 75, 301, 28, 1820, 8053, 58, 270, 25, 929, 65, 358, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 7266, 75, 301, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 30487, 10, 1698, 10, 1, 14, 34436, 26209, 14, 7902, 53, 30, 30255, 2625, 10, 8589, 522, 88, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19016, 42180, 13, 6371, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 2882, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 62, 75, 301, 13, 33295, 7, 8589, 522, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 277, 28, 952, 13, 45992, 9399, 7, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 30094, 13, 961, 62, 40664, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 62, 75, 301, 13, 33295, 7, 7568, 8, 198, 220, 220, 220, 1441, 474, 16184, 62, 75, 301, 628, 198, 2, 17174, 17174, 17174, 17174, 4557, 1174, 198, 4299, 4321, 62, 21797, 4906, 7, 1698, 11, 30255, 8, 1058, 198, 220, 220, 220, 37227, 9781, 30227, 1366, 329, 840, 592, 329, 257, 2922, 1351, 286, 264, 2340, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 616, 8053, 357, 4868, 2599, 257, 13401, 21797, 4686, 357, 1698, 8, 198, 220, 220, 220, 220, 220, 220, 220, 9785, 75, 301, 357, 4868, 2599, 1351, 286, 264, 2340, 7368, 355, 37014, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10528, 4504, 1865, 11, 481, 1441, 4096, 9756, 284, 1037, 5409, 1771, 284, 779, 40575, 393, 407, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 616, 8053, 41888, 30255, 60, 198, 220, 220, 220, 299, 48991, 9310, 28, 11925, 7, 1820, 8053, 8, 198, 220, 220, 220, 21845, 62, 75, 301, 11, 66, 312, 62, 75, 301, 11, 8589, 522, 88, 62, 75, 301, 41888, 38430, 4357, 21737, 198, 220, 220, 220, 850, 75, 301, 33151, 198, 220, 220, 220, 2038, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 474, 16184, 62, 75, 301, 28, 21737, 198, 220, 220, 220, 493, 85, 28, 16, 198, 220, 220, 220, 329, 340, 287, 2837, 7, 15, 11, 10782, 3149, 9310, 11, 600, 85, 8, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 270, 10, 600, 85, 8, 1875, 299, 48991, 9310, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 10782, 3149, 9310, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 510, 65, 358, 28, 270, 10, 600, 85, 198, 220, 220, 220, 220, 220, 220, 220, 850, 75, 301, 28, 1820, 8053, 58, 270, 25, 929, 65, 358, 60, 198, 220, 220, 220, 220, 220, 220, 220, 11111, 522, 88, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 7266, 75, 301, 4008, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 30487, 10, 1698, 10, 1, 14, 7902, 53, 30, 30255, 2625, 10, 8589, 522, 88, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6371, 2625, 5450, 1378, 12984, 15245, 13, 10782, 8482, 13, 21283, 76, 13, 37373, 13, 9567, 14, 2118, 14, 79, 1018, 14, 562, 323, 14, 1698, 30487, 10, 1698, 10, 1, 14, 34436, 26209, 14, 7902, 53, 30, 30255, 2625, 10, 8589, 522, 88, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 19016, 42180, 13, 6371, 9654, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 2882, 13, 961, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2038, 62, 75, 301, 13, 33295, 7, 8589, 522, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 277, 28, 952, 13, 45992, 9399, 7, 6494, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 429, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 28, 30094, 13, 961, 62, 40664, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 474, 16184, 62, 75, 301, 13, 33295, 7, 7568, 8, 198, 220, 220, 220, 1441, 474, 16184, 62, 75, 301, 198 ]
2.080595
3,896
# main imports import numpy as np import pandas as pd import sys, os, argparse import subprocess import time import json # models imports from sklearn.utils import shuffle from sklearn.externals import joblib from sklearn.metrics import accuracy_score, f1_score, recall_score, roc_auc_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split # image processing imports from ipfml import processing from PIL import Image # modules imports sys.path.insert(0, '') # trick to enable import of main folder module import custom_config as cfg # variables and parameters threshold_map_folder = cfg.threshold_map_folder threshold_map_file_prefix = cfg.threshold_map_folder + "_" markdowns_folder = cfg.models_information_folder final_csv_model_comparisons = cfg.csv_model_comparisons_filename models_name = cfg.models_names_list zones = cfg.zones_indices current_dirpath = os.getcwd() if __name__== "__main__": main()
[ 2, 1388, 17944, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 11748, 25064, 11, 28686, 11, 1822, 29572, 198, 11748, 850, 14681, 198, 11748, 640, 198, 11748, 33918, 198, 198, 2, 4981, 17944, 198, 6738, 1341, 35720, 13, 26791, 1330, 36273, 198, 6738, 1341, 35720, 13, 1069, 759, 874, 1330, 1693, 8019, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 11, 277, 16, 62, 26675, 11, 10014, 62, 26675, 11, 686, 66, 62, 14272, 62, 26675, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 3272, 62, 2100, 62, 26675, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 29186, 1431, 42, 37, 727, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 2, 2939, 7587, 17944, 198, 6738, 20966, 38122, 1330, 7587, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 2, 13103, 17944, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 10148, 8, 1303, 6908, 284, 7139, 1330, 286, 1388, 9483, 8265, 198, 198, 11748, 2183, 62, 11250, 355, 30218, 70, 198, 198, 2, 9633, 290, 10007, 198, 400, 10126, 62, 8899, 62, 43551, 220, 220, 220, 220, 220, 220, 220, 796, 30218, 70, 13, 400, 10126, 62, 8899, 62, 43551, 198, 400, 10126, 62, 8899, 62, 7753, 62, 40290, 220, 220, 796, 30218, 70, 13, 400, 10126, 62, 8899, 62, 43551, 1343, 45434, 1, 198, 198, 4102, 30371, 62, 43551, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 30218, 70, 13, 27530, 62, 17018, 62, 43551, 198, 20311, 62, 40664, 62, 19849, 62, 785, 1845, 9886, 796, 30218, 70, 13, 40664, 62, 19849, 62, 785, 1845, 9886, 62, 34345, 198, 27530, 62, 3672, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 30218, 70, 13, 27530, 62, 14933, 62, 4868, 198, 198, 89, 1952, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 30218, 70, 13, 89, 1952, 62, 521, 1063, 198, 198, 14421, 62, 15908, 6978, 796, 28686, 13, 1136, 66, 16993, 3419, 628, 198, 198, 361, 11593, 3672, 834, 855, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.865789
380
/home/runner/.cache/pip/pool/b7/df/1e/7980259571f5a43b5ac0c36215dfc4b1485986d14af13b40a821ae930f
[ 14, 11195, 14, 16737, 11757, 23870, 14, 79, 541, 14, 7742, 14, 65, 22, 14, 7568, 14, 16, 68, 14, 3720, 1795, 25191, 42875, 69, 20, 64, 3559, 65, 20, 330, 15, 66, 2623, 23349, 7568, 66, 19, 65, 18294, 3270, 4521, 67, 1415, 1878, 1485, 65, 1821, 64, 23, 2481, 3609, 45418, 69 ]
1.777778
54
# Ashwin Chidambaram ## # Task: Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum ## ################################################################################################################################## # Self assesment on program runtime ## import time ## start_time = time.time() ## ###################################### # Create a list to contain natural numbers from 1 - 100 nnums = [] sumS = 0 squareS = 0 # Populate the list i = 0 # Create a while loop to iterate and fill list while i != 100: # Increment i i += 1 # Add i to list nnums.append(i) # Find the sum of the squares and sum of all nums (not squared yet) for value in nnums: sumS = sumS + (value ** 2) squareS = squareS + value # Square sum of all numbers squareS = squareS ** 2 # End runtime measure runtime = time.time() - start_time # Print output print('The difference is: {}'.format(squareS - sumS)) # Print runtime print('RunTime: {} seconds'.format(round(runtime,4)))
[ 2, 7844, 5404, 609, 312, 4131, 41158, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 198, 2, 15941, 25, 9938, 262, 3580, 1022, 262, 2160, 286, 262, 24438, 286, 262, 717, 530, 3470, 3288, 3146, 290, 262, 6616, 286, 262, 2160, 220, 220, 22492, 198, 29113, 29113, 29113, 29113, 2235, 198, 2, 12189, 50201, 434, 319, 1430, 19124, 22492, 198, 11748, 640, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 198, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 198, 29113, 4242, 2235, 198, 198, 2, 13610, 257, 1351, 284, 3994, 3288, 3146, 422, 352, 532, 1802, 198, 20471, 5700, 796, 17635, 198, 16345, 50, 796, 657, 198, 23415, 50, 796, 657, 198, 198, 2, 8099, 5039, 262, 1351, 198, 72, 796, 657, 198, 198, 2, 13610, 257, 981, 9052, 284, 11629, 378, 290, 6070, 1351, 198, 4514, 1312, 14512, 1802, 25, 628, 220, 220, 220, 1303, 10791, 434, 1312, 198, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 1303, 3060, 1312, 284, 1351, 198, 220, 220, 220, 299, 77, 5700, 13, 33295, 7, 72, 8, 198, 198, 2, 9938, 262, 2160, 286, 262, 24438, 290, 2160, 286, 477, 997, 82, 357, 1662, 44345, 1865, 8, 198, 1640, 1988, 287, 299, 77, 5700, 25, 198, 220, 220, 220, 2160, 50, 796, 2160, 50, 1343, 357, 8367, 12429, 362, 8, 198, 220, 220, 220, 6616, 50, 796, 6616, 50, 1343, 1988, 198, 198, 2, 9276, 2160, 286, 477, 3146, 198, 23415, 50, 796, 6616, 50, 12429, 362, 198, 198, 2, 5268, 19124, 3953, 198, 43282, 796, 640, 13, 2435, 3419, 532, 923, 62, 2435, 198, 198, 2, 12578, 5072, 198, 4798, 10786, 464, 3580, 318, 25, 23884, 4458, 18982, 7, 23415, 50, 532, 2160, 50, 4008, 198, 198, 2, 12578, 19124, 198, 4798, 10786, 10987, 7575, 25, 23884, 4201, 4458, 18982, 7, 744, 7, 43282, 11, 19, 22305, 198 ]
2.735763
439
import tequila as tq import numpy as np import typing
[ 11748, 573, 43652, 355, 256, 80, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19720, 628, 198 ]
3.294118
17
# These need to be at the top to allow for running on cluster import os import random import sys cwd = os.getcwd() sys.path.append(cwd) # Other imports import json import getopt from h_captionmodel import CaptionModel import pickle import time import tensorflow.keras.backend as K arguments = getopt.getopt(sys.argv[1:], shortopts='j:') print(arguments) # Get different config files config_files = arguments[0][0][1].split("-") config_files = [l.strip() for l in config_files] print(" CONFIGURATIONS: ", config_files) # Allows to loop over several configurations so I don't need to monitor this. for file in config_files: path_to_config_file = os.path.join(cwd, "CONFIGS", f"{file[:2].lower()}_configs", file) # with open(path_to_config_file, 'r') as f: config = json.load(f) print(config) print("Initializing model...") config["force_cropped"] = True captmodel = CaptionModel(config) # For chapter 6.4 captmodel.force_cropped = True print("Building architecture...") # Build Model captmodel.build_model(save_plot=False) weights_path = os.path.join(cwd, "models", "Weights", captmodel.webshop_name, config["output_name"] + "_best_weights.h5") batch_size = config["batch_size"] print(weights_path) print("Loading weights...") # Load weights captmodel.load_weights(weights_path) if captmodel.architecture_type == "attention": batch_size = 32 wpath = os.path.join(cwd, "models", "Weights", captmodel.webshop_name) captmodel.inference_model.load_weights(os.path.join(wpath, config["output_name"] + "inference_best_Weights.h5")) captmodel.initstate_model.load_weights(os.path.join(wpath, config["output_name"] + "initstate_best_Weights.h5")) print(f"Evaluating model on {len(captmodel.test_imgs)} validation images") # Evaluate using the validation set start = time.time() # results_dict = captmodel.evaluate_model(BLEU=True, ROUGE=True, img_list=captmodel.val_imgs, nr_steps=64, beam=3) # with open(os.path.join(cwd, "models", "Output", captmodel.webshop_name, "results", # f"test_results_dict_{file[:-4]}json"), 'w') as f: # json.dump(results_dict, f) # end_beam = time.time() # print(f"Predicting val set with beam took {end_beam - start} time.") results_dict = captmodel.evaluate_model(BLEU=True, ROUGE=True, img_list=captmodel.test_imgs, beam=False, batch_size=batch_size) end_greedy = time.time() print(f"Predicting val set with greedy took {end_greedy - start} time.") # Save results_dict with open(os.path.join(cwd, "models", "Output", captmodel.webshop_name, "results", f"results_dict{file[:-4]}_cropped.json"), 'w') as f: json.dump(results_dict, f) K.clear_session()
[ 2, 2312, 761, 284, 307, 379, 262, 1353, 284, 1249, 329, 2491, 319, 13946, 201, 198, 11748, 28686, 201, 198, 11748, 4738, 201, 198, 11748, 25064, 201, 198, 201, 198, 66, 16993, 796, 28686, 13, 1136, 66, 16993, 3419, 201, 198, 17597, 13, 6978, 13, 33295, 7, 66, 16993, 8, 201, 198, 201, 198, 2, 3819, 17944, 201, 198, 11748, 33918, 201, 198, 11748, 651, 8738, 201, 198, 6738, 289, 62, 6888, 1159, 19849, 1330, 11260, 17633, 201, 198, 11748, 2298, 293, 201, 198, 11748, 640, 201, 198, 11748, 11192, 273, 11125, 13, 6122, 292, 13, 1891, 437, 355, 509, 201, 198, 201, 198, 853, 2886, 796, 651, 8738, 13, 1136, 8738, 7, 17597, 13, 853, 85, 58, 16, 25, 4357, 1790, 404, 912, 11639, 73, 25, 11537, 201, 198, 4798, 7, 853, 2886, 8, 201, 198, 201, 198, 2, 3497, 1180, 4566, 3696, 201, 198, 201, 198, 11250, 62, 16624, 796, 7159, 58, 15, 7131, 15, 7131, 16, 4083, 35312, 7203, 12, 4943, 201, 198, 11250, 62, 16624, 796, 685, 75, 13, 36311, 3419, 329, 300, 287, 4566, 62, 16624, 60, 201, 198, 201, 198, 4798, 7203, 25626, 4261, 18421, 25, 220, 220, 33172, 4566, 62, 16624, 8, 201, 198, 2, 40402, 284, 9052, 625, 1811, 25412, 523, 314, 836, 470, 761, 284, 5671, 428, 13, 201, 198, 1640, 2393, 287, 4566, 62, 16624, 25, 201, 198, 220, 220, 220, 3108, 62, 1462, 62, 11250, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 366, 10943, 16254, 50, 1600, 277, 1, 90, 7753, 58, 25, 17, 4083, 21037, 3419, 92, 62, 11250, 82, 1600, 2393, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 351, 1280, 7, 6978, 62, 1462, 62, 11250, 62, 7753, 11, 705, 81, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 33918, 13, 2220, 7, 69, 8, 201, 198, 220, 220, 220, 3601, 7, 11250, 8, 201, 198, 220, 220, 220, 3601, 7203, 24243, 2890, 2746, 9313, 8, 201, 198, 220, 220, 220, 4566, 14692, 3174, 62, 19915, 1496, 8973, 796, 6407, 201, 198, 220, 220, 220, 3144, 19849, 796, 11260, 17633, 7, 11250, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 1114, 6843, 718, 13, 19, 201, 198, 220, 220, 220, 3144, 19849, 13, 3174, 62, 19915, 1496, 796, 6407, 201, 198, 201, 198, 220, 220, 220, 3601, 7203, 25954, 10959, 9313, 8, 201, 198, 220, 220, 220, 1303, 10934, 9104, 201, 198, 220, 220, 220, 3144, 19849, 13, 11249, 62, 19849, 7, 21928, 62, 29487, 28, 25101, 8, 201, 198, 201, 198, 220, 220, 220, 19590, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 366, 27530, 1600, 366, 1135, 2337, 1600, 3144, 19849, 13, 732, 1443, 8548, 62, 3672, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 14692, 22915, 62, 3672, 8973, 1343, 45434, 13466, 62, 43775, 13, 71, 20, 4943, 201, 198, 220, 220, 220, 15458, 62, 7857, 796, 4566, 14692, 43501, 62, 7857, 8973, 201, 198, 220, 220, 220, 3601, 7, 43775, 62, 6978, 8, 201, 198, 220, 220, 220, 3601, 7203, 19031, 19590, 9313, 8, 201, 198, 220, 220, 220, 1303, 8778, 19590, 201, 198, 220, 220, 220, 3144, 19849, 13, 2220, 62, 43775, 7, 43775, 62, 6978, 8, 201, 198, 220, 220, 220, 611, 3144, 19849, 13, 998, 5712, 495, 62, 4906, 6624, 366, 1078, 1463, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 3933, 201, 198, 220, 220, 220, 220, 220, 220, 220, 266, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 66, 16993, 11, 366, 27530, 1600, 366, 1135, 2337, 1600, 3144, 19849, 13, 732, 1443, 8548, 62, 3672, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3144, 19849, 13, 259, 4288, 62, 19849, 13, 2220, 62, 43775, 7, 418, 13, 6978, 13, 22179, 7, 86, 6978, 11, 4566, 14692, 22915, 62, 3672, 8973, 1343, 366, 259, 4288, 62, 13466, 62, 1135, 2337, 13, 71, 20, 48774, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3144, 19849, 13, 15003, 5219, 62, 19849, 13, 2220, 62, 43775, 7, 418, 13, 6978, 13, 22179, 7, 86, 6978, 11, 4566, 14692, 22915, 62, 3672, 8973, 1343, 366, 15003, 5219, 62, 13466, 62, 1135, 2337, 13, 71, 20, 48774, 201, 198, 220, 220, 220, 3601, 7, 69, 1, 36, 2100, 11927, 2746, 319, 1391, 11925, 7, 27144, 19849, 13, 9288, 62, 9600, 82, 38165, 21201, 4263, 4943, 201, 198, 220, 220, 220, 1303, 26439, 4985, 1262, 262, 21201, 900, 201, 198, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 1303, 2482, 62, 11600, 796, 3144, 19849, 13, 49786, 62, 19849, 7, 19146, 52, 28, 17821, 11, 371, 2606, 8264, 28, 17821, 11, 33705, 62, 4868, 28, 27144, 19849, 13, 2100, 62, 9600, 82, 11, 299, 81, 62, 20214, 28, 2414, 11, 15584, 28, 18, 8, 201, 198, 220, 220, 220, 1303, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 66, 16993, 11, 366, 27530, 1600, 366, 26410, 1600, 3144, 19849, 13, 732, 1443, 8548, 62, 3672, 11, 366, 43420, 1600, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 9288, 62, 43420, 62, 11600, 23330, 7753, 58, 21912, 19, 48999, 17752, 12340, 705, 86, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 33918, 13, 39455, 7, 43420, 62, 11600, 11, 277, 8, 201, 198, 220, 220, 220, 1303, 886, 62, 40045, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 1303, 3601, 7, 69, 1, 47, 17407, 278, 1188, 900, 351, 15584, 1718, 1391, 437, 62, 40045, 532, 923, 92, 640, 19570, 201, 198, 201, 198, 201, 198, 220, 220, 220, 2482, 62, 11600, 796, 3144, 19849, 13, 49786, 62, 19849, 7, 19146, 52, 28, 17821, 11, 371, 2606, 8264, 28, 17821, 11, 33705, 62, 4868, 28, 27144, 19849, 13, 9288, 62, 9600, 82, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15584, 28, 25101, 11, 15458, 62, 7857, 28, 43501, 62, 7857, 8, 201, 198, 201, 198, 220, 220, 220, 886, 62, 16694, 4716, 796, 640, 13, 2435, 3419, 201, 198, 220, 220, 220, 3601, 7, 69, 1, 47, 17407, 278, 1188, 900, 351, 31828, 1718, 1391, 437, 62, 16694, 4716, 532, 923, 92, 640, 19570, 201, 198, 220, 220, 220, 1303, 12793, 2482, 62, 11600, 201, 198, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 66, 16993, 11, 366, 27530, 1600, 366, 26410, 1600, 3144, 19849, 13, 732, 1443, 8548, 62, 3672, 11, 366, 43420, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 43420, 62, 11600, 90, 7753, 58, 21912, 19, 48999, 62, 19915, 1496, 13, 17752, 12340, 705, 86, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 43420, 62, 11600, 11, 277, 8, 201, 198, 220, 220, 220, 509, 13, 20063, 62, 29891, 3419, 201, 198, 201, 198 ]
2.356013
1,264
#! /usr/bin/python3 import os import telegram_send import requests from datetime import date,datetime from time import time,ctime,sleep #Refresh Interval in seconds ref_interval = 5 d_today = date.today() age_limit = 18 __district_code = "363" dt = d_today.strftime("%d/%m/%Y") __date_today = str(dt).replace("/","-") time_now = datetime.now() if __name__ == '__main__': check_slot() while True: diff = datetime.now()-time_now if diff.seconds >= ref_interval: check_slot() time_now = datetime.now()
[ 2, 0, 1220, 14629, 14, 8800, 14, 29412, 18, 198, 11748, 28686, 198, 11748, 573, 30536, 62, 21280, 198, 11748, 7007, 198, 6738, 4818, 8079, 1330, 3128, 11, 19608, 8079, 198, 6738, 640, 1330, 640, 11, 310, 524, 11, 42832, 198, 198, 2, 8134, 3447, 4225, 2100, 287, 4201, 198, 5420, 62, 3849, 2100, 796, 642, 198, 198, 67, 62, 40838, 796, 3128, 13, 40838, 3419, 198, 198, 496, 62, 32374, 796, 1248, 198, 198, 834, 17080, 2012, 62, 8189, 796, 366, 35447, 1, 198, 198, 28664, 796, 288, 62, 40838, 13, 2536, 31387, 7203, 4, 67, 14, 4, 76, 14, 4, 56, 4943, 198, 198, 834, 4475, 62, 40838, 796, 965, 7, 28664, 737, 33491, 7203, 14, 2430, 12, 4943, 198, 197, 197, 197, 197, 198, 198, 2435, 62, 2197, 796, 4818, 8079, 13, 2197, 3419, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 9122, 62, 43384, 3419, 198, 197, 4514, 6407, 25, 198, 197, 197, 26069, 796, 4818, 8079, 13, 2197, 3419, 12, 2435, 62, 2197, 198, 197, 197, 361, 814, 13, 43012, 18189, 1006, 62, 3849, 2100, 25, 198, 197, 197, 197, 9122, 62, 43384, 3419, 198, 197, 197, 197, 2435, 62, 2197, 796, 4818, 8079, 13, 2197, 3419, 198 ]
2.514423
208
import sys print ("#icebucketchallenge vs #alsicebucketchallenge, percentage change") print_change(200,500,100,300) print_change(500,2000,300,1500) print_change(2000,12000,1500,13000) print_change(12000,24000,13000,25000) print_change(24000,65000,25000,105000) print_change(65000,70000,105000,85000) # read the last test case from an input file (if provided) if (len(sys.argv) > 1): inputfile=sys.argv[1] f=open(inputfile,"r") contents=f.read().split(",") o1=int(contents[0],10) n1=int(contents[1],10) o2=int(contents[2],10) n2=int(contents[3],10) print_change(o1,n1,o2,n2)
[ 11748, 25064, 198, 198, 4798, 5855, 2, 501, 27041, 7569, 439, 3540, 3691, 1303, 874, 501, 27041, 7569, 439, 3540, 11, 5873, 1487, 4943, 198, 4798, 62, 3803, 7, 2167, 11, 4059, 11, 3064, 11, 6200, 8, 198, 4798, 62, 3803, 7, 4059, 11, 11024, 11, 6200, 11, 33698, 8, 198, 4798, 62, 3803, 7, 11024, 11, 1065, 830, 11, 33698, 11, 1485, 830, 8, 198, 4798, 62, 3803, 7, 1065, 830, 11, 1731, 830, 11, 1485, 830, 11, 1495, 830, 8, 198, 4798, 62, 3803, 7, 1731, 830, 11, 2996, 830, 11, 1495, 830, 11, 13348, 830, 8, 198, 4798, 62, 3803, 7, 2996, 830, 11, 22, 2388, 11, 13348, 830, 11, 5332, 830, 8, 198, 198, 2, 1100, 262, 938, 1332, 1339, 422, 281, 5128, 2393, 357, 361, 2810, 8, 198, 361, 357, 11925, 7, 17597, 13, 853, 85, 8, 1875, 352, 2599, 198, 220, 220, 220, 5128, 7753, 28, 17597, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 277, 28, 9654, 7, 15414, 7753, 553, 81, 4943, 198, 220, 220, 220, 10154, 28, 69, 13, 961, 22446, 35312, 7, 2430, 8, 628, 220, 220, 220, 267, 16, 28, 600, 7, 3642, 658, 58, 15, 4357, 940, 8, 198, 220, 220, 220, 299, 16, 28, 600, 7, 3642, 658, 58, 16, 4357, 940, 8, 198, 220, 220, 220, 267, 17, 28, 600, 7, 3642, 658, 58, 17, 4357, 940, 8, 198, 220, 220, 220, 299, 17, 28, 600, 7, 3642, 658, 58, 18, 4357, 940, 8, 628, 220, 220, 220, 3601, 62, 3803, 7, 78, 16, 11, 77, 16, 11, 78, 17, 11, 77, 17, 8, 198 ]
2.250923
271
#!/usr/bin/env python from setuptools import setup import gscholar setup(name='gscholar', version=gscholar.__VERSION__, description='Python library to query Google Scholar.', long_description='This package provides a python package and CLI to query google scholar and get references in various formats (e.g. bibtex, endnote, etc.)', classifiers=[ 'Development Status :: 5 - Production/Stable', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', ], keywords='google scholar cli', author='Bastian Venthur', author_email='[email protected]', url='https://github.com/venthur/gscholar', packages=['gscholar'], entry_points={ 'console_scripts': [ 'gscholar = gscholar.__main__:main' ] }, license='MIT', )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 628, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 11748, 308, 20601, 6192, 198, 198, 40406, 7, 3672, 11639, 14542, 354, 6192, 3256, 198, 220, 220, 220, 220, 220, 2196, 28, 14542, 354, 6192, 13, 834, 43717, 834, 11, 198, 220, 220, 220, 220, 220, 6764, 11639, 37906, 5888, 284, 12405, 3012, 11713, 2637, 11, 198, 220, 220, 220, 220, 220, 890, 62, 11213, 11639, 1212, 5301, 3769, 257, 21015, 5301, 290, 43749, 284, 12405, 23645, 15606, 290, 651, 10288, 287, 2972, 17519, 357, 68, 13, 70, 13, 275, 571, 16886, 11, 886, 11295, 11, 3503, 2014, 3256, 198, 220, 220, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 26286, 11639, 13297, 15606, 537, 72, 3256, 198, 220, 220, 220, 220, 220, 1772, 11639, 33, 459, 666, 569, 7944, 333, 3256, 198, 220, 220, 220, 220, 220, 1772, 62, 12888, 11639, 4529, 31, 20987, 333, 13, 2934, 3256, 198, 220, 220, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 20987, 333, 14, 14542, 354, 6192, 3256, 198, 220, 220, 220, 220, 220, 10392, 28, 17816, 14542, 354, 6192, 6, 4357, 198, 220, 220, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14542, 354, 6192, 796, 308, 20601, 6192, 13, 834, 12417, 834, 25, 12417, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 8, 198 ]
2.466844
377
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2012 Homer Strong, Radim Rehurek # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """This module implements the "hashing trick" [1]_ -- a mapping between words and their integer ids using a fixed and static mapping. Notes ----- The static mapping has a constant memory footprint, regardless of the number of word-types (features) in your corpus, so it's suitable for processing extremely large corpora. The ids are computed as `hash(word) % id_range`, where `hash` is a user-configurable function (`zlib.adler32` by default). Advantages: * New words can be represented immediately, without an extra pass through the corpus to collect all the ids first. * Can be used with non-repeatable (once-only) streams of documents. * All tokens will be used (not only that you see in documents), typical problem for :class:`~gensim.corpora.dictionary.Dictionary`. Disadvantages: * Words may map to the same id, causing hash collisions. The word <-> id mapping is no longer a bijection. References ---------- .. [1] http://en.wikipedia.org/wiki/Hashing-Trick """ from __future__ import with_statement import logging import itertools import zlib from gensim import utils from six import iteritems, iterkeys logger = logging.getLogger(__name__) class HashDictionary(utils.SaveLoad, dict): """Encapsulates the mapping between normalized words and their integer ids. Notes ----- Unlike :class:`~gensim.corpora.dictionary.Dictionary`, building a :class:`~gensim.corpora.hashdictionary.HashDictionary` before using it **isn't a necessary step**. The documents can be computed immediately, from an uninitialized :class:`~gensim.corpora.hashdictionary.HashDictionary` without seeing the rest of the corpus first. Examples -------- >>> from gensim.corpora import HashDictionary >>> >>> texts = [['human', 'interface', 'computer']] >>> dct = HashDictionary(texts) >>> dct.doc2bow(texts[0]) [(10608, 1), (12466, 1), (31002, 1)] """ def __init__(self, documents=None, id_range=32000, myhash=zlib.adler32, debug=True): """ Parameters ---------- documents : iterable of iterable of str Iterable of documents, if given - use them to initialization. id_range : int, optional Number of hash-values in table, used as `id = myhash(key) % id_range`. myhash : function Hash function, should support interface myhash(str) -> int, used `zlib.adler32` by default. debug : bool If True - store raw tokens mapping (as str <-> id). If you find yourself running out of memory (or not sure that you really need raw tokens), set `debug=False`. """ self.myhash = myhash # hash fnc: string->integer self.id_range = id_range # hash range: id = myhash(key) % id_range self.debug = debug # the following (potentially massive!) dictionaries are only formed if `debug` is True self.token2id = {} self.id2token = {} # reverse mapping int->set(words) self.dfs = {} # token_id -> how many documents this token_id appeared in self.dfs_debug = {} # token_string->how many documents this word appeared in self.num_docs = 0 # number of documents processed self.num_pos = 0 # total number of corpus positions self.num_nnz = 0 # total number of non-zeroes in the BOW matrix self.allow_update = True if documents is not None: self.add_documents(documents) def __getitem__(self, tokenid): """Get all words that have mapped to the given id so far, as a set. Warnings -------- Works only if `debug=True`. Parameters ---------- tokenid : int Token identifier (result of hashing). Return ------ set of str Set of all corresponding words. """ return self.id2token.get(tokenid, set()) def restricted_hash(self, token): """Calculate id of the given token. Also keep track of what words were mapped to what ids, for debugging reasons. Parameters ---------- token : str Input token. Return ------ int Hash value of `token`. """ h = self.myhash(utils.to_utf8(token)) % self.id_range if self.debug: self.token2id[token] = h self.id2token.setdefault(h, set()).add(token) return h def __len__(self): """Get the number of distinct ids = the entire dictionary size.""" return self.id_range def keys(self): """Get a list of all token ids.""" return range(len(self)) @staticmethod def add_documents(self, documents): """Build dictionary from a collection of documents. Notes ----- This is only a convenience wrapper for calling `doc2bow` on each document with `allow_update=True`. Parameters ---------- documents : iterable of list of str Collection of documents. Examples -------- >>> from gensim.corpora import HashDictionary >>> >>> corpus = [["máma", "mele", "maso"], ["ema", "má", "máma"]] >>> dct = HashDictionary(corpus) >>> "sparta" in dct.token2id False >>> dct.add_documents([["this","is","sparta"],["just","joking"]]) # add more documents in dictionary >>> "sparta" in dct.token2id True """ for docno, document in enumerate(documents): if docno % 10000 == 0: logger.info("adding document #%i to %s", docno, self) self.doc2bow(document, allow_update=True) # ignore the result, here we only care about updating token ids logger.info( "built %s from %i documents (total %i corpus positions)", self, self.num_docs, self.num_pos ) def doc2bow(self, document, allow_update=False, return_missing=False): """Convert `document` into the bag-of-words format, like [(1, 4), (150, 1), (2005, 2)]. Notes ----- Each word is assumed to be a **tokenized and normalized** utf-8 encoded string. No further preprocessing is done on the words in `document` (apply tokenization, stemming etc) before calling this method. If `allow_update` or `self.allow_update` is set, then also update dictionary in the process: update overall corpus statistics and document frequencies. For each id appearing in this document, increase its document frequency (`self.dfs`) by one. Parameters ---------- document : list of str Is a list of tokens = **tokenized and normalized** strings (either utf8 or unicode). allow_update : bool, optional If True - update dictionary in the process. return_missing : bool, optional Show token_count for missing words. HAVE NO SENSE FOR THIS CLASS, BECAUSE WE USING HASHING-TRICK. Return ------ list of (int, int) Document in Bag-of-words (BoW) format. list of (int, int), dict If `return_missing=True`, return document in Bag-of-words (BoW) format + empty dictionary. Examples -------- >>> from gensim.corpora import HashDictionary >>> >>> corpus = [["máma", "mele", "maso"], ["ema", "má", "máma"]] >>> dct = HashDictionary(corpus) >>> dct.doc2bow(["this","is","máma"]) [(1721, 1), (5280, 1), (22493, 1)] >>> dct.doc2bow(["this","is","máma"], return_missing=True) ([(1721, 1), (5280, 1), (22493, 1)], {}) """ result = {} missing = {} document = sorted(document) # convert the input to plain list (needed below) for word_norm, group in itertools.groupby(document): frequency = len(list(group)) # how many times does this word appear in the input document tokenid = self.restricted_hash(word_norm) result[tokenid] = result.get(tokenid, 0) + frequency if self.debug: # increment document count for each unique token that appeared in the document self.dfs_debug[word_norm] = self.dfs_debug.get(word_norm, 0) + 1 if allow_update or self.allow_update: self.num_docs += 1 self.num_pos += len(document) self.num_nnz += len(result) if self.debug: # increment document count for each unique tokenid that appeared in the document # done here, because several words may map to the same tokenid for tokenid in iterkeys(result): self.dfs[tokenid] = self.dfs.get(tokenid, 0) + 1 # return tokenids, in ascending id order result = sorted(iteritems(result)) if return_missing: return result, missing else: return result def filter_extremes(self, no_below=5, no_above=0.5, keep_n=100000): """Filter tokens in dictionary by frequency. Parameters ---------- no_below : int, optional Keep tokens which are contained in at least `no_below` documents. no_above : float, optional Keep tokens which are contained in no more than `no_above` documents (fraction of total corpus size, not an absolute number). keep_n : int, optional Keep only the first `keep_n` most frequent tokens. Notes ----- For tokens that appear in: #. Less than `no_below` documents (absolute number) or \n #. More than `no_above` documents (fraction of total corpus size, **not absolute number**). #. After (1) and (2), keep only the first `keep_n` most frequent tokens (or keep all if `None`). Since :class:`~gensim.corpora.hashdictionary.HashDictionary` id range is fixed and doesn't depend on the number of tokens seen, this doesn't really "remove" anything. It only clears some supplementary statistics, for easier debugging and a smaller RAM footprint. Examples -------- >>> from gensim.corpora import HashDictionary >>> >>> corpus = [["máma", "mele", "maso"], ["ema", "má", "máma"]] >>> dct = HashDictionary(corpus) >>> dct.filter_extremes(no_below=1, no_above=0.5, keep_n=1) >>> print dct.token2id {'maso': 15025} """ no_above_abs = int(no_above * self.num_docs) # convert fractional threshold to absolute threshold ok = [item for item in iteritems(self.dfs_debug) if no_below <= item[1] <= no_above_abs] ok = frozenset(word for word, freq in sorted(ok, key=lambda x: -x[1])[:keep_n]) self.dfs_debug = {word: freq for word, freq in iteritems(self.dfs_debug) if word in ok} self.token2id = {token: tokenid for token, tokenid in iteritems(self.token2id) if token in self.dfs_debug} self.id2token = { tokenid: {token for token in tokens if token in self.dfs_debug} for tokenid, tokens in iteritems(self.id2token) } self.dfs = {tokenid: freq for tokenid, freq in iteritems(self.dfs) if self.id2token.get(tokenid, set())} # for word->document frequency logger.info( "kept statistics for which were in no less than %i and no more than %i (=%.1f%%) documents", no_below, no_above_abs, 100.0 * no_above ) def save_as_text(self, fname): """Save this HashDictionary to a text file. Parameters ---------- fname : str Path to output file. Notes ----- The format is: `id[TAB]document frequency of this id[TAB]tab-separated set of words in UTF8 that map to this id[NEWLINE]`. Examples -------- >>> from gensim.corpora import HashDictionary >>> from gensim.test.utils import get_tmpfile >>> >>> corpus = [["máma", "mele", "maso"], ["ema", "má", "máma"]] >>> data = HashDictionary(corpus) >>> data.save_as_text(get_tmpfile("dictionary_in_text_format")) """ logger.info("saving HashDictionary mapping to %s" % fname) with utils.smart_open(fname, 'wb') as fout: for tokenid in self.keys(): words = sorted(self[tokenid]) if words: words_df = [(word, self.dfs_debug.get(word, 0)) for word in words] words_df = ["%s(%i)" % item for item in sorted(words_df, key=lambda x: -x[1])] words_df = '\t'.join(words_df) fout.write(utils.to_utf8("%i\t%i\t%s\n" % (tokenid, self.dfs.get(tokenid, 0), words_df)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 2321, 28440, 13535, 11, 5325, 320, 797, 71, 495, 74, 198, 2, 49962, 739, 262, 22961, 17370, 6489, 410, 17, 13, 16, 532, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 75, 70, 489, 13, 6494, 628, 198, 37811, 1212, 8265, 23986, 262, 366, 71, 2140, 6908, 1, 685, 16, 60, 62, 1377, 257, 16855, 1022, 2456, 290, 511, 18253, 220, 2340, 198, 3500, 257, 5969, 290, 9037, 16855, 13, 198, 198, 16130, 198, 30934, 198, 464, 9037, 16855, 468, 257, 6937, 4088, 24713, 11, 7692, 286, 262, 1271, 286, 1573, 12, 19199, 357, 40890, 8, 287, 534, 35789, 11, 198, 568, 340, 338, 11080, 329, 7587, 4457, 1588, 3990, 64, 13, 383, 220, 2340, 389, 29231, 355, 4600, 17831, 7, 4775, 8, 4064, 4686, 62, 9521, 47671, 198, 3003, 4600, 17831, 63, 318, 257, 2836, 12, 11250, 11970, 2163, 357, 63, 89, 8019, 13, 324, 1754, 2624, 63, 416, 4277, 737, 198, 198, 2782, 4520, 1095, 25, 198, 198, 9, 968, 2456, 460, 307, 7997, 3393, 11, 1231, 281, 3131, 1208, 832, 262, 35789, 198, 220, 284, 2824, 477, 262, 220, 2340, 717, 13, 198, 9, 1680, 307, 973, 351, 1729, 12, 44754, 540, 357, 27078, 12, 8807, 8, 15190, 286, 4963, 13, 198, 9, 1439, 16326, 481, 307, 973, 357, 1662, 691, 326, 345, 766, 287, 4963, 828, 7226, 1917, 198, 220, 329, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 67, 14188, 13, 35, 14188, 44646, 628, 198, 7279, 13461, 1095, 25, 198, 198, 9, 23087, 743, 3975, 284, 262, 976, 4686, 11, 6666, 12234, 31998, 13, 383, 1573, 1279, 3784, 4686, 16855, 318, 645, 2392, 257, 3182, 29192, 13, 628, 198, 19927, 198, 35937, 198, 492, 685, 16, 60, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 39, 2140, 12, 2898, 624, 198, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 198, 11748, 18931, 198, 11748, 340, 861, 10141, 198, 11748, 1976, 8019, 198, 198, 6738, 308, 641, 320, 1330, 3384, 4487, 198, 6738, 2237, 1330, 11629, 23814, 11, 11629, 13083, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 21059, 35, 14188, 7, 26791, 13, 16928, 8912, 11, 8633, 2599, 198, 220, 220, 220, 37227, 27195, 1686, 15968, 262, 16855, 1022, 39279, 2456, 290, 511, 18253, 220, 2340, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 12101, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 67, 14188, 13, 35, 14188, 47671, 198, 220, 220, 220, 2615, 257, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 17831, 67, 14188, 13, 26257, 35, 14188, 63, 878, 1262, 340, 12429, 271, 77, 470, 257, 3306, 2239, 1174, 13, 198, 220, 220, 220, 383, 4963, 460, 307, 29231, 3393, 11, 422, 281, 555, 17532, 198, 220, 220, 220, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 17831, 67, 14188, 13, 26257, 35, 14188, 63, 1231, 4379, 262, 1334, 286, 262, 35789, 717, 13, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 10215, 38851, 1330, 21059, 35, 14188, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 13399, 796, 16410, 6, 10734, 3256, 705, 39994, 3256, 705, 33215, 6, 11907, 198, 220, 220, 220, 13163, 288, 310, 796, 21059, 35, 14188, 7, 5239, 82, 8, 198, 220, 220, 220, 13163, 288, 310, 13, 15390, 17, 8176, 7, 5239, 82, 58, 15, 12962, 198, 220, 220, 220, 47527, 940, 28688, 11, 352, 828, 357, 17464, 2791, 11, 352, 828, 357, 18, 3064, 17, 11, 352, 15437, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4963, 28, 14202, 11, 4686, 62, 9521, 28, 2624, 830, 11, 616, 17831, 28, 89, 8019, 13, 324, 1754, 2624, 11, 14257, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4963, 1058, 11629, 540, 286, 11629, 540, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40806, 540, 286, 4963, 11, 611, 1813, 532, 779, 606, 284, 37588, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 62, 9521, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 12234, 12, 27160, 287, 3084, 11, 973, 355, 4600, 312, 796, 616, 17831, 7, 2539, 8, 4064, 4686, 62, 9521, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 616, 17831, 1058, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21059, 2163, 11, 815, 1104, 7071, 616, 17831, 7, 2536, 8, 4613, 493, 11, 973, 4600, 89, 8019, 13, 324, 1754, 2624, 63, 416, 4277, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 532, 3650, 8246, 16326, 16855, 357, 292, 965, 1279, 3784, 4686, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 345, 1064, 3511, 2491, 503, 286, 4088, 357, 273, 407, 1654, 326, 345, 1107, 761, 8246, 16326, 828, 900, 4600, 24442, 28, 25101, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 17831, 796, 616, 17831, 220, 1303, 12234, 277, 10782, 25, 4731, 3784, 41433, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 62, 9521, 796, 4686, 62, 9521, 220, 1303, 12234, 2837, 25, 4686, 796, 616, 17831, 7, 2539, 8, 4064, 4686, 62, 9521, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24442, 796, 14257, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1708, 357, 13059, 3746, 4858, 8133, 48589, 3166, 389, 691, 7042, 611, 4600, 24442, 63, 318, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 17, 312, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 17, 30001, 796, 23884, 220, 1303, 9575, 16855, 493, 3784, 2617, 7, 10879, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 796, 23884, 220, 1303, 11241, 62, 312, 4613, 703, 867, 4963, 428, 11241, 62, 312, 4120, 287, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 62, 24442, 796, 23884, 220, 1303, 11241, 62, 8841, 3784, 4919, 867, 4963, 428, 1573, 4120, 287, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 31628, 796, 657, 220, 1303, 1271, 286, 4963, 13686, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 1930, 796, 657, 220, 1303, 2472, 1271, 286, 35789, 6116, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 20471, 89, 796, 657, 220, 1303, 2472, 1271, 286, 1729, 12, 9107, 3028, 287, 262, 347, 3913, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12154, 62, 19119, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4963, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2860, 62, 15390, 2886, 7, 15390, 2886, 8, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 11241, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 477, 2456, 326, 423, 27661, 284, 262, 1813, 4686, 523, 1290, 11, 355, 257, 900, 13, 628, 220, 220, 220, 220, 220, 220, 220, 39567, 654, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 10933, 691, 611, 4600, 24442, 28, 17821, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 312, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29130, 27421, 357, 20274, 286, 49544, 737, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 900, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5345, 286, 477, 11188, 2456, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 312, 17, 30001, 13, 1136, 7, 30001, 312, 11, 900, 28955, 628, 220, 220, 220, 825, 10770, 62, 17831, 7, 944, 11, 11241, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 4686, 286, 262, 1813, 11241, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4418, 1394, 2610, 286, 644, 2456, 547, 27661, 284, 644, 220, 2340, 11, 329, 28769, 3840, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23412, 11241, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21059, 1988, 286, 4600, 30001, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 289, 796, 2116, 13, 1820, 17831, 7, 26791, 13, 1462, 62, 40477, 23, 7, 30001, 4008, 4064, 2116, 13, 312, 62, 9521, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 17, 312, 58, 30001, 60, 796, 289, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 17, 30001, 13, 2617, 12286, 7, 71, 11, 900, 3419, 737, 2860, 7, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 289, 628, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 1271, 286, 7310, 220, 2340, 796, 262, 2104, 22155, 2546, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 312, 62, 9521, 628, 220, 220, 220, 825, 8251, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 257, 1351, 286, 477, 11241, 220, 2340, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2837, 7, 11925, 7, 944, 4008, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 751, 62, 15390, 2886, 7, 944, 11, 4963, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 22155, 422, 257, 4947, 286, 4963, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 691, 257, 15607, 29908, 329, 4585, 4600, 15390, 17, 8176, 63, 319, 1123, 3188, 351, 4600, 12154, 62, 19119, 28, 17821, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4963, 1058, 11629, 540, 286, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12251, 286, 4963, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 10215, 38851, 1330, 21059, 35, 14188, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 35789, 796, 685, 14692, 76, 6557, 2611, 1600, 366, 1326, 293, 1600, 366, 5356, 78, 33116, 14631, 19687, 1600, 366, 76, 6557, 1600, 366, 76, 6557, 2611, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 796, 21059, 35, 14188, 7, 10215, 79, 385, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 366, 2777, 34202, 1, 287, 288, 310, 13, 30001, 17, 312, 198, 220, 220, 220, 220, 220, 220, 220, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 13, 2860, 62, 15390, 2886, 26933, 14692, 5661, 2430, 271, 2430, 2777, 34202, 33116, 14692, 3137, 2430, 73, 5730, 8973, 12962, 220, 1303, 751, 517, 4963, 287, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 366, 2777, 34202, 1, 287, 288, 310, 13, 30001, 17, 312, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2205, 3919, 11, 3188, 287, 27056, 378, 7, 15390, 2886, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2205, 3919, 4064, 33028, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 26872, 3188, 1303, 4, 72, 284, 4064, 82, 1600, 2205, 3919, 11, 2116, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15390, 17, 8176, 7, 22897, 11, 1249, 62, 19119, 28, 17821, 8, 220, 1303, 8856, 262, 1255, 11, 994, 356, 691, 1337, 546, 19698, 11241, 220, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18780, 4064, 82, 422, 4064, 72, 4963, 357, 23350, 4064, 72, 35789, 6116, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 2116, 13, 22510, 62, 31628, 11, 2116, 13, 22510, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 2205, 17, 8176, 7, 944, 11, 3188, 11, 1249, 62, 19119, 28, 25101, 11, 1441, 62, 45688, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 4600, 22897, 63, 656, 262, 6131, 12, 1659, 12, 10879, 5794, 11, 588, 47527, 16, 11, 604, 828, 357, 8628, 11, 352, 828, 357, 14315, 11, 362, 25295, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 1573, 318, 9672, 284, 307, 257, 12429, 30001, 1143, 290, 39279, 1174, 3384, 69, 12, 23, 30240, 4731, 13, 1400, 2252, 662, 36948, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1760, 319, 262, 2456, 287, 4600, 22897, 63, 357, 39014, 11241, 1634, 11, 34807, 3503, 8, 878, 4585, 428, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 12154, 62, 19119, 63, 393, 4600, 944, 13, 12154, 62, 19119, 63, 318, 900, 11, 788, 635, 4296, 22155, 287, 262, 1429, 25, 4296, 4045, 198, 220, 220, 220, 220, 220, 220, 220, 35789, 7869, 290, 3188, 19998, 13, 1114, 1123, 4686, 12655, 287, 428, 3188, 11, 2620, 663, 3188, 198, 220, 220, 220, 220, 220, 220, 220, 8373, 357, 63, 944, 13, 7568, 82, 63, 8, 416, 530, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 1058, 1351, 286, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1148, 257, 1351, 286, 16326, 796, 12429, 30001, 1143, 290, 39279, 1174, 13042, 357, 31336, 3384, 69, 23, 393, 28000, 1098, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 19119, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 532, 4296, 22155, 287, 262, 1429, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 45688, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5438, 11241, 62, 9127, 329, 4814, 2456, 13, 21515, 8005, 311, 24290, 7473, 12680, 42715, 11, 347, 36600, 19108, 12887, 1294, 2751, 367, 11211, 2751, 12, 5446, 11860, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 40103, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 357, 600, 11, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16854, 287, 20127, 12, 1659, 12, 10879, 357, 16635, 54, 8, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 357, 600, 11, 493, 828, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4600, 7783, 62, 45688, 28, 17821, 47671, 1441, 3188, 287, 20127, 12, 1659, 12, 10879, 357, 16635, 54, 8, 5794, 1343, 6565, 22155, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 10215, 38851, 1330, 21059, 35, 14188, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 35789, 796, 685, 14692, 76, 6557, 2611, 1600, 366, 1326, 293, 1600, 366, 5356, 78, 33116, 14631, 19687, 1600, 366, 76, 6557, 1600, 366, 76, 6557, 2611, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 796, 21059, 35, 14188, 7, 10215, 79, 385, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 13, 15390, 17, 8176, 7, 14692, 5661, 2430, 271, 2430, 76, 6557, 2611, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47527, 1558, 2481, 11, 352, 828, 357, 4309, 1795, 11, 352, 828, 357, 24137, 6052, 11, 352, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 13, 15390, 17, 8176, 7, 14692, 5661, 2430, 271, 2430, 76, 6557, 2611, 33116, 1441, 62, 45688, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29565, 7, 1558, 2481, 11, 352, 828, 357, 4309, 1795, 11, 352, 828, 357, 24137, 6052, 11, 352, 8, 4357, 23884, 8, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 4814, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 796, 23243, 7, 22897, 8, 220, 1303, 10385, 262, 5128, 284, 8631, 1351, 357, 27938, 2174, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1573, 62, 27237, 11, 1448, 287, 340, 861, 10141, 13, 8094, 1525, 7, 22897, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 796, 18896, 7, 4868, 7, 8094, 4008, 220, 1303, 703, 867, 1661, 857, 428, 1573, 1656, 287, 262, 5128, 3188, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 312, 796, 2116, 13, 49343, 62, 17831, 7, 4775, 62, 27237, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 58, 30001, 312, 60, 796, 1255, 13, 1136, 7, 30001, 312, 11, 657, 8, 1343, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18703, 3188, 954, 329, 1123, 3748, 11241, 326, 4120, 287, 262, 3188, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 62, 24442, 58, 4775, 62, 27237, 60, 796, 2116, 13, 7568, 82, 62, 24442, 13, 1136, 7, 4775, 62, 27237, 11, 657, 8, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1249, 62, 19119, 393, 2116, 13, 12154, 62, 19119, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 31628, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 1930, 15853, 18896, 7, 22897, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 20471, 89, 15853, 18896, 7, 20274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 24442, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18703, 3188, 954, 329, 1123, 3748, 11241, 312, 326, 4120, 287, 262, 3188, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1760, 994, 11, 780, 1811, 2456, 743, 3975, 284, 262, 976, 11241, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 312, 287, 11629, 13083, 7, 20274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 58, 30001, 312, 60, 796, 2116, 13, 7568, 82, 13, 1136, 7, 30001, 312, 11, 657, 8, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1441, 11241, 2340, 11, 287, 41988, 4686, 1502, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23243, 7, 2676, 23814, 7, 20274, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 45688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 11, 4814, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 220, 220, 220, 825, 8106, 62, 2302, 2787, 274, 7, 944, 11, 645, 62, 35993, 28, 20, 11, 645, 62, 29370, 28, 15, 13, 20, 11, 1394, 62, 77, 28, 3064, 830, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22417, 16326, 287, 22155, 416, 8373, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 35993, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9175, 16326, 543, 389, 7763, 287, 379, 1551, 4600, 3919, 62, 35993, 63, 4963, 13, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 29370, 1058, 12178, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9175, 16326, 543, 389, 7763, 287, 645, 517, 621, 4600, 3919, 62, 29370, 63, 4963, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 69, 7861, 286, 2472, 35789, 2546, 11, 407, 281, 4112, 1271, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 77, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9175, 691, 262, 717, 4600, 14894, 62, 77, 63, 749, 10792, 16326, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 16326, 326, 1656, 287, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13, 12892, 621, 4600, 3919, 62, 35993, 63, 4963, 357, 48546, 1271, 8, 393, 3467, 77, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13, 3125, 621, 4600, 3919, 62, 29370, 63, 4963, 357, 69, 7861, 286, 2472, 35789, 2546, 11, 12429, 1662, 4112, 1271, 1174, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13, 2293, 357, 16, 8, 290, 357, 17, 828, 1394, 691, 262, 717, 4600, 14894, 62, 77, 63, 749, 10792, 16326, 357, 273, 1394, 477, 611, 4600, 14202, 63, 737, 628, 220, 220, 220, 220, 220, 220, 220, 4619, 1058, 4871, 25, 63, 93, 70, 641, 320, 13, 10215, 38851, 13, 17831, 67, 14188, 13, 26257, 35, 14188, 63, 4686, 2837, 318, 5969, 290, 1595, 470, 4745, 319, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 16326, 1775, 11, 428, 1595, 470, 1107, 366, 28956, 1, 1997, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 691, 37526, 617, 43871, 7869, 11, 329, 4577, 28769, 290, 257, 4833, 13931, 24713, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 10215, 38851, 1330, 21059, 35, 14188, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 35789, 796, 685, 14692, 76, 6557, 2611, 1600, 366, 1326, 293, 1600, 366, 5356, 78, 33116, 14631, 19687, 1600, 366, 76, 6557, 1600, 366, 76, 6557, 2611, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 796, 21059, 35, 14188, 7, 10215, 79, 385, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 288, 310, 13, 24455, 62, 2302, 2787, 274, 7, 3919, 62, 35993, 28, 16, 11, 645, 62, 29370, 28, 15, 13, 20, 11, 1394, 62, 77, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3601, 288, 310, 13, 30001, 17, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 5356, 78, 10354, 6640, 1495, 92, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 645, 62, 29370, 62, 8937, 796, 493, 7, 3919, 62, 29370, 1635, 2116, 13, 22510, 62, 31628, 8, 220, 1303, 10385, 13390, 282, 11387, 284, 4112, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 685, 9186, 329, 2378, 287, 11629, 23814, 7, 944, 13, 7568, 82, 62, 24442, 8, 611, 645, 62, 35993, 19841, 2378, 58, 16, 60, 19841, 645, 62, 29370, 62, 8937, 60, 198, 220, 220, 220, 220, 220, 220, 220, 12876, 796, 8400, 8247, 316, 7, 4775, 329, 1573, 11, 2030, 80, 287, 23243, 7, 482, 11, 1994, 28, 50033, 2124, 25, 532, 87, 58, 16, 12962, 58, 25, 14894, 62, 77, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 62, 24442, 796, 1391, 4775, 25, 2030, 80, 329, 1573, 11, 2030, 80, 287, 11629, 23814, 7, 944, 13, 7568, 82, 62, 24442, 8, 611, 1573, 287, 12876, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 17, 312, 796, 1391, 30001, 25, 11241, 312, 329, 11241, 11, 11241, 312, 287, 11629, 23814, 7, 944, 13, 30001, 17, 312, 8, 611, 11241, 287, 2116, 13, 7568, 82, 62, 24442, 92, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 17, 30001, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 312, 25, 1391, 30001, 329, 11241, 287, 16326, 611, 11241, 287, 2116, 13, 7568, 82, 62, 24442, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 312, 11, 16326, 287, 11629, 23814, 7, 944, 13, 312, 17, 30001, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7568, 82, 796, 1391, 30001, 312, 25, 2030, 80, 329, 11241, 312, 11, 2030, 80, 287, 11629, 23814, 7, 944, 13, 7568, 82, 8, 611, 2116, 13, 312, 17, 30001, 13, 1136, 7, 30001, 312, 11, 900, 28955, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 1573, 3784, 22897, 8373, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 45089, 7869, 329, 543, 547, 287, 645, 1342, 621, 4064, 72, 290, 645, 517, 621, 4064, 72, 46121, 7225, 16, 69, 4, 4407, 4963, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 62, 35993, 11, 645, 62, 29370, 62, 8937, 11, 1802, 13, 15, 1635, 645, 62, 29370, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 3613, 62, 292, 62, 5239, 7, 944, 11, 277, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16928, 428, 21059, 35, 14188, 284, 257, 2420, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 5072, 2393, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11822, 198, 220, 220, 220, 220, 220, 220, 220, 37404, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5794, 318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 312, 58, 5603, 33, 60, 22897, 8373, 286, 428, 4686, 58, 5603, 33, 60, 8658, 12, 25512, 515, 900, 286, 2456, 287, 41002, 23, 326, 3975, 284, 428, 4686, 58, 13965, 24027, 60, 44646, 628, 198, 220, 220, 220, 220, 220, 220, 220, 21066, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 10215, 38851, 1330, 21059, 35, 14188, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 308, 641, 320, 13, 9288, 13, 26791, 1330, 651, 62, 22065, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 35789, 796, 685, 14692, 76, 6557, 2611, 1600, 366, 1326, 293, 1600, 366, 5356, 78, 33116, 14631, 19687, 1600, 366, 76, 6557, 1600, 366, 76, 6557, 2611, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1366, 796, 21059, 35, 14188, 7, 10215, 79, 385, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 1366, 13, 21928, 62, 292, 62, 5239, 7, 1136, 62, 22065, 7753, 7203, 67, 14188, 62, 259, 62, 5239, 62, 18982, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7203, 29336, 21059, 35, 14188, 16855, 284, 4064, 82, 1, 4064, 277, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 3384, 4487, 13, 27004, 62, 9654, 7, 69, 3672, 11, 705, 39346, 11537, 355, 277, 448, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11241, 312, 287, 2116, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 23243, 7, 944, 58, 30001, 312, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 62, 7568, 796, 47527, 4775, 11, 2116, 13, 7568, 82, 62, 24442, 13, 1136, 7, 4775, 11, 657, 4008, 329, 1573, 287, 2456, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 62, 7568, 796, 14631, 4, 82, 7, 4, 72, 16725, 4064, 2378, 329, 2378, 287, 23243, 7, 10879, 62, 7568, 11, 1994, 28, 50033, 2124, 25, 532, 87, 58, 16, 12962, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 62, 7568, 796, 705, 59, 83, 4458, 22179, 7, 10879, 62, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 448, 13, 13564, 7, 26791, 13, 1462, 62, 40477, 23, 7203, 4, 72, 59, 83, 4, 72, 59, 83, 4, 82, 59, 77, 1, 4064, 357, 30001, 312, 11, 2116, 13, 7568, 82, 13, 1136, 7, 30001, 312, 11, 657, 828, 2456, 62, 7568, 22305, 198 ]
2.435998
5,328
#!/usr/bin/python #'''''''10''''''''20''''''''30''''''''40''''''''50''''''''60''''''''70''''''''80 '''_____________________________________________________________________________ ' ' Created By: Kevin M. Albright ' Creation Date: 03.24.2014 ' ' Modified By: Kevin M. Albright ' Last Modified: 03.30.2014 ' ' Assignment: Lab6c ' File Name: albright_lab6c.py ' From: Exploring Python p. 43 q. #24 ' Purpose: This program is the game of Craps, which is a dice game. ' The game will allow you to start a new game or exit. ' If you start a game the first roll will occur. Then ' you will either win, lose or mark point and continue to ' roll till you win or lose. You can use the enter key, ' y, or Y for affirmative responses and n or N for negative ' responses. The instructions in the game are written into ' the program so I will not repeat them here. _____________________________________________________________________________''' ''' ' Function die_roll ' ' Uses random.randint() function to generate a random integer [1-6] ' simulating a die being rolled. ' Pass in nothing. ' Returns an integer. ''' ''' ' Function rolling_dice ' ' Simulates the rolling of a pair of dice. Also, tallies the two dice ' together, and adds one to rolls. ' Pass in rolls:int ' Returns [die1, die2, tally]:list and rolls:int ''' ''' ' Function first_roll_check ' ' Checks the first roll of a round whether the user wins with a [7,11] ' loses with [2,3,12], or point is on with [4,5,6,8,9,10]. Will return a ' 1 for wins, -1 for loses, and 0 for point on. Checks start of -2 is ' arbitrary, just to be a valid integer but invalid to the checkers later on. ' Pass in tally:int ' Returns check:int and mark_point:int ''' ''' ' Function mark_point_check ' ' Used to check all rolls in a round except the first. Checks if user rolled ' a 7 and thus loses the round, if they rolled the mark_point and win the ' round, or if the rolled some other number thus continuing the round. ' Pass in mark_point:int and tally:int ''' ''' ' Function get_input ' ' Gets input from the user. Displays the output string and returns an ' uppercase string. ' Pass in output:string ' Returns an upper case string ''' ''' ' Function print_out ' ' Print passed in output string. ' Pass in output:string ' Returns nothing ''' ''' ' Function is_valid ' ' Checks the input for validity. Input needs to be a 'Y', 'N', or ''. ' Returns the input if it is valid, otherwise it will return a '1' which ' will make loop using this function need to loop around again. ' Pass in input:string/char ' Returns input:string/char or '1':string/char ''' ''' ' Function is_win ' ' Check if the user won, lost, or continues. If user wins prints out win and ' the score, updates points and rounds, and resets rolls to 0. If user lost ' prints out lost and the score, resets rolls, and updates rounds. ' Pass in check:int, points:int, rolls:int, and rounds:int ' Returns check:int, points:int, rolls:int, and rounds:int ''' ''' ' Function print_dice_roll ' ' Prints out the dice roll. Prints the individual die roll and their sum. ' Pass in dice_group:list, rolls:int ''' ''' ' Function gameplay ' ' The main code of a single game. Holding variables for the function of ' the game and loops to go through rolls for making point and if the user ' wants to play continue playing the game. ' Pass in nothing ' Returns a '1' to support the loop in the calling function/code ''' ''' ' Start of Program ' ' Give introduction to user and then instructions on how to play ' the game. Is the outer most loop to exit out of the program ' cleanly. ''' print_out(""" ---- Welcome to the dice game Craps! The name of the game is Craps. The rules of the game are: A). On your first roll of a round: If you roll a 1). seven(7) or an eleven(11) you score and win the round. 2). two(2), three(3), or a twelve(12) you lose the round. 3). four(4), five(5), six(6), eight(8), nine(9), or ten(10) point is on and you must continue to roll. B). On continued rounds: If point is on and roll a 1). the point on number again, you win the round. 2). seven(7) you lose the round. 3). any other number, roll again. You may play multiple rounds per a game, or you may start a new game from the main menu, thus resetting your scores without exiting the program. Yes and No questions can be answered: 1). y or Y or press the enter key for affirmative responses. 2). n or N for negative responses. """) input = '1' while not(input == 'Y' or input == 'N' or input == ''): input = get_input(' Start a new game? (y or enter/n): ') print_out('') input = is_valid(input) if input == 'Y' or input == '': input = gameplay()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 39115, 7061, 6, 940, 39115, 39115, 1238, 39115, 39115, 1270, 39115, 39115, 1821, 39115, 39115, 1120, 39115, 39115, 1899, 39115, 39115, 2154, 39115, 39115, 1795, 198, 7061, 6, 27193, 2602, 29343, 198, 6, 198, 6, 220, 220, 220, 220, 15622, 2750, 25, 220, 7939, 337, 13, 978, 29199, 198, 6, 220, 21582, 7536, 25, 220, 7643, 13, 1731, 13, 4967, 198, 6, 198, 6, 220, 220, 220, 40499, 2750, 25, 220, 7939, 337, 13, 978, 29199, 198, 6, 220, 4586, 40499, 25, 220, 7643, 13, 1270, 13, 4967, 198, 6, 198, 6, 220, 220, 220, 220, 50144, 25, 220, 3498, 21, 66, 198, 6, 220, 220, 220, 220, 220, 9220, 6530, 25, 220, 435, 29199, 62, 23912, 21, 66, 13, 9078, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3574, 25, 220, 5905, 3255, 11361, 279, 13, 5946, 10662, 13, 1303, 1731, 198, 6, 220, 220, 220, 220, 220, 220, 220, 32039, 25, 220, 770, 1430, 318, 262, 983, 286, 11176, 862, 11, 543, 318, 257, 17963, 983, 13, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 983, 481, 1249, 345, 284, 923, 257, 649, 983, 393, 8420, 13, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 345, 923, 257, 983, 262, 717, 4836, 481, 3051, 13, 220, 3244, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 345, 481, 2035, 1592, 11, 4425, 393, 1317, 966, 290, 2555, 284, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4836, 10597, 345, 1592, 393, 4425, 13, 220, 921, 460, 779, 262, 3802, 1994, 11, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 11, 393, 575, 329, 27990, 9109, 290, 299, 393, 399, 329, 4633, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9109, 13, 220, 383, 7729, 287, 262, 983, 389, 3194, 656, 198, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1430, 523, 314, 481, 407, 9585, 606, 994, 13, 198, 27193, 2602, 29343, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 4656, 62, 2487, 198, 6, 220, 220, 198, 6, 220, 36965, 4738, 13, 25192, 600, 3419, 2163, 284, 7716, 257, 4738, 18253, 685, 16, 12, 21, 60, 198, 6, 220, 220, 220, 985, 8306, 257, 4656, 852, 11686, 13, 198, 6, 220, 6251, 287, 2147, 13, 198, 6, 220, 16409, 281, 18253, 13, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 10708, 62, 67, 501, 198, 6, 198, 6, 220, 3184, 15968, 262, 10708, 286, 257, 5166, 286, 17963, 13, 220, 4418, 11, 7331, 444, 262, 734, 17963, 198, 6, 220, 220, 220, 1978, 11, 290, 6673, 530, 284, 14088, 13, 198, 6, 220, 6251, 287, 14088, 25, 600, 198, 6, 220, 16409, 685, 11979, 16, 11, 4656, 17, 11, 26767, 5974, 4868, 290, 14088, 25, 600, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 717, 62, 2487, 62, 9122, 198, 6, 198, 6, 220, 47719, 262, 717, 4836, 286, 257, 2835, 1771, 262, 2836, 7864, 351, 257, 685, 22, 11, 1157, 60, 198, 6, 220, 220, 220, 14754, 351, 685, 17, 11, 18, 11, 1065, 4357, 393, 966, 318, 319, 351, 685, 19, 11, 20, 11, 21, 11, 23, 11, 24, 11, 940, 4083, 220, 2561, 1441, 257, 198, 6, 220, 220, 220, 352, 329, 7864, 11, 532, 16, 329, 14754, 11, 290, 657, 329, 966, 319, 13, 220, 47719, 923, 286, 532, 17, 318, 220, 198, 6, 220, 220, 220, 14977, 11, 655, 284, 307, 257, 4938, 18253, 475, 12515, 284, 262, 2198, 364, 1568, 319, 13, 198, 6, 220, 6251, 287, 26767, 25, 600, 198, 6, 220, 16409, 2198, 25, 600, 290, 1317, 62, 4122, 25, 600, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 1317, 62, 4122, 62, 9122, 198, 6, 198, 6, 220, 16718, 284, 2198, 477, 14088, 287, 257, 2835, 2845, 262, 717, 13, 220, 47719, 611, 2836, 11686, 198, 6, 220, 220, 220, 257, 767, 290, 4145, 14754, 262, 2835, 11, 611, 484, 11686, 262, 1317, 62, 4122, 290, 1592, 262, 198, 6, 220, 220, 220, 2835, 11, 393, 611, 262, 11686, 617, 584, 1271, 4145, 8282, 262, 2835, 13, 198, 6, 220, 6251, 287, 1317, 62, 4122, 25, 600, 290, 26767, 25, 600, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 651, 62, 15414, 198, 6, 198, 6, 220, 29620, 5128, 422, 262, 2836, 13, 220, 3167, 26024, 262, 5072, 4731, 290, 5860, 281, 198, 6, 220, 220, 220, 334, 39921, 589, 4731, 13, 198, 6, 220, 6251, 287, 5072, 25, 8841, 198, 6, 220, 16409, 281, 6727, 1339, 4731, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 3601, 62, 448, 198, 6, 198, 6, 220, 12578, 3804, 287, 5072, 4731, 13, 198, 6, 220, 6251, 287, 5072, 25, 8841, 198, 6, 220, 16409, 2147, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 318, 62, 12102, 198, 6, 198, 6, 220, 47719, 262, 5128, 329, 19648, 13, 220, 23412, 2476, 284, 307, 257, 705, 56, 3256, 705, 45, 3256, 393, 705, 4458, 198, 6, 220, 220, 220, 16409, 262, 5128, 611, 340, 318, 4938, 11, 4306, 340, 481, 1441, 257, 705, 16, 6, 543, 198, 6, 220, 220, 220, 481, 787, 9052, 1262, 428, 2163, 761, 284, 9052, 1088, 757, 13, 198, 6, 220, 6251, 287, 5128, 25, 8841, 14, 10641, 198, 6, 220, 16409, 5128, 25, 8841, 14, 10641, 393, 705, 16, 10354, 8841, 14, 10641, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 318, 62, 5404, 198, 6, 198, 6, 220, 6822, 611, 262, 2836, 1839, 11, 2626, 11, 393, 4477, 13, 220, 1002, 2836, 7864, 20842, 503, 1592, 290, 198, 6, 220, 220, 220, 262, 4776, 11, 5992, 2173, 290, 9196, 11, 290, 581, 1039, 14088, 284, 657, 13, 220, 1002, 2836, 2626, 198, 6, 220, 220, 220, 20842, 503, 2626, 290, 262, 4776, 11, 581, 1039, 14088, 11, 290, 5992, 9196, 13, 198, 6, 220, 6251, 287, 2198, 25, 600, 11, 2173, 25, 600, 11, 14088, 25, 600, 11, 290, 9196, 25, 600, 198, 6, 220, 16409, 2198, 25, 600, 11, 2173, 25, 600, 11, 14088, 25, 600, 11, 290, 9196, 25, 600, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 3601, 62, 67, 501, 62, 2487, 198, 6, 198, 6, 220, 12578, 82, 503, 262, 17963, 4836, 13, 220, 12578, 82, 262, 1981, 4656, 4836, 290, 511, 2160, 13, 198, 6, 220, 6251, 287, 17963, 62, 8094, 25, 4868, 11, 14088, 25, 600, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 15553, 11327, 198, 6, 198, 6, 220, 383, 1388, 2438, 286, 257, 2060, 983, 13, 220, 31703, 9633, 329, 262, 2163, 286, 220, 198, 6, 220, 220, 220, 262, 983, 290, 23607, 284, 467, 832, 14088, 329, 1642, 966, 290, 611, 262, 2836, 220, 198, 6, 220, 220, 220, 3382, 284, 711, 2555, 2712, 262, 983, 13, 198, 6, 220, 6251, 287, 2147, 198, 6, 220, 16409, 257, 705, 16, 6, 284, 1104, 262, 9052, 287, 262, 4585, 2163, 14, 8189, 198, 7061, 6, 198, 198, 7061, 6, 198, 6, 220, 7253, 286, 6118, 198, 6, 198, 6, 220, 13786, 9793, 284, 2836, 290, 788, 7729, 319, 703, 284, 711, 198, 6, 220, 220, 220, 262, 983, 13, 220, 1148, 262, 12076, 749, 9052, 284, 8420, 503, 286, 262, 1430, 198, 6, 220, 220, 220, 3424, 306, 13, 220, 220, 198, 7061, 6, 198, 4798, 62, 448, 7203, 15931, 198, 650, 220, 220, 220, 220, 220, 220, 220, 19134, 284, 262, 17963, 983, 11176, 862, 0, 628, 220, 220, 220, 383, 1438, 286, 262, 983, 318, 11176, 862, 13, 220, 383, 3173, 286, 262, 983, 389, 25, 198, 220, 220, 220, 317, 737, 220, 1550, 534, 717, 4836, 286, 257, 2835, 25, 220, 1002, 345, 4836, 257, 198, 220, 220, 220, 220, 220, 352, 737, 220, 3598, 7, 22, 8, 393, 281, 22216, 7, 1157, 8, 345, 4776, 290, 1592, 262, 2835, 13, 198, 220, 220, 220, 220, 220, 362, 737, 220, 734, 7, 17, 828, 1115, 7, 18, 828, 393, 257, 14104, 7, 1065, 8, 345, 4425, 262, 2835, 13, 198, 220, 220, 220, 220, 220, 513, 737, 220, 1440, 7, 19, 828, 1936, 7, 20, 828, 2237, 7, 21, 828, 3624, 7, 23, 828, 5193, 7, 24, 828, 393, 3478, 7, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 318, 319, 290, 345, 1276, 2555, 284, 4836, 13, 198, 220, 220, 220, 347, 737, 220, 1550, 3767, 9196, 25, 220, 1002, 966, 318, 319, 290, 4836, 257, 198, 220, 220, 220, 220, 220, 352, 737, 220, 262, 966, 319, 1271, 220, 757, 11, 345, 1592, 262, 2835, 13, 198, 220, 220, 220, 220, 220, 362, 737, 220, 3598, 7, 22, 8, 345, 4425, 262, 2835, 13, 198, 220, 220, 220, 220, 220, 513, 737, 220, 597, 584, 1271, 11, 4836, 757, 13, 628, 220, 220, 220, 921, 743, 711, 3294, 9196, 583, 257, 983, 11, 393, 345, 743, 923, 257, 220, 198, 220, 220, 220, 220, 220, 649, 983, 422, 262, 1388, 6859, 11, 4145, 13259, 889, 534, 8198, 198, 220, 220, 220, 220, 220, 1231, 33895, 262, 1430, 13, 628, 220, 220, 220, 3363, 290, 1400, 2683, 460, 307, 9373, 25, 198, 220, 220, 220, 352, 737, 220, 331, 393, 575, 393, 1803, 262, 3802, 1994, 329, 27990, 9109, 13, 198, 220, 220, 220, 362, 737, 220, 299, 393, 399, 329, 4633, 9109, 13, 198, 15931, 4943, 198, 198, 15414, 796, 705, 16, 6, 198, 4514, 407, 7, 15414, 6624, 705, 56, 6, 393, 5128, 6624, 705, 45, 6, 393, 5128, 6624, 10148, 2599, 198, 220, 5128, 796, 651, 62, 15414, 10786, 220, 220, 220, 7253, 257, 649, 983, 30, 357, 88, 393, 3802, 14, 77, 2599, 705, 8, 198, 220, 3601, 62, 448, 7, 7061, 8, 198, 220, 5128, 796, 318, 62, 12102, 7, 15414, 8, 198, 220, 611, 5128, 6624, 705, 56, 6, 393, 5128, 6624, 10148, 25, 198, 220, 220, 220, 5128, 796, 11327, 3419, 198 ]
2.851977
1,770
from nltk.tokenize import sent_tokenize from nltk.corpus import stopwords from sklearn.metrics.pairwise import cosine_similarity import en_coref_lg import networkx as nx import pandas as pd import numpy as np nlp = en_coref_lg.load() # paths # embedding_path = "../../data/embeddings/" # article summarizer # def get_embeddings(): """""" # Extract word vectors word_embeddings = {} f = open(embedding_path + "glove.6B.100d.txt", encoding="utf-8") for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype="float32") word_embeddings[word] = coefs f.close() return word_embeddings def summarise_fast(article, n=3): """""" # resolve co-reference issues clusters = nlp(article)._.coref_clusters if isinstance(clusters, type(None)): trans_dict = {} else: clusters = filter(None, clusters) trans_dict = {str(i[1]): str(i[0]) for i in clusters} for k, v in trans_dict.items(): article = article.replace(k, v) sentences = sent_tokenize(article) return sentences[:n] def summarise(article, word_embeddings): """""" sentences = [] # resolve co-reference issues clusters = nlp(article)._.coref_clusters if type(clusters) is None: trans_dict = {} else: trans_dict = {str(i[1]): str(i[0]) for i in clusters} for k, v in trans_dict.items(): article = article.replace(k, v) sentences.append(sent_tokenize(article)) sentences = [y for x in sentences for y in x] # flatten list # remove punctuations, numbers and special characters if len(sentences) != 0: clean_sentences = pd.Series(sentences).str.replace("[^a-zA-Z]", " ") else: return [] # make alphabets lowercase clean_sentences = [s.lower() for s in clean_sentences] stop_words = stopwords.words("english") # function to remove stopwords # remove stopwords from the sentences clean_sentences = [remove_stopwords(r.split()) for r in clean_sentences] sentence_vectors = [] for i in clean_sentences: if len(i) != 0: v = sum([word_embeddings.get(w, np.zeros((100,))) for w in i.split()]) / ( len(i.split()) + 0.001 ) else: v = np.zeros((100,)) sentence_vectors.append(v) def compute_PageRank(G, beta=0.85, epsilon=10 ** -4): """ Efficient computation of the PageRank values using a sparse adjacency matrix and the iterative power method. Parameters ---------- G : boolean adjacency matrix. np.bool8 If the element j,i is True, means that there is a link from i to j. beta: 1-teleportation probability. epsilon: stop condition. Minimum allowed amount of change in the PageRanks between iterations. Returns ------- output : tuple PageRank array normalized top one. Number of iterations. """ # Test adjacency matrix is OK n, _ = G.shape assert G.shape == (n, n) # Constants Speed-UP # deg_out_beta = G.sum(axis=0).T deg_out_beta = ( G.sum(axis=0).T + np.array([[0.0001] for x in np.arange(len(G.sum(axis=0).T))]) ) / beta # vector deg_out_beta = np.array(deg_out_beta, dtype=np.float64) # Initialize ranks = np.ones((n, 1)) / n # vector time = 0 flag = True while flag and time < 5: time += 1 with np.errstate( divide="ignore", invalid="ignore" ): # Ignore division by 0 on ranks/deg_out_beta ranks = np.array(ranks, dtype=np.float64) new_ranks = G.dot((ranks / deg_out_beta)) # vector # Leaked PageRank new_ranks += (1 - new_ranks.sum()) / n # Stop condition if np.linalg.norm(ranks - new_ranks, ord=1) <= epsilon: flag = False ranks = new_ranks return {k: v.item(0) for k, v in enumerate(ranks)} A = np.matrix(sentence_vectors) dist = cosine_similarity(A) try: nx_graph = nx.from_numpy_array(dist) except: pass mat = nx.adjacency_matrix(nx_graph) try: scores = compute_PageRank(mat) except: return [] ranked_sentences = sorted( ((scores[i], s) for i, s in enumerate(sentences)), reverse=True ) return [ranked_sentences[i][1] for i in range(1)]
[ 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 1908, 62, 30001, 1096, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 8615, 500, 62, 38610, 414, 198, 11748, 551, 62, 7295, 69, 62, 75, 70, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 21283, 79, 796, 551, 62, 7295, 69, 62, 75, 70, 13, 2220, 3419, 198, 198, 2, 13532, 1303, 198, 198, 20521, 12083, 62, 6978, 796, 366, 40720, 40720, 7890, 14, 20521, 67, 654, 30487, 198, 198, 2, 2708, 15676, 7509, 1303, 628, 198, 4299, 651, 62, 20521, 67, 654, 33529, 198, 220, 220, 220, 13538, 15931, 15931, 628, 220, 220, 220, 1303, 29677, 1573, 30104, 198, 220, 220, 220, 1573, 62, 20521, 67, 654, 796, 23884, 198, 220, 220, 220, 277, 796, 1280, 7, 20521, 12083, 62, 6978, 1343, 366, 4743, 659, 13, 21, 33, 13, 3064, 67, 13, 14116, 1600, 21004, 2625, 40477, 12, 23, 4943, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 3815, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 82, 796, 45941, 13, 292, 18747, 7, 27160, 58, 16, 25, 4357, 288, 4906, 2625, 22468, 2624, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 20521, 67, 654, 58, 4775, 60, 796, 763, 891, 82, 198, 220, 220, 220, 277, 13, 19836, 3419, 628, 220, 220, 220, 1441, 1573, 62, 20521, 67, 654, 628, 198, 4299, 15676, 786, 62, 7217, 7, 20205, 11, 299, 28, 18, 2599, 198, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 1303, 10568, 763, 12, 35790, 2428, 198, 220, 220, 220, 23163, 796, 299, 34431, 7, 20205, 737, 44807, 7295, 69, 62, 565, 13654, 628, 220, 220, 220, 611, 318, 39098, 7, 565, 13654, 11, 2099, 7, 14202, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 62, 11600, 796, 23884, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23163, 796, 8106, 7, 14202, 11, 23163, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 62, 11600, 796, 1391, 2536, 7, 72, 58, 16, 60, 2599, 965, 7, 72, 58, 15, 12962, 329, 1312, 287, 23163, 92, 628, 220, 220, 220, 329, 479, 11, 410, 287, 1007, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2708, 796, 2708, 13, 33491, 7, 74, 11, 410, 8, 628, 220, 220, 220, 13439, 796, 1908, 62, 30001, 1096, 7, 20205, 8, 628, 220, 220, 220, 1441, 13439, 58, 25, 77, 60, 628, 198, 4299, 15676, 786, 7, 20205, 11, 1573, 62, 20521, 67, 654, 2599, 198, 220, 220, 220, 13538, 15931, 15931, 628, 220, 220, 220, 13439, 796, 17635, 628, 220, 220, 220, 1303, 10568, 763, 12, 35790, 2428, 198, 220, 220, 220, 23163, 796, 299, 34431, 7, 20205, 737, 44807, 7295, 69, 62, 565, 13654, 628, 220, 220, 220, 611, 2099, 7, 565, 13654, 8, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 62, 11600, 796, 23884, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1007, 62, 11600, 796, 1391, 2536, 7, 72, 58, 16, 60, 2599, 965, 7, 72, 58, 15, 12962, 329, 1312, 287, 23163, 92, 628, 220, 220, 220, 329, 479, 11, 410, 287, 1007, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2708, 796, 2708, 13, 33491, 7, 74, 11, 410, 8, 628, 220, 220, 220, 13439, 13, 33295, 7, 34086, 62, 30001, 1096, 7, 20205, 4008, 628, 220, 220, 220, 13439, 796, 685, 88, 329, 2124, 287, 13439, 329, 331, 287, 2124, 60, 220, 1303, 27172, 268, 1351, 628, 220, 220, 220, 1303, 4781, 21025, 6055, 11, 3146, 290, 2041, 3435, 628, 220, 220, 220, 611, 18896, 7, 34086, 3007, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3424, 62, 34086, 3007, 796, 279, 67, 13, 27996, 7, 34086, 3007, 737, 2536, 13, 33491, 7203, 58, 61, 64, 12, 89, 32, 12, 57, 60, 1600, 366, 366, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 1303, 787, 435, 746, 397, 1039, 2793, 7442, 198, 220, 220, 220, 3424, 62, 34086, 3007, 796, 685, 82, 13, 21037, 3419, 329, 264, 287, 3424, 62, 34086, 3007, 60, 628, 220, 220, 220, 2245, 62, 10879, 796, 2245, 10879, 13, 10879, 7203, 39126, 4943, 628, 220, 220, 220, 1303, 2163, 284, 4781, 2245, 10879, 628, 220, 220, 220, 1303, 4781, 2245, 10879, 422, 262, 13439, 198, 220, 220, 220, 3424, 62, 34086, 3007, 796, 685, 28956, 62, 11338, 10879, 7, 81, 13, 35312, 28955, 329, 374, 287, 3424, 62, 34086, 3007, 60, 628, 220, 220, 220, 6827, 62, 303, 5217, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 3424, 62, 34086, 3007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 72, 8, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 2160, 26933, 4775, 62, 20521, 67, 654, 13, 1136, 7, 86, 11, 45941, 13, 9107, 418, 19510, 3064, 11, 22305, 329, 266, 287, 1312, 13, 35312, 3419, 12962, 1220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 72, 13, 35312, 28955, 1343, 657, 13, 8298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 796, 45941, 13, 9107, 418, 19510, 3064, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 6827, 62, 303, 5217, 13, 33295, 7, 85, 8, 628, 220, 220, 220, 825, 24061, 62, 9876, 27520, 7, 38, 11, 12159, 28, 15, 13, 5332, 11, 304, 862, 33576, 28, 940, 12429, 532, 19, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 412, 5632, 29964, 286, 262, 7873, 27520, 3815, 1262, 257, 29877, 9224, 330, 1387, 220, 198, 220, 220, 220, 220, 220, 220, 220, 17593, 290, 262, 11629, 876, 1176, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 402, 1058, 25131, 9224, 330, 1387, 17593, 13, 45941, 13, 30388, 23, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 5002, 474, 11, 72, 318, 6407, 11, 1724, 326, 612, 318, 257, 2792, 422, 1312, 284, 474, 13, 198, 220, 220, 220, 220, 220, 220, 220, 12159, 25, 352, 12, 46813, 10189, 12867, 13, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 33576, 25, 2245, 4006, 13, 26265, 3142, 2033, 286, 1487, 287, 262, 7873, 49, 2283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1022, 34820, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7873, 27520, 7177, 39279, 1353, 530, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 34820, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 9224, 330, 1387, 17593, 318, 7477, 198, 220, 220, 220, 220, 220, 220, 220, 299, 11, 4808, 796, 402, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 402, 13, 43358, 6624, 357, 77, 11, 299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4757, 1187, 8729, 12, 8577, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3396, 62, 448, 62, 31361, 796, 402, 13, 16345, 7, 22704, 28, 15, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 3396, 62, 448, 62, 31361, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 13, 16345, 7, 22704, 28, 15, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 45941, 13, 18747, 26933, 58, 15, 13, 18005, 60, 329, 2124, 287, 45941, 13, 283, 858, 7, 11925, 7, 38, 13, 16345, 7, 22704, 28, 15, 737, 51, 4008, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 1220, 12159, 220, 1303, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 3396, 62, 448, 62, 31361, 796, 45941, 13, 18747, 7, 13500, 62, 448, 62, 31361, 11, 288, 4906, 28, 37659, 13, 22468, 2414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 198, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 1952, 19510, 77, 11, 352, 4008, 1220, 299, 220, 1303, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6056, 290, 640, 1279, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 45941, 13, 8056, 5219, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14083, 2625, 46430, 1600, 12515, 2625, 46430, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 220, 1303, 41032, 7297, 416, 657, 319, 9803, 14, 13500, 62, 448, 62, 31361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 18747, 7, 81, 2283, 11, 288, 4906, 28, 37659, 13, 22468, 2414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 81, 2283, 796, 402, 13, 26518, 19510, 81, 2283, 1220, 3396, 62, 448, 62, 31361, 4008, 220, 1303, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1004, 4335, 7873, 27520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 81, 2283, 15853, 357, 16, 532, 649, 62, 81, 2283, 13, 16345, 28955, 1220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13707, 4006, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 75, 1292, 70, 13, 27237, 7, 81, 2283, 532, 649, 62, 81, 2283, 11, 2760, 28, 16, 8, 19841, 304, 862, 33576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6056, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 649, 62, 81, 2283, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 74, 25, 410, 13, 9186, 7, 15, 8, 329, 479, 11, 410, 287, 27056, 378, 7, 81, 2283, 38165, 628, 220, 220, 220, 317, 796, 45941, 13, 6759, 8609, 7, 34086, 594, 62, 303, 5217, 8, 198, 220, 220, 220, 1233, 796, 8615, 500, 62, 38610, 414, 7, 32, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 87, 62, 34960, 796, 299, 87, 13, 6738, 62, 77, 32152, 62, 18747, 7, 17080, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 2603, 796, 299, 87, 13, 324, 30482, 1387, 62, 6759, 8609, 7, 77, 87, 62, 34960, 8, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 24061, 62, 9876, 27520, 7, 6759, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 198, 220, 220, 220, 10307, 62, 34086, 3007, 796, 23243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 14808, 1416, 2850, 58, 72, 4357, 264, 8, 329, 1312, 11, 264, 287, 27056, 378, 7, 34086, 3007, 36911, 9575, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 685, 28282, 62, 34086, 3007, 58, 72, 7131, 16, 60, 329, 1312, 287, 2837, 7, 16, 15437, 198 ]
2.205276
2,085
import cv2 import keras import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from .base import EdgeDetector # Size of the edge mask matrix TARGET_IMAGE_SIZE = 256 class UNetEdgeDetector(EdgeDetector): """ EdgeDetector implementation which uses the UNet deep learning architecture to detect document edges. Reference model: https://github.com/zhixuhao/unet """ def load_model(self, model_path): """ Load the given keras model, saved in the .h5 format. """ self.model.load_weights(model_path) self.is_model_loaded = True def evaluate(self, image): """ Evaluate the given image, extracting the edges and returning a 256x256 mask of them. """ assert self.is_model_loaded # Resize the image to the standard 256x256 input size resized_image = cv2.resize(image, (TARGET_IMAGE_SIZE, TARGET_IMAGE_SIZE)) # Convert the input image to float and move it to the 0-1 range float_image = resized_image.astype("float32") / 255 # Add a new dimension, needed to feed the neural network input_image = float_image.reshape(1, TARGET_IMAGE_SIZE, TARGET_IMAGE_SIZE, 3) # Feed the model and reshape the given result predicted_mask = self.model.predict(input_image).reshape(TARGET_IMAGE_SIZE, TARGET_IMAGE_SIZE) # Convert the map to uint8 type and change range to 0-255 uint_mask = (predicted_mask * (255/np.max(predicted_mask))).astype("uint8") return uint_mask
[ 11748, 269, 85, 17, 198, 11748, 41927, 292, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 41927, 292, 13, 27530, 1330, 1635, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 1635, 198, 6738, 41927, 292, 13, 40085, 11341, 1330, 1635, 198, 198, 6738, 764, 8692, 1330, 13113, 11242, 9250, 198, 198, 2, 12849, 286, 262, 5743, 9335, 17593, 198, 51, 46095, 62, 3955, 11879, 62, 33489, 796, 17759, 198, 198, 4871, 4725, 316, 37021, 11242, 9250, 7, 37021, 11242, 9250, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13113, 11242, 9250, 7822, 543, 3544, 262, 4725, 316, 2769, 4673, 10959, 198, 220, 220, 220, 284, 4886, 3188, 13015, 13, 628, 220, 220, 220, 20984, 2746, 25, 3740, 1378, 12567, 13, 785, 14, 23548, 844, 84, 23778, 14, 403, 316, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 3440, 62, 19849, 7, 944, 11, 2746, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8778, 262, 1813, 41927, 292, 2746, 11, 7448, 287, 262, 764, 71, 20, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 13, 2220, 62, 43775, 7, 19849, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 271, 62, 19849, 62, 14578, 796, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 13446, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26439, 4985, 262, 1813, 2939, 11, 37895, 262, 13015, 290, 8024, 257, 17759, 87, 11645, 9335, 286, 606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2116, 13, 271, 62, 19849, 62, 14578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 262, 2939, 284, 262, 3210, 17759, 87, 11645, 5128, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1143, 62, 9060, 796, 269, 85, 17, 13, 411, 1096, 7, 9060, 11, 357, 51, 46095, 62, 3955, 11879, 62, 33489, 11, 309, 46095, 62, 3955, 11879, 62, 33489, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 5128, 2939, 284, 12178, 290, 1445, 340, 284, 262, 657, 12, 16, 2837, 198, 220, 220, 220, 220, 220, 220, 220, 12178, 62, 9060, 796, 581, 1143, 62, 9060, 13, 459, 2981, 7203, 22468, 2624, 4943, 1220, 14280, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 257, 649, 15793, 11, 2622, 284, 3745, 262, 17019, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 9060, 796, 12178, 62, 9060, 13, 3447, 1758, 7, 16, 11, 309, 46095, 62, 3955, 11879, 62, 33489, 11, 309, 46095, 62, 3955, 11879, 62, 33489, 11, 513, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 18272, 262, 2746, 290, 27179, 1758, 262, 1813, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 27932, 796, 2116, 13, 19849, 13, 79, 17407, 7, 15414, 62, 9060, 737, 3447, 1758, 7, 51, 46095, 62, 3955, 11879, 62, 33489, 11, 309, 46095, 62, 3955, 11879, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 3975, 284, 20398, 23, 2099, 290, 1487, 2837, 284, 657, 12, 13381, 198, 220, 220, 220, 220, 220, 220, 220, 20398, 62, 27932, 796, 357, 28764, 5722, 62, 27932, 1635, 357, 13381, 14, 37659, 13, 9806, 7, 28764, 5722, 62, 27932, 4008, 737, 459, 2981, 7203, 28611, 23, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 20398, 62, 27932, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.553628
634
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # # CDS-ILS is free software; you can redistribute it and/or modify it under # the terms of the MIT License; see LICENSE file for more details. """CDS-ILS migrator module.""" from cds_dojson.overdo import OverdoBase serial_marc21 = OverdoBase(entry_point_models="cds_ils.migrator.serial_model") journal_marc21 = OverdoBase( entry_point_models="cds_ils.migrator.journal_model" ) multipart_marc21 = OverdoBase( entry_point_models="cds_ils.migrator.multipart_model" )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 12131, 327, 28778, 13, 198, 2, 198, 2, 327, 5258, 12, 45484, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 198, 2, 262, 2846, 286, 262, 17168, 13789, 26, 766, 38559, 24290, 2393, 329, 517, 3307, 13, 198, 198, 37811, 34, 5258, 12, 45484, 15720, 1352, 8265, 526, 15931, 198, 6738, 269, 9310, 62, 4598, 17752, 13, 2502, 4598, 1330, 3827, 4598, 14881, 198, 198, 46911, 62, 3876, 66, 2481, 796, 3827, 4598, 14881, 7, 13000, 62, 4122, 62, 27530, 2625, 66, 9310, 62, 4487, 13, 76, 3692, 1352, 13, 46911, 62, 19849, 4943, 198, 24891, 62, 3876, 66, 2481, 796, 3827, 4598, 14881, 7, 198, 220, 220, 220, 5726, 62, 4122, 62, 27530, 2625, 66, 9310, 62, 4487, 13, 76, 3692, 1352, 13, 24891, 62, 19849, 1, 198, 8, 198, 16680, 541, 433, 62, 3876, 66, 2481, 796, 3827, 4598, 14881, 7, 198, 220, 220, 220, 5726, 62, 4122, 62, 27530, 2625, 66, 9310, 62, 4487, 13, 76, 3692, 1352, 13, 16680, 541, 433, 62, 19849, 1, 198, 8, 198 ]
2.653266
199
import connexion import six from papahana.models.instrument_enum import InstrumentEnum from papahana.models.instrument_package import InstrumentPackage from papahana import util from papahana.controllers import controller_helper as utils def instrument_packages(instrument): """instrument_packages Retrieves the the available instrument packages for an instrument. :param instrument: instrument used to make observation :type instrument: str :rtype: [InstrumentPackage] """ if connexion.request.is_json: instrument = InstrumentEnum.from_dict(connexion.request.get_json()) query = {'instrument': instrument} return utils.get_by_query(query, 'templateCollect') def instrument_packages_ip_parameter(instrument, ip_version): """ List all template parameters that can be attached to OBs using this instrument package :param instrument: instrument used to make observation :type instrument: str :param ip_version: ip version description here :type ip_version: float :rtype: InstrumentPackage """ if connexion.request.is_json: instrument = InstrumentEnum.from_dict(connexion.request.get_json()) query = {"instrument": instrument, "version": ip_version} fields ={"_id": 0, "optical_parameters": 1, "guider": 1, "common_inst_params": 1, "pointing_origins": 1} return utils.get_fields_by_query(query, fields, 'ipCollect') def instrument_packages_ip_template(instrument, ip_version, template_name=None): """ Retrieves the specified instrument package template metadata :param instrument: instrument used to make observation :type instrument: str :param ip_version: ip version description here :type ip_version: float :param template_name: template name description goes here :type template_name: str :rtype: InstrumentPackage """ # if connexion.request.is_json: # instrument = InstrumentEnum.from_dict(connexion.request.get_json()) if template_name: return {template_name: get_template_metadata(template_name, ip_version)} query = {"instrument": instrument.upper(), "version": ip_version} fields = {"template_names": 1, "_id": 0} templates = utils.get_fields_by_query(query, fields, 'ipCollect') metadata = {} for template_name in templates["template_names"]: metadata[template_name] = get_template_metadata(template_name, ip_version) return metadata
[ 11748, 369, 12413, 295, 198, 11748, 2237, 198, 198, 6738, 20461, 993, 2271, 13, 27530, 13, 259, 43872, 62, 44709, 1330, 42410, 4834, 388, 198, 6738, 20461, 993, 2271, 13, 27530, 13, 259, 43872, 62, 26495, 1330, 42410, 27813, 198, 6738, 20461, 993, 2271, 1330, 7736, 198, 198, 6738, 20461, 993, 2271, 13, 3642, 36667, 1330, 10444, 62, 2978, 525, 355, 3384, 4487, 628, 198, 4299, 8875, 62, 43789, 7, 259, 43872, 2599, 198, 220, 220, 220, 37227, 259, 43872, 62, 43789, 628, 220, 220, 220, 4990, 5034, 1158, 262, 262, 1695, 8875, 10392, 329, 281, 8875, 13, 628, 220, 220, 220, 1058, 17143, 8875, 25, 8875, 973, 284, 787, 13432, 198, 220, 220, 220, 1058, 4906, 8875, 25, 965, 628, 220, 220, 220, 1058, 81, 4906, 25, 685, 818, 43872, 27813, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 369, 12413, 295, 13, 25927, 13, 271, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8875, 796, 42410, 4834, 388, 13, 6738, 62, 11600, 7, 1102, 12413, 295, 13, 25927, 13, 1136, 62, 17752, 28955, 628, 220, 220, 220, 12405, 796, 1391, 6, 259, 43872, 10354, 8875, 92, 628, 220, 220, 220, 1441, 3384, 4487, 13, 1136, 62, 1525, 62, 22766, 7, 22766, 11, 705, 28243, 31337, 11537, 628, 198, 4299, 8875, 62, 43789, 62, 541, 62, 17143, 2357, 7, 259, 43872, 11, 20966, 62, 9641, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7343, 477, 11055, 10007, 326, 460, 307, 7223, 284, 25334, 82, 1262, 428, 198, 220, 220, 220, 8875, 5301, 628, 220, 220, 220, 1058, 17143, 8875, 25, 8875, 973, 284, 787, 13432, 198, 220, 220, 220, 1058, 4906, 8875, 25, 965, 198, 220, 220, 220, 1058, 17143, 20966, 62, 9641, 25, 20966, 2196, 6764, 994, 198, 220, 220, 220, 1058, 4906, 20966, 62, 9641, 25, 12178, 628, 220, 220, 220, 1058, 81, 4906, 25, 42410, 27813, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 369, 12413, 295, 13, 25927, 13, 271, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8875, 796, 42410, 4834, 388, 13, 6738, 62, 11600, 7, 1102, 12413, 295, 13, 25927, 13, 1136, 62, 17752, 28955, 628, 220, 220, 220, 12405, 796, 19779, 259, 43872, 1298, 8875, 11, 366, 9641, 1298, 20966, 62, 9641, 92, 198, 220, 220, 220, 7032, 796, 4895, 62, 312, 1298, 657, 11, 366, 8738, 605, 62, 17143, 7307, 1298, 352, 11, 366, 5162, 1304, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11321, 62, 8625, 62, 37266, 1298, 352, 11, 366, 4122, 278, 62, 11612, 1040, 1298, 352, 92, 628, 220, 220, 220, 1441, 3384, 4487, 13, 1136, 62, 25747, 62, 1525, 62, 22766, 7, 22766, 11, 7032, 11, 705, 541, 31337, 11537, 628, 198, 4299, 8875, 62, 43789, 62, 541, 62, 28243, 7, 259, 43872, 11, 20966, 62, 9641, 11, 11055, 62, 3672, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4990, 5034, 1158, 262, 7368, 8875, 5301, 11055, 20150, 628, 220, 220, 220, 1058, 17143, 8875, 25, 8875, 973, 284, 787, 13432, 198, 220, 220, 220, 1058, 4906, 8875, 25, 965, 198, 220, 220, 220, 1058, 17143, 20966, 62, 9641, 25, 20966, 2196, 6764, 994, 198, 220, 220, 220, 1058, 4906, 20966, 62, 9641, 25, 12178, 198, 220, 220, 220, 1058, 17143, 11055, 62, 3672, 25, 11055, 1438, 6764, 2925, 994, 198, 220, 220, 220, 1058, 4906, 11055, 62, 3672, 25, 965, 628, 220, 220, 220, 1058, 81, 4906, 25, 42410, 27813, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 611, 369, 12413, 295, 13, 25927, 13, 271, 62, 17752, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 8875, 796, 42410, 4834, 388, 13, 6738, 62, 11600, 7, 1102, 12413, 295, 13, 25927, 13, 1136, 62, 17752, 28955, 628, 220, 220, 220, 611, 11055, 62, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 28243, 62, 3672, 25, 651, 62, 28243, 62, 38993, 7, 28243, 62, 3672, 11, 20966, 62, 9641, 38165, 628, 220, 220, 220, 12405, 796, 19779, 259, 43872, 1298, 8875, 13, 45828, 22784, 366, 9641, 1298, 20966, 62, 9641, 92, 198, 220, 220, 220, 7032, 796, 19779, 28243, 62, 14933, 1298, 352, 11, 45434, 312, 1298, 657, 92, 198, 220, 220, 220, 24019, 796, 3384, 4487, 13, 1136, 62, 25747, 62, 1525, 62, 22766, 7, 22766, 11, 7032, 11, 705, 541, 31337, 11537, 628, 220, 220, 220, 20150, 796, 23884, 198, 220, 220, 220, 329, 11055, 62, 3672, 287, 24019, 14692, 28243, 62, 14933, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 58, 28243, 62, 3672, 60, 796, 651, 62, 28243, 62, 38993, 7, 28243, 62, 3672, 11, 20966, 62, 9641, 8, 628, 220, 220, 220, 1441, 20150, 198 ]
3.087282
802
from collections import OrderedDict import torch from torchvision import models from torchvision.ops import FeaturePyramidNetwork from dvmvs.config import Config from dvmvs.convlstm import MVSLayernormConvLSTMCell from dvmvs.layers import conv_layer, depth_layer_3x3 fpn_output_channels = 32 hyper_channels = 32
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 198, 11748, 28034, 198, 6738, 28034, 10178, 1330, 4981, 198, 6738, 28034, 10178, 13, 2840, 1330, 27018, 20519, 20255, 26245, 198, 198, 6738, 288, 14761, 14259, 13, 11250, 1330, 17056, 198, 6738, 288, 14761, 14259, 13, 1102, 19279, 301, 76, 1330, 32947, 8634, 323, 1142, 579, 3103, 85, 43, 2257, 9655, 695, 198, 6738, 288, 14761, 14259, 13, 75, 6962, 1330, 3063, 62, 29289, 11, 6795, 62, 29289, 62, 18, 87, 18, 198, 198, 69, 21999, 62, 22915, 62, 354, 8961, 796, 3933, 198, 49229, 62, 354, 8961, 796, 3933, 628, 628, 628, 628, 628, 198 ]
3.125
104
#!/usr/bin/python from fabric.operations import local as lrun, run from fabric.api import env,cd,run,settings,task from fabric.colors import cyan,red import sys # Usage for VXML -> fab domain_vxml -H <hostname> # Usage for VCS -> fab domain_vcs -H <hostname> env.user = 'root' # Take the host name argument and split it to get the data center. host=sys.argv[3] dc=host.split('.') # VXML use fab domain_vxml -H <hostname> # Function to compare the dc value and execute the function to move to appropiate meter server. # One of the following functions will be executed based off the condition above. # Take the host name argument and split it to get the data center. #host=sys.argv[3] #dc=host.split('.') # VCS : Use fab domain_vcs -H <hostname> # Function to compare the dc value and execute the function to move to appropiate meter server. # One of the following functions will be executed based off the condition above.
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 6738, 9664, 13, 3575, 602, 1330, 1957, 355, 300, 5143, 11, 1057, 198, 6738, 9664, 13, 15042, 1330, 17365, 11, 10210, 11, 5143, 11, 33692, 11, 35943, 198, 6738, 9664, 13, 4033, 669, 1330, 36818, 11, 445, 198, 11748, 25064, 198, 2, 29566, 329, 569, 55, 5805, 4613, 7843, 7386, 62, 85, 19875, 532, 39, 1279, 4774, 3672, 29, 198, 2, 29566, 329, 569, 7902, 4613, 7843, 7386, 62, 85, 6359, 532, 39, 1279, 4774, 3672, 29, 198, 24330, 13, 7220, 796, 705, 15763, 6, 198, 2, 7214, 262, 2583, 1438, 4578, 290, 6626, 340, 284, 651, 262, 1366, 3641, 13, 198, 4774, 28, 17597, 13, 853, 85, 58, 18, 60, 198, 17896, 28, 4774, 13, 35312, 10786, 2637, 8, 198, 2, 569, 55, 5805, 779, 7843, 7386, 62, 85, 19875, 532, 39, 1279, 4774, 3672, 29, 198, 2, 15553, 284, 8996, 262, 30736, 1988, 290, 12260, 262, 2163, 284, 1445, 284, 1331, 79, 9386, 16430, 4382, 13, 198, 2, 1881, 286, 262, 1708, 5499, 481, 307, 10945, 1912, 572, 262, 4006, 2029, 13, 628, 198, 198, 2, 7214, 262, 2583, 1438, 4578, 290, 6626, 340, 284, 651, 262, 1366, 3641, 13, 198, 2, 4774, 28, 17597, 13, 853, 85, 58, 18, 60, 198, 2, 17896, 28, 4774, 13, 35312, 10786, 2637, 8, 198, 2, 569, 7902, 1058, 5765, 7843, 7386, 62, 85, 6359, 532, 39, 1279, 4774, 3672, 29, 198, 2, 15553, 284, 8996, 262, 30736, 1988, 290, 12260, 262, 2163, 284, 1445, 284, 1331, 79, 9386, 16430, 4382, 13, 198, 2, 1881, 286, 262, 1708, 5499, 481, 307, 10945, 1912, 572, 262, 4006, 2029, 13, 628, 628, 198 ]
3.338129
278
import sympy as sy from scipy import signal
[ 11748, 10558, 88, 355, 827, 198, 6738, 629, 541, 88, 1330, 6737, 198 ]
3.384615
13
from .question import Question from .matcher import Matcher see_that = Condition
[ 6738, 764, 25652, 1330, 18233, 198, 6738, 764, 6759, 2044, 1330, 6550, 2044, 628, 198, 198, 3826, 62, 5562, 796, 24295, 198 ]
3.818182
22
# from clld.web.util.helpers import rendered_sentence
[ 2, 198, 6738, 269, 297, 67, 13, 12384, 13, 22602, 13, 16794, 364, 1330, 15111, 62, 34086, 594 ]
2.944444
18
from __future__ import absolute_import from django import template from django.template.loader import render_to_string from alacarte import get_menus register = template.Library() @register.tag
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 198, 6738, 435, 330, 32074, 1330, 651, 62, 3653, 385, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 198, 31, 30238, 13, 12985, 198 ]
3.571429
56
from .base import CallbackEngine, Callback from . import essentials from . import scheduling
[ 6738, 764, 8692, 1330, 4889, 1891, 13798, 11, 4889, 1891, 198, 6738, 764, 1330, 41954, 198, 6738, 764, 1330, 26925 ]
4.6
20