content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
for _ in range(int(input())): n=int(input()) l=list(map(int,input().split())) if len(set(l))<n: print("YES") else: print("NO")
[ 1640, 4808, 287, 2837, 7, 600, 7, 15414, 28955, 2599, 198, 220, 220, 220, 299, 28, 600, 7, 15414, 28955, 198, 220, 220, 220, 300, 28, 4868, 7, 8899, 7, 600, 11, 15414, 22446, 35312, 3419, 4008, 198, 220, 220, 220, 611, 18896, 7, 2617, 7, 75, 4008, 27, 77, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 43335, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15285, 4943 ]
1.950617
81
import cv2 import numpy as np import os import argparse import configparser from webcam_video_stream import WebcamVideoStream from auto_pose.ae.utils import get_dataset_path from aae_retina_pose_estimator import AePoseEstimator if __name__ == '__main__': main()
[ 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 4566, 48610, 198, 198, 6738, 49823, 62, 15588, 62, 5532, 1330, 5313, 20991, 10798, 12124, 198, 6738, 8295, 62, 3455, 13, 3609, 13, 26791, 1330, 651, 62, 19608, 292, 316, 62, 6978, 198, 6738, 257, 3609, 62, 1186, 1437, 62, 3455, 62, 395, 320, 1352, 1330, 37532, 47, 577, 22362, 320, 1352, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.977778
90
import unittest import networkx as nx from cdlib import algorithms from cdlib import NodeClustering from cdlib import evaluation
[ 11748, 555, 715, 395, 198, 11748, 3127, 87, 355, 299, 87, 198, 6738, 22927, 8019, 1330, 16113, 198, 6738, 22927, 8019, 1330, 19081, 2601, 436, 1586, 198, 6738, 22927, 8019, 1330, 12660, 628 ]
3.939394
33
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Compute results with Sherpa""" from __future__ import print_function, division # __doctest_skip__ __doctest_skip__ = ['*'] import numpy as np import sherpa.astro.ui as sau sau.load_data('counts.fits.gz') sau.set_source('normgauss2d.source + const2d.background') sau.set_stat('cstat') # Ask for high-precision results sau.set_method_opt('ftol', 1e-20) sau.set_covar_opt('eps', 1e-20) # Set start parameters close to simulation values to make the fit converge sau.set_par('source.xpos', 101) sau.set_par('source.ypos', 101) sau.set_par('source.ampl', 1.1e3) sau.set_par('source.fwhm', 10) sau.set_par('background.c0', 1.1) # Run fit and covariance estimation # Results are automatically printed to the screen sau.fit() sau.covar() # Sherpa uses fwhm instead of sigma as extension parameter ... need to convert # http://cxc.harvard.edu/sherpa/ahelp/gauss2d.html fwhm_to_sigma = 1. / np.sqrt(8 * np.log(2)) cov = sau.get_covar_results() sigma = fwhm_to_sigma * cov.parvals[0] sigma_err = fwhm_to_sigma * cov.parmaxes[0] print('sigma: {0} +- {1}'.format(sigma, sigma_err)) # Compute correlation coefficient for sigma and norm c = cov.extra_output c_norm = c[3, 3] c_sigma = fwhm_to_sigma ** 2 * c[0, 0] c_norm_sigma = fwhm_to_sigma * c[0, 3] corr_norm_sigma = c_norm_sigma / np.sqrt(c_norm * c_sigma) print('corr_norm_sigma: {0}'.format(corr_norm_sigma)) # Save model excess image sau.save_model('model_sherpa.fits.gz', clobber=True) # Compute TS L1 = sau.calc_stat() sau.set_source('const2d.background') sau.fit() L0 = sau.calc_stat() TS = 2 * (L0 - L1) print('TS: {:.5f}'.format(TS))
[ 2, 49962, 739, 257, 513, 12, 565, 682, 347, 10305, 3918, 5964, 532, 766, 38559, 24290, 13, 81, 301, 198, 37811, 7293, 1133, 2482, 351, 6528, 8957, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 198, 2, 11593, 4598, 310, 395, 62, 48267, 834, 198, 834, 4598, 310, 395, 62, 48267, 834, 796, 37250, 9, 20520, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 15059, 8957, 13, 459, 305, 13, 9019, 355, 473, 84, 198, 198, 82, 559, 13, 2220, 62, 7890, 10786, 9127, 82, 13, 21013, 13, 34586, 11537, 198, 82, 559, 13, 2617, 62, 10459, 10786, 27237, 4908, 1046, 17, 67, 13, 10459, 1343, 1500, 17, 67, 13, 25249, 11537, 198, 82, 559, 13, 2617, 62, 14269, 10786, 66, 14269, 11537, 198, 2, 16981, 329, 1029, 12, 3866, 16005, 2482, 198, 82, 559, 13, 2617, 62, 24396, 62, 8738, 10786, 701, 349, 3256, 352, 68, 12, 1238, 8, 198, 82, 559, 13, 2617, 62, 66, 709, 283, 62, 8738, 10786, 25386, 3256, 352, 68, 12, 1238, 8, 198, 198, 2, 5345, 923, 10007, 1969, 284, 18640, 3815, 284, 787, 262, 4197, 47873, 198, 82, 559, 13, 2617, 62, 1845, 10786, 10459, 13, 87, 1930, 3256, 8949, 8, 198, 82, 559, 13, 2617, 62, 1845, 10786, 10459, 13, 88, 1930, 3256, 8949, 8, 198, 82, 559, 13, 2617, 62, 1845, 10786, 10459, 13, 321, 489, 3256, 352, 13, 16, 68, 18, 8, 198, 82, 559, 13, 2617, 62, 1845, 10786, 10459, 13, 69, 1929, 76, 3256, 838, 8, 198, 82, 559, 13, 2617, 62, 1845, 10786, 25249, 13, 66, 15, 3256, 352, 13, 16, 8, 198, 198, 2, 5660, 4197, 290, 44829, 590, 31850, 198, 2, 15691, 389, 6338, 10398, 284, 262, 3159, 198, 82, 559, 13, 11147, 3419, 198, 82, 559, 13, 66, 709, 283, 3419, 198, 198, 2, 6528, 8957, 3544, 277, 1929, 76, 2427, 286, 264, 13495, 355, 7552, 11507, 2644, 761, 284, 10385, 198, 2, 2638, 1378, 66, 25306, 13, 9869, 10187, 13, 15532, 14, 82, 372, 8957, 14, 64, 16794, 14, 4908, 1046, 17, 67, 13, 6494, 198, 69, 1929, 76, 62, 1462, 62, 82, 13495, 796, 352, 13, 1220, 45941, 13, 31166, 17034, 7, 23, 1635, 45941, 13, 6404, 7, 17, 4008, 198, 66, 709, 796, 473, 84, 13, 1136, 62, 66, 709, 283, 62, 43420, 3419, 198, 82, 13495, 796, 277, 1929, 76, 62, 1462, 62, 82, 13495, 1635, 39849, 13, 1845, 12786, 58, 15, 60, 198, 82, 13495, 62, 8056, 796, 277, 1929, 76, 62, 1462, 62, 82, 13495, 1635, 39849, 13, 79, 1670, 897, 274, 58, 15, 60, 198, 4798, 10786, 82, 13495, 25, 1391, 15, 92, 1343, 12, 1391, 16, 92, 4458, 18982, 7, 82, 13495, 11, 264, 13495, 62, 8056, 4008, 198, 198, 2, 3082, 1133, 16096, 35381, 329, 264, 13495, 290, 2593, 198, 66, 796, 39849, 13, 26086, 62, 22915, 198, 66, 62, 27237, 796, 269, 58, 18, 11, 513, 60, 198, 66, 62, 82, 13495, 796, 277, 1929, 76, 62, 1462, 62, 82, 13495, 12429, 362, 1635, 269, 58, 15, 11, 657, 60, 198, 66, 62, 27237, 62, 82, 13495, 796, 277, 1929, 76, 62, 1462, 62, 82, 13495, 1635, 269, 58, 15, 11, 513, 60, 198, 10215, 81, 62, 27237, 62, 82, 13495, 796, 269, 62, 27237, 62, 82, 13495, 1220, 45941, 13, 31166, 17034, 7, 66, 62, 27237, 1635, 269, 62, 82, 13495, 8, 198, 4798, 10786, 10215, 81, 62, 27237, 62, 82, 13495, 25, 1391, 15, 92, 4458, 18982, 7, 10215, 81, 62, 27237, 62, 82, 13495, 4008, 198, 198, 2, 12793, 2746, 6992, 2939, 198, 82, 559, 13, 21928, 62, 19849, 10786, 19849, 62, 82, 372, 8957, 13, 21013, 13, 34586, 3256, 537, 672, 527, 28, 17821, 8, 198, 198, 2, 3082, 1133, 26136, 198, 43, 16, 796, 473, 84, 13, 9948, 66, 62, 14269, 3419, 198, 82, 559, 13, 2617, 62, 10459, 10786, 9979, 17, 67, 13, 25249, 11537, 198, 82, 559, 13, 11147, 3419, 198, 43, 15, 796, 473, 84, 13, 9948, 66, 62, 14269, 3419, 198, 4694, 796, 362, 1635, 357, 43, 15, 532, 406, 16, 8, 198, 4798, 10786, 4694, 25, 46110, 13, 20, 69, 92, 4458, 18982, 7, 4694, 4008, 628 ]
2.372493
698
import os import re import sys import time import errno import signal import select from botnet import Command # Helpers # Instance # Commands
[ 11748, 28686, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 11454, 3919, 198, 11748, 6737, 198, 11748, 2922, 198, 198, 6738, 10214, 3262, 1330, 9455, 628, 198, 2, 10478, 364, 628, 628, 198, 198, 2, 2262, 590, 628, 198, 198, 2, 49505, 628, 628, 628, 628 ]
3.285714
49
from sqlalchemy import * from migrate import * from migrate.changeset import schema pre_meta = MetaData() post_meta = MetaData() exifstats = Table('exifstats', pre_meta, Column('id', INTEGER, primary_key=True, nullable=False), Column('post_id', INTEGER), Column('date_time', TIMESTAMP), Column('exposure_program', VARCHAR(length=80)), Column('fNumber', VARCHAR(length=16)), Column('focal_length', VARCHAR(length=80)), Column('focal_length_in_35mm', VARCHAR(length=80)), Column('lens_model', VARCHAR(length=80)), Column('model', VARCHAR(length=80)), Column('name', VARCHAR(length=80)), Column('orientation', VARCHAR(length=80)), Column('photographic_sensitivity', VARCHAR(length=80)), Column('pixel_x_dimension', VARCHAR(length=80)), Column('pixel_y_dimension', VARCHAR(length=80)), Column('sharpness', VARCHAR(length=80)), Column('shutterspeed_value', VARCHAR(length=80)), ) exifstats = Table('exifstats', post_meta, Column('id', Integer, primary_key=True, nullable=False), Column('post_id', Integer), Column('Make', String(length=80)), Column('Model', String(length=80)), Column('DateTime', DateTime), Column('ShutterSpeedValue', String(length=80)), Column('FNumber', String(length=16)), Column('ExposureProgram', String(length=80)), Column('PhotographicSensitivity', String(length=80)), Column('FocalLength', String(length=80)), Column('FocalLengthIn35mmFilm', String(length=80)), Column('LensModel', String(length=80)), Column('Sharpness', String(length=80)), Column('PixelXDimension', String(length=80)), Column('PixelYDimension', String(length=80)), Column('Orientation', String(length=80)), )
[ 6738, 44161, 282, 26599, 1330, 1635, 198, 6738, 32492, 1330, 1635, 628, 198, 6738, 32492, 13, 36653, 316, 1330, 32815, 198, 3866, 62, 28961, 796, 30277, 6601, 3419, 198, 7353, 62, 28961, 796, 30277, 6601, 3419, 198, 1069, 361, 34242, 796, 8655, 10786, 1069, 361, 34242, 3256, 662, 62, 28961, 11, 198, 220, 220, 220, 29201, 10786, 312, 3256, 17828, 7156, 1137, 11, 4165, 62, 2539, 28, 17821, 11, 9242, 540, 28, 25101, 828, 198, 220, 220, 220, 29201, 10786, 7353, 62, 312, 3256, 17828, 7156, 1137, 828, 198, 220, 220, 220, 29201, 10786, 4475, 62, 2435, 3256, 31742, 6465, 23518, 828, 198, 220, 220, 220, 29201, 10786, 1069, 26205, 62, 23065, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 69, 15057, 3256, 569, 31315, 1503, 7, 13664, 28, 1433, 36911, 198, 220, 220, 220, 29201, 10786, 69, 4374, 62, 13664, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 69, 4374, 62, 13664, 62, 259, 62, 2327, 3020, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 75, 641, 62, 19849, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 19849, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 3672, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 13989, 341, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 38611, 6826, 62, 82, 40545, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 32515, 62, 87, 62, 46156, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 32515, 62, 88, 62, 46156, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 48554, 1108, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 1477, 46973, 39492, 62, 8367, 3256, 569, 31315, 1503, 7, 13664, 28, 1795, 36911, 198, 8, 198, 198, 1069, 361, 34242, 796, 8655, 10786, 1069, 361, 34242, 3256, 1281, 62, 28961, 11, 198, 220, 220, 220, 29201, 10786, 312, 3256, 34142, 11, 4165, 62, 2539, 28, 17821, 11, 9242, 540, 28, 25101, 828, 198, 220, 220, 220, 29201, 10786, 7353, 62, 312, 3256, 34142, 828, 198, 220, 220, 220, 29201, 10786, 12050, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 17633, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 10430, 7575, 3256, 7536, 7575, 828, 198, 220, 220, 220, 29201, 10786, 2484, 10381, 22785, 11395, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 37, 15057, 3256, 10903, 7, 13664, 28, 1433, 36911, 198, 220, 220, 220, 29201, 10786, 3109, 26205, 15167, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 27248, 6826, 50, 40545, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 37, 4374, 24539, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 37, 4374, 24539, 818, 2327, 3020, 39750, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 49479, 17633, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 44336, 1108, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 40809, 55, 29271, 3004, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 40809, 56, 29271, 3004, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 220, 220, 220, 29201, 10786, 46, 8289, 341, 3256, 10903, 7, 13664, 28, 1795, 36911, 198, 8, 628, 198 ]
2.784566
622
# this list will store the test scores we will read from the file scores = [] # Ask the user for a file name file_name = input('Please enter the file name: ') # open the file for reading with open(file_name, 'r') as score_file: for line in score_file: # Convert the test score in the current line to a number score = int(line.strip()) # Add the test score to the list scores.append(score) # file closed # Sort the list using the built in python function sort scores.sort() # Get the len of list scores len_list_scores = len(scores) # if the list length is odd if len_list_scores % 2 == 1: # median gets assigned the middle value of that sequence middle_position = len_list_scores // 2 median_value =scores[middle_position] # list length is even else: # val1 gets the value at index list length divided by 2 val1 = scores[len_list_scores // 2] # val2 gets the value at index list_length divided by 2 – 1 (see hint 3) val2 = scores[len_list_scores // 2 - 1] # median gets assigned the average of val1 and val2 (i.e., val1 + val2 / 2) median_value = (val1 + val2) / 2 # print the median value to console print(median_value)
[ 2, 428, 1351, 481, 3650, 262, 1332, 8198, 356, 481, 1100, 422, 262, 2393, 198, 1416, 2850, 796, 17635, 198, 198, 2, 16981, 262, 2836, 329, 257, 2393, 1438, 220, 198, 7753, 62, 3672, 796, 5128, 10786, 5492, 3802, 262, 2393, 1438, 25, 705, 8, 198, 198, 2, 1280, 262, 2393, 329, 3555, 198, 4480, 1280, 7, 7753, 62, 3672, 11, 705, 81, 11537, 355, 4776, 62, 7753, 25, 198, 220, 220, 220, 329, 1627, 287, 4776, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 262, 1332, 4776, 287, 262, 1459, 1627, 284, 257, 1271, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4776, 796, 493, 7, 1370, 13, 36311, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 1332, 4776, 284, 262, 1351, 220, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 13, 33295, 7, 26675, 8, 198, 2, 220, 2393, 4838, 198, 198, 2, 33947, 262, 1351, 1262, 262, 3170, 287, 21015, 2163, 3297, 220, 198, 1416, 2850, 13, 30619, 3419, 198, 198, 2, 3497, 262, 18896, 286, 1351, 8198, 198, 11925, 62, 4868, 62, 1416, 2850, 796, 18896, 7, 1416, 2850, 8, 198, 2, 611, 262, 1351, 4129, 318, 5629, 220, 198, 361, 18896, 62, 4868, 62, 1416, 2850, 4064, 362, 6624, 352, 25, 198, 220, 220, 220, 1303, 14288, 3011, 8686, 262, 3504, 1988, 286, 326, 8379, 220, 198, 220, 220, 220, 3504, 62, 9150, 796, 18896, 62, 4868, 62, 1416, 2850, 3373, 362, 198, 220, 220, 220, 14288, 62, 8367, 796, 1416, 2850, 58, 27171, 62, 9150, 60, 198, 198, 2, 1351, 4129, 318, 772, 198, 17772, 25, 198, 220, 220, 220, 1303, 1188, 16, 3011, 262, 1988, 379, 6376, 1351, 4129, 9086, 416, 362, 220, 198, 220, 220, 220, 1188, 16, 796, 8198, 58, 11925, 62, 4868, 62, 1416, 2850, 3373, 362, 60, 198, 220, 220, 220, 1303, 1188, 17, 3011, 262, 1988, 379, 6376, 1351, 62, 13664, 9086, 416, 362, 784, 352, 357, 3826, 9254, 513, 8, 198, 220, 220, 220, 1188, 17, 796, 8198, 58, 11925, 62, 4868, 62, 1416, 2850, 3373, 362, 532, 352, 60, 198, 220, 220, 220, 1303, 14288, 3011, 8686, 262, 2811, 286, 1188, 16, 290, 1188, 17, 357, 72, 13, 68, 1539, 1188, 16, 1343, 1188, 17, 1220, 362, 8, 198, 220, 220, 220, 14288, 62, 8367, 796, 357, 2100, 16, 1343, 1188, 17, 8, 1220, 362, 198, 198, 2, 3601, 262, 14288, 1988, 284, 8624, 198, 4798, 7, 1150, 666, 62, 8367, 8 ]
2.892086
417
# "Hello World!" matnini yangi o'zgaruvchiga yuklang va print() yordamida konsolga chiqaring a = "Hello World!" print(a) # xabar deb nomlangan o'zgaruvchiga biror matn yuklang va konsolga chiqaring, # keyin esa o'zgaruvchiga yangi qiymat berib uni ham konsolga chiqaring. xabar = "Shuningdek o'zgaruvchilarga Pythonda ishlatiladigan funktsiyalar va maxsus kalit so'zlarning (keywords) nomini bermang. Kalit so'zlar ro'yhatini ko'rish uchun Spyder konsolida avval help() deb yozing va Enter tugmasini bosing. Keyin esa keywords deb kiritib, yana Enter bosing. Marhamat, ekraningizda Pythondagi maxsus kalit so'zlar ro'yhatini ko'ryapsiz:" print(xabar) xabar = "Qalesan Shukurali" print(xabar) # class den nomlangan o'zgaruvchi yarating, unga biror qiymat bering va konsolga chiqaring (siz kutgan natija chiqdimi?) # u bunaqangi 'class' nomli uzgaruchi yaratib bulmaydi chunki u keyword so'z # Quyidagi kodni bajaring: radius = 5 pi = 3.14159 aylana_yuzi = pi * radius**2 print("Radiusi" , radius, "ga teng aylananing yuzi=", aylana_yuzi)
[ 2, 366, 15496, 2159, 2474, 2603, 77, 5362, 331, 648, 72, 267, 6, 89, 4563, 14795, 354, 13827, 331, 2724, 17204, 46935, 3601, 3419, 331, 585, 321, 3755, 479, 684, 349, 4908, 442, 25011, 1723, 198, 64, 796, 366, 15496, 2159, 2474, 198, 4798, 7, 64, 8, 198, 198, 2, 2124, 397, 283, 1915, 4515, 17204, 272, 267, 6, 89, 4563, 14795, 354, 13827, 35122, 273, 2603, 77, 331, 2724, 17204, 46935, 479, 684, 349, 4908, 442, 25011, 1723, 11, 198, 2, 220, 1994, 259, 1658, 64, 267, 6, 89, 4563, 14795, 354, 13827, 331, 648, 72, 10662, 72, 4948, 265, 18157, 571, 555, 72, 8891, 479, 684, 349, 4908, 442, 25011, 1723, 13, 198, 87, 397, 283, 796, 366, 2484, 46493, 67, 988, 267, 6, 89, 4563, 14795, 354, 346, 853, 64, 48657, 13533, 318, 71, 15460, 346, 324, 5516, 46212, 912, 7745, 282, 283, 46935, 3509, 82, 385, 479, 282, 270, 523, 6, 48274, 4228, 357, 2539, 10879, 8, 4515, 5362, 275, 7780, 648, 13, 12612, 270, 523, 6, 89, 21681, 686, 6, 88, 5183, 5362, 41727, 6, 37518, 334, 354, 403, 23688, 1082, 479, 684, 349, 3755, 1196, 2100, 1037, 3419, 1915, 331, 8590, 278, 46935, 6062, 27762, 5356, 5362, 275, 2752, 13, 7383, 259, 1658, 64, 26286, 1915, 479, 3276, 571, 11, 331, 2271, 6062, 275, 2752, 13, 1526, 2763, 265, 11, 304, 74, 2596, 278, 528, 6814, 48657, 623, 18013, 3509, 82, 385, 479, 282, 270, 523, 6, 89, 21681, 686, 6, 88, 5183, 5362, 41727, 6, 563, 1686, 528, 11097, 198, 4798, 7, 87, 397, 283, 8, 198, 87, 397, 283, 796, 366, 48, 2040, 272, 911, 2724, 1523, 72, 1, 198, 4798, 7, 87, 397, 283, 8, 198, 198, 2, 1398, 2853, 4515, 17204, 272, 267, 6, 89, 4563, 14795, 11072, 331, 283, 803, 11, 555, 4908, 35122, 273, 10662, 72, 4948, 265, 275, 1586, 46935, 479, 684, 349, 4908, 442, 25011, 1723, 357, 82, 528, 479, 315, 1030, 34664, 34655, 442, 25011, 67, 25236, 10091, 198, 2, 334, 275, 9613, 80, 648, 72, 705, 4871, 6, 4515, 4528, 334, 89, 4563, 22200, 331, 34174, 571, 4807, 11261, 10989, 16058, 72, 334, 21179, 523, 6, 89, 198, 198, 2, 2264, 88, 312, 18013, 479, 375, 8461, 275, 1228, 1723, 25, 198, 42172, 796, 642, 198, 14415, 796, 513, 13, 1415, 19707, 198, 323, 75, 2271, 62, 88, 10277, 72, 796, 31028, 1635, 16874, 1174, 17, 198, 4798, 7203, 15546, 3754, 72, 1, 837, 16874, 11, 366, 4908, 256, 1516, 257, 18554, 7574, 331, 10277, 72, 28, 1600, 257, 2645, 2271, 62, 88, 10277, 72, 8 ]
2.407407
432
# -*- coding: utf-8 -*- if __name__ == '__main__': main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
1.775
40
# -*- coding: utf-8 -*- """ classes that implement the blocks for MDF version 4 Edit history Author : yda Date : 2020-11-12 Package name changed - asammdf to mdfstudio Functions --------- * Channel.metadata - Get rid of b" text when decoding byte type data * Channel.__init__ - Set sampling rate from kwargs * ChannelGroup.metadata - Get rid of b" text when decoding byte type data * ChannelConversion.metadata - Get rid of b" text when decoding byte type data * SourceInformation.metadata - Get rid of b" text when decoding byte type data """ from datetime import datetime, timezone from hashlib import md5 import logging from pathlib import Path from struct import pack, unpack, unpack_from from textwrap import wrap import time from traceback import format_exc import xml.etree.ElementTree as ET from zlib import compress, decompress from numexpr import evaluate import numpy as np from . import v4_constants as v4c from ..version import __version__ from .utils import ( block_fields, extract_display_name, FLOAT64_u, get_text_v4, is_file_like, MdfException, sanitize_xml, UINT8_uf, UINT64_u, UINT64_uf, ) SEEK_START = v4c.SEEK_START SEEK_END = v4c.SEEK_END COMMON_SIZE = v4c.COMMON_SIZE COMMON_u = v4c.COMMON_u COMMON_uf = v4c.COMMON_uf CN_BLOCK_SIZE = v4c.CN_BLOCK_SIZE SIMPLE_CHANNEL_PARAMS_uf = v4c.SIMPLE_CHANNEL_PARAMS_uf logger = logging.getLogger("mdfstudio") __all__ = [ "AttachmentBlock", "Channel", "ChannelArrayBlock", "ChannelGroup", "ChannelConversion", "DataBlock", "DataZippedBlock", "EventBlock", "FileIdentificationBlock", "HeaderBlock", "HeaderList", "DataList", "DataGroup", "FileHistory", "SourceInformation", "TextBlock", ] class AttachmentBlock: """When adding new attachments only embedded attachments are allowed, with keyword argument *data* of type bytes *AttachmentBlock* has the following attributes, that are also available as dict like key-value pairs ATBLOCK fields * ``id`` - bytes : block ID; always b'##AT' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_at_addr`` - int : next ATBLOCK address * ``file_name_addr`` - int : address of TXBLOCK that contains the attachment file name * ``mime_addr`` - int : address of TXBLOCK that contains the attachment mime type description * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the attachment comment * ``flags`` - int : ATBLOCK flags * ``creator_index`` - int : index of file history block * ``reserved1`` - int : reserved bytes * ``md5_sum`` - bytes : attachment file md5 sum * ``original_size`` - int : original uncompress file size in bytes * ``embedded_size`` - int : embedded compressed file size in bytes * ``embedded_data`` - bytes : embedded atatchment bytes Other attributes * ``address`` - int : attachment address * ``file_name`` - str : attachment file name * ``mime`` - str : mime type * ``comment`` - str : attachment comment Parameters ---------- address : int block address; to be used for objects created from file stream : handle file handle; to be used for objects created from file for dynamically created objects : see the key-value pairs """ __slots__ = ( "address", "file_name", "mime", "comment", "id", "reserved0", "block_len", "links_nr", "next_at_addr", "file_name_addr", "mime_addr", "comment_addr", "flags", "creator_index", "reserved1", "md5_sum", "original_size", "embedded_size", "embedded_data", ) def extract(self): """extract attachment data Returns ------- data : bytes """ if self.flags & v4c.FLAG_AT_EMBEDDED: if self.flags & v4c.FLAG_AT_COMPRESSED_EMBEDDED: data = decompress(self.embedded_data) else: data = self.embedded_data if self.flags & v4c.FLAG_AT_MD5_VALID: md5_worker = md5() md5_worker.update(data) md5_sum = md5_worker.digest() if self.md5_sum == md5_sum: return data else: message = f"ATBLOCK md5sum={self.md5_sum} and embedded data md5sum={md5_sum}" logger.warning(message) else: return data else: logger.warning("external attachments not supported") class Channel: """ If the `load_metadata` keyword argument is not provided or is False, then the conversion, source and display name information is not processed. Further more if the `parse_xml_comment` is not provided or is False, then the display name information from the channel comment is not processed (this is done to avoid expensive XML operations) *Channel* has the following attributes, that are also available as dict like key-value pairs CNBLOCK fields * ``id`` - bytes : block ID; always b'##CN' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_ch_addr`` - int : next ATBLOCK address * ``component_addr`` - int : address of first channel in case of structure channel composition, or ChannelArrayBlock in case of arrays file name * ``name_addr`` - int : address of TXBLOCK that contains the channel name * ``source_addr`` - int : address of channel source block * ``conversion_addr`` - int : address of channel conversion block * ``data_block_addr`` - int : address of signal data block for VLSD channels * ``unit_addr`` - int : address of TXBLOCK that contains the channel unit * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the channel comment * ``attachment_<N>_addr`` - int : address of N-th ATBLOCK referenced by the current channel; if no ATBLOCK is referenced there will be no such key-value pair * ``default_X_dg_addr`` - int : address of DGBLOCK where the default X axis channel for the current channel is found; this key-value pair will not exist for channels that don't have a default X axis * ``default_X_cg_addr`` - int : address of CGBLOCK where the default X axis channel for the current channel is found; this key-value pair will not exist for channels that don't have a default X axis * ``default_X_ch_addr`` - int : address of default X axis channel for the current channel; this key-value pair will not exist for channels that don't have a default X axis * ``channel_type`` - int : integer code for the channel type * ``sync_type`` - int : integer code for the channel's sync type * ``data_type`` - int : integer code for the channel's data type * ``bit_offset`` - int : bit offset * ``byte_offset`` - int : byte offset within the data record * ``bit_count`` - int : channel bit count * ``flags`` - int : CNBLOCK flags * ``pos_invalidation_bit`` - int : invalidation bit position for the current channel if there are invalidation bytes in the data record * ``precision`` - int : integer code for teh precision * ``reserved1`` - int : reserved bytes * ``min_raw_value`` - int : min raw value of all samples * ``max_raw_value`` - int : max raw value of all samples * ``lower_limit`` - int : min physical value of all samples * ``upper_limit`` - int : max physical value of all samples * ``lower_ext_limit`` - int : min physical value of all samples * ``upper_ext_limit`` - int : max physical value of all samples Other attributes * ``address`` - int : channel address * ``attachments`` - list : list of referenced attachment blocks indexes; the index referece to the attachment block index * ``comment`` - str : channel comment * ``conversion`` - ChannelConversion : channel conversion; *None* if the channel has no conversion * ``display_name`` - str : channel display name; this is extracted from the XML channel comment * ``name`` - str : channel name * ``source`` - SourceInformation : channel source information; *None* if the channel has no source information * ``unit`` - str : channel unit Parameters ---------- address : int block address; to be used for objects created from file stream : handle file handle; to be used for objects created from file load_metadata : bool option to load conversion, source and display_name; default *True* parse_xml_comment : bool option to parse XML channel comment to search for display name; default *True* for dynamically created objects : see the key-value pairs """ __slots__ = ( "name", "unit", "comment", "display_name", "conversion", "source", "attachment", "address", "dtype_fmt", "id", "reserved0", "block_len", "links_nr", "next_ch_addr", "component_addr", "name_addr", "source_addr", "conversion_addr", "data_block_addr", "unit_addr", "comment_addr", "channel_type", "sync_type", "data_type", "bit_offset", "byte_offset", "bit_count", "flags", "pos_invalidation_bit", "precision", "reserved1", "attachment_nr", "min_raw_value", "max_raw_value", "lower_limit", "upper_limit", "lower_ext_limit", "upper_ext_limit", "default_X_dg_addr", "default_X_cg_addr", "default_X_ch_addr", "attachment_addr", "sampling_rate", ) class ChannelArrayBlock(_ChannelArrayBlockBase): """ Other attributes * ``address`` - int : array block address * ``axis_channels`` - list : list of (group index, channel index) pairs referencing the axis of this array block * ``axis_conversions`` - list : list of ChannelConversion or None for each axis of this array block * ``dynamic_size_channels`` - list : list of (group index, channel index) pairs referencing the axis dynamic size of this array block * ``input_quantity_channels`` - list : list of (group index, channel index) pairs referencing the input quantity channels of this array block * ``output_quantity_channels`` - tuple | None : (group index, channel index) pair referencing the output quantity channel of this array block * ``comparison_quantity_channel`` - tuple | None : (group index, channel index) pair referencing the comparison quantity channel of this array block """ class ChannelGroup: """*ChannelGroup* has the following attributes, that are also available as dict like key-value pairs CGBLOCK fields * ``id`` - bytes : block ID; always b'##CG' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_cg_addr`` - int : next channel group address * ``first_ch_addr`` - int : address of first channel of this channel group * ``acq_name_addr`` - int : address of TextBLock that contains the channel group acquisition name * ``acq_source_addr`` - int : addres of SourceInformation that contains the channel group source * ``first_sample_reduction_addr`` - int : address of first SRBLOCK; this is considered 0 since sample reduction is not yet supported * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the channel group comment * ``record_id`` - int : record ID for thei channel group * ``cycles_nr`` - int : number of cycles for this channel group * ``flags`` - int : channel group flags * ``path_separator`` - int : ordinal for character used as path separator * ``reserved1`` - int : reserved bytes * ``samples_byte_nr`` - int : number of bytes used for channels samples in the record for this channel group; this does not contain the invalidation bytes * ``invalidation_bytes_nr`` - int : number of bytes used for invalidation bits by this channl group Other attributes * ``acq_name`` - str : acquisition name * ``acq_source`` - SourceInformation : acquisition source information * ``address`` - int : channel group address * ``comment`` - str : channel group comment """ __slots__ = ( "address", "acq_name", "acq_source", "comment", "id", "reserved0", "block_len", "links_nr", "next_cg_addr", "first_ch_addr", "acq_name_addr", "acq_source_addr", "first_sample_reduction_addr", "comment_addr", "cg_master_addr", "record_id", "cycles_nr", "flags", "path_separator", "reserved1", "samples_byte_nr", "invalidation_bytes_nr", "cg_master_index", "sampling_rate", "unit", ) class ChannelConversion(_ChannelConversionBase): """*ChannelConversion* has the following attributes, that are also available as dict like key-value pairs CCBLOCK common fields * ``id`` - bytes : block ID; always b'##CG' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``name_addr`` - int : address of TXBLOCK that contains the conversion name * ``unit_addr`` - int : address of TXBLOCK that contains the conversion unit * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the conversion comment * ``inv_conv_addr`` int : address of invers conversion * ``conversion_type`` int : integer code for conversion type * ``precision`` - int : integer code for precision * ``flags`` - int : conversion block flags * ``ref_param_nr`` - int : number fo referenced parameters (linked parameters) * ``val_param_nr`` - int : number of value parameters * ``min_phy_value`` - float : minimum physical channel value * ``max_phy_value`` - float : maximum physical channel value CCBLOCK specific fields * linear conversion * ``a`` - float : factor * ``b`` - float : offset * rational conversion * ``P1`` to ``P6`` - float : parameters * algebraic conversion * ``formula_addr`` - address of TXBLOCK that contains the the algebraic conversion formula * tabluar conversion with or without interpolation * ``raw_<N>`` - float : N-th raw value * ``phys_<N>`` - float : N-th physical value * tabular range conversion * ``lower_<N>`` - float : N-th lower value * ``upper_<N>`` - float : N-th upper value * ``phys_<N>`` - float : N-th physical value * tabular value to text conversion * ``val_<N>`` - float : N-th raw value * ``text_<N>`` - int : address of N-th TXBLOCK that contains the physical value * ``default`` - int : address of TXBLOCK that contains the default physical value * tabular range to text conversion * ``lower_<N>`` - float : N-th lower value * ``upper_<N>`` - float : N-th upper value * ``text_<N>`` - int : address of N-th TXBLOCK that contains the physical value * ``default`` - int : address of TXBLOCK that contains the default physical value * text to value conversion * ``val_<N>`` - float : N-th physical value * ``text_<N>`` - int : address of N-th TXBLOCK that contains the raw value * ``val_default`` - float : default physical value * text tranfosrmation (translation) conversion * ``input_<N>_addr`` - int : address of N-th TXBLOCK that contains the raw value * ``output_<N>_addr`` - int : address of N-th TXBLOCK that contains the physical value * ``default_addr`` - int : address of TXBLOCK that contains the default physical value Other attributes * ``address`` - int : channel conversion address * ``comment`` - str : channel conversion comment * ``formula`` - str : algebraic conversion formula; default '' * ``referenced_blocks`` - dict : dict of refenced blocks; can be TextBlock objects for value to text, and text to text conversions; for partial conversions the referenced blocks can be ChannelConversion obejct as well * ``name`` - str : channel conversion name * ``unit`` - str : channel conversion unit """ class DataBlock: """Common implementation for DTBLOCK/RDBLOCK/SDBLOCK/DVBLOCK/DIBLOCK *DataBlock* has the following attributes, that are also available as dict like key-value pairs DTBLOCK fields * ``id`` - bytes : block ID; b'##DT' for DTBLOCK, b'##RD' for RDBLOCK, b'##SD' for SDBLOCK, b'##DV' for DVBLOCK or b'##DI' for DIBLOCK * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``data`` - bytes : raw samples Other attributes * ``address`` - int : data block address Parameters ---------- address : int DTBLOCK/RDBLOCK/SDBLOCK/DVBLOCK/DIBLOCK address inside the file stream : int file handle reduction : bool sample reduction data block """ __slots__ = ("address", "id", "reserved0", "block_len", "links_nr", "data") class DataZippedBlock(object): """*DataZippedBlock* has the following attributes, that are also available as dict like key-value pairs DZBLOCK fields * ``id`` - bytes : block ID; always b'##DZ' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``original_type`` - bytes : b'DT', b'SD', b'DI' or b'DV' * ``zip_type`` - int : zip algorithm used * ``reserved1`` - int : reserved bytes * ``param`` - int : for transpose deflate the record size used for transposition * ``original_size`` - int : size of the original uncompressed raw bytes * ``zip_size`` - int : size of compressed bytes * ``data`` - bytes : compressed bytes Other attributes * ``address`` - int : data zipped block address * ``return_unzipped`` - bool : decompress data when accessing the 'data' key Parameters ---------- address : int DTBLOCK address inside the file stream : int file handle """ __slots__ = ( "address", "_prevent_data_setitem", "_transposed", "return_unzipped", "id", "reserved0", "block_len", "links_nr", "original_type", "zip_type", "reserved1", "param", "original_size", "zip_size", "data", ) class DataGroup: """ *DataGroup* has the following attributes, that are also available as dict like key-value pairs DGBLOCK fields * ``id`` - bytes : block ID; always b'##DG' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_dg_addr`` - int : address of next data group block * ``first_cg_addr`` - int : address of first channel group for this data group * ``data_block_addr`` - int : address of DTBLOCK, DZBLOCK, DLBLOCK or HLBLOCK that contains the raw samples for this data group * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK tha contains the data group comment * ``record_id_len`` - int : size of record ID used in case of unsorted data groups; can be 1, 2, 4 or 8 * ``reserved1`` - int : reserved bytes Other attributes * ``address`` - int : dat group address * ``comment`` - str : data group comment """ __slots__ = ( "address", "comment", "id", "reserved0", "block_len", "links_nr", "next_dg_addr", "first_cg_addr", "data_block_addr", "comment_addr", "record_id_len", "reserved1", ) class DataList(_DataListBase): """ *DataList* has the following attributes, that are also available as dict like key-value pairs DLBLOCK common fields * ``id`` - bytes : block ID; always b'##DL' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_dl_addr`` - int : address of next DLBLOCK * ``data_block_addr<N>`` - int : address of N-th data block * ``flags`` - int : data list flags * ``reserved1`` - int : reserved bytes * ``data_block_nr`` - int : number of data blocks referenced by this list DLBLOCK specific fields * for equall lenght blocks * ``data_block_len`` - int : equall uncompressed size in bytes for all referenced data blocks; last block can be smaller * for variable lenght blocks * ``offset_<N>`` - int : byte offset of N-th data block Other attributes * ``address`` - int : data list address """ class EventBlock(_EventBlockBase): """ *EventBlock* has the following attributes, that are also available as dict like key-value pairs EVBLOCK fields * ``id`` - bytes : block ID; always b'##EV' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_ev_addr`` - int : address of next EVBLOCK * ``parent_ev_addr`` - int : address of parent EVLBOCK * ``range_start_ev_addr`` - int : address of EVBLOCK that is the start of the range for which this event is the end * ``name_addr`` - int : address of TXBLOCK that contains the event name * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the event comment * ``scope_<N>_addr`` - int : address of N-th block that represents a scope for this event (can be CGBLOCK, CHBLOCK, DGBLOCK) * ``attachemnt_<N>_addr`` - int : address of N-th attachment referenced by this event * ``event_type`` - int : integer code for event type * ``sync_type`` - int : integer code for event sync type * ``range_type`` - int : integer code for event range type * ``cause`` - int : integer code for event cause * ``flags`` - int : event flags * ``reserved1`` - int : reserved bytes * ``scope_nr`` - int : number of scopes referenced by this event * ``attachment_nr`` - int : number of attachments referenced by this event * ``creator_index`` - int : index of FHBLOCK * ``sync_base`` - int : timestamp base value * ``sync_factor`` - float : timestamp factor Other attributes * ``address`` - int : event block address * ``comment`` - str : event comment * ``name`` - str : event name * ``parent`` - int : index of event block that is the parent for the current event * ``range_start`` - int : index of event block that is the start of the range for which the current event is the end * ``scopes`` - list : list of (group index, channel index) or channel group index that define the scope of the current event """ @property @value.setter class FileIdentificationBlock: """ *FileIdentificationBlock* has the following attributes, that are also available as dict like key-value pairs IDBLOCK fields * ``file_identification`` - bytes : file identifier * ``version_str`` - bytes : format identifier * ``program_identification`` - bytes : creator program identifier * ``reserved0`` - bytes : reserved bytes * ``mdf_version`` - int : version number of MDF format * ``reserved1`` - bytes : reserved bytes * ``unfinalized_standard_flags`` - int : standard flags for unfinalized MDF * ``unfinalized_custom_flags`` - int : custom flags for unfinalized MDF Other attributes * ``address`` - int : should always be 0 """ __slots__ = ( "address", "file_identification", "version_str", "program_identification", "reserved0", "mdf_version", "reserved1", "unfinalized_standard_flags", "unfinalized_custom_flags", ) class FileHistory: """ *FileHistory* has the following attributes, that are also available as dict like key-value pairs FHBLOCK fields * ``id`` - bytes : block ID; always b'##FH' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_fh_addr`` - int : address of next FHBLOCK * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the file history comment * ``abs_time`` - int : time stamp at which the file modification happened * ``tz_offset`` - int : UTC time offset in hours (= GMT time zone) * ``daylight_save_time`` - int : daylight saving time * ``time_flags`` - int : time flags * ``reserved1`` - bytes : reserved bytes Other attributes * ``address`` - int : file history address * ``comment`` - str : history comment """ __slots__ = ( "address", "comment", "id", "reserved0", "block_len", "links_nr", "next_fh_addr", "comment_addr", "abs_time", "tz_offset", "daylight_save_time", "time_flags", "reserved1", ) class HeaderBlock: """ *HeaderBlock* has the following attributes, that are also available as dict like key-value pairs HDBLOCK fields * ``id`` - bytes : block ID; always b'##HD' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``first_dg_addr`` - int : address of first DGBLOCK * ``file_history_addr`` - int : address of first FHBLOCK * ``channel_tree_addr`` - int : address of first CHBLOCK * ``first_attachment_addr`` - int : address of first ATBLOCK * ``first_event_addr`` - int : address of first EVBLOCK * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the file comment * ``abs_time`` - int : time stamp at which recording was started in nanoseconds. * ``tz_offset`` - int : UTC time offset in hours (= GMT time zone) * ``daylight_save_time`` - int : daylight saving time * ``time_flags`` - int : time flags * ``time_quality`` - int : time quality flags * ``flags`` - int : file flags * ``reserved1`` - int : reserved bytes * ``start_angle`` - int : angle value at measurement start * ``start_distance`` - int : distance value at measurement start Other attributes * ``address`` - int : header address * ``comment`` - str : file comment * ``author`` - str : measurement author * ``department`` - str : author's department * ``project`` - str : working project * ``subject`` - str : measurement subject """ __slots__ = ( "address", "comment", "author", "department", "project", "subject", "id", "reserved0", "block_len", "links_nr", "first_dg_addr", "file_history_addr", "channel_tree_addr", "first_attachment_addr", "first_event_addr", "comment_addr", "abs_time", "tz_offset", "daylight_save_time", "time_flags", "time_quality", "flags", "reserved1", "start_angle", "start_distance", ) @property def start_time(self): """ getter and setter the measurement start timestamp Returns ------- timestamp : datetime.datetime start timestamp """ timestamp = self.abs_time / 10 ** 9 if self.time_flags & v4c.FLAG_HD_LOCAL_TIME: timestamp = datetime.fromtimestamp(timestamp) else: timestamp = datetime.fromtimestamp(timestamp, timezone.utc) return timestamp @start_time.setter class HeaderList: """ *HeaderList* has the following attributes, that are also available as dict like key-value pairs HLBLOCK fields * ``id`` - bytes : block ID; always b'##HL' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``first_dl_addr`` - int : address of first data list block for this header list * ``flags`` - int : source flags * ``zip_type`` - int : integer code for zip type * ``reserved1`` - bytes : reserved bytes Other attributes * ``address`` - int : header list address """ __slots__ = ( "address", "id", "reserved0", "block_len", "links_nr", "first_dl_addr", "flags", "zip_type", "reserved1", ) class ListData(_ListDataBase): """ *ListData* has the following attributes, that are also available as dict like key-value pairs LDBLOCK common fields * ``id`` - bytes : block ID; always b'##LD' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``next_ld_addr`` - int : address of next LDBLOCK * ``data_block_addr_<N>`` - int : address of N-th data block bits data block * ``flags`` - int : data list flags * ``data_block_nr`` - int : number of data blocks referenced by this list LDBLOCK specific fields * if invalidation data present flag is set * ``invalidation_bits_addr_<N>`` - int : address of N-th invalidation * for equall lenght blocks * ``data_block_len`` - int : equall uncompressed size in bytes for all referenced data blocks; last block can be smaller * for variable lenght blocks * ``offset_<N>`` - int : byte offset of N-th data block * if time values flag is set * ``time_value_<N>`` - int | float : first raw timestamp value of N-th data block * if angle values flag is set * ``angle_value_<N>`` - int | float : first raw angle value of N-th data block * if distance values flag is set * ``distance_value_<N>`` - int | float : first raw distance value of N-th data block Other attributes * ``address`` - int : data list address """ class SourceInformation: """ *SourceInformation* has the following attributes, that are also available as dict like key-value pairs SIBLOCK fields * ``id`` - bytes : block ID; always b'##SI' * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``name_addr`` - int : address of TXBLOCK that contains the source name * ``path_addr`` - int : address of TXBLOCK that contains the source path * ``comment_addr`` - int : address of TXBLOCK/MDBLOCK tha contains the source comment * ``source_type`` - int : integer code for source type * ``bus_type`` - int : integer code for source bus type * ``flags`` - int : source flags * ``reserved1`` - bytes : reserved bytes Other attributes * ``address`` - int : source information address * ``comment`` - str : source comment * ``name`` - str : source name * ``path`` - str : source path """ __slots__ = ( "address", "comment", "name", "path", "id", "reserved0", "block_len", "links_nr", "name_addr", "path_addr", "comment_addr", "source_type", "bus_type", "flags", "reserved1", ) @classmethod class TextBlock: """common TXBLOCK and MDBLOCK class *TextBlock* has the following attributes, that are also available as dict like key-value pairs TXBLOCK fields * ``id`` - bytes : block ID; b'##TX' for TXBLOCK and b'##MD' for MDBLOCK * ``reserved0`` - int : reserved bytes * ``block_len`` - int : block bytes size * ``links_nr`` - int : number of links * ``text`` - bytes : actual text content Other attributes * ``address`` - int : text block address Parameters ---------- address : int block address stream : handle file handle meta : bool flag to set the block type to MDBLOCK for dynamically created objects; default *False* text : bytes/str text content for dynamically created objects """ __slots__ = ("address", "id", "reserved0", "block_len", "links_nr", "text")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 37724, 326, 3494, 262, 7021, 329, 337, 8068, 2196, 604, 198, 220, 220, 220, 5312, 2106, 198, 220, 220, 220, 6434, 1058, 331, 6814, 198, 220, 220, 220, 7536, 1058, 12131, 12, 1157, 12, 1065, 628, 220, 220, 220, 15717, 1438, 3421, 532, 355, 6475, 7568, 284, 285, 7568, 19149, 952, 628, 220, 220, 220, 40480, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 1635, 220, 220, 11102, 13, 38993, 532, 3497, 5755, 286, 275, 1, 2420, 618, 39938, 18022, 2099, 1366, 198, 220, 220, 220, 1635, 220, 220, 11102, 13, 834, 15003, 834, 532, 5345, 19232, 2494, 422, 479, 86, 22046, 198, 220, 220, 220, 1635, 220, 220, 11102, 13247, 13, 38993, 532, 3497, 5755, 286, 275, 1, 2420, 618, 39938, 18022, 2099, 1366, 198, 220, 220, 220, 1635, 220, 220, 11102, 3103, 9641, 13, 38993, 532, 3497, 5755, 286, 275, 1, 2420, 618, 39938, 18022, 2099, 1366, 198, 220, 220, 220, 1635, 220, 220, 8090, 21918, 13, 38993, 532, 3497, 5755, 286, 275, 1, 2420, 618, 39938, 18022, 2099, 1366, 198, 198, 37811, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 640, 11340, 198, 6738, 12234, 8019, 1330, 45243, 20, 198, 11748, 18931, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 2878, 1330, 2353, 11, 555, 8002, 11, 555, 8002, 62, 6738, 198, 6738, 2420, 37150, 1330, 14441, 198, 11748, 640, 198, 6738, 12854, 1891, 1330, 5794, 62, 41194, 198, 11748, 35555, 13, 316, 631, 13, 20180, 27660, 355, 12152, 198, 6738, 1976, 8019, 1330, 27413, 11, 38237, 601, 198, 198, 6738, 997, 31937, 1330, 13446, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 1330, 410, 19, 62, 9979, 1187, 355, 410, 19, 66, 198, 6738, 11485, 9641, 1330, 11593, 9641, 834, 198, 6738, 764, 26791, 1330, 357, 198, 220, 220, 220, 2512, 62, 25747, 11, 198, 220, 220, 220, 7925, 62, 13812, 62, 3672, 11, 198, 220, 220, 220, 9977, 46, 1404, 2414, 62, 84, 11, 198, 220, 220, 220, 651, 62, 5239, 62, 85, 19, 11, 198, 220, 220, 220, 318, 62, 7753, 62, 2339, 11, 198, 220, 220, 220, 337, 7568, 16922, 11, 198, 220, 220, 220, 5336, 270, 1096, 62, 19875, 11, 198, 220, 220, 220, 471, 12394, 23, 62, 3046, 11, 198, 220, 220, 220, 471, 12394, 2414, 62, 84, 11, 198, 220, 220, 220, 471, 12394, 2414, 62, 3046, 11, 198, 8, 198, 198, 36078, 42, 62, 2257, 7227, 796, 410, 19, 66, 13, 36078, 42, 62, 2257, 7227, 198, 36078, 42, 62, 10619, 796, 410, 19, 66, 13, 36078, 42, 62, 10619, 198, 9858, 27857, 62, 33489, 796, 410, 19, 66, 13, 9858, 27857, 62, 33489, 198, 9858, 27857, 62, 84, 796, 410, 19, 66, 13, 9858, 27857, 62, 84, 198, 9858, 27857, 62, 3046, 796, 410, 19, 66, 13, 9858, 27857, 62, 3046, 198, 198, 44175, 62, 9148, 11290, 62, 33489, 796, 410, 19, 66, 13, 44175, 62, 9148, 11290, 62, 33489, 198, 48913, 16437, 62, 3398, 22846, 3698, 62, 27082, 40834, 62, 3046, 796, 410, 19, 66, 13, 48913, 16437, 62, 3398, 22846, 3698, 62, 27082, 40834, 62, 3046, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 76, 7568, 19149, 952, 4943, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 8086, 15520, 12235, 1600, 198, 220, 220, 220, 366, 29239, 1600, 198, 220, 220, 220, 366, 29239, 19182, 12235, 1600, 198, 220, 220, 220, 366, 29239, 13247, 1600, 198, 220, 220, 220, 366, 29239, 3103, 9641, 1600, 198, 220, 220, 220, 366, 6601, 12235, 1600, 198, 220, 220, 220, 366, 6601, 57, 3949, 12235, 1600, 198, 220, 220, 220, 366, 9237, 12235, 1600, 198, 220, 220, 220, 366, 8979, 33234, 2649, 12235, 1600, 198, 220, 220, 220, 366, 39681, 12235, 1600, 198, 220, 220, 220, 366, 39681, 8053, 1600, 198, 220, 220, 220, 366, 6601, 8053, 1600, 198, 220, 220, 220, 366, 6601, 13247, 1600, 198, 220, 220, 220, 366, 8979, 18122, 1600, 198, 220, 220, 220, 366, 7416, 21918, 1600, 198, 220, 220, 220, 366, 8206, 12235, 1600, 198, 60, 628, 198, 4871, 3460, 15520, 12235, 25, 198, 220, 220, 220, 37227, 2215, 4375, 649, 32161, 691, 14553, 32161, 389, 3142, 11, 351, 198, 220, 220, 220, 21179, 4578, 1635, 7890, 9, 286, 2099, 9881, 628, 220, 220, 220, 1635, 8086, 15520, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 5161, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 1404, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 265, 62, 29851, 15506, 532, 493, 1058, 1306, 5161, 9148, 11290, 2209, 198, 220, 220, 220, 1635, 7559, 7753, 62, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 18231, 198, 220, 220, 220, 220, 220, 2393, 1438, 198, 220, 220, 220, 1635, 7559, 76, 524, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 18231, 198, 220, 220, 220, 220, 220, 285, 524, 2099, 6764, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 18231, 2912, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 5161, 9148, 11290, 9701, 198, 220, 220, 220, 1635, 7559, 45382, 62, 9630, 15506, 532, 493, 1058, 6376, 286, 2393, 2106, 2512, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9132, 20, 62, 16345, 15506, 532, 9881, 1058, 18231, 2393, 45243, 20, 2160, 198, 220, 220, 220, 1635, 7559, 14986, 62, 7857, 15506, 532, 493, 1058, 2656, 34318, 601, 2393, 2546, 287, 9881, 198, 220, 220, 220, 1635, 7559, 20521, 9395, 62, 7857, 15506, 532, 493, 1058, 14553, 25388, 2393, 2546, 287, 9881, 198, 220, 220, 220, 1635, 7559, 20521, 9395, 62, 7890, 15506, 532, 9881, 1058, 14553, 379, 963, 434, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 18231, 2209, 198, 220, 220, 220, 1635, 7559, 7753, 62, 3672, 15506, 532, 965, 1058, 18231, 2393, 1438, 198, 220, 220, 220, 1635, 7559, 76, 524, 15506, 532, 965, 1058, 285, 524, 2099, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 18231, 2912, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2209, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 2209, 26, 284, 307, 973, 329, 5563, 2727, 422, 2393, 198, 220, 220, 220, 4269, 1058, 5412, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5412, 26, 284, 307, 973, 329, 5563, 2727, 422, 2393, 198, 220, 220, 220, 329, 32366, 2727, 5563, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 766, 262, 1994, 12, 8367, 14729, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 524, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19545, 62, 265, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 3672, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 524, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 45382, 62, 9630, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9132, 20, 62, 16345, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14986, 62, 7857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20521, 9395, 62, 7857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20521, 9395, 62, 7890, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 7925, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2302, 974, 18231, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 1058, 9881, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 33152, 1222, 410, 19, 66, 13, 38948, 62, 1404, 62, 3620, 33, 1961, 35, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 33152, 1222, 410, 19, 66, 13, 38948, 62, 1404, 62, 9858, 32761, 1961, 62, 3620, 33, 1961, 35, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 38237, 601, 7, 944, 13, 20521, 9395, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 2116, 13, 20521, 9395, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 33152, 1222, 410, 19, 66, 13, 38948, 62, 1404, 62, 12740, 20, 62, 23428, 2389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28816, 796, 45243, 20, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 28816, 13, 19119, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45243, 20, 62, 16345, 796, 45243, 20, 62, 28816, 13, 12894, 395, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9132, 20, 62, 16345, 6624, 45243, 20, 62, 16345, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3275, 796, 277, 1, 1404, 9148, 11290, 45243, 20, 16345, 34758, 944, 13, 9132, 20, 62, 16345, 92, 290, 14553, 1366, 45243, 20, 16345, 34758, 9132, 20, 62, 16345, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 22615, 32161, 407, 4855, 4943, 628, 198, 4871, 11102, 25, 198, 220, 220, 220, 37227, 1002, 262, 4600, 2220, 62, 38993, 63, 21179, 4578, 318, 407, 2810, 393, 318, 10352, 11, 198, 220, 220, 220, 788, 262, 11315, 11, 2723, 290, 3359, 1438, 1321, 318, 407, 13686, 13, 198, 220, 220, 220, 7735, 517, 611, 262, 4600, 29572, 62, 19875, 62, 23893, 63, 318, 407, 2810, 393, 318, 10352, 11, 788, 198, 220, 220, 220, 262, 3359, 1438, 1321, 422, 262, 6518, 2912, 318, 407, 13686, 357, 5661, 198, 220, 220, 220, 318, 1760, 284, 3368, 5789, 23735, 4560, 8, 628, 220, 220, 220, 1635, 29239, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 31171, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 44175, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 354, 62, 29851, 15506, 532, 493, 1058, 1306, 5161, 9148, 11290, 2209, 198, 220, 220, 220, 1635, 7559, 42895, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 6518, 287, 1339, 286, 4645, 6518, 198, 220, 220, 220, 220, 220, 11742, 11, 393, 11102, 19182, 12235, 287, 1339, 286, 26515, 198, 220, 220, 220, 220, 220, 2393, 1438, 198, 220, 220, 220, 1635, 7559, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 6518, 1438, 198, 220, 220, 220, 1635, 7559, 10459, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 6518, 2723, 2512, 198, 220, 220, 220, 1635, 7559, 1102, 9641, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 6518, 11315, 2512, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 6737, 1366, 2512, 329, 569, 6561, 35, 9619, 198, 220, 220, 220, 1635, 7559, 20850, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 6518, 4326, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 6518, 2912, 198, 220, 220, 220, 1635, 7559, 1078, 15520, 62, 27, 45, 29, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 5161, 9148, 11290, 20717, 416, 262, 198, 220, 220, 220, 220, 220, 1459, 6518, 26, 611, 645, 5161, 9148, 11290, 318, 20717, 612, 481, 307, 645, 884, 1994, 12, 8367, 198, 220, 220, 220, 220, 220, 5166, 198, 220, 220, 220, 1635, 7559, 12286, 62, 55, 62, 67, 70, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 360, 4579, 36840, 810, 262, 4277, 1395, 16488, 198, 220, 220, 220, 220, 220, 6518, 329, 262, 1459, 6518, 318, 1043, 26, 428, 1994, 12, 8367, 5166, 481, 407, 198, 220, 220, 220, 220, 220, 2152, 329, 9619, 326, 836, 470, 423, 257, 4277, 1395, 16488, 198, 220, 220, 220, 1635, 7559, 12286, 62, 55, 62, 66, 70, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 327, 4579, 36840, 810, 262, 4277, 1395, 16488, 198, 220, 220, 220, 220, 220, 6518, 329, 262, 1459, 6518, 318, 1043, 26, 428, 1994, 12, 8367, 5166, 481, 407, 198, 220, 220, 220, 220, 220, 2152, 329, 9619, 326, 836, 470, 423, 257, 4277, 1395, 16488, 198, 220, 220, 220, 1635, 7559, 12286, 62, 55, 62, 354, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 4277, 1395, 16488, 198, 220, 220, 220, 220, 220, 6518, 329, 262, 1459, 6518, 26, 428, 1994, 12, 8367, 5166, 481, 407, 198, 220, 220, 220, 220, 220, 2152, 329, 9619, 326, 836, 470, 423, 257, 4277, 1395, 16488, 198, 220, 220, 220, 1635, 7559, 17620, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 262, 6518, 2099, 198, 220, 220, 220, 1635, 7559, 27261, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 262, 6518, 338, 17510, 2099, 198, 220, 220, 220, 1635, 7559, 7890, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 262, 6518, 338, 1366, 2099, 198, 220, 220, 220, 1635, 7559, 2545, 62, 28968, 15506, 532, 493, 1058, 1643, 11677, 198, 220, 220, 220, 1635, 7559, 26327, 62, 28968, 15506, 532, 493, 1058, 18022, 11677, 1626, 262, 1366, 1700, 198, 220, 220, 220, 1635, 7559, 2545, 62, 9127, 15506, 532, 493, 1058, 6518, 1643, 954, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 31171, 9148, 11290, 9701, 198, 220, 220, 220, 1635, 7559, 1930, 62, 259, 12102, 341, 62, 2545, 15506, 532, 493, 1058, 12515, 341, 1643, 2292, 329, 262, 1459, 198, 220, 220, 220, 220, 220, 6518, 611, 612, 389, 12515, 341, 9881, 287, 262, 1366, 1700, 198, 220, 220, 220, 1635, 7559, 3866, 16005, 15506, 532, 493, 1058, 18253, 2438, 329, 573, 71, 15440, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 1084, 62, 1831, 62, 8367, 15506, 532, 493, 1058, 949, 8246, 1988, 286, 477, 8405, 198, 220, 220, 220, 1635, 7559, 9806, 62, 1831, 62, 8367, 15506, 532, 493, 1058, 3509, 8246, 1988, 286, 477, 8405, 198, 220, 220, 220, 1635, 7559, 21037, 62, 32374, 15506, 532, 493, 1058, 949, 3518, 1988, 286, 477, 8405, 198, 220, 220, 220, 1635, 7559, 45828, 62, 32374, 15506, 532, 493, 1058, 3509, 3518, 1988, 286, 477, 8405, 198, 220, 220, 220, 1635, 7559, 21037, 62, 2302, 62, 32374, 15506, 532, 493, 1058, 949, 3518, 1988, 286, 477, 8405, 198, 220, 220, 220, 1635, 7559, 45828, 62, 2302, 62, 32374, 15506, 532, 493, 1058, 3509, 3518, 1988, 286, 477, 8405, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 6518, 2209, 198, 220, 220, 220, 1635, 7559, 47348, 902, 15506, 532, 1351, 1058, 1351, 286, 20717, 18231, 7021, 39199, 26, 198, 220, 220, 220, 220, 220, 262, 6376, 6773, 344, 284, 262, 18231, 2512, 6376, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 6518, 2912, 198, 220, 220, 220, 1635, 7559, 1102, 9641, 15506, 532, 11102, 3103, 9641, 1058, 6518, 11315, 26, 1635, 14202, 9, 611, 262, 198, 220, 220, 220, 220, 220, 6518, 468, 645, 11315, 198, 220, 220, 220, 1635, 7559, 13812, 62, 3672, 15506, 532, 965, 1058, 6518, 3359, 1438, 26, 428, 318, 21242, 422, 262, 198, 220, 220, 220, 220, 220, 23735, 6518, 2912, 198, 220, 220, 220, 1635, 7559, 3672, 15506, 532, 965, 1058, 6518, 1438, 198, 220, 220, 220, 1635, 7559, 10459, 15506, 532, 8090, 21918, 1058, 6518, 2723, 1321, 26, 1635, 14202, 9, 611, 198, 220, 220, 220, 220, 220, 262, 6518, 468, 645, 2723, 1321, 198, 220, 220, 220, 1635, 7559, 20850, 15506, 532, 965, 1058, 6518, 4326, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2209, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 2209, 26, 284, 307, 973, 329, 5563, 2727, 422, 2393, 198, 220, 220, 220, 4269, 1058, 5412, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5412, 26, 284, 307, 973, 329, 5563, 2727, 422, 2393, 198, 220, 220, 220, 3440, 62, 38993, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 284, 3440, 11315, 11, 2723, 290, 3359, 62, 3672, 26, 4277, 1635, 17821, 9, 198, 220, 220, 220, 21136, 62, 19875, 62, 23893, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 3038, 284, 21136, 23735, 6518, 2912, 284, 2989, 329, 3359, 1438, 26, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 17821, 9, 198, 220, 220, 220, 329, 32366, 2727, 5563, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 766, 262, 1994, 12, 8367, 14729, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20850, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13812, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1102, 9641, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 15520, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 4906, 62, 69, 16762, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19545, 62, 354, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 42895, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1102, 9641, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 62, 9967, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20850, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17620, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27261, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2545, 62, 28968, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 26327, 62, 28968, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2545, 62, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1930, 62, 259, 12102, 341, 62, 2545, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3866, 16005, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 15520, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 62, 1831, 62, 8367, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 62, 1831, 62, 8367, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21037, 62, 32374, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 45828, 62, 32374, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21037, 62, 2302, 62, 32374, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 45828, 62, 2302, 62, 32374, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 62, 55, 62, 67, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 62, 55, 62, 66, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 62, 55, 62, 354, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1078, 15520, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37687, 11347, 62, 4873, 1600, 198, 220, 220, 220, 1267, 628, 198, 198, 4871, 11102, 19182, 12235, 28264, 29239, 19182, 12235, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 7177, 2512, 2209, 198, 220, 220, 220, 1635, 7559, 22704, 62, 354, 8961, 15506, 532, 1351, 1058, 1351, 286, 357, 8094, 6376, 11, 6518, 6376, 8, 198, 220, 220, 220, 220, 220, 14729, 32578, 262, 16488, 286, 428, 7177, 2512, 198, 220, 220, 220, 1635, 7559, 22704, 62, 1102, 47178, 15506, 532, 1351, 1058, 1351, 286, 11102, 3103, 9641, 393, 6045, 198, 220, 220, 220, 220, 220, 329, 1123, 16488, 286, 428, 7177, 2512, 198, 220, 220, 220, 1635, 7559, 67, 28995, 62, 7857, 62, 354, 8961, 15506, 532, 1351, 1058, 1351, 286, 357, 8094, 6376, 11, 6518, 6376, 8, 198, 220, 220, 220, 220, 220, 14729, 32578, 262, 16488, 8925, 2546, 286, 428, 7177, 2512, 198, 220, 220, 220, 1635, 7559, 15414, 62, 40972, 414, 62, 354, 8961, 15506, 532, 1351, 1058, 1351, 286, 357, 8094, 6376, 11, 6518, 6376, 8, 198, 220, 220, 220, 220, 220, 14729, 32578, 262, 5128, 12040, 9619, 286, 428, 7177, 2512, 198, 220, 220, 220, 1635, 7559, 22915, 62, 40972, 414, 62, 354, 8961, 15506, 532, 46545, 930, 6045, 1058, 357, 8094, 6376, 11, 6518, 6376, 8, 198, 220, 220, 220, 220, 220, 5166, 32578, 262, 5072, 12040, 6518, 286, 428, 7177, 2512, 198, 220, 220, 220, 1635, 7559, 785, 1845, 1653, 62, 40972, 414, 62, 17620, 15506, 532, 46545, 930, 6045, 1058, 357, 8094, 6376, 11, 6518, 6376, 8, 198, 220, 220, 220, 220, 220, 5166, 32578, 262, 7208, 12040, 6518, 286, 428, 7177, 2512, 628, 198, 220, 220, 220, 37227, 628, 198, 4871, 11102, 13247, 25, 198, 220, 220, 220, 37227, 9, 29239, 13247, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 327, 4579, 36840, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 39816, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 66, 70, 62, 29851, 15506, 532, 493, 1058, 1306, 6518, 1448, 2209, 198, 220, 220, 220, 1635, 7559, 11085, 62, 354, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 6518, 286, 428, 6518, 1448, 198, 220, 220, 220, 1635, 7559, 330, 80, 62, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 8255, 9148, 735, 326, 4909, 262, 6518, 198, 220, 220, 220, 220, 220, 1448, 12673, 1438, 198, 220, 220, 220, 1635, 7559, 330, 80, 62, 10459, 62, 29851, 15506, 532, 493, 1058, 751, 411, 286, 8090, 21918, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 6518, 1448, 2723, 198, 220, 220, 220, 1635, 7559, 11085, 62, 39873, 62, 445, 8110, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 16808, 9148, 11290, 26, 428, 318, 198, 220, 220, 220, 220, 220, 3177, 657, 1201, 6291, 7741, 318, 407, 1865, 4855, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 6518, 1448, 2912, 198, 220, 220, 220, 1635, 7559, 22105, 62, 312, 15506, 532, 493, 1058, 1700, 4522, 329, 262, 72, 6518, 1448, 198, 220, 220, 220, 1635, 7559, 32503, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 16006, 329, 428, 6518, 1448, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 6518, 1448, 9701, 198, 220, 220, 220, 1635, 7559, 6978, 62, 25512, 1352, 15506, 532, 493, 1058, 2760, 1292, 329, 2095, 973, 355, 3108, 2880, 1352, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 82, 12629, 62, 26327, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 9881, 973, 329, 9619, 8405, 287, 198, 220, 220, 220, 220, 220, 262, 1700, 329, 428, 6518, 1448, 26, 428, 857, 407, 3994, 262, 12515, 341, 198, 220, 220, 220, 220, 220, 9881, 198, 220, 220, 220, 1635, 7559, 259, 12102, 341, 62, 33661, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 9881, 973, 329, 12515, 341, 198, 220, 220, 220, 220, 220, 10340, 416, 428, 442, 1236, 75, 1448, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 330, 80, 62, 3672, 15506, 532, 965, 1058, 12673, 1438, 198, 220, 220, 220, 1635, 7559, 330, 80, 62, 10459, 15506, 532, 8090, 21918, 1058, 12673, 2723, 1321, 198, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 6518, 1448, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 6518, 1448, 2912, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 330, 80, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 330, 80, 62, 10459, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19545, 62, 66, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 354, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 330, 80, 62, 3672, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 330, 80, 62, 10459, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 39873, 62, 445, 8110, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 66, 70, 62, 9866, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22105, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32503, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 62, 25512, 1352, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 12629, 62, 26327, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 259, 12102, 341, 62, 33661, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 66, 70, 62, 9866, 62, 9630, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37687, 11347, 62, 4873, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20850, 1600, 198, 220, 220, 220, 1267, 628, 198, 198, 4871, 11102, 3103, 9641, 28264, 29239, 3103, 9641, 14881, 2599, 198, 220, 220, 220, 37227, 9, 29239, 3103, 9641, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 12624, 9148, 11290, 2219, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 39816, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 11315, 1438, 198, 220, 220, 220, 1635, 7559, 20850, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 11315, 4326, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 11315, 2912, 198, 220, 220, 220, 1635, 7559, 16340, 62, 42946, 62, 29851, 15506, 493, 1058, 2209, 286, 287, 690, 11315, 198, 220, 220, 220, 1635, 7559, 1102, 9641, 62, 4906, 15506, 493, 1058, 18253, 2438, 329, 11315, 2099, 198, 220, 220, 220, 1635, 7559, 3866, 16005, 15506, 532, 493, 1058, 18253, 2438, 329, 15440, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 11315, 2512, 9701, 198, 220, 220, 220, 1635, 7559, 5420, 62, 17143, 62, 48624, 15506, 532, 493, 1058, 1271, 11511, 20717, 10007, 357, 25614, 198, 220, 220, 220, 220, 220, 10007, 8, 198, 220, 220, 220, 1635, 7559, 2100, 62, 17143, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 1988, 10007, 198, 220, 220, 220, 1635, 7559, 1084, 62, 6883, 62, 8367, 15506, 532, 12178, 1058, 5288, 3518, 6518, 1988, 198, 220, 220, 220, 1635, 7559, 9806, 62, 6883, 62, 8367, 15506, 532, 12178, 1058, 5415, 3518, 6518, 1988, 628, 220, 220, 220, 12624, 9148, 11290, 2176, 7032, 628, 220, 220, 220, 1635, 14174, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 64, 15506, 532, 12178, 1058, 5766, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 65, 15506, 532, 12178, 1058, 11677, 628, 220, 220, 220, 1635, 9377, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 47, 16, 15506, 284, 7559, 47, 21, 15506, 532, 12178, 1058, 10007, 628, 220, 220, 220, 1635, 37139, 291, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 687, 4712, 62, 29851, 15506, 532, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 37139, 291, 11315, 10451, 628, 220, 220, 220, 1635, 7400, 2290, 283, 11315, 351, 393, 1231, 39555, 341, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 1831, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 8246, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 34411, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 3518, 1988, 628, 220, 220, 220, 1635, 7400, 934, 2837, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 21037, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 2793, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 45828, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 6727, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 34411, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 3518, 1988, 628, 220, 220, 220, 1635, 7400, 934, 1988, 284, 2420, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 2100, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 8246, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 5239, 62, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 15326, 9148, 11290, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 3518, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 12286, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4277, 3518, 1988, 628, 220, 220, 220, 1635, 7400, 934, 2837, 284, 2420, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 21037, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 2793, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 45828, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 6727, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 5239, 62, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 15326, 9148, 11290, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 3518, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 12286, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4277, 3518, 1988, 628, 220, 220, 220, 1635, 2420, 284, 1988, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 2100, 62, 27, 45, 29, 15506, 532, 12178, 1058, 399, 12, 400, 3518, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 5239, 62, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 15326, 9148, 11290, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 8246, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 2100, 62, 12286, 15506, 532, 12178, 1058, 4277, 3518, 1988, 628, 220, 220, 220, 1635, 2420, 491, 272, 69, 418, 26224, 341, 357, 41519, 8, 11315, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 15414, 62, 27, 45, 29, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 15326, 9148, 11290, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 8246, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 22915, 62, 27, 45, 29, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 15326, 9148, 11290, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4909, 262, 3518, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 12286, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4277, 3518, 1988, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 6518, 11315, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 6518, 11315, 2912, 198, 220, 220, 220, 1635, 7559, 687, 4712, 15506, 532, 965, 1058, 37139, 291, 11315, 10451, 26, 4277, 10148, 198, 220, 220, 220, 1635, 7559, 5420, 14226, 771, 62, 27372, 15506, 532, 8633, 1058, 8633, 286, 1006, 5864, 7021, 26, 460, 307, 8255, 12235, 198, 220, 220, 220, 220, 220, 5563, 329, 1988, 284, 2420, 11, 290, 2420, 284, 2420, 32626, 26, 329, 13027, 198, 220, 220, 220, 220, 220, 32626, 262, 20717, 7021, 460, 307, 11102, 3103, 9641, 45653, 73, 310, 355, 880, 198, 220, 220, 220, 1635, 7559, 3672, 15506, 532, 965, 1058, 6518, 11315, 1438, 198, 220, 220, 220, 1635, 7559, 20850, 15506, 532, 965, 1058, 6518, 11315, 4326, 628, 220, 220, 220, 37227, 628, 198, 4871, 6060, 12235, 25, 198, 220, 220, 220, 37227, 17227, 7822, 329, 24311, 9148, 11290, 14, 35257, 9148, 11290, 14, 10305, 9148, 11290, 14, 35, 53, 9148, 11290, 14, 17931, 9148, 11290, 628, 220, 220, 220, 1635, 6601, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 24311, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 275, 6, 2235, 24544, 6, 329, 24311, 9148, 11290, 11, 275, 6, 2235, 35257, 6, 329, 31475, 9148, 11290, 11, 198, 220, 220, 220, 220, 220, 275, 6, 2235, 10305, 6, 329, 9834, 9148, 11290, 11, 275, 6, 2235, 35, 53, 6, 329, 29854, 9148, 11290, 393, 275, 6, 2235, 17931, 6, 329, 14766, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 7890, 15506, 532, 9881, 1058, 8246, 8405, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 1366, 2512, 2209, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2209, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 24311, 9148, 11290, 14, 35257, 9148, 11290, 14, 10305, 9148, 11290, 14, 35, 53, 9148, 11290, 14, 17931, 9148, 11290, 2209, 2641, 262, 2393, 198, 220, 220, 220, 4269, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5412, 198, 220, 220, 220, 7741, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 7741, 1366, 2512, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 21975, 1600, 366, 312, 1600, 366, 411, 8520, 15, 1600, 366, 9967, 62, 11925, 1600, 366, 28751, 62, 48624, 1600, 366, 7890, 4943, 628, 198, 4871, 6060, 57, 3949, 12235, 7, 15252, 2599, 198, 220, 220, 220, 37227, 9, 6601, 57, 3949, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 198, 220, 220, 220, 355, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 360, 57, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 35, 57, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 14986, 62, 4906, 15506, 532, 9881, 1058, 275, 6, 24544, 3256, 275, 6, 10305, 3256, 275, 6, 17931, 6, 393, 275, 6, 35, 53, 6, 198, 220, 220, 220, 1635, 7559, 13344, 62, 4906, 15506, 532, 493, 1058, 19974, 11862, 973, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 17143, 15506, 532, 493, 1058, 329, 1007, 3455, 825, 17660, 262, 1700, 2546, 973, 329, 198, 220, 220, 220, 220, 220, 1007, 9150, 198, 220, 220, 220, 1635, 7559, 14986, 62, 7857, 15506, 532, 493, 1058, 2546, 286, 262, 2656, 34318, 2790, 8246, 9881, 198, 220, 220, 220, 1635, 7559, 13344, 62, 7857, 15506, 532, 493, 1058, 2546, 286, 25388, 9881, 198, 220, 220, 220, 1635, 7559, 7890, 15506, 532, 9881, 1058, 25388, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 1366, 1976, 3949, 2512, 2209, 198, 220, 220, 220, 1635, 7559, 7783, 62, 403, 89, 3949, 15506, 532, 20512, 1058, 38237, 601, 1366, 618, 22534, 262, 705, 7890, 6, 198, 220, 220, 220, 220, 220, 1994, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2209, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 24311, 9148, 11290, 2209, 2641, 262, 2393, 198, 220, 220, 220, 4269, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5412, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 3866, 1151, 62, 7890, 62, 2617, 9186, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 45434, 7645, 29813, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7783, 62, 403, 89, 3949, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14986, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13344, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17143, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 14986, 62, 7857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13344, 62, 7857, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 1600, 198, 220, 220, 220, 1267, 628, 198, 4871, 6060, 13247, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 6601, 13247, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 360, 4579, 36840, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 35, 38, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 67, 70, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 1306, 1366, 1448, 2512, 198, 220, 220, 220, 1635, 7559, 11085, 62, 66, 70, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 6518, 1448, 329, 428, 1366, 198, 220, 220, 220, 220, 220, 1448, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 24311, 9148, 11290, 11, 360, 57, 9148, 11290, 11, 23641, 9148, 11290, 393, 198, 220, 220, 220, 220, 220, 38312, 9148, 11290, 326, 4909, 262, 8246, 8405, 329, 428, 1366, 1448, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 28110, 4909, 262, 198, 220, 220, 220, 220, 220, 1366, 1448, 2912, 198, 220, 220, 220, 1635, 7559, 22105, 62, 312, 62, 11925, 15506, 532, 493, 1058, 2546, 286, 1700, 4522, 973, 287, 1339, 286, 5576, 9741, 198, 220, 220, 220, 220, 220, 1366, 2628, 26, 460, 307, 352, 11, 362, 11, 604, 393, 807, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 4818, 1448, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 1366, 1448, 2912, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19545, 62, 67, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 66, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 62, 9967, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22105, 62, 312, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 1267, 628, 198, 198, 4871, 6060, 8053, 28264, 6601, 8053, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 6601, 8053, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 23641, 9148, 11290, 2219, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 19260, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 25404, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 1306, 23641, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 29851, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 1366, 2512, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 1366, 1351, 9701, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 1366, 7021, 20717, 416, 428, 1351, 628, 220, 220, 220, 23641, 9148, 11290, 2176, 7032, 628, 220, 220, 220, 1635, 329, 1602, 439, 18896, 456, 83, 7021, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 11925, 15506, 532, 493, 1058, 1602, 439, 34318, 2790, 2546, 287, 9881, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20717, 1366, 7021, 26, 938, 2512, 460, 307, 4833, 628, 220, 220, 220, 1635, 329, 7885, 18896, 456, 83, 7021, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 28968, 62, 27, 45, 29, 15506, 532, 493, 1058, 18022, 11677, 286, 399, 12, 400, 1366, 2512, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 1366, 1351, 2209, 628, 220, 220, 220, 37227, 628, 198, 198, 4871, 8558, 12235, 28264, 9237, 12235, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 9237, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 8696, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 20114, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 1990, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 1306, 8696, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 8000, 62, 1990, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 2560, 8696, 30501, 11290, 198, 220, 220, 220, 1635, 7559, 9521, 62, 9688, 62, 1990, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 8696, 9148, 11290, 326, 318, 262, 923, 286, 198, 220, 220, 220, 220, 220, 262, 2837, 329, 543, 428, 1785, 318, 262, 886, 198, 220, 220, 220, 1635, 7559, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 1785, 1438, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 1785, 2912, 198, 220, 220, 220, 1635, 7559, 29982, 62, 27, 45, 29, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 2512, 326, 6870, 257, 8354, 198, 220, 220, 220, 220, 220, 329, 428, 1785, 357, 5171, 307, 327, 4579, 36840, 11, 5870, 9148, 11290, 11, 360, 4579, 36840, 8, 198, 220, 220, 220, 1635, 7559, 1078, 330, 4411, 429, 62, 27, 45, 29, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 18231, 20717, 416, 198, 220, 220, 220, 220, 220, 428, 1785, 198, 220, 220, 220, 1635, 7559, 15596, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 1785, 2099, 198, 220, 220, 220, 1635, 7559, 27261, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 1785, 17510, 2099, 198, 220, 220, 220, 1635, 7559, 9521, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 1785, 2837, 2099, 198, 220, 220, 220, 1635, 7559, 25587, 15506, 532, 493, 1058, 18253, 2438, 329, 1785, 2728, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 1785, 9701, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 29982, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 629, 13920, 20717, 416, 428, 1785, 198, 220, 220, 220, 1635, 7559, 1078, 15520, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 32161, 20717, 416, 428, 1785, 198, 220, 220, 220, 1635, 7559, 45382, 62, 9630, 15506, 532, 493, 1058, 6376, 286, 376, 39, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 27261, 62, 8692, 15506, 532, 493, 1058, 41033, 2779, 1988, 198, 220, 220, 220, 1635, 7559, 27261, 62, 31412, 15506, 532, 12178, 1058, 41033, 5766, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 1785, 2512, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 1785, 2912, 198, 220, 220, 220, 1635, 7559, 3672, 15506, 532, 965, 1058, 1785, 1438, 198, 220, 220, 220, 1635, 7559, 8000, 15506, 532, 493, 1058, 6376, 286, 1785, 2512, 326, 318, 262, 2560, 329, 262, 198, 220, 220, 220, 220, 220, 1459, 1785, 198, 220, 220, 220, 1635, 7559, 9521, 62, 9688, 15506, 532, 493, 1058, 6376, 286, 1785, 2512, 326, 318, 262, 923, 286, 262, 198, 220, 220, 220, 220, 220, 2837, 329, 543, 262, 1459, 1785, 318, 262, 886, 198, 220, 220, 220, 1635, 7559, 1416, 13920, 15506, 532, 1351, 1058, 1351, 286, 357, 8094, 6376, 11, 6518, 6376, 8, 393, 6518, 1448, 198, 220, 220, 220, 220, 220, 6376, 326, 8160, 262, 8354, 286, 262, 1459, 1785, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 2488, 8367, 13, 2617, 353, 628, 198, 4871, 9220, 33234, 2649, 12235, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 8979, 33234, 2649, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 4522, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 7753, 62, 738, 2649, 15506, 532, 220, 9881, 1058, 2393, 27421, 198, 220, 220, 220, 1635, 7559, 9641, 62, 2536, 15506, 532, 9881, 1058, 5794, 27421, 198, 220, 220, 220, 1635, 7559, 23065, 62, 738, 2649, 15506, 532, 9881, 1058, 13172, 1430, 27421, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 9881, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 76, 7568, 62, 9641, 15506, 532, 493, 1058, 2196, 1271, 286, 337, 8068, 5794, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 9881, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 403, 20311, 1143, 62, 20307, 62, 33152, 15506, 532, 493, 1058, 3210, 9701, 329, 3684, 1292, 1143, 337, 8068, 198, 220, 220, 220, 1635, 7559, 403, 20311, 1143, 62, 23144, 62, 33152, 15506, 532, 493, 1058, 2183, 9701, 329, 3684, 1292, 1143, 337, 8068, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 815, 1464, 307, 657, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 738, 2649, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9641, 62, 2536, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23065, 62, 738, 2649, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 7568, 62, 9641, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 403, 20311, 1143, 62, 20307, 62, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 403, 20311, 1143, 62, 23144, 62, 33152, 1600, 198, 220, 220, 220, 1267, 628, 198, 4871, 9220, 18122, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 8979, 18122, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 376, 39, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 44602, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 69, 71, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 1306, 376, 39, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 2393, 2106, 2912, 198, 220, 220, 220, 1635, 7559, 8937, 62, 2435, 15506, 532, 493, 1058, 640, 17977, 379, 543, 262, 2393, 17613, 3022, 198, 220, 220, 220, 1635, 7559, 22877, 62, 28968, 15506, 532, 493, 1058, 18119, 640, 11677, 287, 2250, 46121, 16987, 640, 6516, 8, 198, 220, 220, 220, 1635, 7559, 820, 2971, 62, 21928, 62, 2435, 15506, 532, 493, 1058, 26010, 8914, 640, 198, 220, 220, 220, 1635, 7559, 2435, 62, 33152, 15506, 532, 493, 1058, 640, 9701, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 9881, 1058, 10395, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 2393, 2106, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 2106, 2912, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19545, 62, 69, 71, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8937, 62, 2435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22877, 62, 28968, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 820, 2971, 62, 21928, 62, 2435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 62, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 1267, 628, 198, 4871, 48900, 12235, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 39681, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 5572, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 10227, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 11085, 62, 67, 70, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 360, 4579, 36840, 198, 220, 220, 220, 1635, 7559, 7753, 62, 23569, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 376, 39, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 17620, 62, 21048, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 5870, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 11085, 62, 1078, 15520, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 5161, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 11085, 62, 15596, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 8696, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 326, 4909, 262, 198, 220, 220, 220, 220, 220, 2393, 2912, 198, 220, 220, 220, 1635, 7559, 8937, 62, 2435, 15506, 532, 493, 1058, 640, 17977, 379, 543, 8296, 373, 2067, 287, 198, 220, 220, 220, 220, 220, 15709, 577, 17561, 82, 13, 198, 220, 220, 220, 1635, 7559, 22877, 62, 28968, 15506, 532, 493, 1058, 18119, 640, 11677, 287, 2250, 46121, 16987, 640, 6516, 8, 198, 220, 220, 220, 1635, 7559, 820, 2971, 62, 21928, 62, 2435, 15506, 532, 493, 1058, 26010, 8914, 640, 198, 220, 220, 220, 1635, 7559, 2435, 62, 33152, 15506, 532, 493, 1058, 640, 9701, 198, 220, 220, 220, 1635, 7559, 2435, 62, 13237, 15506, 532, 493, 1058, 640, 3081, 9701, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 2393, 9701, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9688, 62, 9248, 15506, 532, 493, 1058, 9848, 1988, 379, 15558, 923, 198, 220, 220, 220, 1635, 7559, 9688, 62, 30246, 15506, 532, 493, 1058, 5253, 1988, 379, 15558, 923, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 13639, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 2393, 2912, 198, 220, 220, 220, 1635, 7559, 9800, 15506, 532, 965, 1058, 15558, 1772, 198, 220, 220, 220, 1635, 7559, 10378, 1823, 15506, 532, 965, 1058, 1772, 338, 5011, 198, 220, 220, 220, 1635, 7559, 16302, 15506, 532, 965, 1058, 1762, 1628, 198, 220, 220, 220, 1635, 7559, 32796, 15506, 532, 965, 1058, 15558, 2426, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9800, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10378, 1823, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16302, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 32796, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 67, 70, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 62, 23569, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17620, 62, 21048, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 1078, 15520, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 15596, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8937, 62, 2435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22877, 62, 28968, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 820, 2971, 62, 21928, 62, 2435, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 62, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 62, 13237, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9688, 62, 9248, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9688, 62, 30246, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 923, 62, 2435, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 651, 353, 290, 900, 353, 262, 15558, 923, 41033, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 41033, 1058, 4818, 8079, 13, 19608, 8079, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 41033, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 2116, 13, 8937, 62, 2435, 1220, 838, 12429, 860, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2435, 62, 33152, 1222, 410, 19, 66, 13, 38948, 62, 10227, 62, 29701, 1847, 62, 34694, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 4818, 8079, 13, 6738, 16514, 27823, 7, 16514, 27823, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 796, 4818, 8079, 13, 6738, 16514, 27823, 7, 16514, 27823, 11, 640, 11340, 13, 315, 66, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 41033, 628, 220, 220, 220, 2488, 9688, 62, 2435, 13, 2617, 353, 628, 198, 4871, 48900, 8053, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 39681, 8053, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 38312, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 6581, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 11085, 62, 25404, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 717, 1366, 1351, 2512, 329, 428, 13639, 198, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 2723, 9701, 198, 220, 220, 220, 1635, 7559, 13344, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 19974, 2099, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 9881, 1058, 10395, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 13639, 1351, 2209, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11085, 62, 25404, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13344, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 1267, 628, 198, 198, 4871, 7343, 6601, 28264, 8053, 6601, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 8053, 6601, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 27178, 9148, 11290, 2219, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 11163, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 19545, 62, 335, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 1306, 27178, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 29851, 62, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 1366, 2512, 198, 220, 220, 220, 220, 220, 10340, 1366, 2512, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 1366, 1351, 9701, 198, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 1366, 7021, 20717, 416, 428, 1351, 628, 220, 220, 220, 27178, 9148, 11290, 2176, 7032, 628, 220, 220, 220, 1635, 611, 12515, 341, 1366, 1944, 6056, 318, 900, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 259, 12102, 341, 62, 9895, 62, 29851, 62, 27, 45, 29, 15506, 532, 493, 1058, 2209, 286, 399, 12, 400, 12515, 341, 628, 220, 220, 220, 1635, 329, 1602, 439, 18896, 456, 83, 7021, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 7890, 62, 9967, 62, 11925, 15506, 532, 493, 1058, 1602, 439, 34318, 2790, 2546, 287, 9881, 329, 477, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20717, 1366, 7021, 26, 938, 2512, 460, 307, 4833, 628, 220, 220, 220, 1635, 329, 7885, 18896, 456, 83, 7021, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 28968, 62, 27, 45, 29, 15506, 532, 493, 1058, 18022, 11677, 286, 399, 12, 400, 1366, 2512, 628, 220, 220, 220, 1635, 611, 640, 3815, 6056, 318, 900, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 2435, 62, 8367, 62, 27, 45, 29, 15506, 532, 493, 930, 12178, 1058, 717, 8246, 41033, 1988, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 12, 400, 1366, 2512, 628, 220, 220, 220, 1635, 611, 9848, 3815, 6056, 318, 900, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 9248, 62, 8367, 62, 27, 45, 29, 15506, 532, 493, 930, 12178, 1058, 717, 8246, 9848, 1988, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 12, 400, 1366, 2512, 628, 220, 220, 220, 1635, 611, 5253, 3815, 6056, 318, 900, 628, 220, 220, 220, 220, 220, 220, 220, 1635, 7559, 30246, 62, 8367, 62, 27, 45, 29, 15506, 532, 493, 930, 12178, 1058, 717, 8246, 5253, 1988, 286, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 12, 400, 1366, 2512, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 1366, 1351, 2209, 628, 220, 220, 220, 37227, 628, 198, 4871, 8090, 21918, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1635, 7416, 21918, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 25861, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 1464, 275, 6, 2235, 11584, 6, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 3672, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 2723, 1438, 198, 220, 220, 220, 1635, 7559, 6978, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 326, 4909, 262, 2723, 3108, 198, 220, 220, 220, 1635, 7559, 23893, 62, 29851, 15506, 532, 493, 1058, 2209, 286, 15326, 9148, 11290, 14, 12740, 9148, 11290, 28110, 4909, 262, 198, 220, 220, 220, 220, 220, 2723, 2912, 198, 220, 220, 220, 1635, 7559, 10459, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 2723, 2099, 198, 220, 220, 220, 1635, 7559, 10885, 62, 4906, 15506, 532, 493, 1058, 18253, 2438, 329, 2723, 1323, 2099, 198, 220, 220, 220, 1635, 7559, 33152, 15506, 532, 493, 1058, 2723, 9701, 198, 220, 220, 220, 1635, 7559, 411, 8520, 16, 15506, 532, 9881, 1058, 10395, 9881, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 2723, 1321, 2209, 198, 220, 220, 220, 1635, 7559, 23893, 15506, 532, 965, 1058, 2723, 2912, 198, 220, 220, 220, 1635, 7559, 3672, 15506, 532, 965, 1058, 2723, 1438, 198, 220, 220, 220, 1635, 7559, 6978, 15506, 532, 965, 1058, 2723, 3108, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9967, 62, 11925, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 28751, 62, 48624, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 6978, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23893, 62, 29851, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10459, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10885, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33152, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 411, 8520, 16, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 4871, 24396, 628, 198, 4871, 8255, 12235, 25, 198, 220, 220, 220, 37227, 11321, 15326, 9148, 11290, 290, 10670, 9148, 11290, 1398, 628, 220, 220, 220, 1635, 8206, 12235, 9, 468, 262, 1708, 12608, 11, 326, 389, 635, 1695, 355, 198, 220, 220, 220, 8633, 588, 1994, 12, 8367, 14729, 628, 220, 220, 220, 15326, 9148, 11290, 7032, 628, 220, 220, 220, 1635, 7559, 312, 15506, 532, 9881, 1058, 2512, 4522, 26, 275, 6, 2235, 29551, 6, 329, 15326, 9148, 11290, 290, 275, 6, 2235, 12740, 6, 329, 10670, 9148, 11290, 198, 220, 220, 220, 1635, 7559, 411, 8520, 15, 15506, 532, 493, 1058, 10395, 9881, 198, 220, 220, 220, 1635, 7559, 9967, 62, 11925, 15506, 532, 493, 1058, 2512, 9881, 2546, 198, 220, 220, 220, 1635, 7559, 28751, 62, 48624, 15506, 532, 493, 1058, 1271, 286, 6117, 198, 220, 220, 220, 1635, 7559, 5239, 15506, 532, 9881, 1058, 4036, 2420, 2695, 628, 220, 220, 220, 3819, 12608, 628, 220, 220, 220, 1635, 7559, 21975, 15506, 532, 493, 1058, 2420, 2512, 2209, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2209, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2512, 2209, 198, 220, 220, 220, 4269, 1058, 5412, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 5412, 198, 220, 220, 220, 13634, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6056, 284, 900, 262, 2512, 2099, 284, 10670, 9148, 11290, 329, 32366, 2727, 5563, 26, 4277, 1635, 25101, 9, 198, 220, 220, 220, 2420, 1058, 9881, 14, 2536, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 2695, 329, 32366, 2727, 5563, 628, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 5855, 21975, 1600, 366, 312, 1600, 366, 411, 8520, 15, 1600, 366, 9967, 62, 11925, 1600, 366, 28751, 62, 48624, 1600, 366, 5239, 4943, 198 ]
2.649713
12,544
#!/usr/bin/env python3 import asyncore, socket import sys import threading import logging logger = logging.getLogger('lsp-daemon') hdlr = logging.FileHandler('/Users/ppinheiro/git_tree/pinelang/lsp/server/lsp-daemon.log') formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.setLevel(logging.DEBUG) PORT = 20001 HOST = 'localhost' # This script is just a simple relay from stdin/stdout int the LSP server # that resides on a Android App of whatever listen to LSP on a socket. if __name__ == '__main__': client = TCPRelay(HOST, PORT) client.start() logger.info(f'Daemon started') while True: header = sys.stdin.readline() logger.info(f'Received header from stdin: {header}') empty = sys.stdin.readline() logger.info(f'Received emptyline stdin: {empty}') count = int(header.replace('Content-Length: ','').replace('\r', '').replace('\n', '')) logger.info(f'Reading {count} from stdin') client.buffer = (header + empty + sys.stdin.read(count)).encode('utf-8')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 355, 2047, 7295, 11, 17802, 198, 11748, 25064, 198, 11748, 4704, 278, 198, 11748, 18931, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 75, 2777, 12, 6814, 7966, 11537, 198, 31298, 14050, 796, 18931, 13, 8979, 25060, 10786, 14, 14490, 14, 381, 259, 258, 7058, 14, 18300, 62, 21048, 14, 11635, 417, 648, 14, 75, 2777, 14, 15388, 14, 75, 2777, 12, 6814, 7966, 13, 6404, 11537, 198, 687, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 20500, 8, 82, 11537, 198, 31298, 14050, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 6404, 1362, 13, 2860, 25060, 7, 31298, 14050, 8, 220, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 198, 15490, 796, 939, 486, 198, 39, 10892, 796, 705, 36750, 6, 198, 198, 2, 770, 4226, 318, 655, 257, 2829, 24248, 422, 14367, 259, 14, 19282, 448, 493, 262, 406, 4303, 4382, 198, 2, 326, 29076, 319, 257, 5565, 2034, 286, 4232, 6004, 284, 406, 4303, 319, 257, 17802, 13, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 5456, 796, 17283, 4805, 417, 323, 7, 39, 10892, 11, 350, 9863, 8, 198, 220, 220, 220, 5456, 13, 9688, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 26531, 7966, 2067, 11537, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 796, 25064, 13, 19282, 259, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 3041, 6471, 13639, 422, 14367, 259, 25, 1391, 25677, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6565, 220, 796, 25064, 13, 19282, 259, 13, 961, 1370, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 3041, 6471, 6565, 1370, 14367, 259, 25, 1391, 28920, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 954, 220, 796, 493, 7, 25677, 13, 33491, 10786, 19746, 12, 24539, 25, 705, 14004, 737, 33491, 10786, 59, 81, 3256, 10148, 737, 33491, 10786, 59, 77, 3256, 10148, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 69, 6, 36120, 1391, 9127, 92, 422, 14367, 259, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 13, 22252, 796, 357, 25677, 1343, 6565, 1343, 25064, 13, 19282, 259, 13, 961, 7, 9127, 29720, 268, 8189, 10786, 40477, 12, 23, 11537, 198 ]
2.56682
434
# Generated by Django 3.0.8 on 2020-07-02 10:30 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 23, 319, 12131, 12, 2998, 12, 2999, 838, 25, 1270, 198, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
3.019231
52
# internationalization (I18N) 国际化 and localization (L10N) 本土化 # gettext 是GNU国际化与本地化(i18n)函数库 """ gettext 是一套 GNU下的国际化工具。主要有工具: xgettext: 从源码中抽取字符串,生成po文件(portable object) msgfmt: 将po文件编译成mo文件(machine object) gettext: 进行翻译 https://blog.csdn.net/handsomekang/article/details/78747504 """ # https://www.gnu.org/software/gettext/ # windows http://gnuwin32.sourceforge.net/packages/gettext.htm # Python本地化例子 - gettext 模块 https://www.cnblogs.com/ldlchina/p/4708442.html
[ 2, 3230, 1634, 357, 40, 1507, 45, 8, 10263, 249, 121, 165, 247, 227, 44293, 244, 290, 42842, 357, 43, 940, 45, 8, 42164, 105, 28839, 253, 44293, 244, 198, 2, 651, 5239, 10545, 246, 107, 16630, 52, 32368, 121, 165, 247, 227, 44293, 244, 10310, 236, 17312, 105, 28839, 108, 44293, 244, 7, 72, 1507, 77, 8, 49035, 121, 46763, 108, 41753, 241, 198, 37811, 198, 1136, 5239, 10545, 246, 107, 31660, 25001, 245, 22961, 10310, 233, 21410, 32368, 121, 165, 247, 227, 44293, 244, 32432, 98, 17739, 115, 16764, 10310, 119, 17358, 223, 17312, 231, 32432, 98, 17739, 115, 171, 120, 248, 198, 198, 87, 1136, 5239, 25, 220, 20015, 236, 162, 118, 238, 163, 254, 223, 40792, 162, 232, 121, 20998, 244, 27764, 245, 163, 105, 99, 10310, 110, 171, 120, 234, 37955, 22755, 238, 7501, 23877, 229, 20015, 114, 7, 634, 540, 2134, 8, 198, 19662, 69, 16762, 25, 10263, 108, 228, 7501, 23877, 229, 20015, 114, 163, 120, 244, 46237, 239, 22755, 238, 5908, 23877, 229, 20015, 114, 7, 30243, 2134, 8, 198, 1136, 5239, 25, 5525, 123, 249, 26193, 234, 163, 123, 119, 46237, 239, 198, 5450, 1378, 14036, 13, 6359, 32656, 13, 3262, 14, 43365, 462, 74, 648, 14, 20205, 14, 36604, 14, 41019, 2857, 33580, 198, 37811, 198, 198, 2, 3740, 1378, 2503, 13, 41791, 13, 2398, 14, 43776, 14, 1136, 5239, 14, 198, 198, 2, 9168, 2638, 1378, 41791, 5404, 2624, 13, 10459, 30293, 13, 3262, 14, 43789, 14, 1136, 5239, 13, 19211, 628, 198, 2, 11361, 17312, 105, 28839, 108, 44293, 244, 160, 122, 233, 36310, 532, 651, 5239, 10545, 101, 94, 161, 251, 245, 3740, 1378, 2503, 13, 31522, 49096, 13, 785, 14, 335, 75, 354, 1437, 14, 79, 14, 27790, 23, 39506, 13, 6494, 198 ]
1.579125
297
import numpy as np # Declare 'global' variables, matrices used for function P and also S_boxes lambd = np.loadtxt(open("matrix.txt", "rb"), delimiter=" ", skiprows=0) lambd_inv = np.loadtxt(open("matrix_inv.txt", "rb"), delimiter=" ", skiprows=0) S_box = {'00':'67', '01':'64', '02':'14', '03':'35', '04':'60', '05':'24', '06':'17', '07':'54', '10':'01', '11':'42', '12':'47', '13':'15', '14':'41', '15':'23', '16':'63', '17':'52', '20':'04', '21':'56', '22':'55', '23':'31', '24':'11', '25':'37', '26':'07', '27':'27', '30':'46', '31':'70', '32':'05', '33':'76', '34':'22', '35':'43', '36':'71', '37':'77', '40':'57', '41':'36', '42':'33', '43':'40', '44':'26', '45':'50', '46':'13', '47':'21', '50':'53', '51':'51', '52':'10', '53':'32', '54':'25', '55':'44', '56':'00', '57':'75', '60':'65', '61':'74', '62':'06', '63':'03', '64':'12', '65':'02', '66':'34', '67':'20', '70':'66', '71':'72', '72':'16', '73':'45', '74':'30', '75':'62', '76':'61', '77':'73'} S_reversible = dict(zip(S_box.values(),S_box.keys())) # Function converts binary to octal and vice-versa depending on if curr_base is 2 or 8 # Given k_i returns k_i+1 using a substitution defined in phi as given in report specification # Takes two strings s1,s2 and performs xor operation elementwise # Performs operation P(x) = matrix (x) x, where (x) denotes matrix mult. with xor operation as addition # Encryption combines all previous functions. S-boxes, P function, base_converter, xor # Decryption performs the reverse of the encryption # Operations follow from encryption expect we utilize the inverse of S-boxes # As well as inverse of matrix used in P(x), also the reverse of keys if __name__ == '__main__': # test_vectors() # run test vectors to check if basic functionality is working # run main and basic how-to use main code: message 18-bit length message can be edited, k0 can be edited # and rounds=512 can be edited to preference main() print(base_conv(x='001001001011111100', curr_base=2))
[ 11748, 299, 32152, 355, 45941, 198, 198, 2, 16691, 533, 705, 20541, 6, 9633, 11, 2603, 45977, 973, 329, 2163, 350, 290, 635, 311, 62, 29305, 198, 2543, 17457, 796, 45941, 13, 2220, 14116, 7, 9654, 7203, 6759, 8609, 13, 14116, 1600, 366, 26145, 12340, 46728, 2676, 2625, 220, 220, 220, 220, 33172, 14267, 8516, 28, 15, 8, 198, 2543, 17457, 62, 16340, 796, 45941, 13, 2220, 14116, 7, 9654, 7203, 6759, 8609, 62, 16340, 13, 14116, 1600, 366, 26145, 12340, 46728, 2676, 2625, 220, 220, 220, 220, 33172, 14267, 8516, 28, 15, 8, 198, 198, 50, 62, 3524, 796, 1391, 6, 405, 10354, 6, 3134, 3256, 705, 486, 10354, 6, 2414, 3256, 705, 2999, 10354, 6, 1415, 3256, 705, 3070, 10354, 6, 2327, 3256, 705, 3023, 10354, 6, 1899, 3256, 705, 2713, 10354, 6, 1731, 3256, 705, 3312, 10354, 6, 1558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2998, 10354, 6, 4051, 3256, 705, 940, 10354, 6, 486, 3256, 705, 1157, 10354, 6, 3682, 3256, 705, 1065, 10354, 6, 2857, 3256, 705, 1485, 10354, 6, 1314, 3256, 705, 1415, 10354, 6, 3901, 3256, 705, 1314, 10354, 6, 1954, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1433, 10354, 6, 5066, 3256, 705, 1558, 10354, 6, 4309, 3256, 705, 1238, 10354, 6, 3023, 3256, 705, 2481, 10354, 6, 3980, 3256, 705, 1828, 10354, 6, 2816, 3256, 705, 1954, 10354, 6, 3132, 3256, 705, 1731, 10354, 6, 1157, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1495, 10354, 6, 2718, 3256, 705, 2075, 10354, 6, 2998, 3256, 705, 1983, 10354, 6, 1983, 3256, 705, 1270, 10354, 6, 3510, 3256, 705, 3132, 10354, 6, 2154, 3256, 705, 2624, 10354, 6, 2713, 3256, 705, 2091, 10354, 6, 4304, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2682, 10354, 6, 1828, 3256, 705, 2327, 10354, 6, 3559, 3256, 705, 2623, 10354, 6, 4869, 3256, 705, 2718, 10354, 6, 3324, 3256, 705, 1821, 10354, 6, 3553, 3256, 705, 3901, 10354, 6, 2623, 3256, 705, 3682, 10354, 6, 2091, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3559, 10354, 6, 1821, 3256, 705, 2598, 10354, 6, 2075, 3256, 705, 2231, 10354, 6, 1120, 3256, 705, 3510, 10354, 6, 1485, 3256, 705, 2857, 10354, 6, 2481, 3256, 705, 1120, 10354, 6, 4310, 3256, 705, 4349, 10354, 6, 4349, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4309, 10354, 6, 940, 3256, 705, 4310, 10354, 6, 2624, 3256, 705, 4051, 10354, 6, 1495, 3256, 705, 2816, 10354, 6, 2598, 3256, 705, 3980, 10354, 6, 405, 3256, 705, 3553, 10354, 6, 2425, 3256, 705, 1899, 10354, 6, 2996, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5333, 10354, 6, 4524, 3256, 705, 5237, 10354, 6, 3312, 3256, 705, 5066, 10354, 6, 3070, 3256, 705, 2414, 10354, 6, 1065, 3256, 705, 2996, 10354, 6, 2999, 3256, 705, 2791, 10354, 6, 2682, 3256, 705, 3134, 10354, 6, 1238, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2154, 10354, 6, 2791, 3256, 705, 4869, 10354, 6, 4761, 3256, 705, 4761, 10354, 6, 1433, 3256, 705, 4790, 10354, 6, 2231, 3256, 705, 4524, 10354, 6, 1270, 3256, 705, 2425, 10354, 6, 5237, 3256, 705, 4304, 10354, 6, 5333, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3324, 10354, 6, 4790, 6, 92, 198, 198, 50, 62, 260, 37393, 796, 8633, 7, 13344, 7, 50, 62, 3524, 13, 27160, 22784, 50, 62, 3524, 13, 13083, 3419, 4008, 198, 198, 2, 15553, 26161, 13934, 284, 19318, 282, 290, 7927, 12, 690, 64, 6906, 319, 611, 1090, 81, 62, 8692, 318, 362, 393, 807, 198, 198, 2, 11259, 479, 62, 72, 5860, 479, 62, 72, 10, 16, 1262, 257, 32097, 5447, 287, 872, 72, 355, 1813, 287, 989, 20855, 198, 198, 2, 33687, 734, 13042, 264, 16, 11, 82, 17, 290, 17706, 2124, 273, 4905, 5002, 3083, 198, 198, 2, 2448, 23914, 4905, 350, 7, 87, 8, 796, 17593, 357, 87, 8, 2124, 11, 810, 357, 87, 8, 43397, 17593, 1963, 13, 351, 2124, 273, 4905, 355, 3090, 198, 198, 2, 14711, 13168, 21001, 477, 2180, 5499, 13, 311, 12, 29305, 11, 350, 2163, 11, 2779, 62, 1102, 332, 353, 11, 2124, 273, 198, 198, 2, 4280, 13168, 17706, 262, 9575, 286, 262, 15835, 198, 2, 16205, 1061, 422, 15835, 1607, 356, 17624, 262, 34062, 286, 311, 12, 29305, 198, 2, 1081, 880, 355, 34062, 286, 17593, 973, 287, 350, 7, 87, 828, 635, 262, 9575, 286, 8251, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 1332, 62, 303, 5217, 3419, 1303, 1057, 1332, 30104, 284, 2198, 611, 4096, 11244, 318, 1762, 628, 220, 220, 220, 1303, 1057, 1388, 290, 4096, 703, 12, 1462, 779, 1388, 2438, 25, 3275, 1248, 12, 2545, 4129, 3275, 460, 307, 13012, 11, 479, 15, 460, 307, 13012, 198, 220, 220, 220, 1303, 290, 9196, 28, 25836, 460, 307, 13012, 284, 12741, 198, 220, 220, 220, 1388, 3419, 198, 220, 220, 220, 3601, 7, 8692, 62, 42946, 7, 87, 11639, 405, 3064, 3064, 8784, 26259, 3064, 3256, 1090, 81, 62, 8692, 28, 17, 4008, 198 ]
2.397245
871
from Node import Node
[ 6738, 19081, 1330, 19081, 628 ]
4.6
5
from enum import Enum from typing import Any, Optional, List from momento_wire_types import cacheclient_pb2 as cache_client_types from . import _cache_service_errors_converter as error_converter from . import _momento_logger
[ 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 4377, 11, 32233, 11, 7343, 198, 198, 6738, 2589, 78, 62, 21809, 62, 19199, 1330, 12940, 16366, 62, 40842, 17, 355, 12940, 62, 16366, 62, 19199, 198, 6738, 764, 1330, 4808, 23870, 62, 15271, 62, 48277, 62, 1102, 332, 353, 355, 4049, 62, 1102, 332, 353, 198, 6738, 764, 1330, 4808, 32542, 50217, 62, 6404, 1362, 628, 628, 628, 628 ]
3.376812
69
import math
[ 11748, 10688, 628 ]
4.333333
3
"""Script for starting up emulation up with module emulators.""" import logging import asyncio from argparse import ArgumentParser from typing import List from opentrons.hardware_control.emulation.app import Application from opentrons.hardware_control.emulation.scripts.run_module_emulator import ( emulator_builder, ) from opentrons.hardware_control.emulation.settings import Settings from .run_module_emulator import run as run_module_by_name async def run(settings: Settings, modules: List[str]) -> None: """Run the emulator app with connected module emulators. Args: settings: App settings. modules: The module emulators to start. Returns: None """ loop = asyncio.get_event_loop() app_task = loop.create_task(Application(settings=settings).run()) module_tasks = [ loop.create_task( run_module_by_name(settings=settings, emulator_name=n, host="localhost") ) for n in modules ] await asyncio.gather(app_task, *module_tasks) def main() -> None: """Entry point.""" a = ArgumentParser() a.add_argument( "--m", action="append", choices=emulator_builder.keys(), help="which module(s) to emulate.", ) args = a.parse_args() logging.basicConfig(format="%(asctime)s:%(message)s", level=logging.DEBUG) asyncio.run(run(Settings(), args.m)) if __name__ == "__main__": main()
[ 37811, 7391, 329, 3599, 510, 47065, 510, 351, 8265, 795, 24325, 526, 15931, 198, 11748, 18931, 198, 11748, 30351, 952, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 1034, 298, 12212, 13, 10424, 1574, 62, 13716, 13, 368, 1741, 13, 1324, 1330, 15678, 198, 6738, 1034, 298, 12212, 13, 10424, 1574, 62, 13716, 13, 368, 1741, 13, 46521, 13, 5143, 62, 21412, 62, 368, 8927, 1330, 357, 198, 220, 220, 220, 38274, 62, 38272, 11, 198, 8, 198, 6738, 1034, 298, 12212, 13, 10424, 1574, 62, 13716, 13, 368, 1741, 13, 33692, 1330, 16163, 198, 6738, 764, 5143, 62, 21412, 62, 368, 8927, 1330, 1057, 355, 1057, 62, 21412, 62, 1525, 62, 3672, 628, 198, 292, 13361, 825, 1057, 7, 33692, 25, 16163, 11, 13103, 25, 7343, 58, 2536, 12962, 4613, 6045, 25, 198, 220, 220, 220, 37227, 10987, 262, 38274, 598, 351, 5884, 8265, 795, 24325, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6460, 25, 2034, 6460, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13103, 25, 383, 8265, 795, 24325, 284, 923, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 9052, 796, 30351, 952, 13, 1136, 62, 15596, 62, 26268, 3419, 628, 220, 220, 220, 598, 62, 35943, 796, 9052, 13, 17953, 62, 35943, 7, 23416, 7, 33692, 28, 33692, 737, 5143, 28955, 198, 220, 220, 220, 8265, 62, 83, 6791, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 9052, 13, 17953, 62, 35943, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1057, 62, 21412, 62, 1525, 62, 3672, 7, 33692, 28, 33692, 11, 38274, 62, 3672, 28, 77, 11, 2583, 2625, 36750, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 13103, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 25507, 30351, 952, 13, 70, 1032, 7, 1324, 62, 35943, 11, 1635, 21412, 62, 83, 6791, 8, 628, 198, 4299, 1388, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 30150, 966, 526, 15931, 198, 220, 220, 220, 257, 796, 45751, 46677, 3419, 198, 220, 220, 220, 257, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 76, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 33295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 368, 8927, 62, 38272, 13, 13083, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 4758, 8265, 7, 82, 8, 284, 33836, 33283, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 26498, 796, 257, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 2625, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 20500, 8, 82, 1600, 1241, 28, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 30351, 952, 13, 5143, 7, 5143, 7, 26232, 22784, 26498, 13, 76, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.698502
534
# The original repo: https://github.com/ydhongHIT/DDRNet import torch import torch.nn as nn import torch.nn.functional as F from mmcv.runner import load_checkpoint from mmcv.utils.parrots_wrapper import _BatchNorm from mmseg.utils import get_root_logger from ..builder import BACKBONES BatchNorm2d = nn.SyncBatchNorm bn_mom = 0.1 def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) @BACKBONES.register_module() class DDRNet(nn.Module): """DDRNet backbone. `Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes <https://github.com/ydhongHIT/DDRNet>`_ """ @staticmethod def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) else: raise TypeError('pretrained must be a str or None') def train(self, mode=True): """Convert the model into training mode.""" super().train(mode) if mode and self.norm_eval: for m in self.modules(): if isinstance(m, _BatchNorm): m.eval()
[ 2, 383, 2656, 29924, 25, 3740, 1378, 12567, 13, 785, 14, 5173, 71, 506, 39, 2043, 14, 35, 7707, 7934, 201, 198, 201, 198, 11748, 28034, 201, 198, 11748, 28034, 13, 20471, 355, 299, 77, 201, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 201, 198, 201, 198, 6738, 8085, 33967, 13, 16737, 1330, 3440, 62, 9122, 4122, 201, 198, 6738, 8085, 33967, 13, 26791, 13, 1845, 24744, 62, 48553, 1330, 4808, 33, 963, 35393, 201, 198, 201, 198, 6738, 8085, 325, 70, 13, 26791, 1330, 651, 62, 15763, 62, 6404, 1362, 201, 198, 6738, 11485, 38272, 1330, 28767, 33, 39677, 201, 198, 201, 198, 33, 963, 35393, 17, 67, 796, 299, 77, 13, 28985, 33, 963, 35393, 201, 198, 9374, 62, 32542, 796, 657, 13, 16, 201, 198, 201, 198, 201, 198, 4299, 3063, 18, 87, 18, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 33769, 28, 16, 2599, 201, 198, 220, 220, 220, 37227, 18, 87, 18, 3063, 2122, 351, 24511, 37811, 201, 198, 201, 198, 220, 220, 220, 1441, 299, 77, 13, 3103, 85, 17, 67, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 9720, 62, 7857, 28, 18, 11, 33769, 28, 2536, 485, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 28, 16, 11, 10690, 28, 25101, 8, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 31, 31098, 33, 39677, 13, 30238, 62, 21412, 3419, 201, 198, 4871, 30085, 7934, 7, 20471, 13, 26796, 2599, 201, 198, 220, 220, 220, 37227, 35, 7707, 7934, 32774, 13, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 29744, 20446, 12, 29268, 27862, 329, 6416, 12, 2435, 290, 6366, 15537, 12449, 5109, 1001, 5154, 341, 286, 5567, 49525, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 5450, 1378, 12567, 13, 785, 14, 5173, 71, 506, 39, 2043, 14, 35, 7707, 7934, 29, 63, 62, 201, 198, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 2488, 12708, 24396, 201, 198, 201, 198, 220, 220, 220, 825, 2315, 62, 43775, 7, 944, 11, 2181, 13363, 28, 14202, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 19590, 287, 32774, 13, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 2536, 11, 11902, 2599, 10644, 284, 662, 12, 35311, 19590, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 6045, 13, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 5310, 13363, 11, 965, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 796, 651, 62, 15763, 62, 6404, 1362, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 9122, 4122, 7, 944, 11, 2181, 13363, 11, 7646, 28, 25101, 11, 49706, 28, 6404, 1362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2181, 13363, 318, 6045, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 2116, 13, 18170, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 76, 11, 299, 77, 13, 3103, 85, 17, 67, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 15003, 13, 74, 1385, 278, 62, 11265, 41052, 76, 13, 6551, 11, 4235, 11639, 24408, 62, 448, 3256, 1729, 29127, 414, 11639, 260, 2290, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 76, 11, 347, 963, 35393, 17, 67, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 15003, 13, 9979, 415, 41052, 76, 13, 6551, 11, 352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 77, 13, 15003, 13, 9979, 415, 41052, 76, 13, 65, 4448, 11, 657, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 5310, 13363, 1276, 307, 257, 965, 393, 6045, 11537, 201, 198, 201, 198, 220, 220, 220, 825, 4512, 7, 944, 11, 4235, 28, 17821, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 262, 2746, 656, 3047, 4235, 526, 15931, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 27432, 7, 14171, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 290, 2116, 13, 27237, 62, 18206, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 2116, 13, 18170, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 76, 11, 4808, 33, 963, 35393, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 18206, 3419, 201, 198 ]
2.081458
933
from django.http import HttpResponse from kawalc1 import settings
[ 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 198, 6738, 479, 707, 282, 66, 16, 1330, 6460, 628, 198 ]
3.285714
21
a, b = map(int, input().split()) print(a + b if a + b < 10 else "error")
[ 64, 11, 275, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 4798, 7, 64, 1343, 275, 611, 257, 1343, 275, 1279, 838, 2073, 366, 18224, 4943 ]
2.571429
28
import enum import uuid import string import re import requests from pydantic import BaseModel, validator, root_validator from dataclasses import dataclass from datetime import datetime from bin.contentctl_project.contentctl_core.domain.entities.security_content_object import SecurityContentObject from bin.contentctl_project.contentctl_core.domain.entities.enums.enums import AnalyticsType from bin.contentctl_project.contentctl_core.domain.entities.enums.enums import DataModel from bin.contentctl_project.contentctl_core.domain.entities.detection_tags import DetectionTags from bin.contentctl_project.contentctl_core.domain.entities.deployment import Deployment from bin.contentctl_project.contentctl_core.domain.entities.unit_test import UnitTest from bin.contentctl_project.contentctl_core.domain.entities.macro import Macro from bin.contentctl_project.contentctl_core.domain.entities.lookup import Lookup from bin.contentctl_project.contentctl_core.domain.entities.baseline import Baseline from bin.contentctl_project.contentctl_core.domain.entities.playbook import Playbook
[ 11748, 33829, 198, 11748, 334, 27112, 198, 11748, 4731, 198, 11748, 302, 198, 11748, 7007, 198, 198, 6738, 279, 5173, 5109, 1330, 7308, 17633, 11, 4938, 1352, 11, 6808, 62, 12102, 1352, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 12961, 62, 11299, 62, 15252, 1330, 4765, 19746, 10267, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 268, 5700, 13, 268, 5700, 1330, 30437, 6030, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 268, 5700, 13, 268, 5700, 1330, 6060, 17633, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 15255, 3213, 62, 31499, 1330, 46254, 36142, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 2934, 1420, 434, 1330, 34706, 434, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 20850, 62, 9288, 1330, 11801, 14402, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 20285, 305, 1330, 42755, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 5460, 929, 1330, 6803, 929, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 12093, 4470, 1330, 6455, 4470, 198, 6738, 9874, 13, 11299, 34168, 62, 16302, 13, 11299, 34168, 62, 7295, 13, 27830, 13, 298, 871, 13, 1759, 2070, 1330, 3811, 2070, 628, 220 ]
3.572368
304
""" Helper script for checking status of transceivers This script contains re-usable functions for checking status of transceivers. """ import logging import re def parse_transceiver_info(output_lines): """ @summary: Parse the list of transceiver from DB table TRANSCEIVER_INFO content @param output_lines: DB table TRANSCEIVER_INFO content output by 'redis' command @return: Return parsed transceivers in a list """ result = [] p = re.compile(r"TRANSCEIVER_INFO\|(Ethernet\d+)") for line in output_lines: m = p.match(line) assert m, "Unexpected line %s" % line result.append(m.group(1)) return result def parse_transceiver_dom_sensor(output_lines): """ @summary: Parse the list of transceiver from DB table TRANSCEIVER_DOM_SENSOR content @param output_lines: DB table TRANSCEIVER_DOM_SENSOR content output by 'redis' command @return: Return parsed transceivers in a list """ result = [] p = re.compile(r"TRANSCEIVER_DOM_SENSOR\|(Ethernet\d+)") for line in output_lines: m = p.match(line) assert m, "Unexpected line %s" % line result.append(m.group(1)) return result def all_transceivers_detected(dut, asic_index, interfaces, xcvr_skip_list): """ Check if transceiver information of all the specified interfaces have been detected. """ cmd = "redis-cli --raw -n 6 keys TRANSCEIVER_INFO\*" asichost = dut.asic_instance(asic_index) docker_cmd = asichost.get_docker_cmd(cmd, "database") db_output = dut.command(docker_cmd)["stdout_lines"] not_detected_interfaces = [intf for intf in interfaces if (intf not in xcvr_skip_list[dut.hostname] and "TRANSCEIVER_INFO|{}".format(intf) not in db_output)] if len(not_detected_interfaces) > 0: logging.info("Interfaces not detected: %s" % str(not_detected_interfaces)) return False return True def check_transceiver_basic(dut, asic_index, interfaces, xcvr_skip_list): """ @summary: Check whether all the specified interface are in TRANSCEIVER_INFO redis DB. @param dut: The AnsibleHost object of DUT. For interacting with DUT. @param interfaces: List of interfaces that need to be checked. """ logging.info("Check whether transceiver information of all ports are in redis") cmd = "redis-cli -n 6 keys TRANSCEIVER_INFO*" asichost = dut.asic_instance(asic_index) docker_cmd = asichost.get_docker_cmd(cmd, "database") xcvr_info = dut.command(docker_cmd) parsed_xcvr_info = parse_transceiver_info(xcvr_info["stdout_lines"]) for intf in interfaces: if intf not in xcvr_skip_list[dut.hostname]: assert intf in parsed_xcvr_info, "TRANSCEIVER INFO of %s is not found in DB" % intf def check_transceiver_details(dut, asic_index, interfaces, xcvr_skip_list): """ @summary: Check the detailed TRANSCEIVER_INFO content of all the specified interfaces. @param dut: The AnsibleHost object of DUT. For interacting with DUT. @param interfaces: List of interfaces that need to be checked. """ asichost = dut.asic_instance(asic_index) logging.info("Check detailed transceiver information of each connected port") expected_fields = ["type", "vendor_rev", "serial", "manufacturer", "model"] for intf in interfaces: if intf not in xcvr_skip_list[dut.hostname]: cmd = 'redis-cli -n 6 hgetall "TRANSCEIVER_INFO|%s"' % intf docker_cmd = asichost.get_docker_cmd(cmd, "database") port_xcvr_info = dut.command(docker_cmd) for field in expected_fields: assert port_xcvr_info["stdout"].find(field) >= 0, \ "Expected field %s is not found in %s while checking %s" % (field, port_xcvr_info["stdout"], intf) def check_transceiver_dom_sensor_basic(dut, asic_index, interfaces, xcvr_skip_list): """ @summary: Check whether all the specified interface are in TRANSCEIVER_DOM_SENSOR redis DB. @param dut: The AnsibleHost object of DUT. For interacting with DUT. @param interfaces: List of interfaces that need to be checked. """ logging.info("Check whether TRANSCEIVER_DOM_SENSOR of all ports in redis") cmd = "redis-cli -n 6 keys TRANSCEIVER_DOM_SENSOR*" asichost = dut.asic_instance(asic_index) docker_cmd = asichost.get_docker_cmd(cmd, "database") xcvr_dom_sensor = dut.command(docker_cmd) parsed_xcvr_dom_sensor = parse_transceiver_dom_sensor(xcvr_dom_sensor["stdout_lines"]) for intf in interfaces: if intf not in xcvr_skip_list[dut.hostname]: assert intf in parsed_xcvr_dom_sensor, "TRANSCEIVER_DOM_SENSOR of %s is not found in DB" % intf def check_transceiver_dom_sensor_details(dut, asic_index, interfaces, xcvr_skip_list): """ @summary: Check the detailed TRANSCEIVER_DOM_SENSOR content of all the specified interfaces. @param dut: The AnsibleHost object of DUT. For interacting with DUT. @param interfaces: List of interfaces that need to be checked. """ logging.info("Check detailed TRANSCEIVER_DOM_SENSOR information of each connected ports") asichost = dut.asic_instance(asic_index) expected_fields = ["temperature", "voltage", "rx1power", "rx2power", "rx3power", "rx4power", "tx1bias", "tx2bias", "tx3bias", "tx4bias", "tx1power", "tx2power", "tx3power", "tx4power"] for intf in interfaces: if intf not in xcvr_skip_list[dut.hostname]: cmd = 'redis-cli -n 6 hgetall "TRANSCEIVER_DOM_SENSOR|%s"' % intf docker_cmd = asichost.get_docker_cmd(cmd, "database") port_xcvr_dom_sensor = dut.command(docker_cmd) for field in expected_fields: assert port_xcvr_dom_sensor["stdout"].find(field) >= 0, \ "Expected field %s is not found in %s while checking %s" % ( field, port_xcvr_dom_sensor["stdout"], intf) def check_transceiver_status(dut, asic_index, interfaces, xcvr_skip_list): """ @summary: Check transceiver information of all the specified interfaces in redis DB. @param dut: The AnsibleHost object of DUT. For interacting with DUT. @param interfaces: List of interfaces that need to be checked. """ check_transceiver_basic(dut, asic_index, interfaces, xcvr_skip_list) check_transceiver_details(dut, asic_index, interfaces, xcvr_skip_list) check_transceiver_dom_sensor_basic(dut, asic_index, interfaces, xcvr_skip_list) check_transceiver_dom_sensor_details(dut, asic_index, interfaces, xcvr_skip_list)
[ 37811, 198, 47429, 4226, 329, 10627, 3722, 286, 1007, 344, 1191, 198, 198, 1212, 4226, 4909, 302, 12, 31979, 5499, 329, 10627, 3722, 286, 1007, 344, 1191, 13, 198, 37811, 198, 11748, 18931, 198, 11748, 302, 628, 198, 4299, 21136, 62, 7645, 39729, 62, 10951, 7, 22915, 62, 6615, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 2547, 325, 262, 1351, 286, 1007, 39729, 422, 20137, 3084, 44069, 5222, 38757, 62, 10778, 2695, 198, 220, 220, 220, 2488, 17143, 5072, 62, 6615, 25, 20137, 3084, 44069, 5222, 38757, 62, 10778, 2695, 5072, 416, 705, 445, 271, 6, 3141, 198, 220, 220, 220, 2488, 7783, 25, 8229, 44267, 1007, 344, 1191, 287, 257, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 279, 796, 302, 13, 5589, 576, 7, 81, 1, 5446, 15037, 5222, 38757, 62, 10778, 59, 91, 7, 36, 490, 3262, 59, 67, 28988, 4943, 198, 220, 220, 220, 329, 1627, 287, 5072, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 279, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 285, 11, 366, 52, 42072, 1627, 4064, 82, 1, 4064, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 76, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 21136, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 7, 22915, 62, 6615, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 2547, 325, 262, 1351, 286, 1007, 39729, 422, 20137, 3084, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 2695, 198, 220, 220, 220, 2488, 17143, 5072, 62, 6615, 25, 20137, 3084, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 2695, 5072, 416, 705, 445, 271, 6, 3141, 198, 220, 220, 220, 2488, 7783, 25, 8229, 44267, 1007, 344, 1191, 287, 257, 1351, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 279, 796, 302, 13, 5589, 576, 7, 81, 1, 5446, 15037, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 59, 91, 7, 36, 490, 3262, 59, 67, 28988, 4943, 198, 220, 220, 220, 329, 1627, 287, 5072, 62, 6615, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 796, 279, 13, 15699, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 285, 11, 366, 52, 42072, 1627, 4064, 82, 1, 4064, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 76, 13, 8094, 7, 16, 4008, 198, 220, 220, 220, 1441, 1255, 628, 198, 4299, 477, 62, 7645, 344, 1191, 62, 15255, 11197, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 611, 1007, 39729, 1321, 286, 477, 262, 7368, 20314, 423, 587, 12326, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23991, 796, 366, 445, 271, 12, 44506, 1377, 1831, 532, 77, 718, 8251, 44069, 5222, 38757, 62, 10778, 59, 9, 1, 198, 220, 220, 220, 355, 488, 455, 796, 288, 315, 13, 292, 291, 62, 39098, 7, 292, 291, 62, 9630, 8, 198, 220, 220, 220, 36253, 62, 28758, 796, 355, 488, 455, 13, 1136, 62, 45986, 62, 28758, 7, 28758, 11, 366, 48806, 4943, 198, 220, 220, 220, 20613, 62, 22915, 796, 288, 315, 13, 21812, 7, 45986, 62, 28758, 8, 14692, 19282, 448, 62, 6615, 8973, 198, 220, 220, 220, 407, 62, 15255, 11197, 62, 3849, 32186, 796, 685, 600, 69, 329, 493, 69, 287, 20314, 611, 357, 600, 69, 407, 287, 2124, 33967, 81, 62, 48267, 62, 4868, 58, 67, 315, 13, 4774, 3672, 60, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5446, 15037, 5222, 38757, 62, 10778, 91, 90, 92, 1911, 18982, 7, 600, 69, 8, 407, 287, 20613, 62, 22915, 15437, 198, 220, 220, 220, 611, 18896, 7, 1662, 62, 15255, 11197, 62, 3849, 32186, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 7203, 9492, 32186, 407, 12326, 25, 4064, 82, 1, 4064, 965, 7, 1662, 62, 15255, 11197, 62, 3849, 32186, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 1441, 6407, 628, 198, 4299, 2198, 62, 7645, 39729, 62, 35487, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 6822, 1771, 477, 262, 7368, 7071, 389, 287, 44069, 5222, 38757, 62, 10778, 2266, 271, 20137, 13, 198, 220, 220, 220, 2488, 17143, 288, 315, 25, 383, 28038, 856, 17932, 2134, 286, 360, 3843, 13, 1114, 24986, 351, 360, 3843, 13, 198, 220, 220, 220, 2488, 17143, 20314, 25, 7343, 286, 20314, 326, 761, 284, 307, 10667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 10951, 7203, 9787, 1771, 1007, 39729, 1321, 286, 477, 14090, 389, 287, 2266, 271, 4943, 198, 220, 220, 220, 23991, 796, 366, 445, 271, 12, 44506, 532, 77, 718, 8251, 44069, 5222, 38757, 62, 10778, 9, 1, 198, 220, 220, 220, 355, 488, 455, 796, 288, 315, 13, 292, 291, 62, 39098, 7, 292, 291, 62, 9630, 8, 198, 220, 220, 220, 36253, 62, 28758, 796, 355, 488, 455, 13, 1136, 62, 45986, 62, 28758, 7, 28758, 11, 366, 48806, 4943, 198, 220, 220, 220, 2124, 33967, 81, 62, 10951, 796, 288, 315, 13, 21812, 7, 45986, 62, 28758, 8, 198, 220, 220, 220, 44267, 62, 25306, 37020, 62, 10951, 796, 21136, 62, 7645, 39729, 62, 10951, 7, 25306, 37020, 62, 10951, 14692, 19282, 448, 62, 6615, 8973, 8, 198, 220, 220, 220, 329, 493, 69, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 493, 69, 407, 287, 2124, 33967, 81, 62, 48267, 62, 4868, 58, 67, 315, 13, 4774, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 493, 69, 287, 44267, 62, 25306, 37020, 62, 10951, 11, 366, 5446, 15037, 5222, 38757, 24890, 286, 4064, 82, 318, 407, 1043, 287, 20137, 1, 4064, 493, 69, 628, 198, 4299, 2198, 62, 7645, 39729, 62, 36604, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 6822, 262, 6496, 44069, 5222, 38757, 62, 10778, 2695, 286, 477, 262, 7368, 20314, 13, 198, 220, 220, 220, 2488, 17143, 288, 315, 25, 383, 28038, 856, 17932, 2134, 286, 360, 3843, 13, 1114, 24986, 351, 360, 3843, 13, 198, 220, 220, 220, 2488, 17143, 20314, 25, 7343, 286, 20314, 326, 761, 284, 307, 10667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 355, 488, 455, 796, 288, 315, 13, 292, 291, 62, 39098, 7, 292, 291, 62, 9630, 8, 198, 220, 220, 220, 18931, 13, 10951, 7203, 9787, 6496, 1007, 39729, 1321, 286, 1123, 5884, 2493, 4943, 198, 220, 220, 220, 2938, 62, 25747, 796, 14631, 4906, 1600, 366, 85, 18738, 62, 18218, 1600, 366, 46911, 1600, 366, 48119, 15051, 1600, 366, 19849, 8973, 198, 220, 220, 220, 329, 493, 69, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 493, 69, 407, 287, 2124, 33967, 81, 62, 48267, 62, 4868, 58, 67, 315, 13, 4774, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 445, 271, 12, 44506, 532, 77, 718, 289, 1136, 439, 366, 5446, 15037, 5222, 38757, 62, 10778, 91, 4, 82, 30543, 4064, 493, 69, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36253, 62, 28758, 796, 355, 488, 455, 13, 1136, 62, 45986, 62, 28758, 7, 28758, 11, 366, 48806, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 62, 25306, 37020, 62, 10951, 796, 288, 315, 13, 21812, 7, 45986, 62, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 2938, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2493, 62, 25306, 37020, 62, 10951, 14692, 19282, 448, 1, 4083, 19796, 7, 3245, 8, 18189, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3109, 7254, 2214, 4064, 82, 318, 407, 1043, 287, 4064, 82, 981, 10627, 4064, 82, 1, 4064, 357, 3245, 11, 2493, 62, 25306, 37020, 62, 10951, 14692, 19282, 448, 33116, 493, 69, 8, 628, 198, 4299, 2198, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 62, 35487, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 6822, 1771, 477, 262, 7368, 7071, 389, 287, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 2266, 271, 20137, 13, 198, 220, 220, 220, 2488, 17143, 288, 315, 25, 383, 28038, 856, 17932, 2134, 286, 360, 3843, 13, 1114, 24986, 351, 360, 3843, 13, 198, 220, 220, 220, 2488, 17143, 20314, 25, 7343, 286, 20314, 326, 761, 284, 307, 10667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 10951, 7203, 9787, 1771, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 286, 477, 14090, 287, 2266, 271, 4943, 198, 220, 220, 220, 23991, 796, 366, 445, 271, 12, 44506, 532, 77, 718, 8251, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 9, 1, 198, 220, 220, 220, 355, 488, 455, 796, 288, 315, 13, 292, 291, 62, 39098, 7, 292, 291, 62, 9630, 8, 198, 220, 220, 220, 36253, 62, 28758, 796, 355, 488, 455, 13, 1136, 62, 45986, 62, 28758, 7, 28758, 11, 366, 48806, 4943, 198, 220, 220, 220, 2124, 33967, 81, 62, 3438, 62, 82, 22854, 796, 288, 315, 13, 21812, 7, 45986, 62, 28758, 8, 198, 220, 220, 220, 44267, 62, 25306, 37020, 62, 3438, 62, 82, 22854, 796, 21136, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 7, 25306, 37020, 62, 3438, 62, 82, 22854, 14692, 19282, 448, 62, 6615, 8973, 8, 198, 220, 220, 220, 329, 493, 69, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 493, 69, 407, 287, 2124, 33967, 81, 62, 48267, 62, 4868, 58, 67, 315, 13, 4774, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 493, 69, 287, 44267, 62, 25306, 37020, 62, 3438, 62, 82, 22854, 11, 366, 5446, 15037, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 286, 4064, 82, 318, 407, 1043, 287, 20137, 1, 4064, 493, 69, 628, 198, 4299, 2198, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 62, 36604, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 6822, 262, 6496, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 2695, 286, 477, 262, 7368, 20314, 13, 198, 220, 220, 220, 2488, 17143, 288, 315, 25, 383, 28038, 856, 17932, 2134, 286, 360, 3843, 13, 1114, 24986, 351, 360, 3843, 13, 198, 220, 220, 220, 2488, 17143, 20314, 25, 7343, 286, 20314, 326, 761, 284, 307, 10667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18931, 13, 10951, 7203, 9787, 6496, 44069, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 1321, 286, 1123, 5884, 14090, 4943, 198, 220, 220, 220, 355, 488, 455, 796, 288, 315, 13, 292, 291, 62, 39098, 7, 292, 291, 62, 9630, 8, 198, 220, 220, 220, 2938, 62, 25747, 796, 14631, 11498, 21069, 1600, 366, 37764, 496, 1600, 366, 40914, 16, 6477, 1600, 366, 40914, 17, 6477, 1600, 366, 40914, 18, 6477, 1600, 366, 40914, 19, 6477, 1600, 366, 17602, 16, 65, 4448, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17602, 17, 65, 4448, 1600, 366, 17602, 18, 65, 4448, 1600, 366, 17602, 19, 65, 4448, 1600, 366, 17602, 16, 6477, 1600, 366, 17602, 17, 6477, 1600, 366, 17602, 18, 6477, 1600, 366, 17602, 19, 6477, 8973, 198, 220, 220, 220, 329, 493, 69, 287, 20314, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 493, 69, 407, 287, 2124, 33967, 81, 62, 48267, 62, 4868, 58, 67, 315, 13, 4774, 3672, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 445, 271, 12, 44506, 532, 77, 718, 289, 1136, 439, 366, 5446, 15037, 5222, 38757, 62, 39170, 62, 50, 16938, 1581, 91, 4, 82, 30543, 4064, 493, 69, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36253, 62, 28758, 796, 355, 488, 455, 13, 1136, 62, 45986, 62, 28758, 7, 28758, 11, 366, 48806, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 62, 25306, 37020, 62, 3438, 62, 82, 22854, 796, 288, 315, 13, 21812, 7, 45986, 62, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 2938, 62, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2493, 62, 25306, 37020, 62, 3438, 62, 82, 22854, 14692, 19282, 448, 1, 4083, 19796, 7, 3245, 8, 18189, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3109, 7254, 2214, 4064, 82, 318, 407, 1043, 287, 4064, 82, 981, 10627, 4064, 82, 1, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2214, 11, 2493, 62, 25306, 37020, 62, 3438, 62, 82, 22854, 14692, 19282, 448, 33116, 493, 69, 8, 628, 198, 4299, 2198, 62, 7645, 39729, 62, 13376, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2488, 49736, 25, 6822, 1007, 39729, 1321, 286, 477, 262, 7368, 20314, 287, 2266, 271, 20137, 13, 198, 220, 220, 220, 2488, 17143, 288, 315, 25, 383, 28038, 856, 17932, 2134, 286, 360, 3843, 13, 1114, 24986, 351, 360, 3843, 13, 198, 220, 220, 220, 2488, 17143, 20314, 25, 7343, 286, 20314, 326, 761, 284, 307, 10667, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2198, 62, 7645, 39729, 62, 35487, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 8, 198, 220, 220, 220, 2198, 62, 7645, 39729, 62, 36604, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 8, 198, 220, 220, 220, 2198, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 62, 35487, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 8, 198, 220, 220, 220, 2198, 62, 7645, 39729, 62, 3438, 62, 82, 22854, 62, 36604, 7, 67, 315, 11, 355, 291, 62, 9630, 11, 20314, 11, 2124, 33967, 81, 62, 48267, 62, 4868, 8, 198 ]
2.549769
2,592
from msdi_io import * if __name__ == '__main__': print('Labels:', get_label_list()) bl = batchLoader(100,path_msdi=msdi_path) for i in range(10): X,y=bl.load(i) print(X.shape,len(y)) #print(X[1]) """ print('Labels:', get_label_list()) bl = batchLoader(100,path_msdi=msdi_path) for i in range(10): for batch in bl.loadBatch(): X,y = batch[0],batch[1] print() print(X[1]) """
[ 6738, 13845, 10989, 62, 952, 1330, 1635, 198, 201, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 197, 4798, 10786, 17822, 1424, 25, 3256, 651, 62, 18242, 62, 4868, 28955, 201, 198, 197, 2436, 796, 15458, 17401, 7, 3064, 11, 6978, 62, 907, 10989, 28, 907, 10989, 62, 6978, 8, 201, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 201, 198, 197, 197, 55, 11, 88, 28, 2436, 13, 2220, 7, 72, 8, 201, 198, 197, 197, 4798, 7, 55, 13, 43358, 11, 11925, 7, 88, 4008, 201, 198, 197, 197, 2, 4798, 7, 55, 58, 16, 12962, 198, 37811, 197, 4798, 10786, 17822, 1424, 25, 3256, 651, 62, 18242, 62, 4868, 28955, 198, 197, 2436, 796, 15458, 17401, 7, 3064, 11, 6978, 62, 907, 10989, 28, 907, 10989, 62, 6978, 8, 198, 197, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 197, 197, 1640, 15458, 287, 698, 13, 2220, 33, 963, 33529, 198, 197, 197, 197, 55, 11, 88, 796, 15458, 58, 15, 4357, 43501, 58, 16, 60, 201, 198, 197, 197, 197, 4798, 3419, 198, 197, 197, 197, 4798, 7, 55, 58, 16, 12962, 198, 37811, 201, 198 ]
2.06599
197
import numbers from copy import deepcopy from .number import Number from .string import String from .set import Set from .base_datatype import DynamoDataType from .expression import ListAppendExpression from .translator import ( DictTranslator, ListTranslator) class DefaultMapGuesser(object): """A class to guess what datatype to send to DynamoDB based the attribute value A generic map or list type can have anything as its keys and values. There is no way to know what the Datatypes should be used for certainty because many of the datatypes defined (like Datetimes) all are converted to a String before saved in the table. This class will look at the values and decide which Datatype to use. This class can be extended to handle your specific use cases. For example, if you know that the key "my_datetime" should always return a Datetime datatype, the guess() method can be overridden to handle specific cases. """ def guess(self, key, value): """guess the datatype from the value Guessing for mapping means we are trying to figure out the datatype in order to convert it into a dict usable by dynamodb. So this guesser will makes its guess based on value directly Parameters: key: the string of the column_name value: the value of the column_name Returns: A DynamoDataType object """ if isinstance(value, numbers.Number): return Number() elif isinstance(value, dict): return Map() elif isinstance(value, list): return List() else: return String() class DefaultParseGuesser(object): """A class to decide what datatype to use toe A generic map or list type can have anything as its keys and values. There is no way to know what the Datatypes should be used for certainty because many of the datatypes defined (like Datetimes) all are converted to a String before saved in the table. This class will look at the condition_type to determine what Datatype should be used This class can be extended to handle your specific use cases. For example, if you know that the key "my_datetime" should always return a Datetime datatype, the guess() method can be overridden to handle specific cases. """ def guess(self, key, value): """guess the datatype from the key within value we are guessing on something like {'M': {'test': {'S': 'hello'}}} where key is 'test' and value is {'S': 'hello'} this will fetch the inner key ('S') and guess from this value Parameters: key: the column_name of the attribute value: a dict whose key is the condition_type and value is the value of the column. Returns: A DynamoDataType object Example: guess('my_string', {'S': 'hello'}) """ attr_key = list(value)[0] if attr_key == "N": return Number() elif attr_key == "S": return String() elif attr_key == "SS": return Set(String()) elif attr_key == "NS": return Set(Number()) elif attr_key == "L": return List() elif attr_key == "M": return Map() else: return String() class Map(DynamoDataType): """A class to represent generic Map datatypes A Map is used to store nested data within a record. It is essentially a dict where each key/value is stored in the database. Since the values can be anything, a MapGuesser and ParseGuesser are used to determine the datatype of these nested attributes. These guessers are passed to the constructor, and can be customized to return specific datatypes if you know the structure of the nested objects. """ def __init__( self, map_guesser=None, parse_guesser=None, default=None, column_name=""): """constructor for Map Parameters: map_guesser: an object inheriting from DefaultMapGuesser Defaults to the DefaultMapGuesser parse_guesser: an object inheriting from DefaultParseGuesser Defaults to the DefaultParseGuesser. default: a default value for the column. It can be a value or function column_name: a string defining the name of the column on the table """ super(Map, self).__init__( condition_type="M", default=default, column_name=column_name) self.map_guesser = map_guesser or DefaultMapGuesser() self.parse_guesser = parse_guesser or DefaultParseGuesser() self.translator = DictTranslator(self, self.map_guesser, self.parse_guesser) def key(self, datatype, key): """build a duplicate datatype with the column_name using a dot notiation When forming a Request that involves a specific key from the Map, that item can be specified using the key() method. Parameters: datatype: a DynamoDataType instance representing the nested value key: the name of the nested value Returns: A copy of the datatype with an new keyname For example:: Parent.scan.filter(MyModel.child.key(String(), 'name') == 'Zac') """ column_name = self.column_name + "." + key return type(datatype)(column_name=column_name) class List(DynamoDataType): """A class to represent generic List datatypes A List is used to store a collection of values of a varying length. It is essentially an array where each item is the value stored in the database. Since values can be anything, a MapGueser and ParseGuesser are used to determine the datatype of the array's items. These guessers are passed to the constructor, and can be customized to return specific datatypes if you know the structure of the array and each item. """ def __init__( self, map_guesser=None, parse_guesser=None, default=None, column_name=""): """constructor for List Parameters: map_guesser: An object inheriting from DefaultMapGuesser Defaults to the DefaultMapGuesser parse_guesser: An object inheriting from DefaultParseGuesser Defaults to the DefaultParseGuesser. default: a default value for the column. It can be a value or function column_name: a string defining the name of the column on the table """ super(List, self).__init__( condition_type="L", default=default, column_name=column_name) self.map_guesser = map_guesser or DefaultMapGuesser() self.parse_guesser = parse_guesser or DefaultParseGuesser() self.translator = ListTranslator(self, self.map_guesser, self.parse_guesser) def append(self, array): """Build an expression to add the array to the end of the existing column data It can only be used in SET UpdateExpressions. Parameters: array: can be a list or single value to be appended. When it is a single value, it is automatically put inside its own array, before building the expression. Returns: A ListAppendExpression For example:: Person.update \\ .key(Person.email == "[email protected]") .set(Person.toys.append({"color": "red", "name": "car"}) """ if not isinstance(array, list): array = [array] return ListAppendExpression(self, array) def index(self, idx, datatype): """build a duplicate datatype with the _index set to idx When forming a Request that involves a specific item in the List, that item can be specified using this index() method. Parameters: idx: a number for the index of the desired item in the list datatype: a DynamoDataType object representing the item indexed Returns: A copy of the datatype with _index set Raises: ValueError: An error when the datatype is not an instance of DynamoDataType For example:: MyModel.scan.filter(MyModel.my_list.index(1, String()) == 'world') """ if not isinstance(datatype, DynamoDataType): raise ValueError("datatype must be an instance of DynamoDataType") dt = deepcopy(datatype) dt._index = idx return dt
[ 11748, 3146, 198, 6738, 4866, 1330, 2769, 30073, 198, 6738, 764, 17618, 1330, 7913, 198, 6738, 764, 8841, 1330, 10903, 198, 6738, 764, 2617, 1330, 5345, 198, 6738, 764, 8692, 62, 19608, 265, 2981, 1330, 41542, 6601, 6030, 198, 6738, 764, 38011, 1330, 7343, 4677, 437, 16870, 2234, 198, 6738, 764, 7645, 41880, 1330, 357, 198, 220, 220, 220, 360, 713, 8291, 41880, 11, 198, 220, 220, 220, 7343, 8291, 41880, 8, 198, 198, 4871, 15161, 13912, 8205, 408, 263, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 1398, 284, 4724, 644, 4818, 265, 2981, 284, 3758, 284, 41542, 11012, 1912, 262, 11688, 1988, 628, 220, 220, 220, 317, 14276, 3975, 393, 1351, 2099, 460, 423, 1997, 355, 663, 8251, 290, 3815, 13, 1318, 318, 645, 835, 198, 220, 220, 220, 284, 760, 644, 262, 16092, 265, 9497, 815, 307, 973, 329, 18979, 780, 867, 286, 262, 4818, 265, 9497, 198, 220, 220, 220, 5447, 357, 2339, 16092, 46874, 8, 477, 389, 11513, 284, 257, 10903, 878, 7448, 287, 262, 3084, 13, 198, 220, 220, 220, 770, 1398, 481, 804, 379, 262, 3815, 290, 5409, 543, 16092, 265, 2981, 284, 779, 13, 628, 220, 220, 220, 770, 1398, 460, 307, 7083, 284, 5412, 534, 2176, 779, 2663, 13, 1114, 1672, 11, 611, 345, 760, 198, 220, 220, 220, 326, 262, 1994, 366, 1820, 62, 19608, 8079, 1, 815, 1464, 1441, 257, 16092, 8079, 4818, 265, 2981, 11, 262, 4724, 3419, 198, 220, 220, 220, 2446, 460, 307, 23170, 4651, 284, 5412, 2176, 2663, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4724, 7, 944, 11, 1994, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5162, 408, 262, 4818, 265, 2981, 422, 262, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 1962, 27289, 329, 16855, 1724, 356, 389, 2111, 284, 3785, 503, 262, 4818, 265, 2981, 198, 220, 220, 220, 220, 220, 220, 220, 287, 1502, 284, 10385, 340, 656, 257, 8633, 24284, 416, 6382, 375, 65, 13, 1406, 428, 198, 220, 220, 220, 220, 220, 220, 220, 4724, 263, 481, 1838, 663, 4724, 1912, 319, 1988, 3264, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 262, 4731, 286, 262, 5721, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 262, 1988, 286, 262, 5721, 62, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 41542, 6601, 6030, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 8367, 11, 3146, 13, 15057, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 7913, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 8367, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9347, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 318, 39098, 7, 8367, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 7343, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10903, 3419, 628, 198, 4871, 15161, 10044, 325, 8205, 408, 263, 7, 15252, 2599, 198, 220, 220, 220, 37227, 32, 1398, 284, 5409, 644, 4818, 265, 2981, 284, 779, 21189, 628, 220, 220, 220, 317, 14276, 3975, 393, 1351, 2099, 460, 423, 1997, 355, 663, 8251, 290, 3815, 13, 1318, 318, 645, 835, 198, 220, 220, 220, 284, 760, 644, 262, 16092, 265, 9497, 815, 307, 973, 329, 18979, 780, 867, 286, 262, 4818, 265, 9497, 198, 220, 220, 220, 5447, 357, 2339, 16092, 46874, 8, 477, 389, 11513, 284, 257, 10903, 878, 7448, 287, 262, 3084, 13, 198, 220, 220, 220, 770, 1398, 481, 804, 379, 262, 4006, 62, 4906, 284, 5004, 644, 16092, 265, 2981, 815, 307, 973, 628, 220, 220, 220, 770, 1398, 460, 307, 7083, 284, 5412, 534, 2176, 779, 2663, 13, 1114, 1672, 11, 611, 345, 760, 198, 220, 220, 220, 326, 262, 1994, 366, 1820, 62, 19608, 8079, 1, 815, 1464, 1441, 257, 16092, 8079, 4818, 265, 2981, 11, 262, 4724, 3419, 198, 220, 220, 220, 2446, 460, 307, 23170, 4651, 284, 5412, 2176, 2663, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4724, 7, 944, 11, 1994, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5162, 408, 262, 4818, 265, 2981, 422, 262, 1994, 1626, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 356, 389, 25260, 319, 1223, 588, 1391, 6, 44, 10354, 1391, 6, 9288, 10354, 1391, 6, 50, 10354, 705, 31373, 6, 42535, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1994, 318, 705, 9288, 6, 290, 1988, 318, 1391, 6, 50, 10354, 705, 31373, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 428, 481, 21207, 262, 8434, 1994, 19203, 50, 11537, 290, 4724, 422, 428, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 262, 5721, 62, 3672, 286, 262, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 257, 8633, 3025, 1994, 318, 262, 4006, 62, 4906, 290, 1988, 318, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 5721, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 317, 41542, 6601, 6030, 2134, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4724, 10786, 1820, 62, 8841, 3256, 1391, 6, 50, 10354, 705, 31373, 6, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 62, 2539, 796, 1351, 7, 8367, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 708, 81, 62, 2539, 6624, 366, 45, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 7913, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 708, 81, 62, 2539, 6624, 366, 50, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10903, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 708, 81, 62, 2539, 6624, 366, 5432, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5345, 7, 10100, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 708, 81, 62, 2539, 6624, 366, 8035, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5345, 7, 15057, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 708, 81, 62, 2539, 6624, 366, 43, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 7343, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 708, 81, 62, 2539, 6624, 366, 44, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9347, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10903, 3419, 628, 198, 4871, 9347, 7, 35, 4989, 78, 6601, 6030, 2599, 198, 220, 220, 220, 37227, 32, 1398, 284, 2380, 14276, 9347, 4818, 265, 9497, 628, 220, 220, 220, 317, 9347, 318, 973, 284, 3650, 28376, 1366, 1626, 257, 1700, 13, 632, 318, 6986, 257, 8633, 810, 198, 220, 220, 220, 1123, 1994, 14, 8367, 318, 8574, 287, 262, 6831, 13, 4619, 262, 3815, 460, 307, 1997, 11, 257, 198, 220, 220, 220, 9347, 8205, 408, 263, 290, 2547, 325, 8205, 408, 263, 389, 973, 284, 5004, 262, 4818, 265, 2981, 286, 777, 28376, 198, 220, 220, 220, 12608, 13, 2312, 4724, 364, 389, 3804, 284, 262, 23772, 11, 290, 460, 307, 27658, 284, 198, 220, 220, 220, 1441, 2176, 4818, 265, 9497, 611, 345, 760, 262, 4645, 286, 262, 28376, 5563, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 5162, 408, 263, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 5162, 408, 263, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 41571, 273, 329, 9347, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 5162, 408, 263, 25, 281, 2134, 10639, 1780, 422, 15161, 13912, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 262, 15161, 13912, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 5162, 408, 263, 25, 281, 2134, 10639, 1780, 422, 15161, 10044, 325, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 262, 15161, 10044, 325, 8205, 408, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 257, 4277, 1988, 329, 262, 5721, 13, 632, 460, 307, 257, 1988, 393, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 25, 257, 4731, 16215, 262, 1438, 286, 262, 5721, 319, 262, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 13912, 11, 2116, 737, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4006, 62, 4906, 2625, 44, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 12286, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 28, 28665, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 62, 5162, 408, 263, 796, 3975, 62, 5162, 408, 263, 393, 15161, 13912, 8205, 408, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29572, 62, 5162, 408, 263, 796, 21136, 62, 5162, 408, 263, 393, 15161, 10044, 325, 8205, 408, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 41880, 796, 360, 713, 8291, 41880, 7, 944, 11, 2116, 13, 8899, 62, 5162, 408, 263, 11, 2116, 13, 29572, 62, 5162, 408, 263, 8, 628, 220, 220, 220, 825, 1994, 7, 944, 11, 4818, 265, 2981, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11249, 257, 23418, 4818, 265, 2981, 351, 262, 5721, 62, 3672, 1262, 257, 16605, 407, 3920, 628, 220, 220, 220, 220, 220, 220, 220, 1649, 14583, 257, 19390, 326, 9018, 257, 2176, 1994, 422, 262, 9347, 11, 326, 2378, 460, 198, 220, 220, 220, 220, 220, 220, 220, 307, 7368, 1262, 262, 1994, 3419, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 265, 2981, 25, 257, 41542, 6601, 6030, 4554, 10200, 262, 28376, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 262, 1438, 286, 262, 28376, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 4866, 286, 262, 4818, 265, 2981, 351, 281, 649, 1994, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16774, 13, 35836, 13, 24455, 7, 3666, 17633, 13, 9410, 13, 2539, 7, 10100, 22784, 705, 3672, 11537, 6624, 705, 57, 330, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 796, 2116, 13, 28665, 62, 3672, 1343, 366, 526, 1343, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2099, 7, 19608, 265, 2981, 5769, 28665, 62, 3672, 28, 28665, 62, 3672, 8, 628, 198, 4871, 7343, 7, 35, 4989, 78, 6601, 6030, 2599, 198, 220, 220, 220, 37227, 32, 1398, 284, 2380, 14276, 7343, 4818, 265, 9497, 628, 220, 220, 220, 317, 7343, 318, 973, 284, 3650, 257, 4947, 286, 3815, 286, 257, 15874, 4129, 13, 632, 318, 6986, 198, 220, 220, 220, 281, 7177, 810, 1123, 2378, 318, 262, 1988, 8574, 287, 262, 6831, 13, 4619, 3815, 460, 307, 198, 220, 220, 220, 1997, 11, 257, 9347, 38, 947, 263, 290, 2547, 325, 8205, 408, 263, 389, 973, 284, 5004, 262, 4818, 265, 2981, 286, 262, 198, 220, 220, 220, 7177, 338, 3709, 13, 2312, 4724, 364, 389, 3804, 284, 262, 23772, 11, 290, 460, 307, 27658, 284, 198, 220, 220, 220, 1441, 2176, 4818, 265, 9497, 611, 345, 760, 262, 4645, 286, 262, 7177, 290, 1123, 2378, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 5162, 408, 263, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 5162, 408, 263, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 41571, 273, 329, 7343, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 5162, 408, 263, 25, 1052, 2134, 10639, 1780, 422, 15161, 13912, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 262, 15161, 13912, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21136, 62, 5162, 408, 263, 25, 1052, 2134, 10639, 1780, 422, 15161, 10044, 325, 8205, 408, 263, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 262, 15161, 10044, 325, 8205, 408, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 25, 257, 4277, 1988, 329, 262, 5721, 13, 632, 460, 307, 257, 1988, 393, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 25, 257, 4731, 16215, 262, 1438, 286, 262, 5721, 319, 262, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 8053, 11, 2116, 737, 834, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4006, 62, 4906, 2625, 43, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 12286, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 62, 3672, 28, 28665, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8899, 62, 5162, 408, 263, 796, 3975, 62, 5162, 408, 263, 393, 15161, 13912, 8205, 408, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29572, 62, 5162, 408, 263, 796, 21136, 62, 5162, 408, 263, 393, 15161, 10044, 325, 8205, 408, 263, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 41880, 796, 7343, 8291, 41880, 7, 944, 11, 2116, 13, 8899, 62, 5162, 408, 263, 11, 2116, 13, 29572, 62, 5162, 408, 263, 8, 628, 220, 220, 220, 825, 24443, 7, 944, 11, 7177, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 281, 5408, 284, 751, 262, 7177, 284, 262, 886, 286, 262, 4683, 5721, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 632, 460, 691, 307, 973, 287, 25823, 10133, 38839, 507, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 25, 460, 307, 257, 1351, 393, 2060, 1988, 284, 307, 598, 1631, 13, 1649, 340, 318, 257, 2060, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 11, 340, 318, 6338, 1234, 2641, 663, 898, 7177, 11, 878, 2615, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5408, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 7343, 4677, 437, 16870, 2234, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7755, 13, 19119, 26867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2539, 7, 15439, 13, 12888, 6624, 366, 9288, 31, 9288, 13, 785, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2617, 7, 15439, 13, 83, 19417, 13, 33295, 7, 4895, 8043, 1298, 366, 445, 1600, 366, 3672, 1298, 366, 7718, 20662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 18747, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7177, 796, 685, 18747, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7343, 4677, 437, 16870, 2234, 7, 944, 11, 7177, 8, 628, 220, 220, 220, 825, 6376, 7, 944, 11, 4686, 87, 11, 4818, 265, 2981, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11249, 257, 23418, 4818, 265, 2981, 351, 262, 4808, 9630, 900, 284, 4686, 87, 628, 220, 220, 220, 220, 220, 220, 220, 1649, 14583, 257, 19390, 326, 9018, 257, 2176, 2378, 287, 262, 7343, 11, 326, 2378, 460, 198, 220, 220, 220, 220, 220, 220, 220, 307, 7368, 1262, 428, 6376, 3419, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 87, 25, 257, 1271, 329, 262, 6376, 286, 262, 10348, 2378, 287, 262, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 265, 2981, 25, 257, 41542, 6601, 6030, 2134, 10200, 262, 2378, 41497, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 4866, 286, 262, 4818, 265, 2981, 351, 4808, 9630, 900, 628, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 25, 1052, 4049, 618, 262, 4818, 265, 2981, 318, 407, 281, 4554, 286, 41542, 6601, 6030, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2011, 17633, 13, 35836, 13, 24455, 7, 3666, 17633, 13, 1820, 62, 4868, 13, 9630, 7, 16, 11, 10903, 28955, 6624, 705, 6894, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 19608, 265, 2981, 11, 41542, 6601, 6030, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 19608, 265, 2981, 1276, 307, 281, 4554, 286, 41542, 6601, 6030, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 796, 2769, 30073, 7, 19608, 265, 2981, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 13557, 9630, 796, 4686, 87, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 83, 198 ]
2.557839
3,406
from scapy.all import arpcachepoison, conf import ipaddress conf.verb = 0 if __name__ == '__main__': pass
[ 6738, 629, 12826, 13, 439, 1330, 610, 14751, 4891, 7501, 1653, 11, 1013, 198, 11748, 20966, 21975, 198, 198, 10414, 13, 19011, 796, 657, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1208, 198 ]
2.690476
42
from typing import Optional from fastapi import FastAPI import api.sql_handler as sql_handler app = FastAPI() @app.get("/items/") @app.get("/all") @app.get("/notifications") @app.get("/budget_commitment") @app.get("/commitment_treasury") @app.get("/deals") @app.get("/limits") @app.get("/payment_schedule") @app.get("/payments_full") @app.get("/payments_short") @app.get("/payments") @app.get("/plan") @app.get("/purchase_plan") @app.get("/spending")
[ 6738, 19720, 1330, 32233, 198, 198, 6738, 3049, 15042, 1330, 12549, 17614, 198, 198, 11748, 40391, 13, 25410, 62, 30281, 355, 44161, 62, 30281, 198, 198, 1324, 796, 12549, 17614, 3419, 628, 198, 31, 1324, 13, 1136, 7203, 14, 23814, 14, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 439, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 1662, 6637, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 37315, 62, 41509, 434, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 41509, 434, 62, 33945, 11579, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 14302, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 49196, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 37301, 62, 15952, 5950, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 15577, 902, 62, 12853, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 15577, 902, 62, 19509, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 15577, 902, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 11578, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 79, 18737, 62, 11578, 4943, 198, 198, 31, 1324, 13, 1136, 7203, 14, 2777, 1571, 4943 ]
2.412371
194
import os import sys import shutil import dotbot import subprocess import platform class CrossPlatformLink(dotbot.plugins.Link, dotbot.Plugin, CrossPlatformTask): """ Symbolically links dotfiles. """ _directive = "crossplatform-link" def _link( self, source, link_name, relative, canonical_path, ignore_missing, fallback_to_copy=False, ): """ Links link_name to source. Returns true if successfully linked files. """ success = False destination = os.path.expanduser(link_name) base_directory = self._context.base_directory(canonical_path=canonical_path) absolute_source = os.path.join(base_directory, source) if relative: source = self._relative_path(absolute_source, destination) else: source = absolute_source if ( not self._exists(link_name) and self._is_link(link_name) and self._link_destination(link_name) != source ): self._log.warning( "Invalid link %s -> %s" % (link_name, self._link_destination(link_name)) ) # we need to use absolute_source below because our cwd is the dotfiles # directory, and if source is relative, it will be relative to the # destination directory elif not self._exists(link_name) and ( ignore_missing or self._exists(absolute_source) ): try: os.symlink(source, destination) except OSError: self._log.warning("Linking failed %s -> %s" % (link_name, source)) if fallback_to_copy: self._log.lowinfo( "Falling back to directly copying file for %s -> %s" % (link_name, source) ) try: shutil.copyfile(source, destination) success = True except Exception as ex: self._log.warning(f"Copying failed with error {ex}") else: self._log.lowinfo(f"Not falling back to copy for {link_name}") else: self._log.lowinfo("Creating link %s -> %s" % (link_name, source)) success = True elif self._exists(link_name) and not self._is_link(link_name): self._log.warning( "Linking %s -> %s failed because %s already exists but is a regular file or directory" % (link_name, source, link_name) ) elif self._is_link(link_name) and self._link_destination(link_name) != source: self._log.warning( "Incorrect link %s -> %s" % (link_name, self._link_destination(link_name)) ) # again, we use absolute_source to check for existence elif not self._exists(absolute_source): if self._is_link(link_name): self._log.warning("Nonexistent source %s -> %s" % (link_name, source)) else: self._log.warning( "Nonexistent source for %s : %s" % (link_name, source) ) else: self._log.lowinfo("Link exists %s -> %s" % (link_name, source)) success = True return success class CrossPlatformShell(dotbot.Plugin, CrossPlatformTask): """ Run arbitrary shell commands. """ _directive = "crossplatform-shell" _has_shown_override_message = False
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 4423, 346, 198, 11748, 16605, 13645, 198, 11748, 850, 14681, 198, 11748, 3859, 628, 198, 198, 4871, 6372, 37148, 11280, 7, 26518, 13645, 13, 37390, 13, 11280, 11, 16605, 13645, 13, 37233, 11, 6372, 37148, 25714, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 38357, 1146, 6117, 16605, 16624, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 12942, 425, 796, 366, 19692, 24254, 12, 8726, 1, 628, 220, 220, 220, 825, 4808, 8726, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2792, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3585, 11, 198, 220, 220, 220, 220, 220, 220, 220, 40091, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 45688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2121, 1891, 62, 1462, 62, 30073, 28, 25101, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 21691, 2792, 62, 3672, 284, 2723, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 2081, 611, 7675, 6692, 3696, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 10965, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7, 8726, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 34945, 796, 2116, 13557, 22866, 13, 8692, 62, 34945, 7, 49883, 605, 62, 6978, 28, 49883, 605, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4112, 62, 10459, 796, 28686, 13, 6978, 13, 22179, 7, 8692, 62, 34945, 11, 2723, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3585, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 2116, 13557, 43762, 62, 6978, 7, 48546, 62, 10459, 11, 10965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 4112, 62, 10459, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 2116, 13557, 1069, 1023, 7, 8726, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13557, 271, 62, 8726, 7, 8726, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13557, 8726, 62, 16520, 1883, 7, 8726, 62, 3672, 8, 14512, 2723, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 44651, 2792, 4064, 82, 4613, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2116, 13557, 8726, 62, 16520, 1883, 7, 8726, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 761, 284, 779, 4112, 62, 10459, 2174, 780, 674, 269, 16993, 318, 262, 16605, 16624, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8619, 11, 290, 611, 2723, 318, 3585, 11, 340, 481, 307, 3585, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10965, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 2116, 13557, 1069, 1023, 7, 8726, 62, 3672, 8, 290, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8856, 62, 45688, 393, 2116, 13557, 1069, 1023, 7, 48546, 62, 10459, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 1837, 4029, 676, 7, 10459, 11, 10965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7203, 43, 8040, 4054, 4064, 82, 4613, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2723, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2121, 1891, 62, 1462, 62, 30073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 9319, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 37, 9221, 736, 284, 3264, 23345, 2393, 329, 4064, 82, 4613, 4064, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 8726, 62, 3672, 11, 2723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 7753, 7, 10459, 11, 10965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7, 69, 1, 13379, 1112, 4054, 351, 4049, 1391, 1069, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 9319, 10951, 7, 69, 1, 3673, 7463, 736, 284, 4866, 329, 1391, 8726, 62, 3672, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 9319, 10951, 7203, 32071, 2792, 4064, 82, 4613, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2723, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 1069, 1023, 7, 8726, 62, 3672, 8, 290, 407, 2116, 13557, 271, 62, 8726, 7, 8726, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 8040, 4064, 82, 4613, 4064, 82, 4054, 780, 4064, 82, 1541, 7160, 475, 318, 257, 3218, 2393, 393, 8619, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 8726, 62, 3672, 11, 2723, 11, 2792, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 271, 62, 8726, 7, 8726, 62, 3672, 8, 290, 2116, 13557, 8726, 62, 16520, 1883, 7, 8726, 62, 3672, 8, 14512, 2723, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 818, 30283, 2792, 4064, 82, 4613, 4064, 82, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 8726, 62, 3672, 11, 2116, 13557, 8726, 62, 16520, 1883, 7, 8726, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 757, 11, 356, 779, 4112, 62, 10459, 284, 2198, 329, 6224, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 2116, 13557, 1069, 1023, 7, 48546, 62, 10459, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 271, 62, 8726, 7, 8726, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7203, 14202, 87, 7609, 2723, 4064, 82, 4613, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2723, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 43917, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14202, 87, 7609, 2723, 329, 4064, 82, 1058, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2723, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 13, 9319, 10951, 7203, 11280, 7160, 4064, 82, 4613, 4064, 82, 1, 4064, 357, 8726, 62, 3672, 11, 2723, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1943, 628, 198, 4871, 6372, 37148, 23248, 7, 26518, 13645, 13, 37233, 11, 6372, 37148, 25714, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 14977, 7582, 9729, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 12942, 425, 796, 366, 19692, 24254, 12, 29149, 1, 198, 220, 220, 220, 4808, 10134, 62, 42579, 62, 2502, 13154, 62, 20500, 796, 10352, 198 ]
2.05641
1,755
from six import u, iteritems, iterkeys # pylint: disable=unused-import try: from collections.abc import Mapping # pylint: disable=unused-import except ImportError: # Legacy Python from collections import Mapping # pylint: disable=unused-import
[ 6738, 2237, 1330, 334, 11, 11629, 23814, 11, 11629, 13083, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198, 28311, 25, 198, 220, 220, 220, 422, 17268, 13, 39305, 1330, 337, 5912, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 14843, 11361, 198, 220, 220, 220, 422, 17268, 1330, 337, 5912, 220, 1303, 279, 2645, 600, 25, 15560, 28, 403, 1484, 12, 11748, 198 ]
3.185185
81
# ------------------------------------------------------------- # Merge dictionaries :: Sources :: Hunspell # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Project: Nasqueron # Description: Find Hunspell personal dictionaries # License: BSD-2-Clause # ------------------------------------------------------------- import os
[ 2, 220, 220, 20368, 1783, 32501, 198, 2, 220, 220, 39407, 48589, 3166, 7904, 26406, 7904, 5900, 46143, 198, 2, 220, 220, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 532, 198, 2, 220, 220, 4935, 25, 220, 220, 220, 220, 220, 220, 220, 22767, 10819, 261, 198, 2, 220, 220, 12489, 25, 220, 220, 220, 9938, 5900, 46143, 2614, 48589, 3166, 198, 2, 220, 220, 13789, 25, 220, 220, 220, 220, 220, 220, 220, 347, 10305, 12, 17, 12, 2601, 682, 198, 2, 220, 220, 20368, 1783, 32501, 628, 198, 11748, 28686, 628, 628, 628 ]
3.220339
118
from hardware import camera, robot, turntable from calibration import calibration_axyb, calibration_camera, calibration_functions from threading import Thread import configparser
[ 6738, 6890, 1330, 4676, 11, 9379, 11, 7858, 429, 540, 198, 6738, 36537, 1330, 36537, 62, 6969, 65, 11, 36537, 62, 25695, 11, 36537, 62, 12543, 2733, 198, 6738, 4704, 278, 1330, 14122, 198, 11748, 4566, 48610, 198 ]
4.710526
38
# Copyright (c) 2013 NEC Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import warnings import fixtures import six from neutron.api.v2 import attributes class AttributeMapMemento(fixtures.Fixture): """Create a copy of the resource attribute map so it can be restored during test cleanup. There are a few reasons why this is not included in a class derived from BaseTestCase: - Test cases may need more control about when the backup is made, especially if they are not direct descendants of BaseTestCase. - Inheritance is a bit of overkill for this facility and it's a stretch to rationalize the "is a" criteria. """ class WarningsFixture(fixtures.Fixture): """Filters out warnings during test runs.""" warning_types = ( DeprecationWarning, PendingDeprecationWarning, ImportWarning ) """setup_mock_calls and verify_mock_calls are convenient methods to setup a sequence of mock calls. expected_calls_and_values is a list of (expected_call, return_value): expected_calls_and_values = [ (mock.call(["ovs-vsctl", self.TO, '--', "--may-exist", "add-port", self.BR_NAME, pname]), None), (mock.call(["ovs-vsctl", self.TO, "set", "Interface", pname, "type=gre"]), None), .... ] * expected_call should be mock.call(expected_arg, ....) * return_value is passed to side_effect of a mocked call. A return value or an exception can be specified. """ import unittest def fail(msg=None): """Fail immediately, with the given message. This method is equivalent to TestCase.fail without requiring a testcase instance (usefully for reducing coupling). """ raise unittest.TestCase.failureException(msg) class UnorderedList(list): """A list that is equals to any permutation of itself."""
[ 2, 15069, 357, 66, 8, 2211, 41804, 10501, 198, 2, 1439, 6923, 33876, 13, 198, 2, 198, 2, 220, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 220, 220, 220, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 220, 220, 220, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 220, 220, 220, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 220, 220, 220, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 220, 220, 220, 739, 262, 13789, 13, 198, 198, 11748, 14601, 198, 198, 11748, 34609, 198, 11748, 2237, 198, 198, 6738, 49810, 13, 15042, 13, 85, 17, 1330, 12608, 628, 198, 4871, 3460, 4163, 13912, 44, 972, 78, 7, 69, 25506, 13, 37, 9602, 2599, 198, 220, 220, 220, 37227, 16447, 257, 4866, 286, 262, 8271, 11688, 3975, 523, 340, 460, 307, 15032, 1141, 198, 220, 220, 220, 1332, 27425, 13, 628, 220, 220, 220, 1318, 389, 257, 1178, 3840, 1521, 428, 318, 407, 3017, 287, 257, 1398, 10944, 198, 220, 220, 220, 422, 7308, 14402, 20448, 25, 628, 220, 220, 220, 220, 220, 220, 220, 532, 6208, 2663, 743, 761, 517, 1630, 546, 618, 262, 11559, 318, 198, 220, 220, 220, 220, 220, 220, 220, 925, 11, 2592, 611, 484, 389, 407, 1277, 25321, 286, 198, 220, 220, 220, 220, 220, 220, 220, 7308, 14402, 20448, 13, 628, 220, 220, 220, 220, 220, 220, 220, 532, 47025, 42942, 318, 257, 1643, 286, 625, 12728, 329, 428, 6841, 290, 340, 338, 257, 198, 220, 220, 220, 220, 220, 220, 220, 7539, 284, 9377, 1096, 262, 366, 271, 257, 1, 9987, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 39567, 654, 37, 9602, 7, 69, 25506, 13, 37, 9602, 2599, 198, 220, 220, 220, 37227, 11928, 1010, 503, 14601, 1141, 1332, 4539, 526, 15931, 628, 220, 220, 220, 6509, 62, 19199, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 2129, 8344, 341, 20361, 11, 350, 1571, 12156, 8344, 341, 20361, 11, 17267, 20361, 198, 220, 220, 220, 1267, 628, 198, 37811, 40406, 62, 76, 735, 62, 66, 5691, 290, 11767, 62, 76, 735, 62, 66, 5691, 389, 11282, 5050, 198, 1462, 9058, 257, 8379, 286, 15290, 3848, 13, 198, 198, 40319, 62, 66, 5691, 62, 392, 62, 27160, 318, 257, 1351, 286, 357, 40319, 62, 13345, 11, 1441, 62, 8367, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 66, 5691, 62, 392, 62, 27160, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 76, 735, 13, 13345, 7, 14692, 709, 82, 12, 14259, 34168, 1600, 2116, 13, 10468, 11, 705, 438, 3256, 366, 438, 11261, 12, 38476, 1600, 366, 2860, 12, 634, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11473, 62, 20608, 11, 279, 3672, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 76, 735, 13, 13345, 7, 14692, 709, 82, 12, 14259, 34168, 1600, 2116, 13, 10468, 11, 366, 2617, 1600, 366, 39317, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 3672, 11, 366, 4906, 28, 16694, 8973, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19424, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 198, 9, 2938, 62, 13345, 815, 307, 15290, 13, 13345, 7, 40319, 62, 853, 11, 19424, 8, 198, 9, 1441, 62, 8367, 318, 3804, 284, 1735, 62, 10760, 286, 257, 29180, 869, 13, 198, 220, 317, 1441, 1988, 393, 281, 6631, 460, 307, 7368, 13, 198, 37811, 198, 198, 11748, 555, 715, 395, 628, 628, 198, 4299, 2038, 7, 19662, 28, 14202, 2599, 198, 220, 220, 220, 37227, 39044, 3393, 11, 351, 262, 1813, 3275, 13, 628, 220, 220, 220, 770, 2446, 318, 7548, 284, 6208, 20448, 13, 32165, 1231, 10616, 257, 198, 220, 220, 220, 1332, 7442, 4554, 357, 1904, 2759, 329, 8868, 40204, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5298, 555, 715, 395, 13, 14402, 20448, 13, 32165, 495, 16922, 7, 19662, 8, 628, 198, 4871, 791, 24071, 8053, 7, 4868, 2599, 198, 220, 220, 220, 37227, 32, 1351, 326, 318, 21767, 284, 597, 9943, 7094, 286, 2346, 526, 15931, 198 ]
2.882831
862
import sys import json
[ 11748, 25064, 198, 11748, 33918 ]
4.4
5
from rest_framework import generics from rest_framework.response import Response from rest_framework.reverse import reverse from drones import views
[ 6738, 1334, 62, 30604, 1330, 1152, 873, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 1334, 62, 30604, 13, 50188, 1330, 9575, 198, 6738, 15382, 1330, 5009, 628 ]
4.83871
31
from django.shortcuts import render from django.http import HttpResponse from names.models import Country from random import shuffle
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 3891, 13, 27530, 1330, 12946, 198, 6738, 4738, 1330, 36273, 198 ]
4.290323
31
"""NYC 311 Calendar API.""" from __future__ import annotations from dataclasses import dataclass from datetime import date from datetime import datetime from datetime import timedelta from enum import Enum import logging import aiohttp from nyc311calendar.services import Parking from nyc311calendar.services import Sanitation from nyc311calendar.services import School from nyc311calendar.services import Service from nyc311calendar.services import ServiceType from nyc311calendar.services import ServiceTypeProfile from nyc311calendar.services import StatusTypeProfile from .util import date_mod from .util import remove_observed from .util import today __version__ = "v0.4" log = logging.getLogger(__name__) class CalendarType(Enum): """Calendar views.""" QUARTER_AHEAD = 1 WEEK_AHEAD = 2 NEXT_EXCEPTIONS = 3 class GroupBy(Enum): """Calendar views.""" DATE = "date" SERVICE = "service" @dataclass class CalendarDayEntry: """Entry for each service within a day.""" service_profile: ServiceTypeProfile status_profile: StatusTypeProfile | None exception_reason: str raw_description: str exception_summary: str | None date: date class NYC311API: """API representation.""" CALENDAR_BASE_URL = "https://api.nyc.gov/public/api/GetCalendar" API_REQ_DATE_FORMAT = "%m/%d/%Y" API_RSP_DATE_FORMAT = "%Y%m%d" def __init__( self, session: aiohttp.ClientSession, api_key: str, ): """Create new API controller with existing aiohttp session.""" self._session = session self._api_key = api_key self._request_headers = {"Ocp-Apim-Subscription-Key": api_key} async def get_calendar( self, calendars: list[CalendarType] | None = None, scrub: bool = True, ) -> dict: """Primary function for getting calendars from API. Args: calendars (list[CalendarType] | None, optional): List of CalendarTypes to be retrieved. Defaults to None. scrub (bool, optional): Whether to scrub "(Observed)" from names of holidays. (Observed) is used to indicate that, say, schools are closed on a Friday for the official observation of a holidays that falls on a weekend. Defaults to True. Returns: dict: Dictionary of calendars. """ if not calendars: calendars = [ CalendarType.QUARTER_AHEAD, CalendarType.WEEK_AHEAD, CalendarType.NEXT_EXCEPTIONS, ] resp_dict = {} start_date = date_mod(-1) end_date = date_mod(90, start_date) api_resp = await self.__async_calendar_update(start_date, end_date, scrub) for calendar in calendars: if calendar is CalendarType.QUARTER_AHEAD: resp_dict[CalendarType.QUARTER_AHEAD] = api_resp elif calendar is CalendarType.WEEK_AHEAD: resp_dict[CalendarType.WEEK_AHEAD] = self.__build_days_ahead( api_resp[GroupBy.DATE] ) elif calendar is CalendarType.NEXT_EXCEPTIONS: resp_dict[CalendarType.NEXT_EXCEPTIONS] = self.__build_next_exceptions( api_resp[GroupBy.DATE] ) log.info("Got calendar.") log.debug(resp_dict) return resp_dict async def __async_calendar_update( self, start_date: date, end_date: date, scrub: bool = False ) -> dict: """Get events for specified date range.""" date_params = { "fromdate": start_date.strftime(self.API_REQ_DATE_FORMAT), "todate": end_date.strftime(self.API_REQ_DATE_FORMAT), } base_url = self.CALENDAR_BASE_URL resp_json = await self.__call_api(base_url, date_params) grouped_by_date: dict = {} grouped_by_service: dict = {} for day in resp_json["days"]: cur_date = datetime.strptime( day["today_id"], self.API_RSP_DATE_FORMAT ).date() for item in day["items"]: try: # Get Raw raw_service_name = item["type"] raw_status = item["status"] raw_description = item.get("details") scrubbed_exception_reason = ( lambda x: remove_observed(x) if scrub else x )(item.get("exceptionName")) # Process service_type = ServiceType(raw_service_name) status_type: School.StatusType | Parking.StatusType | Sanitation.StatusType service_class: type[School] | type[Parking] | type[Sanitation] if service_type == ServiceType.SCHOOL: service_class = School status_type = School.StatusType(raw_status) # Hack to get last day of school to appear as an exception (Part 1/2). The API reports this as a normal open day. if ( scrubbed_exception_reason and scrubbed_exception_reason.lower().find("last day") > -1 ): status_profile = StatusTypeProfile( name="Last Day", standardized_type=Service.StandardizedStatusType.LAST_DAY, description=( "School is open for the last day of the year." ), reported_type=School.StatusType.OPEN, ) exception_summary = "Last Day of School" else: status_profile = School.STATUS_MAP[status_type] elif service_type == ServiceType.PARKING: service_class = Parking status_type = Parking.StatusType(raw_status) status_profile = Parking.STATUS_MAP[status_type] elif service_type == ServiceType.SANITATION: service_class = Sanitation status_type = Sanitation.StatusType(raw_status) status_profile = Sanitation.STATUS_MAP[status_type] except (KeyError, AttributeError) as error: log.error( """\n\nEncountered unknown service or status. Please report this to the developers using the "Unknown Service or Status" bug template at https://github.com/elahd/nyc311calendar/issues/new/choose.\n\n""" """===BEGIN COPYING HERE===\n""" """Item ID: %s\n""" """Day: %s\n""" """===END COPYING HERE===\n""", item.get("exceptionName", ""), day, ) raise self.UnexpectedEntry from error # Hack to get last day of school to appear as an exception (Part 2/2). The API reports this as a normal open day. exception_summary = ( "Last Day of School" if status_profile.standardized_type is Service.StandardizedStatusType.LAST_DAY else ( f"{service_class.PROFILE.exception_title_name} {service_class.PROFILE.status_strings.get(status_profile.standardized_type, service_class.PROFILE.exception_name)} ({scrubbed_exception_reason})" ) ) calendar_entry = CalendarDayEntry( service_profile=service_class.PROFILE, status_profile=status_profile if isinstance(status_profile, StatusTypeProfile) else None, exception_reason="" if scrubbed_exception_reason is None else scrubbed_exception_reason, raw_description=raw_description, exception_summary=exception_summary, date=cur_date, ) # Insert into by-date dict grouped_by_date.setdefault(cur_date, {}) grouped_by_date[cur_date].update({service_type: calendar_entry}) # Insert into by-service dict grouped_by_service.setdefault(service_type, {}) grouped_by_service[service_type].update({cur_date: calendar_entry}) log.debug("Updated calendar.") resp_dict = {GroupBy.DATE: grouped_by_date, GroupBy.SERVICE: grouped_by_service} return resp_dict @classmethod def __build_days_ahead(cls, resp_dict: dict) -> dict: """Build dict of statuses keyed by number of days from today.""" # Dictionary Format # { # "-1": { # "date": "2022-05-19", # "services": { # ServiceType.PARKING: { # (CalendarDayEntry) # }, # ServiceType.SCHOOL: { # (CalendarDayEntry) # }, # ServiceType.COLLECTION: { # (CalendarDayEntry) # } # } # } # } days_ahead_calendar = {} # Iterate through 8 days, starting with yesterday and ending a week from today. for date_delta in list(range(-1, 7)): # Generate date from delta i_date = date_mod(date_delta) services_on_date: dict = {} # Get each service from response dictionary. for service_type in ServiceType: services_on_date[service_type] = resp_dict[i_date][service_type] days_ahead_calendar[date_delta] = { "date": i_date, "services": services_on_date, } log.debug("Built days ahead.") return days_ahead_calendar @classmethod def __build_next_exceptions(cls, resp_dict: dict) -> dict: """Build dict of next exception for all known types.""" # Dictionary Format # { # "2022-05-19": { # ServiceType.PARKING: { # (CalendarDayEntry) # }, # ServiceType.SCHOOL: { # (CalendarDayEntry) # }, # ServiceType.COLLECTION: { # (CalendarDayEntry) # } # } # } next_exceptions: dict = {} for date_, services in sorted(resp_dict.items()): # We don't want to show yesterday's calendar event as a next exception. Skip over if date is yesterday. if date_ == (today() - timedelta(days=1)): continue service_type: ServiceType service_entry: CalendarDayEntry for service_type, service_entry in services.items(): # Skip if we already logged an exception for this category or if the status is not exceptional. if next_exceptions.get(service_type) or ( service_entry.status_profile and service_entry.status_profile.standardized_type in [ Service.StandardizedStatusType.NORMAL_ACTIVE, Service.StandardizedStatusType.NORMAL_SUSPENDED, ] ): continue next_exceptions[service_type] = service_entry log.debug("Built next exceptions.") return next_exceptions class UnexpectedEntry(Exception): """Thrown when API returns unexpected "key".""" class DateOrderException(Exception): """Thrown when iterable that is expected to be sorted by date is not.""" class CannotConnect(Exception): """Thrown when server is unreachable.""" class InvalidAuth(Exception): """Thrown when login fails."""
[ 37811, 12805, 34, 35592, 26506, 7824, 526, 15931, 198, 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 6738, 33829, 1330, 2039, 388, 198, 11748, 18931, 198, 198, 11748, 257, 952, 4023, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 29259, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 2986, 3780, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 3961, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 4809, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 4809, 6030, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 4809, 6030, 37046, 198, 6738, 299, 88, 66, 36244, 9948, 9239, 13, 30416, 1330, 12678, 6030, 37046, 198, 198, 6738, 764, 22602, 1330, 3128, 62, 4666, 198, 6738, 764, 22602, 1330, 4781, 62, 672, 45852, 198, 6738, 764, 22602, 1330, 1909, 198, 198, 834, 9641, 834, 796, 366, 85, 15, 13, 19, 1, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 26506, 6030, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 9771, 9239, 5009, 526, 15931, 628, 220, 220, 220, 19604, 1503, 5781, 62, 32, 37682, 796, 352, 198, 220, 220, 220, 43765, 62, 32, 37682, 796, 362, 198, 220, 220, 220, 39726, 62, 6369, 42006, 11053, 796, 513, 628, 198, 4871, 4912, 3886, 7, 4834, 388, 2599, 198, 220, 220, 220, 37227, 9771, 9239, 5009, 526, 15931, 628, 220, 220, 220, 360, 6158, 796, 366, 4475, 1, 198, 220, 220, 220, 47453, 796, 366, 15271, 1, 628, 198, 31, 19608, 330, 31172, 198, 4871, 26506, 12393, 30150, 25, 198, 220, 220, 220, 37227, 30150, 329, 1123, 2139, 1626, 257, 1110, 526, 15931, 628, 220, 220, 220, 2139, 62, 13317, 25, 4809, 6030, 37046, 198, 220, 220, 220, 3722, 62, 13317, 25, 12678, 6030, 37046, 930, 6045, 198, 220, 220, 220, 6631, 62, 41181, 25, 965, 198, 220, 220, 220, 8246, 62, 11213, 25, 965, 198, 220, 220, 220, 6631, 62, 49736, 25, 965, 930, 6045, 198, 220, 220, 220, 3128, 25, 3128, 628, 198, 4871, 19170, 36244, 17614, 25, 198, 220, 220, 220, 37227, 17614, 10552, 526, 15931, 628, 220, 220, 220, 33290, 10619, 1503, 62, 33, 11159, 62, 21886, 796, 366, 5450, 1378, 15042, 13, 3281, 66, 13, 9567, 14, 11377, 14, 15042, 14, 3855, 9771, 9239, 1, 198, 220, 220, 220, 7824, 62, 2200, 48, 62, 35, 6158, 62, 21389, 1404, 796, 36521, 76, 14, 4, 67, 14, 4, 56, 1, 198, 220, 220, 220, 7824, 62, 49, 4303, 62, 35, 6158, 62, 21389, 1404, 796, 36521, 56, 4, 76, 4, 67, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 25, 257, 952, 4023, 13, 11792, 36044, 11, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 2539, 25, 965, 11, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 649, 7824, 10444, 351, 4683, 257, 952, 4023, 6246, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 29891, 796, 6246, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 15042, 62, 2539, 796, 40391, 62, 2539, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 25927, 62, 50145, 796, 19779, 46, 13155, 12, 25189, 320, 12, 7004, 33584, 12, 9218, 1298, 40391, 62, 2539, 92, 628, 220, 220, 220, 30351, 825, 651, 62, 9948, 9239, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 50215, 25, 1351, 58, 9771, 9239, 6030, 60, 930, 6045, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27268, 25, 20512, 796, 6407, 11, 198, 220, 220, 220, 1267, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35170, 2163, 329, 1972, 50215, 422, 7824, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50215, 357, 4868, 58, 9771, 9239, 6030, 60, 930, 6045, 11, 11902, 2599, 7343, 286, 26506, 31431, 284, 307, 29517, 13, 2896, 13185, 284, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27268, 357, 30388, 11, 11902, 2599, 10127, 284, 27268, 30629, 31310, 8520, 16725, 422, 3891, 286, 17122, 13, 357, 31310, 8520, 8, 318, 973, 284, 7603, 326, 11, 910, 11, 4266, 389, 4838, 319, 257, 3217, 329, 262, 1743, 13432, 286, 257, 17122, 326, 8953, 319, 257, 5041, 13, 2896, 13185, 284, 6407, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8633, 25, 28261, 286, 50215, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 50215, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50215, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26506, 6030, 13, 10917, 1503, 5781, 62, 32, 37682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26506, 6030, 13, 54, 33823, 62, 32, 37682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26506, 6030, 13, 45, 13918, 62, 6369, 42006, 11053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 923, 62, 4475, 796, 3128, 62, 4666, 32590, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 886, 62, 4475, 796, 3128, 62, 4666, 7, 3829, 11, 923, 62, 4475, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 4363, 796, 25507, 2116, 13, 834, 292, 13361, 62, 9948, 9239, 62, 19119, 7, 9688, 62, 4475, 11, 886, 62, 4475, 11, 27268, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 11845, 287, 50215, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11845, 318, 26506, 6030, 13, 10917, 1503, 5781, 62, 32, 37682, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 11600, 58, 9771, 9239, 6030, 13, 10917, 1503, 5781, 62, 32, 37682, 60, 796, 40391, 62, 4363, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 11845, 318, 26506, 6030, 13, 54, 33823, 62, 32, 37682, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 11600, 58, 9771, 9239, 6030, 13, 54, 33823, 62, 32, 37682, 60, 796, 2116, 13, 834, 11249, 62, 12545, 62, 38204, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 4363, 58, 13247, 3886, 13, 35, 6158, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 11845, 318, 26506, 6030, 13, 45, 13918, 62, 6369, 42006, 11053, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 11600, 58, 9771, 9239, 6030, 13, 45, 13918, 62, 6369, 42006, 11053, 60, 796, 2116, 13, 834, 11249, 62, 19545, 62, 1069, 11755, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 4363, 58, 13247, 3886, 13, 35, 6158, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 7203, 30074, 11845, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7, 4363, 62, 11600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1217, 62, 11600, 628, 220, 220, 220, 30351, 825, 11593, 292, 13361, 62, 9948, 9239, 62, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 923, 62, 4475, 25, 3128, 11, 886, 62, 4475, 25, 3128, 11, 27268, 25, 20512, 796, 10352, 198, 220, 220, 220, 1267, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 2995, 329, 7368, 3128, 2837, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 37266, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6738, 4475, 1298, 923, 62, 4475, 13, 2536, 31387, 7, 944, 13, 17614, 62, 2200, 48, 62, 35, 6158, 62, 21389, 1404, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 83, 375, 378, 1298, 886, 62, 4475, 13, 2536, 31387, 7, 944, 13, 17614, 62, 2200, 48, 62, 35, 6158, 62, 21389, 1404, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 6371, 796, 2116, 13, 34, 1847, 10619, 1503, 62, 33, 11159, 62, 21886, 628, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 17752, 796, 25507, 2116, 13, 834, 13345, 62, 15042, 7, 8692, 62, 6371, 11, 3128, 62, 37266, 8, 628, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 4475, 25, 8633, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 15271, 25, 8633, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1110, 287, 1217, 62, 17752, 14692, 12545, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 4475, 796, 4818, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1110, 14692, 40838, 62, 312, 33116, 2116, 13, 17614, 62, 49, 4303, 62, 35, 6158, 62, 21389, 1404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 4475, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 1110, 14692, 23814, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 16089, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 15271, 62, 3672, 796, 2378, 14692, 4906, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 13376, 796, 2378, 14692, 13376, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 11213, 796, 2378, 13, 1136, 7203, 36604, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27268, 3077, 62, 1069, 4516, 62, 41181, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 4781, 62, 672, 45852, 7, 87, 8, 611, 27268, 2073, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 7, 9186, 13, 1136, 7203, 1069, 4516, 5376, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10854, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4906, 796, 4809, 6030, 7, 1831, 62, 15271, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 4906, 25, 3961, 13, 19580, 6030, 930, 29259, 13, 19580, 6030, 930, 2986, 3780, 13, 19580, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4871, 25, 2099, 58, 26130, 60, 930, 2099, 58, 25478, 278, 60, 930, 2099, 58, 15017, 3780, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2139, 62, 4906, 6624, 4809, 6030, 13, 50, 3398, 31559, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4871, 796, 3961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 4906, 796, 3961, 13, 19580, 6030, 7, 1831, 62, 13376, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18281, 284, 651, 938, 1110, 286, 1524, 284, 1656, 355, 281, 6631, 357, 7841, 352, 14, 17, 737, 383, 7824, 3136, 428, 355, 257, 3487, 1280, 1110, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27268, 3077, 62, 1069, 4516, 62, 41181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 27268, 3077, 62, 1069, 4516, 62, 41181, 13, 21037, 22446, 19796, 7203, 12957, 1110, 4943, 1875, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 13317, 796, 12678, 6030, 37046, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 5956, 3596, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25713, 62, 4906, 28, 16177, 13, 23615, 1143, 19580, 6030, 13, 43, 11262, 62, 26442, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6764, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26130, 318, 1280, 329, 262, 938, 1110, 286, 262, 614, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2098, 62, 4906, 28, 26130, 13, 19580, 6030, 13, 3185, 1677, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 62, 49736, 796, 366, 5956, 3596, 286, 3961, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 13317, 796, 3961, 13, 35744, 2937, 62, 33767, 58, 13376, 62, 4906, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2139, 62, 4906, 6624, 4809, 6030, 13, 47, 14175, 2751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4871, 796, 29259, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 4906, 796, 29259, 13, 19580, 6030, 7, 1831, 62, 13376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 13317, 796, 29259, 13, 35744, 2937, 62, 33767, 58, 13376, 62, 4906, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2139, 62, 4906, 6624, 4809, 6030, 13, 36753, 2043, 6234, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4871, 796, 2986, 3780, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 4906, 796, 2986, 3780, 13, 19580, 6030, 7, 1831, 62, 13376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 13317, 796, 2986, 3780, 13, 35744, 2937, 62, 33767, 58, 13376, 62, 4906, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9218, 12331, 11, 3460, 4163, 12331, 8, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 59, 77, 59, 77, 4834, 9127, 1068, 6439, 2139, 393, 3722, 13, 4222, 989, 428, 284, 262, 6505, 1262, 262, 366, 20035, 4809, 393, 12678, 1, 5434, 11055, 379, 3740, 1378, 12567, 13, 785, 14, 417, 993, 67, 14, 3281, 66, 36244, 9948, 9239, 14, 37165, 14, 3605, 14, 6679, 577, 13, 59, 77, 59, 77, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 18604, 33, 43312, 27975, 45761, 15698, 18604, 59, 77, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 7449, 4522, 25, 4064, 82, 59, 77, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 12393, 25, 4064, 82, 59, 77, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 18604, 10619, 27975, 45761, 15698, 18604, 59, 77, 15931, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 13, 1136, 7203, 1069, 4516, 5376, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1110, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 2116, 13, 52, 42072, 30150, 422, 4049, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18281, 284, 651, 938, 1110, 286, 1524, 284, 1656, 355, 281, 6631, 357, 7841, 362, 14, 17, 737, 383, 7824, 3136, 428, 355, 257, 3487, 1280, 1110, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 62, 49736, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5956, 3596, 286, 3961, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3722, 62, 13317, 13, 20307, 1143, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 4809, 13, 23615, 1143, 19580, 6030, 13, 43, 11262, 62, 26442, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 15271, 62, 4871, 13, 31190, 25664, 13, 1069, 4516, 62, 7839, 62, 3672, 92, 1391, 15271, 62, 4871, 13, 31190, 25664, 13, 13376, 62, 37336, 13, 1136, 7, 13376, 62, 13317, 13, 20307, 1143, 62, 4906, 11, 2139, 62, 4871, 13, 31190, 25664, 13, 1069, 4516, 62, 3672, 38165, 37913, 1416, 25089, 3077, 62, 1069, 4516, 62, 41181, 92, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11845, 62, 13000, 796, 26506, 12393, 30150, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 13317, 28, 15271, 62, 4871, 13, 31190, 25664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 13317, 28, 13376, 62, 13317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 13376, 62, 13317, 11, 12678, 6030, 37046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 62, 41181, 33151, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 27268, 3077, 62, 1069, 4516, 62, 41181, 318, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 27268, 3077, 62, 1069, 4516, 62, 41181, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8246, 62, 11213, 28, 1831, 62, 11213, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6631, 62, 49736, 28, 1069, 4516, 62, 49736, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 28, 22019, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 656, 416, 12, 4475, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 4475, 13, 2617, 12286, 7, 22019, 62, 4475, 11, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 4475, 58, 22019, 62, 4475, 4083, 19119, 15090, 15271, 62, 4906, 25, 11845, 62, 13000, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 35835, 656, 416, 12, 15271, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 15271, 13, 2617, 12286, 7, 15271, 62, 4906, 11, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32824, 62, 1525, 62, 15271, 58, 15271, 62, 4906, 4083, 19119, 15090, 22019, 62, 4475, 25, 11845, 62, 13000, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 17354, 11845, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1217, 62, 11600, 796, 1391, 13247, 3886, 13, 35, 6158, 25, 32824, 62, 1525, 62, 4475, 11, 4912, 3886, 13, 35009, 27389, 25, 32824, 62, 1525, 62, 15271, 92, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1217, 62, 11600, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11593, 11249, 62, 12545, 62, 38204, 7, 565, 82, 11, 1217, 62, 11600, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 8633, 286, 1185, 2664, 1994, 276, 416, 1271, 286, 1528, 422, 1909, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28261, 18980, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 27444, 16, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 1298, 366, 1238, 1828, 12, 2713, 12, 1129, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30416, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 47, 14175, 2751, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 50, 3398, 31559, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 25154, 16779, 2849, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1528, 62, 38204, 62, 9948, 9239, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 40806, 378, 832, 807, 1528, 11, 3599, 351, 7415, 290, 7464, 257, 1285, 422, 1909, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3128, 62, 67, 12514, 287, 1351, 7, 9521, 32590, 16, 11, 767, 8, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 3128, 422, 25979, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 62, 4475, 796, 3128, 62, 4666, 7, 4475, 62, 67, 12514, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2594, 62, 261, 62, 4475, 25, 8633, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 1123, 2139, 422, 2882, 22155, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2139, 62, 4906, 287, 4809, 6030, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2594, 62, 261, 62, 4475, 58, 15271, 62, 4906, 60, 796, 1217, 62, 11600, 58, 72, 62, 4475, 7131, 15271, 62, 4906, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1528, 62, 38204, 62, 9948, 9239, 58, 4475, 62, 67, 12514, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 1298, 1312, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30416, 1298, 2594, 62, 261, 62, 4475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 39582, 1528, 4058, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1528, 62, 38204, 62, 9948, 9239, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11593, 11249, 62, 19545, 62, 1069, 11755, 7, 565, 82, 11, 1217, 62, 11600, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15580, 8633, 286, 1306, 6631, 329, 477, 1900, 3858, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 28261, 18980, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 366, 1238, 1828, 12, 2713, 12, 1129, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 47, 14175, 2751, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 50, 3398, 31559, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 4809, 6030, 13, 25154, 16779, 2849, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9771, 9239, 12393, 30150, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 1069, 11755, 25, 8633, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 329, 3128, 62, 11, 2594, 287, 23243, 7, 4363, 62, 11600, 13, 23814, 3419, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 836, 470, 765, 284, 905, 7415, 338, 11845, 1785, 355, 257, 1306, 6631, 13, 32214, 625, 611, 3128, 318, 7415, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3128, 62, 6624, 357, 40838, 3419, 532, 28805, 12514, 7, 12545, 28, 16, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 4906, 25, 4809, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 13000, 25, 26506, 12393, 30150, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2139, 62, 4906, 11, 2139, 62, 13000, 287, 2594, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 32214, 611, 356, 1541, 18832, 281, 6631, 329, 428, 6536, 393, 611, 262, 3722, 318, 407, 15313, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1306, 62, 1069, 11755, 13, 1136, 7, 15271, 62, 4906, 8, 393, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2139, 62, 13000, 13, 13376, 62, 13317, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2139, 62, 13000, 13, 13376, 62, 13317, 13, 20307, 1143, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4809, 13, 23615, 1143, 19580, 6030, 13, 35510, 42126, 62, 10659, 9306, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4809, 13, 23615, 1143, 19580, 6030, 13, 35510, 42126, 62, 50, 2937, 47, 49361, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 1069, 11755, 58, 15271, 62, 4906, 60, 796, 2139, 62, 13000, 628, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 24442, 7203, 39582, 1306, 13269, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1306, 62, 1069, 11755, 628, 220, 220, 220, 1398, 471, 42072, 30150, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 817, 2053, 618, 7824, 5860, 10059, 366, 2539, 1, 526, 15931, 628, 220, 220, 220, 1398, 7536, 18743, 16922, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 817, 2053, 618, 11629, 540, 326, 318, 2938, 284, 307, 23243, 416, 3128, 318, 407, 526, 15931, 628, 220, 220, 220, 1398, 26003, 13313, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 817, 2053, 618, 4382, 318, 14880, 34446, 526, 15931, 628, 220, 220, 220, 1398, 17665, 30515, 7, 16922, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 817, 2053, 618, 17594, 10143, 526, 15931, 198 ]
2.028197
6,029
# Generated by Django 3.1.1 on 2020-09-15 01:15 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 16, 319, 12131, 12, 2931, 12, 1314, 5534, 25, 1314, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# https://leetcode.com/problems/contains-duplicate/
[ 2, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 3642, 1299, 12, 646, 489, 5344, 14, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2
32
from .ascii2d import Ascii2D from .Async import * from .baidu import BaiDu from .google import Google from .iqdb import Iqdb from .saucenao import SauceNAO from .tracemoe import ( TraceMoe, TraceMoeAnilist, TraceMoeMe, TraceMoeNorm, TraceMoeResponse, ) __author__ = "kitUIN" __license__ = "MIT License" __contributors__ = ["kitUIN", "lleans", "chinoll", "NekoAria"] __email__ = "[email protected]"
[ 6738, 764, 292, 979, 72, 17, 67, 1330, 1081, 979, 72, 17, 35, 198, 6738, 764, 42367, 1330, 1635, 198, 6738, 764, 65, 1698, 84, 1330, 40750, 35660, 198, 6738, 764, 13297, 1330, 3012, 198, 6738, 764, 25011, 9945, 1330, 314, 80, 9945, 198, 6738, 764, 82, 14272, 268, 5488, 1330, 37618, 4535, 46, 198, 6738, 764, 2213, 330, 368, 2577, 1330, 357, 198, 220, 220, 220, 34912, 44, 2577, 11, 198, 220, 220, 220, 34912, 44, 2577, 2025, 346, 396, 11, 198, 220, 220, 220, 34912, 44, 2577, 5308, 11, 198, 220, 220, 220, 34912, 44, 2577, 35393, 11, 198, 220, 220, 220, 34912, 44, 2577, 31077, 11, 198, 8, 198, 198, 834, 9800, 834, 796, 366, 15813, 52, 1268, 1, 198, 834, 43085, 834, 796, 366, 36393, 13789, 1, 198, 834, 3642, 2455, 669, 834, 796, 14631, 15813, 52, 1268, 1600, 366, 75, 11861, 1600, 366, 24658, 692, 1600, 366, 45, 988, 78, 32, 7496, 8973, 198, 834, 12888, 834, 796, 366, 74, 15712, 29741, 31, 14816, 13, 785, 1, 198 ]
2.421965
173
import time start = time.perf_counter() receips = '37' von = 509671 bis = von + 10 elf1, elf2 = 0,1 for i in range(bis): score = int(receips[elf1]) + int(receips[elf2]) receips += str(score) lr = len(receips) elf1 = (elf1 + int(receips[elf1])+ 1) % lr elf2 = (elf2 + int(receips[elf2])+ 1) % lr print(receips[von:bis]) print(time.perf_counter()-start)
[ 11748, 640, 198, 9688, 796, 640, 13, 525, 69, 62, 24588, 3419, 198, 198, 260, 344, 2419, 796, 705, 2718, 6, 198, 26982, 796, 2026, 24, 46250, 198, 41907, 796, 18042, 1343, 838, 198, 198, 7046, 16, 11, 23878, 17, 796, 657, 11, 16, 198, 198, 1640, 1312, 287, 2837, 7, 41907, 2599, 220, 220, 198, 220, 4776, 796, 493, 7, 260, 344, 2419, 58, 7046, 16, 12962, 1343, 493, 7, 260, 344, 2419, 58, 7046, 17, 12962, 198, 220, 1407, 2419, 15853, 965, 7, 26675, 8, 198, 220, 300, 81, 796, 18896, 7, 260, 344, 2419, 8, 198, 220, 23878, 16, 796, 357, 7046, 16, 1343, 493, 7, 260, 344, 2419, 58, 7046, 16, 12962, 10, 352, 8, 4064, 300, 81, 198, 220, 23878, 17, 796, 357, 7046, 17, 1343, 493, 7, 260, 344, 2419, 58, 7046, 17, 12962, 10, 352, 8, 4064, 300, 81, 198, 220, 220, 198, 4798, 7, 260, 344, 2419, 58, 26982, 25, 41907, 12962, 198, 4798, 7, 2435, 13, 525, 69, 62, 24588, 3419, 12, 9688, 8, 198, 220, 220 ]
2.113636
176
import typing import sys import numpy as np import numba as nb @nb.njit((nb.i8, nb.i8, nb.i8[:], nb.i8[:]), cache=True) main()
[ 11748, 19720, 198, 11748, 25064, 220, 198, 11748, 299, 32152, 355, 45941, 220, 198, 11748, 997, 7012, 355, 299, 65, 220, 628, 198, 31, 46803, 13, 77, 45051, 19510, 46803, 13, 72, 23, 11, 299, 65, 13, 72, 23, 11, 299, 65, 13, 72, 23, 58, 25, 4357, 299, 65, 13, 72, 23, 58, 25, 46570, 12940, 28, 17821, 8, 628, 198, 198, 12417, 3419 ]
2.061538
65
import argparse import os from credentials import get, set from upload import upload def main(): """ get command line options and upload the file(s) accordingly :return: None """ parser = argparse.ArgumentParser() options = parser.add_mutually_exclusive_group() options.add_argument("-i", "--image", help="Upload a single file to imgur") options.add_argument("-a", "--album", help="Upload all images in directory to imgur as an album") args = parser.parse_args() # Attempt to get credentials from file. If unavailable set credentials from input login = get.get_creds() cred_dir = os.path.dirname(os.path.abspath(__file__)) + "\credentials\credentials.cred" if not login: login = set.set_creds() client = upload.Client(login[0], login[1], cred_dir) print(args.image) if args.image: upload.SingleFile(client, args.image) elif args.album: upload.Album(client, args.album) else: print("No commands input.\n[-h] [-help] for a list of commands.") if __name__ == "__main__": main()
[ 11748, 1822, 29572, 201, 198, 11748, 28686, 201, 198, 6738, 18031, 1330, 651, 11, 900, 201, 198, 6738, 9516, 1330, 9516, 201, 198, 201, 198, 201, 198, 4299, 1388, 33529, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 651, 3141, 1627, 3689, 290, 9516, 262, 2393, 7, 82, 8, 16062, 201, 198, 220, 220, 220, 1058, 7783, 25, 6045, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 201, 198, 220, 220, 220, 3689, 796, 30751, 13, 2860, 62, 21973, 935, 62, 41195, 62, 8094, 3419, 201, 198, 220, 220, 220, 3689, 13, 2860, 62, 49140, 7203, 12, 72, 1600, 366, 438, 9060, 1600, 1037, 2625, 41592, 257, 2060, 2393, 284, 33705, 333, 4943, 201, 198, 220, 220, 220, 3689, 13, 2860, 62, 49140, 7203, 12, 64, 1600, 366, 438, 40916, 1600, 1037, 2625, 41592, 477, 4263, 287, 8619, 284, 33705, 333, 355, 281, 5062, 4943, 201, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 201, 198, 220, 220, 220, 1303, 25770, 284, 651, 18031, 422, 2393, 13, 1002, 23485, 900, 18031, 422, 5128, 201, 198, 220, 220, 220, 17594, 796, 651, 13, 1136, 62, 66, 445, 82, 3419, 201, 198, 220, 220, 220, 2600, 62, 15908, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 1343, 37082, 66, 445, 14817, 59, 66, 445, 14817, 13, 66, 445, 1, 201, 198, 220, 220, 220, 611, 407, 17594, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 17594, 796, 900, 13, 2617, 62, 66, 445, 82, 3419, 201, 198, 220, 220, 220, 5456, 796, 9516, 13, 11792, 7, 38235, 58, 15, 4357, 17594, 58, 16, 4357, 2600, 62, 15908, 8, 201, 198, 201, 198, 220, 220, 220, 3601, 7, 22046, 13, 9060, 8, 201, 198, 220, 220, 220, 611, 26498, 13, 9060, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 13, 28008, 8979, 7, 16366, 11, 26498, 13, 9060, 8, 201, 198, 220, 220, 220, 1288, 361, 26498, 13, 40916, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 13, 2348, 4435, 7, 16366, 11, 26498, 13, 40916, 8, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 2949, 9729, 5128, 13, 59, 77, 58, 12, 71, 60, 25915, 16794, 60, 329, 257, 1351, 286, 9729, 19570, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
2.572082
437
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from proxypool.schedule import Schedule if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 14793, 4464, 970, 13, 15952, 5950, 1330, 19281, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.363636
55
from lib import file_util from lib import render_path from lib import template_renderer from lib import source_converter from lib import console_outputter from datetime import date
[ 6738, 9195, 1330, 2393, 62, 22602, 198, 6738, 9195, 1330, 8543, 62, 6978, 198, 6738, 9195, 1330, 11055, 62, 10920, 11882, 198, 6738, 9195, 1330, 2723, 62, 1102, 332, 353, 198, 6738, 9195, 1330, 8624, 62, 22915, 353, 198, 6738, 4818, 8079, 1330, 3128, 628 ]
4.044444
45
""" tests.py A file dedicated to testing our game and ensuring it can run. Integrate this into your IDE's workflow to ensure the game runs from top to bottom. The tests used here should test all of our game's features as best they can. """ import pytest from typing import Pattern, List class TestGame: """ Tests that the Arcade framework runs the game correctly. Only tests that it launches and runs for a little bit, not that it is functioning properly. """ def test_game_runs(self) -> None: """ Simply test that the Game runs. """ # imports from main import Game # instantiate and setup game = Game() game.setup() game.minimize() # Minimizes window, should reduce annoyance a little bit. # test for 100 frames game.test(20) class TestSprites: """ Tests the Sprite classes as well as the available sprites. """ @pytest.fixture def sprites(self) -> List[str]: """ :return: List of absolute paths to Sprite images """ import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) IMAGE_DIR = os.path.join(BASE_DIR, 'resources', 'images') _sprites = [] for primary in os.listdir(IMAGE_DIR): for secondary in os.listdir(os.path.join(IMAGE_DIR, primary)): secondary = os.path.join(IMAGE_DIR, primary, secondary) if os.path.isfile(secondary): _sprites.append(secondary) else: _sprites.extend( os.path.join(secondary, file) for file in os.listdir(os.path.join(IMAGE_DIR, primary, secondary))) return _sprites @pytest.fixture def patterns(self) -> List[Pattern]: """ :return: A list of Pattern objects to test. """ import re _patterns = [ r'\w+_(?:\w+_)?\d+\.(?:jp(?:eg|e|g)|png)', r'\w+\d+\.(?:jp(?:eg|e|g)|png)', r'\w+_tile\.(?:jp(?:eg|e|g)|png)' ] return list(map(re.compile, _patterns)) def test_sprite_schema(self, sprites: List[str], patterns: List[Pattern]) -> None: """ Tests that all sprites follow the naming conventions. """ import os for sprite in sprites: head, tail = os.path.split(sprite) if any(pattern.match(tail) is not None for pattern in patterns): continue pytest.fail(f"Sprite '{tail}' in '{head}' did not match the schema.") def test_sprite_loads(self, sprites) -> None: """ Tests that all sprites can be loaded by the arcade framework. """ import arcade for sprite in sprites: _sprite = arcade.Sprite(sprite) class TestLevels: """ Tests the Level class. """ @pytest.fixture def levels(self) -> List[str]: """ :return: List of paths to Level files """ import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) LEVEL_DIR = os.path.join(BASE_DIR, 'resources', 'levels') levels = [os.path.join(LEVEL_DIR, file) for file in os.listdir(LEVEL_DIR)] return levels def test_levels_are_loadable(self, levels) -> None: """ Tests whether or not a level can be loaded. """ from map import Level for level in levels: Level.load_file(2, 3, level) class TestDungeon: """ Tests the Dungeon class. """ class TestMisc: """ Tests things that don't fit anywhere else. """
[ 37811, 198, 41989, 13, 9078, 198, 32, 2393, 7256, 284, 4856, 674, 983, 290, 13359, 340, 460, 1057, 13, 198, 34500, 4873, 428, 656, 534, 33497, 338, 30798, 284, 4155, 262, 983, 4539, 422, 1353, 284, 4220, 13, 198, 464, 5254, 973, 994, 815, 1332, 477, 286, 674, 983, 338, 3033, 355, 1266, 484, 460, 13, 198, 37811, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 19720, 1330, 23939, 11, 7343, 628, 198, 4871, 6208, 8777, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 326, 262, 23190, 9355, 4539, 262, 983, 9380, 13, 198, 220, 220, 220, 5514, 5254, 326, 340, 18617, 290, 4539, 329, 257, 1310, 1643, 11, 407, 326, 340, 318, 15025, 6105, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 1332, 62, 6057, 62, 48381, 7, 944, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 17973, 1332, 326, 262, 3776, 4539, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17944, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1388, 1330, 3776, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9113, 9386, 290, 9058, 198, 220, 220, 220, 220, 220, 220, 220, 983, 796, 3776, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 983, 13, 40406, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 983, 13, 1084, 48439, 3419, 220, 1303, 1855, 320, 4340, 4324, 11, 815, 4646, 38650, 257, 1310, 1643, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1332, 329, 1802, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 983, 13, 9288, 7, 1238, 8, 628, 198, 4871, 6208, 4561, 23156, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 262, 33132, 6097, 355, 880, 355, 262, 1695, 42866, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 198, 220, 220, 220, 825, 42866, 7, 944, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7343, 286, 4112, 13532, 284, 33132, 4263, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1330, 28686, 198, 220, 220, 220, 220, 220, 220, 220, 49688, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 8959, 11879, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 37540, 3256, 705, 17566, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 2777, 23156, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4165, 287, 28686, 13, 4868, 15908, 7, 3955, 11879, 62, 34720, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9233, 287, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 3955, 11879, 62, 34720, 11, 4165, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9233, 796, 28686, 13, 6978, 13, 22179, 7, 3955, 11879, 62, 34720, 11, 4165, 11, 9233, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 38238, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2777, 23156, 13, 33295, 7, 38238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 2777, 23156, 13, 2302, 437, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 38238, 11, 2393, 8, 329, 2393, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 4868, 15908, 7, 418, 13, 6978, 13, 22179, 7, 3955, 11879, 62, 34720, 11, 4165, 11, 9233, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 2777, 23156, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 198, 220, 220, 220, 825, 7572, 7, 944, 8, 4613, 7343, 58, 47546, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 1351, 286, 23939, 5563, 284, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 302, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 33279, 82, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 59, 86, 10, 41052, 30, 7479, 86, 10, 62, 19427, 59, 67, 10, 59, 12195, 27514, 34523, 7, 27514, 1533, 91, 68, 91, 70, 14726, 11134, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 59, 86, 10, 59, 67, 10, 59, 12195, 27514, 34523, 7, 27514, 1533, 91, 68, 91, 70, 14726, 11134, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 6, 59, 86, 10, 62, 40927, 59, 12195, 27514, 34523, 7, 27514, 1533, 91, 68, 91, 70, 14726, 11134, 33047, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1351, 7, 8899, 7, 260, 13, 5589, 576, 11, 4808, 33279, 82, 4008, 628, 220, 220, 220, 825, 1332, 62, 34975, 578, 62, 15952, 2611, 7, 944, 11, 42866, 25, 7343, 58, 2536, 4357, 7572, 25, 7343, 58, 47546, 12962, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30307, 326, 477, 42866, 1061, 262, 19264, 21396, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 28686, 628, 220, 220, 220, 220, 220, 220, 220, 329, 33810, 287, 42866, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1182, 11, 7894, 796, 28686, 13, 6978, 13, 35312, 7, 34975, 578, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 33279, 13, 15699, 7, 13199, 8, 318, 407, 6045, 329, 3912, 287, 7572, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 9288, 13, 32165, 7, 69, 1, 38454, 578, 705, 90, 13199, 92, 6, 287, 705, 90, 2256, 92, 6, 750, 407, 2872, 262, 32815, 19570, 628, 220, 220, 220, 825, 1332, 62, 34975, 578, 62, 46030, 7, 944, 11, 42866, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30307, 326, 477, 42866, 460, 307, 9639, 416, 262, 27210, 9355, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 27210, 628, 220, 220, 220, 220, 220, 220, 220, 329, 33810, 287, 42866, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 34975, 578, 796, 27210, 13, 38454, 578, 7, 34975, 578, 8, 628, 198, 4871, 6208, 4971, 82, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 262, 5684, 1398, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 9078, 9288, 13, 69, 9602, 198, 220, 220, 220, 825, 2974, 7, 944, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 7343, 286, 13532, 284, 5684, 3696, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 28686, 628, 220, 220, 220, 220, 220, 220, 220, 49688, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 49277, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 37540, 3256, 705, 46170, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2974, 796, 685, 418, 13, 6978, 13, 22179, 7, 2538, 18697, 62, 34720, 11, 2393, 8, 329, 2393, 287, 28686, 13, 4868, 15908, 7, 2538, 18697, 62, 34720, 15437, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2974, 628, 220, 220, 220, 825, 1332, 62, 46170, 62, 533, 62, 2220, 540, 7, 944, 11, 2974, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30307, 1771, 393, 407, 257, 1241, 460, 307, 9639, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 422, 3975, 1330, 5684, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1241, 287, 2974, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5684, 13, 2220, 62, 7753, 7, 17, 11, 513, 11, 1241, 8, 628, 198, 4871, 6208, 30128, 6281, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 262, 11995, 1398, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 6208, 44, 2304, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 30307, 1243, 326, 836, 470, 4197, 6609, 2073, 13, 198, 220, 220, 220, 37227, 198 ]
2.247397
1,633
import json import logging import pathlib from phe import paillier, EncryptedNumber, PaillierPublicKey import server.dbhandler as dbhandler class Server(): """ Implements functionality related to cloud biometric storage and processing. Return values to the client: store_template(): <int> tid (template id) if template succesfully stored in the database file <None> if error during store occurs calculate_eucledian(): <int> encrypted_eucledian_distance Ciphertext which contains the encrypted eucledian distance <None> if error during calculation occurs make_decision(): <True> given unencrypted eucledian distance returns if the value is within threshold <False> if the value is not withing threshold """ def __init__(self): """ Constructor executed during object creation """ self.logger = self.get_logger() # for server logs data = dbhandler.read_data() if not data: self.tid = 0 else: last_entry = data[-1] # fetch the last appended tid self.tid = last_entry['tid'] def store_template(self, encrypted_fingerprint, pub_key_n): """ Receives a encrypted transformed fingerprint from the client. Fingerprint is homomorphically encrypted using the paillier scheme which allows the server to perform certain operations on encrypted data. This data is stored in a database. :param template_fingerprint: encrypted fingerprint template :param pub_key_n: :return: template id of the template stored, None if error """ data = dbhandler.read_data() self.tid = self.tid + 1 try: serializable_encrypted_fingerprint = [ feature._EncryptedNumber__ciphertext for feature in encrypted_fingerprint] new_template = {'tid': self.tid, 'fingerprint': serializable_encrypted_fingerprint, 'public_key': pub_key_n} data.append(new_template) dbhandler.write_data(data) except Exception as e: self.logger.exception(e) raise Exception(e) return None self.logger.info('New template stored') self.logger.debug(json.dumps(new_template, indent=2)) return self.tid def retrieve_template(self, user_tid): """ Retrieves encrypted fingerprint vector given a particular template id. :param user_tid: template id of the user from client :return: fingerprint template if it exists else None """ data = dbhandler.read_data() for entry in data: if entry['tid'] == user_tid: return entry # This technically should never happen self.logger.error(f'Unknown template id: {user_tid}') return None def compute_euclidean(self, verification_fingerprint, user_tid): """ Computes the eucledian distance between the verification fingerprint and the original fingerprint. :param verification_fingerprint: fingerprint transformed vector for the user that is to be verified by the client :param user_tid: template id of the user being verified sent by the client :return: encrypted eucledian distance """ template_json = self.retrieve_template(user_tid) if not template_json: return None pub_key = PaillierPublicKey(template_json['public_key']) original_fingerprint = [EncryptedNumber( pub_key, cipher) for cipher in template_json['fingerprint']] if len(verification_fingerprint) != len(original_fingerprint): self.logger.error(f'Fingerprint templates size do not match') self.logger.debug( f'Verification fingerprint {verification_fingerprint}') return None for idx, feature in enumerate(verification_fingerprint): original_fingerprint[idx] = original_fingerprint[idx]*feature encrypted_eucledian_distance = 0 for c in original_fingerprint: encrypted_eucledian_distance += c return encrypted_eucledian_distance._EncryptedNumber__ciphertext def make_decision(self, euclidean_distance): """ Given unencrypted eucledian distance between the original and to be verified fingerprint it returns whether the value is withing threshold https://www.intechopen.com/books/advanced-biometric-technologies/fingerprint-recognition threshold value taken from this website (gm1 = 27) :param euclidean_distance: eucledian distance as integer :return: True or False """ if euclidean_distance < 27: return True else: return False def get_logger(self): """ Create a logging object for server logs :return: logger object """ logger = logging.getLogger('server') logger.setLevel(level=logging.DEBUG) formatter = logging.Formatter( '%(asctime)s: %(module)s: [%(levelname)s]: %(message)s') file_name = pathlib.Path(__file__).parent / 'logs/server.log' file_handler = logging.FileHandler(file_name) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) return logger
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 3108, 8019, 198, 198, 6738, 279, 258, 1330, 14187, 359, 959, 11, 14711, 15109, 15057, 11, 11243, 359, 959, 15202, 9218, 198, 198, 11748, 4382, 13, 9945, 30281, 355, 20613, 30281, 628, 198, 4871, 9652, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1846, 1154, 902, 11244, 3519, 284, 6279, 3182, 16996, 6143, 290, 7587, 13, 628, 220, 220, 220, 8229, 3815, 284, 262, 5456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3650, 62, 28243, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 600, 29, 29770, 357, 28243, 4686, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 11055, 17458, 274, 2759, 8574, 287, 262, 6831, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 14202, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 1141, 3650, 8833, 628, 220, 220, 220, 220, 220, 220, 220, 15284, 62, 12496, 20095, 666, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 600, 29, 19365, 62, 12496, 20095, 666, 62, 30246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44334, 5239, 543, 4909, 262, 19365, 304, 84, 20095, 666, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 14202, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 1141, 17952, 8833, 628, 220, 220, 220, 220, 220, 220, 220, 787, 62, 12501, 1166, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 17821, 29, 1813, 555, 43628, 304, 84, 20095, 666, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 611, 262, 1988, 318, 1626, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 25101, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 262, 1988, 318, 407, 351, 278, 11387, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 10945, 1141, 2134, 6282, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 796, 2116, 13, 1136, 62, 6404, 1362, 3419, 220, 1303, 329, 4382, 17259, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 20613, 30281, 13, 961, 62, 7890, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 13000, 796, 1366, 58, 12, 16, 60, 220, 1303, 21207, 262, 938, 598, 1631, 29770, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 312, 796, 938, 62, 13000, 17816, 83, 312, 20520, 628, 220, 220, 220, 825, 3650, 62, 28243, 7, 944, 11, 19365, 62, 35461, 4798, 11, 2240, 62, 2539, 62, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19520, 1083, 257, 19365, 14434, 25338, 422, 262, 5456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 39454, 4798, 318, 3488, 25831, 1146, 19365, 1262, 262, 14187, 359, 959, 198, 220, 220, 220, 220, 220, 220, 220, 7791, 543, 3578, 262, 4382, 284, 1620, 1728, 4560, 319, 198, 220, 220, 220, 220, 220, 220, 220, 19365, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 1366, 318, 8574, 287, 257, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 11055, 62, 35461, 4798, 25, 19365, 25338, 11055, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2240, 62, 2539, 62, 77, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 11055, 4686, 286, 262, 11055, 8574, 11, 6045, 611, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 20613, 30281, 13, 961, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 83, 312, 796, 2116, 13, 83, 312, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11389, 13821, 62, 43628, 62, 35461, 4798, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 13557, 27195, 15109, 15057, 834, 66, 10803, 5239, 329, 3895, 287, 19365, 62, 35461, 4798, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 28243, 796, 1391, 6, 83, 312, 10354, 2116, 13, 83, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35461, 4798, 10354, 11389, 13821, 62, 43628, 62, 35461, 4798, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11377, 62, 2539, 10354, 2240, 62, 2539, 62, 77, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 3605, 62, 28243, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 30281, 13, 13564, 62, 7890, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 1069, 4516, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 10951, 10786, 3791, 11055, 8574, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 17752, 13, 67, 8142, 7, 3605, 62, 28243, 11, 33793, 28, 17, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 83, 312, 628, 220, 220, 220, 825, 19818, 62, 28243, 7, 944, 11, 2836, 62, 83, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4990, 5034, 1158, 19365, 25338, 15879, 1813, 257, 1948, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 4686, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2836, 62, 83, 312, 25, 11055, 4686, 286, 262, 2836, 422, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 25338, 11055, 611, 340, 7160, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 20613, 30281, 13, 961, 62, 7890, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5726, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 17816, 83, 312, 20520, 6624, 2836, 62, 83, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5726, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 14497, 815, 1239, 1645, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 18224, 7, 69, 6, 20035, 11055, 4686, 25, 1391, 7220, 62, 83, 312, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 825, 24061, 62, 12496, 565, 485, 272, 7, 944, 11, 19637, 62, 35461, 4798, 11, 2836, 62, 83, 312, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3082, 1769, 262, 304, 84, 20095, 666, 5253, 1022, 262, 19637, 25338, 198, 220, 220, 220, 220, 220, 220, 220, 290, 262, 2656, 25338, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 19637, 62, 35461, 4798, 25, 25338, 14434, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 262, 2836, 326, 318, 284, 307, 19000, 416, 262, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2836, 62, 83, 312, 25, 11055, 4686, 286, 262, 2836, 852, 19000, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1908, 416, 262, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 19365, 304, 84, 20095, 666, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 62, 17752, 796, 2116, 13, 1186, 30227, 62, 28243, 7, 7220, 62, 83, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 11055, 62, 17752, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2240, 62, 2539, 796, 11243, 359, 959, 15202, 9218, 7, 28243, 62, 17752, 17816, 11377, 62, 2539, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 35461, 4798, 796, 685, 27195, 15109, 15057, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2240, 62, 2539, 11, 38012, 8, 329, 38012, 287, 11055, 62, 17752, 17816, 35461, 4798, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 332, 2649, 62, 35461, 4798, 8, 14512, 18896, 7, 14986, 62, 35461, 4798, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 18224, 7, 69, 6, 37, 3889, 4798, 24019, 2546, 466, 407, 2872, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 24442, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 13414, 2649, 25338, 1391, 332, 2649, 62, 35461, 4798, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4686, 87, 11, 3895, 287, 27056, 378, 7, 332, 2649, 62, 35461, 4798, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 62, 35461, 4798, 58, 312, 87, 60, 796, 2656, 62, 35461, 4798, 58, 312, 87, 60, 9, 30053, 198, 220, 220, 220, 220, 220, 220, 220, 19365, 62, 12496, 20095, 666, 62, 30246, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 2656, 62, 35461, 4798, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19365, 62, 12496, 20095, 666, 62, 30246, 15853, 269, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19365, 62, 12496, 20095, 666, 62, 30246, 13557, 27195, 15109, 15057, 834, 66, 10803, 5239, 628, 220, 220, 220, 825, 787, 62, 12501, 1166, 7, 944, 11, 304, 36616, 485, 272, 62, 30246, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 555, 43628, 304, 84, 20095, 666, 5253, 1022, 262, 2656, 290, 284, 307, 19000, 25338, 198, 220, 220, 220, 220, 220, 220, 220, 340, 5860, 1771, 262, 1988, 318, 351, 278, 11387, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 2503, 13, 600, 3055, 9654, 13, 785, 14, 12106, 14, 32225, 2903, 12, 8482, 16996, 12, 23873, 5823, 14, 35461, 4798, 12, 26243, 653, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 1988, 2077, 422, 428, 3052, 357, 39870, 16, 796, 2681, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 304, 36616, 485, 272, 62, 30246, 25, 304, 84, 20095, 666, 5253, 355, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 6407, 393, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 36616, 485, 272, 62, 30246, 1279, 2681, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 651, 62, 6404, 1362, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 18931, 2134, 329, 4382, 17259, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 49706, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 10786, 15388, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2617, 4971, 7, 5715, 28, 6404, 2667, 13, 30531, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4, 7, 292, 310, 524, 8, 82, 25, 4064, 7, 21412, 8, 82, 25, 685, 4, 7, 5715, 3672, 8, 82, 5974, 4064, 7, 20500, 8, 82, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 796, 3108, 8019, 13, 15235, 7, 834, 7753, 834, 737, 8000, 1220, 705, 6404, 82, 14, 15388, 13, 6404, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 30281, 796, 18931, 13, 8979, 25060, 7, 7753, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 30281, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 30281, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 2860, 25060, 7, 7753, 62, 30281, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 49706, 198 ]
2.395948
2,369
# Faça um programa em Python que abra e reproduza o áudio de um arquivo MP3. from pygame import mixer # pip3 install pygame mixer.init() mixer.music.load('ex021.ogg') mixer.music.play() input()
[ 2, 18350, 50041, 23781, 1430, 64, 795, 11361, 8358, 450, 430, 304, 8186, 4496, 267, 6184, 94, 463, 952, 390, 23781, 610, 421, 23593, 4904, 18, 13, 198, 198, 6738, 12972, 6057, 1330, 33938, 1303, 7347, 18, 2721, 12972, 6057, 198, 198, 19816, 263, 13, 15003, 3419, 198, 19816, 263, 13, 28965, 13, 2220, 10786, 1069, 46821, 13, 10332, 11537, 198, 19816, 263, 13, 28965, 13, 1759, 3419, 198, 15414, 3419, 198 ]
2.722222
72
import pkg_resources import json
[ 11748, 279, 10025, 62, 37540, 198, 11748, 33918 ]
4
8
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters from rl_coach.environments.gym_environment import GymVectorEnvironment from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.graph_managers.graph_manager import ScheduleParameters from rl_coach.base_parameters import VisualizationParameters, TaskParameters from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase from rl_coach import logger import os import argparse import copy if __name__ == '__main__': parser = argparse.ArgumentParser() # consumes the hyper-parameters parser.add_argument('--bucket_name', type=str) parser.add_argument('--input_data_dir', type=str, default='/opt/ml/input/data/') parser.add_argument('--output_data_dir', type=str, default='/opt/ml/output/data/') params, unknown = parser.parse_known_args() evaluate(params)
[ 6738, 374, 75, 62, 1073, 620, 13, 49638, 13, 565, 3949, 62, 16634, 62, 25781, 1330, 1012, 3949, 10246, 23621, 6783, 48944, 198, 6738, 374, 75, 62, 1073, 620, 13, 268, 12103, 13, 1360, 76, 62, 38986, 1330, 31187, 38469, 31441, 198, 6738, 374, 75, 62, 1073, 620, 13, 34960, 62, 805, 10321, 13, 35487, 62, 45895, 62, 34960, 62, 37153, 1330, 14392, 7836, 37065, 13511, 198, 6738, 374, 75, 62, 1073, 620, 13, 34960, 62, 805, 10321, 13, 34960, 62, 37153, 1330, 19281, 48944, 198, 6738, 374, 75, 62, 1073, 620, 13, 8692, 62, 17143, 7307, 1330, 15612, 1634, 48944, 11, 15941, 48944, 198, 6738, 374, 75, 62, 1073, 620, 13, 7295, 62, 19199, 1330, 13614, 8600, 82, 11, 9344, 13807, 8052, 11, 9344, 8600, 82, 11, 5660, 35645, 198, 6738, 374, 75, 62, 1073, 620, 1330, 49706, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 11748, 4866, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 1303, 37225, 262, 8718, 12, 17143, 7307, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 27041, 316, 62, 3672, 3256, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 62, 7890, 62, 15908, 3256, 2099, 28, 2536, 11, 4277, 11639, 14, 8738, 14, 4029, 14, 15414, 14, 7890, 14, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22915, 62, 7890, 62, 15908, 3256, 2099, 28, 2536, 11, 4277, 11639, 14, 8738, 14, 4029, 14, 22915, 14, 7890, 14, 11537, 198, 220, 220, 220, 42287, 11, 6439, 796, 30751, 13, 29572, 62, 4002, 62, 22046, 3419, 198, 220, 220, 220, 13446, 7, 37266, 8, 198 ]
3.114094
298
from .core import Reactor
[ 6738, 764, 7295, 1330, 797, 11218, 198 ]
3.714286
7
import datetime from flask.ext.bcrypt import generate_password_hash from flask.ext.login import UserMixin from peewee import * DATABASE = SqliteDatabase('journal.db')
[ 11748, 4818, 8079, 198, 198, 6738, 42903, 13, 2302, 13, 15630, 6012, 1330, 7716, 62, 28712, 62, 17831, 198, 6738, 42903, 13, 2302, 13, 38235, 1330, 11787, 35608, 259, 198, 6738, 613, 413, 1453, 1330, 1635, 198, 198, 35, 1404, 6242, 11159, 796, 311, 13976, 578, 38105, 10786, 24891, 13, 9945, 11537, 628, 220, 220, 220, 220, 198 ]
3.017241
58
from juno.resources import handler_request from juno.resources.routes import additional_data_routes
[ 6738, 10891, 78, 13, 37540, 1330, 21360, 62, 25927, 198, 6738, 10891, 78, 13, 37540, 13, 81, 448, 274, 1330, 3224, 62, 7890, 62, 81, 448, 274, 198 ]
3.571429
28
# pylint: disable=no-self-use import json import pytest import re from geoalchemy2.shape import from_shape from shapely.geometry import box, Polygon, shape from . import AbstractViewsTests @pytest.fixture(scope='function') @pytest.mark.usefixtures('dbsession', 'transact') @pytest.mark.usefixtures('restriction_area_test_data', 'test_app')
[ 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 944, 12, 1904, 628, 198, 11748, 33918, 198, 11748, 12972, 9288, 198, 11748, 302, 198, 6738, 40087, 282, 26599, 17, 13, 43358, 1330, 422, 62, 43358, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 3091, 11, 12280, 14520, 11, 5485, 198, 198, 6738, 764, 1330, 27741, 7680, 82, 51, 3558, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 11639, 8818, 11537, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 67, 1443, 2521, 3256, 705, 7645, 529, 11537, 628, 198, 31, 9078, 9288, 13, 4102, 13, 1904, 69, 25506, 10786, 2118, 46214, 62, 20337, 62, 9288, 62, 7890, 3256, 705, 9288, 62, 1324, 11537, 198 ]
2.940678
118
#!/usr/bin/python3 import requests import boto3 from os import listdir from os.path import isfile, join import re def install_paper(mc_version, paper_build): """This will download the paper jar""" url = "https://papermc.io/api/v2/projects/paper" mc_version = requests.get(url).json()['versions'][-1] if mc_version is None or mc_version is "latest" else mc_version paper_build = requests.get("{url}/versions/{version}".format(url = url, version = mc_version)).json()['builds'][-1] if paper_build is None or paper_build is "latest" else paper_build download = requests.get("{url}/versions/{version}/builds/{build}/downloads/paper-{version}-{build}.jar".format(url = url, version = mc_version, build = paper_build)) open(join(minecraft_path,"paper-{version}-{build}.jar".format(version = mc_version, build = paper_build)), 'wb').write(download.content) # Now update the tags response = instance.create_tags(Tags=[ {'Key': 'mc_version', 'Value': mc_version }, {'Key': 'mc_paper_build', 'Value': str(paper_build) }]) minecraft_path = "/opt/minecraft/server" instance_id = requests.get("http://169.254.169.254/latest/meta-data/instance-id").text region = requests.get(" http://169.254.169.254/latest/meta-data/placement/region").text ec2 = boto3.resource('ec2', region_name = region) instance = ec2.Instance(instance_id) # Search the tags for the minecraft version we are targetting try: target_minecraft_version = next(t["Value"] for t in instance.tags if t["Key"] == "mc_version") except StopIteration: target_minecraft_version = None # Check and see if we've already got a build defined. try: current_paper_build = next(t["Value"] for t in instance.tags if t["Key"] == "mc_paper_build") except StopIteration: current_paper_build = None # Get the filename of paper on the system try: paper_file = next(f for f in listdir(minecraft_path) if isfile(join(minecraft_path, f)) and "paper" in f and "jar" in f) except StopIteration: paper_file = None if not paper_file: # Hey, we don't have a paper file installed, so this must be a new build of the minecraft server! print("New paper install") install_paper(target_minecraft_version, current_paper_build) else: # We've already got a file, so we're going to look at what we need to do. print("Paper already installed, let's see if we need to re-install anything") p = re.compile(r'paper-(?P<version>[0-9.]+)-(?P<build>[0-9]+).jar') m = p.search(paper_file) installed_version = m.group('version') installed_build = m.group('build') if target_minecraft_version == installed_version: # We already have the same version, let's see if we need to do anything with the build print("minecraft version is current") if current_paper_build == installed_build: print("paper build is current, nothing to do") else: print("paper build is NOT current, updating the build") install_paper(target_minecraft_version, current_paper_build) else: # The version isn't the same, we need to download a new one print("minecraft version is NOT current") install_paper(target_minecraft_version, current_paper_build)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 7007, 198, 11748, 275, 2069, 18, 198, 6738, 28686, 1330, 1351, 15908, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 11, 4654, 198, 11748, 302, 198, 198, 4299, 2721, 62, 20189, 7, 23209, 62, 9641, 11, 3348, 62, 11249, 2599, 198, 220, 220, 220, 37227, 1212, 481, 4321, 262, 3348, 17379, 37811, 198, 220, 220, 220, 19016, 796, 366, 5450, 1378, 20189, 23209, 13, 952, 14, 15042, 14, 85, 17, 14, 42068, 14, 20189, 1, 198, 220, 220, 220, 36650, 62, 9641, 796, 7007, 13, 1136, 7, 6371, 737, 17752, 3419, 17816, 47178, 6, 7131, 12, 16, 60, 611, 36650, 62, 9641, 318, 6045, 393, 36650, 62, 9641, 318, 366, 42861, 1, 2073, 36650, 62, 9641, 198, 220, 220, 220, 3348, 62, 11249, 796, 7007, 13, 1136, 7203, 90, 6371, 92, 14, 47178, 14, 90, 9641, 92, 1911, 18982, 7, 6371, 796, 19016, 11, 2196, 796, 36650, 62, 9641, 29720, 17752, 3419, 17816, 11249, 82, 6, 7131, 12, 16, 60, 611, 3348, 62, 11249, 318, 6045, 393, 3348, 62, 11249, 318, 366, 42861, 1, 2073, 3348, 62, 11249, 198, 220, 220, 220, 4321, 796, 7007, 13, 1136, 7203, 90, 6371, 92, 14, 47178, 14, 90, 9641, 92, 14, 11249, 82, 14, 90, 11249, 92, 14, 15002, 82, 14, 20189, 12, 90, 9641, 92, 12, 90, 11249, 27422, 9491, 1911, 18982, 7, 6371, 796, 19016, 11, 2196, 796, 36650, 62, 9641, 11, 1382, 796, 3348, 62, 11249, 4008, 198, 220, 220, 220, 1280, 7, 22179, 7, 17761, 62, 6978, 553, 20189, 12, 90, 9641, 92, 12, 90, 11249, 27422, 9491, 1911, 18982, 7, 9641, 796, 36650, 62, 9641, 11, 1382, 796, 3348, 62, 11249, 36911, 705, 39346, 27691, 13564, 7, 15002, 13, 11299, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2735, 4296, 262, 15940, 198, 220, 220, 220, 2882, 796, 4554, 13, 17953, 62, 31499, 7, 36142, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 9218, 10354, 705, 23209, 62, 9641, 3256, 705, 11395, 10354, 36650, 62, 9641, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 9218, 10354, 705, 23209, 62, 20189, 62, 11249, 3256, 705, 11395, 10354, 965, 7, 20189, 62, 11249, 8, 1782, 12962, 198, 220, 220, 220, 220, 198, 198, 17761, 62, 6978, 796, 12813, 8738, 14, 17761, 14, 15388, 1, 198, 39098, 62, 312, 796, 7007, 13, 1136, 7203, 4023, 1378, 22172, 13, 24970, 13, 22172, 13, 24970, 14, 42861, 14, 28961, 12, 7890, 14, 39098, 12, 312, 11074, 5239, 198, 36996, 796, 7007, 13, 1136, 7203, 2638, 1378, 22172, 13, 24970, 13, 22172, 13, 24970, 14, 42861, 14, 28961, 12, 7890, 14, 489, 5592, 14, 36996, 11074, 5239, 198, 721, 17, 796, 275, 2069, 18, 13, 31092, 10786, 721, 17, 3256, 3814, 62, 3672, 796, 3814, 8, 198, 39098, 796, 9940, 17, 13, 33384, 7, 39098, 62, 312, 8, 198, 198, 2, 11140, 262, 15940, 329, 262, 6164, 3323, 2196, 356, 389, 2496, 889, 198, 28311, 25, 198, 220, 220, 220, 2496, 62, 17761, 62, 9641, 796, 1306, 7, 83, 14692, 11395, 8973, 329, 256, 287, 4554, 13, 31499, 611, 256, 14692, 9218, 8973, 6624, 366, 23209, 62, 9641, 4943, 198, 16341, 13707, 29993, 341, 25, 198, 220, 220, 220, 2496, 62, 17761, 62, 9641, 796, 6045, 198, 198, 2, 6822, 290, 766, 611, 356, 1053, 1541, 1392, 257, 1382, 5447, 13, 198, 28311, 25, 198, 220, 220, 220, 1459, 62, 20189, 62, 11249, 796, 1306, 7, 83, 14692, 11395, 8973, 329, 256, 287, 4554, 13, 31499, 611, 256, 14692, 9218, 8973, 6624, 366, 23209, 62, 20189, 62, 11249, 4943, 198, 16341, 13707, 29993, 341, 25, 198, 220, 220, 220, 1459, 62, 20189, 62, 11249, 796, 6045, 198, 198, 2, 3497, 262, 29472, 286, 3348, 319, 262, 1080, 198, 28311, 25, 220, 220, 198, 220, 220, 220, 3348, 62, 7753, 796, 1306, 7, 69, 329, 277, 287, 1351, 15908, 7, 17761, 62, 6978, 8, 611, 318, 7753, 7, 22179, 7, 17761, 62, 6978, 11, 277, 4008, 290, 366, 20189, 1, 287, 277, 290, 366, 9491, 1, 287, 277, 8, 198, 16341, 13707, 29993, 341, 25, 198, 220, 220, 220, 3348, 62, 7753, 796, 6045, 198, 220, 220, 220, 220, 198, 361, 407, 3348, 62, 7753, 25, 198, 220, 220, 220, 1303, 14690, 11, 356, 836, 470, 423, 257, 3348, 2393, 6589, 11, 523, 428, 1276, 307, 257, 649, 1382, 286, 262, 6164, 3323, 4382, 0, 198, 220, 220, 220, 3601, 7203, 3791, 3348, 2721, 4943, 198, 220, 220, 220, 2721, 62, 20189, 7, 16793, 62, 17761, 62, 9641, 11, 1459, 62, 20189, 62, 11249, 8, 198, 17772, 25, 198, 220, 220, 220, 1303, 775, 1053, 1541, 1392, 257, 2393, 11, 523, 356, 821, 1016, 284, 804, 379, 644, 356, 761, 284, 466, 13, 198, 220, 220, 220, 3601, 7203, 42950, 1541, 6589, 11, 1309, 338, 766, 611, 356, 761, 284, 302, 12, 17350, 1997, 4943, 198, 220, 220, 220, 279, 796, 302, 13, 5589, 576, 7, 81, 6, 20189, 30420, 30, 47, 27, 9641, 36937, 15, 12, 24, 8183, 10, 13219, 7, 30, 47, 27, 11249, 36937, 15, 12, 24, 48688, 737, 9491, 11537, 198, 220, 220, 220, 285, 796, 279, 13, 12947, 7, 20189, 62, 7753, 8, 198, 220, 220, 220, 6589, 62, 9641, 796, 285, 13, 8094, 10786, 9641, 11537, 198, 220, 220, 220, 6589, 62, 11249, 796, 220, 285, 13, 8094, 10786, 11249, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2496, 62, 17761, 62, 9641, 6624, 6589, 62, 9641, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1541, 423, 262, 976, 2196, 11, 1309, 338, 766, 611, 356, 761, 284, 466, 1997, 351, 262, 1382, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17761, 2196, 318, 1459, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1459, 62, 20189, 62, 11249, 6624, 6589, 62, 11249, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20189, 1382, 318, 1459, 11, 2147, 284, 466, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 20189, 1382, 318, 5626, 1459, 11, 19698, 262, 1382, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2721, 62, 20189, 7, 16793, 62, 17761, 62, 9641, 11, 1459, 62, 20189, 62, 11249, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 2196, 2125, 470, 262, 976, 11, 356, 761, 284, 4321, 257, 649, 530, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17761, 2196, 318, 5626, 1459, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2721, 62, 20189, 7, 16793, 62, 17761, 62, 9641, 11, 1459, 62, 20189, 62, 11249, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 628, 220, 220, 220, 220, 198 ]
2.824185
1,166
from __future__ import annotations
[ 6738, 11593, 37443, 834, 1330, 37647, 628 ]
5.142857
7
from .hem import HEM from .drem import DREM from .aem import AEM from .zam import ZAM
[ 6738, 764, 4411, 1330, 367, 3620, 198, 6738, 764, 67, 2787, 1330, 360, 40726, 198, 6738, 764, 64, 368, 1330, 317, 3620, 198, 6738, 764, 89, 321, 1330, 1168, 2390, 198 ]
2.774194
31
import time from pathlib import Path import numpy as np import os from py_diff_pd.env.env_base import EnvBase from py_diff_pd.common.common import create_folder, ndarray, print_info from py_diff_pd.common.tet_mesh import tetrahedralize, read_tetgen_file, generate_tet_mesh, tet2obj from py_diff_pd.common.tri_mesh import generate_tri_mesh from py_diff_pd.common.tet_mesh import get_contact_vertex as get_tet_contact_vertex from py_diff_pd.common.project_path import root_path from py_diff_pd.common.display import export_gif from py_diff_pd.core.py_diff_pd_core import TetMesh3d, TetDeformable from py_diff_pd.common.renderer import PbrtRenderer from py_diff_pd.common.project_path import root_path
[ 11748, 640, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 24330, 13, 24330, 62, 8692, 1330, 2039, 85, 14881, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 11321, 1330, 2251, 62, 43551, 11, 299, 67, 18747, 11, 3601, 62, 10951, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 83, 316, 62, 76, 5069, 1330, 28408, 430, 21962, 1096, 11, 1100, 62, 83, 316, 5235, 62, 7753, 11, 7716, 62, 83, 316, 62, 76, 5069, 11, 28408, 17, 26801, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 28461, 62, 76, 5069, 1330, 7716, 62, 28461, 62, 76, 5069, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 83, 316, 62, 76, 5069, 1330, 651, 62, 32057, 62, 332, 16886, 355, 651, 62, 83, 316, 62, 32057, 62, 332, 16886, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 16302, 62, 6978, 1330, 6808, 62, 6978, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 13812, 1330, 10784, 62, 27908, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 7295, 13, 9078, 62, 26069, 62, 30094, 62, 7295, 1330, 27351, 37031, 18, 67, 11, 27351, 5005, 687, 540, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 10920, 11882, 1330, 350, 1671, 83, 49, 437, 11882, 198, 6738, 12972, 62, 26069, 62, 30094, 13, 11321, 13, 16302, 62, 6978, 1330, 6808, 62, 6978, 198 ]
2.826613
248
import functools import operator from statistics import mean import math from anytree import LevelOrderIter, RenderTree, DoubleStyle from anytree.exporter import DotExporter from sympy.ntheory import factorint from core_functionality.solver_node import SolverNode if __name__ == '__main__': trees_8 = [approximate_tree(6,2),approximate_tree(6,3), approximate_tree(6,4), approximate_tree(6,5), prime_factor_tree(6,True), prime_factor_tree(6,False), one_vs_all_split(6), one_split_tree(6)] for tree in trees_8: dot_export_ideal_workload(tree)
[ 11748, 1257, 310, 10141, 198, 11748, 10088, 198, 6738, 7869, 1330, 1612, 198, 198, 11748, 10688, 198, 6738, 597, 21048, 1330, 5684, 18743, 29993, 11, 46722, 27660, 11, 11198, 21466, 198, 6738, 597, 21048, 13, 1069, 26634, 1330, 22875, 3109, 26634, 198, 6738, 10558, 88, 13, 429, 258, 652, 1330, 5766, 600, 198, 198, 6738, 4755, 62, 8818, 1483, 13, 82, 14375, 62, 17440, 1330, 4294, 332, 19667, 628, 628, 628, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7150, 62, 23, 796, 685, 1324, 13907, 1920, 62, 21048, 7, 21, 11, 17, 828, 1324, 13907, 1920, 62, 21048, 7, 21, 11, 18, 828, 27665, 62, 21048, 7, 21, 11, 19, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27665, 62, 21048, 7, 21, 11, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6994, 62, 31412, 62, 21048, 7, 21, 11, 17821, 828, 6994, 62, 31412, 62, 21048, 7, 21, 11, 25101, 828, 530, 62, 14259, 62, 439, 62, 35312, 7, 21, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 62, 35312, 62, 21048, 7, 21, 15437, 198, 220, 220, 220, 329, 5509, 287, 7150, 62, 23, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16605, 62, 39344, 62, 485, 282, 62, 1818, 2220, 7, 21048, 8 ]
2.514286
245
import docker from django.conf import settings from grandchallenge.components.backends.docker import Service
[ 11748, 36253, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 198, 6738, 4490, 36747, 3540, 13, 5589, 3906, 13, 1891, 2412, 13, 45986, 1330, 4809, 628 ]
4.111111
27
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-09-07 14:04 from __future__ import unicode_literals import django.contrib.postgres.fields.hstore from django.db import migrations from django.db.utils import ProgrammingError
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 18, 319, 2864, 12, 2931, 12, 2998, 1478, 25, 3023, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 13, 71, 8095, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 198, 6738, 42625, 14208, 13, 9945, 13, 26791, 1330, 30297, 12331, 628, 198 ]
2.914634
82
import tensorflow as tf def clip_uint8(im_in): ''' clips a float value between 0 and 255 and casts to uint8 ''' with tf.variable_scope(None,default_name='clip_uint8'): im = tf.clip_by_value(im_in, 0, 255) return tf.cast(im, tf.uint8)
[ 11748, 11192, 273, 11125, 355, 48700, 198, 198, 4299, 10651, 62, 28611, 23, 7, 320, 62, 259, 2599, 198, 197, 7061, 6, 198, 197, 31945, 257, 12178, 1988, 1022, 657, 290, 14280, 290, 26217, 284, 20398, 23, 198, 197, 7061, 6, 198, 197, 4480, 48700, 13, 45286, 62, 29982, 7, 14202, 11, 12286, 62, 3672, 11639, 15036, 62, 28611, 23, 6, 2599, 198, 197, 197, 320, 796, 48700, 13, 15036, 62, 1525, 62, 8367, 7, 320, 62, 259, 11, 657, 11, 14280, 8, 198, 197, 197, 7783, 48700, 13, 2701, 7, 320, 11, 48700, 13, 28611, 23, 8, 198 ]
2.454545
99
# coding: utf-8 """ :copyright: 2017-2018 H2O.ai, Inc. :license: Apache License Version 2.0 (see LICENSE for details) """ # # Experiment 05: Credit card Fraud (GPU version) # # This experiment uses the data from the Kaggle dataset [Credit Card Fraud Detection](https://www.kaggle.com/dalpozz/creditcardfraud). The dataset is made up of a number of variables which are a result of PCA transformation. # # The details of the machine we used and the version of the libraries can be found in [experiment 01](01_airline.ipynb). # In[7]: import json import sys import matplotlib.pyplot as plt import pkg_resources from libs.loaders import load_fraud from libs.timer import Timer from libs.metrics import classification_metrics_binary, classification_metrics_binary_prob, binarize_prediction import xgboost as xgb import lightgbm as lgb from sklearn.model_selection import train_test_split print("System version: {}".format(sys.version)) print("XGBoost version: {}".format(pkg_resources.get_distribution('xgboost').version)) print("LightGBM version: {}".format(pkg_resources.get_distribution('lightgbm').version)) # In[2]: random_seed = 42 # In[3]: df = load_fraud() # In[4]: print(df.shape) df.head() # In[5]: X = df[[col for col in df.columns if col.startswith('V')]].values y = df['Class'].values # In[9]: X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=random_seed, test_size=0.3) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) # In[10]: dtrain = xgb.DMatrix(data=X_train, label=y_train, nthread=-1) dtest = xgb.DMatrix(data=X_test, label=y_test, nthread=-1) # In[11]: lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train, free_raw_data=False) # ### XGBoost # In[72]: results_dict = dict() num_rounds = 100 # In[73]: params = {'max_depth':3, 'objective':'binary:logistic', 'min_child_weight':1, 'eta':0.1, 'colsample_bytree':1, 'scale_pos_weight':2, 'gamma':0.1, 'reg_lamda':1, 'subsample':1, 'tree_method':'gpu_exact' } # In[74]: with Timer() as t_train: xgb_clf_pipeline = xgb.train(params, dtrain, num_boost_round=num_rounds) with Timer() as t_test: y_prob_xgb = xgb_clf_pipeline.predict(dtest) # In[75]: y_pred_xgb = binarize_prediction(y_prob_xgb) # In[76]: report_xgb = classification_metrics_binary(y_test, y_pred_xgb) report2_xgb = classification_metrics_binary_prob(y_test, y_prob_xgb) report_xgb.update(report2_xgb) # In[77]: results_dict['xgb']={ 'train_time': t_train.interval, 'test_time': t_test.interval, 'performance': report_xgb } # In[78]: del xgb_clf_pipeline # Now let's try with XGBoost histogram. # In[79]: params = {'max_depth':3, 'objective':'binary:logistic', 'min_child_weight':1, 'eta':0.1, 'colsample_bytree':0.80, 'scale_pos_weight':2, 'gamma':0.1, 'reg_lamda':1, 'subsample':1, 'tree_method':'gpu_hist' } # In[80]: with Timer() as t_train: xgb_hist_clf_pipeline = xgb.train(params, dtrain, num_boost_round=num_rounds) with Timer() as t_test: y_prob_xgb_hist = xgb_hist_clf_pipeline.predict(dtest) # In[81]: y_pred_xgb_hist = binarize_prediction(y_prob_xgb_hist) # In[82]: report_xgb_hist = classification_metrics_binary(y_test, y_pred_xgb_hist) report2_xgb_hist = classification_metrics_binary_prob(y_test, y_prob_xgb_hist) report_xgb_hist.update(report2_xgb_hist) # In[83]: results_dict['xgb_hist']={ 'train_time': t_train.interval, 'test_time': t_test.interval, 'performance': report_xgb_hist } # In[84]: del xgb_hist_clf_pipeline # ### LightGBM # In[85]: params = {'num_leaves': 2**3, 'learning_rate': 0.1, 'scale_pos_weight': 2, 'min_split_gain': 0.1, 'min_child_weight': 1, 'reg_lambda': 1, 'subsample': 1, 'objective':'binary', 'task': 'train' } # In[86]: with Timer() as t_train: lgbm_clf_pipeline = lgb.train(params, lgb_train, num_boost_round=num_rounds) with Timer() as t_test: y_prob_lgbm = lgbm_clf_pipeline.predict(X_test) # In[87]: y_pred_lgbm = binarize_prediction(y_prob_lgbm) # In[88]: report_lgbm = classification_metrics_binary(y_test, y_pred_lgbm) report2_lgbm = classification_metrics_binary_prob(y_test, y_prob_lgbm) report_lgbm.update(report2_lgbm) # In[89]: results_dict['lgbm']={ 'train_time': t_train.interval, 'test_time': t_test.interval, 'performance': report_lgbm } # In[90]: del lgbm_clf_pipeline # Finally, we show the results # In[91]: # Results print(json.dumps(results_dict, indent=4, sort_keys=True))
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 37811, 198, 25, 22163, 4766, 25, 2177, 12, 7908, 367, 17, 46, 13, 1872, 11, 3457, 13, 198, 25, 43085, 25, 220, 220, 24843, 13789, 10628, 362, 13, 15, 357, 3826, 38559, 24290, 329, 3307, 8, 198, 37811, 198, 2, 1303, 29544, 8870, 25, 10504, 2657, 39826, 357, 33346, 2196, 8, 198, 2, 220, 198, 2, 770, 6306, 3544, 262, 1366, 422, 262, 509, 9460, 293, 27039, 685, 23690, 5172, 39826, 46254, 16151, 5450, 1378, 2503, 13, 74, 9460, 293, 13, 785, 14, 31748, 7501, 3019, 14, 43082, 9517, 69, 22863, 737, 383, 27039, 318, 925, 510, 286, 257, 1271, 286, 9633, 543, 389, 257, 1255, 286, 4217, 32, 13389, 13, 198, 2, 220, 198, 2, 383, 3307, 286, 262, 4572, 356, 973, 290, 262, 2196, 286, 262, 12782, 460, 307, 1043, 287, 685, 23100, 3681, 5534, 16151, 486, 62, 958, 1370, 13, 541, 2047, 65, 737, 198, 198, 2, 554, 58, 22, 5974, 628, 198, 11748, 33918, 198, 11748, 25064, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 279, 10025, 62, 37540, 198, 6738, 9195, 82, 13, 2220, 364, 1330, 3440, 62, 69, 22863, 198, 6738, 9195, 82, 13, 45016, 1330, 5045, 263, 198, 6738, 9195, 82, 13, 4164, 10466, 1330, 17923, 62, 4164, 10466, 62, 39491, 11, 17923, 62, 4164, 10466, 62, 39491, 62, 1676, 65, 11, 9874, 283, 1096, 62, 28764, 2867, 198, 11748, 2124, 70, 39521, 355, 2124, 22296, 198, 11748, 1657, 70, 20475, 355, 300, 22296, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 628, 198, 4798, 7203, 11964, 2196, 25, 23884, 1911, 18982, 7, 17597, 13, 9641, 4008, 198, 4798, 7203, 55, 4579, 78, 455, 2196, 25, 23884, 1911, 18982, 7, 35339, 62, 37540, 13, 1136, 62, 17080, 3890, 10786, 87, 70, 39521, 27691, 9641, 4008, 198, 4798, 7203, 15047, 4579, 44, 2196, 25, 23884, 1911, 18982, 7, 35339, 62, 37540, 13, 1136, 62, 17080, 3890, 10786, 2971, 70, 20475, 27691, 9641, 4008, 628, 198, 2, 554, 58, 17, 5974, 628, 198, 25120, 62, 28826, 796, 5433, 628, 198, 2, 554, 58, 18, 5974, 628, 198, 7568, 796, 3440, 62, 69, 22863, 3419, 628, 198, 2, 554, 58, 19, 5974, 628, 198, 4798, 7, 7568, 13, 43358, 8, 198, 7568, 13, 2256, 3419, 628, 198, 2, 554, 58, 20, 5974, 628, 198, 55, 796, 47764, 30109, 4033, 329, 951, 287, 47764, 13, 28665, 82, 611, 951, 13, 9688, 2032, 342, 10786, 53, 11537, 60, 4083, 27160, 198, 88, 796, 47764, 17816, 9487, 6, 4083, 27160, 628, 198, 2, 554, 58, 24, 5974, 628, 198, 55, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 27432, 11, 331, 62, 9288, 796, 4512, 62, 9288, 62, 35312, 7, 55, 11, 331, 11, 25369, 1958, 28, 88, 11, 4738, 62, 5219, 28, 25120, 62, 28826, 11, 1332, 62, 7857, 28, 15, 13, 18, 8, 198, 4798, 7, 55, 62, 27432, 13, 43358, 8, 198, 4798, 7, 88, 62, 27432, 13, 43358, 8, 198, 4798, 7, 55, 62, 9288, 13, 43358, 8, 198, 4798, 7, 88, 62, 9288, 13, 43358, 8, 628, 198, 2, 554, 58, 940, 5974, 628, 198, 67, 27432, 796, 2124, 22296, 13, 35, 46912, 7, 7890, 28, 55, 62, 27432, 11, 6167, 28, 88, 62, 27432, 11, 299, 16663, 10779, 16, 8, 198, 67, 9288, 796, 2124, 22296, 13, 35, 46912, 7, 7890, 28, 55, 62, 9288, 11, 6167, 28, 88, 62, 9288, 11, 299, 16663, 10779, 16, 8, 628, 198, 2, 554, 58, 1157, 5974, 628, 198, 75, 22296, 62, 27432, 796, 300, 22296, 13, 27354, 292, 316, 7, 55, 62, 27432, 11, 331, 62, 27432, 11, 1479, 62, 1831, 62, 7890, 28, 25101, 8, 198, 75, 22296, 62, 9288, 796, 300, 22296, 13, 27354, 292, 316, 7, 55, 62, 9288, 11, 331, 62, 9288, 11, 4941, 28, 75, 22296, 62, 27432, 11, 1479, 62, 1831, 62, 7890, 28, 25101, 8, 628, 198, 2, 44386, 1395, 4579, 78, 455, 198, 198, 2, 554, 58, 4761, 5974, 628, 198, 43420, 62, 11600, 796, 8633, 3419, 198, 22510, 62, 744, 82, 796, 1802, 628, 198, 2, 554, 58, 4790, 5974, 628, 198, 37266, 796, 1391, 6, 9806, 62, 18053, 10354, 18, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 425, 10354, 6, 39491, 25, 6404, 2569, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 9410, 62, 6551, 10354, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17167, 10354, 15, 13, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4033, 39873, 62, 1525, 21048, 10354, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9888, 62, 1930, 62, 6551, 10354, 17, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28483, 2611, 10354, 15, 13, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 62, 2543, 6814, 10354, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 39873, 10354, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21048, 62, 24396, 10354, 6, 46999, 62, 1069, 529, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 2, 554, 58, 4524, 5974, 628, 198, 4480, 5045, 263, 3419, 355, 256, 62, 27432, 25, 198, 220, 220, 220, 2124, 22296, 62, 565, 69, 62, 79, 541, 4470, 796, 2124, 22296, 13, 27432, 7, 37266, 11, 288, 27432, 11, 997, 62, 39521, 62, 744, 28, 22510, 62, 744, 82, 8, 198, 220, 220, 220, 220, 198, 4480, 5045, 263, 3419, 355, 256, 62, 9288, 25, 198, 220, 220, 220, 331, 62, 1676, 65, 62, 87, 22296, 796, 2124, 22296, 62, 565, 69, 62, 79, 541, 4470, 13, 79, 17407, 7, 67, 9288, 8, 628, 198, 2, 554, 58, 2425, 5974, 628, 198, 88, 62, 28764, 62, 87, 22296, 796, 9874, 283, 1096, 62, 28764, 2867, 7, 88, 62, 1676, 65, 62, 87, 22296, 8, 628, 198, 2, 554, 58, 4304, 5974, 628, 198, 13116, 62, 87, 22296, 796, 17923, 62, 4164, 10466, 62, 39491, 7, 88, 62, 9288, 11, 331, 62, 28764, 62, 87, 22296, 8, 198, 13116, 17, 62, 87, 22296, 796, 17923, 62, 4164, 10466, 62, 39491, 62, 1676, 65, 7, 88, 62, 9288, 11, 331, 62, 1676, 65, 62, 87, 22296, 8, 198, 13116, 62, 87, 22296, 13, 19119, 7, 13116, 17, 62, 87, 22296, 8, 628, 198, 2, 554, 58, 3324, 5974, 628, 198, 43420, 62, 11600, 17816, 87, 22296, 20520, 34758, 198, 220, 220, 220, 705, 27432, 62, 2435, 10354, 256, 62, 27432, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 9288, 62, 2435, 10354, 256, 62, 9288, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 26585, 10354, 989, 62, 87, 22296, 220, 198, 92, 628, 198, 2, 554, 58, 3695, 5974, 628, 198, 12381, 2124, 22296, 62, 565, 69, 62, 79, 541, 4470, 628, 198, 2, 2735, 1309, 338, 1949, 351, 1395, 4579, 78, 455, 1554, 21857, 13, 198, 198, 2, 554, 58, 3720, 5974, 628, 198, 37266, 796, 1391, 6, 9806, 62, 18053, 10354, 18, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 425, 10354, 6, 39491, 25, 6404, 2569, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 9410, 62, 6551, 10354, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17167, 10354, 15, 13, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4033, 39873, 62, 1525, 21048, 10354, 15, 13, 1795, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9888, 62, 1930, 62, 6551, 10354, 17, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28483, 2611, 10354, 15, 13, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 62, 2543, 6814, 10354, 16, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 39873, 10354, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21048, 62, 24396, 10354, 6, 46999, 62, 10034, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 2, 554, 58, 1795, 5974, 628, 198, 4480, 5045, 263, 3419, 355, 256, 62, 27432, 25, 198, 220, 220, 220, 2124, 22296, 62, 10034, 62, 565, 69, 62, 79, 541, 4470, 796, 2124, 22296, 13, 27432, 7, 37266, 11, 288, 27432, 11, 997, 62, 39521, 62, 744, 28, 22510, 62, 744, 82, 8, 198, 220, 220, 220, 220, 198, 4480, 5045, 263, 3419, 355, 256, 62, 9288, 25, 198, 220, 220, 220, 331, 62, 1676, 65, 62, 87, 22296, 62, 10034, 796, 2124, 22296, 62, 10034, 62, 565, 69, 62, 79, 541, 4470, 13, 79, 17407, 7, 67, 9288, 8, 628, 198, 2, 554, 58, 6659, 5974, 628, 198, 88, 62, 28764, 62, 87, 22296, 62, 10034, 796, 9874, 283, 1096, 62, 28764, 2867, 7, 88, 62, 1676, 65, 62, 87, 22296, 62, 10034, 8, 628, 198, 2, 554, 58, 6469, 5974, 628, 198, 13116, 62, 87, 22296, 62, 10034, 796, 17923, 62, 4164, 10466, 62, 39491, 7, 88, 62, 9288, 11, 331, 62, 28764, 62, 87, 22296, 62, 10034, 8, 198, 13116, 17, 62, 87, 22296, 62, 10034, 796, 17923, 62, 4164, 10466, 62, 39491, 62, 1676, 65, 7, 88, 62, 9288, 11, 331, 62, 1676, 65, 62, 87, 22296, 62, 10034, 8, 198, 13116, 62, 87, 22296, 62, 10034, 13, 19119, 7, 13116, 17, 62, 87, 22296, 62, 10034, 8, 628, 198, 2, 554, 58, 5999, 5974, 628, 198, 43420, 62, 11600, 17816, 87, 22296, 62, 10034, 20520, 34758, 198, 220, 220, 220, 705, 27432, 62, 2435, 10354, 256, 62, 27432, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 9288, 62, 2435, 10354, 256, 62, 9288, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 26585, 10354, 989, 62, 87, 22296, 62, 10034, 198, 92, 628, 198, 2, 554, 58, 5705, 5974, 628, 198, 12381, 2124, 22296, 62, 10034, 62, 565, 69, 62, 79, 541, 4470, 628, 198, 2, 44386, 4401, 4579, 44, 198, 198, 2, 554, 58, 5332, 5974, 628, 198, 37266, 796, 1391, 6, 22510, 62, 293, 3080, 10354, 362, 1174, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40684, 62, 4873, 10354, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9888, 62, 1930, 62, 6551, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 35312, 62, 48544, 10354, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1084, 62, 9410, 62, 6551, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2301, 62, 50033, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 39873, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 425, 10354, 6, 39491, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 35943, 10354, 705, 27432, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 2, 554, 58, 4521, 5974, 628, 198, 4480, 5045, 263, 3419, 355, 256, 62, 27432, 25, 198, 220, 220, 220, 300, 70, 20475, 62, 565, 69, 62, 79, 541, 4470, 796, 300, 22296, 13, 27432, 7, 37266, 11, 300, 22296, 62, 27432, 11, 997, 62, 39521, 62, 744, 28, 22510, 62, 744, 82, 8, 198, 220, 220, 220, 220, 198, 4480, 5045, 263, 3419, 355, 256, 62, 9288, 25, 198, 220, 220, 220, 331, 62, 1676, 65, 62, 75, 70, 20475, 796, 300, 70, 20475, 62, 565, 69, 62, 79, 541, 4470, 13, 79, 17407, 7, 55, 62, 9288, 8, 628, 198, 2, 554, 58, 5774, 5974, 628, 198, 88, 62, 28764, 62, 75, 70, 20475, 796, 9874, 283, 1096, 62, 28764, 2867, 7, 88, 62, 1676, 65, 62, 75, 70, 20475, 8, 628, 198, 2, 554, 58, 3459, 5974, 628, 198, 13116, 62, 75, 70, 20475, 796, 17923, 62, 4164, 10466, 62, 39491, 7, 88, 62, 9288, 11, 331, 62, 28764, 62, 75, 70, 20475, 8, 198, 13116, 17, 62, 75, 70, 20475, 796, 17923, 62, 4164, 10466, 62, 39491, 62, 1676, 65, 7, 88, 62, 9288, 11, 331, 62, 1676, 65, 62, 75, 70, 20475, 8, 198, 13116, 62, 75, 70, 20475, 13, 19119, 7, 13116, 17, 62, 75, 70, 20475, 8, 628, 198, 2, 554, 58, 4531, 5974, 628, 198, 43420, 62, 11600, 17816, 75, 70, 20475, 20520, 34758, 198, 220, 220, 220, 705, 27432, 62, 2435, 10354, 256, 62, 27432, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 9288, 62, 2435, 10354, 256, 62, 9288, 13, 3849, 2100, 11, 198, 220, 220, 220, 705, 26585, 10354, 989, 62, 75, 70, 20475, 220, 198, 92, 628, 198, 2, 554, 58, 3829, 5974, 628, 198, 12381, 300, 70, 20475, 62, 565, 69, 62, 79, 541, 4470, 628, 198, 2, 9461, 11, 356, 905, 262, 2482, 198, 198, 2, 554, 58, 6420, 5974, 628, 198, 2, 15691, 198, 4798, 7, 17752, 13, 67, 8142, 7, 43420, 62, 11600, 11, 33793, 28, 19, 11, 3297, 62, 13083, 28, 17821, 4008, 628 ]
2.19982
2,227
#!/usr/bin/env python from os import path from setuptools import setup with open(path.join(path.dirname(__file__), "README.rst")) as f: readme = f.read() setup( name="cqstat", version="1.0.0", description="A colorful command line tool substitutes for Grid Engine qstat command", long_description=readme, url="https://github.com/ronin-gw/cqstat", download_url="https://github.com/ronin-gw/cqstat", author="Hayato Anzawa", author_email="[email protected]", license="MIT", platforms=["POSIX", "Mac OS X"], classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: End Users/Desktop", "License :: OSI Approved :: MIT License", "Operating System :: Unix", "Programming Language :: Python :: 2.7", "Topic :: Utilities" ], keywords="GridEngine", packages=["cqstat"], entry_points={ "console_scripts": ["cqstat = cqstat.__main__:main"] } )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 28686, 1330, 3108, 198, 6738, 900, 37623, 10141, 1330, 9058, 628, 198, 4480, 1280, 7, 6978, 13, 22179, 7, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 15675, 11682, 13, 81, 301, 48774, 355, 277, 25, 198, 220, 220, 220, 1100, 1326, 796, 277, 13, 961, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 66, 80, 14269, 1600, 198, 220, 220, 220, 2196, 2625, 16, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 6764, 2625, 32, 20239, 3141, 1627, 2891, 44234, 329, 24846, 7117, 10662, 14269, 3141, 1600, 198, 220, 220, 220, 890, 62, 11213, 28, 961, 1326, 11, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 1313, 259, 12, 70, 86, 14, 66, 80, 14269, 1600, 198, 220, 220, 220, 4321, 62, 6371, 2625, 5450, 1378, 12567, 13, 785, 14, 1313, 259, 12, 70, 86, 14, 66, 80, 14269, 1600, 198, 220, 220, 220, 1772, 2625, 31306, 5549, 1052, 89, 6909, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 10757, 31, 64, 12, 42932, 13, 785, 1600, 198, 220, 220, 220, 5964, 2625, 36393, 1600, 198, 220, 220, 220, 9554, 28, 14692, 37997, 10426, 1600, 366, 14155, 7294, 1395, 33116, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 604, 532, 17993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 31441, 7904, 24371, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 5268, 18987, 14, 36881, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 33501, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 41086, 1, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 26286, 2625, 41339, 13798, 1600, 198, 220, 220, 220, 10392, 28, 14692, 66, 80, 14269, 33116, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41947, 62, 46521, 1298, 14631, 66, 80, 14269, 796, 269, 80, 14269, 13, 834, 12417, 834, 25, 12417, 8973, 198, 220, 220, 220, 1782, 198, 8, 198 ]
2.492537
402
from pathlib import Path from context_dict import ContextDict from pprint import pprint ''' common lists of fields getFields is all fields in table ''' if __name__ == "__main__": main()
[ 6738, 3108, 8019, 1330, 10644, 198, 6738, 4732, 62, 11600, 1330, 30532, 35, 713, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 7061, 6, 198, 11321, 8341, 286, 7032, 198, 1136, 15878, 82, 318, 477, 7032, 287, 3084, 198, 198, 7061, 6, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
3.163934
61
from datetime import datetime, time import logging import json import os import requests import traceback from dotenv import load_dotenv from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from src import models from src import data from src import finance_stats load_dotenv() send_slack_msg('HKPORTFOLIOANALYSIS BACKEND has been initiated') logging.basicConfig(level=logging.INFO, format="%(asctime)s:%(levelname)s: %(message)s") LAST_CACHE_RESET = {'date': None} DEBUG = True if os.name == 'nt' else False # assume windows is not server app = FastAPI() origins = [ 'http://localhost:5000', 'https://hkportfolioanalysis.firebaseapp.com', 'https://hkportfolioanalysis.firebaseapp.com/' ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def buy_date_adaptor(buy_date: str): """ 20200101 -> 2020-01-01 :param buy_date: :return: """ if len(buy_date) == 8: buy_date = f'{buy_date[:4]}-{buy_date[4:-2]}-{buy_date[-2:]}' return buy_date @app.post('/api/hkportfolioanalysis_bundle')
[ 6738, 4818, 8079, 1330, 4818, 8079, 11, 640, 198, 11748, 18931, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 7007, 198, 11748, 12854, 1891, 198, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 6738, 3049, 15042, 1330, 12549, 17614, 198, 6738, 3049, 15042, 13, 27171, 1574, 13, 66, 669, 1330, 23929, 12310, 2509, 1574, 198, 198, 6738, 12351, 1330, 4981, 198, 6738, 12351, 1330, 1366, 198, 6738, 12351, 1330, 9604, 62, 34242, 198, 198, 2220, 62, 26518, 24330, 3419, 628, 198, 21280, 62, 6649, 441, 62, 19662, 10786, 38730, 15490, 37, 3535, 9399, 1565, 1847, 16309, 1797, 28767, 10619, 468, 587, 16862, 11537, 628, 198, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 25, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 4943, 198, 198, 43, 11262, 62, 34, 2246, 13909, 62, 19535, 2767, 796, 1391, 6, 4475, 10354, 6045, 92, 198, 198, 30531, 796, 6407, 611, 28686, 13, 3672, 6624, 705, 429, 6, 2073, 10352, 220, 1303, 7048, 9168, 318, 407, 4382, 198, 1324, 796, 12549, 17614, 3419, 198, 198, 11612, 1040, 796, 685, 198, 220, 220, 220, 705, 4023, 1378, 36750, 25, 27641, 3256, 198, 220, 220, 220, 705, 5450, 1378, 71, 74, 634, 13652, 20930, 13, 6495, 8692, 1324, 13, 785, 3256, 198, 220, 220, 220, 705, 5450, 1378, 71, 74, 634, 13652, 20930, 13, 6495, 8692, 1324, 13, 785, 14, 6, 198, 60, 198, 198, 1324, 13, 2860, 62, 27171, 1574, 7, 198, 220, 220, 220, 23929, 12310, 2509, 1574, 11, 198, 220, 220, 220, 1249, 62, 11612, 1040, 28, 11612, 1040, 11, 198, 220, 220, 220, 1249, 62, 66, 445, 14817, 28, 17821, 11, 198, 220, 220, 220, 1249, 62, 24396, 82, 28, 14692, 9, 33116, 198, 220, 220, 220, 1249, 62, 50145, 28, 14692, 9, 33116, 198, 8, 628, 628, 198, 4299, 2822, 62, 4475, 62, 42552, 273, 7, 17846, 62, 4475, 25, 965, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1160, 2167, 8784, 4613, 12131, 12, 486, 12, 486, 198, 220, 220, 220, 1058, 17143, 2822, 62, 4475, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 17846, 62, 4475, 8, 6624, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2822, 62, 4475, 796, 277, 6, 90, 17846, 62, 4475, 58, 25, 19, 48999, 12, 90, 17846, 62, 4475, 58, 19, 21912, 17, 48999, 12, 90, 17846, 62, 4475, 58, 12, 17, 47715, 92, 6, 198, 220, 220, 220, 1441, 2822, 62, 4475, 628, 198, 31, 1324, 13, 7353, 10786, 14, 15042, 14, 71, 74, 634, 13652, 20930, 62, 65, 31249, 11537, 628, 198 ]
2.560175
457
# Main Program import validate print(""" --------------------------------------------------- | MENU | --------------------------------------------------- | 1. Generate a 4 digit OTP | | 2. Generate a Captcha of length as per requirement| | 3. Check the validity of an email id | | 4. Exit | --------------------------------------------------- """) while True: ch = int(input("Enter Choice: ")) if ch == 1: a = validate.generateOTP() print(a) elif ch == 2: size = int(input("Enter the size for the Captcha: ")) print(validate.rand_captcha(size)) elif ch == 3: email = input("Enter an Email ID: ") validate.check(email) elif ch == 4: break else: print("INVALID INPUT!") ################################################################################
[ 198, 198, 2, 8774, 6118, 198, 198, 11748, 26571, 198, 198, 4798, 7203, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 20368, 1783, 6329, 198, 220, 220, 220, 220, 220, 220, 930, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41597, 52, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 20368, 1783, 6329, 198, 220, 220, 220, 220, 220, 220, 930, 352, 13, 2980, 378, 257, 604, 16839, 440, 7250, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 930, 362, 13, 2980, 378, 257, 6790, 11693, 286, 4129, 355, 583, 9079, 91, 198, 220, 220, 220, 220, 220, 220, 930, 513, 13, 6822, 262, 19648, 286, 281, 3053, 4686, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 930, 604, 13, 29739, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 198, 220, 220, 220, 220, 220, 220, 220, 20368, 1783, 6329, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 4943, 198, 4514, 6407, 25, 198, 220, 220, 220, 442, 796, 493, 7, 15414, 7203, 17469, 18502, 25, 366, 4008, 198, 220, 220, 220, 611, 442, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 26571, 13, 8612, 378, 2394, 47, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 64, 8, 198, 220, 220, 220, 1288, 361, 442, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 493, 7, 15414, 7203, 17469, 262, 2546, 329, 262, 6790, 11693, 25, 366, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 12102, 378, 13, 25192, 62, 27144, 11693, 7, 7857, 4008, 198, 220, 220, 220, 1288, 361, 442, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3053, 796, 5128, 7203, 17469, 281, 9570, 4522, 25, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26571, 13, 9122, 7, 12888, 8, 198, 220, 220, 220, 1288, 361, 442, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1268, 23428, 2389, 3268, 30076, 2474, 8, 198, 198, 29113, 29113, 14468, 198 ]
2.231102
463
import glob import os import torch import tqdm import numpy as np from torch.nn.utils import clip_grad_norm_ def compact_batch(tensor_list): ''' Write some code to pad the teacher predicts.... ''' bs, ch, fix = tensor_list[0].shape max_ch = ch pad_tensor_list = [] for tensor in tensor_list: if max_ch < tensor.shape[1]: max_ch = tensor.shape[1] for tensor in tensor_list: pad_tensor = torch.zeros(bs, max_ch - tensor.shape[1], fix).cuda() tensor = torch.cat([tensor, pad_tensor], dim=1) pad_tensor_list.append(tensor) paded_tensor = torch.cat(pad_tensor_list, dim=0) return paded_tensor
[ 11748, 15095, 198, 11748, 28686, 198, 198, 11748, 28034, 198, 11748, 256, 80, 36020, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 13, 20471, 13, 26791, 1330, 10651, 62, 9744, 62, 27237, 62, 198, 198, 4299, 16001, 62, 43501, 7, 83, 22854, 62, 4868, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 19430, 617, 2438, 284, 14841, 262, 4701, 26334, 1106, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 275, 82, 11, 442, 11, 4259, 796, 11192, 273, 62, 4868, 58, 15, 4083, 43358, 198, 220, 220, 220, 3509, 62, 354, 796, 442, 198, 220, 220, 220, 14841, 62, 83, 22854, 62, 4868, 796, 17635, 198, 220, 220, 220, 329, 11192, 273, 287, 11192, 273, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3509, 62, 354, 1279, 11192, 273, 13, 43358, 58, 16, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 796, 11192, 273, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 329, 11192, 273, 287, 11192, 273, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 83, 22854, 796, 28034, 13, 9107, 418, 7, 1443, 11, 3509, 62, 354, 532, 11192, 273, 13, 43358, 58, 16, 4357, 4259, 737, 66, 15339, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 796, 28034, 13, 9246, 26933, 83, 22854, 11, 14841, 62, 83, 22854, 4357, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 83, 22854, 62, 4868, 13, 33295, 7, 83, 22854, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 279, 5286, 62, 83, 22854, 796, 28034, 13, 9246, 7, 15636, 62, 83, 22854, 62, 4868, 11, 5391, 28, 15, 8, 198, 220, 220, 220, 1441, 279, 5286, 62, 83, 22854, 628, 628, 628, 628, 628, 628 ]
2.220447
313
from .oauth import BaseOAuth2
[ 6738, 764, 12162, 1071, 1330, 7308, 23621, 1071, 17, 628 ]
3.1
10
import discord import itertools import re from datetime import datetime from .utils import * class DiscordBets: """ Class that creates bets within the Discord Community Attributes __________ fire (Fire obj): The fire instance where information is fetched/updated Functions __________ async def createBet(guild, user, messageString) -> (discord.Embed) Creates a bet for the user in the guild with the following info from messageString. Returns a usage embed if the command is incorrectly used otherwise returns the corresponding bet. async def showBet(guild, betId) -> (discord.Embed) Shows the bet embed for the bet with id 'betId' async def closeBet(guild, user, betId) -> (discord.Embed) Closes the bet for submissions with id 'betId'. Only the user that started the bet or an admin may close the bet. async def completeBet(guild, user, betId, winnerOptionId) -> (discord.Embed) Completes the bet with id 'betId' with winning option 'winnerOptionId' and pays out to the winner(s). Only the user that started the bet or an admin may complete the bet. async def bet(guild, user, messageString) -> (discord.Embed) Adds a bet using the information from messageString (expected: [BetId] [Option Number] [Amount]). Returns the bet embed with the updated information or an error/usage embed def getAllActiveBets(guild) -> (discord.Embed) Gets all of the active (open/closed) bets within the guild def showBetForUser(self, guild, user) -> (discord.Embed) Gets all of the active bets for the user """ fire = None # ---------- MARK: - Private Methods ----------
[ 11748, 36446, 198, 11748, 340, 861, 10141, 198, 11748, 302, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 764, 26791, 1330, 1635, 198, 198, 4871, 39462, 33, 1039, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5016, 326, 8075, 29222, 1626, 262, 39462, 8108, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 220, 2602, 834, 198, 220, 220, 220, 2046, 357, 13543, 26181, 2599, 383, 2046, 4554, 810, 1321, 318, 11351, 1740, 14, 43162, 628, 220, 220, 220, 40480, 198, 220, 220, 220, 220, 2602, 834, 198, 220, 220, 220, 30351, 825, 2251, 13056, 7, 70, 3547, 11, 2836, 11, 3275, 10100, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 731, 329, 262, 2836, 287, 262, 19806, 351, 262, 1708, 7508, 422, 3275, 10100, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 8748, 11525, 611, 262, 3141, 318, 23175, 973, 4306, 5860, 262, 11188, 731, 13, 628, 220, 220, 220, 30351, 825, 905, 13056, 7, 70, 3547, 11, 731, 7390, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25156, 262, 731, 11525, 329, 262, 731, 351, 4686, 705, 11181, 7390, 6, 628, 220, 220, 220, 30351, 825, 1969, 13056, 7, 70, 3547, 11, 2836, 11, 731, 7390, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1012, 4629, 262, 731, 329, 22129, 351, 4686, 705, 11181, 7390, 4458, 220, 198, 220, 220, 220, 220, 220, 220, 220, 5514, 262, 2836, 326, 2067, 262, 731, 393, 281, 13169, 743, 1969, 262, 731, 13, 628, 220, 220, 220, 30351, 825, 1844, 13056, 7, 70, 3547, 11, 2836, 11, 731, 7390, 11, 8464, 19722, 7390, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 955, 1154, 4879, 262, 731, 351, 4686, 705, 11181, 7390, 6, 351, 5442, 3038, 705, 39791, 19722, 7390, 6, 290, 13831, 503, 284, 262, 8464, 7, 82, 737, 198, 220, 220, 220, 220, 220, 220, 220, 5514, 262, 2836, 326, 2067, 262, 731, 393, 281, 13169, 743, 1844, 262, 731, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 30351, 825, 731, 7, 70, 3547, 11, 2836, 11, 3275, 10100, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 257, 731, 1262, 262, 1321, 422, 3275, 10100, 357, 40319, 25, 685, 13056, 7390, 60, 685, 19722, 7913, 60, 685, 31264, 35944, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 731, 11525, 351, 262, 6153, 1321, 393, 281, 4049, 14, 26060, 11525, 628, 220, 220, 220, 825, 651, 3237, 13739, 33, 1039, 7, 70, 3547, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 477, 286, 262, 4075, 357, 9654, 14, 20225, 8, 29222, 1626, 262, 19806, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 905, 13056, 1890, 12982, 7, 944, 11, 19806, 11, 2836, 8, 4613, 357, 15410, 585, 13, 31567, 276, 8, 198, 220, 220, 220, 220, 220, 220, 220, 29620, 477, 286, 262, 4075, 29222, 329, 262, 2836, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2046, 796, 6045, 628, 220, 220, 220, 1303, 24200, 438, 39641, 25, 532, 15348, 25458, 24200, 438 ]
3.061947
565
# NB: do NOT import utils as this disables eager execution that seems # to be required for proper operations of `tf.summary`. import os import tensorflow as tf import numpy as np from sklearn.model_selection import train_test_split # --- default_datadir = os.getenv ('DC_DATADIR') or \ os.getenv ('TMPDIR', default = '/tmp') + '/sklearn_data' image_kinds = set (('image', 'greyscale_image',)) normalized_kind = 'normalized' unknown_kind = 'unknown' normalized_kinds = set ((normalized_kind,)) kinds = image_kinds | normalized_kinds | set ((unknown_kind,)) choices = [] # MNIST choices += ['mnist'] # Fashion-MNIST choices += ['fashion_mnist'] # CIFAR10 choices += ['cifar10'] # --- from sklearn.datasets import fetch_openml from sklearn.utils import shuffle openml_choices = {} openml_choices['har'] = { 'shuffle_last': True, # , 'test_size': 0.3, 'input_kind': normalized_kind, } choices += ['OpenML:' + str(c) for c in openml_choices] # ---
[ 2, 41354, 25, 466, 5626, 1330, 3384, 4487, 355, 428, 595, 2977, 11069, 9706, 326, 2331, 198, 2, 284, 307, 2672, 329, 1774, 4560, 286, 4600, 27110, 13, 49736, 44646, 198, 11748, 28686, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 2, 11420, 198, 198, 12286, 62, 19608, 324, 343, 796, 28686, 13, 1136, 24330, 19203, 9697, 62, 35, 1404, 2885, 4663, 11537, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 1136, 24330, 19203, 15972, 5760, 4663, 3256, 4277, 796, 31051, 22065, 11537, 1343, 31051, 8135, 35720, 62, 7890, 6, 198, 198, 9060, 62, 11031, 82, 796, 900, 357, 10786, 9060, 3256, 705, 16694, 28349, 1000, 62, 9060, 3256, 4008, 198, 11265, 1143, 62, 11031, 796, 705, 11265, 1143, 6, 198, 34680, 62, 11031, 796, 705, 34680, 6, 198, 11265, 1143, 62, 11031, 82, 796, 900, 14808, 11265, 1143, 62, 11031, 11, 4008, 198, 11031, 82, 796, 2939, 62, 11031, 82, 930, 39279, 62, 11031, 82, 930, 900, 14808, 34680, 62, 11031, 11, 4008, 198, 198, 6679, 1063, 796, 17635, 198, 198, 2, 29060, 8808, 198, 198, 6679, 1063, 15853, 37250, 10295, 396, 20520, 198, 198, 2, 30958, 12, 39764, 8808, 198, 198, 6679, 1063, 15853, 37250, 25265, 62, 10295, 396, 20520, 198, 198, 2, 327, 5064, 1503, 940, 198, 198, 6679, 1063, 15853, 37250, 66, 361, 283, 940, 20520, 198, 198, 2, 11420, 198, 198, 6738, 1341, 35720, 13, 19608, 292, 1039, 1330, 21207, 62, 9654, 4029, 198, 6738, 1341, 35720, 13, 26791, 1330, 36273, 198, 198, 9654, 4029, 62, 6679, 1063, 796, 23884, 198, 9654, 4029, 62, 6679, 1063, 17816, 9869, 20520, 796, 1391, 198, 220, 220, 220, 705, 1477, 18137, 62, 12957, 10354, 6407, 11, 198, 220, 220, 220, 1303, 837, 705, 9288, 62, 7857, 10354, 657, 13, 18, 11, 198, 220, 220, 220, 705, 15414, 62, 11031, 10354, 39279, 62, 11031, 11, 198, 92, 198, 198, 6679, 1063, 15853, 37250, 11505, 5805, 32105, 1343, 965, 7, 66, 8, 329, 269, 287, 1280, 4029, 62, 6679, 1063, 60, 198, 198, 2, 11420, 198 ]
2.663073
371
"""Prints full name of all occurrences of given filename in your PATH. Usage: findinpath.py filename""" import os import sys if __name__ == '__main__': sys.exit(main())
[ 37811, 18557, 82, 1336, 1438, 286, 477, 40279, 286, 1813, 29472, 287, 534, 46490, 13, 198, 198, 28350, 25, 1064, 259, 6978, 13, 9078, 29472, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
3.142857
56
import sys from ethwizard import __version__ from prompt_toolkit.formatted_text import HTML from prompt_toolkit.shortcuts import button_dialog from ethwizard.platforms import ( get_install_steps, supported_platform, has_su_perm, init_logging, quit_app, get_save_state, get_load_state, enter_maintenance ) from ethwizard.platforms.common import StepSequence, is_completed_state
[ 11748, 25064, 198, 198, 6738, 4555, 86, 8669, 1330, 11593, 9641, 834, 198, 198, 6738, 6152, 62, 25981, 15813, 13, 687, 16898, 62, 5239, 1330, 11532, 198, 6738, 6152, 62, 25981, 15813, 13, 19509, 23779, 1330, 4936, 62, 38969, 519, 198, 198, 6738, 4555, 86, 8669, 13, 24254, 82, 1330, 357, 198, 220, 220, 220, 651, 62, 17350, 62, 20214, 11, 198, 220, 220, 220, 4855, 62, 24254, 11, 198, 220, 220, 220, 468, 62, 2385, 62, 16321, 11, 198, 220, 220, 220, 2315, 62, 6404, 2667, 11, 198, 220, 220, 220, 11238, 62, 1324, 11, 198, 220, 220, 220, 651, 62, 21928, 62, 5219, 11, 198, 220, 220, 220, 651, 62, 2220, 62, 5219, 11, 198, 220, 220, 220, 3802, 62, 12417, 8219, 198, 8, 198, 198, 6738, 4555, 86, 8669, 13, 24254, 82, 13, 11321, 1330, 5012, 44015, 594, 11, 318, 62, 785, 16838, 62, 5219 ]
2.783784
148
import io from types import FunctionType from PySide2.QtGui import * from PySide2.QtCore import * from PySide2.QtWidgets import * app: QApplication = None buffer: io.StringIO = None old_stdout: io.StringIO = None trayIcon: QSystemTrayIcon = None sw: QScrollArea = None tempDir: str = None
[ 11748, 33245, 198, 6738, 3858, 1330, 15553, 6030, 628, 198, 6738, 9485, 24819, 17, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 24819, 17, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 24819, 17, 13, 48, 83, 54, 312, 11407, 1330, 1635, 628, 220, 220, 220, 220, 198, 198, 1324, 25, 1195, 23416, 796, 6045, 198, 22252, 25, 33245, 13, 10100, 9399, 796, 6045, 198, 727, 62, 19282, 448, 25, 33245, 13, 10100, 9399, 796, 6045, 198, 2213, 323, 19578, 25, 1195, 11964, 51, 2433, 19578, 796, 6045, 198, 2032, 25, 1195, 29261, 30547, 796, 6045, 198, 29510, 35277, 25, 965, 796, 6045, 628 ]
2.794393
107
import argparse import pickle import json import time import threading import pprint import deep_architect.utils as ut from google.cloud import pubsub_v1 from deep_architect.contrib.misc.datasets.loaders import (load_cifar10, load_mnist) from deep_architect.contrib.misc.datasets.dataset import InMemoryDataset from deep_architect.searchers import common as se from deep_architect.contrib.misc import gpu_utils from deep_architect import search_logging as sl from deep_architect import utils as ut from dev.google_communicator.search_space_factory import name_to_search_space_factory_fn from deep_architect.contrib.misc.evaluators.tensorflow.tpu_estimator_classification import TPUEstimatorEvaluator from deep_architect.contrib.communicators.communicator import get_communicator import logging logging.basicConfig() publisher = pubsub_v1.PublisherClient() subscriber = pubsub_v1.SubscriberClient() results_topic = None arch_subscription = None specified = False evaluated = False arch_data = None started = False if __name__ == "__main__": main()
[ 11748, 1822, 29572, 198, 11748, 2298, 293, 198, 11748, 33918, 198, 11748, 640, 198, 11748, 4704, 278, 198, 11748, 279, 4798, 198, 11748, 2769, 62, 998, 5712, 13, 26791, 355, 3384, 198, 6738, 23645, 13, 17721, 1330, 2240, 7266, 62, 85, 16, 198, 198, 6738, 2769, 62, 998, 5712, 13, 3642, 822, 13, 44374, 13, 19608, 292, 1039, 13, 2220, 364, 1330, 357, 2220, 62, 66, 361, 283, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 62, 10295, 396, 8, 198, 6738, 2769, 62, 998, 5712, 13, 3642, 822, 13, 44374, 13, 19608, 292, 1039, 13, 19608, 292, 316, 1330, 554, 30871, 27354, 292, 316, 198, 198, 6738, 2769, 62, 998, 5712, 13, 325, 283, 3533, 1330, 2219, 355, 384, 198, 6738, 2769, 62, 998, 5712, 13, 3642, 822, 13, 44374, 1330, 308, 19944, 62, 26791, 198, 6738, 2769, 62, 998, 5712, 1330, 2989, 62, 6404, 2667, 355, 1017, 198, 6738, 2769, 62, 998, 5712, 1330, 3384, 4487, 355, 3384, 198, 198, 6738, 1614, 13, 13297, 62, 10709, 26407, 13, 12947, 62, 13200, 62, 69, 9548, 1330, 1438, 62, 1462, 62, 12947, 62, 13200, 62, 69, 9548, 62, 22184, 198, 198, 6738, 2769, 62, 998, 5712, 13, 3642, 822, 13, 44374, 13, 18206, 84, 2024, 13, 83, 22854, 11125, 13, 83, 19944, 62, 395, 320, 1352, 62, 4871, 2649, 1330, 309, 5105, 22362, 320, 1352, 36, 2100, 84, 1352, 198, 198, 6738, 2769, 62, 998, 5712, 13, 3642, 822, 13, 10709, 44549, 13, 10709, 26407, 1330, 651, 62, 10709, 26407, 198, 11748, 18931, 198, 198, 6404, 2667, 13, 35487, 16934, 3419, 198, 198, 12984, 8191, 796, 2240, 7266, 62, 85, 16, 13, 46471, 11792, 3419, 198, 7266, 1416, 24735, 796, 2240, 7266, 62, 85, 16, 13, 7004, 1416, 24735, 11792, 3419, 198, 43420, 62, 26652, 796, 6045, 198, 998, 62, 7266, 33584, 796, 6045, 198, 198, 23599, 796, 10352, 198, 18206, 6605, 796, 10352, 198, 998, 62, 7890, 796, 6045, 198, 46981, 796, 10352, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.819095
398
import angr import claripy project = angr.Project("./mask") argv1 = claripy.BVS("argv1",100*8) initial_state = project.factory.entry_state(args=["./mask",argv1]) sm = project.factory.simulation_manager(initial_state) sm.explore(find=0x4012d6) found = sm.found[0] solution = found.solver.eval(argv1, cast_to=bytes) print(repr(solution))
[ 11748, 281, 2164, 198, 11748, 10212, 541, 88, 198, 198, 16302, 796, 281, 2164, 13, 16775, 7, 1911, 14, 27932, 4943, 198, 853, 85, 16, 796, 10212, 541, 88, 13, 33, 20304, 7203, 853, 85, 16, 1600, 3064, 9, 23, 8, 198, 36733, 62, 5219, 796, 1628, 13, 69, 9548, 13, 13000, 62, 5219, 7, 22046, 41888, 1911, 14, 27932, 1600, 853, 85, 16, 12962, 198, 5796, 796, 1628, 13, 69, 9548, 13, 14323, 1741, 62, 37153, 7, 36733, 62, 5219, 8, 198, 5796, 13, 20676, 382, 7, 19796, 28, 15, 87, 21844, 17, 67, 21, 8, 198, 9275, 796, 895, 13, 9275, 58, 15, 60, 198, 82, 2122, 796, 1043, 13, 82, 14375, 13, 18206, 7, 853, 85, 16, 11, 3350, 62, 1462, 28, 33661, 8, 198, 4798, 7, 260, 1050, 7, 82, 2122, 4008, 198 ]
2.459854
137
from asposebarcode import Settings from com.aspose.barcode import BarCodeBuilder from com.aspose.barcode import Symbology from com.aspose.barcode import CodeLocation from com.aspose.barcode import BarCodeImageFormat from java.awt import Color if __name__ == '__main__': CodeText()
[ 6738, 355, 3455, 65, 5605, 1098, 1330, 16163, 198, 6738, 401, 13, 292, 3455, 13, 65, 5605, 1098, 1330, 2409, 10669, 32875, 198, 6738, 401, 13, 292, 3455, 13, 65, 5605, 1098, 1330, 41327, 1435, 198, 6738, 401, 13, 292, 3455, 13, 65, 5605, 1098, 1330, 6127, 14749, 198, 6738, 401, 13, 292, 3455, 13, 65, 5605, 1098, 1330, 2409, 10669, 5159, 26227, 198, 6738, 20129, 13, 707, 83, 1330, 5315, 628, 220, 220, 220, 220, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 6127, 8206, 3419 ]
2.912621
103
import operator from functools import reduce from typing import Tuple, Dict, Union, List def get_dict_val(root:Dict, keys:Union[str, List[str]]): """ Access a nested object in root by item sequence. Args: root: Dict target object for accessing the value keys: Union[str, Tuple[str, str]] a key or a list of key (for nested structure objecy) name to traverse through the Dict object Examples:: >>> obj = {"a": [1,2,3]} >>> get_dict_val(obj, "a") [1,2,3] >>> obj = {"a": [ {"aa": 100, "bb": 0}, {"aa": 2, "bb": 5 } ] } >>> get_dict_val(obj, ("a", "aa")) [100, 2] """ if type(keys) == str: return root[keys] elif type(keys) == list: _results = [] for item in root[keys[0]]: _results.append(item[keys[1]]) return _results return None
[ 11748, 10088, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 6738, 19720, 1330, 309, 29291, 11, 360, 713, 11, 4479, 11, 7343, 628, 198, 4299, 651, 62, 11600, 62, 2100, 7, 15763, 25, 35, 713, 11, 8251, 25, 38176, 58, 2536, 11, 7343, 58, 2536, 11907, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8798, 257, 28376, 2134, 287, 6808, 416, 2378, 8379, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6808, 25, 360, 713, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 2134, 329, 22534, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 25, 4479, 58, 2536, 11, 309, 29291, 58, 2536, 11, 965, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 1994, 393, 257, 1351, 286, 1994, 357, 1640, 28376, 4645, 26181, 721, 88, 8, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 38138, 832, 262, 360, 713, 2134, 220, 628, 220, 220, 220, 21066, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 796, 19779, 64, 1298, 685, 16, 11, 17, 11, 18, 48999, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 651, 62, 11600, 62, 2100, 7, 26801, 11, 366, 64, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 17, 11, 18, 60, 628, 220, 220, 220, 220, 220, 220, 220, 13163, 26181, 796, 19779, 64, 1298, 685, 19779, 7252, 1298, 1802, 11, 366, 11848, 1298, 657, 5512, 19779, 7252, 1298, 362, 11, 366, 11848, 1298, 642, 1782, 2361, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 13163, 651, 62, 11600, 62, 2100, 7, 26801, 11, 5855, 64, 1600, 366, 7252, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 685, 3064, 11, 362, 60, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2099, 7, 13083, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6808, 58, 13083, 60, 198, 220, 220, 220, 1288, 361, 2099, 7, 13083, 8, 6624, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 43420, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 6808, 58, 13083, 58, 15, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 43420, 13, 33295, 7, 9186, 58, 13083, 58, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4808, 43420, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 6045, 198 ]
2.152225
427
#!/usr/bin/env python3 from collections import Counter def are_anagrams(*args): 'return True if args are anagrams' if len(args) < 2: raise TypeError("expected 2 or more arguments") c = Counter(args[0]) return all(c == Counter(a) for a in args[1:]) arg1 = "appel apple aplep leapp".split() #print("check if {} are anagrams".format(arg1)) print("are_anagrams {} ? {} ".format(arg1, are_anagrams(*arg1)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 17268, 1330, 15034, 198, 198, 4299, 389, 62, 272, 6713, 82, 46491, 22046, 2599, 198, 220, 220, 220, 705, 7783, 6407, 611, 26498, 389, 281, 6713, 82, 6, 198, 220, 220, 220, 611, 18896, 7, 22046, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 40319, 362, 393, 517, 7159, 4943, 198, 220, 220, 220, 269, 796, 15034, 7, 22046, 58, 15, 12962, 198, 220, 220, 220, 1441, 477, 7, 66, 6624, 15034, 7, 64, 8, 329, 257, 287, 26498, 58, 16, 25, 12962, 198, 198, 853, 16, 796, 366, 1324, 417, 17180, 257, 1154, 79, 443, 1324, 1911, 35312, 3419, 198, 2, 4798, 7203, 9122, 611, 23884, 389, 281, 6713, 82, 1911, 18982, 7, 853, 16, 4008, 198, 4798, 7203, 533, 62, 272, 6713, 82, 23884, 5633, 220, 23884, 27071, 18982, 7, 853, 16, 11, 389, 62, 272, 6713, 82, 46491, 853, 16, 22305, 628, 198 ]
2.60241
166
from src.wrapper.sh1106 import Screen from src.modules.clock_module import Module as ClockModule from src.modules.temperature_module import Module as TemperatureModule from PIL import Image, ImageDraw, ImageFont import os font_path = os.path.join('assets', 'Font.ttf')
[ 6738, 12351, 13, 48553, 13, 1477, 11442, 21, 1330, 15216, 198, 6738, 12351, 13, 18170, 13, 15750, 62, 21412, 1330, 19937, 355, 21328, 26796, 198, 6738, 12351, 13, 18170, 13, 11498, 21069, 62, 21412, 1330, 19937, 355, 34467, 26796, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 11, 7412, 23252, 198, 11748, 28686, 198, 198, 10331, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 10786, 19668, 3256, 705, 23252, 13, 926, 69, 11537 ]
3.635135
74
from copy import deepcopy # dict_merge from # http://blog.impressiver.com/post/31434674390/deep-merge-multiple-python-dicts
[ 6738, 4866, 1330, 2769, 30073, 198, 198, 2, 8633, 62, 647, 469, 422, 198, 2, 2638, 1378, 14036, 13, 320, 8439, 1428, 13, 785, 14, 7353, 14, 33638, 2682, 45385, 25964, 14, 22089, 12, 647, 469, 12, 48101, 12, 29412, 12, 11600, 82 ]
2.883721
43
frase = 'curso em video python' print('{}'.format(frase[9:21]))
[ 8310, 589, 796, 705, 22019, 568, 795, 2008, 21015, 6, 198, 4798, 10786, 90, 92, 4458, 18982, 7, 8310, 589, 58, 24, 25, 2481, 60, 4008 ]
2.423077
26
from pip._vendor.distlib.compat import raw_input import subprocess import pyfiglet pf = pyfiglet.figlet_format("S-PF", font="5lineoblique") print(pf) print("ip example 192.168.1.1") ipadd = raw_input("Ip-Address" r"""-------->>>> """) print("Port range example 20-40") pr = raw_input("Port-range" r"""-------->>>> """) subprocess.run(["nmap", "-p", pr, "-Pn", ipadd]) hold = input("exit? [Y] >" " ") if hold in ['Y']: if dns == "Y": exit #created By eiji-codename Sakura
[ 6738, 7347, 13557, 85, 18738, 13, 17080, 8019, 13, 5589, 265, 1330, 8246, 62, 15414, 201, 198, 11748, 850, 14681, 201, 198, 11748, 12972, 5647, 1616, 201, 198, 201, 198, 79, 69, 796, 12972, 5647, 1616, 13, 5647, 1616, 62, 18982, 7203, 50, 12, 42668, 1600, 10369, 2625, 20, 1370, 672, 41522, 4943, 201, 198, 4798, 7, 79, 69, 8, 201, 198, 201, 198, 4798, 7203, 541, 1672, 17817, 13, 14656, 13, 16, 13, 16, 4943, 201, 198, 541, 2860, 796, 8246, 62, 15414, 7203, 40, 79, 12, 20231, 1, 374, 37811, 982, 16471, 13538, 4943, 201, 198, 201, 198, 4798, 7203, 13924, 2837, 1672, 1160, 12, 1821, 4943, 201, 198, 1050, 796, 8246, 62, 15414, 7203, 13924, 12, 9521, 1, 374, 37811, 982, 16471, 13538, 4943, 201, 198, 201, 198, 7266, 14681, 13, 5143, 7, 14692, 77, 8899, 1600, 27444, 79, 1600, 778, 11, 27444, 47, 77, 1600, 20966, 2860, 12962, 201, 198, 201, 198, 2946, 796, 5128, 7203, 37023, 30, 685, 56, 60, 1875, 1, 366, 366, 8, 201, 198, 361, 1745, 287, 37250, 56, 6, 5974, 201, 198, 220, 220, 220, 611, 288, 5907, 6624, 366, 56, 1298, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 201, 198, 201, 198, 201, 198, 201, 198, 2, 25598, 2750, 304, 20770, 12, 19815, 12453, 20574 ]
2.348624
218
#!/usr/bin/env python import argparse import logging import os import webbrowser from example_usage import load_embeddings from vec2graph import visualize logging.basicConfig( format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO ) parser = argparse.ArgumentParser() parser.add_argument( "-m", "--model", help="path to vector model file. If omitted, first model with the extension " "bin.gz (as binary) or .vec.gz (as non-binary) in working directory" " is loaded", default="", ) parser.add_argument( "-o", "--output", help="path to the output directory where to store visualization files." " If omitted, a new directory will be made in the current one, with the name" " based on the timestamp", default="", ) parser.add_argument( "-s", "--sep", help="if this parameter is used, the words are split by a separator" "(underscore), and only the first part is shown in visualization (E.g. " "it is useful when PoS is attached to a word). By now, this " "parameter accepts no value", action="store_true", ) args = parser.parse_args() model = load_embeddings(args.model) while True: text = input('Type your query (WORD, LIM, NR_NEIGHBORS):') word, lim, nr_n = text.strip().split() if '_' not in word: word = word + '_NOUN' out = visualize( args.output, model, word, topn=int(nr_n), threshold=float(lim), sep=args.sep ) if out: print('Visualization generated!') filepath = os.path.join(args.output, word + ".html") webbrowser.open('file://' + os.path.realpath(filepath)) else: print('Word not found in the model')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 3992, 40259, 198, 6738, 1672, 62, 26060, 1330, 3440, 62, 20521, 67, 654, 198, 6738, 43030, 17, 34960, 1330, 38350, 198, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 1058, 4064, 7, 5715, 3672, 8, 82, 1058, 4064, 7, 20500, 8, 82, 1600, 1241, 28, 6404, 2667, 13, 10778, 198, 8, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 76, 1600, 198, 220, 220, 220, 366, 438, 19849, 1600, 198, 220, 220, 220, 1037, 2625, 6978, 284, 15879, 2746, 2393, 13, 1002, 22532, 11, 717, 2746, 351, 262, 7552, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8800, 13, 34586, 357, 292, 13934, 8, 393, 764, 35138, 13, 34586, 357, 292, 1729, 12, 39491, 8, 287, 1762, 8619, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 318, 9639, 1600, 198, 220, 220, 220, 4277, 2625, 1600, 198, 8, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 78, 1600, 198, 220, 220, 220, 366, 438, 22915, 1600, 198, 220, 220, 220, 1037, 2625, 6978, 284, 262, 5072, 8619, 810, 284, 3650, 32704, 3696, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1002, 22532, 11, 257, 649, 8619, 481, 307, 925, 287, 262, 1459, 530, 11, 351, 262, 1438, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1912, 319, 262, 41033, 1600, 198, 220, 220, 220, 4277, 2625, 1600, 198, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 27444, 82, 1600, 198, 220, 220, 220, 366, 438, 325, 79, 1600, 198, 220, 220, 220, 1037, 2625, 361, 428, 11507, 318, 973, 11, 262, 2456, 389, 6626, 416, 257, 2880, 1352, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 30629, 41116, 7295, 828, 290, 691, 262, 717, 636, 318, 3402, 287, 32704, 357, 36, 13, 70, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 270, 318, 4465, 618, 7695, 50, 318, 7223, 284, 257, 1573, 737, 2750, 783, 11, 428, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 17143, 2357, 18178, 645, 1988, 1600, 198, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 8, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 19849, 796, 3440, 62, 20521, 67, 654, 7, 22046, 13, 19849, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 2420, 796, 5128, 10786, 6030, 534, 12405, 357, 54, 12532, 11, 27564, 11, 23057, 62, 12161, 18060, 33, 20673, 2599, 11537, 198, 220, 220, 220, 1573, 11, 1761, 11, 299, 81, 62, 77, 796, 2420, 13, 36311, 22446, 35312, 3419, 198, 220, 220, 220, 611, 705, 62, 6, 407, 287, 1573, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 796, 1573, 1343, 705, 62, 45, 19385, 6, 198, 220, 220, 220, 503, 796, 38350, 7, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 22915, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 77, 28, 600, 7, 48624, 62, 77, 828, 198, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 22468, 7, 2475, 828, 198, 220, 220, 220, 220, 220, 220, 220, 41767, 28, 22046, 13, 325, 79, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 36259, 1634, 7560, 0, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22046, 13, 22915, 11, 1573, 1343, 27071, 6494, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3992, 40259, 13, 9654, 10786, 7753, 1378, 6, 1343, 28686, 13, 6978, 13, 5305, 6978, 7, 7753, 6978, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 26449, 407, 1043, 287, 262, 2746, 11537, 198 ]
2.509246
703
# Way 1 from pyspark.sql import functions as F def stratified_split_train_test(df, frac, label, join_on, seed=42): """ stratfied split of a dataframe in train and test set. inspiration gotten from: https://stackoverflow.com/a/47672336/1771155 https://stackoverflow.com/a/39889263/1771155""" fractions = df.select(label).distinct().withColumn("fraction", F.lit(frac)).rdd.collectAsMap() df_frac = df.stat.sampleBy(label, fractions, seed) df_remaining = df.join(df_frac, on=join_on, how="left_anti") return df_frac, df_remaining # Way 2 # read in data df = spark.read.csv(file, header=True) # split dataframes between 0s and 1s zeros = df.filter(df["Target"]==0) ones = df.filter(df["Target"]==1) # split datasets into training and testing train0, test0 = zeros.randomSplit([0.8,0.2], seed=1234) train1, test1 = ones.randomSplit([0.8,0.2], seed=1234) # stack datasets back together train = train0.union(train1) test = test0.union(test1)
[ 2, 6378, 352, 198, 6738, 279, 893, 20928, 13, 25410, 1330, 5499, 355, 376, 220, 198, 198, 4299, 25369, 1431, 62, 35312, 62, 27432, 62, 9288, 7, 7568, 11, 1216, 330, 11, 6167, 11, 4654, 62, 261, 11, 9403, 28, 3682, 2599, 198, 220, 220, 220, 37227, 25369, 69, 798, 6626, 286, 257, 1366, 14535, 287, 4512, 290, 1332, 900, 13, 198, 220, 220, 220, 12141, 7891, 422, 25, 198, 220, 220, 220, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 2857, 3134, 1954, 2623, 14, 22413, 1157, 2816, 198, 220, 220, 220, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 2670, 39121, 29558, 14, 22413, 1157, 2816, 37811, 198, 220, 220, 220, 49876, 796, 47764, 13, 19738, 7, 18242, 737, 17080, 4612, 22446, 4480, 39470, 7203, 69, 7861, 1600, 376, 13, 18250, 7, 31944, 29720, 81, 1860, 13, 33327, 1722, 13912, 3419, 198, 220, 220, 220, 47764, 62, 31944, 796, 47764, 13, 14269, 13, 39873, 3886, 7, 18242, 11, 49876, 11, 9403, 8, 198, 220, 220, 220, 47764, 62, 2787, 1397, 796, 47764, 13, 22179, 7, 7568, 62, 31944, 11, 319, 28, 22179, 62, 261, 11, 703, 2625, 9464, 62, 17096, 4943, 198, 220, 220, 220, 1441, 47764, 62, 31944, 11, 47764, 62, 2787, 1397, 628, 198, 2, 6378, 362, 198, 2, 1100, 287, 1366, 198, 7568, 796, 9009, 13, 961, 13, 40664, 7, 7753, 11, 13639, 28, 17821, 8, 198, 198, 2, 6626, 1366, 37805, 1022, 657, 82, 290, 352, 82, 198, 9107, 418, 796, 47764, 13, 24455, 7, 7568, 14692, 21745, 8973, 855, 15, 8, 198, 1952, 796, 47764, 13, 24455, 7, 7568, 14692, 21745, 8973, 855, 16, 8, 198, 198, 2, 6626, 40522, 656, 3047, 290, 4856, 198, 27432, 15, 11, 1332, 15, 796, 1976, 27498, 13, 25120, 41205, 26933, 15, 13, 23, 11, 15, 13, 17, 4357, 9403, 28, 1065, 2682, 8, 198, 27432, 16, 11, 1332, 16, 796, 3392, 13, 25120, 41205, 26933, 15, 13, 23, 11, 15, 13, 17, 4357, 9403, 28, 1065, 2682, 8, 198, 198, 2, 8931, 40522, 736, 1978, 198, 27432, 796, 4512, 15, 13, 24592, 7, 27432, 16, 8, 198, 9288, 796, 1332, 15, 13, 24592, 7, 9288, 16, 8 ]
2.665753
365
#REV: read it, separate it, use freq to make timings ;) #REV: convert from old 7-el to 49-el, pain in the butt. #REV: assume I have 0, 2, 4, 6, 8, 10, 12, makes 7 electrodes, at 150 spacing ugh. #REV: I *think* 0 is x=50, 2 is x=200, 4 is x=350, 6 is x=500 #REV: Just do single correlations, if right now electrodes go from uh, import sys if( len( sys.argv ) != 3 ): print( "Not enough sys args" ); exit(1); inf = sys.argv[1]; outf = sys.argv[2]; ely_sep=150; elx_sep=150; elx_num=7; ely_num=7; el_shift=50; fromtop=False; print( "In: ", inf, " out: ", outf ); out = open(outf, 'w'); elevents=False; if(elevents): i = open( inf, 'r'); evout = open(outf + '.events', 'w'); time=200; for line in i: line1 = line.split('\n'); items = line1[0].split(' '); el = items[0]; hz = float(items[1]); if( hz > 0 ): t=0; while( t < time ): evout.write( str(t) + ' ' + el + ' pulse\n' ); t += (1.0/hz)*1000.0; i.close(); evout.close(); nel=elx_num*ely_num; #8*8; elhei=10; elwid=50; eldep=50; #REV: fuck I need to assume that center electrode is at 500/500 -_-; for n in range(1, nel+1): elnum=n-1; x, z = comp_elpos(n); y = -300; grpname='EL' out.write( 'nodeprop ' + 'el' + str(elnum) + ' pos ' + str(x) + ' ' + str(y-elhei/2) + ' ' + str(z) + ' ' + str(x) + ' ' + str(y+elhei/2) + ' ' + str(z) + ' ' + str(elwid) + ' ' + str(eldep) + '\n'); out.write( 'nodememb ' + grpname + ' el' + str(elnum) + '\n' ); out.close();
[ 2, 2200, 53, 25, 1100, 340, 11, 4553, 340, 11, 779, 2030, 80, 284, 787, 4628, 654, 35540, 628, 198, 2, 2200, 53, 25, 10385, 422, 1468, 767, 12, 417, 284, 5125, 12, 417, 11, 2356, 287, 262, 8530, 13, 198, 2, 2200, 53, 25, 7048, 314, 423, 657, 11, 362, 11, 604, 11, 718, 11, 807, 11, 838, 11, 1105, 11, 1838, 767, 39780, 11, 379, 6640, 31050, 334, 456, 13, 198, 2, 2200, 53, 25, 314, 1635, 14925, 9, 657, 318, 2124, 28, 1120, 11, 362, 318, 2124, 28, 2167, 11, 604, 318, 2124, 28, 14877, 11, 718, 318, 2124, 28, 4059, 198, 2, 2200, 53, 25, 2329, 466, 2060, 35811, 11, 611, 826, 783, 39780, 467, 422, 21480, 11, 220, 198, 198, 11748, 25064, 198, 198, 361, 7, 18896, 7, 25064, 13, 853, 85, 1267, 14512, 513, 15179, 198, 220, 220, 220, 3601, 7, 366, 3673, 1576, 25064, 26498, 1, 5619, 198, 220, 220, 220, 8420, 7, 16, 1776, 198, 198, 10745, 796, 25064, 13, 853, 85, 58, 16, 11208, 198, 448, 69, 796, 25064, 13, 853, 85, 58, 17, 11208, 198, 198, 68, 306, 62, 325, 79, 28, 8628, 26, 198, 417, 87, 62, 325, 79, 28, 8628, 26, 198, 417, 87, 62, 22510, 28, 22, 26, 198, 68, 306, 62, 22510, 28, 22, 26, 628, 198, 417, 62, 30846, 28, 1120, 26, 198, 198, 6738, 4852, 28, 25101, 26, 198, 198, 4798, 7, 366, 818, 25, 33172, 1167, 11, 366, 503, 25, 33172, 503, 69, 5619, 628, 198, 448, 796, 1280, 7, 448, 69, 11, 705, 86, 24036, 628, 198, 68, 2768, 658, 28, 25101, 26, 198, 361, 7, 68, 2768, 658, 2599, 198, 220, 220, 220, 1312, 796, 1280, 7, 1167, 11, 705, 81, 24036, 198, 220, 220, 220, 819, 448, 796, 1280, 7, 448, 69, 1343, 45302, 31534, 3256, 705, 86, 24036, 628, 220, 220, 220, 640, 28, 2167, 26, 198, 220, 220, 220, 329, 1627, 287, 1312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 16, 796, 1627, 13, 35312, 10786, 59, 77, 24036, 198, 220, 220, 220, 220, 220, 220, 220, 3709, 796, 1627, 16, 58, 15, 4083, 35312, 10786, 705, 1776, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 796, 3709, 58, 15, 11208, 198, 220, 220, 220, 220, 220, 220, 220, 289, 89, 796, 12178, 7, 23814, 58, 16, 36563, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 289, 89, 1875, 657, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 28, 15, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 7, 256, 1279, 640, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 819, 448, 13, 13564, 7, 965, 7, 83, 8, 1343, 705, 705, 1343, 1288, 1343, 705, 19445, 59, 77, 6, 5619, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 15853, 357, 16, 13, 15, 14, 32179, 27493, 12825, 13, 15, 26, 198, 220, 220, 220, 1312, 13, 19836, 9783, 198, 220, 220, 220, 819, 448, 13, 19836, 9783, 628, 198, 4954, 28, 417, 87, 62, 22510, 9, 68, 306, 62, 22510, 26, 1303, 23, 9, 23, 26, 198, 417, 27392, 28, 940, 26, 198, 417, 28029, 28, 1120, 26, 198, 68, 335, 538, 28, 1120, 26, 628, 198, 2, 2200, 53, 25, 5089, 314, 761, 284, 7048, 326, 3641, 46203, 318, 379, 5323, 14, 4059, 532, 22955, 26, 198, 1640, 299, 287, 2837, 7, 16, 11, 299, 417, 10, 16, 2599, 198, 220, 220, 220, 1288, 22510, 28, 77, 12, 16, 26, 198, 220, 220, 220, 2124, 11, 1976, 796, 552, 62, 417, 1930, 7, 77, 1776, 198, 220, 220, 220, 331, 796, 532, 6200, 26, 198, 220, 220, 220, 1036, 79, 3672, 11639, 3698, 6, 198, 220, 220, 220, 503, 13, 13564, 7, 705, 77, 375, 538, 1773, 705, 1343, 705, 417, 6, 1343, 965, 7, 417, 22510, 8, 1343, 705, 1426, 705, 1343, 965, 7, 87, 8, 1343, 705, 705, 1343, 965, 7, 88, 12, 417, 27392, 14, 17, 8, 1343, 705, 705, 1343, 965, 7, 89, 8, 1343, 705, 705, 1343, 220, 965, 7, 87, 8, 1343, 705, 705, 1343, 965, 7, 88, 10, 417, 27392, 14, 17, 8, 1343, 705, 705, 1343, 965, 7, 89, 8, 1343, 705, 705, 1343, 965, 7, 417, 28029, 8, 1343, 705, 705, 1343, 965, 7, 68, 335, 538, 8, 1343, 705, 59, 77, 24036, 198, 220, 220, 220, 503, 13, 13564, 7, 705, 77, 375, 368, 24419, 705, 1343, 1036, 79, 3672, 1343, 705, 1288, 6, 1343, 965, 7, 417, 22510, 8, 1343, 705, 59, 77, 6, 5619, 198, 220, 220, 220, 220, 628, 198, 448, 13, 19836, 9783, 198 ]
1.988722
798
import requests from flask import Flask, request import os import info import isolate app = Flask(__name__) @app.route('/') @app.route('/compile', methods=["POST"]) @app.route('/run', methods=["POST"]) @app.before_first_request
[ 11748, 7007, 198, 6738, 42903, 1330, 46947, 11, 2581, 198, 11748, 28686, 198, 198, 11748, 7508, 198, 11748, 28091, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 198, 31, 1324, 13, 38629, 10786, 14, 5589, 576, 3256, 5050, 28, 14692, 32782, 8973, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 5143, 3256, 5050, 28, 14692, 32782, 8973, 8, 198, 198, 31, 1324, 13, 19052, 62, 11085, 62, 25927, 628 ]
2.865854
82
import re import disnake from disnake.ext import commands from ids import AHK_GUILD_ID from cogs.mixins import AceMixin from utils.context import is_mod from utils.converters import LengthConverter DELETE_EMOJI = '\N{Put Litter in Its Place Symbol}' DEFAULT_LANG = 'py' lang_converter = LangConverter(1, 32) class Highlighter(AceMixin, commands.Cog): '''Create highlighted code-boxes with one command.''' @commands.command(aliases=['h1']) @commands.bot_has_permissions(manage_messages=True, add_reactions=True) async def hl(self, ctx, *, code): '''Highlight some code.''' await ctx.message.delete() # include spaces/tabs at the beginning code = ctx.message.content[len(ctx.prefix) + 3:] # don't allow three backticks in a row, alternative is to throw error upon this case code = code.replace('``', '`\u200b`') # replace triple+ newlines with double newlines code = re.sub('\n\n+', '\n\n', code) # trim start and finish code = code.strip() # get the language this user should use lang = await self.db.fetchval( 'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND (user_id=$2 OR user_id=$3)', ctx.guild.id, 0, ctx.author.id ) or DEFAULT_LANG code = '```{}\n{}\n```'.format(lang, code) code += '*Paste by {0} - Click {1} to delete.*'.format(ctx.author.mention, DELETE_EMOJI) if len(code) > 2000: raise commands.CommandError('Code contents too long to paste.') message = await ctx.send(code) await self.db.execute( 'INSERT INTO highlight_msg (guild_id, channel_id, user_id, message_id) VALUES ($1, $2, $3, $4)', ctx.guild.id, ctx.channel.id, ctx.author.id, message.id ) await message.add_reaction(DELETE_EMOJI) @commands.Cog.listener() async def on_raw_reaction_add(self, payload): '''Listens for raw reactions and removes a highlighted message if appropriate.''' if payload.guild_id is None: return if str(payload.emoji) != DELETE_EMOJI or payload.user_id == self.bot.user.id: return if await self.db.execute( 'DELETE FROM highlight_msg WHERE user_id=$1 AND message_id=$2', payload.user_id, payload.message_id ) == 'DELETE 0': return channel = self.bot.get_channel(payload.channel_id) if channel is None: return try: message = await channel.fetch_message(payload.message_id) await message.delete() except disnake.HTTPException: return @commands.command() @commands.bot_has_permissions(embed_links=True) async def lang(self, ctx, *, language: lang_converter = None): '''Set your preferred highlighting language in this server.''' if language is None: server_lang = await self.db.fetchval( 'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND user_id=$2', ctx.guild.id, 0 ) user_lang = await self.db.fetchval( 'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND user_id=$2', ctx.guild.id, ctx.author.id ) e = disnake.Embed(description='Do `.lang clear` to clear preference.') e.add_field( name='Server setting', value=f'`{DEFAULT_LANG + " (default)" if server_lang is None else server_lang}`' ) e.add_field( name='Personal setting', value='Not set' if user_lang is None else f'`{user_lang}`' ) await ctx.send(embed=e) return if language == 'clear': ret = await self.db.execute( 'DELETE FROM highlight_lang WHERE guild_id=$1 AND user_id=$2', ctx.guild.id, ctx.author.id ) await ctx.send('No preference previously set' if ret == 'DELETE 0' else 'Preference cleared.') else: await self.db.execute( 'INSERT INTO highlight_lang (guild_id, user_id, lang) VALUES ($1, $2, $3) ON CONFLICT ' '(guild_id, user_id) DO UPDATE SET lang=$3', ctx.guild.id, ctx.author.id, language ) await ctx.send(f'Set your specific highlighting language to \'{language}\'.') @commands.command(aliases=['guildlang']) @is_mod() async def serverlang(self, ctx, *, language: lang_converter): '''Set a guild-specific highlighting language. Can be overridden individually by users.''' if language == 'clear': ret = await self.db.execute( 'DELETE FROM highlight_lang WHERE guild_id=$1 AND user_id=$2', ctx.guild.id, 0 ) await ctx.send('No preference previously set' if ret == 'DELETE 0' else 'Preference cleared.') else: await self.db.execute( 'INSERT INTO highlight_lang (guild_id, user_id, lang) VALUES ($1, $2, $3) ON CONFLICT ' '(guild_id, user_id) DO UPDATE SET lang=$3', ctx.guild.id, 0, language ) await ctx.send(f'Set server-specific highlighting language to \'{language}\'.') @commands.command(aliases=['p'], hidden=True) async def paste(self, ctx): '''Legacy, not removed because some people still use it instead of the newer tags in the tag system.''' msg = 'To paste code snippets directly into the chat, use the highlight command:\n```.hl *paste code here*```' if ctx.guild.id == AHK_GUILD_ID: msg += ( 'If you have a larger script you want to share, paste it to the AutoHotkey pastebin instead:\n' 'http://p.ahkscript.org/' ) await ctx.send(msg)
[ 11748, 302, 198, 198, 11748, 595, 77, 539, 198, 6738, 595, 77, 539, 13, 2302, 1330, 9729, 198, 198, 6738, 220, 2340, 1330, 28159, 42, 62, 38022, 26761, 62, 2389, 198, 6738, 269, 18463, 13, 19816, 1040, 1330, 17102, 35608, 259, 198, 6738, 3384, 4487, 13, 22866, 1330, 318, 62, 4666, 198, 6738, 3384, 4487, 13, 1102, 332, 1010, 1330, 22313, 3103, 332, 353, 198, 198, 7206, 2538, 9328, 62, 3620, 46, 41, 40, 796, 705, 59, 45, 90, 11588, 406, 1967, 287, 6363, 8474, 38357, 92, 6, 198, 7206, 38865, 62, 43, 15567, 796, 705, 9078, 6, 628, 198, 198, 17204, 62, 1102, 332, 353, 796, 16332, 3103, 332, 353, 7, 16, 11, 3933, 8, 628, 198, 4871, 3334, 75, 4799, 7, 32, 344, 35608, 259, 11, 9729, 13, 34, 519, 2599, 198, 197, 7061, 6, 16447, 14537, 2438, 12, 29305, 351, 530, 3141, 2637, 7061, 628, 197, 31, 9503, 1746, 13, 21812, 7, 7344, 1386, 28, 17816, 71, 16, 6, 12962, 198, 197, 31, 9503, 1746, 13, 13645, 62, 10134, 62, 525, 8481, 7, 805, 496, 62, 37348, 1095, 28, 17821, 11, 751, 62, 260, 4658, 28, 17821, 8, 198, 197, 292, 13361, 825, 289, 75, 7, 944, 11, 269, 17602, 11, 1635, 11, 2438, 2599, 198, 197, 197, 7061, 6, 11922, 2971, 617, 2438, 2637, 7061, 628, 197, 197, 707, 4548, 269, 17602, 13, 20500, 13, 33678, 3419, 628, 197, 197, 2, 2291, 9029, 14, 8658, 82, 379, 262, 3726, 198, 197, 197, 8189, 796, 269, 17602, 13, 20500, 13, 11299, 58, 11925, 7, 49464, 13, 40290, 8, 1343, 513, 47715, 628, 197, 197, 2, 836, 470, 1249, 1115, 736, 83, 3378, 287, 257, 5752, 11, 5559, 318, 284, 3714, 4049, 2402, 428, 1339, 198, 197, 197, 8189, 796, 2438, 13, 33491, 10786, 15506, 3256, 705, 63, 59, 84, 2167, 65, 63, 11537, 628, 197, 197, 2, 6330, 15055, 10, 649, 6615, 351, 4274, 649, 6615, 198, 197, 197, 8189, 796, 302, 13, 7266, 10786, 59, 77, 59, 77, 10, 3256, 705, 59, 77, 59, 77, 3256, 2438, 8, 628, 197, 197, 2, 15797, 923, 290, 5461, 198, 197, 197, 8189, 796, 2438, 13, 36311, 3419, 628, 197, 197, 2, 651, 262, 3303, 428, 2836, 815, 779, 198, 197, 197, 17204, 796, 25507, 2116, 13, 9945, 13, 69, 7569, 2100, 7, 198, 197, 197, 197, 6, 46506, 42392, 16034, 7238, 62, 17204, 33411, 19806, 62, 312, 43641, 16, 5357, 357, 7220, 62, 312, 43641, 17, 6375, 2836, 62, 312, 43641, 18, 8, 3256, 198, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 657, 11, 269, 17602, 13, 9800, 13, 312, 198, 197, 197, 8, 393, 5550, 38865, 62, 43, 15567, 628, 197, 197, 8189, 796, 705, 15506, 63, 90, 32239, 77, 90, 32239, 77, 15506, 63, 4458, 18982, 7, 17204, 11, 2438, 8, 198, 197, 197, 8189, 15853, 705, 9, 47, 4594, 416, 1391, 15, 92, 532, 6914, 1391, 16, 92, 284, 12233, 15885, 4458, 18982, 7, 49464, 13, 9800, 13, 434, 295, 11, 5550, 2538, 9328, 62, 3620, 46, 41, 40, 8, 628, 197, 197, 361, 18896, 7, 8189, 8, 1875, 4751, 25, 198, 197, 197, 197, 40225, 9729, 13, 21575, 12331, 10786, 10669, 10154, 1165, 890, 284, 17008, 2637, 8, 628, 197, 197, 20500, 796, 25507, 269, 17602, 13, 21280, 7, 8189, 8, 628, 197, 197, 707, 4548, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 6, 20913, 17395, 39319, 7238, 62, 19662, 357, 70, 3547, 62, 312, 11, 6518, 62, 312, 11, 2836, 62, 312, 11, 3275, 62, 312, 8, 26173, 35409, 7198, 16, 11, 720, 17, 11, 720, 18, 11, 720, 19, 8, 3256, 198, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 269, 17602, 13, 17620, 13, 312, 11, 269, 17602, 13, 9800, 13, 312, 11, 3275, 13, 312, 198, 197, 197, 8, 628, 197, 197, 707, 4548, 3275, 13, 2860, 62, 260, 2673, 7, 7206, 2538, 9328, 62, 3620, 46, 41, 40, 8, 628, 197, 31, 9503, 1746, 13, 34, 519, 13, 4868, 877, 3419, 198, 197, 292, 13361, 825, 319, 62, 1831, 62, 260, 2673, 62, 2860, 7, 944, 11, 21437, 2599, 198, 197, 197, 7061, 6, 8053, 641, 329, 8246, 12737, 290, 20694, 257, 14537, 3275, 611, 5035, 2637, 7061, 628, 197, 197, 361, 21437, 13, 70, 3547, 62, 312, 318, 6045, 25, 198, 197, 197, 197, 7783, 628, 197, 197, 361, 965, 7, 15577, 2220, 13, 368, 31370, 8, 14512, 5550, 2538, 9328, 62, 3620, 46, 41, 40, 393, 21437, 13, 7220, 62, 312, 6624, 2116, 13, 13645, 13, 7220, 13, 312, 25, 198, 197, 197, 197, 7783, 628, 197, 197, 361, 25507, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 6, 7206, 2538, 9328, 16034, 7238, 62, 19662, 33411, 2836, 62, 312, 43641, 16, 5357, 3275, 62, 312, 43641, 17, 3256, 198, 197, 197, 197, 15577, 2220, 13, 7220, 62, 312, 11, 21437, 13, 20500, 62, 312, 198, 197, 197, 8, 6624, 705, 7206, 2538, 9328, 657, 10354, 198, 197, 197, 197, 7783, 628, 197, 197, 17620, 796, 2116, 13, 13645, 13, 1136, 62, 17620, 7, 15577, 2220, 13, 17620, 62, 312, 8, 198, 197, 197, 361, 6518, 318, 6045, 25, 198, 197, 197, 197, 7783, 628, 197, 197, 28311, 25, 198, 197, 197, 197, 20500, 796, 25507, 6518, 13, 69, 7569, 62, 20500, 7, 15577, 2220, 13, 20500, 62, 312, 8, 198, 197, 197, 197, 707, 4548, 3275, 13, 33678, 3419, 198, 197, 197, 16341, 595, 77, 539, 13, 40717, 16922, 25, 198, 197, 197, 197, 7783, 628, 197, 31, 9503, 1746, 13, 21812, 3419, 198, 197, 31, 9503, 1746, 13, 13645, 62, 10134, 62, 525, 8481, 7, 20521, 62, 28751, 28, 17821, 8, 198, 197, 292, 13361, 825, 42392, 7, 944, 11, 269, 17602, 11, 1635, 11, 3303, 25, 42392, 62, 1102, 332, 353, 796, 6045, 2599, 198, 197, 197, 7061, 6, 7248, 534, 9871, 21292, 3303, 287, 428, 4382, 2637, 7061, 628, 197, 197, 361, 3303, 318, 6045, 25, 198, 197, 197, 197, 15388, 62, 17204, 796, 25507, 2116, 13, 9945, 13, 69, 7569, 2100, 7, 198, 197, 197, 197, 197, 6, 46506, 42392, 16034, 7238, 62, 17204, 33411, 19806, 62, 312, 43641, 16, 5357, 2836, 62, 312, 43641, 17, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 657, 198, 197, 197, 197, 8, 628, 197, 197, 197, 7220, 62, 17204, 796, 25507, 2116, 13, 9945, 13, 69, 7569, 2100, 7, 198, 197, 197, 197, 197, 6, 46506, 42392, 16034, 7238, 62, 17204, 33411, 19806, 62, 312, 43641, 16, 5357, 2836, 62, 312, 43641, 17, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 269, 17602, 13, 9800, 13, 312, 198, 197, 197, 197, 8, 628, 197, 197, 197, 68, 796, 595, 77, 539, 13, 31567, 276, 7, 11213, 11639, 5211, 4600, 13, 17204, 1598, 63, 284, 1598, 12741, 2637, 8, 628, 197, 197, 197, 68, 13, 2860, 62, 3245, 7, 198, 197, 197, 197, 197, 3672, 11639, 10697, 4634, 3256, 198, 197, 197, 197, 197, 8367, 28, 69, 6, 63, 90, 7206, 38865, 62, 43, 15567, 1343, 366, 357, 12286, 16725, 611, 4382, 62, 17204, 318, 6045, 2073, 4382, 62, 17204, 92, 63, 6, 198, 197, 197, 197, 8, 628, 197, 197, 197, 68, 13, 2860, 62, 3245, 7, 198, 197, 197, 197, 197, 3672, 11639, 30228, 4634, 3256, 198, 197, 197, 197, 197, 8367, 11639, 3673, 900, 6, 611, 2836, 62, 17204, 318, 6045, 2073, 277, 6, 63, 90, 7220, 62, 17204, 92, 63, 6, 198, 197, 197, 197, 8, 628, 197, 197, 197, 707, 4548, 269, 17602, 13, 21280, 7, 20521, 28, 68, 8, 198, 197, 197, 197, 7783, 628, 197, 197, 361, 3303, 6624, 705, 20063, 10354, 198, 197, 197, 197, 1186, 796, 25507, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 197, 6, 7206, 2538, 9328, 16034, 7238, 62, 17204, 33411, 19806, 62, 312, 43641, 16, 5357, 2836, 62, 312, 43641, 17, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 269, 17602, 13, 9800, 13, 312, 198, 197, 197, 197, 8, 628, 197, 197, 197, 707, 4548, 269, 17602, 13, 21280, 10786, 2949, 12741, 4271, 900, 6, 611, 1005, 6624, 705, 7206, 2538, 9328, 657, 6, 2073, 705, 6719, 4288, 12539, 2637, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 707, 4548, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 197, 6, 20913, 17395, 39319, 7238, 62, 17204, 357, 70, 3547, 62, 312, 11, 2836, 62, 312, 11, 42392, 8, 26173, 35409, 7198, 16, 11, 720, 17, 11, 720, 18, 8, 6177, 7102, 3697, 18379, 705, 198, 197, 197, 197, 197, 6, 7, 70, 3547, 62, 312, 11, 2836, 62, 312, 8, 8410, 35717, 25823, 42392, 43641, 18, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 269, 17602, 13, 9800, 13, 312, 11, 3303, 198, 197, 197, 197, 8, 628, 197, 197, 197, 707, 4548, 269, 17602, 13, 21280, 7, 69, 6, 7248, 534, 2176, 21292, 3303, 284, 34373, 90, 16129, 32239, 6, 2637, 8, 628, 197, 31, 9503, 1746, 13, 21812, 7, 7344, 1386, 28, 17816, 70, 3547, 17204, 6, 12962, 198, 197, 31, 271, 62, 4666, 3419, 198, 197, 292, 13361, 825, 4382, 17204, 7, 944, 11, 269, 17602, 11, 1635, 11, 3303, 25, 42392, 62, 1102, 332, 353, 2599, 198, 197, 197, 7061, 6, 7248, 257, 19806, 12, 11423, 21292, 3303, 13, 1680, 307, 23170, 4651, 17033, 416, 2985, 2637, 7061, 628, 197, 197, 361, 3303, 6624, 705, 20063, 10354, 198, 197, 197, 197, 1186, 796, 25507, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 197, 6, 7206, 2538, 9328, 16034, 7238, 62, 17204, 33411, 19806, 62, 312, 43641, 16, 5357, 2836, 62, 312, 43641, 17, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 657, 198, 197, 197, 197, 8, 628, 197, 197, 197, 707, 4548, 269, 17602, 13, 21280, 10786, 2949, 12741, 4271, 900, 6, 611, 1005, 6624, 705, 7206, 2538, 9328, 657, 6, 2073, 705, 6719, 4288, 12539, 2637, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 707, 4548, 2116, 13, 9945, 13, 41049, 7, 198, 197, 197, 197, 197, 6, 20913, 17395, 39319, 7238, 62, 17204, 357, 70, 3547, 62, 312, 11, 2836, 62, 312, 11, 42392, 8, 26173, 35409, 7198, 16, 11, 720, 17, 11, 720, 18, 8, 6177, 7102, 3697, 18379, 705, 198, 197, 197, 197, 197, 6, 7, 70, 3547, 62, 312, 11, 2836, 62, 312, 8, 8410, 35717, 25823, 42392, 43641, 18, 3256, 198, 197, 197, 197, 197, 49464, 13, 70, 3547, 13, 312, 11, 657, 11, 3303, 198, 197, 197, 197, 8, 628, 197, 197, 197, 707, 4548, 269, 17602, 13, 21280, 7, 69, 6, 7248, 4382, 12, 11423, 21292, 3303, 284, 34373, 90, 16129, 32239, 6, 2637, 8, 628, 197, 31, 9503, 1746, 13, 21812, 7, 7344, 1386, 28, 17816, 79, 6, 4357, 7104, 28, 17821, 8, 198, 197, 292, 13361, 825, 17008, 7, 944, 11, 269, 17602, 2599, 198, 197, 197, 7061, 6, 11484, 1590, 11, 407, 4615, 780, 617, 661, 991, 779, 340, 2427, 286, 262, 15064, 15940, 287, 262, 7621, 1080, 2637, 7061, 628, 197, 197, 19662, 796, 705, 2514, 17008, 2438, 45114, 3264, 656, 262, 8537, 11, 779, 262, 7238, 3141, 7479, 77, 15506, 44646, 18519, 1635, 34274, 2438, 994, 9, 15506, 63, 6, 628, 197, 197, 361, 269, 17602, 13, 70, 3547, 13, 312, 6624, 28159, 42, 62, 38022, 26761, 62, 2389, 25, 198, 197, 197, 197, 19662, 15853, 357, 198, 197, 197, 197, 197, 6, 1532, 345, 423, 257, 4025, 4226, 345, 765, 284, 2648, 11, 17008, 340, 284, 262, 11160, 21352, 2539, 1613, 23497, 2427, 7479, 77, 6, 198, 197, 197, 197, 197, 6, 4023, 1378, 79, 13, 993, 591, 6519, 13, 2398, 14, 6, 198, 197, 197, 197, 8, 628, 197, 197, 707, 4548, 269, 17602, 13, 21280, 7, 19662, 8, 628 ]
2.55063
1,985
from mmdet.apis import init_detector, inference_detector, show_result_pyplot, show_result_ins import mmcv import os, glob, time config_file = 'cfg/aug_solov2_tuned.py' # download the checkpoint from model zoo and put it in `checkpoints/` checkpoint_file = 'work_dirs/solov2_tianchi_tuned.pth' # build the model from a config file and a checkpoint file model = init_detector(config_file, checkpoint_file, device='cuda:0') # # test a single image # img = './WechatIMG14.jpeg' # result, cost_time = inference_detector(model, img) # show_result_ins(img, result, model.CLASSES, score_thr=0.25, # out_file='./WechatIMG14_out.jpeg') imgs = glob.glob('/workspace/tianchi/tianchiyusai/JPEGImages/621838/*.jpg') # imgs = ['./test_imgs/14755.jpg'] # imgs = glob.glob('/home/versa/dataset/MSCOCO/aug_seg/val_imgs/*.*') save_dir = './result' if not os.path.exists(save_dir): os.makedirs(save_dir) total = 0 for i, img in enumerate(imgs): name = img.split('/')[-1] result, cost_time = inference_detector(model, img) print(i, name, cost_time) total += cost_time try: show_result_ins(img, result, model.CLASSES, score_thr=0.25, out_file=os.path.join(save_dir, name)) except: continue print('average cost time: ', total / len(imgs))
[ 6738, 8085, 15255, 13, 499, 271, 1330, 2315, 62, 15255, 9250, 11, 32278, 62, 15255, 9250, 11, 905, 62, 20274, 62, 9078, 29487, 11, 905, 62, 20274, 62, 1040, 198, 11748, 8085, 33967, 198, 11748, 28686, 11, 15095, 11, 640, 198, 198, 11250, 62, 7753, 796, 705, 37581, 14, 7493, 62, 34453, 709, 17, 62, 28286, 276, 13, 9078, 6, 198, 2, 4321, 262, 26954, 422, 2746, 26626, 290, 1234, 340, 287, 4600, 9122, 13033, 14, 63, 198, 9122, 4122, 62, 7753, 796, 705, 1818, 62, 15908, 82, 14, 34453, 709, 17, 62, 83, 666, 11072, 62, 28286, 276, 13, 79, 400, 6, 198, 198, 2, 1382, 262, 2746, 422, 257, 4566, 2393, 290, 257, 26954, 2393, 198, 19849, 796, 2315, 62, 15255, 9250, 7, 11250, 62, 7753, 11, 26954, 62, 7753, 11, 3335, 11639, 66, 15339, 25, 15, 11537, 198, 198, 2, 1303, 1332, 257, 2060, 2939, 198, 2, 33705, 796, 705, 19571, 1135, 17006, 3955, 38, 1415, 13, 73, 22071, 6, 198, 2, 1255, 11, 1575, 62, 2435, 796, 32278, 62, 15255, 9250, 7, 19849, 11, 33705, 8, 198, 2, 905, 62, 20274, 62, 1040, 7, 9600, 11, 1255, 11, 2746, 13, 31631, 1546, 11, 4776, 62, 400, 81, 28, 15, 13, 1495, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 7753, 28, 4458, 14, 1135, 17006, 3955, 38, 1415, 62, 448, 13, 73, 22071, 11537, 198, 198, 9600, 82, 796, 15095, 13, 4743, 672, 10786, 14, 5225, 10223, 14, 83, 666, 11072, 14, 83, 666, 354, 7745, 385, 1872, 14, 12889, 7156, 29398, 14, 5237, 1507, 2548, 15211, 13, 9479, 11537, 198, 2, 545, 14542, 796, 685, 4458, 14, 9288, 62, 9600, 82, 14, 1415, 38172, 13, 9479, 20520, 198, 2, 545, 14542, 796, 15095, 13, 4743, 672, 10786, 14, 11195, 14, 690, 64, 14, 19608, 292, 316, 14, 5653, 34, 4503, 46, 14, 7493, 62, 325, 70, 14, 2100, 62, 9600, 82, 15211, 15885, 11537, 198, 21928, 62, 15908, 796, 705, 19571, 20274, 6, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 15908, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 62, 15908, 8, 198, 198, 23350, 796, 657, 198, 1640, 1312, 11, 33705, 287, 27056, 378, 7, 9600, 82, 2599, 198, 220, 220, 220, 1438, 796, 33705, 13, 35312, 10786, 14, 11537, 58, 12, 16, 60, 198, 220, 220, 220, 1255, 11, 1575, 62, 2435, 796, 32278, 62, 15255, 9250, 7, 19849, 11, 33705, 8, 198, 220, 220, 220, 3601, 7, 72, 11, 1438, 11, 1575, 62, 2435, 8, 198, 220, 220, 220, 2472, 15853, 1575, 62, 2435, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 20274, 62, 1040, 7, 9600, 11, 1255, 11, 2746, 13, 31631, 1546, 11, 4776, 62, 400, 81, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 7753, 28, 418, 13, 6978, 13, 22179, 7, 21928, 62, 15908, 11, 1438, 4008, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 4798, 10786, 23913, 1575, 640, 25, 46083, 2472, 1220, 18896, 7, 9600, 82, 4008 ]
2.362319
552
# !/usr/bin/env python import rospy from flexbe_core import EventState, Logger ''' Created on 21.09.2017 @author: Philippe La Madeleine ''' class SetKey(EventState): ''' Set a Key to a predefined Value -- Value object The desired value. <# Key object The key to set. <= done The key is set ''' def __init__(self, Value): ''' Constructor ''' super(SetKey, self).__init__(outcomes=['done'], output_keys=['Key']) self.Value = Value def execute(self, userdata): ''' Execute this state ''' userdata.Key = self.Value; return "done"
[ 2, 5145, 14, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 686, 2777, 88, 198, 6738, 7059, 1350, 62, 7295, 1330, 8558, 9012, 11, 5972, 1362, 198, 198, 7061, 6, 198, 41972, 319, 2310, 13, 2931, 13, 5539, 198, 31, 9800, 25, 39393, 4689, 14446, 293, 500, 198, 7061, 6, 628, 198, 4871, 5345, 9218, 7, 9237, 9012, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5345, 257, 7383, 284, 257, 2747, 18156, 11052, 198, 220, 220, 220, 1377, 11052, 220, 220, 220, 2134, 220, 220, 220, 220, 220, 383, 10348, 1988, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1279, 2, 7383, 220, 220, 220, 220, 220, 2134, 220, 220, 220, 220, 220, 383, 1994, 284, 900, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 19841, 1760, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1994, 318, 900, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 11052, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 7248, 9218, 11, 2116, 737, 834, 15003, 834, 7, 448, 8988, 28, 17816, 28060, 6, 4357, 220, 5072, 62, 13083, 28, 17816, 9218, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11395, 796, 11052, 628, 220, 220, 220, 825, 12260, 7, 944, 11, 2836, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 8393, 1133, 428, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 2836, 7890, 13, 9218, 796, 2116, 13, 11395, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 28060, 1, 198 ]
2.110092
327
from chapter2_基础.soundBase import * from chapter4_特征提取.end_detection import * data, fs = soundBase('C4_1_y.wav').audioread() data -= np.mean(data) data /= np.max(data) IS = 0.25 wlen = 200 inc = 80 N = len(data) time = [i / fs for i in range(N)] wnd = np.hamming(wlen) NIS = int((IS * fs - wlen) // inc + 1) thr1 = 1.1 thr2 = 1.3 voiceseg, vsl, SF, NF, Rum = vad_corr(data, wnd, inc, NIS, thr1, thr2) fn = len(SF) frameTime = FrameTimeC(fn, wlen, inc, fs) plt.subplot(2, 1, 1) plt.plot(time, data) plt.subplot(2, 1, 2) plt.plot(frameTime, Rum) for i in range(vsl): plt.subplot(2, 1, 1) plt.plot(frameTime[voiceseg[i]['start']], 0, '.k') plt.plot(frameTime[voiceseg[i]['end']], 0, 'or') plt.legend(['signal', 'start', 'end']) plt.subplot(2, 1, 2) plt.plot(frameTime[voiceseg[i]['start']], 0, '.k') plt.plot(frameTime[voiceseg[i]['end']], 0, 'or') plt.legend(['xcorr', 'start', 'end']) plt.savefig('images/corr.png') plt.close()
[ 6738, 6843, 17, 62, 161, 253, 118, 163, 94, 222, 13, 23661, 14881, 1330, 1635, 201, 198, 6738, 6843, 19, 62, 31965, 117, 36181, 223, 162, 237, 238, 20998, 244, 13, 437, 62, 15255, 3213, 1330, 1635, 201, 198, 201, 198, 7890, 11, 43458, 796, 2128, 14881, 10786, 34, 19, 62, 16, 62, 88, 13, 45137, 27691, 31330, 382, 324, 3419, 201, 198, 7890, 48185, 45941, 13, 32604, 7, 7890, 8, 201, 198, 7890, 1220, 28, 45941, 13, 9806, 7, 7890, 8, 201, 198, 1797, 796, 657, 13, 1495, 201, 198, 86, 11925, 796, 939, 201, 198, 1939, 796, 4019, 201, 198, 45, 796, 18896, 7, 7890, 8, 201, 198, 2435, 796, 685, 72, 1220, 43458, 329, 1312, 287, 2837, 7, 45, 15437, 201, 198, 86, 358, 796, 45941, 13, 2763, 2229, 7, 86, 11925, 8, 201, 198, 45, 1797, 796, 493, 19510, 1797, 1635, 43458, 532, 266, 11925, 8, 3373, 753, 1343, 352, 8, 201, 198, 400, 81, 16, 796, 352, 13, 16, 201, 198, 400, 81, 17, 796, 352, 13, 18, 201, 198, 13038, 1063, 1533, 11, 3691, 75, 11, 14362, 11, 41288, 11, 25463, 796, 410, 324, 62, 10215, 81, 7, 7890, 11, 266, 358, 11, 753, 11, 399, 1797, 11, 5636, 16, 11, 5636, 17, 8, 201, 198, 22184, 796, 18896, 7, 20802, 8, 201, 198, 14535, 7575, 796, 25184, 7575, 34, 7, 22184, 11, 266, 11925, 11, 753, 11, 43458, 8, 201, 198, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 352, 8, 201, 198, 489, 83, 13, 29487, 7, 2435, 11, 1366, 8, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 362, 8, 201, 198, 489, 83, 13, 29487, 7, 14535, 7575, 11, 25463, 8, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 85, 6649, 2599, 201, 198, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 352, 8, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 14535, 7575, 58, 13038, 1063, 1533, 58, 72, 7131, 6, 9688, 20520, 4357, 657, 11, 45302, 74, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 14535, 7575, 58, 13038, 1063, 1533, 58, 72, 7131, 6, 437, 20520, 4357, 657, 11, 705, 273, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17816, 12683, 282, 3256, 705, 9688, 3256, 705, 437, 6, 12962, 201, 198, 201, 198, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 17, 11, 352, 11, 362, 8, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 14535, 7575, 58, 13038, 1063, 1533, 58, 72, 7131, 6, 9688, 20520, 4357, 657, 11, 45302, 74, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 14535, 7575, 58, 13038, 1063, 1533, 58, 72, 7131, 6, 437, 20520, 4357, 657, 11, 705, 273, 11537, 201, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 7, 17816, 87, 10215, 81, 3256, 705, 9688, 3256, 705, 437, 6, 12962, 201, 198, 201, 198, 489, 83, 13, 21928, 5647, 10786, 17566, 14, 10215, 81, 13, 11134, 11537, 201, 198, 489, 83, 13, 19836, 3419, 201, 198 ]
1.925
520
import os import mlflow import argparse from pprint import pprint import src.data.load_data from mlflow.tracking import MlflowClient from tensorflow.python.saved_model import signature_constants key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY if __name__ == '__main__': args = argparse.ArgumentParser() args.add_argument("--config", default="params.yaml") parsed_args = args.parse_args() data = log_production_model(config_path=parsed_args.config)
[ 11748, 28686, 201, 198, 11748, 285, 1652, 9319, 201, 198, 11748, 1822, 29572, 201, 198, 6738, 279, 4798, 1330, 279, 4798, 201, 198, 11748, 12351, 13, 7890, 13, 2220, 62, 7890, 201, 198, 6738, 285, 1652, 9319, 13, 36280, 1330, 337, 1652, 9319, 11792, 201, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 82, 9586, 62, 19849, 1330, 9877, 62, 9979, 1187, 201, 198, 201, 198, 201, 198, 2539, 796, 9877, 62, 9979, 1187, 13, 7206, 38865, 62, 35009, 53, 2751, 62, 46224, 40086, 62, 32988, 62, 20373, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 26498, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 201, 198, 220, 220, 220, 26498, 13, 2860, 62, 49140, 7203, 438, 11250, 1600, 4277, 2625, 37266, 13, 88, 43695, 4943, 201, 198, 220, 220, 220, 44267, 62, 22046, 796, 26498, 13, 29572, 62, 22046, 3419, 201, 198, 220, 220, 220, 1366, 796, 2604, 62, 25493, 62, 19849, 7, 11250, 62, 6978, 28, 79, 945, 276, 62, 22046, 13, 11250, 8, 201, 198, 201, 198 ]
2.708108
185
from django.contrib.auth.backends import ModelBackend from app.core.models import Customer
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 1891, 2412, 1330, 9104, 7282, 437, 198, 6738, 598, 13, 7295, 13, 27530, 1330, 22092, 628, 628 ]
3.615385
26
# coding:utf-8 # File Name: Personal # Author : yifengyou # Date : 2021/07/18 p = Person() print(p.name, p.age) p.name = '李刚' p.say("python语言很简单") print(p.name,p.age)
[ 2, 19617, 25, 40477, 12, 23, 198, 2, 9220, 6530, 171, 120, 248, 220, 220, 220, 220, 15644, 198, 2, 6434, 1058, 220, 220, 220, 220, 220, 220, 220, 331, 361, 268, 1360, 280, 198, 2, 7536, 1058, 220, 220, 220, 220, 220, 220, 220, 33448, 14, 2998, 14, 1507, 628, 198, 79, 796, 7755, 3419, 198, 4798, 7, 79, 13, 3672, 11, 279, 13, 496, 8, 198, 79, 13, 3672, 796, 705, 30266, 236, 26344, 248, 6, 198, 79, 13, 16706, 7203, 29412, 46237, 255, 164, 101, 222, 36181, 230, 163, 106, 222, 39355, 243, 4943, 198, 4798, 7, 79, 13, 3672, 11, 79, 13, 496, 8 ]
1.722222
108
from django.urls import path,include from rest_framework.routers import DefaultRouter from . import views router = DefaultRouter() router.register('hello-viewset',views.HelloViewSet, basename='hello_viewset') router.register('profiles',views.ProfileViewSet,basename='Profiles') router.register('feed',views.UserProfileFeedViewSet) urlpatterns = [ path('hello-view/',views.HelloApiView.as_view(),name='hello_view'), path('login/',views.UserLoginApiView.as_view()), path('',include(router.urls)), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 11, 17256, 198, 6738, 1334, 62, 30604, 13, 472, 1010, 1330, 15161, 49, 39605, 198, 6738, 764, 1330, 5009, 198, 198, 472, 353, 796, 15161, 49, 39605, 3419, 198, 472, 353, 13, 30238, 10786, 31373, 12, 1177, 2617, 3256, 33571, 13, 15496, 7680, 7248, 11, 1615, 12453, 11639, 31373, 62, 1177, 2617, 11537, 198, 472, 353, 13, 30238, 10786, 5577, 2915, 3256, 33571, 13, 37046, 7680, 7248, 11, 12093, 12453, 11639, 15404, 2915, 11537, 198, 472, 353, 13, 30238, 10786, 12363, 3256, 33571, 13, 12982, 37046, 18332, 7680, 7248, 8, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 31373, 12, 1177, 14, 3256, 33571, 13, 15496, 32, 14415, 7680, 13, 292, 62, 1177, 22784, 3672, 11639, 31373, 62, 1177, 33809, 198, 220, 220, 220, 3108, 10786, 38235, 14, 3256, 33571, 13, 12982, 47790, 32, 14415, 7680, 13, 292, 62, 1177, 3419, 828, 198, 220, 220, 220, 3108, 10786, 3256, 17256, 7, 472, 353, 13, 6371, 82, 36911, 198, 198, 60 ]
2.953757
173
from .layer_normalization import LayerNormalization
[ 6738, 764, 29289, 62, 11265, 1634, 1330, 34398, 26447, 1634, 198 ]
4.727273
11
from ._Assistant import Assistant from ._napari_plugin import napari_plugin
[ 6738, 47540, 48902, 1330, 15286, 198, 6738, 47540, 77, 499, 2743, 62, 33803, 1330, 25422, 2743, 62, 33803 ]
4.166667
18
from django.db import models from django.utils.translation import ugettext_lazy as _ from .validators import Alpha2CodeValidator, Alpha3CodeValidator, NumericCodeValidator class GeoBaseModel(models.Model): """ Abstract base model for the UN M.49 geoscheme. Refs: http://unstats.un.org/unsd/methods/m49/m49.htm http://unstats.un.org/unsd/methods/m49/m49regin.htm https://en.wikipedia.org/wiki/United_Nations_geoscheme https://en.wikipedia.org/wiki/UN_M.49 """ name = models.CharField(_("name"), max_length=100) # https://en.wikipedia.org/wiki/ISO_3166-1_numeric # http://unstats.un.org/unsd/methods/m49/m49alpha.htm numeric_code = models.CharField(_("numeric code"), max_length=3, blank=True, null=True, unique=True, validators=[NumericCodeValidator], help_text=_("ISO 3166-1 or M.49 numeric code") ) class Region(GeoBaseModel): """ Macro geographical (continental) region as defined by the UN M.49 geoscheme. """ class SubRegion(GeoBaseModel): """ Geographical sub-region as defined by the UN M.49 geoscheme. """ region = models.ForeignKey(Region, verbose_name=_("region")) class Country(GeoBaseModel): """ Geopolitical entity (country or territory) as defined by the UN M.49 geoscheme. """ subregion = models.ForeignKey(SubRegion, verbose_name=_("sub region")) # https://en.wikipedia.org/wiki/ISO_3166-1 alpha2_code = models.CharField(_("alpha2 code"), max_length=2, blank=True, validators=[Alpha2CodeValidator], help_text=_("ISO 3166-1 alpha-2 code")) alpha3_code = models.CharField(_("alpha3 code"), max_length=3, blank=True, validators=[Alpha3CodeValidator], help_text=_("ISO 3166-1 alpha-3 code")) # http://www.oecd.org/dac/aidstatistics/daclistofodarecipients.htm oda_recipient = models.BooleanField(_("ODA recipient"), default=False, help_text=_( "Whether a country is a recipient of Official Development" "Assistance from the OECD's Development Assistance Committee." ) )
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 6738, 764, 12102, 2024, 1330, 12995, 17, 10669, 47139, 1352, 11, 12995, 18, 10669, 47139, 1352, 11, 399, 39223, 10669, 47139, 1352, 628, 198, 4871, 32960, 14881, 17633, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27741, 2779, 2746, 329, 262, 4725, 337, 13, 2920, 4903, 418, 2395, 1326, 13, 198, 220, 220, 220, 6524, 82, 25, 2638, 1378, 403, 34242, 13, 403, 13, 2398, 14, 13271, 67, 14, 24396, 82, 14, 76, 2920, 14, 76, 2920, 13, 19211, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 403, 34242, 13, 403, 13, 2398, 14, 13271, 67, 14, 24396, 82, 14, 76, 2920, 14, 76, 2920, 260, 1655, 13, 19211, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 17013, 62, 45, 602, 62, 469, 418, 2395, 1326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 4944, 62, 44, 13, 2920, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1438, 796, 4981, 13, 12441, 15878, 28264, 7203, 3672, 12340, 3509, 62, 13664, 28, 3064, 8, 198, 220, 220, 220, 1303, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 40734, 62, 18, 23055, 12, 16, 62, 77, 39223, 198, 220, 220, 220, 1303, 2638, 1378, 403, 34242, 13, 403, 13, 2398, 14, 13271, 67, 14, 24396, 82, 14, 76, 2920, 14, 76, 2920, 26591, 13, 19211, 198, 220, 220, 220, 35575, 62, 8189, 796, 4981, 13, 12441, 15878, 28264, 7203, 77, 39223, 2438, 12340, 3509, 62, 13664, 28, 18, 11, 9178, 28, 17821, 11, 9242, 28, 17821, 11, 3748, 28, 17821, 11, 4938, 2024, 41888, 45, 39223, 10669, 47139, 1352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 28, 62, 7203, 40734, 513, 23055, 12, 16, 393, 337, 13, 2920, 35575, 2438, 4943, 198, 220, 220, 220, 1267, 628, 198, 4871, 17718, 7, 10082, 78, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42755, 27465, 357, 35415, 8, 3814, 355, 5447, 416, 262, 4725, 337, 13, 2920, 4903, 418, 2395, 1326, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 3834, 47371, 7, 10082, 78, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2269, 17046, 850, 12, 36996, 355, 5447, 416, 262, 4725, 337, 13, 2920, 4903, 418, 2395, 1326, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3814, 796, 4981, 13, 33616, 9218, 7, 47371, 11, 15942, 577, 62, 3672, 28, 62, 7203, 36996, 48774, 628, 198, 4871, 12946, 7, 10082, 78, 14881, 17633, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2269, 404, 13781, 9312, 357, 19315, 393, 7674, 8, 355, 5447, 416, 262, 4725, 337, 13, 2920, 4903, 418, 2395, 1326, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 850, 36996, 796, 4981, 13, 33616, 9218, 7, 7004, 47371, 11, 15942, 577, 62, 3672, 28, 62, 7203, 7266, 3814, 48774, 198, 220, 220, 220, 1303, 3740, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 40734, 62, 18, 23055, 12, 16, 198, 220, 220, 220, 17130, 17, 62, 8189, 796, 4981, 13, 12441, 15878, 28264, 7203, 26591, 17, 2438, 12340, 3509, 62, 13664, 28, 17, 11, 9178, 28, 17821, 11, 4938, 2024, 41888, 38077, 17, 10669, 47139, 1352, 4357, 1037, 62, 5239, 28, 62, 7203, 40734, 513, 23055, 12, 16, 17130, 12, 17, 2438, 48774, 198, 220, 220, 220, 17130, 18, 62, 8189, 796, 4981, 13, 12441, 15878, 28264, 7203, 26591, 18, 2438, 12340, 3509, 62, 13664, 28, 18, 11, 9178, 28, 17821, 11, 4938, 2024, 41888, 38077, 18, 10669, 47139, 1352, 4357, 1037, 62, 5239, 28, 62, 7203, 40734, 513, 23055, 12, 16, 17130, 12, 18, 2438, 48774, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 78, 21142, 13, 2398, 14, 67, 330, 14, 1698, 14269, 3969, 14, 67, 330, 4868, 1659, 375, 533, 66, 541, 2334, 13, 19211, 198, 220, 220, 220, 267, 6814, 62, 8344, 48137, 796, 4981, 13, 46120, 13087, 15878, 28264, 7203, 3727, 32, 17800, 12340, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 28, 41052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15354, 257, 1499, 318, 257, 17800, 286, 15934, 7712, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8021, 9311, 422, 262, 33802, 338, 7712, 25126, 4606, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198 ]
2.622785
790
from django.urls import path from jarbas.public_admin.sites import public_admin urlpatterns = [ path('', public_admin.urls) ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 198, 6738, 17379, 12093, 13, 11377, 62, 28482, 13, 49315, 1330, 1171, 62, 28482, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 1171, 62, 28482, 13, 6371, 82, 8, 198, 60, 198 ]
2.829787
47
import numpy as np import cPickle import re import os n_classes=10 image_width=32 image_height=32 image_depth=3 # regular expression that matches a datafile r_data_file = re.compile('^data_batch_\d+') # training and validate datasets as numpy n-d arrays, # apropriate portions of which are ready to be fed to the placeholder variables train_all = {'data': [], 'labels': []} validate_all = {'data': [], 'labels': []} test_all = {'data': {}, 'labels': []} label_names_for_validation_and_test = None def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 31686, 293, 198, 11748, 302, 198, 11748, 28686, 198, 198, 77, 62, 37724, 28, 940, 198, 9060, 62, 10394, 28, 2624, 198, 9060, 62, 17015, 28, 2624, 198, 9060, 62, 18053, 28, 18, 198, 198, 2, 3218, 5408, 326, 7466, 257, 1366, 7753, 198, 81, 62, 7890, 62, 7753, 796, 302, 13, 5589, 576, 10786, 61, 7890, 62, 43501, 62, 59, 67, 10, 11537, 198, 198, 2, 3047, 290, 26571, 40522, 355, 299, 32152, 299, 12, 67, 26515, 11, 198, 2, 257, 1676, 3448, 378, 16690, 286, 543, 389, 3492, 284, 307, 11672, 284, 262, 46076, 9633, 198, 27432, 62, 439, 796, 1391, 6, 7890, 10354, 685, 4357, 705, 23912, 1424, 10354, 17635, 92, 198, 12102, 378, 62, 439, 796, 1391, 6, 7890, 10354, 685, 4357, 705, 23912, 1424, 10354, 17635, 92, 198, 9288, 62, 439, 796, 1391, 6, 7890, 10354, 1391, 5512, 705, 23912, 1424, 10354, 17635, 92, 198, 18242, 62, 14933, 62, 1640, 62, 12102, 341, 62, 392, 62, 9288, 796, 6045, 628, 198, 4299, 15715, 62, 1462, 62, 505, 62, 8940, 7, 23912, 1424, 62, 67, 1072, 11, 997, 62, 37724, 28, 940, 2599, 198, 220, 37227, 3103, 1851, 1398, 14722, 422, 16578, 945, 284, 530, 12, 8940, 30104, 526, 15931, 198, 220, 997, 62, 23912, 1424, 796, 14722, 62, 67, 1072, 13, 43358, 58, 15, 60, 198, 220, 6376, 62, 28968, 796, 45941, 13, 283, 858, 7, 22510, 62, 23912, 1424, 8, 1635, 997, 62, 37724, 198, 220, 14722, 62, 505, 62, 8940, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 23912, 1424, 11, 997, 62, 37724, 4008, 198, 220, 14722, 62, 505, 62, 8940, 13, 38568, 58, 9630, 62, 28968, 1343, 14722, 62, 67, 1072, 13, 25843, 3419, 60, 796, 352, 198, 220, 1441, 14722, 62, 505, 62, 8940, 628 ]
2.80198
303
import numpy as np import tensorflow as tf DIV2K_RGB_MEAN = np.array([0.4488, 0.4371, 0.4040]) * 255
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 33569, 17, 42, 62, 36982, 62, 11682, 1565, 796, 45941, 13, 18747, 26933, 15, 13, 2598, 3459, 11, 657, 13, 19, 38056, 11, 657, 13, 1821, 1821, 12962, 1635, 14280 ]
2.295455
44