content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
# -*- coding: utf-8 -*- """Data fetching utility for USDA datasets. This module provides the primary support functions for downloading datasets from a text file. Each line in the text file is expected to be a complete URL. Lines that begin with '#' are ignored. Example: This module can be run directly with the following arguments: $ python -m project01.fetch path/to/uri.txt output/dir The URIs listed in the file path/to/uri.txt will be Files will be saved to output/dir. If no arguments are specified, they defaults (./uri.txt, and ./dataset) """ import os import sys import requests import tempfile import zipfile def cli(): """Creates a CLI parser Returns: argparse.ArgumentParser: An Argument Parser configured to support the fetcher class. """ import argparse parser = argparse.ArgumentParser("Fetch datasets") parser.add_argument("urifile", nargs="?", default="uri.txt", help="Path to file containing URIs to download.") parser.add_argument("outdir", nargs="?", default="dataset", help="Path to a directory to output the files.") return parser if __name__ == "__main__": config = cli().parse_args() main(uri_file=config.urifile, out=config.outdir)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 6601, 21207, 278, 10361, 329, 29986, 40522, 13, 198, 198, 1212, 8265, 3769, 262, 4165, 1104, 5499, 329, 22023, 40522, 422, 198, 64, 2420, 2393, 13, 220, 5501, 1627, 287, 262, 2420, 2393, 318, 2938, 284, 307, 257, 1844, 10289, 13, 220, 26299, 198, 5562, 2221, 351, 705, 2, 6, 389, 9514, 13, 198, 198, 16281, 25, 628, 220, 220, 220, 770, 8265, 460, 307, 1057, 3264, 351, 262, 1708, 7159, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 720, 21015, 532, 76, 1628, 486, 13, 69, 7569, 3108, 14, 1462, 14, 9900, 13, 14116, 5072, 14, 15908, 628, 220, 220, 220, 383, 37902, 3792, 5610, 287, 262, 2393, 3108, 14, 1462, 14, 9900, 13, 14116, 481, 307, 13283, 481, 307, 7448, 284, 5072, 14, 15908, 13, 628, 220, 220, 220, 1002, 645, 7159, 389, 7368, 11, 484, 26235, 357, 19571, 9900, 13, 14116, 11, 290, 24457, 19608, 292, 316, 8, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 7007, 198, 11748, 20218, 7753, 198, 11748, 19974, 7753, 628, 198, 198, 4299, 537, 72, 33529, 198, 220, 220, 220, 37227, 16719, 274, 257, 43749, 30751, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 29572, 13, 28100, 1713, 46677, 25, 1052, 45751, 23042, 263, 17839, 284, 1104, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11351, 2044, 1398, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 1822, 29572, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7203, 37, 7569, 40522, 4943, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 333, 361, 576, 1600, 299, 22046, 2625, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 9900, 13, 14116, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 2393, 7268, 37902, 3792, 284, 4321, 19570, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 448, 15908, 1600, 299, 22046, 2625, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 19608, 292, 316, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 15235, 284, 257, 8619, 284, 5072, 262, 3696, 19570, 198, 220, 220, 220, 1441, 30751, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 4566, 796, 537, 72, 22446, 29572, 62, 22046, 3419, 198, 220, 220, 220, 1388, 7, 9900, 62, 7753, 28, 11250, 13, 333, 361, 576, 11, 503, 28, 11250, 13, 448, 15908, 8, 198 ]
2.693227
502
from feeds.alltests.feeds_tests import *
[ 6738, 21318, 13, 439, 41989, 13, 12363, 82, 62, 41989, 1330, 1635 ]
3.333333
12
import numpy as np import pylab from scipy import sparse import regreg.api as rr Y = np.random.standard_normal(500); Y[100:150] += 7; Y[250:300] += 14 loss = rr.quadratic.shift(-Y, coef=0.5) sparsity = rr.l1norm(len(Y), 1.4) # TODO should make a module to compute typical Ds D = sparse.csr_matrix((np.identity(500) + np.diag([-1]*499,k=1))[:-1]) fused = rr.l1norm.linear(D, 25.5) problem = rr.container(loss, sparsity, fused) solver = rr.FISTA(problem) solver.fit(max_its=100) solution = solver.composite.coefs delta1 = np.fabs(D * solution).sum() delta2 = np.fabs(solution).sum() fused_constraint = rr.l1norm.linear(D, bound=delta1) sparsity_constraint = rr.l1norm(500, bound=delta2) constrained_problem = rr.container(loss, fused_constraint, sparsity_constraint) constrained_solver = rr.FISTA(constrained_problem) constrained_solver.composite.lipschitz = 1.01 vals = constrained_solver.fit(max_its=10, tol=1e-06, backtrack=False, monotonicity_restart=False) constrained_solution = constrained_solver.composite.coefs fused_constraint = rr.l1norm.linear(D, bound=delta1) smoothed_fused_constraint = rr.smoothed_atom(fused_constraint, epsilon=1e-2) smoothed_constrained_problem = rr.container(loss, smoothed_fused_constraint, sparsity_constraint) smoothed_constrained_solver = rr.FISTA(smoothed_constrained_problem) vals = smoothed_constrained_solver.fit(tol=1e-06) smoothed_constrained_solution = smoothed_constrained_solver.composite.coefs #pylab.clf() pylab.scatter(np.arange(Y.shape[0]), Y,c='red', label=r'$Y$') pylab.plot(solution, c='yellow', linewidth=5, label='Lagrange') pylab.plot(constrained_solution, c='green', linewidth=3, label='Constrained') pylab.plot(smoothed_constrained_solution, c='black', linewidth=1, label='Smoothed') pylab.legend() #pylab.plot(conjugate_coefs, c='black', linewidth=3) #pylab.plot(conjugate_coefs_gen, c='gray', linewidth=1)
[ 11748, 299, 32152, 355, 45941, 198, 11748, 279, 2645, 397, 197, 198, 6738, 629, 541, 88, 1330, 29877, 198, 198, 11748, 842, 2301, 13, 15042, 355, 374, 81, 198, 198, 56, 796, 45941, 13, 25120, 13, 20307, 62, 11265, 7, 4059, 1776, 575, 58, 3064, 25, 8628, 60, 15853, 767, 26, 575, 58, 9031, 25, 6200, 60, 15853, 1478, 198, 22462, 796, 374, 81, 13, 421, 41909, 1512, 13, 30846, 32590, 56, 11, 763, 891, 28, 15, 13, 20, 8, 198, 198, 2777, 45826, 796, 374, 81, 13, 75, 16, 27237, 7, 11925, 7, 56, 828, 352, 13, 19, 8, 198, 2, 16926, 46, 815, 787, 257, 8265, 284, 24061, 7226, 360, 82, 198, 35, 796, 29877, 13, 6359, 81, 62, 6759, 8609, 19510, 37659, 13, 738, 414, 7, 4059, 8, 1343, 45941, 13, 10989, 363, 26933, 12, 16, 60, 9, 28324, 11, 74, 28, 16, 4008, 58, 21912, 16, 12962, 198, 69, 1484, 796, 374, 81, 13, 75, 16, 27237, 13, 29127, 7, 35, 11, 1679, 13, 20, 8, 198, 45573, 796, 374, 81, 13, 34924, 7, 22462, 11, 599, 45826, 11, 43954, 8, 198, 198, 82, 14375, 796, 374, 81, 13, 37, 1797, 5603, 7, 45573, 8, 198, 82, 14375, 13, 11147, 7, 9806, 62, 896, 28, 3064, 8, 198, 82, 2122, 796, 1540, 332, 13, 785, 1930, 578, 13, 1073, 891, 82, 198, 198, 67, 12514, 16, 796, 45941, 13, 69, 8937, 7, 35, 1635, 4610, 737, 16345, 3419, 198, 67, 12514, 17, 796, 45941, 13, 69, 8937, 7, 82, 2122, 737, 16345, 3419, 198, 198, 69, 1484, 62, 1102, 2536, 2913, 796, 374, 81, 13, 75, 16, 27237, 13, 29127, 7, 35, 11, 5421, 28, 67, 12514, 16, 8, 198, 2777, 45826, 62, 1102, 2536, 2913, 796, 374, 81, 13, 75, 16, 27237, 7, 4059, 11, 5421, 28, 67, 12514, 17, 8, 198, 198, 1102, 2536, 1328, 62, 45573, 796, 374, 81, 13, 34924, 7, 22462, 11, 43954, 62, 1102, 2536, 2913, 11, 599, 45826, 62, 1102, 2536, 2913, 8, 198, 1102, 2536, 1328, 62, 82, 14375, 796, 374, 81, 13, 37, 1797, 5603, 7, 1102, 2536, 1328, 62, 45573, 8, 198, 1102, 2536, 1328, 62, 82, 14375, 13, 785, 1930, 578, 13, 75, 2419, 354, 4224, 796, 352, 13, 486, 198, 12786, 796, 31070, 62, 82, 14375, 13, 11147, 7, 9806, 62, 896, 28, 940, 11, 284, 75, 28, 16, 68, 12, 3312, 11, 736, 11659, 28, 25101, 11, 937, 18970, 8467, 62, 2118, 433, 28, 25101, 8, 198, 1102, 2536, 1328, 62, 82, 2122, 796, 31070, 62, 82, 14375, 13, 785, 1930, 578, 13, 1073, 891, 82, 198, 198, 69, 1484, 62, 1102, 2536, 2913, 796, 374, 81, 13, 75, 16, 27237, 13, 29127, 7, 35, 11, 5421, 28, 67, 12514, 16, 8, 198, 5796, 1025, 704, 62, 69, 1484, 62, 1102, 2536, 2913, 796, 374, 81, 13, 5796, 1025, 704, 62, 37696, 7, 69, 1484, 62, 1102, 2536, 2913, 11, 304, 862, 33576, 28, 16, 68, 12, 17, 8, 198, 5796, 1025, 704, 62, 1102, 2536, 1328, 62, 45573, 796, 374, 81, 13, 34924, 7, 22462, 11, 32746, 704, 62, 69, 1484, 62, 1102, 2536, 2913, 11, 599, 45826, 62, 1102, 2536, 2913, 8, 198, 5796, 1025, 704, 62, 1102, 2536, 1328, 62, 82, 14375, 796, 374, 81, 13, 37, 1797, 5603, 7, 5796, 1025, 704, 62, 1102, 2536, 1328, 62, 45573, 8, 198, 12786, 796, 32746, 704, 62, 1102, 2536, 1328, 62, 82, 14375, 13, 11147, 7, 83, 349, 28, 16, 68, 12, 3312, 8, 198, 5796, 1025, 704, 62, 1102, 2536, 1328, 62, 82, 2122, 796, 32746, 704, 62, 1102, 2536, 1328, 62, 82, 14375, 13, 785, 1930, 578, 13, 1073, 891, 82, 198, 198, 2, 79, 2645, 397, 13, 565, 69, 3419, 198, 79, 2645, 397, 13, 1416, 1436, 7, 37659, 13, 283, 858, 7, 56, 13, 43358, 58, 15, 46570, 575, 11, 66, 11639, 445, 3256, 6167, 28, 81, 6, 3, 56, 3, 11537, 198, 79, 2645, 397, 13, 29487, 7, 82, 2122, 11, 269, 11639, 36022, 3256, 9493, 413, 5649, 28, 20, 11, 6167, 11639, 43, 363, 9521, 11537, 198, 79, 2645, 397, 13, 29487, 7, 1102, 2536, 1328, 62, 82, 2122, 11, 269, 11639, 14809, 3256, 9493, 413, 5649, 28, 18, 11, 6167, 11639, 3103, 2536, 1328, 11537, 198, 79, 2645, 397, 13, 29487, 7, 5796, 1025, 704, 62, 1102, 2536, 1328, 62, 82, 2122, 11, 269, 11639, 13424, 3256, 9493, 413, 5649, 28, 16, 11, 6167, 11639, 7556, 1025, 704, 11537, 198, 79, 2645, 397, 13, 1455, 437, 3419, 198, 2, 79, 2645, 397, 13, 29487, 7, 1102, 31761, 378, 62, 1073, 891, 82, 11, 269, 11639, 13424, 3256, 9493, 413, 5649, 28, 18, 8, 197, 198, 2, 79, 2645, 397, 13, 29487, 7, 1102, 31761, 378, 62, 1073, 891, 82, 62, 5235, 11, 269, 11639, 44605, 3256, 9493, 413, 5649, 28, 16, 8, 197, 197, 628 ]
2.318126
811
from typing import Dict import aiohttp from async_timeout import timeout from openapi.testing import json_body
[ 6738, 19720, 1330, 360, 713, 198, 198, 11748, 257, 952, 4023, 198, 6738, 30351, 62, 48678, 1330, 26827, 198, 198, 6738, 1280, 15042, 13, 33407, 1330, 33918, 62, 2618, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.459459
37
#!/usr/bin/env python import os import subprocess TID_FILE = "src/tiddlers/system/plugins/security_tools/twsm.tid" VERSION_FILE = "VERSION" if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 198, 51, 2389, 62, 25664, 796, 366, 10677, 14, 83, 1638, 8116, 14, 10057, 14, 37390, 14, 12961, 62, 31391, 14, 4246, 5796, 13, 83, 312, 1, 198, 43717, 62, 25664, 796, 366, 43717, 1, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.594203
69
# coding=utf-8 """ @author: oShine <[email protected]> @link: https://github.com/ouyangjunqiu/ou.py 定时器,每隔一段时间执行一次 """ import threading
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 198, 198, 31, 9800, 25, 267, 2484, 500, 1279, 726, 73, 80, 25404, 79, 31, 19420, 13, 785, 29, 198, 31, 8726, 25, 3740, 1378, 12567, 13, 785, 14, 280, 17859, 29741, 80, 16115, 14, 280, 13, 9078, 198, 22522, 248, 33768, 114, 161, 247, 101, 171, 120, 234, 162, 107, 237, 49694, 242, 31660, 162, 106, 113, 33768, 114, 29785, 112, 33699, 100, 26193, 234, 31660, 162, 105, 94, 198, 37811, 198, 198, 11748, 4704, 278, 628 ]
1.593023
86
for n in range(10): print(n, factorial(n))
[ 198, 198, 1640, 299, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 3601, 7, 77, 11, 1109, 5132, 7, 77, 4008, 198 ]
2.130435
23
@set_log(1) def test01(): """ @super_set_func(1) 带有参数的装饰器,用来区分多个函数都被同一个装饰器装饰,用来区分函数 实现的原理是,把装饰器外边包上一层函数,带有参数 这种特殊的带有参数的装饰器,并不是直接test01 = set_log(1, test01)的,并非直接把函数名传递给set_log 1- @装饰器(参数) 会先**调用**set_log函数,把1当作实参进行传递,此时跟函数名没有关系,先调用带有参数的set_log函数 2- 把set_log函数的返回值,当作装饰器进行装饰,此时才是test01 = super_set_func(test01) """ print("----test01----没有参数,没有返回值") @set_log(2) class Log(object): """ 类装饰器,装饰器加载在类上,不在是传统上的加载在方法上面 作用就是:不同于方法装饰器,类装饰器可以在被装饰的方法的前后添加多个自己类的实力方法进行装饰,self.xxx(),self.yyy() 1- @Log 等价于 Log(test03) 初始化Log的init方法,test03函数名作为参数传递 2- 此时test03就指向一个类对象,等test03()调用的时候,相当于调用了类中的call方法 """ @Log if __name__ == '__main__': main()
[ 198, 198, 31, 2617, 62, 6404, 7, 16, 8, 198, 4299, 1332, 486, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2488, 16668, 62, 2617, 62, 20786, 7, 16, 8, 10263, 116, 99, 17312, 231, 20998, 224, 46763, 108, 21410, 35318, 165, 98, 108, 161, 247, 101, 171, 120, 234, 18796, 101, 30266, 98, 44293, 118, 26344, 228, 13783, 248, 10310, 103, 49035, 121, 46763, 108, 32849, 121, 164, 95, 104, 28938, 234, 31660, 10310, 103, 35318, 165, 98, 108, 161, 247, 101, 35318, 165, 98, 108, 171, 120, 234, 18796, 101, 30266, 98, 44293, 118, 26344, 228, 49035, 121, 46763, 108, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 106, 252, 163, 236, 108, 21410, 43889, 253, 49426, 228, 42468, 171, 120, 234, 162, 232, 232, 35318, 165, 98, 108, 161, 247, 101, 13783, 244, 164, 122, 117, 44293, 227, 41468, 31660, 161, 109, 224, 49035, 121, 46763, 108, 171, 120, 234, 30585, 99, 17312, 231, 20998, 224, 46763, 108, 628, 220, 220, 220, 220, 220, 220, 220, 5525, 123, 247, 163, 100, 235, 31965, 117, 162, 106, 232, 21410, 30585, 99, 17312, 231, 20998, 224, 46763, 108, 21410, 35318, 165, 98, 108, 161, 247, 101, 171, 120, 234, 33176, 114, 38834, 42468, 33566, 112, 162, 236, 98, 9288, 486, 796, 900, 62, 6404, 7, 16, 11, 1332, 486, 8, 21410, 171, 120, 234, 33176, 114, 165, 251, 252, 33566, 112, 162, 236, 98, 162, 232, 232, 49035, 121, 46763, 108, 28938, 235, 27670, 254, 34460, 240, 163, 119, 247, 2617, 62, 6404, 198, 220, 220, 220, 220, 220, 220, 220, 352, 12, 2488, 35318, 165, 98, 108, 161, 247, 101, 7, 20998, 224, 46763, 108, 8, 220, 27670, 248, 17739, 230, 1174, 164, 108, 225, 18796, 101, 1174, 2617, 62, 6404, 49035, 121, 46763, 108, 171, 120, 234, 162, 232, 232, 16, 37605, 241, 43291, 22522, 252, 20998, 224, 32573, 249, 26193, 234, 27670, 254, 34460, 240, 171, 120, 234, 29826, 97, 33768, 114, 164, 115, 253, 49035, 121, 46763, 108, 28938, 235, 162, 110, 94, 17312, 231, 17739, 111, 163, 111, 119, 171, 120, 234, 17739, 42062, 108, 225, 18796, 101, 30585, 99, 17312, 231, 20998, 224, 46763, 108, 21410, 2617, 62, 6404, 49035, 121, 46763, 108, 198, 220, 220, 220, 220, 220, 220, 220, 362, 12, 10545, 232, 232, 2617, 62, 6404, 49035, 121, 46763, 108, 21410, 32573, 242, 32368, 252, 161, 222, 120, 171, 120, 234, 37605, 241, 43291, 35318, 165, 98, 108, 161, 247, 101, 32573, 249, 26193, 234, 35318, 165, 98, 108, 171, 120, 234, 29826, 97, 33768, 114, 33699, 235, 42468, 9288, 486, 796, 2208, 62, 2617, 62, 20786, 7, 9288, 486, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 650, 9288, 486, 650, 162, 110, 94, 17312, 231, 20998, 224, 46763, 108, 171, 120, 234, 162, 110, 94, 17312, 231, 32573, 242, 32368, 252, 161, 222, 120, 4943, 628, 198, 31, 2617, 62, 6404, 7, 17, 8, 628, 198, 4871, 5972, 7, 15252, 2599, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13328, 109, 119, 35318, 165, 98, 108, 161, 247, 101, 171, 120, 234, 35318, 165, 98, 108, 161, 247, 101, 27950, 254, 164, 121, 121, 28839, 101, 163, 109, 119, 41468, 171, 120, 234, 38834, 28839, 101, 42468, 27670, 254, 163, 119, 253, 41468, 21410, 27950, 254, 164, 121, 121, 28839, 101, 43095, 37345, 243, 41468, 165, 251, 95, 198, 220, 220, 220, 220, 220, 220, 220, 220, 43291, 18796, 101, 22887, 109, 42468, 25, 38834, 28938, 234, 12859, 236, 43095, 37345, 243, 35318, 165, 98, 108, 161, 247, 101, 171, 120, 234, 163, 109, 119, 35318, 165, 98, 108, 161, 247, 101, 20998, 107, 20015, 98, 28839, 101, 164, 95, 104, 35318, 165, 98, 108, 21410, 43095, 37345, 243, 21410, 30298, 235, 28938, 236, 162, 115, 119, 27950, 254, 13783, 248, 10310, 103, 164, 229, 103, 32432, 109, 163, 109, 119, 21410, 22522, 252, 27950, 249, 43095, 37345, 243, 32573, 249, 26193, 234, 35318, 165, 98, 108, 171, 120, 234, 944, 13, 31811, 3419, 171, 120, 234, 944, 13, 22556, 88, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 352, 12, 2488, 11187, 13328, 255, 231, 20015, 115, 12859, 236, 5972, 7, 9288, 3070, 8, 10263, 230, 251, 34650, 233, 44293, 244, 11187, 21410, 15003, 43095, 37345, 243, 171, 120, 234, 9288, 3070, 49035, 121, 46763, 108, 28938, 235, 43291, 10310, 118, 20998, 224, 46763, 108, 27670, 254, 34460, 240, 198, 220, 220, 220, 220, 220, 220, 220, 362, 12, 10545, 255, 97, 33768, 114, 9288, 3070, 22887, 109, 162, 234, 229, 28938, 239, 31660, 10310, 103, 163, 109, 119, 43380, 117, 164, 109, 94, 171, 120, 234, 163, 255, 231, 9288, 3070, 3419, 164, 108, 225, 18796, 101, 21410, 33768, 114, 161, 222, 247, 171, 120, 234, 33566, 116, 37605, 241, 12859, 236, 164, 108, 225, 18796, 101, 12859, 228, 163, 109, 119, 40792, 21410, 13345, 43095, 37345, 243, 198, 220, 220, 220, 37227, 628, 198, 31, 11187, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
0.86014
858
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of fionautil. # http://github.com/fitnr/fionautil # Licensed under the GPLv3 license: # http://http://opensource.org/licenses/GPL-3.0 # Copyright (c) 2015, Neil Freeman <[email protected]> import collections from unittest import TestCase as PythonTestCase import unittest.main import os.path import fionautil.layer shp = os.path.join(os.path.dirname(__file__), 'fixtures/testing.shp') geojson = os.path.join(os.path.dirname(__file__), 'fixtures/testing.geojson') if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 770, 2393, 318, 636, 286, 277, 295, 2306, 346, 13, 198, 2, 2638, 1378, 12567, 13, 785, 14, 11147, 48624, 14, 69, 295, 2306, 346, 198, 198, 2, 49962, 739, 262, 38644, 85, 18, 5964, 25, 198, 2, 2638, 1378, 4023, 1378, 44813, 1668, 13, 2398, 14, 677, 4541, 14, 38, 6489, 12, 18, 13, 15, 198, 2, 15069, 357, 66, 8, 1853, 11, 15929, 22394, 1279, 32057, 31, 30706, 396, 831, 413, 5305, 13, 2398, 29, 198, 198, 11748, 17268, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 355, 11361, 14402, 20448, 198, 11748, 555, 715, 395, 13, 12417, 198, 11748, 28686, 13, 6978, 198, 11748, 277, 295, 2306, 346, 13, 29289, 198, 198, 1477, 79, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 69, 25506, 14, 33407, 13, 1477, 79, 11537, 198, 469, 13210, 1559, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 69, 25506, 14, 33407, 13, 469, 13210, 1559, 11537, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.64
225
#!/usr/bin/env python # ScraperWiki Limited # Ian Hopkinson, 2013-06-20 # -*- coding: utf-8 -*- from __future__ import unicode_literals import sys import codecs sys.stdout = codecs.getwriter('utf-8')(sys.stdout) """ Analysis and visualisation library for pdftables """ import pdftables as pt import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from tree import Leaf, LeafList FilterOptions = ['LTPage','LTTextBoxHorizontal','LTFigure','LTLine','LTRect','LTImage','LTTextLineHorizontal','LTCurve', 'LTChar', 'LTAnon'] Colours = ['black' ,'green' ,'black' ,'red' ,'red' ,'black' ,'blue' ,'red' , 'red' , 'White'] ColourTable = dict(zip(FilterOptions, Colours)) LEFT = 0 TOP = 3 RIGHT = 2 BOTTOM = 1 def plotpage(d): #def plotpage(BoxList,xhistleft,xhistright,yhisttop,yhistbottom,xComb,yComb): # global ColourTable """This is from pdftables""" #columnProjectionThreshold = threshold_above(columnProjection,columnThreshold) #colDispHeight = max(columnProjection.values())*0.8 #columnProj = dict(zip(columnProjectionThreshold, [colDispHeight]*len(columnProjectionThreshold))) """End display only code""" """This is from pdftables""" #rowProjectionThreshold = threshold_above(rowProjection,rowThreshold) # rowDispHeight = max(rowProjection.values())*0.8 # rowProj = dict(zip(rowProjectionThreshold, [rowDispHeight]*len(rowProjectionThreshold))) """End display only code""" fig = plt.figure() ax1 = fig.add_subplot(111) ax1.axis('equal') for boxstruct in d.box_list: box = boxstruct.bbox thiscolour = ColourTable[boxstruct.classname] ax1.plot([box[0],box[2],box[2],box[0],box[0]],[box[1],box[1],box[3],box[3],box[1]],color = thiscolour ) # fig.suptitle(title, fontsize=15) divider = make_axes_locatable(ax1) #plt.setp(ax1.get_yticklabels(),visible=False) ax1.yaxis.set_label_position("right") if d.top_plot: axHistx = divider.append_axes("top", 1.2, pad=0.1, sharex=ax1) axHistx.plot(map(float,d.top_plot.keys()),map(float,d.top_plot.values()), color = 'red') if d.left_plot: axHisty = divider.append_axes("left", 1.2, pad=0.1, sharey=ax1) axHisty.plot(map(float,d.left_plot.values()),map(float,d.left_plot.keys()), color = 'red') if d.y_comb: miny = min(d.y_comb) maxy = max(d.y_comb) for x in d.x_comb: ax1.plot([x,x],[miny,maxy],color = "black") axHistx.scatter(x,0,color = "black") if d.x_comb: minx = min(d.x_comb) maxx = max(d.x_comb) for y in d.y_comb: ax1.plot([minx,maxx],[y,y],color = "black") axHisty.scatter(1,y,color = "black") plt.draw() plt.show(block = False) return fig, ax1
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 1446, 38545, 32603, 15302, 198, 2, 12930, 21183, 261, 11, 2211, 12, 3312, 12, 1238, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 11748, 25064, 198, 11748, 40481, 82, 198, 17597, 13, 19282, 448, 796, 40481, 82, 13, 1136, 16002, 10786, 40477, 12, 23, 6, 5769, 17597, 13, 19282, 448, 8, 198, 198, 37811, 198, 32750, 290, 5874, 5612, 5888, 329, 279, 67, 701, 2977, 198, 37811, 628, 198, 11748, 279, 67, 701, 2977, 355, 42975, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 897, 274, 62, 25928, 16, 1330, 787, 62, 897, 274, 62, 17946, 21156, 198, 6738, 5509, 1330, 14697, 11, 14697, 8053, 628, 198, 22417, 29046, 796, 37250, 43, 7250, 496, 41707, 27734, 8206, 14253, 27991, 38342, 41707, 43, 10234, 7047, 41707, 27734, 13949, 41707, 43, 5446, 478, 41707, 27734, 5159, 41707, 27734, 8206, 13949, 27991, 38342, 41707, 43, 4825, 333, 303, 3256, 705, 27734, 12441, 3256, 705, 27734, 2025, 261, 20520, 198, 5216, 4662, 220, 220, 220, 220, 220, 220, 796, 37250, 13424, 6, 837, 6, 14809, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 6, 13424, 6, 220, 220, 837, 6, 445, 6, 220, 220, 837, 6, 445, 6, 220, 220, 837, 6, 13424, 6, 220, 837, 6, 17585, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 6, 445, 6, 220, 220, 220, 837, 705, 445, 6, 220, 220, 837, 705, 12256, 20520, 198, 198, 5216, 454, 10962, 796, 8633, 7, 13344, 7, 22417, 29046, 11, 1623, 4662, 4008, 198, 198, 2538, 9792, 796, 657, 198, 35222, 796, 513, 198, 49, 9947, 796, 362, 198, 33, 29089, 2662, 796, 352, 628, 198, 4299, 7110, 7700, 7, 67, 2599, 198, 2, 4299, 7110, 7700, 7, 14253, 8053, 11, 87, 10034, 9464, 11, 87, 10034, 3506, 11, 88, 10034, 4852, 11, 88, 10034, 22487, 11, 87, 20575, 11, 88, 20575, 2599, 198, 2, 220, 220, 220, 3298, 38773, 10962, 198, 220, 220, 220, 37227, 1212, 318, 422, 279, 67, 701, 2977, 37811, 198, 220, 220, 220, 1303, 28665, 16775, 295, 817, 10126, 796, 11387, 62, 29370, 7, 28665, 16775, 295, 11, 28665, 817, 10126, 8, 198, 220, 220, 220, 1303, 4033, 7279, 79, 23106, 796, 3509, 7, 28665, 16775, 295, 13, 27160, 3419, 27493, 15, 13, 23, 198, 220, 220, 220, 1303, 28665, 2964, 73, 796, 8633, 7, 13344, 7, 28665, 16775, 295, 817, 10126, 11, 685, 4033, 7279, 79, 23106, 60, 9, 11925, 7, 28665, 16775, 295, 817, 10126, 22305, 198, 220, 220, 220, 37227, 12915, 3359, 691, 2438, 37811, 628, 220, 220, 220, 37227, 1212, 318, 422, 279, 67, 701, 2977, 37811, 198, 220, 220, 220, 1303, 808, 16775, 295, 817, 10126, 796, 11387, 62, 29370, 7, 808, 16775, 295, 11, 808, 817, 10126, 8, 198, 220, 220, 220, 1303, 5752, 7279, 79, 23106, 796, 3509, 7, 808, 16775, 295, 13, 27160, 3419, 27493, 15, 13, 23, 198, 220, 220, 220, 1303, 5752, 2964, 73, 796, 8633, 7, 13344, 7, 808, 16775, 295, 817, 10126, 11, 685, 808, 7279, 79, 23106, 60, 9, 11925, 7, 808, 16775, 295, 817, 10126, 22305, 198, 220, 220, 220, 37227, 12915, 3359, 691, 2438, 37811, 628, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 7877, 16, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 8, 198, 220, 220, 220, 7877, 16, 13, 22704, 10786, 40496, 11537, 198, 220, 220, 220, 329, 3091, 7249, 287, 288, 13, 3524, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3091, 796, 3091, 7249, 13, 65, 3524, 198, 220, 220, 220, 220, 220, 220, 220, 428, 49903, 796, 38773, 10962, 58, 3524, 7249, 13, 4871, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 16, 13, 29487, 26933, 3524, 58, 15, 4357, 3524, 58, 17, 4357, 3524, 58, 17, 4357, 3524, 58, 15, 4357, 3524, 58, 15, 60, 38430, 3524, 58, 16, 4357, 3524, 58, 16, 4357, 3524, 58, 18, 4357, 3524, 58, 18, 4357, 3524, 58, 16, 60, 4357, 8043, 796, 428, 49903, 1267, 628, 220, 220, 220, 1303, 2336, 13, 2385, 457, 2578, 7, 7839, 11, 10369, 7857, 28, 1314, 8, 198, 220, 220, 220, 2659, 1304, 796, 787, 62, 897, 274, 62, 17946, 21156, 7, 897, 16, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 2617, 79, 7, 897, 16, 13, 1136, 62, 20760, 624, 23912, 1424, 22784, 23504, 28, 25101, 8, 198, 220, 220, 220, 7877, 16, 13, 88, 22704, 13, 2617, 62, 18242, 62, 9150, 7203, 3506, 4943, 628, 220, 220, 220, 611, 288, 13, 4852, 62, 29487, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 87, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 4852, 1600, 352, 13, 17, 11, 14841, 28, 15, 13, 16, 11, 2648, 87, 28, 897, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 87, 13, 29487, 7, 8899, 7, 22468, 11, 67, 13, 4852, 62, 29487, 13, 13083, 3419, 828, 8899, 7, 22468, 11, 67, 13, 4852, 62, 29487, 13, 27160, 3419, 828, 3124, 796, 705, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 288, 13, 9464, 62, 29487, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 88, 796, 2659, 1304, 13, 33295, 62, 897, 274, 7203, 9464, 1600, 352, 13, 17, 11, 14841, 28, 15, 13, 16, 11, 2648, 88, 28, 897, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 88, 13, 29487, 7, 8899, 7, 22468, 11, 67, 13, 9464, 62, 29487, 13, 27160, 3419, 828, 8899, 7, 22468, 11, 67, 13, 9464, 62, 29487, 13, 13083, 3419, 828, 3124, 796, 705, 445, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 288, 13, 88, 62, 24011, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 88, 796, 949, 7, 67, 13, 88, 62, 24011, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 88, 796, 3509, 7, 67, 13, 88, 62, 24011, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 288, 13, 87, 62, 24011, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 16, 13, 29487, 26933, 87, 11, 87, 38430, 1084, 88, 11, 76, 6969, 4357, 8043, 796, 366, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 87, 13, 1416, 1436, 7, 87, 11, 15, 11, 8043, 796, 366, 13424, 4943, 628, 220, 220, 220, 611, 288, 13, 87, 62, 24011, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 87, 796, 949, 7, 67, 13, 87, 62, 24011, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 87, 796, 3509, 7, 67, 13, 87, 62, 24011, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 288, 13, 88, 62, 24011, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 16, 13, 29487, 26933, 1084, 87, 11, 9806, 87, 38430, 88, 11, 88, 4357, 8043, 796, 366, 13424, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 13749, 88, 13, 1416, 1436, 7, 16, 11, 88, 11, 8043, 796, 366, 13424, 4943, 628, 220, 220, 220, 458, 83, 13, 19334, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 7, 9967, 796, 10352, 8, 628, 220, 220, 220, 1441, 2336, 11, 7877, 16, 198 ]
2.221617
1,286
import rhinoscriptsyntax as rs
[ 11748, 9529, 11996, 6519, 1837, 41641, 355, 44608, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220 ]
2.1
20
# !/usr/bin/python3.7 # -*- coding: utf-8 -*- # @Time : 2020/6/22 上午9:58 # @Author: [email protected] # @Notes : 身份证检查 from .idcard import IdCard __version__ = '2020.6.22' __author__ = 'Jtyoui' __description__ = '身份证实体抽取,身份证补全,身份证检测等功能。' __email__ = '[email protected]' __names__ = 'pyUnit_idCard' __url__ = 'https://github.com/PyUnit/pyunit-idCard'
[ 2, 5145, 14, 14629, 14, 8800, 14, 29412, 18, 13, 22, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2488, 7575, 220, 1058, 12131, 14, 21, 14, 1828, 220, 41468, 39355, 230, 24, 25, 3365, 198, 2, 2488, 13838, 25, 449, 774, 280, 72, 31, 38227, 13, 785, 198, 2, 2488, 16130, 1058, 5525, 118, 104, 20015, 121, 46237, 223, 162, 96, 222, 162, 253, 98, 198, 6738, 764, 312, 9517, 1330, 5121, 16962, 198, 198, 834, 9641, 834, 796, 705, 42334, 13, 21, 13, 1828, 6, 198, 834, 9800, 834, 796, 705, 41, 774, 280, 72, 6, 198, 834, 11213, 834, 796, 705, 164, 118, 104, 20015, 121, 46237, 223, 22522, 252, 19526, 241, 162, 232, 121, 20998, 244, 171, 120, 234, 164, 118, 104, 20015, 121, 46237, 223, 26193, 98, 17739, 101, 171, 120, 234, 164, 118, 104, 20015, 121, 46237, 223, 162, 96, 222, 38184, 233, 163, 255, 231, 27950, 253, 47797, 121, 16764, 6, 198, 834, 12888, 834, 796, 705, 73, 774, 280, 72, 31, 38227, 13, 785, 6, 198, 834, 14933, 834, 796, 705, 9078, 26453, 62, 312, 16962, 6, 198, 834, 6371, 834, 796, 705, 5450, 1378, 12567, 13, 785, 14, 20519, 26453, 14, 9078, 20850, 12, 312, 16962, 6, 198 ]
1.6
215
# -*- coding: utf-8 -*- # Copyright (c) 2017-2018 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from decimal import Decimal import numpy as np from petastorm.reader_impl.pyarrow_serializer import PyArrowSerializer def test_serializer_is_pickable(): """Pickle/depickle the serializer to make sure it can be passed as a parameter cross process boundaries when using futures""" s = PyArrowSerializer() deserialized_s = pickle.loads(pickle.dumps(s)) expected = [{'a': np.asarray([1, 2], dtype=np.uint64)}] actual = deserialized_s.deserialize(deserialized_s.serialize(expected)) np.testing.assert_array_equal(actual[0]['a'], expected[0]['a'])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 220, 15069, 357, 66, 8, 2177, 12, 7908, 12024, 21852, 11, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 2298, 293, 198, 6738, 32465, 1330, 4280, 4402, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4273, 459, 579, 13, 46862, 62, 23928, 13, 9078, 6018, 62, 46911, 7509, 1330, 9485, 3163, 808, 32634, 7509, 628, 198, 198, 4299, 1332, 62, 46911, 7509, 62, 271, 62, 27729, 540, 33529, 198, 220, 220, 220, 37227, 31686, 293, 14, 10378, 39423, 262, 11389, 7509, 284, 787, 1654, 340, 460, 307, 3804, 198, 220, 220, 220, 355, 257, 11507, 3272, 1429, 13215, 618, 1262, 25650, 37811, 198, 220, 220, 220, 264, 796, 9485, 3163, 808, 32634, 7509, 3419, 198, 220, 220, 220, 748, 48499, 1143, 62, 82, 796, 2298, 293, 13, 46030, 7, 27729, 293, 13, 67, 8142, 7, 82, 4008, 628, 220, 220, 220, 2938, 796, 685, 90, 6, 64, 10354, 45941, 13, 292, 18747, 26933, 16, 11, 362, 4357, 288, 4906, 28, 37659, 13, 28611, 2414, 38165, 60, 198, 220, 220, 220, 4036, 796, 748, 48499, 1143, 62, 82, 13, 8906, 48499, 1096, 7, 8906, 48499, 1143, 62, 82, 13, 46911, 1096, 7, 40319, 4008, 198, 220, 220, 220, 45941, 13, 33407, 13, 30493, 62, 18747, 62, 40496, 7, 50039, 58, 15, 7131, 6, 64, 6, 4357, 2938, 58, 15, 7131, 6, 64, 6, 12962, 628, 198 ]
3.186352
381
# Copyright 2017 Arie Bregman # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import argparse def setup_db_create_subparser(subparsers, parent_parser): """Adds db create sub-parser""" db_create_parser = subparsers.add_parser( "create", parents=[parent_parser]) db_create_parser.add_argument( '--all', '-a', action='store_true') def setup_db_drop_subparser(subparsers, parent_parser): """Adds db drop sub-parser""" db_drop_parser = subparsers.add_parser( "drop", parents=[parent_parser]) db_drop_parser.add_argument( '--all', '-a', action='store_true') def create(): """Returns argparse parser.""" parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument('--debug', required=False, action='store_true', dest="debug", help='Turn DEBUG on') parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest="parser") setup_db_create_subparser(subparsers, parent_parser) setup_db_drop_subparser(subparsers, parent_parser) return parser
[ 2, 15069, 2177, 317, 5034, 347, 2301, 805, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 11748, 1822, 29572, 628, 198, 4299, 9058, 62, 9945, 62, 17953, 62, 7266, 48610, 7, 7266, 79, 945, 364, 11, 2560, 62, 48610, 2599, 198, 220, 220, 220, 37227, 46245, 20613, 2251, 850, 12, 48610, 37811, 628, 220, 220, 220, 20613, 62, 17953, 62, 48610, 796, 22718, 945, 364, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17953, 1600, 3397, 41888, 8000, 62, 48610, 12962, 628, 220, 220, 220, 20613, 62, 17953, 62, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 439, 3256, 705, 12, 64, 3256, 2223, 11639, 8095, 62, 7942, 11537, 628, 198, 4299, 9058, 62, 9945, 62, 14781, 62, 7266, 48610, 7, 7266, 79, 945, 364, 11, 2560, 62, 48610, 2599, 198, 220, 220, 220, 37227, 46245, 20613, 4268, 850, 12, 48610, 37811, 628, 220, 220, 220, 20613, 62, 14781, 62, 48610, 796, 22718, 945, 364, 13, 2860, 62, 48610, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 1600, 3397, 41888, 8000, 62, 48610, 12962, 628, 220, 220, 220, 20613, 62, 14781, 62, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 439, 3256, 705, 12, 64, 3256, 2223, 11639, 8095, 62, 7942, 11537, 628, 198, 4299, 2251, 33529, 198, 220, 220, 220, 37227, 35561, 1822, 29572, 30751, 526, 15931, 628, 220, 220, 220, 2560, 62, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 2860, 62, 16794, 28, 25101, 8, 198, 220, 220, 220, 2560, 62, 48610, 13, 2860, 62, 49140, 10786, 438, 24442, 3256, 2672, 28, 25101, 11, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 24442, 1600, 1037, 11639, 17278, 16959, 319, 11537, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 22718, 945, 364, 796, 30751, 13, 2860, 62, 7266, 79, 945, 364, 7, 16520, 2625, 48610, 4943, 628, 220, 220, 220, 9058, 62, 9945, 62, 17953, 62, 7266, 48610, 7, 7266, 79, 945, 364, 11, 2560, 62, 48610, 8, 198, 220, 220, 220, 9058, 62, 9945, 62, 14781, 62, 7266, 48610, 7, 7266, 79, 945, 364, 11, 2560, 62, 48610, 8, 628, 220, 220, 220, 1441, 30751, 198 ]
2.813149
578
import pytest from nerwhal.integrated_recognizers.phone_number_recognizer import PhoneNumberRecognizer @pytest.fixture(scope="module") # DIN 5008 # Microsoft's canonical format # E.123 # Others # Non-standard # US style # Not phone numbers
[ 11748, 12972, 9288, 198, 198, 6738, 17156, 1929, 282, 13, 18908, 4111, 62, 26243, 11341, 13, 4862, 62, 17618, 62, 26243, 7509, 1330, 14484, 15057, 6690, 2360, 7509, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 2, 360, 1268, 5323, 23, 628, 628, 628, 198, 2, 5413, 338, 40091, 5794, 628, 628, 198, 198, 2, 412, 13, 10163, 628, 628, 628, 198, 2, 12691, 628, 628, 198, 198, 2, 8504, 12, 20307, 628, 628, 628, 198, 198, 2, 1294, 3918, 628, 628, 628, 198, 2, 1892, 3072, 3146, 628, 628 ]
2.917526
97
# OBSS SAHI Tool # Code written by Kadir Nar, 2022. import unittest from sahi.utils.cv import read_image from sahi.utils.torchvision import TorchVisionTestConstants MODEL_DEVICE = "cpu" CONFIDENCE_THRESHOLD = 0.5 IMAGE_SIZE = 320 if __name__ == "__main__": unittest.main()
[ 2, 440, 4462, 50, 14719, 25374, 16984, 198, 2, 6127, 3194, 416, 31996, 343, 13596, 11, 33160, 13, 628, 198, 11748, 555, 715, 395, 198, 198, 6738, 473, 5303, 13, 26791, 13, 33967, 1330, 1100, 62, 9060, 198, 6738, 473, 5303, 13, 26791, 13, 13165, 354, 10178, 1330, 34868, 44206, 14402, 34184, 1187, 198, 198, 33365, 3698, 62, 7206, 27389, 796, 366, 36166, 1, 198, 10943, 37, 2389, 18310, 62, 4221, 19535, 39, 15173, 796, 657, 13, 20, 198, 3955, 11879, 62, 33489, 796, 20959, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.605505
109
from django.urls import path, include from tool import views from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register('candidates', views.CandidatesViewSet) router.register('jobs', views.JobViewSet) urlpatterns = [ path('', include(router.urls)), path('recruiters/', views.RecruiterView.as_view(), name="recruiters"), path('skills/<int:pk>/', views.SkillsView.as_view(), name="skills"), path('skills/active/', views.ActiveSkills.as_view(), name="active skills"), path('interviews/', views.InterviewView.as_view(), name="interviews"), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 2291, 198, 6738, 2891, 1330, 5009, 198, 198, 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 198, 198, 472, 353, 796, 15161, 49, 39605, 3419, 198, 472, 353, 13, 30238, 10786, 46188, 37051, 3256, 5009, 13, 41572, 37051, 7680, 7248, 8, 198, 472, 353, 13, 30238, 10786, 43863, 3256, 5009, 13, 33308, 7680, 7248, 8, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 2291, 7, 472, 353, 13, 6371, 82, 36911, 198, 220, 220, 220, 3108, 10786, 8344, 4872, 364, 14, 3256, 5009, 13, 6690, 622, 2676, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 8344, 4872, 364, 12340, 198, 220, 220, 220, 3108, 10786, 8135, 2171, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 15739, 2171, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 8135, 2171, 12340, 198, 220, 220, 220, 3108, 10786, 8135, 2171, 14, 5275, 14, 3256, 5009, 13, 13739, 15739, 2171, 13, 292, 62, 1177, 22784, 1438, 2625, 5275, 4678, 12340, 198, 220, 220, 220, 3108, 10786, 3849, 33571, 14, 3256, 5009, 13, 39945, 7680, 13, 292, 62, 1177, 22784, 1438, 2625, 3849, 33571, 12340, 198, 220, 220, 2361 ]
2.911765
204
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import numpy as _np from mxnet.test_utils import same, rand_shape_nd from mxnet.runtime import Features from common import with_seed _features = Features() @with_seed() if __name__ == '__main__': import nose nose.runmodule()
[ 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 11748, 285, 87, 3262, 355, 285, 87, 198, 11748, 299, 32152, 355, 4808, 37659, 198, 6738, 285, 87, 3262, 13, 9288, 62, 26791, 1330, 976, 11, 43720, 62, 43358, 62, 358, 198, 6738, 285, 87, 3262, 13, 43282, 1330, 17571, 198, 6738, 2219, 1330, 351, 62, 28826, 198, 198, 62, 40890, 796, 17571, 3419, 198, 198, 31, 4480, 62, 28826, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 9686, 198, 220, 220, 220, 9686, 13, 5143, 21412, 3419, 198 ]
3.695035
282
import pexpect import timeout_decorator #csk = CreateSSLKey() #csk.start()
[ 11748, 613, 87, 806, 198, 11748, 26827, 62, 12501, 273, 1352, 628, 628, 628, 198, 2, 6359, 74, 796, 13610, 31127, 9218, 3419, 198, 2, 6359, 74, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
2.3
40
import argparse import torch import torch.utils.data.distributed import pprint from utils.MyDataset import MyDataLoader, MyDataset from config import args as default_args, project_root_path import numpy as np import pandas as pd import os from models import ( SOTA_goal_model, AlbertForMultipleChoice, RobertaForMultipleChoiceWithLM, RobertaForMultipleChoice ) from model_modify import ( get_features, create_datasets_with_kbert, train_and_finetune, test ) from utils.semevalUtils import ( get_all_features_from_task_1, get_all_features_from_task_2, ) from transformers import ( RobertaTokenizer, RobertaConfig, ) if __name__ == '__main__': build_parse() # print all config print(project_root_path) pprint.pprint(default_args) # prepare for tokenizer and model tokenizer = RobertaTokenizer.from_pretrained('roberta-large') config = RobertaConfig.from_pretrained('roberta-large') config.hidden_dropout_prob = 0.2 config.attention_probs_dropout_prob = 0.2 if default_args['with_kegat']: # create a model with kegat (or and lm) model = SOTA_goal_model(default_args) elif default_args['with_lm']: model = RobertaForMultipleChoiceWithLM.from_pretrained( 'pre_weights/roberta-large_model.bin', config=config) else: model = RobertaForMultipleChoice.from_pretrained( 'pre_weights/roberta-large_model.bin', config=config) train_data = test_data = optimizer = None print('with_LM: ', 'Yes' if default_args['with_lm'] else 'No') print('with_KEGAT: ', 'Yes' if default_args['with_kegat'] else 'No') print('with_KEmb: ', 'Yes' if default_args['with_kemb'] else 'No') train_features, dev_features, test_features = [], [], [] if default_args['subtask_id'] == 'A': train_features = get_all_features_from_task_1( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskA_data_all.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskA_answers_all.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) dev_features = get_all_features_from_task_1( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskA_dev_data.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskA_gold_answers.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) test_features = get_all_features_from_task_1( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskA_test_data.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskA_gold_answers.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) elif default_args['subtask_id'] == 'B': train_features = get_all_features_from_task_2( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_data_all.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Training Data/subtaskB_answers_all.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) dev_features = get_all_features_from_task_2( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_dev_data.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Dev Data/subtaskB_gold_answers.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) test_features = get_all_features_from_task_2( 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_test_data.csv', 'SemEval2020-Task4-Commonsense-Validation-and-Explanation-master/Testing Data/subtaskB_gold_answers.csv', tokenizer, default_args['max_seq_length'], with_gnn=default_args['with_kegat'], with_k_bert=default_args['with_kemb']) train_dataset = create_datasets_with_kbert(train_features, shuffle=True) dev_dataset = create_datasets_with_kbert(dev_features, shuffle=False) test_dataset = create_datasets_with_kbert(test_features, shuffle=False) if default_args['use_multi_gpu']: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_data = torch.utils.data.DataLoader(train_dataset, batch_size=default_args['batch_size'], sampler=train_sampler) dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_dataset) dev_data = torch.utils.data.DataLoader(dev_dataset, batch_size=default_args['test_batch_size'], sampler=dev_sampler) test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset) test_data = torch.utils.data.DataLoader(test_dataset, batch_size=default_args['test_batch_size'], sampler=test_sampler) else: train_data = MyDataLoader(train_dataset, batch_size=default_args['batch_size']) dev_data = MyDataLoader(dev_dataset, batch_size=default_args['test_batch_size']) test_data = MyDataLoader(test_dataset, batch_size=default_args['test_batch_size']) train_data = list(train_data) dev_data = list(dev_data) test_data = list(test_data) print('train_data len: ', len(train_data)) print('dev_data len: ', len(dev_data)) print('test_data len: ', len(test_data)) dev_acc, (train_pred_opt, dev_pred_opt) = train_and_finetune(model, train_data, dev_data, default_args) _, test_acc, _ = test(model, test_data, default_args) print('Dev acc: ', dev_acc) print('Test acc: ', test_acc)
[ 11748, 1822, 29572, 198, 11748, 28034, 198, 11748, 28034, 13, 26791, 13, 7890, 13, 17080, 6169, 198, 11748, 279, 4798, 198, 6738, 3384, 4487, 13, 3666, 27354, 292, 316, 1330, 2011, 6601, 17401, 11, 2011, 27354, 292, 316, 198, 6738, 4566, 1330, 26498, 355, 4277, 62, 22046, 11, 1628, 62, 15763, 62, 6978, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 198, 6738, 4981, 1330, 357, 198, 220, 220, 220, 311, 29009, 62, 35231, 62, 19849, 11, 198, 220, 220, 220, 9966, 1890, 31217, 46770, 11, 198, 220, 220, 220, 5199, 64, 1890, 31217, 46770, 3152, 31288, 11, 198, 220, 220, 220, 5199, 64, 1890, 31217, 46770, 198, 8, 198, 6738, 2746, 62, 4666, 1958, 1330, 357, 198, 220, 220, 220, 651, 62, 40890, 11, 198, 220, 220, 220, 2251, 62, 19608, 292, 1039, 62, 4480, 62, 74, 4835, 11, 198, 220, 220, 220, 4512, 62, 392, 62, 15643, 316, 1726, 11, 1332, 198, 8, 198, 6738, 3384, 4487, 13, 325, 1326, 2100, 18274, 4487, 1330, 357, 198, 220, 220, 220, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 16, 11, 198, 220, 220, 220, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 17, 11, 198, 8, 198, 6738, 6121, 364, 1330, 357, 198, 220, 220, 220, 5199, 64, 30642, 7509, 11, 198, 220, 220, 220, 5199, 64, 16934, 11, 198, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1382, 62, 29572, 3419, 628, 220, 220, 220, 1303, 3601, 477, 4566, 198, 220, 220, 220, 3601, 7, 16302, 62, 15763, 62, 6978, 8, 198, 220, 220, 220, 279, 4798, 13, 381, 22272, 7, 12286, 62, 22046, 8, 628, 220, 220, 220, 1303, 8335, 329, 11241, 7509, 290, 2746, 198, 220, 220, 220, 11241, 7509, 796, 5199, 64, 30642, 7509, 13, 6738, 62, 5310, 13363, 10786, 305, 4835, 64, 12, 11664, 11537, 198, 220, 220, 220, 4566, 796, 5199, 64, 16934, 13, 6738, 62, 5310, 13363, 10786, 305, 4835, 64, 12, 11664, 11537, 628, 220, 220, 220, 4566, 13, 30342, 62, 14781, 448, 62, 1676, 65, 796, 657, 13, 17, 198, 220, 220, 220, 4566, 13, 1078, 1463, 62, 1676, 1443, 62, 14781, 448, 62, 1676, 65, 796, 657, 13, 17, 628, 220, 220, 220, 611, 4277, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2251, 257, 2746, 351, 885, 41268, 357, 273, 290, 300, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 311, 29009, 62, 35231, 62, 19849, 7, 12286, 62, 22046, 8, 198, 220, 220, 220, 1288, 361, 4277, 62, 22046, 17816, 4480, 62, 75, 76, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 5199, 64, 1890, 31217, 46770, 3152, 31288, 13, 6738, 62, 5310, 13363, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3866, 62, 43775, 14, 305, 4835, 64, 12, 11664, 62, 19849, 13, 8800, 3256, 4566, 28, 11250, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 5199, 64, 1890, 31217, 46770, 13, 6738, 62, 5310, 13363, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3866, 62, 43775, 14, 305, 4835, 64, 12, 11664, 62, 19849, 13, 8800, 3256, 4566, 28, 11250, 8, 628, 220, 220, 220, 4512, 62, 7890, 796, 1332, 62, 7890, 796, 6436, 7509, 796, 6045, 628, 220, 220, 220, 3601, 10786, 4480, 62, 31288, 25, 46083, 705, 5297, 6, 611, 4277, 62, 22046, 17816, 4480, 62, 75, 76, 20520, 2073, 705, 2949, 11537, 198, 220, 220, 220, 3601, 10786, 4480, 62, 42, 7156, 1404, 25, 46083, 705, 5297, 6, 611, 4277, 62, 22046, 17816, 4480, 62, 365, 41268, 20520, 2073, 705, 2949, 11537, 198, 220, 220, 220, 3601, 10786, 4480, 62, 7336, 2022, 25, 46083, 705, 5297, 6, 611, 4277, 62, 22046, 17816, 4480, 62, 365, 2022, 20520, 2073, 705, 2949, 11537, 628, 220, 220, 220, 4512, 62, 40890, 11, 1614, 62, 40890, 11, 1332, 62, 40890, 796, 685, 4357, 685, 4357, 17635, 198, 220, 220, 220, 611, 4277, 62, 22046, 17816, 7266, 35943, 62, 312, 20520, 6624, 705, 32, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 16, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44357, 6060, 14, 7266, 35943, 32, 62, 7890, 62, 439, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44357, 6060, 14, 7266, 35943, 32, 62, 504, 86, 364, 62, 439, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 16, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 13603, 6060, 14, 7266, 35943, 32, 62, 7959, 62, 7890, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 13603, 6060, 14, 7266, 35943, 32, 62, 24267, 62, 504, 86, 364, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 16, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44154, 6060, 14, 7266, 35943, 32, 62, 9288, 62, 7890, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44154, 6060, 14, 7266, 35943, 32, 62, 24267, 62, 504, 86, 364, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 198, 220, 220, 220, 1288, 361, 4277, 62, 22046, 17816, 7266, 35943, 62, 312, 20520, 6624, 705, 33, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44357, 6060, 14, 7266, 35943, 33, 62, 7890, 62, 439, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44357, 6060, 14, 7266, 35943, 33, 62, 504, 86, 364, 62, 439, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 13603, 6060, 14, 7266, 35943, 33, 62, 7959, 62, 7890, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 13603, 6060, 14, 7266, 35943, 33, 62, 24267, 62, 504, 86, 364, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 40890, 796, 651, 62, 439, 62, 40890, 62, 6738, 62, 35943, 62, 17, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44154, 6060, 14, 7266, 35943, 33, 62, 9288, 62, 7890, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13900, 36, 2100, 42334, 12, 25714, 19, 12, 6935, 46563, 12, 7762, 24765, 12, 392, 12, 3109, 11578, 341, 12, 9866, 14, 44154, 6060, 14, 7266, 35943, 33, 62, 24267, 62, 504, 86, 364, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 4277, 62, 22046, 17816, 9806, 62, 41068, 62, 13664, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 4593, 77, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 41268, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 62, 74, 62, 4835, 28, 12286, 62, 22046, 17816, 4480, 62, 365, 2022, 6, 12962, 628, 220, 220, 220, 4512, 62, 19608, 292, 316, 796, 2251, 62, 19608, 292, 1039, 62, 4480, 62, 74, 4835, 7, 27432, 62, 40890, 11, 36273, 28, 17821, 8, 198, 220, 220, 220, 1614, 62, 19608, 292, 316, 796, 2251, 62, 19608, 292, 1039, 62, 4480, 62, 74, 4835, 7, 7959, 62, 40890, 11, 36273, 28, 25101, 8, 198, 220, 220, 220, 1332, 62, 19608, 292, 316, 796, 2251, 62, 19608, 292, 1039, 62, 4480, 62, 74, 4835, 7, 9288, 62, 40890, 11, 36273, 28, 25101, 8, 628, 220, 220, 220, 611, 4277, 62, 22046, 17816, 1904, 62, 41684, 62, 46999, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 37687, 20053, 796, 28034, 13, 26791, 13, 7890, 13, 17080, 6169, 13, 20344, 6169, 16305, 20053, 7, 27432, 62, 19608, 292, 316, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 27432, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 43501, 62, 7857, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 28, 27432, 62, 37687, 20053, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 37687, 20053, 796, 28034, 13, 26791, 13, 7890, 13, 17080, 6169, 13, 20344, 6169, 16305, 20053, 7, 7959, 62, 19608, 292, 316, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 7890, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 7959, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 9288, 62, 43501, 62, 7857, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 28, 7959, 62, 37687, 20053, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 37687, 20053, 796, 28034, 13, 26791, 13, 7890, 13, 17080, 6169, 13, 20344, 6169, 16305, 20053, 7, 9288, 62, 19608, 292, 316, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 796, 28034, 13, 26791, 13, 7890, 13, 6601, 17401, 7, 9288, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 9288, 62, 43501, 62, 7857, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6072, 20053, 28, 9288, 62, 37687, 20053, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 7890, 796, 2011, 6601, 17401, 7, 27432, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 43501, 62, 7857, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1614, 62, 7890, 796, 2011, 6601, 17401, 7, 7959, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 9288, 62, 43501, 62, 7857, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 7890, 796, 2011, 6601, 17401, 7, 9288, 62, 19608, 292, 316, 11, 15458, 62, 7857, 28, 12286, 62, 22046, 17816, 9288, 62, 43501, 62, 7857, 6, 12962, 628, 220, 220, 220, 4512, 62, 7890, 796, 1351, 7, 27432, 62, 7890, 8, 198, 220, 220, 220, 1614, 62, 7890, 796, 1351, 7, 7959, 62, 7890, 8, 198, 220, 220, 220, 1332, 62, 7890, 796, 1351, 7, 9288, 62, 7890, 8, 628, 220, 220, 220, 3601, 10786, 27432, 62, 7890, 18896, 25, 46083, 18896, 7, 27432, 62, 7890, 4008, 198, 220, 220, 220, 3601, 10786, 7959, 62, 7890, 18896, 25, 46083, 18896, 7, 7959, 62, 7890, 4008, 198, 220, 220, 220, 3601, 10786, 9288, 62, 7890, 18896, 25, 46083, 18896, 7, 9288, 62, 7890, 4008, 628, 220, 220, 220, 1614, 62, 4134, 11, 357, 27432, 62, 28764, 62, 8738, 11, 1614, 62, 28764, 62, 8738, 8, 796, 4512, 62, 392, 62, 15643, 316, 1726, 7, 19849, 11, 4512, 62, 7890, 11, 1614, 62, 7890, 11, 4277, 62, 22046, 8, 198, 220, 220, 220, 4808, 11, 1332, 62, 4134, 11, 4808, 796, 1332, 7, 19849, 11, 1332, 62, 7890, 11, 4277, 62, 22046, 8, 198, 220, 220, 220, 3601, 10786, 13603, 697, 25, 46083, 1614, 62, 4134, 8, 198, 220, 220, 220, 3601, 10786, 14402, 697, 25, 46083, 1332, 62, 4134, 8, 198 ]
2.286232
2,760
# python 3.6 import logging import os import random import time from threading import Thread from paho.mqtt import client as mqtt_client logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.INFO) mqtt_broker = os.environ['MQTT_BROKER'] mqtt_topic = os.environ['MQTT_TOPIC'] value_type = os.environ['VALUE_TYPE'] invalid_value_occurrence = int(os.environ['INVALID_VALUE_OCCURRENCE']) mqtt_port = int(os.environ['MQTT_BROKER_PORT']) pod_name = os.environ['POD_NAME'] input_file = os.environ['INPUT_FILE'] # topic = "mqtt/temperature" # username = 'emqx' # password = 'public' # Cast values from string to integer if value_type == 'integer': start_value = int(os.environ['START_VALUE']) end_value = int(os.environ['END_VALUE']) invalid_value = int(os.environ['INVALID_VALUE']) # Cast values from string to flaot if value_type == 'float': start_value = float(os.environ['START_VALUE']) end_value = float(os.environ['END_VALUE']) invalid_value = float(os.environ['INVALID_VALUE']) # Connect to MQTT broker # Generate integer values based on given range of values # Generate float values based on given range of values # Publish message to MQTT topic # using readlines() # while(True): # get_generated_data() if __name__ == '__main__': run()
[ 2, 21015, 513, 13, 21, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 640, 198, 6738, 4704, 278, 1330, 14122, 198, 198, 6738, 279, 17108, 13, 76, 80, 926, 1330, 5456, 355, 285, 80, 926, 62, 16366, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 10778, 8, 198, 198, 76, 80, 926, 62, 7957, 6122, 796, 28686, 13, 268, 2268, 17816, 49215, 15751, 62, 11473, 11380, 1137, 20520, 198, 76, 80, 926, 62, 26652, 796, 28686, 13, 268, 2268, 17816, 49215, 15751, 62, 35222, 2149, 20520, 198, 8367, 62, 4906, 796, 28686, 13, 268, 2268, 17816, 39488, 62, 25216, 20520, 198, 259, 12102, 62, 8367, 62, 13966, 33928, 796, 493, 7, 418, 13, 268, 2268, 17816, 1268, 23428, 2389, 62, 39488, 62, 46, 4093, 31302, 18310, 6, 12962, 198, 76, 80, 926, 62, 634, 796, 493, 7, 418, 13, 268, 2268, 17816, 49215, 15751, 62, 11473, 11380, 1137, 62, 15490, 6, 12962, 198, 33320, 62, 3672, 796, 28686, 13, 268, 2268, 17816, 47, 3727, 62, 20608, 20520, 198, 15414, 62, 7753, 796, 28686, 13, 268, 2268, 17816, 1268, 30076, 62, 25664, 20520, 198, 198, 2, 7243, 796, 366, 76, 80, 926, 14, 11498, 21069, 1, 198, 2, 20579, 796, 705, 368, 80, 87, 6, 198, 2, 9206, 796, 705, 11377, 6, 198, 198, 2, 5833, 3815, 422, 4731, 284, 18253, 198, 361, 1988, 62, 4906, 6624, 705, 41433, 10354, 198, 220, 220, 220, 923, 62, 8367, 796, 493, 7, 418, 13, 268, 2268, 17816, 2257, 7227, 62, 39488, 6, 12962, 198, 220, 220, 220, 886, 62, 8367, 796, 493, 7, 418, 13, 268, 2268, 17816, 10619, 62, 39488, 6, 12962, 198, 220, 220, 220, 12515, 62, 8367, 796, 493, 7, 418, 13, 268, 2268, 17816, 1268, 23428, 2389, 62, 39488, 6, 12962, 198, 198, 2, 5833, 3815, 422, 4731, 284, 781, 64, 313, 198, 361, 1988, 62, 4906, 6624, 705, 22468, 10354, 198, 220, 220, 220, 923, 62, 8367, 796, 12178, 7, 418, 13, 268, 2268, 17816, 2257, 7227, 62, 39488, 6, 12962, 198, 220, 220, 220, 886, 62, 8367, 796, 12178, 7, 418, 13, 268, 2268, 17816, 10619, 62, 39488, 6, 12962, 198, 220, 220, 220, 12515, 62, 8367, 796, 12178, 7, 418, 13, 268, 2268, 17816, 1268, 23428, 2389, 62, 39488, 6, 12962, 628, 198, 2, 8113, 284, 337, 48, 15751, 20426, 628, 198, 2, 2980, 378, 18253, 3815, 1912, 319, 1813, 2837, 286, 3815, 628, 198, 2, 2980, 378, 12178, 3815, 1912, 319, 1813, 2837, 286, 3815, 628, 198, 2, 8525, 1836, 3275, 284, 337, 48, 15751, 7243, 628, 198, 2, 1262, 1100, 6615, 3419, 628, 198, 2, 981, 7, 17821, 2599, 198, 2, 220, 220, 220, 220, 651, 62, 27568, 62, 7890, 3419, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 3419, 198 ]
2.654618
498
import pytest from .app import oso, Organization, Repository, User @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture @pytest.fixture
[ 11748, 12972, 9288, 198, 198, 6738, 764, 1324, 1330, 267, 568, 11, 12275, 11, 1432, 13264, 11, 11787, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 198, 31, 9078, 9288, 13, 69, 9602, 198 ]
2.527473
91
import csv buffer = [] for i in range(0,100): buffer.append(i) print("Writing buffer to buffer.csv now...") data_logger_csv(buffer,"buffer.csv")
[ 11748, 269, 21370, 198, 197, 197, 198, 22252, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 15, 11, 3064, 2599, 198, 197, 22252, 13, 33295, 7, 72, 8, 198, 197, 198, 4798, 7203, 33874, 11876, 284, 11876, 13, 40664, 783, 9313, 8, 198, 7890, 62, 6404, 1362, 62, 40664, 7, 22252, 553, 22252, 13, 40664, 4943 ]
2.678571
56
# -*- coding: utf-8 """Unit tests for the mstranslate event plugin.""" # pylint: disable=missing-docstring,too-few-public-methods from twisted.internet.defer import inlineCallbacks from twisted.trial.unittest import TestCase from ...test.helpers import CommandTestMixin from . import Default
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 198, 37811, 26453, 5254, 329, 262, 285, 2536, 504, 17660, 1785, 13877, 526, 15931, 198, 2, 279, 2645, 600, 25, 15560, 28, 45688, 12, 15390, 8841, 11, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 628, 198, 6738, 19074, 13, 37675, 13, 4299, 263, 1330, 26098, 14134, 10146, 198, 6738, 19074, 13, 45994, 13, 403, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 2644, 9288, 13, 16794, 364, 1330, 9455, 14402, 35608, 259, 198, 198, 6738, 764, 1330, 15161, 628 ]
3.3
90
from abc import ABCMeta, abstractmethod class DefaultExperimentProvider(object): """ Abstract base class for objects that provide the ID of an MLflow Experiment based on the current client context. For example, when the MLflow client is running in a Databricks Job, a provider is used to obtain the ID of the MLflow Experiment associated with the Job. Usually the experiment_id is set explicitly by the user, but if the experiment is not set, MLflow computes a default experiment id based on different contexts. When an experiment is created via the fluent ``mlflow.start_run`` method, MLflow iterates through the registered ``DefaultExperimentProvider``s until it finds one whose ``in_context()`` method returns ``True``; MLflow then calls the provider's ``get_experiment_id()`` method and uses the resulting experiment ID for Tracking operations. """ __metaclass__ = ABCMeta @abstractmethod def in_context(self): """ Determine if the MLflow client is running in a context where this provider can identify an associated MLflow Experiment ID. :return: ``True`` if the MLflow client is running in a context where the provider can identify an associated MLflow Experiment ID. ``False`` otherwise. """ pass @abstractmethod def get_experiment_id(self): """ Provide the MLflow Experiment ID for the current MLflow client context. Assumes that ``in_context()`` is ``True``. :return: The ID of the MLflow Experiment associated with the current context. """ pass
[ 6738, 450, 66, 1330, 9738, 48526, 11, 12531, 24396, 628, 198, 4871, 15161, 20468, 3681, 29495, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 2779, 1398, 329, 5563, 326, 2148, 262, 4522, 286, 281, 10373, 11125, 29544, 1912, 319, 262, 198, 220, 220, 220, 1459, 5456, 4732, 13, 1114, 1672, 11, 618, 262, 10373, 11125, 5456, 318, 2491, 287, 257, 16092, 397, 23706, 15768, 11, 198, 220, 220, 220, 257, 10131, 318, 973, 284, 7330, 262, 4522, 286, 262, 10373, 11125, 29544, 3917, 351, 262, 15768, 13, 628, 220, 220, 220, 19672, 262, 6306, 62, 312, 318, 900, 11777, 416, 262, 2836, 11, 475, 611, 262, 6306, 318, 407, 900, 11, 198, 220, 220, 220, 10373, 11125, 552, 1769, 257, 4277, 6306, 4686, 1912, 319, 1180, 26307, 13, 198, 220, 220, 220, 1649, 281, 6306, 318, 2727, 2884, 262, 43472, 7559, 76, 1652, 9319, 13, 9688, 62, 5143, 15506, 2446, 11, 10373, 11125, 11629, 689, 198, 220, 220, 220, 832, 262, 6823, 7559, 19463, 20468, 3681, 29495, 15506, 82, 1566, 340, 7228, 530, 3025, 198, 220, 220, 220, 7559, 259, 62, 22866, 3419, 15506, 2446, 5860, 7559, 17821, 15506, 26, 10373, 11125, 788, 3848, 262, 10131, 338, 198, 220, 220, 220, 7559, 1136, 62, 23100, 3681, 62, 312, 3419, 15506, 2446, 290, 3544, 262, 7186, 6306, 4522, 329, 37169, 4560, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 4164, 330, 31172, 834, 796, 9738, 48526, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 287, 62, 22866, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 45559, 3810, 611, 262, 10373, 11125, 5456, 318, 2491, 287, 257, 4732, 810, 428, 10131, 460, 198, 220, 220, 220, 220, 220, 220, 220, 5911, 281, 3917, 10373, 11125, 29544, 4522, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7559, 17821, 15506, 611, 262, 10373, 11125, 5456, 318, 2491, 287, 257, 4732, 810, 262, 10131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 5911, 281, 3917, 10373, 11125, 29544, 4522, 13, 7559, 25101, 15506, 4306, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 2488, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 62, 23100, 3681, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 44290, 262, 10373, 11125, 29544, 4522, 329, 262, 1459, 10373, 11125, 5456, 4732, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2195, 8139, 326, 7559, 259, 62, 22866, 3419, 15506, 318, 7559, 17821, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 4522, 286, 262, 10373, 11125, 29544, 3917, 351, 262, 1459, 4732, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
3.251984
504
# -*- coding: utf-8 -*- """Provide a traversal root that looks up registered resources.""" __all__ = [ 'EngineRoot', ] import logging logger = logging.getLogger(__name__) import zope.interface as zi import pyramid_basemodel as bm from pyramid_basemodel import container from pyramid_basemodel import tree from . import auth from . import util QUERY_SPEC = { 'property_name': 'id', 'validator': util.id_validator, } class EngineRoot(tree.BaseContentRoot): """Lookup registered resources by tablename and id, wrapping the result in an ACL wrapper that restricts access by api key. """ @property def add_engine_resource(config, resource_cls, container_iface, query_spec=None): """Populate the ``registry.engine_resource_mapping``.""" # Compose. if not query_spec: query_spec = QUERY_SPEC # Unpack. registry = config.registry tablename = resource_cls.class_slug # Create the container class. class_name = '{0}Container'.format(resource_cls.__name__) container_cls = type(class_name, (ResourceContainer,), {}) zi.classImplements(container_cls, container_iface) # Make sure we have a mapping. if not hasattr(registry, 'engine_resource_mapping'): registry.engine_resource_mapping = {} # Prepare a function to actually populate the mapping. # Register the configuration action with a discriminator so that we # don't register the same class twice. discriminator = ('engine.traverse', tablename,) # Make it introspectable. intr = config.introspectable(category_name='engine resources', discriminator=discriminator, title='An engine resource', type_name=None) intr['value'] = resource_cls, container_iface config.action(discriminator, register, introspectables=(intr,)) def includeme(config, add_resource=None): """Provide the ``config.add_engine_resource`` directive.""" config.add_directive('add_engine_resource', add_engine_resource)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 15946, 485, 257, 33038, 282, 6808, 326, 3073, 510, 6823, 4133, 526, 15931, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 13798, 30016, 3256, 198, 60, 198, 198, 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 11748, 1976, 3008, 13, 39994, 355, 1976, 72, 198, 11748, 27944, 62, 12093, 368, 375, 417, 355, 275, 76, 198, 198, 6738, 27944, 62, 12093, 368, 375, 417, 1330, 9290, 198, 6738, 27944, 62, 12093, 368, 375, 417, 1330, 5509, 198, 198, 6738, 764, 1330, 6284, 198, 6738, 764, 1330, 7736, 198, 198, 10917, 19664, 62, 48451, 796, 1391, 198, 220, 220, 220, 705, 26745, 62, 3672, 10354, 705, 312, 3256, 198, 220, 220, 220, 705, 12102, 1352, 10354, 7736, 13, 312, 62, 12102, 1352, 11, 198, 92, 198, 198, 4871, 7117, 30016, 7, 21048, 13, 14881, 19746, 30016, 2599, 198, 220, 220, 220, 37227, 8567, 929, 6823, 4133, 416, 7400, 11925, 480, 290, 4686, 11, 27074, 262, 1255, 198, 220, 220, 220, 220, 220, 287, 281, 17382, 29908, 326, 47075, 1895, 416, 40391, 1994, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 198, 4299, 751, 62, 18392, 62, 31092, 7, 11250, 11, 8271, 62, 565, 82, 11, 9290, 62, 361, 558, 11, 12405, 62, 16684, 28, 14202, 2599, 198, 220, 220, 220, 37227, 16979, 5039, 262, 7559, 2301, 4592, 13, 18392, 62, 31092, 62, 76, 5912, 15506, 526, 15931, 628, 220, 220, 220, 1303, 3082, 577, 13, 198, 220, 220, 220, 611, 407, 12405, 62, 16684, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 16684, 796, 19604, 19664, 62, 48451, 628, 220, 220, 220, 1303, 791, 8002, 13, 198, 220, 220, 220, 20478, 796, 4566, 13, 2301, 4592, 198, 220, 220, 220, 7400, 11925, 480, 796, 8271, 62, 565, 82, 13, 4871, 62, 6649, 1018, 628, 220, 220, 220, 1303, 13610, 262, 9290, 1398, 13, 198, 220, 220, 220, 1398, 62, 3672, 796, 705, 90, 15, 92, 29869, 4458, 18982, 7, 31092, 62, 565, 82, 13, 834, 3672, 834, 8, 198, 220, 220, 220, 9290, 62, 565, 82, 796, 2099, 7, 4871, 62, 3672, 11, 357, 26198, 29869, 11, 828, 23884, 8, 198, 220, 220, 220, 1976, 72, 13, 4871, 3546, 1154, 902, 7, 34924, 62, 565, 82, 11, 9290, 62, 361, 558, 8, 628, 220, 220, 220, 1303, 6889, 1654, 356, 423, 257, 16855, 13, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 2301, 4592, 11, 705, 18392, 62, 31092, 62, 76, 5912, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20478, 13, 18392, 62, 31092, 62, 76, 5912, 796, 23884, 628, 220, 220, 220, 1303, 43426, 257, 2163, 284, 1682, 48040, 262, 16855, 13, 628, 220, 220, 220, 1303, 17296, 262, 8398, 2223, 351, 257, 6534, 20900, 523, 326, 356, 198, 220, 220, 220, 1303, 836, 470, 7881, 262, 976, 1398, 5403, 13, 198, 220, 220, 220, 6534, 20900, 796, 19203, 18392, 13, 9535, 4399, 3256, 7400, 11925, 480, 35751, 628, 220, 220, 220, 1303, 6889, 340, 18951, 4443, 540, 13, 198, 220, 220, 220, 9913, 796, 4566, 13, 600, 305, 4443, 540, 7, 22872, 62, 3672, 11639, 18392, 4133, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6534, 20900, 28, 15410, 3036, 20900, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 2025, 3113, 8271, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 3672, 28, 14202, 8, 198, 220, 220, 220, 9913, 17816, 8367, 20520, 796, 8271, 62, 565, 82, 11, 9290, 62, 361, 558, 628, 220, 220, 220, 4566, 13, 2673, 7, 15410, 3036, 20900, 11, 7881, 11, 18951, 4443, 2977, 16193, 600, 81, 11, 4008, 628, 198, 4299, 846, 34755, 7, 11250, 11, 751, 62, 31092, 28, 14202, 2599, 198, 220, 220, 220, 37227, 15946, 485, 262, 7559, 11250, 13, 2860, 62, 18392, 62, 31092, 15506, 22644, 526, 15931, 628, 220, 220, 220, 4566, 13, 2860, 62, 12942, 425, 10786, 2860, 62, 18392, 62, 31092, 3256, 751, 62, 18392, 62, 31092, 8, 198 ]
2.713168
767
#!/usr/bin/env python import urllib2 httpCode = http_code() uri = ["https://www.digitalocean.com/community/tutorials/how-to-import-and-export-databases-in-mysql-or-mariadb/lkajsklas/90/laksjkjas/alsjhkahskjas/asjhakjshkjas/aslkjakslj"] for i in uri: httpCode.error(i) print '\n'
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 628, 198, 11748, 2956, 297, 571, 17, 628, 198, 220, 220, 220, 220, 220, 198, 198, 4023, 10669, 796, 2638, 62, 8189, 3419, 198, 198, 9900, 796, 14631, 5450, 1378, 2503, 13, 34725, 78, 5829, 13, 785, 14, 28158, 14, 83, 44917, 82, 14, 4919, 12, 1462, 12, 11748, 12, 392, 12, 39344, 12, 19608, 18826, 12, 259, 12, 28744, 13976, 12, 273, 12, 76, 2743, 324, 65, 14, 75, 74, 1228, 8135, 21921, 14, 3829, 14, 75, 4730, 73, 74, 28121, 14, 874, 73, 71, 74, 993, 8135, 28121, 14, 292, 73, 43573, 73, 1477, 74, 28121, 14, 292, 75, 42421, 4730, 75, 73, 8973, 198, 1640, 1312, 287, 2956, 72, 25, 198, 220, 220, 220, 2638, 10669, 13, 18224, 7, 72, 8, 198, 220, 220, 220, 3601, 705, 59, 77, 6, 628, 198, 197 ]
2.097222
144
#!/usr/bin/env python # -*- coding: utf-8 -*- import urllib2 response = urllib2.urlopen("https://www.python.org/") html = response.read() # print out the HTML response print(html)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 2956, 297, 571, 17, 198, 198, 26209, 796, 2956, 297, 571, 17, 13, 6371, 9654, 7203, 5450, 1378, 2503, 13, 29412, 13, 2398, 14, 4943, 198, 6494, 796, 2882, 13, 961, 3419, 198, 198, 2, 3601, 503, 262, 11532, 2882, 198, 4798, 7, 6494, 8, 198 ]
2.577465
71
# LOCAL IMPORTS from Connection.connection import Connection # connecting to SQL database """ It's meant to be run only before using the project for the first time (or at least for the first time in a certain database (make sure you changed parameters in Connection/'con_parameters.py' file. """ with Connection() as con: cursor=con.cursor() cursor.execute('DROP TABLE IF EXISTS decks CASCADE') """ Deck table: created for storing names and options of existing decks (for example to know if called deck has to be created) and managing daily new cards limits. """ cursor.execute("""CREATE TABLE decks( name TEXT, new_limit INT, limit_left INT, last_date DATE, EASE_FACTOR FLOAT, EASY_BONUS FLOAT, REVIEW_INTERVAL INT, EASY_REVIEW_INTERVAL INT, EARLY_LEARNING INT, NEW_STEPS FLOAT[], LAPSE_STEPS FLOAT[], PRIMARY KEY (name)) """)
[ 2, 37347, 1847, 30023, 33002, 201, 198, 6738, 26923, 13, 38659, 1330, 26923, 1303, 14320, 284, 16363, 6831, 201, 198, 37811, 201, 198, 220, 220, 220, 632, 338, 4001, 284, 307, 1057, 691, 878, 1262, 262, 1628, 329, 262, 717, 640, 357, 273, 379, 1551, 329, 262, 717, 640, 287, 201, 198, 220, 220, 220, 257, 1728, 6831, 357, 15883, 1654, 345, 3421, 10007, 287, 26923, 14, 6, 1102, 62, 17143, 7307, 13, 9078, 6, 2393, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 4480, 26923, 3419, 355, 369, 25, 201, 198, 220, 220, 220, 23493, 28, 1102, 13, 66, 21471, 3419, 201, 198, 220, 220, 220, 23493, 13, 41049, 10786, 7707, 3185, 43679, 16876, 7788, 1797, 4694, 13136, 35106, 34, 19266, 11537, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 20961, 3084, 25, 2727, 329, 23069, 3891, 290, 3689, 286, 4683, 13136, 357, 1640, 1672, 284, 760, 611, 1444, 6203, 468, 284, 307, 2727, 8, 201, 198, 220, 220, 220, 290, 11149, 4445, 649, 4116, 7095, 13, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 23493, 13, 41049, 7203, 15931, 43387, 6158, 43679, 13136, 7, 201, 198, 220, 220, 220, 1438, 40383, 11, 220, 201, 198, 220, 220, 220, 649, 62, 32374, 17828, 11, 220, 201, 198, 220, 220, 220, 4179, 62, 9464, 17828, 11, 220, 201, 198, 220, 220, 220, 938, 62, 4475, 360, 6158, 11, 220, 201, 198, 220, 220, 220, 412, 11159, 62, 37, 10659, 1581, 9977, 46, 1404, 11, 201, 198, 220, 220, 220, 412, 26483, 62, 33, 1340, 2937, 9977, 46, 1404, 11, 220, 201, 198, 220, 220, 220, 4526, 28206, 62, 41358, 23428, 17828, 11, 220, 201, 198, 220, 220, 220, 412, 26483, 62, 2200, 28206, 62, 41358, 23428, 17828, 11, 220, 201, 198, 220, 220, 220, 31834, 11319, 62, 2538, 1503, 15871, 17828, 11, 220, 201, 198, 220, 220, 220, 12682, 62, 30516, 3705, 9977, 46, 1404, 58, 4357, 220, 201, 198, 220, 220, 220, 406, 2969, 5188, 62, 30516, 3705, 9977, 46, 1404, 58, 4357, 220, 201, 198, 220, 220, 220, 4810, 3955, 13153, 35374, 357, 3672, 4008, 201, 198, 220, 220, 220, 13538, 4943, 201, 198, 201, 198, 201, 198 ]
2.618529
367
import sys sys.path.insert(0, "/home/puneeth/Projects/GAN/GenerativeAdversarialNetworks/utilities") import mini_batch_gradient_descent as gd import plotting_functions as pf import numpy as np X = np.transpose(np.random.random_sample(10) * 2.0) obj = [X] mle = gd.GradientDescentOptimizer(X, 10**-4, 1) theta = mle.optimize() # print(np.random.normal(theta[0], theta[1], 5)) # print("gaussian", gaussian(X, [5, 5])) pred = np.transpose(gaussian(X, theta)) obj.append(pred) print(theta) print("theta") pf.plot_graphs(1, 5, 10, obj)
[ 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 12813, 11195, 14, 79, 1726, 2788, 14, 16775, 82, 14, 45028, 14, 8645, 876, 2782, 690, 36098, 7934, 5225, 14, 315, 2410, 4943, 198, 11748, 9927, 62, 43501, 62, 49607, 62, 8906, 1087, 355, 308, 67, 198, 11748, 29353, 62, 12543, 2733, 355, 279, 69, 198, 11748, 299, 32152, 355, 45941, 198, 55, 796, 45941, 13, 7645, 3455, 7, 37659, 13, 25120, 13, 25120, 62, 39873, 7, 940, 8, 1635, 362, 13, 15, 8, 198, 26801, 796, 685, 55, 60, 198, 76, 293, 796, 308, 67, 13, 42731, 1153, 5960, 1087, 27871, 320, 7509, 7, 55, 11, 838, 1174, 12, 19, 11, 352, 8, 198, 1169, 8326, 796, 285, 293, 13, 40085, 1096, 3419, 198, 2, 3601, 7, 37659, 13, 25120, 13, 11265, 7, 1169, 8326, 58, 15, 4357, 262, 8326, 58, 16, 4357, 642, 4008, 198, 2, 3601, 7203, 4908, 31562, 1600, 31986, 31562, 7, 55, 11, 685, 20, 11, 642, 60, 4008, 198, 28764, 796, 45941, 13, 7645, 3455, 7, 4908, 31562, 7, 55, 11, 262, 8326, 4008, 198, 26801, 13, 33295, 7, 28764, 8, 198, 4798, 7, 1169, 8326, 8, 198, 4798, 7203, 1169, 8326, 4943, 198, 79, 69, 13, 29487, 62, 34960, 82, 7, 16, 11, 642, 11, 838, 11, 26181, 8 ]
2.437788
217
# Import Setup and Dependancies import numpy as np import datetime as dt import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify ########## Database Setup ########### engine = create_engine("sqlite:///Resources/hawaii.sqlite") # Reflect an existing database and tables Base = automap_base() # Reflect the tables Base.prepare(engine, reflect=True) # Save reference to the tables Measurement = Base.classes.measurement Station = Base.classes.station # Create an app app = Flask(__name__) ########## Flask Routes ########## @app.route("/") def welcome(): """List all available api routes.""" return ( f"Welcome to Hawaii Climate Home Page<br/> " f"Available Routes:<br/>" f"<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/min_max_avg/&lt;start&gt;<br/>" f"/api/v1.0/min_max_avg/&lt;start&gt;/&lt;end&gt;<br/>" f"<br/>" ) @app.route("/api/v1.0/precipitation") @app.route("/api/v1.0/stations") @app.route("/api/v1.0/tobs") @app.route("/api/v1.0/min_max_avg/<start>") def temp_range_start(start): """TMIN, TAVG, and TMAX per date starting from a starting date. Args: start (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVE, and TMAX """ start_date = dt.datetime.strptime(start, '%Y-%m-%d') # Create our session (link) from Python to the Database session = Session(engine) results = session.query(Measurement.date,\ func.min(Measurement.tobs), \ func.avg(Measurement.tobs), \ func.max(Measurement.tobs)).\ filter(Measurement.date>=start).\ group_by(Measurement.date).all() # Create a list to hold results start_list = [] for start_date, min, avg, max in results: dict_a = {} dict_a["Date"] = start_date dict_a["TMIN"] = min dict_a["TAVG"] = avg dict_a["TMAX"] = max start_list.append(dict_a) session.close() # jsonify the result return jsonify(start_list) @app.route("/api/v1.0/min_max_avg/<start>/<end>") #run the app if __name__ == "__main__": app.run(debug=True) ## EOF ##
[ 2, 17267, 31122, 290, 37947, 16183, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 4818, 8079, 355, 288, 83, 198, 11748, 44161, 282, 26599, 220, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 2306, 296, 499, 1330, 3557, 499, 62, 8692, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 23575, 220, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 11, 25439, 198, 6738, 42903, 1330, 46947, 11, 33918, 1958, 198, 198, 7804, 2235, 24047, 31122, 1303, 7804, 2235, 220, 198, 18392, 796, 2251, 62, 18392, 7203, 25410, 578, 1378, 14, 33236, 14, 26615, 42648, 13, 25410, 578, 4943, 198, 198, 2, 36901, 281, 4683, 6831, 290, 8893, 198, 14881, 796, 3557, 499, 62, 8692, 3419, 198, 198, 2, 36901, 262, 8893, 220, 198, 14881, 13, 46012, 533, 7, 18392, 11, 4079, 28, 17821, 8, 198, 198, 2, 12793, 4941, 284, 262, 8893, 220, 198, 47384, 434, 796, 7308, 13, 37724, 13, 1326, 5015, 434, 220, 198, 12367, 796, 7308, 13, 37724, 13, 17529, 198, 198, 2, 13610, 281, 598, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 7804, 2235, 46947, 39602, 274, 1303, 7804, 2, 220, 198, 31, 1324, 13, 38629, 7203, 14, 4943, 220, 198, 4299, 7062, 33529, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 8053, 477, 1695, 40391, 11926, 526, 15931, 198, 220, 220, 220, 1441, 357, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14618, 284, 13708, 13963, 5995, 7873, 27, 1671, 15913, 366, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 10493, 39602, 274, 25, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 15042, 14, 85, 16, 13, 15, 14, 3866, 66, 541, 3780, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 15042, 14, 85, 16, 13, 15, 14, 301, 602, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 15042, 14, 85, 16, 13, 15, 14, 83, 8158, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 15042, 14, 85, 16, 13, 15, 14, 1084, 62, 9806, 62, 615, 70, 14, 5, 2528, 26, 9688, 5, 13655, 26, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 14, 15042, 14, 85, 16, 13, 15, 14, 1084, 62, 9806, 62, 615, 70, 14, 5, 2528, 26, 9688, 5, 13655, 26, 14, 5, 2528, 26, 437, 5, 13655, 26, 27, 1671, 15913, 1, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 27, 1671, 15913, 1, 198, 220, 220, 220, 1267, 198, 198, 31, 1324, 13, 38629, 7203, 14, 15042, 14, 85, 16, 13, 15, 14, 3866, 66, 541, 3780, 4943, 220, 198, 198, 31, 1324, 13, 38629, 7203, 14, 15042, 14, 85, 16, 13, 15, 14, 301, 602, 4943, 220, 198, 198, 31, 1324, 13, 38629, 7203, 14, 15042, 14, 85, 16, 13, 15, 14, 83, 8158, 4943, 220, 198, 198, 31, 1324, 13, 38629, 7203, 14, 15042, 14, 85, 16, 13, 15, 14, 1084, 62, 9806, 62, 615, 70, 14, 27, 9688, 29, 4943, 220, 198, 4299, 20218, 62, 9521, 62, 9688, 7, 9688, 2599, 198, 220, 220, 220, 37227, 15972, 1268, 11, 309, 10116, 38, 11, 290, 309, 22921, 583, 3128, 3599, 422, 257, 3599, 3128, 13, 198, 220, 220, 220, 943, 14542, 25, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 923, 357, 8841, 2599, 317, 3128, 4731, 287, 262, 5794, 4064, 56, 12, 4, 76, 12, 4, 67, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21232, 1268, 11, 21664, 6089, 11, 290, 309, 22921, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 923, 62, 4475, 796, 288, 83, 13, 19608, 8079, 13, 2536, 457, 524, 7, 9688, 11, 705, 4, 56, 12, 4, 76, 12, 4, 67, 11537, 628, 220, 220, 220, 1303, 13610, 674, 6246, 357, 8726, 8, 422, 11361, 284, 262, 24047, 220, 220, 220, 220, 198, 220, 220, 220, 6246, 796, 23575, 7, 18392, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2482, 796, 6246, 13, 22766, 7, 47384, 434, 13, 4475, 11, 59, 198, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 1084, 7, 47384, 434, 13, 83, 8158, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 615, 70, 7, 47384, 434, 13, 83, 8158, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 13, 9806, 7, 47384, 434, 13, 83, 8158, 29720, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 7, 47384, 434, 13, 4475, 29, 28, 9688, 737, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 62, 1525, 7, 47384, 434, 13, 4475, 737, 439, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 257, 1351, 284, 1745, 2482, 198, 220, 220, 220, 923, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 923, 62, 4475, 11, 949, 11, 42781, 11, 3509, 287, 2482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 64, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 64, 14692, 10430, 8973, 796, 923, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 64, 14692, 15972, 1268, 8973, 796, 949, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 64, 14692, 5603, 43490, 8973, 796, 42781, 198, 220, 220, 220, 220, 220, 220, 220, 8633, 62, 64, 14692, 51, 22921, 8973, 796, 3509, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4868, 13, 33295, 7, 11600, 62, 64, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6246, 13, 19836, 3419, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 33918, 1958, 262, 1255, 198, 220, 220, 220, 1441, 33918, 1958, 7, 9688, 62, 4868, 8, 198, 198, 31, 1324, 13, 38629, 7203, 14, 15042, 14, 85, 16, 13, 15, 14, 1084, 62, 9806, 62, 615, 70, 14, 27, 9688, 29, 14, 27, 437, 29, 4943, 198, 198, 2, 5143, 262, 598, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 8, 628, 220, 220, 220, 22492, 412, 19238, 22492 ]
2.18552
1,105
from lib.database import db_connect
[ 6738, 9195, 13, 48806, 1330, 20613, 62, 8443 ]
4.375
8
# -*- coding: utf-8 -*- from __future__ import unicode_literals from werkzeug.wrappers import Response import frappe import json __version__ = '0.0.1' @frappe.whitelist(allow_guest=True) # api url: http://<site_name>/api/method/vsf_erpnext.cart.update?token=&cartId= @frappe.whitelist(allow_guest=True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 6738, 266, 9587, 2736, 1018, 13, 29988, 11799, 1330, 18261, 198, 11748, 5306, 27768, 198, 11748, 33918, 198, 834, 9641, 834, 796, 705, 15, 13, 15, 13, 16, 6, 628, 198, 31, 69, 430, 27768, 13, 1929, 270, 46331, 7, 12154, 62, 5162, 395, 28, 17821, 8, 198, 2, 40391, 19016, 25, 2638, 1378, 27, 15654, 62, 3672, 29, 14, 15042, 14, 24396, 14, 14259, 69, 62, 263, 79, 19545, 13, 26674, 13, 19119, 30, 30001, 28, 5, 26674, 7390, 28, 628, 198, 31, 69, 430, 27768, 13, 1929, 270, 46331, 7, 12154, 62, 5162, 395, 28, 17821, 8, 198 ]
2.456
125
import pytest from gaea.config import CONFIG from hermes.constants import SENDER, TO from hermes.email_engine import EmailEngine @pytest.fixture(scope="module", autouse=True)
[ 11748, 12972, 9288, 198, 198, 6738, 308, 44705, 13, 11250, 1330, 25626, 198, 198, 6738, 607, 6880, 13, 9979, 1187, 1330, 311, 10619, 1137, 11, 5390, 198, 6738, 607, 6880, 13, 12888, 62, 18392, 1330, 9570, 13798, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 21412, 1600, 1960, 1076, 28, 17821, 8, 628, 628, 198 ]
3.155172
58
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pprint import math import urllib.request, urllib.error, urllib.parse import sys import traceback import re import time import urllib.parse import types import json import string import copy import threading import localconstants import util import random import datetime import http.cookies """ Handles incoming queries for the search UI. """ TRACE = False if not localconstants.isDev: TRACE = False allProjects = ('Tika', 'Solr', 'Lucene', 'Infrastructure') DO_PROX_HIGHLIGHT = False MAX_INT = (1 << 31) - 1 jiraSpec = JIRASpec() jiraSpec.doAutoComplete = True jiraSpec.showGridOrList = False jiraSpec.indexName = 'jira' jiraSpec.itemLabel = 'issues' if False: # (field, userLabel, facetField) jiraSpec.groups = ( ('assignee', 'assignee', 'assignee'), ('facetPriority', 'priority', 'facetPriority'), ) # (id, userLabel, field, reverse): jiraSpec.sorts = ( ('relevanceRecency', 'relevance + recency', 'blendRecencyRelevance', True), ('relevance', 'pure relevance', None, False), ('oldest', 'oldest', 'created', False), ('commentCount', 'most comments', 'commentCount', True), ('voteCount', 'most votes', 'voteCount', True), ('watchCount', 'most watches', 'watchCount', True), ('newest', 'newest', 'created', True), ('priority', 'priority', 'priority', False), #('notRecentlyUpdated', 'not recently updated', 'updated', False), ('recentlyUpdated', 'recently updated', 'updated', True), #('keyNum', 'issue number', 'keyNum', False), ) jiraSpec.retrieveFields = ( 'key', 'updated', 'created', {'field': 'allUsers', 'highlight': 'whole'}, 'status', 'author', 'commentID', 'commentCount', 'voteCount', 'watchCount', 'commitURL', {'field': 'summary', 'highlight': 'whole'}, {'field': 'description', 'highlight': 'snippets'}, {'field': 'body', 'highlight': 'snippets'}, ) jiraSpec.highlighter = { 'class': 'PostingsHighlighter', 'passageScorer.b': 0.75, 'maxPassages': 3, 'maxLength': 1000000} # (userLabel, fieldName, isHierarchy, sort, doMorePopup) jiraSpec.facetFields = ( ('Status', 'status', False, None, False), ('Project', 'project', False, None, False), ('Updated', 'updated', False, None, False), ('Updated ago', 'updatedAgo', False, None, False), ('User', 'allUsers', False, None, True), ('Committed by', 'committedBy', False, None, True), ('Last comment user', 'lastContributor', False, None, True), ('Fix version', 'fixVersions', True, '-int', True), ('Committed paths', 'committedPaths', True, None, False), ('Component', 'facetComponents', True, None, True), ('Type', 'issueType', False, None, True), ('Priority', 'facetPriority', False, None, False), ('Labels', 'labels', False, None, True), ('Attachment?', 'attachments', False, None, False), ('Commits?', 'hasCommits', False, None, False), ('Has votes?', 'hasVotes', True, None, False), ('Reporter', 'reporter', False, None, True), ('Assignee', 'assignee', False, None, True), ('Resolution', 'resolution', False, None, False), #('Created', 'facetCreated', True, None, False), ) jiraSpec.textQueryFields = ['summary', 'description'] # nocommit can we do key descending as number...? jiraSpec.browseOnlyDefaultSort = 'recentlyUpdated' jiraSpec.finish() escape = util.escape chars = string.ascii_lowercase + string.digits reIssue = re.compile('([A-Z]+-\d+)') CHECKMARK = '&#x2713;' reNumber = re.compile(r'^[\-0-9]+\.[0-9]+') opticalZoomSortOrder = [ '1x', '1x-3x', '3x-6x', '6x-10x', '10x-20x', 'Over 20x', ] weightSortOrder = [ '0 - .25', '.25 - .50', '.50 - .75', '.75 - 1.0', 'Over 1.0', ]
[ 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 393, 517, 198, 2, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 9387, 351, 198, 2, 428, 670, 329, 3224, 1321, 5115, 6634, 9238, 13, 198, 2, 383, 7054, 37, 16625, 428, 2393, 284, 921, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 198, 2, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 279, 4798, 198, 11748, 10688, 198, 11748, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 18224, 11, 2956, 297, 571, 13, 29572, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 11748, 302, 198, 11748, 640, 198, 11748, 2956, 297, 571, 13, 29572, 198, 11748, 3858, 198, 11748, 33918, 198, 11748, 4731, 198, 11748, 4866, 198, 11748, 4704, 278, 198, 11748, 1957, 9979, 1187, 198, 11748, 7736, 198, 11748, 4738, 198, 11748, 4818, 8079, 198, 11748, 2638, 13, 27916, 444, 198, 198, 37811, 198, 12885, 829, 15619, 20743, 329, 262, 2989, 12454, 13, 198, 37811, 198, 198, 5446, 11598, 796, 10352, 198, 198, 361, 407, 1957, 9979, 1187, 13, 271, 13603, 25, 198, 220, 7579, 11598, 796, 10352, 198, 198, 439, 16775, 82, 796, 19203, 51, 9232, 3256, 705, 36949, 81, 3256, 705, 22946, 1734, 3256, 705, 18943, 6410, 11537, 198, 198, 18227, 62, 31190, 55, 62, 39, 3528, 6581, 9947, 796, 10352, 198, 198, 22921, 62, 12394, 796, 357, 16, 9959, 3261, 8, 532, 352, 198, 198, 73, 8704, 22882, 796, 449, 4663, 1921, 43106, 3419, 198, 73, 8704, 22882, 13, 4598, 27722, 20988, 796, 6407, 198, 73, 8704, 22882, 13, 12860, 41339, 5574, 8053, 796, 10352, 198, 73, 8704, 22882, 13, 9630, 5376, 796, 705, 73, 8704, 6, 198, 73, 8704, 22882, 13, 9186, 33986, 796, 705, 37165, 6, 198, 198, 361, 10352, 25, 198, 220, 1303, 357, 3245, 11, 2836, 33986, 11, 39144, 15878, 8, 198, 220, 474, 8704, 22882, 13, 24432, 796, 357, 198, 220, 220, 220, 19203, 562, 570, 1453, 3256, 705, 562, 570, 1453, 3256, 705, 562, 570, 1453, 33809, 198, 220, 220, 220, 19203, 69, 23253, 22442, 414, 3256, 705, 49336, 3256, 705, 69, 23253, 22442, 414, 33809, 198, 220, 220, 220, 1267, 198, 198, 2, 357, 312, 11, 2836, 33986, 11, 2214, 11, 9575, 2599, 198, 73, 8704, 22882, 13, 82, 2096, 796, 357, 198, 220, 19203, 260, 2768, 590, 6690, 1387, 3256, 705, 260, 2768, 590, 1343, 664, 1387, 3256, 705, 2436, 437, 6690, 1387, 3041, 2768, 590, 3256, 6407, 828, 198, 220, 19203, 260, 2768, 590, 3256, 705, 37424, 23082, 3256, 6045, 11, 10352, 828, 198, 220, 19203, 727, 395, 3256, 705, 727, 395, 3256, 705, 25598, 3256, 10352, 828, 198, 220, 19203, 23893, 12332, 3256, 705, 1712, 3651, 3256, 705, 23893, 12332, 3256, 6407, 828, 198, 220, 19203, 27257, 12332, 3256, 705, 1712, 5690, 3256, 705, 27257, 12332, 3256, 6407, 828, 198, 220, 19203, 8340, 12332, 3256, 705, 1712, 16860, 3256, 705, 8340, 12332, 3256, 6407, 828, 198, 220, 19203, 3605, 395, 3256, 705, 3605, 395, 3256, 705, 25598, 3256, 6407, 828, 198, 220, 19203, 49336, 3256, 705, 49336, 3256, 705, 49336, 3256, 10352, 828, 198, 220, 1303, 10786, 1662, 24661, 17354, 3256, 705, 1662, 2904, 6153, 3256, 705, 43162, 3256, 10352, 828, 198, 220, 19203, 49921, 306, 17354, 3256, 705, 49921, 306, 6153, 3256, 705, 43162, 3256, 6407, 828, 198, 220, 1303, 10786, 2539, 33111, 3256, 705, 21949, 1271, 3256, 705, 2539, 33111, 3256, 10352, 828, 198, 220, 1267, 198, 198, 73, 8704, 22882, 13, 1186, 30227, 15878, 82, 796, 357, 198, 220, 705, 2539, 3256, 198, 220, 705, 43162, 3256, 198, 220, 705, 25598, 3256, 198, 220, 1391, 6, 3245, 10354, 705, 439, 14490, 3256, 705, 8929, 2971, 10354, 705, 1929, 2305, 6, 5512, 198, 220, 705, 13376, 3256, 198, 220, 705, 9800, 3256, 198, 220, 705, 23893, 2389, 3256, 198, 220, 705, 23893, 12332, 3256, 198, 220, 705, 27257, 12332, 3256, 198, 220, 705, 8340, 12332, 3256, 198, 220, 705, 41509, 21886, 3256, 198, 220, 1391, 6, 3245, 10354, 705, 49736, 3256, 705, 8929, 2971, 10354, 705, 1929, 2305, 6, 5512, 198, 220, 1391, 6, 3245, 10354, 705, 11213, 3256, 705, 8929, 2971, 10354, 705, 16184, 3974, 1039, 6, 5512, 198, 220, 1391, 6, 3245, 10354, 705, 2618, 3256, 705, 8929, 2971, 10354, 705, 16184, 3974, 1039, 6, 5512, 198, 220, 1267, 198, 198, 73, 8704, 22882, 13, 8929, 75, 4799, 796, 1391, 198, 220, 705, 4871, 10354, 705, 6307, 654, 11922, 75, 4799, 3256, 198, 220, 705, 6603, 496, 3351, 11934, 13, 65, 10354, 657, 13, 2425, 11, 198, 220, 705, 9806, 14478, 1095, 10354, 513, 11, 198, 220, 705, 9806, 24539, 10354, 1802, 2388, 92, 198, 198, 2, 357, 7220, 33986, 11, 2214, 5376, 11, 318, 39, 959, 9282, 11, 3297, 11, 466, 5167, 16979, 929, 8, 198, 73, 8704, 22882, 13, 69, 23253, 15878, 82, 796, 357, 198, 220, 19203, 19580, 3256, 705, 13376, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 16775, 3256, 705, 16302, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 17354, 3256, 705, 43162, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 17354, 2084, 3256, 705, 43162, 32, 2188, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 12982, 3256, 705, 439, 14490, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 6935, 2175, 416, 3256, 705, 785, 3291, 3886, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 5956, 2912, 2836, 3256, 705, 12957, 37146, 273, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 22743, 2196, 3256, 705, 13049, 45150, 3256, 6407, 11, 705, 12, 600, 3256, 6407, 828, 198, 220, 19203, 6935, 2175, 13532, 3256, 705, 785, 3291, 15235, 82, 3256, 6407, 11, 6045, 11, 10352, 828, 198, 220, 19203, 21950, 3256, 705, 69, 23253, 7293, 3906, 3256, 6407, 11, 6045, 11, 6407, 828, 198, 220, 19203, 6030, 3256, 705, 21949, 6030, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 22442, 414, 3256, 705, 69, 23253, 22442, 414, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 17822, 1424, 3256, 705, 23912, 1424, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 8086, 15520, 30, 3256, 705, 47348, 902, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 6935, 896, 30, 3256, 705, 10134, 6935, 896, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 19203, 19242, 5690, 30, 3256, 705, 10134, 53, 6421, 3256, 6407, 11, 6045, 11, 10352, 828, 198, 220, 19203, 6207, 4337, 3256, 705, 260, 26634, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 8021, 570, 1453, 3256, 705, 562, 570, 1453, 3256, 10352, 11, 6045, 11, 6407, 828, 198, 220, 19203, 4965, 2122, 3256, 705, 29268, 3256, 10352, 11, 6045, 11, 10352, 828, 198, 220, 1303, 10786, 41972, 3256, 705, 69, 23253, 41972, 3256, 6407, 11, 6045, 11, 10352, 828, 198, 220, 1267, 198, 198, 73, 8704, 22882, 13, 5239, 20746, 15878, 82, 796, 37250, 49736, 3256, 705, 11213, 20520, 198, 2, 299, 420, 2002, 270, 460, 356, 466, 1994, 31491, 355, 1271, 44825, 198, 73, 8704, 22882, 13, 25367, 325, 10049, 19463, 42758, 796, 705, 49921, 306, 17354, 6, 198, 73, 8704, 22882, 13, 15643, 680, 3419, 198, 198, 41915, 796, 7736, 13, 41915, 198, 198, 354, 945, 796, 4731, 13, 292, 979, 72, 62, 21037, 7442, 1343, 4731, 13, 12894, 896, 198, 198, 260, 45147, 796, 302, 13, 5589, 576, 10786, 26933, 32, 12, 57, 48688, 12, 59, 67, 28988, 11537, 198, 198, 50084, 44, 14175, 796, 705, 5, 2, 87, 1983, 1485, 26, 6, 198, 198, 260, 15057, 796, 302, 13, 5589, 576, 7, 81, 6, 61, 58, 41441, 15, 12, 24, 48688, 59, 3693, 15, 12, 24, 48688, 11537, 198, 198, 8738, 605, 57, 4207, 42758, 18743, 796, 685, 198, 220, 705, 16, 87, 3256, 198, 220, 705, 16, 87, 12, 18, 87, 3256, 198, 220, 705, 18, 87, 12, 21, 87, 3256, 198, 220, 705, 21, 87, 12, 940, 87, 3256, 198, 220, 705, 940, 87, 12, 1238, 87, 3256, 198, 220, 705, 5886, 1160, 87, 3256, 198, 220, 2361, 198, 198, 6551, 42758, 18743, 796, 685, 198, 220, 705, 15, 532, 764, 1495, 3256, 198, 220, 45302, 1495, 532, 764, 1120, 3256, 198, 220, 45302, 1120, 532, 764, 2425, 3256, 198, 220, 45302, 2425, 532, 352, 13, 15, 3256, 198, 220, 705, 5886, 352, 13, 15, 3256, 198, 220, 2361, 198 ]
2.911493
1,514
import networkx as nx from models.case import Case from models.legal_knowledge_graph import LegalKnowledgeGraph from helpers import * from custom import * G = init_graph("{}/all_citations.txt".format(DATADIR)).fetch_subgraph( query_type='case') print(len(G.nodes())) print(len(G.edges())) print(G.in_degree_distribution()) print(G.out_degree_distribution()) print('Average clustering coeff', nx.average_clustering(G)) print('Average in_degree', G.average_in_degree()) print('Average out_degree', G.average_out_degree()) # print_landmark_cases(nx.in_degree_centrality, G, 'In-Degree centrality') # print_landmark_cases(nx.eigenvector_centrality, G, 'Eigen-vector centrality') # print_landmark_cases(nx.katz_centrality, G, 'Katz centrality') # print_landmark_cases(nx.closeness_centrality, G, 'Closeness centrality') # print_landmark_cases(nx.pagerank, G, 'Pagerank') # print_landmark_cases(custom_centrality, G, 'Custom centrality') # print_common_cases() # plot_distribution(fetch_log_scale(G.in_degree_distribution()), 'In-Degree', 'graph_plots/power_law_distribution/in_degree.png', fontSize=2, dpi=500, plot_type="scatter") # plot_distribution(fetch_log_scale(G.out_degree_distribution()), 'Out-Degree', 'graph_plots/power_law_distribution/out_degree.png', fontSize=2, dpi=500, plot_type="scatter") # unfrozen_graph = nx.Graph(G) # unfrozen_graph.remove_edges_from(unfrozen_graph.selfloop_edges()) # core_number = nx.core_number(unfrozen_graph) # core_number_sorted = sorted(core_number.items(), key=lambda kv: kv[1], reverse=True)[:50] # for case_id, value in core_number_sorted: # print(case_id, "\t", CASE_ID_TO_NAME_MAPPING[case_id], "\t", value) # print("k_core") # k_core = nx.k_core(unfrozen_graph) # # k_core_sorted = sorted(k_core.items(), key=lambda kv: kv[1], reverse=True)[:50] # for _ in k_core.nodes(): # print(_, "\t", CASE_ID_TO_NAME_MAPPING[_]) # print("k_shell") # k_shell = nx.k_shell(unfrozen_graph) # for _ in k_shell.nodes(): # print(_, "\t", CASE_ID_TO_NAME_MAPPING[_]) # print("k_crust") # k_crust = nx.k_crust(unfrozen_graph) # for _ in k_crust.nodes(): # print(_, "\t", CASE_ID_TO_NAME_MAPPING[_]) # print("k_corona") # k_corona = nx.k_corona(unfrozen_graph, k=10) # for _ in k_corona.nodes(): # print(_, "\t", CASE_ID_TO_NAME_MAPPING[_]) # rich_club_coefficient = nx.rich_club_coefficient(unfrozen_graph, normalized=False) # rich_club_sorted = sorted(rich_club_coefficient.items(), key=lambda kv: kv[1], reverse=True) # min_degree = 116 # rich_club = list() # for case_id in unfrozen_graph: # if len(unfrozen_graph[case_id]) > min_degree: # rich_club.append(case_id) # print([CASE_ID_TO_NAME_MAPPING[case_id] for case_id in rich_club]) # k_clique_communities = list(nx.algorithms.community.k_clique_communities(unfrozen_graph, k=8)) # # print(k_clique_communities) # for k_clique in k_clique_communities: # print("\n") # for case_id in k_clique: # if case_id in CASE_ID_TO_FILE_MAPPING: # path = CASE_ID_TO_FILE_MAPPING[case_id] # subjects = find_subjects_for_case(path) # print(case_id,"\t", CASE_ID_TO_NAME_MAPPING[case_id],"\t", ", ".join(subjects))
[ 11748, 3127, 87, 355, 299, 87, 198, 198, 6738, 4981, 13, 7442, 1330, 8913, 198, 6738, 4981, 13, 18011, 62, 45066, 62, 34960, 1330, 16027, 23812, 2965, 37065, 198, 6738, 49385, 1330, 1635, 198, 6738, 2183, 1330, 1635, 198, 198, 38, 796, 2315, 62, 34960, 7203, 90, 92, 14, 439, 62, 66, 20597, 13, 14116, 1911, 18982, 7, 35, 1404, 2885, 4663, 29720, 69, 7569, 62, 7266, 34960, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 4906, 11639, 7442, 11537, 198, 198, 4798, 7, 11925, 7, 38, 13, 77, 4147, 3419, 4008, 198, 4798, 7, 11925, 7, 38, 13, 276, 3212, 3419, 4008, 198, 4798, 7, 38, 13, 259, 62, 16863, 62, 17080, 3890, 28955, 198, 4798, 7, 38, 13, 448, 62, 16863, 62, 17080, 3890, 28955, 198, 4798, 10786, 26287, 32966, 1586, 763, 14822, 3256, 299, 87, 13, 23913, 62, 565, 436, 1586, 7, 38, 4008, 198, 4798, 10786, 26287, 287, 62, 16863, 3256, 402, 13, 23913, 62, 259, 62, 16863, 28955, 198, 4798, 10786, 26287, 503, 62, 16863, 3256, 402, 13, 23913, 62, 448, 62, 16863, 28955, 198, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 77, 87, 13, 259, 62, 16863, 62, 31463, 414, 11, 402, 11, 705, 818, 12, 35, 1533, 631, 4318, 414, 11537, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 77, 87, 13, 68, 9324, 31364, 62, 31463, 414, 11, 402, 11, 705, 36, 9324, 12, 31364, 4318, 414, 11537, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 77, 87, 13, 74, 27906, 62, 31463, 414, 11, 402, 11, 705, 25881, 89, 4318, 414, 11537, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 77, 87, 13, 565, 5233, 408, 62, 31463, 414, 11, 402, 11, 705, 2601, 5233, 408, 4318, 414, 11537, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 77, 87, 13, 79, 3536, 962, 11, 402, 11, 705, 47, 3536, 962, 11537, 198, 2, 3601, 62, 1044, 4102, 62, 33964, 7, 23144, 62, 31463, 414, 11, 402, 11, 705, 15022, 4318, 414, 11537, 198, 2, 3601, 62, 11321, 62, 33964, 3419, 198, 198, 2, 7110, 62, 17080, 3890, 7, 69, 7569, 62, 6404, 62, 9888, 7, 38, 13, 259, 62, 16863, 62, 17080, 3890, 3419, 828, 705, 818, 12, 35, 1533, 631, 3256, 705, 34960, 62, 489, 1747, 14, 6477, 62, 6270, 62, 17080, 3890, 14, 259, 62, 16863, 13, 11134, 3256, 10369, 10699, 28, 17, 11, 288, 14415, 28, 4059, 11, 7110, 62, 4906, 2625, 1416, 1436, 4943, 198, 2, 7110, 62, 17080, 3890, 7, 69, 7569, 62, 6404, 62, 9888, 7, 38, 13, 448, 62, 16863, 62, 17080, 3890, 3419, 828, 705, 7975, 12, 35, 1533, 631, 3256, 705, 34960, 62, 489, 1747, 14, 6477, 62, 6270, 62, 17080, 3890, 14, 448, 62, 16863, 13, 11134, 3256, 10369, 10699, 28, 17, 11, 288, 14415, 28, 4059, 11, 7110, 62, 4906, 2625, 1416, 1436, 4943, 198, 198, 2, 3684, 42005, 62, 34960, 796, 299, 87, 13, 37065, 7, 38, 8, 198, 2, 3684, 42005, 62, 34960, 13, 28956, 62, 276, 3212, 62, 6738, 7, 403, 69, 42005, 62, 34960, 13, 944, 26268, 62, 276, 3212, 28955, 198, 198, 2, 4755, 62, 17618, 796, 299, 87, 13, 7295, 62, 17618, 7, 403, 69, 42005, 62, 34960, 8, 198, 2, 4755, 62, 17618, 62, 82, 9741, 796, 23243, 7, 7295, 62, 17618, 13, 23814, 22784, 1994, 28, 50033, 479, 85, 25, 479, 85, 58, 16, 4357, 9575, 28, 17821, 38381, 25, 1120, 60, 198, 2, 329, 1339, 62, 312, 11, 1988, 287, 4755, 62, 17618, 62, 82, 9741, 25, 198, 2, 220, 220, 220, 220, 3601, 7, 7442, 62, 312, 11, 37082, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 58, 7442, 62, 312, 4357, 37082, 83, 1600, 1988, 8, 198, 2, 3601, 7203, 74, 62, 7295, 4943, 198, 2, 479, 62, 7295, 796, 299, 87, 13, 74, 62, 7295, 7, 403, 69, 42005, 62, 34960, 8, 198, 2, 1303, 479, 62, 7295, 62, 82, 9741, 796, 23243, 7, 74, 62, 7295, 13, 23814, 22784, 1994, 28, 50033, 479, 85, 25, 479, 85, 58, 16, 4357, 9575, 28, 17821, 38381, 25, 1120, 60, 198, 2, 329, 4808, 287, 479, 62, 7295, 13, 77, 4147, 33529, 198, 2, 220, 220, 220, 220, 3601, 28264, 11, 37082, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 29795, 12962, 198, 2, 3601, 7203, 74, 62, 29149, 4943, 198, 2, 479, 62, 29149, 796, 299, 87, 13, 74, 62, 29149, 7, 403, 69, 42005, 62, 34960, 8, 198, 2, 329, 4808, 287, 479, 62, 29149, 13, 77, 4147, 33529, 198, 2, 220, 220, 220, 220, 3601, 28264, 11, 37082, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 29795, 12962, 198, 2, 3601, 7203, 74, 62, 6098, 436, 4943, 198, 2, 479, 62, 6098, 436, 796, 299, 87, 13, 74, 62, 6098, 436, 7, 403, 69, 42005, 62, 34960, 8, 198, 2, 329, 4808, 287, 479, 62, 6098, 436, 13, 77, 4147, 33529, 198, 2, 220, 220, 220, 220, 3601, 28264, 11, 37082, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 29795, 12962, 198, 2, 3601, 7203, 74, 62, 10215, 4450, 4943, 198, 2, 479, 62, 10215, 4450, 796, 299, 87, 13, 74, 62, 10215, 4450, 7, 403, 69, 42005, 62, 34960, 11, 479, 28, 940, 8, 198, 2, 329, 4808, 287, 479, 62, 10215, 4450, 13, 77, 4147, 33529, 198, 2, 220, 220, 220, 220, 3601, 28264, 11, 37082, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 29795, 12962, 198, 198, 2, 5527, 62, 18664, 62, 1073, 16814, 796, 299, 87, 13, 7527, 62, 18664, 62, 1073, 16814, 7, 403, 69, 42005, 62, 34960, 11, 39279, 28, 25101, 8, 198, 2, 5527, 62, 18664, 62, 82, 9741, 796, 23243, 7, 7527, 62, 18664, 62, 1073, 16814, 13, 23814, 22784, 1994, 28, 50033, 479, 85, 25, 479, 85, 58, 16, 4357, 9575, 28, 17821, 8, 198, 2, 949, 62, 16863, 796, 18693, 198, 2, 5527, 62, 18664, 796, 1351, 3419, 198, 198, 2, 329, 1339, 62, 312, 287, 3684, 42005, 62, 34960, 25, 198, 2, 220, 197, 361, 18896, 7, 403, 69, 42005, 62, 34960, 58, 7442, 62, 312, 12962, 1875, 949, 62, 16863, 25, 198, 2, 220, 197, 197, 7527, 62, 18664, 13, 33295, 7, 7442, 62, 312, 8, 198, 2, 3601, 26933, 34, 11159, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 58, 7442, 62, 312, 60, 329, 1339, 62, 312, 287, 5527, 62, 18664, 12962, 198, 198, 2, 479, 62, 565, 2350, 62, 10709, 871, 796, 1351, 7, 77, 87, 13, 282, 7727, 907, 13, 28158, 13, 74, 62, 565, 2350, 62, 10709, 871, 7, 403, 69, 42005, 62, 34960, 11, 479, 28, 23, 4008, 198, 2, 1303, 3601, 7, 74, 62, 565, 2350, 62, 10709, 871, 8, 198, 198, 2, 329, 479, 62, 565, 2350, 287, 479, 62, 565, 2350, 62, 10709, 871, 25, 198, 2, 220, 197, 4798, 7203, 59, 77, 4943, 198, 2, 220, 197, 1640, 1339, 62, 312, 287, 479, 62, 565, 2350, 25, 198, 2, 220, 197, 197, 361, 1339, 62, 312, 287, 42001, 62, 2389, 62, 10468, 62, 25664, 62, 44, 24805, 2751, 25, 198, 2, 220, 197, 197, 197, 6978, 796, 42001, 62, 2389, 62, 10468, 62, 25664, 62, 44, 24805, 2751, 58, 7442, 62, 312, 60, 198, 2, 220, 197, 197, 197, 32796, 82, 796, 1064, 62, 32796, 82, 62, 1640, 62, 7442, 7, 6978, 8, 198, 2, 220, 197, 197, 197, 4798, 7, 7442, 62, 312, 553, 59, 83, 1600, 42001, 62, 2389, 62, 10468, 62, 20608, 62, 44, 24805, 2751, 58, 7442, 62, 312, 17241, 59, 83, 1600, 33172, 27071, 22179, 7, 32796, 82, 4008, 198 ]
2.421296
1,296
import torch import torch.nn as nn import nlpblock as nb """ Example to run model = RNN_Attention(emb_dim=50, n_class=2, n_hidden=128, n_layers=1, bidirectional=False, linearTransform=True) output, attention = model( torch.rand([3, 5, 50]) # [batch, seq_len, emb_dim] ) print(output.shape, attention.shape) """
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 34431, 9967, 355, 299, 65, 198, 198, 37811, 198, 16281, 284, 1057, 198, 19849, 796, 371, 6144, 62, 8086, 1463, 7, 24419, 62, 27740, 28, 1120, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 4871, 28, 17, 11, 299, 62, 30342, 28, 12762, 11, 299, 62, 75, 6962, 28, 16, 11, 8406, 4154, 282, 28, 25101, 11, 14174, 41762, 28, 17821, 8, 198, 22915, 11, 3241, 796, 2746, 7, 198, 220, 220, 220, 28034, 13, 25192, 26933, 18, 11, 642, 11, 2026, 12962, 220, 1303, 685, 43501, 11, 33756, 62, 11925, 11, 4072, 62, 27740, 60, 198, 8, 198, 4798, 7, 22915, 13, 43358, 11, 3241, 13, 43358, 8, 198, 37811, 198 ]
2.358621
145
import os from celery.result import AsyncResult from fastapi import APIRouter, Depends, Request from fastapi.responses import FileResponse, JSONResponse from services.calculators import TophatterCalculator from services.database.user_database import UserDatabase from services.mapper import TophatterMapper from services.pandi import Pandi from services.schemas import User from tasks import fetch_tophatter_orders services = UserDatabase() tophatter = APIRouter(prefix="/tophatter") @tophatter.get("/create_task") @tophatter.get("/tasks") @tophatter.get("/tasks/clean") @tophatter.get("/revenue") @tophatter.get("/download")
[ 11748, 28686, 198, 198, 6738, 18725, 1924, 13, 20274, 1330, 1081, 13361, 23004, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 2129, 2412, 11, 19390, 198, 6738, 3049, 15042, 13, 16733, 274, 1330, 9220, 31077, 11, 19449, 31077, 198, 6738, 2594, 13, 9948, 3129, 2024, 1330, 309, 2522, 1436, 9771, 3129, 1352, 198, 6738, 2594, 13, 48806, 13, 7220, 62, 48806, 1330, 11787, 38105, 198, 6738, 2594, 13, 76, 11463, 1330, 309, 2522, 1436, 44, 11463, 198, 6738, 2594, 13, 79, 26800, 1330, 16492, 72, 198, 6738, 2594, 13, 1416, 4411, 292, 1330, 11787, 198, 6738, 8861, 1330, 21207, 62, 83, 2522, 1436, 62, 6361, 198, 198, 30416, 796, 11787, 38105, 3419, 198, 83, 2522, 1436, 796, 3486, 4663, 39605, 7, 40290, 35922, 83, 2522, 1436, 4943, 628, 198, 31, 83, 2522, 1436, 13, 1136, 7203, 14, 17953, 62, 35943, 4943, 628, 198, 31, 83, 2522, 1436, 13, 1136, 7203, 14, 83, 6791, 4943, 628, 198, 31, 83, 2522, 1436, 13, 1136, 7203, 14, 83, 6791, 14, 27773, 4943, 628, 198, 31, 83, 2522, 1436, 13, 1136, 7203, 14, 260, 4080, 4943, 628, 198, 31, 83, 2522, 1436, 13, 1136, 7203, 14, 15002, 4943, 198 ]
3.255102
196
nome = input('Digite o nome completo da pessoa: ').strip() # usa-se o método strip para retirar os espaços vazios antes e depois da frase print('O nome completo da pessoa em maiúsculo é: ', nome.upper()) # usa o método 'upper' para transformar toda a frase em maiúscula print('O nome completo da pessoa em minúsculo é: ', nome.lower()) # usa o método 'lower' para transformar toda a frase em minúscula print('O nome possui {} letras'.format(len(nome) - nome.count(' '))) # usa o método 'len' para contar todas as letras e, utilizando # o ' - nome.count(' '), o programa vai retirar todos os espaços # vazios no meio da frase. divide = nome.split() # pega a frase e usa o método 'split' para separar a frase em listas print('Seu primeiro nome é {} e ele tem {} letras'.format(divide[0], len(divide[0]))) # ao utilizar 'divide[0], estou pegando a primeira # posição da lista feita no split e mostrando a palvra # que está contida nesta posição. Já o comando # 'len(divide[0], vai mostrar quantas letras tem na # palavra contida na posição 0.
[ 77, 462, 796, 5128, 10786, 19511, 578, 267, 299, 462, 1224, 1462, 12379, 279, 408, 12162, 25, 705, 737, 36311, 3419, 1303, 514, 64, 12, 325, 267, 285, 25125, 24313, 10283, 31215, 1005, 343, 283, 28686, 1658, 8957, 16175, 418, 410, 1031, 4267, 1885, 274, 304, 1207, 10924, 12379, 1216, 589, 198, 198, 4798, 10786, 46, 299, 462, 1224, 1462, 12379, 279, 408, 12162, 795, 285, 1872, 21356, 1416, 43348, 38251, 25, 46083, 299, 462, 13, 45828, 28955, 1303, 514, 64, 267, 285, 25125, 24313, 705, 45828, 6, 31215, 6121, 283, 284, 6814, 257, 1216, 589, 795, 285, 1872, 21356, 1416, 4712, 198, 4798, 10786, 46, 299, 462, 1224, 1462, 12379, 279, 408, 12162, 795, 949, 21356, 1416, 43348, 38251, 25, 46083, 299, 462, 13, 21037, 28955, 1303, 514, 64, 267, 285, 25125, 24313, 705, 21037, 6, 31215, 6121, 283, 284, 6814, 257, 1216, 589, 795, 949, 21356, 1416, 4712, 198, 4798, 10786, 46, 299, 462, 1184, 9019, 23884, 1309, 8847, 4458, 18982, 7, 11925, 7, 77, 462, 8, 532, 299, 462, 13, 9127, 10786, 705, 22305, 1303, 514, 64, 267, 285, 25125, 24313, 705, 11925, 6, 31215, 542, 283, 284, 67, 292, 355, 1309, 8847, 304, 11, 7736, 528, 25440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 267, 705, 532, 299, 462, 13, 9127, 10786, 705, 828, 267, 1430, 64, 410, 1872, 1005, 343, 283, 284, 37427, 28686, 1658, 8957, 16175, 418, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 410, 1031, 4267, 645, 502, 952, 12379, 1216, 589, 13, 198, 7146, 485, 796, 299, 462, 13, 35312, 3419, 1303, 613, 4908, 257, 1216, 589, 304, 514, 64, 267, 285, 25125, 24313, 705, 35312, 6, 31215, 2880, 283, 257, 1216, 589, 795, 1351, 292, 198, 4798, 10786, 4653, 84, 6994, 7058, 299, 462, 38251, 23884, 304, 9766, 2169, 23884, 1309, 8847, 4458, 18982, 7, 7146, 485, 58, 15, 4357, 18896, 7, 7146, 485, 58, 15, 60, 22305, 1303, 257, 78, 7736, 528, 283, 705, 7146, 485, 58, 15, 4357, 1556, 280, 41350, 25440, 257, 6994, 8704, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1426, 72, 16175, 28749, 12379, 1351, 64, 730, 5350, 645, 6626, 304, 749, 25192, 78, 257, 6340, 85, 430, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8358, 1556, 6557, 542, 3755, 16343, 64, 1426, 72, 16175, 28749, 13, 449, 6557, 267, 401, 25440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 11925, 7, 7146, 485, 58, 15, 4357, 410, 1872, 749, 20040, 5554, 292, 1309, 8847, 2169, 12385, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6340, 615, 430, 542, 3755, 12385, 1426, 72, 16175, 28749, 657, 13 ]
1.751163
860
import abc import os import zipfile from typing import List from justmltools.config.abstract_data_path_config import AbstractDataPathConfig from justmltools.config.local_data_path_config import LocalDataPathConfig
[ 11748, 450, 66, 198, 11748, 28686, 198, 11748, 19974, 7753, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 655, 76, 2528, 10141, 13, 11250, 13, 397, 8709, 62, 7890, 62, 6978, 62, 11250, 1330, 27741, 6601, 15235, 16934, 198, 6738, 655, 76, 2528, 10141, 13, 11250, 13, 12001, 62, 7890, 62, 6978, 62, 11250, 1330, 10714, 6601, 15235, 16934, 628 ]
3.6
60
# -*- coding: utf-8 -*- '''Command line interface module for intro_py-intro. ''' from __future__ import (absolute_import, division, print_function, unicode_literals) import os, sys, argparse, json import logging, inspect from future.builtins import (ascii, filter, hex, map, oct, zip, str, open, dict) from intro_py import util, intro from intro_py.intro import person from intro_py.practice import classic, sequenceops as seqops __all__ = ['main'] # -- run w/out compile -- # python script.py [arg1 argN] # # -- run REPL, import script, & run -- # python # >>> from . import script.py # >>> script.main([arg1, argN]) # # -- help/info tools in REPL -- # help(), quit(), help(<object>), help([modules|keywords|symbols|topics]) # # -- show module/type info -- # ex: pydoc list OR python> help(list) logging.basicConfig(level = logging.DEBUG) MODULE_LOGGER = logging.getLogger(__name__) def main(argv=None): '''Main entry. Args: argv (list): list of arguments Returns: int: A return code Demonstrates Python syntax ''' rsrc_path = os.environ.get('RSRC_PATH') logjson_str = util.read_resource('logging.json', rsrc_path=rsrc_path) log_cfg = deserialize_str(logjson_str, fmt='json') util.config_logging('info', 'cfg', log_cfg) opts_hash = parse_cmdopts(argv) util.config_logging(opts_hash.log_lvl, opts_hash.log_opt, log_cfg) MODULE_LOGGER.info('main()') cfg_blank = {'hostname':'???', 'domain':'???', 'file1':{'path':'???', 'ext':'txt'}, 'user1':{'name':'???', 'age': -1}} cfg_ini = dict(cfg_blank.items()) cfg_ini.update(util.ini_to_dict(util.read_resource('prac.conf', rsrc_path=rsrc_path)).items()) #cfg_json = dict(cfg_blank.items()) #cfg_json.update(deserialize_str(util.read_resource('prac.json', # rsrc_path=rsrc_path)).items()) #cfg_yaml = dict(cfg_blank.items()) #cfg_yaml.update(deserialize_str(util.read_resource('prac.yaml', # rsrc_path=rsrc_path), fmt='yaml').items()) #cfg_toml = dict(cfg_blank.items()) #cfg_toml.update(deserialize_str(util.read_resource('prac.toml', # rsrc_path=rsrc_path), fmt='toml').items()) tup_arr = [ (cfg_ini, cfg_ini['domain'], cfg_ini['user1']['name']) #, (cfg_json, cfg_json['domain'], cfg_json['user1']['name']) #, (cfg_yaml, cfg_yaml['domain'], cfg_yaml['user1']['name']) #, (cfg_toml, cfg_toml['domain'], cfg_toml['user1']['name']) ] for (cfg, domain, user1Name) in tup_arr: print('\nconfig: {0}'.format(cfg)) print('domain: {0}'.format(domain)) print('user1Name: {0}'.format(user1Name)) print('') run_intro(vars(opts_hash), rsrc_path=rsrc_path) logging.shutdown() return 0 if '__main__' == __name__: sys.exit(main(sys.argv[1:]))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 7061, 6, 21575, 1627, 7071, 8265, 329, 18951, 62, 9078, 12, 600, 305, 13, 198, 198, 7061, 6, 198, 198, 6738, 11593, 37443, 834, 1330, 357, 48546, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 198, 220, 220, 220, 28000, 1098, 62, 17201, 874, 8, 198, 198, 11748, 28686, 11, 25064, 11, 1822, 29572, 11, 33918, 198, 11748, 18931, 11, 10104, 198, 6738, 2003, 13, 18780, 1040, 1330, 357, 292, 979, 72, 11, 8106, 11, 17910, 11, 3975, 11, 19318, 11, 19974, 11, 965, 11, 1280, 11, 8633, 8, 198, 198, 6738, 18951, 62, 9078, 1330, 7736, 11, 18951, 198, 6738, 18951, 62, 9078, 13, 600, 305, 1330, 1048, 198, 6738, 18951, 62, 9078, 13, 39541, 1330, 6833, 11, 8379, 2840, 355, 33756, 2840, 198, 198, 834, 439, 834, 796, 37250, 12417, 20520, 198, 198, 2, 1377, 1057, 266, 14, 448, 17632, 1377, 198, 2, 21015, 4226, 13, 9078, 685, 853, 16, 1822, 45, 60, 198, 2, 220, 198, 2, 1377, 1057, 45285, 11, 1330, 4226, 11, 1222, 1057, 1377, 198, 2, 21015, 198, 2, 13163, 422, 764, 1330, 4226, 13, 9078, 198, 2, 13163, 4226, 13, 12417, 26933, 853, 16, 11, 1822, 45, 12962, 198, 2, 220, 198, 2, 1377, 1037, 14, 10951, 4899, 287, 45285, 1377, 198, 2, 1037, 22784, 11238, 22784, 1037, 7, 27, 15252, 29, 828, 1037, 26933, 18170, 91, 2539, 10879, 91, 1837, 2022, 10220, 91, 4852, 873, 12962, 198, 2, 220, 198, 2, 1377, 905, 8265, 14, 4906, 7508, 1377, 198, 2, 409, 25, 279, 5173, 420, 1351, 6375, 21015, 29, 1037, 7, 4868, 8, 628, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 796, 18931, 13, 30531, 8, 198, 33365, 24212, 62, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 4299, 1388, 7, 853, 85, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 13383, 5726, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 85, 357, 4868, 2599, 1351, 286, 7159, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 493, 25, 317, 1441, 2438, 198, 220, 220, 220, 7814, 2536, 689, 11361, 15582, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 374, 10677, 62, 6978, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 6998, 7397, 62, 34219, 11537, 198, 220, 220, 220, 2604, 17752, 62, 2536, 796, 7736, 13, 961, 62, 31092, 10786, 6404, 2667, 13, 17752, 3256, 374, 10677, 62, 6978, 28, 3808, 6015, 62, 6978, 8, 198, 220, 220, 220, 2604, 62, 37581, 796, 748, 48499, 1096, 62, 2536, 7, 6404, 17752, 62, 2536, 11, 46996, 11639, 17752, 11537, 198, 220, 220, 220, 7736, 13, 11250, 62, 6404, 2667, 10786, 10951, 3256, 705, 37581, 3256, 2604, 62, 37581, 8, 198, 220, 220, 220, 2172, 82, 62, 17831, 796, 21136, 62, 28758, 404, 912, 7, 853, 85, 8, 198, 220, 220, 220, 7736, 13, 11250, 62, 6404, 2667, 7, 404, 912, 62, 17831, 13, 6404, 62, 47147, 11, 2172, 82, 62, 17831, 13, 6404, 62, 8738, 11, 2604, 62, 37581, 8, 198, 220, 220, 220, 33893, 62, 25294, 30373, 13, 10951, 10786, 12417, 3419, 11537, 628, 220, 220, 220, 30218, 70, 62, 27190, 796, 1391, 6, 4774, 3672, 10354, 6, 28358, 3256, 705, 27830, 10354, 6, 28358, 3256, 705, 7753, 16, 10354, 90, 6, 6978, 10354, 6, 28358, 3256, 220, 198, 197, 197, 6, 2302, 10354, 6, 14116, 6, 5512, 705, 7220, 16, 10354, 90, 6, 3672, 10354, 6, 28358, 3256, 705, 496, 10354, 532, 16, 11709, 198, 220, 220, 220, 30218, 70, 62, 5362, 796, 8633, 7, 37581, 62, 27190, 13, 23814, 28955, 198, 220, 220, 220, 30218, 70, 62, 5362, 13, 19119, 7, 22602, 13, 5362, 62, 1462, 62, 11600, 7, 22602, 13, 961, 62, 31092, 10786, 1050, 330, 13, 10414, 3256, 198, 197, 197, 3808, 6015, 62, 6978, 28, 3808, 6015, 62, 6978, 29720, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 17752, 796, 8633, 7, 37581, 62, 27190, 13, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 17752, 13, 19119, 7, 8906, 48499, 1096, 62, 2536, 7, 22602, 13, 961, 62, 31092, 10786, 1050, 330, 13, 17752, 3256, 198, 197, 2, 197, 3808, 6015, 62, 6978, 28, 3808, 6015, 62, 6978, 29720, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 88, 43695, 796, 8633, 7, 37581, 62, 27190, 13, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 88, 43695, 13, 19119, 7, 8906, 48499, 1096, 62, 2536, 7, 22602, 13, 961, 62, 31092, 10786, 1050, 330, 13, 88, 43695, 3256, 198, 197, 2, 197, 3808, 6015, 62, 6978, 28, 3808, 6015, 62, 6978, 828, 46996, 11639, 88, 43695, 27691, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 39532, 75, 796, 8633, 7, 37581, 62, 27190, 13, 23814, 28955, 198, 220, 220, 220, 1303, 37581, 62, 39532, 75, 13, 19119, 7, 8906, 48499, 1096, 62, 2536, 7, 22602, 13, 961, 62, 31092, 10786, 1050, 330, 13, 39532, 75, 3256, 198, 197, 2, 197, 3808, 6015, 62, 6978, 28, 3808, 6015, 62, 6978, 828, 46996, 11639, 39532, 75, 27691, 23814, 28955, 198, 220, 220, 220, 220, 198, 220, 220, 220, 256, 929, 62, 3258, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 357, 37581, 62, 5362, 11, 30218, 70, 62, 5362, 17816, 27830, 6, 4357, 30218, 70, 62, 5362, 17816, 7220, 16, 6, 7131, 6, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11, 357, 37581, 62, 17752, 11, 30218, 70, 62, 17752, 17816, 27830, 6, 4357, 30218, 70, 62, 17752, 17816, 7220, 16, 6, 7131, 6, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11, 357, 37581, 62, 88, 43695, 11, 30218, 70, 62, 88, 43695, 17816, 27830, 6, 4357, 30218, 70, 62, 88, 43695, 17816, 7220, 16, 6, 7131, 6, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11, 357, 37581, 62, 39532, 75, 11, 30218, 70, 62, 39532, 75, 17816, 27830, 6, 4357, 30218, 70, 62, 39532, 75, 17816, 7220, 16, 6, 7131, 6, 3672, 6, 12962, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 357, 37581, 11, 7386, 11, 2836, 16, 5376, 8, 287, 256, 929, 62, 3258, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 11250, 25, 1391, 15, 92, 4458, 18982, 7, 37581, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 27830, 25, 1391, 15, 92, 4458, 18982, 7, 27830, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 7220, 16, 5376, 25, 1391, 15, 92, 4458, 18982, 7, 7220, 16, 5376, 4008, 198, 220, 220, 220, 3601, 7, 7061, 8, 198, 220, 220, 220, 1057, 62, 600, 305, 7, 85, 945, 7, 404, 912, 62, 17831, 828, 374, 10677, 62, 6978, 28, 3808, 6015, 62, 6978, 8, 628, 220, 220, 220, 18931, 13, 49625, 2902, 3419, 198, 220, 220, 220, 1441, 657, 198, 198, 361, 705, 834, 12417, 834, 6, 6624, 11593, 3672, 834, 25, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 58, 16, 47715, 4008, 198 ]
2.31379
1,211
from sklearn.model_selection import BaseCrossValidator import numpy as np import pandas as pd # We dont implement this one if __name__ == "__main__": versions = np.reshape(np.array( [1,1,1,2,2,2,2,3,3,3] ), (10,1)) data = np.reshape(np.zeros(100), (10, 10)) X = pd.DataFrame( np.append( versions, data, axis = 1 ), columns = ["version"] + [i for i in range(10)] ) y = pd.DataFrame(np.zeros(10)) for i, (train_index, test_index) in enumerate(VersionDropout(10, 0.2).split(X, y)): print( "iter: %d\ntraining: %s\ntesting: %s\n" % (i, train_index, test_index) )
[ 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 7308, 21544, 47139, 1352, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 775, 17666, 3494, 428, 530, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6300, 796, 45941, 13, 3447, 1758, 7, 37659, 13, 18747, 7, 685, 16, 11, 16, 11, 16, 11, 17, 11, 17, 11, 17, 11, 17, 11, 18, 11, 18, 11, 18, 60, 10612, 357, 940, 11, 16, 4008, 198, 220, 220, 220, 1366, 796, 45941, 13, 3447, 1758, 7, 37659, 13, 9107, 418, 7, 3064, 828, 357, 940, 11, 838, 4008, 198, 220, 220, 220, 1395, 796, 279, 67, 13, 6601, 19778, 7, 45941, 13, 33295, 7, 6300, 11, 1366, 11, 16488, 796, 352, 10612, 15180, 796, 14631, 9641, 8973, 1343, 685, 72, 329, 1312, 287, 2837, 7, 940, 15437, 1267, 198, 220, 220, 220, 331, 796, 220, 279, 67, 13, 6601, 19778, 7, 37659, 13, 9107, 418, 7, 940, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 11, 357, 27432, 62, 9630, 11, 1332, 62, 9630, 8, 287, 27056, 378, 7, 14815, 26932, 448, 7, 940, 11, 657, 13, 17, 737, 35312, 7, 55, 11, 331, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 366, 2676, 25, 4064, 67, 59, 429, 24674, 25, 4064, 82, 59, 429, 37761, 25, 4064, 82, 59, 77, 1, 4064, 357, 72, 11, 4512, 62, 9630, 11, 1332, 62, 9630, 8, 1267 ]
2.301527
262
# format, name, destination register, source 1, data of source 1, IB in which data expected, source 2, data of source 2, IB in which data expected, immediate data, T_NT,stall #A=[format,name,rd,rs1,rs2,imm] #A=[format,name,rd,rs1,rs2,imm] # format, name, destination register, source 1, data of source 1, IB in which data expected, source 2, data of source 2, IB in which data expected, immediate data, T_NT,stall RZ=0 RM=0 RF_write=0 R=[RZ,RM,RF_write] #A=["R","srl","101","1101010101","4","imm"] #A=raw_input() #A=A.split(" ") #get_alu_opt(A) ''' if A[0]=="R": B=[A[1],A[2],A[3],A[4]] R=R_format(B) print(R) if A[0]=="I": B=[A[1],A[2],A[3],A[5]] I=I_format(B) print(I) if A[0]=="S": B=[A[1],A[3],A[4],A[5]] S=S_format(B) print(S) if A[0]=="SB": B=[A[1],A[3],A[4],A[5]] SB=SB_format(B) print(SB) if A[0]=="U": B=[A[1],A[2],A[5]] U=U_format(B) print(U) if A[0]=="UJ": B=[A[1],A[2],A[5]] UJ=UJ_format(B) print(UJ) '''
[ 198, 2, 5794, 11, 1438, 11, 10965, 7881, 11, 2723, 352, 11, 1366, 286, 2723, 352, 11, 34782, 287, 543, 1366, 2938, 11, 2723, 362, 11, 1366, 286, 2723, 362, 11, 34782, 287, 543, 1366, 2938, 11, 7103, 1366, 11, 309, 62, 11251, 11, 32989, 198, 2, 32, 41888, 18982, 11, 3672, 11, 4372, 11, 3808, 16, 11, 3808, 17, 11, 8608, 60, 628, 628, 198, 2, 32, 41888, 18982, 11, 3672, 11, 4372, 11, 3808, 16, 11, 3808, 17, 11, 8608, 60, 198, 2, 5794, 11, 1438, 11, 10965, 7881, 11, 2723, 352, 11, 1366, 286, 2723, 352, 11, 34782, 287, 543, 1366, 2938, 11, 2723, 362, 11, 1366, 286, 2723, 362, 11, 34782, 287, 543, 1366, 2938, 11, 7103, 1366, 11, 309, 62, 11251, 11, 32989, 198, 198, 49, 57, 28, 15, 198, 29138, 28, 15, 198, 32754, 62, 13564, 28, 15, 198, 49, 41888, 49, 57, 11, 29138, 11, 32754, 62, 13564, 60, 628, 198, 2, 32, 28, 14692, 49, 2430, 27891, 75, 2430, 8784, 2430, 1157, 486, 486, 486, 486, 2430, 19, 2430, 8608, 8973, 198, 2, 32, 28, 1831, 62, 15414, 3419, 198, 2, 32, 28, 32, 13, 35312, 7203, 366, 8, 198, 2, 1136, 62, 282, 84, 62, 8738, 7, 32, 8, 198, 7061, 6, 198, 361, 317, 58, 15, 60, 855, 1, 49, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 17, 4357, 32, 58, 18, 4357, 32, 58, 19, 11907, 198, 197, 49, 28, 49, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 49, 8, 198, 197, 198, 361, 317, 58, 15, 60, 855, 1, 40, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 17, 4357, 32, 58, 18, 4357, 32, 58, 20, 11907, 198, 197, 40, 28, 40, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 40, 8, 198, 197, 198, 361, 317, 58, 15, 60, 855, 1, 50, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 18, 4357, 32, 58, 19, 4357, 32, 58, 20, 11907, 198, 197, 50, 28, 50, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 50, 8, 198, 198, 361, 317, 58, 15, 60, 855, 1, 16811, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 18, 4357, 32, 58, 19, 4357, 32, 58, 20, 11907, 198, 197, 16811, 28, 16811, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 16811, 8, 198, 361, 317, 58, 15, 60, 855, 1, 52, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 17, 4357, 32, 58, 20, 11907, 198, 197, 52, 28, 52, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 52, 8, 198, 197, 198, 361, 317, 58, 15, 60, 855, 1, 52, 41, 1298, 198, 197, 33, 41888, 32, 58, 16, 4357, 32, 58, 17, 4357, 32, 58, 20, 11907, 198, 197, 52, 41, 28, 52, 41, 62, 18982, 7, 33, 8, 198, 197, 4798, 7, 52, 41, 8, 198, 7061, 6, 198 ]
1.923077
494
from datetime import datetime from django.shortcuts import redirect from django.urls import reverse_lazy from django.views.generic import ListView, View from django.views.generic.edit import CreateView, UpdateView from django.contrib.auth.mixins import LoginRequiredMixin from backend.forum.models import Category, Section, Topic, Message from backend.forum.forms import MessageForm, CreateTopicForm class Sections(ListView): """Вывод разделов форума""" model = Category template_name = "forum/section.html" class TopicsList(ListView): """Вывод топиков раздела""" template_name = "forum/topics-list.html" class TopicDetail(ListView): """Вывод темы""" context_object_name = 'messages' template_name = 'forum/topic-detail.html' paginate_by = 10 class EditTopic(LoginRequiredMixin, UpdateView): """Редактирование темы""" model = Topic form_class = MessageForm template_name = 'forum/update_message.html' class EditMessages(LoginRequiredMixin, UpdateView): """Редактирование коментариев""" model = Message form_class = MessageForm template_name = 'forum/update_message.html' class MessageCreate(LoginRequiredMixin, View): """Отправка комментария на форуме""" # class MessageCreate(LoginRequiredMixin, CreateView): # """Создание темы на форуме""" # model = Message # form_class = MessageForm # template_name = 'forum/topic-detail.html' # # def form_valid(self, form): # form.instance.user = self.request.user # form.instance.topic_id = self.kwargs.get("pk") # form.save() # return super().form_valid(form) class CreateTopic(LoginRequiredMixin, CreateView): """Создание темы на форуме""" model = Topic form_class = CreateTopicForm template_name = 'forum/create-topic.html'
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 18941, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 62, 75, 12582, 198, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 7343, 7680, 11, 3582, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 13610, 7680, 11, 10133, 7680, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 19816, 1040, 1330, 23093, 37374, 35608, 259, 198, 6738, 30203, 13, 27302, 13, 27530, 1330, 21743, 11, 7275, 11, 47373, 11, 16000, 198, 198, 6738, 30203, 13, 27302, 13, 23914, 1330, 16000, 8479, 11, 13610, 33221, 8479, 628, 198, 4871, 37703, 7, 8053, 7680, 2599, 198, 220, 220, 220, 37227, 140, 240, 45035, 38857, 25443, 112, 220, 21169, 16142, 140, 115, 43666, 16843, 30143, 25443, 110, 220, 141, 226, 15166, 21169, 35072, 43108, 16142, 37811, 198, 220, 220, 220, 2746, 796, 21743, 198, 220, 220, 220, 11055, 62, 3672, 796, 366, 27302, 14, 5458, 13, 6494, 1, 628, 198, 4871, 34440, 8053, 7, 8053, 7680, 2599, 198, 220, 220, 220, 37227, 140, 240, 45035, 38857, 25443, 112, 220, 20375, 25443, 123, 18849, 31583, 25443, 110, 220, 21169, 16142, 140, 115, 43666, 16843, 30143, 16142, 37811, 198, 220, 220, 220, 11055, 62, 3672, 796, 366, 27302, 14, 4852, 873, 12, 4868, 13, 6494, 1, 198, 198, 4871, 47373, 11242, 603, 7, 8053, 7680, 2599, 198, 220, 220, 220, 37227, 140, 240, 45035, 38857, 25443, 112, 220, 20375, 16843, 43108, 45035, 37811, 198, 220, 220, 220, 4732, 62, 15252, 62, 3672, 796, 705, 37348, 1095, 6, 198, 220, 220, 220, 11055, 62, 3672, 796, 705, 27302, 14, 26652, 12, 49170, 13, 6494, 6, 198, 220, 220, 220, 42208, 4559, 62, 1525, 796, 838, 628, 198, 4871, 5312, 33221, 7, 47790, 37374, 35608, 259, 11, 10133, 7680, 2599, 198, 220, 220, 220, 37227, 140, 254, 16843, 43666, 16142, 31583, 20375, 18849, 21169, 25443, 110, 16142, 22177, 18849, 16843, 220, 20375, 16843, 43108, 45035, 37811, 198, 220, 220, 220, 2746, 796, 47373, 198, 220, 220, 220, 1296, 62, 4871, 796, 16000, 8479, 198, 220, 220, 220, 11055, 62, 3672, 796, 705, 27302, 14, 19119, 62, 20500, 13, 6494, 6, 628, 198, 4871, 5312, 36479, 1095, 7, 47790, 37374, 35608, 259, 11, 10133, 7680, 2599, 198, 220, 220, 220, 37227, 140, 254, 16843, 43666, 16142, 31583, 20375, 18849, 21169, 25443, 110, 16142, 22177, 18849, 16843, 12466, 118, 25443, 120, 16843, 22177, 20375, 16142, 21169, 18849, 16843, 38857, 37811, 198, 220, 220, 220, 2746, 796, 16000, 198, 220, 220, 220, 1296, 62, 4871, 796, 16000, 8479, 198, 220, 220, 220, 11055, 62, 3672, 796, 705, 27302, 14, 19119, 62, 20500, 13, 6494, 6, 628, 198, 4871, 16000, 16447, 7, 47790, 37374, 35608, 259, 11, 3582, 2599, 198, 220, 220, 220, 37227, 140, 252, 20375, 140, 123, 21169, 16142, 38857, 31583, 16142, 12466, 118, 25443, 120, 43108, 16843, 22177, 20375, 16142, 21169, 18849, 40623, 12466, 121, 16142, 220, 141, 226, 15166, 21169, 35072, 43108, 16843, 37811, 198, 198, 2, 1398, 16000, 16447, 7, 47790, 37374, 35608, 259, 11, 13610, 7680, 2599, 198, 2, 220, 220, 220, 220, 37227, 140, 94, 25443, 115, 43666, 16142, 22177, 18849, 16843, 220, 20375, 16843, 43108, 45035, 12466, 121, 16142, 220, 141, 226, 15166, 21169, 35072, 43108, 16843, 37811, 198, 2, 220, 220, 220, 220, 2746, 796, 16000, 198, 2, 220, 220, 220, 220, 1296, 62, 4871, 796, 16000, 8479, 198, 2, 220, 220, 220, 220, 11055, 62, 3672, 796, 705, 27302, 14, 26652, 12, 49170, 13, 6494, 6, 198, 2, 198, 2, 220, 220, 220, 220, 825, 1296, 62, 12102, 7, 944, 11, 1296, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 13, 39098, 13, 7220, 796, 2116, 13, 25927, 13, 7220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 13, 39098, 13, 26652, 62, 312, 796, 2116, 13, 46265, 22046, 13, 1136, 7203, 79, 74, 4943, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1296, 13, 21928, 3419, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2208, 22446, 687, 62, 12102, 7, 687, 8, 628, 198, 4871, 13610, 33221, 7, 47790, 37374, 35608, 259, 11, 13610, 7680, 2599, 198, 220, 220, 220, 37227, 140, 94, 25443, 115, 43666, 16142, 22177, 18849, 16843, 220, 20375, 16843, 43108, 45035, 12466, 121, 16142, 220, 141, 226, 15166, 21169, 35072, 43108, 16843, 37811, 198, 220, 220, 220, 2746, 796, 47373, 198, 220, 220, 220, 1296, 62, 4871, 796, 13610, 33221, 8479, 198, 220, 220, 220, 11055, 62, 3672, 796, 705, 27302, 14, 17953, 12, 26652, 13, 6494, 6, 198 ]
2.384314
765
import urllib import urllib.request try: site = urllib.request.urlopen('http://pudim.com.br/') except urllib.error.URLError: print('O site ardeu') else: print('Pode ir tá tudo nice')
[ 11748, 2956, 297, 571, 198, 11748, 2956, 297, 571, 13, 25927, 198, 28311, 25, 198, 220, 220, 220, 2524, 796, 2956, 297, 571, 13, 25927, 13, 6371, 9654, 10786, 4023, 1378, 79, 463, 320, 13, 785, 13, 1671, 14, 11537, 198, 16341, 2956, 297, 571, 13, 18224, 13, 4261, 2538, 81, 1472, 25, 198, 220, 220, 220, 3601, 10786, 46, 2524, 610, 2934, 84, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 47, 1098, 4173, 256, 6557, 256, 12003, 3621, 11537, 198 ]
2.321429
84
import six DefinitionsHost = {'discriminator': 'name', 'required': ['name', 'region_id', 'ip_address', 'device_type'], 'type': 'object', 'properties': { 'active': {'type': 'boolean'}, 'note': {'type': 'string'}, 'ip_address': {'type': 'string'}, 'name': {'type': 'string'}, 'id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'parent_id': {'type': 'integer', 'description': 'Parent Id of this host'}, 'device_type': {'type': 'string', 'description': 'Type of host'}, 'labels': {'type': 'array', 'items': 'string', 'description': 'User defined labels'}, 'data': {'type': 'allOf', 'description': 'User defined information'}, 'region_id': {'type': 'integer'}}} DefinitionsHostId = {'discriminator': 'name', 'type': 'object', 'properties': { 'active': {'type': 'boolean'}, 'note': {'type': 'string'}, 'ip_address': {'type': 'string'}, 'name': {'type': 'string'}, 'id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'project_id': {'type': 'string'}, 'labels': {'type': 'array', 'items': 'string', 'description': 'User defined labels'}, 'data': {'type': 'allOf', 'description': 'User defined information'}, 'region_id': {'type': 'integer'}}} DefinitionsCell = {'discriminator': 'name', 'required': ['name', 'region_id', ], 'type': 'object', 'properties': { 'note': {'type': 'string'}, 'name': {'type': 'string'}, 'region_id': {'type': 'integer'}, 'data': {'type': 'allOf', 'description': 'User defined information'}, 'id': {'type': 'integer', 'description': 'Unique ID of the cell'}}} DefinitionsCellId = {'discriminator': 'name', 'type': 'object', 'properties': { 'note': {'type': 'string'}, 'project_id': {'type': 'string', 'description': 'UUID of the project'}, 'name': {'type': 'string'}, 'region_id': {'type': 'integer'}, 'data': {'type': 'allOf', 'description': 'User defined information'}, 'id': {'type': 'integer', 'description': 'Unique ID of the cell'}}} DefinitionsData = {'type': 'object', 'properties': {'key': {'type': 'string'}, 'value': {'type': 'object'}}} DefinitionsLabel = {'type': 'object', 'properties': {'labels': { 'type': 'array', 'items': {'type': 'string'}}}} DefinitionsError = {'type': 'object', 'properties': {'fields': {'type': 'string'}, 'message': {'type': 'string'}, 'code': {'type': 'integer', 'format': 'int32'} }} DefinitionsRegion = {'discriminator': 'name', 'required': ['name'], 'type': 'object', 'properties': { 'note': { 'type': 'string', 'description': 'Region Note'}, 'name': { 'type': 'string', 'description': 'Region Name.'}, 'cells': { 'items': DefinitionsCell, 'type': 'array', 'description': 'List of cells in this region'}, 'data': { 'type': 'allOf', 'description': 'User defined information'}, 'id': { 'type': 'integer', 'description': 'Unique ID for the region.'}}} DefinitionsRegionId = {'discriminator': 'name', 'type': 'object', 'properties': { 'note': { 'type': 'string', 'description': 'Region Note'}, 'name': { 'type': 'string', 'description': 'Region Name.'}, 'project_id': { 'type': 'string', 'description': 'UUID of the project'}, 'cells': { 'items': DefinitionsCell, 'type': 'array', 'description': 'List of cells in this region'}, 'data': { 'type': 'allOf', 'description': 'User defined information'}, 'id': { 'type': 'integer', 'description': 'Unique ID for the region.'}}} DefinitionUser = {'discriminator': 'name', 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'api_key': {'type': 'string'}, 'username': {'type': 'string'}, 'is_admin': {'type': 'boolean'}, 'project_id': {'type': 'string'}, 'roles': {'type': 'allOf'}}} DefinitionProject = {'discriminator': 'name', 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'name': {'type': 'string'}}} DefinitionNetwork = {'discriminator': 'name', 'required': ['name', 'cidr', 'gateway', 'netmask'], 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'region_id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'name': {'type': 'string'}, 'cidr': {'type': 'string'}, 'gateway': {'type': 'string'}, 'netmask': {'type': 'string'}, 'data': {'type': 'allOf'}, "ip_block_type": {'type': 'string'}, "nss": {'type': 'string'}}} DefinitionNetworkId = {'discriminator': 'name', 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'project_id': {'type': 'string'}, 'region_id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'name': {'type': 'string'}, 'cidr': {'type': 'string'}, 'gateway': {'type': 'string'}, 'netmask': {'type': 'string'}, 'data': {'type': 'allOf'}, "ip_block_type": {'type': 'string'}, "nss": {'type': 'string'}}} DefinitionNetInterface = {'discriminator': 'name', 'required': ['name', 'device_id', 'interface_type'], 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'name': {'type': 'string'}, 'device_id': {'type': 'integer', 'default': None}, 'network_id': {'type': 'integer', 'default': None}, 'interface_type': {'type': 'string'}, 'project_id': {'type': 'string'}, 'vlan_id': {'type': 'integer'}, 'vlan': {'type': 'string'}, 'port': {'type': 'integer'}, 'duplex': {'type': 'string'}, 'speed': {'type': 'integer'}, 'link': {'type': 'string'}, 'cdp': {'type': 'string'}, 'data': {'type': 'allOf'}, 'security': {'type': 'string'}}} DefinitionNetInterfaceId = {'discriminator': 'name', 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'name': {'type': 'string'}, 'device_id': {'type': 'integer'}, 'project_id': {'type': 'string'}, 'network_id': {'type': 'integer'}, 'interface_type': {'type': 'string'}, 'vlan_id': {'type': 'integer'}, 'vlan': {'type': 'string'}, 'port': {'type': 'string'}, 'duplex': {'type': 'string'}, 'speed': {'type': 'integer'}, 'link': {'type': 'string'}, 'cdp': {'type': 'string'}, 'data': {'type': 'allOf'}, 'security': {'type': 'string'}}} DefinitionNetDevice = {'discriminator': 'hostname', 'required': ['hostname', 'region_id', 'device_type', 'ip_address'], 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'region_id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'parent_id': {'type': 'integer'}, 'ip_address': {'type': 'string'}, 'device_type': {'type': 'string'}, 'hostname': {'type': 'string'}, 'access_secret_id': {'type': 'integer'}, 'model_name': {'type': 'string'}, 'os_version': {'type': 'string'}, 'vlans': {'type': 'string'}, 'data': {'type': 'allOf', 'description': 'User defined variables'}, 'interface_id': {'type': 'integer'}, 'network_id': {'type': 'integer'}}} DefinitionNetDeviceId = {'discriminator': 'hostname', 'type': 'object', 'properties': { 'id': {'type': 'integer'}, 'project_id': {'type': 'string'}, 'region_id': {'type': 'integer'}, 'cell_id': {'type': 'integer'}, 'parent_id': {'type': 'integer'}, 'ip_address': {'type': 'string'}, 'device_type': {'type': 'string'}, 'hostname': {'type': 'string'}, 'access_secret_id': {'type': 'integer'}, 'model_name': {'type': 'string'}, 'os_version': {'type': 'string'}, 'vlans': {'type': 'string'}, 'interface_id': {'type': 'integer'}, 'data': {'type': 'allOf', 'description': 'User defined variables'}, 'network_id': {'type': 'integer'}}} validators = { ('ansible_inventory', 'GET'): { 'args': {'required': ['region_id'], 'properties': { 'region_id': { 'default': None, 'type': 'string', 'description': 'Region to generate inventory for'}, 'cell_id': { 'default': None, 'type': 'string', 'description': 'Cell id to generate inventory for'}}} }, ('hosts_id_data', 'PUT'): {'json': DefinitionsData}, ('hosts_labels', 'PUT'): {'json': DefinitionsLabel}, ('hosts_id', 'GET'): { 'args': {'required': [], 'properties': { 'resolved-values': { 'default': True, 'type': 'boolean'}}} }, ('hosts_id', 'PUT'): {'json': DefinitionsHost}, ('regions', 'GET'): { 'args': {'required': [], 'properties': { 'name': { 'default': None, 'type': 'string', 'description': 'name of the region to get'}, 'id': { 'default': None, 'type': 'integer', 'description': 'ID of the region to get'}}} }, ('regions', 'POST'): {'json': DefinitionsRegion}, ('regions_id_data', 'PUT'): {'json': DefinitionsData}, ('hosts', 'POST'): {'json': DefinitionsHost}, ('hosts', 'GET'): { 'args': {'required': ['region_id'], 'properties': { 'name': { 'default': None, 'type': 'string', 'description': 'name of the hosts to get'}, 'region_id': { 'default': None, 'type': 'integer', 'description': 'ID of the region to get hosts'}, 'cell_id': { 'default': None, 'type': 'integer', 'description': 'ID of the cell to get hosts'}, 'device_type': { 'default': None, 'type': 'string', 'description': 'Type of host to get'}, 'limit': { 'minimum': 1, 'description': 'number of hosts to return', 'default': 1000, 'type': 'integer', 'maximum': 10000}, 'ip': { 'default': None, 'type': 'string', 'description': 'ip_address of the hosts to get'}, 'id': { 'default': None, 'type': 'integer', 'description': 'ID of host to get'}} }}, ('cells_id', 'PUT'): {'json': DefinitionsCell}, ('cells', 'POST'): {'json': DefinitionsCell}, ('cells', 'GET'): { 'args': {'required': ['region_id'], 'properties': { 'region_id': { 'default': None, 'type': 'string', 'description': 'name of the region to get cells for'}, 'id': { 'default': None, 'type': 'integer', 'description': 'id of the cell to get' }, 'name': { 'default': None, 'type': 'string', 'description': 'name of the cell to get'}} }}, ('regions_id', 'PUT'): {'json': DefinitionsRegion}, ('cells_id_data', 'PUT'): {'json': DefinitionsData}, ('projects', 'GET'): { 'args': {'required': [], 'properties': { 'id': { 'default': None, 'type': 'integer', 'description': 'id of the project to get' }, 'name': { 'default': None, 'type': 'string', 'description': 'name of the project to get'}} }}, ('projects', 'POST'): {'json': DefinitionProject}, ('users', 'GET'): { 'args': {'required': [], 'properties': { 'id': { 'default': None, 'type': 'integer', 'description': 'id of the user to get' }, 'name': { 'default': None, 'type': 'string', 'description': 'name of the user to get'}} }}, ('users', 'POST'): {'json': DefinitionUser}, ('netdevices', 'GET'): { 'args': {'required': [], 'properties': { 'id': { 'default': None, 'type': 'integer', 'description': 'id of the net device to get' }, 'ip': { 'default': None, 'type': 'string', 'description': 'IP of the device to get'}, 'region_id': { 'default': None, 'type': 'string', 'description': 'region id of the device to get'}, 'name': { 'default': None, 'type': 'string', 'description': 'name of the device to get'}, 'device_type': { 'default': None, 'type': 'string', 'description': 'type of the device to get'}, 'cell_id': { 'default': None, 'type': 'string', 'description': 'cell id of the device to get'}} }}, ('netdevices_id', 'GET'): { 'args': {'required': [], 'properties': { 'resolved-values': { 'default': True, 'type': 'boolean'}}}}, ('netdevices', 'POST'): {'json': DefinitionNetDevice}, ('netdevices_labels', 'PUT'): {'json': DefinitionsLabel}, ('net_interfaces', 'GET'): { 'args': {'required': ['device_id'], 'properties': { 'id': { 'default': None, 'type': 'integer', 'description': 'id of the net interface to get' }, 'device_id': { 'default': None, 'type': 'integer', 'description': 'device id of the interface to get'}, 'ip': { 'default': None, 'type': 'string', 'description': 'IP of the interface to get'}, 'interface_type': { 'default': None, 'type': 'string', 'description': 'Type of the interface to get'}} }}, ('net_interfaces', 'POST'): {'json': DefinitionNetInterface}, ('networks', 'GET'): { 'args': {'required': [], 'properties': { 'id': { 'default': None, 'type': 'integer', 'description': 'id of the network to get' }, 'network_type': { 'default': None, 'type': 'string', 'description': 'type of the network to get'}, 'name': { 'default': None, 'type': 'string', 'description': 'name of the network to get'}, 'region_id': { 'default': None, 'type': 'string', 'description': 'region id of the network to get'}, 'cell_id': { 'default': None, 'type': 'string', 'description': 'cell idof the network to get'}} }}, ('networks', 'POST'): {'json': DefinitionNetwork}, } filters = { ('hosts_id_data', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_id_data', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_id', 'GET'): {200: {'headers': None, 'schema': DefinitionsHostId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_id', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_id', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_labels', 'GET'): {200: {'headers': None, 'schema': DefinitionsLabel}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts_labels', 'PUT'): {200: {'headers': None, 'schema': DefinitionsLabel}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts', 'POST'): {200: {'headers': None, 'schema': DefinitionsHost}, 400: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('hosts', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionsHost, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells_id', 'GET'): {200: {'headers': None, 'schema': DefinitionsCellId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells_id', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells_id', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells_id_data', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells_id_data', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells', 'POST'): {200: {'headers': None, 'schema': DefinitionsCell}, 400: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('cells', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionsCell, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions', 'POST'): {200: {'headers': None, 'schema': DefinitionsRegion}, 400: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionsRegion, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions_id_data', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions_id_data', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions_id', 'GET'): {200: {'headers': None, 'schema': DefinitionsRegionId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions_id', 'PUT'): {200: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('regions_id', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('projects', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionProject, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('projects', 'POST'): {200: {'headers': None, 'schema': DefinitionProject}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('users', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionUser, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('users', 'POST'): {200: {'headers': None, 'schema': DefinitionUser}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('users_id', 'GET'): {200: {'headers': None, 'schema': DefinitionUser}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('users_id', 'DELETE'): {204: {'headers': None, 'schema': None}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('netdevices', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionNetDeviceId, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('netdevices_id', 'GET'): {200: {'headers': None, 'schema': DefinitionNetDeviceId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('netdevices_labels', 'GET'): {200: {'headers': None, 'schema': DefinitionsLabel}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('netdevices_labels', 'PUT'): {200: {'headers': None, 'schema': DefinitionsLabel}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('networks', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionNetwork, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('networks_id', 'GET'): {200: {'headers': None, 'schema': DefinitionNetworkId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('net_interfaces', 'GET'): {200: {'headers': None, 'schema': {'items': DefinitionNetInterface, 'type': 'array'}}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, ('net_interfaces_id', 'GET'): {200: {'headers': None, 'schema': DefinitionNetInterfaceId}, 400: {'headers': None, 'schema': None}, 404: {'headers': None, 'schema': None}, 405: {'headers': None, 'schema': None}}, } scopes = { ('hosts_id_data', 'PUT'): [], ('hosts_id_data', 'DELETE'): [], ('hosts_id', 'PUT'): [], ('hosts_id', 'DELETE'): [], ('regions', 'GET'): [], ('regions_id_data', 'PUT'): [], ('regions_id_data', 'DELETE'): [], ('hosts', 'POST'): [], ('hosts', 'GET'): [], ('cells_id', 'PUT'): [], ('cells_id', 'DELETE'): [], ('cells', 'POST'): [], ('cells', 'GET'): [], ('regions_id', 'PUT'): [], ('cells_id_data', 'PUT'): [], ('cells_id_data', 'DELETE'): [], ('projects', 'GET'): [], ('projects_id', 'GET'): [], ('projects_id', 'DELETE'): [], ('projects', 'POST'): [], ('users', 'GET'): [], ('users', 'POST'): [], ('users_id', 'GET'): [], } security = Security()
[ 11748, 2237, 628, 198, 7469, 50101, 17932, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5275, 10354, 1391, 6, 4906, 10354, 705, 2127, 21052, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8000, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 24546, 5121, 286, 428, 2583, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 10354, 1391, 6, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 6030, 286, 2583, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23912, 1424, 10354, 1391, 6, 4906, 10354, 705, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23814, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 14722, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 42535, 198, 198, 7469, 50101, 17932, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5275, 10354, 1391, 6, 4906, 10354, 705, 2127, 21052, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23912, 1424, 10354, 1391, 6, 4906, 10354, 705, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23814, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 14722, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 42535, 198, 198, 7469, 50101, 28780, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 40257, 4522, 286, 262, 2685, 6, 42535, 198, 198, 7469, 50101, 28780, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 52, 27586, 286, 262, 1628, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 40257, 4522, 286, 262, 2685, 6, 42535, 198, 198, 7469, 50101, 6601, 796, 1391, 6, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 6, 2539, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 1391, 6, 4906, 10354, 705, 15252, 6, 42535, 198, 198, 7469, 50101, 33986, 796, 1391, 6, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 6, 23912, 1424, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23814, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 11709, 11709, 198, 198, 7469, 50101, 12331, 796, 1391, 6, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 6, 25747, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20500, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8189, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18982, 10354, 705, 600, 2624, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34949, 198, 198, 7469, 50101, 47371, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 47371, 5740, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 47371, 6530, 2637, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46342, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23814, 10354, 45205, 28780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 8053, 286, 4778, 287, 428, 3814, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 40257, 4522, 329, 262, 3814, 2637, 42535, 198, 198, 7469, 50101, 47371, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11295, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 47371, 5740, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 47371, 6530, 2637, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 52, 27586, 286, 262, 1628, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 46342, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23814, 10354, 45205, 28780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 8053, 286, 4778, 287, 428, 3814, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 1321, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 40257, 4522, 329, 262, 3814, 2637, 42535, 198, 198, 36621, 12982, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15042, 62, 2539, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29460, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 28482, 10354, 1391, 6, 4906, 10354, 705, 2127, 21052, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 829, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 6, 42535, 198, 198, 36621, 16775, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 42535, 198, 198, 36621, 26245, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 312, 81, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3262, 27932, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 312, 81, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3262, 27932, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 541, 62, 9967, 62, 4906, 1298, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 824, 1298, 1391, 6, 4906, 10354, 705, 8841, 6, 42535, 198, 198, 36621, 26245, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 66, 312, 81, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10494, 1014, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3262, 27932, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 541, 62, 9967, 62, 4906, 1298, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 824, 1298, 1391, 6, 4906, 10354, 705, 8841, 6, 42535, 198, 198, 36621, 7934, 39317, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 4906, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 4906, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 85, 9620, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 85, 9620, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 634, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 646, 11141, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12287, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8726, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10210, 79, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12961, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 42535, 198, 198, 36621, 7934, 39317, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 4906, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 85, 9620, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 85, 9620, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 634, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 646, 11141, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12287, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8726, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10210, 79, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12961, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 42535, 198, 198, 36621, 7934, 24728, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 4774, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35827, 10354, 37250, 4774, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8000, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15526, 62, 21078, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 418, 62, 9641, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19279, 504, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 9633, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 42535, 198, 198, 36621, 7934, 24728, 7390, 796, 1391, 6, 15410, 3036, 20900, 10354, 705, 4774, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 15252, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16302, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8000, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 21975, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4774, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15526, 62, 21078, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 62, 3672, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 418, 62, 9641, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19279, 504, 10354, 1391, 6, 4906, 10354, 705, 8841, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 10354, 1391, 6, 4906, 10354, 705, 439, 5189, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 12982, 5447, 9633, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 312, 10354, 1391, 6, 4906, 10354, 705, 41433, 6, 42535, 628, 198, 12102, 2024, 796, 1391, 198, 220, 220, 220, 19203, 504, 856, 62, 24807, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 37250, 36996, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 47371, 284, 7716, 13184, 329, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 28780, 4686, 284, 7716, 13184, 329, 6, 42535, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 6601, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 23912, 1424, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 5634, 12, 27160, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 2127, 21052, 6, 42535, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 17932, 5512, 198, 220, 220, 220, 19203, 2301, 507, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 3814, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 2389, 286, 262, 3814, 284, 651, 6, 42535, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 19203, 2301, 507, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 45205, 47371, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 6601, 5512, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 45205, 17932, 5512, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 37250, 36996, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 11453, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 2389, 286, 262, 3814, 284, 651, 11453, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 2389, 286, 262, 2685, 284, 651, 11453, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 6030, 286, 2583, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39504, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 17618, 286, 11453, 284, 1441, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 8576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47033, 10354, 33028, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 541, 62, 21975, 286, 262, 11453, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 2389, 286, 2583, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 28780, 5512, 198, 220, 220, 220, 19203, 46342, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 45205, 28780, 5512, 198, 220, 220, 220, 19203, 46342, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 37250, 36996, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 3814, 284, 651, 4778, 329, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 2685, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 2685, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 47371, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 6601, 5512, 198, 220, 220, 220, 19203, 42068, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 1628, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 1628, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 42068, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 30396, 16775, 5512, 198, 220, 220, 220, 19203, 18417, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 2836, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 2836, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 18417, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 30396, 12982, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 2010, 3335, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 4061, 286, 262, 3335, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 36996, 4686, 286, 262, 3335, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 3335, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 4906, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 4906, 286, 262, 3335, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3846, 4686, 286, 262, 3335, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 62, 312, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 411, 5634, 12, 27160, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 2127, 21052, 6, 42535, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 30396, 7934, 24728, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 62, 23912, 1424, 3256, 705, 30076, 6, 2599, 1391, 6, 17752, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 19203, 3262, 62, 3849, 32186, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 37250, 25202, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 2010, 7071, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25202, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 25202, 4686, 286, 262, 7071, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 541, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 4061, 286, 262, 7071, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39994, 62, 4906, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 6030, 286, 262, 7071, 220, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 3262, 62, 3849, 32186, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 30396, 7934, 39317, 5512, 198, 220, 220, 220, 19203, 3262, 5225, 3256, 705, 18851, 6, 2599, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22046, 10354, 1391, 6, 35827, 10354, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 48310, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 41433, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 312, 286, 262, 3127, 284, 651, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 62, 4906, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 4906, 286, 262, 3127, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3672, 286, 262, 3127, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36996, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 36996, 4686, 286, 262, 3127, 284, 651, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3846, 62, 312, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12286, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 8841, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 705, 3846, 4686, 1659, 262, 3127, 284, 651, 6, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 5512, 198, 220, 220, 220, 19203, 3262, 5225, 3256, 705, 32782, 6, 2599, 1391, 6, 17752, 10354, 30396, 26245, 5512, 198, 92, 198, 198, 10379, 1010, 796, 1391, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 17932, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 23912, 1424, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 62, 23912, 1424, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 32782, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 17932, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 45205, 17932, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 28780, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 3256, 705, 32782, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 28780, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 46342, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 45205, 28780, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 3256, 705, 32782, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 47371, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 45205, 47371, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 47371, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 42068, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 30396, 16775, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 42068, 3256, 705, 32782, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 16775, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 18417, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 30396, 12982, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 18417, 3256, 705, 32782, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 12982, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 18417, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 12982, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 18417, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 18638, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 30396, 7934, 24728, 7390, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 7934, 24728, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 62, 23912, 1424, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 42034, 62, 23912, 1424, 3256, 705, 30076, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 45205, 33986, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 5225, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 30396, 26245, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 5225, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 26245, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 62, 3849, 32186, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15952, 2611, 10354, 1391, 6, 23814, 10354, 30396, 7934, 39317, 11, 705, 4906, 10354, 705, 18747, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 220, 220, 220, 19203, 3262, 62, 3849, 32186, 62, 312, 3256, 705, 18851, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 2167, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 30396, 7934, 39317, 7390, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7337, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 32320, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 36966, 25, 1391, 6, 50145, 10354, 6045, 11, 705, 15952, 2611, 10354, 6045, 92, 5512, 198, 92, 628, 198, 1416, 13920, 796, 1391, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 4774, 82, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 2301, 507, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 32782, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 4774, 82, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 3256, 705, 32782, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 2301, 507, 62, 312, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 62, 312, 62, 7890, 3256, 705, 30076, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 46342, 62, 312, 62, 7890, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 42068, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 42068, 62, 312, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 42068, 62, 312, 3256, 705, 7206, 2538, 9328, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 42068, 3256, 705, 32782, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 18417, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 18417, 3256, 705, 32782, 6, 2599, 685, 4357, 198, 220, 220, 220, 19203, 18417, 62, 312, 3256, 705, 18851, 6, 2599, 685, 4357, 198, 198, 92, 628, 198, 12961, 796, 4765, 3419, 628, 198 ]
1.687093
18,881
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file './modules/dialogPassword.ui' # # Created by: PyQt4 UI code generator 4.12.1 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: try: _encoding = QtGui.QApplication.UnicodeUTF8 except AttributeError:
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 5178, 7822, 7560, 422, 3555, 334, 72, 2393, 705, 19571, 18170, 14, 38969, 519, 35215, 13, 9019, 6, 198, 2, 198, 2, 15622, 416, 25, 9485, 48, 83, 19, 12454, 2438, 17301, 604, 13, 1065, 13, 16, 198, 2, 198, 2, 39410, 0, 1439, 2458, 925, 287, 428, 2393, 481, 307, 2626, 0, 198, 198, 6738, 9485, 48, 83, 19, 1330, 33734, 14055, 11, 33734, 8205, 72, 198, 198, 28311, 25, 198, 220, 220, 220, 4808, 6738, 18274, 69, 23, 796, 33734, 14055, 13, 48, 10100, 13, 6738, 18274, 69, 23, 198, 16341, 3460, 4163, 12331, 25, 198, 198, 28311, 25, 198, 220, 220, 220, 4808, 12685, 7656, 796, 33734, 8205, 72, 13, 48, 23416, 13, 3118, 291, 1098, 48504, 23, 198, 16341, 3460, 4163, 12331, 25, 628 ]
2.715278
144
#!/bin/python import listify_circuits listify_circuits.optimize_circuits(16, 'forward')
[ 2, 48443, 8800, 14, 29412, 198, 198, 11748, 1351, 1958, 62, 21170, 15379, 198, 4868, 1958, 62, 21170, 15379, 13, 40085, 1096, 62, 21170, 15379, 7, 1433, 11, 705, 11813, 11537 ]
2.83871
31
''' Quick setup script. ''' import os os.system('brew install ffmpeg') os.system('brew install youtube-dl') modules=['ffmpy','pandas','soundfile','pafy', 'tqdm'] pip_install(modules)
[ 7061, 6, 198, 21063, 9058, 4226, 13, 198, 7061, 6, 198, 11748, 28686, 220, 198, 198, 418, 13, 10057, 10786, 11269, 2721, 31246, 43913, 11537, 198, 418, 13, 10057, 10786, 11269, 2721, 35116, 12, 25404, 11537, 198, 18170, 28, 17816, 487, 3149, 88, 41707, 79, 392, 292, 41707, 23661, 7753, 41707, 79, 1878, 88, 3256, 705, 83, 80, 36020, 20520, 198, 79, 541, 62, 17350, 7, 18170, 8, 198 ]
2.681159
69
import os import sys import torch import logging import pickle import datetime from tqdm import tqdm sys.path.append('datapreprocess') sys.path.append('module') from datafunc import make_dataloader, test_data_for_predict, build_processed_data, make_validloader from model import LinearNet, RnnNet, RnnAttentionNet
[ 11748, 28686, 198, 11748, 25064, 198, 198, 11748, 28034, 198, 11748, 18931, 198, 11748, 2298, 293, 198, 11748, 4818, 8079, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 17597, 13, 6978, 13, 33295, 10786, 19608, 499, 260, 14681, 11537, 198, 17597, 13, 6978, 13, 33295, 10786, 21412, 11537, 198, 6738, 1366, 20786, 1330, 787, 62, 67, 10254, 1170, 263, 11, 1332, 62, 7890, 62, 1640, 62, 79, 17407, 11, 1382, 62, 14681, 276, 62, 7890, 11, 787, 62, 12102, 29356, 198, 6738, 2746, 1330, 44800, 7934, 11, 371, 20471, 7934, 11, 371, 20471, 8086, 1463, 7934, 628, 198 ]
3.148515
101
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-04-23 11:10 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 319, 1584, 12, 3023, 12, 1954, 1367, 25, 940, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.781818
55
from setuptools import find_packages, setup setup( name='pbase', version='0.0.1', author='Peng Shi', author_email='[email protected]', description='framework for deep learning applications', url='https://github.com/Impavidity/pbase', license='MIT', install_requires=[ ], packages=find_packages(), )
[ 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 628, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 79, 8692, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 1772, 11639, 47, 1516, 16380, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 79, 1516, 62, 44019, 31, 448, 5460, 13, 785, 3256, 198, 220, 220, 220, 6764, 11639, 30604, 329, 2769, 4673, 5479, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 26950, 8490, 414, 14, 79, 8692, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 628, 220, 220, 220, 16589, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 8, 198 ]
2.695313
128
"""Add Action table. Revision ID: 4cbe8e432c6b Revises: 7b08cf35abd9 Create Date: 2018-07-27 20:05:30.976453 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '4cbe8e432c6b' down_revision = '7b08cf35abd9' branch_labels = None depends_on = None
[ 37811, 4550, 7561, 3084, 13, 198, 198, 18009, 1166, 4522, 25, 604, 66, 1350, 23, 68, 45331, 66, 21, 65, 198, 18009, 2696, 25, 767, 65, 2919, 12993, 2327, 397, 67, 24, 198, 16447, 7536, 25, 2864, 12, 2998, 12, 1983, 1160, 25, 2713, 25, 1270, 13, 24, 4304, 36625, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 19, 66, 1350, 23, 68, 45331, 66, 21, 65, 6, 198, 2902, 62, 260, 10178, 796, 705, 22, 65, 2919, 12993, 2327, 397, 67, 24, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.385827
127
""" MIT License Copyright (c) 2021 Jedy Matt Tabasco Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import abc from typing import NamedTuple import sqlalchemy from sqlalchemy.orm import ColumnProperty from sqlalchemy.orm import object_mapper from sqlalchemy.orm.relationships import RelationshipProperty from sqlalchemy.sql import schema from . import class_registry, validator, errors, util class AbstractSeeder(abc.ABC): """ AbstractSeeder class """ @property @abc.abstractmethod def instances(self): """ Seeded instances """ @abc.abstractmethod def seed(self, entities): """ Seed data """ @abc.abstractmethod def _pre_seed(self, *args, **kwargs): """ Pre-seeding phase """ @abc.abstractmethod def _seed(self, *args, **kwargs): """ Seeding phase """ @abc.abstractmethod def _seed_children(self, *args, **kwargs): """ Seed children """ @abc.abstractmethod def _setup_instance(self, *args, **kwargs): """ Setup instance """ class Seeder(AbstractSeeder): """ Basic Seeder class """ __model_key = validator.Key.model() __data_key = validator.Key.data() @property # def instantiate_class(self, class_, kwargs: dict, key: validator.Key): # filtered_kwargs = { # k: v # for k, v in kwargs.items() # if not k.startswith("!") # and not isinstance(getattr(class_, k), RelationshipProperty) # } # # if key is validator.Key.data(): # return class_(**filtered_kwargs) # # if key is validator.Key.filter() and self.session is not None: # return self.session.query(class_).filter_by(**filtered_kwargs).one() class HybridSeeder(AbstractSeeder): """ HybridSeeder class. Accepts 'filter' key for referencing children. """ __model_key = validator.Key.model() __source_keys = [validator.Key.data(), validator.Key.filter()] @property
[ 37811, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 33448, 449, 4716, 4705, 16904, 292, 1073, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 37811, 198, 198, 11748, 450, 66, 198, 6738, 19720, 1330, 34441, 51, 29291, 198, 198, 11748, 44161, 282, 26599, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 29201, 21746, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2134, 62, 76, 11463, 198, 6738, 44161, 282, 26599, 13, 579, 13, 39468, 5748, 1330, 39771, 21746, 198, 6738, 44161, 282, 26599, 13, 25410, 1330, 32815, 198, 198, 6738, 764, 1330, 1398, 62, 2301, 4592, 11, 4938, 1352, 11, 8563, 11, 7736, 628, 198, 4871, 27741, 50, 2308, 263, 7, 39305, 13, 24694, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 50, 2308, 263, 1398, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 10245, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1001, 15395, 10245, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 9403, 7, 944, 11, 12066, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 3866, 62, 28826, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3771, 12, 325, 8228, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 28826, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1001, 8228, 7108, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 28826, 62, 17197, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23262, 1751, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 4808, 40406, 62, 39098, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 31122, 4554, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 628, 628, 198, 198, 4871, 1001, 5702, 7, 23839, 50, 2308, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14392, 1001, 5702, 1398, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 19849, 62, 2539, 796, 4938, 1352, 13, 9218, 13, 19849, 3419, 198, 220, 220, 220, 11593, 7890, 62, 2539, 796, 4938, 1352, 13, 9218, 13, 7890, 3419, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 1303, 825, 9113, 9386, 62, 4871, 7, 944, 11, 1398, 62, 11, 479, 86, 22046, 25, 8633, 11, 1994, 25, 4938, 1352, 13, 9218, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 29083, 62, 46265, 22046, 796, 1391, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 479, 25, 410, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 479, 86, 22046, 13, 23814, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 479, 13, 9688, 2032, 342, 7203, 2474, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 318, 39098, 7, 1136, 35226, 7, 4871, 62, 11, 479, 828, 39771, 21746, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 1994, 318, 4938, 1352, 13, 9218, 13, 7890, 33529, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1398, 41052, 1174, 10379, 4400, 62, 46265, 22046, 8, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 1994, 318, 4938, 1352, 13, 9218, 13, 24455, 3419, 290, 2116, 13, 29891, 318, 407, 6045, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 29891, 13, 22766, 7, 4871, 62, 737, 24455, 62, 1525, 7, 1174, 10379, 4400, 62, 46265, 22046, 737, 505, 3419, 628, 198, 4871, 29481, 50, 2308, 263, 7, 23839, 50, 2308, 263, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29481, 50, 2308, 263, 1398, 13, 21699, 82, 705, 24455, 6, 1994, 329, 32578, 1751, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 19849, 62, 2539, 796, 4938, 1352, 13, 9218, 13, 19849, 3419, 198, 220, 220, 220, 11593, 10459, 62, 13083, 796, 685, 12102, 1352, 13, 9218, 13, 7890, 22784, 4938, 1352, 13, 9218, 13, 24455, 3419, 60, 628, 220, 220, 220, 2488, 26745, 198 ]
2.698344
1,147
import dependency_injector.containers as containers import dependency_injector.providers as providers import strongr.core from strongr.schedulerdomain.model.scalingdrivers.nullscaler import NullScaler from strongr.schedulerdomain.model.scalingdrivers.simplescaler import SimpleScaler from strongr.schedulerdomain.model.scalingdrivers.surfhpccloudscaler import SurfHpcScaler class ScalingDriver(containers.DeclarativeContainer): """IoC container of service providers.""" _scalingdrivers = providers.Object({ 'simplescaler': SimpleScaler, 'nullscaler': NullScaler, 'surfsarahpccloud': SurfHpcScaler }) scaling_driver = providers.Singleton(_scalingdrivers()[strongr.core.Core.config().schedulerdomain.scalingdriver.lower()], config=dict(strongr.core.Core.config().schedulerdomain.as_dict()[strongr.core.Core.config().schedulerdomain.scalingdriver]) if strongr.core.Core.config().schedulerdomain.scalingdriver in strongr.core.Core.config().schedulerdomain.as_dict().keys() else {})
[ 11748, 20203, 62, 259, 752, 273, 13, 3642, 50221, 355, 16472, 198, 11748, 20203, 62, 259, 752, 273, 13, 15234, 4157, 355, 9549, 198, 198, 11748, 1913, 81, 13, 7295, 198, 198, 6738, 1913, 81, 13, 1416, 704, 18173, 27830, 13, 19849, 13, 1416, 4272, 36702, 13, 8423, 1416, 36213, 1330, 35886, 3351, 36213, 198, 6738, 1913, 81, 13, 1416, 704, 18173, 27830, 13, 19849, 13, 1416, 4272, 36702, 13, 14323, 2374, 9948, 263, 1330, 17427, 3351, 36213, 198, 6738, 1913, 81, 13, 1416, 704, 18173, 27830, 13, 19849, 13, 1416, 4272, 36702, 13, 11793, 69, 24831, 535, 75, 2778, 1416, 36213, 1330, 43771, 39, 14751, 3351, 36213, 628, 198, 4871, 1446, 4272, 32103, 7, 3642, 50221, 13, 37835, 283, 876, 29869, 2599, 198, 220, 220, 220, 37227, 40, 78, 34, 9290, 286, 2139, 9549, 526, 15931, 198, 220, 220, 220, 4808, 1416, 4272, 36702, 796, 9549, 13, 10267, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14323, 2374, 9948, 263, 10354, 17427, 3351, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8423, 1416, 36213, 10354, 220, 35886, 3351, 36213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11793, 9501, 23066, 79, 535, 75, 2778, 10354, 43771, 39, 14751, 3351, 36213, 198, 220, 220, 220, 32092, 628, 220, 220, 220, 20796, 62, 26230, 796, 9549, 13, 29974, 10565, 28264, 1416, 4272, 36702, 3419, 58, 11576, 81, 13, 7295, 13, 14055, 13, 11250, 22446, 1416, 704, 18173, 27830, 13, 1416, 4272, 26230, 13, 21037, 3419, 4357, 4566, 28, 11600, 7, 11576, 81, 13, 7295, 13, 14055, 13, 11250, 22446, 1416, 704, 18173, 27830, 13, 292, 62, 11600, 3419, 58, 11576, 81, 13, 7295, 13, 14055, 13, 11250, 22446, 1416, 704, 18173, 27830, 13, 1416, 4272, 26230, 12962, 611, 1913, 81, 13, 7295, 13, 14055, 13, 11250, 22446, 1416, 704, 18173, 27830, 13, 1416, 4272, 26230, 287, 1913, 81, 13, 7295, 13, 14055, 13, 11250, 22446, 1416, 704, 18173, 27830, 13, 292, 62, 11600, 22446, 13083, 3419, 2073, 23884, 8, 198 ]
3.047619
336
from rest_framework import serializers from .models import Post, Location, Tag,Photo # class PostSerializer(serializers.Serializer): # id = serializers.IntegerField(read_only = True) # title = serializers.CharField(max_length = 255) # detail = serializers.CharField(max_length = 2047) # def create(self,validated_data): # """create a Post from json""" # return Post.objects.create(**validated_data) # def update(self, instance, validated_data): # """Update the data by json""" # instance # class CategorySerializer(serializers.ModelSerializer): # class Meta: # model = Category # fields = ('id','name')
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 764, 27530, 1330, 2947, 11, 13397, 11, 17467, 11, 6191, 628, 198, 198, 2, 1398, 2947, 32634, 7509, 7, 46911, 11341, 13, 32634, 7509, 2599, 198, 2, 220, 220, 220, 220, 4686, 796, 11389, 11341, 13, 46541, 15878, 7, 961, 62, 8807, 796, 6407, 8, 198, 2, 220, 220, 220, 220, 3670, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 796, 14280, 8, 198, 2, 220, 220, 220, 220, 3703, 796, 11389, 11341, 13, 12441, 15878, 7, 9806, 62, 13664, 796, 1160, 2857, 8, 198, 198, 2, 220, 220, 220, 220, 825, 2251, 7, 944, 11, 12102, 515, 62, 7890, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 17953, 257, 2947, 422, 33918, 37811, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2947, 13, 48205, 13, 17953, 7, 1174, 12102, 515, 62, 7890, 8, 198, 198, 2, 220, 220, 220, 220, 825, 4296, 7, 944, 11, 4554, 11, 31031, 62, 7890, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 1366, 416, 33918, 37811, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 4554, 198, 198, 2, 1398, 21743, 32634, 7509, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 198, 2, 220, 220, 220, 220, 1398, 30277, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 220, 796, 21743, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 19203, 312, 41707, 3672, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.637405
262
import copy import logging import math from datetime import datetime import numpy as np import quaternion import cv2 from TelemetryParsing import readTelemetryCsv from visnav.algo import tools from visnav.algo.tools import Pose from visnav.algo.model import Camera from visnav.algo.odo.base import Measure from visnav.algo.odo.visgps_odo import VisualGPSNav from visnav.algo.odometry import VisualOdometry from visnav.missions.base import Mission
[ 11748, 4866, 201, 198, 11748, 18931, 201, 198, 11748, 10688, 201, 198, 6738, 4818, 8079, 1330, 4818, 8079, 201, 198, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 627, 9205, 295, 201, 198, 11748, 269, 85, 17, 201, 198, 201, 198, 6738, 14318, 41935, 47, 945, 278, 1330, 1100, 31709, 41935, 34, 21370, 201, 198, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 1330, 4899, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 13, 31391, 1330, 37557, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 13, 19849, 1330, 20432, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 13, 24313, 13, 8692, 1330, 24291, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 13, 24313, 13, 4703, 70, 862, 62, 24313, 1330, 15612, 38, 3705, 30575, 201, 198, 6738, 1490, 28341, 13, 282, 2188, 13, 375, 15748, 1330, 15612, 46, 67, 15748, 201, 198, 201, 198, 6738, 1490, 28341, 13, 8481, 13, 8692, 1330, 12633, 201, 198, 201, 198 ]
2.968553
159
from typing import List from collections import Counter
[ 6738, 19720, 1330, 7343, 198, 6738, 17268, 1330, 15034, 628 ]
5.7
10
import io from setuptools import setup, find_packages setup( name='smart-crawler', version='0.2', url='https://github.com/limdongjin/smart-crawler', license='MIT', author='limdongjin', author_email='[email protected]', description='Smart Crawler', packages=find_packages(), long_description=long_description(), zip_safe=False, install_requires=['Click', 'beautifulsoup4', 'requests', 'selenium', 'lxml', 'pyfunctional', 'boto3', 'awscli'], entry_points={ 'console_scripts': ['smart-crawler = cli.main:main'] } )
[ 11748, 33245, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 628, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 27004, 12, 66, 39464, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 17, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 2475, 67, 506, 18594, 14, 27004, 12, 66, 39464, 3256, 198, 220, 220, 220, 5964, 11639, 36393, 3256, 198, 220, 220, 220, 1772, 11639, 2475, 67, 506, 18594, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 5235, 3754, 2475, 1983, 31, 14816, 13, 785, 3256, 198, 220, 220, 220, 6764, 11639, 25610, 20177, 1754, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 22784, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 2721, 62, 47911, 28, 17816, 8164, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40544, 4135, 82, 10486, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 741, 47477, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 75, 19875, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 45124, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 2069, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8356, 44506, 6, 4357, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 37250, 27004, 12, 66, 39464, 796, 537, 72, 13, 12417, 25, 12417, 20520, 198, 220, 220, 220, 1782, 198, 8, 198 ]
1.934037
379
import matplotlib.pyplot as plt import numpy as np tray = np.genfromtxt("solar.dat",delimiter=",") a = tray[:,0] b = tray[:,1] c = tray[:,2] d = tray[:,3] fig = plt.figure(figsize = (20,20)) plt.subplot(2,3,1) plt.scatter(a,b) plt.title('Grafica a vs b ') plt.xlabel('a' ) plt.ylabel('b' ) plt.subplot(2,3,2) plt.scatter(a,c) plt.title('Grafica a vs c ') plt.xlabel('a' ) plt.ylabel('c' ) plt.subplot(2,3,3) plt.scatter(a,d) plt.title('Grafica a vs d ' ) plt.xlabel('a' ) plt.ylabel('d' ) plt.subplot(2,3,4) plt.scatter(b,c) plt.title('Grafica b vs c ' ) plt.xlabel('b' ) plt.ylabel('c' ) plt.subplot(2,3,5) plt.scatter(b,d) plt.title('Grafica b vs d ' ) plt.xlabel('b' ) plt.ylabel('d' ) plt.subplot(2,3,6) plt.scatter(c,d) plt.title('Grafica c vs d ' ) plt.xlabel('c' ) plt.ylabel('d' ) plt.savefig("solar.pdf",dpi = 400)
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2213, 323, 796, 45941, 13, 5235, 6738, 14116, 7203, 82, 6192, 13, 19608, 1600, 12381, 320, 2676, 28, 2430, 8, 628, 198, 64, 796, 26473, 58, 45299, 15, 60, 198, 198, 65, 796, 26473, 58, 45299, 16, 60, 198, 198, 66, 796, 26473, 58, 45299, 17, 60, 198, 198, 67, 796, 26473, 58, 45299, 18, 60, 628, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 796, 357, 1238, 11, 1238, 4008, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 16, 8, 198, 489, 83, 13, 1416, 1436, 7, 64, 11, 65, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 257, 3691, 275, 705, 8, 198, 489, 83, 13, 87, 18242, 10786, 64, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 65, 6, 1267, 198, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 17, 8, 198, 489, 83, 13, 1416, 1436, 7, 64, 11, 66, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 257, 3691, 269, 705, 8, 198, 489, 83, 13, 87, 18242, 10786, 64, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 66, 6, 1267, 198, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 18, 8, 198, 489, 83, 13, 1416, 1436, 7, 64, 11, 67, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 257, 3691, 288, 705, 1267, 198, 489, 83, 13, 87, 18242, 10786, 64, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 67, 6, 1267, 198, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 19, 8, 198, 489, 83, 13, 1416, 1436, 7, 65, 11, 66, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 275, 3691, 269, 705, 1267, 198, 489, 83, 13, 87, 18242, 10786, 65, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 66, 6, 1267, 198, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 20, 8, 198, 489, 83, 13, 1416, 1436, 7, 65, 11, 67, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 275, 3691, 288, 705, 1267, 198, 489, 83, 13, 87, 18242, 10786, 65, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 67, 6, 1267, 198, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 18, 11, 21, 8, 198, 489, 83, 13, 1416, 1436, 7, 66, 11, 67, 8, 198, 489, 83, 13, 7839, 10786, 38, 32188, 3970, 269, 3691, 288, 705, 1267, 198, 489, 83, 13, 87, 18242, 10786, 66, 6, 1267, 198, 489, 83, 13, 2645, 9608, 10786, 67, 6, 1267, 198, 198, 489, 83, 13, 21928, 5647, 7203, 82, 6192, 13, 12315, 1600, 67, 14415, 796, 7337, 8, 198 ]
1.809935
463
import json import pycountry import requests import sys import os from bs4 import BeautifulSoup from collections import namedtuple directory = os.path.dirname(os.path.abspath(__file__)) def create_players(table): """ Loop through given table and create Player objects with the following attributes: - Nationality - Name - Kills - Assists - Deaths - KAST - K/D Diff - ADR - FK Diff - Rating """ team_data = [] Player = namedtuple("Player", ["name", "k", "a", "d", "kast", "kddiff", "adr", "fkdiff", "rating", "nationality"]) for i, row in enumerate(table.select("tr")): if i > 0: player_row = row.find_all("td") nationality = player_row[0].find("img").get("alt", "") player = [player.text for player in player_row] player.append(nationality) team_data.append(Player(*player)) return team_data def team_logo(team, white=True): """ Takes a team's name and (hopefully) converts it to a team's logo on Reddit. """ if white and teams[team.name]["white"]: return "[](#{}w-logo)".format(team.logo.lower()) else: return "[](#{}-logo)".format(team.logo.lower()) def print_scoreboard(team): """ Prints the scoreboard of the given team. """ for player in team.players: try: nat = pycountry.countries.get(name=player.nationality).alpha_2 except Exception as error: nat = country_converter(player.nationality) print("|[](#lang-{}) {}|{}|{}|{}|{}|".format(nat.lower(), player.name, player.k.split()[0], player.a.split()[0], player.d.split()[0], player.rating)) def print_overview(team_1, team_2): """ Prints the overview of the match. """ print("|Team|T|CT|Total|\n|:--|:--:|:--:|:--:|") print("|{}|{}|{}|{}|".format(team_logo(team_1, False), team_1.match.first, team_1.match.second, team_1.match.first + team_1.match.second)) print("|{}|{}|{}|{}|".format(team_logo(team_2, False), team_2.match.first, team_2.match.second, team_2.match.first + team_2.match.second)) print("\n&nbsp;\n") def create_post(team_1, team_2): """ Prints the entire scoreboard for both teams. """ print("\n&nbsp;\n\n###MAP: \n\n&nbsp;\n") print_overview(team_1, team_2) print("|{} **{}**|**K**|**A**|**D**|**Rating**|".format( team_logo(team_1), team_1.initials)) print("|:--|:--:|:--:|:--:|:--:|") print_scoreboard(team_1) print("|{} **{}**|".format(team_logo(team_2, False), team_2.initials)) print_scoreboard(team_2) def count_rounds(half): """ Counts how many rounds were won in the half. """ rounds = 0 for img in half.find_all("img"): if not "emptyHistory.svg" in img["src"]: rounds += 1 return rounds def team_match(team=1): """ Creates a Match object with how many matches the team won in each half. """ Match = namedtuple("Match", ["first", "second"]) halves = soup.find_all("div", {"class" : "round-history-half"}) if team == 1: first_half = halves[0] second_half = halves[1] else: first_half = halves[2] second_half = halves[3] Match.first = count_rounds(first_half) Match.second = count_rounds(second_half) return Match def get_response(url): """ Gets the response from the given URL with some error checking. """ if not "www.hltv.org" in url: sys.exit("Please enter a URL from www.hltv.org.") try: response = requests.get(url) return response except Exception as error: sys.exit("{}: Please enter a valid URL.".format(repr(error))) if __name__ == '__main__': url = str(sys.argv[1]) response = get_response(url) with open("{}/csgo.json".format(directory), "r") as json_data: teams = json.load(json_data) soup = BeautifulSoup(response.text, "lxml") Team = namedtuple("Team", ["name", "players", "match", "logo", "initials"]) stats_tables = soup.find_all("table", {"class" : "stats-table"}) table_1 = stats_tables[0] table_2 = stats_tables[1] name_1 = table_1.find_all("th")[0].text name_2 = table_2.find_all("th")[0].text team_1 = Team(name_1, create_players(table_1), team_match(1), teams[name_1]["logo"], teams[name_1]["name"]) team_2 = Team(name_2, create_players(table_2), team_match(2), teams[name_2]["logo"], teams[name_2]["name"]) create_post(team_1, team_2)
[ 11748, 33918, 198, 11748, 12972, 19315, 198, 11748, 7007, 198, 11748, 25064, 198, 11748, 28686, 198, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 34945, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 198, 4299, 2251, 62, 32399, 7, 11487, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 26304, 832, 1813, 3084, 290, 2251, 7853, 5563, 351, 262, 1708, 198, 220, 220, 220, 12608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2351, 414, 198, 220, 220, 220, 220, 220, 220, 220, 532, 6530, 198, 220, 220, 220, 220, 220, 220, 220, 532, 23478, 198, 220, 220, 220, 220, 220, 220, 220, 532, 2195, 1023, 198, 220, 220, 220, 220, 220, 220, 220, 532, 37044, 198, 220, 220, 220, 220, 220, 220, 220, 532, 509, 11262, 198, 220, 220, 220, 220, 220, 220, 220, 532, 509, 14, 35, 10631, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5984, 49, 198, 220, 220, 220, 220, 220, 220, 220, 532, 376, 42, 10631, 198, 220, 220, 220, 220, 220, 220, 220, 532, 12028, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1074, 62, 7890, 796, 17635, 198, 220, 220, 220, 7853, 796, 3706, 83, 29291, 7203, 14140, 1600, 14631, 3672, 1600, 366, 74, 1600, 366, 64, 1600, 366, 67, 1600, 366, 74, 459, 1600, 366, 74, 1860, 733, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41909, 1600, 366, 69, 74, 26069, 1600, 366, 8821, 1600, 366, 14648, 414, 8973, 8, 628, 220, 220, 220, 329, 1312, 11, 5752, 287, 27056, 378, 7, 11487, 13, 19738, 7203, 2213, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 62, 808, 796, 5752, 13, 19796, 62, 439, 7203, 8671, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29835, 796, 2137, 62, 808, 58, 15, 4083, 19796, 7203, 9600, 11074, 1136, 7203, 2501, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 796, 685, 7829, 13, 5239, 329, 2137, 287, 2137, 62, 808, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 13, 33295, 7, 14648, 414, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 7890, 13, 33295, 7, 14140, 46491, 7829, 4008, 198, 220, 220, 220, 1441, 1074, 62, 7890, 198, 198, 4299, 1074, 62, 6404, 78, 7, 15097, 11, 2330, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 33687, 257, 1074, 338, 1438, 290, 357, 8548, 7549, 8, 26161, 340, 284, 257, 1074, 338, 11112, 319, 10750, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2330, 290, 3466, 58, 15097, 13, 3672, 7131, 1, 11186, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12878, 16151, 2, 90, 92, 86, 12, 6404, 78, 8, 1911, 18982, 7, 15097, 13, 6404, 78, 13, 21037, 28955, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12878, 16151, 2, 90, 92, 12, 6404, 78, 8, 1911, 18982, 7, 15097, 13, 6404, 78, 13, 21037, 28955, 198, 198, 4299, 3601, 62, 26675, 3526, 7, 15097, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 82, 262, 50198, 286, 262, 1813, 1074, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 2137, 287, 1074, 13, 32399, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34664, 796, 12972, 19315, 13, 9127, 1678, 13, 1136, 7, 3672, 28, 7829, 13, 14648, 414, 737, 26591, 62, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34664, 796, 1499, 62, 1102, 332, 353, 7, 7829, 13, 14648, 414, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 91, 58, 16151, 2, 17204, 12, 90, 30072, 23884, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 1911, 18982, 7, 32353, 13, 21037, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 13, 3672, 11, 2137, 13, 74, 13, 35312, 3419, 58, 15, 4357, 2137, 13, 64, 13, 35312, 3419, 58, 15, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2137, 13, 67, 13, 35312, 3419, 58, 15, 4357, 2137, 13, 8821, 4008, 198, 198, 4299, 3601, 62, 2502, 1177, 7, 15097, 62, 16, 11, 1074, 62, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 82, 262, 16700, 286, 262, 2872, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 91, 15592, 91, 51, 91, 4177, 91, 14957, 91, 59, 77, 91, 25, 438, 91, 25, 438, 25, 91, 25, 438, 25, 91, 25, 438, 25, 91, 4943, 198, 220, 220, 220, 3601, 7203, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 1911, 18982, 7, 15097, 62, 6404, 78, 7, 15097, 62, 16, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 16, 13, 15699, 13, 11085, 11, 1074, 62, 16, 13, 15699, 13, 12227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 16, 13, 15699, 13, 11085, 1343, 1074, 62, 16, 13, 15699, 13, 12227, 4008, 198, 220, 220, 220, 3601, 7203, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 90, 92, 91, 1911, 18982, 7, 15097, 62, 6404, 78, 7, 15097, 62, 17, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 17, 13, 15699, 13, 11085, 11, 1074, 62, 17, 13, 15699, 13, 12227, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 17, 13, 15699, 13, 11085, 1343, 1074, 62, 17, 13, 15699, 13, 12227, 4008, 198, 220, 220, 220, 3601, 7203, 59, 77, 5, 77, 24145, 26, 59, 77, 4943, 198, 198, 4299, 2251, 62, 7353, 7, 15097, 62, 16, 11, 1074, 62, 17, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 82, 262, 2104, 50198, 329, 1111, 3466, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7203, 59, 77, 5, 77, 24145, 26, 59, 77, 59, 77, 21017, 33767, 25, 3467, 77, 59, 77, 5, 77, 24145, 26, 59, 77, 4943, 198, 220, 220, 220, 3601, 62, 2502, 1177, 7, 15097, 62, 16, 11, 1074, 62, 17, 8, 198, 220, 220, 220, 3601, 7203, 91, 90, 92, 12429, 90, 92, 1174, 91, 1174, 42, 1174, 91, 1174, 32, 1174, 91, 1174, 35, 1174, 91, 1174, 29321, 1174, 91, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 6404, 78, 7, 15097, 62, 16, 828, 1074, 62, 16, 13, 36733, 82, 4008, 198, 220, 220, 220, 3601, 7203, 91, 25, 438, 91, 25, 438, 25, 91, 25, 438, 25, 91, 25, 438, 25, 91, 25, 438, 25, 91, 4943, 198, 220, 220, 220, 3601, 62, 26675, 3526, 7, 15097, 62, 16, 8, 198, 220, 220, 220, 3601, 7203, 91, 90, 92, 12429, 90, 92, 1174, 91, 1911, 18982, 7, 15097, 62, 6404, 78, 7, 15097, 62, 17, 11, 10352, 828, 1074, 62, 17, 13, 36733, 82, 4008, 198, 220, 220, 220, 3601, 62, 26675, 3526, 7, 15097, 62, 17, 8, 198, 198, 4299, 954, 62, 744, 82, 7, 13959, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2764, 82, 703, 867, 9196, 547, 1839, 287, 262, 2063, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9196, 796, 657, 198, 220, 220, 220, 329, 33705, 287, 2063, 13, 19796, 62, 439, 7203, 9600, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 366, 28920, 18122, 13, 21370, 70, 1, 287, 33705, 14692, 10677, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9196, 15853, 352, 198, 220, 220, 220, 1441, 9196, 198, 198, 4299, 1074, 62, 15699, 7, 15097, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 13225, 2134, 351, 703, 867, 7466, 262, 1074, 1839, 287, 1123, 2063, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13225, 796, 3706, 83, 29291, 7203, 23850, 1600, 14631, 11085, 1600, 366, 12227, 8973, 8, 628, 220, 220, 220, 37192, 796, 17141, 13, 19796, 62, 439, 7203, 7146, 1600, 19779, 4871, 1, 1058, 366, 744, 12, 23569, 12, 13959, 20662, 8, 198, 220, 220, 220, 611, 1074, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 13959, 796, 37192, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 62, 13959, 796, 37192, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 717, 62, 13959, 796, 37192, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1218, 62, 13959, 796, 37192, 58, 18, 60, 628, 220, 220, 220, 13225, 13, 11085, 796, 954, 62, 744, 82, 7, 11085, 62, 13959, 8, 198, 220, 220, 220, 13225, 13, 12227, 796, 954, 62, 744, 82, 7, 12227, 62, 13959, 8, 198, 220, 220, 220, 1441, 13225, 198, 198, 4299, 651, 62, 26209, 7, 6371, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29620, 262, 2882, 422, 262, 1813, 10289, 351, 617, 4049, 10627, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 366, 2503, 13, 71, 2528, 85, 13, 2398, 1, 287, 19016, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 5492, 3802, 257, 10289, 422, 7324, 13, 71, 2528, 85, 13, 2398, 19570, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 6371, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2882, 198, 220, 220, 220, 2845, 35528, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7203, 90, 38362, 4222, 3802, 257, 4938, 10289, 526, 13, 18982, 7, 260, 1050, 7, 18224, 22305, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 19016, 796, 965, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 2882, 796, 651, 62, 26209, 7, 6371, 8, 628, 220, 220, 220, 351, 1280, 7203, 90, 92, 14, 6359, 2188, 13, 17752, 1911, 18982, 7, 34945, 828, 366, 81, 4943, 355, 33918, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3466, 796, 33918, 13, 2220, 7, 17752, 62, 7890, 8, 628, 220, 220, 220, 17141, 796, 23762, 50, 10486, 7, 26209, 13, 5239, 11, 366, 75, 19875, 4943, 198, 220, 220, 220, 4816, 796, 3706, 83, 29291, 7203, 15592, 1600, 14631, 3672, 1600, 366, 32399, 1600, 366, 15699, 1600, 366, 6404, 78, 1600, 366, 36733, 82, 8973, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 9756, 62, 83, 2977, 796, 17141, 13, 19796, 62, 439, 7203, 11487, 1600, 19779, 4871, 1, 1058, 366, 34242, 12, 11487, 20662, 8, 628, 220, 220, 220, 3084, 62, 16, 796, 9756, 62, 83, 2977, 58, 15, 60, 198, 220, 220, 220, 3084, 62, 17, 796, 9756, 62, 83, 2977, 58, 16, 60, 198, 220, 220, 220, 1438, 62, 16, 796, 3084, 62, 16, 13, 19796, 62, 439, 7203, 400, 4943, 58, 15, 4083, 5239, 198, 220, 220, 220, 1438, 62, 17, 796, 3084, 62, 17, 13, 19796, 62, 439, 7203, 400, 4943, 58, 15, 4083, 5239, 628, 220, 220, 220, 1074, 62, 16, 796, 4816, 7, 3672, 62, 16, 11, 2251, 62, 32399, 7, 11487, 62, 16, 828, 1074, 62, 15699, 7, 16, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3466, 58, 3672, 62, 16, 7131, 1, 6404, 78, 33116, 3466, 58, 3672, 62, 16, 7131, 1, 3672, 8973, 8, 198, 220, 220, 220, 1074, 62, 17, 796, 4816, 7, 3672, 62, 17, 11, 2251, 62, 32399, 7, 11487, 62, 17, 828, 1074, 62, 15699, 7, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3466, 58, 3672, 62, 17, 7131, 1, 6404, 78, 33116, 3466, 58, 3672, 62, 17, 7131, 1, 3672, 8973, 8, 198, 220, 220, 220, 2251, 62, 7353, 7, 15097, 62, 16, 11, 1074, 62, 17, 8 ]
2.22607
2,079
#!/usr/bin/python """ Release script for botan (http://botan.randombit.net/) (C) 2011, 2012 Jack Lloyd Distributed under the terms of the Botan license """ import errno import logging import optparse import os import shlex import StringIO import shutil import subprocess import sys import tarfile if __name__ == '__main__': try: sys.exit(main()) except Exception as e: logging.error(e) import traceback logging.info(traceback.format_exc()) sys.exit(1)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 37811, 198, 26362, 4226, 329, 10214, 272, 357, 4023, 1378, 13645, 272, 13, 25192, 2381, 270, 13, 3262, 34729, 198, 198, 7, 34, 8, 2813, 11, 2321, 3619, 22361, 198, 198, 20344, 6169, 739, 262, 2846, 286, 262, 18579, 272, 5964, 198, 37811, 198, 198, 11748, 11454, 3919, 198, 11748, 18931, 198, 11748, 2172, 29572, 198, 11748, 28686, 198, 11748, 427, 2588, 198, 11748, 10903, 9399, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 13422, 7753, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 12854, 1891, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7, 40546, 1891, 13, 18982, 62, 41194, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198 ]
2.657895
190
# Copyright 2014 Roberto Brian Sarrionandia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import webapp2 import jinja2 import os from google.appengine.ext import ndb import tusers from models import PreRegRecord JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], autoescape=True) app = webapp2.WSGIApplication([ ('/tab', TabHandler) ], debug=True)
[ 2, 15069, 1946, 32076, 8403, 311, 3258, 295, 392, 544, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 3992, 1324, 17, 198, 11748, 474, 259, 6592, 17, 198, 11748, 28686, 198, 198, 6738, 23645, 13, 1324, 18392, 13, 2302, 1330, 299, 9945, 198, 11748, 256, 18417, 198, 198, 6738, 4981, 1330, 3771, 8081, 23739, 198, 198, 41, 1268, 37048, 62, 1677, 53, 4663, 1340, 10979, 796, 474, 259, 6592, 17, 13, 31441, 7, 198, 220, 220, 220, 40213, 28, 18594, 6592, 17, 13, 8979, 11964, 17401, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 36911, 198, 220, 220, 220, 18366, 28, 17816, 18594, 6592, 17, 13, 2302, 13, 2306, 3028, 36435, 6, 4357, 198, 220, 220, 220, 1960, 3028, 36435, 28, 17821, 8, 198, 198, 1324, 796, 3992, 1324, 17, 13, 19416, 38, 3539, 381, 10142, 26933, 198, 197, 10786, 14, 8658, 3256, 16904, 25060, 8, 198, 4357, 14257, 28, 17821, 8, 198 ]
3.256849
292
import torch import sys; sys.path.append("/workspace/once-for-all") from ofa.model_zoo import MobileInvertedResidualBlock from ofa.layers import ConvLayer, PoolingLayer, LinearLayer, block_config = { "name": "MobileInvertedResidualBlock", "mobile_inverted_conv": { "name": "MBInvertedConvLayer", "in_channels": 3, "out_channels": 3, "kernel_size": 3, "stride": 1, "expand_ratio": 6, "mid_channels": 288, "act_func": "h_swish", "use_se": True }, "shortcut": { "name": "IdentityLayer", "in_channels": [ 3 ], "out_channels": [ 3 ], "use_bn": False, "act_func": None, "dropout_rate": 0, "ops_order": "weight_bn_act" } } block = MobileInvertedResidualBlock.build_from_config(block_config) _ = block(torch.Tensor(1, 3, 224, 224)) trace_model = torch.jit.trace(block, (torch.Tensor(1, 3, 224, 224), )) trace_model.save('./assets/MobileInvertedResidualBlock.jit')
[ 11748, 28034, 198, 198, 11748, 25064, 26, 25064, 13, 6978, 13, 33295, 7203, 14, 5225, 10223, 14, 27078, 12, 1640, 12, 439, 4943, 198, 6738, 286, 64, 13, 19849, 62, 89, 2238, 1330, 12173, 818, 13658, 4965, 312, 723, 12235, 198, 6738, 286, 64, 13, 75, 6962, 1330, 34872, 49925, 11, 19850, 278, 49925, 11, 44800, 49925, 11, 220, 198, 198, 9967, 62, 11250, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 17066, 818, 13658, 4965, 312, 723, 12235, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24896, 62, 259, 13658, 62, 42946, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 10744, 818, 13658, 3103, 85, 49925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 259, 62, 354, 8961, 1298, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 448, 62, 354, 8961, 1298, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 33885, 62, 7857, 1298, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2536, 485, 1298, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11201, 392, 62, 10366, 952, 1298, 718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13602, 62, 354, 8961, 1298, 35419, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 529, 62, 20786, 1298, 366, 71, 62, 2032, 680, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 62, 325, 1298, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19509, 8968, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 7390, 26858, 49925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 259, 62, 354, 8961, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 448, 62, 354, 8961, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 62, 9374, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 529, 62, 20786, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14781, 448, 62, 4873, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2840, 62, 2875, 1298, 366, 6551, 62, 9374, 62, 529, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 9967, 796, 12173, 818, 13658, 4965, 312, 723, 12235, 13, 11249, 62, 6738, 62, 11250, 7, 9967, 62, 11250, 8, 198, 62, 796, 2512, 7, 13165, 354, 13, 51, 22854, 7, 16, 11, 513, 11, 26063, 11, 26063, 4008, 198, 40546, 62, 19849, 796, 28034, 13, 45051, 13, 40546, 7, 9967, 11, 357, 13165, 354, 13, 51, 22854, 7, 16, 11, 513, 11, 26063, 11, 26063, 828, 15306, 198, 40546, 62, 19849, 13, 21928, 7, 4458, 14, 19668, 14, 17066, 818, 13658, 4965, 312, 723, 12235, 13, 45051, 11537 ]
1.753846
715
from ...abc import Expression from ..value.valueexpr import VALUE class CONTEXT(Expression): """ The current context. Usage: ``` !CONTEXT `` """ Attributes = { }
[ 6738, 2644, 39305, 1330, 41986, 198, 6738, 11485, 8367, 13, 8367, 31937, 1330, 26173, 8924, 628, 198, 4871, 22904, 13918, 7, 16870, 2234, 2599, 198, 197, 37811, 198, 464, 1459, 4732, 13, 198, 198, 28350, 25, 198, 15506, 63, 198, 0, 10943, 32541, 198, 15506, 198, 197, 37811, 628, 197, 29021, 796, 1391, 198, 197, 92, 628 ]
3
57
from .controllers.pid import PID_ctrl PID = PID_ctrl from .filters.sma import simple_moving_average SMA = simple_moving_average from .filters.ewma import exponentially_weighted_moving_average EWMA = exponentially_weighted_moving_average from .sensors.camera import camera camera = camera
[ 6738, 764, 3642, 36667, 13, 35317, 1330, 37022, 62, 44755, 198, 47, 2389, 796, 37022, 62, 44755, 198, 198, 6738, 764, 10379, 1010, 13, 82, 2611, 1330, 2829, 62, 31462, 62, 23913, 198, 50, 5673, 796, 2829, 62, 31462, 62, 23913, 198, 198, 6738, 764, 10379, 1010, 13, 413, 2611, 1330, 35529, 62, 6551, 276, 62, 31462, 62, 23913, 198, 6217, 5673, 796, 35529, 62, 6551, 276, 62, 31462, 62, 23913, 198, 198, 6738, 764, 82, 641, 669, 13, 25695, 1330, 4676, 198, 25695, 796, 4676, 198 ]
3.344828
87
from clef_extractors import * CLEF_BASE_DIR = "/work/ogalolu/data/clef/" CLEF_LOWRES_DIR = "" if not CLEF_BASE_DIR: raise FileNotFoundError(f"Download CLEF and set CLEF_BASE_DIR in {__file__}") # # CLEF paths # PATH_BASE_QUERIES = CLEF_BASE_DIR + "Topics/" PATH_BASE_DOCUMENTS = CLEF_BASE_DIR + "DocumentData/" PATH_BASE_EVAL = CLEF_BASE_DIR + "RelAssess/" # Prepare dutch CLEF data paths nl_all = (PATH_BASE_DOCUMENTS + "dutch/all/", extract_dutch) dutch = {"2001": [nl_all], "2002": [nl_all], "2003": [nl_all]} # Prepare italian CLEF data paths it_lastampa = (PATH_BASE_DOCUMENTS + "italian/la_stampa/", extract_italian_lastampa) it_sda94 = (PATH_BASE_DOCUMENTS + "italian/sda_italian/", extract_italian_sda9495) it_sda95 = (PATH_BASE_DOCUMENTS + "italian/agz95/", extract_italian_sda9495) italian = {"2001": [it_lastampa, it_sda94], "2002": [it_lastampa, it_sda94], "2003": [it_lastampa, it_sda94, it_sda95]} # Prepare finnish CLEF data paths aamu9495 = PATH_BASE_DOCUMENTS + "finnish/aamu/" fi_ammulethi9495 = (aamu9495, extract_finish_aamuleth9495) finnish = {"2001": None, "2002": [fi_ammulethi9495], "2003": [fi_ammulethi9495]} # Prepare english CLEF data paths gh95 = (PATH_BASE_DOCUMENTS + "english/GH95/", extract_english_gh) latimes = (PATH_BASE_DOCUMENTS + "english/latimes/", extract_english_latimes) english = {"2001": [gh95, latimes], "2002": [gh95, latimes], "2003": [gh95, latimes]} # Prepare german CLEF data paths der_spiegel = (PATH_BASE_DOCUMENTS + "german/der_spiegel/", extract_german_derspiegel) fr_rundschau = (PATH_BASE_DOCUMENTS + "german/fr_rundschau/", extract_german_frrundschau) de_sda94 = (PATH_BASE_DOCUMENTS + "german/sda94/", extract_german_sda) de_sda95 = (PATH_BASE_DOCUMENTS + "german/sda95/", extract_german_sda) german = {"2003": [der_spiegel, fr_rundschau, de_sda94, de_sda95]} # Prepare russian CLEF data paths xml = (PATH_BASE_DOCUMENTS + "russian/xml/", extract_russian) russian = {"2003": [xml]} all_paths = {"nl": dutch, "it": italian, "fi": finnish, "en": english, "de": german, "ru": russian} # Utility function languages = [("de", "german"), ("en", "english"), ("ru", "russian"), ("fi", "finnish"), ("it", "italian"), ("fr", "french"), ("tr", "turkish")] short2pair = {elem[0]: elem for elem in languages} long2pair = {elem[1]: elem for elem in languages}
[ 6738, 1190, 69, 62, 2302, 974, 669, 1330, 1635, 198, 198, 29931, 37, 62, 33, 11159, 62, 34720, 796, 12813, 1818, 14, 519, 282, 349, 84, 14, 7890, 14, 2375, 69, 30487, 198, 29931, 37, 62, 43, 3913, 19535, 62, 34720, 796, 13538, 198, 198, 361, 407, 30301, 37, 62, 33, 11159, 62, 34720, 25, 198, 220, 5298, 9220, 3673, 21077, 12331, 7, 69, 1, 10002, 30301, 37, 290, 900, 30301, 37, 62, 33, 11159, 62, 34720, 287, 1391, 834, 7753, 834, 92, 4943, 198, 198, 2, 198, 2, 30301, 37, 13532, 198, 2, 198, 34219, 62, 33, 11159, 62, 10917, 1137, 11015, 796, 30301, 37, 62, 33, 11159, 62, 34720, 1343, 366, 25902, 30487, 198, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 796, 30301, 37, 62, 33, 11159, 62, 34720, 1343, 366, 24941, 6601, 30487, 198, 34219, 62, 33, 11159, 62, 20114, 1847, 796, 30301, 37, 62, 33, 11159, 62, 34720, 1343, 366, 6892, 8021, 408, 30487, 198, 198, 2, 43426, 288, 7140, 30301, 37, 1366, 13532, 198, 21283, 62, 439, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 67, 7140, 14, 439, 14, 1600, 7925, 62, 67, 7140, 8, 198, 67, 7140, 796, 19779, 14585, 1298, 685, 21283, 62, 439, 4357, 366, 16942, 1298, 685, 21283, 62, 439, 4357, 366, 16088, 1298, 685, 21283, 62, 439, 48999, 198, 198, 2, 43426, 340, 7199, 30301, 37, 1366, 13532, 198, 270, 62, 12957, 13299, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1287, 666, 14, 5031, 62, 301, 13299, 14, 1600, 7925, 62, 1287, 666, 62, 12957, 13299, 8, 198, 270, 62, 82, 6814, 5824, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1287, 666, 14, 82, 6814, 62, 1287, 666, 14, 1600, 7925, 62, 1287, 666, 62, 82, 6814, 24, 33781, 8, 198, 270, 62, 82, 6814, 3865, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1287, 666, 14, 363, 89, 3865, 14, 1600, 7925, 62, 1287, 666, 62, 82, 6814, 24, 33781, 8, 198, 1287, 666, 796, 19779, 14585, 1298, 685, 270, 62, 12957, 13299, 11, 340, 62, 82, 6814, 5824, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16942, 1298, 685, 270, 62, 12957, 13299, 11, 340, 62, 82, 6814, 5824, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16088, 1298, 685, 270, 62, 12957, 13299, 11, 340, 62, 82, 6814, 5824, 11, 340, 62, 82, 6814, 3865, 48999, 198, 198, 2, 43426, 957, 77, 680, 30301, 37, 1366, 13532, 198, 64, 321, 84, 24, 33781, 796, 46490, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 69, 3732, 680, 14, 64, 321, 84, 30487, 198, 12463, 62, 6475, 2261, 400, 72, 24, 33781, 796, 357, 64, 321, 84, 24, 33781, 11, 7925, 62, 15643, 680, 62, 64, 321, 2261, 400, 24, 33781, 8, 198, 69, 3732, 680, 796, 19779, 14585, 1298, 6045, 11, 366, 16942, 1298, 685, 12463, 62, 6475, 2261, 400, 72, 24, 33781, 4357, 366, 16088, 1298, 685, 12463, 62, 6475, 2261, 400, 72, 24, 33781, 48999, 198, 198, 2, 43426, 46932, 30301, 37, 1366, 13532, 198, 456, 3865, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 39126, 14, 17511, 3865, 14, 1600, 7925, 62, 39126, 62, 456, 8, 198, 15460, 999, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 39126, 14, 15460, 999, 14, 1600, 7925, 62, 39126, 62, 15460, 999, 8, 198, 39126, 796, 19779, 14585, 1298, 685, 456, 3865, 11, 3042, 999, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16942, 1298, 685, 456, 3865, 11, 3042, 999, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16088, 1298, 685, 456, 3865, 11, 3042, 999, 48999, 198, 198, 2, 43426, 308, 2224, 30301, 37, 1366, 13532, 198, 1082, 62, 2777, 28210, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1362, 805, 14, 1082, 62, 2777, 28210, 14, 1600, 7925, 62, 1362, 805, 62, 67, 364, 79, 28210, 8, 198, 8310, 62, 622, 358, 20601, 559, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1362, 805, 14, 8310, 62, 622, 358, 20601, 559, 14, 1600, 7925, 62, 1362, 805, 62, 8310, 622, 358, 20601, 559, 8, 198, 2934, 62, 82, 6814, 5824, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1362, 805, 14, 82, 6814, 5824, 14, 1600, 7925, 62, 1362, 805, 62, 82, 6814, 8, 198, 2934, 62, 82, 6814, 3865, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 1362, 805, 14, 82, 6814, 3865, 14, 1600, 7925, 62, 1362, 805, 62, 82, 6814, 8, 198, 1362, 805, 796, 19779, 16088, 1298, 685, 1082, 62, 2777, 28210, 11, 1216, 62, 622, 358, 20601, 559, 11, 390, 62, 82, 6814, 5824, 11, 390, 62, 82, 6814, 3865, 48999, 198, 198, 2, 43426, 374, 31562, 30301, 37, 1366, 13532, 198, 19875, 796, 357, 34219, 62, 33, 11159, 62, 38715, 5883, 15365, 1343, 366, 81, 31562, 14, 19875, 14, 1600, 7925, 62, 81, 31562, 8, 198, 81, 31562, 796, 19779, 16088, 1298, 685, 19875, 48999, 198, 439, 62, 6978, 82, 796, 19779, 21283, 1298, 288, 7140, 11, 366, 270, 1298, 340, 7199, 11, 366, 12463, 1298, 957, 77, 680, 11, 366, 268, 1298, 46932, 11, 366, 2934, 1298, 308, 2224, 11, 366, 622, 1298, 374, 31562, 92, 198, 198, 2, 34030, 2163, 198, 75, 33213, 796, 685, 7203, 2934, 1600, 366, 1362, 805, 12340, 5855, 268, 1600, 366, 39126, 12340, 5855, 622, 1600, 366, 81, 31562, 12340, 5855, 12463, 1600, 366, 69, 3732, 680, 12340, 5855, 270, 1600, 366, 1287, 666, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 8310, 1600, 366, 69, 3532, 12340, 5855, 2213, 1600, 366, 36590, 31501, 4943, 60, 198, 19509, 17, 24874, 796, 1391, 68, 10671, 58, 15, 5974, 9766, 76, 329, 9766, 76, 287, 8950, 92, 198, 6511, 17, 24874, 796, 1391, 68, 10671, 58, 16, 5974, 9766, 76, 329, 9766, 76, 287, 8950, 92, 198 ]
2.316098
1,025
DESTINATION = "dest" ROUTE = "route" TIMESTAMP = "time" INCOMPLETE = "incomplete"
[ 35, 6465, 1268, 6234, 796, 366, 16520, 1, 198, 49, 2606, 9328, 796, 366, 38629, 1, 198, 51, 3955, 6465, 23518, 796, 366, 2435, 1, 198, 1268, 41335, 9328, 796, 366, 259, 20751, 1 ]
2.382353
34
# Copyright 2014 Josh Pieper, [email protected]. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''An implementation of a python3/trollius event loop for integration with QT/PySide.''' import errno import thread import trollius as asyncio from trollius import From, Return, Task import logging import socket import sys import types import PySide.QtCore as QtCore import PySide.QtGui as QtGui logger = logging.getLogger(__name__)
[ 2, 15069, 1946, 8518, 21690, 525, 11, 474, 34523, 31, 79, 672, 1140, 13, 785, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 7061, 6, 2025, 7822, 286, 257, 21015, 18, 14, 83, 2487, 3754, 1785, 9052, 329, 11812, 198, 4480, 1195, 51, 14, 20519, 24819, 2637, 7061, 198, 198, 11748, 11454, 3919, 198, 11748, 4704, 198, 11748, 13278, 3754, 355, 30351, 952, 198, 6738, 13278, 3754, 1330, 3574, 11, 8229, 11, 15941, 198, 11748, 18931, 198, 11748, 17802, 198, 11748, 25064, 198, 11748, 3858, 198, 198, 11748, 9485, 24819, 13, 48, 83, 14055, 355, 33734, 14055, 198, 11748, 9485, 24819, 13, 48, 83, 8205, 72, 355, 33734, 8205, 72, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 220, 198 ]
3.481343
268
import unittest from troposphere.route53 import AliasTarget if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 198, 6738, 14673, 22829, 13, 38629, 4310, 1330, 978, 4448, 21745, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.775
40
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Iterable, Optional, Union import onnx import onnx.helper import onnx.utils from mmdeploy.apis.core import PIPELINE_MANAGER from mmdeploy.core.optimizers import (attribute_to_dict, create_extractor, get_new_name, parse_extractor_io_string, remove_identity, rename_value) from mmdeploy.utils import get_root_logger @PIPELINE_MANAGER.register_pipeline() def extract_partition(model: Union[str, onnx.ModelProto], start_marker: Union[str, Iterable[str]], end_marker: Union[str, Iterable[str]], start_name_map: Optional[Dict[str, str]] = None, end_name_map: Optional[Dict[str, str]] = None, dynamic_axes: Optional[Dict[str, Dict[int, str]]] = None, save_file: Optional[str] = None) -> onnx.ModelProto: """Extract partition-model from an ONNX model. The partition-model is defined by the names of the input and output tensors exactly. Examples: >>> from mmdeploy.apis import extract_model >>> model = 'work_dir/fastrcnn.onnx' >>> start_marker = 'detector:input' >>> end_marker = ['extract_feat:output', 'multiclass_nms[0]:input'] >>> dynamic_axes = { 'input': { 0: 'batch', 2: 'height', 3: 'width' }, 'scores': { 0: 'batch', 1: 'num_boxes', }, 'boxes': { 0: 'batch', 1: 'num_boxes', } } >>> save_file = 'partition_model.onnx' >>> extract_partition(model, start_marker, end_marker, \ dynamic_axes=dynamic_axes, \ save_file=save_file) Args: model (str | onnx.ModelProto): Input ONNX model to be extracted. start_marker (str | Sequence[str]): Start marker(s) to extract. end_marker (str | Sequence[str]): End marker(s) to extract. start_name_map (Dict[str, str]): A mapping of start names, defaults to `None`. end_name_map (Dict[str, str]): A mapping of end names, defaults to `None`. dynamic_axes (Dict[str, Dict[int, str]]): A dictionary to specify dynamic axes of input/output, defaults to `None`. save_file (str): A file to save the extracted model, defaults to `None`. Returns: onnx.ModelProto: The extracted model. """ if isinstance(model, str): model = onnx.load(model) num_value_info = len(model.graph.value_info) inputs = [] outputs = [] logger = get_root_logger() if not isinstance(start_marker, (list, tuple)): start_marker = [start_marker] for s in start_marker: start_name, func_id, start_type = parse_extractor_io_string(s) for node in model.graph.node: if node.op_type == 'Mark': attr = attribute_to_dict(node.attribute) if attr['func'] == start_name and attr[ 'type'] == start_type and attr['func_id'] == func_id: name = node.input[0] if name not in inputs: new_name = get_new_name( attr, mark_name=s, name_map=start_name_map) rename_value(model, name, new_name) if not any([ v_info.name == new_name for v_info in model.graph.value_info ]): new_val_info = onnx.helper.make_tensor_value_info( new_name, attr['dtype'], attr['shape']) model.graph.value_info.append(new_val_info) inputs.append(new_name) logger.info(f'inputs: {", ".join(inputs)}') # collect outputs if not isinstance(end_marker, (list, tuple)): end_marker = [end_marker] for e in end_marker: end_name, func_id, end_type = parse_extractor_io_string(e) for node in model.graph.node: if node.op_type == 'Mark': attr = attribute_to_dict(node.attribute) if attr['func'] == end_name and attr[ 'type'] == end_type and attr['func_id'] == func_id: name = node.output[0] if name not in outputs: new_name = get_new_name( attr, mark_name=e, name_map=end_name_map) rename_value(model, name, new_name) if not any([ v_info.name == new_name for v_info in model.graph.value_info ]): new_val_info = onnx.helper.make_tensor_value_info( new_name, attr['dtype'], attr['shape']) model.graph.value_info.append(new_val_info) outputs.append(new_name) logger.info(f'outputs: {", ".join(outputs)}') # replace Mark with Identity for node in model.graph.node: if node.op_type == 'Mark': del node.attribute[:] node.domain = '' node.op_type = 'Identity' extractor = create_extractor(model) extracted_model = extractor.extract_model(inputs, outputs) # remove all Identity, this may be done by onnx simplifier remove_identity(extracted_model) # collect all used inputs used = set() for node in extracted_model.graph.node: for input in node.input: used.add(input) for output in extracted_model.graph.output: used.add(output.name) # delete unused inputs success = True while success: success = False for i, input in enumerate(extracted_model.graph.input): if input.name not in used: del extracted_model.graph.input[i] success = True break # eliminate output without shape for xs in [extracted_model.graph.output]: for x in xs: if not x.type.tensor_type.shape.dim: logger.info(f'fixing output shape: {x.name}') x.CopyFrom( onnx.helper.make_tensor_value_info( x.name, x.type.tensor_type.elem_type, [])) # eliminate 0-batch dimension, dirty workaround for two-stage detectors for input in extracted_model.graph.input: if input.name in inputs: if input.type.tensor_type.shape.dim[0].dim_value == 0: input.type.tensor_type.shape.dim[0].dim_value = 1 # eliminate duplicated value_info for inputs success = True # num_value_info == 0 if dynamic shape if num_value_info == 0: while len(extracted_model.graph.value_info) > 0: extracted_model.graph.value_info.pop() while success: success = False for i, x in enumerate(extracted_model.graph.value_info): if x.name in inputs: del extracted_model.graph.value_info[i] success = True break # dynamic shape support if dynamic_axes is not None: for input_node in extracted_model.graph.input: if input_node.name in dynamic_axes: axes = dynamic_axes[input_node.name] for k, v in axes.items(): input_node.type.tensor_type.shape.dim[k].dim_value = 0 input_node.type.tensor_type.shape.dim[k].dim_param = v for output_node in extracted_model.graph.output: for idx, dim in enumerate(output_node.type.tensor_type.shape.dim): dim.dim_value = 0 dim.dim_param = f'dim_{idx}' # save extract_model if save_file is given if save_file is not None: onnx.save(extracted_model, save_file) return extracted_model
[ 2, 15069, 357, 66, 8, 4946, 44, 5805, 397, 13, 1439, 2489, 10395, 13, 198, 6738, 19720, 1330, 360, 713, 11, 40806, 540, 11, 32233, 11, 4479, 198, 198, 11748, 319, 77, 87, 198, 11748, 319, 77, 87, 13, 2978, 525, 198, 11748, 319, 77, 87, 13, 26791, 198, 198, 6738, 8085, 2934, 1420, 13, 499, 271, 13, 7295, 1330, 350, 4061, 3698, 8881, 62, 10725, 4760, 1137, 198, 6738, 8085, 2934, 1420, 13, 7295, 13, 40085, 11341, 1330, 357, 42348, 62, 1462, 62, 11600, 11, 2251, 62, 2302, 40450, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 3605, 62, 3672, 11, 21136, 62, 2302, 40450, 62, 952, 62, 8841, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4781, 62, 738, 414, 11, 36265, 62, 8367, 8, 198, 6738, 8085, 2934, 1420, 13, 26791, 1330, 651, 62, 15763, 62, 6404, 1362, 628, 198, 31, 47, 4061, 3698, 8881, 62, 10725, 4760, 1137, 13, 30238, 62, 79, 541, 4470, 3419, 198, 4299, 7925, 62, 3911, 653, 7, 19849, 25, 4479, 58, 2536, 11, 319, 77, 87, 13, 17633, 2964, 1462, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4102, 263, 25, 4479, 58, 2536, 11, 40806, 540, 58, 2536, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4102, 263, 25, 4479, 58, 2536, 11, 40806, 540, 58, 2536, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 3672, 62, 8899, 25, 32233, 58, 35, 713, 58, 2536, 11, 965, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 3672, 62, 8899, 25, 32233, 58, 35, 713, 58, 2536, 11, 965, 11907, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8925, 62, 897, 274, 25, 32233, 58, 35, 713, 58, 2536, 11, 360, 713, 58, 600, 11, 965, 11907, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 7753, 25, 32233, 58, 2536, 60, 796, 6045, 8, 4613, 319, 77, 87, 13, 17633, 2964, 1462, 25, 198, 220, 220, 220, 37227, 11627, 974, 18398, 12, 19849, 422, 281, 440, 6144, 55, 2746, 13, 628, 220, 220, 220, 383, 18398, 12, 19849, 318, 5447, 416, 262, 3891, 286, 262, 5128, 290, 5072, 11192, 669, 198, 220, 220, 220, 3446, 13, 628, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 422, 8085, 2934, 1420, 13, 499, 271, 1330, 7925, 62, 19849, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 2746, 796, 705, 1818, 62, 15908, 14, 7217, 6015, 20471, 13, 261, 77, 87, 6, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 923, 62, 4102, 263, 796, 705, 15255, 9250, 25, 15414, 6, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 886, 62, 4102, 263, 796, 37250, 2302, 974, 62, 27594, 25, 22915, 3256, 705, 16680, 291, 31172, 62, 77, 907, 58, 15, 5974, 15414, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 8925, 62, 897, 274, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15414, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 25, 705, 43501, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 705, 17015, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 25, 705, 10394, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1416, 2850, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 25, 705, 43501, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 705, 22510, 62, 29305, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29305, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 25, 705, 43501, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 705, 22510, 62, 29305, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 3613, 62, 7753, 796, 705, 3911, 653, 62, 19849, 13, 261, 77, 87, 6, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 7925, 62, 3911, 653, 7, 19849, 11, 923, 62, 4102, 263, 11, 886, 62, 4102, 263, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8925, 62, 897, 274, 28, 67, 28995, 62, 897, 274, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 7753, 28, 21928, 62, 7753, 8, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 357, 2536, 930, 319, 77, 87, 13, 17633, 2964, 1462, 2599, 23412, 440, 6144, 55, 2746, 284, 307, 21242, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4102, 263, 357, 2536, 930, 45835, 58, 2536, 60, 2599, 7253, 18364, 7, 82, 8, 284, 7925, 13, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4102, 263, 357, 2536, 930, 45835, 58, 2536, 60, 2599, 5268, 18364, 7, 82, 8, 284, 7925, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 3672, 62, 8899, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 317, 16855, 286, 923, 3891, 11, 26235, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 14202, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 3672, 62, 8899, 357, 35, 713, 58, 2536, 11, 965, 60, 2599, 317, 16855, 286, 886, 3891, 11, 26235, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 14202, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 8925, 62, 897, 274, 357, 35, 713, 58, 2536, 11, 360, 713, 58, 600, 11, 965, 11907, 2599, 317, 22155, 284, 11986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8925, 34197, 286, 5128, 14, 22915, 11, 26235, 284, 4600, 14202, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 7753, 357, 2536, 2599, 317, 2393, 284, 3613, 262, 21242, 2746, 11, 26235, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 14202, 44646, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 319, 77, 87, 13, 17633, 2964, 1462, 25, 383, 21242, 2746, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 19849, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 319, 77, 87, 13, 2220, 7, 19849, 8, 628, 220, 220, 220, 997, 62, 8367, 62, 10951, 796, 18896, 7, 19849, 13, 34960, 13, 8367, 62, 10951, 8, 198, 220, 220, 220, 17311, 796, 17635, 198, 220, 220, 220, 23862, 796, 17635, 198, 220, 220, 220, 49706, 796, 651, 62, 15763, 62, 6404, 1362, 3419, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 9688, 62, 4102, 263, 11, 357, 4868, 11, 46545, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4102, 263, 796, 685, 9688, 62, 4102, 263, 60, 198, 220, 220, 220, 329, 264, 287, 923, 62, 4102, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 3672, 11, 25439, 62, 312, 11, 923, 62, 4906, 796, 21136, 62, 2302, 40450, 62, 952, 62, 8841, 7, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 2746, 13, 34960, 13, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 404, 62, 4906, 6624, 705, 9704, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 11688, 62, 1462, 62, 11600, 7, 17440, 13, 42348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 17816, 20786, 20520, 6624, 923, 62, 3672, 290, 708, 81, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 20520, 6624, 923, 62, 4906, 290, 708, 81, 17816, 20786, 62, 312, 20520, 6624, 25439, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 10139, 13, 15414, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 17311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 796, 651, 62, 3605, 62, 3672, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11, 1317, 62, 3672, 28, 82, 11, 1438, 62, 8899, 28, 9688, 62, 3672, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 62, 8367, 7, 19849, 11, 1438, 11, 649, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 10951, 13, 3672, 6624, 649, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 62, 10951, 287, 2746, 13, 34960, 13, 8367, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2100, 62, 10951, 796, 319, 77, 87, 13, 2978, 525, 13, 15883, 62, 83, 22854, 62, 8367, 62, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 11, 708, 81, 17816, 67, 4906, 6, 4357, 708, 81, 17816, 43358, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 34960, 13, 8367, 62, 10951, 13, 33295, 7, 3605, 62, 2100, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 13, 33295, 7, 3605, 62, 3672, 8, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 15414, 82, 25, 1391, 1600, 27071, 22179, 7, 15414, 82, 38165, 11537, 628, 220, 220, 220, 1303, 2824, 23862, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 437, 62, 4102, 263, 11, 357, 4868, 11, 46545, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4102, 263, 796, 685, 437, 62, 4102, 263, 60, 198, 220, 220, 220, 329, 304, 287, 886, 62, 4102, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 3672, 11, 25439, 62, 312, 11, 886, 62, 4906, 796, 21136, 62, 2302, 40450, 62, 952, 62, 8841, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 2746, 13, 34960, 13, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 404, 62, 4906, 6624, 705, 9704, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 11688, 62, 1462, 62, 11600, 7, 17440, 13, 42348, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 17816, 20786, 20520, 6624, 886, 62, 3672, 290, 708, 81, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 20520, 6624, 886, 62, 4906, 290, 708, 81, 17816, 20786, 62, 312, 20520, 6624, 25439, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 10139, 13, 22915, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 407, 287, 23862, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 796, 651, 62, 3605, 62, 3672, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 708, 81, 11, 1317, 62, 3672, 28, 68, 11, 1438, 62, 8899, 28, 437, 62, 3672, 62, 8899, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 62, 8367, 7, 19849, 11, 1438, 11, 649, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 597, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 10951, 13, 3672, 6624, 649, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 410, 62, 10951, 287, 2746, 13, 34960, 13, 8367, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 2100, 62, 10951, 796, 319, 77, 87, 13, 2978, 525, 13, 15883, 62, 83, 22854, 62, 8367, 62, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 3672, 11, 708, 81, 17816, 67, 4906, 6, 4357, 708, 81, 17816, 43358, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 34960, 13, 8367, 62, 10951, 13, 33295, 7, 3605, 62, 2100, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23862, 13, 33295, 7, 3605, 62, 3672, 8, 628, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 22915, 82, 25, 1391, 1600, 27071, 22179, 7, 22915, 82, 38165, 11537, 628, 220, 220, 220, 1303, 6330, 2940, 351, 27207, 198, 220, 220, 220, 329, 10139, 287, 2746, 13, 34960, 13, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 13, 404, 62, 4906, 6624, 705, 9704, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 10139, 13, 42348, 58, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 27830, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 404, 62, 4906, 796, 705, 7390, 26858, 6, 628, 220, 220, 220, 7925, 273, 796, 2251, 62, 2302, 40450, 7, 19849, 8, 198, 220, 220, 220, 21242, 62, 19849, 796, 7925, 273, 13, 2302, 974, 62, 19849, 7, 15414, 82, 11, 23862, 8, 628, 220, 220, 220, 1303, 4781, 477, 27207, 11, 428, 743, 307, 1760, 416, 319, 77, 87, 7106, 7483, 198, 220, 220, 220, 4781, 62, 738, 414, 7, 2302, 20216, 62, 19849, 8, 628, 220, 220, 220, 1303, 2824, 477, 973, 17311, 198, 220, 220, 220, 973, 796, 900, 3419, 198, 220, 220, 220, 329, 10139, 287, 21242, 62, 19849, 13, 34960, 13, 17440, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 287, 10139, 13, 15414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 13, 2860, 7, 15414, 8, 628, 220, 220, 220, 329, 5072, 287, 21242, 62, 19849, 13, 34960, 13, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 973, 13, 2860, 7, 22915, 13, 3672, 8, 628, 220, 220, 220, 1303, 12233, 21958, 17311, 198, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 981, 1943, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 5128, 287, 27056, 378, 7, 2302, 20216, 62, 19849, 13, 34960, 13, 15414, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 3672, 407, 287, 973, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 21242, 62, 19849, 13, 34960, 13, 15414, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 11005, 5072, 1231, 5485, 198, 220, 220, 220, 329, 2124, 82, 287, 685, 2302, 20216, 62, 19849, 13, 34960, 13, 22915, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2124, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2124, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 13049, 278, 5072, 5485, 25, 1391, 87, 13, 3672, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 29881, 4863, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 77, 87, 13, 2978, 525, 13, 15883, 62, 83, 22854, 62, 8367, 62, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 3672, 11, 2124, 13, 4906, 13, 83, 22854, 62, 4906, 13, 68, 10671, 62, 4906, 11, 17635, 4008, 628, 220, 220, 220, 1303, 11005, 657, 12, 43501, 15793, 11, 11841, 46513, 329, 734, 12, 14247, 40471, 198, 220, 220, 220, 329, 5128, 287, 21242, 62, 19849, 13, 34960, 13, 15414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 3672, 287, 17311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 58, 15, 4083, 27740, 62, 8367, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 58, 15, 4083, 27740, 62, 8367, 796, 352, 628, 220, 220, 220, 1303, 11005, 14184, 3474, 1988, 62, 10951, 329, 17311, 198, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 1303, 997, 62, 8367, 62, 10951, 6624, 657, 611, 8925, 5485, 198, 220, 220, 220, 611, 997, 62, 8367, 62, 10951, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 981, 18896, 7, 2302, 20216, 62, 19849, 13, 34960, 13, 8367, 62, 10951, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21242, 62, 19849, 13, 34960, 13, 8367, 62, 10951, 13, 12924, 3419, 198, 220, 220, 220, 981, 1943, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 2124, 287, 27056, 378, 7, 2302, 20216, 62, 19849, 13, 34960, 13, 8367, 62, 10951, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 3672, 287, 17311, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 21242, 62, 19849, 13, 34960, 13, 8367, 62, 10951, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1303, 8925, 5485, 1104, 198, 220, 220, 220, 611, 8925, 62, 897, 274, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5128, 62, 17440, 287, 21242, 62, 19849, 13, 34960, 13, 15414, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5128, 62, 17440, 13, 3672, 287, 8925, 62, 897, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34197, 796, 8925, 62, 897, 274, 58, 15414, 62, 17440, 13, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 34197, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 17440, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 58, 74, 4083, 27740, 62, 8367, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 17440, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 58, 74, 4083, 27740, 62, 17143, 796, 410, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5072, 62, 17440, 287, 21242, 62, 19849, 13, 34960, 13, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 5391, 287, 27056, 378, 7, 22915, 62, 17440, 13, 4906, 13, 83, 22854, 62, 4906, 13, 43358, 13, 27740, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 13, 27740, 62, 8367, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 13, 27740, 62, 17143, 796, 277, 1549, 320, 23330, 312, 87, 92, 6, 628, 220, 220, 220, 1303, 3613, 7925, 62, 19849, 611, 3613, 62, 7753, 318, 1813, 198, 220, 220, 220, 611, 3613, 62, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 319, 77, 87, 13, 21928, 7, 2302, 20216, 62, 19849, 11, 3613, 62, 7753, 8, 628, 220, 220, 220, 1441, 21242, 62, 19849, 198 ]
1.952758
4,170
import multiprocessing import os from joblib import delayed, Parallel from Utilities.OSMnx_Utility import * from Utilities.GTFS_Utility import * from Utilities.General_Function import * from Utilities.Data_Manipulation import * import copy import time import tqdm class InstanceNetwork: """ The 'InstanceNetwork' class contains all information regarding the used intermodal transportation network, e.g. the network of Berlin. The functions of this class will combine the various mode networks and prepare the combined for the solution procedure. """ # General attributes of this class place = '' connection_layer = 'connectionLayer' networks = [] networksPath = 'data/networks/' baseMode = 'walk' start_time = time.time() # complete model of network in DiGraph format found in networkx G = nx.DiGraph() Graph_for_Preprocessing = nx.DiGraph() Graph_for_Preprocessing_Reverse = nx.DiGraph() # individual graph for each mode stored networkDict = {} setOfModes = [] listOf_OSMNX_Modes = [] # attributes of multimodal graph setOfNodes = [] # format [(id, lat, lon),...] set_of_nodes_walk = set() setOfEdges = {} # format ( (from_node, to_node, mode) : [time, headway, distance] modifiedEdgesList_ArcFormulation = {} # format {(node, node, mode) : [time, headway, distance, fixCost], ...} arcs_of_connectionLayer = [] # [(i,j,m)] modes_of_public_transport = [] nodeSetID = [] publicTransport = {} public_transport_modes = {} matchOfRouteIDandPublicTransportMode = {} # format {routeID: public_transport_mode, ...} eg. {22453: 700, ...} networksAreInitialized = False # preprocessing graph_file_path = "" list_of_stored_punishes = [] arcs_for_refined_search = [] def initializeNetworks(self): """ This function loads individual networks available from OpenStreetMap, except for the Public Transport Networks. :return: is safed directly to class attributes """ # load all desired networks, specified in the attributes of this class for networkModes in self.networks: # update class attributes of contained networks self.setOfModes.append(networkModes) self.listOf_OSMNX_Modes.append(str(networkModes)) # load network from memory if possible filepath = self.networksPath + self.place + ', ' + networkModes +'.graphML' if networkIsAccessibleAtDisk(filepath): self.networkDict[networkModes] = ox.load_graphml(filepath) # if network was not saved to memory before, load network from OpenStreetMap by the use of OSMnx else: self.networkDict[networkModes] = downloadNetwork(self.place, networkModes, self.networksPath) # add travel time for each edge, according to mode # for walk, a average speed of 1.4 meters / second is assumed if networkModes == 'walk': G_temp = [] # ebunch for fromNode, toNode, attr in self.networkDict[networkModes].edges(data='length'): G_temp.append((fromNode, toNode, {'travel_time': attr/(1.4*60), 'length': attr })) self.networkDict[networkModes].add_edges_from(G_temp) # for bike, an average speed of 4.2 meters / seconds is assumed elif networkModes =='bike': G_temp=[] for fromNode, toNode, attr in self.networkDict[networkModes].edges(data='length'): G_temp.append((fromNode, toNode, {'travel_time': attr/(4.2*60), 'length': attr})) self.networkDict[networkModes].add_edges_from(G_temp) # the remaining mode is drive. As OSMnx also retrieves the speedlimits, # the inbuilt functions for calculating the travel time can be used else: self.networkDict[networkModes]= ox.add_edge_speeds(self.networkDict[networkModes], fallback=50, precision = 2) self.networkDict[networkModes] = ox.add_edge_travel_times(self.networkDict[networkModes], precision=2) # To fasten later steps, it is indicated that memory are already in memory self.networksAreInitialized = True print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to initialize networks') def mergePublicTransport(self): """ This function adds the public transport networks (distinguished by modes, eg. Bus 52, Bus 53, ...) to the network instance. :return: return networks are directly assigned to class attributes """ # get the networks of all modes of public transport publicTemporary = getPublicTransportation() # iterate through all mode categories (e.g. Bus, Tram, Subway, ...) for keys, mode_category in publicTemporary.items(): self.publicTransport[str(keys)] = mode_category # get all edges and nodes of respective route network and add it to combined network # iterate through all mode cateogries: Tram, Subway, Bus, ... for mode_category, mode in self.publicTransport.items(): # iterate through all modes: Bus 52, Bus 53 for routeID, route in mode.items(): # add attributes to class self.setOfModes.append(str(routeID)) self.public_transport_modes [str(routeID)] = route # add nodes, which are stored in in the first element of the route list (format: ID, Lat, Lon) for node in route[0]: self.setOfNodes.append([node[0], node[1], node[2]]) # add edges, which are stored in the second element of the route list for edge, edge_attr in route[1].items(): edge_splitted = edge.split(":") self.setOfEdges[(edge_splitted[0], edge_splitted[1], routeID)] = [ edge_attr['travelTime'], edge_attr['headway'], 0.0] def generateMultiModalGraph(self, parameters: {}): """ This function takes the prepared input (the added networks retrieved from Public Transport and OpenStreetMap) and combines them into a Graph (as networkx DiGraph) and individual formats for edges and nodes for faster processing. :param parameters: Contains all features and attributes of the considered case, e.g. Berlin networks :return: nothing, as networks are directly assigned to class attributes """ # if possible load complete generated Graph from memory edges_arc_formulation_file_path = self.networksPath +'setOfEdgesModified.json' if networkIsAccessibleAtDisk(edges_arc_formulation_file_path): self.modifiedEdgesList_ArcFormulation = self.get_dict_with_edgeKey(edges_arc_formulation_file_path) # if not in memory, create MulitModal Graph based on Class Attributes else: # if possible, load set of edges from memory filePathOfEdges = 'data/networks/setOfEdges.json' if networkIsAccessibleAtDisk(filePathOfEdges): self.getSavedSets() # generate set of all edges in multi modal network else: # retrieve all individual networks of OpenStreetMap self.initializeNetworks() # retrieve all individual networks of Public Transport network self.mergePublicTransport() # add each mode and the corresponding network to the mulitmodal graph for mode in self.setOfModes: # special treatment for all osmnx data, as drive, walk and bike network share nodes already if mode in self.listOf_OSMNX_Modes: # get all nodes and edges of the viewed mode in desired format setOfNodesByMode, setOfEdgesByMode = getListOfNodesOfGraph(self.networkDict[mode]) # add all nodes to MultiModal Graph for nodes in setOfNodesByMode: self.setOfNodes.append(nodes) # add all edges to MultiModal Graph if mode == 'drive': for edge in setOfEdgesByMode: travel_time = edge[2]['travel_time'] / 60 # convert into minutes self.setOfEdges[(edge[0], edge[1], mode)] = [travel_time, 0.0, edge[2]['length']] else: self.setOfEdges[(edge[0], edge[1], mode)] = [edge[2]['travel_time'], 0.0, edge[2]['length']] else: connectingEdges = connectLayersPublicTransport(self.public_transport_modes[mode], mode, self.networkDict[self.baseMode], self.baseMode) print("Connection of mode " + mode + "-" + self.baseMode + " initialized") for edge in connectingEdges.keys(): self.setOfEdges[(edge[0], edge[1], self.connection_layer)] = [connectingEdges[edge]['travel_time'], 0.0, connectingEdges[edge]['length']] self.setOfModes.append(self.connection_layer) self.saveMultiModalGraph() self.getModifiedNetwork(parameters) print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get all json ready') self.initialize_base_network() self.initialize_graph_for_preprocessing(parameters) print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get preprocessing graph ready') # get all modes of Public transport tempSet = set() for i, j, m in self.modifiedEdgesList_ArcFormulation.keys(): if m not in self.listOf_OSMNX_Modes: tempSet.add(m) if m == self.connection_layer: self.arcs_of_connectionLayer.append((i, j, m)) self.modes_of_public_transport=list(tempSet) print("--- %s seconds ---" % round((time.time() - self.start_time), 2) + ' to get input data in desired format') def chunks(lst, n): """Yield successive n-sized chunks from lst.""" return [lst[x:x+n] for x in range(0, len(lst), n)]
[ 11748, 18540, 305, 919, 278, 198, 11748, 28686, 198, 198, 6738, 1693, 8019, 1330, 11038, 11, 42945, 198, 198, 6738, 41086, 13, 2640, 44, 77, 87, 62, 18274, 879, 1330, 1635, 198, 6738, 41086, 13, 38, 10234, 50, 62, 18274, 879, 1330, 1635, 198, 6738, 41086, 13, 12218, 62, 22203, 1330, 1635, 198, 6738, 41086, 13, 6601, 62, 5124, 541, 1741, 1330, 1635, 198, 11748, 4866, 198, 11748, 640, 198, 11748, 256, 80, 36020, 628, 198, 4871, 2262, 590, 26245, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 705, 33384, 26245, 6, 1398, 4909, 477, 1321, 5115, 262, 973, 987, 4666, 282, 9358, 3127, 11, 304, 13, 70, 13, 198, 220, 220, 220, 262, 3127, 286, 11307, 13, 383, 5499, 286, 428, 1398, 481, 12082, 262, 2972, 4235, 7686, 290, 8335, 262, 5929, 198, 220, 220, 220, 329, 262, 4610, 8771, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3611, 12608, 286, 428, 1398, 198, 220, 220, 220, 1295, 796, 10148, 198, 220, 220, 220, 4637, 62, 29289, 796, 705, 38659, 49925, 6, 198, 220, 220, 220, 7686, 796, 17635, 198, 220, 220, 220, 7686, 15235, 796, 705, 7890, 14, 3262, 5225, 14, 6, 198, 220, 220, 220, 2779, 19076, 796, 705, 11152, 6, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 1303, 1844, 2746, 286, 3127, 287, 6031, 37065, 5794, 1043, 287, 3127, 87, 198, 220, 220, 220, 402, 796, 299, 87, 13, 18683, 37065, 3419, 198, 220, 220, 220, 29681, 62, 1640, 62, 6719, 36948, 796, 299, 87, 13, 18683, 37065, 3419, 198, 220, 220, 220, 29681, 62, 1640, 62, 6719, 36948, 62, 49, 964, 325, 796, 299, 87, 13, 18683, 37065, 3419, 628, 220, 220, 220, 1303, 1981, 4823, 329, 1123, 4235, 8574, 198, 220, 220, 220, 3127, 35, 713, 796, 23884, 198, 220, 220, 220, 900, 5189, 44, 4147, 796, 17635, 198, 220, 220, 220, 1351, 5189, 62, 2640, 39764, 55, 62, 44, 4147, 796, 17635, 628, 220, 220, 220, 1303, 12608, 286, 43104, 375, 282, 4823, 198, 220, 220, 220, 900, 5189, 45, 4147, 796, 17635, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5794, 47527, 312, 11, 3042, 11, 300, 261, 828, 22345, 198, 220, 220, 220, 900, 62, 1659, 62, 77, 4147, 62, 11152, 796, 900, 3419, 198, 220, 220, 220, 900, 5189, 7407, 3212, 796, 23884, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5794, 357, 357, 6738, 62, 17440, 11, 284, 62, 17440, 11, 4235, 8, 1058, 685, 2435, 11, 1182, 1014, 11, 5253, 60, 198, 220, 220, 220, 9518, 7407, 3212, 8053, 62, 24021, 8479, 1741, 796, 23884, 220, 1303, 5794, 1391, 7, 17440, 11, 10139, 11, 4235, 8, 1058, 685, 2435, 11, 1182, 1014, 11, 5253, 11, 4259, 13729, 4357, 2644, 92, 198, 220, 220, 220, 44606, 62, 1659, 62, 38659, 49925, 796, 17635, 220, 220, 220, 1303, 47527, 72, 11, 73, 11, 76, 15437, 198, 220, 220, 220, 12881, 62, 1659, 62, 11377, 62, 7645, 634, 796, 17635, 198, 220, 220, 220, 10139, 7248, 2389, 796, 17635, 198, 220, 220, 220, 1171, 8291, 634, 796, 23884, 198, 220, 220, 220, 1171, 62, 7645, 634, 62, 76, 4147, 796, 23884, 198, 220, 220, 220, 2872, 5189, 43401, 2389, 392, 15202, 8291, 634, 19076, 796, 23884, 220, 220, 1303, 5794, 1391, 38629, 2389, 25, 1171, 62, 7645, 634, 62, 14171, 11, 2644, 92, 29206, 13, 1391, 24137, 4310, 25, 13037, 11, 2644, 92, 198, 220, 220, 220, 7686, 8491, 28500, 796, 10352, 628, 220, 220, 220, 1303, 662, 36948, 198, 220, 220, 220, 4823, 62, 7753, 62, 6978, 796, 13538, 198, 220, 220, 220, 1351, 62, 1659, 62, 301, 1850, 62, 35512, 5614, 796, 17635, 198, 220, 220, 220, 44606, 62, 1640, 62, 5420, 1389, 62, 12947, 796, 17635, 628, 628, 220, 220, 220, 825, 41216, 7934, 5225, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 15989, 1981, 7686, 1695, 422, 4946, 34356, 13912, 11, 2845, 329, 262, 5094, 19940, 27862, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 318, 1932, 276, 3264, 284, 1398, 12608, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3440, 477, 10348, 7686, 11, 7368, 287, 262, 12608, 286, 428, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3127, 44, 4147, 287, 2116, 13, 3262, 5225, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 1398, 12608, 286, 7763, 7686, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 44, 4147, 13, 33295, 7, 27349, 44, 4147, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4868, 5189, 62, 2640, 39764, 55, 62, 44, 4147, 13, 33295, 7, 2536, 7, 27349, 44, 4147, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3440, 3127, 422, 4088, 611, 1744, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 2116, 13, 3262, 5225, 15235, 1343, 2116, 13, 5372, 1343, 46083, 705, 1343, 3127, 44, 4147, 1343, 4458, 34960, 5805, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3127, 3792, 15457, 856, 2953, 40961, 7, 7753, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 60, 796, 12018, 13, 2220, 62, 34960, 4029, 7, 7753, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 3127, 373, 407, 7448, 284, 4088, 878, 11, 3440, 3127, 422, 4946, 34356, 13912, 416, 262, 779, 286, 7294, 44, 77, 87, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 60, 796, 4321, 26245, 7, 944, 13, 5372, 11, 3127, 44, 4147, 11, 2116, 13, 3262, 5225, 15235, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 3067, 640, 329, 1123, 5743, 11, 1864, 284, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 2513, 11, 257, 2811, 2866, 286, 220, 352, 13, 19, 10700, 1220, 1218, 318, 9672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3127, 44, 4147, 6624, 705, 11152, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 62, 29510, 796, 17635, 1303, 36649, 3316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 422, 19667, 11, 284, 19667, 11, 708, 81, 287, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4083, 276, 3212, 7, 7890, 11639, 13664, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 62, 29510, 13, 33295, 19510, 6738, 19667, 11, 284, 19667, 11, 1391, 6, 35927, 62, 2435, 10354, 708, 81, 29006, 16, 13, 19, 9, 1899, 828, 705, 13664, 10354, 708, 81, 1782, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4083, 2860, 62, 276, 3212, 62, 6738, 7, 38, 62, 29510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 7161, 11, 281, 2811, 2866, 286, 604, 13, 17, 10700, 1220, 4201, 318, 9672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3127, 44, 4147, 6624, 6, 32256, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 62, 29510, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 422, 19667, 11, 284, 19667, 11, 708, 81, 287, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4083, 276, 3212, 7, 7890, 11639, 13664, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 62, 29510, 13, 33295, 19510, 6738, 19667, 11, 284, 19667, 11, 1391, 6, 35927, 62, 2435, 10354, 708, 81, 29006, 19, 13, 17, 9, 1899, 828, 705, 13664, 10354, 708, 81, 92, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4083, 2860, 62, 276, 3212, 62, 6738, 7, 38, 62, 29510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 5637, 4235, 318, 3708, 13, 1081, 7294, 44, 77, 87, 635, 13236, 1158, 262, 2866, 49196, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 287, 18780, 5499, 329, 26019, 262, 3067, 640, 460, 307, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 22241, 12018, 13, 2860, 62, 14907, 62, 4125, 5379, 7, 944, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4357, 2121, 1891, 28, 1120, 11, 15440, 796, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 27349, 44, 4147, 60, 796, 12018, 13, 2860, 62, 14907, 62, 35927, 62, 22355, 7, 944, 13, 27349, 35, 713, 58, 27349, 44, 4147, 4357, 15440, 28, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 3049, 268, 1568, 4831, 11, 340, 318, 8203, 326, 4088, 389, 1541, 287, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3262, 5225, 8491, 28500, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 2835, 19510, 2435, 13, 2435, 3419, 532, 2116, 13, 9688, 62, 2435, 828, 362, 8, 1343, 705, 284, 41216, 7686, 11537, 628, 198, 220, 220, 220, 825, 20121, 15202, 8291, 634, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 6673, 262, 1171, 4839, 7686, 357, 17080, 46709, 416, 12881, 11, 29206, 13, 5869, 6740, 11, 5869, 7192, 11, 2644, 8, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3127, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 1441, 7686, 389, 3264, 8686, 284, 1398, 12608, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 262, 7686, 286, 477, 12881, 286, 1171, 4839, 198, 220, 220, 220, 220, 220, 220, 220, 1171, 12966, 5551, 796, 651, 15202, 8291, 10189, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 832, 477, 4235, 9376, 357, 68, 13, 70, 13, 5869, 11, 833, 321, 11, 38923, 11, 2644, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8251, 11, 4235, 62, 22872, 287, 1171, 12966, 5551, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11377, 8291, 634, 58, 2536, 7, 13083, 15437, 796, 4235, 62, 22872, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 477, 13015, 290, 13760, 286, 11756, 6339, 3127, 290, 751, 340, 284, 5929, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 832, 477, 4235, 269, 378, 519, 1678, 25, 833, 321, 11, 38923, 11, 5869, 11, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4235, 62, 22872, 11, 4235, 287, 2116, 13, 11377, 8291, 634, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11629, 378, 832, 477, 12881, 25, 5869, 6740, 11, 5869, 7192, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 6339, 2389, 11, 6339, 287, 4235, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 12608, 284, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 44, 4147, 13, 33295, 7, 2536, 7, 38629, 2389, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11377, 62, 7645, 634, 62, 76, 4147, 685, 2536, 7, 38629, 2389, 15437, 796, 6339, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 13760, 11, 543, 389, 8574, 287, 287, 262, 717, 5002, 286, 262, 6339, 1351, 357, 18982, 25, 4522, 11, 5476, 11, 39295, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 6339, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 45, 4147, 13, 33295, 26933, 17440, 58, 15, 4357, 10139, 58, 16, 4357, 10139, 58, 17, 11907, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 13015, 11, 543, 389, 8574, 287, 262, 1218, 5002, 286, 262, 6339, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5743, 11, 5743, 62, 35226, 287, 6339, 58, 16, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 22018, 2175, 796, 5743, 13, 35312, 7, 2404, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 7407, 3212, 58, 7, 14907, 62, 22018, 2175, 58, 15, 4357, 5743, 62, 22018, 2175, 58, 16, 4357, 6339, 2389, 15437, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5743, 62, 35226, 17816, 35927, 7575, 6, 4357, 5743, 62, 35226, 17816, 2256, 1014, 6, 4357, 657, 13, 15, 60, 628, 198, 220, 220, 220, 825, 7716, 29800, 5841, 282, 37065, 7, 944, 11, 10007, 25, 23884, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 2753, 262, 5597, 5128, 357, 1169, 2087, 7686, 29517, 422, 5094, 19940, 290, 4946, 34356, 13912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 290, 21001, 606, 656, 257, 29681, 357, 292, 3127, 87, 6031, 37065, 8, 290, 1981, 17519, 329, 13015, 290, 13760, 329, 198, 220, 220, 220, 220, 220, 220, 220, 5443, 7587, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 10007, 25, 49850, 477, 3033, 290, 12608, 286, 262, 3177, 1339, 11, 304, 13, 70, 13, 11307, 7686, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 2147, 11, 355, 7686, 389, 3264, 8686, 284, 1398, 12608, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1744, 3440, 1844, 7560, 29681, 422, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 62, 5605, 62, 687, 1741, 62, 7753, 62, 6978, 796, 2116, 13, 3262, 5225, 15235, 1343, 6, 2617, 5189, 7407, 3212, 5841, 1431, 13, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3127, 3792, 15457, 856, 2953, 40961, 7, 276, 3212, 62, 5605, 62, 687, 1741, 62, 7753, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41771, 7407, 3212, 8053, 62, 24021, 8479, 1741, 796, 2116, 13, 1136, 62, 11600, 62, 4480, 62, 14907, 9218, 7, 276, 3212, 62, 5605, 62, 687, 1741, 62, 7753, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 287, 4088, 11, 2251, 17996, 270, 5841, 282, 29681, 1912, 319, 5016, 49213, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1744, 11, 3440, 900, 286, 13015, 422, 4088, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 15235, 5189, 7407, 3212, 796, 705, 7890, 14, 3262, 5225, 14, 2617, 5189, 7407, 3212, 13, 17752, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3127, 3792, 15457, 856, 2953, 40961, 7, 7753, 15235, 5189, 7407, 3212, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 50, 9586, 50, 1039, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7716, 900, 286, 477, 13015, 287, 5021, 953, 282, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19818, 477, 1981, 7686, 286, 4946, 34356, 13912, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 1096, 7934, 5225, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19818, 477, 1981, 7686, 286, 5094, 19940, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 647, 469, 15202, 8291, 634, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 1123, 4235, 290, 262, 11188, 3127, 284, 262, 35971, 270, 4666, 282, 4823, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4235, 287, 2116, 13, 2617, 5189, 44, 4147, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2041, 3513, 329, 477, 267, 5796, 77, 87, 1366, 11, 355, 3708, 11, 2513, 290, 7161, 3127, 2648, 13760, 1541, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 287, 2116, 13, 4868, 5189, 62, 2640, 39764, 55, 62, 44, 4147, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 477, 13760, 290, 13015, 286, 262, 9569, 4235, 287, 10348, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 5189, 45, 4147, 3886, 19076, 11, 900, 5189, 7407, 3212, 3886, 19076, 796, 651, 8053, 5189, 45, 4147, 5189, 37065, 7, 944, 13, 27349, 35, 713, 58, 14171, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 477, 13760, 284, 15237, 5841, 282, 29681, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 13760, 287, 900, 5189, 45, 4147, 3886, 19076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 45, 4147, 13, 33295, 7, 77, 4147, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 477, 13015, 284, 15237, 5841, 282, 29681, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 6624, 705, 19472, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5743, 287, 900, 5189, 7407, 3212, 3886, 19076, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3067, 62, 2435, 796, 5743, 58, 17, 7131, 6, 35927, 62, 2435, 20520, 1220, 3126, 220, 1303, 10385, 656, 2431, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 7407, 3212, 58, 7, 14907, 58, 15, 4357, 5743, 58, 16, 4357, 4235, 15437, 796, 685, 35927, 62, 2435, 11, 657, 13, 15, 11, 5743, 58, 17, 7131, 6, 13664, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 7407, 3212, 58, 7, 14907, 58, 15, 4357, 5743, 58, 16, 4357, 4235, 15437, 796, 685, 14907, 58, 17, 7131, 6, 35927, 62, 2435, 6, 4357, 657, 13, 15, 11, 5743, 58, 17, 7131, 6, 13664, 6, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14320, 7407, 3212, 796, 2018, 43, 6962, 15202, 8291, 634, 7, 944, 13, 11377, 62, 7645, 634, 62, 76, 4147, 58, 14171, 4357, 4235, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27349, 35, 713, 58, 944, 13, 8692, 19076, 4357, 2116, 13, 8692, 19076, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 32048, 286, 4235, 366, 1343, 4235, 1343, 366, 21215, 1343, 2116, 13, 8692, 19076, 1343, 366, 23224, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5743, 287, 14320, 7407, 3212, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 7407, 3212, 58, 7, 14907, 58, 15, 4357, 5743, 58, 16, 4357, 2116, 13, 38659, 62, 29289, 15437, 796, 685, 8443, 278, 7407, 3212, 58, 14907, 7131, 6, 35927, 62, 2435, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 11, 14320, 7407, 3212, 58, 14907, 7131, 6, 13664, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 5189, 44, 4147, 13, 33295, 7, 944, 13, 38659, 62, 29289, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21928, 29800, 5841, 282, 37065, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1136, 5841, 1431, 26245, 7, 17143, 7307, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 2835, 19510, 2435, 13, 2435, 3419, 532, 2116, 13, 9688, 62, 2435, 828, 362, 8, 1343, 705, 284, 651, 477, 33918, 3492, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 1096, 62, 8692, 62, 27349, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36733, 1096, 62, 34960, 62, 1640, 62, 3866, 36948, 7, 17143, 7307, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 2835, 19510, 2435, 13, 2435, 3419, 532, 2116, 13, 9688, 62, 2435, 828, 362, 8, 1343, 705, 284, 651, 662, 36948, 4823, 3492, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 651, 477, 12881, 286, 5094, 4839, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 7248, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 474, 11, 285, 287, 2116, 13, 41771, 7407, 3212, 8053, 62, 24021, 8479, 1741, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 407, 287, 2116, 13, 4868, 5189, 62, 2640, 39764, 55, 62, 44, 4147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 7248, 13, 2860, 7, 76, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 6624, 2116, 13, 38659, 62, 29289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5605, 82, 62, 1659, 62, 38659, 49925, 13, 33295, 19510, 72, 11, 474, 11, 285, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 76, 4147, 62, 1659, 62, 11377, 62, 7645, 634, 28, 4868, 7, 29510, 7248, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 2835, 19510, 2435, 13, 2435, 3419, 532, 2116, 13, 9688, 62, 2435, 828, 362, 8, 1343, 705, 284, 651, 5128, 1366, 287, 10348, 5794, 11537, 628, 628, 628, 628, 198, 4299, 22716, 7, 75, 301, 11, 299, 2599, 198, 220, 220, 220, 37227, 56, 1164, 25175, 299, 12, 13982, 22716, 422, 300, 301, 526, 15931, 198, 220, 220, 220, 1441, 685, 75, 301, 58, 87, 25, 87, 10, 77, 60, 329, 2124, 287, 2837, 7, 15, 11, 18896, 7, 75, 301, 828, 299, 15437, 628, 198 ]
2.353743
4,475
# coding=utf-8 import sqlite3 conn = sqlite3.connect('TempTest.db') # 如果db文件不存在将自动创建 curs = conn.cursor() # 从连接获得游标 curs.execute(''' CREATE TABLE messages ( id integer primary key autoincrement, subject text not null, sender text not null, reply_to int, text text not null ) ''') # 执行SQL语句:建表 curs.execute("""insert into messages (subject, sender, text) values ('111', '111', 'Test111' )""") curs.execute("""insert into messages (subject, sender, text) values ('222', '222', 'Test222' )""") curs.execute(""" insert into messages (subject, sender, reply_to, text) values ('333', '333', 1, 'Test333' ) """) curs.execute(""" insert into messages (subject, sender, reply_to, text) values ('444', '444', 3, 'Test444' ) """) conn.commit() # 如果修改数据,必须提交修改,才能保存到文件 conn.close() # 关闭连接
[ 2, 19617, 28, 40477, 12, 23, 198, 11748, 44161, 578, 18, 198, 198, 37043, 796, 44161, 578, 18, 13, 8443, 10786, 30782, 14402, 13, 9945, 11537, 220, 1303, 10263, 99, 224, 162, 252, 250, 9945, 23877, 229, 20015, 114, 38834, 27764, 246, 28839, 101, 49546, 164, 229, 103, 27950, 101, 26344, 249, 161, 119, 118, 198, 66, 1834, 796, 48260, 13, 66, 21471, 3419, 220, 1303, 220, 20015, 236, 32573, 252, 162, 236, 98, 164, 236, 115, 36181, 245, 162, 116, 116, 43718, 229, 198, 198, 66, 1834, 13, 41049, 7, 7061, 6, 198, 43387, 6158, 43679, 6218, 357, 198, 220, 220, 220, 4686, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18253, 4165, 1994, 8295, 24988, 434, 11, 198, 220, 220, 220, 2426, 220, 220, 220, 220, 2420, 407, 9242, 11, 198, 220, 220, 220, 29788, 220, 220, 220, 220, 220, 2420, 407, 9242, 11, 198, 220, 220, 220, 10971, 62, 1462, 220, 220, 220, 493, 11, 198, 220, 220, 220, 2420, 220, 220, 220, 220, 220, 220, 220, 2420, 407, 9242, 198, 8, 198, 7061, 11537, 220, 1303, 10545, 231, 100, 26193, 234, 17861, 46237, 255, 20998, 98, 171, 120, 248, 161, 119, 118, 26193, 101, 198, 198, 66, 1834, 13, 41049, 7203, 15931, 28463, 656, 6218, 357, 32796, 11, 29788, 11, 2420, 8, 3815, 19203, 16243, 3256, 705, 16243, 3256, 705, 14402, 16243, 6, 1267, 15931, 4943, 198, 66, 1834, 13, 41049, 7203, 15931, 28463, 656, 6218, 357, 32796, 11, 29788, 11, 2420, 8, 3815, 19203, 23148, 3256, 705, 23148, 3256, 705, 14402, 23148, 6, 1267, 15931, 4943, 198, 66, 1834, 13, 41049, 7203, 15931, 198, 28463, 656, 6218, 357, 32796, 11, 29788, 11, 10971, 62, 1462, 11, 2420, 8, 3815, 19203, 20370, 3256, 705, 20370, 3256, 352, 11, 705, 14402, 20370, 6, 1267, 198, 15931, 4943, 198, 66, 1834, 13, 41049, 7203, 15931, 198, 28463, 656, 6218, 357, 32796, 11, 29788, 11, 10971, 62, 1462, 11, 2420, 8, 3815, 19203, 30272, 3256, 705, 30272, 3256, 513, 11, 705, 14402, 30272, 6, 1267, 198, 15931, 4943, 198, 198, 37043, 13, 41509, 3419, 220, 1303, 10263, 99, 224, 162, 252, 250, 46479, 106, 162, 242, 117, 46763, 108, 162, 235, 106, 171, 120, 234, 33232, 227, 165, 94, 119, 162, 237, 238, 12859, 97, 46479, 106, 162, 242, 117, 171, 120, 234, 33699, 235, 47797, 121, 46479, 251, 27764, 246, 26344, 108, 23877, 229, 20015, 114, 198, 37043, 13, 19836, 3419, 220, 1303, 10263, 227, 111, 29785, 255, 32573, 252, 162, 236, 98, 198 ]
2
417
# Interface from abc import ABC, abstractmethod a = Army() af = AirForce() n = Navy() a.area() a.gun() print() af.area() af.gun() print() n.area() n.gun()
[ 2, 26491, 198, 198, 6738, 450, 66, 1330, 9738, 11, 12531, 24396, 198, 198, 64, 796, 5407, 3419, 198, 1878, 796, 3701, 10292, 3419, 198, 77, 796, 8565, 3419, 198, 198, 64, 13, 20337, 3419, 198, 64, 13, 7145, 3419, 198, 4798, 3419, 198, 198, 1878, 13, 20337, 3419, 198, 1878, 13, 7145, 3419, 198, 4798, 3419, 198, 198, 77, 13, 20337, 3419, 198, 77, 13, 7145, 3419 ]
2.338235
68
import pandas as pd import os if __name__ == '__main__': update_validation_data(force=True) print('Done')
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 28686, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4296, 62, 12102, 341, 62, 7890, 7, 3174, 28, 17821, 8, 198, 220, 220, 220, 3601, 10786, 45677, 11537 ]
2.613636
44
# Auto-luokka yliluokka erilaisille autotyypeille # Ominaisuudet (Field, Property) merkki, malli, vuosimalli, kilometrit, käyttövoima, vaihteistotyyppi, väri ja # Henkiloauto if __name__ == '__main__': henkiloauto1 = Henkiloauto('ABC-12', 'Ferrary', 'Land', 2020, 354322, 'diesel', 'automaatti', 'punainen', 270, 2.8, 4000, 7, 5, 'tila-auto', 300, ['vakionopeuden säädin', 'peruutuskamera']) print('Rekisterinumero: ', henkiloauto1.rek, 'istumapaikkoja', henkiloauto1.istuimet) # Lasketaan jäljelläolevien kilometrien hinta print('Jäljellä olevien kilometrien hinta on', henkiloauto1.km_jaljella()) print('Jäljellä olevien kilometrien hinta on', henkiloauto1.km_jaljella_hinta()) print('Korjatut kilometrit on:', henkiloauto1.korjatut_kilometrit(2)) kilometreja_jaljella = Auto.arvio_kilometrit(2.8, 364800, 2) print('Laskettu staattisella metodilla:', kilometreja_jaljella)
[ 198, 2, 11160, 12, 2290, 482, 4914, 331, 75, 346, 84, 482, 4914, 1931, 10102, 271, 8270, 1960, 313, 88, 2981, 8270, 198, 198, 2, 440, 1084, 15152, 84, 463, 316, 357, 15878, 11, 14161, 8, 4017, 74, 4106, 11, 17374, 72, 11, 410, 84, 418, 320, 36546, 11, 11866, 799, 11, 479, 11033, 88, 926, 9101, 13038, 8083, 11, 410, 1872, 71, 660, 396, 313, 22556, 381, 72, 11, 410, 11033, 380, 45091, 220, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6752, 74, 18526, 23736, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30963, 74, 18526, 23736, 16, 796, 6752, 74, 18526, 23736, 10786, 24694, 12, 1065, 3256, 705, 37, 8056, 560, 3256, 705, 22342, 3256, 12131, 11, 3439, 3559, 1828, 11, 705, 25990, 417, 3256, 705, 2306, 6086, 34891, 3256, 705, 35512, 391, 268, 3256, 20479, 11, 362, 13, 23, 11, 30123, 11, 767, 11, 642, 11, 705, 83, 10102, 12, 23736, 3256, 5867, 11, 37250, 85, 461, 295, 3008, 44452, 264, 11033, 11033, 25194, 3256, 705, 525, 84, 315, 17990, 18144, 6, 12962, 198, 220, 220, 220, 3601, 10786, 49, 988, 1694, 259, 388, 3529, 25, 46083, 30963, 74, 18526, 23736, 16, 13, 37818, 11, 705, 396, 388, 32678, 1134, 7204, 6592, 3256, 30963, 74, 18526, 23736, 16, 13, 396, 84, 38813, 8, 198, 198, 2, 406, 11715, 28340, 474, 11033, 75, 73, 695, 11033, 2305, 85, 2013, 11866, 15355, 9254, 64, 198, 198, 4798, 10786, 41, 11033, 75, 73, 695, 11033, 267, 2768, 2013, 11866, 15355, 9254, 64, 319, 3256, 30963, 74, 18526, 23736, 16, 13, 13276, 62, 73, 282, 73, 12627, 28955, 198, 198, 4798, 10786, 41, 11033, 75, 73, 695, 11033, 267, 2768, 2013, 11866, 15355, 9254, 64, 319, 3256, 30963, 74, 18526, 23736, 16, 13, 13276, 62, 73, 282, 73, 12627, 62, 71, 600, 64, 28955, 198, 198, 4798, 10786, 42, 273, 73, 265, 315, 11866, 799, 319, 25, 3256, 30963, 74, 18526, 23736, 16, 13, 74, 273, 73, 265, 315, 62, 34553, 908, 799, 7, 17, 4008, 198, 198, 34553, 908, 260, 6592, 62, 73, 282, 73, 12627, 796, 11160, 13, 283, 85, 952, 62, 34553, 908, 799, 7, 17, 13, 23, 11, 44969, 7410, 11, 362, 8, 198, 4798, 10786, 43, 2093, 3087, 84, 336, 64, 1078, 271, 12627, 1138, 375, 5049, 25, 3256, 11866, 260, 6592, 62, 73, 282, 73, 12627, 8 ]
2.238806
402
import os import sqlite3 def cursore_maker(method): """Декоратор, создающий курсор, для работы с бд""" return wrapper class SQLWorker: """Это API для работы с SQLite таблицами, заточенный под основную программу""" @cursore_maker def make_table(self, cur): """Метод, создающий таблицу (если она не существует)""" # формат бд описан здесь cur.execute("""CREATE TABLE IF NOT EXISTS dump( id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL UNIQUE, name text NOT NULL, path text NOT NULL, create_date text NOT NULL, last_edit_date NOT NULL, weight INTEGER NOT NULL );""") @cursore_maker def add_to_the_table(self, cur, data): """Метод позволяет заполнить таблицу данными, на вход принимает список кортежей""" cur.executemany("""INSERT INTO dump(name, path, create_date, last_edit_date, weight) VALUES (?,?,?,?,?)""", data) @cursore_maker def search_by_sql_request(self, cur, request): """Метод необходим для самостоятельных пользователей, которые сами пишут SQL запрос""" # можешь использовать его, для расширения функционала или тестов return cur.execute(request).fetchall() def replace_data(self, data): """Замена данных таблицы на новые""" os.remove(self.name) self.make_table() self.fill_the_table(data) @cursore_maker def get_all_values(self, cur): """Возвращает все значения""" data = cur.execute("select * from dump").fetchall() return data @cursore_maker def except_sort_and_search(self, cur, request, search_in='name', order_by='name', direction='DESC'): """Метод, возвращающий все элементы таблицы содержащие в себе запрос, отсортированные по заданному критерию, но исключая запрос""" # direction можно передать "ASC", тогда будет от меньшего к большему return cur.execute(f"""select * from dump where not({search_in} like '%{request}%') ORDER BY {order_by} {direction}""").fetchall() @cursore_maker def sort_and_search(self, cur, request, search_in='name', order_by='name', direction='DESC'): """Метод, возвращающий все элементы таблицы содержащие в себе запрос, отсортированные по заданному критерию""" # direction можно передать "ASC", тогда будет от меньшего к большему return cur.execute(f"""select * from dump where {search_in} like '%{request}%' ORDER BY {order_by} {direction}""").fetchall() if __name__ == '__main__': from Searcher import FileWorker base = SQLWorker() # скобочки обязательно, там можно передавать имя файла с бд file = FileWorker('./test') base.make_table() base.fill_the_table(file.list_of_files) print(base.search_except_parameter('flag')) # старый код, до рефакторинга, сейчас уже не работает
[ 11748, 28686, 198, 11748, 44161, 578, 18, 628, 198, 4299, 13882, 382, 62, 10297, 7, 24396, 2599, 198, 220, 220, 220, 37227, 140, 242, 16843, 31583, 15166, 21169, 16142, 20375, 15166, 21169, 11, 220, 21727, 25443, 115, 43666, 16142, 141, 236, 141, 231, 18849, 140, 117, 12466, 118, 35072, 21169, 21727, 15166, 21169, 11, 12466, 112, 30143, 40623, 220, 21169, 16142, 140, 109, 15166, 20375, 45035, 220, 21727, 12466, 109, 43666, 37811, 628, 220, 220, 220, 1441, 29908, 628, 198, 4871, 16363, 12468, 263, 25, 198, 220, 220, 220, 37227, 140, 255, 20375, 15166, 7824, 220, 12466, 112, 30143, 40623, 220, 21169, 16142, 140, 109, 15166, 20375, 45035, 220, 21727, 16363, 578, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 16142, 43108, 18849, 11, 12466, 115, 16142, 20375, 15166, 141, 229, 16843, 22177, 22177, 45035, 140, 117, 12466, 123, 25443, 112, 12466, 122, 21727, 22177, 25443, 110, 22177, 35072, 141, 236, 12466, 123, 21169, 25443, 111, 21169, 16142, 43108, 43108, 35072, 37811, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 787, 62, 11487, 7, 944, 11, 1090, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 250, 16843, 20375, 25443, 112, 11, 220, 21727, 25443, 115, 43666, 16142, 141, 236, 141, 231, 18849, 140, 117, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 35072, 357, 16843, 21727, 30143, 18849, 12466, 122, 22177, 16142, 12466, 121, 16843, 220, 21727, 35072, 141, 231, 16843, 21727, 20375, 38857, 35072, 16843, 20375, 8, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 141, 226, 15166, 21169, 43108, 16142, 20375, 12466, 109, 43666, 12466, 122, 140, 123, 18849, 21727, 16142, 22177, 12466, 115, 43666, 16843, 21727, 45367, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 41049, 7203, 15931, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 10285, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 17828, 7156, 1137, 4810, 3955, 13153, 35374, 47044, 46, 30158, 2200, 10979, 5626, 15697, 4725, 33866, 8924, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2420, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 2420, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 4475, 2420, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 19312, 62, 4475, 5626, 15697, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3463, 17828, 7156, 1137, 5626, 15697, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5619, 15931, 4943, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 751, 62, 1462, 62, 1169, 62, 11487, 7, 944, 11, 1090, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 250, 16843, 20375, 25443, 112, 12466, 123, 25443, 115, 38857, 25443, 119, 40623, 16843, 20375, 12466, 115, 16142, 140, 123, 25443, 119, 22177, 18849, 20375, 45367, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 35072, 12466, 112, 16142, 22177, 22177, 45035, 43108, 18849, 11, 12466, 121, 16142, 12466, 110, 141, 227, 25443, 112, 12466, 123, 21169, 18849, 22177, 18849, 43108, 16142, 16843, 20375, 220, 21727, 140, 123, 18849, 21727, 25443, 118, 12466, 118, 15166, 21169, 20375, 16843, 140, 114, 16843, 140, 117, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 13, 18558, 315, 368, 1092, 7203, 15931, 20913, 17395, 39319, 10285, 7, 3672, 11, 3108, 11, 2251, 62, 4475, 11, 938, 62, 19312, 62, 4475, 11, 3463, 8, 26173, 35409, 32843, 21747, 21747, 21747, 10091, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 8, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 2989, 62, 1525, 62, 25410, 62, 25927, 7, 944, 11, 1090, 11, 2581, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 250, 16843, 20375, 25443, 112, 12466, 121, 16843, 25443, 109, 141, 227, 25443, 112, 18849, 43108, 12466, 112, 30143, 40623, 220, 21727, 16142, 43108, 15166, 21727, 20375, 15166, 40623, 20375, 16843, 30143, 45367, 22177, 45035, 141, 227, 12466, 123, 25443, 119, 45367, 140, 115, 25443, 110, 16142, 20375, 16843, 30143, 16843, 140, 117, 11, 12466, 118, 15166, 20375, 15166, 21169, 45035, 16843, 220, 21727, 16142, 43108, 18849, 12466, 123, 18849, 141, 230, 35072, 20375, 16363, 12466, 115, 16142, 140, 123, 21169, 15166, 21727, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12466, 120, 25443, 114, 16843, 141, 230, 45367, 12466, 116, 21727, 140, 123, 25443, 119, 45367, 140, 115, 25443, 110, 16142, 20375, 45367, 12466, 113, 140, 111, 15166, 11, 12466, 112, 30143, 40623, 220, 21169, 16142, 21727, 141, 230, 18849, 21169, 16843, 22177, 18849, 40623, 220, 141, 226, 35072, 22177, 31583, 141, 228, 18849, 15166, 22177, 16142, 30143, 16142, 12466, 116, 30143, 18849, 220, 20375, 16843, 21727, 20375, 25443, 110, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1090, 13, 41049, 7, 25927, 737, 69, 7569, 439, 3419, 628, 220, 220, 220, 825, 6330, 62, 7890, 7, 944, 11, 1366, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 245, 16142, 43108, 16843, 22177, 16142, 12466, 112, 16142, 22177, 22177, 45035, 141, 227, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 45035, 12466, 121, 16142, 12466, 121, 25443, 110, 45035, 16843, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 944, 13, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15883, 62, 11487, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20797, 62, 1169, 62, 11487, 7, 7890, 8, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 651, 62, 439, 62, 27160, 7, 944, 11, 1090, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 240, 25443, 115, 38857, 21169, 16142, 141, 231, 16142, 16843, 20375, 12466, 110, 21727, 16843, 12466, 115, 22177, 16142, 141, 229, 16843, 22177, 18849, 40623, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1090, 13, 41049, 7203, 19738, 1635, 422, 10285, 11074, 69, 7569, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 2845, 62, 30619, 62, 392, 62, 12947, 7, 944, 11, 1090, 11, 2581, 11, 2989, 62, 259, 11639, 3672, 3256, 1502, 62, 1525, 11639, 3672, 3256, 4571, 11639, 30910, 34, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 250, 16843, 20375, 25443, 112, 11, 12466, 110, 25443, 115, 38857, 21169, 16142, 141, 231, 16142, 141, 236, 141, 231, 18849, 140, 117, 12466, 110, 21727, 16843, 220, 141, 235, 30143, 16843, 43108, 16843, 22177, 20375, 45035, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 45035, 220, 21727, 25443, 112, 16843, 21169, 140, 114, 16142, 141, 231, 18849, 16843, 12466, 110, 220, 21727, 16843, 140, 109, 16843, 12466, 115, 16142, 140, 123, 21169, 15166, 21727, 11, 12466, 122, 20375, 21727, 15166, 21169, 20375, 18849, 21169, 25443, 110, 16142, 22177, 22177, 45035, 16843, 198, 220, 220, 220, 220, 220, 220, 220, 220, 12466, 123, 15166, 12466, 115, 16142, 43666, 16142, 22177, 22177, 25443, 120, 35072, 12466, 118, 21169, 18849, 20375, 16843, 21169, 18849, 141, 236, 11, 12466, 121, 15166, 12466, 116, 21727, 31583, 30143, 141, 236, 141, 229, 16142, 40623, 12466, 115, 16142, 140, 123, 21169, 15166, 21727, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4571, 12466, 120, 25443, 114, 22177, 15166, 12466, 123, 16843, 21169, 16843, 43666, 16142, 20375, 45367, 366, 42643, 1600, 220, 20375, 25443, 111, 43666, 16142, 12466, 109, 35072, 43666, 16843, 20375, 12466, 122, 20375, 12466, 120, 16843, 22177, 45367, 141, 230, 16843, 140, 111, 15166, 12466, 118, 12466, 109, 25443, 119, 45367, 141, 230, 16843, 43108, 35072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1090, 13, 41049, 7, 69, 37811, 19738, 1635, 422, 10285, 810, 407, 15090, 12947, 62, 259, 92, 588, 705, 4, 90, 25927, 92, 4, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 1391, 2875, 62, 1525, 92, 1391, 37295, 92, 15931, 11074, 69, 7569, 439, 3419, 628, 220, 220, 220, 2488, 66, 1834, 382, 62, 10297, 198, 220, 220, 220, 825, 3297, 62, 392, 62, 12947, 7, 944, 11, 1090, 11, 2581, 11, 2989, 62, 259, 11639, 3672, 3256, 1502, 62, 1525, 11639, 3672, 3256, 4571, 11639, 30910, 34, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 140, 250, 16843, 20375, 25443, 112, 11, 12466, 110, 25443, 115, 38857, 21169, 16142, 141, 231, 16142, 141, 236, 141, 231, 18849, 140, 117, 12466, 110, 21727, 16843, 220, 141, 235, 30143, 16843, 43108, 16843, 22177, 20375, 45035, 220, 20375, 16142, 140, 109, 30143, 18849, 141, 228, 45035, 220, 21727, 25443, 112, 16843, 21169, 140, 114, 16142, 141, 231, 18849, 16843, 12466, 110, 220, 21727, 16843, 140, 109, 16843, 12466, 115, 16142, 140, 123, 21169, 15166, 21727, 11, 12466, 122, 20375, 21727, 15166, 21169, 20375, 18849, 21169, 25443, 110, 16142, 22177, 22177, 45035, 16843, 12466, 123, 15166, 12466, 115, 16142, 43666, 16142, 22177, 22177, 25443, 120, 35072, 12466, 118, 21169, 18849, 20375, 16843, 21169, 18849, 141, 236, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4571, 12466, 120, 25443, 114, 22177, 15166, 12466, 123, 16843, 21169, 16843, 43666, 16142, 20375, 45367, 366, 42643, 1600, 220, 20375, 25443, 111, 43666, 16142, 12466, 109, 35072, 43666, 16843, 20375, 12466, 122, 20375, 12466, 120, 16843, 22177, 45367, 141, 230, 16843, 140, 111, 15166, 12466, 118, 12466, 109, 25443, 119, 45367, 141, 230, 16843, 43108, 35072, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1090, 13, 41049, 7, 69, 37811, 19738, 1635, 422, 10285, 810, 1391, 12947, 62, 259, 92, 588, 705, 4, 90, 25927, 92, 4, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38678, 11050, 1391, 2875, 62, 1525, 92, 1391, 37295, 92, 15931, 11074, 69, 7569, 439, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 422, 42016, 2044, 1330, 9220, 12468, 263, 628, 220, 220, 220, 2779, 796, 16363, 12468, 263, 3419, 220, 1303, 220, 21727, 31583, 25443, 109, 15166, 141, 229, 31583, 18849, 12466, 122, 140, 109, 40623, 140, 115, 16142, 20375, 16843, 30143, 45367, 22177, 15166, 11, 220, 20375, 16142, 43108, 12466, 120, 25443, 114, 22177, 15166, 12466, 123, 16843, 21169, 16843, 43666, 16142, 38857, 16142, 20375, 45367, 12466, 116, 43108, 40623, 220, 141, 226, 16142, 140, 117, 30143, 16142, 220, 21727, 12466, 109, 43666, 198, 220, 220, 220, 2393, 796, 9220, 12468, 263, 7, 4458, 14, 9288, 11537, 198, 220, 220, 220, 2779, 13, 15883, 62, 11487, 3419, 198, 220, 220, 220, 2779, 13, 20797, 62, 1169, 62, 11487, 7, 7753, 13, 4868, 62, 1659, 62, 16624, 8, 628, 220, 220, 220, 3601, 7, 8692, 13, 12947, 62, 16341, 62, 17143, 2357, 10786, 32109, 6, 4008, 220, 1303, 220, 21727, 20375, 16142, 21169, 45035, 140, 117, 12466, 118, 25443, 112, 11, 12466, 112, 15166, 220, 21169, 16843, 141, 226, 16142, 31583, 20375, 15166, 21169, 18849, 22177, 140, 111, 16142, 11, 220, 21727, 16843, 140, 117, 141, 229, 16142, 21727, 220, 35072, 140, 114, 16843, 12466, 121, 16843, 220, 21169, 16142, 140, 109, 15166, 20375, 16142, 16843, 20375, 198 ]
1.526505
1,943
#Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. #This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License. #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details. import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable
[ 2, 15269, 357, 34, 8, 12131, 13, 43208, 21852, 1766, 1539, 12052, 13, 1439, 2489, 10395, 13, 201, 198, 201, 198, 2, 1212, 1430, 318, 1479, 3788, 26, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 262, 2846, 286, 262, 347, 10305, 513, 12, 2601, 682, 13789, 13, 201, 198, 201, 198, 2, 1212, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 347, 10305, 513, 12, 2601, 682, 13789, 329, 517, 3307, 13, 201, 198, 201, 198, 11748, 28034, 201, 198, 11748, 28034, 13, 20471, 355, 299, 77, 201, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 201, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 201, 198 ]
3.632653
147
import numpy as np import tensorflow as tf from baselines.a2c.utils import conv, fc, conv_to_fc from baselines.common.distributions import make_pdtype from baselines.common.input import observation_input def impala_cnn(images, depths=[16, 32, 32], use_batch_norm=True, dropout=0): """ Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561 """ dropout_layer_num = [0] dropout_assign_ops = [] out = images for depth in depths: out = conv_sequence(out, depth) out = tf.layers.flatten(out) out = tf.nn.relu(out) out = tf.layers.dense(out, 256, activation=tf.nn.relu) return out, dropout_assign_ops def nature_cnn(scaled_images, **conv_kwargs): """ Model used in the paper "Human-level control through deep reinforcement learning" https://www.nature.com/articles/nature14236 """ h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) def random_impala_cnn(images, depths=[16, 32, 32], use_batch_norm=True, dropout=0): """ Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561 """ dropout_layer_num = [0] dropout_assign_ops = [] out = images # add random filter randcnn_depth = 3 mask_vbox = tf.Variable(tf.zeros_like(images, dtype=bool), trainable=False) mask_shape = tf.shape(images) rh = .2 # hard-coded velocity box size mh = tf.cast(tf.cast(mask_shape[1], dtype=tf.float32)*rh, dtype=tf.int32) mw = mh*2 mask_vbox = mask_vbox[:,:mh,:mw].assign(tf.ones([mask_shape[0], mh, mw, mask_shape[3]], dtype=bool)) img = tf.where(mask_vbox, x=tf.zeros_like(images), y=images) rand_img = tf.layers.conv2d(img, randcnn_depth, 3, padding='same', \ kernel_initializer=tf.initializers.glorot_normal(), trainable=False, name='randcnn') out = tf.where(mask_vbox, x=images, y=rand_img, name='randout') for depth in depths: out = conv_sequence(out, depth) out = tf.layers.flatten(out) out = tf.nn.relu(out) out = tf.layers.dense(out, 256, activation=tf.nn.relu) return out, dropout_assign_ops
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 1615, 20655, 13, 64, 17, 66, 13, 26791, 1330, 3063, 11, 277, 66, 11, 3063, 62, 1462, 62, 16072, 198, 6738, 1615, 20655, 13, 11321, 13, 17080, 2455, 507, 1330, 787, 62, 30094, 4906, 198, 6738, 1615, 20655, 13, 11321, 13, 15414, 1330, 13432, 62, 15414, 198, 198, 4299, 848, 6081, 62, 66, 20471, 7, 17566, 11, 21593, 41888, 1433, 11, 3933, 11, 3933, 4357, 779, 62, 43501, 62, 27237, 28, 17821, 11, 4268, 448, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 973, 287, 262, 3348, 366, 3955, 47, 1847, 32, 25, 34529, 540, 4307, 6169, 10766, 12, 7836, 351, 220, 198, 220, 220, 220, 17267, 590, 14331, 276, 27274, 12, 14961, 1008, 17340, 942, 1, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1507, 2999, 13, 486, 47915, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4268, 448, 62, 29289, 62, 22510, 796, 685, 15, 60, 198, 220, 220, 220, 4268, 448, 62, 562, 570, 62, 2840, 796, 17635, 628, 220, 220, 220, 503, 796, 4263, 198, 220, 220, 220, 329, 6795, 287, 21593, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 3063, 62, 43167, 7, 448, 11, 6795, 8, 628, 220, 220, 220, 503, 796, 48700, 13, 75, 6962, 13, 2704, 41769, 7, 448, 8, 198, 220, 220, 220, 503, 796, 48700, 13, 20471, 13, 260, 2290, 7, 448, 8, 198, 220, 220, 220, 503, 796, 48700, 13, 75, 6962, 13, 67, 1072, 7, 448, 11, 17759, 11, 14916, 28, 27110, 13, 20471, 13, 260, 2290, 8, 628, 220, 220, 220, 1441, 503, 11, 4268, 448, 62, 562, 570, 62, 2840, 198, 198, 4299, 3450, 62, 66, 20471, 7, 1416, 3021, 62, 17566, 11, 12429, 42946, 62, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 973, 287, 262, 3348, 366, 20490, 12, 5715, 1630, 832, 2769, 37414, 4673, 1, 220, 198, 220, 220, 220, 3740, 1378, 2503, 13, 21353, 13, 785, 14, 26845, 14, 21353, 1415, 24940, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 289, 796, 1753, 7, 42946, 7, 1416, 3021, 62, 17566, 11, 705, 66, 16, 3256, 299, 69, 28, 2624, 11, 374, 69, 28, 23, 11, 33769, 28, 19, 11, 2315, 62, 9888, 28, 37659, 13, 31166, 17034, 7, 17, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 42946, 62, 46265, 22046, 4008, 198, 220, 220, 220, 289, 17, 796, 1753, 7, 42946, 7, 71, 11, 705, 66, 17, 3256, 299, 69, 28, 2414, 11, 374, 69, 28, 19, 11, 33769, 28, 17, 11, 2315, 62, 9888, 28, 37659, 13, 31166, 17034, 7, 17, 828, 12429, 42946, 62, 46265, 22046, 4008, 198, 220, 220, 220, 289, 18, 796, 1753, 7, 42946, 7, 71, 17, 11, 705, 66, 18, 3256, 299, 69, 28, 2414, 11, 374, 69, 28, 18, 11, 33769, 28, 16, 11, 2315, 62, 9888, 28, 37659, 13, 31166, 17034, 7, 17, 828, 12429, 42946, 62, 46265, 22046, 4008, 198, 220, 220, 220, 289, 18, 796, 3063, 62, 1462, 62, 16072, 7, 71, 18, 8, 198, 220, 220, 220, 1441, 1753, 7, 16072, 7, 71, 18, 11, 705, 16072, 16, 3256, 299, 71, 28, 25836, 11, 2315, 62, 9888, 28, 37659, 13, 31166, 17034, 7, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 4738, 62, 11011, 6081, 62, 66, 20471, 7, 17566, 11, 21593, 41888, 1433, 11, 3933, 11, 3933, 4357, 779, 62, 43501, 62, 27237, 28, 17821, 11, 4268, 448, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9104, 973, 287, 262, 3348, 366, 3955, 47, 1847, 32, 25, 34529, 540, 4307, 6169, 10766, 12, 7836, 351, 220, 198, 220, 220, 220, 17267, 590, 14331, 276, 27274, 12, 14961, 1008, 17340, 942, 1, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1507, 2999, 13, 486, 47915, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4268, 448, 62, 29289, 62, 22510, 796, 685, 15, 60, 198, 220, 220, 220, 4268, 448, 62, 562, 570, 62, 2840, 796, 17635, 628, 220, 220, 220, 503, 796, 4263, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 751, 4738, 8106, 198, 220, 220, 220, 43720, 66, 20471, 62, 18053, 796, 513, 198, 220, 220, 220, 220, 198, 220, 220, 220, 9335, 62, 85, 3524, 796, 48700, 13, 43015, 7, 27110, 13, 9107, 418, 62, 2339, 7, 17566, 11, 288, 4906, 28, 30388, 828, 4512, 540, 28, 25101, 8, 198, 220, 220, 220, 9335, 62, 43358, 796, 48700, 13, 43358, 7, 17566, 8, 198, 220, 220, 220, 9529, 796, 764, 17, 1303, 1327, 12, 40976, 15432, 3091, 2546, 198, 220, 220, 220, 285, 71, 796, 48700, 13, 2701, 7, 27110, 13, 2701, 7, 27932, 62, 43358, 58, 16, 4357, 288, 4906, 28, 27110, 13, 22468, 2624, 27493, 17179, 11, 288, 4906, 28, 27110, 13, 600, 2624, 8, 198, 220, 220, 220, 285, 86, 796, 285, 71, 9, 17, 198, 220, 220, 220, 9335, 62, 85, 3524, 796, 9335, 62, 85, 3524, 58, 45299, 25, 76, 71, 11, 25, 76, 86, 4083, 562, 570, 7, 27110, 13, 1952, 26933, 27932, 62, 43358, 58, 15, 4357, 285, 71, 11, 285, 86, 11, 9335, 62, 43358, 58, 18, 60, 4357, 288, 4906, 28, 30388, 4008, 628, 220, 220, 220, 33705, 220, 796, 48700, 13, 3003, 7, 27932, 62, 85, 3524, 11, 2124, 28, 27110, 13, 9107, 418, 62, 2339, 7, 17566, 828, 331, 28, 17566, 8, 198, 220, 220, 220, 43720, 62, 9600, 796, 48700, 13, 75, 6962, 13, 42946, 17, 67, 7, 9600, 11, 43720, 66, 20471, 62, 18053, 11, 513, 11, 24511, 11639, 31642, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 36733, 7509, 28, 27110, 13, 36733, 11341, 13, 70, 4685, 313, 62, 11265, 22784, 4512, 540, 28, 25101, 11, 1438, 11639, 25192, 66, 20471, 11537, 198, 220, 220, 220, 503, 796, 48700, 13, 3003, 7, 27932, 62, 85, 3524, 11, 2124, 28, 17566, 11, 331, 28, 25192, 62, 9600, 11, 1438, 11639, 25192, 448, 11537, 628, 220, 220, 220, 329, 6795, 287, 21593, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 3063, 62, 43167, 7, 448, 11, 6795, 8, 628, 220, 220, 220, 503, 796, 48700, 13, 75, 6962, 13, 2704, 41769, 7, 448, 8, 198, 220, 220, 220, 503, 796, 48700, 13, 20471, 13, 260, 2290, 7, 448, 8, 198, 220, 220, 220, 503, 796, 48700, 13, 75, 6962, 13, 67, 1072, 7, 448, 11, 17759, 11, 14916, 28, 27110, 13, 20471, 13, 260, 2290, 8, 628, 220, 220, 220, 1441, 503, 11, 4268, 448, 62, 562, 570, 62, 2840 ]
2.313274
1,130
import os from fusedwake import fusedwake import numpy as np from topfarm.cost_models.fuga import py_fuga from topfarm.cost_models.fuga.py_fuga import PyFuga from topfarm.cost_models.fused_wake_wrappers import FusedWakeGCLWakeModel from topfarm.cost_models.utils.aep_calculator import AEPCalculator from topfarm.cost_models.utils.wind_resource import WindResource from topfarm.cost_models.fuga.lib_reader import read_lib fuga_path = os.path.abspath(os.path.dirname(py_fuga.__file__)) + '/Colonel/' if __name__ == '__main__': print(HornsrevAEP_Fuga()) print(HornsrevAEP_FUSEDWake_GCL())
[ 11748, 28686, 198, 6738, 43954, 48530, 1330, 43954, 48530, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 69, 30302, 1330, 12972, 62, 69, 30302, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 69, 30302, 13, 9078, 62, 69, 30302, 1330, 9485, 37, 30302, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 69, 1484, 62, 48530, 62, 29988, 11799, 1330, 376, 1484, 54, 539, 38, 5097, 54, 539, 17633, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 26791, 13, 64, 538, 62, 9948, 3129, 1352, 1330, 25603, 5662, 282, 3129, 1352, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 26791, 13, 7972, 62, 31092, 1330, 3086, 26198, 198, 6738, 1353, 43323, 13, 15805, 62, 27530, 13, 69, 30302, 13, 8019, 62, 46862, 1330, 1100, 62, 8019, 198, 198, 69, 30302, 62, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 9078, 62, 69, 30302, 13, 834, 7753, 834, 4008, 1343, 31051, 5216, 26261, 14, 6, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 7, 39, 19942, 18218, 32, 8905, 62, 37, 30302, 28955, 198, 220, 220, 220, 3601, 7, 39, 19942, 18218, 32, 8905, 62, 37, 2937, 1961, 54, 539, 62, 38, 5097, 28955, 198 ]
2.686099
223
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import IndexLocator, FormatStrFormatter ''' Meredith Rawls, Dec 2015 Plotting routine for initial 'test' runs of ELC. It will make a plot that has both light curve data w/fit and RV data w/fit. There are also residuals in the plots! (Strongly based on ELCplotter_unfold.py) ***IMPORTANT*** This version assumes the files above are NOT yet folded in phase, and are in time. This would happen if you are using ELCgap.inp, or anytime when ELC.inp has itime = 2. So we need to fold them. (If you want to plot already-folded data, use ELCplotter_new.py) ***ALSO IMPORTANT*** This version assumes you haven't run demcmcELC yet, but just ELC, to get an initial clue whether or not your input parameters are half decent. In other words, it doesn't need .fold files or fitparm.all, but it does need ELC.out. ''' # Colors for plots. Selected with help from colorbrewer. red = '#e34a33' # red, star 1 yel = '#fdbb84' # yellow, star 2 # Columns in fitparm file that correspond to T0 and Period #tconj_col = 0 #porb_col = 15 # Read in everything f1 = 'modelU.mag' #f2 = 'ELCdataU.fold' f3 = 'star1.RV' f4 = 'star2.RV' ELCoutfile = 'ELC.out' gridloop = 'gridloop.opt' #f5 = 'ELCdataRV1.fold' #f6 = 'ELCdataRV2.fold' #fitparm = 'fitparm.all' # OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA #gamma = 0 gamma = input("Enter gamma adjustment (0 for none): ") phase_mod,mag_mod = np.loadtxt(f1, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) #phase_dat,mag_dat = np.loadtxt(f2, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv1,rv1 = np.loadtxt(f3, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv2,rv2 = np.loadtxt(f4, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) #phase_rv1dat,rv1dat,rv1err = np.loadtxt(f5, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) #phase_rv2dat,rv2dat,rv2err = np.loadtxt(f6, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) # FUNCTION TO FOLD STUFF so phases are actually phases ... and then sort all the arrays. # GET PERIOD AND T0 from ELC.out file with open(ELCoutfile) as f: for i, row in enumerate(f): if i == 27: # 28th row columns = row.split() period = float(columns[0]) # 1st column #if i == 38: # 39th row, i.e. T0 # this one has a funny zeropoint (ok if circular) if i == 133: # 134th row, i.e. Tconj # this one puts primary eclipse at phase 0 columns = row.split() Tconj = float(columns[0]) #1st column #periods, tconjs = np.loadtxt(fitparm, usecols=(porb_col, tconj_col), unpack=True) #period = np.median(periods) #Tconj = np.median(tconjs) print(period, Tconj) Tconj = Tconj + 0.5*period with open(gridloop) as f: for i, row in enumerate(f): if i == 0: LCinfile = row.split()[0] if i == 8: RV1infile = row.split()[0] if i == 9: RV2infile = row.split()[0] # Read in observed times, magnitudes, and RVs (calling time 'phase' but that's a lie) phase_dat,mag_dat = np.loadtxt(LCinfile, comments='#', dtype=np.float64, usecols=(0,1), unpack=True) phase_rv1dat,rv1dat,rv1err = np.loadtxt(RV1infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) phase_rv2dat,rv2dat,rv2err = np.loadtxt(RV2infile, comments='#', dtype=np.float64, usecols=(0,1,2), unpack=True) # Fold everything (observations and model) phase_mod = phasecalc(phase_mod, period=period, BJD0=Tconj) phase_dat = phasecalc(phase_dat, period=period, BJD0=Tconj) phase_rv1 = phasecalc(phase_rv1, period=period, BJD0=Tconj) phase_rv2 = phasecalc(phase_rv2, period=period, BJD0=Tconj) phase_rv1dat = phasecalc(phase_rv1dat, period=period, BJD0=Tconj) phase_rv2dat = phasecalc(phase_rv2dat, period=period, BJD0=Tconj) p1 = phase_mod.argsort() p2 = phase_dat.argsort() p3 = phase_rv1.argsort() p4 = phase_rv2.argsort() p5 = phase_rv1dat.argsort() p6 = phase_rv2dat.argsort() phase_mod = phase_mod[p1] phase_dat = phase_dat[p2] phase_rv1 = phase_rv1[p3] phase_rv2 = phase_rv2[p4] phase_rv1dat = phase_rv1dat[p5] phase_rv2dat = phase_rv2dat[p6] mag_mod = mag_mod[p1] mag_dat = mag_dat[p2] rv1 = rv1[p3] rv2 = rv2[p4] rv1dat = rv1dat[p5] rv2dat = rv2dat[p6] # OPTIONAL ADJUSTMENT B/C FINAL ELC RV MODEL OUTPUT IS SHIFTED BY GAMMA #gamma = input("Enter gamma adjustment (0 for none): ") rv1 = rv1 + gamma rv2 = rv2 + gamma print ("Done reading (and folding) data!") if np.abs(np.median(mag_mod) - np.median(mag_dat)) > 1: print('Adjusting magnitude of model light curve...') mag_mod = mag_mod + (np.median(mag_dat) - np.median(mag_mod)) # Interpolate model onto data phase grid, for residuals newmag_model = np.interp(phase_dat, phase_mod, mag_mod) newrv1 = np.interp(phase_rv1dat, phase_rv1, rv1) newrv2 = np.interp(phase_rv2dat, phase_rv2, rv2) lcresid = mag_dat - newmag_model rv1resid = rv1dat - newrv1 rv2resid = rv2dat - newrv2 print ("Done interpolating!") # Make plots # First, define some handy global parameters for the plots phasemin = 0 phasemax = 1 magdim = np.max(mag_dat) + 0.02 #11.97 # remember magnitudes are backwards, dangit magbright = np.min(mag_dat) - 0.02 #11.861 rvmin = np.min([np.min(rv1dat), np.min(rv2dat)]) - 5 #-79 rvmax = np.max([np.max(rv1dat), np.max(rv2dat)]) + 5 #-1 primary_phasemin = 0.48 #0.09 #0.48 primary_phasemax = 0.52 #0.14 #0.52 secondary_phasemin = 0.98 #0.881 secondary_phasemax = 1.01 #0.921 magresid_min = 0.006 # remember magnitudes are backwards, dangit magresid_max = -0.006 rvresid_min = -5 rvresid_max = 5 # Light curve ax1 = plt.subplot2grid((12,1),(4,0), rowspan=3) plt.axis([phasemin, phasemax, magdim, magbright]) plt.tick_params(axis='both', which='major') plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, 'k', lw=1.5, label='ELC Model') #lc model ax1.set_ylabel('Magnitude', size=18) ax1.set_xticklabels([]) # Radial velocities ax2 = plt.subplot2grid((12,1),(1,0), rowspan=3) plt.subplots_adjust(wspace = 0.0001, hspace=0.0001) plt.axis([phasemin, phasemax, rvmin, rvmax]) plt.errorbar(phase_rv1dat, rv1dat, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 data plt.errorbar(phase_rv2dat, rv2dat, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 data plt.plot(phase_rv1, rv1, color='k', lw=1.5) #rv1 model plt.plot(phase_rv2, rv2, color='k', lw=1.5) #rv2 model ax2.set_ylabel('Radial Velocity (km s$^{-1}$)', size=18) ax2.set_xticklabels([]) # Light curve residuals axr1 = plt.subplot2grid((12,1),(7,0)) axr1.axis([phasemin, phasemax, magresid_min, magresid_max]) axr1.set_yticks([-0.004, 0, 0.004]) plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual # Radial velocity residuals axr2 = plt.subplot2grid((12,1),(0,0)) axr2.axis([phasemin, phasemax, rvresid_min, rvresid_max]) #axr2.set_yticks([-2,0,2]) plt.axhline(y=0, xmin=phasemin, xmax=phasemax, color='0.75', ls=':') plt.errorbar(phase_rv1dat, rv1resid, yerr=rv1err, marker='o', color=yel, ms=9, mec='None', ls='None') #rv1 residual plt.errorbar(phase_rv2dat, rv2resid, yerr=rv2err, marker='o', color=red, ms=9, mec='None', ls='None') #rv2 residual #plt.xlabel('Orbital Phase (conjunction at $\phi = 0.5$)', size=20) # EXTRA LABEL axr2.set_xticklabels([]) # Zoom-in of shallower (secondary) eclipse ax3 = plt.subplot2grid((12,2),(9,1), rowspan=2) plt.axis([secondary_phasemin, secondary_phasemax, magdim, magbright]) ax3.set_xticks([0.89, 0.90, 0.91, 0.92]) plt.plot(phase_dat, mag_dat, color=yel, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model ax3.set_ylabel('Magnitude') ax3.set_xticklabels([]) ax3.set_yticklabels([]) # Zoom-in of deeper (primary) eclipse ax4 = plt.subplot2grid((12,2),(9,0), rowspan=2) plt.axis([primary_phasemin, primary_phasemax, magdim, magbright]) ax4.set_xticks([0.49, 0.50, 0.51, 0.52]) plt.plot(phase_dat, mag_dat, color=red, marker='.', ls='None', ms=6, mew=0) #lc data plt.plot(phase_mod, mag_mod, color='k', lw=1.5) #lc model ax4.set_xticklabels([]) #ax4.set_yticklabels([]) # Zoom plot residuals, shallower (secondary) eclipse axr3 = plt.subplot2grid((12,2),(11,1)) plt.axis([secondary_phasemin, secondary_phasemax, magresid_min, magresid_max]) axr3.set_yticks([-0.004, 0, 0.004]) axr3.set_xticks([0.89, 0.90, 0.91, 0.92]) plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual axr3.set_yticklabels([]) # Zoom plot residuals, deeper (primary) eclipse axr4 = plt.subplot2grid((12,2),(11,0)) plt.axis([primary_phasemin, primary_phasemax, magresid_min, magresid_max]) axr4.set_yticks([-0.004, 0, 0.004]) axr4.set_xticks([0.49, 0.50, 0.51, 0.52]) plt.axhline(y=0, xmin=0, xmax=2, color='0.75', ls=':') plt.plot(phase_dat, lcresid, color=red, marker='.', ls='None', ms=4, mew=0) #lc residual #axr4.set_yticklabels([]) # Labels using overall figure as a reference plt.figtext(0.5, 0.04, 'Orbital Phase (conjunction at $\phi = 0.5$)', ha='center', va='center', size=25) #plt.figtext(0.135, 0.18, 'Secondary') #plt.figtext(0.535, 0.18, 'Primary') plt.figtext(0.06, 0.86, '$\Delta$') plt.figtext(0.04, 0.395, '$\Delta$') plt.figtext(0.04, 0.125, '$\Delta$') ax1.legend(loc='lower right', frameon=False, prop={'size':20}) print ("Done preparing plot!") plt.show() #outfile = 'testplot1.png' #plt.savefig(outfile) #print ("Plot saved to %s!" % outfile)
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 83, 15799, 1330, 12901, 33711, 1352, 11, 18980, 13290, 8479, 1436, 198, 7061, 6, 198, 44, 36897, 16089, 7278, 11, 4280, 1853, 198, 43328, 889, 8027, 329, 4238, 705, 9288, 6, 4539, 286, 412, 5639, 13, 198, 1026, 481, 787, 257, 7110, 326, 468, 1111, 1657, 12133, 1366, 266, 14, 11147, 290, 31367, 1366, 266, 14, 11147, 13, 198, 1858, 389, 635, 29598, 82, 287, 262, 21528, 0, 198, 7, 33004, 306, 1912, 319, 412, 5639, 29487, 353, 62, 403, 11379, 13, 9078, 8, 198, 198, 8162, 3955, 15490, 8643, 8162, 198, 1212, 2196, 18533, 262, 3696, 2029, 389, 5626, 1865, 24650, 287, 7108, 11, 290, 389, 287, 640, 13, 198, 1212, 561, 1645, 611, 345, 389, 1262, 412, 5639, 43554, 13, 259, 79, 11, 393, 17949, 618, 412, 5639, 13, 259, 79, 468, 340, 524, 796, 362, 13, 198, 2396, 356, 761, 284, 5591, 606, 13, 198, 7, 1532, 345, 765, 284, 7110, 1541, 12, 11379, 276, 1366, 11, 779, 412, 5639, 29487, 353, 62, 3605, 13, 9078, 8, 198, 198, 8162, 1847, 15821, 30023, 9863, 8643, 8162, 198, 1212, 2196, 18533, 345, 4398, 470, 1057, 1357, 11215, 66, 3698, 34, 1865, 11, 475, 655, 412, 5639, 11, 284, 651, 281, 4238, 198, 565, 518, 1771, 393, 407, 534, 5128, 10007, 389, 2063, 7709, 13, 198, 818, 584, 2456, 11, 340, 1595, 470, 761, 764, 11379, 3696, 393, 4197, 79, 1670, 13, 439, 11, 475, 340, 857, 761, 412, 5639, 13, 448, 13, 198, 7061, 6, 198, 2, 29792, 329, 21528, 13, 41344, 351, 1037, 422, 3124, 11269, 263, 13, 198, 445, 796, 705, 2, 68, 2682, 64, 2091, 6, 1303, 2266, 11, 3491, 352, 198, 88, 417, 796, 705, 2, 69, 9945, 65, 5705, 6, 1303, 7872, 11, 3491, 362, 198, 198, 2, 29201, 82, 287, 4197, 79, 1670, 2393, 326, 6053, 284, 309, 15, 290, 18581, 198, 2, 83, 1102, 73, 62, 4033, 796, 657, 198, 2, 1819, 65, 62, 4033, 796, 1315, 198, 198, 2, 4149, 287, 2279, 198, 69, 16, 796, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19849, 52, 13, 19726, 6, 198, 2, 69, 17, 796, 220, 220, 220, 220, 220, 220, 220, 705, 3698, 34, 7890, 52, 13, 11379, 6, 198, 69, 18, 796, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7364, 16, 13, 49, 53, 6, 198, 69, 19, 796, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7364, 17, 13, 49, 53, 6, 198, 3698, 34, 448, 7753, 796, 705, 3698, 34, 13, 448, 6, 198, 25928, 26268, 796, 220, 220, 705, 25928, 26268, 13, 8738, 6, 198, 2, 69, 20, 796, 220, 220, 220, 220, 220, 220, 220, 705, 3698, 34, 7890, 49, 53, 16, 13, 11379, 6, 198, 2, 69, 21, 796, 220, 220, 220, 220, 220, 220, 220, 705, 3698, 34, 7890, 49, 53, 17, 13, 11379, 6, 198, 2, 11147, 79, 1670, 796, 220, 220, 705, 11147, 79, 1670, 13, 439, 6, 198, 198, 2, 39852, 2849, 1847, 5984, 25008, 10979, 347, 14, 34, 25261, 412, 5639, 31367, 19164, 3698, 16289, 30076, 3180, 6006, 32297, 1961, 11050, 49965, 5673, 198, 2, 28483, 2611, 796, 657, 198, 28483, 2611, 796, 5128, 7203, 17469, 34236, 15068, 357, 15, 329, 4844, 2599, 366, 8, 198, 198, 40715, 62, 4666, 11, 19726, 62, 4666, 796, 45941, 13, 2220, 14116, 7, 69, 16, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 828, 555, 8002, 28, 17821, 8, 198, 2, 40715, 62, 19608, 11, 19726, 62, 19608, 796, 45941, 13, 2220, 14116, 7, 69, 17, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 828, 555, 8002, 28, 17821, 8, 198, 40715, 62, 81, 85, 16, 11, 81, 85, 16, 796, 45941, 13, 2220, 14116, 7, 69, 18, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 828, 555, 8002, 28, 17821, 8, 198, 40715, 62, 81, 85, 17, 11, 81, 85, 17, 796, 45941, 13, 2220, 14116, 7, 69, 19, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 828, 555, 8002, 28, 17821, 8, 198, 2, 40715, 62, 81, 85, 16, 19608, 11, 81, 85, 16, 19608, 11, 81, 85, 16, 8056, 796, 45941, 13, 2220, 14116, 7, 69, 20, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 11, 17, 828, 555, 8002, 28, 17821, 8, 198, 2, 40715, 62, 81, 85, 17, 19608, 11, 81, 85, 17, 19608, 11, 81, 85, 17, 8056, 796, 45941, 13, 2220, 14116, 7, 69, 21, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 11, 17, 828, 555, 8002, 28, 17821, 8, 198, 198, 2, 29397, 4177, 2849, 5390, 376, 15173, 3563, 47588, 523, 21164, 389, 1682, 21164, 2644, 290, 788, 3297, 477, 262, 26515, 13, 198, 198, 2, 17151, 19878, 40, 3727, 5357, 309, 15, 422, 412, 5639, 13, 448, 2393, 198, 4480, 1280, 7, 3698, 34, 448, 7753, 8, 355, 277, 25, 198, 197, 1640, 1312, 11, 5752, 287, 27056, 378, 7, 69, 2599, 198, 197, 197, 361, 1312, 6624, 2681, 25, 1303, 2579, 400, 5752, 198, 197, 197, 197, 28665, 82, 796, 5752, 13, 35312, 3419, 198, 197, 197, 197, 41007, 796, 12178, 7, 28665, 82, 58, 15, 12962, 1303, 352, 301, 5721, 198, 197, 197, 2, 361, 1312, 6624, 4353, 25, 1303, 5014, 400, 5752, 11, 1312, 13, 68, 13, 309, 15, 197, 2, 428, 530, 468, 257, 8258, 1976, 263, 404, 1563, 357, 482, 611, 18620, 8, 198, 197, 197, 361, 1312, 6624, 22169, 25, 1303, 22352, 400, 5752, 11, 1312, 13, 68, 13, 309, 1102, 73, 1303, 428, 530, 7584, 4165, 25872, 379, 7108, 657, 198, 197, 197, 197, 28665, 82, 796, 5752, 13, 35312, 3419, 198, 197, 197, 197, 51, 1102, 73, 796, 12178, 7, 28665, 82, 58, 15, 12962, 1303, 16, 301, 5721, 198, 198, 2, 41007, 82, 11, 256, 1102, 8457, 796, 45941, 13, 2220, 14116, 7, 11147, 79, 1670, 11, 779, 4033, 82, 16193, 1819, 65, 62, 4033, 11, 256, 1102, 73, 62, 4033, 828, 555, 8002, 28, 17821, 8, 198, 2, 41007, 796, 45941, 13, 1150, 666, 7, 41007, 82, 8, 198, 2, 51, 1102, 73, 796, 45941, 13, 1150, 666, 7, 83, 1102, 8457, 8, 198, 198, 4798, 7, 41007, 11, 309, 1102, 73, 8, 198, 51, 1102, 73, 796, 309, 1102, 73, 1343, 657, 13, 20, 9, 41007, 198, 198, 4480, 1280, 7, 25928, 26268, 8, 355, 277, 25, 198, 220, 220, 220, 329, 1312, 11, 5752, 287, 27056, 378, 7, 69, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22228, 259, 7753, 796, 5752, 13, 35312, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31367, 16, 259, 7753, 796, 5752, 13, 35312, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31367, 17, 259, 7753, 796, 5752, 13, 35312, 3419, 58, 15, 60, 198, 198, 2, 4149, 287, 6515, 1661, 11, 7842, 10455, 11, 290, 371, 23266, 357, 44714, 640, 705, 40715, 6, 475, 326, 338, 257, 6486, 8, 198, 40715, 62, 19608, 11, 19726, 62, 19608, 796, 45941, 13, 2220, 14116, 7, 5639, 259, 7753, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 828, 555, 8002, 28, 17821, 8, 198, 40715, 62, 81, 85, 16, 19608, 11, 81, 85, 16, 19608, 11, 81, 85, 16, 8056, 796, 45941, 13, 2220, 14116, 7, 49, 53, 16, 259, 7753, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 11, 17, 828, 555, 8002, 28, 17821, 8, 198, 40715, 62, 81, 85, 17, 19608, 11, 81, 85, 17, 19608, 11, 81, 85, 17, 8056, 796, 45941, 13, 2220, 14116, 7, 49, 53, 17, 259, 7753, 11, 3651, 11639, 2, 3256, 288, 4906, 28, 37659, 13, 22468, 2414, 11, 779, 4033, 82, 16193, 15, 11, 16, 11, 17, 828, 555, 8002, 28, 17821, 8, 198, 198, 2, 39957, 2279, 357, 672, 3168, 602, 290, 2746, 8, 198, 40715, 62, 4666, 796, 7108, 9948, 66, 7, 40715, 62, 4666, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 40715, 62, 19608, 796, 7108, 9948, 66, 7, 40715, 62, 19608, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 40715, 62, 81, 85, 16, 796, 7108, 9948, 66, 7, 40715, 62, 81, 85, 16, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 40715, 62, 81, 85, 17, 796, 7108, 9948, 66, 7, 40715, 62, 81, 85, 17, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 40715, 62, 81, 85, 16, 19608, 796, 7108, 9948, 66, 7, 40715, 62, 81, 85, 16, 19608, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 40715, 62, 81, 85, 17, 19608, 796, 7108, 9948, 66, 7, 40715, 62, 81, 85, 17, 19608, 11, 2278, 28, 41007, 11, 347, 37882, 15, 28, 51, 1102, 73, 8, 198, 198, 79, 16, 796, 7108, 62, 4666, 13, 22046, 419, 3419, 198, 79, 17, 796, 7108, 62, 19608, 13, 22046, 419, 3419, 198, 79, 18, 796, 7108, 62, 81, 85, 16, 13, 22046, 419, 3419, 198, 79, 19, 796, 7108, 62, 81, 85, 17, 13, 22046, 419, 3419, 198, 79, 20, 796, 7108, 62, 81, 85, 16, 19608, 13, 22046, 419, 3419, 198, 79, 21, 796, 7108, 62, 81, 85, 17, 19608, 13, 22046, 419, 3419, 198, 198, 40715, 62, 4666, 796, 7108, 62, 4666, 58, 79, 16, 60, 198, 40715, 62, 19608, 796, 7108, 62, 19608, 58, 79, 17, 60, 198, 40715, 62, 81, 85, 16, 796, 7108, 62, 81, 85, 16, 58, 79, 18, 60, 198, 40715, 62, 81, 85, 17, 796, 7108, 62, 81, 85, 17, 58, 79, 19, 60, 198, 40715, 62, 81, 85, 16, 19608, 796, 7108, 62, 81, 85, 16, 19608, 58, 79, 20, 60, 198, 40715, 62, 81, 85, 17, 19608, 796, 7108, 62, 81, 85, 17, 19608, 58, 79, 21, 60, 198, 198, 19726, 62, 4666, 796, 2153, 62, 4666, 58, 79, 16, 60, 198, 19726, 62, 19608, 796, 2153, 62, 19608, 58, 79, 17, 60, 198, 81, 85, 16, 796, 374, 85, 16, 58, 79, 18, 60, 198, 81, 85, 17, 796, 374, 85, 17, 58, 79, 19, 60, 198, 81, 85, 16, 19608, 796, 374, 85, 16, 19608, 58, 79, 20, 60, 198, 81, 85, 17, 19608, 796, 374, 85, 17, 19608, 58, 79, 21, 60, 628, 198, 2, 39852, 2849, 1847, 5984, 25008, 10979, 347, 14, 34, 25261, 412, 5639, 31367, 19164, 3698, 16289, 30076, 3180, 6006, 32297, 1961, 11050, 49965, 5673, 198, 2, 28483, 2611, 796, 5128, 7203, 17469, 34236, 15068, 357, 15, 329, 4844, 2599, 366, 8, 198, 81, 85, 16, 796, 374, 85, 16, 1343, 34236, 198, 81, 85, 17, 796, 374, 85, 17, 1343, 34236, 198, 198, 4798, 5855, 45677, 3555, 357, 392, 29909, 8, 1366, 2474, 8, 198, 198, 361, 45941, 13, 8937, 7, 37659, 13, 1150, 666, 7, 19726, 62, 4666, 8, 532, 45941, 13, 1150, 666, 7, 19726, 62, 19608, 4008, 1875, 352, 25, 198, 197, 4798, 10786, 39668, 278, 14735, 286, 2746, 1657, 12133, 986, 11537, 198, 197, 19726, 62, 4666, 796, 2153, 62, 4666, 1343, 357, 37659, 13, 1150, 666, 7, 19726, 62, 19608, 8, 532, 45941, 13, 1150, 666, 7, 19726, 62, 4666, 4008, 198, 198, 2, 4225, 16104, 378, 2746, 4291, 1366, 7108, 10706, 11, 329, 29598, 82, 198, 3605, 19726, 62, 19849, 796, 45941, 13, 3849, 79, 7, 40715, 62, 19608, 11, 7108, 62, 4666, 11, 2153, 62, 4666, 8, 198, 3605, 81, 85, 16, 796, 45941, 13, 3849, 79, 7, 40715, 62, 81, 85, 16, 19608, 11, 7108, 62, 81, 85, 16, 11, 374, 85, 16, 8, 198, 3605, 81, 85, 17, 796, 45941, 13, 3849, 79, 7, 40715, 62, 81, 85, 17, 19608, 11, 7108, 62, 81, 85, 17, 11, 374, 85, 17, 8, 198, 198, 44601, 411, 312, 796, 2153, 62, 19608, 532, 649, 19726, 62, 19849, 198, 81, 85, 16, 411, 312, 796, 374, 85, 16, 19608, 532, 649, 81, 85, 16, 198, 81, 85, 17, 411, 312, 796, 374, 85, 17, 19608, 532, 649, 81, 85, 17, 198, 198, 4798, 5855, 45677, 39555, 803, 2474, 8, 198, 198, 2, 6889, 21528, 198, 2, 3274, 11, 8160, 617, 15728, 3298, 10007, 329, 262, 21528, 198, 5902, 14857, 796, 657, 198, 5902, 368, 897, 796, 352, 198, 19726, 27740, 796, 45941, 13, 9806, 7, 19726, 62, 19608, 8, 1343, 657, 13, 2999, 1303, 1157, 13, 5607, 197, 197, 197, 2, 3505, 7842, 10455, 389, 16196, 11, 288, 648, 270, 198, 19726, 29199, 796, 45941, 13, 1084, 7, 19726, 62, 19608, 8, 532, 657, 13, 2999, 1303, 1157, 13, 4521, 16, 198, 81, 85, 1084, 796, 45941, 13, 1084, 26933, 37659, 13, 1084, 7, 81, 85, 16, 19608, 828, 45941, 13, 1084, 7, 81, 85, 17, 19608, 8, 12962, 532, 642, 1303, 12, 3720, 198, 81, 85, 9806, 796, 45941, 13, 9806, 26933, 37659, 13, 9806, 7, 81, 85, 16, 19608, 828, 45941, 13, 9806, 7, 81, 85, 17, 19608, 8, 12962, 1343, 642, 1303, 12, 16, 198, 39754, 62, 5902, 14857, 796, 657, 13, 2780, 1303, 15, 13, 2931, 1303, 15, 13, 2780, 198, 39754, 62, 5902, 368, 897, 796, 657, 13, 4309, 1303, 15, 13, 1415, 1303, 15, 13, 4309, 198, 38238, 62, 5902, 14857, 796, 657, 13, 4089, 1303, 15, 13, 3459, 16, 198, 38238, 62, 5902, 368, 897, 796, 352, 13, 486, 1303, 15, 13, 24, 2481, 198, 19726, 411, 312, 62, 1084, 796, 657, 13, 28041, 197, 2, 3505, 7842, 10455, 389, 16196, 11, 288, 648, 270, 198, 19726, 411, 312, 62, 9806, 796, 532, 15, 13, 28041, 198, 81, 85, 411, 312, 62, 1084, 796, 532, 20, 198, 81, 85, 411, 312, 62, 9806, 796, 642, 198, 198, 2, 4401, 12133, 198, 897, 16, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 16, 828, 7, 19, 11, 15, 828, 5752, 12626, 28, 18, 8, 198, 489, 83, 13, 22704, 26933, 5902, 14857, 11, 872, 292, 368, 897, 11, 2153, 27740, 11, 2153, 29199, 12962, 198, 489, 83, 13, 42298, 62, 37266, 7, 22704, 11639, 16885, 3256, 543, 11639, 22478, 11537, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 2153, 62, 19608, 11, 3124, 28, 445, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 21, 11, 285, 413, 28, 15, 8, 1303, 44601, 1366, 198, 489, 83, 13, 29487, 7, 40715, 62, 4666, 11, 2153, 62, 4666, 11, 705, 74, 3256, 300, 86, 28, 16, 13, 20, 11, 6167, 11639, 3698, 34, 9104, 11537, 1303, 44601, 2746, 198, 897, 16, 13, 2617, 62, 2645, 9608, 10786, 48017, 3984, 3256, 2546, 28, 1507, 8, 198, 897, 16, 13, 2617, 62, 742, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 5325, 498, 11555, 420, 871, 198, 897, 17, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 16, 828, 7, 16, 11, 15, 828, 5752, 12626, 28, 18, 8, 198, 489, 83, 13, 7266, 489, 1747, 62, 23032, 7, 86, 13200, 796, 657, 13, 18005, 11, 289, 13200, 28, 15, 13, 18005, 8, 198, 489, 83, 13, 22704, 26933, 5902, 14857, 11, 872, 292, 368, 897, 11, 374, 85, 1084, 11, 374, 85, 9806, 12962, 198, 489, 83, 13, 18224, 5657, 7, 40715, 62, 81, 85, 16, 19608, 11, 374, 85, 16, 19608, 11, 331, 8056, 28, 81, 85, 16, 8056, 11, 18364, 11639, 78, 3256, 3124, 28, 88, 417, 11, 13845, 28, 24, 11, 502, 66, 11639, 14202, 3256, 43979, 11639, 14202, 11537, 1303, 81, 85, 16, 1366, 198, 489, 83, 13, 18224, 5657, 7, 40715, 62, 81, 85, 17, 19608, 11, 374, 85, 17, 19608, 11, 331, 8056, 28, 81, 85, 17, 8056, 11, 18364, 11639, 78, 3256, 3124, 28, 445, 11, 13845, 28, 24, 11, 502, 66, 11639, 14202, 3256, 43979, 11639, 14202, 11537, 1303, 81, 85, 17, 1366, 198, 489, 83, 13, 29487, 7, 40715, 62, 81, 85, 16, 11, 374, 85, 16, 11, 3124, 11639, 74, 3256, 300, 86, 28, 16, 13, 20, 8, 1303, 81, 85, 16, 2746, 198, 489, 83, 13, 29487, 7, 40715, 62, 81, 85, 17, 11, 374, 85, 17, 11, 3124, 11639, 74, 3256, 300, 86, 28, 16, 13, 20, 8, 1303, 81, 85, 17, 2746, 198, 897, 17, 13, 2617, 62, 2645, 9608, 10786, 15546, 498, 43137, 357, 13276, 264, 3, 36796, 12, 16, 92, 3, 8, 3256, 2546, 28, 1507, 8, 198, 897, 17, 13, 2617, 62, 742, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 4401, 12133, 29598, 82, 198, 897, 81, 16, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 16, 828, 7, 22, 11, 15, 4008, 198, 897, 81, 16, 13, 22704, 26933, 5902, 14857, 11, 872, 292, 368, 897, 11, 2153, 411, 312, 62, 1084, 11, 2153, 411, 312, 62, 9806, 12962, 198, 897, 81, 16, 13, 2617, 62, 20760, 3378, 26933, 12, 15, 13, 22914, 11, 657, 11, 657, 13, 22914, 12962, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 28, 15, 11, 2124, 1084, 28, 5902, 14857, 11, 2124, 9806, 28, 5902, 368, 897, 11, 3124, 11639, 15, 13, 2425, 3256, 43979, 28, 10354, 11537, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 300, 66, 411, 312, 11, 3124, 28, 445, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 19, 11, 285, 413, 28, 15, 8, 1303, 44601, 29598, 198, 198, 2, 5325, 498, 15432, 29598, 82, 198, 897, 81, 17, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 16, 828, 7, 15, 11, 15, 4008, 198, 897, 81, 17, 13, 22704, 26933, 5902, 14857, 11, 872, 292, 368, 897, 11, 374, 85, 411, 312, 62, 1084, 11, 374, 85, 411, 312, 62, 9806, 12962, 198, 2, 897, 81, 17, 13, 2617, 62, 20760, 3378, 26933, 12, 17, 11, 15, 11, 17, 12962, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 28, 15, 11, 2124, 1084, 28, 5902, 14857, 11, 2124, 9806, 28, 5902, 368, 897, 11, 3124, 11639, 15, 13, 2425, 3256, 43979, 28, 10354, 11537, 198, 489, 83, 13, 18224, 5657, 7, 40715, 62, 81, 85, 16, 19608, 11, 374, 85, 16, 411, 312, 11, 331, 8056, 28, 81, 85, 16, 8056, 11, 18364, 11639, 78, 3256, 3124, 28, 88, 417, 11, 13845, 28, 24, 11, 502, 66, 11639, 14202, 3256, 43979, 11639, 14202, 11537, 1303, 81, 85, 16, 29598, 198, 489, 83, 13, 18224, 5657, 7, 40715, 62, 81, 85, 17, 19608, 11, 374, 85, 17, 411, 312, 11, 331, 8056, 28, 81, 85, 17, 8056, 11, 18364, 11639, 78, 3256, 3124, 28, 445, 11, 13845, 28, 24, 11, 502, 66, 11639, 14202, 3256, 43979, 11639, 14202, 11537, 1303, 81, 85, 17, 29598, 198, 2, 489, 83, 13, 87, 18242, 10786, 5574, 65, 1287, 18983, 357, 1102, 73, 4575, 379, 39280, 34846, 796, 657, 13, 20, 3, 8, 3256, 2546, 28, 1238, 8, 1303, 27489, 3861, 406, 6242, 3698, 198, 897, 81, 17, 13, 2617, 62, 742, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 40305, 12, 259, 286, 2236, 789, 357, 38238, 8, 25872, 198, 897, 18, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 17, 828, 7, 24, 11, 16, 828, 5752, 12626, 28, 17, 8, 198, 489, 83, 13, 22704, 26933, 38238, 62, 5902, 14857, 11, 9233, 62, 5902, 368, 897, 11, 2153, 27740, 11, 2153, 29199, 12962, 198, 897, 18, 13, 2617, 62, 742, 3378, 26933, 15, 13, 4531, 11, 657, 13, 3829, 11, 657, 13, 6420, 11, 657, 13, 5892, 12962, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 2153, 62, 19608, 11, 3124, 28, 88, 417, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 21, 11, 285, 413, 28, 15, 8, 1303, 44601, 1366, 198, 489, 83, 13, 29487, 7, 40715, 62, 4666, 11, 2153, 62, 4666, 11, 3124, 11639, 74, 3256, 300, 86, 28, 16, 13, 20, 8, 1303, 44601, 2746, 198, 897, 18, 13, 2617, 62, 2645, 9608, 10786, 48017, 3984, 11537, 198, 897, 18, 13, 2617, 62, 742, 624, 23912, 1424, 26933, 12962, 198, 897, 18, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 40305, 12, 259, 286, 9211, 357, 39754, 8, 25872, 198, 897, 19, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 17, 828, 7, 24, 11, 15, 828, 5752, 12626, 28, 17, 8, 198, 489, 83, 13, 22704, 26933, 39754, 62, 5902, 14857, 11, 4165, 62, 5902, 368, 897, 11, 2153, 27740, 11, 2153, 29199, 12962, 198, 897, 19, 13, 2617, 62, 742, 3378, 26933, 15, 13, 2920, 11, 657, 13, 1120, 11, 657, 13, 4349, 11, 657, 13, 4309, 12962, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 2153, 62, 19608, 11, 3124, 28, 445, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 21, 11, 285, 413, 28, 15, 8, 1303, 44601, 1366, 198, 489, 83, 13, 29487, 7, 40715, 62, 4666, 11, 2153, 62, 4666, 11, 3124, 11639, 74, 3256, 300, 86, 28, 16, 13, 20, 8, 1303, 44601, 2746, 198, 897, 19, 13, 2617, 62, 742, 624, 23912, 1424, 26933, 12962, 198, 2, 897, 19, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 40305, 7110, 29598, 82, 11, 2236, 789, 357, 38238, 8, 25872, 198, 897, 81, 18, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 17, 828, 7, 1157, 11, 16, 4008, 198, 489, 83, 13, 22704, 26933, 38238, 62, 5902, 14857, 11, 9233, 62, 5902, 368, 897, 11, 2153, 411, 312, 62, 1084, 11, 2153, 411, 312, 62, 9806, 12962, 198, 897, 81, 18, 13, 2617, 62, 20760, 3378, 26933, 12, 15, 13, 22914, 11, 657, 11, 657, 13, 22914, 12962, 198, 897, 81, 18, 13, 2617, 62, 742, 3378, 26933, 15, 13, 4531, 11, 657, 13, 3829, 11, 657, 13, 6420, 11, 657, 13, 5892, 12962, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 28, 15, 11, 2124, 1084, 28, 15, 11, 2124, 9806, 28, 17, 11, 3124, 11639, 15, 13, 2425, 3256, 43979, 28, 10354, 11537, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 300, 66, 411, 312, 11, 3124, 28, 445, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 19, 11, 285, 413, 28, 15, 8, 1303, 44601, 29598, 198, 897, 81, 18, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 40305, 7110, 29598, 82, 11, 9211, 357, 39754, 8, 25872, 198, 897, 81, 19, 796, 458, 83, 13, 7266, 29487, 17, 25928, 19510, 1065, 11, 17, 828, 7, 1157, 11, 15, 4008, 198, 489, 83, 13, 22704, 26933, 39754, 62, 5902, 14857, 11, 4165, 62, 5902, 368, 897, 11, 2153, 411, 312, 62, 1084, 11, 2153, 411, 312, 62, 9806, 12962, 198, 897, 81, 19, 13, 2617, 62, 20760, 3378, 26933, 12, 15, 13, 22914, 11, 657, 11, 657, 13, 22914, 12962, 198, 897, 81, 19, 13, 2617, 62, 742, 3378, 26933, 15, 13, 2920, 11, 657, 13, 1120, 11, 657, 13, 4349, 11, 657, 13, 4309, 12962, 198, 489, 83, 13, 897, 71, 1370, 7, 88, 28, 15, 11, 2124, 1084, 28, 15, 11, 2124, 9806, 28, 17, 11, 3124, 11639, 15, 13, 2425, 3256, 43979, 28, 10354, 11537, 198, 489, 83, 13, 29487, 7, 40715, 62, 19608, 11, 300, 66, 411, 312, 11, 3124, 28, 445, 11, 18364, 11639, 2637, 11, 43979, 11639, 14202, 3256, 13845, 28, 19, 11, 285, 413, 28, 15, 8, 1303, 44601, 29598, 198, 2, 897, 81, 19, 13, 2617, 62, 20760, 624, 23912, 1424, 26933, 12962, 198, 198, 2, 3498, 1424, 1262, 4045, 3785, 355, 257, 4941, 198, 489, 83, 13, 5647, 5239, 7, 15, 13, 20, 11, 657, 13, 3023, 11, 705, 5574, 65, 1287, 18983, 357, 1102, 73, 4575, 379, 39280, 34846, 796, 657, 13, 20, 3, 8, 3256, 387, 11639, 16159, 3256, 46935, 11639, 16159, 3256, 2546, 28, 1495, 8, 198, 2, 489, 83, 13, 5647, 5239, 7, 15, 13, 17059, 11, 657, 13, 1507, 11, 705, 12211, 560, 11537, 198, 2, 489, 83, 13, 5647, 5239, 7, 15, 13, 44465, 11, 657, 13, 1507, 11, 705, 35170, 11537, 198, 489, 83, 13, 5647, 5239, 7, 15, 13, 3312, 11, 657, 13, 4521, 11, 705, 3, 59, 42430, 3, 11537, 198, 489, 83, 13, 5647, 5239, 7, 15, 13, 3023, 11, 657, 13, 31010, 11, 705, 3, 59, 42430, 3, 11537, 198, 489, 83, 13, 5647, 5239, 7, 15, 13, 3023, 11, 657, 13, 11623, 11, 705, 3, 59, 42430, 3, 11537, 198, 897, 16, 13, 1455, 437, 7, 17946, 11639, 21037, 826, 3256, 5739, 261, 28, 25101, 11, 2632, 34758, 6, 7857, 10354, 1238, 30072, 198, 198, 4798, 5855, 45677, 10629, 7110, 2474, 8, 198, 198, 489, 83, 13, 12860, 3419, 198, 2, 448, 7753, 796, 705, 9288, 29487, 16, 13, 11134, 6, 198, 2, 489, 83, 13, 21928, 5647, 7, 448, 7753, 8, 198, 2, 4798, 5855, 43328, 7448, 284, 4064, 82, 2474, 4064, 503, 7753, 8, 198 ]
2.229345
4,321
""" Copyright (c) 2020 WEI.ZHOU. All rights reserved. The following code snippets are only used for circulation and cannot be used for business. If the code is used, no consent is required, but the author has nothing to do with any problems and consequences. In case of code problems, feedback can be made through the following email address. <[email protected]> @author: WEI.ZHOU @data:2020-10-29 """ # 根据公式计算值 import math C = 50 H = 30 value = [] values= input("请输入一组数字:") values = values.split(',') for D in values: s = str(int(round(math.sqrt(2 * C * float(D) / H)))) value.append(s) print(','.join(value))
[ 37811, 198, 15269, 357, 66, 8, 12131, 12887, 40, 13, 57, 46685, 13, 1439, 2489, 10395, 13, 198, 464, 1708, 2438, 45114, 389, 691, 973, 329, 19133, 290, 2314, 307, 973, 329, 1597, 13, 198, 1532, 262, 2438, 318, 973, 11, 645, 8281, 318, 2672, 11, 475, 262, 1772, 468, 2147, 284, 466, 351, 597, 2761, 198, 392, 6948, 13, 198, 818, 1339, 286, 2438, 2761, 11, 7538, 460, 307, 925, 832, 262, 1708, 3053, 2209, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 87, 13481, 392, 87, 31, 14816, 13, 785, 29, 198, 31, 9800, 25, 12887, 40, 13, 57, 46685, 198, 31, 7890, 25, 42334, 12, 940, 12, 1959, 198, 37811, 198, 198, 2, 10545, 254, 117, 162, 235, 106, 17739, 105, 28156, 237, 164, 106, 94, 163, 106, 245, 161, 222, 120, 198, 11748, 10688, 198, 34, 796, 2026, 198, 39, 796, 1542, 198, 8367, 796, 17635, 198, 27160, 28, 5128, 7203, 46237, 115, 164, 122, 241, 17739, 98, 31660, 163, 119, 226, 46763, 108, 27764, 245, 171, 120, 248, 4943, 198, 27160, 796, 3815, 13, 35312, 7, 3256, 11537, 198, 1640, 360, 287, 3815, 25, 198, 220, 220, 220, 264, 796, 965, 7, 600, 7, 744, 7, 11018, 13, 31166, 17034, 7, 17, 1635, 327, 1635, 12178, 7, 35, 8, 1220, 367, 35514, 198, 220, 220, 220, 1988, 13, 33295, 7, 82, 8, 198, 4798, 7, 3256, 4458, 22179, 7, 8367, 4008 ]
2.471698
265
import string import re from nlpaug.util import Method from nlpaug.util.text.tokenizer import Tokenizer from nlpaug import Augmenter from nlpaug.util import WarningException, WarningName, WarningCode, WarningMessage
[ 11748, 4731, 198, 11748, 302, 198, 198, 6738, 299, 34431, 7493, 13, 22602, 1330, 11789, 198, 6738, 299, 34431, 7493, 13, 22602, 13, 5239, 13, 30001, 7509, 1330, 29130, 7509, 198, 6738, 299, 34431, 7493, 1330, 2447, 434, 263, 198, 6738, 299, 34431, 7493, 13, 22602, 1330, 15932, 16922, 11, 15932, 5376, 11, 15932, 10669, 11, 15932, 12837, 628 ]
3.694915
59
from ._frontend import ( BackendFailed, CmdStatus, Frontend, MetadataForBuildWheelResult, RequiresBuildSdistResult, RequiresBuildWheelResult, SdistResult, WheelResult, ) from ._version import version from ._via_fresh_subprocess import SubprocessFrontend #: semantic version of the project __version__ = version __all__ = [ "__version__", "Frontend", "BackendFailed", "CmdStatus", "RequiresBuildSdistResult", "RequiresBuildWheelResult", "MetadataForBuildWheelResult", "SdistResult", "WheelResult", "SubprocessFrontend", ]
[ 6738, 47540, 8534, 437, 1330, 357, 198, 220, 220, 220, 5157, 437, 37, 6255, 11, 198, 220, 220, 220, 327, 9132, 19580, 11, 198, 220, 220, 220, 8880, 437, 11, 198, 220, 220, 220, 3395, 14706, 1890, 15580, 45307, 23004, 11, 198, 220, 220, 220, 26848, 15580, 50, 17080, 23004, 11, 198, 220, 220, 220, 26848, 15580, 45307, 23004, 11, 198, 220, 220, 220, 311, 17080, 23004, 11, 198, 220, 220, 220, 15810, 23004, 11, 198, 8, 198, 6738, 47540, 9641, 1330, 2196, 198, 6738, 47540, 8869, 62, 48797, 62, 7266, 14681, 1330, 3834, 14681, 25886, 437, 198, 198, 2, 25, 37865, 2196, 286, 262, 1628, 198, 834, 9641, 834, 796, 2196, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 834, 9641, 834, 1600, 198, 220, 220, 220, 366, 25886, 437, 1600, 198, 220, 220, 220, 366, 7282, 437, 37, 6255, 1600, 198, 220, 220, 220, 366, 40109, 19580, 1600, 198, 220, 220, 220, 366, 39618, 15580, 50, 17080, 23004, 1600, 198, 220, 220, 220, 366, 39618, 15580, 45307, 23004, 1600, 198, 220, 220, 220, 366, 9171, 14706, 1890, 15580, 45307, 23004, 1600, 198, 220, 220, 220, 366, 50, 17080, 23004, 1600, 198, 220, 220, 220, 366, 45307, 23004, 1600, 198, 220, 220, 220, 366, 7004, 14681, 25886, 437, 1600, 198, 60, 198 ]
2.741935
217
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Nov 27 18:29:10 2019 @author: itamar """ from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images.shape len(train_labels) train_labels test_images.shape len(test_images) test_labels print(train_images.ndim) train_images.shape print(train_images.dtype) digit = train_images[4] import matplotlib.pyplot as plt plt.imshow(digit, cmap=plt.cm.binary) plt.show() from keras import models , layers network = models.Sequential(name = 'hello Keras') network.add(layers.Dense(512, activation = 'relu' , input_shape = (28*28,))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=20, batch_size=32) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc) import numpy as np x = np.array([[[1,2,3], [1,7,3], [1,2,3]], [[1,2,3], [1,4,3], [1,2,3]]]) x.ndim x.shape
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 5267, 2681, 1248, 25, 1959, 25, 940, 13130, 198, 198, 31, 9800, 25, 340, 39236, 198, 37811, 198, 198, 6738, 41927, 292, 13, 19608, 292, 1039, 1330, 285, 77, 396, 198, 7, 27432, 62, 17566, 11, 4512, 62, 23912, 1424, 828, 357, 9288, 62, 17566, 11, 1332, 62, 23912, 1424, 8, 796, 285, 77, 396, 13, 2220, 62, 7890, 3419, 198, 198, 27432, 62, 17566, 13, 43358, 198, 11925, 7, 27432, 62, 23912, 1424, 8, 198, 27432, 62, 23912, 1424, 198, 9288, 62, 17566, 13, 43358, 198, 11925, 7, 9288, 62, 17566, 8, 198, 9288, 62, 23912, 1424, 198, 198, 4798, 7, 27432, 62, 17566, 13, 358, 320, 8, 198, 27432, 62, 17566, 13, 43358, 198, 4798, 7, 27432, 62, 17566, 13, 67, 4906, 8, 198, 198, 27003, 796, 4512, 62, 17566, 58, 19, 60, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 489, 83, 13, 320, 12860, 7, 27003, 11, 269, 8899, 28, 489, 83, 13, 11215, 13, 39491, 8, 198, 489, 83, 13, 12860, 3419, 198, 198, 6738, 41927, 292, 1330, 4981, 837, 11685, 198, 198, 27349, 796, 4981, 13, 44015, 1843, 7, 3672, 796, 705, 31373, 17337, 292, 11537, 198, 27349, 13, 2860, 7, 75, 6962, 13, 35, 1072, 7, 25836, 11, 14916, 796, 705, 260, 2290, 6, 837, 5128, 62, 43358, 796, 357, 2078, 9, 2078, 11, 22305, 198, 27349, 13, 2860, 7, 75, 6962, 13, 35, 1072, 7, 940, 11, 14916, 11639, 4215, 9806, 6, 4008, 198, 198, 27349, 13, 5589, 576, 7, 40085, 7509, 11639, 81, 907, 22930, 3256, 198, 22462, 11639, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 198, 4164, 10466, 28, 17816, 4134, 23843, 6, 12962, 198, 198, 27432, 62, 17566, 796, 4512, 62, 17566, 13, 3447, 1758, 19510, 21, 2388, 11, 2579, 1635, 2579, 4008, 198, 27432, 62, 17566, 796, 4512, 62, 17566, 13, 459, 2981, 10786, 22468, 2624, 11537, 1220, 14280, 198, 9288, 62, 17566, 796, 1332, 62, 17566, 13, 3447, 1758, 19510, 49388, 11, 2579, 1635, 2579, 4008, 198, 9288, 62, 17566, 796, 1332, 62, 17566, 13, 459, 2981, 10786, 22468, 2624, 11537, 1220, 14280, 198, 198, 6738, 41927, 292, 13, 26791, 1330, 284, 62, 66, 2397, 12409, 198, 27432, 62, 23912, 1424, 796, 284, 62, 66, 2397, 12409, 7, 27432, 62, 23912, 1424, 8, 198, 9288, 62, 23912, 1424, 796, 284, 62, 66, 2397, 12409, 7, 9288, 62, 23912, 1424, 8, 198, 198, 27349, 13, 11147, 7, 27432, 62, 17566, 11, 4512, 62, 23912, 1424, 11, 36835, 82, 28, 1238, 11, 15458, 62, 7857, 28, 2624, 8, 198, 198, 9288, 62, 22462, 11, 1332, 62, 4134, 796, 3127, 13, 49786, 7, 9288, 62, 17566, 11, 1332, 62, 23912, 1424, 8, 198, 4798, 10786, 9288, 62, 4134, 25, 3256, 1332, 62, 4134, 8, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 87, 796, 45941, 13, 18747, 26933, 30109, 16, 11, 17, 11, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 22, 11, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 17, 11, 18, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16410, 16, 11, 17, 11, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 19, 11, 18, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 17, 11, 18, 11907, 12962, 198, 87, 13, 358, 320, 198, 87, 13, 43358, 628 ]
2.350238
631
from api import db
[ 6738, 40391, 1330, 20613, 220, 198, 220, 220, 220, 220 ]
2.4
10
from datetime import date import numpy as np import pandas as pd from scipy.stats import zscore def normalize(df): """ 特徴量を標準化する。 Parameters ---------- df: pandas.dataframe 標準化前の特徴量データフレーム Returns ------- norm_df: pandas.dataframe 標準化された特徴量データフレーム """ def calc_age(born): """ 生年月日から年齢を計算する。 Parameters ---------- born: datetime.datetime 利用者の生年月日 Returns ------- age: int 利用者の年齢 """ today = date.today() age = today.year-born.year-((today.month, today.day)<(born.month, born.day)) return age # 年齢を算出する。 df['age'] = df['birth_date'].map(calc_age) # 標準化する。 norm_df = pd.DataFrame() # norm_df['id'] = df['id'] f_cols = ['desitination_latitude', 'desitination_longitude', 'age', 'sex'] norm_df[f_cols] = df[f_cols].apply(zscore) return norm_df def calc_dist_array(norm_df, f_w=[1, 1, 1]): """ 特徴量からデータ間距離を求める。 Parameters ---------- norm_df: pandas.dataframe 標準化された特徴量のデータフレーム f_w: list 各特徴量の重み Returns ------- dist_array: numpy.ndarray 利用者間のデータ間距離2次元配列(上三角行列) """ d_lat = norm_df['desitination_latitude'].values d_long = norm_df['desitination_longitude'].values age = norm_df['age'].values sex = norm_df['sex'].values def square_diff_matrix(f_array): """ 1次元配列の各要素の差分の二乗を計算する。 Parameters ---------- f_array: numpy.ndarray 利用者毎の特徴量を示す1次元配列 Returns ------- diff_array: numpy.ndarray 差分の二乗が入った2次元配列 """ length_fa = len(f_array) diff_array = np.array([(i-j)**2 for i in f_array for j in f_array]) diff_array = diff_array.reshape(length_fa, length_fa) return diff_array # 各特徴量の差分の二乗和の行列を求める。 direct_dist = np.sqrt(square_diff_matrix(d_lat)+square_diff_matrix(d_long)) age_dist = square_diff_matrix(age) sex_dist = square_diff_matrix(sex) # 各特徴量への重みづける dist_array = f_w[0]*direct_dist+f_w[1]*age_dist+f_w[2]*sex_dist dist_array = dist_array/sum(f_w) dist_array = np.triu(dist_array) return dist_array
[ 6738, 4818, 8079, 1330, 3128, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 629, 541, 88, 13, 34242, 1330, 1976, 26675, 628, 198, 4299, 3487, 1096, 7, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 231, 117, 36181, 112, 34932, 237, 31758, 162, 101, 247, 162, 118, 244, 44293, 244, 33623, 25748, 16764, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 47764, 25, 19798, 292, 13, 7890, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 101, 247, 162, 118, 244, 44293, 244, 30298, 235, 17683, 231, 117, 36181, 112, 34932, 237, 21959, 6312, 23376, 17681, 24186, 12045, 254, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2593, 62, 7568, 25, 19798, 292, 13, 7890, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 101, 247, 162, 118, 244, 44293, 244, 43357, 39258, 25224, 31965, 117, 36181, 112, 34932, 237, 21959, 6312, 23376, 17681, 24186, 12045, 254, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 42302, 62, 496, 7, 6286, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13328, 242, 253, 33176, 112, 17312, 230, 33768, 98, 27370, 36853, 33176, 112, 165, 121, 95, 31758, 164, 101, 230, 163, 106, 245, 33623, 25748, 16764, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 4642, 25, 4818, 8079, 13, 19608, 8079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10263, 230, 102, 18796, 101, 38519, 17683, 242, 253, 33176, 112, 17312, 230, 33768, 98, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 2479, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10263, 230, 102, 18796, 101, 38519, 15474, 117, 112, 165, 121, 95, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1909, 796, 3128, 13, 40838, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2479, 796, 1909, 13, 1941, 12, 6286, 13, 1941, 12, 19510, 40838, 13, 8424, 11, 1909, 13, 820, 8, 27, 7, 6286, 13, 8424, 11, 4642, 13, 820, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2479, 628, 220, 220, 220, 1303, 10263, 117, 112, 165, 121, 95, 31758, 163, 106, 245, 49035, 118, 33623, 25748, 16764, 198, 220, 220, 220, 47764, 17816, 496, 20520, 796, 47764, 17816, 24280, 62, 4475, 6, 4083, 8899, 7, 9948, 66, 62, 496, 8, 628, 220, 220, 220, 1303, 10545, 101, 247, 162, 118, 244, 44293, 244, 33623, 25748, 16764, 198, 220, 220, 220, 2593, 62, 7568, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 1303, 2593, 62, 7568, 17816, 312, 20520, 796, 47764, 17816, 312, 20520, 198, 220, 220, 220, 277, 62, 4033, 82, 796, 37250, 8906, 270, 1883, 62, 15460, 3984, 3256, 705, 8906, 270, 1883, 62, 6511, 3984, 3256, 705, 496, 3256, 705, 8044, 20520, 198, 220, 220, 220, 2593, 62, 7568, 58, 69, 62, 4033, 82, 60, 796, 47764, 58, 69, 62, 4033, 82, 4083, 39014, 7, 89, 26675, 8, 198, 220, 220, 220, 1441, 2593, 62, 7568, 628, 198, 4299, 42302, 62, 17080, 62, 18747, 7, 27237, 62, 7568, 11, 277, 62, 86, 41888, 16, 11, 352, 11, 352, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13328, 231, 117, 36181, 112, 34932, 237, 27370, 36853, 21959, 6312, 23376, 38461, 241, 164, 115, 251, 37239, 95, 31758, 162, 109, 224, 1792, 223, 25748, 16764, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2593, 62, 7568, 25, 19798, 292, 13, 7890, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 10545, 101, 247, 162, 118, 244, 44293, 244, 43357, 39258, 25224, 31965, 117, 36181, 112, 34932, 237, 5641, 21959, 6312, 23376, 17681, 24186, 12045, 254, 198, 220, 220, 220, 277, 62, 86, 25, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 238, 226, 31965, 117, 36181, 112, 34932, 237, 33426, 229, 235, 2515, 123, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1233, 62, 18747, 25, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 230, 102, 18796, 101, 38519, 38461, 241, 5641, 21959, 6312, 23376, 38461, 241, 164, 115, 251, 37239, 95, 17, 162, 105, 94, 17739, 225, 165, 227, 235, 26344, 245, 171, 120, 230, 41468, 49011, 164, 100, 240, 26193, 234, 26344, 245, 171, 120, 231, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 288, 62, 15460, 796, 2593, 62, 7568, 17816, 8906, 270, 1883, 62, 15460, 3984, 6, 4083, 27160, 198, 220, 220, 220, 288, 62, 6511, 796, 2593, 62, 7568, 17816, 8906, 270, 1883, 62, 6511, 3984, 6, 4083, 27160, 198, 220, 220, 220, 2479, 796, 2593, 62, 7568, 17816, 496, 6, 4083, 27160, 198, 220, 220, 220, 1714, 796, 2593, 62, 7568, 17816, 8044, 6, 4083, 27160, 628, 220, 220, 220, 825, 6616, 62, 26069, 62, 6759, 8609, 7, 69, 62, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 352, 162, 105, 94, 17739, 225, 165, 227, 235, 26344, 245, 15474, 238, 226, 17358, 223, 163, 112, 254, 15474, 115, 106, 26344, 228, 5641, 12859, 234, 20046, 245, 31758, 164, 101, 230, 163, 106, 245, 33623, 25748, 16764, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 277, 62, 18747, 25, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10263, 230, 102, 18796, 101, 38519, 162, 107, 236, 17683, 231, 117, 36181, 112, 34932, 237, 31758, 163, 97, 118, 33623, 171, 120, 239, 162, 105, 94, 17739, 225, 165, 227, 235, 26344, 245, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 18747, 25, 299, 32152, 13, 358, 18747, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10263, 115, 106, 26344, 228, 5641, 12859, 234, 20046, 245, 35585, 17739, 98, 33180, 25224, 17, 162, 105, 94, 17739, 225, 165, 227, 235, 26344, 245, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4129, 62, 13331, 796, 18896, 7, 69, 62, 18747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 18747, 796, 45941, 13, 18747, 26933, 7, 72, 12, 73, 8, 1174, 17, 329, 1312, 287, 277, 62, 18747, 329, 474, 287, 277, 62, 18747, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 18747, 796, 814, 62, 18747, 13, 3447, 1758, 7, 13664, 62, 13331, 11, 4129, 62, 13331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 814, 62, 18747, 628, 220, 220, 220, 1303, 10263, 238, 226, 31965, 117, 36181, 112, 34932, 237, 15474, 115, 106, 26344, 228, 5641, 12859, 234, 20046, 245, 161, 240, 234, 5641, 26193, 234, 26344, 245, 31758, 162, 109, 224, 1792, 223, 25748, 16764, 198, 220, 220, 220, 1277, 62, 17080, 796, 45941, 13, 31166, 17034, 7, 23415, 62, 26069, 62, 6759, 8609, 7, 67, 62, 15460, 47762, 23415, 62, 26069, 62, 6759, 8609, 7, 67, 62, 6511, 4008, 198, 220, 220, 220, 2479, 62, 17080, 796, 6616, 62, 26069, 62, 6759, 8609, 7, 496, 8, 198, 220, 220, 220, 1714, 62, 17080, 796, 6616, 62, 26069, 62, 6759, 8609, 7, 8044, 8, 628, 220, 220, 220, 1303, 10263, 238, 226, 31965, 117, 36181, 112, 34932, 237, 2515, 116, 33426, 229, 235, 2515, 123, 2515, 98, 2515, 239, 25748, 198, 220, 220, 220, 1233, 62, 18747, 796, 277, 62, 86, 58, 15, 60, 9, 12942, 62, 17080, 10, 69, 62, 86, 58, 16, 60, 9, 496, 62, 17080, 10, 69, 62, 86, 58, 17, 60, 9, 8044, 62, 17080, 198, 220, 220, 220, 1233, 62, 18747, 796, 1233, 62, 18747, 14, 16345, 7, 69, 62, 86, 8, 198, 220, 220, 220, 1233, 62, 18747, 796, 45941, 13, 28461, 84, 7, 17080, 62, 18747, 8, 198, 220, 220, 220, 1441, 1233, 62, 18747, 198 ]
1.597742
1,417
__version__ = "1.0.3" from spotify_uri.parse import parse as _parse from spotify_uri.spotify import SpotifyUri
[ 834, 9641, 834, 796, 366, 16, 13, 15, 13, 18, 1, 198, 198, 6738, 4136, 1958, 62, 9900, 13, 29572, 1330, 21136, 355, 4808, 29572, 198, 6738, 4136, 1958, 62, 9900, 13, 20485, 1958, 1330, 26778, 52, 380, 628, 628, 628 ]
2.853659
41
import argparse import pandas as pd import numpy as np import pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from cloudwine.utils import logger # Loads TF-IDF model and inferences input string # Loads TF-IDF model and inferences input string # Loads BERT embeddings and inferences input string
[ 11748, 1822, 29572, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 198, 6738, 1341, 35720, 13, 30053, 62, 2302, 7861, 13, 5239, 1330, 309, 69, 312, 69, 38469, 7509, 198, 6738, 1341, 35720, 13, 4164, 10466, 13, 24874, 3083, 1330, 8615, 500, 62, 38610, 414, 198, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 1573, 62, 30001, 1096, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 198, 11748, 299, 2528, 74, 198, 77, 2528, 74, 13, 15002, 10786, 30354, 83, 11537, 198, 77, 2528, 74, 13, 15002, 10786, 11338, 10879, 11537, 198, 77, 2528, 74, 13, 15002, 10786, 4775, 3262, 11537, 198, 198, 6738, 6279, 39002, 13, 26791, 1330, 49706, 628, 198, 198, 2, 8778, 82, 24958, 12, 2389, 37, 2746, 290, 1167, 4972, 5128, 4731, 628, 198, 2, 8778, 82, 24958, 12, 2389, 37, 2746, 290, 1167, 4972, 5128, 4731, 628, 198, 2, 8778, 82, 347, 17395, 11525, 67, 654, 290, 1167, 4972, 5128, 4731, 198 ]
3.152047
171
from __future__ import absolute_import from collections import OrderedDict, deque from urlparse import urlparse
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 11, 390, 4188, 198, 6738, 19016, 29572, 1330, 19016, 29572, 628, 198 ]
3.965517
29
import json from tweepy import OAuthHandler, Stream, StreamListener #faz requisicao de tweets ao Twitter from datetime import datetime # CADASTRAR AS CHAVES DE ACESSO consumer_key = "YGSFrzszgES6SFMtZTUghUhlw" consumer_secret = "TITEr8yC97JPTaiG9flVZrGc8INvFkObHpznB6NnupabE3OKx2" access_token = "1342352348497272833-J2FXw9MGDeiOQFSRLzsyJog94VOiRH" access_token_secret = "x5pdI1Fos0MMxidVxMYkfq5GrJ2u8GNounFan74SzuRZE" # DEFININDO UM ARQUIVO DE SAÍDA PARA ARMAZENAR OS TWEETS COLETADOS data_hoje = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") out = open(f"collected_tweets_{data_hoje}.txt", "w") # IMPLEMENTAR UM CLASSE PARA CONEXÃO COM TWITTER ## My Listener está recebendo uma herança da classe StreamListener! # IMPLEMENTAR A FUNÇÃO MAIN if __name__ == "__main__": l = MyListener() auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) stream = Stream(auth, l) stream.filter(track=["DisneyPlus"])
[ 11748, 33918, 220, 198, 6738, 4184, 538, 88, 1330, 440, 30515, 25060, 11, 13860, 11, 13860, 33252, 220, 1303, 69, 1031, 1038, 271, 3970, 78, 390, 12665, 257, 78, 3009, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 2, 37292, 1921, 5446, 1503, 7054, 5870, 10116, 1546, 5550, 7125, 7597, 46, 198, 198, 49827, 62, 2539, 796, 366, 56, 14313, 6732, 89, 82, 89, 70, 1546, 21, 20802, 44, 83, 57, 51, 52, 456, 52, 18519, 86, 1, 198, 49827, 62, 21078, 796, 366, 49560, 9139, 23, 88, 34, 5607, 41, 11571, 1872, 38, 24, 2704, 53, 57, 81, 38, 66, 23, 1268, 85, 37, 74, 5944, 39, 79, 47347, 33, 21, 45, 77, 929, 397, 36, 18, 11380, 87, 17, 1, 198, 198, 15526, 62, 30001, 796, 366, 19880, 22370, 1954, 2780, 38073, 1983, 2078, 2091, 12, 41, 17, 17213, 86, 24, 20474, 5005, 72, 46, 48, 10652, 7836, 89, 1837, 41, 519, 5824, 29516, 72, 48587, 1, 198, 15526, 62, 30001, 62, 21078, 796, 366, 87, 20, 30094, 40, 16, 37, 418, 15, 12038, 87, 312, 53, 87, 26708, 74, 69, 80, 20, 8642, 41, 17, 84, 23, 16630, 977, 22480, 4524, 50, 27624, 49, 21211, 1, 198, 198, 2, 5550, 20032, 12115, 46, 44352, 5923, 10917, 3824, 46, 5550, 14719, 38638, 5631, 350, 24401, 5923, 5673, 57, 1677, 1503, 7294, 309, 8845, 32716, 7375, 28882, 2885, 2640, 198, 198, 7890, 62, 8873, 18015, 796, 4818, 8079, 13, 2197, 22446, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 12, 4, 39, 12, 4, 44, 12, 4, 50, 4943, 198, 448, 796, 1280, 7, 69, 1, 4033, 12609, 62, 83, 732, 1039, 23330, 7890, 62, 8873, 18015, 27422, 14116, 1600, 366, 86, 4943, 198, 198, 2, 30023, 2538, 10979, 1503, 44352, 7852, 1921, 5188, 350, 24401, 7102, 6369, 5746, 46, 9440, 17306, 2043, 5781, 628, 220, 220, 220, 22492, 2011, 7343, 877, 1556, 6557, 1407, 65, 31110, 334, 2611, 607, 272, 50041, 12379, 537, 21612, 13860, 33252, 0, 198, 198, 2, 30023, 2538, 10979, 1503, 317, 29397, 127, 229, 5746, 46, 8779, 1268, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 300, 796, 2011, 33252, 3419, 198, 220, 220, 220, 6284, 796, 440, 30515, 25060, 7, 49827, 62, 2539, 11, 7172, 62, 21078, 8, 198, 220, 220, 220, 6284, 13, 2617, 62, 15526, 62, 30001, 7, 15526, 62, 30001, 11, 1895, 62, 30001, 62, 21078, 8, 628, 220, 220, 220, 4269, 796, 13860, 7, 18439, 11, 300, 8, 198, 220, 220, 220, 4269, 13, 24455, 7, 11659, 28, 14692, 37338, 17860, 8973, 8, 198 ]
2.262557
438
#!/usr/env/bin python from setuptools import setup setup( name='pygitea', version='0.0.1', description='Gitea API wrapper for python', url='http://github.com/jo-nas/pygitea', author='Jonas', author_email='[email protected]', install_requires=[ 'parse', 'requests' ], setup_requires=["pytest-runner"], tests_require=["pytest"], license='WTFPL', packages=['pygitea'] )
[ 2, 48443, 14629, 14, 24330, 14, 8800, 21015, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 9078, 70, 578, 64, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 15, 13, 16, 3256, 198, 220, 220, 220, 6764, 11639, 38, 578, 64, 7824, 29908, 329, 21015, 3256, 198, 220, 220, 220, 19016, 11639, 4023, 1378, 12567, 13, 785, 14, 7639, 12, 24716, 14, 9078, 70, 578, 64, 3256, 198, 220, 220, 220, 1772, 11639, 18219, 292, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 46286, 292, 31, 4169, 48955, 13, 3149, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29572, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8897, 3558, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 9058, 62, 47911, 28, 14692, 9078, 9288, 12, 16737, 33116, 198, 220, 220, 220, 5254, 62, 46115, 28, 14692, 9078, 9288, 33116, 198, 220, 220, 220, 5964, 11639, 39386, 5837, 43, 3256, 198, 220, 220, 220, 10392, 28, 17816, 9078, 70, 578, 64, 20520, 198, 8, 198 ]
2.273684
190
from .poly import polyrecur from scipy import integrate from .tools import printer from copy import deepcopy import numpy as np # %% Polynomial Chaos class Expansion: """Class of polynomial chaos expansion""" # Evaluates the expansion at the points # %% Univariate Expansion def transfo(invcdf,order,dist): """Maps an arbitrary random variable to another distribution""" nbrPoly = order+1 coef = np.zeros(nbrPoly) poly = polyrecur(order,dist) # Computes polynomial chaos coefficients and model for i in range(nbrPoly): fun = lambda x: invcdf(x)*poly.eval(dist.invcdf(x))[:,i] coef[i] = integrate.quad(fun,0,1)[0] expan = Expansion(coef,poly) transfo = lambda x: expan.eval(x) return transfo # %% Analysis of Variance def anova(coef,poly): """Computes the first and total order Sobol sensitivity indices""" S,ST = [[],[]] expo = poly.expo dim = expo.shape[0] coef = np.array(coef) nbrPoly = poly[:].shape[0] var = np.sum(coef[1:]**2,axis=0) # Computes the first and total Sobol indices for i in range(dim): order = np.sum(expo,axis=0) pIdx = np.array([poly[j].nonzero()[-1][-1] for j in range(nbrPoly)]) sIdx = np.where(expo[i]-order==0)[0].flatten()[1:] index = np.where(np.in1d(pIdx,sIdx))[0] S.append(np.sum(coef[index]**2,axis=0)/var) sIdx = np.where(expo[i])[0].flatten() index = np.where(np.in1d(pIdx,sIdx))[0] ST.append(np.sum(coef[index]**2,axis=0)/var) S = np.array(S) ST = np.array(ST) sobol = dict(zip(['S','ST'],[S,ST])) return sobol # %% Analysis of Covariance def ancova(model,point,weight=0): """Computes the sensitivity indices by analysis of covariance""" printer(0,'Computing ancova ...') nbrPts = np.array(point)[...].shape[0] if not np.any(weight): weight = np.ones(nbrPts)/nbrPts expo = model.expo coef = model.coef nbrIdx = expo.shape[1] index,ST,SS = [[],[],[]] model = deepcopy(model) resp = model.eval(point) difMod = resp-np.dot(resp.T,weight).T varMod = np.dot(difMod.T**2,weight).T # Computes the total and structural indices for i in range(1,nbrIdx): model.expo = expo[:,i,None] model.coef = coef[...,i,None] resp = model.eval(point) dif = resp-np.dot(resp.T,weight).T cov = np.dot((dif*difMod).T,weight).T var = np.dot(dif.T**2,weight).T S = cov/varMod if not np.allclose(S,0): index.append(expo[:,i]) SS.append(var/varMod) ST.append(S) # Combines the different powers of a same monomial index,SS,ST = combine(index,SS,ST) ancova = dict(zip(['SS','SC','ST'],[SS,ST-SS,ST])) printer(1,'Computing ancova 100 %') return index,ancova # %% Combine Power def combine(index,SS,ST): """Combines the indices from different powers of the same monomial""" index = np.transpose(index) index = (index/np.max(index,axis=0)).T # Normalizes and eliminates the duplicates minIdx = np.min(index,axis=1) idx = np.argwhere(minIdx).flatten() index[idx] = (index[idx].T/minIdx[idx]).T index = np.rint(index).astype(int) index,old = np.unique(index,return_inverse=1,axis=0) shape = (index.shape[0],)+np.array(SS).shape[1:] SS2 = np.zeros(shape) ST2 = np.zeros(shape) # Combines duplicates ancova indices for i in range(old.shape[0]): SS2[old[i]] += SS[i] for i in range(old.shape[0]): ST2[old[i]] += ST[i] return index,SS2,ST2
[ 6738, 764, 35428, 1330, 7514, 8344, 333, 198, 6738, 629, 541, 88, 1330, 19386, 198, 6738, 764, 31391, 1330, 20632, 198, 6738, 4866, 1330, 2769, 30073, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 43313, 12280, 26601, 498, 13903, 198, 198, 4871, 25042, 25, 198, 220, 220, 220, 37227, 9487, 286, 745, 6213, 49070, 11918, 7118, 37811, 628, 220, 220, 220, 1303, 26439, 12632, 262, 7118, 379, 262, 2173, 198, 198, 2, 43313, 791, 42524, 25042, 198, 198, 4299, 1007, 6513, 7, 16340, 66, 7568, 11, 2875, 11, 17080, 2599, 198, 220, 220, 220, 37227, 47010, 281, 14977, 4738, 7885, 284, 1194, 6082, 37811, 628, 220, 220, 220, 299, 1671, 34220, 796, 1502, 10, 16, 198, 220, 220, 220, 763, 891, 796, 45941, 13, 9107, 418, 7, 77, 1671, 34220, 8, 198, 220, 220, 220, 7514, 796, 7514, 8344, 333, 7, 2875, 11, 17080, 8, 628, 220, 220, 220, 1303, 3082, 1769, 745, 6213, 49070, 11918, 44036, 290, 2746, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 77, 1671, 34220, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1257, 796, 37456, 2124, 25, 800, 66, 7568, 7, 87, 27493, 35428, 13, 18206, 7, 17080, 13, 16340, 66, 7568, 7, 87, 4008, 58, 45299, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 763, 891, 58, 72, 60, 796, 19386, 13, 47003, 7, 12543, 11, 15, 11, 16, 38381, 15, 60, 628, 220, 220, 220, 1033, 272, 796, 25042, 7, 1073, 891, 11, 35428, 8, 198, 220, 220, 220, 1007, 6513, 796, 37456, 2124, 25, 1033, 272, 13, 18206, 7, 87, 8, 198, 220, 220, 220, 1441, 1007, 6513, 198, 198, 2, 43313, 14691, 286, 15965, 590, 198, 198, 4299, 281, 10071, 7, 1073, 891, 11, 35428, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 262, 717, 290, 2472, 1502, 36884, 349, 14233, 36525, 37811, 628, 220, 220, 220, 311, 11, 2257, 796, 16410, 38430, 11907, 198, 220, 220, 220, 1033, 78, 796, 7514, 13, 1069, 7501, 198, 220, 220, 220, 5391, 796, 1033, 78, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 763, 891, 796, 45941, 13, 18747, 7, 1073, 891, 8, 198, 220, 220, 220, 299, 1671, 34220, 796, 7514, 58, 25, 4083, 43358, 58, 15, 60, 198, 220, 220, 220, 1401, 796, 45941, 13, 16345, 7, 1073, 891, 58, 16, 47715, 1174, 17, 11, 22704, 28, 15, 8, 628, 220, 220, 220, 1303, 3082, 1769, 262, 717, 290, 2472, 36884, 349, 36525, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 27740, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1502, 796, 45941, 13, 16345, 7, 1069, 7501, 11, 22704, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 7390, 87, 796, 45941, 13, 18747, 26933, 35428, 58, 73, 4083, 13159, 22570, 3419, 58, 12, 16, 7131, 12, 16, 60, 329, 474, 287, 2837, 7, 77, 1671, 34220, 8, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 264, 7390, 87, 796, 45941, 13, 3003, 7, 1069, 7501, 58, 72, 45297, 2875, 855, 15, 38381, 15, 4083, 2704, 41769, 3419, 58, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 45941, 13, 3003, 7, 37659, 13, 259, 16, 67, 7, 79, 7390, 87, 11, 82, 7390, 87, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 311, 13, 33295, 7, 37659, 13, 16345, 7, 1073, 891, 58, 9630, 60, 1174, 17, 11, 22704, 28, 15, 20679, 7785, 8, 628, 220, 220, 220, 220, 220, 220, 220, 264, 7390, 87, 796, 45941, 13, 3003, 7, 1069, 7501, 58, 72, 12962, 58, 15, 4083, 2704, 41769, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 45941, 13, 3003, 7, 37659, 13, 259, 16, 67, 7, 79, 7390, 87, 11, 82, 7390, 87, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3563, 13, 33295, 7, 37659, 13, 16345, 7, 1073, 891, 58, 9630, 60, 1174, 17, 11, 22704, 28, 15, 20679, 7785, 8, 628, 220, 220, 220, 311, 796, 45941, 13, 18747, 7, 50, 8, 198, 220, 220, 220, 3563, 796, 45941, 13, 18747, 7, 2257, 8, 198, 220, 220, 220, 27355, 349, 796, 8633, 7, 13344, 7, 17816, 50, 41707, 2257, 6, 38430, 50, 11, 2257, 60, 4008, 198, 220, 220, 220, 1441, 27355, 349, 198, 198, 2, 43313, 14691, 286, 39751, 2743, 590, 198, 220, 220, 220, 220, 198, 4299, 281, 66, 10071, 7, 19849, 11, 4122, 11, 6551, 28, 15, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 262, 14233, 36525, 416, 3781, 286, 44829, 590, 37811, 628, 220, 220, 220, 20632, 7, 15, 4032, 5377, 48074, 281, 66, 10071, 2644, 11537, 198, 220, 220, 220, 299, 1671, 47, 912, 796, 45941, 13, 18747, 7, 4122, 38381, 986, 4083, 43358, 58, 15, 60, 198, 220, 220, 220, 611, 407, 45941, 13, 1092, 7, 6551, 2599, 3463, 796, 45941, 13, 1952, 7, 77, 1671, 47, 912, 20679, 77, 1671, 47, 912, 628, 220, 220, 220, 1033, 78, 796, 2746, 13, 1069, 7501, 198, 220, 220, 220, 763, 891, 796, 2746, 13, 1073, 891, 198, 220, 220, 220, 299, 1671, 7390, 87, 796, 1033, 78, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 6376, 11, 2257, 11, 5432, 796, 16410, 38430, 38430, 11907, 628, 220, 220, 220, 2746, 796, 2769, 30073, 7, 19849, 8, 198, 220, 220, 220, 1217, 796, 2746, 13, 18206, 7, 4122, 8, 198, 220, 220, 220, 288, 361, 5841, 796, 1217, 12, 37659, 13, 26518, 7, 4363, 13, 51, 11, 6551, 737, 51, 198, 220, 220, 220, 1401, 5841, 796, 45941, 13, 26518, 7, 67, 361, 5841, 13, 51, 1174, 17, 11, 6551, 737, 51, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3082, 1769, 262, 2472, 290, 13204, 36525, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 77, 1671, 7390, 87, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 1069, 7501, 796, 1033, 78, 58, 45299, 72, 11, 14202, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 1073, 891, 796, 763, 891, 58, 986, 11, 72, 11, 14202, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 2746, 13, 18206, 7, 4122, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 361, 796, 1217, 12, 37659, 13, 26518, 7, 4363, 13, 51, 11, 6551, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 39849, 796, 45941, 13, 26518, 19510, 67, 361, 9, 67, 361, 5841, 737, 51, 11, 6551, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 796, 45941, 13, 26518, 7, 67, 361, 13, 51, 1174, 17, 11, 6551, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 311, 796, 39849, 14, 7785, 5841, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 439, 19836, 7, 50, 11, 15, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 13, 33295, 7, 1069, 7501, 58, 45299, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6723, 13, 33295, 7, 7785, 14, 7785, 5841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3563, 13, 33295, 7, 50, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14336, 1127, 262, 1180, 5635, 286, 257, 976, 937, 49070, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6376, 11, 5432, 11, 2257, 796, 12082, 7, 9630, 11, 5432, 11, 2257, 8, 198, 220, 220, 220, 281, 66, 10071, 796, 8633, 7, 13344, 7, 17816, 5432, 41707, 6173, 41707, 2257, 6, 38430, 5432, 11, 2257, 12, 5432, 11, 2257, 60, 4008, 198, 220, 220, 220, 20632, 7, 16, 4032, 5377, 48074, 281, 66, 10071, 1802, 4064, 11537, 198, 220, 220, 220, 1441, 6376, 11, 1192, 10071, 198, 198, 2, 43313, 29176, 4333, 198, 198, 4299, 12082, 7, 9630, 11, 5432, 11, 2257, 2599, 198, 220, 220, 220, 37227, 20575, 1127, 262, 36525, 422, 1180, 5635, 286, 262, 976, 937, 49070, 37811, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6376, 796, 45941, 13, 7645, 3455, 7, 9630, 8, 198, 220, 220, 220, 6376, 796, 357, 9630, 14, 37659, 13, 9806, 7, 9630, 11, 22704, 28, 15, 29720, 51, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14435, 4340, 290, 32311, 262, 14184, 16856, 198, 220, 220, 220, 220, 198, 220, 220, 220, 949, 7390, 87, 796, 45941, 13, 1084, 7, 9630, 11, 22704, 28, 16, 8, 198, 220, 220, 220, 4686, 87, 796, 45941, 13, 853, 3003, 7, 1084, 7390, 87, 737, 2704, 41769, 3419, 198, 220, 220, 220, 6376, 58, 312, 87, 60, 796, 357, 9630, 58, 312, 87, 4083, 51, 14, 1084, 7390, 87, 58, 312, 87, 35944, 51, 198, 220, 220, 220, 6376, 796, 45941, 13, 22272, 7, 9630, 737, 459, 2981, 7, 600, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6376, 11, 727, 796, 45941, 13, 34642, 7, 9630, 11, 7783, 62, 259, 4399, 28, 16, 11, 22704, 28, 15, 8, 198, 220, 220, 220, 5485, 796, 357, 9630, 13, 43358, 58, 15, 4357, 47762, 37659, 13, 18747, 7, 5432, 737, 43358, 58, 16, 47715, 198, 220, 220, 220, 6723, 17, 796, 45941, 13, 9107, 418, 7, 43358, 8, 198, 220, 220, 220, 3563, 17, 796, 45941, 13, 9107, 418, 7, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 14336, 1127, 14184, 16856, 281, 66, 10071, 36525, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 727, 13, 43358, 58, 15, 60, 2599, 6723, 17, 58, 727, 58, 72, 11907, 15853, 6723, 58, 72, 60, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 727, 13, 43358, 58, 15, 60, 2599, 3563, 17, 58, 727, 58, 72, 11907, 15853, 3563, 58, 72, 60, 198, 220, 220, 220, 1441, 6376, 11, 5432, 17, 11, 2257, 17 ]
2.184211
1,672
from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC, expected_conditions from selenium.webdriver.support.wait import WebDriverWait as wait from fixtures.params import DEFAULT_PASSWORD
[ 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 11, 2938, 62, 17561, 1756, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 17077, 1330, 5313, 32103, 21321, 355, 4043, 198, 198, 6738, 34609, 13, 37266, 1330, 5550, 38865, 62, 47924, 54, 12532, 628, 628 ]
3.602941
68
from RNAseq import *
[ 6738, 25897, 41068, 1330, 1635, 628 ]
3.666667
6
import os import subprocess from clams import arg, Command from . import current_project version = Command( name='version', title='Utilities for versioning and releases.', description='Utilities for versioning and releases.', ) def _get_version(): """Read and return the project version number.""" from unb_cli import version v = version.read(current_project().version_file_path) return v or '' def _list_tags(): """List tags.""" subprocess.call(['git', 'tag', '-l', '-n']) def _tag(name, message, prefix='', suffix=''): """Create a git tag. Parameters ---------- name : str The name of the tag to create message : str A short message about the tag prefix : str A prefix to add to the name suffix : str A suffix to add to the name Returns ------- None """ name = prefix + name + suffix subprocess.call(['git', 'tag', '-a', name, '-m', message]) def _push_tags(): """Run `git push --follow-tags`.""" subprocess.call(['git', 'push', '--follow-tags']) @version.register('bump') @arg('part', nargs='?', default='patch') def bump(part): """Bump the version number.""" from unb_cli import version version.bump_file(current_project().version_file_path, part, '0.0.0') @version.register('tag') @arg('message', nargs='?', default='', help='Annotate the tag with a message.') @arg('--name', nargs='?', default='', help='Specify a tag name explicitly.') @arg('--prefix', nargs='?', default='', help="""A prefix to add to the name. This is most useful when the name parameter is omitted. For example, if the current version number were 1.2.3, ``unb version tag --prefix=v`` would produce a tag named ``v1.2.3``.""") @arg('--suffix', nargs='?', default='', help="""A suffix to add to the name. This is most useful when the name parameter is omitted. For example, if the current version number were 1.2.3, ``unb version tag --suffix=-dev`` would produce a tag named ``1.2.3-dev``.""") def tag(message, name, prefix, suffix): """Create a git tag. If the tag name is not given explicitly, its name will equal the contents of the file project_root/VERSION. """ if not name: name = _get_version() _tag(name, message, prefix, suffix) @version.register('push-tags') def push_tags(): """Push and follow tags. (`git push --follow-tags`)""" _push_tags() @version.register('list-tags') def list_tags(): """List git tags.""" _list_tags() @version.register('version') def get_version(): """Get the version number of the current project.""" print _get_version()
[ 11748, 28686, 198, 11748, 850, 14681, 198, 198, 6738, 537, 4105, 1330, 1822, 11, 9455, 198, 198, 6738, 764, 1330, 1459, 62, 16302, 628, 198, 9641, 796, 9455, 7, 198, 220, 220, 220, 1438, 11639, 9641, 3256, 198, 220, 220, 220, 3670, 11639, 18274, 2410, 329, 2196, 278, 290, 10050, 2637, 11, 198, 220, 220, 220, 6764, 11639, 18274, 2410, 329, 2196, 278, 290, 10050, 2637, 11, 198, 8, 628, 198, 4299, 4808, 1136, 62, 9641, 33529, 198, 220, 220, 220, 37227, 5569, 290, 1441, 262, 1628, 2196, 1271, 526, 15931, 198, 220, 220, 220, 422, 22619, 62, 44506, 1330, 2196, 198, 220, 220, 220, 410, 796, 2196, 13, 961, 7, 14421, 62, 16302, 22446, 9641, 62, 7753, 62, 6978, 8, 198, 220, 220, 220, 1441, 410, 393, 10148, 628, 198, 4299, 4808, 4868, 62, 31499, 33529, 198, 220, 220, 220, 37227, 8053, 15940, 526, 15931, 198, 220, 220, 220, 850, 14681, 13, 13345, 7, 17816, 18300, 3256, 705, 12985, 3256, 705, 12, 75, 3256, 705, 12, 77, 6, 12962, 628, 198, 4299, 4808, 12985, 7, 3672, 11, 3275, 11, 21231, 11639, 3256, 35488, 28, 7061, 2599, 198, 220, 220, 220, 37227, 16447, 257, 17606, 7621, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1438, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 7621, 284, 2251, 198, 220, 220, 220, 3275, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 317, 1790, 3275, 546, 262, 7621, 198, 220, 220, 220, 21231, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 317, 21231, 284, 751, 284, 262, 1438, 198, 220, 220, 220, 35488, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 317, 35488, 284, 751, 284, 262, 1438, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6045, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1438, 796, 21231, 1343, 1438, 1343, 35488, 198, 220, 220, 220, 850, 14681, 13, 13345, 7, 17816, 18300, 3256, 705, 12985, 3256, 705, 12, 64, 3256, 1438, 11, 705, 12, 76, 3256, 3275, 12962, 628, 198, 4299, 4808, 14689, 62, 31499, 33529, 198, 220, 220, 220, 37227, 10987, 4600, 18300, 4574, 1377, 27780, 12, 31499, 63, 526, 15931, 198, 220, 220, 220, 850, 14681, 13, 13345, 7, 17816, 18300, 3256, 705, 14689, 3256, 705, 438, 27780, 12, 31499, 6, 12962, 628, 198, 31, 9641, 13, 30238, 10786, 65, 931, 11537, 198, 31, 853, 10786, 3911, 3256, 299, 22046, 11639, 30, 3256, 4277, 11639, 17147, 11537, 198, 4299, 13852, 7, 3911, 2599, 198, 220, 220, 220, 37227, 33, 931, 262, 2196, 1271, 526, 15931, 198, 220, 220, 220, 422, 22619, 62, 44506, 1330, 2196, 198, 220, 220, 220, 2196, 13, 65, 931, 62, 7753, 7, 14421, 62, 16302, 22446, 9641, 62, 7753, 62, 6978, 11, 636, 11, 705, 15, 13, 15, 13, 15, 11537, 628, 198, 31, 9641, 13, 30238, 10786, 12985, 11537, 198, 31, 853, 10786, 20500, 3256, 299, 22046, 11639, 30, 3256, 4277, 11639, 3256, 198, 220, 220, 220, 220, 1037, 11639, 2025, 1662, 378, 262, 7621, 351, 257, 3275, 2637, 8, 198, 31, 853, 10786, 438, 3672, 3256, 299, 22046, 11639, 30, 3256, 4277, 11639, 3256, 198, 220, 220, 220, 220, 1037, 11639, 22882, 1958, 257, 7621, 1438, 11777, 2637, 8, 198, 31, 853, 10786, 438, 40290, 3256, 299, 22046, 11639, 30, 3256, 4277, 11639, 3256, 198, 220, 220, 220, 220, 1037, 2625, 15931, 32, 21231, 284, 751, 284, 262, 1438, 13, 628, 220, 220, 220, 220, 770, 318, 749, 4465, 618, 262, 1438, 11507, 318, 22532, 13, 220, 1114, 1672, 11, 611, 198, 220, 220, 220, 220, 262, 1459, 2196, 1271, 547, 352, 13, 17, 13, 18, 11, 7559, 403, 65, 2196, 7621, 1377, 40290, 28, 85, 15506, 198, 220, 220, 220, 220, 561, 4439, 257, 7621, 3706, 7559, 85, 16, 13, 17, 13, 18, 15506, 32203, 4943, 198, 31, 853, 10786, 438, 37333, 844, 3256, 299, 22046, 11639, 30, 3256, 4277, 11639, 3256, 198, 220, 220, 220, 220, 1037, 2625, 15931, 32, 35488, 284, 751, 284, 262, 1438, 13, 628, 220, 220, 220, 220, 770, 318, 749, 4465, 618, 262, 1438, 11507, 318, 22532, 13, 220, 1114, 1672, 11, 611, 198, 220, 220, 220, 220, 262, 1459, 2196, 1271, 547, 352, 13, 17, 13, 18, 11, 7559, 403, 65, 2196, 7621, 1377, 37333, 844, 10779, 7959, 15506, 198, 220, 220, 220, 220, 561, 4439, 257, 7621, 3706, 7559, 16, 13, 17, 13, 18, 12, 7959, 15506, 32203, 4943, 198, 4299, 7621, 7, 20500, 11, 1438, 11, 21231, 11, 35488, 2599, 198, 220, 220, 220, 37227, 16447, 257, 17606, 7621, 13, 628, 220, 220, 220, 1002, 262, 7621, 1438, 318, 407, 1813, 11777, 11, 663, 1438, 481, 4961, 262, 10154, 286, 198, 220, 220, 220, 262, 2393, 1628, 62, 15763, 14, 43717, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 4808, 1136, 62, 9641, 3419, 198, 220, 220, 220, 4808, 12985, 7, 3672, 11, 3275, 11, 21231, 11, 35488, 8, 628, 198, 31, 9641, 13, 30238, 10786, 14689, 12, 31499, 11537, 198, 4299, 4574, 62, 31499, 33529, 198, 220, 220, 220, 37227, 49222, 290, 1061, 15940, 13, 220, 357, 63, 18300, 4574, 1377, 27780, 12, 31499, 63, 8, 37811, 198, 220, 220, 220, 4808, 14689, 62, 31499, 3419, 628, 198, 31, 9641, 13, 30238, 10786, 4868, 12, 31499, 11537, 198, 4299, 1351, 62, 31499, 33529, 198, 220, 220, 220, 37227, 8053, 17606, 15940, 526, 15931, 198, 220, 220, 220, 4808, 4868, 62, 31499, 3419, 628, 198, 31, 9641, 13, 30238, 10786, 9641, 11537, 198, 4299, 651, 62, 9641, 33529, 198, 220, 220, 220, 37227, 3855, 262, 2196, 1271, 286, 262, 1459, 1628, 526, 15931, 198, 220, 220, 220, 3601, 4808, 1136, 62, 9641, 3419, 198 ]
2.788284
973
import scrapy from scrapy.selector import Selector from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from crawlers.items import Zgka8Item from scrapy.http import TextResponse,FormRequest,Request import json
[ 11748, 15881, 88, 198, 6738, 15881, 88, 13, 19738, 273, 1330, 9683, 273, 198, 6738, 15881, 88, 13, 2815, 365, 742, 974, 669, 1330, 7502, 11627, 40450, 198, 6738, 15881, 88, 13, 2777, 4157, 1330, 327, 13132, 41294, 11, 14330, 198, 6738, 27784, 8116, 13, 23814, 1330, 1168, 70, 4914, 23, 7449, 198, 6738, 15881, 88, 13, 4023, 1330, 8255, 31077, 11, 8479, 18453, 11, 18453, 198, 11748, 33918, 198 ]
3.571429
70
""" Week 4, Day 4: Uncrossed Lines We write the integers of A and B (in the order they are given) on two separate horizontal lines. Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that: A[i] == B[j]; The line we draw does not intersect any other connecting (non-horizontal) line. Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line. Return the maximum number of connecting lines we can draw in this way. Example 1: Input: A = [1,4,2], B = [1,2,4] Output: 2 Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2. Example 2: Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2] Output: 3 Example 3: Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1] Output: 2 Notes: 1 <= A.length <= 500 1 <= B.length <= 500 1 <= A[i], B[i] <= 2000 Hint: Think dynamic programming. Given an oracle dp(i,j) that tells us how many lines A[i:], B[j:] [the sequence A[i], A[i+1], ... and B[j], B[j+1], ...] are uncrossed, can we write this as a recursion? Remark: The given solution comes from https://massivealgorithms.blogspot.com/2019/06/leetcode-1035-uncrossed-lines.html The approach is, to find the longest sequence of numbers that is common to both integer lists, by applying a two dimensional memoization (the DP matrix.) """ from typing import List if __name__ == '__main__': o = Solution() A = [1, 4, 2] B = [1, 2, 4] expected = 2 print(o.maxUncrossedLines(A, B) == expected) A = [2, 5, 1, 2, 5] B = [10, 5, 2, 1, 5, 2] expected = 3 print(o.maxUncrossedLines(A, B) == expected) A = [1, 3, 7, 1, 7, 5] B = [1, 9, 2, 5, 1] expected = 2 print(o.maxUncrossedLines(A, B) == expected) # last line of code
[ 37811, 198, 20916, 604, 11, 3596, 604, 25, 791, 19692, 276, 26299, 198, 198, 1135, 3551, 262, 37014, 286, 317, 290, 347, 357, 259, 262, 1502, 484, 389, 1813, 8, 319, 734, 4553, 16021, 3951, 13, 198, 198, 3844, 11, 356, 743, 3197, 14320, 3951, 25, 257, 3892, 1627, 14320, 734, 3146, 317, 58, 72, 60, 290, 347, 58, 73, 60, 884, 326, 25, 628, 220, 220, 220, 317, 58, 72, 60, 6624, 347, 58, 73, 11208, 198, 198, 464, 1627, 356, 3197, 857, 407, 36177, 597, 584, 14320, 357, 13159, 12, 17899, 38342, 8, 1627, 13, 5740, 326, 257, 14320, 198, 6615, 2314, 36177, 772, 379, 262, 886, 13033, 25, 1123, 1271, 460, 691, 5594, 284, 530, 14320, 1627, 13, 198, 198, 13615, 262, 5415, 1271, 286, 14320, 3951, 356, 460, 3197, 287, 428, 835, 13, 198, 198, 16281, 352, 25, 628, 220, 220, 220, 23412, 25, 317, 796, 685, 16, 11, 19, 11, 17, 4357, 347, 796, 685, 16, 11, 17, 11, 19, 60, 198, 220, 220, 220, 25235, 25, 362, 198, 220, 220, 220, 50125, 341, 25, 775, 460, 3197, 362, 4591, 1214, 276, 3951, 355, 287, 262, 16362, 13, 775, 2314, 3197, 513, 4591, 1214, 276, 3951, 11, 198, 220, 220, 220, 780, 262, 1627, 422, 317, 58, 16, 22241, 19, 284, 347, 58, 17, 22241, 19, 481, 36177, 262, 1627, 422, 317, 58, 17, 22241, 17, 284, 347, 58, 16, 22241, 17, 13, 198, 198, 16281, 362, 25, 628, 220, 220, 220, 23412, 25, 317, 796, 685, 17, 11, 20, 11, 16, 11, 17, 11, 20, 4357, 347, 796, 685, 940, 11, 20, 11, 17, 11, 16, 11, 20, 11, 17, 60, 198, 220, 220, 220, 25235, 25, 513, 198, 198, 16281, 513, 25, 628, 220, 220, 220, 23412, 25, 317, 796, 685, 16, 11, 18, 11, 22, 11, 16, 11, 22, 11, 20, 4357, 347, 796, 685, 16, 11, 24, 11, 17, 11, 20, 11, 16, 60, 198, 220, 220, 220, 25235, 25, 362, 198, 198, 16130, 25, 628, 220, 220, 220, 352, 19841, 317, 13, 13664, 19841, 5323, 198, 220, 220, 220, 352, 19841, 347, 13, 13664, 19841, 5323, 198, 220, 220, 220, 352, 19841, 317, 58, 72, 4357, 347, 58, 72, 60, 19841, 4751, 198, 198, 39, 600, 25, 628, 220, 220, 220, 11382, 8925, 8300, 13, 11259, 281, 393, 6008, 288, 79, 7, 72, 11, 73, 8, 326, 4952, 514, 703, 867, 3951, 317, 58, 72, 25, 4357, 347, 58, 73, 47715, 198, 220, 220, 220, 685, 1169, 8379, 317, 58, 72, 4357, 317, 58, 72, 10, 16, 4357, 2644, 290, 347, 58, 73, 4357, 347, 58, 73, 10, 16, 4357, 2644, 60, 389, 4591, 1214, 276, 11, 460, 356, 3551, 428, 355, 198, 220, 220, 220, 257, 664, 24197, 30, 198, 198, 8413, 668, 25, 628, 220, 220, 220, 383, 1813, 4610, 2058, 422, 198, 220, 220, 220, 3740, 1378, 49777, 282, 7727, 907, 13, 35217, 13, 785, 14, 23344, 14, 3312, 14, 293, 316, 8189, 12, 940, 2327, 12, 19524, 1214, 276, 12, 6615, 13, 6494, 628, 220, 220, 220, 383, 3164, 318, 11, 284, 1064, 262, 14069, 8379, 286, 3146, 326, 318, 2219, 284, 1111, 18253, 8341, 11, 198, 220, 220, 220, 416, 11524, 257, 734, 38517, 16155, 1634, 357, 1169, 27704, 17593, 2014, 198, 198, 37811, 198, 6738, 19720, 1330, 7343, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 267, 796, 28186, 3419, 628, 220, 220, 220, 317, 796, 685, 16, 11, 604, 11, 362, 60, 198, 220, 220, 220, 347, 796, 685, 16, 11, 362, 11, 604, 60, 198, 220, 220, 220, 2938, 796, 362, 198, 220, 220, 220, 3601, 7, 78, 13, 9806, 3118, 19692, 276, 43, 1127, 7, 32, 11, 347, 8, 6624, 2938, 8, 628, 220, 220, 220, 317, 796, 685, 17, 11, 642, 11, 352, 11, 362, 11, 642, 60, 198, 220, 220, 220, 347, 796, 685, 940, 11, 642, 11, 362, 11, 352, 11, 642, 11, 362, 60, 198, 220, 220, 220, 2938, 796, 513, 198, 220, 220, 220, 3601, 7, 78, 13, 9806, 3118, 19692, 276, 43, 1127, 7, 32, 11, 347, 8, 6624, 2938, 8, 628, 220, 220, 220, 317, 796, 685, 16, 11, 513, 11, 767, 11, 352, 11, 767, 11, 642, 60, 198, 220, 220, 220, 347, 796, 685, 16, 11, 860, 11, 362, 11, 642, 11, 352, 60, 198, 220, 220, 220, 2938, 796, 362, 198, 220, 220, 220, 3601, 7, 78, 13, 9806, 3118, 19692, 276, 43, 1127, 7, 32, 11, 347, 8, 6624, 2938, 8, 198, 198, 2, 938, 1627, 286, 2438, 198 ]
2.55599
768
#!/bin/python # Priority queue that allows updating priorities # Todo: don't do busy waiting... import time from heapq import * # Basic heap implementation import Queue # Need to pull in exceptions from tools import * # For RWLock class DPQueue(object): """Thread-safe Priority queue that can update priorities""" if __name__ == "__main__": # Test... print "Creating..." dpq = DPQueue(maxsize = 5, prio = lambda e: e) print "Empty:", dpq.empty() print "Putting..." dpq.put(1) print "Empty:", dpq.empty() dpq.put(5) dpq.put(3) dpq.put(2) print "Full:", dpq.full() dpq.put(4) print "Full:", dpq.full() print "Reprioritize..." dpq.prio = lambda e: -e dpq.reprioritize() print "Getting..." e = dpq.get() print "Got:", e dpq.task_done() print "Full:", dpq.full() e = dpq.get() print "Got:", e dpq.task_done() e = dpq.get() print "Got:", e dpq.task_done() e = dpq.get() print "Got:", e dpq.task_done() print "Empty:", dpq.empty() e = dpq.get() print "Got:", e dpq.task_done() print "Empty:", dpq.empty() print "Join..." dpq.join()
[ 2, 48443, 8800, 14, 29412, 198, 198, 2, 34416, 16834, 326, 3578, 19698, 15369, 198, 198, 2, 309, 24313, 25, 836, 470, 466, 8179, 4953, 986, 628, 198, 11748, 640, 198, 6738, 24575, 80, 1330, 1635, 1303, 14392, 24575, 7822, 198, 11748, 4670, 518, 1303, 10664, 284, 2834, 287, 13269, 198, 6738, 4899, 1330, 1635, 1303, 1114, 33212, 25392, 628, 198, 4871, 27704, 34991, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16818, 12, 21230, 34416, 16834, 326, 460, 4296, 15369, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 198, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 6208, 986, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 32071, 9313, 198, 220, 220, 220, 288, 79, 80, 796, 27704, 34991, 7, 9806, 7857, 796, 642, 11, 1293, 78, 796, 37456, 304, 25, 304, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 40613, 25, 1600, 288, 79, 80, 13, 28920, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 46399, 9313, 198, 220, 220, 220, 288, 79, 80, 13, 1996, 7, 16, 8, 198, 220, 220, 220, 3601, 366, 40613, 25, 1600, 288, 79, 80, 13, 28920, 3419, 198, 220, 220, 220, 288, 79, 80, 13, 1996, 7, 20, 8, 198, 220, 220, 220, 288, 79, 80, 13, 1996, 7, 18, 8, 198, 220, 220, 220, 288, 79, 80, 13, 1996, 7, 17, 8, 198, 220, 220, 220, 3601, 366, 13295, 25, 1600, 288, 79, 80, 13, 12853, 3419, 198, 220, 220, 220, 288, 79, 80, 13, 1996, 7, 19, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 13295, 25, 1600, 288, 79, 80, 13, 12853, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 6207, 7701, 270, 1096, 9313, 198, 220, 220, 220, 288, 79, 80, 13, 3448, 78, 796, 37456, 304, 25, 532, 68, 198, 220, 220, 220, 288, 79, 80, 13, 260, 3448, 273, 270, 1096, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 20570, 9313, 198, 220, 220, 220, 220, 198, 220, 220, 220, 304, 796, 288, 79, 80, 13, 1136, 3419, 198, 220, 220, 220, 3601, 366, 30074, 25, 1600, 304, 220, 220, 220, 198, 220, 220, 220, 288, 79, 80, 13, 35943, 62, 28060, 3419, 198, 220, 220, 220, 3601, 366, 13295, 25, 1600, 288, 79, 80, 13, 12853, 3419, 198, 220, 220, 220, 304, 796, 288, 79, 80, 13, 1136, 3419, 198, 220, 220, 220, 3601, 366, 30074, 25, 1600, 304, 220, 220, 220, 220, 198, 220, 220, 220, 288, 79, 80, 13, 35943, 62, 28060, 3419, 198, 220, 220, 220, 304, 796, 288, 79, 80, 13, 1136, 3419, 198, 220, 220, 220, 3601, 366, 30074, 25, 1600, 304, 198, 220, 220, 220, 288, 79, 80, 13, 35943, 62, 28060, 3419, 198, 220, 220, 220, 304, 796, 288, 79, 80, 13, 1136, 3419, 198, 220, 220, 220, 3601, 366, 30074, 25, 1600, 304, 198, 220, 220, 220, 288, 79, 80, 13, 35943, 62, 28060, 3419, 198, 220, 220, 220, 3601, 366, 40613, 25, 1600, 288, 79, 80, 13, 28920, 3419, 198, 220, 220, 220, 304, 796, 288, 79, 80, 13, 1136, 3419, 198, 220, 220, 220, 3601, 366, 30074, 25, 1600, 304, 198, 220, 220, 220, 288, 79, 80, 13, 35943, 62, 28060, 3419, 198, 220, 220, 220, 3601, 366, 40613, 25, 1600, 288, 79, 80, 13, 28920, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 366, 18234, 9313, 198, 220, 220, 220, 288, 79, 80, 13, 22179, 3419, 198 ]
1.959641
669
import requests from bs4 import BeautifulSoup as BS params = {"p1":"108001","p2":"108136","l":"0","type":"5"} res = requests.post("http://www.9800.com.tw/trend.asp",data = params) lottery_page = BS(res.text,"html.parser") lottery_info = lottery_page.select("tbody")[4].select("td") data = [] for i in range(len(lottery_info)): if lottery_info[i].text.replace("-","").isdigit(): data.append(lottery_info[i].text) lottery_infos = [] count = 1 for i in range(0,len(data),7): lottery_infos.append( {"id":count,"period":int(data[i]),"period_date":data[i+1], "num1":data[i+2],"num2":data[i+3],"num3":data[i+4],"num4":data[i+5],"num5":data[i+6] }) count +=1 # I just suffered from an issue. # When I was spiding the lottery web,the fetched text was not correct. # Then,about two hours later,I finally found the solution. # It's the lxml problem.You need use html.parser to decoding the page.
[ 11748, 7007, 201, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 355, 24218, 201, 198, 201, 198, 37266, 796, 19779, 79, 16, 2404, 940, 7410, 16, 2430, 79, 17, 2404, 15711, 20809, 2430, 75, 2404, 15, 2430, 4906, 2404, 20, 20662, 201, 198, 411, 796, 7007, 13, 7353, 7203, 4023, 1378, 2503, 13, 4089, 405, 13, 785, 13, 4246, 14, 83, 10920, 13, 5126, 1600, 7890, 796, 42287, 8, 201, 198, 26487, 11471, 62, 7700, 796, 24218, 7, 411, 13, 5239, 553, 6494, 13, 48610, 4943, 201, 198, 26487, 11471, 62, 10951, 796, 22098, 62, 7700, 13, 19738, 7203, 83, 2618, 4943, 58, 19, 4083, 19738, 7203, 8671, 4943, 201, 198, 201, 198, 7890, 796, 17635, 201, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 26487, 11471, 62, 10951, 8, 2599, 201, 198, 220, 220, 220, 611, 22098, 62, 10951, 58, 72, 4083, 5239, 13, 33491, 7203, 12, 2430, 11074, 9409, 328, 270, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 26487, 11471, 62, 10951, 58, 72, 4083, 5239, 8, 201, 198, 201, 198, 26487, 11471, 62, 10745, 418, 796, 17635, 201, 198, 9127, 796, 352, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 1640, 1312, 287, 2837, 7, 15, 11, 11925, 7, 7890, 828, 22, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 22098, 62, 10745, 418, 13, 33295, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 312, 1298, 9127, 553, 41007, 1298, 600, 7, 7890, 58, 72, 12962, 553, 41007, 62, 4475, 1298, 7890, 58, 72, 10, 16, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 16, 1298, 7890, 58, 72, 10, 17, 17241, 22510, 17, 1298, 7890, 58, 72, 10, 18, 17241, 22510, 18, 1298, 7890, 58, 72, 10, 19, 17241, 22510, 19, 1298, 7890, 58, 72, 10, 20, 17241, 22510, 20, 1298, 7890, 58, 72, 10, 21, 60, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 201, 198, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 16, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 314, 655, 6989, 422, 281, 2071, 13, 201, 198, 2, 1649, 314, 373, 599, 2530, 262, 22098, 3992, 11, 1169, 11351, 1740, 2420, 373, 407, 3376, 13, 201, 198, 2, 3244, 11, 10755, 734, 2250, 1568, 11, 40, 3443, 1043, 262, 4610, 13, 201, 198, 2, 632, 338, 262, 300, 19875, 1917, 13, 1639, 761, 779, 27711, 13, 48610, 284, 39938, 262, 2443, 13 ]
2.268623
443