content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
# -*- coding: utf-8 -*-
"""Data fetching utility for USDA datasets.
This module provides the primary support functions for downloading datasets from
a text file. Each line in the text file is expected to be a complete URL. Lines
that begin with '#' are ignored.
Example:
This module can be run directly with the following arguments:
$ python -m project01.fetch path/to/uri.txt output/dir
The URIs listed in the file path/to/uri.txt will be Files will be saved to output/dir.
If no arguments are specified, they defaults (./uri.txt, and ./dataset)
"""
import os
import sys
import requests
import tempfile
import zipfile
def cli():
"""Creates a CLI parser
Returns:
argparse.ArgumentParser: An Argument Parser configured to support the
fetcher class.
"""
import argparse
parser = argparse.ArgumentParser("Fetch datasets")
parser.add_argument("urifile", nargs="?",
default="uri.txt",
help="Path to file containing URIs to download.")
parser.add_argument("outdir", nargs="?",
default="dataset",
help="Path to a directory to output the files.")
return parser
if __name__ == "__main__":
config = cli().parse_args()
main(uri_file=config.urifile, out=config.outdir)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
6601,
21207,
278,
10361,
329,
29986,
40522,
13,
198,
198,
1212,
8265,
3769,
262,
4165,
1104,
5499,
329,
22023,
40522,
422,
198,
64,
2420,
2393,
13,
220,
5501,
1627,
287,
262,
2420,
2393,
318,
2938,
284,
307,
257,
1844,
10289,
13,
220,
26299,
198,
5562,
2221,
351,
705,
2,
6,
389,
9514,
13,
198,
198,
16281,
25,
628,
220,
220,
220,
770,
8265,
460,
307,
1057,
3264,
351,
262,
1708,
7159,
25,
198,
220,
220,
220,
220,
198,
220,
220,
220,
720,
21015,
532,
76,
1628,
486,
13,
69,
7569,
3108,
14,
1462,
14,
9900,
13,
14116,
5072,
14,
15908,
628,
220,
220,
220,
383,
37902,
3792,
5610,
287,
262,
2393,
3108,
14,
1462,
14,
9900,
13,
14116,
481,
307,
13283,
481,
307,
7448,
284,
5072,
14,
15908,
13,
628,
220,
220,
220,
1002,
645,
7159,
389,
7368,
11,
484,
26235,
357,
19571,
9900,
13,
14116,
11,
290,
24457,
19608,
292,
316,
8,
198,
37811,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
198,
11748,
7007,
198,
11748,
20218,
7753,
198,
11748,
19974,
7753,
628,
198,
198,
4299,
537,
72,
33529,
198,
220,
220,
220,
37227,
16719,
274,
257,
43749,
30751,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1822,
29572,
13,
28100,
1713,
46677,
25,
1052,
45751,
23042,
263,
17839,
284,
1104,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11351,
2044,
1398,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1330,
1822,
29572,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7203,
37,
7569,
40522,
4943,
628,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
333,
361,
576,
1600,
299,
22046,
2625,
35379,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
9900,
13,
14116,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15235,
284,
2393,
7268,
37902,
3792,
284,
4321,
19570,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
7203,
448,
15908,
1600,
299,
22046,
2625,
35379,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
19608,
292,
316,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
15235,
284,
257,
8619,
284,
5072,
262,
3696,
19570,
198,
220,
220,
220,
1441,
30751,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
4566,
796,
537,
72,
22446,
29572,
62,
22046,
3419,
198,
220,
220,
220,
1388,
7,
9900,
62,
7753,
28,
11250,
13,
333,
361,
576,
11,
503,
28,
11250,
13,
448,
15908,
8,
198
] | 2.693227 | 502 |
from feeds.alltests.feeds_tests import * | [
6738,
21318,
13,
439,
41989,
13,
12363,
82,
62,
41989,
1330,
1635
] | 3.333333 | 12 |
import numpy as np
import pylab
from scipy import sparse
import regreg.api as rr
Y = np.random.standard_normal(500); Y[100:150] += 7; Y[250:300] += 14
loss = rr.quadratic.shift(-Y, coef=0.5)
sparsity = rr.l1norm(len(Y), 1.4)
# TODO should make a module to compute typical Ds
D = sparse.csr_matrix((np.identity(500) + np.diag([-1]*499,k=1))[:-1])
fused = rr.l1norm.linear(D, 25.5)
problem = rr.container(loss, sparsity, fused)
solver = rr.FISTA(problem)
solver.fit(max_its=100)
solution = solver.composite.coefs
delta1 = np.fabs(D * solution).sum()
delta2 = np.fabs(solution).sum()
fused_constraint = rr.l1norm.linear(D, bound=delta1)
sparsity_constraint = rr.l1norm(500, bound=delta2)
constrained_problem = rr.container(loss, fused_constraint, sparsity_constraint)
constrained_solver = rr.FISTA(constrained_problem)
constrained_solver.composite.lipschitz = 1.01
vals = constrained_solver.fit(max_its=10, tol=1e-06, backtrack=False, monotonicity_restart=False)
constrained_solution = constrained_solver.composite.coefs
fused_constraint = rr.l1norm.linear(D, bound=delta1)
smoothed_fused_constraint = rr.smoothed_atom(fused_constraint, epsilon=1e-2)
smoothed_constrained_problem = rr.container(loss, smoothed_fused_constraint, sparsity_constraint)
smoothed_constrained_solver = rr.FISTA(smoothed_constrained_problem)
vals = smoothed_constrained_solver.fit(tol=1e-06)
smoothed_constrained_solution = smoothed_constrained_solver.composite.coefs
#pylab.clf()
pylab.scatter(np.arange(Y.shape[0]), Y,c='red', label=r'$Y$')
pylab.plot(solution, c='yellow', linewidth=5, label='Lagrange')
pylab.plot(constrained_solution, c='green', linewidth=3, label='Constrained')
pylab.plot(smoothed_constrained_solution, c='black', linewidth=1, label='Smoothed')
pylab.legend()
#pylab.plot(conjugate_coefs, c='black', linewidth=3)
#pylab.plot(conjugate_coefs_gen, c='gray', linewidth=1)
| [
11748,
299,
32152,
355,
45941,
198,
11748,
279,
2645,
397,
197,
198,
6738,
629,
541,
88,
1330,
29877,
198,
198,
11748,
842,
2301,
13,
15042,
355,
374,
81,
198,
198,
56,
796,
45941,
13,
25120,
13,
20307,
62,
11265,
7,
4059,
1776,
575,
58,
3064,
25,
8628,
60,
15853,
767,
26,
575,
58,
9031,
25,
6200,
60,
15853,
1478,
198,
22462,
796,
374,
81,
13,
421,
41909,
1512,
13,
30846,
32590,
56,
11,
763,
891,
28,
15,
13,
20,
8,
198,
198,
2777,
45826,
796,
374,
81,
13,
75,
16,
27237,
7,
11925,
7,
56,
828,
352,
13,
19,
8,
198,
2,
16926,
46,
815,
787,
257,
8265,
284,
24061,
7226,
360,
82,
198,
35,
796,
29877,
13,
6359,
81,
62,
6759,
8609,
19510,
37659,
13,
738,
414,
7,
4059,
8,
1343,
45941,
13,
10989,
363,
26933,
12,
16,
60,
9,
28324,
11,
74,
28,
16,
4008,
58,
21912,
16,
12962,
198,
69,
1484,
796,
374,
81,
13,
75,
16,
27237,
13,
29127,
7,
35,
11,
1679,
13,
20,
8,
198,
45573,
796,
374,
81,
13,
34924,
7,
22462,
11,
599,
45826,
11,
43954,
8,
198,
198,
82,
14375,
796,
374,
81,
13,
37,
1797,
5603,
7,
45573,
8,
198,
82,
14375,
13,
11147,
7,
9806,
62,
896,
28,
3064,
8,
198,
82,
2122,
796,
1540,
332,
13,
785,
1930,
578,
13,
1073,
891,
82,
198,
198,
67,
12514,
16,
796,
45941,
13,
69,
8937,
7,
35,
1635,
4610,
737,
16345,
3419,
198,
67,
12514,
17,
796,
45941,
13,
69,
8937,
7,
82,
2122,
737,
16345,
3419,
198,
198,
69,
1484,
62,
1102,
2536,
2913,
796,
374,
81,
13,
75,
16,
27237,
13,
29127,
7,
35,
11,
5421,
28,
67,
12514,
16,
8,
198,
2777,
45826,
62,
1102,
2536,
2913,
796,
374,
81,
13,
75,
16,
27237,
7,
4059,
11,
5421,
28,
67,
12514,
17,
8,
198,
198,
1102,
2536,
1328,
62,
45573,
796,
374,
81,
13,
34924,
7,
22462,
11,
43954,
62,
1102,
2536,
2913,
11,
599,
45826,
62,
1102,
2536,
2913,
8,
198,
1102,
2536,
1328,
62,
82,
14375,
796,
374,
81,
13,
37,
1797,
5603,
7,
1102,
2536,
1328,
62,
45573,
8,
198,
1102,
2536,
1328,
62,
82,
14375,
13,
785,
1930,
578,
13,
75,
2419,
354,
4224,
796,
352,
13,
486,
198,
12786,
796,
31070,
62,
82,
14375,
13,
11147,
7,
9806,
62,
896,
28,
940,
11,
284,
75,
28,
16,
68,
12,
3312,
11,
736,
11659,
28,
25101,
11,
937,
18970,
8467,
62,
2118,
433,
28,
25101,
8,
198,
1102,
2536,
1328,
62,
82,
2122,
796,
31070,
62,
82,
14375,
13,
785,
1930,
578,
13,
1073,
891,
82,
198,
198,
69,
1484,
62,
1102,
2536,
2913,
796,
374,
81,
13,
75,
16,
27237,
13,
29127,
7,
35,
11,
5421,
28,
67,
12514,
16,
8,
198,
5796,
1025,
704,
62,
69,
1484,
62,
1102,
2536,
2913,
796,
374,
81,
13,
5796,
1025,
704,
62,
37696,
7,
69,
1484,
62,
1102,
2536,
2913,
11,
304,
862,
33576,
28,
16,
68,
12,
17,
8,
198,
5796,
1025,
704,
62,
1102,
2536,
1328,
62,
45573,
796,
374,
81,
13,
34924,
7,
22462,
11,
32746,
704,
62,
69,
1484,
62,
1102,
2536,
2913,
11,
599,
45826,
62,
1102,
2536,
2913,
8,
198,
5796,
1025,
704,
62,
1102,
2536,
1328,
62,
82,
14375,
796,
374,
81,
13,
37,
1797,
5603,
7,
5796,
1025,
704,
62,
1102,
2536,
1328,
62,
45573,
8,
198,
12786,
796,
32746,
704,
62,
1102,
2536,
1328,
62,
82,
14375,
13,
11147,
7,
83,
349,
28,
16,
68,
12,
3312,
8,
198,
5796,
1025,
704,
62,
1102,
2536,
1328,
62,
82,
2122,
796,
32746,
704,
62,
1102,
2536,
1328,
62,
82,
14375,
13,
785,
1930,
578,
13,
1073,
891,
82,
198,
198,
2,
79,
2645,
397,
13,
565,
69,
3419,
198,
79,
2645,
397,
13,
1416,
1436,
7,
37659,
13,
283,
858,
7,
56,
13,
43358,
58,
15,
46570,
575,
11,
66,
11639,
445,
3256,
6167,
28,
81,
6,
3,
56,
3,
11537,
198,
79,
2645,
397,
13,
29487,
7,
82,
2122,
11,
269,
11639,
36022,
3256,
9493,
413,
5649,
28,
20,
11,
6167,
11639,
43,
363,
9521,
11537,
198,
79,
2645,
397,
13,
29487,
7,
1102,
2536,
1328,
62,
82,
2122,
11,
269,
11639,
14809,
3256,
9493,
413,
5649,
28,
18,
11,
6167,
11639,
3103,
2536,
1328,
11537,
198,
79,
2645,
397,
13,
29487,
7,
5796,
1025,
704,
62,
1102,
2536,
1328,
62,
82,
2122,
11,
269,
11639,
13424,
3256,
9493,
413,
5649,
28,
16,
11,
6167,
11639,
7556,
1025,
704,
11537,
198,
79,
2645,
397,
13,
1455,
437,
3419,
198,
2,
79,
2645,
397,
13,
29487,
7,
1102,
31761,
378,
62,
1073,
891,
82,
11,
269,
11639,
13424,
3256,
9493,
413,
5649,
28,
18,
8,
197,
198,
2,
79,
2645,
397,
13,
29487,
7,
1102,
31761,
378,
62,
1073,
891,
82,
62,
5235,
11,
269,
11639,
44605,
3256,
9493,
413,
5649,
28,
16,
8,
197,
197,
628
] | 2.318126 | 811 |
from typing import Dict
import aiohttp
from async_timeout import timeout
from openapi.testing import json_body
| [
6738,
19720,
1330,
360,
713,
198,
198,
11748,
257,
952,
4023,
198,
6738,
30351,
62,
48678,
1330,
26827,
198,
198,
6738,
1280,
15042,
13,
33407,
1330,
33918,
62,
2618,
628,
628,
628,
628,
628,
628,
628,
628
] | 3.459459 | 37 |
#!/usr/bin/env python
import os
import subprocess
TID_FILE = "src/tiddlers/system/plugins/security_tools/twsm.tid"
VERSION_FILE = "VERSION"
if __name__ == "__main__":
main() | [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
11748,
28686,
198,
11748,
850,
14681,
198,
198,
51,
2389,
62,
25664,
796,
366,
10677,
14,
83,
1638,
8116,
14,
10057,
14,
37390,
14,
12961,
62,
31391,
14,
4246,
5796,
13,
83,
312,
1,
198,
43717,
62,
25664,
796,
366,
43717,
1,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419
] | 2.594203 | 69 |
# coding=utf-8
"""
@author: oShine <[email protected]>
@link: https://github.com/ouyangjunqiu/ou.py
定时器,每隔一段时间执行一次
"""
import threading
| [
2,
19617,
28,
40477,
12,
23,
198,
37811,
198,
198,
31,
9800,
25,
267,
2484,
500,
1279,
726,
73,
80,
25404,
79,
31,
19420,
13,
785,
29,
198,
31,
8726,
25,
3740,
1378,
12567,
13,
785,
14,
280,
17859,
29741,
80,
16115,
14,
280,
13,
9078,
198,
22522,
248,
33768,
114,
161,
247,
101,
171,
120,
234,
162,
107,
237,
49694,
242,
31660,
162,
106,
113,
33768,
114,
29785,
112,
33699,
100,
26193,
234,
31660,
162,
105,
94,
198,
37811,
198,
198,
11748,
4704,
278,
628
] | 1.593023 | 86 |
for n in range(10):
print(n, factorial(n))
| [
198,
198,
1640,
299,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
3601,
7,
77,
11,
1109,
5132,
7,
77,
4008,
198
] | 2.130435 | 23 |
@set_log(1)
def test01():
"""
@super_set_func(1) 带有参数的装饰器,用来区分多个函数都被同一个装饰器装饰,用来区分函数
实现的原理是,把装饰器外边包上一层函数,带有参数
这种特殊的带有参数的装饰器,并不是直接test01 = set_log(1, test01)的,并非直接把函数名传递给set_log
1- @装饰器(参数) 会先**调用**set_log函数,把1当作实参进行传递,此时跟函数名没有关系,先调用带有参数的set_log函数
2- 把set_log函数的返回值,当作装饰器进行装饰,此时才是test01 = super_set_func(test01)
"""
print("----test01----没有参数,没有返回值")
@set_log(2)
class Log(object):
"""
类装饰器,装饰器加载在类上,不在是传统上的加载在方法上面
作用就是:不同于方法装饰器,类装饰器可以在被装饰的方法的前后添加多个自己类的实力方法进行装饰,self.xxx(),self.yyy()
1- @Log 等价于 Log(test03) 初始化Log的init方法,test03函数名作为参数传递
2- 此时test03就指向一个类对象,等test03()调用的时候,相当于调用了类中的call方法
"""
@Log
if __name__ == '__main__':
main()
| [
198,
198,
31,
2617,
62,
6404,
7,
16,
8,
198,
4299,
1332,
486,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2488,
16668,
62,
2617,
62,
20786,
7,
16,
8,
10263,
116,
99,
17312,
231,
20998,
224,
46763,
108,
21410,
35318,
165,
98,
108,
161,
247,
101,
171,
120,
234,
18796,
101,
30266,
98,
44293,
118,
26344,
228,
13783,
248,
10310,
103,
49035,
121,
46763,
108,
32849,
121,
164,
95,
104,
28938,
234,
31660,
10310,
103,
35318,
165,
98,
108,
161,
247,
101,
35318,
165,
98,
108,
171,
120,
234,
18796,
101,
30266,
98,
44293,
118,
26344,
228,
49035,
121,
46763,
108,
198,
220,
220,
220,
220,
220,
220,
220,
10263,
106,
252,
163,
236,
108,
21410,
43889,
253,
49426,
228,
42468,
171,
120,
234,
162,
232,
232,
35318,
165,
98,
108,
161,
247,
101,
13783,
244,
164,
122,
117,
44293,
227,
41468,
31660,
161,
109,
224,
49035,
121,
46763,
108,
171,
120,
234,
30585,
99,
17312,
231,
20998,
224,
46763,
108,
628,
220,
220,
220,
220,
220,
220,
220,
5525,
123,
247,
163,
100,
235,
31965,
117,
162,
106,
232,
21410,
30585,
99,
17312,
231,
20998,
224,
46763,
108,
21410,
35318,
165,
98,
108,
161,
247,
101,
171,
120,
234,
33176,
114,
38834,
42468,
33566,
112,
162,
236,
98,
9288,
486,
796,
900,
62,
6404,
7,
16,
11,
1332,
486,
8,
21410,
171,
120,
234,
33176,
114,
165,
251,
252,
33566,
112,
162,
236,
98,
162,
232,
232,
49035,
121,
46763,
108,
28938,
235,
27670,
254,
34460,
240,
163,
119,
247,
2617,
62,
6404,
198,
220,
220,
220,
220,
220,
220,
220,
352,
12,
2488,
35318,
165,
98,
108,
161,
247,
101,
7,
20998,
224,
46763,
108,
8,
220,
27670,
248,
17739,
230,
1174,
164,
108,
225,
18796,
101,
1174,
2617,
62,
6404,
49035,
121,
46763,
108,
171,
120,
234,
162,
232,
232,
16,
37605,
241,
43291,
22522,
252,
20998,
224,
32573,
249,
26193,
234,
27670,
254,
34460,
240,
171,
120,
234,
29826,
97,
33768,
114,
164,
115,
253,
49035,
121,
46763,
108,
28938,
235,
162,
110,
94,
17312,
231,
17739,
111,
163,
111,
119,
171,
120,
234,
17739,
42062,
108,
225,
18796,
101,
30585,
99,
17312,
231,
20998,
224,
46763,
108,
21410,
2617,
62,
6404,
49035,
121,
46763,
108,
198,
220,
220,
220,
220,
220,
220,
220,
362,
12,
10545,
232,
232,
2617,
62,
6404,
49035,
121,
46763,
108,
21410,
32573,
242,
32368,
252,
161,
222,
120,
171,
120,
234,
37605,
241,
43291,
35318,
165,
98,
108,
161,
247,
101,
32573,
249,
26193,
234,
35318,
165,
98,
108,
171,
120,
234,
29826,
97,
33768,
114,
33699,
235,
42468,
9288,
486,
796,
2208,
62,
2617,
62,
20786,
7,
9288,
486,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
7203,
650,
9288,
486,
650,
162,
110,
94,
17312,
231,
20998,
224,
46763,
108,
171,
120,
234,
162,
110,
94,
17312,
231,
32573,
242,
32368,
252,
161,
222,
120,
4943,
628,
198,
31,
2617,
62,
6404,
7,
17,
8,
628,
198,
4871,
5972,
7,
15252,
2599,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13328,
109,
119,
35318,
165,
98,
108,
161,
247,
101,
171,
120,
234,
35318,
165,
98,
108,
161,
247,
101,
27950,
254,
164,
121,
121,
28839,
101,
163,
109,
119,
41468,
171,
120,
234,
38834,
28839,
101,
42468,
27670,
254,
163,
119,
253,
41468,
21410,
27950,
254,
164,
121,
121,
28839,
101,
43095,
37345,
243,
41468,
165,
251,
95,
198,
220,
220,
220,
220,
220,
220,
220,
220,
43291,
18796,
101,
22887,
109,
42468,
25,
38834,
28938,
234,
12859,
236,
43095,
37345,
243,
35318,
165,
98,
108,
161,
247,
101,
171,
120,
234,
163,
109,
119,
35318,
165,
98,
108,
161,
247,
101,
20998,
107,
20015,
98,
28839,
101,
164,
95,
104,
35318,
165,
98,
108,
21410,
43095,
37345,
243,
21410,
30298,
235,
28938,
236,
162,
115,
119,
27950,
254,
13783,
248,
10310,
103,
164,
229,
103,
32432,
109,
163,
109,
119,
21410,
22522,
252,
27950,
249,
43095,
37345,
243,
32573,
249,
26193,
234,
35318,
165,
98,
108,
171,
120,
234,
944,
13,
31811,
3419,
171,
120,
234,
944,
13,
22556,
88,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
352,
12,
2488,
11187,
13328,
255,
231,
20015,
115,
12859,
236,
5972,
7,
9288,
3070,
8,
10263,
230,
251,
34650,
233,
44293,
244,
11187,
21410,
15003,
43095,
37345,
243,
171,
120,
234,
9288,
3070,
49035,
121,
46763,
108,
28938,
235,
43291,
10310,
118,
20998,
224,
46763,
108,
27670,
254,
34460,
240,
198,
220,
220,
220,
220,
220,
220,
220,
362,
12,
10545,
255,
97,
33768,
114,
9288,
3070,
22887,
109,
162,
234,
229,
28938,
239,
31660,
10310,
103,
163,
109,
119,
43380,
117,
164,
109,
94,
171,
120,
234,
163,
255,
231,
9288,
3070,
3419,
164,
108,
225,
18796,
101,
21410,
33768,
114,
161,
222,
247,
171,
120,
234,
33566,
116,
37605,
241,
12859,
236,
164,
108,
225,
18796,
101,
12859,
228,
163,
109,
119,
40792,
21410,
13345,
43095,
37345,
243,
198,
220,
220,
220,
37227,
628,
198,
31,
11187,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 0.86014 | 858 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is part of fionautil.
# http://github.com/fitnr/fionautil
# Licensed under the GPLv3 license:
# http://http://opensource.org/licenses/GPL-3.0
# Copyright (c) 2015, Neil Freeman <[email protected]>
import collections
from unittest import TestCase as PythonTestCase
import unittest.main
import os.path
import fionautil.layer
shp = os.path.join(os.path.dirname(__file__), 'fixtures/testing.shp')
geojson = os.path.join(os.path.dirname(__file__), 'fixtures/testing.geojson')
if __name__ == '__main__':
unittest.main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
2,
770,
2393,
318,
636,
286,
277,
295,
2306,
346,
13,
198,
2,
2638,
1378,
12567,
13,
785,
14,
11147,
48624,
14,
69,
295,
2306,
346,
198,
198,
2,
49962,
739,
262,
38644,
85,
18,
5964,
25,
198,
2,
2638,
1378,
4023,
1378,
44813,
1668,
13,
2398,
14,
677,
4541,
14,
38,
6489,
12,
18,
13,
15,
198,
2,
15069,
357,
66,
8,
1853,
11,
15929,
22394,
1279,
32057,
31,
30706,
396,
831,
413,
5305,
13,
2398,
29,
198,
198,
11748,
17268,
198,
6738,
555,
715,
395,
1330,
6208,
20448,
355,
11361,
14402,
20448,
198,
11748,
555,
715,
395,
13,
12417,
198,
11748,
28686,
13,
6978,
198,
11748,
277,
295,
2306,
346,
13,
29289,
198,
198,
1477,
79,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
69,
25506,
14,
33407,
13,
1477,
79,
11537,
198,
469,
13210,
1559,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
69,
25506,
14,
33407,
13,
469,
13210,
1559,
11537,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.64 | 225 |
#!/usr/bin/env python
# ScraperWiki Limited
# Ian Hopkinson, 2013-06-20
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import sys
import codecs
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
"""
Analysis and visualisation library for pdftables
"""
import pdftables as pt
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from tree import Leaf, LeafList
FilterOptions = ['LTPage','LTTextBoxHorizontal','LTFigure','LTLine','LTRect','LTImage','LTTextLineHorizontal','LTCurve', 'LTChar', 'LTAnon']
Colours = ['black' ,'green' ,'black' ,'red' ,'red' ,'black' ,'blue' ,'red' , 'red' , 'White']
ColourTable = dict(zip(FilterOptions, Colours))
LEFT = 0
TOP = 3
RIGHT = 2
BOTTOM = 1
def plotpage(d):
#def plotpage(BoxList,xhistleft,xhistright,yhisttop,yhistbottom,xComb,yComb):
# global ColourTable
"""This is from pdftables"""
#columnProjectionThreshold = threshold_above(columnProjection,columnThreshold)
#colDispHeight = max(columnProjection.values())*0.8
#columnProj = dict(zip(columnProjectionThreshold, [colDispHeight]*len(columnProjectionThreshold)))
"""End display only code"""
"""This is from pdftables"""
#rowProjectionThreshold = threshold_above(rowProjection,rowThreshold)
# rowDispHeight = max(rowProjection.values())*0.8
# rowProj = dict(zip(rowProjectionThreshold, [rowDispHeight]*len(rowProjectionThreshold)))
"""End display only code"""
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.axis('equal')
for boxstruct in d.box_list:
box = boxstruct.bbox
thiscolour = ColourTable[boxstruct.classname]
ax1.plot([box[0],box[2],box[2],box[0],box[0]],[box[1],box[1],box[3],box[3],box[1]],color = thiscolour )
# fig.suptitle(title, fontsize=15)
divider = make_axes_locatable(ax1)
#plt.setp(ax1.get_yticklabels(),visible=False)
ax1.yaxis.set_label_position("right")
if d.top_plot:
axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=ax1)
axHistx.plot(map(float,d.top_plot.keys()),map(float,d.top_plot.values()), color = 'red')
if d.left_plot:
axHisty = divider.append_axes("left", 1.2, pad=0.1, sharey=ax1)
axHisty.plot(map(float,d.left_plot.values()),map(float,d.left_plot.keys()), color = 'red')
if d.y_comb:
miny = min(d.y_comb)
maxy = max(d.y_comb)
for x in d.x_comb:
ax1.plot([x,x],[miny,maxy],color = "black")
axHistx.scatter(x,0,color = "black")
if d.x_comb:
minx = min(d.x_comb)
maxx = max(d.x_comb)
for y in d.y_comb:
ax1.plot([minx,maxx],[y,y],color = "black")
axHisty.scatter(1,y,color = "black")
plt.draw()
plt.show(block = False)
return fig, ax1
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
1446,
38545,
32603,
15302,
198,
2,
12930,
21183,
261,
11,
2211,
12,
3312,
12,
1238,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
11748,
25064,
198,
11748,
40481,
82,
198,
17597,
13,
19282,
448,
796,
40481,
82,
13,
1136,
16002,
10786,
40477,
12,
23,
6,
5769,
17597,
13,
19282,
448,
8,
198,
198,
37811,
198,
32750,
290,
5874,
5612,
5888,
329,
279,
67,
701,
2977,
198,
37811,
628,
198,
11748,
279,
67,
701,
2977,
355,
42975,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
285,
489,
62,
25981,
74,
896,
13,
897,
274,
62,
25928,
16,
1330,
787,
62,
897,
274,
62,
17946,
21156,
198,
6738,
5509,
1330,
14697,
11,
14697,
8053,
628,
198,
22417,
29046,
796,
37250,
43,
7250,
496,
41707,
27734,
8206,
14253,
27991,
38342,
41707,
43,
10234,
7047,
41707,
27734,
13949,
41707,
43,
5446,
478,
41707,
27734,
5159,
41707,
27734,
8206,
13949,
27991,
38342,
41707,
43,
4825,
333,
303,
3256,
705,
27734,
12441,
3256,
705,
27734,
2025,
261,
20520,
198,
5216,
4662,
220,
220,
220,
220,
220,
220,
796,
37250,
13424,
6,
837,
6,
14809,
6,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
837,
6,
13424,
6,
220,
220,
837,
6,
445,
6,
220,
220,
837,
6,
445,
6,
220,
220,
837,
6,
13424,
6,
220,
837,
6,
17585,
6,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
837,
6,
445,
6,
220,
220,
220,
837,
705,
445,
6,
220,
220,
837,
705,
12256,
20520,
198,
198,
5216,
454,
10962,
796,
8633,
7,
13344,
7,
22417,
29046,
11,
1623,
4662,
4008,
198,
198,
2538,
9792,
796,
657,
198,
35222,
796,
513,
198,
49,
9947,
796,
362,
198,
33,
29089,
2662,
796,
352,
628,
198,
4299,
7110,
7700,
7,
67,
2599,
198,
2,
4299,
7110,
7700,
7,
14253,
8053,
11,
87,
10034,
9464,
11,
87,
10034,
3506,
11,
88,
10034,
4852,
11,
88,
10034,
22487,
11,
87,
20575,
11,
88,
20575,
2599,
198,
2,
220,
220,
220,
3298,
38773,
10962,
198,
220,
220,
220,
37227,
1212,
318,
422,
279,
67,
701,
2977,
37811,
198,
220,
220,
220,
1303,
28665,
16775,
295,
817,
10126,
796,
11387,
62,
29370,
7,
28665,
16775,
295,
11,
28665,
817,
10126,
8,
198,
220,
220,
220,
1303,
4033,
7279,
79,
23106,
796,
3509,
7,
28665,
16775,
295,
13,
27160,
3419,
27493,
15,
13,
23,
198,
220,
220,
220,
1303,
28665,
2964,
73,
796,
8633,
7,
13344,
7,
28665,
16775,
295,
817,
10126,
11,
685,
4033,
7279,
79,
23106,
60,
9,
11925,
7,
28665,
16775,
295,
817,
10126,
22305,
198,
220,
220,
220,
37227,
12915,
3359,
691,
2438,
37811,
628,
220,
220,
220,
37227,
1212,
318,
422,
279,
67,
701,
2977,
37811,
198,
220,
220,
220,
1303,
808,
16775,
295,
817,
10126,
796,
11387,
62,
29370,
7,
808,
16775,
295,
11,
808,
817,
10126,
8,
198,
220,
220,
220,
1303,
5752,
7279,
79,
23106,
796,
3509,
7,
808,
16775,
295,
13,
27160,
3419,
27493,
15,
13,
23,
198,
220,
220,
220,
1303,
5752,
2964,
73,
796,
8633,
7,
13344,
7,
808,
16775,
295,
817,
10126,
11,
685,
808,
7279,
79,
23106,
60,
9,
11925,
7,
808,
16775,
295,
817,
10126,
22305,
198,
220,
220,
220,
37227,
12915,
3359,
691,
2438,
37811,
628,
220,
220,
220,
2336,
796,
458,
83,
13,
26875,
3419,
198,
220,
220,
220,
7877,
16,
796,
2336,
13,
2860,
62,
7266,
29487,
7,
16243,
8,
198,
220,
220,
220,
7877,
16,
13,
22704,
10786,
40496,
11537,
198,
220,
220,
220,
329,
3091,
7249,
287,
288,
13,
3524,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3091,
796,
3091,
7249,
13,
65,
3524,
198,
220,
220,
220,
220,
220,
220,
220,
428,
49903,
796,
38773,
10962,
58,
3524,
7249,
13,
4871,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
16,
13,
29487,
26933,
3524,
58,
15,
4357,
3524,
58,
17,
4357,
3524,
58,
17,
4357,
3524,
58,
15,
4357,
3524,
58,
15,
60,
38430,
3524,
58,
16,
4357,
3524,
58,
16,
4357,
3524,
58,
18,
4357,
3524,
58,
18,
4357,
3524,
58,
16,
60,
4357,
8043,
796,
428,
49903,
1267,
628,
220,
220,
220,
1303,
2336,
13,
2385,
457,
2578,
7,
7839,
11,
10369,
7857,
28,
1314,
8,
198,
220,
220,
220,
2659,
1304,
796,
787,
62,
897,
274,
62,
17946,
21156,
7,
897,
16,
8,
198,
220,
220,
220,
1303,
489,
83,
13,
2617,
79,
7,
897,
16,
13,
1136,
62,
20760,
624,
23912,
1424,
22784,
23504,
28,
25101,
8,
198,
220,
220,
220,
7877,
16,
13,
88,
22704,
13,
2617,
62,
18242,
62,
9150,
7203,
3506,
4943,
628,
220,
220,
220,
611,
288,
13,
4852,
62,
29487,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
87,
796,
2659,
1304,
13,
33295,
62,
897,
274,
7203,
4852,
1600,
352,
13,
17,
11,
14841,
28,
15,
13,
16,
11,
2648,
87,
28,
897,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
87,
13,
29487,
7,
8899,
7,
22468,
11,
67,
13,
4852,
62,
29487,
13,
13083,
3419,
828,
8899,
7,
22468,
11,
67,
13,
4852,
62,
29487,
13,
27160,
3419,
828,
3124,
796,
705,
445,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
611,
288,
13,
9464,
62,
29487,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
88,
796,
2659,
1304,
13,
33295,
62,
897,
274,
7203,
9464,
1600,
352,
13,
17,
11,
14841,
28,
15,
13,
16,
11,
2648,
88,
28,
897,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
88,
13,
29487,
7,
8899,
7,
22468,
11,
67,
13,
9464,
62,
29487,
13,
27160,
3419,
828,
8899,
7,
22468,
11,
67,
13,
9464,
62,
29487,
13,
13083,
3419,
828,
3124,
796,
705,
445,
11537,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
288,
13,
88,
62,
24011,
25,
198,
220,
220,
220,
220,
220,
220,
220,
949,
88,
796,
949,
7,
67,
13,
88,
62,
24011,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
88,
796,
3509,
7,
67,
13,
88,
62,
24011,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
287,
288,
13,
87,
62,
24011,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
16,
13,
29487,
26933,
87,
11,
87,
38430,
1084,
88,
11,
76,
6969,
4357,
8043,
796,
366,
13424,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
87,
13,
1416,
1436,
7,
87,
11,
15,
11,
8043,
796,
366,
13424,
4943,
628,
220,
220,
220,
611,
288,
13,
87,
62,
24011,
25,
198,
220,
220,
220,
220,
220,
220,
220,
949,
87,
796,
949,
7,
67,
13,
87,
62,
24011,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
87,
796,
3509,
7,
67,
13,
87,
62,
24011,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
331,
287,
288,
13,
88,
62,
24011,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
16,
13,
29487,
26933,
1084,
87,
11,
9806,
87,
38430,
88,
11,
88,
4357,
8043,
796,
366,
13424,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7877,
13749,
88,
13,
1416,
1436,
7,
16,
11,
88,
11,
8043,
796,
366,
13424,
4943,
628,
220,
220,
220,
458,
83,
13,
19334,
3419,
198,
220,
220,
220,
458,
83,
13,
12860,
7,
9967,
796,
10352,
8,
628,
220,
220,
220,
1441,
2336,
11,
7877,
16,
198
] | 2.221617 | 1,286 |
import rhinoscriptsyntax as rs
| [
11748,
9529,
11996,
6519,
1837,
41641,
355,
44608,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
220
] | 2.1 | 20 |
# !/usr/bin/python3.7
# -*- coding: utf-8 -*-
# @Time : 2020/6/22 上午9:58
# @Author: [email protected]
# @Notes : 身份证检查
from .idcard import IdCard
__version__ = '2020.6.22'
__author__ = 'Jtyoui'
__description__ = '身份证实体抽取,身份证补全,身份证检测等功能。'
__email__ = '[email protected]'
__names__ = 'pyUnit_idCard'
__url__ = 'https://github.com/PyUnit/pyunit-idCard'
| [
2,
5145,
14,
14629,
14,
8800,
14,
29412,
18,
13,
22,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2488,
7575,
220,
1058,
12131,
14,
21,
14,
1828,
220,
41468,
39355,
230,
24,
25,
3365,
198,
2,
2488,
13838,
25,
449,
774,
280,
72,
31,
38227,
13,
785,
198,
2,
2488,
16130,
1058,
5525,
118,
104,
20015,
121,
46237,
223,
162,
96,
222,
162,
253,
98,
198,
6738,
764,
312,
9517,
1330,
5121,
16962,
198,
198,
834,
9641,
834,
796,
705,
42334,
13,
21,
13,
1828,
6,
198,
834,
9800,
834,
796,
705,
41,
774,
280,
72,
6,
198,
834,
11213,
834,
796,
705,
164,
118,
104,
20015,
121,
46237,
223,
22522,
252,
19526,
241,
162,
232,
121,
20998,
244,
171,
120,
234,
164,
118,
104,
20015,
121,
46237,
223,
26193,
98,
17739,
101,
171,
120,
234,
164,
118,
104,
20015,
121,
46237,
223,
162,
96,
222,
38184,
233,
163,
255,
231,
27950,
253,
47797,
121,
16764,
6,
198,
834,
12888,
834,
796,
705,
73,
774,
280,
72,
31,
38227,
13,
785,
6,
198,
834,
14933,
834,
796,
705,
9078,
26453,
62,
312,
16962,
6,
198,
834,
6371,
834,
796,
705,
5450,
1378,
12567,
13,
785,
14,
20519,
26453,
14,
9078,
20850,
12,
312,
16962,
6,
198
] | 1.6 | 215 |
# -*- coding: utf-8 -*-
# Copyright (c) 2017-2018 Uber Technologies, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from decimal import Decimal
import numpy as np
from petastorm.reader_impl.pyarrow_serializer import PyArrowSerializer
def test_serializer_is_pickable():
"""Pickle/depickle the serializer to make sure it can be passed
as a parameter cross process boundaries when using futures"""
s = PyArrowSerializer()
deserialized_s = pickle.loads(pickle.dumps(s))
expected = [{'a': np.asarray([1, 2], dtype=np.uint64)}]
actual = deserialized_s.deserialize(deserialized_s.serialize(expected))
np.testing.assert_array_equal(actual[0]['a'], expected[0]['a'])
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
2,
220,
15069,
357,
66,
8,
2177,
12,
7908,
12024,
21852,
11,
3457,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
11748,
2298,
293,
198,
6738,
32465,
1330,
4280,
4402,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
4273,
459,
579,
13,
46862,
62,
23928,
13,
9078,
6018,
62,
46911,
7509,
1330,
9485,
3163,
808,
32634,
7509,
628,
198,
198,
4299,
1332,
62,
46911,
7509,
62,
271,
62,
27729,
540,
33529,
198,
220,
220,
220,
37227,
31686,
293,
14,
10378,
39423,
262,
11389,
7509,
284,
787,
1654,
340,
460,
307,
3804,
198,
220,
220,
220,
355,
257,
11507,
3272,
1429,
13215,
618,
1262,
25650,
37811,
198,
220,
220,
220,
264,
796,
9485,
3163,
808,
32634,
7509,
3419,
198,
220,
220,
220,
748,
48499,
1143,
62,
82,
796,
2298,
293,
13,
46030,
7,
27729,
293,
13,
67,
8142,
7,
82,
4008,
628,
220,
220,
220,
2938,
796,
685,
90,
6,
64,
10354,
45941,
13,
292,
18747,
26933,
16,
11,
362,
4357,
288,
4906,
28,
37659,
13,
28611,
2414,
38165,
60,
198,
220,
220,
220,
4036,
796,
748,
48499,
1143,
62,
82,
13,
8906,
48499,
1096,
7,
8906,
48499,
1143,
62,
82,
13,
46911,
1096,
7,
40319,
4008,
198,
220,
220,
220,
45941,
13,
33407,
13,
30493,
62,
18747,
62,
40496,
7,
50039,
58,
15,
7131,
6,
64,
6,
4357,
2938,
58,
15,
7131,
6,
64,
6,
12962,
628,
198
] | 3.186352 | 381 |
# Copyright 2017 Arie Bregman
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import argparse
def setup_db_create_subparser(subparsers, parent_parser):
"""Adds db create sub-parser"""
db_create_parser = subparsers.add_parser(
"create", parents=[parent_parser])
db_create_parser.add_argument(
'--all', '-a', action='store_true')
def setup_db_drop_subparser(subparsers, parent_parser):
"""Adds db drop sub-parser"""
db_drop_parser = subparsers.add_parser(
"drop", parents=[parent_parser])
db_drop_parser.add_argument(
'--all', '-a', action='store_true')
def create():
"""Returns argparse parser."""
parent_parser = argparse.ArgumentParser(add_help=False)
parent_parser.add_argument('--debug', required=False, action='store_true',
dest="debug", help='Turn DEBUG on')
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="parser")
setup_db_create_subparser(subparsers, parent_parser)
setup_db_drop_subparser(subparsers, parent_parser)
return parser
| [
2,
15069,
2177,
317,
5034,
347,
2301,
805,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
11748,
1822,
29572,
628,
198,
4299,
9058,
62,
9945,
62,
17953,
62,
7266,
48610,
7,
7266,
79,
945,
364,
11,
2560,
62,
48610,
2599,
198,
220,
220,
220,
37227,
46245,
20613,
2251,
850,
12,
48610,
37811,
628,
220,
220,
220,
20613,
62,
17953,
62,
48610,
796,
22718,
945,
364,
13,
2860,
62,
48610,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
17953,
1600,
3397,
41888,
8000,
62,
48610,
12962,
628,
220,
220,
220,
20613,
62,
17953,
62,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
438,
439,
3256,
705,
12,
64,
3256,
2223,
11639,
8095,
62,
7942,
11537,
628,
198,
4299,
9058,
62,
9945,
62,
14781,
62,
7266,
48610,
7,
7266,
79,
945,
364,
11,
2560,
62,
48610,
2599,
198,
220,
220,
220,
37227,
46245,
20613,
4268,
850,
12,
48610,
37811,
628,
220,
220,
220,
20613,
62,
14781,
62,
48610,
796,
22718,
945,
364,
13,
2860,
62,
48610,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
14781,
1600,
3397,
41888,
8000,
62,
48610,
12962,
628,
220,
220,
220,
20613,
62,
14781,
62,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
705,
438,
439,
3256,
705,
12,
64,
3256,
2223,
11639,
8095,
62,
7942,
11537,
628,
198,
4299,
2251,
33529,
198,
220,
220,
220,
37227,
35561,
1822,
29572,
30751,
526,
15931,
628,
220,
220,
220,
2560,
62,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
2860,
62,
16794,
28,
25101,
8,
198,
220,
220,
220,
2560,
62,
48610,
13,
2860,
62,
49140,
10786,
438,
24442,
3256,
2672,
28,
25101,
11,
2223,
11639,
8095,
62,
7942,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2244,
2625,
24442,
1600,
1037,
11639,
17278,
16959,
319,
11537,
628,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
22718,
945,
364,
796,
30751,
13,
2860,
62,
7266,
79,
945,
364,
7,
16520,
2625,
48610,
4943,
628,
220,
220,
220,
9058,
62,
9945,
62,
17953,
62,
7266,
48610,
7,
7266,
79,
945,
364,
11,
2560,
62,
48610,
8,
198,
220,
220,
220,
9058,
62,
9945,
62,
14781,
62,
7266,
48610,
7,
7266,
79,
945,
364,
11,
2560,
62,
48610,
8,
628,
220,
220,
220,
1441,
30751,
198
] | 2.813149 | 578 |
import pytest
from nerwhal.integrated_recognizers.phone_number_recognizer import PhoneNumberRecognizer
@pytest.fixture(scope="module")
# DIN 5008
# Microsoft's canonical format
# E.123
# Others
# Non-standard
# US style
# Not phone numbers
| [
11748,
12972,
9288,
198,
198,
6738,
17156,
1929,
282,
13,
18908,
4111,
62,
26243,
11341,
13,
4862,
62,
17618,
62,
26243,
7509,
1330,
14484,
15057,
6690,
2360,
7509,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
4943,
628,
198,
2,
360,
1268,
5323,
23,
628,
628,
628,
198,
2,
5413,
338,
40091,
5794,
628,
628,
198,
198,
2,
412,
13,
10163,
628,
628,
628,
198,
2,
12691,
628,
628,
198,
198,
2,
8504,
12,
20307,
628,
628,
628,
198,
198,
2,
1294,
3918,
628,
628,
628,
198,
2,
1892,
3072,
3146,
628,
628
] | 2.917526 | 97 |
# OBSS SAHI Tool
# Code written by Kadir Nar, 2022.
import unittest
from sahi.utils.cv import read_image
from sahi.utils.torchvision import TorchVisionTestConstants
MODEL_DEVICE = "cpu"
CONFIDENCE_THRESHOLD = 0.5
IMAGE_SIZE = 320
if __name__ == "__main__":
unittest.main()
| [
2,
440,
4462,
50,
14719,
25374,
16984,
198,
2,
6127,
3194,
416,
31996,
343,
13596,
11,
33160,
13,
628,
198,
11748,
555,
715,
395,
198,
198,
6738,
473,
5303,
13,
26791,
13,
33967,
1330,
1100,
62,
9060,
198,
6738,
473,
5303,
13,
26791,
13,
13165,
354,
10178,
1330,
34868,
44206,
14402,
34184,
1187,
198,
198,
33365,
3698,
62,
7206,
27389,
796,
366,
36166,
1,
198,
10943,
37,
2389,
18310,
62,
4221,
19535,
39,
15173,
796,
657,
13,
20,
198,
3955,
11879,
62,
33489,
796,
20959,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.605505 | 109 |
from django.urls import path, include
from tool import views
from rest_framework.routers import DefaultRouter
router = DefaultRouter()
router.register('candidates', views.CandidatesViewSet)
router.register('jobs', views.JobViewSet)
urlpatterns = [
path('', include(router.urls)),
path('recruiters/', views.RecruiterView.as_view(), name="recruiters"),
path('skills/<int:pk>/', views.SkillsView.as_view(), name="skills"),
path('skills/active/', views.ActiveSkills.as_view(), name="active skills"),
path('interviews/', views.InterviewView.as_view(), name="interviews"),
] | [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
11,
2291,
198,
6738,
2891,
1330,
5009,
198,
198,
6738,
1334,
62,
30604,
13,
472,
1010,
1330,
15161,
49,
39605,
198,
198,
472,
353,
796,
15161,
49,
39605,
3419,
198,
472,
353,
13,
30238,
10786,
46188,
37051,
3256,
5009,
13,
41572,
37051,
7680,
7248,
8,
198,
472,
353,
13,
30238,
10786,
43863,
3256,
5009,
13,
33308,
7680,
7248,
8,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
3256,
2291,
7,
472,
353,
13,
6371,
82,
36911,
198,
220,
220,
220,
3108,
10786,
8344,
4872,
364,
14,
3256,
5009,
13,
6690,
622,
2676,
7680,
13,
292,
62,
1177,
22784,
1438,
2625,
8344,
4872,
364,
12340,
198,
220,
220,
220,
3108,
10786,
8135,
2171,
14,
27,
600,
25,
79,
74,
29,
14,
3256,
5009,
13,
15739,
2171,
7680,
13,
292,
62,
1177,
22784,
1438,
2625,
8135,
2171,
12340,
198,
220,
220,
220,
3108,
10786,
8135,
2171,
14,
5275,
14,
3256,
5009,
13,
13739,
15739,
2171,
13,
292,
62,
1177,
22784,
1438,
2625,
5275,
4678,
12340,
198,
220,
220,
220,
3108,
10786,
3849,
33571,
14,
3256,
5009,
13,
39945,
7680,
13,
292,
62,
1177,
22784,
1438,
2625,
3849,
33571,
12340,
198,
220,
220,
2361
] | 2.911765 | 204 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
import numpy as _np
from mxnet.test_utils import same, rand_shape_nd
from mxnet.runtime import Features
from common import with_seed
_features = Features()
@with_seed()
if __name__ == '__main__':
import nose
nose.runmodule()
| [
2,
49962,
284,
262,
24843,
10442,
5693,
357,
1921,
37,
8,
739,
530,
198,
2,
393,
517,
18920,
5964,
11704,
13,
220,
4091,
262,
28536,
2393,
198,
2,
9387,
351,
428,
670,
329,
3224,
1321,
198,
2,
5115,
6634,
9238,
13,
220,
383,
7054,
37,
16625,
428,
2393,
198,
2,
284,
345,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
198,
2,
366,
34156,
15341,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
198,
2,
351,
262,
13789,
13,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
198,
2,
3788,
9387,
739,
262,
13789,
318,
9387,
319,
281,
198,
2,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
198,
2,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
220,
4091,
262,
13789,
329,
262,
198,
2,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
739,
262,
13789,
13,
198,
198,
11748,
285,
87,
3262,
355,
285,
87,
198,
11748,
299,
32152,
355,
4808,
37659,
198,
6738,
285,
87,
3262,
13,
9288,
62,
26791,
1330,
976,
11,
43720,
62,
43358,
62,
358,
198,
6738,
285,
87,
3262,
13,
43282,
1330,
17571,
198,
6738,
2219,
1330,
351,
62,
28826,
198,
198,
62,
40890,
796,
17571,
3419,
198,
198,
31,
4480,
62,
28826,
3419,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1330,
9686,
198,
220,
220,
220,
9686,
13,
5143,
21412,
3419,
198
] | 3.695035 | 282 |
import pexpect
import timeout_decorator
#csk = CreateSSLKey()
#csk.start()
| [
11748,
613,
87,
806,
198,
11748,
26827,
62,
12501,
273,
1352,
628,
628,
628,
198,
2,
6359,
74,
796,
13610,
31127,
9218,
3419,
198,
2,
6359,
74,
13,
9688,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
628
] | 2.3 | 40 |
import argparse
import torch
import torch.utils.data.distributed
import pprint
from utils.MyDataset import MyDataLoader, MyDataset
from config import args as default_args, project_root_path
import numpy as np
import pandas as pd
import os
from models import (
SOTA_goal_model,
AlbertForMultipleChoice,
RobertaForMultipleChoiceWithLM,
RobertaForMultipleChoice
)
from model_modify import (
get_features,
create_datasets_with_kbert,
train_and_finetune, test
)
from utils.semevalUtils import (
get_all_features_from_task_1,
get_all_features_from_task_2,
)
from transformers import (
RobertaTokenizer,
RobertaConfig,
)
if __name__ == '__main__':
build_parse()
# print all config
print(project_root_path)
pprint.pprint(default_args)
# prepare for tokenizer and model
tokenizer = RobertaTokenizer.from_pretrained('roberta-large')
config = RobertaConfig.from_pretrained('roberta-large')
config.hidden_dropout_prob = 0.2
config.attention_probs_dropout_prob = 0.2
if default_args['with_kegat']:
# create a model with kegat (or and lm)
model = SOTA_goal_model(default_args)
elif default_args['with_lm']:
model = RobertaForMultipleChoiceWithLM.from_pretrained(
'pre_weights/roberta-large_model.bin', config=config)
else:
model = RobertaForMultipleChoice.from_pretrained(
'pre_weights/roberta-large_model.bin', config=config)
train_data = test_data = optimizer = None
print('with_LM: ', 'Yes' if default_args['with_lm'] else 'No')
print('with_KEGAT: ', 'Yes' if default_args['with_kegat'] else 'No')
print('with_KEmb: ', 'Yes' if default_args['with_kemb'] else 'No')
train_features, dev_features, test_features = [], [], []
if default_args['subtask_id'] == 'A':
train_features = get_all_features_from_task_1(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskA_data_all.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskA_answers_all.csv',
tokenizer, default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
dev_features = get_all_features_from_task_1(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskA_dev_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskA_gold_answers.csv',
tokenizer, default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
test_features = get_all_features_from_task_1(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskA_test_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskA_gold_answers.csv',
tokenizer, default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
elif default_args['subtask_id'] == 'B':
train_features = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_data_all.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_answers_all.csv',
tokenizer,
default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
dev_features = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_dev_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_gold_answers.csv',
tokenizer, default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
test_features = get_all_features_from_task_2(
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_test_data.csv',
'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_gold_answers.csv',
tokenizer, default_args['max_seq_length'],
with_gnn=default_args['with_kegat'],
with_k_bert=default_args['with_kemb'])
train_dataset = create_datasets_with_kbert(train_features, shuffle=True)
dev_dataset = create_datasets_with_kbert(dev_features, shuffle=False)
test_dataset = create_datasets_with_kbert(test_features, shuffle=False)
if default_args['use_multi_gpu']:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_data = torch.utils.data.DataLoader(train_dataset, batch_size=default_args['batch_size'],
sampler=train_sampler)
dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_dataset)
dev_data = torch.utils.data.DataLoader(dev_dataset, batch_size=default_args['test_batch_size'],
sampler=dev_sampler)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
test_data = torch.utils.data.DataLoader(test_dataset, batch_size=default_args['test_batch_size'],
sampler=test_sampler)
else:
train_data = MyDataLoader(train_dataset, batch_size=default_args['batch_size'])
dev_data = MyDataLoader(dev_dataset, batch_size=default_args['test_batch_size'])
test_data = MyDataLoader(test_dataset, batch_size=default_args['test_batch_size'])
train_data = list(train_data)
dev_data = list(dev_data)
test_data = list(test_data)
print('train_data len: ', len(train_data))
print('dev_data len: ', len(dev_data))
print('test_data len: ', len(test_data))
dev_acc, (train_pred_opt, dev_pred_opt) = train_and_finetune(model, train_data, dev_data, default_args)
_, test_acc, _ = test(model, test_data, default_args)
print('Dev acc: ', dev_acc)
print('Test acc: ', test_acc)
| [
11748,
1822,
29572,
198,
11748,
28034,
198,
11748,
28034,
13,
26791,
13,
7890,
13,
17080,
6169,
198,
11748,
279,
4798,
198,
6738,
3384,
4487,
13,
3666,
27354,
292,
316,
1330,
2011,
6601,
17401,
11,
2011,
27354,
292,
316,
198,
6738,
4566,
1330,
26498,
355,
4277,
62,
22046,
11,
1628,
62,
15763,
62,
6978,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
28686,
198,
6738,
4981,
1330,
357,
198,
220,
220,
220,
311,
29009,
62,
35231,
62,
19849,
11,
198,
220,
220,
220,
9966,
1890,
31217,
46770,
11,
198,
220,
220,
220,
5199,
64,
1890,
31217,
46770,
3152,
31288,
11,
198,
220,
220,
220,
5199,
64,
1890,
31217,
46770,
198,
8,
198,
6738,
2746,
62,
4666,
1958,
1330,
357,
198,
220,
220,
220,
651,
62,
40890,
11,
198,
220,
220,
220,
2251,
62,
19608,
292,
1039,
62,
4480,
62,
74,
4835,
11,
198,
220,
220,
220,
4512,
62,
392,
62,
15643,
316,
1726,
11,
1332,
198,
8,
198,
6738,
3384,
4487,
13,
325,
1326,
2100,
18274,
4487,
1330,
357,
198,
220,
220,
220,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
16,
11,
198,
220,
220,
220,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
17,
11,
198,
8,
198,
6738,
6121,
364,
1330,
357,
198,
220,
220,
220,
5199,
64,
30642,
7509,
11,
198,
220,
220,
220,
5199,
64,
16934,
11,
198,
8,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1382,
62,
29572,
3419,
628,
220,
220,
220,
1303,
3601,
477,
4566,
198,
220,
220,
220,
3601,
7,
16302,
62,
15763,
62,
6978,
8,
198,
220,
220,
220,
279,
4798,
13,
381,
22272,
7,
12286,
62,
22046,
8,
628,
220,
220,
220,
1303,
8335,
329,
11241,
7509,
290,
2746,
198,
220,
220,
220,
11241,
7509,
796,
5199,
64,
30642,
7509,
13,
6738,
62,
5310,
13363,
10786,
305,
4835,
64,
12,
11664,
11537,
198,
220,
220,
220,
4566,
796,
5199,
64,
16934,
13,
6738,
62,
5310,
13363,
10786,
305,
4835,
64,
12,
11664,
11537,
628,
220,
220,
220,
4566,
13,
30342,
62,
14781,
448,
62,
1676,
65,
796,
657,
13,
17,
198,
220,
220,
220,
4566,
13,
1078,
1463,
62,
1676,
1443,
62,
14781,
448,
62,
1676,
65,
796,
657,
13,
17,
628,
220,
220,
220,
611,
4277,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2251,
257,
2746,
351,
885,
41268,
357,
273,
290,
300,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
796,
311,
29009,
62,
35231,
62,
19849,
7,
12286,
62,
22046,
8,
198,
220,
220,
220,
1288,
361,
4277,
62,
22046,
17816,
4480,
62,
75,
76,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
796,
5199,
64,
1890,
31217,
46770,
3152,
31288,
13,
6738,
62,
5310,
13363,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3866,
62,
43775,
14,
305,
4835,
64,
12,
11664,
62,
19849,
13,
8800,
3256,
4566,
28,
11250,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
796,
5199,
64,
1890,
31217,
46770,
13,
6738,
62,
5310,
13363,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3866,
62,
43775,
14,
305,
4835,
64,
12,
11664,
62,
19849,
13,
8800,
3256,
4566,
28,
11250,
8,
628,
220,
220,
220,
4512,
62,
7890,
796,
1332,
62,
7890,
796,
6436,
7509,
796,
6045,
628,
220,
220,
220,
3601,
10786,
4480,
62,
31288,
25,
46083,
705,
5297,
6,
611,
4277,
62,
22046,
17816,
4480,
62,
75,
76,
20520,
2073,
705,
2949,
11537,
198,
220,
220,
220,
3601,
10786,
4480,
62,
42,
7156,
1404,
25,
46083,
705,
5297,
6,
611,
4277,
62,
22046,
17816,
4480,
62,
365,
41268,
20520,
2073,
705,
2949,
11537,
198,
220,
220,
220,
3601,
10786,
4480,
62,
7336,
2022,
25,
46083,
705,
5297,
6,
611,
4277,
62,
22046,
17816,
4480,
62,
365,
2022,
20520,
2073,
705,
2949,
11537,
628,
220,
220,
220,
4512,
62,
40890,
11,
1614,
62,
40890,
11,
1332,
62,
40890,
796,
685,
4357,
685,
4357,
17635,
198,
220,
220,
220,
611,
4277,
62,
22046,
17816,
7266,
35943,
62,
312,
20520,
6624,
705,
32,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
16,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44357,
6060,
14,
7266,
35943,
32,
62,
7890,
62,
439,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44357,
6060,
14,
7266,
35943,
32,
62,
504,
86,
364,
62,
439,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1614,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
16,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
13603,
6060,
14,
7266,
35943,
32,
62,
7959,
62,
7890,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
13603,
6060,
14,
7266,
35943,
32,
62,
24267,
62,
504,
86,
364,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
16,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44154,
6060,
14,
7266,
35943,
32,
62,
9288,
62,
7890,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44154,
6060,
14,
7266,
35943,
32,
62,
24267,
62,
504,
86,
364,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
198,
220,
220,
220,
1288,
361,
4277,
62,
22046,
17816,
7266,
35943,
62,
312,
20520,
6624,
705,
33,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
17,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44357,
6060,
14,
7266,
35943,
33,
62,
7890,
62,
439,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44357,
6060,
14,
7266,
35943,
33,
62,
504,
86,
364,
62,
439,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1614,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
17,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
13603,
6060,
14,
7266,
35943,
33,
62,
7959,
62,
7890,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
13603,
6060,
14,
7266,
35943,
33,
62,
24267,
62,
504,
86,
364,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
40890,
796,
651,
62,
439,
62,
40890,
62,
6738,
62,
35943,
62,
17,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44154,
6060,
14,
7266,
35943,
33,
62,
9288,
62,
7890,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
13900,
36,
2100,
42334,
12,
25714,
19,
12,
6935,
46563,
12,
7762,
24765,
12,
392,
12,
3109,
11578,
341,
12,
9866,
14,
44154,
6060,
14,
7266,
35943,
33,
62,
24267,
62,
504,
86,
364,
13,
40664,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11241,
7509,
11,
4277,
62,
22046,
17816,
9806,
62,
41068,
62,
13664,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
4593,
77,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
41268,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
62,
74,
62,
4835,
28,
12286,
62,
22046,
17816,
4480,
62,
365,
2022,
6,
12962,
628,
220,
220,
220,
4512,
62,
19608,
292,
316,
796,
2251,
62,
19608,
292,
1039,
62,
4480,
62,
74,
4835,
7,
27432,
62,
40890,
11,
36273,
28,
17821,
8,
198,
220,
220,
220,
1614,
62,
19608,
292,
316,
796,
2251,
62,
19608,
292,
1039,
62,
4480,
62,
74,
4835,
7,
7959,
62,
40890,
11,
36273,
28,
25101,
8,
198,
220,
220,
220,
1332,
62,
19608,
292,
316,
796,
2251,
62,
19608,
292,
1039,
62,
4480,
62,
74,
4835,
7,
9288,
62,
40890,
11,
36273,
28,
25101,
8,
628,
220,
220,
220,
611,
4277,
62,
22046,
17816,
1904,
62,
41684,
62,
46999,
6,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
37687,
20053,
796,
28034,
13,
26791,
13,
7890,
13,
17080,
6169,
13,
20344,
6169,
16305,
20053,
7,
27432,
62,
19608,
292,
316,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
7890,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
27432,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
43501,
62,
7857,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6072,
20053,
28,
27432,
62,
37687,
20053,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1614,
62,
37687,
20053,
796,
28034,
13,
26791,
13,
7890,
13,
17080,
6169,
13,
20344,
6169,
16305,
20053,
7,
7959,
62,
19608,
292,
316,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1614,
62,
7890,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
7959,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
9288,
62,
43501,
62,
7857,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6072,
20053,
28,
7959,
62,
37687,
20053,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
37687,
20053,
796,
28034,
13,
26791,
13,
7890,
13,
17080,
6169,
13,
20344,
6169,
16305,
20053,
7,
9288,
62,
19608,
292,
316,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
7890,
796,
28034,
13,
26791,
13,
7890,
13,
6601,
17401,
7,
9288,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
9288,
62,
43501,
62,
7857,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6072,
20053,
28,
9288,
62,
37687,
20053,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
7890,
796,
2011,
6601,
17401,
7,
27432,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
43501,
62,
7857,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1614,
62,
7890,
796,
2011,
6601,
17401,
7,
7959,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
9288,
62,
43501,
62,
7857,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1332,
62,
7890,
796,
2011,
6601,
17401,
7,
9288,
62,
19608,
292,
316,
11,
15458,
62,
7857,
28,
12286,
62,
22046,
17816,
9288,
62,
43501,
62,
7857,
6,
12962,
628,
220,
220,
220,
4512,
62,
7890,
796,
1351,
7,
27432,
62,
7890,
8,
198,
220,
220,
220,
1614,
62,
7890,
796,
1351,
7,
7959,
62,
7890,
8,
198,
220,
220,
220,
1332,
62,
7890,
796,
1351,
7,
9288,
62,
7890,
8,
628,
220,
220,
220,
3601,
10786,
27432,
62,
7890,
18896,
25,
46083,
18896,
7,
27432,
62,
7890,
4008,
198,
220,
220,
220,
3601,
10786,
7959,
62,
7890,
18896,
25,
46083,
18896,
7,
7959,
62,
7890,
4008,
198,
220,
220,
220,
3601,
10786,
9288,
62,
7890,
18896,
25,
46083,
18896,
7,
9288,
62,
7890,
4008,
628,
220,
220,
220,
1614,
62,
4134,
11,
357,
27432,
62,
28764,
62,
8738,
11,
1614,
62,
28764,
62,
8738,
8,
796,
4512,
62,
392,
62,
15643,
316,
1726,
7,
19849,
11,
4512,
62,
7890,
11,
1614,
62,
7890,
11,
4277,
62,
22046,
8,
198,
220,
220,
220,
4808,
11,
1332,
62,
4134,
11,
4808,
796,
1332,
7,
19849,
11,
1332,
62,
7890,
11,
4277,
62,
22046,
8,
198,
220,
220,
220,
3601,
10786,
13603,
697,
25,
46083,
1614,
62,
4134,
8,
198,
220,
220,
220,
3601,
10786,
14402,
697,
25,
46083,
1332,
62,
4134,
8,
198
] | 2.286232 | 2,760 |
# python 3.6
import logging
import os
import random
import time
from threading import Thread
from paho.mqtt import client as mqtt_client
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO)
mqtt_broker = os.environ['MQTT_BROKER']
mqtt_topic = os.environ['MQTT_TOPIC']
value_type = os.environ['VALUE_TYPE']
invalid_value_occurrence = int(os.environ['INVALID_VALUE_OCCURRENCE'])
mqtt_port = int(os.environ['MQTT_BROKER_PORT'])
pod_name = os.environ['POD_NAME']
input_file = os.environ['INPUT_FILE']
# topic = "mqtt/temperature"
# username = 'emqx'
# password = 'public'
# Cast values from string to integer
if value_type == 'integer':
start_value = int(os.environ['START_VALUE'])
end_value = int(os.environ['END_VALUE'])
invalid_value = int(os.environ['INVALID_VALUE'])
# Cast values from string to flaot
if value_type == 'float':
start_value = float(os.environ['START_VALUE'])
end_value = float(os.environ['END_VALUE'])
invalid_value = float(os.environ['INVALID_VALUE'])
# Connect to MQTT broker
# Generate integer values based on given range of values
# Generate float values based on given range of values
# Publish message to MQTT topic
# using readlines()
# while(True):
# get_generated_data()
if __name__ == '__main__':
run()
| [
2,
21015,
513,
13,
21,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
4738,
198,
11748,
640,
198,
6738,
4704,
278,
1330,
14122,
198,
198,
6738,
279,
17108,
13,
76,
80,
926,
1330,
5456,
355,
285,
80,
926,
62,
16366,
198,
198,
6404,
2667,
13,
35487,
16934,
7,
18982,
11639,
4,
7,
292,
310,
524,
8,
82,
532,
4064,
7,
5715,
3672,
8,
82,
532,
4064,
7,
20500,
8,
82,
3256,
1241,
28,
6404,
2667,
13,
10778,
8,
198,
198,
76,
80,
926,
62,
7957,
6122,
796,
28686,
13,
268,
2268,
17816,
49215,
15751,
62,
11473,
11380,
1137,
20520,
198,
76,
80,
926,
62,
26652,
796,
28686,
13,
268,
2268,
17816,
49215,
15751,
62,
35222,
2149,
20520,
198,
8367,
62,
4906,
796,
28686,
13,
268,
2268,
17816,
39488,
62,
25216,
20520,
198,
259,
12102,
62,
8367,
62,
13966,
33928,
796,
493,
7,
418,
13,
268,
2268,
17816,
1268,
23428,
2389,
62,
39488,
62,
46,
4093,
31302,
18310,
6,
12962,
198,
76,
80,
926,
62,
634,
796,
493,
7,
418,
13,
268,
2268,
17816,
49215,
15751,
62,
11473,
11380,
1137,
62,
15490,
6,
12962,
198,
33320,
62,
3672,
796,
28686,
13,
268,
2268,
17816,
47,
3727,
62,
20608,
20520,
198,
15414,
62,
7753,
796,
28686,
13,
268,
2268,
17816,
1268,
30076,
62,
25664,
20520,
198,
198,
2,
7243,
796,
366,
76,
80,
926,
14,
11498,
21069,
1,
198,
2,
20579,
796,
705,
368,
80,
87,
6,
198,
2,
9206,
796,
705,
11377,
6,
198,
198,
2,
5833,
3815,
422,
4731,
284,
18253,
198,
361,
1988,
62,
4906,
6624,
705,
41433,
10354,
198,
220,
220,
220,
923,
62,
8367,
796,
493,
7,
418,
13,
268,
2268,
17816,
2257,
7227,
62,
39488,
6,
12962,
198,
220,
220,
220,
886,
62,
8367,
796,
493,
7,
418,
13,
268,
2268,
17816,
10619,
62,
39488,
6,
12962,
198,
220,
220,
220,
12515,
62,
8367,
796,
493,
7,
418,
13,
268,
2268,
17816,
1268,
23428,
2389,
62,
39488,
6,
12962,
198,
198,
2,
5833,
3815,
422,
4731,
284,
781,
64,
313,
198,
361,
1988,
62,
4906,
6624,
705,
22468,
10354,
198,
220,
220,
220,
923,
62,
8367,
796,
12178,
7,
418,
13,
268,
2268,
17816,
2257,
7227,
62,
39488,
6,
12962,
198,
220,
220,
220,
886,
62,
8367,
796,
12178,
7,
418,
13,
268,
2268,
17816,
10619,
62,
39488,
6,
12962,
198,
220,
220,
220,
12515,
62,
8367,
796,
12178,
7,
418,
13,
268,
2268,
17816,
1268,
23428,
2389,
62,
39488,
6,
12962,
628,
198,
2,
8113,
284,
337,
48,
15751,
20426,
628,
198,
2,
2980,
378,
18253,
3815,
1912,
319,
1813,
2837,
286,
3815,
628,
198,
2,
2980,
378,
12178,
3815,
1912,
319,
1813,
2837,
286,
3815,
628,
198,
2,
8525,
1836,
3275,
284,
337,
48,
15751,
7243,
628,
198,
2,
1262,
1100,
6615,
3419,
628,
198,
2,
981,
7,
17821,
2599,
198,
2,
220,
220,
220,
220,
651,
62,
27568,
62,
7890,
3419,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1057,
3419,
198
] | 2.654618 | 498 |
import pytest
from .app import oso, Organization, Repository, User
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
@pytest.fixture
| [
11748,
12972,
9288,
198,
198,
6738,
764,
1324,
1330,
267,
568,
11,
12275,
11,
1432,
13264,
11,
11787,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
198,
31,
9078,
9288,
13,
69,
9602,
198
] | 2.527473 | 91 |
import csv
buffer = []
for i in range(0,100):
buffer.append(i)
print("Writing buffer to buffer.csv now...")
data_logger_csv(buffer,"buffer.csv") | [
11748,
269,
21370,
198,
197,
197,
198,
22252,
796,
17635,
198,
1640,
1312,
287,
2837,
7,
15,
11,
3064,
2599,
198,
197,
22252,
13,
33295,
7,
72,
8,
198,
197,
198,
4798,
7203,
33874,
11876,
284,
11876,
13,
40664,
783,
9313,
8,
198,
7890,
62,
6404,
1362,
62,
40664,
7,
22252,
553,
22252,
13,
40664,
4943
] | 2.678571 | 56 |
# -*- coding: utf-8
"""Unit tests for the mstranslate event plugin."""
# pylint: disable=missing-docstring,too-few-public-methods
from twisted.internet.defer import inlineCallbacks
from twisted.trial.unittest import TestCase
from ...test.helpers import CommandTestMixin
from . import Default
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
198,
37811,
26453,
5254,
329,
262,
285,
2536,
504,
17660,
1785,
13877,
526,
15931,
198,
2,
279,
2645,
600,
25,
15560,
28,
45688,
12,
15390,
8841,
11,
18820,
12,
32146,
12,
11377,
12,
24396,
82,
628,
198,
6738,
19074,
13,
37675,
13,
4299,
263,
1330,
26098,
14134,
10146,
198,
6738,
19074,
13,
45994,
13,
403,
715,
395,
1330,
6208,
20448,
198,
198,
6738,
2644,
9288,
13,
16794,
364,
1330,
9455,
14402,
35608,
259,
198,
198,
6738,
764,
1330,
15161,
628
] | 3.3 | 90 |
from abc import ABCMeta, abstractmethod
class DefaultExperimentProvider(object):
"""
Abstract base class for objects that provide the ID of an MLflow Experiment based on the
current client context. For example, when the MLflow client is running in a Databricks Job,
a provider is used to obtain the ID of the MLflow Experiment associated with the Job.
Usually the experiment_id is set explicitly by the user, but if the experiment is not set,
MLflow computes a default experiment id based on different contexts.
When an experiment is created via the fluent ``mlflow.start_run`` method, MLflow iterates
through the registered ``DefaultExperimentProvider``s until it finds one whose
``in_context()`` method returns ``True``; MLflow then calls the provider's
``get_experiment_id()`` method and uses the resulting experiment ID for Tracking operations.
"""
__metaclass__ = ABCMeta
@abstractmethod
def in_context(self):
"""
Determine if the MLflow client is running in a context where this provider can
identify an associated MLflow Experiment ID.
:return: ``True`` if the MLflow client is running in a context where the provider
can identify an associated MLflow Experiment ID. ``False`` otherwise.
"""
pass
@abstractmethod
def get_experiment_id(self):
"""
Provide the MLflow Experiment ID for the current MLflow client context.
Assumes that ``in_context()`` is ``True``.
:return: The ID of the MLflow Experiment associated with the current context.
"""
pass
| [
6738,
450,
66,
1330,
9738,
48526,
11,
12531,
24396,
628,
198,
4871,
15161,
20468,
3681,
29495,
7,
15252,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27741,
2779,
1398,
329,
5563,
326,
2148,
262,
4522,
286,
281,
10373,
11125,
29544,
1912,
319,
262,
198,
220,
220,
220,
1459,
5456,
4732,
13,
1114,
1672,
11,
618,
262,
10373,
11125,
5456,
318,
2491,
287,
257,
16092,
397,
23706,
15768,
11,
198,
220,
220,
220,
257,
10131,
318,
973,
284,
7330,
262,
4522,
286,
262,
10373,
11125,
29544,
3917,
351,
262,
15768,
13,
628,
220,
220,
220,
19672,
262,
6306,
62,
312,
318,
900,
11777,
416,
262,
2836,
11,
475,
611,
262,
6306,
318,
407,
900,
11,
198,
220,
220,
220,
10373,
11125,
552,
1769,
257,
4277,
6306,
4686,
1912,
319,
1180,
26307,
13,
198,
220,
220,
220,
1649,
281,
6306,
318,
2727,
2884,
262,
43472,
7559,
76,
1652,
9319,
13,
9688,
62,
5143,
15506,
2446,
11,
10373,
11125,
11629,
689,
198,
220,
220,
220,
832,
262,
6823,
7559,
19463,
20468,
3681,
29495,
15506,
82,
1566,
340,
7228,
530,
3025,
198,
220,
220,
220,
7559,
259,
62,
22866,
3419,
15506,
2446,
5860,
7559,
17821,
15506,
26,
10373,
11125,
788,
3848,
262,
10131,
338,
198,
220,
220,
220,
7559,
1136,
62,
23100,
3681,
62,
312,
3419,
15506,
2446,
290,
3544,
262,
7186,
6306,
4522,
329,
37169,
4560,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
4164,
330,
31172,
834,
796,
9738,
48526,
628,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
287,
62,
22866,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
45559,
3810,
611,
262,
10373,
11125,
5456,
318,
2491,
287,
257,
4732,
810,
428,
10131,
460,
198,
220,
220,
220,
220,
220,
220,
220,
5911,
281,
3917,
10373,
11125,
29544,
4522,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
7559,
17821,
15506,
611,
262,
10373,
11125,
5456,
318,
2491,
287,
257,
4732,
810,
262,
10131,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
460,
5911,
281,
3917,
10373,
11125,
29544,
4522,
13,
7559,
25101,
15506,
4306,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
628,
220,
220,
220,
2488,
397,
8709,
24396,
198,
220,
220,
220,
825,
651,
62,
23100,
3681,
62,
312,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
44290,
262,
10373,
11125,
29544,
4522,
329,
262,
1459,
10373,
11125,
5456,
4732,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2195,
8139,
326,
7559,
259,
62,
22866,
3419,
15506,
318,
7559,
17821,
15506,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
383,
4522,
286,
262,
10373,
11125,
29544,
3917,
351,
262,
1459,
4732,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1208,
198
] | 3.251984 | 504 |
# -*- coding: utf-8 -*-
"""Provide a traversal root that looks up registered resources."""
__all__ = [
'EngineRoot',
]
import logging
logger = logging.getLogger(__name__)
import zope.interface as zi
import pyramid_basemodel as bm
from pyramid_basemodel import container
from pyramid_basemodel import tree
from . import auth
from . import util
QUERY_SPEC = {
'property_name': 'id',
'validator': util.id_validator,
}
class EngineRoot(tree.BaseContentRoot):
"""Lookup registered resources by tablename and id, wrapping the result
in an ACL wrapper that restricts access by api key.
"""
@property
def add_engine_resource(config, resource_cls, container_iface, query_spec=None):
"""Populate the ``registry.engine_resource_mapping``."""
# Compose.
if not query_spec:
query_spec = QUERY_SPEC
# Unpack.
registry = config.registry
tablename = resource_cls.class_slug
# Create the container class.
class_name = '{0}Container'.format(resource_cls.__name__)
container_cls = type(class_name, (ResourceContainer,), {})
zi.classImplements(container_cls, container_iface)
# Make sure we have a mapping.
if not hasattr(registry, 'engine_resource_mapping'):
registry.engine_resource_mapping = {}
# Prepare a function to actually populate the mapping.
# Register the configuration action with a discriminator so that we
# don't register the same class twice.
discriminator = ('engine.traverse', tablename,)
# Make it introspectable.
intr = config.introspectable(category_name='engine resources',
discriminator=discriminator,
title='An engine resource',
type_name=None)
intr['value'] = resource_cls, container_iface
config.action(discriminator, register, introspectables=(intr,))
def includeme(config, add_resource=None):
"""Provide the ``config.add_engine_resource`` directive."""
config.add_directive('add_engine_resource', add_engine_resource)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
37811,
15946,
485,
257,
33038,
282,
6808,
326,
3073,
510,
6823,
4133,
526,
15931,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
705,
13798,
30016,
3256,
198,
60,
198,
198,
11748,
18931,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
11748,
1976,
3008,
13,
39994,
355,
1976,
72,
198,
11748,
27944,
62,
12093,
368,
375,
417,
355,
275,
76,
198,
198,
6738,
27944,
62,
12093,
368,
375,
417,
1330,
9290,
198,
6738,
27944,
62,
12093,
368,
375,
417,
1330,
5509,
198,
198,
6738,
764,
1330,
6284,
198,
6738,
764,
1330,
7736,
198,
198,
10917,
19664,
62,
48451,
796,
1391,
198,
220,
220,
220,
705,
26745,
62,
3672,
10354,
705,
312,
3256,
198,
220,
220,
220,
705,
12102,
1352,
10354,
7736,
13,
312,
62,
12102,
1352,
11,
198,
92,
198,
198,
4871,
7117,
30016,
7,
21048,
13,
14881,
19746,
30016,
2599,
198,
220,
220,
220,
37227,
8567,
929,
6823,
4133,
416,
7400,
11925,
480,
290,
4686,
11,
27074,
262,
1255,
198,
220,
220,
220,
220,
220,
287,
281,
17382,
29908,
326,
47075,
1895,
416,
40391,
1994,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
26745,
198,
198,
4299,
751,
62,
18392,
62,
31092,
7,
11250,
11,
8271,
62,
565,
82,
11,
9290,
62,
361,
558,
11,
12405,
62,
16684,
28,
14202,
2599,
198,
220,
220,
220,
37227,
16979,
5039,
262,
7559,
2301,
4592,
13,
18392,
62,
31092,
62,
76,
5912,
15506,
526,
15931,
628,
220,
220,
220,
1303,
3082,
577,
13,
198,
220,
220,
220,
611,
407,
12405,
62,
16684,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
16684,
796,
19604,
19664,
62,
48451,
628,
220,
220,
220,
1303,
791,
8002,
13,
198,
220,
220,
220,
20478,
796,
4566,
13,
2301,
4592,
198,
220,
220,
220,
7400,
11925,
480,
796,
8271,
62,
565,
82,
13,
4871,
62,
6649,
1018,
628,
220,
220,
220,
1303,
13610,
262,
9290,
1398,
13,
198,
220,
220,
220,
1398,
62,
3672,
796,
705,
90,
15,
92,
29869,
4458,
18982,
7,
31092,
62,
565,
82,
13,
834,
3672,
834,
8,
198,
220,
220,
220,
9290,
62,
565,
82,
796,
2099,
7,
4871,
62,
3672,
11,
357,
26198,
29869,
11,
828,
23884,
8,
198,
220,
220,
220,
1976,
72,
13,
4871,
3546,
1154,
902,
7,
34924,
62,
565,
82,
11,
9290,
62,
361,
558,
8,
628,
220,
220,
220,
1303,
6889,
1654,
356,
423,
257,
16855,
13,
198,
220,
220,
220,
611,
407,
468,
35226,
7,
2301,
4592,
11,
705,
18392,
62,
31092,
62,
76,
5912,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
20478,
13,
18392,
62,
31092,
62,
76,
5912,
796,
23884,
628,
220,
220,
220,
1303,
43426,
257,
2163,
284,
1682,
48040,
262,
16855,
13,
628,
220,
220,
220,
1303,
17296,
262,
8398,
2223,
351,
257,
6534,
20900,
523,
326,
356,
198,
220,
220,
220,
1303,
836,
470,
7881,
262,
976,
1398,
5403,
13,
198,
220,
220,
220,
6534,
20900,
796,
19203,
18392,
13,
9535,
4399,
3256,
7400,
11925,
480,
35751,
628,
220,
220,
220,
1303,
6889,
340,
18951,
4443,
540,
13,
198,
220,
220,
220,
9913,
796,
4566,
13,
600,
305,
4443,
540,
7,
22872,
62,
3672,
11639,
18392,
4133,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6534,
20900,
28,
15410,
3036,
20900,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3670,
11639,
2025,
3113,
8271,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
62,
3672,
28,
14202,
8,
198,
220,
220,
220,
9913,
17816,
8367,
20520,
796,
8271,
62,
565,
82,
11,
9290,
62,
361,
558,
628,
220,
220,
220,
4566,
13,
2673,
7,
15410,
3036,
20900,
11,
7881,
11,
18951,
4443,
2977,
16193,
600,
81,
11,
4008,
628,
198,
4299,
846,
34755,
7,
11250,
11,
751,
62,
31092,
28,
14202,
2599,
198,
220,
220,
220,
37227,
15946,
485,
262,
7559,
11250,
13,
2860,
62,
18392,
62,
31092,
15506,
22644,
526,
15931,
628,
220,
220,
220,
4566,
13,
2860,
62,
12942,
425,
10786,
2860,
62,
18392,
62,
31092,
3256,
751,
62,
18392,
62,
31092,
8,
198
] | 2.713168 | 767 |
#!/usr/bin/env python
import urllib2
httpCode = http_code()
uri = ["https://www.digitalocean.com/community/tutorials/how-to-import-and-export-databases-in-mysql-or-mariadb/lkajsklas/90/laksjkjas/alsjhkahskjas/asjhakjshkjas/aslkjakslj"]
for i in uri:
httpCode.error(i)
print '\n'
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
628,
198,
11748,
2956,
297,
571,
17,
628,
198,
220,
220,
220,
220,
220,
198,
198,
4023,
10669,
796,
2638,
62,
8189,
3419,
198,
198,
9900,
796,
14631,
5450,
1378,
2503,
13,
34725,
78,
5829,
13,
785,
14,
28158,
14,
83,
44917,
82,
14,
4919,
12,
1462,
12,
11748,
12,
392,
12,
39344,
12,
19608,
18826,
12,
259,
12,
28744,
13976,
12,
273,
12,
76,
2743,
324,
65,
14,
75,
74,
1228,
8135,
21921,
14,
3829,
14,
75,
4730,
73,
74,
28121,
14,
874,
73,
71,
74,
993,
8135,
28121,
14,
292,
73,
43573,
73,
1477,
74,
28121,
14,
292,
75,
42421,
4730,
75,
73,
8973,
198,
1640,
1312,
287,
2956,
72,
25,
198,
220,
220,
220,
2638,
10669,
13,
18224,
7,
72,
8,
198,
220,
220,
220,
3601,
705,
59,
77,
6,
628,
198,
197
] | 2.097222 | 144 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import urllib2
response = urllib2.urlopen("https://www.python.org/")
html = response.read()
# print out the HTML response
print(html)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
2956,
297,
571,
17,
198,
198,
26209,
796,
2956,
297,
571,
17,
13,
6371,
9654,
7203,
5450,
1378,
2503,
13,
29412,
13,
2398,
14,
4943,
198,
6494,
796,
2882,
13,
961,
3419,
198,
198,
2,
3601,
503,
262,
11532,
2882,
198,
4798,
7,
6494,
8,
198
] | 2.577465 | 71 |
# LOCAL IMPORTS
from Connection.connection import Connection # connecting to SQL database
"""
It's meant to be run only before using the project for the first time (or at least for the first time in
a certain database (make sure you changed parameters in Connection/'con_parameters.py' file.
"""
with Connection() as con:
cursor=con.cursor()
cursor.execute('DROP TABLE IF EXISTS decks CASCADE')
"""
Deck table: created for storing names and options of existing decks (for example to know if called deck has to be created)
and managing daily new cards limits.
"""
cursor.execute("""CREATE TABLE decks(
name TEXT,
new_limit INT,
limit_left INT,
last_date DATE,
EASE_FACTOR FLOAT,
EASY_BONUS FLOAT,
REVIEW_INTERVAL INT,
EASY_REVIEW_INTERVAL INT,
EARLY_LEARNING INT,
NEW_STEPS FLOAT[],
LAPSE_STEPS FLOAT[],
PRIMARY KEY (name))
""")
| [
2,
37347,
1847,
30023,
33002,
201,
198,
6738,
26923,
13,
38659,
1330,
26923,
1303,
14320,
284,
16363,
6831,
201,
198,
37811,
201,
198,
220,
220,
220,
632,
338,
4001,
284,
307,
1057,
691,
878,
1262,
262,
1628,
329,
262,
717,
640,
357,
273,
379,
1551,
329,
262,
717,
640,
287,
201,
198,
220,
220,
220,
257,
1728,
6831,
357,
15883,
1654,
345,
3421,
10007,
287,
26923,
14,
6,
1102,
62,
17143,
7307,
13,
9078,
6,
2393,
13,
201,
198,
220,
220,
220,
37227,
201,
198,
4480,
26923,
3419,
355,
369,
25,
201,
198,
220,
220,
220,
23493,
28,
1102,
13,
66,
21471,
3419,
201,
198,
220,
220,
220,
23493,
13,
41049,
10786,
7707,
3185,
43679,
16876,
7788,
1797,
4694,
13136,
35106,
34,
19266,
11537,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
20961,
3084,
25,
2727,
329,
23069,
3891,
290,
3689,
286,
4683,
13136,
357,
1640,
1672,
284,
760,
611,
1444,
6203,
468,
284,
307,
2727,
8,
201,
198,
220,
220,
220,
290,
11149,
4445,
649,
4116,
7095,
13,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
23493,
13,
41049,
7203,
15931,
43387,
6158,
43679,
13136,
7,
201,
198,
220,
220,
220,
1438,
40383,
11,
220,
201,
198,
220,
220,
220,
649,
62,
32374,
17828,
11,
220,
201,
198,
220,
220,
220,
4179,
62,
9464,
17828,
11,
220,
201,
198,
220,
220,
220,
938,
62,
4475,
360,
6158,
11,
220,
201,
198,
220,
220,
220,
412,
11159,
62,
37,
10659,
1581,
9977,
46,
1404,
11,
201,
198,
220,
220,
220,
412,
26483,
62,
33,
1340,
2937,
9977,
46,
1404,
11,
220,
201,
198,
220,
220,
220,
4526,
28206,
62,
41358,
23428,
17828,
11,
220,
201,
198,
220,
220,
220,
412,
26483,
62,
2200,
28206,
62,
41358,
23428,
17828,
11,
220,
201,
198,
220,
220,
220,
31834,
11319,
62,
2538,
1503,
15871,
17828,
11,
220,
201,
198,
220,
220,
220,
12682,
62,
30516,
3705,
9977,
46,
1404,
58,
4357,
220,
201,
198,
220,
220,
220,
406,
2969,
5188,
62,
30516,
3705,
9977,
46,
1404,
58,
4357,
220,
201,
198,
220,
220,
220,
4810,
3955,
13153,
35374,
357,
3672,
4008,
201,
198,
220,
220,
220,
13538,
4943,
201,
198,
201,
198,
201,
198
] | 2.618529 | 367 |
import sys
sys.path.insert(0, "/home/puneeth/Projects/GAN/GenerativeAdversarialNetworks/utilities")
import mini_batch_gradient_descent as gd
import plotting_functions as pf
import numpy as np
X = np.transpose(np.random.random_sample(10) * 2.0)
obj = [X]
mle = gd.GradientDescentOptimizer(X, 10**-4, 1)
theta = mle.optimize()
# print(np.random.normal(theta[0], theta[1], 5))
# print("gaussian", gaussian(X, [5, 5]))
pred = np.transpose(gaussian(X, theta))
obj.append(pred)
print(theta)
print("theta")
pf.plot_graphs(1, 5, 10, obj) | [
11748,
25064,
198,
17597,
13,
6978,
13,
28463,
7,
15,
11,
12813,
11195,
14,
79,
1726,
2788,
14,
16775,
82,
14,
45028,
14,
8645,
876,
2782,
690,
36098,
7934,
5225,
14,
315,
2410,
4943,
198,
11748,
9927,
62,
43501,
62,
49607,
62,
8906,
1087,
355,
308,
67,
198,
11748,
29353,
62,
12543,
2733,
355,
279,
69,
198,
11748,
299,
32152,
355,
45941,
198,
55,
796,
45941,
13,
7645,
3455,
7,
37659,
13,
25120,
13,
25120,
62,
39873,
7,
940,
8,
1635,
362,
13,
15,
8,
198,
26801,
796,
685,
55,
60,
198,
76,
293,
796,
308,
67,
13,
42731,
1153,
5960,
1087,
27871,
320,
7509,
7,
55,
11,
838,
1174,
12,
19,
11,
352,
8,
198,
1169,
8326,
796,
285,
293,
13,
40085,
1096,
3419,
198,
2,
3601,
7,
37659,
13,
25120,
13,
11265,
7,
1169,
8326,
58,
15,
4357,
262,
8326,
58,
16,
4357,
642,
4008,
198,
2,
3601,
7203,
4908,
31562,
1600,
31986,
31562,
7,
55,
11,
685,
20,
11,
642,
60,
4008,
198,
28764,
796,
45941,
13,
7645,
3455,
7,
4908,
31562,
7,
55,
11,
262,
8326,
4008,
198,
26801,
13,
33295,
7,
28764,
8,
198,
4798,
7,
1169,
8326,
8,
198,
4798,
7203,
1169,
8326,
4943,
198,
79,
69,
13,
29487,
62,
34960,
82,
7,
16,
11,
642,
11,
838,
11,
26181,
8
] | 2.437788 | 217 |
# Import Setup and Dependancies
import numpy as np
import datetime as dt
import sqlalchemy
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine, func
from flask import Flask, jsonify
########## Database Setup ###########
engine = create_engine("sqlite:///Resources/hawaii.sqlite")
# Reflect an existing database and tables
Base = automap_base()
# Reflect the tables
Base.prepare(engine, reflect=True)
# Save reference to the tables
Measurement = Base.classes.measurement
Station = Base.classes.station
# Create an app
app = Flask(__name__)
########## Flask Routes ##########
@app.route("/")
def welcome():
"""List all available api routes."""
return (
f"Welcome to Hawaii Climate Home Page<br/> "
f"Available Routes:<br/>"
f"<br/>"
f"/api/v1.0/precipitation<br/>"
f"/api/v1.0/stations<br/>"
f"/api/v1.0/tobs<br/>"
f"/api/v1.0/min_max_avg/<start><br/>"
f"/api/v1.0/min_max_avg/<start>/<end><br/>"
f"<br/>"
)
@app.route("/api/v1.0/precipitation")
@app.route("/api/v1.0/stations")
@app.route("/api/v1.0/tobs")
@app.route("/api/v1.0/min_max_avg/<start>")
def temp_range_start(start):
"""TMIN, TAVG, and TMAX per date starting from a starting date.
Args:
start (string): A date string in the format %Y-%m-%d
Returns:
TMIN, TAVE, and TMAX
"""
start_date = dt.datetime.strptime(start, '%Y-%m-%d')
# Create our session (link) from Python to the Database
session = Session(engine)
results = session.query(Measurement.date,\
func.min(Measurement.tobs), \
func.avg(Measurement.tobs), \
func.max(Measurement.tobs)).\
filter(Measurement.date>=start).\
group_by(Measurement.date).all()
# Create a list to hold results
start_list = []
for start_date, min, avg, max in results:
dict_a = {}
dict_a["Date"] = start_date
dict_a["TMIN"] = min
dict_a["TAVG"] = avg
dict_a["TMAX"] = max
start_list.append(dict_a)
session.close()
# jsonify the result
return jsonify(start_list)
@app.route("/api/v1.0/min_max_avg/<start>/<end>")
#run the app
if __name__ == "__main__":
app.run(debug=True)
## EOF ## | [
2,
17267,
31122,
290,
37947,
16183,
198,
11748,
299,
32152,
355,
45941,
220,
198,
11748,
4818,
8079,
355,
288,
83,
198,
11748,
44161,
282,
26599,
220,
198,
6738,
44161,
282,
26599,
13,
2302,
13,
2306,
296,
499,
1330,
3557,
499,
62,
8692,
198,
6738,
44161,
282,
26599,
13,
579,
1330,
23575,
220,
198,
6738,
44161,
282,
26599,
1330,
2251,
62,
18392,
11,
25439,
198,
6738,
42903,
1330,
46947,
11,
33918,
1958,
198,
198,
7804,
2235,
24047,
31122,
1303,
7804,
2235,
220,
198,
18392,
796,
2251,
62,
18392,
7203,
25410,
578,
1378,
14,
33236,
14,
26615,
42648,
13,
25410,
578,
4943,
198,
198,
2,
36901,
281,
4683,
6831,
290,
8893,
198,
14881,
796,
3557,
499,
62,
8692,
3419,
198,
198,
2,
36901,
262,
8893,
220,
198,
14881,
13,
46012,
533,
7,
18392,
11,
4079,
28,
17821,
8,
198,
198,
2,
12793,
4941,
284,
262,
8893,
220,
198,
47384,
434,
796,
7308,
13,
37724,
13,
1326,
5015,
434,
220,
198,
12367,
796,
7308,
13,
37724,
13,
17529,
198,
198,
2,
13610,
281,
598,
198,
1324,
796,
46947,
7,
834,
3672,
834,
8,
198,
198,
7804,
2235,
46947,
39602,
274,
1303,
7804,
2,
220,
198,
31,
1324,
13,
38629,
7203,
14,
4943,
220,
198,
4299,
7062,
33529,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
8053,
477,
1695,
40391,
11926,
526,
15931,
198,
220,
220,
220,
1441,
357,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14618,
284,
13708,
13963,
5995,
7873,
27,
1671,
15913,
366,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
10493,
39602,
274,
25,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14,
15042,
14,
85,
16,
13,
15,
14,
3866,
66,
541,
3780,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14,
15042,
14,
85,
16,
13,
15,
14,
301,
602,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14,
15042,
14,
85,
16,
13,
15,
14,
83,
8158,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14,
15042,
14,
85,
16,
13,
15,
14,
1084,
62,
9806,
62,
615,
70,
14,
5,
2528,
26,
9688,
5,
13655,
26,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
14,
15042,
14,
85,
16,
13,
15,
14,
1084,
62,
9806,
62,
615,
70,
14,
5,
2528,
26,
9688,
5,
13655,
26,
14,
5,
2528,
26,
437,
5,
13655,
26,
27,
1671,
15913,
1,
198,
220,
220,
220,
220,
220,
220,
220,
277,
1,
27,
1671,
15913,
1,
198,
220,
220,
220,
1267,
198,
198,
31,
1324,
13,
38629,
7203,
14,
15042,
14,
85,
16,
13,
15,
14,
3866,
66,
541,
3780,
4943,
220,
198,
198,
31,
1324,
13,
38629,
7203,
14,
15042,
14,
85,
16,
13,
15,
14,
301,
602,
4943,
220,
198,
198,
31,
1324,
13,
38629,
7203,
14,
15042,
14,
85,
16,
13,
15,
14,
83,
8158,
4943,
220,
198,
198,
31,
1324,
13,
38629,
7203,
14,
15042,
14,
85,
16,
13,
15,
14,
1084,
62,
9806,
62,
615,
70,
14,
27,
9688,
29,
4943,
220,
198,
4299,
20218,
62,
9521,
62,
9688,
7,
9688,
2599,
198,
220,
220,
220,
37227,
15972,
1268,
11,
309,
10116,
38,
11,
290,
309,
22921,
583,
3128,
3599,
422,
257,
3599,
3128,
13,
198,
220,
220,
220,
943,
14542,
25,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
923,
357,
8841,
2599,
317,
3128,
4731,
287,
262,
5794,
4064,
56,
12,
4,
76,
12,
4,
67,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
21232,
1268,
11,
21664,
6089,
11,
290,
309,
22921,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
923,
62,
4475,
796,
288,
83,
13,
19608,
8079,
13,
2536,
457,
524,
7,
9688,
11,
705,
4,
56,
12,
4,
76,
12,
4,
67,
11537,
628,
220,
220,
220,
1303,
13610,
674,
6246,
357,
8726,
8,
422,
11361,
284,
262,
24047,
220,
220,
220,
220,
198,
220,
220,
220,
6246,
796,
23575,
7,
18392,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2482,
796,
6246,
13,
22766,
7,
47384,
434,
13,
4475,
11,
59,
198,
220,
220,
220,
220,
220,
220,
220,
25439,
13,
1084,
7,
47384,
434,
13,
83,
8158,
828,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25439,
13,
615,
70,
7,
47384,
434,
13,
83,
8158,
828,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25439,
13,
9806,
7,
47384,
434,
13,
83,
8158,
29720,
59,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8106,
7,
47384,
434,
13,
4475,
29,
28,
9688,
737,
59,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1448,
62,
1525,
7,
47384,
434,
13,
4475,
737,
439,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
257,
1351,
284,
1745,
2482,
198,
220,
220,
220,
923,
62,
4868,
796,
17635,
198,
220,
220,
220,
329,
923,
62,
4475,
11,
949,
11,
42781,
11,
3509,
287,
2482,
25,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
64,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
64,
14692,
10430,
8973,
796,
923,
62,
4475,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
64,
14692,
15972,
1268,
8973,
796,
949,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
64,
14692,
5603,
43490,
8973,
796,
42781,
198,
220,
220,
220,
220,
220,
220,
220,
8633,
62,
64,
14692,
51,
22921,
8973,
796,
3509,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
4868,
13,
33295,
7,
11600,
62,
64,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6246,
13,
19836,
3419,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
33918,
1958,
262,
1255,
198,
220,
220,
220,
1441,
33918,
1958,
7,
9688,
62,
4868,
8,
198,
198,
31,
1324,
13,
38629,
7203,
14,
15042,
14,
85,
16,
13,
15,
14,
1084,
62,
9806,
62,
615,
70,
14,
27,
9688,
29,
14,
27,
437,
29,
4943,
198,
198,
2,
5143,
262,
598,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
598,
13,
5143,
7,
24442,
28,
17821,
8,
628,
220,
220,
220,
22492,
412,
19238,
22492
] | 2.18552 | 1,105 |
from lib.database import db_connect | [
6738,
9195,
13,
48806,
1330,
20613,
62,
8443
] | 4.375 | 8 |
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from werkzeug.wrappers import Response
import frappe
import json
__version__ = '0.0.1'
@frappe.whitelist(allow_guest=True)
# api url: http://<site_name>/api/method/vsf_erpnext.cart.update?token=&cartId=
@frappe.whitelist(allow_guest=True)
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
6738,
266,
9587,
2736,
1018,
13,
29988,
11799,
1330,
18261,
198,
11748,
5306,
27768,
198,
11748,
33918,
198,
834,
9641,
834,
796,
705,
15,
13,
15,
13,
16,
6,
628,
198,
31,
69,
430,
27768,
13,
1929,
270,
46331,
7,
12154,
62,
5162,
395,
28,
17821,
8,
198,
2,
40391,
19016,
25,
2638,
1378,
27,
15654,
62,
3672,
29,
14,
15042,
14,
24396,
14,
14259,
69,
62,
263,
79,
19545,
13,
26674,
13,
19119,
30,
30001,
28,
5,
26674,
7390,
28,
628,
198,
31,
69,
430,
27768,
13,
1929,
270,
46331,
7,
12154,
62,
5162,
395,
28,
17821,
8,
198
] | 2.456 | 125 |
import pytest
from gaea.config import CONFIG
from hermes.constants import SENDER, TO
from hermes.email_engine import EmailEngine
@pytest.fixture(scope="module", autouse=True)
| [
11748,
12972,
9288,
198,
198,
6738,
308,
44705,
13,
11250,
1330,
25626,
198,
198,
6738,
607,
6880,
13,
9979,
1187,
1330,
311,
10619,
1137,
11,
5390,
198,
6738,
607,
6880,
13,
12888,
62,
18392,
1330,
9570,
13798,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
2625,
21412,
1600,
1960,
1076,
28,
17821,
8,
628,
628,
198
] | 3.155172 | 58 |
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pprint
import math
import urllib.request, urllib.error, urllib.parse
import sys
import traceback
import re
import time
import urllib.parse
import types
import json
import string
import copy
import threading
import localconstants
import util
import random
import datetime
import http.cookies
"""
Handles incoming queries for the search UI.
"""
TRACE = False
if not localconstants.isDev:
TRACE = False
allProjects = ('Tika', 'Solr', 'Lucene', 'Infrastructure')
DO_PROX_HIGHLIGHT = False
MAX_INT = (1 << 31) - 1
jiraSpec = JIRASpec()
jiraSpec.doAutoComplete = True
jiraSpec.showGridOrList = False
jiraSpec.indexName = 'jira'
jiraSpec.itemLabel = 'issues'
if False:
# (field, userLabel, facetField)
jiraSpec.groups = (
('assignee', 'assignee', 'assignee'),
('facetPriority', 'priority', 'facetPriority'),
)
# (id, userLabel, field, reverse):
jiraSpec.sorts = (
('relevanceRecency', 'relevance + recency', 'blendRecencyRelevance', True),
('relevance', 'pure relevance', None, False),
('oldest', 'oldest', 'created', False),
('commentCount', 'most comments', 'commentCount', True),
('voteCount', 'most votes', 'voteCount', True),
('watchCount', 'most watches', 'watchCount', True),
('newest', 'newest', 'created', True),
('priority', 'priority', 'priority', False),
#('notRecentlyUpdated', 'not recently updated', 'updated', False),
('recentlyUpdated', 'recently updated', 'updated', True),
#('keyNum', 'issue number', 'keyNum', False),
)
jiraSpec.retrieveFields = (
'key',
'updated',
'created',
{'field': 'allUsers', 'highlight': 'whole'},
'status',
'author',
'commentID',
'commentCount',
'voteCount',
'watchCount',
'commitURL',
{'field': 'summary', 'highlight': 'whole'},
{'field': 'description', 'highlight': 'snippets'},
{'field': 'body', 'highlight': 'snippets'},
)
jiraSpec.highlighter = {
'class': 'PostingsHighlighter',
'passageScorer.b': 0.75,
'maxPassages': 3,
'maxLength': 1000000}
# (userLabel, fieldName, isHierarchy, sort, doMorePopup)
jiraSpec.facetFields = (
('Status', 'status', False, None, False),
('Project', 'project', False, None, False),
('Updated', 'updated', False, None, False),
('Updated ago', 'updatedAgo', False, None, False),
('User', 'allUsers', False, None, True),
('Committed by', 'committedBy', False, None, True),
('Last comment user', 'lastContributor', False, None, True),
('Fix version', 'fixVersions', True, '-int', True),
('Committed paths', 'committedPaths', True, None, False),
('Component', 'facetComponents', True, None, True),
('Type', 'issueType', False, None, True),
('Priority', 'facetPriority', False, None, False),
('Labels', 'labels', False, None, True),
('Attachment?', 'attachments', False, None, False),
('Commits?', 'hasCommits', False, None, False),
('Has votes?', 'hasVotes', True, None, False),
('Reporter', 'reporter', False, None, True),
('Assignee', 'assignee', False, None, True),
('Resolution', 'resolution', False, None, False),
#('Created', 'facetCreated', True, None, False),
)
jiraSpec.textQueryFields = ['summary', 'description']
# nocommit can we do key descending as number...?
jiraSpec.browseOnlyDefaultSort = 'recentlyUpdated'
jiraSpec.finish()
escape = util.escape
chars = string.ascii_lowercase + string.digits
reIssue = re.compile('([A-Z]+-\d+)')
CHECKMARK = '✓'
reNumber = re.compile(r'^[\-0-9]+\.[0-9]+')
opticalZoomSortOrder = [
'1x',
'1x-3x',
'3x-6x',
'6x-10x',
'10x-20x',
'Over 20x',
]
weightSortOrder = [
'0 - .25',
'.25 - .50',
'.50 - .75',
'.75 - 1.0',
'Over 1.0',
]
| [
2,
49962,
284,
262,
24843,
10442,
5693,
357,
1921,
37,
8,
739,
530,
393,
517,
198,
2,
18920,
5964,
11704,
13,
220,
4091,
262,
28536,
2393,
9387,
351,
198,
2,
428,
670,
329,
3224,
1321,
5115,
6634,
9238,
13,
198,
2,
383,
7054,
37,
16625,
428,
2393,
284,
921,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
198,
2,
357,
1169,
366,
34156,
15341,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
198,
2,
262,
13789,
13,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
279,
4798,
198,
11748,
10688,
198,
11748,
2956,
297,
571,
13,
25927,
11,
2956,
297,
571,
13,
18224,
11,
2956,
297,
571,
13,
29572,
198,
11748,
25064,
198,
11748,
12854,
1891,
198,
11748,
302,
198,
11748,
640,
198,
11748,
2956,
297,
571,
13,
29572,
198,
11748,
3858,
198,
11748,
33918,
198,
11748,
4731,
198,
11748,
4866,
198,
11748,
4704,
278,
198,
11748,
1957,
9979,
1187,
198,
11748,
7736,
198,
11748,
4738,
198,
11748,
4818,
8079,
198,
11748,
2638,
13,
27916,
444,
198,
198,
37811,
198,
12885,
829,
15619,
20743,
329,
262,
2989,
12454,
13,
198,
37811,
198,
198,
5446,
11598,
796,
10352,
198,
198,
361,
407,
1957,
9979,
1187,
13,
271,
13603,
25,
198,
220,
7579,
11598,
796,
10352,
198,
198,
439,
16775,
82,
796,
19203,
51,
9232,
3256,
705,
36949,
81,
3256,
705,
22946,
1734,
3256,
705,
18943,
6410,
11537,
198,
198,
18227,
62,
31190,
55,
62,
39,
3528,
6581,
9947,
796,
10352,
198,
198,
22921,
62,
12394,
796,
357,
16,
9959,
3261,
8,
532,
352,
198,
198,
73,
8704,
22882,
796,
449,
4663,
1921,
43106,
3419,
198,
73,
8704,
22882,
13,
4598,
27722,
20988,
796,
6407,
198,
73,
8704,
22882,
13,
12860,
41339,
5574,
8053,
796,
10352,
198,
73,
8704,
22882,
13,
9630,
5376,
796,
705,
73,
8704,
6,
198,
73,
8704,
22882,
13,
9186,
33986,
796,
705,
37165,
6,
198,
198,
361,
10352,
25,
198,
220,
1303,
357,
3245,
11,
2836,
33986,
11,
39144,
15878,
8,
198,
220,
474,
8704,
22882,
13,
24432,
796,
357,
198,
220,
220,
220,
19203,
562,
570,
1453,
3256,
705,
562,
570,
1453,
3256,
705,
562,
570,
1453,
33809,
198,
220,
220,
220,
19203,
69,
23253,
22442,
414,
3256,
705,
49336,
3256,
705,
69,
23253,
22442,
414,
33809,
198,
220,
220,
220,
1267,
198,
198,
2,
357,
312,
11,
2836,
33986,
11,
2214,
11,
9575,
2599,
198,
73,
8704,
22882,
13,
82,
2096,
796,
357,
198,
220,
19203,
260,
2768,
590,
6690,
1387,
3256,
705,
260,
2768,
590,
1343,
664,
1387,
3256,
705,
2436,
437,
6690,
1387,
3041,
2768,
590,
3256,
6407,
828,
198,
220,
19203,
260,
2768,
590,
3256,
705,
37424,
23082,
3256,
6045,
11,
10352,
828,
198,
220,
19203,
727,
395,
3256,
705,
727,
395,
3256,
705,
25598,
3256,
10352,
828,
198,
220,
19203,
23893,
12332,
3256,
705,
1712,
3651,
3256,
705,
23893,
12332,
3256,
6407,
828,
198,
220,
19203,
27257,
12332,
3256,
705,
1712,
5690,
3256,
705,
27257,
12332,
3256,
6407,
828,
198,
220,
19203,
8340,
12332,
3256,
705,
1712,
16860,
3256,
705,
8340,
12332,
3256,
6407,
828,
198,
220,
19203,
3605,
395,
3256,
705,
3605,
395,
3256,
705,
25598,
3256,
6407,
828,
198,
220,
19203,
49336,
3256,
705,
49336,
3256,
705,
49336,
3256,
10352,
828,
198,
220,
1303,
10786,
1662,
24661,
17354,
3256,
705,
1662,
2904,
6153,
3256,
705,
43162,
3256,
10352,
828,
198,
220,
19203,
49921,
306,
17354,
3256,
705,
49921,
306,
6153,
3256,
705,
43162,
3256,
6407,
828,
198,
220,
1303,
10786,
2539,
33111,
3256,
705,
21949,
1271,
3256,
705,
2539,
33111,
3256,
10352,
828,
198,
220,
1267,
198,
198,
73,
8704,
22882,
13,
1186,
30227,
15878,
82,
796,
357,
198,
220,
705,
2539,
3256,
198,
220,
705,
43162,
3256,
198,
220,
705,
25598,
3256,
198,
220,
1391,
6,
3245,
10354,
705,
439,
14490,
3256,
705,
8929,
2971,
10354,
705,
1929,
2305,
6,
5512,
198,
220,
705,
13376,
3256,
198,
220,
705,
9800,
3256,
198,
220,
705,
23893,
2389,
3256,
198,
220,
705,
23893,
12332,
3256,
198,
220,
705,
27257,
12332,
3256,
198,
220,
705,
8340,
12332,
3256,
198,
220,
705,
41509,
21886,
3256,
198,
220,
1391,
6,
3245,
10354,
705,
49736,
3256,
705,
8929,
2971,
10354,
705,
1929,
2305,
6,
5512,
198,
220,
1391,
6,
3245,
10354,
705,
11213,
3256,
705,
8929,
2971,
10354,
705,
16184,
3974,
1039,
6,
5512,
198,
220,
1391,
6,
3245,
10354,
705,
2618,
3256,
705,
8929,
2971,
10354,
705,
16184,
3974,
1039,
6,
5512,
198,
220,
1267,
198,
198,
73,
8704,
22882,
13,
8929,
75,
4799,
796,
1391,
198,
220,
705,
4871,
10354,
705,
6307,
654,
11922,
75,
4799,
3256,
198,
220,
705,
6603,
496,
3351,
11934,
13,
65,
10354,
657,
13,
2425,
11,
198,
220,
705,
9806,
14478,
1095,
10354,
513,
11,
198,
220,
705,
9806,
24539,
10354,
1802,
2388,
92,
198,
198,
2,
357,
7220,
33986,
11,
2214,
5376,
11,
318,
39,
959,
9282,
11,
3297,
11,
466,
5167,
16979,
929,
8,
198,
73,
8704,
22882,
13,
69,
23253,
15878,
82,
796,
357,
198,
220,
19203,
19580,
3256,
705,
13376,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
16775,
3256,
705,
16302,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
17354,
3256,
705,
43162,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
17354,
2084,
3256,
705,
43162,
32,
2188,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
12982,
3256,
705,
439,
14490,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
6935,
2175,
416,
3256,
705,
785,
3291,
3886,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
5956,
2912,
2836,
3256,
705,
12957,
37146,
273,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
22743,
2196,
3256,
705,
13049,
45150,
3256,
6407,
11,
705,
12,
600,
3256,
6407,
828,
198,
220,
19203,
6935,
2175,
13532,
3256,
705,
785,
3291,
15235,
82,
3256,
6407,
11,
6045,
11,
10352,
828,
198,
220,
19203,
21950,
3256,
705,
69,
23253,
7293,
3906,
3256,
6407,
11,
6045,
11,
6407,
828,
198,
220,
19203,
6030,
3256,
705,
21949,
6030,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
22442,
414,
3256,
705,
69,
23253,
22442,
414,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
17822,
1424,
3256,
705,
23912,
1424,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
8086,
15520,
30,
3256,
705,
47348,
902,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
6935,
896,
30,
3256,
705,
10134,
6935,
896,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
19203,
19242,
5690,
30,
3256,
705,
10134,
53,
6421,
3256,
6407,
11,
6045,
11,
10352,
828,
198,
220,
19203,
6207,
4337,
3256,
705,
260,
26634,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
8021,
570,
1453,
3256,
705,
562,
570,
1453,
3256,
10352,
11,
6045,
11,
6407,
828,
198,
220,
19203,
4965,
2122,
3256,
705,
29268,
3256,
10352,
11,
6045,
11,
10352,
828,
198,
220,
1303,
10786,
41972,
3256,
705,
69,
23253,
41972,
3256,
6407,
11,
6045,
11,
10352,
828,
198,
220,
1267,
198,
198,
73,
8704,
22882,
13,
5239,
20746,
15878,
82,
796,
37250,
49736,
3256,
705,
11213,
20520,
198,
2,
299,
420,
2002,
270,
460,
356,
466,
1994,
31491,
355,
1271,
44825,
198,
73,
8704,
22882,
13,
25367,
325,
10049,
19463,
42758,
796,
705,
49921,
306,
17354,
6,
198,
73,
8704,
22882,
13,
15643,
680,
3419,
198,
198,
41915,
796,
7736,
13,
41915,
198,
198,
354,
945,
796,
4731,
13,
292,
979,
72,
62,
21037,
7442,
1343,
4731,
13,
12894,
896,
198,
198,
260,
45147,
796,
302,
13,
5589,
576,
10786,
26933,
32,
12,
57,
48688,
12,
59,
67,
28988,
11537,
198,
198,
50084,
44,
14175,
796,
705,
5,
2,
87,
1983,
1485,
26,
6,
198,
198,
260,
15057,
796,
302,
13,
5589,
576,
7,
81,
6,
61,
58,
41441,
15,
12,
24,
48688,
59,
3693,
15,
12,
24,
48688,
11537,
198,
198,
8738,
605,
57,
4207,
42758,
18743,
796,
685,
198,
220,
705,
16,
87,
3256,
198,
220,
705,
16,
87,
12,
18,
87,
3256,
198,
220,
705,
18,
87,
12,
21,
87,
3256,
198,
220,
705,
21,
87,
12,
940,
87,
3256,
198,
220,
705,
940,
87,
12,
1238,
87,
3256,
198,
220,
705,
5886,
1160,
87,
3256,
198,
220,
2361,
198,
198,
6551,
42758,
18743,
796,
685,
198,
220,
705,
15,
532,
764,
1495,
3256,
198,
220,
45302,
1495,
532,
764,
1120,
3256,
198,
220,
45302,
1120,
532,
764,
2425,
3256,
198,
220,
45302,
2425,
532,
352,
13,
15,
3256,
198,
220,
705,
5886,
352,
13,
15,
3256,
198,
220,
2361,
198
] | 2.911493 | 1,514 |
import networkx as nx
from models.case import Case
from models.legal_knowledge_graph import LegalKnowledgeGraph
from helpers import *
from custom import *
G = init_graph("{}/all_citations.txt".format(DATADIR)).fetch_subgraph(
query_type='case')
print(len(G.nodes()))
print(len(G.edges()))
print(G.in_degree_distribution())
print(G.out_degree_distribution())
print('Average clustering coeff', nx.average_clustering(G))
print('Average in_degree', G.average_in_degree())
print('Average out_degree', G.average_out_degree())
# print_landmark_cases(nx.in_degree_centrality, G, 'In-Degree centrality')
# print_landmark_cases(nx.eigenvector_centrality, G, 'Eigen-vector centrality')
# print_landmark_cases(nx.katz_centrality, G, 'Katz centrality')
# print_landmark_cases(nx.closeness_centrality, G, 'Closeness centrality')
# print_landmark_cases(nx.pagerank, G, 'Pagerank')
# print_landmark_cases(custom_centrality, G, 'Custom centrality')
# print_common_cases()
# plot_distribution(fetch_log_scale(G.in_degree_distribution()), 'In-Degree', 'graph_plots/power_law_distribution/in_degree.png', fontSize=2, dpi=500, plot_type="scatter")
# plot_distribution(fetch_log_scale(G.out_degree_distribution()), 'Out-Degree', 'graph_plots/power_law_distribution/out_degree.png', fontSize=2, dpi=500, plot_type="scatter")
# unfrozen_graph = nx.Graph(G)
# unfrozen_graph.remove_edges_from(unfrozen_graph.selfloop_edges())
# core_number = nx.core_number(unfrozen_graph)
# core_number_sorted = sorted(core_number.items(), key=lambda kv: kv[1], reverse=True)[:50]
# for case_id, value in core_number_sorted:
# print(case_id, "\t", CASE_ID_TO_NAME_MAPPING[case_id], "\t", value)
# print("k_core")
# k_core = nx.k_core(unfrozen_graph)
# # k_core_sorted = sorted(k_core.items(), key=lambda kv: kv[1], reverse=True)[:50]
# for _ in k_core.nodes():
# print(_, "\t", CASE_ID_TO_NAME_MAPPING[_])
# print("k_shell")
# k_shell = nx.k_shell(unfrozen_graph)
# for _ in k_shell.nodes():
# print(_, "\t", CASE_ID_TO_NAME_MAPPING[_])
# print("k_crust")
# k_crust = nx.k_crust(unfrozen_graph)
# for _ in k_crust.nodes():
# print(_, "\t", CASE_ID_TO_NAME_MAPPING[_])
# print("k_corona")
# k_corona = nx.k_corona(unfrozen_graph, k=10)
# for _ in k_corona.nodes():
# print(_, "\t", CASE_ID_TO_NAME_MAPPING[_])
# rich_club_coefficient = nx.rich_club_coefficient(unfrozen_graph, normalized=False)
# rich_club_sorted = sorted(rich_club_coefficient.items(), key=lambda kv: kv[1], reverse=True)
# min_degree = 116
# rich_club = list()
# for case_id in unfrozen_graph:
# if len(unfrozen_graph[case_id]) > min_degree:
# rich_club.append(case_id)
# print([CASE_ID_TO_NAME_MAPPING[case_id] for case_id in rich_club])
# k_clique_communities = list(nx.algorithms.community.k_clique_communities(unfrozen_graph, k=8))
# # print(k_clique_communities)
# for k_clique in k_clique_communities:
# print("\n")
# for case_id in k_clique:
# if case_id in CASE_ID_TO_FILE_MAPPING:
# path = CASE_ID_TO_FILE_MAPPING[case_id]
# subjects = find_subjects_for_case(path)
# print(case_id,"\t", CASE_ID_TO_NAME_MAPPING[case_id],"\t", ", ".join(subjects))
| [
11748,
3127,
87,
355,
299,
87,
198,
198,
6738,
4981,
13,
7442,
1330,
8913,
198,
6738,
4981,
13,
18011,
62,
45066,
62,
34960,
1330,
16027,
23812,
2965,
37065,
198,
6738,
49385,
1330,
1635,
198,
6738,
2183,
1330,
1635,
198,
198,
38,
796,
2315,
62,
34960,
7203,
90,
92,
14,
439,
62,
66,
20597,
13,
14116,
1911,
18982,
7,
35,
1404,
2885,
4663,
29720,
69,
7569,
62,
7266,
34960,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12405,
62,
4906,
11639,
7442,
11537,
198,
198,
4798,
7,
11925,
7,
38,
13,
77,
4147,
3419,
4008,
198,
4798,
7,
11925,
7,
38,
13,
276,
3212,
3419,
4008,
198,
4798,
7,
38,
13,
259,
62,
16863,
62,
17080,
3890,
28955,
198,
4798,
7,
38,
13,
448,
62,
16863,
62,
17080,
3890,
28955,
198,
4798,
10786,
26287,
32966,
1586,
763,
14822,
3256,
299,
87,
13,
23913,
62,
565,
436,
1586,
7,
38,
4008,
198,
4798,
10786,
26287,
287,
62,
16863,
3256,
402,
13,
23913,
62,
259,
62,
16863,
28955,
198,
4798,
10786,
26287,
503,
62,
16863,
3256,
402,
13,
23913,
62,
448,
62,
16863,
28955,
198,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
77,
87,
13,
259,
62,
16863,
62,
31463,
414,
11,
402,
11,
705,
818,
12,
35,
1533,
631,
4318,
414,
11537,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
77,
87,
13,
68,
9324,
31364,
62,
31463,
414,
11,
402,
11,
705,
36,
9324,
12,
31364,
4318,
414,
11537,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
77,
87,
13,
74,
27906,
62,
31463,
414,
11,
402,
11,
705,
25881,
89,
4318,
414,
11537,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
77,
87,
13,
565,
5233,
408,
62,
31463,
414,
11,
402,
11,
705,
2601,
5233,
408,
4318,
414,
11537,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
77,
87,
13,
79,
3536,
962,
11,
402,
11,
705,
47,
3536,
962,
11537,
198,
2,
3601,
62,
1044,
4102,
62,
33964,
7,
23144,
62,
31463,
414,
11,
402,
11,
705,
15022,
4318,
414,
11537,
198,
2,
3601,
62,
11321,
62,
33964,
3419,
198,
198,
2,
7110,
62,
17080,
3890,
7,
69,
7569,
62,
6404,
62,
9888,
7,
38,
13,
259,
62,
16863,
62,
17080,
3890,
3419,
828,
705,
818,
12,
35,
1533,
631,
3256,
705,
34960,
62,
489,
1747,
14,
6477,
62,
6270,
62,
17080,
3890,
14,
259,
62,
16863,
13,
11134,
3256,
10369,
10699,
28,
17,
11,
288,
14415,
28,
4059,
11,
7110,
62,
4906,
2625,
1416,
1436,
4943,
198,
2,
7110,
62,
17080,
3890,
7,
69,
7569,
62,
6404,
62,
9888,
7,
38,
13,
448,
62,
16863,
62,
17080,
3890,
3419,
828,
705,
7975,
12,
35,
1533,
631,
3256,
705,
34960,
62,
489,
1747,
14,
6477,
62,
6270,
62,
17080,
3890,
14,
448,
62,
16863,
13,
11134,
3256,
10369,
10699,
28,
17,
11,
288,
14415,
28,
4059,
11,
7110,
62,
4906,
2625,
1416,
1436,
4943,
198,
198,
2,
3684,
42005,
62,
34960,
796,
299,
87,
13,
37065,
7,
38,
8,
198,
2,
3684,
42005,
62,
34960,
13,
28956,
62,
276,
3212,
62,
6738,
7,
403,
69,
42005,
62,
34960,
13,
944,
26268,
62,
276,
3212,
28955,
198,
198,
2,
4755,
62,
17618,
796,
299,
87,
13,
7295,
62,
17618,
7,
403,
69,
42005,
62,
34960,
8,
198,
2,
4755,
62,
17618,
62,
82,
9741,
796,
23243,
7,
7295,
62,
17618,
13,
23814,
22784,
1994,
28,
50033,
479,
85,
25,
479,
85,
58,
16,
4357,
9575,
28,
17821,
38381,
25,
1120,
60,
198,
2,
329,
1339,
62,
312,
11,
1988,
287,
4755,
62,
17618,
62,
82,
9741,
25,
198,
2,
220,
220,
220,
220,
3601,
7,
7442,
62,
312,
11,
37082,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
58,
7442,
62,
312,
4357,
37082,
83,
1600,
1988,
8,
198,
2,
3601,
7203,
74,
62,
7295,
4943,
198,
2,
479,
62,
7295,
796,
299,
87,
13,
74,
62,
7295,
7,
403,
69,
42005,
62,
34960,
8,
198,
2,
1303,
479,
62,
7295,
62,
82,
9741,
796,
23243,
7,
74,
62,
7295,
13,
23814,
22784,
1994,
28,
50033,
479,
85,
25,
479,
85,
58,
16,
4357,
9575,
28,
17821,
38381,
25,
1120,
60,
198,
2,
329,
4808,
287,
479,
62,
7295,
13,
77,
4147,
33529,
198,
2,
220,
220,
220,
220,
3601,
28264,
11,
37082,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
29795,
12962,
198,
2,
3601,
7203,
74,
62,
29149,
4943,
198,
2,
479,
62,
29149,
796,
299,
87,
13,
74,
62,
29149,
7,
403,
69,
42005,
62,
34960,
8,
198,
2,
329,
4808,
287,
479,
62,
29149,
13,
77,
4147,
33529,
198,
2,
220,
220,
220,
220,
3601,
28264,
11,
37082,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
29795,
12962,
198,
2,
3601,
7203,
74,
62,
6098,
436,
4943,
198,
2,
479,
62,
6098,
436,
796,
299,
87,
13,
74,
62,
6098,
436,
7,
403,
69,
42005,
62,
34960,
8,
198,
2,
329,
4808,
287,
479,
62,
6098,
436,
13,
77,
4147,
33529,
198,
2,
220,
220,
220,
220,
3601,
28264,
11,
37082,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
29795,
12962,
198,
2,
3601,
7203,
74,
62,
10215,
4450,
4943,
198,
2,
479,
62,
10215,
4450,
796,
299,
87,
13,
74,
62,
10215,
4450,
7,
403,
69,
42005,
62,
34960,
11,
479,
28,
940,
8,
198,
2,
329,
4808,
287,
479,
62,
10215,
4450,
13,
77,
4147,
33529,
198,
2,
220,
220,
220,
220,
3601,
28264,
11,
37082,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
29795,
12962,
198,
198,
2,
5527,
62,
18664,
62,
1073,
16814,
796,
299,
87,
13,
7527,
62,
18664,
62,
1073,
16814,
7,
403,
69,
42005,
62,
34960,
11,
39279,
28,
25101,
8,
198,
2,
5527,
62,
18664,
62,
82,
9741,
796,
23243,
7,
7527,
62,
18664,
62,
1073,
16814,
13,
23814,
22784,
1994,
28,
50033,
479,
85,
25,
479,
85,
58,
16,
4357,
9575,
28,
17821,
8,
198,
2,
949,
62,
16863,
796,
18693,
198,
2,
5527,
62,
18664,
796,
1351,
3419,
198,
198,
2,
329,
1339,
62,
312,
287,
3684,
42005,
62,
34960,
25,
198,
2,
220,
197,
361,
18896,
7,
403,
69,
42005,
62,
34960,
58,
7442,
62,
312,
12962,
1875,
949,
62,
16863,
25,
198,
2,
220,
197,
197,
7527,
62,
18664,
13,
33295,
7,
7442,
62,
312,
8,
198,
2,
3601,
26933,
34,
11159,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
58,
7442,
62,
312,
60,
329,
1339,
62,
312,
287,
5527,
62,
18664,
12962,
198,
198,
2,
479,
62,
565,
2350,
62,
10709,
871,
796,
1351,
7,
77,
87,
13,
282,
7727,
907,
13,
28158,
13,
74,
62,
565,
2350,
62,
10709,
871,
7,
403,
69,
42005,
62,
34960,
11,
479,
28,
23,
4008,
198,
2,
1303,
3601,
7,
74,
62,
565,
2350,
62,
10709,
871,
8,
198,
198,
2,
329,
479,
62,
565,
2350,
287,
479,
62,
565,
2350,
62,
10709,
871,
25,
198,
2,
220,
197,
4798,
7203,
59,
77,
4943,
198,
2,
220,
197,
1640,
1339,
62,
312,
287,
479,
62,
565,
2350,
25,
198,
2,
220,
197,
197,
361,
1339,
62,
312,
287,
42001,
62,
2389,
62,
10468,
62,
25664,
62,
44,
24805,
2751,
25,
198,
2,
220,
197,
197,
197,
6978,
796,
42001,
62,
2389,
62,
10468,
62,
25664,
62,
44,
24805,
2751,
58,
7442,
62,
312,
60,
198,
2,
220,
197,
197,
197,
32796,
82,
796,
1064,
62,
32796,
82,
62,
1640,
62,
7442,
7,
6978,
8,
198,
2,
220,
197,
197,
197,
4798,
7,
7442,
62,
312,
553,
59,
83,
1600,
42001,
62,
2389,
62,
10468,
62,
20608,
62,
44,
24805,
2751,
58,
7442,
62,
312,
17241,
59,
83,
1600,
33172,
27071,
22179,
7,
32796,
82,
4008,
198
] | 2.421296 | 1,296 |
import torch
import torch.nn as nn
import nlpblock as nb
"""
Example to run
model = RNN_Attention(emb_dim=50,
n_class=2, n_hidden=128, n_layers=1, bidirectional=False, linearTransform=True)
output, attention = model(
torch.rand([3, 5, 50]) # [batch, seq_len, emb_dim]
)
print(output.shape, attention.shape)
"""
| [
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
299,
34431,
9967,
355,
299,
65,
198,
198,
37811,
198,
16281,
284,
1057,
198,
19849,
796,
371,
6144,
62,
8086,
1463,
7,
24419,
62,
27740,
28,
1120,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
4871,
28,
17,
11,
299,
62,
30342,
28,
12762,
11,
299,
62,
75,
6962,
28,
16,
11,
8406,
4154,
282,
28,
25101,
11,
14174,
41762,
28,
17821,
8,
198,
22915,
11,
3241,
796,
2746,
7,
198,
220,
220,
220,
28034,
13,
25192,
26933,
18,
11,
642,
11,
2026,
12962,
220,
1303,
685,
43501,
11,
33756,
62,
11925,
11,
4072,
62,
27740,
60,
198,
8,
198,
4798,
7,
22915,
13,
43358,
11,
3241,
13,
43358,
8,
198,
37811,
198
] | 2.358621 | 145 |
import os
from celery.result import AsyncResult
from fastapi import APIRouter, Depends, Request
from fastapi.responses import FileResponse, JSONResponse
from services.calculators import TophatterCalculator
from services.database.user_database import UserDatabase
from services.mapper import TophatterMapper
from services.pandi import Pandi
from services.schemas import User
from tasks import fetch_tophatter_orders
services = UserDatabase()
tophatter = APIRouter(prefix="/tophatter")
@tophatter.get("/create_task")
@tophatter.get("/tasks")
@tophatter.get("/tasks/clean")
@tophatter.get("/revenue")
@tophatter.get("/download")
| [
11748,
28686,
198,
198,
6738,
18725,
1924,
13,
20274,
1330,
1081,
13361,
23004,
198,
6738,
3049,
15042,
1330,
3486,
4663,
39605,
11,
2129,
2412,
11,
19390,
198,
6738,
3049,
15042,
13,
16733,
274,
1330,
9220,
31077,
11,
19449,
31077,
198,
6738,
2594,
13,
9948,
3129,
2024,
1330,
309,
2522,
1436,
9771,
3129,
1352,
198,
6738,
2594,
13,
48806,
13,
7220,
62,
48806,
1330,
11787,
38105,
198,
6738,
2594,
13,
76,
11463,
1330,
309,
2522,
1436,
44,
11463,
198,
6738,
2594,
13,
79,
26800,
1330,
16492,
72,
198,
6738,
2594,
13,
1416,
4411,
292,
1330,
11787,
198,
6738,
8861,
1330,
21207,
62,
83,
2522,
1436,
62,
6361,
198,
198,
30416,
796,
11787,
38105,
3419,
198,
83,
2522,
1436,
796,
3486,
4663,
39605,
7,
40290,
35922,
83,
2522,
1436,
4943,
628,
198,
31,
83,
2522,
1436,
13,
1136,
7203,
14,
17953,
62,
35943,
4943,
628,
198,
31,
83,
2522,
1436,
13,
1136,
7203,
14,
83,
6791,
4943,
628,
198,
31,
83,
2522,
1436,
13,
1136,
7203,
14,
83,
6791,
14,
27773,
4943,
628,
198,
31,
83,
2522,
1436,
13,
1136,
7203,
14,
260,
4080,
4943,
628,
198,
31,
83,
2522,
1436,
13,
1136,
7203,
14,
15002,
4943,
198
] | 3.255102 | 196 |
nome = input('Digite o nome completo da pessoa: ').strip() # usa-se o método strip para retirar os espaços vazios antes e depois da frase
print('O nome completo da pessoa em maiúsculo é: ', nome.upper()) # usa o método 'upper' para transformar toda a frase em maiúscula
print('O nome completo da pessoa em minúsculo é: ', nome.lower()) # usa o método 'lower' para transformar toda a frase em minúscula
print('O nome possui {} letras'.format(len(nome) - nome.count(' '))) # usa o método 'len' para contar todas as letras e, utilizando
# o ' - nome.count(' '), o programa vai retirar todos os espaços
# vazios no meio da frase.
divide = nome.split() # pega a frase e usa o método 'split' para separar a frase em listas
print('Seu primeiro nome é {} e ele tem {} letras'.format(divide[0], len(divide[0]))) # ao utilizar 'divide[0], estou pegando a primeira
# posição da lista feita no split e mostrando a palvra
# que está contida nesta posição. Já o comando
# 'len(divide[0], vai mostrar quantas letras tem na
# palavra contida na posição 0. | [
77,
462,
796,
5128,
10786,
19511,
578,
267,
299,
462,
1224,
1462,
12379,
279,
408,
12162,
25,
705,
737,
36311,
3419,
1303,
514,
64,
12,
325,
267,
285,
25125,
24313,
10283,
31215,
1005,
343,
283,
28686,
1658,
8957,
16175,
418,
410,
1031,
4267,
1885,
274,
304,
1207,
10924,
12379,
1216,
589,
198,
198,
4798,
10786,
46,
299,
462,
1224,
1462,
12379,
279,
408,
12162,
795,
285,
1872,
21356,
1416,
43348,
38251,
25,
46083,
299,
462,
13,
45828,
28955,
1303,
514,
64,
267,
285,
25125,
24313,
705,
45828,
6,
31215,
6121,
283,
284,
6814,
257,
1216,
589,
795,
285,
1872,
21356,
1416,
4712,
198,
4798,
10786,
46,
299,
462,
1224,
1462,
12379,
279,
408,
12162,
795,
949,
21356,
1416,
43348,
38251,
25,
46083,
299,
462,
13,
21037,
28955,
1303,
514,
64,
267,
285,
25125,
24313,
705,
21037,
6,
31215,
6121,
283,
284,
6814,
257,
1216,
589,
795,
949,
21356,
1416,
4712,
198,
4798,
10786,
46,
299,
462,
1184,
9019,
23884,
1309,
8847,
4458,
18982,
7,
11925,
7,
77,
462,
8,
532,
299,
462,
13,
9127,
10786,
705,
22305,
1303,
514,
64,
267,
285,
25125,
24313,
705,
11925,
6,
31215,
542,
283,
284,
67,
292,
355,
1309,
8847,
304,
11,
7736,
528,
25440,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
267,
705,
532,
299,
462,
13,
9127,
10786,
705,
828,
267,
1430,
64,
410,
1872,
1005,
343,
283,
284,
37427,
28686,
1658,
8957,
16175,
418,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
410,
1031,
4267,
645,
502,
952,
12379,
1216,
589,
13,
198,
7146,
485,
796,
299,
462,
13,
35312,
3419,
1303,
613,
4908,
257,
1216,
589,
304,
514,
64,
267,
285,
25125,
24313,
705,
35312,
6,
31215,
2880,
283,
257,
1216,
589,
795,
1351,
292,
198,
4798,
10786,
4653,
84,
6994,
7058,
299,
462,
38251,
23884,
304,
9766,
2169,
23884,
1309,
8847,
4458,
18982,
7,
7146,
485,
58,
15,
4357,
18896,
7,
7146,
485,
58,
15,
60,
22305,
1303,
257,
78,
7736,
528,
283,
705,
7146,
485,
58,
15,
4357,
1556,
280,
41350,
25440,
257,
6994,
8704,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1426,
72,
16175,
28749,
12379,
1351,
64,
730,
5350,
645,
6626,
304,
749,
25192,
78,
257,
6340,
85,
430,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8358,
1556,
6557,
542,
3755,
16343,
64,
1426,
72,
16175,
28749,
13,
449,
6557,
267,
401,
25440,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
705,
11925,
7,
7146,
485,
58,
15,
4357,
410,
1872,
749,
20040,
5554,
292,
1309,
8847,
2169,
12385,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6340,
615,
430,
542,
3755,
12385,
1426,
72,
16175,
28749,
657,
13
] | 1.751163 | 860 |
import abc
import os
import zipfile
from typing import List
from justmltools.config.abstract_data_path_config import AbstractDataPathConfig
from justmltools.config.local_data_path_config import LocalDataPathConfig
| [
11748,
450,
66,
198,
11748,
28686,
198,
11748,
19974,
7753,
198,
6738,
19720,
1330,
7343,
198,
198,
6738,
655,
76,
2528,
10141,
13,
11250,
13,
397,
8709,
62,
7890,
62,
6978,
62,
11250,
1330,
27741,
6601,
15235,
16934,
198,
6738,
655,
76,
2528,
10141,
13,
11250,
13,
12001,
62,
7890,
62,
6978,
62,
11250,
1330,
10714,
6601,
15235,
16934,
628
] | 3.6 | 60 |
# -*- coding: utf-8 -*-
'''Command line interface module for intro_py-intro.
'''
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import os, sys, argparse, json
import logging, inspect
from future.builtins import (ascii, filter, hex, map, oct, zip, str, open, dict)
from intro_py import util, intro
from intro_py.intro import person
from intro_py.practice import classic, sequenceops as seqops
__all__ = ['main']
# -- run w/out compile --
# python script.py [arg1 argN]
#
# -- run REPL, import script, & run --
# python
# >>> from . import script.py
# >>> script.main([arg1, argN])
#
# -- help/info tools in REPL --
# help(), quit(), help(<object>), help([modules|keywords|symbols|topics])
#
# -- show module/type info --
# ex: pydoc list OR python> help(list)
logging.basicConfig(level = logging.DEBUG)
MODULE_LOGGER = logging.getLogger(__name__)
def main(argv=None):
'''Main entry.
Args:
argv (list): list of arguments
Returns:
int: A return code
Demonstrates Python syntax
'''
rsrc_path = os.environ.get('RSRC_PATH')
logjson_str = util.read_resource('logging.json', rsrc_path=rsrc_path)
log_cfg = deserialize_str(logjson_str, fmt='json')
util.config_logging('info', 'cfg', log_cfg)
opts_hash = parse_cmdopts(argv)
util.config_logging(opts_hash.log_lvl, opts_hash.log_opt, log_cfg)
MODULE_LOGGER.info('main()')
cfg_blank = {'hostname':'???', 'domain':'???', 'file1':{'path':'???',
'ext':'txt'}, 'user1':{'name':'???', 'age': -1}}
cfg_ini = dict(cfg_blank.items())
cfg_ini.update(util.ini_to_dict(util.read_resource('prac.conf',
rsrc_path=rsrc_path)).items())
#cfg_json = dict(cfg_blank.items())
#cfg_json.update(deserialize_str(util.read_resource('prac.json',
# rsrc_path=rsrc_path)).items())
#cfg_yaml = dict(cfg_blank.items())
#cfg_yaml.update(deserialize_str(util.read_resource('prac.yaml',
# rsrc_path=rsrc_path), fmt='yaml').items())
#cfg_toml = dict(cfg_blank.items())
#cfg_toml.update(deserialize_str(util.read_resource('prac.toml',
# rsrc_path=rsrc_path), fmt='toml').items())
tup_arr = [
(cfg_ini, cfg_ini['domain'], cfg_ini['user1']['name'])
#, (cfg_json, cfg_json['domain'], cfg_json['user1']['name'])
#, (cfg_yaml, cfg_yaml['domain'], cfg_yaml['user1']['name'])
#, (cfg_toml, cfg_toml['domain'], cfg_toml['user1']['name'])
]
for (cfg, domain, user1Name) in tup_arr:
print('\nconfig: {0}'.format(cfg))
print('domain: {0}'.format(domain))
print('user1Name: {0}'.format(user1Name))
print('')
run_intro(vars(opts_hash), rsrc_path=rsrc_path)
logging.shutdown()
return 0
if '__main__' == __name__:
sys.exit(main(sys.argv[1:]))
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
7061,
6,
21575,
1627,
7071,
8265,
329,
18951,
62,
9078,
12,
600,
305,
13,
198,
198,
7061,
6,
198,
198,
6738,
11593,
37443,
834,
1330,
357,
48546,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
11,
198,
220,
220,
220,
28000,
1098,
62,
17201,
874,
8,
198,
198,
11748,
28686,
11,
25064,
11,
1822,
29572,
11,
33918,
198,
11748,
18931,
11,
10104,
198,
6738,
2003,
13,
18780,
1040,
1330,
357,
292,
979,
72,
11,
8106,
11,
17910,
11,
3975,
11,
19318,
11,
19974,
11,
965,
11,
1280,
11,
8633,
8,
198,
198,
6738,
18951,
62,
9078,
1330,
7736,
11,
18951,
198,
6738,
18951,
62,
9078,
13,
600,
305,
1330,
1048,
198,
6738,
18951,
62,
9078,
13,
39541,
1330,
6833,
11,
8379,
2840,
355,
33756,
2840,
198,
198,
834,
439,
834,
796,
37250,
12417,
20520,
198,
198,
2,
1377,
1057,
266,
14,
448,
17632,
1377,
198,
2,
21015,
4226,
13,
9078,
685,
853,
16,
1822,
45,
60,
198,
2,
220,
198,
2,
1377,
1057,
45285,
11,
1330,
4226,
11,
1222,
1057,
1377,
198,
2,
21015,
198,
2,
13163,
422,
764,
1330,
4226,
13,
9078,
198,
2,
13163,
4226,
13,
12417,
26933,
853,
16,
11,
1822,
45,
12962,
198,
2,
220,
198,
2,
1377,
1037,
14,
10951,
4899,
287,
45285,
1377,
198,
2,
1037,
22784,
11238,
22784,
1037,
7,
27,
15252,
29,
828,
1037,
26933,
18170,
91,
2539,
10879,
91,
1837,
2022,
10220,
91,
4852,
873,
12962,
198,
2,
220,
198,
2,
1377,
905,
8265,
14,
4906,
7508,
1377,
198,
2,
409,
25,
279,
5173,
420,
1351,
6375,
21015,
29,
1037,
7,
4868,
8,
628,
198,
6404,
2667,
13,
35487,
16934,
7,
5715,
796,
18931,
13,
30531,
8,
198,
33365,
24212,
62,
25294,
30373,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
198,
4299,
1388,
7,
853,
85,
28,
14202,
2599,
198,
220,
220,
220,
705,
7061,
13383,
5726,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1822,
85,
357,
4868,
2599,
1351,
286,
7159,
198,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
493,
25,
317,
1441,
2438,
198,
220,
220,
220,
7814,
2536,
689,
11361,
15582,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
198,
220,
220,
220,
374,
10677,
62,
6978,
796,
28686,
13,
268,
2268,
13,
1136,
10786,
6998,
7397,
62,
34219,
11537,
198,
220,
220,
220,
2604,
17752,
62,
2536,
796,
7736,
13,
961,
62,
31092,
10786,
6404,
2667,
13,
17752,
3256,
374,
10677,
62,
6978,
28,
3808,
6015,
62,
6978,
8,
198,
220,
220,
220,
2604,
62,
37581,
796,
748,
48499,
1096,
62,
2536,
7,
6404,
17752,
62,
2536,
11,
46996,
11639,
17752,
11537,
198,
220,
220,
220,
7736,
13,
11250,
62,
6404,
2667,
10786,
10951,
3256,
705,
37581,
3256,
2604,
62,
37581,
8,
198,
220,
220,
220,
2172,
82,
62,
17831,
796,
21136,
62,
28758,
404,
912,
7,
853,
85,
8,
198,
220,
220,
220,
7736,
13,
11250,
62,
6404,
2667,
7,
404,
912,
62,
17831,
13,
6404,
62,
47147,
11,
2172,
82,
62,
17831,
13,
6404,
62,
8738,
11,
2604,
62,
37581,
8,
198,
220,
220,
220,
33893,
62,
25294,
30373,
13,
10951,
10786,
12417,
3419,
11537,
628,
220,
220,
220,
30218,
70,
62,
27190,
796,
1391,
6,
4774,
3672,
10354,
6,
28358,
3256,
705,
27830,
10354,
6,
28358,
3256,
705,
7753,
16,
10354,
90,
6,
6978,
10354,
6,
28358,
3256,
220,
198,
197,
197,
6,
2302,
10354,
6,
14116,
6,
5512,
705,
7220,
16,
10354,
90,
6,
3672,
10354,
6,
28358,
3256,
705,
496,
10354,
532,
16,
11709,
198,
220,
220,
220,
30218,
70,
62,
5362,
796,
8633,
7,
37581,
62,
27190,
13,
23814,
28955,
198,
220,
220,
220,
30218,
70,
62,
5362,
13,
19119,
7,
22602,
13,
5362,
62,
1462,
62,
11600,
7,
22602,
13,
961,
62,
31092,
10786,
1050,
330,
13,
10414,
3256,
198,
197,
197,
3808,
6015,
62,
6978,
28,
3808,
6015,
62,
6978,
29720,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
17752,
796,
8633,
7,
37581,
62,
27190,
13,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
17752,
13,
19119,
7,
8906,
48499,
1096,
62,
2536,
7,
22602,
13,
961,
62,
31092,
10786,
1050,
330,
13,
17752,
3256,
198,
197,
2,
197,
3808,
6015,
62,
6978,
28,
3808,
6015,
62,
6978,
29720,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
88,
43695,
796,
8633,
7,
37581,
62,
27190,
13,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
88,
43695,
13,
19119,
7,
8906,
48499,
1096,
62,
2536,
7,
22602,
13,
961,
62,
31092,
10786,
1050,
330,
13,
88,
43695,
3256,
198,
197,
2,
197,
3808,
6015,
62,
6978,
28,
3808,
6015,
62,
6978,
828,
46996,
11639,
88,
43695,
27691,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
39532,
75,
796,
8633,
7,
37581,
62,
27190,
13,
23814,
28955,
198,
220,
220,
220,
1303,
37581,
62,
39532,
75,
13,
19119,
7,
8906,
48499,
1096,
62,
2536,
7,
22602,
13,
961,
62,
31092,
10786,
1050,
330,
13,
39532,
75,
3256,
198,
197,
2,
197,
3808,
6015,
62,
6978,
28,
3808,
6015,
62,
6978,
828,
46996,
11639,
39532,
75,
27691,
23814,
28955,
198,
220,
220,
220,
220,
198,
220,
220,
220,
256,
929,
62,
3258,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
357,
37581,
62,
5362,
11,
30218,
70,
62,
5362,
17816,
27830,
6,
4357,
30218,
70,
62,
5362,
17816,
7220,
16,
6,
7131,
6,
3672,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11,
357,
37581,
62,
17752,
11,
30218,
70,
62,
17752,
17816,
27830,
6,
4357,
30218,
70,
62,
17752,
17816,
7220,
16,
6,
7131,
6,
3672,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11,
357,
37581,
62,
88,
43695,
11,
30218,
70,
62,
88,
43695,
17816,
27830,
6,
4357,
30218,
70,
62,
88,
43695,
17816,
7220,
16,
6,
7131,
6,
3672,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11,
357,
37581,
62,
39532,
75,
11,
30218,
70,
62,
39532,
75,
17816,
27830,
6,
4357,
30218,
70,
62,
39532,
75,
17816,
7220,
16,
6,
7131,
6,
3672,
6,
12962,
198,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
357,
37581,
11,
7386,
11,
2836,
16,
5376,
8,
287,
256,
929,
62,
3258,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
59,
77,
11250,
25,
1391,
15,
92,
4458,
18982,
7,
37581,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
27830,
25,
1391,
15,
92,
4458,
18982,
7,
27830,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
7220,
16,
5376,
25,
1391,
15,
92,
4458,
18982,
7,
7220,
16,
5376,
4008,
198,
220,
220,
220,
3601,
7,
7061,
8,
198,
220,
220,
220,
1057,
62,
600,
305,
7,
85,
945,
7,
404,
912,
62,
17831,
828,
374,
10677,
62,
6978,
28,
3808,
6015,
62,
6978,
8,
628,
220,
220,
220,
18931,
13,
49625,
2902,
3419,
198,
220,
220,
220,
1441,
657,
198,
198,
361,
705,
834,
12417,
834,
6,
6624,
11593,
3672,
834,
25,
198,
220,
220,
220,
25064,
13,
37023,
7,
12417,
7,
17597,
13,
853,
85,
58,
16,
47715,
4008,
198
] | 2.31379 | 1,211 |
from sklearn.model_selection import BaseCrossValidator
import numpy as np
import pandas as pd
# We dont implement this one
if __name__ == "__main__":
versions = np.reshape(np.array( [1,1,1,2,2,2,2,3,3,3] ), (10,1))
data = np.reshape(np.zeros(100), (10, 10))
X = pd.DataFrame( np.append( versions, data, axis = 1 ), columns = ["version"] + [i for i in range(10)] )
y = pd.DataFrame(np.zeros(10))
for i, (train_index, test_index) in enumerate(VersionDropout(10, 0.2).split(X, y)):
print( "iter: %d\ntraining: %s\ntesting: %s\n" % (i, train_index, test_index) ) | [
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
7308,
21544,
47139,
1352,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
775,
17666,
3494,
428,
530,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
6300,
796,
45941,
13,
3447,
1758,
7,
37659,
13,
18747,
7,
685,
16,
11,
16,
11,
16,
11,
17,
11,
17,
11,
17,
11,
17,
11,
18,
11,
18,
11,
18,
60,
10612,
357,
940,
11,
16,
4008,
198,
220,
220,
220,
1366,
796,
45941,
13,
3447,
1758,
7,
37659,
13,
9107,
418,
7,
3064,
828,
357,
940,
11,
838,
4008,
198,
220,
220,
220,
1395,
796,
279,
67,
13,
6601,
19778,
7,
45941,
13,
33295,
7,
6300,
11,
1366,
11,
16488,
796,
352,
10612,
15180,
796,
14631,
9641,
8973,
1343,
685,
72,
329,
1312,
287,
2837,
7,
940,
15437,
1267,
198,
220,
220,
220,
331,
796,
220,
279,
67,
13,
6601,
19778,
7,
37659,
13,
9107,
418,
7,
940,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
11,
357,
27432,
62,
9630,
11,
1332,
62,
9630,
8,
287,
27056,
378,
7,
14815,
26932,
448,
7,
940,
11,
657,
13,
17,
737,
35312,
7,
55,
11,
331,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
366,
2676,
25,
4064,
67,
59,
429,
24674,
25,
4064,
82,
59,
429,
37761,
25,
4064,
82,
59,
77,
1,
4064,
357,
72,
11,
4512,
62,
9630,
11,
1332,
62,
9630,
8,
1267
] | 2.301527 | 262 |
# format, name, destination register, source 1, data of source 1, IB in which data expected, source 2, data of source 2, IB in which data expected, immediate data, T_NT,stall
#A=[format,name,rd,rs1,rs2,imm]
#A=[format,name,rd,rs1,rs2,imm]
# format, name, destination register, source 1, data of source 1, IB in which data expected, source 2, data of source 2, IB in which data expected, immediate data, T_NT,stall
RZ=0
RM=0
RF_write=0
R=[RZ,RM,RF_write]
#A=["R","srl","101","1101010101","4","imm"]
#A=raw_input()
#A=A.split(" ")
#get_alu_opt(A)
'''
if A[0]=="R":
B=[A[1],A[2],A[3],A[4]]
R=R_format(B)
print(R)
if A[0]=="I":
B=[A[1],A[2],A[3],A[5]]
I=I_format(B)
print(I)
if A[0]=="S":
B=[A[1],A[3],A[4],A[5]]
S=S_format(B)
print(S)
if A[0]=="SB":
B=[A[1],A[3],A[4],A[5]]
SB=SB_format(B)
print(SB)
if A[0]=="U":
B=[A[1],A[2],A[5]]
U=U_format(B)
print(U)
if A[0]=="UJ":
B=[A[1],A[2],A[5]]
UJ=UJ_format(B)
print(UJ)
'''
| [
198,
2,
5794,
11,
1438,
11,
10965,
7881,
11,
2723,
352,
11,
1366,
286,
2723,
352,
11,
34782,
287,
543,
1366,
2938,
11,
2723,
362,
11,
1366,
286,
2723,
362,
11,
34782,
287,
543,
1366,
2938,
11,
7103,
1366,
11,
309,
62,
11251,
11,
32989,
198,
2,
32,
41888,
18982,
11,
3672,
11,
4372,
11,
3808,
16,
11,
3808,
17,
11,
8608,
60,
628,
628,
198,
2,
32,
41888,
18982,
11,
3672,
11,
4372,
11,
3808,
16,
11,
3808,
17,
11,
8608,
60,
198,
2,
5794,
11,
1438,
11,
10965,
7881,
11,
2723,
352,
11,
1366,
286,
2723,
352,
11,
34782,
287,
543,
1366,
2938,
11,
2723,
362,
11,
1366,
286,
2723,
362,
11,
34782,
287,
543,
1366,
2938,
11,
7103,
1366,
11,
309,
62,
11251,
11,
32989,
198,
198,
49,
57,
28,
15,
198,
29138,
28,
15,
198,
32754,
62,
13564,
28,
15,
198,
49,
41888,
49,
57,
11,
29138,
11,
32754,
62,
13564,
60,
628,
198,
2,
32,
28,
14692,
49,
2430,
27891,
75,
2430,
8784,
2430,
1157,
486,
486,
486,
486,
2430,
19,
2430,
8608,
8973,
198,
2,
32,
28,
1831,
62,
15414,
3419,
198,
2,
32,
28,
32,
13,
35312,
7203,
366,
8,
198,
2,
1136,
62,
282,
84,
62,
8738,
7,
32,
8,
198,
7061,
6,
198,
361,
317,
58,
15,
60,
855,
1,
49,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
17,
4357,
32,
58,
18,
4357,
32,
58,
19,
11907,
198,
197,
49,
28,
49,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
49,
8,
198,
197,
198,
361,
317,
58,
15,
60,
855,
1,
40,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
17,
4357,
32,
58,
18,
4357,
32,
58,
20,
11907,
198,
197,
40,
28,
40,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
40,
8,
198,
197,
198,
361,
317,
58,
15,
60,
855,
1,
50,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
18,
4357,
32,
58,
19,
4357,
32,
58,
20,
11907,
198,
197,
50,
28,
50,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
50,
8,
198,
198,
361,
317,
58,
15,
60,
855,
1,
16811,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
18,
4357,
32,
58,
19,
4357,
32,
58,
20,
11907,
198,
197,
16811,
28,
16811,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
16811,
8,
198,
361,
317,
58,
15,
60,
855,
1,
52,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
17,
4357,
32,
58,
20,
11907,
198,
197,
52,
28,
52,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
52,
8,
198,
197,
198,
361,
317,
58,
15,
60,
855,
1,
52,
41,
1298,
198,
197,
33,
41888,
32,
58,
16,
4357,
32,
58,
17,
4357,
32,
58,
20,
11907,
198,
197,
52,
41,
28,
52,
41,
62,
18982,
7,
33,
8,
198,
197,
4798,
7,
52,
41,
8,
198,
7061,
6,
198
] | 1.923077 | 494 |
from datetime import datetime
from django.shortcuts import redirect
from django.urls import reverse_lazy
from django.views.generic import ListView, View
from django.views.generic.edit import CreateView, UpdateView
from django.contrib.auth.mixins import LoginRequiredMixin
from backend.forum.models import Category, Section, Topic, Message
from backend.forum.forms import MessageForm, CreateTopicForm
class Sections(ListView):
"""Вывод разделов форума"""
model = Category
template_name = "forum/section.html"
class TopicsList(ListView):
"""Вывод топиков раздела"""
template_name = "forum/topics-list.html"
class TopicDetail(ListView):
"""Вывод темы"""
context_object_name = 'messages'
template_name = 'forum/topic-detail.html'
paginate_by = 10
class EditTopic(LoginRequiredMixin, UpdateView):
"""Редактирование темы"""
model = Topic
form_class = MessageForm
template_name = 'forum/update_message.html'
class EditMessages(LoginRequiredMixin, UpdateView):
"""Редактирование коментариев"""
model = Message
form_class = MessageForm
template_name = 'forum/update_message.html'
class MessageCreate(LoginRequiredMixin, View):
"""Отправка комментария на форуме"""
# class MessageCreate(LoginRequiredMixin, CreateView):
# """Создание темы на форуме"""
# model = Message
# form_class = MessageForm
# template_name = 'forum/topic-detail.html'
#
# def form_valid(self, form):
# form.instance.user = self.request.user
# form.instance.topic_id = self.kwargs.get("pk")
# form.save()
# return super().form_valid(form)
class CreateTopic(LoginRequiredMixin, CreateView):
"""Создание темы на форуме"""
model = Topic
form_class = CreateTopicForm
template_name = 'forum/create-topic.html'
| [
6738,
4818,
8079,
1330,
4818,
8079,
198,
198,
6738,
42625,
14208,
13,
19509,
23779,
1330,
18941,
198,
6738,
42625,
14208,
13,
6371,
82,
1330,
9575,
62,
75,
12582,
198,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
1330,
7343,
7680,
11,
3582,
198,
6738,
42625,
14208,
13,
33571,
13,
41357,
13,
19312,
1330,
13610,
7680,
11,
10133,
7680,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
19816,
1040,
1330,
23093,
37374,
35608,
259,
198,
6738,
30203,
13,
27302,
13,
27530,
1330,
21743,
11,
7275,
11,
47373,
11,
16000,
198,
198,
6738,
30203,
13,
27302,
13,
23914,
1330,
16000,
8479,
11,
13610,
33221,
8479,
628,
198,
4871,
37703,
7,
8053,
7680,
2599,
198,
220,
220,
220,
37227,
140,
240,
45035,
38857,
25443,
112,
220,
21169,
16142,
140,
115,
43666,
16843,
30143,
25443,
110,
220,
141,
226,
15166,
21169,
35072,
43108,
16142,
37811,
198,
220,
220,
220,
2746,
796,
21743,
198,
220,
220,
220,
11055,
62,
3672,
796,
366,
27302,
14,
5458,
13,
6494,
1,
628,
198,
4871,
34440,
8053,
7,
8053,
7680,
2599,
198,
220,
220,
220,
37227,
140,
240,
45035,
38857,
25443,
112,
220,
20375,
25443,
123,
18849,
31583,
25443,
110,
220,
21169,
16142,
140,
115,
43666,
16843,
30143,
16142,
37811,
198,
220,
220,
220,
11055,
62,
3672,
796,
366,
27302,
14,
4852,
873,
12,
4868,
13,
6494,
1,
198,
198,
4871,
47373,
11242,
603,
7,
8053,
7680,
2599,
198,
220,
220,
220,
37227,
140,
240,
45035,
38857,
25443,
112,
220,
20375,
16843,
43108,
45035,
37811,
198,
220,
220,
220,
4732,
62,
15252,
62,
3672,
796,
705,
37348,
1095,
6,
198,
220,
220,
220,
11055,
62,
3672,
796,
705,
27302,
14,
26652,
12,
49170,
13,
6494,
6,
198,
220,
220,
220,
42208,
4559,
62,
1525,
796,
838,
628,
198,
4871,
5312,
33221,
7,
47790,
37374,
35608,
259,
11,
10133,
7680,
2599,
198,
220,
220,
220,
37227,
140,
254,
16843,
43666,
16142,
31583,
20375,
18849,
21169,
25443,
110,
16142,
22177,
18849,
16843,
220,
20375,
16843,
43108,
45035,
37811,
198,
220,
220,
220,
2746,
796,
47373,
198,
220,
220,
220,
1296,
62,
4871,
796,
16000,
8479,
198,
220,
220,
220,
11055,
62,
3672,
796,
705,
27302,
14,
19119,
62,
20500,
13,
6494,
6,
628,
198,
4871,
5312,
36479,
1095,
7,
47790,
37374,
35608,
259,
11,
10133,
7680,
2599,
198,
220,
220,
220,
37227,
140,
254,
16843,
43666,
16142,
31583,
20375,
18849,
21169,
25443,
110,
16142,
22177,
18849,
16843,
12466,
118,
25443,
120,
16843,
22177,
20375,
16142,
21169,
18849,
16843,
38857,
37811,
198,
220,
220,
220,
2746,
796,
16000,
198,
220,
220,
220,
1296,
62,
4871,
796,
16000,
8479,
198,
220,
220,
220,
11055,
62,
3672,
796,
705,
27302,
14,
19119,
62,
20500,
13,
6494,
6,
628,
198,
4871,
16000,
16447,
7,
47790,
37374,
35608,
259,
11,
3582,
2599,
198,
220,
220,
220,
37227,
140,
252,
20375,
140,
123,
21169,
16142,
38857,
31583,
16142,
12466,
118,
25443,
120,
43108,
16843,
22177,
20375,
16142,
21169,
18849,
40623,
12466,
121,
16142,
220,
141,
226,
15166,
21169,
35072,
43108,
16843,
37811,
198,
198,
2,
1398,
16000,
16447,
7,
47790,
37374,
35608,
259,
11,
13610,
7680,
2599,
198,
2,
220,
220,
220,
220,
37227,
140,
94,
25443,
115,
43666,
16142,
22177,
18849,
16843,
220,
20375,
16843,
43108,
45035,
12466,
121,
16142,
220,
141,
226,
15166,
21169,
35072,
43108,
16843,
37811,
198,
2,
220,
220,
220,
220,
2746,
796,
16000,
198,
2,
220,
220,
220,
220,
1296,
62,
4871,
796,
16000,
8479,
198,
2,
220,
220,
220,
220,
11055,
62,
3672,
796,
705,
27302,
14,
26652,
12,
49170,
13,
6494,
6,
198,
2,
198,
2,
220,
220,
220,
220,
825,
1296,
62,
12102,
7,
944,
11,
1296,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1296,
13,
39098,
13,
7220,
796,
2116,
13,
25927,
13,
7220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1296,
13,
39098,
13,
26652,
62,
312,
796,
2116,
13,
46265,
22046,
13,
1136,
7203,
79,
74,
4943,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1296,
13,
21928,
3419,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2208,
22446,
687,
62,
12102,
7,
687,
8,
628,
198,
4871,
13610,
33221,
7,
47790,
37374,
35608,
259,
11,
13610,
7680,
2599,
198,
220,
220,
220,
37227,
140,
94,
25443,
115,
43666,
16142,
22177,
18849,
16843,
220,
20375,
16843,
43108,
45035,
12466,
121,
16142,
220,
141,
226,
15166,
21169,
35072,
43108,
16843,
37811,
198,
220,
220,
220,
2746,
796,
47373,
198,
220,
220,
220,
1296,
62,
4871,
796,
13610,
33221,
8479,
198,
220,
220,
220,
11055,
62,
3672,
796,
705,
27302,
14,
17953,
12,
26652,
13,
6494,
6,
198
] | 2.384314 | 765 |
import urllib
import urllib.request
try:
site = urllib.request.urlopen('http://pudim.com.br/')
except urllib.error.URLError:
print('O site ardeu')
else:
print('Pode ir tá tudo nice')
| [
11748,
2956,
297,
571,
198,
11748,
2956,
297,
571,
13,
25927,
198,
28311,
25,
198,
220,
220,
220,
2524,
796,
2956,
297,
571,
13,
25927,
13,
6371,
9654,
10786,
4023,
1378,
79,
463,
320,
13,
785,
13,
1671,
14,
11537,
198,
16341,
2956,
297,
571,
13,
18224,
13,
4261,
2538,
81,
1472,
25,
198,
220,
220,
220,
3601,
10786,
46,
2524,
610,
2934,
84,
11537,
198,
17772,
25,
198,
220,
220,
220,
3601,
10786,
47,
1098,
4173,
256,
6557,
256,
12003,
3621,
11537,
198
] | 2.321429 | 84 |
import six
DefinitionsHost = {'discriminator': 'name',
'required': ['name',
'region_id',
'ip_address',
'device_type'],
'type': 'object',
'properties': {
'active': {'type': 'boolean'},
'note': {'type': 'string'},
'ip_address': {'type': 'string'},
'name': {'type': 'string'},
'id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'parent_id': {'type': 'integer',
'description': 'Parent Id of this host'},
'device_type': {'type': 'string',
'description': 'Type of host'},
'labels': {'type': 'array',
'items': 'string',
'description': 'User defined labels'},
'data': {'type': 'allOf',
'description': 'User defined information'},
'region_id': {'type': 'integer'}}}
DefinitionsHostId = {'discriminator': 'name',
'type': 'object',
'properties': {
'active': {'type': 'boolean'},
'note': {'type': 'string'},
'ip_address': {'type': 'string'},
'name': {'type': 'string'},
'id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'project_id': {'type': 'string'},
'labels': {'type': 'array',
'items': 'string',
'description': 'User defined labels'},
'data': {'type': 'allOf',
'description': 'User defined information'},
'region_id': {'type': 'integer'}}}
DefinitionsCell = {'discriminator': 'name',
'required': ['name',
'region_id',
],
'type': 'object',
'properties': {
'note': {'type': 'string'},
'name': {'type': 'string'},
'region_id': {'type': 'integer'},
'data': {'type': 'allOf',
'description': 'User defined information'},
'id': {'type': 'integer',
'description': 'Unique ID of the cell'}}}
DefinitionsCellId = {'discriminator': 'name',
'type': 'object',
'properties': {
'note': {'type': 'string'},
'project_id': {'type': 'string',
'description': 'UUID of the project'},
'name': {'type': 'string'},
'region_id': {'type': 'integer'},
'data': {'type': 'allOf',
'description': 'User defined information'},
'id': {'type': 'integer',
'description': 'Unique ID of the cell'}}}
DefinitionsData = {'type': 'object',
'properties': {'key': {'type': 'string'},
'value': {'type': 'object'}}}
DefinitionsLabel = {'type': 'object',
'properties': {'labels': {
'type': 'array',
'items': {'type': 'string'}}}}
DefinitionsError = {'type': 'object',
'properties': {'fields': {'type': 'string'},
'message': {'type': 'string'},
'code': {'type': 'integer',
'format': 'int32'}
}}
DefinitionsRegion = {'discriminator': 'name',
'required': ['name'],
'type': 'object',
'properties': {
'note': {
'type': 'string',
'description': 'Region Note'},
'name': {
'type': 'string',
'description': 'Region Name.'},
'cells': {
'items': DefinitionsCell,
'type': 'array',
'description': 'List of cells in this region'},
'data': {
'type': 'allOf',
'description': 'User defined information'},
'id': {
'type': 'integer',
'description': 'Unique ID for the region.'}}}
DefinitionsRegionId = {'discriminator': 'name',
'type': 'object',
'properties': {
'note': {
'type': 'string',
'description': 'Region Note'},
'name': {
'type': 'string',
'description': 'Region Name.'},
'project_id': {
'type': 'string',
'description': 'UUID of the project'},
'cells': {
'items': DefinitionsCell,
'type': 'array',
'description': 'List of cells in this region'},
'data': {
'type': 'allOf',
'description': 'User defined information'},
'id': {
'type': 'integer',
'description': 'Unique ID for the region.'}}}
DefinitionUser = {'discriminator': 'name',
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'api_key': {'type': 'string'},
'username': {'type': 'string'},
'is_admin': {'type': 'boolean'},
'project_id': {'type': 'string'},
'roles': {'type': 'allOf'}}}
DefinitionProject = {'discriminator': 'name',
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'name': {'type': 'string'}}}
DefinitionNetwork = {'discriminator': 'name',
'required': ['name',
'cidr',
'gateway',
'netmask'],
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'region_id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'name': {'type': 'string'},
'cidr': {'type': 'string'},
'gateway': {'type': 'string'},
'netmask': {'type': 'string'},
'data': {'type': 'allOf'},
"ip_block_type": {'type': 'string'},
"nss": {'type': 'string'}}}
DefinitionNetworkId = {'discriminator': 'name',
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'project_id': {'type': 'string'},
'region_id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'name': {'type': 'string'},
'cidr': {'type': 'string'},
'gateway': {'type': 'string'},
'netmask': {'type': 'string'},
'data': {'type': 'allOf'},
"ip_block_type": {'type': 'string'},
"nss": {'type': 'string'}}}
DefinitionNetInterface = {'discriminator': 'name',
'required': ['name',
'device_id',
'interface_type'],
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'name': {'type': 'string'},
'device_id': {'type': 'integer',
'default': None},
'network_id': {'type': 'integer',
'default': None},
'interface_type': {'type': 'string'},
'project_id': {'type': 'string'},
'vlan_id': {'type': 'integer'},
'vlan': {'type': 'string'},
'port': {'type': 'integer'},
'duplex': {'type': 'string'},
'speed': {'type': 'integer'},
'link': {'type': 'string'},
'cdp': {'type': 'string'},
'data': {'type': 'allOf'},
'security': {'type': 'string'}}}
DefinitionNetInterfaceId = {'discriminator': 'name',
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'name': {'type': 'string'},
'device_id': {'type': 'integer'},
'project_id': {'type': 'string'},
'network_id': {'type': 'integer'},
'interface_type': {'type': 'string'},
'vlan_id': {'type': 'integer'},
'vlan': {'type': 'string'},
'port': {'type': 'string'},
'duplex': {'type': 'string'},
'speed': {'type': 'integer'},
'link': {'type': 'string'},
'cdp': {'type': 'string'},
'data': {'type': 'allOf'},
'security': {'type': 'string'}}}
DefinitionNetDevice = {'discriminator': 'hostname',
'required': ['hostname',
'region_id',
'device_type',
'ip_address'],
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'region_id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'parent_id': {'type': 'integer'},
'ip_address': {'type': 'string'},
'device_type': {'type': 'string'},
'hostname': {'type': 'string'},
'access_secret_id': {'type': 'integer'},
'model_name': {'type': 'string'},
'os_version': {'type': 'string'},
'vlans': {'type': 'string'},
'data': {'type': 'allOf',
'description': 'User defined variables'},
'interface_id': {'type': 'integer'},
'network_id': {'type': 'integer'}}}
DefinitionNetDeviceId = {'discriminator': 'hostname',
'type': 'object',
'properties': {
'id': {'type': 'integer'},
'project_id': {'type': 'string'},
'region_id': {'type': 'integer'},
'cell_id': {'type': 'integer'},
'parent_id': {'type': 'integer'},
'ip_address': {'type': 'string'},
'device_type': {'type': 'string'},
'hostname': {'type': 'string'},
'access_secret_id': {'type': 'integer'},
'model_name': {'type': 'string'},
'os_version': {'type': 'string'},
'vlans': {'type': 'string'},
'interface_id': {'type': 'integer'},
'data': {'type': 'allOf',
'description': 'User defined variables'},
'network_id': {'type': 'integer'}}}
validators = {
('ansible_inventory', 'GET'): {
'args': {'required': ['region_id'],
'properties': {
'region_id': {
'default': None,
'type': 'string',
'description': 'Region to generate inventory for'},
'cell_id': {
'default': None,
'type': 'string',
'description': 'Cell id to generate inventory for'}}}
},
('hosts_id_data', 'PUT'): {'json': DefinitionsData},
('hosts_labels', 'PUT'): {'json': DefinitionsLabel},
('hosts_id', 'GET'): {
'args': {'required': [],
'properties': {
'resolved-values': {
'default': True,
'type': 'boolean'}}}
},
('hosts_id', 'PUT'): {'json': DefinitionsHost},
('regions', 'GET'): {
'args': {'required': [],
'properties': {
'name': {
'default': None,
'type': 'string',
'description': 'name of the region to get'},
'id': {
'default': None,
'type': 'integer',
'description': 'ID of the region to get'}}}
},
('regions', 'POST'): {'json': DefinitionsRegion},
('regions_id_data', 'PUT'): {'json': DefinitionsData},
('hosts', 'POST'): {'json': DefinitionsHost},
('hosts', 'GET'): {
'args': {'required': ['region_id'],
'properties': {
'name': {
'default': None,
'type': 'string',
'description': 'name of the hosts to get'},
'region_id': {
'default': None,
'type': 'integer',
'description': 'ID of the region to get hosts'},
'cell_id': {
'default': None,
'type': 'integer',
'description': 'ID of the cell to get hosts'},
'device_type': {
'default': None,
'type': 'string',
'description': 'Type of host to get'},
'limit': {
'minimum': 1,
'description': 'number of hosts to return',
'default': 1000,
'type': 'integer',
'maximum': 10000},
'ip': {
'default': None,
'type': 'string',
'description': 'ip_address of the hosts to get'},
'id': {
'default': None,
'type': 'integer',
'description': 'ID of host to get'}}
}},
('cells_id', 'PUT'): {'json': DefinitionsCell},
('cells', 'POST'): {'json': DefinitionsCell},
('cells', 'GET'): {
'args': {'required': ['region_id'],
'properties': {
'region_id': {
'default': None,
'type': 'string',
'description': 'name of the region to get cells for'},
'id': {
'default': None,
'type': 'integer',
'description': 'id of the cell to get'
},
'name': {
'default': None,
'type': 'string',
'description': 'name of the cell to get'}}
}},
('regions_id', 'PUT'): {'json': DefinitionsRegion},
('cells_id_data', 'PUT'): {'json': DefinitionsData},
('projects', 'GET'): {
'args': {'required': [],
'properties': {
'id': {
'default': None,
'type': 'integer',
'description': 'id of the project to get'
},
'name': {
'default': None,
'type': 'string',
'description': 'name of the project to get'}}
}},
('projects', 'POST'): {'json': DefinitionProject},
('users', 'GET'): {
'args': {'required': [],
'properties': {
'id': {
'default': None,
'type': 'integer',
'description': 'id of the user to get'
},
'name': {
'default': None,
'type': 'string',
'description': 'name of the user to get'}}
}},
('users', 'POST'): {'json': DefinitionUser},
('netdevices', 'GET'): {
'args': {'required': [],
'properties': {
'id': {
'default': None,
'type': 'integer',
'description': 'id of the net device to get'
},
'ip': {
'default': None,
'type': 'string',
'description': 'IP of the device to get'},
'region_id': {
'default': None,
'type': 'string',
'description': 'region id of the device to get'},
'name': {
'default': None,
'type': 'string',
'description': 'name of the device to get'},
'device_type': {
'default': None,
'type': 'string',
'description': 'type of the device to get'},
'cell_id': {
'default': None,
'type': 'string',
'description': 'cell id of the device to get'}}
}},
('netdevices_id', 'GET'): {
'args': {'required': [],
'properties': {
'resolved-values': {
'default': True,
'type': 'boolean'}}}},
('netdevices', 'POST'): {'json': DefinitionNetDevice},
('netdevices_labels', 'PUT'): {'json': DefinitionsLabel},
('net_interfaces', 'GET'): {
'args': {'required': ['device_id'],
'properties': {
'id': {
'default': None,
'type': 'integer',
'description': 'id of the net interface to get'
},
'device_id': {
'default': None,
'type': 'integer',
'description': 'device id of the interface to get'},
'ip': {
'default': None,
'type': 'string',
'description': 'IP of the interface to get'},
'interface_type': {
'default': None,
'type': 'string',
'description': 'Type of the interface to get'}}
}},
('net_interfaces', 'POST'): {'json': DefinitionNetInterface},
('networks', 'GET'): {
'args': {'required': [],
'properties': {
'id': {
'default': None,
'type': 'integer',
'description': 'id of the network to get'
},
'network_type': {
'default': None,
'type': 'string',
'description': 'type of the network to get'},
'name': {
'default': None,
'type': 'string',
'description': 'name of the network to get'},
'region_id': {
'default': None,
'type': 'string',
'description': 'region id of the network to get'},
'cell_id': {
'default': None,
'type': 'string',
'description': 'cell idof the network to get'}}
}},
('networks', 'POST'): {'json': DefinitionNetwork},
}
filters = {
('hosts_id_data', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_id_data', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionsHostId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_id', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_id', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_labels', 'GET'):
{200: {'headers': None, 'schema': DefinitionsLabel},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts_labels', 'PUT'):
{200: {'headers': None, 'schema': DefinitionsLabel},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts', 'POST'):
{200: {'headers': None, 'schema': DefinitionsHost},
400: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('hosts', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionsHost, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionsCellId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells_id', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells_id', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells_id_data', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells_id_data', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells', 'POST'):
{200: {'headers': None, 'schema': DefinitionsCell},
400: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('cells', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionsCell, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions', 'POST'):
{200: {'headers': None, 'schema': DefinitionsRegion},
400: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionsRegion, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions_id_data', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions_id_data', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionsRegionId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions_id', 'PUT'):
{200: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('regions_id', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('projects', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionProject, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('projects', 'POST'):
{200: {'headers': None, 'schema': DefinitionProject},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('users', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionUser, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('users', 'POST'):
{200: {'headers': None, 'schema': DefinitionUser},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('users_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionUser},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('users_id', 'DELETE'):
{204: {'headers': None, 'schema': None},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('netdevices', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionNetDeviceId, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('netdevices_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionNetDeviceId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('netdevices_labels', 'GET'):
{200: {'headers': None, 'schema': DefinitionsLabel},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('netdevices_labels', 'PUT'):
{200: {'headers': None, 'schema': DefinitionsLabel},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('networks', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionNetwork, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('networks_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionNetworkId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('net_interfaces', 'GET'):
{200: {'headers': None,
'schema': {'items': DefinitionNetInterface, 'type': 'array'}},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
('net_interfaces_id', 'GET'):
{200: {'headers': None, 'schema': DefinitionNetInterfaceId},
400: {'headers': None, 'schema': None},
404: {'headers': None, 'schema': None},
405: {'headers': None, 'schema': None}},
}
scopes = {
('hosts_id_data', 'PUT'): [],
('hosts_id_data', 'DELETE'): [],
('hosts_id', 'PUT'): [],
('hosts_id', 'DELETE'): [],
('regions', 'GET'): [],
('regions_id_data', 'PUT'): [],
('regions_id_data', 'DELETE'): [],
('hosts', 'POST'): [],
('hosts', 'GET'): [],
('cells_id', 'PUT'): [],
('cells_id', 'DELETE'): [],
('cells', 'POST'): [],
('cells', 'GET'): [],
('regions_id', 'PUT'): [],
('cells_id_data', 'PUT'): [],
('cells_id_data', 'DELETE'): [],
('projects', 'GET'): [],
('projects_id', 'GET'): [],
('projects_id', 'DELETE'): [],
('projects', 'POST'): [],
('users', 'GET'): [],
('users', 'POST'): [],
('users_id', 'GET'): [],
}
security = Security()
| [
11748,
2237,
628,
198,
7469,
50101,
17932,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5275,
10354,
1391,
6,
4906,
10354,
705,
2127,
21052,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8000,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
24546,
5121,
286,
428,
2583,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
10354,
1391,
6,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
6030,
286,
2583,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23912,
1424,
10354,
1391,
6,
4906,
10354,
705,
18747,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23814,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
14722,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
42535,
198,
198,
7469,
50101,
17932,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5275,
10354,
1391,
6,
4906,
10354,
705,
2127,
21052,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23912,
1424,
10354,
1391,
6,
4906,
10354,
705,
18747,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23814,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
14722,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
42535,
198,
198,
7469,
50101,
28780,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
40257,
4522,
286,
262,
2685,
6,
42535,
198,
198,
7469,
50101,
28780,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
52,
27586,
286,
262,
1628,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
40257,
4522,
286,
262,
2685,
6,
42535,
198,
198,
7469,
50101,
6601,
796,
1391,
6,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
6,
2539,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8367,
10354,
1391,
6,
4906,
10354,
705,
15252,
6,
42535,
198,
198,
7469,
50101,
33986,
796,
1391,
6,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
6,
23912,
1424,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
18747,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23814,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
11709,
11709,
198,
198,
7469,
50101,
12331,
796,
1391,
6,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
6,
25747,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
20500,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8189,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
18982,
10354,
705,
600,
2624,
6,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34949,
198,
198,
7469,
50101,
47371,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
3672,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
47371,
5740,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
47371,
6530,
2637,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46342,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23814,
10354,
45205,
28780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
18747,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
8053,
286,
4778,
287,
428,
3814,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
40257,
4522,
329,
262,
3814,
2637,
42535,
198,
198,
7469,
50101,
47371,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11295,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
47371,
5740,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
47371,
6530,
2637,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
52,
27586,
286,
262,
1628,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
46342,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23814,
10354,
45205,
28780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
18747,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
8053,
286,
4778,
287,
428,
3814,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
1321,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
40257,
4522,
329,
262,
3814,
2637,
42535,
198,
198,
36621,
12982,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15042,
62,
2539,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
29460,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
271,
62,
28482,
10354,
1391,
6,
4906,
10354,
705,
2127,
21052,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
829,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
6,
42535,
198,
198,
36621,
16775,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
42535,
198,
198,
36621,
26245,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
312,
81,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10494,
1014,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3262,
27932,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
312,
81,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10494,
1014,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3262,
27932,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
541,
62,
9967,
62,
4906,
1298,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
77,
824,
1298,
1391,
6,
4906,
10354,
705,
8841,
6,
42535,
198,
198,
36621,
26245,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
66,
312,
81,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10494,
1014,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3262,
27932,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
541,
62,
9967,
62,
4906,
1298,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
77,
824,
1298,
1391,
6,
4906,
10354,
705,
8841,
6,
42535,
198,
198,
36621,
7934,
39317,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
312,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
4906,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27349,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
4906,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
85,
9620,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
85,
9620,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
634,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
646,
11141,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12287,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8726,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10210,
79,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12961,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
42535,
198,
198,
36621,
7934,
39317,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27349,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
4906,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
85,
9620,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
85,
9620,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
634,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
646,
11141,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12287,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8726,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
10210,
79,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12961,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
42535,
198,
198,
36621,
7934,
24728,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
4774,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35827,
10354,
37250,
4774,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8000,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4774,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15526,
62,
21078,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19849,
62,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
418,
62,
9641,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19279,
504,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
9633,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27349,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
42535,
198,
198,
36621,
7934,
24728,
7390,
796,
1391,
6,
15410,
3036,
20900,
10354,
705,
4774,
3672,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
15252,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
16302,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8000,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
21975,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4774,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15526,
62,
21078,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19849,
62,
3672,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
418,
62,
9641,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19279,
504,
10354,
1391,
6,
4906,
10354,
705,
8841,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7890,
10354,
1391,
6,
4906,
10354,
705,
439,
5189,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
12982,
5447,
9633,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27349,
62,
312,
10354,
1391,
6,
4906,
10354,
705,
41433,
6,
42535,
628,
198,
12102,
2024,
796,
1391,
198,
220,
220,
220,
19203,
504,
856,
62,
24807,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
37250,
36996,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
47371,
284,
7716,
13184,
329,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
28780,
4686,
284,
7716,
13184,
329,
6,
42535,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
6601,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
23912,
1424,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
411,
5634,
12,
27160,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
2127,
21052,
6,
42535,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
17932,
5512,
198,
220,
220,
220,
19203,
2301,
507,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
3814,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
2389,
286,
262,
3814,
284,
651,
6,
42535,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
19203,
2301,
507,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
45205,
47371,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
6601,
5512,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
45205,
17932,
5512,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
37250,
36996,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
11453,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
2389,
286,
262,
3814,
284,
651,
11453,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
2389,
286,
262,
2685,
284,
651,
11453,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
6030,
286,
2583,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
32374,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39504,
10354,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
17618,
286,
11453,
284,
1441,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
8576,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
47033,
10354,
33028,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
541,
62,
21975,
286,
262,
11453,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
2389,
286,
2583,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
28780,
5512,
198,
220,
220,
220,
19203,
46342,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
45205,
28780,
5512,
198,
220,
220,
220,
19203,
46342,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
37250,
36996,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
3814,
284,
651,
4778,
329,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
2685,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
2685,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
47371,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
6601,
5512,
198,
220,
220,
220,
19203,
42068,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
1628,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
1628,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
42068,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
30396,
16775,
5512,
198,
220,
220,
220,
19203,
18417,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
2836,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
2836,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
18417,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
30396,
12982,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
2010,
3335,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
4061,
286,
262,
3335,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
36996,
4686,
286,
262,
3335,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
3335,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
4906,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
4906,
286,
262,
3335,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3846,
4686,
286,
262,
3335,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
62,
312,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
411,
5634,
12,
27160,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
2127,
21052,
6,
42535,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
30396,
7934,
24728,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
62,
23912,
1424,
3256,
705,
30076,
6,
2599,
1391,
6,
17752,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
19203,
3262,
62,
3849,
32186,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
37250,
25202,
62,
312,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
2010,
7071,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25202,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
25202,
4686,
286,
262,
7071,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
541,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
4061,
286,
262,
7071,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
39994,
62,
4906,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
6030,
286,
262,
7071,
220,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
3262,
62,
3849,
32186,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
30396,
7934,
39317,
5512,
198,
220,
220,
220,
19203,
3262,
5225,
3256,
705,
18851,
6,
2599,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
22046,
10354,
1391,
6,
35827,
10354,
685,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
48310,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
41433,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
312,
286,
262,
3127,
284,
651,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27349,
62,
4906,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
4906,
286,
262,
3127,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3672,
286,
262,
3127,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
36996,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
36996,
4686,
286,
262,
3127,
284,
651,
6,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3846,
62,
312,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
12286,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
10354,
705,
8841,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11213,
10354,
705,
3846,
4686,
1659,
262,
3127,
284,
651,
6,
11709,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
5512,
198,
220,
220,
220,
19203,
3262,
5225,
3256,
705,
32782,
6,
2599,
1391,
6,
17752,
10354,
30396,
26245,
5512,
198,
92,
198,
198,
10379,
1010,
796,
1391,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
17932,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
23912,
1424,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
62,
23912,
1424,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
32782,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
17932,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
45205,
17932,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
28780,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
3256,
705,
32782,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
28780,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
46342,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
45205,
28780,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
3256,
705,
32782,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
47371,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
45205,
47371,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
47371,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
42068,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
30396,
16775,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
42068,
3256,
705,
32782,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
16775,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
18417,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
30396,
12982,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
18417,
3256,
705,
32782,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
12982,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
18417,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
12982,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
18417,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
18638,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
30396,
7934,
24728,
7390,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
7934,
24728,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
62,
23912,
1424,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
42034,
62,
23912,
1424,
3256,
705,
30076,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
45205,
33986,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
5225,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
30396,
26245,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
5225,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
26245,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
62,
3849,
32186,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15952,
2611,
10354,
1391,
6,
23814,
10354,
30396,
7934,
39317,
11,
705,
4906,
10354,
705,
18747,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
220,
220,
220,
19203,
3262,
62,
3849,
32186,
62,
312,
3256,
705,
18851,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
2167,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
30396,
7934,
39317,
7390,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
7337,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
32320,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
36966,
25,
1391,
6,
50145,
10354,
6045,
11,
705,
15952,
2611,
10354,
6045,
92,
5512,
198,
92,
628,
198,
1416,
13920,
796,
1391,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
4774,
82,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
2301,
507,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
32782,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
4774,
82,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
3256,
705,
32782,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
2301,
507,
62,
312,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
62,
312,
62,
7890,
3256,
705,
30076,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
46342,
62,
312,
62,
7890,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
42068,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
42068,
62,
312,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
42068,
62,
312,
3256,
705,
7206,
2538,
9328,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
42068,
3256,
705,
32782,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
18417,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
18417,
3256,
705,
32782,
6,
2599,
685,
4357,
198,
220,
220,
220,
19203,
18417,
62,
312,
3256,
705,
18851,
6,
2599,
685,
4357,
198,
198,
92,
628,
198,
12961,
796,
4765,
3419,
628,
198
] | 1.687093 | 18,881 |
# -*- coding: utf-8 -*-
# Form implementation generated from reading ui file './modules/dialogPassword.ui'
#
# Created by: PyQt4 UI code generator 4.12.1
#
# WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui
try:
_fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
try:
_encoding = QtGui.QApplication.UnicodeUTF8
except AttributeError:
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
2,
5178,
7822,
7560,
422,
3555,
334,
72,
2393,
705,
19571,
18170,
14,
38969,
519,
35215,
13,
9019,
6,
198,
2,
198,
2,
15622,
416,
25,
9485,
48,
83,
19,
12454,
2438,
17301,
604,
13,
1065,
13,
16,
198,
2,
198,
2,
39410,
0,
1439,
2458,
925,
287,
428,
2393,
481,
307,
2626,
0,
198,
198,
6738,
9485,
48,
83,
19,
1330,
33734,
14055,
11,
33734,
8205,
72,
198,
198,
28311,
25,
198,
220,
220,
220,
4808,
6738,
18274,
69,
23,
796,
33734,
14055,
13,
48,
10100,
13,
6738,
18274,
69,
23,
198,
16341,
3460,
4163,
12331,
25,
198,
198,
28311,
25,
198,
220,
220,
220,
4808,
12685,
7656,
796,
33734,
8205,
72,
13,
48,
23416,
13,
3118,
291,
1098,
48504,
23,
198,
16341,
3460,
4163,
12331,
25,
628
] | 2.715278 | 144 |
#!/bin/python
import listify_circuits
listify_circuits.optimize_circuits(16, 'forward') | [
2,
48443,
8800,
14,
29412,
198,
198,
11748,
1351,
1958,
62,
21170,
15379,
198,
4868,
1958,
62,
21170,
15379,
13,
40085,
1096,
62,
21170,
15379,
7,
1433,
11,
705,
11813,
11537
] | 2.83871 | 31 |
'''
Quick setup script.
'''
import os
os.system('brew install ffmpeg')
os.system('brew install youtube-dl')
modules=['ffmpy','pandas','soundfile','pafy', 'tqdm']
pip_install(modules)
| [
7061,
6,
198,
21063,
9058,
4226,
13,
198,
7061,
6,
198,
11748,
28686,
220,
198,
198,
418,
13,
10057,
10786,
11269,
2721,
31246,
43913,
11537,
198,
418,
13,
10057,
10786,
11269,
2721,
35116,
12,
25404,
11537,
198,
18170,
28,
17816,
487,
3149,
88,
41707,
79,
392,
292,
41707,
23661,
7753,
41707,
79,
1878,
88,
3256,
705,
83,
80,
36020,
20520,
198,
79,
541,
62,
17350,
7,
18170,
8,
198
] | 2.681159 | 69 |
import os
import sys
import torch
import logging
import pickle
import datetime
from tqdm import tqdm
sys.path.append('datapreprocess')
sys.path.append('module')
from datafunc import make_dataloader, test_data_for_predict, build_processed_data, make_validloader
from model import LinearNet, RnnNet, RnnAttentionNet
| [
11748,
28686,
198,
11748,
25064,
198,
198,
11748,
28034,
198,
11748,
18931,
198,
11748,
2298,
293,
198,
11748,
4818,
8079,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
198,
198,
17597,
13,
6978,
13,
33295,
10786,
19608,
499,
260,
14681,
11537,
198,
17597,
13,
6978,
13,
33295,
10786,
21412,
11537,
198,
6738,
1366,
20786,
1330,
787,
62,
67,
10254,
1170,
263,
11,
1332,
62,
7890,
62,
1640,
62,
79,
17407,
11,
1382,
62,
14681,
276,
62,
7890,
11,
787,
62,
12102,
29356,
198,
6738,
2746,
1330,
44800,
7934,
11,
371,
20471,
7934,
11,
371,
20471,
8086,
1463,
7934,
628,
198
] | 3.148515 | 101 |
# -*- coding: utf-8 -*-
# Generated by Django 1.9 on 2016-04-23 11:10
from __future__ import unicode_literals
from django.db import migrations, models
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2980,
515,
416,
37770,
352,
13,
24,
319,
1584,
12,
3023,
12,
1954,
1367,
25,
940,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.781818 | 55 |
from setuptools import find_packages, setup
setup(
name='pbase',
version='0.0.1',
author='Peng Shi',
author_email='[email protected]',
description='framework for deep learning applications',
url='https://github.com/Impavidity/pbase',
license='MIT',
install_requires=[
],
packages=find_packages(),
)
| [
6738,
900,
37623,
10141,
1330,
1064,
62,
43789,
11,
9058,
628,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
79,
8692,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
15,
13,
16,
3256,
198,
220,
220,
220,
1772,
11639,
47,
1516,
16380,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
79,
1516,
62,
44019,
31,
448,
5460,
13,
785,
3256,
198,
220,
220,
220,
6764,
11639,
30604,
329,
2769,
4673,
5479,
3256,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
26950,
8490,
414,
14,
79,
8692,
3256,
198,
220,
220,
220,
5964,
11639,
36393,
3256,
198,
220,
220,
220,
2721,
62,
47911,
41888,
628,
220,
220,
220,
16589,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
8,
198
] | 2.695313 | 128 |
"""Add Action table.
Revision ID: 4cbe8e432c6b
Revises: 7b08cf35abd9
Create Date: 2018-07-27 20:05:30.976453
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '4cbe8e432c6b'
down_revision = '7b08cf35abd9'
branch_labels = None
depends_on = None
| [
37811,
4550,
7561,
3084,
13,
198,
198,
18009,
1166,
4522,
25,
604,
66,
1350,
23,
68,
45331,
66,
21,
65,
198,
18009,
2696,
25,
767,
65,
2919,
12993,
2327,
397,
67,
24,
198,
16447,
7536,
25,
2864,
12,
2998,
12,
1983,
1160,
25,
2713,
25,
1270,
13,
24,
4304,
36625,
198,
198,
37811,
198,
6738,
31341,
2022,
291,
1330,
1034,
198,
11748,
44161,
282,
26599,
355,
473,
628,
198,
2,
18440,
42814,
11,
973,
416,
9300,
2022,
291,
13,
198,
260,
10178,
796,
705,
19,
66,
1350,
23,
68,
45331,
66,
21,
65,
6,
198,
2902,
62,
260,
10178,
796,
705,
22,
65,
2919,
12993,
2327,
397,
67,
24,
6,
198,
1671,
3702,
62,
23912,
1424,
796,
6045,
198,
10378,
2412,
62,
261,
796,
6045,
628,
198
] | 2.385827 | 127 |
"""
MIT License
Copyright (c) 2021 Jedy Matt Tabasco
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import abc
from typing import NamedTuple
import sqlalchemy
from sqlalchemy.orm import ColumnProperty
from sqlalchemy.orm import object_mapper
from sqlalchemy.orm.relationships import RelationshipProperty
from sqlalchemy.sql import schema
from . import class_registry, validator, errors, util
class AbstractSeeder(abc.ABC):
"""
AbstractSeeder class
"""
@property
@abc.abstractmethod
def instances(self):
"""
Seeded instances
"""
@abc.abstractmethod
def seed(self, entities):
"""
Seed data
"""
@abc.abstractmethod
def _pre_seed(self, *args, **kwargs):
"""
Pre-seeding phase
"""
@abc.abstractmethod
def _seed(self, *args, **kwargs):
"""
Seeding phase
"""
@abc.abstractmethod
def _seed_children(self, *args, **kwargs):
"""
Seed children
"""
@abc.abstractmethod
def _setup_instance(self, *args, **kwargs):
"""
Setup instance
"""
class Seeder(AbstractSeeder):
"""
Basic Seeder class
"""
__model_key = validator.Key.model()
__data_key = validator.Key.data()
@property
# def instantiate_class(self, class_, kwargs: dict, key: validator.Key):
# filtered_kwargs = {
# k: v
# for k, v in kwargs.items()
# if not k.startswith("!")
# and not isinstance(getattr(class_, k), RelationshipProperty)
# }
#
# if key is validator.Key.data():
# return class_(**filtered_kwargs)
#
# if key is validator.Key.filter() and self.session is not None:
# return self.session.query(class_).filter_by(**filtered_kwargs).one()
class HybridSeeder(AbstractSeeder):
"""
HybridSeeder class. Accepts 'filter' key for referencing children.
"""
__model_key = validator.Key.model()
__source_keys = [validator.Key.data(), validator.Key.filter()]
@property
| [
37811,
198,
36393,
13789,
198,
198,
15269,
357,
66,
8,
33448,
449,
4716,
4705,
16904,
292,
1073,
198,
198,
5990,
3411,
318,
29376,
7520,
11,
1479,
286,
3877,
11,
284,
597,
1048,
16727,
257,
4866,
198,
1659,
428,
3788,
290,
3917,
10314,
3696,
357,
1169,
366,
25423,
12340,
284,
1730,
198,
259,
262,
10442,
1231,
17504,
11,
1390,
1231,
17385,
262,
2489,
198,
1462,
779,
11,
4866,
11,
13096,
11,
20121,
11,
7715,
11,
14983,
11,
850,
43085,
11,
290,
14,
273,
3677,
198,
22163,
444,
286,
262,
10442,
11,
290,
284,
8749,
6506,
284,
4150,
262,
10442,
318,
198,
69,
700,
1348,
284,
466,
523,
11,
2426,
284,
262,
1708,
3403,
25,
198,
198,
464,
2029,
6634,
4003,
290,
428,
7170,
4003,
2236,
307,
3017,
287,
477,
198,
22163,
444,
393,
8904,
16690,
286,
262,
10442,
13,
198,
198,
10970,
47466,
3180,
36592,
2389,
1961,
366,
1921,
3180,
1600,
42881,
34764,
56,
3963,
15529,
509,
12115,
11,
7788,
32761,
6375,
198,
3955,
49094,
11,
47783,
2751,
21728,
5626,
40880,
5390,
3336,
34764,
11015,
3963,
34482,
3398,
1565,
5603,
25382,
11,
198,
37,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
5357,
44521,
1268,
10913,
2751,
12529,
13,
3268,
8005,
49261,
50163,
3336,
198,
32,
24318,
20673,
6375,
27975,
38162,
9947,
367,
15173,
4877,
9348,
43031,
19146,
7473,
15529,
47666,
3955,
11,
29506,
25552,
6375,
25401,
198,
43,
3539,
25382,
11,
7655,
2767,
16879,
3268,
3537,
40282,
3963,
27342,
10659,
11,
309,
9863,
6375,
25401,
54,
24352,
11,
5923,
1797,
2751,
16034,
11,
198,
12425,
3963,
6375,
3268,
7102,
45,
24565,
13315,
3336,
47466,
6375,
3336,
23210,
6375,
25401,
5550,
1847,
20754,
3268,
3336,
198,
15821,
37485,
13,
198,
37811,
198,
198,
11748,
450,
66,
198,
6738,
19720,
1330,
34441,
51,
29291,
198,
198,
11748,
44161,
282,
26599,
198,
6738,
44161,
282,
26599,
13,
579,
1330,
29201,
21746,
198,
6738,
44161,
282,
26599,
13,
579,
1330,
2134,
62,
76,
11463,
198,
6738,
44161,
282,
26599,
13,
579,
13,
39468,
5748,
1330,
39771,
21746,
198,
6738,
44161,
282,
26599,
13,
25410,
1330,
32815,
198,
198,
6738,
764,
1330,
1398,
62,
2301,
4592,
11,
4938,
1352,
11,
8563,
11,
7736,
628,
198,
4871,
27741,
50,
2308,
263,
7,
39305,
13,
24694,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27741,
50,
2308,
263,
1398,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
10245,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1001,
15395,
10245,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
9403,
7,
944,
11,
12066,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
23262,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
4808,
3866,
62,
28826,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3771,
12,
325,
8228,
7108,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
4808,
28826,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1001,
8228,
7108,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
4808,
28826,
62,
17197,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
23262,
1751,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
39305,
13,
397,
8709,
24396,
198,
220,
220,
220,
825,
4808,
40406,
62,
39098,
7,
944,
11,
1635,
22046,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
31122,
4554,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
628,
628,
198,
198,
4871,
1001,
5702,
7,
23839,
50,
2308,
263,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
14392,
1001,
5702,
1398,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11593,
19849,
62,
2539,
796,
4938,
1352,
13,
9218,
13,
19849,
3419,
198,
220,
220,
220,
11593,
7890,
62,
2539,
796,
4938,
1352,
13,
9218,
13,
7890,
3419,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
1303,
825,
9113,
9386,
62,
4871,
7,
944,
11,
1398,
62,
11,
479,
86,
22046,
25,
8633,
11,
1994,
25,
4938,
1352,
13,
9218,
2599,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
29083,
62,
46265,
22046,
796,
1391,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
479,
25,
410,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
11,
410,
287,
479,
86,
22046,
13,
23814,
3419,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
479,
13,
9688,
2032,
342,
7203,
2474,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
407,
318,
39098,
7,
1136,
35226,
7,
4871,
62,
11,
479,
828,
39771,
21746,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
611,
1994,
318,
4938,
1352,
13,
9218,
13,
7890,
33529,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1398,
41052,
1174,
10379,
4400,
62,
46265,
22046,
8,
198,
220,
220,
220,
1303,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
611,
1994,
318,
4938,
1352,
13,
9218,
13,
24455,
3419,
290,
2116,
13,
29891,
318,
407,
6045,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
29891,
13,
22766,
7,
4871,
62,
737,
24455,
62,
1525,
7,
1174,
10379,
4400,
62,
46265,
22046,
737,
505,
3419,
628,
198,
4871,
29481,
50,
2308,
263,
7,
23839,
50,
2308,
263,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29481,
50,
2308,
263,
1398,
13,
21699,
82,
705,
24455,
6,
1994,
329,
32578,
1751,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
11593,
19849,
62,
2539,
796,
4938,
1352,
13,
9218,
13,
19849,
3419,
198,
220,
220,
220,
11593,
10459,
62,
13083,
796,
685,
12102,
1352,
13,
9218,
13,
7890,
22784,
4938,
1352,
13,
9218,
13,
24455,
3419,
60,
628,
220,
220,
220,
2488,
26745,
198
] | 2.698344 | 1,147 |
import dependency_injector.containers as containers
import dependency_injector.providers as providers
import strongr.core
from strongr.schedulerdomain.model.scalingdrivers.nullscaler import NullScaler
from strongr.schedulerdomain.model.scalingdrivers.simplescaler import SimpleScaler
from strongr.schedulerdomain.model.scalingdrivers.surfhpccloudscaler import SurfHpcScaler
class ScalingDriver(containers.DeclarativeContainer):
"""IoC container of service providers."""
_scalingdrivers = providers.Object({
'simplescaler': SimpleScaler,
'nullscaler': NullScaler,
'surfsarahpccloud': SurfHpcScaler
})
scaling_driver = providers.Singleton(_scalingdrivers()[strongr.core.Core.config().schedulerdomain.scalingdriver.lower()], config=dict(strongr.core.Core.config().schedulerdomain.as_dict()[strongr.core.Core.config().schedulerdomain.scalingdriver]) if strongr.core.Core.config().schedulerdomain.scalingdriver in strongr.core.Core.config().schedulerdomain.as_dict().keys() else {})
| [
11748,
20203,
62,
259,
752,
273,
13,
3642,
50221,
355,
16472,
198,
11748,
20203,
62,
259,
752,
273,
13,
15234,
4157,
355,
9549,
198,
198,
11748,
1913,
81,
13,
7295,
198,
198,
6738,
1913,
81,
13,
1416,
704,
18173,
27830,
13,
19849,
13,
1416,
4272,
36702,
13,
8423,
1416,
36213,
1330,
35886,
3351,
36213,
198,
6738,
1913,
81,
13,
1416,
704,
18173,
27830,
13,
19849,
13,
1416,
4272,
36702,
13,
14323,
2374,
9948,
263,
1330,
17427,
3351,
36213,
198,
6738,
1913,
81,
13,
1416,
704,
18173,
27830,
13,
19849,
13,
1416,
4272,
36702,
13,
11793,
69,
24831,
535,
75,
2778,
1416,
36213,
1330,
43771,
39,
14751,
3351,
36213,
628,
198,
4871,
1446,
4272,
32103,
7,
3642,
50221,
13,
37835,
283,
876,
29869,
2599,
198,
220,
220,
220,
37227,
40,
78,
34,
9290,
286,
2139,
9549,
526,
15931,
198,
220,
220,
220,
4808,
1416,
4272,
36702,
796,
9549,
13,
10267,
15090,
198,
220,
220,
220,
220,
220,
220,
220,
705,
14323,
2374,
9948,
263,
10354,
17427,
3351,
36213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8423,
1416,
36213,
10354,
220,
35886,
3351,
36213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
11793,
9501,
23066,
79,
535,
75,
2778,
10354,
43771,
39,
14751,
3351,
36213,
198,
220,
220,
220,
32092,
628,
220,
220,
220,
20796,
62,
26230,
796,
9549,
13,
29974,
10565,
28264,
1416,
4272,
36702,
3419,
58,
11576,
81,
13,
7295,
13,
14055,
13,
11250,
22446,
1416,
704,
18173,
27830,
13,
1416,
4272,
26230,
13,
21037,
3419,
4357,
4566,
28,
11600,
7,
11576,
81,
13,
7295,
13,
14055,
13,
11250,
22446,
1416,
704,
18173,
27830,
13,
292,
62,
11600,
3419,
58,
11576,
81,
13,
7295,
13,
14055,
13,
11250,
22446,
1416,
704,
18173,
27830,
13,
1416,
4272,
26230,
12962,
611,
1913,
81,
13,
7295,
13,
14055,
13,
11250,
22446,
1416,
704,
18173,
27830,
13,
1416,
4272,
26230,
287,
1913,
81,
13,
7295,
13,
14055,
13,
11250,
22446,
1416,
704,
18173,
27830,
13,
292,
62,
11600,
22446,
13083,
3419,
2073,
23884,
8,
198
] | 3.047619 | 336 |
from rest_framework import serializers
from .models import Post, Location, Tag,Photo
# class PostSerializer(serializers.Serializer):
# id = serializers.IntegerField(read_only = True)
# title = serializers.CharField(max_length = 255)
# detail = serializers.CharField(max_length = 2047)
# def create(self,validated_data):
# """create a Post from json"""
# return Post.objects.create(**validated_data)
# def update(self, instance, validated_data):
# """Update the data by json"""
# instance
# class CategorySerializer(serializers.ModelSerializer):
# class Meta:
# model = Category
# fields = ('id','name')
| [
6738,
1334,
62,
30604,
1330,
11389,
11341,
198,
6738,
764,
27530,
1330,
2947,
11,
13397,
11,
17467,
11,
6191,
628,
198,
198,
2,
1398,
2947,
32634,
7509,
7,
46911,
11341,
13,
32634,
7509,
2599,
198,
2,
220,
220,
220,
220,
4686,
796,
11389,
11341,
13,
46541,
15878,
7,
961,
62,
8807,
796,
6407,
8,
198,
2,
220,
220,
220,
220,
3670,
796,
11389,
11341,
13,
12441,
15878,
7,
9806,
62,
13664,
796,
14280,
8,
198,
2,
220,
220,
220,
220,
3703,
796,
11389,
11341,
13,
12441,
15878,
7,
9806,
62,
13664,
796,
1160,
2857,
8,
198,
198,
2,
220,
220,
220,
220,
825,
2251,
7,
944,
11,
12102,
515,
62,
7890,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
17953,
257,
2947,
422,
33918,
37811,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
2947,
13,
48205,
13,
17953,
7,
1174,
12102,
515,
62,
7890,
8,
198,
198,
2,
220,
220,
220,
220,
825,
4296,
7,
944,
11,
4554,
11,
31031,
62,
7890,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
10260,
262,
1366,
416,
33918,
37811,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
4554,
198,
198,
2,
1398,
21743,
32634,
7509,
7,
46911,
11341,
13,
17633,
32634,
7509,
2599,
198,
2,
220,
220,
220,
220,
1398,
30277,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
220,
796,
21743,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
7032,
796,
19203,
312,
41707,
3672,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
220
] | 2.637405 | 262 |
import copy
import logging
import math
from datetime import datetime
import numpy as np
import quaternion
import cv2
from TelemetryParsing import readTelemetryCsv
from visnav.algo import tools
from visnav.algo.tools import Pose
from visnav.algo.model import Camera
from visnav.algo.odo.base import Measure
from visnav.algo.odo.visgps_odo import VisualGPSNav
from visnav.algo.odometry import VisualOdometry
from visnav.missions.base import Mission
| [
11748,
4866,
201,
198,
11748,
18931,
201,
198,
11748,
10688,
201,
198,
6738,
4818,
8079,
1330,
4818,
8079,
201,
198,
201,
198,
11748,
299,
32152,
355,
45941,
201,
198,
11748,
627,
9205,
295,
201,
198,
11748,
269,
85,
17,
201,
198,
201,
198,
6738,
14318,
41935,
47,
945,
278,
1330,
1100,
31709,
41935,
34,
21370,
201,
198,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
1330,
4899,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
13,
31391,
1330,
37557,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
13,
19849,
1330,
20432,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
13,
24313,
13,
8692,
1330,
24291,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
13,
24313,
13,
4703,
70,
862,
62,
24313,
1330,
15612,
38,
3705,
30575,
201,
198,
6738,
1490,
28341,
13,
282,
2188,
13,
375,
15748,
1330,
15612,
46,
67,
15748,
201,
198,
201,
198,
6738,
1490,
28341,
13,
8481,
13,
8692,
1330,
12633,
201,
198,
201,
198
] | 2.968553 | 159 |
from typing import List
from collections import Counter
| [
6738,
19720,
1330,
7343,
198,
6738,
17268,
1330,
15034,
628
] | 5.7 | 10 |
import io
from setuptools import setup, find_packages
setup(
name='smart-crawler',
version='0.2',
url='https://github.com/limdongjin/smart-crawler',
license='MIT',
author='limdongjin',
author_email='[email protected]',
description='Smart Crawler',
packages=find_packages(),
long_description=long_description(),
zip_safe=False,
install_requires=['Click',
'beautifulsoup4',
'requests',
'selenium',
'lxml',
'pyfunctional',
'boto3',
'awscli'],
entry_points={
'console_scripts': ['smart-crawler = cli.main:main']
}
)
| [
11748,
33245,
198,
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
628,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
27004,
12,
66,
39464,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
17,
3256,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
2475,
67,
506,
18594,
14,
27004,
12,
66,
39464,
3256,
198,
220,
220,
220,
5964,
11639,
36393,
3256,
198,
220,
220,
220,
1772,
11639,
2475,
67,
506,
18594,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
5235,
3754,
2475,
1983,
31,
14816,
13,
785,
3256,
198,
220,
220,
220,
6764,
11639,
25610,
20177,
1754,
3256,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
220,
220,
220,
890,
62,
11213,
28,
6511,
62,
11213,
22784,
198,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
220,
220,
220,
2721,
62,
47911,
28,
17816,
8164,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
40544,
4135,
82,
10486,
19,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8897,
3558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
741,
47477,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
75,
19875,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9078,
45124,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
2069,
18,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
8356,
44506,
6,
4357,
198,
220,
220,
220,
5726,
62,
13033,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
705,
41947,
62,
46521,
10354,
37250,
27004,
12,
66,
39464,
796,
537,
72,
13,
12417,
25,
12417,
20520,
198,
220,
220,
220,
1782,
198,
8,
198
] | 1.934037 | 379 |
import matplotlib.pyplot as plt
import numpy as np
tray = np.genfromtxt("solar.dat",delimiter=",")
a = tray[:,0]
b = tray[:,1]
c = tray[:,2]
d = tray[:,3]
fig = plt.figure(figsize = (20,20))
plt.subplot(2,3,1)
plt.scatter(a,b)
plt.title('Grafica a vs b ')
plt.xlabel('a' )
plt.ylabel('b' )
plt.subplot(2,3,2)
plt.scatter(a,c)
plt.title('Grafica a vs c ')
plt.xlabel('a' )
plt.ylabel('c' )
plt.subplot(2,3,3)
plt.scatter(a,d)
plt.title('Grafica a vs d ' )
plt.xlabel('a' )
plt.ylabel('d' )
plt.subplot(2,3,4)
plt.scatter(b,c)
plt.title('Grafica b vs c ' )
plt.xlabel('b' )
plt.ylabel('c' )
plt.subplot(2,3,5)
plt.scatter(b,d)
plt.title('Grafica b vs d ' )
plt.xlabel('b' )
plt.ylabel('d' )
plt.subplot(2,3,6)
plt.scatter(c,d)
plt.title('Grafica c vs d ' )
plt.xlabel('c' )
plt.ylabel('d' )
plt.savefig("solar.pdf",dpi = 400)
| [
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
198,
198,
2213,
323,
796,
45941,
13,
5235,
6738,
14116,
7203,
82,
6192,
13,
19608,
1600,
12381,
320,
2676,
28,
2430,
8,
628,
198,
64,
796,
26473,
58,
45299,
15,
60,
198,
198,
65,
796,
26473,
58,
45299,
16,
60,
198,
198,
66,
796,
26473,
58,
45299,
17,
60,
198,
198,
67,
796,
26473,
58,
45299,
18,
60,
628,
198,
5647,
796,
458,
83,
13,
26875,
7,
5647,
7857,
796,
357,
1238,
11,
1238,
4008,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
16,
8,
198,
489,
83,
13,
1416,
1436,
7,
64,
11,
65,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
257,
3691,
275,
705,
8,
198,
489,
83,
13,
87,
18242,
10786,
64,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
65,
6,
1267,
198,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
17,
8,
198,
489,
83,
13,
1416,
1436,
7,
64,
11,
66,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
257,
3691,
269,
705,
8,
198,
489,
83,
13,
87,
18242,
10786,
64,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
66,
6,
1267,
198,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
18,
8,
198,
489,
83,
13,
1416,
1436,
7,
64,
11,
67,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
257,
3691,
288,
705,
1267,
198,
489,
83,
13,
87,
18242,
10786,
64,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
67,
6,
1267,
198,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
19,
8,
198,
489,
83,
13,
1416,
1436,
7,
65,
11,
66,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
275,
3691,
269,
705,
1267,
198,
489,
83,
13,
87,
18242,
10786,
65,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
66,
6,
1267,
198,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
20,
8,
198,
489,
83,
13,
1416,
1436,
7,
65,
11,
67,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
275,
3691,
288,
705,
1267,
198,
489,
83,
13,
87,
18242,
10786,
65,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
67,
6,
1267,
198,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
18,
11,
21,
8,
198,
489,
83,
13,
1416,
1436,
7,
66,
11,
67,
8,
198,
489,
83,
13,
7839,
10786,
38,
32188,
3970,
269,
3691,
288,
705,
1267,
198,
489,
83,
13,
87,
18242,
10786,
66,
6,
1267,
198,
489,
83,
13,
2645,
9608,
10786,
67,
6,
1267,
198,
198,
489,
83,
13,
21928,
5647,
7203,
82,
6192,
13,
12315,
1600,
67,
14415,
796,
7337,
8,
198
] | 1.809935 | 463 |
import json
import pycountry
import requests
import sys
import os
from bs4 import BeautifulSoup
from collections import namedtuple
directory = os.path.dirname(os.path.abspath(__file__))
def create_players(table):
"""
Loop through given table and create Player objects with the following
attributes:
- Nationality
- Name
- Kills
- Assists
- Deaths
- KAST
- K/D Diff
- ADR
- FK Diff
- Rating
"""
team_data = []
Player = namedtuple("Player", ["name", "k", "a", "d", "kast", "kddiff",
"adr", "fkdiff", "rating", "nationality"])
for i, row in enumerate(table.select("tr")):
if i > 0:
player_row = row.find_all("td")
nationality = player_row[0].find("img").get("alt", "")
player = [player.text for player in player_row]
player.append(nationality)
team_data.append(Player(*player))
return team_data
def team_logo(team, white=True):
"""
Takes a team's name and (hopefully) converts it to a team's logo on Reddit.
"""
if white and teams[team.name]["white"]:
return "[](#{}w-logo)".format(team.logo.lower())
else:
return "[](#{}-logo)".format(team.logo.lower())
def print_scoreboard(team):
"""
Prints the scoreboard of the given team.
"""
for player in team.players:
try:
nat = pycountry.countries.get(name=player.nationality).alpha_2
except Exception as error:
nat = country_converter(player.nationality)
print("|[](#lang-{}) {}|{}|{}|{}|{}|".format(nat.lower(),
player.name, player.k.split()[0], player.a.split()[0],
player.d.split()[0], player.rating))
def print_overview(team_1, team_2):
"""
Prints the overview of the match.
"""
print("|Team|T|CT|Total|\n|:--|:--:|:--:|:--:|")
print("|{}|{}|{}|{}|".format(team_logo(team_1, False),
team_1.match.first, team_1.match.second,
team_1.match.first + team_1.match.second))
print("|{}|{}|{}|{}|".format(team_logo(team_2, False),
team_2.match.first, team_2.match.second,
team_2.match.first + team_2.match.second))
print("\n \n")
def create_post(team_1, team_2):
"""
Prints the entire scoreboard for both teams.
"""
print("\n \n\n###MAP: \n\n \n")
print_overview(team_1, team_2)
print("|{} **{}**|**K**|**A**|**D**|**Rating**|".format(
team_logo(team_1), team_1.initials))
print("|:--|:--:|:--:|:--:|:--:|")
print_scoreboard(team_1)
print("|{} **{}**|".format(team_logo(team_2, False), team_2.initials))
print_scoreboard(team_2)
def count_rounds(half):
"""
Counts how many rounds were won in the half.
"""
rounds = 0
for img in half.find_all("img"):
if not "emptyHistory.svg" in img["src"]:
rounds += 1
return rounds
def team_match(team=1):
"""
Creates a Match object with how many matches the team won in each half.
"""
Match = namedtuple("Match", ["first", "second"])
halves = soup.find_all("div", {"class" : "round-history-half"})
if team == 1:
first_half = halves[0]
second_half = halves[1]
else:
first_half = halves[2]
second_half = halves[3]
Match.first = count_rounds(first_half)
Match.second = count_rounds(second_half)
return Match
def get_response(url):
"""
Gets the response from the given URL with some error checking.
"""
if not "www.hltv.org" in url:
sys.exit("Please enter a URL from www.hltv.org.")
try:
response = requests.get(url)
return response
except Exception as error:
sys.exit("{}: Please enter a valid URL.".format(repr(error)))
if __name__ == '__main__':
url = str(sys.argv[1])
response = get_response(url)
with open("{}/csgo.json".format(directory), "r") as json_data:
teams = json.load(json_data)
soup = BeautifulSoup(response.text, "lxml")
Team = namedtuple("Team", ["name", "players", "match", "logo", "initials"])
stats_tables = soup.find_all("table", {"class" : "stats-table"})
table_1 = stats_tables[0]
table_2 = stats_tables[1]
name_1 = table_1.find_all("th")[0].text
name_2 = table_2.find_all("th")[0].text
team_1 = Team(name_1, create_players(table_1), team_match(1),
teams[name_1]["logo"], teams[name_1]["name"])
team_2 = Team(name_2, create_players(table_2), team_match(2),
teams[name_2]["logo"], teams[name_2]["name"])
create_post(team_1, team_2) | [
11748,
33918,
198,
11748,
12972,
19315,
198,
11748,
7007,
198,
11748,
25064,
198,
11748,
28686,
198,
198,
6738,
275,
82,
19,
1330,
23762,
50,
10486,
198,
6738,
17268,
1330,
3706,
83,
29291,
198,
198,
34945,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
198,
198,
4299,
2251,
62,
32399,
7,
11487,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
26304,
832,
1813,
3084,
290,
2251,
7853,
5563,
351,
262,
1708,
198,
220,
220,
220,
12608,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
2351,
414,
198,
220,
220,
220,
220,
220,
220,
220,
532,
6530,
198,
220,
220,
220,
220,
220,
220,
220,
532,
23478,
198,
220,
220,
220,
220,
220,
220,
220,
532,
2195,
1023,
198,
220,
220,
220,
220,
220,
220,
220,
532,
37044,
198,
220,
220,
220,
220,
220,
220,
220,
532,
509,
11262,
198,
220,
220,
220,
220,
220,
220,
220,
532,
509,
14,
35,
10631,
198,
220,
220,
220,
220,
220,
220,
220,
532,
5984,
49,
198,
220,
220,
220,
220,
220,
220,
220,
532,
376,
42,
10631,
198,
220,
220,
220,
220,
220,
220,
220,
532,
12028,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1074,
62,
7890,
796,
17635,
198,
220,
220,
220,
7853,
796,
3706,
83,
29291,
7203,
14140,
1600,
14631,
3672,
1600,
366,
74,
1600,
366,
64,
1600,
366,
67,
1600,
366,
74,
459,
1600,
366,
74,
1860,
733,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
41909,
1600,
366,
69,
74,
26069,
1600,
366,
8821,
1600,
366,
14648,
414,
8973,
8,
628,
220,
220,
220,
329,
1312,
11,
5752,
287,
27056,
378,
7,
11487,
13,
19738,
7203,
2213,
4943,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
62,
808,
796,
5752,
13,
19796,
62,
439,
7203,
8671,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
29835,
796,
2137,
62,
808,
58,
15,
4083,
19796,
7203,
9600,
11074,
1136,
7203,
2501,
1600,
366,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
796,
685,
7829,
13,
5239,
329,
2137,
287,
2137,
62,
808,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
13,
33295,
7,
14648,
414,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
7890,
13,
33295,
7,
14140,
46491,
7829,
4008,
198,
220,
220,
220,
1441,
1074,
62,
7890,
198,
198,
4299,
1074,
62,
6404,
78,
7,
15097,
11,
2330,
28,
17821,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
33687,
257,
1074,
338,
1438,
290,
357,
8548,
7549,
8,
26161,
340,
284,
257,
1074,
338,
11112,
319,
10750,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
2330,
290,
3466,
58,
15097,
13,
3672,
7131,
1,
11186,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12878,
16151,
2,
90,
92,
86,
12,
6404,
78,
8,
1911,
18982,
7,
15097,
13,
6404,
78,
13,
21037,
28955,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
12878,
16151,
2,
90,
92,
12,
6404,
78,
8,
1911,
18982,
7,
15097,
13,
6404,
78,
13,
21037,
28955,
198,
198,
4299,
3601,
62,
26675,
3526,
7,
15097,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
12578,
82,
262,
50198,
286,
262,
1813,
1074,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
329,
2137,
287,
1074,
13,
32399,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34664,
796,
12972,
19315,
13,
9127,
1678,
13,
1136,
7,
3672,
28,
7829,
13,
14648,
414,
737,
26591,
62,
17,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
4049,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34664,
796,
1499,
62,
1102,
332,
353,
7,
7829,
13,
14648,
414,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
91,
58,
16151,
2,
17204,
12,
90,
30072,
23884,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
1911,
18982,
7,
32353,
13,
21037,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
13,
3672,
11,
2137,
13,
74,
13,
35312,
3419,
58,
15,
4357,
2137,
13,
64,
13,
35312,
3419,
58,
15,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2137,
13,
67,
13,
35312,
3419,
58,
15,
4357,
2137,
13,
8821,
4008,
198,
198,
4299,
3601,
62,
2502,
1177,
7,
15097,
62,
16,
11,
1074,
62,
17,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
12578,
82,
262,
16700,
286,
262,
2872,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
7203,
91,
15592,
91,
51,
91,
4177,
91,
14957,
91,
59,
77,
91,
25,
438,
91,
25,
438,
25,
91,
25,
438,
25,
91,
25,
438,
25,
91,
4943,
198,
220,
220,
220,
3601,
7203,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
1911,
18982,
7,
15097,
62,
6404,
78,
7,
15097,
62,
16,
11,
10352,
828,
198,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
16,
13,
15699,
13,
11085,
11,
1074,
62,
16,
13,
15699,
13,
12227,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
16,
13,
15699,
13,
11085,
1343,
1074,
62,
16,
13,
15699,
13,
12227,
4008,
198,
220,
220,
220,
3601,
7203,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
90,
92,
91,
1911,
18982,
7,
15097,
62,
6404,
78,
7,
15097,
62,
17,
11,
10352,
828,
198,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
17,
13,
15699,
13,
11085,
11,
1074,
62,
17,
13,
15699,
13,
12227,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
17,
13,
15699,
13,
11085,
1343,
1074,
62,
17,
13,
15699,
13,
12227,
4008,
198,
220,
220,
220,
3601,
7203,
59,
77,
5,
77,
24145,
26,
59,
77,
4943,
198,
198,
4299,
2251,
62,
7353,
7,
15097,
62,
16,
11,
1074,
62,
17,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
12578,
82,
262,
2104,
50198,
329,
1111,
3466,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3601,
7203,
59,
77,
5,
77,
24145,
26,
59,
77,
59,
77,
21017,
33767,
25,
3467,
77,
59,
77,
5,
77,
24145,
26,
59,
77,
4943,
198,
220,
220,
220,
3601,
62,
2502,
1177,
7,
15097,
62,
16,
11,
1074,
62,
17,
8,
198,
220,
220,
220,
3601,
7203,
91,
90,
92,
12429,
90,
92,
1174,
91,
1174,
42,
1174,
91,
1174,
32,
1174,
91,
1174,
35,
1174,
91,
1174,
29321,
1174,
91,
1911,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1074,
62,
6404,
78,
7,
15097,
62,
16,
828,
1074,
62,
16,
13,
36733,
82,
4008,
198,
220,
220,
220,
3601,
7203,
91,
25,
438,
91,
25,
438,
25,
91,
25,
438,
25,
91,
25,
438,
25,
91,
25,
438,
25,
91,
4943,
198,
220,
220,
220,
3601,
62,
26675,
3526,
7,
15097,
62,
16,
8,
198,
220,
220,
220,
3601,
7203,
91,
90,
92,
12429,
90,
92,
1174,
91,
1911,
18982,
7,
15097,
62,
6404,
78,
7,
15097,
62,
17,
11,
10352,
828,
1074,
62,
17,
13,
36733,
82,
4008,
198,
220,
220,
220,
3601,
62,
26675,
3526,
7,
15097,
62,
17,
8,
198,
198,
4299,
954,
62,
744,
82,
7,
13959,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2764,
82,
703,
867,
9196,
547,
1839,
287,
262,
2063,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9196,
796,
657,
198,
220,
220,
220,
329,
33705,
287,
2063,
13,
19796,
62,
439,
7203,
9600,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
366,
28920,
18122,
13,
21370,
70,
1,
287,
33705,
14692,
10677,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9196,
15853,
352,
198,
220,
220,
220,
1441,
9196,
198,
198,
4299,
1074,
62,
15699,
7,
15097,
28,
16,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7921,
274,
257,
13225,
2134,
351,
703,
867,
7466,
262,
1074,
1839,
287,
1123,
2063,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13225,
796,
3706,
83,
29291,
7203,
23850,
1600,
14631,
11085,
1600,
366,
12227,
8973,
8,
628,
220,
220,
220,
37192,
796,
17141,
13,
19796,
62,
439,
7203,
7146,
1600,
19779,
4871,
1,
1058,
366,
744,
12,
23569,
12,
13959,
20662,
8,
198,
220,
220,
220,
611,
1074,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
717,
62,
13959,
796,
37192,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1218,
62,
13959,
796,
37192,
58,
16,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
717,
62,
13959,
796,
37192,
58,
17,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1218,
62,
13959,
796,
37192,
58,
18,
60,
628,
220,
220,
220,
13225,
13,
11085,
796,
954,
62,
744,
82,
7,
11085,
62,
13959,
8,
198,
220,
220,
220,
13225,
13,
12227,
796,
954,
62,
744,
82,
7,
12227,
62,
13959,
8,
198,
220,
220,
220,
1441,
13225,
198,
198,
4299,
651,
62,
26209,
7,
6371,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29620,
262,
2882,
422,
262,
1813,
10289,
351,
617,
4049,
10627,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
407,
366,
2503,
13,
71,
2528,
85,
13,
2398,
1,
287,
19016,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7203,
5492,
3802,
257,
10289,
422,
7324,
13,
71,
2528,
85,
13,
2398,
19570,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
7007,
13,
1136,
7,
6371,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2882,
198,
220,
220,
220,
2845,
35528,
355,
4049,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7203,
90,
38362,
4222,
3802,
257,
4938,
10289,
526,
13,
18982,
7,
260,
1050,
7,
18224,
22305,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
19016,
796,
965,
7,
17597,
13,
853,
85,
58,
16,
12962,
198,
220,
220,
220,
2882,
796,
651,
62,
26209,
7,
6371,
8,
628,
220,
220,
220,
351,
1280,
7203,
90,
92,
14,
6359,
2188,
13,
17752,
1911,
18982,
7,
34945,
828,
366,
81,
4943,
355,
33918,
62,
7890,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3466,
796,
33918,
13,
2220,
7,
17752,
62,
7890,
8,
628,
220,
220,
220,
17141,
796,
23762,
50,
10486,
7,
26209,
13,
5239,
11,
366,
75,
19875,
4943,
198,
220,
220,
220,
4816,
796,
3706,
83,
29291,
7203,
15592,
1600,
14631,
3672,
1600,
366,
32399,
1600,
366,
15699,
1600,
366,
6404,
78,
1600,
366,
36733,
82,
8973,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
9756,
62,
83,
2977,
796,
17141,
13,
19796,
62,
439,
7203,
11487,
1600,
19779,
4871,
1,
1058,
366,
34242,
12,
11487,
20662,
8,
628,
220,
220,
220,
3084,
62,
16,
796,
9756,
62,
83,
2977,
58,
15,
60,
198,
220,
220,
220,
3084,
62,
17,
796,
9756,
62,
83,
2977,
58,
16,
60,
198,
220,
220,
220,
1438,
62,
16,
796,
3084,
62,
16,
13,
19796,
62,
439,
7203,
400,
4943,
58,
15,
4083,
5239,
198,
220,
220,
220,
1438,
62,
17,
796,
3084,
62,
17,
13,
19796,
62,
439,
7203,
400,
4943,
58,
15,
4083,
5239,
628,
220,
220,
220,
1074,
62,
16,
796,
4816,
7,
3672,
62,
16,
11,
2251,
62,
32399,
7,
11487,
62,
16,
828,
1074,
62,
15699,
7,
16,
828,
198,
220,
220,
220,
220,
220,
220,
220,
3466,
58,
3672,
62,
16,
7131,
1,
6404,
78,
33116,
3466,
58,
3672,
62,
16,
7131,
1,
3672,
8973,
8,
198,
220,
220,
220,
1074,
62,
17,
796,
4816,
7,
3672,
62,
17,
11,
2251,
62,
32399,
7,
11487,
62,
17,
828,
1074,
62,
15699,
7,
17,
828,
198,
220,
220,
220,
220,
220,
220,
220,
3466,
58,
3672,
62,
17,
7131,
1,
6404,
78,
33116,
3466,
58,
3672,
62,
17,
7131,
1,
3672,
8973,
8,
198,
220,
220,
220,
2251,
62,
7353,
7,
15097,
62,
16,
11,
1074,
62,
17,
8
] | 2.22607 | 2,079 |
#!/usr/bin/python
"""
Release script for botan (http://botan.randombit.net/)
(C) 2011, 2012 Jack Lloyd
Distributed under the terms of the Botan license
"""
import errno
import logging
import optparse
import os
import shlex
import StringIO
import shutil
import subprocess
import sys
import tarfile
if __name__ == '__main__':
try:
sys.exit(main())
except Exception as e:
logging.error(e)
import traceback
logging.info(traceback.format_exc())
sys.exit(1)
| [
2,
48443,
14629,
14,
8800,
14,
29412,
198,
198,
37811,
198,
26362,
4226,
329,
10214,
272,
357,
4023,
1378,
13645,
272,
13,
25192,
2381,
270,
13,
3262,
34729,
198,
198,
7,
34,
8,
2813,
11,
2321,
3619,
22361,
198,
198,
20344,
6169,
739,
262,
2846,
286,
262,
18579,
272,
5964,
198,
37811,
198,
198,
11748,
11454,
3919,
198,
11748,
18931,
198,
11748,
2172,
29572,
198,
11748,
28686,
198,
11748,
427,
2588,
198,
11748,
10903,
9399,
198,
11748,
4423,
346,
198,
11748,
850,
14681,
198,
11748,
25064,
198,
11748,
13422,
7753,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
12417,
28955,
198,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
18224,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
12854,
1891,
198,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7,
40546,
1891,
13,
18982,
62,
41194,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
25064,
13,
37023,
7,
16,
8,
198
] | 2.657895 | 190 |
# Copyright 2014 Roberto Brian Sarrionandia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import webapp2
import jinja2
import os
from google.appengine.ext import ndb
import tusers
from models import PreRegRecord
JINJA_ENVIRONMENT = jinja2.Environment(
loader=jinja2.FileSystemLoader(os.path.dirname(__file__)),
extensions=['jinja2.ext.autoescape'],
autoescape=True)
app = webapp2.WSGIApplication([
('/tab', TabHandler)
], debug=True)
| [
2,
15069,
1946,
32076,
8403,
311,
3258,
295,
392,
544,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
11748,
3992,
1324,
17,
198,
11748,
474,
259,
6592,
17,
198,
11748,
28686,
198,
198,
6738,
23645,
13,
1324,
18392,
13,
2302,
1330,
299,
9945,
198,
11748,
256,
18417,
198,
198,
6738,
4981,
1330,
3771,
8081,
23739,
198,
198,
41,
1268,
37048,
62,
1677,
53,
4663,
1340,
10979,
796,
474,
259,
6592,
17,
13,
31441,
7,
198,
220,
220,
220,
40213,
28,
18594,
6592,
17,
13,
8979,
11964,
17401,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
36911,
198,
220,
220,
220,
18366,
28,
17816,
18594,
6592,
17,
13,
2302,
13,
2306,
3028,
36435,
6,
4357,
198,
220,
220,
220,
1960,
3028,
36435,
28,
17821,
8,
198,
198,
1324,
796,
3992,
1324,
17,
13,
19416,
38,
3539,
381,
10142,
26933,
198,
197,
10786,
14,
8658,
3256,
16904,
25060,
8,
198,
4357,
14257,
28,
17821,
8,
198
] | 3.256849 | 292 |
import torch
import sys; sys.path.append("/workspace/once-for-all")
from ofa.model_zoo import MobileInvertedResidualBlock
from ofa.layers import ConvLayer, PoolingLayer, LinearLayer,
block_config = {
"name": "MobileInvertedResidualBlock",
"mobile_inverted_conv": {
"name": "MBInvertedConvLayer",
"in_channels": 3,
"out_channels": 3,
"kernel_size": 3,
"stride": 1,
"expand_ratio": 6,
"mid_channels": 288,
"act_func": "h_swish",
"use_se": True
},
"shortcut": {
"name": "IdentityLayer",
"in_channels": [
3
],
"out_channels": [
3
],
"use_bn": False,
"act_func": None,
"dropout_rate": 0,
"ops_order": "weight_bn_act"
}
}
block = MobileInvertedResidualBlock.build_from_config(block_config)
_ = block(torch.Tensor(1, 3, 224, 224))
trace_model = torch.jit.trace(block, (torch.Tensor(1, 3, 224, 224), ))
trace_model.save('./assets/MobileInvertedResidualBlock.jit') | [
11748,
28034,
198,
198,
11748,
25064,
26,
25064,
13,
6978,
13,
33295,
7203,
14,
5225,
10223,
14,
27078,
12,
1640,
12,
439,
4943,
198,
6738,
286,
64,
13,
19849,
62,
89,
2238,
1330,
12173,
818,
13658,
4965,
312,
723,
12235,
198,
6738,
286,
64,
13,
75,
6962,
1330,
34872,
49925,
11,
19850,
278,
49925,
11,
44800,
49925,
11,
220,
198,
198,
9967,
62,
11250,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
17066,
818,
13658,
4965,
312,
723,
12235,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
24896,
62,
259,
13658,
62,
42946,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
10744,
818,
13658,
3103,
85,
49925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
259,
62,
354,
8961,
1298,
513,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
448,
62,
354,
8961,
1298,
513,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
33885,
62,
7857,
1298,
513,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2536,
485,
1298,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
11201,
392,
62,
10366,
952,
1298,
718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
13602,
62,
354,
8961,
1298,
35419,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
529,
62,
20786,
1298,
366,
71,
62,
2032,
680,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1904,
62,
325,
1298,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
19509,
8968,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
7390,
26858,
49925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
259,
62,
354,
8961,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
513,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
448,
62,
354,
8961,
1298,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
513,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1904,
62,
9374,
1298,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
529,
62,
20786,
1298,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
14781,
448,
62,
4873,
1298,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
2840,
62,
2875,
1298,
366,
6551,
62,
9374,
62,
529,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
9967,
796,
12173,
818,
13658,
4965,
312,
723,
12235,
13,
11249,
62,
6738,
62,
11250,
7,
9967,
62,
11250,
8,
198,
62,
796,
2512,
7,
13165,
354,
13,
51,
22854,
7,
16,
11,
513,
11,
26063,
11,
26063,
4008,
198,
40546,
62,
19849,
796,
28034,
13,
45051,
13,
40546,
7,
9967,
11,
357,
13165,
354,
13,
51,
22854,
7,
16,
11,
513,
11,
26063,
11,
26063,
828,
15306,
198,
40546,
62,
19849,
13,
21928,
7,
4458,
14,
19668,
14,
17066,
818,
13658,
4965,
312,
723,
12235,
13,
45051,
11537
] | 1.753846 | 715 |
from ...abc import Expression
from ..value.valueexpr import VALUE
class CONTEXT(Expression):
"""
The current context.
Usage:
```
!CONTEXT
``
"""
Attributes = {
}
| [
6738,
2644,
39305,
1330,
41986,
198,
6738,
11485,
8367,
13,
8367,
31937,
1330,
26173,
8924,
628,
198,
4871,
22904,
13918,
7,
16870,
2234,
2599,
198,
197,
37811,
198,
464,
1459,
4732,
13,
198,
198,
28350,
25,
198,
15506,
63,
198,
0,
10943,
32541,
198,
15506,
198,
197,
37811,
628,
197,
29021,
796,
1391,
198,
197,
92,
628
] | 3 | 57 |
from .controllers.pid import PID_ctrl
PID = PID_ctrl
from .filters.sma import simple_moving_average
SMA = simple_moving_average
from .filters.ewma import exponentially_weighted_moving_average
EWMA = exponentially_weighted_moving_average
from .sensors.camera import camera
camera = camera
| [
6738,
764,
3642,
36667,
13,
35317,
1330,
37022,
62,
44755,
198,
47,
2389,
796,
37022,
62,
44755,
198,
198,
6738,
764,
10379,
1010,
13,
82,
2611,
1330,
2829,
62,
31462,
62,
23913,
198,
50,
5673,
796,
2829,
62,
31462,
62,
23913,
198,
198,
6738,
764,
10379,
1010,
13,
413,
2611,
1330,
35529,
62,
6551,
276,
62,
31462,
62,
23913,
198,
6217,
5673,
796,
35529,
62,
6551,
276,
62,
31462,
62,
23913,
198,
198,
6738,
764,
82,
641,
669,
13,
25695,
1330,
4676,
198,
25695,
796,
4676,
198
] | 3.344828 | 87 |
from clef_extractors import *
CLEF_BASE_DIR = "/work/ogalolu/data/clef/"
CLEF_LOWRES_DIR = ""
if not CLEF_BASE_DIR:
raise FileNotFoundError(f"Download CLEF and set CLEF_BASE_DIR in {__file__}")
#
# CLEF paths
#
PATH_BASE_QUERIES = CLEF_BASE_DIR + "Topics/"
PATH_BASE_DOCUMENTS = CLEF_BASE_DIR + "DocumentData/"
PATH_BASE_EVAL = CLEF_BASE_DIR + "RelAssess/"
# Prepare dutch CLEF data paths
nl_all = (PATH_BASE_DOCUMENTS + "dutch/all/", extract_dutch)
dutch = {"2001": [nl_all], "2002": [nl_all], "2003": [nl_all]}
# Prepare italian CLEF data paths
it_lastampa = (PATH_BASE_DOCUMENTS + "italian/la_stampa/", extract_italian_lastampa)
it_sda94 = (PATH_BASE_DOCUMENTS + "italian/sda_italian/", extract_italian_sda9495)
it_sda95 = (PATH_BASE_DOCUMENTS + "italian/agz95/", extract_italian_sda9495)
italian = {"2001": [it_lastampa, it_sda94],
"2002": [it_lastampa, it_sda94],
"2003": [it_lastampa, it_sda94, it_sda95]}
# Prepare finnish CLEF data paths
aamu9495 = PATH_BASE_DOCUMENTS + "finnish/aamu/"
fi_ammulethi9495 = (aamu9495, extract_finish_aamuleth9495)
finnish = {"2001": None, "2002": [fi_ammulethi9495], "2003": [fi_ammulethi9495]}
# Prepare english CLEF data paths
gh95 = (PATH_BASE_DOCUMENTS + "english/GH95/", extract_english_gh)
latimes = (PATH_BASE_DOCUMENTS + "english/latimes/", extract_english_latimes)
english = {"2001": [gh95, latimes],
"2002": [gh95, latimes],
"2003": [gh95, latimes]}
# Prepare german CLEF data paths
der_spiegel = (PATH_BASE_DOCUMENTS + "german/der_spiegel/", extract_german_derspiegel)
fr_rundschau = (PATH_BASE_DOCUMENTS + "german/fr_rundschau/", extract_german_frrundschau)
de_sda94 = (PATH_BASE_DOCUMENTS + "german/sda94/", extract_german_sda)
de_sda95 = (PATH_BASE_DOCUMENTS + "german/sda95/", extract_german_sda)
german = {"2003": [der_spiegel, fr_rundschau, de_sda94, de_sda95]}
# Prepare russian CLEF data paths
xml = (PATH_BASE_DOCUMENTS + "russian/xml/", extract_russian)
russian = {"2003": [xml]}
all_paths = {"nl": dutch, "it": italian, "fi": finnish, "en": english, "de": german, "ru": russian}
# Utility function
languages = [("de", "german"), ("en", "english"), ("ru", "russian"), ("fi", "finnish"), ("it", "italian"),
("fr", "french"), ("tr", "turkish")]
short2pair = {elem[0]: elem for elem in languages}
long2pair = {elem[1]: elem for elem in languages}
| [
6738,
1190,
69,
62,
2302,
974,
669,
1330,
1635,
198,
198,
29931,
37,
62,
33,
11159,
62,
34720,
796,
12813,
1818,
14,
519,
282,
349,
84,
14,
7890,
14,
2375,
69,
30487,
198,
29931,
37,
62,
43,
3913,
19535,
62,
34720,
796,
13538,
198,
198,
361,
407,
30301,
37,
62,
33,
11159,
62,
34720,
25,
198,
220,
5298,
9220,
3673,
21077,
12331,
7,
69,
1,
10002,
30301,
37,
290,
900,
30301,
37,
62,
33,
11159,
62,
34720,
287,
1391,
834,
7753,
834,
92,
4943,
198,
198,
2,
198,
2,
30301,
37,
13532,
198,
2,
198,
34219,
62,
33,
11159,
62,
10917,
1137,
11015,
796,
30301,
37,
62,
33,
11159,
62,
34720,
1343,
366,
25902,
30487,
198,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
796,
30301,
37,
62,
33,
11159,
62,
34720,
1343,
366,
24941,
6601,
30487,
198,
34219,
62,
33,
11159,
62,
20114,
1847,
796,
30301,
37,
62,
33,
11159,
62,
34720,
1343,
366,
6892,
8021,
408,
30487,
198,
198,
2,
43426,
288,
7140,
30301,
37,
1366,
13532,
198,
21283,
62,
439,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
67,
7140,
14,
439,
14,
1600,
7925,
62,
67,
7140,
8,
198,
67,
7140,
796,
19779,
14585,
1298,
685,
21283,
62,
439,
4357,
366,
16942,
1298,
685,
21283,
62,
439,
4357,
366,
16088,
1298,
685,
21283,
62,
439,
48999,
198,
198,
2,
43426,
340,
7199,
30301,
37,
1366,
13532,
198,
270,
62,
12957,
13299,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1287,
666,
14,
5031,
62,
301,
13299,
14,
1600,
7925,
62,
1287,
666,
62,
12957,
13299,
8,
198,
270,
62,
82,
6814,
5824,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1287,
666,
14,
82,
6814,
62,
1287,
666,
14,
1600,
7925,
62,
1287,
666,
62,
82,
6814,
24,
33781,
8,
198,
270,
62,
82,
6814,
3865,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1287,
666,
14,
363,
89,
3865,
14,
1600,
7925,
62,
1287,
666,
62,
82,
6814,
24,
33781,
8,
198,
1287,
666,
796,
19779,
14585,
1298,
685,
270,
62,
12957,
13299,
11,
340,
62,
82,
6814,
5824,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16942,
1298,
685,
270,
62,
12957,
13299,
11,
340,
62,
82,
6814,
5824,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16088,
1298,
685,
270,
62,
12957,
13299,
11,
340,
62,
82,
6814,
5824,
11,
340,
62,
82,
6814,
3865,
48999,
198,
198,
2,
43426,
957,
77,
680,
30301,
37,
1366,
13532,
198,
64,
321,
84,
24,
33781,
796,
46490,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
69,
3732,
680,
14,
64,
321,
84,
30487,
198,
12463,
62,
6475,
2261,
400,
72,
24,
33781,
796,
357,
64,
321,
84,
24,
33781,
11,
7925,
62,
15643,
680,
62,
64,
321,
2261,
400,
24,
33781,
8,
198,
69,
3732,
680,
796,
19779,
14585,
1298,
6045,
11,
366,
16942,
1298,
685,
12463,
62,
6475,
2261,
400,
72,
24,
33781,
4357,
366,
16088,
1298,
685,
12463,
62,
6475,
2261,
400,
72,
24,
33781,
48999,
198,
198,
2,
43426,
46932,
30301,
37,
1366,
13532,
198,
456,
3865,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
39126,
14,
17511,
3865,
14,
1600,
7925,
62,
39126,
62,
456,
8,
198,
15460,
999,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
39126,
14,
15460,
999,
14,
1600,
7925,
62,
39126,
62,
15460,
999,
8,
198,
39126,
796,
19779,
14585,
1298,
685,
456,
3865,
11,
3042,
999,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16942,
1298,
685,
456,
3865,
11,
3042,
999,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
16088,
1298,
685,
456,
3865,
11,
3042,
999,
48999,
198,
198,
2,
43426,
308,
2224,
30301,
37,
1366,
13532,
198,
1082,
62,
2777,
28210,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1362,
805,
14,
1082,
62,
2777,
28210,
14,
1600,
7925,
62,
1362,
805,
62,
67,
364,
79,
28210,
8,
198,
8310,
62,
622,
358,
20601,
559,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1362,
805,
14,
8310,
62,
622,
358,
20601,
559,
14,
1600,
7925,
62,
1362,
805,
62,
8310,
622,
358,
20601,
559,
8,
198,
2934,
62,
82,
6814,
5824,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1362,
805,
14,
82,
6814,
5824,
14,
1600,
7925,
62,
1362,
805,
62,
82,
6814,
8,
198,
2934,
62,
82,
6814,
3865,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
1362,
805,
14,
82,
6814,
3865,
14,
1600,
7925,
62,
1362,
805,
62,
82,
6814,
8,
198,
1362,
805,
796,
19779,
16088,
1298,
685,
1082,
62,
2777,
28210,
11,
1216,
62,
622,
358,
20601,
559,
11,
390,
62,
82,
6814,
5824,
11,
390,
62,
82,
6814,
3865,
48999,
198,
198,
2,
43426,
374,
31562,
30301,
37,
1366,
13532,
198,
19875,
796,
357,
34219,
62,
33,
11159,
62,
38715,
5883,
15365,
1343,
366,
81,
31562,
14,
19875,
14,
1600,
7925,
62,
81,
31562,
8,
198,
81,
31562,
796,
19779,
16088,
1298,
685,
19875,
48999,
198,
439,
62,
6978,
82,
796,
19779,
21283,
1298,
288,
7140,
11,
366,
270,
1298,
340,
7199,
11,
366,
12463,
1298,
957,
77,
680,
11,
366,
268,
1298,
46932,
11,
366,
2934,
1298,
308,
2224,
11,
366,
622,
1298,
374,
31562,
92,
198,
198,
2,
34030,
2163,
198,
75,
33213,
796,
685,
7203,
2934,
1600,
366,
1362,
805,
12340,
5855,
268,
1600,
366,
39126,
12340,
5855,
622,
1600,
366,
81,
31562,
12340,
5855,
12463,
1600,
366,
69,
3732,
680,
12340,
5855,
270,
1600,
366,
1287,
666,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5855,
8310,
1600,
366,
69,
3532,
12340,
5855,
2213,
1600,
366,
36590,
31501,
4943,
60,
198,
19509,
17,
24874,
796,
1391,
68,
10671,
58,
15,
5974,
9766,
76,
329,
9766,
76,
287,
8950,
92,
198,
6511,
17,
24874,
796,
1391,
68,
10671,
58,
16,
5974,
9766,
76,
329,
9766,
76,
287,
8950,
92,
198
] | 2.316098 | 1,025 |
DESTINATION = "dest"
ROUTE = "route"
TIMESTAMP = "time"
INCOMPLETE = "incomplete" | [
35,
6465,
1268,
6234,
796,
366,
16520,
1,
198,
49,
2606,
9328,
796,
366,
38629,
1,
198,
51,
3955,
6465,
23518,
796,
366,
2435,
1,
198,
1268,
41335,
9328,
796,
366,
259,
20751,
1
] | 2.382353 | 34 |
# Copyright 2014 Josh Pieper, [email protected].
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''An implementation of a python3/trollius event loop for integration
with QT/PySide.'''
import errno
import thread
import trollius as asyncio
from trollius import From, Return, Task
import logging
import socket
import sys
import types
import PySide.QtCore as QtCore
import PySide.QtGui as QtGui
logger = logging.getLogger(__name__)
| [
2,
15069,
1946,
8518,
21690,
525,
11,
474,
34523,
31,
79,
672,
1140,
13,
785,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
7061,
6,
2025,
7822,
286,
257,
21015,
18,
14,
83,
2487,
3754,
1785,
9052,
329,
11812,
198,
4480,
1195,
51,
14,
20519,
24819,
2637,
7061,
198,
198,
11748,
11454,
3919,
198,
11748,
4704,
198,
11748,
13278,
3754,
355,
30351,
952,
198,
6738,
13278,
3754,
1330,
3574,
11,
8229,
11,
15941,
198,
11748,
18931,
198,
11748,
17802,
198,
11748,
25064,
198,
11748,
3858,
198,
198,
11748,
9485,
24819,
13,
48,
83,
14055,
355,
33734,
14055,
198,
11748,
9485,
24819,
13,
48,
83,
8205,
72,
355,
33734,
8205,
72,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
220,
220,
220,
220,
198
] | 3.481343 | 268 |
import unittest
from troposphere.route53 import AliasTarget
if __name__ == "__main__":
unittest.main()
| [
11748,
555,
715,
395,
198,
198,
6738,
14673,
22829,
13,
38629,
4310,
1330,
978,
4448,
21745,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.775 | 40 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, Iterable, Optional, Union
import onnx
import onnx.helper
import onnx.utils
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.core.optimizers import (attribute_to_dict, create_extractor,
get_new_name, parse_extractor_io_string,
remove_identity, rename_value)
from mmdeploy.utils import get_root_logger
@PIPELINE_MANAGER.register_pipeline()
def extract_partition(model: Union[str, onnx.ModelProto],
start_marker: Union[str, Iterable[str]],
end_marker: Union[str, Iterable[str]],
start_name_map: Optional[Dict[str, str]] = None,
end_name_map: Optional[Dict[str, str]] = None,
dynamic_axes: Optional[Dict[str, Dict[int, str]]] = None,
save_file: Optional[str] = None) -> onnx.ModelProto:
"""Extract partition-model from an ONNX model.
The partition-model is defined by the names of the input and output tensors
exactly.
Examples:
>>> from mmdeploy.apis import extract_model
>>> model = 'work_dir/fastrcnn.onnx'
>>> start_marker = 'detector:input'
>>> end_marker = ['extract_feat:output', 'multiclass_nms[0]:input']
>>> dynamic_axes = {
'input': {
0: 'batch',
2: 'height',
3: 'width'
},
'scores': {
0: 'batch',
1: 'num_boxes',
},
'boxes': {
0: 'batch',
1: 'num_boxes',
}
}
>>> save_file = 'partition_model.onnx'
>>> extract_partition(model, start_marker, end_marker, \
dynamic_axes=dynamic_axes, \
save_file=save_file)
Args:
model (str | onnx.ModelProto): Input ONNX model to be extracted.
start_marker (str | Sequence[str]): Start marker(s) to extract.
end_marker (str | Sequence[str]): End marker(s) to extract.
start_name_map (Dict[str, str]): A mapping of start names, defaults to
`None`.
end_name_map (Dict[str, str]): A mapping of end names, defaults to
`None`.
dynamic_axes (Dict[str, Dict[int, str]]): A dictionary to specify
dynamic axes of input/output, defaults to `None`.
save_file (str): A file to save the extracted model, defaults to
`None`.
Returns:
onnx.ModelProto: The extracted model.
"""
if isinstance(model, str):
model = onnx.load(model)
num_value_info = len(model.graph.value_info)
inputs = []
outputs = []
logger = get_root_logger()
if not isinstance(start_marker, (list, tuple)):
start_marker = [start_marker]
for s in start_marker:
start_name, func_id, start_type = parse_extractor_io_string(s)
for node in model.graph.node:
if node.op_type == 'Mark':
attr = attribute_to_dict(node.attribute)
if attr['func'] == start_name and attr[
'type'] == start_type and attr['func_id'] == func_id:
name = node.input[0]
if name not in inputs:
new_name = get_new_name(
attr, mark_name=s, name_map=start_name_map)
rename_value(model, name, new_name)
if not any([
v_info.name == new_name
for v_info in model.graph.value_info
]):
new_val_info = onnx.helper.make_tensor_value_info(
new_name, attr['dtype'], attr['shape'])
model.graph.value_info.append(new_val_info)
inputs.append(new_name)
logger.info(f'inputs: {", ".join(inputs)}')
# collect outputs
if not isinstance(end_marker, (list, tuple)):
end_marker = [end_marker]
for e in end_marker:
end_name, func_id, end_type = parse_extractor_io_string(e)
for node in model.graph.node:
if node.op_type == 'Mark':
attr = attribute_to_dict(node.attribute)
if attr['func'] == end_name and attr[
'type'] == end_type and attr['func_id'] == func_id:
name = node.output[0]
if name not in outputs:
new_name = get_new_name(
attr, mark_name=e, name_map=end_name_map)
rename_value(model, name, new_name)
if not any([
v_info.name == new_name
for v_info in model.graph.value_info
]):
new_val_info = onnx.helper.make_tensor_value_info(
new_name, attr['dtype'], attr['shape'])
model.graph.value_info.append(new_val_info)
outputs.append(new_name)
logger.info(f'outputs: {", ".join(outputs)}')
# replace Mark with Identity
for node in model.graph.node:
if node.op_type == 'Mark':
del node.attribute[:]
node.domain = ''
node.op_type = 'Identity'
extractor = create_extractor(model)
extracted_model = extractor.extract_model(inputs, outputs)
# remove all Identity, this may be done by onnx simplifier
remove_identity(extracted_model)
# collect all used inputs
used = set()
for node in extracted_model.graph.node:
for input in node.input:
used.add(input)
for output in extracted_model.graph.output:
used.add(output.name)
# delete unused inputs
success = True
while success:
success = False
for i, input in enumerate(extracted_model.graph.input):
if input.name not in used:
del extracted_model.graph.input[i]
success = True
break
# eliminate output without shape
for xs in [extracted_model.graph.output]:
for x in xs:
if not x.type.tensor_type.shape.dim:
logger.info(f'fixing output shape: {x.name}')
x.CopyFrom(
onnx.helper.make_tensor_value_info(
x.name, x.type.tensor_type.elem_type, []))
# eliminate 0-batch dimension, dirty workaround for two-stage detectors
for input in extracted_model.graph.input:
if input.name in inputs:
if input.type.tensor_type.shape.dim[0].dim_value == 0:
input.type.tensor_type.shape.dim[0].dim_value = 1
# eliminate duplicated value_info for inputs
success = True
# num_value_info == 0 if dynamic shape
if num_value_info == 0:
while len(extracted_model.graph.value_info) > 0:
extracted_model.graph.value_info.pop()
while success:
success = False
for i, x in enumerate(extracted_model.graph.value_info):
if x.name in inputs:
del extracted_model.graph.value_info[i]
success = True
break
# dynamic shape support
if dynamic_axes is not None:
for input_node in extracted_model.graph.input:
if input_node.name in dynamic_axes:
axes = dynamic_axes[input_node.name]
for k, v in axes.items():
input_node.type.tensor_type.shape.dim[k].dim_value = 0
input_node.type.tensor_type.shape.dim[k].dim_param = v
for output_node in extracted_model.graph.output:
for idx, dim in enumerate(output_node.type.tensor_type.shape.dim):
dim.dim_value = 0
dim.dim_param = f'dim_{idx}'
# save extract_model if save_file is given
if save_file is not None:
onnx.save(extracted_model, save_file)
return extracted_model
| [
2,
15069,
357,
66,
8,
4946,
44,
5805,
397,
13,
1439,
2489,
10395,
13,
198,
6738,
19720,
1330,
360,
713,
11,
40806,
540,
11,
32233,
11,
4479,
198,
198,
11748,
319,
77,
87,
198,
11748,
319,
77,
87,
13,
2978,
525,
198,
11748,
319,
77,
87,
13,
26791,
198,
198,
6738,
8085,
2934,
1420,
13,
499,
271,
13,
7295,
1330,
350,
4061,
3698,
8881,
62,
10725,
4760,
1137,
198,
6738,
8085,
2934,
1420,
13,
7295,
13,
40085,
11341,
1330,
357,
42348,
62,
1462,
62,
11600,
11,
2251,
62,
2302,
40450,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
651,
62,
3605,
62,
3672,
11,
21136,
62,
2302,
40450,
62,
952,
62,
8841,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4781,
62,
738,
414,
11,
36265,
62,
8367,
8,
198,
6738,
8085,
2934,
1420,
13,
26791,
1330,
651,
62,
15763,
62,
6404,
1362,
628,
198,
31,
47,
4061,
3698,
8881,
62,
10725,
4760,
1137,
13,
30238,
62,
79,
541,
4470,
3419,
198,
4299,
7925,
62,
3911,
653,
7,
19849,
25,
4479,
58,
2536,
11,
319,
77,
87,
13,
17633,
2964,
1462,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
62,
4102,
263,
25,
4479,
58,
2536,
11,
40806,
540,
58,
2536,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
4102,
263,
25,
4479,
58,
2536,
11,
40806,
540,
58,
2536,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
62,
3672,
62,
8899,
25,
32233,
58,
35,
713,
58,
2536,
11,
965,
11907,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
886,
62,
3672,
62,
8899,
25,
32233,
58,
35,
713,
58,
2536,
11,
965,
11907,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8925,
62,
897,
274,
25,
32233,
58,
35,
713,
58,
2536,
11,
360,
713,
58,
600,
11,
965,
11907,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
7753,
25,
32233,
58,
2536,
60,
796,
6045,
8,
4613,
319,
77,
87,
13,
17633,
2964,
1462,
25,
198,
220,
220,
220,
37227,
11627,
974,
18398,
12,
19849,
422,
281,
440,
6144,
55,
2746,
13,
628,
220,
220,
220,
383,
18398,
12,
19849,
318,
5447,
416,
262,
3891,
286,
262,
5128,
290,
5072,
11192,
669,
198,
220,
220,
220,
3446,
13,
628,
220,
220,
220,
21066,
25,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
422,
8085,
2934,
1420,
13,
499,
271,
1330,
7925,
62,
19849,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
2746,
796,
705,
1818,
62,
15908,
14,
7217,
6015,
20471,
13,
261,
77,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
923,
62,
4102,
263,
796,
705,
15255,
9250,
25,
15414,
6,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
886,
62,
4102,
263,
796,
37250,
2302,
974,
62,
27594,
25,
22915,
3256,
705,
16680,
291,
31172,
62,
77,
907,
58,
15,
5974,
15414,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
8925,
62,
897,
274,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15414,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
25,
705,
43501,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
362,
25,
705,
17015,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
513,
25,
705,
10394,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1416,
2850,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
25,
705,
43501,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
25,
705,
22510,
62,
29305,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
29305,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
25,
705,
43501,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
352,
25,
705,
22510,
62,
29305,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
3613,
62,
7753,
796,
705,
3911,
653,
62,
19849,
13,
261,
77,
87,
6,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
7925,
62,
3911,
653,
7,
19849,
11,
923,
62,
4102,
263,
11,
886,
62,
4102,
263,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8925,
62,
897,
274,
28,
67,
28995,
62,
897,
274,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
7753,
28,
21928,
62,
7753,
8,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
357,
2536,
930,
319,
77,
87,
13,
17633,
2964,
1462,
2599,
23412,
440,
6144,
55,
2746,
284,
307,
21242,
13,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
4102,
263,
357,
2536,
930,
45835,
58,
2536,
60,
2599,
7253,
18364,
7,
82,
8,
284,
7925,
13,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
4102,
263,
357,
2536,
930,
45835,
58,
2536,
60,
2599,
5268,
18364,
7,
82,
8,
284,
7925,
13,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
3672,
62,
8899,
357,
35,
713,
58,
2536,
11,
965,
60,
2599,
317,
16855,
286,
923,
3891,
11,
26235,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
14202,
44646,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
3672,
62,
8899,
357,
35,
713,
58,
2536,
11,
965,
60,
2599,
317,
16855,
286,
886,
3891,
11,
26235,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
14202,
44646,
198,
220,
220,
220,
220,
220,
220,
220,
8925,
62,
897,
274,
357,
35,
713,
58,
2536,
11,
360,
713,
58,
600,
11,
965,
11907,
2599,
317,
22155,
284,
11986,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8925,
34197,
286,
5128,
14,
22915,
11,
26235,
284,
4600,
14202,
44646,
198,
220,
220,
220,
220,
220,
220,
220,
3613,
62,
7753,
357,
2536,
2599,
317,
2393,
284,
3613,
262,
21242,
2746,
11,
26235,
284,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4600,
14202,
44646,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
319,
77,
87,
13,
17633,
2964,
1462,
25,
383,
21242,
2746,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
318,
39098,
7,
19849,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
796,
319,
77,
87,
13,
2220,
7,
19849,
8,
628,
220,
220,
220,
997,
62,
8367,
62,
10951,
796,
18896,
7,
19849,
13,
34960,
13,
8367,
62,
10951,
8,
198,
220,
220,
220,
17311,
796,
17635,
198,
220,
220,
220,
23862,
796,
17635,
198,
220,
220,
220,
49706,
796,
651,
62,
15763,
62,
6404,
1362,
3419,
198,
220,
220,
220,
611,
407,
318,
39098,
7,
9688,
62,
4102,
263,
11,
357,
4868,
11,
46545,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
4102,
263,
796,
685,
9688,
62,
4102,
263,
60,
198,
220,
220,
220,
329,
264,
287,
923,
62,
4102,
263,
25,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
3672,
11,
25439,
62,
312,
11,
923,
62,
4906,
796,
21136,
62,
2302,
40450,
62,
952,
62,
8841,
7,
82,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
287,
2746,
13,
34960,
13,
17440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
10139,
13,
404,
62,
4906,
6624,
705,
9704,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
708,
81,
796,
11688,
62,
1462,
62,
11600,
7,
17440,
13,
42348,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
708,
81,
17816,
20786,
20520,
6624,
923,
62,
3672,
290,
708,
81,
58,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
20520,
6624,
923,
62,
4906,
290,
708,
81,
17816,
20786,
62,
312,
20520,
6624,
25439,
62,
312,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
10139,
13,
15414,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1438,
407,
287,
17311,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
3672,
796,
651,
62,
3605,
62,
3672,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
708,
81,
11,
1317,
62,
3672,
28,
82,
11,
1438,
62,
8899,
28,
9688,
62,
3672,
62,
8899,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36265,
62,
8367,
7,
19849,
11,
1438,
11,
649,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
597,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
62,
10951,
13,
3672,
6624,
649,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
62,
10951,
287,
2746,
13,
34960,
13,
8367,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
2100,
62,
10951,
796,
319,
77,
87,
13,
2978,
525,
13,
15883,
62,
83,
22854,
62,
8367,
62,
10951,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
3672,
11,
708,
81,
17816,
67,
4906,
6,
4357,
708,
81,
17816,
43358,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
13,
34960,
13,
8367,
62,
10951,
13,
33295,
7,
3605,
62,
2100,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17311,
13,
33295,
7,
3605,
62,
3672,
8,
628,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
15414,
82,
25,
1391,
1600,
27071,
22179,
7,
15414,
82,
38165,
11537,
628,
220,
220,
220,
1303,
2824,
23862,
198,
220,
220,
220,
611,
407,
318,
39098,
7,
437,
62,
4102,
263,
11,
357,
4868,
11,
46545,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
4102,
263,
796,
685,
437,
62,
4102,
263,
60,
198,
220,
220,
220,
329,
304,
287,
886,
62,
4102,
263,
25,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
3672,
11,
25439,
62,
312,
11,
886,
62,
4906,
796,
21136,
62,
2302,
40450,
62,
952,
62,
8841,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
287,
2746,
13,
34960,
13,
17440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
10139,
13,
404,
62,
4906,
6624,
705,
9704,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
708,
81,
796,
11688,
62,
1462,
62,
11600,
7,
17440,
13,
42348,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
708,
81,
17816,
20786,
20520,
6624,
886,
62,
3672,
290,
708,
81,
58,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4906,
20520,
6624,
886,
62,
4906,
290,
708,
81,
17816,
20786,
62,
312,
20520,
6624,
25439,
62,
312,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
10139,
13,
22915,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1438,
407,
287,
23862,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
3672,
796,
651,
62,
3605,
62,
3672,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
708,
81,
11,
1317,
62,
3672,
28,
68,
11,
1438,
62,
8899,
28,
437,
62,
3672,
62,
8899,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36265,
62,
8367,
7,
19849,
11,
1438,
11,
649,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
597,
26933,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
62,
10951,
13,
3672,
6624,
649,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
410,
62,
10951,
287,
2746,
13,
34960,
13,
8367,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
2100,
62,
10951,
796,
319,
77,
87,
13,
2978,
525,
13,
15883,
62,
83,
22854,
62,
8367,
62,
10951,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
3672,
11,
708,
81,
17816,
67,
4906,
6,
4357,
708,
81,
17816,
43358,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
13,
34960,
13,
8367,
62,
10951,
13,
33295,
7,
3605,
62,
2100,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23862,
13,
33295,
7,
3605,
62,
3672,
8,
628,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
22915,
82,
25,
1391,
1600,
27071,
22179,
7,
22915,
82,
38165,
11537,
628,
220,
220,
220,
1303,
6330,
2940,
351,
27207,
198,
220,
220,
220,
329,
10139,
287,
2746,
13,
34960,
13,
17440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
10139,
13,
404,
62,
4906,
6624,
705,
9704,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
10139,
13,
42348,
58,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
13,
27830,
796,
10148,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10139,
13,
404,
62,
4906,
796,
705,
7390,
26858,
6,
628,
220,
220,
220,
7925,
273,
796,
2251,
62,
2302,
40450,
7,
19849,
8,
198,
220,
220,
220,
21242,
62,
19849,
796,
7925,
273,
13,
2302,
974,
62,
19849,
7,
15414,
82,
11,
23862,
8,
628,
220,
220,
220,
1303,
4781,
477,
27207,
11,
428,
743,
307,
1760,
416,
319,
77,
87,
7106,
7483,
198,
220,
220,
220,
4781,
62,
738,
414,
7,
2302,
20216,
62,
19849,
8,
628,
220,
220,
220,
1303,
2824,
477,
973,
17311,
198,
220,
220,
220,
973,
796,
900,
3419,
198,
220,
220,
220,
329,
10139,
287,
21242,
62,
19849,
13,
34960,
13,
17440,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5128,
287,
10139,
13,
15414,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
973,
13,
2860,
7,
15414,
8,
628,
220,
220,
220,
329,
5072,
287,
21242,
62,
19849,
13,
34960,
13,
22915,
25,
198,
220,
220,
220,
220,
220,
220,
220,
973,
13,
2860,
7,
22915,
13,
3672,
8,
628,
220,
220,
220,
1303,
12233,
21958,
17311,
198,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
981,
1943,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
5128,
287,
27056,
378,
7,
2302,
20216,
62,
19849,
13,
34960,
13,
15414,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5128,
13,
3672,
407,
287,
973,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
21242,
62,
19849,
13,
34960,
13,
15414,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
1303,
11005,
5072,
1231,
5485,
198,
220,
220,
220,
329,
2124,
82,
287,
685,
2302,
20216,
62,
19849,
13,
34960,
13,
22915,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
287,
2124,
82,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2124,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
13049,
278,
5072,
5485,
25,
1391,
87,
13,
3672,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
13,
29881,
4863,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
319,
77,
87,
13,
2978,
525,
13,
15883,
62,
83,
22854,
62,
8367,
62,
10951,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
13,
3672,
11,
2124,
13,
4906,
13,
83,
22854,
62,
4906,
13,
68,
10671,
62,
4906,
11,
17635,
4008,
628,
220,
220,
220,
1303,
11005,
657,
12,
43501,
15793,
11,
11841,
46513,
329,
734,
12,
14247,
40471,
198,
220,
220,
220,
329,
5128,
287,
21242,
62,
19849,
13,
34960,
13,
15414,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5128,
13,
3672,
287,
17311,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5128,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
58,
15,
4083,
27740,
62,
8367,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
58,
15,
4083,
27740,
62,
8367,
796,
352,
628,
220,
220,
220,
1303,
11005,
14184,
3474,
1988,
62,
10951,
329,
17311,
198,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
1303,
997,
62,
8367,
62,
10951,
6624,
657,
611,
8925,
5485,
198,
220,
220,
220,
611,
997,
62,
8367,
62,
10951,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
981,
18896,
7,
2302,
20216,
62,
19849,
13,
34960,
13,
8367,
62,
10951,
8,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21242,
62,
19849,
13,
34960,
13,
8367,
62,
10951,
13,
12924,
3419,
198,
220,
220,
220,
981,
1943,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
2124,
287,
27056,
378,
7,
2302,
20216,
62,
19849,
13,
34960,
13,
8367,
62,
10951,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2124,
13,
3672,
287,
17311,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
21242,
62,
19849,
13,
34960,
13,
8367,
62,
10951,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2270,
628,
220,
220,
220,
1303,
8925,
5485,
1104,
198,
220,
220,
220,
611,
8925,
62,
897,
274,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5128,
62,
17440,
287,
21242,
62,
19849,
13,
34960,
13,
15414,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5128,
62,
17440,
13,
3672,
287,
8925,
62,
897,
274,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
34197,
796,
8925,
62,
897,
274,
58,
15414,
62,
17440,
13,
3672,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
11,
410,
287,
34197,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
17440,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
58,
74,
4083,
27740,
62,
8367,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5128,
62,
17440,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
58,
74,
4083,
27740,
62,
17143,
796,
410,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5072,
62,
17440,
287,
21242,
62,
19849,
13,
34960,
13,
22915,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
4686,
87,
11,
5391,
287,
27056,
378,
7,
22915,
62,
17440,
13,
4906,
13,
83,
22854,
62,
4906,
13,
43358,
13,
27740,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5391,
13,
27740,
62,
8367,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5391,
13,
27740,
62,
17143,
796,
277,
1549,
320,
23330,
312,
87,
92,
6,
628,
220,
220,
220,
1303,
3613,
7925,
62,
19849,
611,
3613,
62,
7753,
318,
1813,
198,
220,
220,
220,
611,
3613,
62,
7753,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
319,
77,
87,
13,
21928,
7,
2302,
20216,
62,
19849,
11,
3613,
62,
7753,
8,
628,
220,
220,
220,
1441,
21242,
62,
19849,
198
] | 1.952758 | 4,170 |
import multiprocessing
import os
from joblib import delayed, Parallel
from Utilities.OSMnx_Utility import *
from Utilities.GTFS_Utility import *
from Utilities.General_Function import *
from Utilities.Data_Manipulation import *
import copy
import time
import tqdm
class InstanceNetwork:
"""
The 'InstanceNetwork' class contains all information regarding the used intermodal transportation network, e.g.
the network of Berlin. The functions of this class will combine the various mode networks and prepare the combined
for the solution procedure.
"""
# General attributes of this class
place = ''
connection_layer = 'connectionLayer'
networks = []
networksPath = 'data/networks/'
baseMode = 'walk'
start_time = time.time()
# complete model of network in DiGraph format found in networkx
G = nx.DiGraph()
Graph_for_Preprocessing = nx.DiGraph()
Graph_for_Preprocessing_Reverse = nx.DiGraph()
# individual graph for each mode stored
networkDict = {}
setOfModes = []
listOf_OSMNX_Modes = []
# attributes of multimodal graph
setOfNodes = [] # format [(id, lat, lon),...]
set_of_nodes_walk = set()
setOfEdges = {} # format ( (from_node, to_node, mode) : [time, headway, distance]
modifiedEdgesList_ArcFormulation = {} # format {(node, node, mode) : [time, headway, distance, fixCost], ...}
arcs_of_connectionLayer = [] # [(i,j,m)]
modes_of_public_transport = []
nodeSetID = []
publicTransport = {}
public_transport_modes = {}
matchOfRouteIDandPublicTransportMode = {} # format {routeID: public_transport_mode, ...} eg. {22453: 700, ...}
networksAreInitialized = False
# preprocessing
graph_file_path = ""
list_of_stored_punishes = []
arcs_for_refined_search = []
def initializeNetworks(self):
"""
This function loads individual networks available from OpenStreetMap, except for the Public Transport Networks.
:return: is safed directly to class attributes
"""
# load all desired networks, specified in the attributes of this class
for networkModes in self.networks:
# update class attributes of contained networks
self.setOfModes.append(networkModes)
self.listOf_OSMNX_Modes.append(str(networkModes))
# load network from memory if possible
filepath = self.networksPath + self.place + ', ' + networkModes +'.graphML'
if networkIsAccessibleAtDisk(filepath):
self.networkDict[networkModes] = ox.load_graphml(filepath)
# if network was not saved to memory before, load network from OpenStreetMap by the use of OSMnx
else:
self.networkDict[networkModes] = downloadNetwork(self.place, networkModes, self.networksPath)
# add travel time for each edge, according to mode
# for walk, a average speed of 1.4 meters / second is assumed
if networkModes == 'walk':
G_temp = [] # ebunch
for fromNode, toNode, attr in self.networkDict[networkModes].edges(data='length'):
G_temp.append((fromNode, toNode, {'travel_time': attr/(1.4*60), 'length': attr }))
self.networkDict[networkModes].add_edges_from(G_temp)
# for bike, an average speed of 4.2 meters / seconds is assumed
elif networkModes =='bike':
G_temp=[]
for fromNode, toNode, attr in self.networkDict[networkModes].edges(data='length'):
G_temp.append((fromNode, toNode, {'travel_time': attr/(4.2*60), 'length': attr}))
self.networkDict[networkModes].add_edges_from(G_temp)
# the remaining mode is drive. As OSMnx also retrieves the speedlimits,
# the inbuilt functions for calculating the travel time can be used
else:
self.networkDict[networkModes]= ox.add_edge_speeds(self.networkDict[networkModes], fallback=50, precision = 2)
self.networkDict[networkModes] = ox.add_edge_travel_times(self.networkDict[networkModes], precision=2)
# To fasten later steps, it is indicated that memory are already in memory
self.networksAreInitialized = True
print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to initialize networks')
def mergePublicTransport(self):
"""
This function adds the public transport networks (distinguished by modes, eg. Bus 52, Bus 53, ...) to the
network instance.
:return: return networks are directly assigned to class attributes
"""
# get the networks of all modes of public transport
publicTemporary = getPublicTransportation()
# iterate through all mode categories (e.g. Bus, Tram, Subway, ...)
for keys, mode_category in publicTemporary.items():
self.publicTransport[str(keys)] = mode_category
# get all edges and nodes of respective route network and add it to combined network
# iterate through all mode cateogries: Tram, Subway, Bus, ...
for mode_category, mode in self.publicTransport.items():
# iterate through all modes: Bus 52, Bus 53
for routeID, route in mode.items():
# add attributes to class
self.setOfModes.append(str(routeID))
self.public_transport_modes [str(routeID)] = route
# add nodes, which are stored in in the first element of the route list (format: ID, Lat, Lon)
for node in route[0]:
self.setOfNodes.append([node[0], node[1], node[2]])
# add edges, which are stored in the second element of the route list
for edge, edge_attr in route[1].items():
edge_splitted = edge.split(":")
self.setOfEdges[(edge_splitted[0], edge_splitted[1], routeID)] = [
edge_attr['travelTime'], edge_attr['headway'], 0.0]
def generateMultiModalGraph(self, parameters: {}):
"""
This function takes the prepared input (the added networks retrieved from Public Transport and OpenStreetMap)
and combines them into a Graph (as networkx DiGraph) and individual formats for edges and nodes for
faster processing.
:param parameters: Contains all features and attributes of the considered case, e.g. Berlin networks
:return: nothing, as networks are directly assigned to class attributes
"""
# if possible load complete generated Graph from memory
edges_arc_formulation_file_path = self.networksPath +'setOfEdgesModified.json'
if networkIsAccessibleAtDisk(edges_arc_formulation_file_path):
self.modifiedEdgesList_ArcFormulation = self.get_dict_with_edgeKey(edges_arc_formulation_file_path)
# if not in memory, create MulitModal Graph based on Class Attributes
else:
# if possible, load set of edges from memory
filePathOfEdges = 'data/networks/setOfEdges.json'
if networkIsAccessibleAtDisk(filePathOfEdges):
self.getSavedSets()
# generate set of all edges in multi modal network
else:
# retrieve all individual networks of OpenStreetMap
self.initializeNetworks()
# retrieve all individual networks of Public Transport network
self.mergePublicTransport()
# add each mode and the corresponding network to the mulitmodal graph
for mode in self.setOfModes:
# special treatment for all osmnx data, as drive, walk and bike network share nodes already
if mode in self.listOf_OSMNX_Modes:
# get all nodes and edges of the viewed mode in desired format
setOfNodesByMode, setOfEdgesByMode = getListOfNodesOfGraph(self.networkDict[mode])
# add all nodes to MultiModal Graph
for nodes in setOfNodesByMode:
self.setOfNodes.append(nodes)
# add all edges to MultiModal Graph
if mode == 'drive':
for edge in setOfEdgesByMode:
travel_time = edge[2]['travel_time'] / 60 # convert into minutes
self.setOfEdges[(edge[0], edge[1], mode)] = [travel_time, 0.0, edge[2]['length']]
else:
self.setOfEdges[(edge[0], edge[1], mode)] = [edge[2]['travel_time'], 0.0, edge[2]['length']]
else:
connectingEdges = connectLayersPublicTransport(self.public_transport_modes[mode], mode,
self.networkDict[self.baseMode], self.baseMode)
print("Connection of mode " + mode + "-" + self.baseMode + " initialized")
for edge in connectingEdges.keys():
self.setOfEdges[(edge[0], edge[1], self.connection_layer)] = [connectingEdges[edge]['travel_time'],
0.0, connectingEdges[edge]['length']]
self.setOfModes.append(self.connection_layer)
self.saveMultiModalGraph()
self.getModifiedNetwork(parameters)
print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get all json ready')
self.initialize_base_network()
self.initialize_graph_for_preprocessing(parameters)
print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get preprocessing graph ready')
# get all modes of Public transport
tempSet = set()
for i, j, m in self.modifiedEdgesList_ArcFormulation.keys():
if m not in self.listOf_OSMNX_Modes:
tempSet.add(m)
if m == self.connection_layer:
self.arcs_of_connectionLayer.append((i, j, m))
self.modes_of_public_transport=list(tempSet)
print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get input data in desired format')
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
return [lst[x:x+n] for x in range(0, len(lst), n)]
| [
11748,
18540,
305,
919,
278,
198,
11748,
28686,
198,
198,
6738,
1693,
8019,
1330,
11038,
11,
42945,
198,
198,
6738,
41086,
13,
2640,
44,
77,
87,
62,
18274,
879,
1330,
1635,
198,
6738,
41086,
13,
38,
10234,
50,
62,
18274,
879,
1330,
1635,
198,
6738,
41086,
13,
12218,
62,
22203,
1330,
1635,
198,
6738,
41086,
13,
6601,
62,
5124,
541,
1741,
1330,
1635,
198,
11748,
4866,
198,
11748,
640,
198,
11748,
256,
80,
36020,
628,
198,
4871,
2262,
590,
26245,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
383,
705,
33384,
26245,
6,
1398,
4909,
477,
1321,
5115,
262,
973,
987,
4666,
282,
9358,
3127,
11,
304,
13,
70,
13,
198,
220,
220,
220,
262,
3127,
286,
11307,
13,
383,
5499,
286,
428,
1398,
481,
12082,
262,
2972,
4235,
7686,
290,
8335,
262,
5929,
198,
220,
220,
220,
329,
262,
4610,
8771,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1303,
3611,
12608,
286,
428,
1398,
198,
220,
220,
220,
1295,
796,
10148,
198,
220,
220,
220,
4637,
62,
29289,
796,
705,
38659,
49925,
6,
198,
220,
220,
220,
7686,
796,
17635,
198,
220,
220,
220,
7686,
15235,
796,
705,
7890,
14,
3262,
5225,
14,
6,
198,
220,
220,
220,
2779,
19076,
796,
705,
11152,
6,
198,
220,
220,
220,
923,
62,
2435,
796,
640,
13,
2435,
3419,
628,
220,
220,
220,
1303,
1844,
2746,
286,
3127,
287,
6031,
37065,
5794,
1043,
287,
3127,
87,
198,
220,
220,
220,
402,
796,
299,
87,
13,
18683,
37065,
3419,
198,
220,
220,
220,
29681,
62,
1640,
62,
6719,
36948,
796,
299,
87,
13,
18683,
37065,
3419,
198,
220,
220,
220,
29681,
62,
1640,
62,
6719,
36948,
62,
49,
964,
325,
796,
299,
87,
13,
18683,
37065,
3419,
628,
220,
220,
220,
1303,
1981,
4823,
329,
1123,
4235,
8574,
198,
220,
220,
220,
3127,
35,
713,
796,
23884,
198,
220,
220,
220,
900,
5189,
44,
4147,
796,
17635,
198,
220,
220,
220,
1351,
5189,
62,
2640,
39764,
55,
62,
44,
4147,
796,
17635,
628,
220,
220,
220,
1303,
12608,
286,
43104,
375,
282,
4823,
198,
220,
220,
220,
900,
5189,
45,
4147,
796,
17635,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5794,
47527,
312,
11,
3042,
11,
300,
261,
828,
22345,
198,
220,
220,
220,
900,
62,
1659,
62,
77,
4147,
62,
11152,
796,
900,
3419,
198,
220,
220,
220,
900,
5189,
7407,
3212,
796,
23884,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
5794,
357,
357,
6738,
62,
17440,
11,
284,
62,
17440,
11,
4235,
8,
1058,
685,
2435,
11,
1182,
1014,
11,
5253,
60,
198,
220,
220,
220,
9518,
7407,
3212,
8053,
62,
24021,
8479,
1741,
796,
23884,
220,
1303,
5794,
1391,
7,
17440,
11,
10139,
11,
4235,
8,
1058,
685,
2435,
11,
1182,
1014,
11,
5253,
11,
4259,
13729,
4357,
2644,
92,
198,
220,
220,
220,
44606,
62,
1659,
62,
38659,
49925,
796,
17635,
220,
220,
220,
1303,
47527,
72,
11,
73,
11,
76,
15437,
198,
220,
220,
220,
12881,
62,
1659,
62,
11377,
62,
7645,
634,
796,
17635,
198,
220,
220,
220,
10139,
7248,
2389,
796,
17635,
198,
220,
220,
220,
1171,
8291,
634,
796,
23884,
198,
220,
220,
220,
1171,
62,
7645,
634,
62,
76,
4147,
796,
23884,
198,
220,
220,
220,
2872,
5189,
43401,
2389,
392,
15202,
8291,
634,
19076,
796,
23884,
220,
220,
1303,
5794,
1391,
38629,
2389,
25,
1171,
62,
7645,
634,
62,
14171,
11,
2644,
92,
29206,
13,
1391,
24137,
4310,
25,
13037,
11,
2644,
92,
198,
220,
220,
220,
7686,
8491,
28500,
796,
10352,
628,
220,
220,
220,
1303,
662,
36948,
198,
220,
220,
220,
4823,
62,
7753,
62,
6978,
796,
13538,
198,
220,
220,
220,
1351,
62,
1659,
62,
301,
1850,
62,
35512,
5614,
796,
17635,
198,
220,
220,
220,
44606,
62,
1640,
62,
5420,
1389,
62,
12947,
796,
17635,
628,
628,
220,
220,
220,
825,
41216,
7934,
5225,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2163,
15989,
1981,
7686,
1695,
422,
4946,
34356,
13912,
11,
2845,
329,
262,
5094,
19940,
27862,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
318,
1932,
276,
3264,
284,
1398,
12608,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
3440,
477,
10348,
7686,
11,
7368,
287,
262,
12608,
286,
428,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
329,
3127,
44,
4147,
287,
2116,
13,
3262,
5225,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
4296,
1398,
12608,
286,
7763,
7686,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
44,
4147,
13,
33295,
7,
27349,
44,
4147,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
4868,
5189,
62,
2640,
39764,
55,
62,
44,
4147,
13,
33295,
7,
2536,
7,
27349,
44,
4147,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3440,
3127,
422,
4088,
611,
1744,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
2116,
13,
3262,
5225,
15235,
1343,
2116,
13,
5372,
1343,
46083,
705,
1343,
3127,
44,
4147,
1343,
4458,
34960,
5805,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3127,
3792,
15457,
856,
2953,
40961,
7,
7753,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
60,
796,
12018,
13,
2220,
62,
34960,
4029,
7,
7753,
6978,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
3127,
373,
407,
7448,
284,
4088,
878,
11,
3440,
3127,
422,
4946,
34356,
13912,
416,
262,
779,
286,
7294,
44,
77,
87,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
60,
796,
4321,
26245,
7,
944,
13,
5372,
11,
3127,
44,
4147,
11,
2116,
13,
3262,
5225,
15235,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
3067,
640,
329,
1123,
5743,
11,
1864,
284,
4235,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
2513,
11,
257,
2811,
2866,
286,
220,
352,
13,
19,
10700,
1220,
1218,
318,
9672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3127,
44,
4147,
6624,
705,
11152,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
402,
62,
29510,
796,
17635,
1303,
36649,
3316,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
422,
19667,
11,
284,
19667,
11,
708,
81,
287,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4083,
276,
3212,
7,
7890,
11639,
13664,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
402,
62,
29510,
13,
33295,
19510,
6738,
19667,
11,
284,
19667,
11,
1391,
6,
35927,
62,
2435,
10354,
708,
81,
29006,
16,
13,
19,
9,
1899,
828,
705,
13664,
10354,
708,
81,
1782,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4083,
2860,
62,
276,
3212,
62,
6738,
7,
38,
62,
29510,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
7161,
11,
281,
2811,
2866,
286,
604,
13,
17,
10700,
1220,
4201,
318,
9672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3127,
44,
4147,
6624,
6,
32256,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
402,
62,
29510,
28,
21737,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
422,
19667,
11,
284,
19667,
11,
708,
81,
287,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4083,
276,
3212,
7,
7890,
11639,
13664,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
402,
62,
29510,
13,
33295,
19510,
6738,
19667,
11,
284,
19667,
11,
1391,
6,
35927,
62,
2435,
10354,
708,
81,
29006,
19,
13,
17,
9,
1899,
828,
705,
13664,
10354,
708,
81,
92,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4083,
2860,
62,
276,
3212,
62,
6738,
7,
38,
62,
29510,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
262,
5637,
4235,
318,
3708,
13,
1081,
7294,
44,
77,
87,
635,
13236,
1158,
262,
2866,
49196,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
262,
287,
18780,
5499,
329,
26019,
262,
3067,
640,
460,
307,
973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
22241,
12018,
13,
2860,
62,
14907,
62,
4125,
5379,
7,
944,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4357,
2121,
1891,
28,
1120,
11,
15440,
796,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
27349,
44,
4147,
60,
796,
12018,
13,
2860,
62,
14907,
62,
35927,
62,
22355,
7,
944,
13,
27349,
35,
713,
58,
27349,
44,
4147,
4357,
15440,
28,
17,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1675,
3049,
268,
1568,
4831,
11,
340,
318,
8203,
326,
4088,
389,
1541,
287,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3262,
5225,
8491,
28500,
796,
6407,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
6329,
4064,
82,
4201,
11420,
1,
4064,
2835,
19510,
2435,
13,
2435,
3419,
532,
2116,
13,
9688,
62,
2435,
828,
362,
8,
1343,
705,
284,
41216,
7686,
11537,
628,
198,
220,
220,
220,
825,
20121,
15202,
8291,
634,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2163,
6673,
262,
1171,
4839,
7686,
357,
17080,
46709,
416,
12881,
11,
29206,
13,
5869,
6740,
11,
5869,
7192,
11,
2644,
8,
284,
262,
198,
220,
220,
220,
220,
220,
220,
220,
3127,
4554,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
1441,
7686,
389,
3264,
8686,
284,
1398,
12608,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
262,
7686,
286,
477,
12881,
286,
1171,
4839,
198,
220,
220,
220,
220,
220,
220,
220,
1171,
12966,
5551,
796,
651,
15202,
8291,
10189,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
11629,
378,
832,
477,
4235,
9376,
357,
68,
13,
70,
13,
5869,
11,
833,
321,
11,
38923,
11,
2644,
8,
198,
220,
220,
220,
220,
220,
220,
220,
329,
8251,
11,
4235,
62,
22872,
287,
1171,
12966,
5551,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11377,
8291,
634,
58,
2536,
7,
13083,
15437,
796,
4235,
62,
22872,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
477,
13015,
290,
13760,
286,
11756,
6339,
3127,
290,
751,
340,
284,
5929,
3127,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
11629,
378,
832,
477,
4235,
269,
378,
519,
1678,
25,
833,
321,
11,
38923,
11,
5869,
11,
2644,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4235,
62,
22872,
11,
4235,
287,
2116,
13,
11377,
8291,
634,
13,
23814,
33529,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
11629,
378,
832,
477,
12881,
25,
5869,
6740,
11,
5869,
7192,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
6339,
2389,
11,
6339,
287,
4235,
13,
23814,
33529,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
12608,
284,
1398,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
44,
4147,
13,
33295,
7,
2536,
7,
38629,
2389,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11377,
62,
7645,
634,
62,
76,
4147,
685,
2536,
7,
38629,
2389,
15437,
796,
6339,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
13760,
11,
543,
389,
8574,
287,
287,
262,
717,
5002,
286,
262,
6339,
1351,
357,
18982,
25,
4522,
11,
5476,
11,
39295,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10139,
287,
6339,
58,
15,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
45,
4147,
13,
33295,
26933,
17440,
58,
15,
4357,
10139,
58,
16,
4357,
10139,
58,
17,
11907,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
13015,
11,
543,
389,
8574,
287,
262,
1218,
5002,
286,
262,
6339,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
5743,
11,
5743,
62,
35226,
287,
6339,
58,
16,
4083,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5743,
62,
22018,
2175,
796,
5743,
13,
35312,
7,
2404,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
7407,
3212,
58,
7,
14907,
62,
22018,
2175,
58,
15,
4357,
5743,
62,
22018,
2175,
58,
16,
4357,
6339,
2389,
15437,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5743,
62,
35226,
17816,
35927,
7575,
6,
4357,
5743,
62,
35226,
17816,
2256,
1014,
6,
4357,
657,
13,
15,
60,
628,
198,
220,
220,
220,
825,
7716,
29800,
5841,
282,
37065,
7,
944,
11,
10007,
25,
23884,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
770,
2163,
2753,
262,
5597,
5128,
357,
1169,
2087,
7686,
29517,
422,
5094,
19940,
290,
4946,
34356,
13912,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
290,
21001,
606,
656,
257,
29681,
357,
292,
3127,
87,
6031,
37065,
8,
290,
1981,
17519,
329,
13015,
290,
13760,
329,
198,
220,
220,
220,
220,
220,
220,
220,
5443,
7587,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
10007,
25,
49850,
477,
3033,
290,
12608,
286,
262,
3177,
1339,
11,
304,
13,
70,
13,
11307,
7686,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
2147,
11,
355,
7686,
389,
3264,
8686,
284,
1398,
12608,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
1744,
3440,
1844,
7560,
29681,
422,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
13015,
62,
5605,
62,
687,
1741,
62,
7753,
62,
6978,
796,
2116,
13,
3262,
5225,
15235,
1343,
6,
2617,
5189,
7407,
3212,
5841,
1431,
13,
17752,
6,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3127,
3792,
15457,
856,
2953,
40961,
7,
276,
3212,
62,
5605,
62,
687,
1741,
62,
7753,
62,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
41771,
7407,
3212,
8053,
62,
24021,
8479,
1741,
796,
2116,
13,
1136,
62,
11600,
62,
4480,
62,
14907,
9218,
7,
276,
3212,
62,
5605,
62,
687,
1741,
62,
7753,
62,
6978,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
407,
287,
4088,
11,
2251,
17996,
270,
5841,
282,
29681,
1912,
319,
5016,
49213,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
1744,
11,
3440,
900,
286,
13015,
422,
4088,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2393,
15235,
5189,
7407,
3212,
796,
705,
7890,
14,
3262,
5225,
14,
2617,
5189,
7407,
3212,
13,
17752,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3127,
3792,
15457,
856,
2953,
40961,
7,
7753,
15235,
5189,
7407,
3212,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1136,
50,
9586,
50,
1039,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
7716,
900,
286,
477,
13015,
287,
5021,
953,
282,
3127,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
19818,
477,
1981,
7686,
286,
4946,
34356,
13912,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36733,
1096,
7934,
5225,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
19818,
477,
1981,
7686,
286,
5094,
19940,
3127,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
647,
469,
15202,
8291,
634,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
1123,
4235,
290,
262,
11188,
3127,
284,
262,
35971,
270,
4666,
282,
4823,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
4235,
287,
2116,
13,
2617,
5189,
44,
4147,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2041,
3513,
329,
477,
267,
5796,
77,
87,
1366,
11,
355,
3708,
11,
2513,
290,
7161,
3127,
2648,
13760,
1541,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4235,
287,
2116,
13,
4868,
5189,
62,
2640,
39764,
55,
62,
44,
4147,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
477,
13760,
290,
13015,
286,
262,
9569,
4235,
287,
10348,
5794,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
900,
5189,
45,
4147,
3886,
19076,
11,
900,
5189,
7407,
3212,
3886,
19076,
796,
651,
8053,
5189,
45,
4147,
5189,
37065,
7,
944,
13,
27349,
35,
713,
58,
14171,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
477,
13760,
284,
15237,
5841,
282,
29681,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
13760,
287,
900,
5189,
45,
4147,
3886,
19076,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
45,
4147,
13,
33295,
7,
77,
4147,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
477,
13015,
284,
15237,
5841,
282,
29681,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4235,
6624,
705,
19472,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
5743,
287,
900,
5189,
7407,
3212,
3886,
19076,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3067,
62,
2435,
796,
5743,
58,
17,
7131,
6,
35927,
62,
2435,
20520,
1220,
3126,
220,
1303,
10385,
656,
2431,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
7407,
3212,
58,
7,
14907,
58,
15,
4357,
5743,
58,
16,
4357,
4235,
15437,
796,
685,
35927,
62,
2435,
11,
657,
13,
15,
11,
5743,
58,
17,
7131,
6,
13664,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
7407,
3212,
58,
7,
14907,
58,
15,
4357,
5743,
58,
16,
4357,
4235,
15437,
796,
685,
14907,
58,
17,
7131,
6,
35927,
62,
2435,
6,
4357,
657,
13,
15,
11,
5743,
58,
17,
7131,
6,
13664,
6,
11907,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14320,
7407,
3212,
796,
2018,
43,
6962,
15202,
8291,
634,
7,
944,
13,
11377,
62,
7645,
634,
62,
76,
4147,
58,
14171,
4357,
4235,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
27349,
35,
713,
58,
944,
13,
8692,
19076,
4357,
2116,
13,
8692,
19076,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
32048,
286,
4235,
366,
1343,
4235,
1343,
366,
21215,
1343,
2116,
13,
8692,
19076,
1343,
366,
23224,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
5743,
287,
14320,
7407,
3212,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
7407,
3212,
58,
7,
14907,
58,
15,
4357,
5743,
58,
16,
4357,
2116,
13,
38659,
62,
29289,
15437,
796,
685,
8443,
278,
7407,
3212,
58,
14907,
7131,
6,
35927,
62,
2435,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
11,
14320,
7407,
3212,
58,
14907,
7131,
6,
13664,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
2617,
5189,
44,
4147,
13,
33295,
7,
944,
13,
38659,
62,
29289,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
21928,
29800,
5841,
282,
37065,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
1136,
5841,
1431,
26245,
7,
17143,
7307,
8,
628,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
6329,
4064,
82,
4201,
11420,
1,
4064,
2835,
19510,
2435,
13,
2435,
3419,
532,
2116,
13,
9688,
62,
2435,
828,
362,
8,
1343,
705,
284,
651,
477,
33918,
3492,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36733,
1096,
62,
8692,
62,
27349,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36733,
1096,
62,
34960,
62,
1640,
62,
3866,
36948,
7,
17143,
7307,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
6329,
4064,
82,
4201,
11420,
1,
4064,
2835,
19510,
2435,
13,
2435,
3419,
532,
2116,
13,
9688,
62,
2435,
828,
362,
8,
1343,
705,
284,
651,
662,
36948,
4823,
3492,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
651,
477,
12881,
286,
5094,
4839,
198,
220,
220,
220,
220,
220,
220,
220,
20218,
7248,
796,
900,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
11,
474,
11,
285,
287,
2116,
13,
41771,
7407,
3212,
8053,
62,
24021,
8479,
1741,
13,
13083,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
285,
407,
287,
2116,
13,
4868,
5189,
62,
2640,
39764,
55,
62,
44,
4147,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20218,
7248,
13,
2860,
7,
76,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
285,
6624,
2116,
13,
38659,
62,
29289,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5605,
82,
62,
1659,
62,
38659,
49925,
13,
33295,
19510,
72,
11,
474,
11,
285,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
76,
4147,
62,
1659,
62,
11377,
62,
7645,
634,
28,
4868,
7,
29510,
7248,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
6329,
4064,
82,
4201,
11420,
1,
4064,
2835,
19510,
2435,
13,
2435,
3419,
532,
2116,
13,
9688,
62,
2435,
828,
362,
8,
1343,
705,
284,
651,
5128,
1366,
287,
10348,
5794,
11537,
628,
628,
628,
628,
198,
4299,
22716,
7,
75,
301,
11,
299,
2599,
198,
220,
220,
220,
37227,
56,
1164,
25175,
299,
12,
13982,
22716,
422,
300,
301,
526,
15931,
198,
220,
220,
220,
1441,
685,
75,
301,
58,
87,
25,
87,
10,
77,
60,
329,
2124,
287,
2837,
7,
15,
11,
18896,
7,
75,
301,
828,
299,
15437,
628,
198
] | 2.353743 | 4,475 |
# coding=utf-8
import sqlite3
conn = sqlite3.connect('TempTest.db') # 如果db文件不存在将自动创建
curs = conn.cursor() # 从连接获得游标
curs.execute('''
CREATE TABLE messages (
id integer primary key autoincrement,
subject text not null,
sender text not null,
reply_to int,
text text not null
)
''') # 执行SQL语句:建表
curs.execute("""insert into messages (subject, sender, text) values ('111', '111', 'Test111' )""")
curs.execute("""insert into messages (subject, sender, text) values ('222', '222', 'Test222' )""")
curs.execute("""
insert into messages (subject, sender, reply_to, text) values ('333', '333', 1, 'Test333' )
""")
curs.execute("""
insert into messages (subject, sender, reply_to, text) values ('444', '444', 3, 'Test444' )
""")
conn.commit() # 如果修改数据,必须提交修改,才能保存到文件
conn.close() # 关闭连接
| [
2,
19617,
28,
40477,
12,
23,
198,
11748,
44161,
578,
18,
198,
198,
37043,
796,
44161,
578,
18,
13,
8443,
10786,
30782,
14402,
13,
9945,
11537,
220,
1303,
10263,
99,
224,
162,
252,
250,
9945,
23877,
229,
20015,
114,
38834,
27764,
246,
28839,
101,
49546,
164,
229,
103,
27950,
101,
26344,
249,
161,
119,
118,
198,
66,
1834,
796,
48260,
13,
66,
21471,
3419,
220,
1303,
220,
20015,
236,
32573,
252,
162,
236,
98,
164,
236,
115,
36181,
245,
162,
116,
116,
43718,
229,
198,
198,
66,
1834,
13,
41049,
7,
7061,
6,
198,
43387,
6158,
43679,
6218,
357,
198,
220,
220,
220,
4686,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18253,
4165,
1994,
8295,
24988,
434,
11,
198,
220,
220,
220,
2426,
220,
220,
220,
220,
2420,
407,
9242,
11,
198,
220,
220,
220,
29788,
220,
220,
220,
220,
220,
2420,
407,
9242,
11,
198,
220,
220,
220,
10971,
62,
1462,
220,
220,
220,
493,
11,
198,
220,
220,
220,
2420,
220,
220,
220,
220,
220,
220,
220,
2420,
407,
9242,
198,
8,
198,
7061,
11537,
220,
1303,
10545,
231,
100,
26193,
234,
17861,
46237,
255,
20998,
98,
171,
120,
248,
161,
119,
118,
26193,
101,
198,
198,
66,
1834,
13,
41049,
7203,
15931,
28463,
656,
6218,
357,
32796,
11,
29788,
11,
2420,
8,
3815,
19203,
16243,
3256,
705,
16243,
3256,
705,
14402,
16243,
6,
1267,
15931,
4943,
198,
66,
1834,
13,
41049,
7203,
15931,
28463,
656,
6218,
357,
32796,
11,
29788,
11,
2420,
8,
3815,
19203,
23148,
3256,
705,
23148,
3256,
705,
14402,
23148,
6,
1267,
15931,
4943,
198,
66,
1834,
13,
41049,
7203,
15931,
198,
28463,
656,
6218,
357,
32796,
11,
29788,
11,
10971,
62,
1462,
11,
2420,
8,
3815,
19203,
20370,
3256,
705,
20370,
3256,
352,
11,
705,
14402,
20370,
6,
1267,
198,
15931,
4943,
198,
66,
1834,
13,
41049,
7203,
15931,
198,
28463,
656,
6218,
357,
32796,
11,
29788,
11,
10971,
62,
1462,
11,
2420,
8,
3815,
19203,
30272,
3256,
705,
30272,
3256,
513,
11,
705,
14402,
30272,
6,
1267,
198,
15931,
4943,
198,
198,
37043,
13,
41509,
3419,
220,
1303,
10263,
99,
224,
162,
252,
250,
46479,
106,
162,
242,
117,
46763,
108,
162,
235,
106,
171,
120,
234,
33232,
227,
165,
94,
119,
162,
237,
238,
12859,
97,
46479,
106,
162,
242,
117,
171,
120,
234,
33699,
235,
47797,
121,
46479,
251,
27764,
246,
26344,
108,
23877,
229,
20015,
114,
198,
37043,
13,
19836,
3419,
220,
1303,
10263,
227,
111,
29785,
255,
32573,
252,
162,
236,
98,
198
] | 2 | 417 |
# Interface
from abc import ABC, abstractmethod
a = Army()
af = AirForce()
n = Navy()
a.area()
a.gun()
print()
af.area()
af.gun()
print()
n.area()
n.gun() | [
2,
26491,
198,
198,
6738,
450,
66,
1330,
9738,
11,
12531,
24396,
198,
198,
64,
796,
5407,
3419,
198,
1878,
796,
3701,
10292,
3419,
198,
77,
796,
8565,
3419,
198,
198,
64,
13,
20337,
3419,
198,
64,
13,
7145,
3419,
198,
4798,
3419,
198,
198,
1878,
13,
20337,
3419,
198,
1878,
13,
7145,
3419,
198,
4798,
3419,
198,
198,
77,
13,
20337,
3419,
198,
77,
13,
7145,
3419
] | 2.338235 | 68 |
import pandas as pd
import os
if __name__ == '__main__':
update_validation_data(force=True)
print('Done') | [
11748,
19798,
292,
355,
279,
67,
198,
11748,
28686,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
4296,
62,
12102,
341,
62,
7890,
7,
3174,
28,
17821,
8,
198,
220,
220,
220,
3601,
10786,
45677,
11537
] | 2.613636 | 44 |
# Auto-luokka yliluokka erilaisille autotyypeille
# Ominaisuudet (Field, Property) merkki, malli, vuosimalli, kilometrit, käyttövoima, vaihteistotyyppi, väri ja
# Henkiloauto
if __name__ == '__main__':
henkiloauto1 = Henkiloauto('ABC-12', 'Ferrary', 'Land', 2020, 354322, 'diesel', 'automaatti', 'punainen', 270, 2.8, 4000, 7, 5, 'tila-auto', 300, ['vakionopeuden säädin', 'peruutuskamera'])
print('Rekisterinumero: ', henkiloauto1.rek, 'istumapaikkoja', henkiloauto1.istuimet)
# Lasketaan jäljelläolevien kilometrien hinta
print('Jäljellä olevien kilometrien hinta on', henkiloauto1.km_jaljella())
print('Jäljellä olevien kilometrien hinta on', henkiloauto1.km_jaljella_hinta())
print('Korjatut kilometrit on:', henkiloauto1.korjatut_kilometrit(2))
kilometreja_jaljella = Auto.arvio_kilometrit(2.8, 364800, 2)
print('Laskettu staattisella metodilla:', kilometreja_jaljella) | [
198,
2,
11160,
12,
2290,
482,
4914,
331,
75,
346,
84,
482,
4914,
1931,
10102,
271,
8270,
1960,
313,
88,
2981,
8270,
198,
198,
2,
440,
1084,
15152,
84,
463,
316,
357,
15878,
11,
14161,
8,
4017,
74,
4106,
11,
17374,
72,
11,
410,
84,
418,
320,
36546,
11,
11866,
799,
11,
479,
11033,
88,
926,
9101,
13038,
8083,
11,
410,
1872,
71,
660,
396,
313,
22556,
381,
72,
11,
410,
11033,
380,
45091,
220,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6752,
74,
18526,
23736,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
30963,
74,
18526,
23736,
16,
796,
6752,
74,
18526,
23736,
10786,
24694,
12,
1065,
3256,
705,
37,
8056,
560,
3256,
705,
22342,
3256,
12131,
11,
3439,
3559,
1828,
11,
705,
25990,
417,
3256,
705,
2306,
6086,
34891,
3256,
705,
35512,
391,
268,
3256,
20479,
11,
362,
13,
23,
11,
30123,
11,
767,
11,
642,
11,
705,
83,
10102,
12,
23736,
3256,
5867,
11,
37250,
85,
461,
295,
3008,
44452,
264,
11033,
11033,
25194,
3256,
705,
525,
84,
315,
17990,
18144,
6,
12962,
198,
220,
220,
220,
3601,
10786,
49,
988,
1694,
259,
388,
3529,
25,
46083,
30963,
74,
18526,
23736,
16,
13,
37818,
11,
705,
396,
388,
32678,
1134,
7204,
6592,
3256,
30963,
74,
18526,
23736,
16,
13,
396,
84,
38813,
8,
198,
198,
2,
406,
11715,
28340,
474,
11033,
75,
73,
695,
11033,
2305,
85,
2013,
11866,
15355,
9254,
64,
198,
198,
4798,
10786,
41,
11033,
75,
73,
695,
11033,
267,
2768,
2013,
11866,
15355,
9254,
64,
319,
3256,
30963,
74,
18526,
23736,
16,
13,
13276,
62,
73,
282,
73,
12627,
28955,
198,
198,
4798,
10786,
41,
11033,
75,
73,
695,
11033,
267,
2768,
2013,
11866,
15355,
9254,
64,
319,
3256,
30963,
74,
18526,
23736,
16,
13,
13276,
62,
73,
282,
73,
12627,
62,
71,
600,
64,
28955,
198,
198,
4798,
10786,
42,
273,
73,
265,
315,
11866,
799,
319,
25,
3256,
30963,
74,
18526,
23736,
16,
13,
74,
273,
73,
265,
315,
62,
34553,
908,
799,
7,
17,
4008,
198,
198,
34553,
908,
260,
6592,
62,
73,
282,
73,
12627,
796,
11160,
13,
283,
85,
952,
62,
34553,
908,
799,
7,
17,
13,
23,
11,
44969,
7410,
11,
362,
8,
198,
4798,
10786,
43,
2093,
3087,
84,
336,
64,
1078,
271,
12627,
1138,
375,
5049,
25,
3256,
11866,
260,
6592,
62,
73,
282,
73,
12627,
8
] | 2.238806 | 402 |
import os
import sqlite3
def cursore_maker(method):
"""Декоратор, создающий курсор, для работы с бд"""
return wrapper
class SQLWorker:
"""Это API для работы с SQLite таблицами, заточенный под основную программу"""
@cursore_maker
def make_table(self, cur):
"""Метод, создающий таблицу (если она не существует)"""
# формат бд описан здесь
cur.execute("""CREATE TABLE IF NOT EXISTS dump(
id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE,
name text NOT NULL,
path text NOT NULL,
create_date text NOT NULL,
last_edit_date NOT NULL,
weight INTEGER NOT NULL
);""")
@cursore_maker
def add_to_the_table(self, cur, data):
"""Метод позволяет заполнить таблицу данными, на вход принимает список кортежей"""
cur.executemany("""INSERT INTO dump(name, path, create_date, last_edit_date, weight) VALUES (?,?,?,?,?)""",
data)
@cursore_maker
def search_by_sql_request(self, cur, request):
"""Метод необходим для самостоятельных пользователей, которые сами пишут SQL запрос"""
# можешь использовать его, для расширения функционала или тестов
return cur.execute(request).fetchall()
def replace_data(self, data):
"""Замена данных таблицы на новые"""
os.remove(self.name)
self.make_table()
self.fill_the_table(data)
@cursore_maker
def get_all_values(self, cur):
"""Возвращает все значения"""
data = cur.execute("select * from dump").fetchall()
return data
@cursore_maker
def except_sort_and_search(self, cur, request, search_in='name', order_by='name', direction='DESC'):
"""Метод, возвращающий все элементы таблицы содержащие в себе запрос, отсортированные
по заданному критерию, но исключая запрос"""
# direction можно передать "ASC", тогда будет от меньшего к большему
return cur.execute(f"""select * from dump where not({search_in} like '%{request}%')
ORDER BY {order_by} {direction}""").fetchall()
@cursore_maker
def sort_and_search(self, cur, request, search_in='name', order_by='name', direction='DESC'):
"""Метод, возвращающий все элементы таблицы содержащие в себе запрос, отсортированные по заданному критерию"""
# direction можно передать "ASC", тогда будет от меньшего к большему
return cur.execute(f"""select * from dump where {search_in} like '%{request}%'
ORDER BY {order_by} {direction}""").fetchall()
if __name__ == '__main__':
from Searcher import FileWorker
base = SQLWorker() # скобочки обязательно, там можно передавать имя файла с бд
file = FileWorker('./test')
base.make_table()
base.fill_the_table(file.list_of_files)
print(base.search_except_parameter('flag')) # старый код, до рефакторинга, сейчас уже не работает
| [
11748,
28686,
198,
11748,
44161,
578,
18,
628,
198,
4299,
13882,
382,
62,
10297,
7,
24396,
2599,
198,
220,
220,
220,
37227,
140,
242,
16843,
31583,
15166,
21169,
16142,
20375,
15166,
21169,
11,
220,
21727,
25443,
115,
43666,
16142,
141,
236,
141,
231,
18849,
140,
117,
12466,
118,
35072,
21169,
21727,
15166,
21169,
11,
12466,
112,
30143,
40623,
220,
21169,
16142,
140,
109,
15166,
20375,
45035,
220,
21727,
12466,
109,
43666,
37811,
628,
220,
220,
220,
1441,
29908,
628,
198,
4871,
16363,
12468,
263,
25,
198,
220,
220,
220,
37227,
140,
255,
20375,
15166,
7824,
220,
12466,
112,
30143,
40623,
220,
21169,
16142,
140,
109,
15166,
20375,
45035,
220,
21727,
16363,
578,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
16142,
43108,
18849,
11,
12466,
115,
16142,
20375,
15166,
141,
229,
16843,
22177,
22177,
45035,
140,
117,
12466,
123,
25443,
112,
12466,
122,
21727,
22177,
25443,
110,
22177,
35072,
141,
236,
12466,
123,
21169,
25443,
111,
21169,
16142,
43108,
43108,
35072,
37811,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
787,
62,
11487,
7,
944,
11,
1090,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
250,
16843,
20375,
25443,
112,
11,
220,
21727,
25443,
115,
43666,
16142,
141,
236,
141,
231,
18849,
140,
117,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
35072,
357,
16843,
21727,
30143,
18849,
12466,
122,
22177,
16142,
12466,
121,
16843,
220,
21727,
35072,
141,
231,
16843,
21727,
20375,
38857,
35072,
16843,
20375,
8,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
141,
226,
15166,
21169,
43108,
16142,
20375,
12466,
109,
43666,
12466,
122,
140,
123,
18849,
21727,
16142,
22177,
12466,
115,
43666,
16843,
21727,
45367,
198,
220,
220,
220,
220,
220,
220,
220,
1090,
13,
41049,
7203,
15931,
43387,
6158,
43679,
16876,
5626,
7788,
1797,
4694,
10285,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
17828,
7156,
1137,
4810,
3955,
13153,
35374,
47044,
46,
30158,
2200,
10979,
5626,
15697,
4725,
33866,
8924,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2420,
5626,
15697,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3108,
2420,
5626,
15697,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2251,
62,
4475,
2420,
5626,
15697,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
938,
62,
19312,
62,
4475,
5626,
15697,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3463,
17828,
7156,
1137,
5626,
15697,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5619,
15931,
4943,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
751,
62,
1462,
62,
1169,
62,
11487,
7,
944,
11,
1090,
11,
1366,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
250,
16843,
20375,
25443,
112,
12466,
123,
25443,
115,
38857,
25443,
119,
40623,
16843,
20375,
12466,
115,
16142,
140,
123,
25443,
119,
22177,
18849,
20375,
45367,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
35072,
12466,
112,
16142,
22177,
22177,
45035,
43108,
18849,
11,
12466,
121,
16142,
12466,
110,
141,
227,
25443,
112,
12466,
123,
21169,
18849,
22177,
18849,
43108,
16142,
16843,
20375,
220,
21727,
140,
123,
18849,
21727,
25443,
118,
12466,
118,
15166,
21169,
20375,
16843,
140,
114,
16843,
140,
117,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1090,
13,
18558,
315,
368,
1092,
7203,
15931,
20913,
17395,
39319,
10285,
7,
3672,
11,
3108,
11,
2251,
62,
4475,
11,
938,
62,
19312,
62,
4475,
11,
3463,
8,
26173,
35409,
32843,
21747,
21747,
21747,
10091,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
8,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
2989,
62,
1525,
62,
25410,
62,
25927,
7,
944,
11,
1090,
11,
2581,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
250,
16843,
20375,
25443,
112,
12466,
121,
16843,
25443,
109,
141,
227,
25443,
112,
18849,
43108,
12466,
112,
30143,
40623,
220,
21727,
16142,
43108,
15166,
21727,
20375,
15166,
40623,
20375,
16843,
30143,
45367,
22177,
45035,
141,
227,
12466,
123,
25443,
119,
45367,
140,
115,
25443,
110,
16142,
20375,
16843,
30143,
16843,
140,
117,
11,
12466,
118,
15166,
20375,
15166,
21169,
45035,
16843,
220,
21727,
16142,
43108,
18849,
12466,
123,
18849,
141,
230,
35072,
20375,
16363,
12466,
115,
16142,
140,
123,
21169,
15166,
21727,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12466,
120,
25443,
114,
16843,
141,
230,
45367,
12466,
116,
21727,
140,
123,
25443,
119,
45367,
140,
115,
25443,
110,
16142,
20375,
45367,
12466,
113,
140,
111,
15166,
11,
12466,
112,
30143,
40623,
220,
21169,
16142,
21727,
141,
230,
18849,
21169,
16843,
22177,
18849,
40623,
220,
141,
226,
35072,
22177,
31583,
141,
228,
18849,
15166,
22177,
16142,
30143,
16142,
12466,
116,
30143,
18849,
220,
20375,
16843,
21727,
20375,
25443,
110,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1090,
13,
41049,
7,
25927,
737,
69,
7569,
439,
3419,
628,
220,
220,
220,
825,
6330,
62,
7890,
7,
944,
11,
1366,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
245,
16142,
43108,
16843,
22177,
16142,
12466,
112,
16142,
22177,
22177,
45035,
141,
227,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
45035,
12466,
121,
16142,
12466,
121,
25443,
110,
45035,
16843,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28956,
7,
944,
13,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15883,
62,
11487,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20797,
62,
1169,
62,
11487,
7,
7890,
8,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
651,
62,
439,
62,
27160,
7,
944,
11,
1090,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
240,
25443,
115,
38857,
21169,
16142,
141,
231,
16142,
16843,
20375,
12466,
110,
21727,
16843,
12466,
115,
22177,
16142,
141,
229,
16843,
22177,
18849,
40623,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1090,
13,
41049,
7203,
19738,
1635,
422,
10285,
11074,
69,
7569,
439,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1366,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
2845,
62,
30619,
62,
392,
62,
12947,
7,
944,
11,
1090,
11,
2581,
11,
2989,
62,
259,
11639,
3672,
3256,
1502,
62,
1525,
11639,
3672,
3256,
4571,
11639,
30910,
34,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
250,
16843,
20375,
25443,
112,
11,
12466,
110,
25443,
115,
38857,
21169,
16142,
141,
231,
16142,
141,
236,
141,
231,
18849,
140,
117,
12466,
110,
21727,
16843,
220,
141,
235,
30143,
16843,
43108,
16843,
22177,
20375,
45035,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
45035,
220,
21727,
25443,
112,
16843,
21169,
140,
114,
16142,
141,
231,
18849,
16843,
12466,
110,
220,
21727,
16843,
140,
109,
16843,
12466,
115,
16142,
140,
123,
21169,
15166,
21727,
11,
12466,
122,
20375,
21727,
15166,
21169,
20375,
18849,
21169,
25443,
110,
16142,
22177,
22177,
45035,
16843,
198,
220,
220,
220,
220,
220,
220,
220,
220,
12466,
123,
15166,
12466,
115,
16142,
43666,
16142,
22177,
22177,
25443,
120,
35072,
12466,
118,
21169,
18849,
20375,
16843,
21169,
18849,
141,
236,
11,
12466,
121,
15166,
12466,
116,
21727,
31583,
30143,
141,
236,
141,
229,
16142,
40623,
12466,
115,
16142,
140,
123,
21169,
15166,
21727,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4571,
12466,
120,
25443,
114,
22177,
15166,
12466,
123,
16843,
21169,
16843,
43666,
16142,
20375,
45367,
366,
42643,
1600,
220,
20375,
25443,
111,
43666,
16142,
12466,
109,
35072,
43666,
16843,
20375,
12466,
122,
20375,
12466,
120,
16843,
22177,
45367,
141,
230,
16843,
140,
111,
15166,
12466,
118,
12466,
109,
25443,
119,
45367,
141,
230,
16843,
43108,
35072,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1090,
13,
41049,
7,
69,
37811,
19738,
1635,
422,
10285,
810,
407,
15090,
12947,
62,
259,
92,
588,
705,
4,
90,
25927,
92,
4,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38678,
11050,
1391,
2875,
62,
1525,
92,
1391,
37295,
92,
15931,
11074,
69,
7569,
439,
3419,
628,
220,
220,
220,
2488,
66,
1834,
382,
62,
10297,
198,
220,
220,
220,
825,
3297,
62,
392,
62,
12947,
7,
944,
11,
1090,
11,
2581,
11,
2989,
62,
259,
11639,
3672,
3256,
1502,
62,
1525,
11639,
3672,
3256,
4571,
11639,
30910,
34,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
140,
250,
16843,
20375,
25443,
112,
11,
12466,
110,
25443,
115,
38857,
21169,
16142,
141,
231,
16142,
141,
236,
141,
231,
18849,
140,
117,
12466,
110,
21727,
16843,
220,
141,
235,
30143,
16843,
43108,
16843,
22177,
20375,
45035,
220,
20375,
16142,
140,
109,
30143,
18849,
141,
228,
45035,
220,
21727,
25443,
112,
16843,
21169,
140,
114,
16142,
141,
231,
18849,
16843,
12466,
110,
220,
21727,
16843,
140,
109,
16843,
12466,
115,
16142,
140,
123,
21169,
15166,
21727,
11,
12466,
122,
20375,
21727,
15166,
21169,
20375,
18849,
21169,
25443,
110,
16142,
22177,
22177,
45035,
16843,
12466,
123,
15166,
12466,
115,
16142,
43666,
16142,
22177,
22177,
25443,
120,
35072,
12466,
118,
21169,
18849,
20375,
16843,
21169,
18849,
141,
236,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4571,
12466,
120,
25443,
114,
22177,
15166,
12466,
123,
16843,
21169,
16843,
43666,
16142,
20375,
45367,
366,
42643,
1600,
220,
20375,
25443,
111,
43666,
16142,
12466,
109,
35072,
43666,
16843,
20375,
12466,
122,
20375,
12466,
120,
16843,
22177,
45367,
141,
230,
16843,
140,
111,
15166,
12466,
118,
12466,
109,
25443,
119,
45367,
141,
230,
16843,
43108,
35072,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1090,
13,
41049,
7,
69,
37811,
19738,
1635,
422,
10285,
810,
1391,
12947,
62,
259,
92,
588,
705,
4,
90,
25927,
92,
4,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38678,
11050,
1391,
2875,
62,
1525,
92,
1391,
37295,
92,
15931,
11074,
69,
7569,
439,
3419,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
422,
42016,
2044,
1330,
9220,
12468,
263,
628,
220,
220,
220,
2779,
796,
16363,
12468,
263,
3419,
220,
1303,
220,
21727,
31583,
25443,
109,
15166,
141,
229,
31583,
18849,
12466,
122,
140,
109,
40623,
140,
115,
16142,
20375,
16843,
30143,
45367,
22177,
15166,
11,
220,
20375,
16142,
43108,
12466,
120,
25443,
114,
22177,
15166,
12466,
123,
16843,
21169,
16843,
43666,
16142,
38857,
16142,
20375,
45367,
12466,
116,
43108,
40623,
220,
141,
226,
16142,
140,
117,
30143,
16142,
220,
21727,
12466,
109,
43666,
198,
220,
220,
220,
2393,
796,
9220,
12468,
263,
7,
4458,
14,
9288,
11537,
198,
220,
220,
220,
2779,
13,
15883,
62,
11487,
3419,
198,
220,
220,
220,
2779,
13,
20797,
62,
1169,
62,
11487,
7,
7753,
13,
4868,
62,
1659,
62,
16624,
8,
628,
220,
220,
220,
3601,
7,
8692,
13,
12947,
62,
16341,
62,
17143,
2357,
10786,
32109,
6,
4008,
220,
1303,
220,
21727,
20375,
16142,
21169,
45035,
140,
117,
12466,
118,
25443,
112,
11,
12466,
112,
15166,
220,
21169,
16843,
141,
226,
16142,
31583,
20375,
15166,
21169,
18849,
22177,
140,
111,
16142,
11,
220,
21727,
16843,
140,
117,
141,
229,
16142,
21727,
220,
35072,
140,
114,
16843,
12466,
121,
16843,
220,
21169,
16142,
140,
109,
15166,
20375,
16142,
16843,
20375,
198
] | 1.526505 | 1,943 |
#Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
#This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License.
#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
| [
2,
15269,
357,
34,
8,
12131,
13,
43208,
21852,
1766,
1539,
12052,
13,
1439,
2489,
10395,
13,
201,
198,
201,
198,
2,
1212,
1430,
318,
1479,
3788,
26,
345,
460,
17678,
4163,
340,
290,
14,
273,
13096,
340,
739,
262,
2846,
286,
262,
347,
10305,
513,
12,
2601,
682,
13789,
13,
201,
198,
201,
198,
2,
1212,
1430,
318,
9387,
287,
262,
2911,
326,
340,
481,
307,
4465,
11,
475,
42881,
15529,
34764,
56,
26,
1231,
772,
262,
17142,
18215,
286,
34482,
3398,
1565,
5603,
25382,
393,
376,
46144,
7473,
317,
16652,
2149,
37232,
33079,
48933,
13,
4091,
262,
347,
10305,
513,
12,
2601,
682,
13789,
329,
517,
3307,
13,
201,
198,
201,
198,
11748,
28034,
201,
198,
11748,
28034,
13,
20471,
355,
299,
77,
201,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
201,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
201,
198
] | 3.632653 | 147 |
import numpy as np
import tensorflow as tf
from baselines.a2c.utils import conv, fc, conv_to_fc
from baselines.common.distributions import make_pdtype
from baselines.common.input import observation_input
def impala_cnn(images, depths=[16, 32, 32], use_batch_norm=True, dropout=0):
"""
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
"""
dropout_layer_num = [0]
dropout_assign_ops = []
out = images
for depth in depths:
out = conv_sequence(out, depth)
out = tf.layers.flatten(out)
out = tf.nn.relu(out)
out = tf.layers.dense(out, 256, activation=tf.nn.relu)
return out, dropout_assign_ops
def nature_cnn(scaled_images, **conv_kwargs):
"""
Model used in the paper "Human-level control through deep reinforcement learning"
https://www.nature.com/articles/nature14236
"""
h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2),
**conv_kwargs))
h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs))
h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs))
h3 = conv_to_fc(h3)
return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2)))
def random_impala_cnn(images, depths=[16, 32, 32], use_batch_norm=True, dropout=0):
"""
Model used in the paper "IMPALA: Scalable Distributed Deep-RL with
Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561
"""
dropout_layer_num = [0]
dropout_assign_ops = []
out = images
# add random filter
randcnn_depth = 3
mask_vbox = tf.Variable(tf.zeros_like(images, dtype=bool), trainable=False)
mask_shape = tf.shape(images)
rh = .2 # hard-coded velocity box size
mh = tf.cast(tf.cast(mask_shape[1], dtype=tf.float32)*rh, dtype=tf.int32)
mw = mh*2
mask_vbox = mask_vbox[:,:mh,:mw].assign(tf.ones([mask_shape[0], mh, mw, mask_shape[3]], dtype=bool))
img = tf.where(mask_vbox, x=tf.zeros_like(images), y=images)
rand_img = tf.layers.conv2d(img, randcnn_depth, 3, padding='same', \
kernel_initializer=tf.initializers.glorot_normal(), trainable=False, name='randcnn')
out = tf.where(mask_vbox, x=images, y=rand_img, name='randout')
for depth in depths:
out = conv_sequence(out, depth)
out = tf.layers.flatten(out)
out = tf.nn.relu(out)
out = tf.layers.dense(out, 256, activation=tf.nn.relu)
return out, dropout_assign_ops | [
11748,
299,
32152,
355,
45941,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
6738,
1615,
20655,
13,
64,
17,
66,
13,
26791,
1330,
3063,
11,
277,
66,
11,
3063,
62,
1462,
62,
16072,
198,
6738,
1615,
20655,
13,
11321,
13,
17080,
2455,
507,
1330,
787,
62,
30094,
4906,
198,
6738,
1615,
20655,
13,
11321,
13,
15414,
1330,
13432,
62,
15414,
198,
198,
4299,
848,
6081,
62,
66,
20471,
7,
17566,
11,
21593,
41888,
1433,
11,
3933,
11,
3933,
4357,
779,
62,
43501,
62,
27237,
28,
17821,
11,
4268,
448,
28,
15,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9104,
973,
287,
262,
3348,
366,
3955,
47,
1847,
32,
25,
34529,
540,
4307,
6169,
10766,
12,
7836,
351,
220,
198,
220,
220,
220,
17267,
590,
14331,
276,
27274,
12,
14961,
1008,
17340,
942,
1,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
1507,
2999,
13,
486,
47915,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4268,
448,
62,
29289,
62,
22510,
796,
685,
15,
60,
198,
220,
220,
220,
4268,
448,
62,
562,
570,
62,
2840,
796,
17635,
628,
220,
220,
220,
503,
796,
4263,
198,
220,
220,
220,
329,
6795,
287,
21593,
25,
198,
220,
220,
220,
220,
220,
220,
220,
503,
796,
3063,
62,
43167,
7,
448,
11,
6795,
8,
628,
220,
220,
220,
503,
796,
48700,
13,
75,
6962,
13,
2704,
41769,
7,
448,
8,
198,
220,
220,
220,
503,
796,
48700,
13,
20471,
13,
260,
2290,
7,
448,
8,
198,
220,
220,
220,
503,
796,
48700,
13,
75,
6962,
13,
67,
1072,
7,
448,
11,
17759,
11,
14916,
28,
27110,
13,
20471,
13,
260,
2290,
8,
628,
220,
220,
220,
1441,
503,
11,
4268,
448,
62,
562,
570,
62,
2840,
198,
198,
4299,
3450,
62,
66,
20471,
7,
1416,
3021,
62,
17566,
11,
12429,
42946,
62,
46265,
22046,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9104,
973,
287,
262,
3348,
366,
20490,
12,
5715,
1630,
832,
2769,
37414,
4673,
1,
220,
198,
220,
220,
220,
3740,
1378,
2503,
13,
21353,
13,
785,
14,
26845,
14,
21353,
1415,
24940,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
289,
796,
1753,
7,
42946,
7,
1416,
3021,
62,
17566,
11,
705,
66,
16,
3256,
299,
69,
28,
2624,
11,
374,
69,
28,
23,
11,
33769,
28,
19,
11,
2315,
62,
9888,
28,
37659,
13,
31166,
17034,
7,
17,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12429,
42946,
62,
46265,
22046,
4008,
198,
220,
220,
220,
289,
17,
796,
1753,
7,
42946,
7,
71,
11,
705,
66,
17,
3256,
299,
69,
28,
2414,
11,
374,
69,
28,
19,
11,
33769,
28,
17,
11,
2315,
62,
9888,
28,
37659,
13,
31166,
17034,
7,
17,
828,
12429,
42946,
62,
46265,
22046,
4008,
198,
220,
220,
220,
289,
18,
796,
1753,
7,
42946,
7,
71,
17,
11,
705,
66,
18,
3256,
299,
69,
28,
2414,
11,
374,
69,
28,
18,
11,
33769,
28,
16,
11,
2315,
62,
9888,
28,
37659,
13,
31166,
17034,
7,
17,
828,
12429,
42946,
62,
46265,
22046,
4008,
198,
220,
220,
220,
289,
18,
796,
3063,
62,
1462,
62,
16072,
7,
71,
18,
8,
198,
220,
220,
220,
1441,
1753,
7,
16072,
7,
71,
18,
11,
705,
16072,
16,
3256,
299,
71,
28,
25836,
11,
2315,
62,
9888,
28,
37659,
13,
31166,
17034,
7,
17,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
4299,
4738,
62,
11011,
6081,
62,
66,
20471,
7,
17566,
11,
21593,
41888,
1433,
11,
3933,
11,
3933,
4357,
779,
62,
43501,
62,
27237,
28,
17821,
11,
4268,
448,
28,
15,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
9104,
973,
287,
262,
3348,
366,
3955,
47,
1847,
32,
25,
34529,
540,
4307,
6169,
10766,
12,
7836,
351,
220,
198,
220,
220,
220,
17267,
590,
14331,
276,
27274,
12,
14961,
1008,
17340,
942,
1,
3740,
1378,
283,
87,
452,
13,
2398,
14,
8937,
14,
1507,
2999,
13,
486,
47915,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4268,
448,
62,
29289,
62,
22510,
796,
685,
15,
60,
198,
220,
220,
220,
4268,
448,
62,
562,
570,
62,
2840,
796,
17635,
628,
220,
220,
220,
503,
796,
4263,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
751,
4738,
8106,
198,
220,
220,
220,
43720,
66,
20471,
62,
18053,
796,
513,
198,
220,
220,
220,
220,
198,
220,
220,
220,
9335,
62,
85,
3524,
796,
48700,
13,
43015,
7,
27110,
13,
9107,
418,
62,
2339,
7,
17566,
11,
288,
4906,
28,
30388,
828,
4512,
540,
28,
25101,
8,
198,
220,
220,
220,
9335,
62,
43358,
796,
48700,
13,
43358,
7,
17566,
8,
198,
220,
220,
220,
9529,
796,
764,
17,
1303,
1327,
12,
40976,
15432,
3091,
2546,
198,
220,
220,
220,
285,
71,
796,
48700,
13,
2701,
7,
27110,
13,
2701,
7,
27932,
62,
43358,
58,
16,
4357,
288,
4906,
28,
27110,
13,
22468,
2624,
27493,
17179,
11,
288,
4906,
28,
27110,
13,
600,
2624,
8,
198,
220,
220,
220,
285,
86,
796,
285,
71,
9,
17,
198,
220,
220,
220,
9335,
62,
85,
3524,
796,
9335,
62,
85,
3524,
58,
45299,
25,
76,
71,
11,
25,
76,
86,
4083,
562,
570,
7,
27110,
13,
1952,
26933,
27932,
62,
43358,
58,
15,
4357,
285,
71,
11,
285,
86,
11,
9335,
62,
43358,
58,
18,
60,
4357,
288,
4906,
28,
30388,
4008,
628,
220,
220,
220,
33705,
220,
796,
48700,
13,
3003,
7,
27932,
62,
85,
3524,
11,
2124,
28,
27110,
13,
9107,
418,
62,
2339,
7,
17566,
828,
331,
28,
17566,
8,
198,
220,
220,
220,
43720,
62,
9600,
796,
48700,
13,
75,
6962,
13,
42946,
17,
67,
7,
9600,
11,
43720,
66,
20471,
62,
18053,
11,
513,
11,
24511,
11639,
31642,
3256,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
9720,
62,
36733,
7509,
28,
27110,
13,
36733,
11341,
13,
70,
4685,
313,
62,
11265,
22784,
4512,
540,
28,
25101,
11,
1438,
11639,
25192,
66,
20471,
11537,
198,
220,
220,
220,
503,
796,
48700,
13,
3003,
7,
27932,
62,
85,
3524,
11,
2124,
28,
17566,
11,
331,
28,
25192,
62,
9600,
11,
1438,
11639,
25192,
448,
11537,
628,
220,
220,
220,
329,
6795,
287,
21593,
25,
198,
220,
220,
220,
220,
220,
220,
220,
503,
796,
3063,
62,
43167,
7,
448,
11,
6795,
8,
628,
220,
220,
220,
503,
796,
48700,
13,
75,
6962,
13,
2704,
41769,
7,
448,
8,
198,
220,
220,
220,
503,
796,
48700,
13,
20471,
13,
260,
2290,
7,
448,
8,
198,
220,
220,
220,
503,
796,
48700,
13,
75,
6962,
13,
67,
1072,
7,
448,
11,
17759,
11,
14916,
28,
27110,
13,
20471,
13,
260,
2290,
8,
628,
220,
220,
220,
1441,
503,
11,
4268,
448,
62,
562,
570,
62,
2840
] | 2.313274 | 1,130 |
import os
from fusedwake import fusedwake
import numpy as np
from topfarm.cost_models.fuga import py_fuga
from topfarm.cost_models.fuga.py_fuga import PyFuga
from topfarm.cost_models.fused_wake_wrappers import FusedWakeGCLWakeModel
from topfarm.cost_models.utils.aep_calculator import AEPCalculator
from topfarm.cost_models.utils.wind_resource import WindResource
from topfarm.cost_models.fuga.lib_reader import read_lib
fuga_path = os.path.abspath(os.path.dirname(py_fuga.__file__)) + '/Colonel/'
if __name__ == '__main__':
print(HornsrevAEP_Fuga())
print(HornsrevAEP_FUSEDWake_GCL())
| [
11748,
28686,
198,
6738,
43954,
48530,
1330,
43954,
48530,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
69,
30302,
1330,
12972,
62,
69,
30302,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
69,
30302,
13,
9078,
62,
69,
30302,
1330,
9485,
37,
30302,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
69,
1484,
62,
48530,
62,
29988,
11799,
1330,
376,
1484,
54,
539,
38,
5097,
54,
539,
17633,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
26791,
13,
64,
538,
62,
9948,
3129,
1352,
1330,
25603,
5662,
282,
3129,
1352,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
26791,
13,
7972,
62,
31092,
1330,
3086,
26198,
198,
6738,
1353,
43323,
13,
15805,
62,
27530,
13,
69,
30302,
13,
8019,
62,
46862,
1330,
1100,
62,
8019,
198,
198,
69,
30302,
62,
6978,
796,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
15908,
3672,
7,
9078,
62,
69,
30302,
13,
834,
7753,
834,
4008,
1343,
31051,
5216,
26261,
14,
6,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
3601,
7,
39,
19942,
18218,
32,
8905,
62,
37,
30302,
28955,
198,
220,
220,
220,
3601,
7,
39,
19942,
18218,
32,
8905,
62,
37,
2937,
1961,
54,
539,
62,
38,
5097,
28955,
198
] | 2.686099 | 223 |
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import IndexLocator, FormatStrFormatter
'''
Meredith Rawls, Dec 2015
Plotting routine for initial 'test' runs of ELC.
It will make a plot that has both light curve data w/fit and RV data w/fit.
There are also residuals in the plots!
(Strongly based on ELCplotter_unfold.py)
***IMPORTANT***
This version assumes the files above are NOT yet folded in phase, and are in time.
This would happen if you are using ELCgap.inp, or anytime when ELC.inp has itime = 2.
So we need to fold them.
(If you want to plot already-folded data, use ELCplotter_new.py)
***ALSO IMPORTANT***
This version assumes you haven't run demcmcELC yet, but just ELC, to get an initial
clue whether or not your input parameters are half decent.
In other words, it doesn't need .fold files or fitparm.all, but it does need ELC.out.
'''
# Colors for plots. Selected with help from colorbrewer.
red = '#e34a33' # red, star 1
yel = '#fdbb84' # yellow, star 2
# Columns in fitparm file that correspond to T0 and Period
#tconj_col = 0
#porb_col = 15
# Read in everything
f1 = 'modelU.mag'
#f2 = 'ELCdataU.fold'
f3 = 'star1.RV'
f4 = 'star2.RV'
ELCoutfile = 'ELC.out'
gridloop = 'gridloop.opt'
#f5 = 'ELCdataRV1.fold'
#f6 = 'ELCdataRV2.fold'
#fitparm = 'fitparm.all'
# OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA
#gamma = 0
gamma = input("Enter gamma adjustment (0 for none): ")
phase_mod,mag_mod = np.loadtxt(f1, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
#phase_dat,mag_dat = np.loadtxt(f2, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv1,rv1 = np.loadtxt(f3, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv2,rv2 = np.loadtxt(f4, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
#phase_rv1dat,rv1dat,rv1err = np.loadtxt(f5, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
#phase_rv2dat,rv2dat,rv2err = np.loadtxt(f6, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
# FUNCTION TO FOLD STUFF so phases are actually phases ... and then sort all the arrays.
# GET PERIOD AND T0 from ELC.out file
with open(ELCoutfile) as f:
for i, row in enumerate(f):
if i == 27: # 28th row
columns = row.split()
period = float(columns[0]) # 1st column
#if i == 38: # 39th row, i.e. T0 # this one has a funny zeropoint (ok if circular)
if i == 133: # 134th row, i.e. Tconj # this one puts primary eclipse at phase 0
columns = row.split()
Tconj = float(columns[0]) #1st column
#periods, tconjs = np.loadtxt(fitparm, usecols=(porb_col, tconj_col), unpack=True)
#period = np.median(periods)
#Tconj = np.median(tconjs)
print(period, Tconj)
Tconj = Tconj + 0.5*period
with open(gridloop) as f:
for i, row in enumerate(f):
if i == 0:
LCinfile = row.split()[0]
if i == 8:
RV1infile = row.split()[0]
if i == 9:
RV2infile = row.split()[0]
# Read in observed times, magnitudes, and RVs (calling time 'phase' but that's a lie)
phase_dat,mag_dat = np.loadtxt(LCinfile, comments='#', dtype=np.float64, usecols=(0,1), unpack=True)
phase_rv1dat,rv1dat,rv1err = np.loadtxt(RV1infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
phase_rv2dat,rv2dat,rv2err = np.loadtxt(RV2infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True)
# Fold everything (observations and model)
phase_mod = phasecalc(phase_mod, period=period, BJD0=Tconj)
phase_dat = phasecalc(phase_dat, period=period, BJD0=Tconj)
phase_rv1 = phasecalc(phase_rv1, period=period, BJD0=Tconj)
phase_rv2 = phasecalc(phase_rv2, period=period, BJD0=Tconj)
phase_rv1dat = phasecalc(phase_rv1dat, period=period, BJD0=Tconj)
phase_rv2dat = phasecalc(phase_rv2dat, period=period, BJD0=Tconj)
p1 = phase_mod.argsort()
p2 = phase_dat.argsort()
p3 = phase_rv1.argsort()
p4 = phase_rv2.argsort()
p5 = phase_rv1dat.argsort()
p6 = phase_rv2dat.argsort()
phase_mod = phase_mod[p1]
phase_dat = phase_dat[p2]
phase_rv1 = phase_rv1[p3]
phase_rv2 = phase_rv2[p4]
phase_rv1dat = phase_rv1dat[p5]
phase_rv2dat = phase_rv2dat[p6]
mag_mod = mag_mod[p1]
mag_dat = mag_dat[p2]
rv1 = rv1[p3]
rv2 = rv2[p4]
rv1dat = rv1dat[p5]
rv2dat = rv2dat[p6]
# OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA
#gamma = input("Enter gamma adjustment (0 for none): ")
rv1 = rv1 + gamma
rv2 = rv2 + gamma
print ("Done reading (and folding) data!")
if np.abs(np.median(mag_mod) - np.median(mag_dat)) > 1:
print('Adjusting magnitude of model light curve...')
mag_mod = mag_mod + (np.median(mag_dat) - np.median(mag_mod))
# Interpolate model onto data phase grid, for residuals
newmag_model = np.interp(phase_dat, phase_mod, mag_mod)
newrv1 = np.interp(phase_rv1dat, phase_rv1, rv1)
newrv2 = np.interp(phase_rv2dat, phase_rv2, rv2)
lcresid = mag_dat - newmag_model
rv1resid = rv1dat - newrv1
rv2resid = rv2dat - newrv2
print ("Done interpolating!")
# Make plots
# First, define some handy global parameters for the plots
phasemin = 0
phasemax = 1
magdim = np.max(mag_dat) + 0.02 #11.97 # remember magnitudes are backwards, dangit
magbright = np.min(mag_dat) - 0.02 #11.861
rvmin = np.min([np.min(rv1dat), np.min(rv2dat)]) - 5 #-79
rvmax = np.max([np.max(rv1dat), np.max(rv2dat)]) + 5 #-1
primary_phasemin = 0.48 #0.09 #0.48
primary_phasemax = 0.52 #0.14 #0.52
secondary_phasemin = 0.98 #0.881
secondary_phasemax = 1.01 #0.921
magresid_min = 0.006 # remember magnitudes are backwards, dangit
magresid_max = -0.006
rvresid_min = -5
rvresid_max = 5
# Light curve
ax1 = plt.subplot2grid((12,1),(4,0), rowspan=3)
plt.axis([phasemin, phasemax, magdim, magbright])
plt.tick_params(axis='both', which='major')
plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data
plt.plot(phase_mod, mag_mod, 'k', lw=1.5, label='ELC Model') #lc model
ax1.set_ylabel('Magnitude', size=18)
ax1.set_xticklabels([])
# Radial velocities
ax2 = plt.subplot2grid((12,1),(1,0), rowspan=3)
plt.subplots_adjust(wspace = 0.0001, hspace=0.0001)
plt.axis([phasemin, phasemax, rvmin, rvmax])
plt.errorbar(phase_rv1dat, rv1dat, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 data
plt.errorbar(phase_rv2dat, rv2dat, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 data
plt.plot(phase_rv1, rv1, color='k', lw=1.5) #rv1 model
plt.plot(phase_rv2, rv2, color='k', lw=1.5) #rv2 model
ax2.set_ylabel('Radial Velocity (km s$^{-1}$)', size=18)
ax2.set_xticklabels([])
# Light curve residuals
axr1 = plt.subplot2grid((12,1),(7,0))
axr1.axis([phasemin, phasemax, magresid_min, magresid_max])
axr1.set_yticks([-0.004, 0, 0.004])
plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual
# Radial velocity residuals
axr2 = plt.subplot2grid((12,1),(0,0))
axr2.axis([phasemin, phasemax, rvresid_min, rvresid_max])
#axr2.set_yticks([-2,0,2])
plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':')
plt.errorbar(phase_rv1dat, rv1resid, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 residual
plt.errorbar(phase_rv2dat, rv2resid, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 residual
#plt.xlabel('Orbital Phase (conjunction at $\phi = 0.5$)', size=20) # EXTRA LABEL
axr2.set_xticklabels([])
# Zoom-in of shallower (secondary) eclipse
ax3 = plt.subplot2grid((12,2),(9,1), rowspan=2)
plt.axis([secondary_phasemin, secondary_phasemax, magdim, magbright])
ax3.set_xticks([0.89, 0.90, 0.91, 0.92])
plt.plot(phase_dat, mag_dat, color=yel, marker='.', ls='None', ms=6, mew=0) #lc data
plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model
ax3.set_ylabel('Magnitude')
ax3.set_xticklabels([])
ax3.set_yticklabels([])
# Zoom-in of deeper (primary) eclipse
ax4 = plt.subplot2grid((12,2),(9,0), rowspan=2)
plt.axis([primary_phasemin, primary_phasemax, magdim, magbright])
ax4.set_xticks([0.49, 0.50, 0.51, 0.52])
plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data
plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model
ax4.set_xticklabels([])
#ax4.set_yticklabels([])
# Zoom plot residuals, shallower (secondary) eclipse
axr3 = plt.subplot2grid((12,2),(11,1))
plt.axis([secondary_phasemin, secondary_phasemax, magresid_min, magresid_max])
axr3.set_yticks([-0.004, 0, 0.004])
axr3.set_xticks([0.89, 0.90, 0.91, 0.92])
plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual
axr3.set_yticklabels([])
# Zoom plot residuals, deeper (primary) eclipse
axr4 = plt.subplot2grid((12,2),(11,0))
plt.axis([primary_phasemin, primary_phasemax, magresid_min, magresid_max])
axr4.set_yticks([-0.004, 0, 0.004])
axr4.set_xticks([0.49, 0.50, 0.51, 0.52])
plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':')
plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual
#axr4.set_yticklabels([])
# Labels using overall figure as a reference
plt.figtext(0.5, 0.04, 'Orbital Phase (conjunction at $\phi = 0.5$)', ha='center', va='center', size=25)
#plt.figtext(0.135, 0.18, 'Secondary')
#plt.figtext(0.535, 0.18, 'Primary')
plt.figtext(0.06, 0.86, '$\Delta$')
plt.figtext(0.04, 0.395, '$\Delta$')
plt.figtext(0.04, 0.125, '$\Delta$')
ax1.legend(loc='lower right', frameon=False, prop={'size':20})
print ("Done preparing plot!")
plt.show()
#outfile = 'testplot1.png'
#plt.savefig(outfile)
#print ("Plot saved to %s!" % outfile)
| [
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
2603,
29487,
8019,
13,
83,
15799,
1330,
12901,
33711,
1352,
11,
18980,
13290,
8479,
1436,
198,
7061,
6,
198,
44,
36897,
16089,
7278,
11,
4280,
1853,
198,
43328,
889,
8027,
329,
4238,
705,
9288,
6,
4539,
286,
412,
5639,
13,
198,
1026,
481,
787,
257,
7110,
326,
468,
1111,
1657,
12133,
1366,
266,
14,
11147,
290,
31367,
1366,
266,
14,
11147,
13,
198,
1858,
389,
635,
29598,
82,
287,
262,
21528,
0,
198,
7,
33004,
306,
1912,
319,
412,
5639,
29487,
353,
62,
403,
11379,
13,
9078,
8,
198,
198,
8162,
3955,
15490,
8643,
8162,
198,
1212,
2196,
18533,
262,
3696,
2029,
389,
5626,
1865,
24650,
287,
7108,
11,
290,
389,
287,
640,
13,
198,
1212,
561,
1645,
611,
345,
389,
1262,
412,
5639,
43554,
13,
259,
79,
11,
393,
17949,
618,
412,
5639,
13,
259,
79,
468,
340,
524,
796,
362,
13,
198,
2396,
356,
761,
284,
5591,
606,
13,
198,
7,
1532,
345,
765,
284,
7110,
1541,
12,
11379,
276,
1366,
11,
779,
412,
5639,
29487,
353,
62,
3605,
13,
9078,
8,
198,
198,
8162,
1847,
15821,
30023,
9863,
8643,
8162,
198,
1212,
2196,
18533,
345,
4398,
470,
1057,
1357,
11215,
66,
3698,
34,
1865,
11,
475,
655,
412,
5639,
11,
284,
651,
281,
4238,
198,
565,
518,
1771,
393,
407,
534,
5128,
10007,
389,
2063,
7709,
13,
198,
818,
584,
2456,
11,
340,
1595,
470,
761,
764,
11379,
3696,
393,
4197,
79,
1670,
13,
439,
11,
475,
340,
857,
761,
412,
5639,
13,
448,
13,
198,
7061,
6,
198,
2,
29792,
329,
21528,
13,
41344,
351,
1037,
422,
3124,
11269,
263,
13,
198,
445,
796,
705,
2,
68,
2682,
64,
2091,
6,
1303,
2266,
11,
3491,
352,
198,
88,
417,
796,
705,
2,
69,
9945,
65,
5705,
6,
1303,
7872,
11,
3491,
362,
198,
198,
2,
29201,
82,
287,
4197,
79,
1670,
2393,
326,
6053,
284,
309,
15,
290,
18581,
198,
2,
83,
1102,
73,
62,
4033,
796,
657,
198,
2,
1819,
65,
62,
4033,
796,
1315,
198,
198,
2,
4149,
287,
2279,
198,
69,
16,
796,
220,
220,
220,
220,
220,
220,
220,
220,
705,
19849,
52,
13,
19726,
6,
198,
2,
69,
17,
796,
220,
220,
220,
220,
220,
220,
220,
705,
3698,
34,
7890,
52,
13,
11379,
6,
198,
69,
18,
796,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7364,
16,
13,
49,
53,
6,
198,
69,
19,
796,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7364,
17,
13,
49,
53,
6,
198,
3698,
34,
448,
7753,
796,
705,
3698,
34,
13,
448,
6,
198,
25928,
26268,
796,
220,
220,
705,
25928,
26268,
13,
8738,
6,
198,
2,
69,
20,
796,
220,
220,
220,
220,
220,
220,
220,
705,
3698,
34,
7890,
49,
53,
16,
13,
11379,
6,
198,
2,
69,
21,
796,
220,
220,
220,
220,
220,
220,
220,
705,
3698,
34,
7890,
49,
53,
17,
13,
11379,
6,
198,
2,
11147,
79,
1670,
796,
220,
220,
705,
11147,
79,
1670,
13,
439,
6,
198,
198,
2,
39852,
2849,
1847,
5984,
25008,
10979,
347,
14,
34,
25261,
412,
5639,
31367,
19164,
3698,
16289,
30076,
3180,
6006,
32297,
1961,
11050,
49965,
5673,
198,
2,
28483,
2611,
796,
657,
198,
28483,
2611,
796,
5128,
7203,
17469,
34236,
15068,
357,
15,
329,
4844,
2599,
366,
8,
198,
198,
40715,
62,
4666,
11,
19726,
62,
4666,
796,
45941,
13,
2220,
14116,
7,
69,
16,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
828,
555,
8002,
28,
17821,
8,
198,
2,
40715,
62,
19608,
11,
19726,
62,
19608,
796,
45941,
13,
2220,
14116,
7,
69,
17,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
828,
555,
8002,
28,
17821,
8,
198,
40715,
62,
81,
85,
16,
11,
81,
85,
16,
796,
45941,
13,
2220,
14116,
7,
69,
18,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
828,
555,
8002,
28,
17821,
8,
198,
40715,
62,
81,
85,
17,
11,
81,
85,
17,
796,
45941,
13,
2220,
14116,
7,
69,
19,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
828,
555,
8002,
28,
17821,
8,
198,
2,
40715,
62,
81,
85,
16,
19608,
11,
81,
85,
16,
19608,
11,
81,
85,
16,
8056,
796,
45941,
13,
2220,
14116,
7,
69,
20,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
11,
17,
828,
555,
8002,
28,
17821,
8,
198,
2,
40715,
62,
81,
85,
17,
19608,
11,
81,
85,
17,
19608,
11,
81,
85,
17,
8056,
796,
45941,
13,
2220,
14116,
7,
69,
21,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
11,
17,
828,
555,
8002,
28,
17821,
8,
198,
198,
2,
29397,
4177,
2849,
5390,
376,
15173,
3563,
47588,
523,
21164,
389,
1682,
21164,
2644,
290,
788,
3297,
477,
262,
26515,
13,
198,
198,
2,
17151,
19878,
40,
3727,
5357,
309,
15,
422,
412,
5639,
13,
448,
2393,
198,
4480,
1280,
7,
3698,
34,
448,
7753,
8,
355,
277,
25,
198,
197,
1640,
1312,
11,
5752,
287,
27056,
378,
7,
69,
2599,
198,
197,
197,
361,
1312,
6624,
2681,
25,
1303,
2579,
400,
5752,
198,
197,
197,
197,
28665,
82,
796,
5752,
13,
35312,
3419,
198,
197,
197,
197,
41007,
796,
12178,
7,
28665,
82,
58,
15,
12962,
1303,
352,
301,
5721,
198,
197,
197,
2,
361,
1312,
6624,
4353,
25,
1303,
5014,
400,
5752,
11,
1312,
13,
68,
13,
309,
15,
197,
2,
428,
530,
468,
257,
8258,
1976,
263,
404,
1563,
357,
482,
611,
18620,
8,
198,
197,
197,
361,
1312,
6624,
22169,
25,
1303,
22352,
400,
5752,
11,
1312,
13,
68,
13,
309,
1102,
73,
1303,
428,
530,
7584,
4165,
25872,
379,
7108,
657,
198,
197,
197,
197,
28665,
82,
796,
5752,
13,
35312,
3419,
198,
197,
197,
197,
51,
1102,
73,
796,
12178,
7,
28665,
82,
58,
15,
12962,
1303,
16,
301,
5721,
198,
198,
2,
41007,
82,
11,
256,
1102,
8457,
796,
45941,
13,
2220,
14116,
7,
11147,
79,
1670,
11,
779,
4033,
82,
16193,
1819,
65,
62,
4033,
11,
256,
1102,
73,
62,
4033,
828,
555,
8002,
28,
17821,
8,
198,
2,
41007,
796,
45941,
13,
1150,
666,
7,
41007,
82,
8,
198,
2,
51,
1102,
73,
796,
45941,
13,
1150,
666,
7,
83,
1102,
8457,
8,
198,
198,
4798,
7,
41007,
11,
309,
1102,
73,
8,
198,
51,
1102,
73,
796,
309,
1102,
73,
1343,
657,
13,
20,
9,
41007,
198,
198,
4480,
1280,
7,
25928,
26268,
8,
355,
277,
25,
198,
220,
220,
220,
329,
1312,
11,
5752,
287,
27056,
378,
7,
69,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
22228,
259,
7753,
796,
5752,
13,
35312,
3419,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
807,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31367,
16,
259,
7753,
796,
5752,
13,
35312,
3419,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
6624,
860,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31367,
17,
259,
7753,
796,
5752,
13,
35312,
3419,
58,
15,
60,
198,
198,
2,
4149,
287,
6515,
1661,
11,
7842,
10455,
11,
290,
371,
23266,
357,
44714,
640,
705,
40715,
6,
475,
326,
338,
257,
6486,
8,
198,
40715,
62,
19608,
11,
19726,
62,
19608,
796,
45941,
13,
2220,
14116,
7,
5639,
259,
7753,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
828,
555,
8002,
28,
17821,
8,
198,
40715,
62,
81,
85,
16,
19608,
11,
81,
85,
16,
19608,
11,
81,
85,
16,
8056,
796,
45941,
13,
2220,
14116,
7,
49,
53,
16,
259,
7753,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
11,
17,
828,
555,
8002,
28,
17821,
8,
198,
40715,
62,
81,
85,
17,
19608,
11,
81,
85,
17,
19608,
11,
81,
85,
17,
8056,
796,
45941,
13,
2220,
14116,
7,
49,
53,
17,
259,
7753,
11,
3651,
11639,
2,
3256,
288,
4906,
28,
37659,
13,
22468,
2414,
11,
779,
4033,
82,
16193,
15,
11,
16,
11,
17,
828,
555,
8002,
28,
17821,
8,
198,
198,
2,
39957,
2279,
357,
672,
3168,
602,
290,
2746,
8,
198,
40715,
62,
4666,
796,
7108,
9948,
66,
7,
40715,
62,
4666,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
40715,
62,
19608,
796,
7108,
9948,
66,
7,
40715,
62,
19608,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
40715,
62,
81,
85,
16,
796,
7108,
9948,
66,
7,
40715,
62,
81,
85,
16,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
40715,
62,
81,
85,
17,
796,
7108,
9948,
66,
7,
40715,
62,
81,
85,
17,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
40715,
62,
81,
85,
16,
19608,
796,
7108,
9948,
66,
7,
40715,
62,
81,
85,
16,
19608,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
40715,
62,
81,
85,
17,
19608,
796,
7108,
9948,
66,
7,
40715,
62,
81,
85,
17,
19608,
11,
2278,
28,
41007,
11,
347,
37882,
15,
28,
51,
1102,
73,
8,
198,
198,
79,
16,
796,
7108,
62,
4666,
13,
22046,
419,
3419,
198,
79,
17,
796,
7108,
62,
19608,
13,
22046,
419,
3419,
198,
79,
18,
796,
7108,
62,
81,
85,
16,
13,
22046,
419,
3419,
198,
79,
19,
796,
7108,
62,
81,
85,
17,
13,
22046,
419,
3419,
198,
79,
20,
796,
7108,
62,
81,
85,
16,
19608,
13,
22046,
419,
3419,
198,
79,
21,
796,
7108,
62,
81,
85,
17,
19608,
13,
22046,
419,
3419,
198,
198,
40715,
62,
4666,
796,
7108,
62,
4666,
58,
79,
16,
60,
198,
40715,
62,
19608,
796,
7108,
62,
19608,
58,
79,
17,
60,
198,
40715,
62,
81,
85,
16,
796,
7108,
62,
81,
85,
16,
58,
79,
18,
60,
198,
40715,
62,
81,
85,
17,
796,
7108,
62,
81,
85,
17,
58,
79,
19,
60,
198,
40715,
62,
81,
85,
16,
19608,
796,
7108,
62,
81,
85,
16,
19608,
58,
79,
20,
60,
198,
40715,
62,
81,
85,
17,
19608,
796,
7108,
62,
81,
85,
17,
19608,
58,
79,
21,
60,
198,
198,
19726,
62,
4666,
796,
2153,
62,
4666,
58,
79,
16,
60,
198,
19726,
62,
19608,
796,
2153,
62,
19608,
58,
79,
17,
60,
198,
81,
85,
16,
796,
374,
85,
16,
58,
79,
18,
60,
198,
81,
85,
17,
796,
374,
85,
17,
58,
79,
19,
60,
198,
81,
85,
16,
19608,
796,
374,
85,
16,
19608,
58,
79,
20,
60,
198,
81,
85,
17,
19608,
796,
374,
85,
17,
19608,
58,
79,
21,
60,
628,
198,
2,
39852,
2849,
1847,
5984,
25008,
10979,
347,
14,
34,
25261,
412,
5639,
31367,
19164,
3698,
16289,
30076,
3180,
6006,
32297,
1961,
11050,
49965,
5673,
198,
2,
28483,
2611,
796,
5128,
7203,
17469,
34236,
15068,
357,
15,
329,
4844,
2599,
366,
8,
198,
81,
85,
16,
796,
374,
85,
16,
1343,
34236,
198,
81,
85,
17,
796,
374,
85,
17,
1343,
34236,
198,
198,
4798,
5855,
45677,
3555,
357,
392,
29909,
8,
1366,
2474,
8,
198,
198,
361,
45941,
13,
8937,
7,
37659,
13,
1150,
666,
7,
19726,
62,
4666,
8,
532,
45941,
13,
1150,
666,
7,
19726,
62,
19608,
4008,
1875,
352,
25,
198,
197,
4798,
10786,
39668,
278,
14735,
286,
2746,
1657,
12133,
986,
11537,
198,
197,
19726,
62,
4666,
796,
2153,
62,
4666,
1343,
357,
37659,
13,
1150,
666,
7,
19726,
62,
19608,
8,
532,
45941,
13,
1150,
666,
7,
19726,
62,
4666,
4008,
198,
198,
2,
4225,
16104,
378,
2746,
4291,
1366,
7108,
10706,
11,
329,
29598,
82,
198,
3605,
19726,
62,
19849,
796,
45941,
13,
3849,
79,
7,
40715,
62,
19608,
11,
7108,
62,
4666,
11,
2153,
62,
4666,
8,
198,
3605,
81,
85,
16,
796,
45941,
13,
3849,
79,
7,
40715,
62,
81,
85,
16,
19608,
11,
7108,
62,
81,
85,
16,
11,
374,
85,
16,
8,
198,
3605,
81,
85,
17,
796,
45941,
13,
3849,
79,
7,
40715,
62,
81,
85,
17,
19608,
11,
7108,
62,
81,
85,
17,
11,
374,
85,
17,
8,
198,
198,
44601,
411,
312,
796,
2153,
62,
19608,
532,
649,
19726,
62,
19849,
198,
81,
85,
16,
411,
312,
796,
374,
85,
16,
19608,
532,
649,
81,
85,
16,
198,
81,
85,
17,
411,
312,
796,
374,
85,
17,
19608,
532,
649,
81,
85,
17,
198,
198,
4798,
5855,
45677,
39555,
803,
2474,
8,
198,
198,
2,
6889,
21528,
198,
2,
3274,
11,
8160,
617,
15728,
3298,
10007,
329,
262,
21528,
198,
5902,
14857,
796,
657,
198,
5902,
368,
897,
796,
352,
198,
19726,
27740,
796,
45941,
13,
9806,
7,
19726,
62,
19608,
8,
1343,
657,
13,
2999,
1303,
1157,
13,
5607,
197,
197,
197,
2,
3505,
7842,
10455,
389,
16196,
11,
288,
648,
270,
198,
19726,
29199,
796,
45941,
13,
1084,
7,
19726,
62,
19608,
8,
532,
657,
13,
2999,
1303,
1157,
13,
4521,
16,
198,
81,
85,
1084,
796,
45941,
13,
1084,
26933,
37659,
13,
1084,
7,
81,
85,
16,
19608,
828,
45941,
13,
1084,
7,
81,
85,
17,
19608,
8,
12962,
532,
642,
1303,
12,
3720,
198,
81,
85,
9806,
796,
45941,
13,
9806,
26933,
37659,
13,
9806,
7,
81,
85,
16,
19608,
828,
45941,
13,
9806,
7,
81,
85,
17,
19608,
8,
12962,
1343,
642,
1303,
12,
16,
198,
39754,
62,
5902,
14857,
796,
657,
13,
2780,
1303,
15,
13,
2931,
1303,
15,
13,
2780,
198,
39754,
62,
5902,
368,
897,
796,
657,
13,
4309,
1303,
15,
13,
1415,
1303,
15,
13,
4309,
198,
38238,
62,
5902,
14857,
796,
657,
13,
4089,
1303,
15,
13,
3459,
16,
198,
38238,
62,
5902,
368,
897,
796,
352,
13,
486,
1303,
15,
13,
24,
2481,
198,
19726,
411,
312,
62,
1084,
796,
657,
13,
28041,
197,
2,
3505,
7842,
10455,
389,
16196,
11,
288,
648,
270,
198,
19726,
411,
312,
62,
9806,
796,
532,
15,
13,
28041,
198,
81,
85,
411,
312,
62,
1084,
796,
532,
20,
198,
81,
85,
411,
312,
62,
9806,
796,
642,
198,
198,
2,
4401,
12133,
198,
897,
16,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
16,
828,
7,
19,
11,
15,
828,
5752,
12626,
28,
18,
8,
198,
489,
83,
13,
22704,
26933,
5902,
14857,
11,
872,
292,
368,
897,
11,
2153,
27740,
11,
2153,
29199,
12962,
198,
489,
83,
13,
42298,
62,
37266,
7,
22704,
11639,
16885,
3256,
543,
11639,
22478,
11537,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
2153,
62,
19608,
11,
3124,
28,
445,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
21,
11,
285,
413,
28,
15,
8,
1303,
44601,
1366,
198,
489,
83,
13,
29487,
7,
40715,
62,
4666,
11,
2153,
62,
4666,
11,
705,
74,
3256,
300,
86,
28,
16,
13,
20,
11,
6167,
11639,
3698,
34,
9104,
11537,
1303,
44601,
2746,
198,
897,
16,
13,
2617,
62,
2645,
9608,
10786,
48017,
3984,
3256,
2546,
28,
1507,
8,
198,
897,
16,
13,
2617,
62,
742,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
5325,
498,
11555,
420,
871,
198,
897,
17,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
16,
828,
7,
16,
11,
15,
828,
5752,
12626,
28,
18,
8,
198,
489,
83,
13,
7266,
489,
1747,
62,
23032,
7,
86,
13200,
796,
657,
13,
18005,
11,
289,
13200,
28,
15,
13,
18005,
8,
198,
489,
83,
13,
22704,
26933,
5902,
14857,
11,
872,
292,
368,
897,
11,
374,
85,
1084,
11,
374,
85,
9806,
12962,
198,
489,
83,
13,
18224,
5657,
7,
40715,
62,
81,
85,
16,
19608,
11,
374,
85,
16,
19608,
11,
331,
8056,
28,
81,
85,
16,
8056,
11,
18364,
11639,
78,
3256,
3124,
28,
88,
417,
11,
13845,
28,
24,
11,
502,
66,
11639,
14202,
3256,
43979,
11639,
14202,
11537,
1303,
81,
85,
16,
1366,
198,
489,
83,
13,
18224,
5657,
7,
40715,
62,
81,
85,
17,
19608,
11,
374,
85,
17,
19608,
11,
331,
8056,
28,
81,
85,
17,
8056,
11,
18364,
11639,
78,
3256,
3124,
28,
445,
11,
13845,
28,
24,
11,
502,
66,
11639,
14202,
3256,
43979,
11639,
14202,
11537,
1303,
81,
85,
17,
1366,
198,
489,
83,
13,
29487,
7,
40715,
62,
81,
85,
16,
11,
374,
85,
16,
11,
3124,
11639,
74,
3256,
300,
86,
28,
16,
13,
20,
8,
1303,
81,
85,
16,
2746,
198,
489,
83,
13,
29487,
7,
40715,
62,
81,
85,
17,
11,
374,
85,
17,
11,
3124,
11639,
74,
3256,
300,
86,
28,
16,
13,
20,
8,
1303,
81,
85,
17,
2746,
198,
897,
17,
13,
2617,
62,
2645,
9608,
10786,
15546,
498,
43137,
357,
13276,
264,
3,
36796,
12,
16,
92,
3,
8,
3256,
2546,
28,
1507,
8,
198,
897,
17,
13,
2617,
62,
742,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
4401,
12133,
29598,
82,
198,
897,
81,
16,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
16,
828,
7,
22,
11,
15,
4008,
198,
897,
81,
16,
13,
22704,
26933,
5902,
14857,
11,
872,
292,
368,
897,
11,
2153,
411,
312,
62,
1084,
11,
2153,
411,
312,
62,
9806,
12962,
198,
897,
81,
16,
13,
2617,
62,
20760,
3378,
26933,
12,
15,
13,
22914,
11,
657,
11,
657,
13,
22914,
12962,
198,
489,
83,
13,
897,
71,
1370,
7,
88,
28,
15,
11,
2124,
1084,
28,
5902,
14857,
11,
2124,
9806,
28,
5902,
368,
897,
11,
3124,
11639,
15,
13,
2425,
3256,
43979,
28,
10354,
11537,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
300,
66,
411,
312,
11,
3124,
28,
445,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
19,
11,
285,
413,
28,
15,
8,
1303,
44601,
29598,
198,
198,
2,
5325,
498,
15432,
29598,
82,
198,
897,
81,
17,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
16,
828,
7,
15,
11,
15,
4008,
198,
897,
81,
17,
13,
22704,
26933,
5902,
14857,
11,
872,
292,
368,
897,
11,
374,
85,
411,
312,
62,
1084,
11,
374,
85,
411,
312,
62,
9806,
12962,
198,
2,
897,
81,
17,
13,
2617,
62,
20760,
3378,
26933,
12,
17,
11,
15,
11,
17,
12962,
198,
489,
83,
13,
897,
71,
1370,
7,
88,
28,
15,
11,
2124,
1084,
28,
5902,
14857,
11,
2124,
9806,
28,
5902,
368,
897,
11,
3124,
11639,
15,
13,
2425,
3256,
43979,
28,
10354,
11537,
198,
489,
83,
13,
18224,
5657,
7,
40715,
62,
81,
85,
16,
19608,
11,
374,
85,
16,
411,
312,
11,
331,
8056,
28,
81,
85,
16,
8056,
11,
18364,
11639,
78,
3256,
3124,
28,
88,
417,
11,
13845,
28,
24,
11,
502,
66,
11639,
14202,
3256,
43979,
11639,
14202,
11537,
1303,
81,
85,
16,
29598,
198,
489,
83,
13,
18224,
5657,
7,
40715,
62,
81,
85,
17,
19608,
11,
374,
85,
17,
411,
312,
11,
331,
8056,
28,
81,
85,
17,
8056,
11,
18364,
11639,
78,
3256,
3124,
28,
445,
11,
13845,
28,
24,
11,
502,
66,
11639,
14202,
3256,
43979,
11639,
14202,
11537,
1303,
81,
85,
17,
29598,
198,
2,
489,
83,
13,
87,
18242,
10786,
5574,
65,
1287,
18983,
357,
1102,
73,
4575,
379,
39280,
34846,
796,
657,
13,
20,
3,
8,
3256,
2546,
28,
1238,
8,
1303,
27489,
3861,
406,
6242,
3698,
198,
897,
81,
17,
13,
2617,
62,
742,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
40305,
12,
259,
286,
2236,
789,
357,
38238,
8,
25872,
198,
897,
18,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
17,
828,
7,
24,
11,
16,
828,
5752,
12626,
28,
17,
8,
198,
489,
83,
13,
22704,
26933,
38238,
62,
5902,
14857,
11,
9233,
62,
5902,
368,
897,
11,
2153,
27740,
11,
2153,
29199,
12962,
198,
897,
18,
13,
2617,
62,
742,
3378,
26933,
15,
13,
4531,
11,
657,
13,
3829,
11,
657,
13,
6420,
11,
657,
13,
5892,
12962,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
2153,
62,
19608,
11,
3124,
28,
88,
417,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
21,
11,
285,
413,
28,
15,
8,
1303,
44601,
1366,
198,
489,
83,
13,
29487,
7,
40715,
62,
4666,
11,
2153,
62,
4666,
11,
3124,
11639,
74,
3256,
300,
86,
28,
16,
13,
20,
8,
1303,
44601,
2746,
198,
897,
18,
13,
2617,
62,
2645,
9608,
10786,
48017,
3984,
11537,
198,
897,
18,
13,
2617,
62,
742,
624,
23912,
1424,
26933,
12962,
198,
897,
18,
13,
2617,
62,
20760,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
40305,
12,
259,
286,
9211,
357,
39754,
8,
25872,
198,
897,
19,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
17,
828,
7,
24,
11,
15,
828,
5752,
12626,
28,
17,
8,
198,
489,
83,
13,
22704,
26933,
39754,
62,
5902,
14857,
11,
4165,
62,
5902,
368,
897,
11,
2153,
27740,
11,
2153,
29199,
12962,
198,
897,
19,
13,
2617,
62,
742,
3378,
26933,
15,
13,
2920,
11,
657,
13,
1120,
11,
657,
13,
4349,
11,
657,
13,
4309,
12962,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
2153,
62,
19608,
11,
3124,
28,
445,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
21,
11,
285,
413,
28,
15,
8,
1303,
44601,
1366,
198,
489,
83,
13,
29487,
7,
40715,
62,
4666,
11,
2153,
62,
4666,
11,
3124,
11639,
74,
3256,
300,
86,
28,
16,
13,
20,
8,
1303,
44601,
2746,
198,
897,
19,
13,
2617,
62,
742,
624,
23912,
1424,
26933,
12962,
198,
2,
897,
19,
13,
2617,
62,
20760,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
40305,
7110,
29598,
82,
11,
2236,
789,
357,
38238,
8,
25872,
198,
897,
81,
18,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
17,
828,
7,
1157,
11,
16,
4008,
198,
489,
83,
13,
22704,
26933,
38238,
62,
5902,
14857,
11,
9233,
62,
5902,
368,
897,
11,
2153,
411,
312,
62,
1084,
11,
2153,
411,
312,
62,
9806,
12962,
198,
897,
81,
18,
13,
2617,
62,
20760,
3378,
26933,
12,
15,
13,
22914,
11,
657,
11,
657,
13,
22914,
12962,
198,
897,
81,
18,
13,
2617,
62,
742,
3378,
26933,
15,
13,
4531,
11,
657,
13,
3829,
11,
657,
13,
6420,
11,
657,
13,
5892,
12962,
198,
489,
83,
13,
897,
71,
1370,
7,
88,
28,
15,
11,
2124,
1084,
28,
15,
11,
2124,
9806,
28,
17,
11,
3124,
11639,
15,
13,
2425,
3256,
43979,
28,
10354,
11537,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
300,
66,
411,
312,
11,
3124,
28,
445,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
19,
11,
285,
413,
28,
15,
8,
1303,
44601,
29598,
198,
897,
81,
18,
13,
2617,
62,
20760,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
40305,
7110,
29598,
82,
11,
9211,
357,
39754,
8,
25872,
198,
897,
81,
19,
796,
458,
83,
13,
7266,
29487,
17,
25928,
19510,
1065,
11,
17,
828,
7,
1157,
11,
15,
4008,
198,
489,
83,
13,
22704,
26933,
39754,
62,
5902,
14857,
11,
4165,
62,
5902,
368,
897,
11,
2153,
411,
312,
62,
1084,
11,
2153,
411,
312,
62,
9806,
12962,
198,
897,
81,
19,
13,
2617,
62,
20760,
3378,
26933,
12,
15,
13,
22914,
11,
657,
11,
657,
13,
22914,
12962,
198,
897,
81,
19,
13,
2617,
62,
742,
3378,
26933,
15,
13,
2920,
11,
657,
13,
1120,
11,
657,
13,
4349,
11,
657,
13,
4309,
12962,
198,
489,
83,
13,
897,
71,
1370,
7,
88,
28,
15,
11,
2124,
1084,
28,
15,
11,
2124,
9806,
28,
17,
11,
3124,
11639,
15,
13,
2425,
3256,
43979,
28,
10354,
11537,
198,
489,
83,
13,
29487,
7,
40715,
62,
19608,
11,
300,
66,
411,
312,
11,
3124,
28,
445,
11,
18364,
11639,
2637,
11,
43979,
11639,
14202,
3256,
13845,
28,
19,
11,
285,
413,
28,
15,
8,
1303,
44601,
29598,
198,
2,
897,
81,
19,
13,
2617,
62,
20760,
624,
23912,
1424,
26933,
12962,
198,
198,
2,
3498,
1424,
1262,
4045,
3785,
355,
257,
4941,
198,
489,
83,
13,
5647,
5239,
7,
15,
13,
20,
11,
657,
13,
3023,
11,
705,
5574,
65,
1287,
18983,
357,
1102,
73,
4575,
379,
39280,
34846,
796,
657,
13,
20,
3,
8,
3256,
387,
11639,
16159,
3256,
46935,
11639,
16159,
3256,
2546,
28,
1495,
8,
198,
2,
489,
83,
13,
5647,
5239,
7,
15,
13,
17059,
11,
657,
13,
1507,
11,
705,
12211,
560,
11537,
198,
2,
489,
83,
13,
5647,
5239,
7,
15,
13,
44465,
11,
657,
13,
1507,
11,
705,
35170,
11537,
198,
489,
83,
13,
5647,
5239,
7,
15,
13,
3312,
11,
657,
13,
4521,
11,
705,
3,
59,
42430,
3,
11537,
198,
489,
83,
13,
5647,
5239,
7,
15,
13,
3023,
11,
657,
13,
31010,
11,
705,
3,
59,
42430,
3,
11537,
198,
489,
83,
13,
5647,
5239,
7,
15,
13,
3023,
11,
657,
13,
11623,
11,
705,
3,
59,
42430,
3,
11537,
198,
897,
16,
13,
1455,
437,
7,
17946,
11639,
21037,
826,
3256,
5739,
261,
28,
25101,
11,
2632,
34758,
6,
7857,
10354,
1238,
30072,
198,
198,
4798,
5855,
45677,
10629,
7110,
2474,
8,
198,
198,
489,
83,
13,
12860,
3419,
198,
2,
448,
7753,
796,
705,
9288,
29487,
16,
13,
11134,
6,
198,
2,
489,
83,
13,
21928,
5647,
7,
448,
7753,
8,
198,
2,
4798,
5855,
43328,
7448,
284,
4064,
82,
2474,
4064,
503,
7753,
8,
198
] | 2.229345 | 4,321 |
"""
Copyright (c) 2020 WEI.ZHOU. All rights reserved.
The following code snippets are only used for circulation and cannot be used for business.
If the code is used, no consent is required, but the author has nothing to do with any problems
and consequences.
In case of code problems, feedback can be made through the following email address.
<[email protected]>
@author: WEI.ZHOU
@data:2020-10-29
"""
# 根据公式计算值
import math
C = 50
H = 30
value = []
values= input("请输入一组数字:")
values = values.split(',')
for D in values:
s = str(int(round(math.sqrt(2 * C * float(D) / H))))
value.append(s)
print(','.join(value)) | [
37811,
198,
15269,
357,
66,
8,
12131,
12887,
40,
13,
57,
46685,
13,
1439,
2489,
10395,
13,
198,
464,
1708,
2438,
45114,
389,
691,
973,
329,
19133,
290,
2314,
307,
973,
329,
1597,
13,
198,
1532,
262,
2438,
318,
973,
11,
645,
8281,
318,
2672,
11,
475,
262,
1772,
468,
2147,
284,
466,
351,
597,
2761,
198,
392,
6948,
13,
198,
818,
1339,
286,
2438,
2761,
11,
7538,
460,
307,
925,
832,
262,
1708,
3053,
2209,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
87,
13481,
392,
87,
31,
14816,
13,
785,
29,
198,
31,
9800,
25,
12887,
40,
13,
57,
46685,
198,
31,
7890,
25,
42334,
12,
940,
12,
1959,
198,
37811,
198,
198,
2,
10545,
254,
117,
162,
235,
106,
17739,
105,
28156,
237,
164,
106,
94,
163,
106,
245,
161,
222,
120,
198,
11748,
10688,
198,
34,
796,
2026,
198,
39,
796,
1542,
198,
8367,
796,
17635,
198,
27160,
28,
5128,
7203,
46237,
115,
164,
122,
241,
17739,
98,
31660,
163,
119,
226,
46763,
108,
27764,
245,
171,
120,
248,
4943,
198,
27160,
796,
3815,
13,
35312,
7,
3256,
11537,
198,
1640,
360,
287,
3815,
25,
198,
220,
220,
220,
264,
796,
965,
7,
600,
7,
744,
7,
11018,
13,
31166,
17034,
7,
17,
1635,
327,
1635,
12178,
7,
35,
8,
1220,
367,
35514,
198,
220,
220,
220,
1988,
13,
33295,
7,
82,
8,
198,
4798,
7,
3256,
4458,
22179,
7,
8367,
4008
] | 2.471698 | 265 |
import string
import re
from nlpaug.util import Method
from nlpaug.util.text.tokenizer import Tokenizer
from nlpaug import Augmenter
from nlpaug.util import WarningException, WarningName, WarningCode, WarningMessage
| [
11748,
4731,
198,
11748,
302,
198,
198,
6738,
299,
34431,
7493,
13,
22602,
1330,
11789,
198,
6738,
299,
34431,
7493,
13,
22602,
13,
5239,
13,
30001,
7509,
1330,
29130,
7509,
198,
6738,
299,
34431,
7493,
1330,
2447,
434,
263,
198,
6738,
299,
34431,
7493,
13,
22602,
1330,
15932,
16922,
11,
15932,
5376,
11,
15932,
10669,
11,
15932,
12837,
628
] | 3.694915 | 59 |
from ._frontend import (
BackendFailed,
CmdStatus,
Frontend,
MetadataForBuildWheelResult,
RequiresBuildSdistResult,
RequiresBuildWheelResult,
SdistResult,
WheelResult,
)
from ._version import version
from ._via_fresh_subprocess import SubprocessFrontend
#: semantic version of the project
__version__ = version
__all__ = [
"__version__",
"Frontend",
"BackendFailed",
"CmdStatus",
"RequiresBuildSdistResult",
"RequiresBuildWheelResult",
"MetadataForBuildWheelResult",
"SdistResult",
"WheelResult",
"SubprocessFrontend",
]
| [
6738,
47540,
8534,
437,
1330,
357,
198,
220,
220,
220,
5157,
437,
37,
6255,
11,
198,
220,
220,
220,
327,
9132,
19580,
11,
198,
220,
220,
220,
8880,
437,
11,
198,
220,
220,
220,
3395,
14706,
1890,
15580,
45307,
23004,
11,
198,
220,
220,
220,
26848,
15580,
50,
17080,
23004,
11,
198,
220,
220,
220,
26848,
15580,
45307,
23004,
11,
198,
220,
220,
220,
311,
17080,
23004,
11,
198,
220,
220,
220,
15810,
23004,
11,
198,
8,
198,
6738,
47540,
9641,
1330,
2196,
198,
6738,
47540,
8869,
62,
48797,
62,
7266,
14681,
1330,
3834,
14681,
25886,
437,
198,
198,
2,
25,
37865,
2196,
286,
262,
1628,
198,
834,
9641,
834,
796,
2196,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
366,
834,
9641,
834,
1600,
198,
220,
220,
220,
366,
25886,
437,
1600,
198,
220,
220,
220,
366,
7282,
437,
37,
6255,
1600,
198,
220,
220,
220,
366,
40109,
19580,
1600,
198,
220,
220,
220,
366,
39618,
15580,
50,
17080,
23004,
1600,
198,
220,
220,
220,
366,
39618,
15580,
45307,
23004,
1600,
198,
220,
220,
220,
366,
9171,
14706,
1890,
15580,
45307,
23004,
1600,
198,
220,
220,
220,
366,
50,
17080,
23004,
1600,
198,
220,
220,
220,
366,
45307,
23004,
1600,
198,
220,
220,
220,
366,
7004,
14681,
25886,
437,
1600,
198,
60,
198
] | 2.741935 | 217 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 27 18:29:10 2019
@author: itamar
"""
from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_images)
test_labels
print(train_images.ndim)
train_images.shape
print(train_images.dtype)
digit = train_images[4]
import matplotlib.pyplot as plt
plt.imshow(digit, cmap=plt.cm.binary)
plt.show()
from keras import models , layers
network = models.Sequential(name = 'hello Keras')
network.add(layers.Dense(512, activation = 'relu' , input_shape = (28*28,)))
network.add(layers.Dense(10, activation='softmax'))
network.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255
from keras.utils import to_categorical
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
network.fit(train_images, train_labels, epochs=20, batch_size=32)
test_loss, test_acc = network.evaluate(test_images, test_labels)
print('test_acc:', test_acc)
import numpy as np
x = np.array([[[1,2,3],
[1,7,3],
[1,2,3]],
[[1,2,3],
[1,4,3],
[1,2,3]]])
x.ndim
x.shape
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
41972,
319,
3300,
5267,
2681,
1248,
25,
1959,
25,
940,
13130,
198,
198,
31,
9800,
25,
340,
39236,
198,
37811,
198,
198,
6738,
41927,
292,
13,
19608,
292,
1039,
1330,
285,
77,
396,
198,
7,
27432,
62,
17566,
11,
4512,
62,
23912,
1424,
828,
357,
9288,
62,
17566,
11,
1332,
62,
23912,
1424,
8,
796,
285,
77,
396,
13,
2220,
62,
7890,
3419,
198,
198,
27432,
62,
17566,
13,
43358,
198,
11925,
7,
27432,
62,
23912,
1424,
8,
198,
27432,
62,
23912,
1424,
198,
9288,
62,
17566,
13,
43358,
198,
11925,
7,
9288,
62,
17566,
8,
198,
9288,
62,
23912,
1424,
198,
198,
4798,
7,
27432,
62,
17566,
13,
358,
320,
8,
198,
27432,
62,
17566,
13,
43358,
198,
4798,
7,
27432,
62,
17566,
13,
67,
4906,
8,
198,
198,
27003,
796,
4512,
62,
17566,
58,
19,
60,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
489,
83,
13,
320,
12860,
7,
27003,
11,
269,
8899,
28,
489,
83,
13,
11215,
13,
39491,
8,
198,
489,
83,
13,
12860,
3419,
198,
198,
6738,
41927,
292,
1330,
4981,
837,
11685,
198,
198,
27349,
796,
4981,
13,
44015,
1843,
7,
3672,
796,
705,
31373,
17337,
292,
11537,
198,
27349,
13,
2860,
7,
75,
6962,
13,
35,
1072,
7,
25836,
11,
14916,
796,
705,
260,
2290,
6,
837,
5128,
62,
43358,
796,
357,
2078,
9,
2078,
11,
22305,
198,
27349,
13,
2860,
7,
75,
6962,
13,
35,
1072,
7,
940,
11,
14916,
11639,
4215,
9806,
6,
4008,
198,
198,
27349,
13,
5589,
576,
7,
40085,
7509,
11639,
81,
907,
22930,
3256,
198,
22462,
11639,
66,
2397,
12409,
62,
19692,
298,
28338,
3256,
198,
4164,
10466,
28,
17816,
4134,
23843,
6,
12962,
198,
198,
27432,
62,
17566,
796,
4512,
62,
17566,
13,
3447,
1758,
19510,
21,
2388,
11,
2579,
1635,
2579,
4008,
198,
27432,
62,
17566,
796,
4512,
62,
17566,
13,
459,
2981,
10786,
22468,
2624,
11537,
1220,
14280,
198,
9288,
62,
17566,
796,
1332,
62,
17566,
13,
3447,
1758,
19510,
49388,
11,
2579,
1635,
2579,
4008,
198,
9288,
62,
17566,
796,
1332,
62,
17566,
13,
459,
2981,
10786,
22468,
2624,
11537,
1220,
14280,
198,
198,
6738,
41927,
292,
13,
26791,
1330,
284,
62,
66,
2397,
12409,
198,
27432,
62,
23912,
1424,
796,
284,
62,
66,
2397,
12409,
7,
27432,
62,
23912,
1424,
8,
198,
9288,
62,
23912,
1424,
796,
284,
62,
66,
2397,
12409,
7,
9288,
62,
23912,
1424,
8,
198,
198,
27349,
13,
11147,
7,
27432,
62,
17566,
11,
4512,
62,
23912,
1424,
11,
36835,
82,
28,
1238,
11,
15458,
62,
7857,
28,
2624,
8,
198,
198,
9288,
62,
22462,
11,
1332,
62,
4134,
796,
3127,
13,
49786,
7,
9288,
62,
17566,
11,
1332,
62,
23912,
1424,
8,
198,
4798,
10786,
9288,
62,
4134,
25,
3256,
1332,
62,
4134,
8,
198,
198,
11748,
299,
32152,
355,
45941,
198,
198,
87,
796,
45941,
13,
18747,
26933,
30109,
16,
11,
17,
11,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
22,
11,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
17,
11,
18,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16410,
16,
11,
17,
11,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
19,
11,
18,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
17,
11,
18,
11907,
12962,
198,
87,
13,
358,
320,
198,
87,
13,
43358,
628
] | 2.350238 | 631 |
from api import db
| [
6738,
40391,
1330,
20613,
220,
198,
220,
220,
220,
220
] | 2.4 | 10 |
from datetime import date
import numpy as np
import pandas as pd
from scipy.stats import zscore
def normalize(df):
"""
特徴量を標準化する。
Parameters
----------
df: pandas.dataframe
標準化前の特徴量データフレーム
Returns
-------
norm_df: pandas.dataframe
標準化された特徴量データフレーム
"""
def calc_age(born):
"""
生年月日から年齢を計算する。
Parameters
----------
born: datetime.datetime
利用者の生年月日
Returns
-------
age: int
利用者の年齢
"""
today = date.today()
age = today.year-born.year-((today.month, today.day)<(born.month, born.day))
return age
# 年齢を算出する。
df['age'] = df['birth_date'].map(calc_age)
# 標準化する。
norm_df = pd.DataFrame()
# norm_df['id'] = df['id']
f_cols = ['desitination_latitude', 'desitination_longitude', 'age', 'sex']
norm_df[f_cols] = df[f_cols].apply(zscore)
return norm_df
def calc_dist_array(norm_df, f_w=[1, 1, 1]):
"""
特徴量からデータ間距離を求める。
Parameters
----------
norm_df: pandas.dataframe
標準化された特徴量のデータフレーム
f_w: list
各特徴量の重み
Returns
-------
dist_array: numpy.ndarray
利用者間のデータ間距離2次元配列(上三角行列)
"""
d_lat = norm_df['desitination_latitude'].values
d_long = norm_df['desitination_longitude'].values
age = norm_df['age'].values
sex = norm_df['sex'].values
def square_diff_matrix(f_array):
"""
1次元配列の各要素の差分の二乗を計算する。
Parameters
----------
f_array: numpy.ndarray
利用者毎の特徴量を示す1次元配列
Returns
-------
diff_array: numpy.ndarray
差分の二乗が入った2次元配列
"""
length_fa = len(f_array)
diff_array = np.array([(i-j)**2 for i in f_array for j in f_array])
diff_array = diff_array.reshape(length_fa, length_fa)
return diff_array
# 各特徴量の差分の二乗和の行列を求める。
direct_dist = np.sqrt(square_diff_matrix(d_lat)+square_diff_matrix(d_long))
age_dist = square_diff_matrix(age)
sex_dist = square_diff_matrix(sex)
# 各特徴量への重みづける
dist_array = f_w[0]*direct_dist+f_w[1]*age_dist+f_w[2]*sex_dist
dist_array = dist_array/sum(f_w)
dist_array = np.triu(dist_array)
return dist_array
| [
6738,
4818,
8079,
1330,
3128,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
6738,
629,
541,
88,
13,
34242,
1330,
1976,
26675,
628,
198,
4299,
3487,
1096,
7,
7568,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13328,
231,
117,
36181,
112,
34932,
237,
31758,
162,
101,
247,
162,
118,
244,
44293,
244,
33623,
25748,
16764,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
47764,
25,
19798,
292,
13,
7890,
14535,
198,
220,
220,
220,
220,
220,
220,
220,
10545,
101,
247,
162,
118,
244,
44293,
244,
30298,
235,
17683,
231,
117,
36181,
112,
34932,
237,
21959,
6312,
23376,
17681,
24186,
12045,
254,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
2593,
62,
7568,
25,
19798,
292,
13,
7890,
14535,
198,
220,
220,
220,
220,
220,
220,
220,
10545,
101,
247,
162,
118,
244,
44293,
244,
43357,
39258,
25224,
31965,
117,
36181,
112,
34932,
237,
21959,
6312,
23376,
17681,
24186,
12045,
254,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
42302,
62,
496,
7,
6286,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13328,
242,
253,
33176,
112,
17312,
230,
33768,
98,
27370,
36853,
33176,
112,
165,
121,
95,
31758,
164,
101,
230,
163,
106,
245,
33623,
25748,
16764,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
4642,
25,
4818,
8079,
13,
19608,
8079,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10263,
230,
102,
18796,
101,
38519,
17683,
242,
253,
33176,
112,
17312,
230,
33768,
98,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
2479,
25,
493,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10263,
230,
102,
18796,
101,
38519,
15474,
117,
112,
165,
121,
95,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1909,
796,
3128,
13,
40838,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2479,
796,
1909,
13,
1941,
12,
6286,
13,
1941,
12,
19510,
40838,
13,
8424,
11,
1909,
13,
820,
8,
27,
7,
6286,
13,
8424,
11,
4642,
13,
820,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2479,
628,
220,
220,
220,
1303,
10263,
117,
112,
165,
121,
95,
31758,
163,
106,
245,
49035,
118,
33623,
25748,
16764,
198,
220,
220,
220,
47764,
17816,
496,
20520,
796,
47764,
17816,
24280,
62,
4475,
6,
4083,
8899,
7,
9948,
66,
62,
496,
8,
628,
220,
220,
220,
1303,
10545,
101,
247,
162,
118,
244,
44293,
244,
33623,
25748,
16764,
198,
220,
220,
220,
2593,
62,
7568,
796,
279,
67,
13,
6601,
19778,
3419,
198,
220,
220,
220,
1303,
2593,
62,
7568,
17816,
312,
20520,
796,
47764,
17816,
312,
20520,
198,
220,
220,
220,
277,
62,
4033,
82,
796,
37250,
8906,
270,
1883,
62,
15460,
3984,
3256,
705,
8906,
270,
1883,
62,
6511,
3984,
3256,
705,
496,
3256,
705,
8044,
20520,
198,
220,
220,
220,
2593,
62,
7568,
58,
69,
62,
4033,
82,
60,
796,
47764,
58,
69,
62,
4033,
82,
4083,
39014,
7,
89,
26675,
8,
198,
220,
220,
220,
1441,
2593,
62,
7568,
628,
198,
4299,
42302,
62,
17080,
62,
18747,
7,
27237,
62,
7568,
11,
277,
62,
86,
41888,
16,
11,
352,
11,
352,
60,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13328,
231,
117,
36181,
112,
34932,
237,
27370,
36853,
21959,
6312,
23376,
38461,
241,
164,
115,
251,
37239,
95,
31758,
162,
109,
224,
1792,
223,
25748,
16764,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2593,
62,
7568,
25,
19798,
292,
13,
7890,
14535,
198,
220,
220,
220,
220,
220,
220,
220,
10545,
101,
247,
162,
118,
244,
44293,
244,
43357,
39258,
25224,
31965,
117,
36181,
112,
34932,
237,
5641,
21959,
6312,
23376,
17681,
24186,
12045,
254,
198,
220,
220,
220,
277,
62,
86,
25,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
10263,
238,
226,
31965,
117,
36181,
112,
34932,
237,
33426,
229,
235,
2515,
123,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
1233,
62,
18747,
25,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
10263,
230,
102,
18796,
101,
38519,
38461,
241,
5641,
21959,
6312,
23376,
38461,
241,
164,
115,
251,
37239,
95,
17,
162,
105,
94,
17739,
225,
165,
227,
235,
26344,
245,
171,
120,
230,
41468,
49011,
164,
100,
240,
26193,
234,
26344,
245,
171,
120,
231,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
288,
62,
15460,
796,
2593,
62,
7568,
17816,
8906,
270,
1883,
62,
15460,
3984,
6,
4083,
27160,
198,
220,
220,
220,
288,
62,
6511,
796,
2593,
62,
7568,
17816,
8906,
270,
1883,
62,
6511,
3984,
6,
4083,
27160,
198,
220,
220,
220,
2479,
796,
2593,
62,
7568,
17816,
496,
6,
4083,
27160,
198,
220,
220,
220,
1714,
796,
2593,
62,
7568,
17816,
8044,
6,
4083,
27160,
628,
220,
220,
220,
825,
6616,
62,
26069,
62,
6759,
8609,
7,
69,
62,
18747,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
352,
162,
105,
94,
17739,
225,
165,
227,
235,
26344,
245,
15474,
238,
226,
17358,
223,
163,
112,
254,
15474,
115,
106,
26344,
228,
5641,
12859,
234,
20046,
245,
31758,
164,
101,
230,
163,
106,
245,
33623,
25748,
16764,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
277,
62,
18747,
25,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10263,
230,
102,
18796,
101,
38519,
162,
107,
236,
17683,
231,
117,
36181,
112,
34932,
237,
31758,
163,
97,
118,
33623,
171,
120,
239,
162,
105,
94,
17739,
225,
165,
227,
235,
26344,
245,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
814,
62,
18747,
25,
299,
32152,
13,
358,
18747,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10263,
115,
106,
26344,
228,
5641,
12859,
234,
20046,
245,
35585,
17739,
98,
33180,
25224,
17,
162,
105,
94,
17739,
225,
165,
227,
235,
26344,
245,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4129,
62,
13331,
796,
18896,
7,
69,
62,
18747,
8,
198,
220,
220,
220,
220,
220,
220,
220,
814,
62,
18747,
796,
45941,
13,
18747,
26933,
7,
72,
12,
73,
8,
1174,
17,
329,
1312,
287,
277,
62,
18747,
329,
474,
287,
277,
62,
18747,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
814,
62,
18747,
796,
814,
62,
18747,
13,
3447,
1758,
7,
13664,
62,
13331,
11,
4129,
62,
13331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
814,
62,
18747,
628,
220,
220,
220,
1303,
10263,
238,
226,
31965,
117,
36181,
112,
34932,
237,
15474,
115,
106,
26344,
228,
5641,
12859,
234,
20046,
245,
161,
240,
234,
5641,
26193,
234,
26344,
245,
31758,
162,
109,
224,
1792,
223,
25748,
16764,
198,
220,
220,
220,
1277,
62,
17080,
796,
45941,
13,
31166,
17034,
7,
23415,
62,
26069,
62,
6759,
8609,
7,
67,
62,
15460,
47762,
23415,
62,
26069,
62,
6759,
8609,
7,
67,
62,
6511,
4008,
198,
220,
220,
220,
2479,
62,
17080,
796,
6616,
62,
26069,
62,
6759,
8609,
7,
496,
8,
198,
220,
220,
220,
1714,
62,
17080,
796,
6616,
62,
26069,
62,
6759,
8609,
7,
8044,
8,
628,
220,
220,
220,
1303,
10263,
238,
226,
31965,
117,
36181,
112,
34932,
237,
2515,
116,
33426,
229,
235,
2515,
123,
2515,
98,
2515,
239,
25748,
198,
220,
220,
220,
1233,
62,
18747,
796,
277,
62,
86,
58,
15,
60,
9,
12942,
62,
17080,
10,
69,
62,
86,
58,
16,
60,
9,
496,
62,
17080,
10,
69,
62,
86,
58,
17,
60,
9,
8044,
62,
17080,
198,
220,
220,
220,
1233,
62,
18747,
796,
1233,
62,
18747,
14,
16345,
7,
69,
62,
86,
8,
198,
220,
220,
220,
1233,
62,
18747,
796,
45941,
13,
28461,
84,
7,
17080,
62,
18747,
8,
198,
220,
220,
220,
1441,
1233,
62,
18747,
198
] | 1.597742 | 1,417 |
__version__ = "1.0.3"
from spotify_uri.parse import parse as _parse
from spotify_uri.spotify import SpotifyUri
| [
834,
9641,
834,
796,
366,
16,
13,
15,
13,
18,
1,
198,
198,
6738,
4136,
1958,
62,
9900,
13,
29572,
1330,
21136,
355,
4808,
29572,
198,
6738,
4136,
1958,
62,
9900,
13,
20485,
1958,
1330,
26778,
52,
380,
628,
628,
628
] | 2.853659 | 41 |
import argparse
import pandas as pd
import numpy as np
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
from cloudwine.utils import logger
# Loads TF-IDF model and inferences input string
# Loads TF-IDF model and inferences input string
# Loads BERT embeddings and inferences input string
| [
11748,
1822,
29572,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2298,
293,
198,
6738,
1341,
35720,
13,
30053,
62,
2302,
7861,
13,
5239,
1330,
309,
69,
312,
69,
38469,
7509,
198,
6738,
1341,
35720,
13,
4164,
10466,
13,
24874,
3083,
1330,
8615,
500,
62,
38610,
414,
198,
198,
6738,
299,
2528,
74,
13,
30001,
1096,
1330,
1573,
62,
30001,
1096,
198,
6738,
299,
2528,
74,
13,
10215,
79,
385,
1330,
2245,
10879,
198,
11748,
299,
2528,
74,
198,
77,
2528,
74,
13,
15002,
10786,
30354,
83,
11537,
198,
77,
2528,
74,
13,
15002,
10786,
11338,
10879,
11537,
198,
77,
2528,
74,
13,
15002,
10786,
4775,
3262,
11537,
198,
198,
6738,
6279,
39002,
13,
26791,
1330,
49706,
628,
198,
198,
2,
8778,
82,
24958,
12,
2389,
37,
2746,
290,
1167,
4972,
5128,
4731,
628,
198,
2,
8778,
82,
24958,
12,
2389,
37,
2746,
290,
1167,
4972,
5128,
4731,
628,
198,
2,
8778,
82,
347,
17395,
11525,
67,
654,
290,
1167,
4972,
5128,
4731,
198
] | 3.152047 | 171 |
from __future__ import absolute_import
from collections import OrderedDict, deque
from urlparse import urlparse
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
11,
390,
4188,
198,
6738,
19016,
29572,
1330,
19016,
29572,
628,
198
] | 3.965517 | 29 |
import json
from tweepy import OAuthHandler, Stream, StreamListener #faz requisicao de tweets ao Twitter
from datetime import datetime
# CADASTRAR AS CHAVES DE ACESSO
consumer_key = "YGSFrzszgES6SFMtZTUghUhlw"
consumer_secret = "TITEr8yC97JPTaiG9flVZrGc8INvFkObHpznB6NnupabE3OKx2"
access_token = "1342352348497272833-J2FXw9MGDeiOQFSRLzsyJog94VOiRH"
access_token_secret = "x5pdI1Fos0MMxidVxMYkfq5GrJ2u8GNounFan74SzuRZE"
# DEFININDO UM ARQUIVO DE SAÍDA PARA ARMAZENAR OS TWEETS COLETADOS
data_hoje = datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
out = open(f"collected_tweets_{data_hoje}.txt", "w")
# IMPLEMENTAR UM CLASSE PARA CONEXÃO COM TWITTER
## My Listener está recebendo uma herança da classe StreamListener!
# IMPLEMENTAR A FUNÇÃO MAIN
if __name__ == "__main__":
l = MyListener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
stream = Stream(auth, l)
stream.filter(track=["DisneyPlus"])
| [
11748,
33918,
220,
198,
6738,
4184,
538,
88,
1330,
440,
30515,
25060,
11,
13860,
11,
13860,
33252,
220,
1303,
69,
1031,
1038,
271,
3970,
78,
390,
12665,
257,
78,
3009,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
198,
2,
37292,
1921,
5446,
1503,
7054,
5870,
10116,
1546,
5550,
7125,
7597,
46,
198,
198,
49827,
62,
2539,
796,
366,
56,
14313,
6732,
89,
82,
89,
70,
1546,
21,
20802,
44,
83,
57,
51,
52,
456,
52,
18519,
86,
1,
198,
49827,
62,
21078,
796,
366,
49560,
9139,
23,
88,
34,
5607,
41,
11571,
1872,
38,
24,
2704,
53,
57,
81,
38,
66,
23,
1268,
85,
37,
74,
5944,
39,
79,
47347,
33,
21,
45,
77,
929,
397,
36,
18,
11380,
87,
17,
1,
198,
198,
15526,
62,
30001,
796,
366,
19880,
22370,
1954,
2780,
38073,
1983,
2078,
2091,
12,
41,
17,
17213,
86,
24,
20474,
5005,
72,
46,
48,
10652,
7836,
89,
1837,
41,
519,
5824,
29516,
72,
48587,
1,
198,
15526,
62,
30001,
62,
21078,
796,
366,
87,
20,
30094,
40,
16,
37,
418,
15,
12038,
87,
312,
53,
87,
26708,
74,
69,
80,
20,
8642,
41,
17,
84,
23,
16630,
977,
22480,
4524,
50,
27624,
49,
21211,
1,
198,
198,
2,
5550,
20032,
12115,
46,
44352,
5923,
10917,
3824,
46,
5550,
14719,
38638,
5631,
350,
24401,
5923,
5673,
57,
1677,
1503,
7294,
309,
8845,
32716,
7375,
28882,
2885,
2640,
198,
198,
7890,
62,
8873,
18015,
796,
4818,
8079,
13,
2197,
22446,
2536,
31387,
7203,
4,
56,
12,
4,
76,
12,
4,
67,
12,
4,
39,
12,
4,
44,
12,
4,
50,
4943,
198,
448,
796,
1280,
7,
69,
1,
4033,
12609,
62,
83,
732,
1039,
23330,
7890,
62,
8873,
18015,
27422,
14116,
1600,
366,
86,
4943,
198,
198,
2,
30023,
2538,
10979,
1503,
44352,
7852,
1921,
5188,
350,
24401,
7102,
6369,
5746,
46,
9440,
17306,
2043,
5781,
628,
220,
220,
220,
22492,
2011,
7343,
877,
1556,
6557,
1407,
65,
31110,
334,
2611,
607,
272,
50041,
12379,
537,
21612,
13860,
33252,
0,
198,
198,
2,
30023,
2538,
10979,
1503,
317,
29397,
127,
229,
5746,
46,
8779,
1268,
220,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
300,
796,
2011,
33252,
3419,
198,
220,
220,
220,
6284,
796,
440,
30515,
25060,
7,
49827,
62,
2539,
11,
7172,
62,
21078,
8,
198,
220,
220,
220,
6284,
13,
2617,
62,
15526,
62,
30001,
7,
15526,
62,
30001,
11,
1895,
62,
30001,
62,
21078,
8,
628,
220,
220,
220,
4269,
796,
13860,
7,
18439,
11,
300,
8,
198,
220,
220,
220,
4269,
13,
24455,
7,
11659,
28,
14692,
37338,
17860,
8973,
8,
198
] | 2.262557 | 438 |
#!/usr/env/bin python
from setuptools import setup
setup(
name='pygitea',
version='0.0.1',
description='Gitea API wrapper for python',
url='http://github.com/jo-nas/pygitea',
author='Jonas',
author_email='[email protected]',
install_requires=[
'parse',
'requests'
],
setup_requires=["pytest-runner"],
tests_require=["pytest"],
license='WTFPL',
packages=['pygitea']
)
| [
2,
48443,
14629,
14,
24330,
14,
8800,
21015,
198,
198,
6738,
900,
37623,
10141,
1330,
9058,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
9078,
70,
578,
64,
3256,
198,
220,
220,
220,
2196,
11639,
15,
13,
15,
13,
16,
3256,
198,
220,
220,
220,
6764,
11639,
38,
578,
64,
7824,
29908,
329,
21015,
3256,
198,
220,
220,
220,
19016,
11639,
4023,
1378,
12567,
13,
785,
14,
7639,
12,
24716,
14,
9078,
70,
578,
64,
3256,
198,
220,
220,
220,
1772,
11639,
18219,
292,
3256,
198,
220,
220,
220,
1772,
62,
12888,
11639,
46286,
292,
31,
4169,
48955,
13,
3149,
3256,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
705,
29572,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
705,
8897,
3558,
6,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
9058,
62,
47911,
28,
14692,
9078,
9288,
12,
16737,
33116,
198,
220,
220,
220,
5254,
62,
46115,
28,
14692,
9078,
9288,
33116,
198,
220,
220,
220,
5964,
11639,
39386,
5837,
43,
3256,
198,
220,
220,
220,
10392,
28,
17816,
9078,
70,
578,
64,
20520,
198,
8,
198
] | 2.273684 | 190 |
from .poly import polyrecur
from scipy import integrate
from .tools import printer
from copy import deepcopy
import numpy as np
# %% Polynomial Chaos
class Expansion:
"""Class of polynomial chaos expansion"""
# Evaluates the expansion at the points
# %% Univariate Expansion
def transfo(invcdf,order,dist):
"""Maps an arbitrary random variable to another distribution"""
nbrPoly = order+1
coef = np.zeros(nbrPoly)
poly = polyrecur(order,dist)
# Computes polynomial chaos coefficients and model
for i in range(nbrPoly):
fun = lambda x: invcdf(x)*poly.eval(dist.invcdf(x))[:,i]
coef[i] = integrate.quad(fun,0,1)[0]
expan = Expansion(coef,poly)
transfo = lambda x: expan.eval(x)
return transfo
# %% Analysis of Variance
def anova(coef,poly):
"""Computes the first and total order Sobol sensitivity indices"""
S,ST = [[],[]]
expo = poly.expo
dim = expo.shape[0]
coef = np.array(coef)
nbrPoly = poly[:].shape[0]
var = np.sum(coef[1:]**2,axis=0)
# Computes the first and total Sobol indices
for i in range(dim):
order = np.sum(expo,axis=0)
pIdx = np.array([poly[j].nonzero()[-1][-1] for j in range(nbrPoly)])
sIdx = np.where(expo[i]-order==0)[0].flatten()[1:]
index = np.where(np.in1d(pIdx,sIdx))[0]
S.append(np.sum(coef[index]**2,axis=0)/var)
sIdx = np.where(expo[i])[0].flatten()
index = np.where(np.in1d(pIdx,sIdx))[0]
ST.append(np.sum(coef[index]**2,axis=0)/var)
S = np.array(S)
ST = np.array(ST)
sobol = dict(zip(['S','ST'],[S,ST]))
return sobol
# %% Analysis of Covariance
def ancova(model,point,weight=0):
"""Computes the sensitivity indices by analysis of covariance"""
printer(0,'Computing ancova ...')
nbrPts = np.array(point)[...].shape[0]
if not np.any(weight): weight = np.ones(nbrPts)/nbrPts
expo = model.expo
coef = model.coef
nbrIdx = expo.shape[1]
index,ST,SS = [[],[],[]]
model = deepcopy(model)
resp = model.eval(point)
difMod = resp-np.dot(resp.T,weight).T
varMod = np.dot(difMod.T**2,weight).T
# Computes the total and structural indices
for i in range(1,nbrIdx):
model.expo = expo[:,i,None]
model.coef = coef[...,i,None]
resp = model.eval(point)
dif = resp-np.dot(resp.T,weight).T
cov = np.dot((dif*difMod).T,weight).T
var = np.dot(dif.T**2,weight).T
S = cov/varMod
if not np.allclose(S,0):
index.append(expo[:,i])
SS.append(var/varMod)
ST.append(S)
# Combines the different powers of a same monomial
index,SS,ST = combine(index,SS,ST)
ancova = dict(zip(['SS','SC','ST'],[SS,ST-SS,ST]))
printer(1,'Computing ancova 100 %')
return index,ancova
# %% Combine Power
def combine(index,SS,ST):
"""Combines the indices from different powers of the same monomial"""
index = np.transpose(index)
index = (index/np.max(index,axis=0)).T
# Normalizes and eliminates the duplicates
minIdx = np.min(index,axis=1)
idx = np.argwhere(minIdx).flatten()
index[idx] = (index[idx].T/minIdx[idx]).T
index = np.rint(index).astype(int)
index,old = np.unique(index,return_inverse=1,axis=0)
shape = (index.shape[0],)+np.array(SS).shape[1:]
SS2 = np.zeros(shape)
ST2 = np.zeros(shape)
# Combines duplicates ancova indices
for i in range(old.shape[0]): SS2[old[i]] += SS[i]
for i in range(old.shape[0]): ST2[old[i]] += ST[i]
return index,SS2,ST2 | [
6738,
764,
35428,
1330,
7514,
8344,
333,
198,
6738,
629,
541,
88,
1330,
19386,
198,
6738,
764,
31391,
1330,
20632,
198,
6738,
4866,
1330,
2769,
30073,
198,
11748,
299,
32152,
355,
45941,
198,
198,
2,
43313,
12280,
26601,
498,
13903,
198,
198,
4871,
25042,
25,
198,
220,
220,
220,
37227,
9487,
286,
745,
6213,
49070,
11918,
7118,
37811,
628,
220,
220,
220,
1303,
26439,
12632,
262,
7118,
379,
262,
2173,
198,
198,
2,
43313,
791,
42524,
25042,
198,
198,
4299,
1007,
6513,
7,
16340,
66,
7568,
11,
2875,
11,
17080,
2599,
198,
220,
220,
220,
37227,
47010,
281,
14977,
4738,
7885,
284,
1194,
6082,
37811,
628,
220,
220,
220,
299,
1671,
34220,
796,
1502,
10,
16,
198,
220,
220,
220,
763,
891,
796,
45941,
13,
9107,
418,
7,
77,
1671,
34220,
8,
198,
220,
220,
220,
7514,
796,
7514,
8344,
333,
7,
2875,
11,
17080,
8,
628,
220,
220,
220,
1303,
3082,
1769,
745,
6213,
49070,
11918,
44036,
290,
2746,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
77,
1671,
34220,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
1257,
796,
37456,
2124,
25,
800,
66,
7568,
7,
87,
27493,
35428,
13,
18206,
7,
17080,
13,
16340,
66,
7568,
7,
87,
4008,
58,
45299,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
763,
891,
58,
72,
60,
796,
19386,
13,
47003,
7,
12543,
11,
15,
11,
16,
38381,
15,
60,
628,
220,
220,
220,
1033,
272,
796,
25042,
7,
1073,
891,
11,
35428,
8,
198,
220,
220,
220,
1007,
6513,
796,
37456,
2124,
25,
1033,
272,
13,
18206,
7,
87,
8,
198,
220,
220,
220,
1441,
1007,
6513,
198,
198,
2,
43313,
14691,
286,
15965,
590,
198,
198,
4299,
281,
10071,
7,
1073,
891,
11,
35428,
2599,
198,
220,
220,
220,
37227,
7293,
1769,
262,
717,
290,
2472,
1502,
36884,
349,
14233,
36525,
37811,
628,
220,
220,
220,
311,
11,
2257,
796,
16410,
38430,
11907,
198,
220,
220,
220,
1033,
78,
796,
7514,
13,
1069,
7501,
198,
220,
220,
220,
5391,
796,
1033,
78,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
763,
891,
796,
45941,
13,
18747,
7,
1073,
891,
8,
198,
220,
220,
220,
299,
1671,
34220,
796,
7514,
58,
25,
4083,
43358,
58,
15,
60,
198,
220,
220,
220,
1401,
796,
45941,
13,
16345,
7,
1073,
891,
58,
16,
47715,
1174,
17,
11,
22704,
28,
15,
8,
628,
220,
220,
220,
1303,
3082,
1769,
262,
717,
290,
2472,
36884,
349,
36525,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
27740,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
1502,
796,
45941,
13,
16345,
7,
1069,
7501,
11,
22704,
28,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
279,
7390,
87,
796,
45941,
13,
18747,
26933,
35428,
58,
73,
4083,
13159,
22570,
3419,
58,
12,
16,
7131,
12,
16,
60,
329,
474,
287,
2837,
7,
77,
1671,
34220,
8,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
264,
7390,
87,
796,
45941,
13,
3003,
7,
1069,
7501,
58,
72,
45297,
2875,
855,
15,
38381,
15,
4083,
2704,
41769,
3419,
58,
16,
47715,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
45941,
13,
3003,
7,
37659,
13,
259,
16,
67,
7,
79,
7390,
87,
11,
82,
7390,
87,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
311,
13,
33295,
7,
37659,
13,
16345,
7,
1073,
891,
58,
9630,
60,
1174,
17,
11,
22704,
28,
15,
20679,
7785,
8,
628,
220,
220,
220,
220,
220,
220,
220,
264,
7390,
87,
796,
45941,
13,
3003,
7,
1069,
7501,
58,
72,
12962,
58,
15,
4083,
2704,
41769,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
796,
45941,
13,
3003,
7,
37659,
13,
259,
16,
67,
7,
79,
7390,
87,
11,
82,
7390,
87,
4008,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
3563,
13,
33295,
7,
37659,
13,
16345,
7,
1073,
891,
58,
9630,
60,
1174,
17,
11,
22704,
28,
15,
20679,
7785,
8,
628,
220,
220,
220,
311,
796,
45941,
13,
18747,
7,
50,
8,
198,
220,
220,
220,
3563,
796,
45941,
13,
18747,
7,
2257,
8,
198,
220,
220,
220,
27355,
349,
796,
8633,
7,
13344,
7,
17816,
50,
41707,
2257,
6,
38430,
50,
11,
2257,
60,
4008,
198,
220,
220,
220,
1441,
27355,
349,
198,
198,
2,
43313,
14691,
286,
39751,
2743,
590,
198,
220,
220,
220,
220,
198,
4299,
281,
66,
10071,
7,
19849,
11,
4122,
11,
6551,
28,
15,
2599,
198,
220,
220,
220,
37227,
7293,
1769,
262,
14233,
36525,
416,
3781,
286,
44829,
590,
37811,
628,
220,
220,
220,
20632,
7,
15,
4032,
5377,
48074,
281,
66,
10071,
2644,
11537,
198,
220,
220,
220,
299,
1671,
47,
912,
796,
45941,
13,
18747,
7,
4122,
38381,
986,
4083,
43358,
58,
15,
60,
198,
220,
220,
220,
611,
407,
45941,
13,
1092,
7,
6551,
2599,
3463,
796,
45941,
13,
1952,
7,
77,
1671,
47,
912,
20679,
77,
1671,
47,
912,
628,
220,
220,
220,
1033,
78,
796,
2746,
13,
1069,
7501,
198,
220,
220,
220,
763,
891,
796,
2746,
13,
1073,
891,
198,
220,
220,
220,
299,
1671,
7390,
87,
796,
1033,
78,
13,
43358,
58,
16,
60,
198,
220,
220,
220,
6376,
11,
2257,
11,
5432,
796,
16410,
38430,
38430,
11907,
628,
220,
220,
220,
2746,
796,
2769,
30073,
7,
19849,
8,
198,
220,
220,
220,
1217,
796,
2746,
13,
18206,
7,
4122,
8,
198,
220,
220,
220,
288,
361,
5841,
796,
1217,
12,
37659,
13,
26518,
7,
4363,
13,
51,
11,
6551,
737,
51,
198,
220,
220,
220,
1401,
5841,
796,
45941,
13,
26518,
7,
67,
361,
5841,
13,
51,
1174,
17,
11,
6551,
737,
51,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
3082,
1769,
262,
2472,
290,
13204,
36525,
628,
220,
220,
220,
329,
1312,
287,
2837,
7,
16,
11,
77,
1671,
7390,
87,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
2746,
13,
1069,
7501,
796,
1033,
78,
58,
45299,
72,
11,
14202,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
13,
1073,
891,
796,
763,
891,
58,
986,
11,
72,
11,
14202,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1217,
796,
2746,
13,
18206,
7,
4122,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
288,
361,
796,
1217,
12,
37659,
13,
26518,
7,
4363,
13,
51,
11,
6551,
737,
51,
198,
220,
220,
220,
220,
220,
220,
220,
39849,
796,
45941,
13,
26518,
19510,
67,
361,
9,
67,
361,
5841,
737,
51,
11,
6551,
737,
51,
198,
220,
220,
220,
220,
220,
220,
220,
1401,
796,
45941,
13,
26518,
7,
67,
361,
13,
51,
1174,
17,
11,
6551,
737,
51,
198,
220,
220,
220,
220,
220,
220,
220,
311,
796,
39849,
14,
7785,
5841,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
45941,
13,
439,
19836,
7,
50,
11,
15,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6376,
13,
33295,
7,
1069,
7501,
58,
45299,
72,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6723,
13,
33295,
7,
7785,
14,
7785,
5841,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3563,
13,
33295,
7,
50,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
14336,
1127,
262,
1180,
5635,
286,
257,
976,
937,
49070,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6376,
11,
5432,
11,
2257,
796,
12082,
7,
9630,
11,
5432,
11,
2257,
8,
198,
220,
220,
220,
281,
66,
10071,
796,
8633,
7,
13344,
7,
17816,
5432,
41707,
6173,
41707,
2257,
6,
38430,
5432,
11,
2257,
12,
5432,
11,
2257,
60,
4008,
198,
220,
220,
220,
20632,
7,
16,
4032,
5377,
48074,
281,
66,
10071,
1802,
4064,
11537,
198,
220,
220,
220,
1441,
6376,
11,
1192,
10071,
198,
198,
2,
43313,
29176,
4333,
198,
198,
4299,
12082,
7,
9630,
11,
5432,
11,
2257,
2599,
198,
220,
220,
220,
37227,
20575,
1127,
262,
36525,
422,
1180,
5635,
286,
262,
976,
937,
49070,
37811,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6376,
796,
45941,
13,
7645,
3455,
7,
9630,
8,
198,
220,
220,
220,
6376,
796,
357,
9630,
14,
37659,
13,
9806,
7,
9630,
11,
22704,
28,
15,
29720,
51,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
14435,
4340,
290,
32311,
262,
14184,
16856,
198,
220,
220,
220,
220,
198,
220,
220,
220,
949,
7390,
87,
796,
45941,
13,
1084,
7,
9630,
11,
22704,
28,
16,
8,
198,
220,
220,
220,
4686,
87,
796,
45941,
13,
853,
3003,
7,
1084,
7390,
87,
737,
2704,
41769,
3419,
198,
220,
220,
220,
6376,
58,
312,
87,
60,
796,
357,
9630,
58,
312,
87,
4083,
51,
14,
1084,
7390,
87,
58,
312,
87,
35944,
51,
198,
220,
220,
220,
6376,
796,
45941,
13,
22272,
7,
9630,
737,
459,
2981,
7,
600,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
6376,
11,
727,
796,
45941,
13,
34642,
7,
9630,
11,
7783,
62,
259,
4399,
28,
16,
11,
22704,
28,
15,
8,
198,
220,
220,
220,
5485,
796,
357,
9630,
13,
43358,
58,
15,
4357,
47762,
37659,
13,
18747,
7,
5432,
737,
43358,
58,
16,
47715,
198,
220,
220,
220,
6723,
17,
796,
45941,
13,
9107,
418,
7,
43358,
8,
198,
220,
220,
220,
3563,
17,
796,
45941,
13,
9107,
418,
7,
43358,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
14336,
1127,
14184,
16856,
281,
66,
10071,
36525,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
727,
13,
43358,
58,
15,
60,
2599,
6723,
17,
58,
727,
58,
72,
11907,
15853,
6723,
58,
72,
60,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
727,
13,
43358,
58,
15,
60,
2599,
3563,
17,
58,
727,
58,
72,
11907,
15853,
3563,
58,
72,
60,
198,
220,
220,
220,
1441,
6376,
11,
5432,
17,
11,
2257,
17
] | 2.184211 | 1,672 |
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC, expected_conditions
from selenium.webdriver.support.wait import WebDriverWait as wait
from fixtures.params import DEFAULT_PASSWORD
| [
6738,
384,
11925,
1505,
13,
12384,
26230,
13,
11321,
13,
1525,
1330,
2750,
198,
6738,
384,
11925,
1505,
13,
12384,
26230,
13,
11284,
1330,
2938,
62,
17561,
1756,
355,
13182,
11,
2938,
62,
17561,
1756,
198,
6738,
384,
11925,
1505,
13,
12384,
26230,
13,
11284,
13,
17077,
1330,
5313,
32103,
21321,
355,
4043,
198,
198,
6738,
34609,
13,
37266,
1330,
5550,
38865,
62,
47924,
54,
12532,
628,
628
] | 3.602941 | 68 |
from RNAseq import *
| [
6738,
25897,
41068,
1330,
1635,
628
] | 3.666667 | 6 |
import os
import subprocess
from clams import arg, Command
from . import current_project
version = Command(
name='version',
title='Utilities for versioning and releases.',
description='Utilities for versioning and releases.',
)
def _get_version():
"""Read and return the project version number."""
from unb_cli import version
v = version.read(current_project().version_file_path)
return v or ''
def _list_tags():
"""List tags."""
subprocess.call(['git', 'tag', '-l', '-n'])
def _tag(name, message, prefix='', suffix=''):
"""Create a git tag.
Parameters
----------
name : str
The name of the tag to create
message : str
A short message about the tag
prefix : str
A prefix to add to the name
suffix : str
A suffix to add to the name
Returns
-------
None
"""
name = prefix + name + suffix
subprocess.call(['git', 'tag', '-a', name, '-m', message])
def _push_tags():
"""Run `git push --follow-tags`."""
subprocess.call(['git', 'push', '--follow-tags'])
@version.register('bump')
@arg('part', nargs='?', default='patch')
def bump(part):
"""Bump the version number."""
from unb_cli import version
version.bump_file(current_project().version_file_path, part, '0.0.0')
@version.register('tag')
@arg('message', nargs='?', default='',
help='Annotate the tag with a message.')
@arg('--name', nargs='?', default='',
help='Specify a tag name explicitly.')
@arg('--prefix', nargs='?', default='',
help="""A prefix to add to the name.
This is most useful when the name parameter is omitted. For example, if
the current version number were 1.2.3, ``unb version tag --prefix=v``
would produce a tag named ``v1.2.3``.""")
@arg('--suffix', nargs='?', default='',
help="""A suffix to add to the name.
This is most useful when the name parameter is omitted. For example, if
the current version number were 1.2.3, ``unb version tag --suffix=-dev``
would produce a tag named ``1.2.3-dev``.""")
def tag(message, name, prefix, suffix):
"""Create a git tag.
If the tag name is not given explicitly, its name will equal the contents of
the file project_root/VERSION.
"""
if not name:
name = _get_version()
_tag(name, message, prefix, suffix)
@version.register('push-tags')
def push_tags():
"""Push and follow tags. (`git push --follow-tags`)"""
_push_tags()
@version.register('list-tags')
def list_tags():
"""List git tags."""
_list_tags()
@version.register('version')
def get_version():
"""Get the version number of the current project."""
print _get_version()
| [
11748,
28686,
198,
11748,
850,
14681,
198,
198,
6738,
537,
4105,
1330,
1822,
11,
9455,
198,
198,
6738,
764,
1330,
1459,
62,
16302,
628,
198,
9641,
796,
9455,
7,
198,
220,
220,
220,
1438,
11639,
9641,
3256,
198,
220,
220,
220,
3670,
11639,
18274,
2410,
329,
2196,
278,
290,
10050,
2637,
11,
198,
220,
220,
220,
6764,
11639,
18274,
2410,
329,
2196,
278,
290,
10050,
2637,
11,
198,
8,
628,
198,
4299,
4808,
1136,
62,
9641,
33529,
198,
220,
220,
220,
37227,
5569,
290,
1441,
262,
1628,
2196,
1271,
526,
15931,
198,
220,
220,
220,
422,
22619,
62,
44506,
1330,
2196,
198,
220,
220,
220,
410,
796,
2196,
13,
961,
7,
14421,
62,
16302,
22446,
9641,
62,
7753,
62,
6978,
8,
198,
220,
220,
220,
1441,
410,
393,
10148,
628,
198,
4299,
4808,
4868,
62,
31499,
33529,
198,
220,
220,
220,
37227,
8053,
15940,
526,
15931,
198,
220,
220,
220,
850,
14681,
13,
13345,
7,
17816,
18300,
3256,
705,
12985,
3256,
705,
12,
75,
3256,
705,
12,
77,
6,
12962,
628,
198,
4299,
4808,
12985,
7,
3672,
11,
3275,
11,
21231,
11639,
3256,
35488,
28,
7061,
2599,
198,
220,
220,
220,
37227,
16447,
257,
17606,
7621,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
1438,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1438,
286,
262,
7621,
284,
2251,
198,
220,
220,
220,
3275,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
317,
1790,
3275,
546,
262,
7621,
198,
220,
220,
220,
21231,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
317,
21231,
284,
751,
284,
262,
1438,
198,
220,
220,
220,
35488,
1058,
965,
198,
220,
220,
220,
220,
220,
220,
220,
317,
35488,
284,
751,
284,
262,
1438,
628,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
6045,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1438,
796,
21231,
1343,
1438,
1343,
35488,
198,
220,
220,
220,
850,
14681,
13,
13345,
7,
17816,
18300,
3256,
705,
12985,
3256,
705,
12,
64,
3256,
1438,
11,
705,
12,
76,
3256,
3275,
12962,
628,
198,
4299,
4808,
14689,
62,
31499,
33529,
198,
220,
220,
220,
37227,
10987,
4600,
18300,
4574,
1377,
27780,
12,
31499,
63,
526,
15931,
198,
220,
220,
220,
850,
14681,
13,
13345,
7,
17816,
18300,
3256,
705,
14689,
3256,
705,
438,
27780,
12,
31499,
6,
12962,
628,
198,
31,
9641,
13,
30238,
10786,
65,
931,
11537,
198,
31,
853,
10786,
3911,
3256,
299,
22046,
11639,
30,
3256,
4277,
11639,
17147,
11537,
198,
4299,
13852,
7,
3911,
2599,
198,
220,
220,
220,
37227,
33,
931,
262,
2196,
1271,
526,
15931,
198,
220,
220,
220,
422,
22619,
62,
44506,
1330,
2196,
198,
220,
220,
220,
2196,
13,
65,
931,
62,
7753,
7,
14421,
62,
16302,
22446,
9641,
62,
7753,
62,
6978,
11,
636,
11,
705,
15,
13,
15,
13,
15,
11537,
628,
198,
31,
9641,
13,
30238,
10786,
12985,
11537,
198,
31,
853,
10786,
20500,
3256,
299,
22046,
11639,
30,
3256,
4277,
11639,
3256,
198,
220,
220,
220,
220,
1037,
11639,
2025,
1662,
378,
262,
7621,
351,
257,
3275,
2637,
8,
198,
31,
853,
10786,
438,
3672,
3256,
299,
22046,
11639,
30,
3256,
4277,
11639,
3256,
198,
220,
220,
220,
220,
1037,
11639,
22882,
1958,
257,
7621,
1438,
11777,
2637,
8,
198,
31,
853,
10786,
438,
40290,
3256,
299,
22046,
11639,
30,
3256,
4277,
11639,
3256,
198,
220,
220,
220,
220,
1037,
2625,
15931,
32,
21231,
284,
751,
284,
262,
1438,
13,
628,
220,
220,
220,
220,
770,
318,
749,
4465,
618,
262,
1438,
11507,
318,
22532,
13,
220,
1114,
1672,
11,
611,
198,
220,
220,
220,
220,
262,
1459,
2196,
1271,
547,
352,
13,
17,
13,
18,
11,
7559,
403,
65,
2196,
7621,
1377,
40290,
28,
85,
15506,
198,
220,
220,
220,
220,
561,
4439,
257,
7621,
3706,
7559,
85,
16,
13,
17,
13,
18,
15506,
32203,
4943,
198,
31,
853,
10786,
438,
37333,
844,
3256,
299,
22046,
11639,
30,
3256,
4277,
11639,
3256,
198,
220,
220,
220,
220,
1037,
2625,
15931,
32,
35488,
284,
751,
284,
262,
1438,
13,
628,
220,
220,
220,
220,
770,
318,
749,
4465,
618,
262,
1438,
11507,
318,
22532,
13,
220,
1114,
1672,
11,
611,
198,
220,
220,
220,
220,
262,
1459,
2196,
1271,
547,
352,
13,
17,
13,
18,
11,
7559,
403,
65,
2196,
7621,
1377,
37333,
844,
10779,
7959,
15506,
198,
220,
220,
220,
220,
561,
4439,
257,
7621,
3706,
7559,
16,
13,
17,
13,
18,
12,
7959,
15506,
32203,
4943,
198,
4299,
7621,
7,
20500,
11,
1438,
11,
21231,
11,
35488,
2599,
198,
220,
220,
220,
37227,
16447,
257,
17606,
7621,
13,
628,
220,
220,
220,
1002,
262,
7621,
1438,
318,
407,
1813,
11777,
11,
663,
1438,
481,
4961,
262,
10154,
286,
198,
220,
220,
220,
262,
2393,
1628,
62,
15763,
14,
43717,
13,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
407,
1438,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1438,
796,
4808,
1136,
62,
9641,
3419,
198,
220,
220,
220,
4808,
12985,
7,
3672,
11,
3275,
11,
21231,
11,
35488,
8,
628,
198,
31,
9641,
13,
30238,
10786,
14689,
12,
31499,
11537,
198,
4299,
4574,
62,
31499,
33529,
198,
220,
220,
220,
37227,
49222,
290,
1061,
15940,
13,
220,
357,
63,
18300,
4574,
1377,
27780,
12,
31499,
63,
8,
37811,
198,
220,
220,
220,
4808,
14689,
62,
31499,
3419,
628,
198,
31,
9641,
13,
30238,
10786,
4868,
12,
31499,
11537,
198,
4299,
1351,
62,
31499,
33529,
198,
220,
220,
220,
37227,
8053,
17606,
15940,
526,
15931,
198,
220,
220,
220,
4808,
4868,
62,
31499,
3419,
628,
198,
31,
9641,
13,
30238,
10786,
9641,
11537,
198,
4299,
651,
62,
9641,
33529,
198,
220,
220,
220,
37227,
3855,
262,
2196,
1271,
286,
262,
1459,
1628,
526,
15931,
198,
220,
220,
220,
3601,
4808,
1136,
62,
9641,
3419,
198
] | 2.788284 | 973 |
import scrapy
from scrapy.selector import Selector
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from crawlers.items import Zgka8Item
from scrapy.http import TextResponse,FormRequest,Request
import json
| [
11748,
15881,
88,
198,
6738,
15881,
88,
13,
19738,
273,
1330,
9683,
273,
198,
6738,
15881,
88,
13,
2815,
365,
742,
974,
669,
1330,
7502,
11627,
40450,
198,
6738,
15881,
88,
13,
2777,
4157,
1330,
327,
13132,
41294,
11,
14330,
198,
6738,
27784,
8116,
13,
23814,
1330,
1168,
70,
4914,
23,
7449,
198,
6738,
15881,
88,
13,
4023,
1330,
8255,
31077,
11,
8479,
18453,
11,
18453,
198,
11748,
33918,
198
] | 3.571429 | 70 |
"""
Week 4, Day 4: Uncrossed Lines
We write the integers of A and B (in the order they are given) on two separate horizontal lines.
Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that:
A[i] == B[j];
The line we draw does not intersect any other connecting (non-horizontal) line. Note that a connecting
lines cannot intersect even at the endpoints: each number can only belong to one connecting line.
Return the maximum number of connecting lines we can draw in this way.
Example 1:
Input: A = [1,4,2], B = [1,2,4]
Output: 2
Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines,
because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.
Example 2:
Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2]
Output: 3
Example 3:
Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1]
Output: 2
Notes:
1 <= A.length <= 500
1 <= B.length <= 500
1 <= A[i], B[i] <= 2000
Hint:
Think dynamic programming. Given an oracle dp(i,j) that tells us how many lines A[i:], B[j:]
[the sequence A[i], A[i+1], ... and B[j], B[j+1], ...] are uncrossed, can we write this as
a recursion?
Remark:
The given solution comes from
https://massivealgorithms.blogspot.com/2019/06/leetcode-1035-uncrossed-lines.html
The approach is, to find the longest sequence of numbers that is common to both integer lists,
by applying a two dimensional memoization (the DP matrix.)
"""
from typing import List
if __name__ == '__main__':
o = Solution()
A = [1, 4, 2]
B = [1, 2, 4]
expected = 2
print(o.maxUncrossedLines(A, B) == expected)
A = [2, 5, 1, 2, 5]
B = [10, 5, 2, 1, 5, 2]
expected = 3
print(o.maxUncrossedLines(A, B) == expected)
A = [1, 3, 7, 1, 7, 5]
B = [1, 9, 2, 5, 1]
expected = 2
print(o.maxUncrossedLines(A, B) == expected)
# last line of code
| [
37811,
198,
20916,
604,
11,
3596,
604,
25,
791,
19692,
276,
26299,
198,
198,
1135,
3551,
262,
37014,
286,
317,
290,
347,
357,
259,
262,
1502,
484,
389,
1813,
8,
319,
734,
4553,
16021,
3951,
13,
198,
198,
3844,
11,
356,
743,
3197,
14320,
3951,
25,
257,
3892,
1627,
14320,
734,
3146,
317,
58,
72,
60,
290,
347,
58,
73,
60,
884,
326,
25,
628,
220,
220,
220,
317,
58,
72,
60,
6624,
347,
58,
73,
11208,
198,
198,
464,
1627,
356,
3197,
857,
407,
36177,
597,
584,
14320,
357,
13159,
12,
17899,
38342,
8,
1627,
13,
5740,
326,
257,
14320,
198,
6615,
2314,
36177,
772,
379,
262,
886,
13033,
25,
1123,
1271,
460,
691,
5594,
284,
530,
14320,
1627,
13,
198,
198,
13615,
262,
5415,
1271,
286,
14320,
3951,
356,
460,
3197,
287,
428,
835,
13,
198,
198,
16281,
352,
25,
628,
220,
220,
220,
23412,
25,
317,
796,
685,
16,
11,
19,
11,
17,
4357,
347,
796,
685,
16,
11,
17,
11,
19,
60,
198,
220,
220,
220,
25235,
25,
362,
198,
220,
220,
220,
50125,
341,
25,
775,
460,
3197,
362,
4591,
1214,
276,
3951,
355,
287,
262,
16362,
13,
775,
2314,
3197,
513,
4591,
1214,
276,
3951,
11,
198,
220,
220,
220,
780,
262,
1627,
422,
317,
58,
16,
22241,
19,
284,
347,
58,
17,
22241,
19,
481,
36177,
262,
1627,
422,
317,
58,
17,
22241,
17,
284,
347,
58,
16,
22241,
17,
13,
198,
198,
16281,
362,
25,
628,
220,
220,
220,
23412,
25,
317,
796,
685,
17,
11,
20,
11,
16,
11,
17,
11,
20,
4357,
347,
796,
685,
940,
11,
20,
11,
17,
11,
16,
11,
20,
11,
17,
60,
198,
220,
220,
220,
25235,
25,
513,
198,
198,
16281,
513,
25,
628,
220,
220,
220,
23412,
25,
317,
796,
685,
16,
11,
18,
11,
22,
11,
16,
11,
22,
11,
20,
4357,
347,
796,
685,
16,
11,
24,
11,
17,
11,
20,
11,
16,
60,
198,
220,
220,
220,
25235,
25,
362,
198,
198,
16130,
25,
628,
220,
220,
220,
352,
19841,
317,
13,
13664,
19841,
5323,
198,
220,
220,
220,
352,
19841,
347,
13,
13664,
19841,
5323,
198,
220,
220,
220,
352,
19841,
317,
58,
72,
4357,
347,
58,
72,
60,
19841,
4751,
198,
198,
39,
600,
25,
628,
220,
220,
220,
11382,
8925,
8300,
13,
11259,
281,
393,
6008,
288,
79,
7,
72,
11,
73,
8,
326,
4952,
514,
703,
867,
3951,
317,
58,
72,
25,
4357,
347,
58,
73,
47715,
198,
220,
220,
220,
685,
1169,
8379,
317,
58,
72,
4357,
317,
58,
72,
10,
16,
4357,
2644,
290,
347,
58,
73,
4357,
347,
58,
73,
10,
16,
4357,
2644,
60,
389,
4591,
1214,
276,
11,
460,
356,
3551,
428,
355,
198,
220,
220,
220,
257,
664,
24197,
30,
198,
198,
8413,
668,
25,
628,
220,
220,
220,
383,
1813,
4610,
2058,
422,
198,
220,
220,
220,
3740,
1378,
49777,
282,
7727,
907,
13,
35217,
13,
785,
14,
23344,
14,
3312,
14,
293,
316,
8189,
12,
940,
2327,
12,
19524,
1214,
276,
12,
6615,
13,
6494,
628,
220,
220,
220,
383,
3164,
318,
11,
284,
1064,
262,
14069,
8379,
286,
3146,
326,
318,
2219,
284,
1111,
18253,
8341,
11,
198,
220,
220,
220,
416,
11524,
257,
734,
38517,
16155,
1634,
357,
1169,
27704,
17593,
2014,
198,
198,
37811,
198,
6738,
19720,
1330,
7343,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
628,
220,
220,
220,
267,
796,
28186,
3419,
628,
220,
220,
220,
317,
796,
685,
16,
11,
604,
11,
362,
60,
198,
220,
220,
220,
347,
796,
685,
16,
11,
362,
11,
604,
60,
198,
220,
220,
220,
2938,
796,
362,
198,
220,
220,
220,
3601,
7,
78,
13,
9806,
3118,
19692,
276,
43,
1127,
7,
32,
11,
347,
8,
6624,
2938,
8,
628,
220,
220,
220,
317,
796,
685,
17,
11,
642,
11,
352,
11,
362,
11,
642,
60,
198,
220,
220,
220,
347,
796,
685,
940,
11,
642,
11,
362,
11,
352,
11,
642,
11,
362,
60,
198,
220,
220,
220,
2938,
796,
513,
198,
220,
220,
220,
3601,
7,
78,
13,
9806,
3118,
19692,
276,
43,
1127,
7,
32,
11,
347,
8,
6624,
2938,
8,
628,
220,
220,
220,
317,
796,
685,
16,
11,
513,
11,
767,
11,
352,
11,
767,
11,
642,
60,
198,
220,
220,
220,
347,
796,
685,
16,
11,
860,
11,
362,
11,
642,
11,
352,
60,
198,
220,
220,
220,
2938,
796,
362,
198,
220,
220,
220,
3601,
7,
78,
13,
9806,
3118,
19692,
276,
43,
1127,
7,
32,
11,
347,
8,
6624,
2938,
8,
198,
198,
2,
938,
1627,
286,
2438,
198
] | 2.55599 | 768 |
#!/bin/python
# Priority queue that allows updating priorities
# Todo: don't do busy waiting...
import time
from heapq import * # Basic heap implementation
import Queue # Need to pull in exceptions
from tools import * # For RWLock
class DPQueue(object):
"""Thread-safe Priority queue that can update priorities"""
if __name__ == "__main__":
# Test...
print "Creating..."
dpq = DPQueue(maxsize = 5, prio = lambda e: e)
print "Empty:", dpq.empty()
print "Putting..."
dpq.put(1)
print "Empty:", dpq.empty()
dpq.put(5)
dpq.put(3)
dpq.put(2)
print "Full:", dpq.full()
dpq.put(4)
print "Full:", dpq.full()
print "Reprioritize..."
dpq.prio = lambda e: -e
dpq.reprioritize()
print "Getting..."
e = dpq.get()
print "Got:", e
dpq.task_done()
print "Full:", dpq.full()
e = dpq.get()
print "Got:", e
dpq.task_done()
e = dpq.get()
print "Got:", e
dpq.task_done()
e = dpq.get()
print "Got:", e
dpq.task_done()
print "Empty:", dpq.empty()
e = dpq.get()
print "Got:", e
dpq.task_done()
print "Empty:", dpq.empty()
print "Join..."
dpq.join()
| [
2,
48443,
8800,
14,
29412,
198,
198,
2,
34416,
16834,
326,
3578,
19698,
15369,
198,
198,
2,
309,
24313,
25,
836,
470,
466,
8179,
4953,
986,
628,
198,
11748,
640,
198,
6738,
24575,
80,
1330,
1635,
1303,
14392,
24575,
7822,
198,
11748,
4670,
518,
1303,
10664,
284,
2834,
287,
13269,
198,
6738,
4899,
1330,
1635,
1303,
1114,
33212,
25392,
628,
198,
4871,
27704,
34991,
7,
15252,
2599,
198,
220,
220,
220,
37227,
16818,
12,
21230,
34416,
16834,
326,
460,
4296,
15369,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
198,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1303,
6208,
986,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
32071,
9313,
198,
220,
220,
220,
288,
79,
80,
796,
27704,
34991,
7,
9806,
7857,
796,
642,
11,
1293,
78,
796,
37456,
304,
25,
304,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
40613,
25,
1600,
288,
79,
80,
13,
28920,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
46399,
9313,
198,
220,
220,
220,
288,
79,
80,
13,
1996,
7,
16,
8,
198,
220,
220,
220,
3601,
366,
40613,
25,
1600,
288,
79,
80,
13,
28920,
3419,
198,
220,
220,
220,
288,
79,
80,
13,
1996,
7,
20,
8,
198,
220,
220,
220,
288,
79,
80,
13,
1996,
7,
18,
8,
198,
220,
220,
220,
288,
79,
80,
13,
1996,
7,
17,
8,
198,
220,
220,
220,
3601,
366,
13295,
25,
1600,
288,
79,
80,
13,
12853,
3419,
198,
220,
220,
220,
288,
79,
80,
13,
1996,
7,
19,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
13295,
25,
1600,
288,
79,
80,
13,
12853,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
6207,
7701,
270,
1096,
9313,
198,
220,
220,
220,
288,
79,
80,
13,
3448,
78,
796,
37456,
304,
25,
532,
68,
198,
220,
220,
220,
288,
79,
80,
13,
260,
3448,
273,
270,
1096,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
20570,
9313,
198,
220,
220,
220,
220,
198,
220,
220,
220,
304,
796,
288,
79,
80,
13,
1136,
3419,
198,
220,
220,
220,
3601,
366,
30074,
25,
1600,
304,
220,
220,
220,
198,
220,
220,
220,
288,
79,
80,
13,
35943,
62,
28060,
3419,
198,
220,
220,
220,
3601,
366,
13295,
25,
1600,
288,
79,
80,
13,
12853,
3419,
198,
220,
220,
220,
304,
796,
288,
79,
80,
13,
1136,
3419,
198,
220,
220,
220,
3601,
366,
30074,
25,
1600,
304,
220,
220,
220,
220,
198,
220,
220,
220,
288,
79,
80,
13,
35943,
62,
28060,
3419,
198,
220,
220,
220,
304,
796,
288,
79,
80,
13,
1136,
3419,
198,
220,
220,
220,
3601,
366,
30074,
25,
1600,
304,
198,
220,
220,
220,
288,
79,
80,
13,
35943,
62,
28060,
3419,
198,
220,
220,
220,
304,
796,
288,
79,
80,
13,
1136,
3419,
198,
220,
220,
220,
3601,
366,
30074,
25,
1600,
304,
198,
220,
220,
220,
288,
79,
80,
13,
35943,
62,
28060,
3419,
198,
220,
220,
220,
3601,
366,
40613,
25,
1600,
288,
79,
80,
13,
28920,
3419,
198,
220,
220,
220,
304,
796,
288,
79,
80,
13,
1136,
3419,
198,
220,
220,
220,
3601,
366,
30074,
25,
1600,
304,
198,
220,
220,
220,
288,
79,
80,
13,
35943,
62,
28060,
3419,
198,
220,
220,
220,
3601,
366,
40613,
25,
1600,
288,
79,
80,
13,
28920,
3419,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
366,
18234,
9313,
198,
220,
220,
220,
288,
79,
80,
13,
22179,
3419,
198
] | 1.959641 | 669 |
import requests
from bs4 import BeautifulSoup as BS
params = {"p1":"108001","p2":"108136","l":"0","type":"5"}
res = requests.post("http://www.9800.com.tw/trend.asp",data = params)
lottery_page = BS(res.text,"html.parser")
lottery_info = lottery_page.select("tbody")[4].select("td")
data = []
for i in range(len(lottery_info)):
if lottery_info[i].text.replace("-","").isdigit():
data.append(lottery_info[i].text)
lottery_infos = []
count = 1
for i in range(0,len(data),7):
lottery_infos.append(
{"id":count,"period":int(data[i]),"period_date":data[i+1],
"num1":data[i+2],"num2":data[i+3],"num3":data[i+4],"num4":data[i+5],"num5":data[i+6]
})
count +=1
# I just suffered from an issue.
# When I was spiding the lottery web,the fetched text was not correct.
# Then,about two hours later,I finally found the solution.
# It's the lxml problem.You need use html.parser to decoding the page. | [
11748,
7007,
201,
198,
6738,
275,
82,
19,
1330,
23762,
50,
10486,
355,
24218,
201,
198,
201,
198,
37266,
796,
19779,
79,
16,
2404,
940,
7410,
16,
2430,
79,
17,
2404,
15711,
20809,
2430,
75,
2404,
15,
2430,
4906,
2404,
20,
20662,
201,
198,
411,
796,
7007,
13,
7353,
7203,
4023,
1378,
2503,
13,
4089,
405,
13,
785,
13,
4246,
14,
83,
10920,
13,
5126,
1600,
7890,
796,
42287,
8,
201,
198,
26487,
11471,
62,
7700,
796,
24218,
7,
411,
13,
5239,
553,
6494,
13,
48610,
4943,
201,
198,
26487,
11471,
62,
10951,
796,
22098,
62,
7700,
13,
19738,
7203,
83,
2618,
4943,
58,
19,
4083,
19738,
7203,
8671,
4943,
201,
198,
201,
198,
7890,
796,
17635,
201,
198,
1640,
1312,
287,
2837,
7,
11925,
7,
26487,
11471,
62,
10951,
8,
2599,
201,
198,
220,
220,
220,
611,
22098,
62,
10951,
58,
72,
4083,
5239,
13,
33491,
7203,
12,
2430,
11074,
9409,
328,
270,
33529,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
7,
26487,
11471,
62,
10951,
58,
72,
4083,
5239,
8,
201,
198,
201,
198,
26487,
11471,
62,
10745,
418,
796,
17635,
201,
198,
9127,
796,
352,
220,
220,
220,
220,
220,
220,
220,
220,
201,
198,
1640,
1312,
287,
2837,
7,
15,
11,
11925,
7,
7890,
828,
22,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
22098,
62,
10745,
418,
13,
33295,
7,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19779,
312,
1298,
9127,
553,
41007,
1298,
600,
7,
7890,
58,
72,
12962,
553,
41007,
62,
4475,
1298,
7890,
58,
72,
10,
16,
4357,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
16,
1298,
7890,
58,
72,
10,
17,
17241,
22510,
17,
1298,
7890,
58,
72,
10,
18,
17241,
22510,
18,
1298,
7890,
58,
72,
10,
19,
17241,
22510,
19,
1298,
7890,
58,
72,
10,
20,
17241,
22510,
20,
1298,
7890,
58,
72,
10,
21,
60,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32092,
201,
198,
220,
220,
220,
220,
220,
220,
220,
954,
15853,
16,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
2,
314,
655,
6989,
422,
281,
2071,
13,
201,
198,
2,
1649,
314,
373,
599,
2530,
262,
22098,
3992,
11,
1169,
11351,
1740,
2420,
373,
407,
3376,
13,
201,
198,
2,
3244,
11,
10755,
734,
2250,
1568,
11,
40,
3443,
1043,
262,
4610,
13,
201,
198,
2,
632,
338,
262,
300,
19875,
1917,
13,
1639,
761,
779,
27711,
13,
48610,
284,
39938,
262,
2443,
13
] | 2.268623 | 443 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.