content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
for _ in range(int(input())):
n=int(input())
l=list(map(int,input().split()))
if len(set(l))<n:
print("YES")
else:
print("NO") | [
1640,
4808,
287,
2837,
7,
600,
7,
15414,
28955,
2599,
198,
220,
220,
220,
299,
28,
600,
7,
15414,
28955,
198,
220,
220,
220,
300,
28,
4868,
7,
8899,
7,
600,
11,
15414,
22446,
35312,
3419,
4008,
198,
220,
220,
220,
611,
18896,
7,
2617,
7,
75,
4008,
27,
77,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
43335,
4943,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
15285,
4943
] | 1.950617 | 81 |
import cv2
import numpy as np
import os
import argparse
import configparser
from webcam_video_stream import WebcamVideoStream
from auto_pose.ae.utils import get_dataset_path
from aae_retina_pose_estimator import AePoseEstimator
if __name__ == '__main__':
main()
| [
11748,
269,
85,
17,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
11748,
1822,
29572,
198,
11748,
4566,
48610,
198,
198,
6738,
49823,
62,
15588,
62,
5532,
1330,
5313,
20991,
10798,
12124,
198,
6738,
8295,
62,
3455,
13,
3609,
13,
26791,
1330,
651,
62,
19608,
292,
316,
62,
6978,
198,
6738,
257,
3609,
62,
1186,
1437,
62,
3455,
62,
395,
320,
1352,
1330,
37532,
47,
577,
22362,
320,
1352,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.977778 | 90 |
import unittest
import networkx as nx
from cdlib import algorithms
from cdlib import NodeClustering
from cdlib import evaluation
| [
11748,
555,
715,
395,
198,
11748,
3127,
87,
355,
299,
87,
198,
6738,
22927,
8019,
1330,
16113,
198,
6738,
22927,
8019,
1330,
19081,
2601,
436,
1586,
198,
6738,
22927,
8019,
1330,
12660,
628
] | 3.939394 | 33 |
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Compute results with Sherpa"""
from __future__ import print_function, division
# __doctest_skip__
__doctest_skip__ = ['*']
import numpy as np
import sherpa.astro.ui as sau
sau.load_data('counts.fits.gz')
sau.set_source('normgauss2d.source + const2d.background')
sau.set_stat('cstat')
# Ask for high-precision results
sau.set_method_opt('ftol', 1e-20)
sau.set_covar_opt('eps', 1e-20)
# Set start parameters close to simulation values to make the fit converge
sau.set_par('source.xpos', 101)
sau.set_par('source.ypos', 101)
sau.set_par('source.ampl', 1.1e3)
sau.set_par('source.fwhm', 10)
sau.set_par('background.c0', 1.1)
# Run fit and covariance estimation
# Results are automatically printed to the screen
sau.fit()
sau.covar()
# Sherpa uses fwhm instead of sigma as extension parameter ... need to convert
# http://cxc.harvard.edu/sherpa/ahelp/gauss2d.html
fwhm_to_sigma = 1. / np.sqrt(8 * np.log(2))
cov = sau.get_covar_results()
sigma = fwhm_to_sigma * cov.parvals[0]
sigma_err = fwhm_to_sigma * cov.parmaxes[0]
print('sigma: {0} +- {1}'.format(sigma, sigma_err))
# Compute correlation coefficient for sigma and norm
c = cov.extra_output
c_norm = c[3, 3]
c_sigma = fwhm_to_sigma ** 2 * c[0, 0]
c_norm_sigma = fwhm_to_sigma * c[0, 3]
corr_norm_sigma = c_norm_sigma / np.sqrt(c_norm * c_sigma)
print('corr_norm_sigma: {0}'.format(corr_norm_sigma))
# Save model excess image
sau.save_model('model_sherpa.fits.gz', clobber=True)
# Compute TS
L1 = sau.calc_stat()
sau.set_source('const2d.background')
sau.fit()
L0 = sau.calc_stat()
TS = 2 * (L0 - L1)
print('TS: {:.5f}'.format(TS))
| [
2,
49962,
739,
257,
513,
12,
565,
682,
347,
10305,
3918,
5964,
532,
766,
38559,
24290,
13,
81,
301,
198,
37811,
7293,
1133,
2482,
351,
6528,
8957,
37811,
198,
6738,
11593,
37443,
834,
1330,
3601,
62,
8818,
11,
7297,
198,
2,
11593,
4598,
310,
395,
62,
48267,
834,
198,
834,
4598,
310,
395,
62,
48267,
834,
796,
37250,
9,
20520,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
15059,
8957,
13,
459,
305,
13,
9019,
355,
473,
84,
198,
198,
82,
559,
13,
2220,
62,
7890,
10786,
9127,
82,
13,
21013,
13,
34586,
11537,
198,
82,
559,
13,
2617,
62,
10459,
10786,
27237,
4908,
1046,
17,
67,
13,
10459,
1343,
1500,
17,
67,
13,
25249,
11537,
198,
82,
559,
13,
2617,
62,
14269,
10786,
66,
14269,
11537,
198,
2,
16981,
329,
1029,
12,
3866,
16005,
2482,
198,
82,
559,
13,
2617,
62,
24396,
62,
8738,
10786,
701,
349,
3256,
352,
68,
12,
1238,
8,
198,
82,
559,
13,
2617,
62,
66,
709,
283,
62,
8738,
10786,
25386,
3256,
352,
68,
12,
1238,
8,
198,
198,
2,
5345,
923,
10007,
1969,
284,
18640,
3815,
284,
787,
262,
4197,
47873,
198,
82,
559,
13,
2617,
62,
1845,
10786,
10459,
13,
87,
1930,
3256,
8949,
8,
198,
82,
559,
13,
2617,
62,
1845,
10786,
10459,
13,
88,
1930,
3256,
8949,
8,
198,
82,
559,
13,
2617,
62,
1845,
10786,
10459,
13,
321,
489,
3256,
352,
13,
16,
68,
18,
8,
198,
82,
559,
13,
2617,
62,
1845,
10786,
10459,
13,
69,
1929,
76,
3256,
838,
8,
198,
82,
559,
13,
2617,
62,
1845,
10786,
25249,
13,
66,
15,
3256,
352,
13,
16,
8,
198,
198,
2,
5660,
4197,
290,
44829,
590,
31850,
198,
2,
15691,
389,
6338,
10398,
284,
262,
3159,
198,
82,
559,
13,
11147,
3419,
198,
82,
559,
13,
66,
709,
283,
3419,
198,
198,
2,
6528,
8957,
3544,
277,
1929,
76,
2427,
286,
264,
13495,
355,
7552,
11507,
2644,
761,
284,
10385,
198,
2,
2638,
1378,
66,
25306,
13,
9869,
10187,
13,
15532,
14,
82,
372,
8957,
14,
64,
16794,
14,
4908,
1046,
17,
67,
13,
6494,
198,
69,
1929,
76,
62,
1462,
62,
82,
13495,
796,
352,
13,
1220,
45941,
13,
31166,
17034,
7,
23,
1635,
45941,
13,
6404,
7,
17,
4008,
198,
66,
709,
796,
473,
84,
13,
1136,
62,
66,
709,
283,
62,
43420,
3419,
198,
82,
13495,
796,
277,
1929,
76,
62,
1462,
62,
82,
13495,
1635,
39849,
13,
1845,
12786,
58,
15,
60,
198,
82,
13495,
62,
8056,
796,
277,
1929,
76,
62,
1462,
62,
82,
13495,
1635,
39849,
13,
79,
1670,
897,
274,
58,
15,
60,
198,
4798,
10786,
82,
13495,
25,
1391,
15,
92,
1343,
12,
1391,
16,
92,
4458,
18982,
7,
82,
13495,
11,
264,
13495,
62,
8056,
4008,
198,
198,
2,
3082,
1133,
16096,
35381,
329,
264,
13495,
290,
2593,
198,
66,
796,
39849,
13,
26086,
62,
22915,
198,
66,
62,
27237,
796,
269,
58,
18,
11,
513,
60,
198,
66,
62,
82,
13495,
796,
277,
1929,
76,
62,
1462,
62,
82,
13495,
12429,
362,
1635,
269,
58,
15,
11,
657,
60,
198,
66,
62,
27237,
62,
82,
13495,
796,
277,
1929,
76,
62,
1462,
62,
82,
13495,
1635,
269,
58,
15,
11,
513,
60,
198,
10215,
81,
62,
27237,
62,
82,
13495,
796,
269,
62,
27237,
62,
82,
13495,
1220,
45941,
13,
31166,
17034,
7,
66,
62,
27237,
1635,
269,
62,
82,
13495,
8,
198,
4798,
10786,
10215,
81,
62,
27237,
62,
82,
13495,
25,
1391,
15,
92,
4458,
18982,
7,
10215,
81,
62,
27237,
62,
82,
13495,
4008,
198,
198,
2,
12793,
2746,
6992,
2939,
198,
82,
559,
13,
21928,
62,
19849,
10786,
19849,
62,
82,
372,
8957,
13,
21013,
13,
34586,
3256,
537,
672,
527,
28,
17821,
8,
198,
198,
2,
3082,
1133,
26136,
198,
43,
16,
796,
473,
84,
13,
9948,
66,
62,
14269,
3419,
198,
82,
559,
13,
2617,
62,
10459,
10786,
9979,
17,
67,
13,
25249,
11537,
198,
82,
559,
13,
11147,
3419,
198,
43,
15,
796,
473,
84,
13,
9948,
66,
62,
14269,
3419,
198,
4694,
796,
362,
1635,
357,
43,
15,
532,
406,
16,
8,
198,
4798,
10786,
4694,
25,
46110,
13,
20,
69,
92,
4458,
18982,
7,
4694,
4008,
628
] | 2.372493 | 698 |
import os
import re
import sys
import time
import errno
import signal
import select
from botnet import Command
# Helpers
# Instance
# Commands
| [
11748,
28686,
198,
11748,
302,
198,
11748,
25064,
198,
11748,
640,
198,
11748,
11454,
3919,
198,
11748,
6737,
198,
11748,
2922,
198,
198,
6738,
10214,
3262,
1330,
9455,
628,
198,
2,
10478,
364,
628,
628,
198,
198,
2,
2262,
590,
628,
198,
198,
2,
49505,
628,
628,
628,
628
] | 3.285714 | 49 |
from sqlalchemy import *
from migrate import *
from migrate.changeset import schema
pre_meta = MetaData()
post_meta = MetaData()
exifstats = Table('exifstats', pre_meta,
Column('id', INTEGER, primary_key=True, nullable=False),
Column('post_id', INTEGER),
Column('date_time', TIMESTAMP),
Column('exposure_program', VARCHAR(length=80)),
Column('fNumber', VARCHAR(length=16)),
Column('focal_length', VARCHAR(length=80)),
Column('focal_length_in_35mm', VARCHAR(length=80)),
Column('lens_model', VARCHAR(length=80)),
Column('model', VARCHAR(length=80)),
Column('name', VARCHAR(length=80)),
Column('orientation', VARCHAR(length=80)),
Column('photographic_sensitivity', VARCHAR(length=80)),
Column('pixel_x_dimension', VARCHAR(length=80)),
Column('pixel_y_dimension', VARCHAR(length=80)),
Column('sharpness', VARCHAR(length=80)),
Column('shutterspeed_value', VARCHAR(length=80)),
)
exifstats = Table('exifstats', post_meta,
Column('id', Integer, primary_key=True, nullable=False),
Column('post_id', Integer),
Column('Make', String(length=80)),
Column('Model', String(length=80)),
Column('DateTime', DateTime),
Column('ShutterSpeedValue', String(length=80)),
Column('FNumber', String(length=16)),
Column('ExposureProgram', String(length=80)),
Column('PhotographicSensitivity', String(length=80)),
Column('FocalLength', String(length=80)),
Column('FocalLengthIn35mmFilm', String(length=80)),
Column('LensModel', String(length=80)),
Column('Sharpness', String(length=80)),
Column('PixelXDimension', String(length=80)),
Column('PixelYDimension', String(length=80)),
Column('Orientation', String(length=80)),
)
| [
6738,
44161,
282,
26599,
1330,
1635,
198,
6738,
32492,
1330,
1635,
628,
198,
6738,
32492,
13,
36653,
316,
1330,
32815,
198,
3866,
62,
28961,
796,
30277,
6601,
3419,
198,
7353,
62,
28961,
796,
30277,
6601,
3419,
198,
1069,
361,
34242,
796,
8655,
10786,
1069,
361,
34242,
3256,
662,
62,
28961,
11,
198,
220,
220,
220,
29201,
10786,
312,
3256,
17828,
7156,
1137,
11,
4165,
62,
2539,
28,
17821,
11,
9242,
540,
28,
25101,
828,
198,
220,
220,
220,
29201,
10786,
7353,
62,
312,
3256,
17828,
7156,
1137,
828,
198,
220,
220,
220,
29201,
10786,
4475,
62,
2435,
3256,
31742,
6465,
23518,
828,
198,
220,
220,
220,
29201,
10786,
1069,
26205,
62,
23065,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
69,
15057,
3256,
569,
31315,
1503,
7,
13664,
28,
1433,
36911,
198,
220,
220,
220,
29201,
10786,
69,
4374,
62,
13664,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
69,
4374,
62,
13664,
62,
259,
62,
2327,
3020,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
75,
641,
62,
19849,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
19849,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
3672,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
13989,
341,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
38611,
6826,
62,
82,
40545,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
32515,
62,
87,
62,
46156,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
32515,
62,
88,
62,
46156,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
48554,
1108,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
1477,
46973,
39492,
62,
8367,
3256,
569,
31315,
1503,
7,
13664,
28,
1795,
36911,
198,
8,
198,
198,
1069,
361,
34242,
796,
8655,
10786,
1069,
361,
34242,
3256,
1281,
62,
28961,
11,
198,
220,
220,
220,
29201,
10786,
312,
3256,
34142,
11,
4165,
62,
2539,
28,
17821,
11,
9242,
540,
28,
25101,
828,
198,
220,
220,
220,
29201,
10786,
7353,
62,
312,
3256,
34142,
828,
198,
220,
220,
220,
29201,
10786,
12050,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
17633,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
10430,
7575,
3256,
7536,
7575,
828,
198,
220,
220,
220,
29201,
10786,
2484,
10381,
22785,
11395,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
37,
15057,
3256,
10903,
7,
13664,
28,
1433,
36911,
198,
220,
220,
220,
29201,
10786,
3109,
26205,
15167,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
27248,
6826,
50,
40545,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
37,
4374,
24539,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
37,
4374,
24539,
818,
2327,
3020,
39750,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
49479,
17633,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
44336,
1108,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
40809,
55,
29271,
3004,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
40809,
56,
29271,
3004,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
220,
220,
220,
29201,
10786,
46,
8289,
341,
3256,
10903,
7,
13664,
28,
1795,
36911,
198,
8,
628,
198
] | 2.784566 | 622 |
# this list will store the test scores we will read from the file
scores = []
# Ask the user for a file name
file_name = input('Please enter the file name: ')
# open the file for reading
with open(file_name, 'r') as score_file:
for line in score_file:
# Convert the test score in the current line to a number
score = int(line.strip())
# Add the test score to the list
scores.append(score)
# file closed
# Sort the list using the built in python function sort
scores.sort()
# Get the len of list scores
len_list_scores = len(scores)
# if the list length is odd
if len_list_scores % 2 == 1:
# median gets assigned the middle value of that sequence
middle_position = len_list_scores // 2
median_value =scores[middle_position]
# list length is even
else:
# val1 gets the value at index list length divided by 2
val1 = scores[len_list_scores // 2]
# val2 gets the value at index list_length divided by 2 – 1 (see hint 3)
val2 = scores[len_list_scores // 2 - 1]
# median gets assigned the average of val1 and val2 (i.e., val1 + val2 / 2)
median_value = (val1 + val2) / 2
# print the median value to console
print(median_value) | [
2,
428,
1351,
481,
3650,
262,
1332,
8198,
356,
481,
1100,
422,
262,
2393,
198,
1416,
2850,
796,
17635,
198,
198,
2,
16981,
262,
2836,
329,
257,
2393,
1438,
220,
198,
7753,
62,
3672,
796,
5128,
10786,
5492,
3802,
262,
2393,
1438,
25,
705,
8,
198,
198,
2,
1280,
262,
2393,
329,
3555,
198,
4480,
1280,
7,
7753,
62,
3672,
11,
705,
81,
11537,
355,
4776,
62,
7753,
25,
198,
220,
220,
220,
329,
1627,
287,
4776,
62,
7753,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
38240,
262,
1332,
4776,
287,
262,
1459,
1627,
284,
257,
1271,
220,
198,
220,
220,
220,
220,
220,
220,
220,
4776,
796,
493,
7,
1370,
13,
36311,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3060,
262,
1332,
4776,
284,
262,
1351,
220,
198,
220,
220,
220,
220,
220,
220,
220,
8198,
13,
33295,
7,
26675,
8,
198,
2,
220,
2393,
4838,
198,
198,
2,
33947,
262,
1351,
1262,
262,
3170,
287,
21015,
2163,
3297,
220,
198,
1416,
2850,
13,
30619,
3419,
198,
198,
2,
3497,
262,
18896,
286,
1351,
8198,
198,
11925,
62,
4868,
62,
1416,
2850,
796,
18896,
7,
1416,
2850,
8,
198,
2,
611,
262,
1351,
4129,
318,
5629,
220,
198,
361,
18896,
62,
4868,
62,
1416,
2850,
4064,
362,
6624,
352,
25,
198,
220,
220,
220,
1303,
14288,
3011,
8686,
262,
3504,
1988,
286,
326,
8379,
220,
198,
220,
220,
220,
3504,
62,
9150,
796,
18896,
62,
4868,
62,
1416,
2850,
3373,
362,
198,
220,
220,
220,
14288,
62,
8367,
796,
1416,
2850,
58,
27171,
62,
9150,
60,
198,
198,
2,
1351,
4129,
318,
772,
198,
17772,
25,
198,
220,
220,
220,
1303,
1188,
16,
3011,
262,
1988,
379,
6376,
1351,
4129,
9086,
416,
362,
220,
198,
220,
220,
220,
1188,
16,
796,
8198,
58,
11925,
62,
4868,
62,
1416,
2850,
3373,
362,
60,
198,
220,
220,
220,
1303,
1188,
17,
3011,
262,
1988,
379,
6376,
1351,
62,
13664,
9086,
416,
362,
784,
352,
357,
3826,
9254,
513,
8,
198,
220,
220,
220,
1188,
17,
796,
8198,
58,
11925,
62,
4868,
62,
1416,
2850,
3373,
362,
532,
352,
60,
198,
220,
220,
220,
1303,
14288,
3011,
8686,
262,
2811,
286,
1188,
16,
290,
1188,
17,
357,
72,
13,
68,
1539,
1188,
16,
1343,
1188,
17,
1220,
362,
8,
198,
220,
220,
220,
14288,
62,
8367,
796,
357,
2100,
16,
1343,
1188,
17,
8,
1220,
362,
198,
198,
2,
3601,
262,
14288,
1988,
284,
8624,
198,
4798,
7,
1150,
666,
62,
8367,
8
] | 2.892086 | 417 |
# "Hello World!" matnini yangi o'zgaruvchiga yuklang va print() yordamida konsolga chiqaring
a = "Hello World!"
print(a)
# xabar deb nomlangan o'zgaruvchiga biror matn yuklang va konsolga chiqaring,
# keyin esa o'zgaruvchiga yangi qiymat berib uni ham konsolga chiqaring.
xabar = "Shuningdek o'zgaruvchilarga Pythonda ishlatiladigan funktsiyalar va maxsus kalit so'zlarning (keywords) nomini bermang. Kalit so'zlar ro'yhatini ko'rish uchun Spyder konsolida avval help() deb yozing va Enter tugmasini bosing. Keyin esa keywords deb kiritib, yana Enter bosing. Marhamat, ekraningizda Pythondagi maxsus kalit so'zlar ro'yhatini ko'ryapsiz:"
print(xabar)
xabar = "Qalesan Shukurali"
print(xabar)
# class den nomlangan o'zgaruvchi yarating, unga biror qiymat bering va konsolga chiqaring (siz kutgan natija chiqdimi?)
# u bunaqangi 'class' nomli uzgaruchi yaratib bulmaydi chunki u keyword so'z
# Quyidagi kodni bajaring:
radius = 5
pi = 3.14159
aylana_yuzi = pi * radius**2
print("Radiusi" , radius, "ga teng aylananing yuzi=", aylana_yuzi) | [
2,
366,
15496,
2159,
2474,
2603,
77,
5362,
331,
648,
72,
267,
6,
89,
4563,
14795,
354,
13827,
331,
2724,
17204,
46935,
3601,
3419,
331,
585,
321,
3755,
479,
684,
349,
4908,
442,
25011,
1723,
198,
64,
796,
366,
15496,
2159,
2474,
198,
4798,
7,
64,
8,
198,
198,
2,
2124,
397,
283,
1915,
4515,
17204,
272,
267,
6,
89,
4563,
14795,
354,
13827,
35122,
273,
2603,
77,
331,
2724,
17204,
46935,
479,
684,
349,
4908,
442,
25011,
1723,
11,
198,
2,
220,
1994,
259,
1658,
64,
267,
6,
89,
4563,
14795,
354,
13827,
331,
648,
72,
10662,
72,
4948,
265,
18157,
571,
555,
72,
8891,
479,
684,
349,
4908,
442,
25011,
1723,
13,
198,
87,
397,
283,
796,
366,
2484,
46493,
67,
988,
267,
6,
89,
4563,
14795,
354,
346,
853,
64,
48657,
13533,
318,
71,
15460,
346,
324,
5516,
46212,
912,
7745,
282,
283,
46935,
3509,
82,
385,
479,
282,
270,
523,
6,
48274,
4228,
357,
2539,
10879,
8,
4515,
5362,
275,
7780,
648,
13,
12612,
270,
523,
6,
89,
21681,
686,
6,
88,
5183,
5362,
41727,
6,
37518,
334,
354,
403,
23688,
1082,
479,
684,
349,
3755,
1196,
2100,
1037,
3419,
1915,
331,
8590,
278,
46935,
6062,
27762,
5356,
5362,
275,
2752,
13,
7383,
259,
1658,
64,
26286,
1915,
479,
3276,
571,
11,
331,
2271,
6062,
275,
2752,
13,
1526,
2763,
265,
11,
304,
74,
2596,
278,
528,
6814,
48657,
623,
18013,
3509,
82,
385,
479,
282,
270,
523,
6,
89,
21681,
686,
6,
88,
5183,
5362,
41727,
6,
563,
1686,
528,
11097,
198,
4798,
7,
87,
397,
283,
8,
198,
87,
397,
283,
796,
366,
48,
2040,
272,
911,
2724,
1523,
72,
1,
198,
4798,
7,
87,
397,
283,
8,
198,
198,
2,
1398,
2853,
4515,
17204,
272,
267,
6,
89,
4563,
14795,
11072,
331,
283,
803,
11,
555,
4908,
35122,
273,
10662,
72,
4948,
265,
275,
1586,
46935,
479,
684,
349,
4908,
442,
25011,
1723,
357,
82,
528,
479,
315,
1030,
34664,
34655,
442,
25011,
67,
25236,
10091,
198,
2,
334,
275,
9613,
80,
648,
72,
705,
4871,
6,
4515,
4528,
334,
89,
4563,
22200,
331,
34174,
571,
4807,
11261,
10989,
16058,
72,
334,
21179,
523,
6,
89,
198,
198,
2,
2264,
88,
312,
18013,
479,
375,
8461,
275,
1228,
1723,
25,
198,
42172,
796,
642,
198,
14415,
796,
513,
13,
1415,
19707,
198,
323,
75,
2271,
62,
88,
10277,
72,
796,
31028,
1635,
16874,
1174,
17,
198,
4798,
7203,
15546,
3754,
72,
1,
837,
16874,
11,
366,
4908,
256,
1516,
257,
18554,
7574,
331,
10277,
72,
28,
1600,
257,
2645,
2271,
62,
88,
10277,
72,
8
] | 2.407407 | 432 |
# -*- coding: utf-8 -*-
if __name__ == '__main__':
main()
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
] | 1.775 | 40 |
# -*- coding: utf-8 -*-
"""
classes that implement the blocks for MDF version 4
Edit history
Author : yda
Date : 2020-11-12
Package name changed - asammdf to mdfstudio
Functions
---------
* Channel.metadata - Get rid of b" text when decoding byte type data
* Channel.__init__ - Set sampling rate from kwargs
* ChannelGroup.metadata - Get rid of b" text when decoding byte type data
* ChannelConversion.metadata - Get rid of b" text when decoding byte type data
* SourceInformation.metadata - Get rid of b" text when decoding byte type data
"""
from datetime import datetime, timezone
from hashlib import md5
import logging
from pathlib import Path
from struct import pack, unpack, unpack_from
from textwrap import wrap
import time
from traceback import format_exc
import xml.etree.ElementTree as ET
from zlib import compress, decompress
from numexpr import evaluate
import numpy as np
from . import v4_constants as v4c
from ..version import __version__
from .utils import (
block_fields,
extract_display_name,
FLOAT64_u,
get_text_v4,
is_file_like,
MdfException,
sanitize_xml,
UINT8_uf,
UINT64_u,
UINT64_uf,
)
SEEK_START = v4c.SEEK_START
SEEK_END = v4c.SEEK_END
COMMON_SIZE = v4c.COMMON_SIZE
COMMON_u = v4c.COMMON_u
COMMON_uf = v4c.COMMON_uf
CN_BLOCK_SIZE = v4c.CN_BLOCK_SIZE
SIMPLE_CHANNEL_PARAMS_uf = v4c.SIMPLE_CHANNEL_PARAMS_uf
logger = logging.getLogger("mdfstudio")
__all__ = [
"AttachmentBlock",
"Channel",
"ChannelArrayBlock",
"ChannelGroup",
"ChannelConversion",
"DataBlock",
"DataZippedBlock",
"EventBlock",
"FileIdentificationBlock",
"HeaderBlock",
"HeaderList",
"DataList",
"DataGroup",
"FileHistory",
"SourceInformation",
"TextBlock",
]
class AttachmentBlock:
"""When adding new attachments only embedded attachments are allowed, with
keyword argument *data* of type bytes
*AttachmentBlock* has the following attributes, that are also available as
dict like key-value pairs
ATBLOCK fields
* ``id`` - bytes : block ID; always b'##AT'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_at_addr`` - int : next ATBLOCK address
* ``file_name_addr`` - int : address of TXBLOCK that contains the attachment
file name
* ``mime_addr`` - int : address of TXBLOCK that contains the attachment
mime type description
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
attachment comment
* ``flags`` - int : ATBLOCK flags
* ``creator_index`` - int : index of file history block
* ``reserved1`` - int : reserved bytes
* ``md5_sum`` - bytes : attachment file md5 sum
* ``original_size`` - int : original uncompress file size in bytes
* ``embedded_size`` - int : embedded compressed file size in bytes
* ``embedded_data`` - bytes : embedded atatchment bytes
Other attributes
* ``address`` - int : attachment address
* ``file_name`` - str : attachment file name
* ``mime`` - str : mime type
* ``comment`` - str : attachment comment
Parameters
----------
address : int
block address; to be used for objects created from file
stream : handle
file handle; to be used for objects created from file
for dynamically created objects :
see the key-value pairs
"""
__slots__ = (
"address",
"file_name",
"mime",
"comment",
"id",
"reserved0",
"block_len",
"links_nr",
"next_at_addr",
"file_name_addr",
"mime_addr",
"comment_addr",
"flags",
"creator_index",
"reserved1",
"md5_sum",
"original_size",
"embedded_size",
"embedded_data",
)
def extract(self):
"""extract attachment data
Returns
-------
data : bytes
"""
if self.flags & v4c.FLAG_AT_EMBEDDED:
if self.flags & v4c.FLAG_AT_COMPRESSED_EMBEDDED:
data = decompress(self.embedded_data)
else:
data = self.embedded_data
if self.flags & v4c.FLAG_AT_MD5_VALID:
md5_worker = md5()
md5_worker.update(data)
md5_sum = md5_worker.digest()
if self.md5_sum == md5_sum:
return data
else:
message = f"ATBLOCK md5sum={self.md5_sum} and embedded data md5sum={md5_sum}"
logger.warning(message)
else:
return data
else:
logger.warning("external attachments not supported")
class Channel:
""" If the `load_metadata` keyword argument is not provided or is False,
then the conversion, source and display name information is not processed.
Further more if the `parse_xml_comment` is not provided or is False, then
the display name information from the channel comment is not processed (this
is done to avoid expensive XML operations)
*Channel* has the following attributes, that are also available as
dict like key-value pairs
CNBLOCK fields
* ``id`` - bytes : block ID; always b'##CN'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_ch_addr`` - int : next ATBLOCK address
* ``component_addr`` - int : address of first channel in case of structure channel
composition, or ChannelArrayBlock in case of arrays
file name
* ``name_addr`` - int : address of TXBLOCK that contains the channel name
* ``source_addr`` - int : address of channel source block
* ``conversion_addr`` - int : address of channel conversion block
* ``data_block_addr`` - int : address of signal data block for VLSD channels
* ``unit_addr`` - int : address of TXBLOCK that contains the channel unit
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
channel comment
* ``attachment_<N>_addr`` - int : address of N-th ATBLOCK referenced by the
current channel; if no ATBLOCK is referenced there will be no such key-value
pair
* ``default_X_dg_addr`` - int : address of DGBLOCK where the default X axis
channel for the current channel is found; this key-value pair will not
exist for channels that don't have a default X axis
* ``default_X_cg_addr`` - int : address of CGBLOCK where the default X axis
channel for the current channel is found; this key-value pair will not
exist for channels that don't have a default X axis
* ``default_X_ch_addr`` - int : address of default X axis
channel for the current channel; this key-value pair will not
exist for channels that don't have a default X axis
* ``channel_type`` - int : integer code for the channel type
* ``sync_type`` - int : integer code for the channel's sync type
* ``data_type`` - int : integer code for the channel's data type
* ``bit_offset`` - int : bit offset
* ``byte_offset`` - int : byte offset within the data record
* ``bit_count`` - int : channel bit count
* ``flags`` - int : CNBLOCK flags
* ``pos_invalidation_bit`` - int : invalidation bit position for the current
channel if there are invalidation bytes in the data record
* ``precision`` - int : integer code for teh precision
* ``reserved1`` - int : reserved bytes
* ``min_raw_value`` - int : min raw value of all samples
* ``max_raw_value`` - int : max raw value of all samples
* ``lower_limit`` - int : min physical value of all samples
* ``upper_limit`` - int : max physical value of all samples
* ``lower_ext_limit`` - int : min physical value of all samples
* ``upper_ext_limit`` - int : max physical value of all samples
Other attributes
* ``address`` - int : channel address
* ``attachments`` - list : list of referenced attachment blocks indexes;
the index referece to the attachment block index
* ``comment`` - str : channel comment
* ``conversion`` - ChannelConversion : channel conversion; *None* if the
channel has no conversion
* ``display_name`` - str : channel display name; this is extracted from the
XML channel comment
* ``name`` - str : channel name
* ``source`` - SourceInformation : channel source information; *None* if
the channel has no source information
* ``unit`` - str : channel unit
Parameters
----------
address : int
block address; to be used for objects created from file
stream : handle
file handle; to be used for objects created from file
load_metadata : bool
option to load conversion, source and display_name; default *True*
parse_xml_comment : bool
option to parse XML channel comment to search for display name; default
*True*
for dynamically created objects :
see the key-value pairs
"""
__slots__ = (
"name",
"unit",
"comment",
"display_name",
"conversion",
"source",
"attachment",
"address",
"dtype_fmt",
"id",
"reserved0",
"block_len",
"links_nr",
"next_ch_addr",
"component_addr",
"name_addr",
"source_addr",
"conversion_addr",
"data_block_addr",
"unit_addr",
"comment_addr",
"channel_type",
"sync_type",
"data_type",
"bit_offset",
"byte_offset",
"bit_count",
"flags",
"pos_invalidation_bit",
"precision",
"reserved1",
"attachment_nr",
"min_raw_value",
"max_raw_value",
"lower_limit",
"upper_limit",
"lower_ext_limit",
"upper_ext_limit",
"default_X_dg_addr",
"default_X_cg_addr",
"default_X_ch_addr",
"attachment_addr",
"sampling_rate",
)
class ChannelArrayBlock(_ChannelArrayBlockBase):
"""
Other attributes
* ``address`` - int : array block address
* ``axis_channels`` - list : list of (group index, channel index)
pairs referencing the axis of this array block
* ``axis_conversions`` - list : list of ChannelConversion or None
for each axis of this array block
* ``dynamic_size_channels`` - list : list of (group index, channel index)
pairs referencing the axis dynamic size of this array block
* ``input_quantity_channels`` - list : list of (group index, channel index)
pairs referencing the input quantity channels of this array block
* ``output_quantity_channels`` - tuple | None : (group index, channel index)
pair referencing the output quantity channel of this array block
* ``comparison_quantity_channel`` - tuple | None : (group index, channel index)
pair referencing the comparison quantity channel of this array block
"""
class ChannelGroup:
"""*ChannelGroup* has the following attributes, that are also available as
dict like key-value pairs
CGBLOCK fields
* ``id`` - bytes : block ID; always b'##CG'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_cg_addr`` - int : next channel group address
* ``first_ch_addr`` - int : address of first channel of this channel group
* ``acq_name_addr`` - int : address of TextBLock that contains the channel
group acquisition name
* ``acq_source_addr`` - int : addres of SourceInformation that contains the
channel group source
* ``first_sample_reduction_addr`` - int : address of first SRBLOCK; this is
considered 0 since sample reduction is not yet supported
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
channel group comment
* ``record_id`` - int : record ID for thei channel group
* ``cycles_nr`` - int : number of cycles for this channel group
* ``flags`` - int : channel group flags
* ``path_separator`` - int : ordinal for character used as path separator
* ``reserved1`` - int : reserved bytes
* ``samples_byte_nr`` - int : number of bytes used for channels samples in
the record for this channel group; this does not contain the invalidation
bytes
* ``invalidation_bytes_nr`` - int : number of bytes used for invalidation
bits by this channl group
Other attributes
* ``acq_name`` - str : acquisition name
* ``acq_source`` - SourceInformation : acquisition source information
* ``address`` - int : channel group address
* ``comment`` - str : channel group comment
"""
__slots__ = (
"address",
"acq_name",
"acq_source",
"comment",
"id",
"reserved0",
"block_len",
"links_nr",
"next_cg_addr",
"first_ch_addr",
"acq_name_addr",
"acq_source_addr",
"first_sample_reduction_addr",
"comment_addr",
"cg_master_addr",
"record_id",
"cycles_nr",
"flags",
"path_separator",
"reserved1",
"samples_byte_nr",
"invalidation_bytes_nr",
"cg_master_index",
"sampling_rate",
"unit",
)
class ChannelConversion(_ChannelConversionBase):
"""*ChannelConversion* has the following attributes, that are also available as
dict like key-value pairs
CCBLOCK common fields
* ``id`` - bytes : block ID; always b'##CG'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``name_addr`` - int : address of TXBLOCK that contains the
conversion name
* ``unit_addr`` - int : address of TXBLOCK that contains the
conversion unit
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
conversion comment
* ``inv_conv_addr`` int : address of invers conversion
* ``conversion_type`` int : integer code for conversion type
* ``precision`` - int : integer code for precision
* ``flags`` - int : conversion block flags
* ``ref_param_nr`` - int : number fo referenced parameters (linked
parameters)
* ``val_param_nr`` - int : number of value parameters
* ``min_phy_value`` - float : minimum physical channel value
* ``max_phy_value`` - float : maximum physical channel value
CCBLOCK specific fields
* linear conversion
* ``a`` - float : factor
* ``b`` - float : offset
* rational conversion
* ``P1`` to ``P6`` - float : parameters
* algebraic conversion
* ``formula_addr`` - address of TXBLOCK that contains the
the algebraic conversion formula
* tabluar conversion with or without interpolation
* ``raw_<N>`` - float : N-th raw value
* ``phys_<N>`` - float : N-th physical value
* tabular range conversion
* ``lower_<N>`` - float : N-th lower value
* ``upper_<N>`` - float : N-th upper value
* ``phys_<N>`` - float : N-th physical value
* tabular value to text conversion
* ``val_<N>`` - float : N-th raw value
* ``text_<N>`` - int : address of N-th TXBLOCK that
contains the physical value
* ``default`` - int : address of TXBLOCK that contains
the default physical value
* tabular range to text conversion
* ``lower_<N>`` - float : N-th lower value
* ``upper_<N>`` - float : N-th upper value
* ``text_<N>`` - int : address of N-th TXBLOCK that
contains the physical value
* ``default`` - int : address of TXBLOCK that contains
the default physical value
* text to value conversion
* ``val_<N>`` - float : N-th physical value
* ``text_<N>`` - int : address of N-th TXBLOCK that
contains the raw value
* ``val_default`` - float : default physical value
* text tranfosrmation (translation) conversion
* ``input_<N>_addr`` - int : address of N-th TXBLOCK that
contains the raw value
* ``output_<N>_addr`` - int : address of N-th TXBLOCK that
contains the physical value
* ``default_addr`` - int : address of TXBLOCK that contains
the default physical value
Other attributes
* ``address`` - int : channel conversion address
* ``comment`` - str : channel conversion comment
* ``formula`` - str : algebraic conversion formula; default ''
* ``referenced_blocks`` - dict : dict of refenced blocks; can be TextBlock
objects for value to text, and text to text conversions; for partial
conversions the referenced blocks can be ChannelConversion obejct as well
* ``name`` - str : channel conversion name
* ``unit`` - str : channel conversion unit
"""
class DataBlock:
"""Common implementation for DTBLOCK/RDBLOCK/SDBLOCK/DVBLOCK/DIBLOCK
*DataBlock* has the following attributes, that are also available as
dict like key-value pairs
DTBLOCK fields
* ``id`` - bytes : block ID; b'##DT' for DTBLOCK, b'##RD' for RDBLOCK,
b'##SD' for SDBLOCK, b'##DV' for DVBLOCK or b'##DI' for DIBLOCK
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``data`` - bytes : raw samples
Other attributes
* ``address`` - int : data block address
Parameters
----------
address : int
DTBLOCK/RDBLOCK/SDBLOCK/DVBLOCK/DIBLOCK address inside the file
stream : int
file handle
reduction : bool
sample reduction data block
"""
__slots__ = ("address", "id", "reserved0", "block_len", "links_nr", "data")
class DataZippedBlock(object):
"""*DataZippedBlock* has the following attributes, that are also available
as dict like key-value pairs
DZBLOCK fields
* ``id`` - bytes : block ID; always b'##DZ'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``original_type`` - bytes : b'DT', b'SD', b'DI' or b'DV'
* ``zip_type`` - int : zip algorithm used
* ``reserved1`` - int : reserved bytes
* ``param`` - int : for transpose deflate the record size used for
transposition
* ``original_size`` - int : size of the original uncompressed raw bytes
* ``zip_size`` - int : size of compressed bytes
* ``data`` - bytes : compressed bytes
Other attributes
* ``address`` - int : data zipped block address
* ``return_unzipped`` - bool : decompress data when accessing the 'data'
key
Parameters
----------
address : int
DTBLOCK address inside the file
stream : int
file handle
"""
__slots__ = (
"address",
"_prevent_data_setitem",
"_transposed",
"return_unzipped",
"id",
"reserved0",
"block_len",
"links_nr",
"original_type",
"zip_type",
"reserved1",
"param",
"original_size",
"zip_size",
"data",
)
class DataGroup:
"""
*DataGroup* has the following attributes, that are also available as
dict like key-value pairs
DGBLOCK fields
* ``id`` - bytes : block ID; always b'##DG'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_dg_addr`` - int : address of next data group block
* ``first_cg_addr`` - int : address of first channel group for this data
group
* ``data_block_addr`` - int : address of DTBLOCK, DZBLOCK, DLBLOCK or
HLBLOCK that contains the raw samples for this data group
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK tha contains the
data group comment
* ``record_id_len`` - int : size of record ID used in case of unsorted
data groups; can be 1, 2, 4 or 8
* ``reserved1`` - int : reserved bytes
Other attributes
* ``address`` - int : dat group address
* ``comment`` - str : data group comment
"""
__slots__ = (
"address",
"comment",
"id",
"reserved0",
"block_len",
"links_nr",
"next_dg_addr",
"first_cg_addr",
"data_block_addr",
"comment_addr",
"record_id_len",
"reserved1",
)
class DataList(_DataListBase):
"""
*DataList* has the following attributes, that are also available as
dict like key-value pairs
DLBLOCK common fields
* ``id`` - bytes : block ID; always b'##DL'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_dl_addr`` - int : address of next DLBLOCK
* ``data_block_addr<N>`` - int : address of N-th data block
* ``flags`` - int : data list flags
* ``reserved1`` - int : reserved bytes
* ``data_block_nr`` - int : number of data blocks referenced by this list
DLBLOCK specific fields
* for equall lenght blocks
* ``data_block_len`` - int : equall uncompressed size in bytes for all
referenced data blocks; last block can be smaller
* for variable lenght blocks
* ``offset_<N>`` - int : byte offset of N-th data block
Other attributes
* ``address`` - int : data list address
"""
class EventBlock(_EventBlockBase):
"""
*EventBlock* has the following attributes, that are also available as
dict like key-value pairs
EVBLOCK fields
* ``id`` - bytes : block ID; always b'##EV'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_ev_addr`` - int : address of next EVBLOCK
* ``parent_ev_addr`` - int : address of parent EVLBOCK
* ``range_start_ev_addr`` - int : address of EVBLOCK that is the start of
the range for which this event is the end
* ``name_addr`` - int : address of TXBLOCK that contains the event name
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
event comment
* ``scope_<N>_addr`` - int : address of N-th block that represents a scope
for this event (can be CGBLOCK, CHBLOCK, DGBLOCK)
* ``attachemnt_<N>_addr`` - int : address of N-th attachment referenced by
this event
* ``event_type`` - int : integer code for event type
* ``sync_type`` - int : integer code for event sync type
* ``range_type`` - int : integer code for event range type
* ``cause`` - int : integer code for event cause
* ``flags`` - int : event flags
* ``reserved1`` - int : reserved bytes
* ``scope_nr`` - int : number of scopes referenced by this event
* ``attachment_nr`` - int : number of attachments referenced by this event
* ``creator_index`` - int : index of FHBLOCK
* ``sync_base`` - int : timestamp base value
* ``sync_factor`` - float : timestamp factor
Other attributes
* ``address`` - int : event block address
* ``comment`` - str : event comment
* ``name`` - str : event name
* ``parent`` - int : index of event block that is the parent for the
current event
* ``range_start`` - int : index of event block that is the start of the
range for which the current event is the end
* ``scopes`` - list : list of (group index, channel index) or channel group
index that define the scope of the current event
"""
@property
@value.setter
class FileIdentificationBlock:
"""
*FileIdentificationBlock* has the following attributes, that are also available as
dict like key-value pairs
IDBLOCK fields
* ``file_identification`` - bytes : file identifier
* ``version_str`` - bytes : format identifier
* ``program_identification`` - bytes : creator program identifier
* ``reserved0`` - bytes : reserved bytes
* ``mdf_version`` - int : version number of MDF format
* ``reserved1`` - bytes : reserved bytes
* ``unfinalized_standard_flags`` - int : standard flags for unfinalized MDF
* ``unfinalized_custom_flags`` - int : custom flags for unfinalized MDF
Other attributes
* ``address`` - int : should always be 0
"""
__slots__ = (
"address",
"file_identification",
"version_str",
"program_identification",
"reserved0",
"mdf_version",
"reserved1",
"unfinalized_standard_flags",
"unfinalized_custom_flags",
)
class FileHistory:
"""
*FileHistory* has the following attributes, that are also available as
dict like key-value pairs
FHBLOCK fields
* ``id`` - bytes : block ID; always b'##FH'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_fh_addr`` - int : address of next FHBLOCK
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
file history comment
* ``abs_time`` - int : time stamp at which the file modification happened
* ``tz_offset`` - int : UTC time offset in hours (= GMT time zone)
* ``daylight_save_time`` - int : daylight saving time
* ``time_flags`` - int : time flags
* ``reserved1`` - bytes : reserved bytes
Other attributes
* ``address`` - int : file history address
* ``comment`` - str : history comment
"""
__slots__ = (
"address",
"comment",
"id",
"reserved0",
"block_len",
"links_nr",
"next_fh_addr",
"comment_addr",
"abs_time",
"tz_offset",
"daylight_save_time",
"time_flags",
"reserved1",
)
class HeaderBlock:
"""
*HeaderBlock* has the following attributes, that are also available as
dict like key-value pairs
HDBLOCK fields
* ``id`` - bytes : block ID; always b'##HD'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``first_dg_addr`` - int : address of first DGBLOCK
* ``file_history_addr`` - int : address of first FHBLOCK
* ``channel_tree_addr`` - int : address of first CHBLOCK
* ``first_attachment_addr`` - int : address of first ATBLOCK
* ``first_event_addr`` - int : address of first EVBLOCK
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK that contains the
file comment
* ``abs_time`` - int : time stamp at which recording was started in
nanoseconds.
* ``tz_offset`` - int : UTC time offset in hours (= GMT time zone)
* ``daylight_save_time`` - int : daylight saving time
* ``time_flags`` - int : time flags
* ``time_quality`` - int : time quality flags
* ``flags`` - int : file flags
* ``reserved1`` - int : reserved bytes
* ``start_angle`` - int : angle value at measurement start
* ``start_distance`` - int : distance value at measurement start
Other attributes
* ``address`` - int : header address
* ``comment`` - str : file comment
* ``author`` - str : measurement author
* ``department`` - str : author's department
* ``project`` - str : working project
* ``subject`` - str : measurement subject
"""
__slots__ = (
"address",
"comment",
"author",
"department",
"project",
"subject",
"id",
"reserved0",
"block_len",
"links_nr",
"first_dg_addr",
"file_history_addr",
"channel_tree_addr",
"first_attachment_addr",
"first_event_addr",
"comment_addr",
"abs_time",
"tz_offset",
"daylight_save_time",
"time_flags",
"time_quality",
"flags",
"reserved1",
"start_angle",
"start_distance",
)
@property
def start_time(self):
""" getter and setter the measurement start timestamp
Returns
-------
timestamp : datetime.datetime
start timestamp
"""
timestamp = self.abs_time / 10 ** 9
if self.time_flags & v4c.FLAG_HD_LOCAL_TIME:
timestamp = datetime.fromtimestamp(timestamp)
else:
timestamp = datetime.fromtimestamp(timestamp, timezone.utc)
return timestamp
@start_time.setter
class HeaderList:
"""
*HeaderList* has the following attributes, that are also available as
dict like key-value pairs
HLBLOCK fields
* ``id`` - bytes : block ID; always b'##HL'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``first_dl_addr`` - int : address of first data list block for this header
list
* ``flags`` - int : source flags
* ``zip_type`` - int : integer code for zip type
* ``reserved1`` - bytes : reserved bytes
Other attributes
* ``address`` - int : header list address
"""
__slots__ = (
"address",
"id",
"reserved0",
"block_len",
"links_nr",
"first_dl_addr",
"flags",
"zip_type",
"reserved1",
)
class ListData(_ListDataBase):
"""
*ListData* has the following attributes, that are also available as
dict like key-value pairs
LDBLOCK common fields
* ``id`` - bytes : block ID; always b'##LD'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``next_ld_addr`` - int : address of next LDBLOCK
* ``data_block_addr_<N>`` - int : address of N-th data block
bits data block
* ``flags`` - int : data list flags
* ``data_block_nr`` - int : number of data blocks referenced by this list
LDBLOCK specific fields
* if invalidation data present flag is set
* ``invalidation_bits_addr_<N>`` - int : address of N-th invalidation
* for equall lenght blocks
* ``data_block_len`` - int : equall uncompressed size in bytes for all
referenced data blocks; last block can be smaller
* for variable lenght blocks
* ``offset_<N>`` - int : byte offset of N-th data block
* if time values flag is set
* ``time_value_<N>`` - int | float : first raw timestamp value of
N-th data block
* if angle values flag is set
* ``angle_value_<N>`` - int | float : first raw angle value of
N-th data block
* if distance values flag is set
* ``distance_value_<N>`` - int | float : first raw distance value of
N-th data block
Other attributes
* ``address`` - int : data list address
"""
class SourceInformation:
"""
*SourceInformation* has the following attributes, that are also available as
dict like key-value pairs
SIBLOCK fields
* ``id`` - bytes : block ID; always b'##SI'
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``name_addr`` - int : address of TXBLOCK that contains the source name
* ``path_addr`` - int : address of TXBLOCK that contains the source path
* ``comment_addr`` - int : address of TXBLOCK/MDBLOCK tha contains the
source comment
* ``source_type`` - int : integer code for source type
* ``bus_type`` - int : integer code for source bus type
* ``flags`` - int : source flags
* ``reserved1`` - bytes : reserved bytes
Other attributes
* ``address`` - int : source information address
* ``comment`` - str : source comment
* ``name`` - str : source name
* ``path`` - str : source path
"""
__slots__ = (
"address",
"comment",
"name",
"path",
"id",
"reserved0",
"block_len",
"links_nr",
"name_addr",
"path_addr",
"comment_addr",
"source_type",
"bus_type",
"flags",
"reserved1",
)
@classmethod
class TextBlock:
"""common TXBLOCK and MDBLOCK class
*TextBlock* has the following attributes, that are also available as
dict like key-value pairs
TXBLOCK fields
* ``id`` - bytes : block ID; b'##TX' for TXBLOCK and b'##MD' for MDBLOCK
* ``reserved0`` - int : reserved bytes
* ``block_len`` - int : block bytes size
* ``links_nr`` - int : number of links
* ``text`` - bytes : actual text content
Other attributes
* ``address`` - int : text block address
Parameters
----------
address : int
block address
stream : handle
file handle
meta : bool
flag to set the block type to MDBLOCK for dynamically created objects; default *False*
text : bytes/str
text content for dynamically created objects
"""
__slots__ = ("address", "id", "reserved0", "block_len", "links_nr", "text")
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
37811,
198,
37724,
326,
3494,
262,
7021,
329,
337,
8068,
2196,
604,
198,
220,
220,
220,
5312,
2106,
198,
220,
220,
220,
6434,
1058,
331,
6814,
198,
220,
220,
220,
7536,
1058,
12131,
12,
1157,
12,
1065,
628,
220,
220,
220,
15717,
1438,
3421,
532,
355,
6475,
7568,
284,
285,
7568,
19149,
952,
628,
220,
220,
220,
40480,
198,
220,
220,
220,
45337,
198,
220,
220,
220,
1635,
220,
220,
11102,
13,
38993,
532,
3497,
5755,
286,
275,
1,
2420,
618,
39938,
18022,
2099,
1366,
198,
220,
220,
220,
1635,
220,
220,
11102,
13,
834,
15003,
834,
532,
5345,
19232,
2494,
422,
479,
86,
22046,
198,
220,
220,
220,
1635,
220,
220,
11102,
13247,
13,
38993,
532,
3497,
5755,
286,
275,
1,
2420,
618,
39938,
18022,
2099,
1366,
198,
220,
220,
220,
1635,
220,
220,
11102,
3103,
9641,
13,
38993,
532,
3497,
5755,
286,
275,
1,
2420,
618,
39938,
18022,
2099,
1366,
198,
220,
220,
220,
1635,
220,
220,
8090,
21918,
13,
38993,
532,
3497,
5755,
286,
275,
1,
2420,
618,
39938,
18022,
2099,
1366,
198,
198,
37811,
198,
198,
6738,
4818,
8079,
1330,
4818,
8079,
11,
640,
11340,
198,
6738,
12234,
8019,
1330,
45243,
20,
198,
11748,
18931,
198,
6738,
3108,
8019,
1330,
10644,
198,
6738,
2878,
1330,
2353,
11,
555,
8002,
11,
555,
8002,
62,
6738,
198,
6738,
2420,
37150,
1330,
14441,
198,
11748,
640,
198,
6738,
12854,
1891,
1330,
5794,
62,
41194,
198,
11748,
35555,
13,
316,
631,
13,
20180,
27660,
355,
12152,
198,
6738,
1976,
8019,
1330,
27413,
11,
38237,
601,
198,
198,
6738,
997,
31937,
1330,
13446,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
764,
1330,
410,
19,
62,
9979,
1187,
355,
410,
19,
66,
198,
6738,
11485,
9641,
1330,
11593,
9641,
834,
198,
6738,
764,
26791,
1330,
357,
198,
220,
220,
220,
2512,
62,
25747,
11,
198,
220,
220,
220,
7925,
62,
13812,
62,
3672,
11,
198,
220,
220,
220,
9977,
46,
1404,
2414,
62,
84,
11,
198,
220,
220,
220,
651,
62,
5239,
62,
85,
19,
11,
198,
220,
220,
220,
318,
62,
7753,
62,
2339,
11,
198,
220,
220,
220,
337,
7568,
16922,
11,
198,
220,
220,
220,
5336,
270,
1096,
62,
19875,
11,
198,
220,
220,
220,
471,
12394,
23,
62,
3046,
11,
198,
220,
220,
220,
471,
12394,
2414,
62,
84,
11,
198,
220,
220,
220,
471,
12394,
2414,
62,
3046,
11,
198,
8,
198,
198,
36078,
42,
62,
2257,
7227,
796,
410,
19,
66,
13,
36078,
42,
62,
2257,
7227,
198,
36078,
42,
62,
10619,
796,
410,
19,
66,
13,
36078,
42,
62,
10619,
198,
9858,
27857,
62,
33489,
796,
410,
19,
66,
13,
9858,
27857,
62,
33489,
198,
9858,
27857,
62,
84,
796,
410,
19,
66,
13,
9858,
27857,
62,
84,
198,
9858,
27857,
62,
3046,
796,
410,
19,
66,
13,
9858,
27857,
62,
3046,
198,
198,
44175,
62,
9148,
11290,
62,
33489,
796,
410,
19,
66,
13,
44175,
62,
9148,
11290,
62,
33489,
198,
48913,
16437,
62,
3398,
22846,
3698,
62,
27082,
40834,
62,
3046,
796,
410,
19,
66,
13,
48913,
16437,
62,
3398,
22846,
3698,
62,
27082,
40834,
62,
3046,
628,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7203,
76,
7568,
19149,
952,
4943,
198,
198,
834,
439,
834,
796,
685,
198,
220,
220,
220,
366,
8086,
15520,
12235,
1600,
198,
220,
220,
220,
366,
29239,
1600,
198,
220,
220,
220,
366,
29239,
19182,
12235,
1600,
198,
220,
220,
220,
366,
29239,
13247,
1600,
198,
220,
220,
220,
366,
29239,
3103,
9641,
1600,
198,
220,
220,
220,
366,
6601,
12235,
1600,
198,
220,
220,
220,
366,
6601,
57,
3949,
12235,
1600,
198,
220,
220,
220,
366,
9237,
12235,
1600,
198,
220,
220,
220,
366,
8979,
33234,
2649,
12235,
1600,
198,
220,
220,
220,
366,
39681,
12235,
1600,
198,
220,
220,
220,
366,
39681,
8053,
1600,
198,
220,
220,
220,
366,
6601,
8053,
1600,
198,
220,
220,
220,
366,
6601,
13247,
1600,
198,
220,
220,
220,
366,
8979,
18122,
1600,
198,
220,
220,
220,
366,
7416,
21918,
1600,
198,
220,
220,
220,
366,
8206,
12235,
1600,
198,
60,
628,
198,
4871,
3460,
15520,
12235,
25,
198,
220,
220,
220,
37227,
2215,
4375,
649,
32161,
691,
14553,
32161,
389,
3142,
11,
351,
198,
220,
220,
220,
21179,
4578,
1635,
7890,
9,
286,
2099,
9881,
628,
220,
220,
220,
1635,
8086,
15520,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
5161,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
1404,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
265,
62,
29851,
15506,
532,
493,
1058,
1306,
5161,
9148,
11290,
2209,
198,
220,
220,
220,
1635,
7559,
7753,
62,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
18231,
198,
220,
220,
220,
220,
220,
2393,
1438,
198,
220,
220,
220,
1635,
7559,
76,
524,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
18231,
198,
220,
220,
220,
220,
220,
285,
524,
2099,
6764,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
18231,
2912,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
5161,
9148,
11290,
9701,
198,
220,
220,
220,
1635,
7559,
45382,
62,
9630,
15506,
532,
493,
1058,
6376,
286,
2393,
2106,
2512,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9132,
20,
62,
16345,
15506,
532,
9881,
1058,
18231,
2393,
45243,
20,
2160,
198,
220,
220,
220,
1635,
7559,
14986,
62,
7857,
15506,
532,
493,
1058,
2656,
34318,
601,
2393,
2546,
287,
9881,
198,
220,
220,
220,
1635,
7559,
20521,
9395,
62,
7857,
15506,
532,
493,
1058,
14553,
25388,
2393,
2546,
287,
9881,
198,
220,
220,
220,
1635,
7559,
20521,
9395,
62,
7890,
15506,
532,
9881,
1058,
14553,
379,
963,
434,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
18231,
2209,
198,
220,
220,
220,
1635,
7559,
7753,
62,
3672,
15506,
532,
965,
1058,
18231,
2393,
1438,
198,
220,
220,
220,
1635,
7559,
76,
524,
15506,
532,
965,
1058,
285,
524,
2099,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
18231,
2912,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2209,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
2209,
26,
284,
307,
973,
329,
5563,
2727,
422,
2393,
198,
220,
220,
220,
4269,
1058,
5412,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
5412,
26,
284,
307,
973,
329,
5563,
2727,
422,
2393,
198,
220,
220,
220,
329,
32366,
2727,
5563,
1058,
198,
220,
220,
220,
220,
220,
220,
220,
766,
262,
1994,
12,
8367,
14729,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7753,
62,
3672,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
76,
524,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19545,
62,
265,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7753,
62,
3672,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
76,
524,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
45382,
62,
9630,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9132,
20,
62,
16345,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
14986,
62,
7857,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20521,
9395,
62,
7857,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20521,
9395,
62,
7890,
1600,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
825,
7925,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
2302,
974,
18231,
1366,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
1058,
9881,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
33152,
1222,
410,
19,
66,
13,
38948,
62,
1404,
62,
3620,
33,
1961,
35,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
33152,
1222,
410,
19,
66,
13,
38948,
62,
1404,
62,
9858,
32761,
1961,
62,
3620,
33,
1961,
35,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
38237,
601,
7,
944,
13,
20521,
9395,
62,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
2116,
13,
20521,
9395,
62,
7890,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
33152,
1222,
410,
19,
66,
13,
38948,
62,
1404,
62,
12740,
20,
62,
23428,
2389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45243,
20,
62,
28816,
796,
45243,
20,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45243,
20,
62,
28816,
13,
19119,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
45243,
20,
62,
16345,
796,
45243,
20,
62,
28816,
13,
12894,
395,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
9132,
20,
62,
16345,
6624,
45243,
20,
62,
16345,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3275,
796,
277,
1,
1404,
9148,
11290,
45243,
20,
16345,
34758,
944,
13,
9132,
20,
62,
16345,
92,
290,
14553,
1366,
45243,
20,
16345,
34758,
9132,
20,
62,
16345,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7,
20500,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1366,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7203,
22615,
32161,
407,
4855,
4943,
628,
198,
4871,
11102,
25,
198,
220,
220,
220,
37227,
1002,
262,
4600,
2220,
62,
38993,
63,
21179,
4578,
318,
407,
2810,
393,
318,
10352,
11,
198,
220,
220,
220,
788,
262,
11315,
11,
2723,
290,
3359,
1438,
1321,
318,
407,
13686,
13,
198,
220,
220,
220,
7735,
517,
611,
262,
4600,
29572,
62,
19875,
62,
23893,
63,
318,
407,
2810,
393,
318,
10352,
11,
788,
198,
220,
220,
220,
262,
3359,
1438,
1321,
422,
262,
6518,
2912,
318,
407,
13686,
357,
5661,
198,
220,
220,
220,
318,
1760,
284,
3368,
5789,
23735,
4560,
8,
628,
220,
220,
220,
1635,
29239,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
31171,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
44175,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
354,
62,
29851,
15506,
532,
493,
1058,
1306,
5161,
9148,
11290,
2209,
198,
220,
220,
220,
1635,
7559,
42895,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
6518,
287,
1339,
286,
4645,
6518,
198,
220,
220,
220,
220,
220,
11742,
11,
393,
11102,
19182,
12235,
287,
1339,
286,
26515,
198,
220,
220,
220,
220,
220,
2393,
1438,
198,
220,
220,
220,
1635,
7559,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
6518,
1438,
198,
220,
220,
220,
1635,
7559,
10459,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
6518,
2723,
2512,
198,
220,
220,
220,
1635,
7559,
1102,
9641,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
6518,
11315,
2512,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
6737,
1366,
2512,
329,
569,
6561,
35,
9619,
198,
220,
220,
220,
1635,
7559,
20850,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
6518,
4326,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
6518,
2912,
198,
220,
220,
220,
1635,
7559,
1078,
15520,
62,
27,
45,
29,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
5161,
9148,
11290,
20717,
416,
262,
198,
220,
220,
220,
220,
220,
1459,
6518,
26,
611,
645,
5161,
9148,
11290,
318,
20717,
612,
481,
307,
645,
884,
1994,
12,
8367,
198,
220,
220,
220,
220,
220,
5166,
198,
220,
220,
220,
1635,
7559,
12286,
62,
55,
62,
67,
70,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
360,
4579,
36840,
810,
262,
4277,
1395,
16488,
198,
220,
220,
220,
220,
220,
6518,
329,
262,
1459,
6518,
318,
1043,
26,
428,
1994,
12,
8367,
5166,
481,
407,
198,
220,
220,
220,
220,
220,
2152,
329,
9619,
326,
836,
470,
423,
257,
4277,
1395,
16488,
198,
220,
220,
220,
1635,
7559,
12286,
62,
55,
62,
66,
70,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
327,
4579,
36840,
810,
262,
4277,
1395,
16488,
198,
220,
220,
220,
220,
220,
6518,
329,
262,
1459,
6518,
318,
1043,
26,
428,
1994,
12,
8367,
5166,
481,
407,
198,
220,
220,
220,
220,
220,
2152,
329,
9619,
326,
836,
470,
423,
257,
4277,
1395,
16488,
198,
220,
220,
220,
1635,
7559,
12286,
62,
55,
62,
354,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
4277,
1395,
16488,
198,
220,
220,
220,
220,
220,
6518,
329,
262,
1459,
6518,
26,
428,
1994,
12,
8367,
5166,
481,
407,
198,
220,
220,
220,
220,
220,
2152,
329,
9619,
326,
836,
470,
423,
257,
4277,
1395,
16488,
198,
220,
220,
220,
1635,
7559,
17620,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
262,
6518,
2099,
198,
220,
220,
220,
1635,
7559,
27261,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
262,
6518,
338,
17510,
2099,
198,
220,
220,
220,
1635,
7559,
7890,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
262,
6518,
338,
1366,
2099,
198,
220,
220,
220,
1635,
7559,
2545,
62,
28968,
15506,
532,
493,
1058,
1643,
11677,
198,
220,
220,
220,
1635,
7559,
26327,
62,
28968,
15506,
532,
493,
1058,
18022,
11677,
1626,
262,
1366,
1700,
198,
220,
220,
220,
1635,
7559,
2545,
62,
9127,
15506,
532,
493,
1058,
6518,
1643,
954,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
31171,
9148,
11290,
9701,
198,
220,
220,
220,
1635,
7559,
1930,
62,
259,
12102,
341,
62,
2545,
15506,
532,
493,
1058,
12515,
341,
1643,
2292,
329,
262,
1459,
198,
220,
220,
220,
220,
220,
6518,
611,
612,
389,
12515,
341,
9881,
287,
262,
1366,
1700,
198,
220,
220,
220,
1635,
7559,
3866,
16005,
15506,
532,
493,
1058,
18253,
2438,
329,
573,
71,
15440,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
1084,
62,
1831,
62,
8367,
15506,
532,
493,
1058,
949,
8246,
1988,
286,
477,
8405,
198,
220,
220,
220,
1635,
7559,
9806,
62,
1831,
62,
8367,
15506,
532,
493,
1058,
3509,
8246,
1988,
286,
477,
8405,
198,
220,
220,
220,
1635,
7559,
21037,
62,
32374,
15506,
532,
493,
1058,
949,
3518,
1988,
286,
477,
8405,
198,
220,
220,
220,
1635,
7559,
45828,
62,
32374,
15506,
532,
493,
1058,
3509,
3518,
1988,
286,
477,
8405,
198,
220,
220,
220,
1635,
7559,
21037,
62,
2302,
62,
32374,
15506,
532,
493,
1058,
949,
3518,
1988,
286,
477,
8405,
198,
220,
220,
220,
1635,
7559,
45828,
62,
2302,
62,
32374,
15506,
532,
493,
1058,
3509,
3518,
1988,
286,
477,
8405,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
6518,
2209,
198,
220,
220,
220,
1635,
7559,
47348,
902,
15506,
532,
1351,
1058,
1351,
286,
20717,
18231,
7021,
39199,
26,
198,
220,
220,
220,
220,
220,
262,
6376,
6773,
344,
284,
262,
18231,
2512,
6376,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
6518,
2912,
198,
220,
220,
220,
1635,
7559,
1102,
9641,
15506,
532,
11102,
3103,
9641,
1058,
6518,
11315,
26,
1635,
14202,
9,
611,
262,
198,
220,
220,
220,
220,
220,
6518,
468,
645,
11315,
198,
220,
220,
220,
1635,
7559,
13812,
62,
3672,
15506,
532,
965,
1058,
6518,
3359,
1438,
26,
428,
318,
21242,
422,
262,
198,
220,
220,
220,
220,
220,
23735,
6518,
2912,
198,
220,
220,
220,
1635,
7559,
3672,
15506,
532,
965,
1058,
6518,
1438,
198,
220,
220,
220,
1635,
7559,
10459,
15506,
532,
8090,
21918,
1058,
6518,
2723,
1321,
26,
1635,
14202,
9,
611,
198,
220,
220,
220,
220,
220,
262,
6518,
468,
645,
2723,
1321,
198,
220,
220,
220,
1635,
7559,
20850,
15506,
532,
965,
1058,
6518,
4326,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2209,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
2209,
26,
284,
307,
973,
329,
5563,
2727,
422,
2393,
198,
220,
220,
220,
4269,
1058,
5412,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
5412,
26,
284,
307,
973,
329,
5563,
2727,
422,
2393,
198,
220,
220,
220,
3440,
62,
38993,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
3038,
284,
3440,
11315,
11,
2723,
290,
3359,
62,
3672,
26,
4277,
1635,
17821,
9,
198,
220,
220,
220,
21136,
62,
19875,
62,
23893,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
3038,
284,
21136,
23735,
6518,
2912,
284,
2989,
329,
3359,
1438,
26,
4277,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
17821,
9,
198,
220,
220,
220,
329,
32366,
2727,
5563,
1058,
198,
220,
220,
220,
220,
220,
220,
220,
766,
262,
1994,
12,
8367,
14729,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20850,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
13812,
62,
3672,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1102,
9641,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
10459,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1078,
15520,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
67,
4906,
62,
69,
16762,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19545,
62,
354,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
42895,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
10459,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1102,
9641,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7890,
62,
9967,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20850,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
17620,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
27261,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7890,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2545,
62,
28968,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
26327,
62,
28968,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2545,
62,
9127,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1930,
62,
259,
12102,
341,
62,
2545,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3866,
16005,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1078,
15520,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1084,
62,
1831,
62,
8367,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9806,
62,
1831,
62,
8367,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21037,
62,
32374,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
45828,
62,
32374,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21037,
62,
2302,
62,
32374,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
45828,
62,
2302,
62,
32374,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12286,
62,
55,
62,
67,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12286,
62,
55,
62,
66,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12286,
62,
55,
62,
354,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1078,
15520,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
37687,
11347,
62,
4873,
1600,
198,
220,
220,
220,
1267,
628,
198,
198,
4871,
11102,
19182,
12235,
28264,
29239,
19182,
12235,
14881,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
7177,
2512,
2209,
198,
220,
220,
220,
1635,
7559,
22704,
62,
354,
8961,
15506,
532,
1351,
1058,
1351,
286,
357,
8094,
6376,
11,
6518,
6376,
8,
198,
220,
220,
220,
220,
220,
14729,
32578,
262,
16488,
286,
428,
7177,
2512,
198,
220,
220,
220,
1635,
7559,
22704,
62,
1102,
47178,
15506,
532,
1351,
1058,
1351,
286,
11102,
3103,
9641,
393,
6045,
198,
220,
220,
220,
220,
220,
329,
1123,
16488,
286,
428,
7177,
2512,
198,
220,
220,
220,
1635,
7559,
67,
28995,
62,
7857,
62,
354,
8961,
15506,
532,
1351,
1058,
1351,
286,
357,
8094,
6376,
11,
6518,
6376,
8,
198,
220,
220,
220,
220,
220,
14729,
32578,
262,
16488,
8925,
2546,
286,
428,
7177,
2512,
198,
220,
220,
220,
1635,
7559,
15414,
62,
40972,
414,
62,
354,
8961,
15506,
532,
1351,
1058,
1351,
286,
357,
8094,
6376,
11,
6518,
6376,
8,
198,
220,
220,
220,
220,
220,
14729,
32578,
262,
5128,
12040,
9619,
286,
428,
7177,
2512,
198,
220,
220,
220,
1635,
7559,
22915,
62,
40972,
414,
62,
354,
8961,
15506,
532,
46545,
930,
6045,
1058,
357,
8094,
6376,
11,
6518,
6376,
8,
198,
220,
220,
220,
220,
220,
5166,
32578,
262,
5072,
12040,
6518,
286,
428,
7177,
2512,
198,
220,
220,
220,
1635,
7559,
785,
1845,
1653,
62,
40972,
414,
62,
17620,
15506,
532,
46545,
930,
6045,
1058,
357,
8094,
6376,
11,
6518,
6376,
8,
198,
220,
220,
220,
220,
220,
5166,
32578,
262,
7208,
12040,
6518,
286,
428,
7177,
2512,
628,
198,
220,
220,
220,
37227,
628,
198,
4871,
11102,
13247,
25,
198,
220,
220,
220,
37227,
9,
29239,
13247,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
327,
4579,
36840,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
39816,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
66,
70,
62,
29851,
15506,
532,
493,
1058,
1306,
6518,
1448,
2209,
198,
220,
220,
220,
1635,
7559,
11085,
62,
354,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
6518,
286,
428,
6518,
1448,
198,
220,
220,
220,
1635,
7559,
330,
80,
62,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
8255,
9148,
735,
326,
4909,
262,
6518,
198,
220,
220,
220,
220,
220,
1448,
12673,
1438,
198,
220,
220,
220,
1635,
7559,
330,
80,
62,
10459,
62,
29851,
15506,
532,
493,
1058,
751,
411,
286,
8090,
21918,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
6518,
1448,
2723,
198,
220,
220,
220,
1635,
7559,
11085,
62,
39873,
62,
445,
8110,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
16808,
9148,
11290,
26,
428,
318,
198,
220,
220,
220,
220,
220,
3177,
657,
1201,
6291,
7741,
318,
407,
1865,
4855,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
6518,
1448,
2912,
198,
220,
220,
220,
1635,
7559,
22105,
62,
312,
15506,
532,
493,
1058,
1700,
4522,
329,
262,
72,
6518,
1448,
198,
220,
220,
220,
1635,
7559,
32503,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
16006,
329,
428,
6518,
1448,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
6518,
1448,
9701,
198,
220,
220,
220,
1635,
7559,
6978,
62,
25512,
1352,
15506,
532,
493,
1058,
2760,
1292,
329,
2095,
973,
355,
3108,
2880,
1352,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
82,
12629,
62,
26327,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
9881,
973,
329,
9619,
8405,
287,
198,
220,
220,
220,
220,
220,
262,
1700,
329,
428,
6518,
1448,
26,
428,
857,
407,
3994,
262,
12515,
341,
198,
220,
220,
220,
220,
220,
9881,
198,
220,
220,
220,
1635,
7559,
259,
12102,
341,
62,
33661,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
9881,
973,
329,
12515,
341,
198,
220,
220,
220,
220,
220,
10340,
416,
428,
442,
1236,
75,
1448,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
330,
80,
62,
3672,
15506,
532,
965,
1058,
12673,
1438,
198,
220,
220,
220,
1635,
7559,
330,
80,
62,
10459,
15506,
532,
8090,
21918,
1058,
12673,
2723,
1321,
198,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
6518,
1448,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
6518,
1448,
2912,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
330,
80,
62,
3672,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
330,
80,
62,
10459,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19545,
62,
66,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
354,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
330,
80,
62,
3672,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
330,
80,
62,
10459,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
39873,
62,
445,
8110,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
66,
70,
62,
9866,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22105,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32503,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
6978,
62,
25512,
1352,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
12629,
62,
26327,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
259,
12102,
341,
62,
33661,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
66,
70,
62,
9866,
62,
9630,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
37687,
11347,
62,
4873,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
20850,
1600,
198,
220,
220,
220,
1267,
628,
198,
198,
4871,
11102,
3103,
9641,
28264,
29239,
3103,
9641,
14881,
2599,
198,
220,
220,
220,
37227,
9,
29239,
3103,
9641,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
12624,
9148,
11290,
2219,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
39816,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
11315,
1438,
198,
220,
220,
220,
1635,
7559,
20850,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
11315,
4326,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
11315,
2912,
198,
220,
220,
220,
1635,
7559,
16340,
62,
42946,
62,
29851,
15506,
493,
1058,
2209,
286,
287,
690,
11315,
198,
220,
220,
220,
1635,
7559,
1102,
9641,
62,
4906,
15506,
493,
1058,
18253,
2438,
329,
11315,
2099,
198,
220,
220,
220,
1635,
7559,
3866,
16005,
15506,
532,
493,
1058,
18253,
2438,
329,
15440,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
11315,
2512,
9701,
198,
220,
220,
220,
1635,
7559,
5420,
62,
17143,
62,
48624,
15506,
532,
493,
1058,
1271,
11511,
20717,
10007,
357,
25614,
198,
220,
220,
220,
220,
220,
10007,
8,
198,
220,
220,
220,
1635,
7559,
2100,
62,
17143,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
1988,
10007,
198,
220,
220,
220,
1635,
7559,
1084,
62,
6883,
62,
8367,
15506,
532,
12178,
1058,
5288,
3518,
6518,
1988,
198,
220,
220,
220,
1635,
7559,
9806,
62,
6883,
62,
8367,
15506,
532,
12178,
1058,
5415,
3518,
6518,
1988,
628,
220,
220,
220,
12624,
9148,
11290,
2176,
7032,
628,
220,
220,
220,
1635,
14174,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
64,
15506,
532,
12178,
1058,
5766,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
65,
15506,
532,
12178,
1058,
11677,
628,
220,
220,
220,
1635,
9377,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
47,
16,
15506,
284,
7559,
47,
21,
15506,
532,
12178,
1058,
10007,
628,
220,
220,
220,
1635,
37139,
291,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
687,
4712,
62,
29851,
15506,
532,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
37139,
291,
11315,
10451,
628,
220,
220,
220,
1635,
7400,
2290,
283,
11315,
351,
393,
1231,
39555,
341,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
1831,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
8246,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
34411,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
3518,
1988,
628,
220,
220,
220,
1635,
7400,
934,
2837,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
21037,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
2793,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
45828,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
6727,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
34411,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
3518,
1988,
628,
220,
220,
220,
1635,
7400,
934,
1988,
284,
2420,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
2100,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
8246,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
5239,
62,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
15326,
9148,
11290,
326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4909,
262,
3518,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
12286,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
4277,
3518,
1988,
628,
220,
220,
220,
1635,
7400,
934,
2837,
284,
2420,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
21037,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
2793,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
45828,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
6727,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
5239,
62,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
15326,
9148,
11290,
326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4909,
262,
3518,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
12286,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
4277,
3518,
1988,
628,
220,
220,
220,
1635,
2420,
284,
1988,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
2100,
62,
27,
45,
29,
15506,
532,
12178,
1058,
399,
12,
400,
3518,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
5239,
62,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
15326,
9148,
11290,
326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4909,
262,
8246,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
2100,
62,
12286,
15506,
532,
12178,
1058,
4277,
3518,
1988,
628,
220,
220,
220,
1635,
2420,
491,
272,
69,
418,
26224,
341,
357,
41519,
8,
11315,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
15414,
62,
27,
45,
29,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
15326,
9148,
11290,
326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4909,
262,
8246,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
22915,
62,
27,
45,
29,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
15326,
9148,
11290,
326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4909,
262,
3518,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
12286,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
262,
4277,
3518,
1988,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
6518,
11315,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
6518,
11315,
2912,
198,
220,
220,
220,
1635,
7559,
687,
4712,
15506,
532,
965,
1058,
37139,
291,
11315,
10451,
26,
4277,
10148,
198,
220,
220,
220,
1635,
7559,
5420,
14226,
771,
62,
27372,
15506,
532,
8633,
1058,
8633,
286,
1006,
5864,
7021,
26,
460,
307,
8255,
12235,
198,
220,
220,
220,
220,
220,
5563,
329,
1988,
284,
2420,
11,
290,
2420,
284,
2420,
32626,
26,
329,
13027,
198,
220,
220,
220,
220,
220,
32626,
262,
20717,
7021,
460,
307,
11102,
3103,
9641,
45653,
73,
310,
355,
880,
198,
220,
220,
220,
1635,
7559,
3672,
15506,
532,
965,
1058,
6518,
11315,
1438,
198,
220,
220,
220,
1635,
7559,
20850,
15506,
532,
965,
1058,
6518,
11315,
4326,
628,
220,
220,
220,
37227,
628,
198,
4871,
6060,
12235,
25,
198,
220,
220,
220,
37227,
17227,
7822,
329,
24311,
9148,
11290,
14,
35257,
9148,
11290,
14,
10305,
9148,
11290,
14,
35,
53,
9148,
11290,
14,
17931,
9148,
11290,
628,
220,
220,
220,
1635,
6601,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
24311,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
275,
6,
2235,
24544,
6,
329,
24311,
9148,
11290,
11,
275,
6,
2235,
35257,
6,
329,
31475,
9148,
11290,
11,
198,
220,
220,
220,
220,
220,
275,
6,
2235,
10305,
6,
329,
9834,
9148,
11290,
11,
275,
6,
2235,
35,
53,
6,
329,
29854,
9148,
11290,
393,
275,
6,
2235,
17931,
6,
329,
14766,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
7890,
15506,
532,
9881,
1058,
8246,
8405,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
1366,
2512,
2209,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2209,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
24311,
9148,
11290,
14,
35257,
9148,
11290,
14,
10305,
9148,
11290,
14,
35,
53,
9148,
11290,
14,
17931,
9148,
11290,
2209,
2641,
262,
2393,
198,
220,
220,
220,
4269,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
5412,
198,
220,
220,
220,
7741,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
6291,
7741,
1366,
2512,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
5855,
21975,
1600,
366,
312,
1600,
366,
411,
8520,
15,
1600,
366,
9967,
62,
11925,
1600,
366,
28751,
62,
48624,
1600,
366,
7890,
4943,
628,
198,
4871,
6060,
57,
3949,
12235,
7,
15252,
2599,
198,
220,
220,
220,
37227,
9,
6601,
57,
3949,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
198,
220,
220,
220,
355,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
360,
57,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
35,
57,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
14986,
62,
4906,
15506,
532,
9881,
1058,
275,
6,
24544,
3256,
275,
6,
10305,
3256,
275,
6,
17931,
6,
393,
275,
6,
35,
53,
6,
198,
220,
220,
220,
1635,
7559,
13344,
62,
4906,
15506,
532,
493,
1058,
19974,
11862,
973,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
17143,
15506,
532,
493,
1058,
329,
1007,
3455,
825,
17660,
262,
1700,
2546,
973,
329,
198,
220,
220,
220,
220,
220,
1007,
9150,
198,
220,
220,
220,
1635,
7559,
14986,
62,
7857,
15506,
532,
493,
1058,
2546,
286,
262,
2656,
34318,
2790,
8246,
9881,
198,
220,
220,
220,
1635,
7559,
13344,
62,
7857,
15506,
532,
493,
1058,
2546,
286,
25388,
9881,
198,
220,
220,
220,
1635,
7559,
7890,
15506,
532,
9881,
1058,
25388,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
1366,
1976,
3949,
2512,
2209,
198,
220,
220,
220,
1635,
7559,
7783,
62,
403,
89,
3949,
15506,
532,
20512,
1058,
38237,
601,
1366,
618,
22534,
262,
705,
7890,
6,
198,
220,
220,
220,
220,
220,
1994,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2209,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
24311,
9148,
11290,
2209,
2641,
262,
2393,
198,
220,
220,
220,
4269,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
5412,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
45434,
3866,
1151,
62,
7890,
62,
2617,
9186,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
45434,
7645,
29813,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7783,
62,
403,
89,
3949,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
14986,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
13344,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
17143,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
14986,
62,
7857,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
13344,
62,
7857,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7890,
1600,
198,
220,
220,
220,
1267,
628,
198,
4871,
6060,
13247,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
6601,
13247,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
360,
4579,
36840,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
35,
38,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
67,
70,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
1306,
1366,
1448,
2512,
198,
220,
220,
220,
1635,
7559,
11085,
62,
66,
70,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
6518,
1448,
329,
428,
1366,
198,
220,
220,
220,
220,
220,
1448,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
24311,
9148,
11290,
11,
360,
57,
9148,
11290,
11,
23641,
9148,
11290,
393,
198,
220,
220,
220,
220,
220,
38312,
9148,
11290,
326,
4909,
262,
8246,
8405,
329,
428,
1366,
1448,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
28110,
4909,
262,
198,
220,
220,
220,
220,
220,
1366,
1448,
2912,
198,
220,
220,
220,
1635,
7559,
22105,
62,
312,
62,
11925,
15506,
532,
493,
1058,
2546,
286,
1700,
4522,
973,
287,
1339,
286,
5576,
9741,
198,
220,
220,
220,
220,
220,
1366,
2628,
26,
460,
307,
352,
11,
362,
11,
604,
393,
807,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
4818,
1448,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
1366,
1448,
2912,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19545,
62,
67,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
66,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7890,
62,
9967,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22105,
62,
312,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
1267,
628,
198,
198,
4871,
6060,
8053,
28264,
6601,
8053,
14881,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
6601,
8053,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
23641,
9148,
11290,
2219,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
19260,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
25404,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
1306,
23641,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
29851,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
1366,
2512,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
1366,
1351,
9701,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
1366,
7021,
20717,
416,
428,
1351,
628,
220,
220,
220,
23641,
9148,
11290,
2176,
7032,
628,
220,
220,
220,
1635,
329,
1602,
439,
18896,
456,
83,
7021,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
11925,
15506,
532,
493,
1058,
1602,
439,
34318,
2790,
2546,
287,
9881,
329,
477,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20717,
1366,
7021,
26,
938,
2512,
460,
307,
4833,
628,
220,
220,
220,
1635,
329,
7885,
18896,
456,
83,
7021,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
28968,
62,
27,
45,
29,
15506,
532,
493,
1058,
18022,
11677,
286,
399,
12,
400,
1366,
2512,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
1366,
1351,
2209,
628,
220,
220,
220,
37227,
628,
198,
198,
4871,
8558,
12235,
28264,
9237,
12235,
14881,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
9237,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
8696,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
20114,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
1990,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
1306,
8696,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
8000,
62,
1990,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
2560,
8696,
30501,
11290,
198,
220,
220,
220,
1635,
7559,
9521,
62,
9688,
62,
1990,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
8696,
9148,
11290,
326,
318,
262,
923,
286,
198,
220,
220,
220,
220,
220,
262,
2837,
329,
543,
428,
1785,
318,
262,
886,
198,
220,
220,
220,
1635,
7559,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
1785,
1438,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
1785,
2912,
198,
220,
220,
220,
1635,
7559,
29982,
62,
27,
45,
29,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
2512,
326,
6870,
257,
8354,
198,
220,
220,
220,
220,
220,
329,
428,
1785,
357,
5171,
307,
327,
4579,
36840,
11,
5870,
9148,
11290,
11,
360,
4579,
36840,
8,
198,
220,
220,
220,
1635,
7559,
1078,
330,
4411,
429,
62,
27,
45,
29,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
18231,
20717,
416,
198,
220,
220,
220,
220,
220,
428,
1785,
198,
220,
220,
220,
1635,
7559,
15596,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
1785,
2099,
198,
220,
220,
220,
1635,
7559,
27261,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
1785,
17510,
2099,
198,
220,
220,
220,
1635,
7559,
9521,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
1785,
2837,
2099,
198,
220,
220,
220,
1635,
7559,
25587,
15506,
532,
493,
1058,
18253,
2438,
329,
1785,
2728,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
1785,
9701,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
29982,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
629,
13920,
20717,
416,
428,
1785,
198,
220,
220,
220,
1635,
7559,
1078,
15520,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
32161,
20717,
416,
428,
1785,
198,
220,
220,
220,
1635,
7559,
45382,
62,
9630,
15506,
532,
493,
1058,
6376,
286,
376,
39,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
27261,
62,
8692,
15506,
532,
493,
1058,
41033,
2779,
1988,
198,
220,
220,
220,
1635,
7559,
27261,
62,
31412,
15506,
532,
12178,
1058,
41033,
5766,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
1785,
2512,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
1785,
2912,
198,
220,
220,
220,
1635,
7559,
3672,
15506,
532,
965,
1058,
1785,
1438,
198,
220,
220,
220,
1635,
7559,
8000,
15506,
532,
493,
1058,
6376,
286,
1785,
2512,
326,
318,
262,
2560,
329,
262,
198,
220,
220,
220,
220,
220,
1459,
1785,
198,
220,
220,
220,
1635,
7559,
9521,
62,
9688,
15506,
532,
493,
1058,
6376,
286,
1785,
2512,
326,
318,
262,
923,
286,
262,
198,
220,
220,
220,
220,
220,
2837,
329,
543,
262,
1459,
1785,
318,
262,
886,
198,
220,
220,
220,
1635,
7559,
1416,
13920,
15506,
532,
1351,
1058,
1351,
286,
357,
8094,
6376,
11,
6518,
6376,
8,
393,
6518,
1448,
198,
220,
220,
220,
220,
220,
6376,
326,
8160,
262,
8354,
286,
262,
1459,
1785,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
26745,
628,
220,
220,
220,
2488,
8367,
13,
2617,
353,
628,
198,
4871,
9220,
33234,
2649,
12235,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
8979,
33234,
2649,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
4522,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
7753,
62,
738,
2649,
15506,
532,
220,
9881,
1058,
2393,
27421,
198,
220,
220,
220,
1635,
7559,
9641,
62,
2536,
15506,
532,
9881,
1058,
5794,
27421,
198,
220,
220,
220,
1635,
7559,
23065,
62,
738,
2649,
15506,
532,
9881,
1058,
13172,
1430,
27421,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
9881,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
76,
7568,
62,
9641,
15506,
532,
493,
1058,
2196,
1271,
286,
337,
8068,
5794,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
9881,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
403,
20311,
1143,
62,
20307,
62,
33152,
15506,
532,
493,
1058,
3210,
9701,
329,
3684,
1292,
1143,
337,
8068,
198,
220,
220,
220,
1635,
7559,
403,
20311,
1143,
62,
23144,
62,
33152,
15506,
532,
493,
1058,
2183,
9701,
329,
3684,
1292,
1143,
337,
8068,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
815,
1464,
307,
657,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7753,
62,
738,
2649,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9641,
62,
2536,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23065,
62,
738,
2649,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
76,
7568,
62,
9641,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
403,
20311,
1143,
62,
20307,
62,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
403,
20311,
1143,
62,
23144,
62,
33152,
1600,
198,
220,
220,
220,
1267,
628,
198,
4871,
9220,
18122,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
8979,
18122,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
376,
39,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
44602,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
69,
71,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
1306,
376,
39,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
2393,
2106,
2912,
198,
220,
220,
220,
1635,
7559,
8937,
62,
2435,
15506,
532,
493,
1058,
640,
17977,
379,
543,
262,
2393,
17613,
3022,
198,
220,
220,
220,
1635,
7559,
22877,
62,
28968,
15506,
532,
493,
1058,
18119,
640,
11677,
287,
2250,
46121,
16987,
640,
6516,
8,
198,
220,
220,
220,
1635,
7559,
820,
2971,
62,
21928,
62,
2435,
15506,
532,
493,
1058,
26010,
8914,
640,
198,
220,
220,
220,
1635,
7559,
2435,
62,
33152,
15506,
532,
493,
1058,
640,
9701,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
9881,
1058,
10395,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
2393,
2106,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
2106,
2912,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19545,
62,
69,
71,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
8937,
62,
2435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22877,
62,
28968,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
820,
2971,
62,
21928,
62,
2435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2435,
62,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
1267,
628,
198,
4871,
48900,
12235,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
39681,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
5572,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
10227,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
11085,
62,
67,
70,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
360,
4579,
36840,
198,
220,
220,
220,
1635,
7559,
7753,
62,
23569,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
376,
39,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
17620,
62,
21048,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
5870,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
11085,
62,
1078,
15520,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
5161,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
11085,
62,
15596,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
8696,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
326,
4909,
262,
198,
220,
220,
220,
220,
220,
2393,
2912,
198,
220,
220,
220,
1635,
7559,
8937,
62,
2435,
15506,
532,
493,
1058,
640,
17977,
379,
543,
8296,
373,
2067,
287,
198,
220,
220,
220,
220,
220,
15709,
577,
17561,
82,
13,
198,
220,
220,
220,
1635,
7559,
22877,
62,
28968,
15506,
532,
493,
1058,
18119,
640,
11677,
287,
2250,
46121,
16987,
640,
6516,
8,
198,
220,
220,
220,
1635,
7559,
820,
2971,
62,
21928,
62,
2435,
15506,
532,
493,
1058,
26010,
8914,
640,
198,
220,
220,
220,
1635,
7559,
2435,
62,
33152,
15506,
532,
493,
1058,
640,
9701,
198,
220,
220,
220,
1635,
7559,
2435,
62,
13237,
15506,
532,
493,
1058,
640,
3081,
9701,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
2393,
9701,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9688,
62,
9248,
15506,
532,
493,
1058,
9848,
1988,
379,
15558,
923,
198,
220,
220,
220,
1635,
7559,
9688,
62,
30246,
15506,
532,
493,
1058,
5253,
1988,
379,
15558,
923,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
13639,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
2393,
2912,
198,
220,
220,
220,
1635,
7559,
9800,
15506,
532,
965,
1058,
15558,
1772,
198,
220,
220,
220,
1635,
7559,
10378,
1823,
15506,
532,
965,
1058,
1772,
338,
5011,
198,
220,
220,
220,
1635,
7559,
16302,
15506,
532,
965,
1058,
1762,
1628,
198,
220,
220,
220,
1635,
7559,
32796,
15506,
532,
965,
1058,
15558,
2426,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9800,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
10378,
1823,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
16302,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
32796,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
67,
70,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
7753,
62,
23569,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
17620,
62,
21048,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
1078,
15520,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
15596,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
8937,
62,
2435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22877,
62,
28968,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
820,
2971,
62,
21928,
62,
2435,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2435,
62,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2435,
62,
13237,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9688,
62,
9248,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9688,
62,
30246,
1600,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
2488,
26745,
198,
220,
220,
220,
825,
923,
62,
2435,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
651,
353,
290,
900,
353,
262,
15558,
923,
41033,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
35656,
198,
220,
220,
220,
220,
220,
220,
220,
41033,
1058,
4818,
8079,
13,
19608,
8079,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
41033,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
41033,
796,
2116,
13,
8937,
62,
2435,
1220,
838,
12429,
860,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
2435,
62,
33152,
1222,
410,
19,
66,
13,
38948,
62,
10227,
62,
29701,
1847,
62,
34694,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41033,
796,
4818,
8079,
13,
6738,
16514,
27823,
7,
16514,
27823,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41033,
796,
4818,
8079,
13,
6738,
16514,
27823,
7,
16514,
27823,
11,
640,
11340,
13,
315,
66,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
41033,
628,
220,
220,
220,
2488,
9688,
62,
2435,
13,
2617,
353,
628,
198,
4871,
48900,
8053,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
39681,
8053,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
38312,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
6581,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
11085,
62,
25404,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
717,
1366,
1351,
2512,
329,
428,
13639,
198,
220,
220,
220,
220,
220,
1351,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
2723,
9701,
198,
220,
220,
220,
1635,
7559,
13344,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
19974,
2099,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
9881,
1058,
10395,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
13639,
1351,
2209,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11085,
62,
25404,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
13344,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
1267,
628,
198,
198,
4871,
7343,
6601,
28264,
8053,
6601,
14881,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
8053,
6601,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
27178,
9148,
11290,
2219,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
11163,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
19545,
62,
335,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
1306,
27178,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
29851,
62,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
1366,
2512,
198,
220,
220,
220,
220,
220,
10340,
1366,
2512,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
1366,
1351,
9701,
198,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
1366,
7021,
20717,
416,
428,
1351,
628,
220,
220,
220,
27178,
9148,
11290,
2176,
7032,
628,
220,
220,
220,
1635,
611,
12515,
341,
1366,
1944,
6056,
318,
900,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
259,
12102,
341,
62,
9895,
62,
29851,
62,
27,
45,
29,
15506,
532,
493,
1058,
2209,
286,
399,
12,
400,
12515,
341,
628,
220,
220,
220,
1635,
329,
1602,
439,
18896,
456,
83,
7021,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
7890,
62,
9967,
62,
11925,
15506,
532,
493,
1058,
1602,
439,
34318,
2790,
2546,
287,
9881,
329,
477,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20717,
1366,
7021,
26,
938,
2512,
460,
307,
4833,
628,
220,
220,
220,
1635,
329,
7885,
18896,
456,
83,
7021,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
28968,
62,
27,
45,
29,
15506,
532,
493,
1058,
18022,
11677,
286,
399,
12,
400,
1366,
2512,
628,
220,
220,
220,
1635,
611,
640,
3815,
6056,
318,
900,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
2435,
62,
8367,
62,
27,
45,
29,
15506,
532,
493,
930,
12178,
1058,
717,
8246,
41033,
1988,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
399,
12,
400,
1366,
2512,
628,
220,
220,
220,
1635,
611,
9848,
3815,
6056,
318,
900,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
9248,
62,
8367,
62,
27,
45,
29,
15506,
532,
493,
930,
12178,
1058,
717,
8246,
9848,
1988,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
399,
12,
400,
1366,
2512,
628,
220,
220,
220,
1635,
611,
5253,
3815,
6056,
318,
900,
628,
220,
220,
220,
220,
220,
220,
220,
1635,
7559,
30246,
62,
8367,
62,
27,
45,
29,
15506,
532,
493,
930,
12178,
1058,
717,
8246,
5253,
1988,
286,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
399,
12,
400,
1366,
2512,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
1366,
1351,
2209,
628,
220,
220,
220,
37227,
628,
198,
4871,
8090,
21918,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1635,
7416,
21918,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
25861,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
1464,
275,
6,
2235,
11584,
6,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
3672,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
2723,
1438,
198,
220,
220,
220,
1635,
7559,
6978,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
326,
4909,
262,
2723,
3108,
198,
220,
220,
220,
1635,
7559,
23893,
62,
29851,
15506,
532,
493,
1058,
2209,
286,
15326,
9148,
11290,
14,
12740,
9148,
11290,
28110,
4909,
262,
198,
220,
220,
220,
220,
220,
2723,
2912,
198,
220,
220,
220,
1635,
7559,
10459,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
2723,
2099,
198,
220,
220,
220,
1635,
7559,
10885,
62,
4906,
15506,
532,
493,
1058,
18253,
2438,
329,
2723,
1323,
2099,
198,
220,
220,
220,
1635,
7559,
33152,
15506,
532,
493,
1058,
2723,
9701,
198,
220,
220,
220,
1635,
7559,
411,
8520,
16,
15506,
532,
9881,
1058,
10395,
9881,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
2723,
1321,
2209,
198,
220,
220,
220,
1635,
7559,
23893,
15506,
532,
965,
1058,
2723,
2912,
198,
220,
220,
220,
1635,
7559,
3672,
15506,
532,
965,
1058,
2723,
1438,
198,
220,
220,
220,
1635,
7559,
6978,
15506,
532,
965,
1058,
2723,
3108,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
21975,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
6978,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9967,
62,
11925,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
28751,
62,
48624,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
3672,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
6978,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23893,
62,
29851,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
10459,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
10885,
62,
4906,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33152,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
411,
8520,
16,
1600,
198,
220,
220,
220,
1267,
628,
220,
220,
220,
2488,
4871,
24396,
628,
198,
4871,
8255,
12235,
25,
198,
220,
220,
220,
37227,
11321,
15326,
9148,
11290,
290,
10670,
9148,
11290,
1398,
628,
220,
220,
220,
1635,
8206,
12235,
9,
468,
262,
1708,
12608,
11,
326,
389,
635,
1695,
355,
198,
220,
220,
220,
8633,
588,
1994,
12,
8367,
14729,
628,
220,
220,
220,
15326,
9148,
11290,
7032,
628,
220,
220,
220,
1635,
7559,
312,
15506,
532,
9881,
1058,
2512,
4522,
26,
275,
6,
2235,
29551,
6,
329,
15326,
9148,
11290,
290,
275,
6,
2235,
12740,
6,
329,
10670,
9148,
11290,
198,
220,
220,
220,
1635,
7559,
411,
8520,
15,
15506,
532,
493,
1058,
10395,
9881,
198,
220,
220,
220,
1635,
7559,
9967,
62,
11925,
15506,
532,
493,
1058,
2512,
9881,
2546,
198,
220,
220,
220,
1635,
7559,
28751,
62,
48624,
15506,
532,
493,
1058,
1271,
286,
6117,
198,
220,
220,
220,
1635,
7559,
5239,
15506,
532,
9881,
1058,
4036,
2420,
2695,
628,
220,
220,
220,
3819,
12608,
628,
220,
220,
220,
1635,
7559,
21975,
15506,
532,
493,
1058,
2420,
2512,
2209,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
2209,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
2512,
2209,
198,
220,
220,
220,
4269,
1058,
5412,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
5412,
198,
220,
220,
220,
13634,
1058,
20512,
198,
220,
220,
220,
220,
220,
220,
220,
6056,
284,
900,
262,
2512,
2099,
284,
10670,
9148,
11290,
329,
32366,
2727,
5563,
26,
4277,
1635,
25101,
9,
198,
220,
220,
220,
2420,
1058,
9881,
14,
2536,
198,
220,
220,
220,
220,
220,
220,
220,
2420,
2695,
329,
32366,
2727,
5563,
628,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
11593,
6649,
1747,
834,
796,
5855,
21975,
1600,
366,
312,
1600,
366,
411,
8520,
15,
1600,
366,
9967,
62,
11925,
1600,
366,
28751,
62,
48624,
1600,
366,
5239,
4943,
198
] | 2.649713 | 12,544 |
#!/usr/bin/env python3
import asyncore, socket
import sys
import threading
import logging
logger = logging.getLogger('lsp-daemon')
hdlr = logging.FileHandler('/Users/ppinheiro/git_tree/pinelang/lsp/server/lsp-daemon.log')
formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
hdlr.setFormatter(formatter)
logger.addHandler(hdlr)
logger.setLevel(logging.DEBUG)
PORT = 20001
HOST = 'localhost'
# This script is just a simple relay from stdin/stdout int the LSP server
# that resides on a Android App of whatever listen to LSP on a socket.
if __name__ == '__main__':
client = TCPRelay(HOST, PORT)
client.start()
logger.info(f'Daemon started')
while True:
header = sys.stdin.readline()
logger.info(f'Received header from stdin: {header}')
empty = sys.stdin.readline()
logger.info(f'Received emptyline stdin: {empty}')
count = int(header.replace('Content-Length: ','').replace('\r', '').replace('\n', ''))
logger.info(f'Reading {count} from stdin')
client.buffer = (header + empty + sys.stdin.read(count)).encode('utf-8')
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
11748,
355,
2047,
7295,
11,
17802,
198,
11748,
25064,
198,
11748,
4704,
278,
198,
11748,
18931,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
10786,
75,
2777,
12,
6814,
7966,
11537,
198,
31298,
14050,
796,
18931,
13,
8979,
25060,
10786,
14,
14490,
14,
381,
259,
258,
7058,
14,
18300,
62,
21048,
14,
11635,
417,
648,
14,
75,
2777,
14,
15388,
14,
75,
2777,
12,
6814,
7966,
13,
6404,
11537,
198,
687,
1436,
796,
18931,
13,
8479,
1436,
10786,
4,
7,
292,
310,
524,
8,
82,
4064,
7,
5715,
3672,
8,
82,
4064,
7,
20500,
8,
82,
11537,
198,
31298,
14050,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
6404,
1362,
13,
2860,
25060,
7,
31298,
14050,
8,
220,
198,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
198,
15490,
796,
939,
486,
198,
39,
10892,
796,
705,
36750,
6,
198,
198,
2,
770,
4226,
318,
655,
257,
2829,
24248,
422,
14367,
259,
14,
19282,
448,
493,
262,
406,
4303,
4382,
198,
2,
326,
29076,
319,
257,
5565,
2034,
286,
4232,
6004,
284,
406,
4303,
319,
257,
17802,
13,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
5456,
796,
17283,
4805,
417,
323,
7,
39,
10892,
11,
350,
9863,
8,
198,
220,
220,
220,
5456,
13,
9688,
3419,
198,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
26531,
7966,
2067,
11537,
198,
220,
220,
220,
981,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
13639,
796,
25064,
13,
19282,
259,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
3041,
6471,
13639,
422,
14367,
259,
25,
1391,
25677,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
6565,
220,
796,
25064,
13,
19282,
259,
13,
961,
1370,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
3041,
6471,
6565,
1370,
14367,
259,
25,
1391,
28920,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
954,
220,
796,
493,
7,
25677,
13,
33491,
10786,
19746,
12,
24539,
25,
705,
14004,
737,
33491,
10786,
59,
81,
3256,
10148,
737,
33491,
10786,
59,
77,
3256,
10148,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
69,
6,
36120,
1391,
9127,
92,
422,
14367,
259,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
13,
22252,
796,
357,
25677,
1343,
6565,
1343,
25064,
13,
19282,
259,
13,
961,
7,
9127,
29720,
268,
8189,
10786,
40477,
12,
23,
11537,
198
] | 2.56682 | 434 |
# Generated by Django 3.0.8 on 2020-07-02 10:30
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
| [
2,
2980,
515,
416,
37770,
513,
13,
15,
13,
23,
319,
12131,
12,
2998,
12,
2999,
838,
25,
1270,
198,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
198,
11748,
42625,
14208,
13,
9945,
13,
27530,
13,
2934,
1616,
295,
628
] | 3.019231 | 52 |
# internationalization (I18N) 国际化 and localization (L10N) 本土化
# gettext 是GNU国际化与本地化(i18n)函数库
"""
gettext 是一套 GNU下的国际化工具。主要有工具:
xgettext: 从源码中抽取字符串,生成po文件(portable object)
msgfmt: 将po文件编译成mo文件(machine object)
gettext: 进行翻译
https://blog.csdn.net/handsomekang/article/details/78747504
"""
# https://www.gnu.org/software/gettext/
# windows http://gnuwin32.sourceforge.net/packages/gettext.htm
# Python本地化例子 - gettext 模块 https://www.cnblogs.com/ldlchina/p/4708442.html
| [
2,
3230,
1634,
357,
40,
1507,
45,
8,
10263,
249,
121,
165,
247,
227,
44293,
244,
290,
42842,
357,
43,
940,
45,
8,
42164,
105,
28839,
253,
44293,
244,
198,
2,
651,
5239,
10545,
246,
107,
16630,
52,
32368,
121,
165,
247,
227,
44293,
244,
10310,
236,
17312,
105,
28839,
108,
44293,
244,
7,
72,
1507,
77,
8,
49035,
121,
46763,
108,
41753,
241,
198,
37811,
198,
1136,
5239,
10545,
246,
107,
31660,
25001,
245,
22961,
10310,
233,
21410,
32368,
121,
165,
247,
227,
44293,
244,
32432,
98,
17739,
115,
16764,
10310,
119,
17358,
223,
17312,
231,
32432,
98,
17739,
115,
171,
120,
248,
198,
198,
87,
1136,
5239,
25,
220,
20015,
236,
162,
118,
238,
163,
254,
223,
40792,
162,
232,
121,
20998,
244,
27764,
245,
163,
105,
99,
10310,
110,
171,
120,
234,
37955,
22755,
238,
7501,
23877,
229,
20015,
114,
7,
634,
540,
2134,
8,
198,
19662,
69,
16762,
25,
10263,
108,
228,
7501,
23877,
229,
20015,
114,
163,
120,
244,
46237,
239,
22755,
238,
5908,
23877,
229,
20015,
114,
7,
30243,
2134,
8,
198,
1136,
5239,
25,
5525,
123,
249,
26193,
234,
163,
123,
119,
46237,
239,
198,
5450,
1378,
14036,
13,
6359,
32656,
13,
3262,
14,
43365,
462,
74,
648,
14,
20205,
14,
36604,
14,
41019,
2857,
33580,
198,
37811,
198,
198,
2,
3740,
1378,
2503,
13,
41791,
13,
2398,
14,
43776,
14,
1136,
5239,
14,
198,
198,
2,
9168,
2638,
1378,
41791,
5404,
2624,
13,
10459,
30293,
13,
3262,
14,
43789,
14,
1136,
5239,
13,
19211,
628,
198,
2,
11361,
17312,
105,
28839,
108,
44293,
244,
160,
122,
233,
36310,
532,
651,
5239,
10545,
101,
94,
161,
251,
245,
3740,
1378,
2503,
13,
31522,
49096,
13,
785,
14,
335,
75,
354,
1437,
14,
79,
14,
27790,
23,
39506,
13,
6494,
198
] | 1.579125 | 297 |
import numpy as np
# Declare 'global' variables, matrices used for function P and also S_boxes
lambd = np.loadtxt(open("matrix.txt", "rb"), delimiter=" ", skiprows=0)
lambd_inv = np.loadtxt(open("matrix_inv.txt", "rb"), delimiter=" ", skiprows=0)
S_box = {'00':'67', '01':'64', '02':'14', '03':'35', '04':'60', '05':'24', '06':'17',
'07':'54', '10':'01', '11':'42', '12':'47', '13':'15', '14':'41', '15':'23',
'16':'63', '17':'52', '20':'04', '21':'56', '22':'55', '23':'31', '24':'11',
'25':'37', '26':'07', '27':'27', '30':'46', '31':'70', '32':'05', '33':'76',
'34':'22', '35':'43', '36':'71', '37':'77', '40':'57', '41':'36', '42':'33',
'43':'40', '44':'26', '45':'50', '46':'13', '47':'21', '50':'53', '51':'51',
'52':'10', '53':'32', '54':'25', '55':'44', '56':'00', '57':'75', '60':'65',
'61':'74', '62':'06', '63':'03', '64':'12', '65':'02', '66':'34', '67':'20',
'70':'66', '71':'72', '72':'16', '73':'45', '74':'30', '75':'62', '76':'61',
'77':'73'}
S_reversible = dict(zip(S_box.values(),S_box.keys()))
# Function converts binary to octal and vice-versa depending on if curr_base is 2 or 8
# Given k_i returns k_i+1 using a substitution defined in phi as given in report specification
# Takes two strings s1,s2 and performs xor operation elementwise
# Performs operation P(x) = matrix (x) x, where (x) denotes matrix mult. with xor operation as addition
# Encryption combines all previous functions. S-boxes, P function, base_converter, xor
# Decryption performs the reverse of the encryption
# Operations follow from encryption expect we utilize the inverse of S-boxes
# As well as inverse of matrix used in P(x), also the reverse of keys
if __name__ == '__main__':
# test_vectors() # run test vectors to check if basic functionality is working
# run main and basic how-to use main code: message 18-bit length message can be edited, k0 can be edited
# and rounds=512 can be edited to preference
main()
print(base_conv(x='001001001011111100', curr_base=2))
| [
11748,
299,
32152,
355,
45941,
198,
198,
2,
16691,
533,
705,
20541,
6,
9633,
11,
2603,
45977,
973,
329,
2163,
350,
290,
635,
311,
62,
29305,
198,
2543,
17457,
796,
45941,
13,
2220,
14116,
7,
9654,
7203,
6759,
8609,
13,
14116,
1600,
366,
26145,
12340,
46728,
2676,
2625,
220,
220,
220,
220,
33172,
14267,
8516,
28,
15,
8,
198,
2543,
17457,
62,
16340,
796,
45941,
13,
2220,
14116,
7,
9654,
7203,
6759,
8609,
62,
16340,
13,
14116,
1600,
366,
26145,
12340,
46728,
2676,
2625,
220,
220,
220,
220,
33172,
14267,
8516,
28,
15,
8,
198,
198,
50,
62,
3524,
796,
1391,
6,
405,
10354,
6,
3134,
3256,
705,
486,
10354,
6,
2414,
3256,
705,
2999,
10354,
6,
1415,
3256,
705,
3070,
10354,
6,
2327,
3256,
705,
3023,
10354,
6,
1899,
3256,
705,
2713,
10354,
6,
1731,
3256,
705,
3312,
10354,
6,
1558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2998,
10354,
6,
4051,
3256,
705,
940,
10354,
6,
486,
3256,
705,
1157,
10354,
6,
3682,
3256,
705,
1065,
10354,
6,
2857,
3256,
705,
1485,
10354,
6,
1314,
3256,
705,
1415,
10354,
6,
3901,
3256,
705,
1314,
10354,
6,
1954,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1433,
10354,
6,
5066,
3256,
705,
1558,
10354,
6,
4309,
3256,
705,
1238,
10354,
6,
3023,
3256,
705,
2481,
10354,
6,
3980,
3256,
705,
1828,
10354,
6,
2816,
3256,
705,
1954,
10354,
6,
3132,
3256,
705,
1731,
10354,
6,
1157,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1495,
10354,
6,
2718,
3256,
705,
2075,
10354,
6,
2998,
3256,
705,
1983,
10354,
6,
1983,
3256,
705,
1270,
10354,
6,
3510,
3256,
705,
3132,
10354,
6,
2154,
3256,
705,
2624,
10354,
6,
2713,
3256,
705,
2091,
10354,
6,
4304,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2682,
10354,
6,
1828,
3256,
705,
2327,
10354,
6,
3559,
3256,
705,
2623,
10354,
6,
4869,
3256,
705,
2718,
10354,
6,
3324,
3256,
705,
1821,
10354,
6,
3553,
3256,
705,
3901,
10354,
6,
2623,
3256,
705,
3682,
10354,
6,
2091,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3559,
10354,
6,
1821,
3256,
705,
2598,
10354,
6,
2075,
3256,
705,
2231,
10354,
6,
1120,
3256,
705,
3510,
10354,
6,
1485,
3256,
705,
2857,
10354,
6,
2481,
3256,
705,
1120,
10354,
6,
4310,
3256,
705,
4349,
10354,
6,
4349,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4309,
10354,
6,
940,
3256,
705,
4310,
10354,
6,
2624,
3256,
705,
4051,
10354,
6,
1495,
3256,
705,
2816,
10354,
6,
2598,
3256,
705,
3980,
10354,
6,
405,
3256,
705,
3553,
10354,
6,
2425,
3256,
705,
1899,
10354,
6,
2996,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5333,
10354,
6,
4524,
3256,
705,
5237,
10354,
6,
3312,
3256,
705,
5066,
10354,
6,
3070,
3256,
705,
2414,
10354,
6,
1065,
3256,
705,
2996,
10354,
6,
2999,
3256,
705,
2791,
10354,
6,
2682,
3256,
705,
3134,
10354,
6,
1238,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2154,
10354,
6,
2791,
3256,
705,
4869,
10354,
6,
4761,
3256,
705,
4761,
10354,
6,
1433,
3256,
705,
4790,
10354,
6,
2231,
3256,
705,
4524,
10354,
6,
1270,
3256,
705,
2425,
10354,
6,
5237,
3256,
705,
4304,
10354,
6,
5333,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3324,
10354,
6,
4790,
6,
92,
198,
198,
50,
62,
260,
37393,
796,
8633,
7,
13344,
7,
50,
62,
3524,
13,
27160,
22784,
50,
62,
3524,
13,
13083,
3419,
4008,
198,
198,
2,
15553,
26161,
13934,
284,
19318,
282,
290,
7927,
12,
690,
64,
6906,
319,
611,
1090,
81,
62,
8692,
318,
362,
393,
807,
198,
198,
2,
11259,
479,
62,
72,
5860,
479,
62,
72,
10,
16,
1262,
257,
32097,
5447,
287,
872,
72,
355,
1813,
287,
989,
20855,
198,
198,
2,
33687,
734,
13042,
264,
16,
11,
82,
17,
290,
17706,
2124,
273,
4905,
5002,
3083,
198,
198,
2,
2448,
23914,
4905,
350,
7,
87,
8,
796,
17593,
357,
87,
8,
2124,
11,
810,
357,
87,
8,
43397,
17593,
1963,
13,
351,
2124,
273,
4905,
355,
3090,
198,
198,
2,
14711,
13168,
21001,
477,
2180,
5499,
13,
311,
12,
29305,
11,
350,
2163,
11,
2779,
62,
1102,
332,
353,
11,
2124,
273,
198,
198,
2,
4280,
13168,
17706,
262,
9575,
286,
262,
15835,
198,
2,
16205,
1061,
422,
15835,
1607,
356,
17624,
262,
34062,
286,
311,
12,
29305,
198,
2,
1081,
880,
355,
34062,
286,
17593,
973,
287,
350,
7,
87,
828,
635,
262,
9575,
286,
8251,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1303,
1332,
62,
303,
5217,
3419,
1303,
1057,
1332,
30104,
284,
2198,
611,
4096,
11244,
318,
1762,
628,
220,
220,
220,
1303,
1057,
1388,
290,
4096,
703,
12,
1462,
779,
1388,
2438,
25,
3275,
1248,
12,
2545,
4129,
3275,
460,
307,
13012,
11,
479,
15,
460,
307,
13012,
198,
220,
220,
220,
1303,
290,
9196,
28,
25836,
460,
307,
13012,
284,
12741,
198,
220,
220,
220,
1388,
3419,
198,
220,
220,
220,
3601,
7,
8692,
62,
42946,
7,
87,
11639,
405,
3064,
3064,
8784,
26259,
3064,
3256,
1090,
81,
62,
8692,
28,
17,
4008,
198
] | 2.397245 | 871 |
from Node import Node
| [
6738,
19081,
1330,
19081,
628
] | 4.6 | 5 |
from enum import Enum
from typing import Any, Optional, List
from momento_wire_types import cacheclient_pb2 as cache_client_types
from . import _cache_service_errors_converter as error_converter
from . import _momento_logger
| [
6738,
33829,
1330,
2039,
388,
198,
6738,
19720,
1330,
4377,
11,
32233,
11,
7343,
198,
198,
6738,
2589,
78,
62,
21809,
62,
19199,
1330,
12940,
16366,
62,
40842,
17,
355,
12940,
62,
16366,
62,
19199,
198,
6738,
764,
1330,
4808,
23870,
62,
15271,
62,
48277,
62,
1102,
332,
353,
355,
4049,
62,
1102,
332,
353,
198,
6738,
764,
1330,
4808,
32542,
50217,
62,
6404,
1362,
628,
628,
628,
628
] | 3.376812 | 69 |
import math
| [
11748,
10688,
628
] | 4.333333 | 3 |
"""Script for starting up emulation up with module emulators."""
import logging
import asyncio
from argparse import ArgumentParser
from typing import List
from opentrons.hardware_control.emulation.app import Application
from opentrons.hardware_control.emulation.scripts.run_module_emulator import (
emulator_builder,
)
from opentrons.hardware_control.emulation.settings import Settings
from .run_module_emulator import run as run_module_by_name
async def run(settings: Settings, modules: List[str]) -> None:
"""Run the emulator app with connected module emulators.
Args:
settings: App settings.
modules: The module emulators to start.
Returns:
None
"""
loop = asyncio.get_event_loop()
app_task = loop.create_task(Application(settings=settings).run())
module_tasks = [
loop.create_task(
run_module_by_name(settings=settings, emulator_name=n, host="localhost")
)
for n in modules
]
await asyncio.gather(app_task, *module_tasks)
def main() -> None:
"""Entry point."""
a = ArgumentParser()
a.add_argument(
"--m",
action="append",
choices=emulator_builder.keys(),
help="which module(s) to emulate.",
)
args = a.parse_args()
logging.basicConfig(format="%(asctime)s:%(message)s", level=logging.DEBUG)
asyncio.run(run(Settings(), args.m))
if __name__ == "__main__":
main()
| [
37811,
7391,
329,
3599,
510,
47065,
510,
351,
8265,
795,
24325,
526,
15931,
198,
11748,
18931,
198,
11748,
30351,
952,
198,
6738,
1822,
29572,
1330,
45751,
46677,
198,
6738,
19720,
1330,
7343,
198,
198,
6738,
1034,
298,
12212,
13,
10424,
1574,
62,
13716,
13,
368,
1741,
13,
1324,
1330,
15678,
198,
6738,
1034,
298,
12212,
13,
10424,
1574,
62,
13716,
13,
368,
1741,
13,
46521,
13,
5143,
62,
21412,
62,
368,
8927,
1330,
357,
198,
220,
220,
220,
38274,
62,
38272,
11,
198,
8,
198,
6738,
1034,
298,
12212,
13,
10424,
1574,
62,
13716,
13,
368,
1741,
13,
33692,
1330,
16163,
198,
6738,
764,
5143,
62,
21412,
62,
368,
8927,
1330,
1057,
355,
1057,
62,
21412,
62,
1525,
62,
3672,
628,
198,
292,
13361,
825,
1057,
7,
33692,
25,
16163,
11,
13103,
25,
7343,
58,
2536,
12962,
4613,
6045,
25,
198,
220,
220,
220,
37227,
10987,
262,
38274,
598,
351,
5884,
8265,
795,
24325,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6460,
25,
2034,
6460,
13,
198,
220,
220,
220,
220,
220,
220,
220,
13103,
25,
383,
8265,
795,
24325,
284,
923,
13,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6045,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
9052,
796,
30351,
952,
13,
1136,
62,
15596,
62,
26268,
3419,
628,
220,
220,
220,
598,
62,
35943,
796,
9052,
13,
17953,
62,
35943,
7,
23416,
7,
33692,
28,
33692,
737,
5143,
28955,
198,
220,
220,
220,
8265,
62,
83,
6791,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
9052,
13,
17953,
62,
35943,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1057,
62,
21412,
62,
1525,
62,
3672,
7,
33692,
28,
33692,
11,
38274,
62,
3672,
28,
77,
11,
2583,
2625,
36750,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
329,
299,
287,
13103,
198,
220,
220,
220,
2361,
198,
220,
220,
220,
25507,
30351,
952,
13,
70,
1032,
7,
1324,
62,
35943,
11,
1635,
21412,
62,
83,
6791,
8,
628,
198,
4299,
1388,
3419,
4613,
6045,
25,
198,
220,
220,
220,
37227,
30150,
966,
526,
15931,
198,
220,
220,
220,
257,
796,
45751,
46677,
3419,
198,
220,
220,
220,
257,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
220,
220,
220,
220,
366,
438,
76,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2223,
2625,
33295,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
7747,
28,
368,
8927,
62,
38272,
13,
13083,
22784,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
4758,
8265,
7,
82,
8,
284,
33836,
33283,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
26498,
796,
257,
13,
29572,
62,
22046,
3419,
628,
220,
220,
220,
18931,
13,
35487,
16934,
7,
18982,
2625,
4,
7,
292,
310,
524,
8,
82,
25,
4,
7,
20500,
8,
82,
1600,
1241,
28,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
30351,
952,
13,
5143,
7,
5143,
7,
26232,
22784,
26498,
13,
76,
4008,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.698502 | 534 |
# The original repo: https://github.com/ydhongHIT/DDRNet
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.runner import load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmseg.utils import get_root_logger
from ..builder import BACKBONES
BatchNorm2d = nn.SyncBatchNorm
bn_mom = 0.1
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
@BACKBONES.register_module()
class DDRNet(nn.Module):
"""DDRNet backbone.
`Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes
<https://github.com/ydhongHIT/DDRNet>`_
"""
@staticmethod
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
else:
raise TypeError('pretrained must be a str or None')
def train(self, mode=True):
"""Convert the model into training mode."""
super().train(mode)
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
| [
2,
383,
2656,
29924,
25,
3740,
1378,
12567,
13,
785,
14,
5173,
71,
506,
39,
2043,
14,
35,
7707,
7934,
201,
198,
201,
198,
11748,
28034,
201,
198,
11748,
28034,
13,
20471,
355,
299,
77,
201,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
201,
198,
201,
198,
6738,
8085,
33967,
13,
16737,
1330,
3440,
62,
9122,
4122,
201,
198,
6738,
8085,
33967,
13,
26791,
13,
1845,
24744,
62,
48553,
1330,
4808,
33,
963,
35393,
201,
198,
201,
198,
6738,
8085,
325,
70,
13,
26791,
1330,
651,
62,
15763,
62,
6404,
1362,
201,
198,
6738,
11485,
38272,
1330,
28767,
33,
39677,
201,
198,
201,
198,
33,
963,
35393,
17,
67,
796,
299,
77,
13,
28985,
33,
963,
35393,
201,
198,
9374,
62,
32542,
796,
657,
13,
16,
201,
198,
201,
198,
201,
198,
4299,
3063,
18,
87,
18,
7,
259,
62,
22587,
11,
503,
62,
22587,
11,
33769,
28,
16,
2599,
201,
198,
220,
220,
220,
37227,
18,
87,
18,
3063,
2122,
351,
24511,
37811,
201,
198,
201,
198,
220,
220,
220,
1441,
299,
77,
13,
3103,
85,
17,
67,
7,
259,
62,
22587,
11,
503,
62,
22587,
11,
9720,
62,
7857,
28,
18,
11,
33769,
28,
2536,
485,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24511,
28,
16,
11,
10690,
28,
25101,
8,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
31,
31098,
33,
39677,
13,
30238,
62,
21412,
3419,
201,
198,
4871,
30085,
7934,
7,
20471,
13,
26796,
2599,
201,
198,
220,
220,
220,
37227,
35,
7707,
7934,
32774,
13,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
4600,
29744,
20446,
12,
29268,
27862,
329,
6416,
12,
2435,
290,
6366,
15537,
12449,
5109,
1001,
5154,
341,
286,
5567,
49525,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1279,
5450,
1378,
12567,
13,
785,
14,
5173,
71,
506,
39,
2043,
14,
35,
7707,
7934,
29,
63,
62,
201,
198,
220,
220,
220,
37227,
201,
198,
201,
198,
220,
220,
220,
2488,
12708,
24396,
201,
198,
201,
198,
220,
220,
220,
825,
2315,
62,
43775,
7,
944,
11,
2181,
13363,
28,
14202,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
24243,
1096,
262,
19590,
287,
32774,
13,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
2536,
11,
11902,
2599,
10644,
284,
662,
12,
35311,
19590,
13,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
6045,
13,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
5310,
13363,
11,
965,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
796,
651,
62,
15763,
62,
6404,
1362,
3419,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
9122,
4122,
7,
944,
11,
2181,
13363,
11,
7646,
28,
25101,
11,
49706,
28,
6404,
1362,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2181,
13363,
318,
6045,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
285,
287,
2116,
13,
18170,
33529,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
76,
11,
299,
77,
13,
3103,
85,
17,
67,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
77,
13,
15003,
13,
74,
1385,
278,
62,
11265,
41052,
76,
13,
6551,
11,
4235,
11639,
24408,
62,
448,
3256,
1729,
29127,
414,
11639,
260,
2290,
11537,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
76,
11,
347,
963,
35393,
17,
67,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
77,
13,
15003,
13,
9979,
415,
41052,
76,
13,
6551,
11,
352,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
77,
13,
15003,
13,
9979,
415,
41052,
76,
13,
65,
4448,
11,
657,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
10786,
5310,
13363,
1276,
307,
257,
965,
393,
6045,
11537,
201,
198,
201,
198,
220,
220,
220,
825,
4512,
7,
944,
11,
4235,
28,
17821,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3103,
1851,
262,
2746,
656,
3047,
4235,
526,
15931,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
22446,
27432,
7,
14171,
8,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4235,
290,
2116,
13,
27237,
62,
18206,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
285,
287,
2116,
13,
18170,
33529,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
76,
11,
4808,
33,
963,
35393,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
285,
13,
18206,
3419,
201,
198
] | 2.081458 | 933 |
from django.http import HttpResponse
from kawalc1 import settings
| [
6738,
42625,
14208,
13,
4023,
1330,
367,
29281,
31077,
198,
198,
6738,
479,
707,
282,
66,
16,
1330,
6460,
628,
198
] | 3.285714 | 21 |
a, b = map(int, input().split())
print(a + b if a + b < 10 else "error") | [
64,
11,
275,
796,
3975,
7,
600,
11,
5128,
22446,
35312,
28955,
198,
4798,
7,
64,
1343,
275,
611,
257,
1343,
275,
1279,
838,
2073,
366,
18224,
4943
] | 2.571429 | 28 |
import enum
import uuid
import string
import re
import requests
from pydantic import BaseModel, validator, root_validator
from dataclasses import dataclass
from datetime import datetime
from bin.contentctl_project.contentctl_core.domain.entities.security_content_object import SecurityContentObject
from bin.contentctl_project.contentctl_core.domain.entities.enums.enums import AnalyticsType
from bin.contentctl_project.contentctl_core.domain.entities.enums.enums import DataModel
from bin.contentctl_project.contentctl_core.domain.entities.detection_tags import DetectionTags
from bin.contentctl_project.contentctl_core.domain.entities.deployment import Deployment
from bin.contentctl_project.contentctl_core.domain.entities.unit_test import UnitTest
from bin.contentctl_project.contentctl_core.domain.entities.macro import Macro
from bin.contentctl_project.contentctl_core.domain.entities.lookup import Lookup
from bin.contentctl_project.contentctl_core.domain.entities.baseline import Baseline
from bin.contentctl_project.contentctl_core.domain.entities.playbook import Playbook
| [
11748,
33829,
198,
11748,
334,
27112,
198,
11748,
4731,
198,
11748,
302,
198,
11748,
7007,
198,
198,
6738,
279,
5173,
5109,
1330,
7308,
17633,
11,
4938,
1352,
11,
6808,
62,
12102,
1352,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
12961,
62,
11299,
62,
15252,
1330,
4765,
19746,
10267,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
268,
5700,
13,
268,
5700,
1330,
30437,
6030,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
268,
5700,
13,
268,
5700,
1330,
6060,
17633,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
15255,
3213,
62,
31499,
1330,
46254,
36142,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
2934,
1420,
434,
1330,
34706,
434,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
20850,
62,
9288,
1330,
11801,
14402,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
20285,
305,
1330,
42755,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
5460,
929,
1330,
6803,
929,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
12093,
4470,
1330,
6455,
4470,
198,
6738,
9874,
13,
11299,
34168,
62,
16302,
13,
11299,
34168,
62,
7295,
13,
27830,
13,
298,
871,
13,
1759,
2070,
1330,
3811,
2070,
628,
220
] | 3.572368 | 304 |
"""
Helper script for checking status of transceivers
This script contains re-usable functions for checking status of transceivers.
"""
import logging
import re
def parse_transceiver_info(output_lines):
"""
@summary: Parse the list of transceiver from DB table TRANSCEIVER_INFO content
@param output_lines: DB table TRANSCEIVER_INFO content output by 'redis' command
@return: Return parsed transceivers in a list
"""
result = []
p = re.compile(r"TRANSCEIVER_INFO\|(Ethernet\d+)")
for line in output_lines:
m = p.match(line)
assert m, "Unexpected line %s" % line
result.append(m.group(1))
return result
def parse_transceiver_dom_sensor(output_lines):
"""
@summary: Parse the list of transceiver from DB table TRANSCEIVER_DOM_SENSOR content
@param output_lines: DB table TRANSCEIVER_DOM_SENSOR content output by 'redis' command
@return: Return parsed transceivers in a list
"""
result = []
p = re.compile(r"TRANSCEIVER_DOM_SENSOR\|(Ethernet\d+)")
for line in output_lines:
m = p.match(line)
assert m, "Unexpected line %s" % line
result.append(m.group(1))
return result
def all_transceivers_detected(dut, asic_index, interfaces, xcvr_skip_list):
"""
Check if transceiver information of all the specified interfaces have been detected.
"""
cmd = "redis-cli --raw -n 6 keys TRANSCEIVER_INFO\*"
asichost = dut.asic_instance(asic_index)
docker_cmd = asichost.get_docker_cmd(cmd, "database")
db_output = dut.command(docker_cmd)["stdout_lines"]
not_detected_interfaces = [intf for intf in interfaces if (intf not in xcvr_skip_list[dut.hostname] and
"TRANSCEIVER_INFO|{}".format(intf) not in db_output)]
if len(not_detected_interfaces) > 0:
logging.info("Interfaces not detected: %s" % str(not_detected_interfaces))
return False
return True
def check_transceiver_basic(dut, asic_index, interfaces, xcvr_skip_list):
"""
@summary: Check whether all the specified interface are in TRANSCEIVER_INFO redis DB.
@param dut: The AnsibleHost object of DUT. For interacting with DUT.
@param interfaces: List of interfaces that need to be checked.
"""
logging.info("Check whether transceiver information of all ports are in redis")
cmd = "redis-cli -n 6 keys TRANSCEIVER_INFO*"
asichost = dut.asic_instance(asic_index)
docker_cmd = asichost.get_docker_cmd(cmd, "database")
xcvr_info = dut.command(docker_cmd)
parsed_xcvr_info = parse_transceiver_info(xcvr_info["stdout_lines"])
for intf in interfaces:
if intf not in xcvr_skip_list[dut.hostname]:
assert intf in parsed_xcvr_info, "TRANSCEIVER INFO of %s is not found in DB" % intf
def check_transceiver_details(dut, asic_index, interfaces, xcvr_skip_list):
"""
@summary: Check the detailed TRANSCEIVER_INFO content of all the specified interfaces.
@param dut: The AnsibleHost object of DUT. For interacting with DUT.
@param interfaces: List of interfaces that need to be checked.
"""
asichost = dut.asic_instance(asic_index)
logging.info("Check detailed transceiver information of each connected port")
expected_fields = ["type", "vendor_rev", "serial", "manufacturer", "model"]
for intf in interfaces:
if intf not in xcvr_skip_list[dut.hostname]:
cmd = 'redis-cli -n 6 hgetall "TRANSCEIVER_INFO|%s"' % intf
docker_cmd = asichost.get_docker_cmd(cmd, "database")
port_xcvr_info = dut.command(docker_cmd)
for field in expected_fields:
assert port_xcvr_info["stdout"].find(field) >= 0, \
"Expected field %s is not found in %s while checking %s" % (field, port_xcvr_info["stdout"], intf)
def check_transceiver_dom_sensor_basic(dut, asic_index, interfaces, xcvr_skip_list):
"""
@summary: Check whether all the specified interface are in TRANSCEIVER_DOM_SENSOR redis DB.
@param dut: The AnsibleHost object of DUT. For interacting with DUT.
@param interfaces: List of interfaces that need to be checked.
"""
logging.info("Check whether TRANSCEIVER_DOM_SENSOR of all ports in redis")
cmd = "redis-cli -n 6 keys TRANSCEIVER_DOM_SENSOR*"
asichost = dut.asic_instance(asic_index)
docker_cmd = asichost.get_docker_cmd(cmd, "database")
xcvr_dom_sensor = dut.command(docker_cmd)
parsed_xcvr_dom_sensor = parse_transceiver_dom_sensor(xcvr_dom_sensor["stdout_lines"])
for intf in interfaces:
if intf not in xcvr_skip_list[dut.hostname]:
assert intf in parsed_xcvr_dom_sensor, "TRANSCEIVER_DOM_SENSOR of %s is not found in DB" % intf
def check_transceiver_dom_sensor_details(dut, asic_index, interfaces, xcvr_skip_list):
"""
@summary: Check the detailed TRANSCEIVER_DOM_SENSOR content of all the specified interfaces.
@param dut: The AnsibleHost object of DUT. For interacting with DUT.
@param interfaces: List of interfaces that need to be checked.
"""
logging.info("Check detailed TRANSCEIVER_DOM_SENSOR information of each connected ports")
asichost = dut.asic_instance(asic_index)
expected_fields = ["temperature", "voltage", "rx1power", "rx2power", "rx3power", "rx4power", "tx1bias",
"tx2bias", "tx3bias", "tx4bias", "tx1power", "tx2power", "tx3power", "tx4power"]
for intf in interfaces:
if intf not in xcvr_skip_list[dut.hostname]:
cmd = 'redis-cli -n 6 hgetall "TRANSCEIVER_DOM_SENSOR|%s"' % intf
docker_cmd = asichost.get_docker_cmd(cmd, "database")
port_xcvr_dom_sensor = dut.command(docker_cmd)
for field in expected_fields:
assert port_xcvr_dom_sensor["stdout"].find(field) >= 0, \
"Expected field %s is not found in %s while checking %s" % (
field, port_xcvr_dom_sensor["stdout"], intf)
def check_transceiver_status(dut, asic_index, interfaces, xcvr_skip_list):
"""
@summary: Check transceiver information of all the specified interfaces in redis DB.
@param dut: The AnsibleHost object of DUT. For interacting with DUT.
@param interfaces: List of interfaces that need to be checked.
"""
check_transceiver_basic(dut, asic_index, interfaces, xcvr_skip_list)
check_transceiver_details(dut, asic_index, interfaces, xcvr_skip_list)
check_transceiver_dom_sensor_basic(dut, asic_index, interfaces, xcvr_skip_list)
check_transceiver_dom_sensor_details(dut, asic_index, interfaces, xcvr_skip_list)
| [
37811,
198,
47429,
4226,
329,
10627,
3722,
286,
1007,
344,
1191,
198,
198,
1212,
4226,
4909,
302,
12,
31979,
5499,
329,
10627,
3722,
286,
1007,
344,
1191,
13,
198,
37811,
198,
11748,
18931,
198,
11748,
302,
628,
198,
4299,
21136,
62,
7645,
39729,
62,
10951,
7,
22915,
62,
6615,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
2547,
325,
262,
1351,
286,
1007,
39729,
422,
20137,
3084,
44069,
5222,
38757,
62,
10778,
2695,
198,
220,
220,
220,
2488,
17143,
5072,
62,
6615,
25,
20137,
3084,
44069,
5222,
38757,
62,
10778,
2695,
5072,
416,
705,
445,
271,
6,
3141,
198,
220,
220,
220,
2488,
7783,
25,
8229,
44267,
1007,
344,
1191,
287,
257,
1351,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1255,
796,
17635,
198,
220,
220,
220,
279,
796,
302,
13,
5589,
576,
7,
81,
1,
5446,
15037,
5222,
38757,
62,
10778,
59,
91,
7,
36,
490,
3262,
59,
67,
28988,
4943,
198,
220,
220,
220,
329,
1627,
287,
5072,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
279,
13,
15699,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
285,
11,
366,
52,
42072,
1627,
4064,
82,
1,
4064,
1627,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
33295,
7,
76,
13,
8094,
7,
16,
4008,
198,
220,
220,
220,
1441,
1255,
628,
198,
4299,
21136,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
7,
22915,
62,
6615,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
2547,
325,
262,
1351,
286,
1007,
39729,
422,
20137,
3084,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
2695,
198,
220,
220,
220,
2488,
17143,
5072,
62,
6615,
25,
20137,
3084,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
2695,
5072,
416,
705,
445,
271,
6,
3141,
198,
220,
220,
220,
2488,
7783,
25,
8229,
44267,
1007,
344,
1191,
287,
257,
1351,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1255,
796,
17635,
198,
220,
220,
220,
279,
796,
302,
13,
5589,
576,
7,
81,
1,
5446,
15037,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
59,
91,
7,
36,
490,
3262,
59,
67,
28988,
4943,
198,
220,
220,
220,
329,
1627,
287,
5072,
62,
6615,
25,
198,
220,
220,
220,
220,
220,
220,
220,
285,
796,
279,
13,
15699,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
285,
11,
366,
52,
42072,
1627,
4064,
82,
1,
4064,
1627,
198,
220,
220,
220,
220,
220,
220,
220,
1255,
13,
33295,
7,
76,
13,
8094,
7,
16,
4008,
198,
220,
220,
220,
1441,
1255,
628,
198,
4299,
477,
62,
7645,
344,
1191,
62,
15255,
11197,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6822,
611,
1007,
39729,
1321,
286,
477,
262,
7368,
20314,
423,
587,
12326,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
23991,
796,
366,
445,
271,
12,
44506,
1377,
1831,
532,
77,
718,
8251,
44069,
5222,
38757,
62,
10778,
59,
9,
1,
198,
220,
220,
220,
355,
488,
455,
796,
288,
315,
13,
292,
291,
62,
39098,
7,
292,
291,
62,
9630,
8,
198,
220,
220,
220,
36253,
62,
28758,
796,
355,
488,
455,
13,
1136,
62,
45986,
62,
28758,
7,
28758,
11,
366,
48806,
4943,
198,
220,
220,
220,
20613,
62,
22915,
796,
288,
315,
13,
21812,
7,
45986,
62,
28758,
8,
14692,
19282,
448,
62,
6615,
8973,
198,
220,
220,
220,
407,
62,
15255,
11197,
62,
3849,
32186,
796,
685,
600,
69,
329,
493,
69,
287,
20314,
611,
357,
600,
69,
407,
287,
2124,
33967,
81,
62,
48267,
62,
4868,
58,
67,
315,
13,
4774,
3672,
60,
290,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5446,
15037,
5222,
38757,
62,
10778,
91,
90,
92,
1911,
18982,
7,
600,
69,
8,
407,
287,
20613,
62,
22915,
15437,
198,
220,
220,
220,
611,
18896,
7,
1662,
62,
15255,
11197,
62,
3849,
32186,
8,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
18931,
13,
10951,
7203,
9492,
32186,
407,
12326,
25,
4064,
82,
1,
4064,
965,
7,
1662,
62,
15255,
11197,
62,
3849,
32186,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
1441,
6407,
628,
198,
4299,
2198,
62,
7645,
39729,
62,
35487,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
6822,
1771,
477,
262,
7368,
7071,
389,
287,
44069,
5222,
38757,
62,
10778,
2266,
271,
20137,
13,
198,
220,
220,
220,
2488,
17143,
288,
315,
25,
383,
28038,
856,
17932,
2134,
286,
360,
3843,
13,
1114,
24986,
351,
360,
3843,
13,
198,
220,
220,
220,
2488,
17143,
20314,
25,
7343,
286,
20314,
326,
761,
284,
307,
10667,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18931,
13,
10951,
7203,
9787,
1771,
1007,
39729,
1321,
286,
477,
14090,
389,
287,
2266,
271,
4943,
198,
220,
220,
220,
23991,
796,
366,
445,
271,
12,
44506,
532,
77,
718,
8251,
44069,
5222,
38757,
62,
10778,
9,
1,
198,
220,
220,
220,
355,
488,
455,
796,
288,
315,
13,
292,
291,
62,
39098,
7,
292,
291,
62,
9630,
8,
198,
220,
220,
220,
36253,
62,
28758,
796,
355,
488,
455,
13,
1136,
62,
45986,
62,
28758,
7,
28758,
11,
366,
48806,
4943,
198,
220,
220,
220,
2124,
33967,
81,
62,
10951,
796,
288,
315,
13,
21812,
7,
45986,
62,
28758,
8,
198,
220,
220,
220,
44267,
62,
25306,
37020,
62,
10951,
796,
21136,
62,
7645,
39729,
62,
10951,
7,
25306,
37020,
62,
10951,
14692,
19282,
448,
62,
6615,
8973,
8,
198,
220,
220,
220,
329,
493,
69,
287,
20314,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
493,
69,
407,
287,
2124,
33967,
81,
62,
48267,
62,
4868,
58,
67,
315,
13,
4774,
3672,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
493,
69,
287,
44267,
62,
25306,
37020,
62,
10951,
11,
366,
5446,
15037,
5222,
38757,
24890,
286,
4064,
82,
318,
407,
1043,
287,
20137,
1,
4064,
493,
69,
628,
198,
4299,
2198,
62,
7645,
39729,
62,
36604,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
6822,
262,
6496,
44069,
5222,
38757,
62,
10778,
2695,
286,
477,
262,
7368,
20314,
13,
198,
220,
220,
220,
2488,
17143,
288,
315,
25,
383,
28038,
856,
17932,
2134,
286,
360,
3843,
13,
1114,
24986,
351,
360,
3843,
13,
198,
220,
220,
220,
2488,
17143,
20314,
25,
7343,
286,
20314,
326,
761,
284,
307,
10667,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
355,
488,
455,
796,
288,
315,
13,
292,
291,
62,
39098,
7,
292,
291,
62,
9630,
8,
198,
220,
220,
220,
18931,
13,
10951,
7203,
9787,
6496,
1007,
39729,
1321,
286,
1123,
5884,
2493,
4943,
198,
220,
220,
220,
2938,
62,
25747,
796,
14631,
4906,
1600,
366,
85,
18738,
62,
18218,
1600,
366,
46911,
1600,
366,
48119,
15051,
1600,
366,
19849,
8973,
198,
220,
220,
220,
329,
493,
69,
287,
20314,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
493,
69,
407,
287,
2124,
33967,
81,
62,
48267,
62,
4868,
58,
67,
315,
13,
4774,
3672,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23991,
796,
705,
445,
271,
12,
44506,
532,
77,
718,
289,
1136,
439,
366,
5446,
15037,
5222,
38757,
62,
10778,
91,
4,
82,
30543,
4064,
493,
69,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36253,
62,
28758,
796,
355,
488,
455,
13,
1136,
62,
45986,
62,
28758,
7,
28758,
11,
366,
48806,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2493,
62,
25306,
37020,
62,
10951,
796,
288,
315,
13,
21812,
7,
45986,
62,
28758,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2214,
287,
2938,
62,
25747,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
2493,
62,
25306,
37020,
62,
10951,
14692,
19282,
448,
1,
4083,
19796,
7,
3245,
8,
18189,
657,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3109,
7254,
2214,
4064,
82,
318,
407,
1043,
287,
4064,
82,
981,
10627,
4064,
82,
1,
4064,
357,
3245,
11,
2493,
62,
25306,
37020,
62,
10951,
14692,
19282,
448,
33116,
493,
69,
8,
628,
198,
4299,
2198,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
62,
35487,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
6822,
1771,
477,
262,
7368,
7071,
389,
287,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
2266,
271,
20137,
13,
198,
220,
220,
220,
2488,
17143,
288,
315,
25,
383,
28038,
856,
17932,
2134,
286,
360,
3843,
13,
1114,
24986,
351,
360,
3843,
13,
198,
220,
220,
220,
2488,
17143,
20314,
25,
7343,
286,
20314,
326,
761,
284,
307,
10667,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18931,
13,
10951,
7203,
9787,
1771,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
286,
477,
14090,
287,
2266,
271,
4943,
198,
220,
220,
220,
23991,
796,
366,
445,
271,
12,
44506,
532,
77,
718,
8251,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
9,
1,
198,
220,
220,
220,
355,
488,
455,
796,
288,
315,
13,
292,
291,
62,
39098,
7,
292,
291,
62,
9630,
8,
198,
220,
220,
220,
36253,
62,
28758,
796,
355,
488,
455,
13,
1136,
62,
45986,
62,
28758,
7,
28758,
11,
366,
48806,
4943,
198,
220,
220,
220,
2124,
33967,
81,
62,
3438,
62,
82,
22854,
796,
288,
315,
13,
21812,
7,
45986,
62,
28758,
8,
198,
220,
220,
220,
44267,
62,
25306,
37020,
62,
3438,
62,
82,
22854,
796,
21136,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
7,
25306,
37020,
62,
3438,
62,
82,
22854,
14692,
19282,
448,
62,
6615,
8973,
8,
198,
220,
220,
220,
329,
493,
69,
287,
20314,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
493,
69,
407,
287,
2124,
33967,
81,
62,
48267,
62,
4868,
58,
67,
315,
13,
4774,
3672,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
493,
69,
287,
44267,
62,
25306,
37020,
62,
3438,
62,
82,
22854,
11,
366,
5446,
15037,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
286,
4064,
82,
318,
407,
1043,
287,
20137,
1,
4064,
493,
69,
628,
198,
4299,
2198,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
62,
36604,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
6822,
262,
6496,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
2695,
286,
477,
262,
7368,
20314,
13,
198,
220,
220,
220,
2488,
17143,
288,
315,
25,
383,
28038,
856,
17932,
2134,
286,
360,
3843,
13,
1114,
24986,
351,
360,
3843,
13,
198,
220,
220,
220,
2488,
17143,
20314,
25,
7343,
286,
20314,
326,
761,
284,
307,
10667,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18931,
13,
10951,
7203,
9787,
6496,
44069,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
1321,
286,
1123,
5884,
14090,
4943,
198,
220,
220,
220,
355,
488,
455,
796,
288,
315,
13,
292,
291,
62,
39098,
7,
292,
291,
62,
9630,
8,
198,
220,
220,
220,
2938,
62,
25747,
796,
14631,
11498,
21069,
1600,
366,
37764,
496,
1600,
366,
40914,
16,
6477,
1600,
366,
40914,
17,
6477,
1600,
366,
40914,
18,
6477,
1600,
366,
40914,
19,
6477,
1600,
366,
17602,
16,
65,
4448,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17602,
17,
65,
4448,
1600,
366,
17602,
18,
65,
4448,
1600,
366,
17602,
19,
65,
4448,
1600,
366,
17602,
16,
6477,
1600,
366,
17602,
17,
6477,
1600,
366,
17602,
18,
6477,
1600,
366,
17602,
19,
6477,
8973,
198,
220,
220,
220,
329,
493,
69,
287,
20314,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
493,
69,
407,
287,
2124,
33967,
81,
62,
48267,
62,
4868,
58,
67,
315,
13,
4774,
3672,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23991,
796,
705,
445,
271,
12,
44506,
532,
77,
718,
289,
1136,
439,
366,
5446,
15037,
5222,
38757,
62,
39170,
62,
50,
16938,
1581,
91,
4,
82,
30543,
4064,
493,
69,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36253,
62,
28758,
796,
355,
488,
455,
13,
1136,
62,
45986,
62,
28758,
7,
28758,
11,
366,
48806,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2493,
62,
25306,
37020,
62,
3438,
62,
82,
22854,
796,
288,
315,
13,
21812,
7,
45986,
62,
28758,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2214,
287,
2938,
62,
25747,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
2493,
62,
25306,
37020,
62,
3438,
62,
82,
22854,
14692,
19282,
448,
1,
4083,
19796,
7,
3245,
8,
18189,
657,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3109,
7254,
2214,
4064,
82,
318,
407,
1043,
287,
4064,
82,
981,
10627,
4064,
82,
1,
4064,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2214,
11,
2493,
62,
25306,
37020,
62,
3438,
62,
82,
22854,
14692,
19282,
448,
33116,
493,
69,
8,
628,
198,
4299,
2198,
62,
7645,
39729,
62,
13376,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2488,
49736,
25,
6822,
1007,
39729,
1321,
286,
477,
262,
7368,
20314,
287,
2266,
271,
20137,
13,
198,
220,
220,
220,
2488,
17143,
288,
315,
25,
383,
28038,
856,
17932,
2134,
286,
360,
3843,
13,
1114,
24986,
351,
360,
3843,
13,
198,
220,
220,
220,
2488,
17143,
20314,
25,
7343,
286,
20314,
326,
761,
284,
307,
10667,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2198,
62,
7645,
39729,
62,
35487,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
8,
198,
220,
220,
220,
2198,
62,
7645,
39729,
62,
36604,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
8,
198,
220,
220,
220,
2198,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
62,
35487,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
8,
198,
220,
220,
220,
2198,
62,
7645,
39729,
62,
3438,
62,
82,
22854,
62,
36604,
7,
67,
315,
11,
355,
291,
62,
9630,
11,
20314,
11,
2124,
33967,
81,
62,
48267,
62,
4868,
8,
198
] | 2.549769 | 2,592 |
from msdi_io import *
if __name__ == '__main__':
print('Labels:', get_label_list())
bl = batchLoader(100,path_msdi=msdi_path)
for i in range(10):
X,y=bl.load(i)
print(X.shape,len(y))
#print(X[1])
""" print('Labels:', get_label_list())
bl = batchLoader(100,path_msdi=msdi_path)
for i in range(10):
for batch in bl.loadBatch():
X,y = batch[0],batch[1]
print()
print(X[1])
"""
| [
6738,
13845,
10989,
62,
952,
1330,
1635,
198,
201,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
197,
4798,
10786,
17822,
1424,
25,
3256,
651,
62,
18242,
62,
4868,
28955,
201,
198,
197,
2436,
796,
15458,
17401,
7,
3064,
11,
6978,
62,
907,
10989,
28,
907,
10989,
62,
6978,
8,
201,
198,
197,
1640,
1312,
287,
2837,
7,
940,
2599,
201,
198,
197,
197,
55,
11,
88,
28,
2436,
13,
2220,
7,
72,
8,
201,
198,
197,
197,
4798,
7,
55,
13,
43358,
11,
11925,
7,
88,
4008,
201,
198,
197,
197,
2,
4798,
7,
55,
58,
16,
12962,
198,
37811,
197,
4798,
10786,
17822,
1424,
25,
3256,
651,
62,
18242,
62,
4868,
28955,
198,
197,
2436,
796,
15458,
17401,
7,
3064,
11,
6978,
62,
907,
10989,
28,
907,
10989,
62,
6978,
8,
198,
197,
1640,
1312,
287,
2837,
7,
940,
2599,
198,
197,
197,
1640,
15458,
287,
698,
13,
2220,
33,
963,
33529,
198,
197,
197,
197,
55,
11,
88,
796,
15458,
58,
15,
4357,
43501,
58,
16,
60,
201,
198,
197,
197,
197,
4798,
3419,
198,
197,
197,
197,
4798,
7,
55,
58,
16,
12962,
198,
37811,
201,
198
] | 2.06599 | 197 |
import numbers
from copy import deepcopy
from .number import Number
from .string import String
from .set import Set
from .base_datatype import DynamoDataType
from .expression import ListAppendExpression
from .translator import (
DictTranslator,
ListTranslator)
class DefaultMapGuesser(object):
"""A class to guess what datatype to send to DynamoDB based the attribute value
A generic map or list type can have anything as its keys and values. There is no way
to know what the Datatypes should be used for certainty because many of the datatypes
defined (like Datetimes) all are converted to a String before saved in the table.
This class will look at the values and decide which Datatype to use.
This class can be extended to handle your specific use cases. For example, if you know
that the key "my_datetime" should always return a Datetime datatype, the guess()
method can be overridden to handle specific cases.
"""
def guess(self, key, value):
"""guess the datatype from the value
Guessing for mapping means we are trying to figure out the datatype
in order to convert it into a dict usable by dynamodb. So this
guesser will makes its guess based on value directly
Parameters:
key: the string of the column_name
value: the value of the column_name
Returns:
A DynamoDataType object
"""
if isinstance(value, numbers.Number):
return Number()
elif isinstance(value, dict):
return Map()
elif isinstance(value, list):
return List()
else:
return String()
class DefaultParseGuesser(object):
"""A class to decide what datatype to use toe
A generic map or list type can have anything as its keys and values. There is no way
to know what the Datatypes should be used for certainty because many of the datatypes
defined (like Datetimes) all are converted to a String before saved in the table.
This class will look at the condition_type to determine what Datatype should be used
This class can be extended to handle your specific use cases. For example, if you know
that the key "my_datetime" should always return a Datetime datatype, the guess()
method can be overridden to handle specific cases.
"""
def guess(self, key, value):
"""guess the datatype from the key within value
we are guessing on something like {'M': {'test': {'S': 'hello'}}}
where key is 'test' and value is {'S': 'hello'}
this will fetch the inner key ('S') and guess from this value
Parameters:
key: the column_name of the attribute
value: a dict whose key is the condition_type and value is the value
of the column.
Returns:
A DynamoDataType object
Example:
guess('my_string', {'S': 'hello'})
"""
attr_key = list(value)[0]
if attr_key == "N":
return Number()
elif attr_key == "S":
return String()
elif attr_key == "SS":
return Set(String())
elif attr_key == "NS":
return Set(Number())
elif attr_key == "L":
return List()
elif attr_key == "M":
return Map()
else:
return String()
class Map(DynamoDataType):
"""A class to represent generic Map datatypes
A Map is used to store nested data within a record. It is essentially a dict where
each key/value is stored in the database. Since the values can be anything, a
MapGuesser and ParseGuesser are used to determine the datatype of these nested
attributes. These guessers are passed to the constructor, and can be customized to
return specific datatypes if you know the structure of the nested objects.
"""
def __init__(
self,
map_guesser=None,
parse_guesser=None,
default=None,
column_name=""):
"""constructor for Map
Parameters:
map_guesser: an object inheriting from DefaultMapGuesser
Defaults to the DefaultMapGuesser
parse_guesser: an object inheriting from DefaultParseGuesser
Defaults to the DefaultParseGuesser.
default: a default value for the column. It can be a value or function
column_name: a string defining the name of the column on the table
"""
super(Map, self).__init__(
condition_type="M",
default=default,
column_name=column_name)
self.map_guesser = map_guesser or DefaultMapGuesser()
self.parse_guesser = parse_guesser or DefaultParseGuesser()
self.translator = DictTranslator(self, self.map_guesser, self.parse_guesser)
def key(self, datatype, key):
"""build a duplicate datatype with the column_name using a dot notiation
When forming a Request that involves a specific key from the Map, that item can
be specified using the key() method.
Parameters:
datatype: a DynamoDataType instance representing the nested value
key: the name of the nested value
Returns:
A copy of the datatype with an new keyname
For example::
Parent.scan.filter(MyModel.child.key(String(), 'name') == 'Zac')
"""
column_name = self.column_name + "." + key
return type(datatype)(column_name=column_name)
class List(DynamoDataType):
"""A class to represent generic List datatypes
A List is used to store a collection of values of a varying length. It is essentially
an array where each item is the value stored in the database. Since values can be
anything, a MapGueser and ParseGuesser are used to determine the datatype of the
array's items. These guessers are passed to the constructor, and can be customized to
return specific datatypes if you know the structure of the array and each item.
"""
def __init__(
self,
map_guesser=None,
parse_guesser=None,
default=None,
column_name=""):
"""constructor for List
Parameters:
map_guesser: An object inheriting from DefaultMapGuesser
Defaults to the DefaultMapGuesser
parse_guesser: An object inheriting from DefaultParseGuesser
Defaults to the DefaultParseGuesser.
default: a default value for the column. It can be a value or function
column_name: a string defining the name of the column on the table
"""
super(List, self).__init__(
condition_type="L",
default=default,
column_name=column_name)
self.map_guesser = map_guesser or DefaultMapGuesser()
self.parse_guesser = parse_guesser or DefaultParseGuesser()
self.translator = ListTranslator(self, self.map_guesser, self.parse_guesser)
def append(self, array):
"""Build an expression to add the array to the end of the existing column data
It can only be used in SET UpdateExpressions.
Parameters:
array: can be a list or single value to be appended. When it is a single
value, it is automatically put inside its own array, before building the
expression.
Returns:
A ListAppendExpression
For example::
Person.update \\
.key(Person.email == "[email protected]")
.set(Person.toys.append({"color": "red", "name": "car"})
"""
if not isinstance(array, list):
array = [array]
return ListAppendExpression(self, array)
def index(self, idx, datatype):
"""build a duplicate datatype with the _index set to idx
When forming a Request that involves a specific item in the List, that item can
be specified using this index() method.
Parameters:
idx: a number for the index of the desired item in the list
datatype: a DynamoDataType object representing the item indexed
Returns:
A copy of the datatype with _index set
Raises:
ValueError: An error when the datatype is not an instance of DynamoDataType
For example::
MyModel.scan.filter(MyModel.my_list.index(1, String()) == 'world')
"""
if not isinstance(datatype, DynamoDataType):
raise ValueError("datatype must be an instance of DynamoDataType")
dt = deepcopy(datatype)
dt._index = idx
return dt
| [
11748,
3146,
198,
6738,
4866,
1330,
2769,
30073,
198,
6738,
764,
17618,
1330,
7913,
198,
6738,
764,
8841,
1330,
10903,
198,
6738,
764,
2617,
1330,
5345,
198,
6738,
764,
8692,
62,
19608,
265,
2981,
1330,
41542,
6601,
6030,
198,
6738,
764,
38011,
1330,
7343,
4677,
437,
16870,
2234,
198,
6738,
764,
7645,
41880,
1330,
357,
198,
220,
220,
220,
360,
713,
8291,
41880,
11,
198,
220,
220,
220,
7343,
8291,
41880,
8,
198,
198,
4871,
15161,
13912,
8205,
408,
263,
7,
15252,
2599,
198,
220,
220,
220,
37227,
32,
1398,
284,
4724,
644,
4818,
265,
2981,
284,
3758,
284,
41542,
11012,
1912,
262,
11688,
1988,
628,
220,
220,
220,
317,
14276,
3975,
393,
1351,
2099,
460,
423,
1997,
355,
663,
8251,
290,
3815,
13,
1318,
318,
645,
835,
198,
220,
220,
220,
284,
760,
644,
262,
16092,
265,
9497,
815,
307,
973,
329,
18979,
780,
867,
286,
262,
4818,
265,
9497,
198,
220,
220,
220,
5447,
357,
2339,
16092,
46874,
8,
477,
389,
11513,
284,
257,
10903,
878,
7448,
287,
262,
3084,
13,
198,
220,
220,
220,
770,
1398,
481,
804,
379,
262,
3815,
290,
5409,
543,
16092,
265,
2981,
284,
779,
13,
628,
220,
220,
220,
770,
1398,
460,
307,
7083,
284,
5412,
534,
2176,
779,
2663,
13,
1114,
1672,
11,
611,
345,
760,
198,
220,
220,
220,
326,
262,
1994,
366,
1820,
62,
19608,
8079,
1,
815,
1464,
1441,
257,
16092,
8079,
4818,
265,
2981,
11,
262,
4724,
3419,
198,
220,
220,
220,
2446,
460,
307,
23170,
4651,
284,
5412,
2176,
2663,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
4724,
7,
944,
11,
1994,
11,
1988,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5162,
408,
262,
4818,
265,
2981,
422,
262,
1988,
628,
220,
220,
220,
220,
220,
220,
220,
1962,
27289,
329,
16855,
1724,
356,
389,
2111,
284,
3785,
503,
262,
4818,
265,
2981,
198,
220,
220,
220,
220,
220,
220,
220,
287,
1502,
284,
10385,
340,
656,
257,
8633,
24284,
416,
6382,
375,
65,
13,
1406,
428,
198,
220,
220,
220,
220,
220,
220,
220,
4724,
263,
481,
1838,
663,
4724,
1912,
319,
1988,
3264,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
25,
262,
4731,
286,
262,
5721,
62,
3672,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
25,
262,
1988,
286,
262,
5721,
62,
3672,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
41542,
6601,
6030,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
8367,
11,
3146,
13,
15057,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
7913,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
8367,
11,
8633,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
9347,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
318,
39098,
7,
8367,
11,
1351,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
7343,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10903,
3419,
628,
198,
4871,
15161,
10044,
325,
8205,
408,
263,
7,
15252,
2599,
198,
220,
220,
220,
37227,
32,
1398,
284,
5409,
644,
4818,
265,
2981,
284,
779,
21189,
628,
220,
220,
220,
317,
14276,
3975,
393,
1351,
2099,
460,
423,
1997,
355,
663,
8251,
290,
3815,
13,
1318,
318,
645,
835,
198,
220,
220,
220,
284,
760,
644,
262,
16092,
265,
9497,
815,
307,
973,
329,
18979,
780,
867,
286,
262,
4818,
265,
9497,
198,
220,
220,
220,
5447,
357,
2339,
16092,
46874,
8,
477,
389,
11513,
284,
257,
10903,
878,
7448,
287,
262,
3084,
13,
198,
220,
220,
220,
770,
1398,
481,
804,
379,
262,
4006,
62,
4906,
284,
5004,
644,
16092,
265,
2981,
815,
307,
973,
628,
220,
220,
220,
770,
1398,
460,
307,
7083,
284,
5412,
534,
2176,
779,
2663,
13,
1114,
1672,
11,
611,
345,
760,
198,
220,
220,
220,
326,
262,
1994,
366,
1820,
62,
19608,
8079,
1,
815,
1464,
1441,
257,
16092,
8079,
4818,
265,
2981,
11,
262,
4724,
3419,
198,
220,
220,
220,
2446,
460,
307,
23170,
4651,
284,
5412,
2176,
2663,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
4724,
7,
944,
11,
1994,
11,
1988,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
5162,
408,
262,
4818,
265,
2981,
422,
262,
1994,
1626,
1988,
628,
220,
220,
220,
220,
220,
220,
220,
356,
389,
25260,
319,
1223,
588,
1391,
6,
44,
10354,
1391,
6,
9288,
10354,
1391,
6,
50,
10354,
705,
31373,
6,
42535,
198,
220,
220,
220,
220,
220,
220,
220,
810,
1994,
318,
705,
9288,
6,
290,
1988,
318,
1391,
6,
50,
10354,
705,
31373,
6,
92,
198,
220,
220,
220,
220,
220,
220,
220,
428,
481,
21207,
262,
8434,
1994,
19203,
50,
11537,
290,
4724,
422,
428,
1988,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
25,
262,
5721,
62,
3672,
286,
262,
11688,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
25,
257,
8633,
3025,
1994,
318,
262,
4006,
62,
4906,
290,
1988,
318,
262,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
286,
262,
5721,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
317,
41542,
6601,
6030,
2134,
628,
220,
220,
220,
220,
220,
220,
220,
17934,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4724,
10786,
1820,
62,
8841,
3256,
1391,
6,
50,
10354,
705,
31373,
6,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
708,
81,
62,
2539,
796,
1351,
7,
8367,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
611,
708,
81,
62,
2539,
6624,
366,
45,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
7913,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
708,
81,
62,
2539,
6624,
366,
50,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10903,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
708,
81,
62,
2539,
6624,
366,
5432,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5345,
7,
10100,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
708,
81,
62,
2539,
6624,
366,
8035,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5345,
7,
15057,
28955,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
708,
81,
62,
2539,
6624,
366,
43,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
7343,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
708,
81,
62,
2539,
6624,
366,
44,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
9347,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10903,
3419,
628,
198,
4871,
9347,
7,
35,
4989,
78,
6601,
6030,
2599,
198,
220,
220,
220,
37227,
32,
1398,
284,
2380,
14276,
9347,
4818,
265,
9497,
628,
220,
220,
220,
317,
9347,
318,
973,
284,
3650,
28376,
1366,
1626,
257,
1700,
13,
632,
318,
6986,
257,
8633,
810,
198,
220,
220,
220,
1123,
1994,
14,
8367,
318,
8574,
287,
262,
6831,
13,
4619,
262,
3815,
460,
307,
1997,
11,
257,
198,
220,
220,
220,
9347,
8205,
408,
263,
290,
2547,
325,
8205,
408,
263,
389,
973,
284,
5004,
262,
4818,
265,
2981,
286,
777,
28376,
198,
220,
220,
220,
12608,
13,
2312,
4724,
364,
389,
3804,
284,
262,
23772,
11,
290,
460,
307,
27658,
284,
198,
220,
220,
220,
1441,
2176,
4818,
265,
9497,
611,
345,
760,
262,
4645,
286,
262,
28376,
5563,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
5162,
408,
263,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
5162,
408,
263,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
33151,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
41571,
273,
329,
9347,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
5162,
408,
263,
25,
281,
2134,
10639,
1780,
422,
15161,
13912,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
262,
15161,
13912,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
5162,
408,
263,
25,
281,
2134,
10639,
1780,
422,
15161,
10044,
325,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
262,
15161,
10044,
325,
8205,
408,
263,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
25,
257,
4277,
1988,
329,
262,
5721,
13,
632,
460,
307,
257,
1988,
393,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
25,
257,
4731,
16215,
262,
1438,
286,
262,
5721,
319,
262,
3084,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
13912,
11,
2116,
737,
834,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4006,
62,
4906,
2625,
44,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
12286,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
28,
28665,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
8899,
62,
5162,
408,
263,
796,
3975,
62,
5162,
408,
263,
393,
15161,
13912,
8205,
408,
263,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29572,
62,
5162,
408,
263,
796,
21136,
62,
5162,
408,
263,
393,
15161,
10044,
325,
8205,
408,
263,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7645,
41880,
796,
360,
713,
8291,
41880,
7,
944,
11,
2116,
13,
8899,
62,
5162,
408,
263,
11,
2116,
13,
29572,
62,
5162,
408,
263,
8,
628,
220,
220,
220,
825,
1994,
7,
944,
11,
4818,
265,
2981,
11,
1994,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
11249,
257,
23418,
4818,
265,
2981,
351,
262,
5721,
62,
3672,
1262,
257,
16605,
407,
3920,
628,
220,
220,
220,
220,
220,
220,
220,
1649,
14583,
257,
19390,
326,
9018,
257,
2176,
1994,
422,
262,
9347,
11,
326,
2378,
460,
198,
220,
220,
220,
220,
220,
220,
220,
307,
7368,
1262,
262,
1994,
3419,
2446,
13,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4818,
265,
2981,
25,
257,
41542,
6601,
6030,
4554,
10200,
262,
28376,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
25,
262,
1438,
286,
262,
28376,
1988,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
4866,
286,
262,
4818,
265,
2981,
351,
281,
649,
1994,
3672,
628,
220,
220,
220,
220,
220,
220,
220,
1114,
1672,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16774,
13,
35836,
13,
24455,
7,
3666,
17633,
13,
9410,
13,
2539,
7,
10100,
22784,
705,
3672,
11537,
6624,
705,
57,
330,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
796,
2116,
13,
28665,
62,
3672,
1343,
366,
526,
1343,
1994,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2099,
7,
19608,
265,
2981,
5769,
28665,
62,
3672,
28,
28665,
62,
3672,
8,
628,
198,
4871,
7343,
7,
35,
4989,
78,
6601,
6030,
2599,
198,
220,
220,
220,
37227,
32,
1398,
284,
2380,
14276,
7343,
4818,
265,
9497,
628,
220,
220,
220,
317,
7343,
318,
973,
284,
3650,
257,
4947,
286,
3815,
286,
257,
15874,
4129,
13,
632,
318,
6986,
198,
220,
220,
220,
281,
7177,
810,
1123,
2378,
318,
262,
1988,
8574,
287,
262,
6831,
13,
4619,
3815,
460,
307,
198,
220,
220,
220,
1997,
11,
257,
9347,
38,
947,
263,
290,
2547,
325,
8205,
408,
263,
389,
973,
284,
5004,
262,
4818,
265,
2981,
286,
262,
198,
220,
220,
220,
7177,
338,
3709,
13,
2312,
4724,
364,
389,
3804,
284,
262,
23772,
11,
290,
460,
307,
27658,
284,
198,
220,
220,
220,
1441,
2176,
4818,
265,
9497,
611,
345,
760,
262,
4645,
286,
262,
7177,
290,
1123,
2378,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
825,
11593,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
5162,
408,
263,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
5162,
408,
263,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
33151,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
41571,
273,
329,
7343,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3975,
62,
5162,
408,
263,
25,
1052,
2134,
10639,
1780,
422,
15161,
13912,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
262,
15161,
13912,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21136,
62,
5162,
408,
263,
25,
1052,
2134,
10639,
1780,
422,
15161,
10044,
325,
8205,
408,
263,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2896,
13185,
284,
262,
15161,
10044,
325,
8205,
408,
263,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
25,
257,
4277,
1988,
329,
262,
5721,
13,
632,
460,
307,
257,
1988,
393,
2163,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
25,
257,
4731,
16215,
262,
1438,
286,
262,
5721,
319,
262,
3084,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
8053,
11,
2116,
737,
834,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4006,
62,
4906,
2625,
43,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
12286,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5721,
62,
3672,
28,
28665,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
8899,
62,
5162,
408,
263,
796,
3975,
62,
5162,
408,
263,
393,
15161,
13912,
8205,
408,
263,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
29572,
62,
5162,
408,
263,
796,
21136,
62,
5162,
408,
263,
393,
15161,
10044,
325,
8205,
408,
263,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
7645,
41880,
796,
7343,
8291,
41880,
7,
944,
11,
2116,
13,
8899,
62,
5162,
408,
263,
11,
2116,
13,
29572,
62,
5162,
408,
263,
8,
628,
220,
220,
220,
825,
24443,
7,
944,
11,
7177,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15580,
281,
5408,
284,
751,
262,
7177,
284,
262,
886,
286,
262,
4683,
5721,
1366,
628,
220,
220,
220,
220,
220,
220,
220,
632,
460,
691,
307,
973,
287,
25823,
10133,
38839,
507,
13,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7177,
25,
460,
307,
257,
1351,
393,
2060,
1988,
284,
307,
598,
1631,
13,
1649,
340,
318,
257,
2060,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
11,
340,
318,
6338,
1234,
2641,
663,
898,
7177,
11,
878,
2615,
262,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5408,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
7343,
4677,
437,
16870,
2234,
628,
220,
220,
220,
220,
220,
220,
220,
1114,
1672,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7755,
13,
19119,
26867,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
2539,
7,
15439,
13,
12888,
6624,
366,
9288,
31,
9288,
13,
785,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
764,
2617,
7,
15439,
13,
83,
19417,
13,
33295,
7,
4895,
8043,
1298,
366,
445,
1600,
366,
3672,
1298,
366,
7718,
20662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
39098,
7,
18747,
11,
1351,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7177,
796,
685,
18747,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
7343,
4677,
437,
16870,
2234,
7,
944,
11,
7177,
8,
628,
220,
220,
220,
825,
6376,
7,
944,
11,
4686,
87,
11,
4818,
265,
2981,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
11249,
257,
23418,
4818,
265,
2981,
351,
262,
4808,
9630,
900,
284,
4686,
87,
628,
220,
220,
220,
220,
220,
220,
220,
1649,
14583,
257,
19390,
326,
9018,
257,
2176,
2378,
287,
262,
7343,
11,
326,
2378,
460,
198,
220,
220,
220,
220,
220,
220,
220,
307,
7368,
1262,
428,
6376,
3419,
2446,
13,
628,
220,
220,
220,
220,
220,
220,
220,
40117,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4686,
87,
25,
257,
1271,
329,
262,
6376,
286,
262,
10348,
2378,
287,
262,
1351,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4818,
265,
2981,
25,
257,
41542,
6601,
6030,
2134,
10200,
262,
2378,
41497,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
317,
4866,
286,
262,
4818,
265,
2981,
351,
4808,
9630,
900,
628,
220,
220,
220,
220,
220,
220,
220,
7567,
2696,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11052,
12331,
25,
1052,
4049,
618,
262,
4818,
265,
2981,
318,
407,
281,
4554,
286,
41542,
6601,
6030,
628,
220,
220,
220,
220,
220,
220,
220,
1114,
1672,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2011,
17633,
13,
35836,
13,
24455,
7,
3666,
17633,
13,
1820,
62,
4868,
13,
9630,
7,
16,
11,
10903,
28955,
6624,
705,
6894,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
318,
39098,
7,
19608,
265,
2981,
11,
41542,
6601,
6030,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
7203,
19608,
265,
2981,
1276,
307,
281,
4554,
286,
41542,
6601,
6030,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
796,
2769,
30073,
7,
19608,
265,
2981,
8,
198,
220,
220,
220,
220,
220,
220,
220,
288,
83,
13557,
9630,
796,
4686,
87,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
288,
83,
198
] | 2.557839 | 3,406 |
from scapy.all import arpcachepoison, conf
import ipaddress
conf.verb = 0
if __name__ == '__main__':
pass
| [
6738,
629,
12826,
13,
439,
1330,
610,
14751,
4891,
7501,
1653,
11,
1013,
198,
11748,
20966,
21975,
198,
198,
10414,
13,
19011,
796,
657,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1208,
198
] | 2.690476 | 42 |
from typing import Optional
from fastapi import FastAPI
import api.sql_handler as sql_handler
app = FastAPI()
@app.get("/items/")
@app.get("/all")
@app.get("/notifications")
@app.get("/budget_commitment")
@app.get("/commitment_treasury")
@app.get("/deals")
@app.get("/limits")
@app.get("/payment_schedule")
@app.get("/payments_full")
@app.get("/payments_short")
@app.get("/payments")
@app.get("/plan")
@app.get("/purchase_plan")
@app.get("/spending") | [
6738,
19720,
1330,
32233,
198,
198,
6738,
3049,
15042,
1330,
12549,
17614,
198,
198,
11748,
40391,
13,
25410,
62,
30281,
355,
44161,
62,
30281,
198,
198,
1324,
796,
12549,
17614,
3419,
628,
198,
31,
1324,
13,
1136,
7203,
14,
23814,
14,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
439,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
1662,
6637,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
37315,
62,
41509,
434,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
41509,
434,
62,
33945,
11579,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
14302,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
49196,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
37301,
62,
15952,
5950,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
15577,
902,
62,
12853,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
15577,
902,
62,
19509,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
15577,
902,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
11578,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
79,
18737,
62,
11578,
4943,
198,
198,
31,
1324,
13,
1136,
7203,
14,
2777,
1571,
4943
] | 2.412371 | 194 |
import os
import sys
import shutil
import dotbot
import subprocess
import platform
class CrossPlatformLink(dotbot.plugins.Link, dotbot.Plugin, CrossPlatformTask):
"""
Symbolically links dotfiles.
"""
_directive = "crossplatform-link"
def _link(
self,
source,
link_name,
relative,
canonical_path,
ignore_missing,
fallback_to_copy=False,
):
"""
Links link_name to source.
Returns true if successfully linked files.
"""
success = False
destination = os.path.expanduser(link_name)
base_directory = self._context.base_directory(canonical_path=canonical_path)
absolute_source = os.path.join(base_directory, source)
if relative:
source = self._relative_path(absolute_source, destination)
else:
source = absolute_source
if (
not self._exists(link_name)
and self._is_link(link_name)
and self._link_destination(link_name) != source
):
self._log.warning(
"Invalid link %s -> %s" % (link_name, self._link_destination(link_name))
)
# we need to use absolute_source below because our cwd is the dotfiles
# directory, and if source is relative, it will be relative to the
# destination directory
elif not self._exists(link_name) and (
ignore_missing or self._exists(absolute_source)
):
try:
os.symlink(source, destination)
except OSError:
self._log.warning("Linking failed %s -> %s" % (link_name, source))
if fallback_to_copy:
self._log.lowinfo(
"Falling back to directly copying file for %s -> %s"
% (link_name, source)
)
try:
shutil.copyfile(source, destination)
success = True
except Exception as ex:
self._log.warning(f"Copying failed with error {ex}")
else:
self._log.lowinfo(f"Not falling back to copy for {link_name}")
else:
self._log.lowinfo("Creating link %s -> %s" % (link_name, source))
success = True
elif self._exists(link_name) and not self._is_link(link_name):
self._log.warning(
"Linking %s -> %s failed because %s already exists but is a regular file or directory"
% (link_name, source, link_name)
)
elif self._is_link(link_name) and self._link_destination(link_name) != source:
self._log.warning(
"Incorrect link %s -> %s"
% (link_name, self._link_destination(link_name))
)
# again, we use absolute_source to check for existence
elif not self._exists(absolute_source):
if self._is_link(link_name):
self._log.warning("Nonexistent source %s -> %s" % (link_name, source))
else:
self._log.warning(
"Nonexistent source for %s : %s" % (link_name, source)
)
else:
self._log.lowinfo("Link exists %s -> %s" % (link_name, source))
success = True
return success
class CrossPlatformShell(dotbot.Plugin, CrossPlatformTask):
"""
Run arbitrary shell commands.
"""
_directive = "crossplatform-shell"
_has_shown_override_message = False
| [
11748,
28686,
198,
11748,
25064,
198,
11748,
4423,
346,
198,
11748,
16605,
13645,
198,
11748,
850,
14681,
198,
11748,
3859,
628,
198,
198,
4871,
6372,
37148,
11280,
7,
26518,
13645,
13,
37390,
13,
11280,
11,
16605,
13645,
13,
37233,
11,
6372,
37148,
25714,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
38357,
1146,
6117,
16605,
16624,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4808,
12942,
425,
796,
366,
19692,
24254,
12,
8726,
1,
628,
220,
220,
220,
825,
4808,
8726,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2723,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2792,
62,
3672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3585,
11,
198,
220,
220,
220,
220,
220,
220,
220,
40091,
62,
6978,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8856,
62,
45688,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2121,
1891,
62,
1462,
62,
30073,
28,
25101,
11,
198,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
21691,
2792,
62,
3672,
284,
2723,
13,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
2081,
611,
7675,
6692,
3696,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
10965,
796,
28686,
13,
6978,
13,
11201,
392,
7220,
7,
8726,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
34945,
796,
2116,
13557,
22866,
13,
8692,
62,
34945,
7,
49883,
605,
62,
6978,
28,
49883,
605,
62,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4112,
62,
10459,
796,
28686,
13,
6978,
13,
22179,
7,
8692,
62,
34945,
11,
2723,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3585,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2723,
796,
2116,
13557,
43762,
62,
6978,
7,
48546,
62,
10459,
11,
10965,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2723,
796,
4112,
62,
10459,
198,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
407,
2116,
13557,
1069,
1023,
7,
8726,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
2116,
13557,
271,
62,
8726,
7,
8726,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
2116,
13557,
8726,
62,
16520,
1883,
7,
8726,
62,
3672,
8,
14512,
2723,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
44651,
2792,
4064,
82,
4613,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2116,
13557,
8726,
62,
16520,
1883,
7,
8726,
62,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
356,
761,
284,
779,
4112,
62,
10459,
2174,
780,
674,
269,
16993,
318,
262,
16605,
16624,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8619,
11,
290,
611,
2723,
318,
3585,
11,
340,
481,
307,
3585,
284,
262,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
10965,
8619,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
407,
2116,
13557,
1069,
1023,
7,
8726,
62,
3672,
8,
290,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8856,
62,
45688,
393,
2116,
13557,
1069,
1023,
7,
48546,
62,
10459,
8,
198,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
1837,
4029,
676,
7,
10459,
11,
10965,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
440,
5188,
81,
1472,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7203,
43,
8040,
4054,
4064,
82,
4613,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2723,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2121,
1891,
62,
1462,
62,
30073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
9319,
10951,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
37,
9221,
736,
284,
3264,
23345,
2393,
329,
4064,
82,
4613,
4064,
82,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
8726,
62,
3672,
11,
2723,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4423,
346,
13,
30073,
7753,
7,
10459,
11,
10965,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7,
69,
1,
13379,
1112,
4054,
351,
4049,
1391,
1069,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
9319,
10951,
7,
69,
1,
3673,
7463,
736,
284,
4866,
329,
1391,
8726,
62,
3672,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
9319,
10951,
7203,
32071,
2792,
4064,
82,
4613,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2723,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13557,
1069,
1023,
7,
8726,
62,
3672,
8,
290,
407,
2116,
13557,
271,
62,
8726,
7,
8726,
62,
3672,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
43,
8040,
4064,
82,
4613,
4064,
82,
4054,
780,
4064,
82,
1541,
7160,
475,
318,
257,
3218,
2393,
393,
8619,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
8726,
62,
3672,
11,
2723,
11,
2792,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13557,
271,
62,
8726,
7,
8726,
62,
3672,
8,
290,
2116,
13557,
8726,
62,
16520,
1883,
7,
8726,
62,
3672,
8,
14512,
2723,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
818,
30283,
2792,
4064,
82,
4613,
4064,
82,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
357,
8726,
62,
3672,
11,
2116,
13557,
8726,
62,
16520,
1883,
7,
8726,
62,
3672,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
757,
11,
356,
779,
4112,
62,
10459,
284,
2198,
329,
6224,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
407,
2116,
13557,
1069,
1023,
7,
48546,
62,
10459,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
271,
62,
8726,
7,
8726,
62,
3672,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7203,
14202,
87,
7609,
2723,
4064,
82,
4613,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2723,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
43917,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
14202,
87,
7609,
2723,
329,
4064,
82,
1058,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2723,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
13,
9319,
10951,
7203,
11280,
7160,
4064,
82,
4613,
4064,
82,
1,
4064,
357,
8726,
62,
3672,
11,
2723,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1943,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1943,
628,
198,
4871,
6372,
37148,
23248,
7,
26518,
13645,
13,
37233,
11,
6372,
37148,
25714,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5660,
14977,
7582,
9729,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
4808,
12942,
425,
796,
366,
19692,
24254,
12,
29149,
1,
198,
220,
220,
220,
4808,
10134,
62,
42579,
62,
2502,
13154,
62,
20500,
796,
10352,
198
] | 2.05641 | 1,755 |
from six import u, iteritems, iterkeys # pylint: disable=unused-import
try:
from collections.abc import Mapping # pylint: disable=unused-import
except ImportError:
# Legacy Python
from collections import Mapping # pylint: disable=unused-import
| [
6738,
2237,
1330,
334,
11,
11629,
23814,
11,
11629,
13083,
1303,
279,
2645,
600,
25,
15560,
28,
403,
1484,
12,
11748,
198,
28311,
25,
198,
220,
220,
220,
422,
17268,
13,
39305,
1330,
337,
5912,
220,
1303,
279,
2645,
600,
25,
15560,
28,
403,
1484,
12,
11748,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
1303,
14843,
11361,
198,
220,
220,
220,
422,
17268,
1330,
337,
5912,
220,
1303,
279,
2645,
600,
25,
15560,
28,
403,
1484,
12,
11748,
198
] | 3.185185 | 81 |
# -------------------------------------------------------------
# Merge dictionaries :: Sources :: Hunspell
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Project: Nasqueron
# Description: Find Hunspell personal dictionaries
# License: BSD-2-Clause
# -------------------------------------------------------------
import os
| [
2,
220,
220,
20368,
1783,
32501,
198,
2,
220,
220,
39407,
48589,
3166,
7904,
26406,
7904,
5900,
46143,
198,
2,
220,
220,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
532,
198,
2,
220,
220,
4935,
25,
220,
220,
220,
220,
220,
220,
220,
22767,
10819,
261,
198,
2,
220,
220,
12489,
25,
220,
220,
220,
9938,
5900,
46143,
2614,
48589,
3166,
198,
2,
220,
220,
13789,
25,
220,
220,
220,
220,
220,
220,
220,
347,
10305,
12,
17,
12,
2601,
682,
198,
2,
220,
220,
20368,
1783,
32501,
628,
198,
11748,
28686,
628,
628,
628
] | 3.220339 | 118 |
from hardware import camera, robot, turntable
from calibration import calibration_axyb, calibration_camera, calibration_functions
from threading import Thread
import configparser
| [
6738,
6890,
1330,
4676,
11,
9379,
11,
7858,
429,
540,
198,
6738,
36537,
1330,
36537,
62,
6969,
65,
11,
36537,
62,
25695,
11,
36537,
62,
12543,
2733,
198,
6738,
4704,
278,
1330,
14122,
198,
11748,
4566,
48610,
198
] | 4.710526 | 38 |
# Copyright (c) 2013 NEC Corporation
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import warnings
import fixtures
import six
from neutron.api.v2 import attributes
class AttributeMapMemento(fixtures.Fixture):
"""Create a copy of the resource attribute map so it can be restored during
test cleanup.
There are a few reasons why this is not included in a class derived
from BaseTestCase:
- Test cases may need more control about when the backup is
made, especially if they are not direct descendants of
BaseTestCase.
- Inheritance is a bit of overkill for this facility and it's a
stretch to rationalize the "is a" criteria.
"""
class WarningsFixture(fixtures.Fixture):
"""Filters out warnings during test runs."""
warning_types = (
DeprecationWarning, PendingDeprecationWarning, ImportWarning
)
"""setup_mock_calls and verify_mock_calls are convenient methods
to setup a sequence of mock calls.
expected_calls_and_values is a list of (expected_call, return_value):
expected_calls_and_values = [
(mock.call(["ovs-vsctl", self.TO, '--', "--may-exist", "add-port",
self.BR_NAME, pname]),
None),
(mock.call(["ovs-vsctl", self.TO, "set", "Interface",
pname, "type=gre"]),
None),
....
]
* expected_call should be mock.call(expected_arg, ....)
* return_value is passed to side_effect of a mocked call.
A return value or an exception can be specified.
"""
import unittest
def fail(msg=None):
"""Fail immediately, with the given message.
This method is equivalent to TestCase.fail without requiring a
testcase instance (usefully for reducing coupling).
"""
raise unittest.TestCase.failureException(msg)
class UnorderedList(list):
"""A list that is equals to any permutation of itself."""
| [
2,
15069,
357,
66,
8,
2211,
41804,
10501,
198,
2,
1439,
6923,
33876,
13,
198,
2,
198,
2,
220,
220,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
345,
743,
198,
2,
220,
220,
220,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
921,
743,
7330,
198,
2,
220,
220,
220,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
220,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
220,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
42881,
198,
2,
220,
220,
220,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
4091,
262,
198,
2,
220,
220,
220,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
11247,
198,
2,
220,
220,
220,
739,
262,
13789,
13,
198,
198,
11748,
14601,
198,
198,
11748,
34609,
198,
11748,
2237,
198,
198,
6738,
49810,
13,
15042,
13,
85,
17,
1330,
12608,
628,
198,
4871,
3460,
4163,
13912,
44,
972,
78,
7,
69,
25506,
13,
37,
9602,
2599,
198,
220,
220,
220,
37227,
16447,
257,
4866,
286,
262,
8271,
11688,
3975,
523,
340,
460,
307,
15032,
1141,
198,
220,
220,
220,
1332,
27425,
13,
628,
220,
220,
220,
1318,
389,
257,
1178,
3840,
1521,
428,
318,
407,
3017,
287,
257,
1398,
10944,
198,
220,
220,
220,
422,
7308,
14402,
20448,
25,
628,
220,
220,
220,
220,
220,
220,
220,
532,
6208,
2663,
743,
761,
517,
1630,
546,
618,
262,
11559,
318,
198,
220,
220,
220,
220,
220,
220,
220,
925,
11,
2592,
611,
484,
389,
407,
1277,
25321,
286,
198,
220,
220,
220,
220,
220,
220,
220,
7308,
14402,
20448,
13,
628,
220,
220,
220,
220,
220,
220,
220,
532,
47025,
42942,
318,
257,
1643,
286,
625,
12728,
329,
428,
6841,
290,
340,
338,
257,
198,
220,
220,
220,
220,
220,
220,
220,
7539,
284,
9377,
1096,
262,
366,
271,
257,
1,
9987,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
39567,
654,
37,
9602,
7,
69,
25506,
13,
37,
9602,
2599,
198,
220,
220,
220,
37227,
11928,
1010,
503,
14601,
1141,
1332,
4539,
526,
15931,
628,
220,
220,
220,
6509,
62,
19199,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
2129,
8344,
341,
20361,
11,
350,
1571,
12156,
8344,
341,
20361,
11,
17267,
20361,
198,
220,
220,
220,
1267,
628,
198,
37811,
40406,
62,
76,
735,
62,
66,
5691,
290,
11767,
62,
76,
735,
62,
66,
5691,
389,
11282,
5050,
198,
1462,
9058,
257,
8379,
286,
15290,
3848,
13,
198,
198,
40319,
62,
66,
5691,
62,
392,
62,
27160,
318,
257,
1351,
286,
357,
40319,
62,
13345,
11,
1441,
62,
8367,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
2938,
62,
66,
5691,
62,
392,
62,
27160,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
76,
735,
13,
13345,
7,
14692,
709,
82,
12,
14259,
34168,
1600,
2116,
13,
10468,
11,
705,
438,
3256,
366,
438,
11261,
12,
38476,
1600,
366,
2860,
12,
634,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11473,
62,
20608,
11,
279,
3672,
46570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
76,
735,
13,
13345,
7,
14692,
709,
82,
12,
14259,
34168,
1600,
2116,
13,
10468,
11,
366,
2617,
1600,
366,
39317,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
3672,
11,
366,
4906,
28,
16694,
8973,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6045,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19424,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
198,
9,
2938,
62,
13345,
815,
307,
15290,
13,
13345,
7,
40319,
62,
853,
11,
19424,
8,
198,
9,
1441,
62,
8367,
318,
3804,
284,
1735,
62,
10760,
286,
257,
29180,
869,
13,
198,
220,
317,
1441,
1988,
393,
281,
6631,
460,
307,
7368,
13,
198,
37811,
198,
198,
11748,
555,
715,
395,
628,
628,
198,
4299,
2038,
7,
19662,
28,
14202,
2599,
198,
220,
220,
220,
37227,
39044,
3393,
11,
351,
262,
1813,
3275,
13,
628,
220,
220,
220,
770,
2446,
318,
7548,
284,
6208,
20448,
13,
32165,
1231,
10616,
257,
198,
220,
220,
220,
1332,
7442,
4554,
357,
1904,
2759,
329,
8868,
40204,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5298,
555,
715,
395,
13,
14402,
20448,
13,
32165,
495,
16922,
7,
19662,
8,
628,
198,
4871,
791,
24071,
8053,
7,
4868,
2599,
198,
220,
220,
220,
37227,
32,
1351,
326,
318,
21767,
284,
597,
9943,
7094,
286,
2346,
526,
15931,
198
] | 2.882831 | 862 |
import sys
import json | [
11748,
25064,
198,
11748,
33918
] | 4.4 | 5 |
from rest_framework import generics
from rest_framework.response import Response
from rest_framework.reverse import reverse
from drones import views
| [
6738,
1334,
62,
30604,
1330,
1152,
873,
198,
6738,
1334,
62,
30604,
13,
26209,
1330,
18261,
198,
6738,
1334,
62,
30604,
13,
50188,
1330,
9575,
198,
6738,
15382,
1330,
5009,
628
] | 4.83871 | 31 |
from django.shortcuts import render
from django.http import HttpResponse
from names.models import Country
from random import shuffle
| [
6738,
42625,
14208,
13,
19509,
23779,
1330,
8543,
198,
6738,
42625,
14208,
13,
4023,
1330,
367,
29281,
31077,
198,
6738,
3891,
13,
27530,
1330,
12946,
198,
6738,
4738,
1330,
36273,
198
] | 4.290323 | 31 |
"""NYC 311 Calendar API."""
from __future__ import annotations
from dataclasses import dataclass
from datetime import date
from datetime import datetime
from datetime import timedelta
from enum import Enum
import logging
import aiohttp
from nyc311calendar.services import Parking
from nyc311calendar.services import Sanitation
from nyc311calendar.services import School
from nyc311calendar.services import Service
from nyc311calendar.services import ServiceType
from nyc311calendar.services import ServiceTypeProfile
from nyc311calendar.services import StatusTypeProfile
from .util import date_mod
from .util import remove_observed
from .util import today
__version__ = "v0.4"
log = logging.getLogger(__name__)
class CalendarType(Enum):
"""Calendar views."""
QUARTER_AHEAD = 1
WEEK_AHEAD = 2
NEXT_EXCEPTIONS = 3
class GroupBy(Enum):
"""Calendar views."""
DATE = "date"
SERVICE = "service"
@dataclass
class CalendarDayEntry:
"""Entry for each service within a day."""
service_profile: ServiceTypeProfile
status_profile: StatusTypeProfile | None
exception_reason: str
raw_description: str
exception_summary: str | None
date: date
class NYC311API:
"""API representation."""
CALENDAR_BASE_URL = "https://api.nyc.gov/public/api/GetCalendar"
API_REQ_DATE_FORMAT = "%m/%d/%Y"
API_RSP_DATE_FORMAT = "%Y%m%d"
def __init__(
self,
session: aiohttp.ClientSession,
api_key: str,
):
"""Create new API controller with existing aiohttp session."""
self._session = session
self._api_key = api_key
self._request_headers = {"Ocp-Apim-Subscription-Key": api_key}
async def get_calendar(
self,
calendars: list[CalendarType] | None = None,
scrub: bool = True,
) -> dict:
"""Primary function for getting calendars from API.
Args:
calendars (list[CalendarType] | None, optional): List of CalendarTypes to be retrieved. Defaults to None.
scrub (bool, optional): Whether to scrub "(Observed)" from names of holidays. (Observed) is used to indicate that, say, schools are closed on a Friday for the official observation of a holidays that falls on a weekend. Defaults to True.
Returns:
dict: Dictionary of calendars.
"""
if not calendars:
calendars = [
CalendarType.QUARTER_AHEAD,
CalendarType.WEEK_AHEAD,
CalendarType.NEXT_EXCEPTIONS,
]
resp_dict = {}
start_date = date_mod(-1)
end_date = date_mod(90, start_date)
api_resp = await self.__async_calendar_update(start_date, end_date, scrub)
for calendar in calendars:
if calendar is CalendarType.QUARTER_AHEAD:
resp_dict[CalendarType.QUARTER_AHEAD] = api_resp
elif calendar is CalendarType.WEEK_AHEAD:
resp_dict[CalendarType.WEEK_AHEAD] = self.__build_days_ahead(
api_resp[GroupBy.DATE]
)
elif calendar is CalendarType.NEXT_EXCEPTIONS:
resp_dict[CalendarType.NEXT_EXCEPTIONS] = self.__build_next_exceptions(
api_resp[GroupBy.DATE]
)
log.info("Got calendar.")
log.debug(resp_dict)
return resp_dict
async def __async_calendar_update(
self, start_date: date, end_date: date, scrub: bool = False
) -> dict:
"""Get events for specified date range."""
date_params = {
"fromdate": start_date.strftime(self.API_REQ_DATE_FORMAT),
"todate": end_date.strftime(self.API_REQ_DATE_FORMAT),
}
base_url = self.CALENDAR_BASE_URL
resp_json = await self.__call_api(base_url, date_params)
grouped_by_date: dict = {}
grouped_by_service: dict = {}
for day in resp_json["days"]:
cur_date = datetime.strptime(
day["today_id"], self.API_RSP_DATE_FORMAT
).date()
for item in day["items"]:
try:
# Get Raw
raw_service_name = item["type"]
raw_status = item["status"]
raw_description = item.get("details")
scrubbed_exception_reason = (
lambda x: remove_observed(x) if scrub else x
)(item.get("exceptionName"))
# Process
service_type = ServiceType(raw_service_name)
status_type: School.StatusType | Parking.StatusType | Sanitation.StatusType
service_class: type[School] | type[Parking] | type[Sanitation]
if service_type == ServiceType.SCHOOL:
service_class = School
status_type = School.StatusType(raw_status)
# Hack to get last day of school to appear as an exception (Part 1/2). The API reports this as a normal open day.
if (
scrubbed_exception_reason
and scrubbed_exception_reason.lower().find("last day") > -1
):
status_profile = StatusTypeProfile(
name="Last Day",
standardized_type=Service.StandardizedStatusType.LAST_DAY,
description=(
"School is open for the last day of the year."
),
reported_type=School.StatusType.OPEN,
)
exception_summary = "Last Day of School"
else:
status_profile = School.STATUS_MAP[status_type]
elif service_type == ServiceType.PARKING:
service_class = Parking
status_type = Parking.StatusType(raw_status)
status_profile = Parking.STATUS_MAP[status_type]
elif service_type == ServiceType.SANITATION:
service_class = Sanitation
status_type = Sanitation.StatusType(raw_status)
status_profile = Sanitation.STATUS_MAP[status_type]
except (KeyError, AttributeError) as error:
log.error(
"""\n\nEncountered unknown service or status. Please report this to the developers using the "Unknown Service or Status" bug template at https://github.com/elahd/nyc311calendar/issues/new/choose.\n\n"""
"""===BEGIN COPYING HERE===\n"""
"""Item ID: %s\n"""
"""Day: %s\n"""
"""===END COPYING HERE===\n""",
item.get("exceptionName", ""),
day,
)
raise self.UnexpectedEntry from error
# Hack to get last day of school to appear as an exception (Part 2/2). The API reports this as a normal open day.
exception_summary = (
"Last Day of School"
if status_profile.standardized_type
is Service.StandardizedStatusType.LAST_DAY
else (
f"{service_class.PROFILE.exception_title_name} {service_class.PROFILE.status_strings.get(status_profile.standardized_type, service_class.PROFILE.exception_name)} ({scrubbed_exception_reason})"
)
)
calendar_entry = CalendarDayEntry(
service_profile=service_class.PROFILE,
status_profile=status_profile
if isinstance(status_profile, StatusTypeProfile)
else None,
exception_reason=""
if scrubbed_exception_reason is None
else scrubbed_exception_reason,
raw_description=raw_description,
exception_summary=exception_summary,
date=cur_date,
)
# Insert into by-date dict
grouped_by_date.setdefault(cur_date, {})
grouped_by_date[cur_date].update({service_type: calendar_entry})
# Insert into by-service dict
grouped_by_service.setdefault(service_type, {})
grouped_by_service[service_type].update({cur_date: calendar_entry})
log.debug("Updated calendar.")
resp_dict = {GroupBy.DATE: grouped_by_date, GroupBy.SERVICE: grouped_by_service}
return resp_dict
@classmethod
def __build_days_ahead(cls, resp_dict: dict) -> dict:
"""Build dict of statuses keyed by number of days from today."""
# Dictionary Format
# {
# "-1": {
# "date": "2022-05-19",
# "services": {
# ServiceType.PARKING: {
# (CalendarDayEntry)
# },
# ServiceType.SCHOOL: {
# (CalendarDayEntry)
# },
# ServiceType.COLLECTION: {
# (CalendarDayEntry)
# }
# }
# }
# }
days_ahead_calendar = {}
# Iterate through 8 days, starting with yesterday and ending a week from today.
for date_delta in list(range(-1, 7)):
# Generate date from delta
i_date = date_mod(date_delta)
services_on_date: dict = {}
# Get each service from response dictionary.
for service_type in ServiceType:
services_on_date[service_type] = resp_dict[i_date][service_type]
days_ahead_calendar[date_delta] = {
"date": i_date,
"services": services_on_date,
}
log.debug("Built days ahead.")
return days_ahead_calendar
@classmethod
def __build_next_exceptions(cls, resp_dict: dict) -> dict:
"""Build dict of next exception for all known types."""
# Dictionary Format
# {
# "2022-05-19": {
# ServiceType.PARKING: {
# (CalendarDayEntry)
# },
# ServiceType.SCHOOL: {
# (CalendarDayEntry)
# },
# ServiceType.COLLECTION: {
# (CalendarDayEntry)
# }
# }
# }
next_exceptions: dict = {}
for date_, services in sorted(resp_dict.items()):
# We don't want to show yesterday's calendar event as a next exception. Skip over if date is yesterday.
if date_ == (today() - timedelta(days=1)):
continue
service_type: ServiceType
service_entry: CalendarDayEntry
for service_type, service_entry in services.items():
# Skip if we already logged an exception for this category or if the status is not exceptional.
if next_exceptions.get(service_type) or (
service_entry.status_profile
and service_entry.status_profile.standardized_type
in [
Service.StandardizedStatusType.NORMAL_ACTIVE,
Service.StandardizedStatusType.NORMAL_SUSPENDED,
]
):
continue
next_exceptions[service_type] = service_entry
log.debug("Built next exceptions.")
return next_exceptions
class UnexpectedEntry(Exception):
"""Thrown when API returns unexpected "key"."""
class DateOrderException(Exception):
"""Thrown when iterable that is expected to be sorted by date is not."""
class CannotConnect(Exception):
"""Thrown when server is unreachable."""
class InvalidAuth(Exception):
"""Thrown when login fails."""
| [
37811,
12805,
34,
35592,
26506,
7824,
526,
15931,
198,
6738,
11593,
37443,
834,
1330,
37647,
198,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
6738,
4818,
8079,
1330,
3128,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
4818,
8079,
1330,
28805,
12514,
198,
6738,
33829,
1330,
2039,
388,
198,
11748,
18931,
198,
198,
11748,
257,
952,
4023,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
29259,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
2986,
3780,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
3961,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
4809,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
4809,
6030,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
4809,
6030,
37046,
198,
6738,
299,
88,
66,
36244,
9948,
9239,
13,
30416,
1330,
12678,
6030,
37046,
198,
198,
6738,
764,
22602,
1330,
3128,
62,
4666,
198,
6738,
764,
22602,
1330,
4781,
62,
672,
45852,
198,
6738,
764,
22602,
1330,
1909,
198,
198,
834,
9641,
834,
796,
366,
85,
15,
13,
19,
1,
628,
198,
6404,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
4871,
26506,
6030,
7,
4834,
388,
2599,
198,
220,
220,
220,
37227,
9771,
9239,
5009,
526,
15931,
628,
220,
220,
220,
19604,
1503,
5781,
62,
32,
37682,
796,
352,
198,
220,
220,
220,
43765,
62,
32,
37682,
796,
362,
198,
220,
220,
220,
39726,
62,
6369,
42006,
11053,
796,
513,
628,
198,
4871,
4912,
3886,
7,
4834,
388,
2599,
198,
220,
220,
220,
37227,
9771,
9239,
5009,
526,
15931,
628,
220,
220,
220,
360,
6158,
796,
366,
4475,
1,
198,
220,
220,
220,
47453,
796,
366,
15271,
1,
628,
198,
31,
19608,
330,
31172,
198,
4871,
26506,
12393,
30150,
25,
198,
220,
220,
220,
37227,
30150,
329,
1123,
2139,
1626,
257,
1110,
526,
15931,
628,
220,
220,
220,
2139,
62,
13317,
25,
4809,
6030,
37046,
198,
220,
220,
220,
3722,
62,
13317,
25,
12678,
6030,
37046,
930,
6045,
198,
220,
220,
220,
6631,
62,
41181,
25,
965,
198,
220,
220,
220,
8246,
62,
11213,
25,
965,
198,
220,
220,
220,
6631,
62,
49736,
25,
965,
930,
6045,
198,
220,
220,
220,
3128,
25,
3128,
628,
198,
4871,
19170,
36244,
17614,
25,
198,
220,
220,
220,
37227,
17614,
10552,
526,
15931,
628,
220,
220,
220,
33290,
10619,
1503,
62,
33,
11159,
62,
21886,
796,
366,
5450,
1378,
15042,
13,
3281,
66,
13,
9567,
14,
11377,
14,
15042,
14,
3855,
9771,
9239,
1,
198,
220,
220,
220,
7824,
62,
2200,
48,
62,
35,
6158,
62,
21389,
1404,
796,
36521,
76,
14,
4,
67,
14,
4,
56,
1,
198,
220,
220,
220,
7824,
62,
49,
4303,
62,
35,
6158,
62,
21389,
1404,
796,
36521,
56,
4,
76,
4,
67,
1,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
25,
257,
952,
4023,
13,
11792,
36044,
11,
198,
220,
220,
220,
220,
220,
220,
220,
40391,
62,
2539,
25,
965,
11,
198,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
16447,
649,
7824,
10444,
351,
4683,
257,
952,
4023,
6246,
526,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
29891,
796,
6246,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
15042,
62,
2539,
796,
40391,
62,
2539,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
25927,
62,
50145,
796,
19779,
46,
13155,
12,
25189,
320,
12,
7004,
33584,
12,
9218,
1298,
40391,
62,
2539,
92,
628,
220,
220,
220,
30351,
825,
651,
62,
9948,
9239,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
50215,
25,
1351,
58,
9771,
9239,
6030,
60,
930,
6045,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27268,
25,
20512,
796,
6407,
11,
198,
220,
220,
220,
1267,
4613,
8633,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
35170,
2163,
329,
1972,
50215,
422,
7824,
13,
628,
220,
220,
220,
220,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50215,
357,
4868,
58,
9771,
9239,
6030,
60,
930,
6045,
11,
11902,
2599,
7343,
286,
26506,
31431,
284,
307,
29517,
13,
2896,
13185,
284,
6045,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27268,
357,
30388,
11,
11902,
2599,
10127,
284,
27268,
30629,
31310,
8520,
16725,
422,
3891,
286,
17122,
13,
357,
31310,
8520,
8,
318,
973,
284,
7603,
326,
11,
910,
11,
4266,
389,
4838,
319,
257,
3217,
329,
262,
1743,
13432,
286,
257,
17122,
326,
8953,
319,
257,
5041,
13,
2896,
13185,
284,
6407,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8633,
25,
28261,
286,
50215,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
50215,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50215,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26506,
6030,
13,
10917,
1503,
5781,
62,
32,
37682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26506,
6030,
13,
54,
33823,
62,
32,
37682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26506,
6030,
13,
45,
13918,
62,
6369,
42006,
11053,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
628,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
11600,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
923,
62,
4475,
796,
3128,
62,
4666,
32590,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
886,
62,
4475,
796,
3128,
62,
4666,
7,
3829,
11,
923,
62,
4475,
8,
198,
220,
220,
220,
220,
220,
220,
220,
40391,
62,
4363,
796,
25507,
2116,
13,
834,
292,
13361,
62,
9948,
9239,
62,
19119,
7,
9688,
62,
4475,
11,
886,
62,
4475,
11,
27268,
8,
628,
220,
220,
220,
220,
220,
220,
220,
329,
11845,
287,
50215,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
11845,
318,
26506,
6030,
13,
10917,
1503,
5781,
62,
32,
37682,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
11600,
58,
9771,
9239,
6030,
13,
10917,
1503,
5781,
62,
32,
37682,
60,
796,
40391,
62,
4363,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
11845,
318,
26506,
6030,
13,
54,
33823,
62,
32,
37682,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
11600,
58,
9771,
9239,
6030,
13,
54,
33823,
62,
32,
37682,
60,
796,
2116,
13,
834,
11249,
62,
12545,
62,
38204,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
62,
4363,
58,
13247,
3886,
13,
35,
6158,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
11845,
318,
26506,
6030,
13,
45,
13918,
62,
6369,
42006,
11053,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
11600,
58,
9771,
9239,
6030,
13,
45,
13918,
62,
6369,
42006,
11053,
60,
796,
2116,
13,
834,
11249,
62,
19545,
62,
1069,
11755,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
62,
4363,
58,
13247,
3886,
13,
35,
6158,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
10951,
7203,
30074,
11845,
19570,
628,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7,
4363,
62,
11600,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1217,
62,
11600,
628,
220,
220,
220,
30351,
825,
11593,
292,
13361,
62,
9948,
9239,
62,
19119,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
923,
62,
4475,
25,
3128,
11,
886,
62,
4475,
25,
3128,
11,
27268,
25,
20512,
796,
10352,
198,
220,
220,
220,
1267,
4613,
8633,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
3855,
2995,
329,
7368,
3128,
2837,
526,
15931,
628,
220,
220,
220,
220,
220,
220,
220,
3128,
62,
37266,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6738,
4475,
1298,
923,
62,
4475,
13,
2536,
31387,
7,
944,
13,
17614,
62,
2200,
48,
62,
35,
6158,
62,
21389,
1404,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
83,
375,
378,
1298,
886,
62,
4475,
13,
2536,
31387,
7,
944,
13,
17614,
62,
2200,
48,
62,
35,
6158,
62,
21389,
1404,
828,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
2779,
62,
6371,
796,
2116,
13,
34,
1847,
10619,
1503,
62,
33,
11159,
62,
21886,
628,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
17752,
796,
25507,
2116,
13,
834,
13345,
62,
15042,
7,
8692,
62,
6371,
11,
3128,
62,
37266,
8,
628,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
4475,
25,
8633,
796,
23884,
198,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
15271,
25,
8633,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1110,
287,
1217,
62,
17752,
14692,
12545,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1090,
62,
4475,
796,
4818,
8079,
13,
2536,
457,
524,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1110,
14692,
40838,
62,
312,
33116,
2116,
13,
17614,
62,
49,
4303,
62,
35,
6158,
62,
21389,
1404,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6739,
4475,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2378,
287,
1110,
14692,
23814,
1,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
16089,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
15271,
62,
3672,
796,
2378,
14692,
4906,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
13376,
796,
2378,
14692,
13376,
8973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
11213,
796,
2378,
13,
1136,
7203,
36604,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27268,
3077,
62,
1069,
4516,
62,
41181,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37456,
2124,
25,
4781,
62,
672,
45852,
7,
87,
8,
611,
27268,
2073,
2124,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
7,
9186,
13,
1136,
7203,
1069,
4516,
5376,
48774,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
10854,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4906,
796,
4809,
6030,
7,
1831,
62,
15271,
62,
3672,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
4906,
25,
3961,
13,
19580,
6030,
930,
29259,
13,
19580,
6030,
930,
2986,
3780,
13,
19580,
6030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4871,
25,
2099,
58,
26130,
60,
930,
2099,
58,
25478,
278,
60,
930,
2099,
58,
15017,
3780,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2139,
62,
4906,
6624,
4809,
6030,
13,
50,
3398,
31559,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4871,
796,
3961,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
4906,
796,
3961,
13,
19580,
6030,
7,
1831,
62,
13376,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
18281,
284,
651,
938,
1110,
286,
1524,
284,
1656,
355,
281,
6631,
357,
7841,
352,
14,
17,
737,
383,
7824,
3136,
428,
355,
257,
3487,
1280,
1110,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27268,
3077,
62,
1069,
4516,
62,
41181,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
27268,
3077,
62,
1069,
4516,
62,
41181,
13,
21037,
22446,
19796,
7203,
12957,
1110,
4943,
1875,
532,
16,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
13317,
796,
12678,
6030,
37046,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1438,
2625,
5956,
3596,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25713,
62,
4906,
28,
16177,
13,
23615,
1143,
19580,
6030,
13,
43,
11262,
62,
26442,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6764,
16193,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26130,
318,
1280,
329,
262,
938,
1110,
286,
262,
614,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2098,
62,
4906,
28,
26130,
13,
19580,
6030,
13,
3185,
1677,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6631,
62,
49736,
796,
366,
5956,
3596,
286,
3961,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
13317,
796,
3961,
13,
35744,
2937,
62,
33767,
58,
13376,
62,
4906,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2139,
62,
4906,
6624,
4809,
6030,
13,
47,
14175,
2751,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4871,
796,
29259,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
4906,
796,
29259,
13,
19580,
6030,
7,
1831,
62,
13376,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
13317,
796,
29259,
13,
35744,
2937,
62,
33767,
58,
13376,
62,
4906,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2139,
62,
4906,
6624,
4809,
6030,
13,
36753,
2043,
6234,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4871,
796,
2986,
3780,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
4906,
796,
2986,
3780,
13,
19580,
6030,
7,
1831,
62,
13376,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
13317,
796,
2986,
3780,
13,
35744,
2937,
62,
33767,
58,
13376,
62,
4906,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
357,
9218,
12331,
11,
3460,
4163,
12331,
8,
355,
4049,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
18224,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
59,
77,
59,
77,
4834,
9127,
1068,
6439,
2139,
393,
3722,
13,
4222,
989,
428,
284,
262,
6505,
1262,
262,
366,
20035,
4809,
393,
12678,
1,
5434,
11055,
379,
3740,
1378,
12567,
13,
785,
14,
417,
993,
67,
14,
3281,
66,
36244,
9948,
9239,
14,
37165,
14,
3605,
14,
6679,
577,
13,
59,
77,
59,
77,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
18604,
33,
43312,
27975,
45761,
15698,
18604,
59,
77,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
7449,
4522,
25,
4064,
82,
59,
77,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
12393,
25,
4064,
82,
59,
77,
37811,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37227,
18604,
10619,
27975,
45761,
15698,
18604,
59,
77,
15931,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2378,
13,
1136,
7203,
1069,
4516,
5376,
1600,
366,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1110,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
2116,
13,
52,
42072,
30150,
422,
4049,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
18281,
284,
651,
938,
1110,
286,
1524,
284,
1656,
355,
281,
6631,
357,
7841,
362,
14,
17,
737,
383,
7824,
3136,
428,
355,
257,
3487,
1280,
1110,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6631,
62,
49736,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
5956,
3596,
286,
3961,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3722,
62,
13317,
13,
20307,
1143,
62,
4906,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
318,
4809,
13,
23615,
1143,
19580,
6030,
13,
43,
11262,
62,
26442,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
1,
90,
15271,
62,
4871,
13,
31190,
25664,
13,
1069,
4516,
62,
7839,
62,
3672,
92,
1391,
15271,
62,
4871,
13,
31190,
25664,
13,
13376,
62,
37336,
13,
1136,
7,
13376,
62,
13317,
13,
20307,
1143,
62,
4906,
11,
2139,
62,
4871,
13,
31190,
25664,
13,
1069,
4516,
62,
3672,
38165,
37913,
1416,
25089,
3077,
62,
1069,
4516,
62,
41181,
92,
16725,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11845,
62,
13000,
796,
26506,
12393,
30150,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
13317,
28,
15271,
62,
4871,
13,
31190,
25664,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
13317,
28,
13376,
62,
13317,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
13376,
62,
13317,
11,
12678,
6030,
37046,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6631,
62,
41181,
33151,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
27268,
3077,
62,
1069,
4516,
62,
41181,
318,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
27268,
3077,
62,
1069,
4516,
62,
41181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8246,
62,
11213,
28,
1831,
62,
11213,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6631,
62,
49736,
28,
1069,
4516,
62,
49736,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3128,
28,
22019,
62,
4475,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
35835,
656,
416,
12,
4475,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
4475,
13,
2617,
12286,
7,
22019,
62,
4475,
11,
23884,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
4475,
58,
22019,
62,
4475,
4083,
19119,
15090,
15271,
62,
4906,
25,
11845,
62,
13000,
30072,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
35835,
656,
416,
12,
15271,
8633,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
15271,
13,
2617,
12286,
7,
15271,
62,
4906,
11,
23884,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
32824,
62,
1525,
62,
15271,
58,
15271,
62,
4906,
4083,
19119,
15090,
22019,
62,
4475,
25,
11845,
62,
13000,
30072,
628,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
17354,
11845,
19570,
628,
220,
220,
220,
220,
220,
220,
220,
1217,
62,
11600,
796,
1391,
13247,
3886,
13,
35,
6158,
25,
32824,
62,
1525,
62,
4475,
11,
4912,
3886,
13,
35009,
27389,
25,
32824,
62,
1525,
62,
15271,
92,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1217,
62,
11600,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
11593,
11249,
62,
12545,
62,
38204,
7,
565,
82,
11,
1217,
62,
11600,
25,
8633,
8,
4613,
8633,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15580,
8633,
286,
1185,
2664,
1994,
276,
416,
1271,
286,
1528,
422,
1909,
526,
15931,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
28261,
18980,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
27444,
16,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4475,
1298,
366,
1238,
1828,
12,
2713,
12,
1129,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
366,
30416,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
47,
14175,
2751,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
50,
3398,
31559,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
25154,
16779,
2849,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
1528,
62,
38204,
62,
9948,
9239,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
40806,
378,
832,
807,
1528,
11,
3599,
351,
7415,
290,
7464,
257,
1285,
422,
1909,
13,
198,
220,
220,
220,
220,
220,
220,
220,
329,
3128,
62,
67,
12514,
287,
1351,
7,
9521,
32590,
16,
11,
767,
8,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2980,
378,
3128,
422,
25979,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
62,
4475,
796,
3128,
62,
4666,
7,
4475,
62,
67,
12514,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2594,
62,
261,
62,
4475,
25,
8633,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3497,
1123,
2139,
422,
2882,
22155,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2139,
62,
4906,
287,
4809,
6030,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2594,
62,
261,
62,
4475,
58,
15271,
62,
4906,
60,
796,
1217,
62,
11600,
58,
72,
62,
4475,
7131,
15271,
62,
4906,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1528,
62,
38204,
62,
9948,
9239,
58,
4475,
62,
67,
12514,
60,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
4475,
1298,
1312,
62,
4475,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
30416,
1298,
2594,
62,
261,
62,
4475,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
39582,
1528,
4058,
19570,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1528,
62,
38204,
62,
9948,
9239,
628,
220,
220,
220,
2488,
4871,
24396,
198,
220,
220,
220,
825,
11593,
11249,
62,
19545,
62,
1069,
11755,
7,
565,
82,
11,
1217,
62,
11600,
25,
8633,
8,
4613,
8633,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
15580,
8633,
286,
1306,
6631,
329,
477,
1900,
3858,
526,
15931,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
28261,
18980,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
366,
1238,
1828,
12,
2713,
12,
1129,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
47,
14175,
2751,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
50,
3398,
31559,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
4809,
6030,
13,
25154,
16779,
2849,
25,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
9771,
9239,
12393,
30150,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1782,
628,
220,
220,
220,
220,
220,
220,
220,
1306,
62,
1069,
11755,
25,
8633,
796,
23884,
628,
220,
220,
220,
220,
220,
220,
220,
329,
3128,
62,
11,
2594,
287,
23243,
7,
4363,
62,
11600,
13,
23814,
3419,
2599,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
775,
836,
470,
765,
284,
905,
7415,
338,
11845,
1785,
355,
257,
1306,
6631,
13,
32214,
625,
611,
3128,
318,
7415,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3128,
62,
6624,
357,
40838,
3419,
532,
28805,
12514,
7,
12545,
28,
16,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
4906,
25,
4809,
6030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
13000,
25,
26506,
12393,
30150,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2139,
62,
4906,
11,
2139,
62,
13000,
287,
2594,
13,
23814,
33529,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
32214,
611,
356,
1541,
18832,
281,
6631,
329,
428,
6536,
393,
611,
262,
3722,
318,
407,
15313,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1306,
62,
1069,
11755,
13,
1136,
7,
15271,
62,
4906,
8,
393,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2139,
62,
13000,
13,
13376,
62,
13317,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
2139,
62,
13000,
13,
13376,
62,
13317,
13,
20307,
1143,
62,
4906,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4809,
13,
23615,
1143,
19580,
6030,
13,
35510,
42126,
62,
10659,
9306,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4809,
13,
23615,
1143,
19580,
6030,
13,
35510,
42126,
62,
50,
2937,
47,
49361,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1306,
62,
1069,
11755,
58,
15271,
62,
4906,
60,
796,
2139,
62,
13000,
628,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
24442,
7203,
39582,
1306,
13269,
19570,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1306,
62,
1069,
11755,
628,
220,
220,
220,
1398,
471,
42072,
30150,
7,
16922,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
817,
2053,
618,
7824,
5860,
10059,
366,
2539,
1,
526,
15931,
628,
220,
220,
220,
1398,
7536,
18743,
16922,
7,
16922,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
817,
2053,
618,
11629,
540,
326,
318,
2938,
284,
307,
23243,
416,
3128,
318,
407,
526,
15931,
628,
220,
220,
220,
1398,
26003,
13313,
7,
16922,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
817,
2053,
618,
4382,
318,
14880,
34446,
526,
15931,
628,
220,
220,
220,
1398,
17665,
30515,
7,
16922,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
817,
2053,
618,
17594,
10143,
526,
15931,
198
] | 2.028197 | 6,029 |
# Generated by Django 3.1.1 on 2020-09-15 01:15
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
513,
13,
16,
13,
16,
319,
12131,
12,
2931,
12,
1314,
5534,
25,
1314,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.84375 | 32 |
# https://leetcode.com/problems/contains-duplicate/
| [
2,
3740,
1378,
293,
316,
8189,
13,
785,
14,
1676,
22143,
14,
3642,
1299,
12,
646,
489,
5344,
14,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220
] | 2 | 32 |
from .ascii2d import Ascii2D
from .Async import *
from .baidu import BaiDu
from .google import Google
from .iqdb import Iqdb
from .saucenao import SauceNAO
from .tracemoe import (
TraceMoe,
TraceMoeAnilist,
TraceMoeMe,
TraceMoeNorm,
TraceMoeResponse,
)
__author__ = "kitUIN"
__license__ = "MIT License"
__contributors__ = ["kitUIN", "lleans", "chinoll", "NekoAria"]
__email__ = "[email protected]"
| [
6738,
764,
292,
979,
72,
17,
67,
1330,
1081,
979,
72,
17,
35,
198,
6738,
764,
42367,
1330,
1635,
198,
6738,
764,
65,
1698,
84,
1330,
40750,
35660,
198,
6738,
764,
13297,
1330,
3012,
198,
6738,
764,
25011,
9945,
1330,
314,
80,
9945,
198,
6738,
764,
82,
14272,
268,
5488,
1330,
37618,
4535,
46,
198,
6738,
764,
2213,
330,
368,
2577,
1330,
357,
198,
220,
220,
220,
34912,
44,
2577,
11,
198,
220,
220,
220,
34912,
44,
2577,
2025,
346,
396,
11,
198,
220,
220,
220,
34912,
44,
2577,
5308,
11,
198,
220,
220,
220,
34912,
44,
2577,
35393,
11,
198,
220,
220,
220,
34912,
44,
2577,
31077,
11,
198,
8,
198,
198,
834,
9800,
834,
796,
366,
15813,
52,
1268,
1,
198,
834,
43085,
834,
796,
366,
36393,
13789,
1,
198,
834,
3642,
2455,
669,
834,
796,
14631,
15813,
52,
1268,
1600,
366,
75,
11861,
1600,
366,
24658,
692,
1600,
366,
45,
988,
78,
32,
7496,
8973,
198,
834,
12888,
834,
796,
366,
74,
15712,
29741,
31,
14816,
13,
785,
1,
198
] | 2.421965 | 173 |
import time
start = time.perf_counter()
receips = '37'
von = 509671
bis = von + 10
elf1, elf2 = 0,1
for i in range(bis):
score = int(receips[elf1]) + int(receips[elf2])
receips += str(score)
lr = len(receips)
elf1 = (elf1 + int(receips[elf1])+ 1) % lr
elf2 = (elf2 + int(receips[elf2])+ 1) % lr
print(receips[von:bis])
print(time.perf_counter()-start)
| [
11748,
640,
198,
9688,
796,
640,
13,
525,
69,
62,
24588,
3419,
198,
198,
260,
344,
2419,
796,
705,
2718,
6,
198,
26982,
796,
2026,
24,
46250,
198,
41907,
796,
18042,
1343,
838,
198,
198,
7046,
16,
11,
23878,
17,
796,
657,
11,
16,
198,
198,
1640,
1312,
287,
2837,
7,
41907,
2599,
220,
220,
198,
220,
4776,
796,
493,
7,
260,
344,
2419,
58,
7046,
16,
12962,
1343,
493,
7,
260,
344,
2419,
58,
7046,
17,
12962,
198,
220,
1407,
2419,
15853,
965,
7,
26675,
8,
198,
220,
300,
81,
796,
18896,
7,
260,
344,
2419,
8,
198,
220,
23878,
16,
796,
357,
7046,
16,
1343,
493,
7,
260,
344,
2419,
58,
7046,
16,
12962,
10,
352,
8,
4064,
300,
81,
198,
220,
23878,
17,
796,
357,
7046,
17,
1343,
493,
7,
260,
344,
2419,
58,
7046,
17,
12962,
10,
352,
8,
4064,
300,
81,
198,
220,
220,
198,
4798,
7,
260,
344,
2419,
58,
26982,
25,
41907,
12962,
198,
4798,
7,
2435,
13,
525,
69,
62,
24588,
3419,
12,
9688,
8,
198,
220,
220
] | 2.113636 | 176 |
import typing
import sys
import numpy as np
import numba as nb
@nb.njit((nb.i8, nb.i8, nb.i8[:], nb.i8[:]), cache=True)
main() | [
11748,
19720,
198,
11748,
25064,
220,
198,
11748,
299,
32152,
355,
45941,
220,
198,
11748,
997,
7012,
355,
299,
65,
220,
628,
198,
31,
46803,
13,
77,
45051,
19510,
46803,
13,
72,
23,
11,
299,
65,
13,
72,
23,
11,
299,
65,
13,
72,
23,
58,
25,
4357,
299,
65,
13,
72,
23,
58,
25,
46570,
12940,
28,
17821,
8,
628,
198,
198,
12417,
3419
] | 2.061538 | 65 |
import argparse
import os
from credentials import get, set
from upload import upload
def main():
"""
get command line options and upload the file(s) accordingly
:return: None
"""
parser = argparse.ArgumentParser()
options = parser.add_mutually_exclusive_group()
options.add_argument("-i", "--image", help="Upload a single file to imgur")
options.add_argument("-a", "--album", help="Upload all images in directory to imgur as an album")
args = parser.parse_args()
# Attempt to get credentials from file. If unavailable set credentials from input
login = get.get_creds()
cred_dir = os.path.dirname(os.path.abspath(__file__)) + "\credentials\credentials.cred"
if not login:
login = set.set_creds()
client = upload.Client(login[0], login[1], cred_dir)
print(args.image)
if args.image:
upload.SingleFile(client, args.image)
elif args.album:
upload.Album(client, args.album)
else:
print("No commands input.\n[-h] [-help] for a list of commands.")
if __name__ == "__main__":
main()
| [
11748,
1822,
29572,
201,
198,
11748,
28686,
201,
198,
6738,
18031,
1330,
651,
11,
900,
201,
198,
6738,
9516,
1330,
9516,
201,
198,
201,
198,
201,
198,
4299,
1388,
33529,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
651,
3141,
1627,
3689,
290,
9516,
262,
2393,
7,
82,
8,
16062,
201,
198,
220,
220,
220,
1058,
7783,
25,
6045,
201,
198,
220,
220,
220,
37227,
201,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
201,
198,
220,
220,
220,
3689,
796,
30751,
13,
2860,
62,
21973,
935,
62,
41195,
62,
8094,
3419,
201,
198,
220,
220,
220,
3689,
13,
2860,
62,
49140,
7203,
12,
72,
1600,
366,
438,
9060,
1600,
1037,
2625,
41592,
257,
2060,
2393,
284,
33705,
333,
4943,
201,
198,
220,
220,
220,
3689,
13,
2860,
62,
49140,
7203,
12,
64,
1600,
366,
438,
40916,
1600,
1037,
2625,
41592,
477,
4263,
287,
8619,
284,
33705,
333,
355,
281,
5062,
4943,
201,
198,
220,
220,
220,
26498,
796,
30751,
13,
29572,
62,
22046,
3419,
201,
198,
201,
198,
220,
220,
220,
1303,
25770,
284,
651,
18031,
422,
2393,
13,
1002,
23485,
900,
18031,
422,
5128,
201,
198,
220,
220,
220,
17594,
796,
651,
13,
1136,
62,
66,
445,
82,
3419,
201,
198,
220,
220,
220,
2600,
62,
15908,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
1343,
37082,
66,
445,
14817,
59,
66,
445,
14817,
13,
66,
445,
1,
201,
198,
220,
220,
220,
611,
407,
17594,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
17594,
796,
900,
13,
2617,
62,
66,
445,
82,
3419,
201,
198,
220,
220,
220,
5456,
796,
9516,
13,
11792,
7,
38235,
58,
15,
4357,
17594,
58,
16,
4357,
2600,
62,
15908,
8,
201,
198,
201,
198,
220,
220,
220,
3601,
7,
22046,
13,
9060,
8,
201,
198,
220,
220,
220,
611,
26498,
13,
9060,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
9516,
13,
28008,
8979,
7,
16366,
11,
26498,
13,
9060,
8,
201,
198,
220,
220,
220,
1288,
361,
26498,
13,
40916,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
9516,
13,
2348,
4435,
7,
16366,
11,
26498,
13,
40916,
8,
201,
198,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
2949,
9729,
5128,
13,
59,
77,
58,
12,
71,
60,
25915,
16794,
60,
329,
257,
1351,
286,
9729,
19570,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
201,
198,
220,
220,
220,
1388,
3419,
201,
198
] | 2.572082 | 437 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from proxypool.schedule import Schedule
if __name__ == '__main__':
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
6738,
14793,
4464,
970,
13,
15952,
5950,
1330,
19281,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.363636 | 55 |
from lib import file_util
from lib import render_path
from lib import template_renderer
from lib import source_converter
from lib import console_outputter
from datetime import date
| [
6738,
9195,
1330,
2393,
62,
22602,
198,
6738,
9195,
1330,
8543,
62,
6978,
198,
6738,
9195,
1330,
11055,
62,
10920,
11882,
198,
6738,
9195,
1330,
2723,
62,
1102,
332,
353,
198,
6738,
9195,
1330,
8624,
62,
22915,
353,
198,
6738,
4818,
8079,
1330,
3128,
628
] | 4.044444 | 45 |
"""
tests.py
A file dedicated to testing our game and ensuring it can run.
Integrate this into your IDE's workflow to ensure the game runs from top to bottom.
The tests used here should test all of our game's features as best they can.
"""
import pytest
from typing import Pattern, List
class TestGame:
"""
Tests that the Arcade framework runs the game correctly.
Only tests that it launches and runs for a little bit, not that it is functioning properly.
"""
def test_game_runs(self) -> None:
"""
Simply test that the Game runs.
"""
# imports
from main import Game
# instantiate and setup
game = Game()
game.setup()
game.minimize() # Minimizes window, should reduce annoyance a little bit.
# test for 100 frames
game.test(20)
class TestSprites:
"""
Tests the Sprite classes as well as the available sprites.
"""
@pytest.fixture
def sprites(self) -> List[str]:
"""
:return: List of absolute paths to Sprite images
"""
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
IMAGE_DIR = os.path.join(BASE_DIR, 'resources', 'images')
_sprites = []
for primary in os.listdir(IMAGE_DIR):
for secondary in os.listdir(os.path.join(IMAGE_DIR, primary)):
secondary = os.path.join(IMAGE_DIR, primary, secondary)
if os.path.isfile(secondary):
_sprites.append(secondary)
else:
_sprites.extend(
os.path.join(secondary, file) for file in
os.listdir(os.path.join(IMAGE_DIR, primary, secondary)))
return _sprites
@pytest.fixture
def patterns(self) -> List[Pattern]:
"""
:return: A list of Pattern objects to test.
"""
import re
_patterns = [
r'\w+_(?:\w+_)?\d+\.(?:jp(?:eg|e|g)|png)',
r'\w+\d+\.(?:jp(?:eg|e|g)|png)',
r'\w+_tile\.(?:jp(?:eg|e|g)|png)'
]
return list(map(re.compile, _patterns))
def test_sprite_schema(self, sprites: List[str], patterns: List[Pattern]) -> None:
"""
Tests that all sprites follow the naming conventions.
"""
import os
for sprite in sprites:
head, tail = os.path.split(sprite)
if any(pattern.match(tail) is not None for pattern in patterns):
continue
pytest.fail(f"Sprite '{tail}' in '{head}' did not match the schema.")
def test_sprite_loads(self, sprites) -> None:
"""
Tests that all sprites can be loaded by the arcade framework.
"""
import arcade
for sprite in sprites:
_sprite = arcade.Sprite(sprite)
class TestLevels:
"""
Tests the Level class.
"""
@pytest.fixture
def levels(self) -> List[str]:
"""
:return: List of paths to Level files
"""
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
LEVEL_DIR = os.path.join(BASE_DIR, 'resources', 'levels')
levels = [os.path.join(LEVEL_DIR, file) for file in os.listdir(LEVEL_DIR)]
return levels
def test_levels_are_loadable(self, levels) -> None:
"""
Tests whether or not a level can be loaded.
"""
from map import Level
for level in levels:
Level.load_file(2, 3, level)
class TestDungeon:
"""
Tests the Dungeon class.
"""
class TestMisc:
"""
Tests things that don't fit anywhere else.
"""
| [
37811,
198,
41989,
13,
9078,
198,
32,
2393,
7256,
284,
4856,
674,
983,
290,
13359,
340,
460,
1057,
13,
198,
34500,
4873,
428,
656,
534,
33497,
338,
30798,
284,
4155,
262,
983,
4539,
422,
1353,
284,
4220,
13,
198,
464,
5254,
973,
994,
815,
1332,
477,
286,
674,
983,
338,
3033,
355,
1266,
484,
460,
13,
198,
37811,
198,
198,
11748,
12972,
9288,
198,
198,
6738,
19720,
1330,
23939,
11,
7343,
628,
198,
4871,
6208,
8777,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
326,
262,
23190,
9355,
4539,
262,
983,
9380,
13,
198,
220,
220,
220,
5514,
5254,
326,
340,
18617,
290,
4539,
329,
257,
1310,
1643,
11,
407,
326,
340,
318,
15025,
6105,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
1332,
62,
6057,
62,
48381,
7,
944,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
17973,
1332,
326,
262,
3776,
4539,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
17944,
198,
220,
220,
220,
220,
220,
220,
220,
422,
1388,
1330,
3776,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
9113,
9386,
290,
9058,
198,
220,
220,
220,
220,
220,
220,
220,
983,
796,
3776,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
983,
13,
40406,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
983,
13,
1084,
48439,
3419,
220,
1303,
1855,
320,
4340,
4324,
11,
815,
4646,
38650,
257,
1310,
1643,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1332,
329,
1802,
13431,
198,
220,
220,
220,
220,
220,
220,
220,
983,
13,
9288,
7,
1238,
8,
628,
198,
4871,
6208,
4561,
23156,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
262,
33132,
6097,
355,
880,
355,
262,
1695,
42866,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
9078,
9288,
13,
69,
9602,
198,
220,
220,
220,
825,
42866,
7,
944,
8,
4613,
7343,
58,
2536,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
7343,
286,
4112,
13532,
284,
33132,
4263,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1330,
28686,
198,
220,
220,
220,
220,
220,
220,
220,
49688,
62,
34720,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
8959,
11879,
62,
34720,
796,
28686,
13,
6978,
13,
22179,
7,
33,
11159,
62,
34720,
11,
705,
37540,
3256,
705,
17566,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
4808,
2777,
23156,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4165,
287,
28686,
13,
4868,
15908,
7,
3955,
11879,
62,
34720,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
9233,
287,
28686,
13,
4868,
15908,
7,
418,
13,
6978,
13,
22179,
7,
3955,
11879,
62,
34720,
11,
4165,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9233,
796,
28686,
13,
6978,
13,
22179,
7,
3955,
11879,
62,
34720,
11,
4165,
11,
9233,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
28686,
13,
6978,
13,
4468,
576,
7,
38238,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
2777,
23156,
13,
33295,
7,
38238,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
2777,
23156,
13,
2302,
437,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
22179,
7,
38238,
11,
2393,
8,
329,
2393,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
4868,
15908,
7,
418,
13,
6978,
13,
22179,
7,
3955,
11879,
62,
34720,
11,
4165,
11,
9233,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
4808,
2777,
23156,
628,
220,
220,
220,
2488,
9078,
9288,
13,
69,
9602,
198,
220,
220,
220,
825,
7572,
7,
944,
8,
4613,
7343,
58,
47546,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
317,
1351,
286,
23939,
5563,
284,
1332,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
302,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
33279,
82,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
6,
59,
86,
10,
41052,
30,
7479,
86,
10,
62,
19427,
59,
67,
10,
59,
12195,
27514,
34523,
7,
27514,
1533,
91,
68,
91,
70,
14726,
11134,
8,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
6,
59,
86,
10,
59,
67,
10,
59,
12195,
27514,
34523,
7,
27514,
1533,
91,
68,
91,
70,
14726,
11134,
8,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
6,
59,
86,
10,
62,
40927,
59,
12195,
27514,
34523,
7,
27514,
1533,
91,
68,
91,
70,
14726,
11134,
33047,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1351,
7,
8899,
7,
260,
13,
5589,
576,
11,
4808,
33279,
82,
4008,
628,
220,
220,
220,
825,
1332,
62,
34975,
578,
62,
15952,
2611,
7,
944,
11,
42866,
25,
7343,
58,
2536,
4357,
7572,
25,
7343,
58,
47546,
12962,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
30307,
326,
477,
42866,
1061,
262,
19264,
21396,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
28686,
628,
220,
220,
220,
220,
220,
220,
220,
329,
33810,
287,
42866,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1182,
11,
7894,
796,
28686,
13,
6978,
13,
35312,
7,
34975,
578,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
597,
7,
33279,
13,
15699,
7,
13199,
8,
318,
407,
6045,
329,
3912,
287,
7572,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12972,
9288,
13,
32165,
7,
69,
1,
38454,
578,
705,
90,
13199,
92,
6,
287,
705,
90,
2256,
92,
6,
750,
407,
2872,
262,
32815,
19570,
628,
220,
220,
220,
825,
1332,
62,
34975,
578,
62,
46030,
7,
944,
11,
42866,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
30307,
326,
477,
42866,
460,
307,
9639,
416,
262,
27210,
9355,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
27210,
628,
220,
220,
220,
220,
220,
220,
220,
329,
33810,
287,
42866,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
34975,
578,
796,
27210,
13,
38454,
578,
7,
34975,
578,
8,
628,
198,
4871,
6208,
4971,
82,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
262,
5684,
1398,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
9078,
9288,
13,
69,
9602,
198,
220,
220,
220,
825,
2974,
7,
944,
8,
4613,
7343,
58,
2536,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
7343,
286,
13532,
284,
5684,
3696,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1330,
28686,
628,
220,
220,
220,
220,
220,
220,
220,
49688,
62,
34720,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
49277,
62,
34720,
796,
28686,
13,
6978,
13,
22179,
7,
33,
11159,
62,
34720,
11,
705,
37540,
3256,
705,
46170,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2974,
796,
685,
418,
13,
6978,
13,
22179,
7,
2538,
18697,
62,
34720,
11,
2393,
8,
329,
2393,
287,
28686,
13,
4868,
15908,
7,
2538,
18697,
62,
34720,
15437,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2974,
628,
220,
220,
220,
825,
1332,
62,
46170,
62,
533,
62,
2220,
540,
7,
944,
11,
2974,
8,
4613,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
30307,
1771,
393,
407,
257,
1241,
460,
307,
9639,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
422,
3975,
1330,
5684,
628,
220,
220,
220,
220,
220,
220,
220,
329,
1241,
287,
2974,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5684,
13,
2220,
62,
7753,
7,
17,
11,
513,
11,
1241,
8,
628,
198,
4871,
6208,
30128,
6281,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
262,
11995,
1398,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
6208,
44,
2304,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
30307,
1243,
326,
836,
470,
4197,
6609,
2073,
13,
198,
220,
220,
220,
37227,
198
] | 2.247397 | 1,633 |
import json
import logging
import pathlib
from phe import paillier, EncryptedNumber, PaillierPublicKey
import server.dbhandler as dbhandler
class Server():
"""
Implements functionality related to cloud biometric storage and processing.
Return values to the client:
store_template():
<int> tid (template id)
if template succesfully stored in the database file
<None>
if error during store occurs
calculate_eucledian():
<int> encrypted_eucledian_distance
Ciphertext which contains the encrypted eucledian distance
<None>
if error during calculation occurs
make_decision():
<True> given unencrypted eucledian distance
returns if the value is within threshold
<False>
if the value is not withing threshold
"""
def __init__(self):
"""
Constructor executed during object creation
"""
self.logger = self.get_logger() # for server logs
data = dbhandler.read_data()
if not data:
self.tid = 0
else:
last_entry = data[-1] # fetch the last appended tid
self.tid = last_entry['tid']
def store_template(self, encrypted_fingerprint, pub_key_n):
"""
Receives a encrypted transformed fingerprint from the client.
Fingerprint is homomorphically encrypted using the paillier
scheme which allows the server to perform certain operations on
encrypted data.
This data is stored in a database.
:param template_fingerprint: encrypted fingerprint template
:param pub_key_n:
:return: template id of the template stored, None if error
"""
data = dbhandler.read_data()
self.tid = self.tid + 1
try:
serializable_encrypted_fingerprint = [
feature._EncryptedNumber__ciphertext for feature in encrypted_fingerprint]
new_template = {'tid': self.tid,
'fingerprint': serializable_encrypted_fingerprint,
'public_key': pub_key_n}
data.append(new_template)
dbhandler.write_data(data)
except Exception as e:
self.logger.exception(e)
raise Exception(e)
return None
self.logger.info('New template stored')
self.logger.debug(json.dumps(new_template, indent=2))
return self.tid
def retrieve_template(self, user_tid):
"""
Retrieves encrypted fingerprint vector given a particular
template id.
:param user_tid: template id of the user from client
:return: fingerprint template if it exists else None
"""
data = dbhandler.read_data()
for entry in data:
if entry['tid'] == user_tid:
return entry
# This technically should never happen
self.logger.error(f'Unknown template id: {user_tid}')
return None
def compute_euclidean(self, verification_fingerprint, user_tid):
"""
Computes the eucledian distance between the verification fingerprint
and the original fingerprint.
:param verification_fingerprint: fingerprint transformed vector
for the user that is to be verified by the client
:param user_tid: template id of the user being verified
sent by the client
:return: encrypted eucledian distance
"""
template_json = self.retrieve_template(user_tid)
if not template_json:
return None
pub_key = PaillierPublicKey(template_json['public_key'])
original_fingerprint = [EncryptedNumber(
pub_key, cipher) for cipher in template_json['fingerprint']]
if len(verification_fingerprint) != len(original_fingerprint):
self.logger.error(f'Fingerprint templates size do not match')
self.logger.debug(
f'Verification fingerprint {verification_fingerprint}')
return None
for idx, feature in enumerate(verification_fingerprint):
original_fingerprint[idx] = original_fingerprint[idx]*feature
encrypted_eucledian_distance = 0
for c in original_fingerprint:
encrypted_eucledian_distance += c
return encrypted_eucledian_distance._EncryptedNumber__ciphertext
def make_decision(self, euclidean_distance):
"""
Given unencrypted eucledian distance between the original and to be verified fingerprint
it returns whether the value is withing threshold
https://www.intechopen.com/books/advanced-biometric-technologies/fingerprint-recognition
threshold value taken from this website (gm1 = 27)
:param euclidean_distance: eucledian distance as integer
:return: True or False
"""
if euclidean_distance < 27:
return True
else:
return False
def get_logger(self):
"""
Create a logging object for server logs
:return: logger object
"""
logger = logging.getLogger('server')
logger.setLevel(level=logging.DEBUG)
formatter = logging.Formatter(
'%(asctime)s: %(module)s: [%(levelname)s]: %(message)s')
file_name = pathlib.Path(__file__).parent / 'logs/server.log'
file_handler = logging.FileHandler(file_name)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
return logger
| [
11748,
33918,
198,
11748,
18931,
198,
11748,
3108,
8019,
198,
198,
6738,
279,
258,
1330,
14187,
359,
959,
11,
14711,
15109,
15057,
11,
11243,
359,
959,
15202,
9218,
198,
198,
11748,
4382,
13,
9945,
30281,
355,
20613,
30281,
628,
198,
4871,
9652,
33529,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1846,
1154,
902,
11244,
3519,
284,
6279,
3182,
16996,
6143,
290,
7587,
13,
628,
220,
220,
220,
8229,
3815,
284,
262,
5456,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3650,
62,
28243,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
600,
29,
29770,
357,
28243,
4686,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
11055,
17458,
274,
2759,
8574,
287,
262,
6831,
2393,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
14202,
29,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4049,
1141,
3650,
8833,
628,
220,
220,
220,
220,
220,
220,
220,
15284,
62,
12496,
20095,
666,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
600,
29,
19365,
62,
12496,
20095,
666,
62,
30246,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44334,
5239,
543,
4909,
262,
19365,
304,
84,
20095,
666,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
14202,
29,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4049,
1141,
17952,
8833,
628,
220,
220,
220,
220,
220,
220,
220,
787,
62,
12501,
1166,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
17821,
29,
1813,
555,
43628,
304,
84,
20095,
666,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5860,
611,
262,
1988,
318,
1626,
11387,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1279,
25101,
29,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
262,
1988,
318,
407,
351,
278,
11387,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
28407,
273,
10945,
1141,
2134,
6282,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
796,
2116,
13,
1136,
62,
6404,
1362,
3419,
220,
1303,
329,
4382,
17259,
628,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
20613,
30281,
13,
961,
62,
7890,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1366,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
83,
312,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
938,
62,
13000,
796,
1366,
58,
12,
16,
60,
220,
1303,
21207,
262,
938,
598,
1631,
29770,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
83,
312,
796,
938,
62,
13000,
17816,
83,
312,
20520,
628,
220,
220,
220,
825,
3650,
62,
28243,
7,
944,
11,
19365,
62,
35461,
4798,
11,
2240,
62,
2539,
62,
77,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
19520,
1083,
257,
19365,
14434,
25338,
422,
262,
5456,
13,
198,
220,
220,
220,
220,
220,
220,
220,
39454,
4798,
318,
3488,
25831,
1146,
19365,
1262,
262,
14187,
359,
959,
198,
220,
220,
220,
220,
220,
220,
220,
7791,
543,
3578,
262,
4382,
284,
1620,
1728,
4560,
319,
198,
220,
220,
220,
220,
220,
220,
220,
19365,
1366,
13,
198,
220,
220,
220,
220,
220,
220,
220,
770,
1366,
318,
8574,
287,
257,
6831,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
11055,
62,
35461,
4798,
25,
19365,
25338,
11055,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2240,
62,
2539,
62,
77,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
11055,
4686,
286,
262,
11055,
8574,
11,
6045,
611,
4049,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
20613,
30281,
13,
961,
62,
7890,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
83,
312,
796,
2116,
13,
83,
312,
1343,
352,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11389,
13821,
62,
43628,
62,
35461,
4798,
796,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3895,
13557,
27195,
15109,
15057,
834,
66,
10803,
5239,
329,
3895,
287,
19365,
62,
35461,
4798,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
649,
62,
28243,
796,
1391,
6,
83,
312,
10354,
2116,
13,
83,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35461,
4798,
10354,
11389,
13821,
62,
43628,
62,
35461,
4798,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
11377,
62,
2539,
10354,
2240,
62,
2539,
62,
77,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
7,
3605,
62,
28243,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20613,
30281,
13,
13564,
62,
7890,
7,
7890,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
1069,
4516,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
35528,
7,
68,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
10951,
10786,
3791,
11055,
8574,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
24442,
7,
17752,
13,
67,
8142,
7,
3605,
62,
28243,
11,
33793,
28,
17,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
83,
312,
628,
220,
220,
220,
825,
19818,
62,
28243,
7,
944,
11,
2836,
62,
83,
312,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
4990,
5034,
1158,
19365,
25338,
15879,
1813,
257,
1948,
198,
220,
220,
220,
220,
220,
220,
220,
11055,
4686,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2836,
62,
83,
312,
25,
11055,
4686,
286,
262,
2836,
422,
5456,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
25338,
11055,
611,
340,
7160,
2073,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
20613,
30281,
13,
961,
62,
7890,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
5726,
287,
1366,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5726,
17816,
83,
312,
20520,
6624,
2836,
62,
83,
312,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5726,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
770,
14497,
815,
1239,
1645,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
18224,
7,
69,
6,
20035,
11055,
4686,
25,
1391,
7220,
62,
83,
312,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
628,
220,
220,
220,
825,
24061,
62,
12496,
565,
485,
272,
7,
944,
11,
19637,
62,
35461,
4798,
11,
2836,
62,
83,
312,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
3082,
1769,
262,
304,
84,
20095,
666,
5253,
1022,
262,
19637,
25338,
198,
220,
220,
220,
220,
220,
220,
220,
290,
262,
2656,
25338,
13,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
19637,
62,
35461,
4798,
25,
25338,
14434,
15879,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
262,
2836,
326,
318,
284,
307,
19000,
416,
262,
5456,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
2836,
62,
83,
312,
25,
11055,
4686,
286,
262,
2836,
852,
19000,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1908,
416,
262,
5456,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
19365,
304,
84,
20095,
666,
5253,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11055,
62,
17752,
796,
2116,
13,
1186,
30227,
62,
28243,
7,
7220,
62,
83,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
11055,
62,
17752,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2240,
62,
2539,
796,
11243,
359,
959,
15202,
9218,
7,
28243,
62,
17752,
17816,
11377,
62,
2539,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2656,
62,
35461,
4798,
796,
685,
27195,
15109,
15057,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2240,
62,
2539,
11,
38012,
8,
329,
38012,
287,
11055,
62,
17752,
17816,
35461,
4798,
6,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
332,
2649,
62,
35461,
4798,
8,
14512,
18896,
7,
14986,
62,
35461,
4798,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
18224,
7,
69,
6,
37,
3889,
4798,
24019,
2546,
466,
407,
2872,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
6404,
1362,
13,
24442,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
6,
13414,
2649,
25338,
1391,
332,
2649,
62,
35461,
4798,
92,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
329,
4686,
87,
11,
3895,
287,
27056,
378,
7,
332,
2649,
62,
35461,
4798,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2656,
62,
35461,
4798,
58,
312,
87,
60,
796,
2656,
62,
35461,
4798,
58,
312,
87,
60,
9,
30053,
198,
220,
220,
220,
220,
220,
220,
220,
19365,
62,
12496,
20095,
666,
62,
30246,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
2656,
62,
35461,
4798,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19365,
62,
12496,
20095,
666,
62,
30246,
15853,
269,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
19365,
62,
12496,
20095,
666,
62,
30246,
13557,
27195,
15109,
15057,
834,
66,
10803,
5239,
628,
220,
220,
220,
825,
787,
62,
12501,
1166,
7,
944,
11,
304,
36616,
485,
272,
62,
30246,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11259,
555,
43628,
304,
84,
20095,
666,
5253,
1022,
262,
2656,
290,
284,
307,
19000,
25338,
198,
220,
220,
220,
220,
220,
220,
220,
340,
5860,
1771,
262,
1988,
318,
351,
278,
11387,
198,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
2503,
13,
600,
3055,
9654,
13,
785,
14,
12106,
14,
32225,
2903,
12,
8482,
16996,
12,
23873,
5823,
14,
35461,
4798,
12,
26243,
653,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
1988,
2077,
422,
428,
3052,
357,
39870,
16,
796,
2681,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
304,
36616,
485,
272,
62,
30246,
25,
304,
84,
20095,
666,
5253,
355,
18253,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
6407,
393,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
304,
36616,
485,
272,
62,
30246,
1279,
2681,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
825,
651,
62,
6404,
1362,
7,
944,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
13610,
257,
18931,
2134,
329,
4382,
17259,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
49706,
2134,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
796,
18931,
13,
1136,
11187,
1362,
10786,
15388,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
2617,
4971,
7,
5715,
28,
6404,
2667,
13,
30531,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1296,
1436,
796,
18931,
13,
8479,
1436,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4,
7,
292,
310,
524,
8,
82,
25,
4064,
7,
21412,
8,
82,
25,
685,
4,
7,
5715,
3672,
8,
82,
5974,
4064,
7,
20500,
8,
82,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
3672,
796,
3108,
8019,
13,
15235,
7,
834,
7753,
834,
737,
8000,
1220,
705,
6404,
82,
14,
15388,
13,
6404,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
796,
18931,
13,
8979,
25060,
7,
7753,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
30281,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
2860,
25060,
7,
7753,
62,
30281,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
49706,
198
] | 2.395948 | 2,369 |
# Faça um programa em Python que abra e reproduza o áudio de um arquivo MP3.
from pygame import mixer # pip3 install pygame
mixer.init()
mixer.music.load('ex021.ogg')
mixer.music.play()
input()
| [
2,
18350,
50041,
23781,
1430,
64,
795,
11361,
8358,
450,
430,
304,
8186,
4496,
267,
6184,
94,
463,
952,
390,
23781,
610,
421,
23593,
4904,
18,
13,
198,
198,
6738,
12972,
6057,
1330,
33938,
1303,
7347,
18,
2721,
12972,
6057,
198,
198,
19816,
263,
13,
15003,
3419,
198,
19816,
263,
13,
28965,
13,
2220,
10786,
1069,
46821,
13,
10332,
11537,
198,
19816,
263,
13,
28965,
13,
1759,
3419,
198,
15414,
3419,
198
] | 2.722222 | 72 |
import pkg_resources
import json | [
11748,
279,
10025,
62,
37540,
198,
11748,
33918
] | 4 | 8 |
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
from rl_coach.environments.gym_environment import GymVectorEnvironment
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.base_parameters import VisualizationParameters, TaskParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
from rl_coach import logger
import os
import argparse
import copy
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# consumes the hyper-parameters
parser.add_argument('--bucket_name', type=str)
parser.add_argument('--input_data_dir', type=str, default='/opt/ml/input/data/')
parser.add_argument('--output_data_dir', type=str, default='/opt/ml/output/data/')
params, unknown = parser.parse_known_args()
evaluate(params)
| [
6738,
374,
75,
62,
1073,
620,
13,
49638,
13,
565,
3949,
62,
16634,
62,
25781,
1330,
1012,
3949,
10246,
23621,
6783,
48944,
198,
6738,
374,
75,
62,
1073,
620,
13,
268,
12103,
13,
1360,
76,
62,
38986,
1330,
31187,
38469,
31441,
198,
6738,
374,
75,
62,
1073,
620,
13,
34960,
62,
805,
10321,
13,
35487,
62,
45895,
62,
34960,
62,
37153,
1330,
14392,
7836,
37065,
13511,
198,
6738,
374,
75,
62,
1073,
620,
13,
34960,
62,
805,
10321,
13,
34960,
62,
37153,
1330,
19281,
48944,
198,
6738,
374,
75,
62,
1073,
620,
13,
8692,
62,
17143,
7307,
1330,
15612,
1634,
48944,
11,
15941,
48944,
198,
6738,
374,
75,
62,
1073,
620,
13,
7295,
62,
19199,
1330,
13614,
8600,
82,
11,
9344,
13807,
8052,
11,
9344,
8600,
82,
11,
5660,
35645,
198,
6738,
374,
75,
62,
1073,
620,
1330,
49706,
198,
11748,
28686,
198,
11748,
1822,
29572,
198,
11748,
4866,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
1303,
37225,
262,
8718,
12,
17143,
7307,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
27041,
316,
62,
3672,
3256,
2099,
28,
2536,
8,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
15414,
62,
7890,
62,
15908,
3256,
2099,
28,
2536,
11,
4277,
11639,
14,
8738,
14,
4029,
14,
15414,
14,
7890,
14,
11537,
198,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
438,
22915,
62,
7890,
62,
15908,
3256,
2099,
28,
2536,
11,
4277,
11639,
14,
8738,
14,
4029,
14,
22915,
14,
7890,
14,
11537,
198,
220,
220,
220,
42287,
11,
6439,
796,
30751,
13,
29572,
62,
4002,
62,
22046,
3419,
198,
220,
220,
220,
13446,
7,
37266,
8,
198
] | 3.114094 | 298 |
from .core import Reactor
| [
6738,
764,
7295,
1330,
797,
11218,
198
] | 3.714286 | 7 |
import datetime
from flask.ext.bcrypt import generate_password_hash
from flask.ext.login import UserMixin
from peewee import *
DATABASE = SqliteDatabase('journal.db')
| [
11748,
4818,
8079,
198,
198,
6738,
42903,
13,
2302,
13,
15630,
6012,
1330,
7716,
62,
28712,
62,
17831,
198,
6738,
42903,
13,
2302,
13,
38235,
1330,
11787,
35608,
259,
198,
6738,
613,
413,
1453,
1330,
1635,
198,
198,
35,
1404,
6242,
11159,
796,
311,
13976,
578,
38105,
10786,
24891,
13,
9945,
11537,
628,
220,
220,
220,
220,
198
] | 3.017241 | 58 |
from juno.resources import handler_request
from juno.resources.routes import additional_data_routes
| [
6738,
10891,
78,
13,
37540,
1330,
21360,
62,
25927,
198,
6738,
10891,
78,
13,
37540,
13,
81,
448,
274,
1330,
3224,
62,
7890,
62,
81,
448,
274,
198
] | 3.571429 | 28 |
# pylint: disable=no-self-use
import json
import pytest
import re
from geoalchemy2.shape import from_shape
from shapely.geometry import box, Polygon, shape
from . import AbstractViewsTests
@pytest.fixture(scope='function')
@pytest.mark.usefixtures('dbsession', 'transact')
@pytest.mark.usefixtures('restriction_area_test_data', 'test_app')
| [
2,
279,
2645,
600,
25,
15560,
28,
3919,
12,
944,
12,
1904,
628,
198,
11748,
33918,
198,
11748,
12972,
9288,
198,
11748,
302,
198,
6738,
40087,
282,
26599,
17,
13,
43358,
1330,
422,
62,
43358,
198,
6738,
5485,
306,
13,
469,
15748,
1330,
3091,
11,
12280,
14520,
11,
5485,
198,
198,
6738,
764,
1330,
27741,
7680,
82,
51,
3558,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
29982,
11639,
8818,
11537,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
10786,
67,
1443,
2521,
3256,
705,
7645,
529,
11537,
628,
198,
31,
9078,
9288,
13,
4102,
13,
1904,
69,
25506,
10786,
2118,
46214,
62,
20337,
62,
9288,
62,
7890,
3256,
705,
9288,
62,
1324,
11537,
198
] | 2.940678 | 118 |
#!/usr/bin/python3
import requests
import boto3
from os import listdir
from os.path import isfile, join
import re
def install_paper(mc_version, paper_build):
"""This will download the paper jar"""
url = "https://papermc.io/api/v2/projects/paper"
mc_version = requests.get(url).json()['versions'][-1] if mc_version is None or mc_version is "latest" else mc_version
paper_build = requests.get("{url}/versions/{version}".format(url = url, version = mc_version)).json()['builds'][-1] if paper_build is None or paper_build is "latest" else paper_build
download = requests.get("{url}/versions/{version}/builds/{build}/downloads/paper-{version}-{build}.jar".format(url = url, version = mc_version, build = paper_build))
open(join(minecraft_path,"paper-{version}-{build}.jar".format(version = mc_version, build = paper_build)), 'wb').write(download.content)
# Now update the tags
response = instance.create_tags(Tags=[
{'Key': 'mc_version', 'Value': mc_version },
{'Key': 'mc_paper_build', 'Value': str(paper_build) }])
minecraft_path = "/opt/minecraft/server"
instance_id = requests.get("http://169.254.169.254/latest/meta-data/instance-id").text
region = requests.get(" http://169.254.169.254/latest/meta-data/placement/region").text
ec2 = boto3.resource('ec2', region_name = region)
instance = ec2.Instance(instance_id)
# Search the tags for the minecraft version we are targetting
try:
target_minecraft_version = next(t["Value"] for t in instance.tags if t["Key"] == "mc_version")
except StopIteration:
target_minecraft_version = None
# Check and see if we've already got a build defined.
try:
current_paper_build = next(t["Value"] for t in instance.tags if t["Key"] == "mc_paper_build")
except StopIteration:
current_paper_build = None
# Get the filename of paper on the system
try:
paper_file = next(f for f in listdir(minecraft_path) if isfile(join(minecraft_path, f)) and "paper" in f and "jar" in f)
except StopIteration:
paper_file = None
if not paper_file:
# Hey, we don't have a paper file installed, so this must be a new build of the minecraft server!
print("New paper install")
install_paper(target_minecraft_version, current_paper_build)
else:
# We've already got a file, so we're going to look at what we need to do.
print("Paper already installed, let's see if we need to re-install anything")
p = re.compile(r'paper-(?P<version>[0-9.]+)-(?P<build>[0-9]+).jar')
m = p.search(paper_file)
installed_version = m.group('version')
installed_build = m.group('build')
if target_minecraft_version == installed_version:
# We already have the same version, let's see if we need to do anything with the build
print("minecraft version is current")
if current_paper_build == installed_build:
print("paper build is current, nothing to do")
else:
print("paper build is NOT current, updating the build")
install_paper(target_minecraft_version, current_paper_build)
else:
# The version isn't the same, we need to download a new one
print("minecraft version is NOT current")
install_paper(target_minecraft_version, current_paper_build)
| [
2,
48443,
14629,
14,
8800,
14,
29412,
18,
198,
198,
11748,
7007,
198,
11748,
275,
2069,
18,
198,
6738,
28686,
1330,
1351,
15908,
198,
6738,
28686,
13,
6978,
1330,
318,
7753,
11,
4654,
198,
11748,
302,
198,
198,
4299,
2721,
62,
20189,
7,
23209,
62,
9641,
11,
3348,
62,
11249,
2599,
198,
220,
220,
220,
37227,
1212,
481,
4321,
262,
3348,
17379,
37811,
198,
220,
220,
220,
19016,
796,
366,
5450,
1378,
20189,
23209,
13,
952,
14,
15042,
14,
85,
17,
14,
42068,
14,
20189,
1,
198,
220,
220,
220,
36650,
62,
9641,
796,
7007,
13,
1136,
7,
6371,
737,
17752,
3419,
17816,
47178,
6,
7131,
12,
16,
60,
611,
36650,
62,
9641,
318,
6045,
393,
36650,
62,
9641,
318,
366,
42861,
1,
2073,
36650,
62,
9641,
198,
220,
220,
220,
3348,
62,
11249,
796,
7007,
13,
1136,
7203,
90,
6371,
92,
14,
47178,
14,
90,
9641,
92,
1911,
18982,
7,
6371,
796,
19016,
11,
2196,
796,
36650,
62,
9641,
29720,
17752,
3419,
17816,
11249,
82,
6,
7131,
12,
16,
60,
611,
3348,
62,
11249,
318,
6045,
393,
3348,
62,
11249,
318,
366,
42861,
1,
2073,
3348,
62,
11249,
198,
220,
220,
220,
4321,
796,
7007,
13,
1136,
7203,
90,
6371,
92,
14,
47178,
14,
90,
9641,
92,
14,
11249,
82,
14,
90,
11249,
92,
14,
15002,
82,
14,
20189,
12,
90,
9641,
92,
12,
90,
11249,
27422,
9491,
1911,
18982,
7,
6371,
796,
19016,
11,
2196,
796,
36650,
62,
9641,
11,
1382,
796,
3348,
62,
11249,
4008,
198,
220,
220,
220,
1280,
7,
22179,
7,
17761,
62,
6978,
553,
20189,
12,
90,
9641,
92,
12,
90,
11249,
27422,
9491,
1911,
18982,
7,
9641,
796,
36650,
62,
9641,
11,
1382,
796,
3348,
62,
11249,
36911,
705,
39346,
27691,
13564,
7,
15002,
13,
11299,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2735,
4296,
262,
15940,
198,
220,
220,
220,
2882,
796,
4554,
13,
17953,
62,
31499,
7,
36142,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
9218,
10354,
705,
23209,
62,
9641,
3256,
705,
11395,
10354,
36650,
62,
9641,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1391,
6,
9218,
10354,
705,
23209,
62,
20189,
62,
11249,
3256,
705,
11395,
10354,
965,
7,
20189,
62,
11249,
8,
1782,
12962,
198,
220,
220,
220,
220,
198,
198,
17761,
62,
6978,
796,
12813,
8738,
14,
17761,
14,
15388,
1,
198,
39098,
62,
312,
796,
7007,
13,
1136,
7203,
4023,
1378,
22172,
13,
24970,
13,
22172,
13,
24970,
14,
42861,
14,
28961,
12,
7890,
14,
39098,
12,
312,
11074,
5239,
198,
36996,
796,
7007,
13,
1136,
7203,
2638,
1378,
22172,
13,
24970,
13,
22172,
13,
24970,
14,
42861,
14,
28961,
12,
7890,
14,
489,
5592,
14,
36996,
11074,
5239,
198,
721,
17,
796,
275,
2069,
18,
13,
31092,
10786,
721,
17,
3256,
3814,
62,
3672,
796,
3814,
8,
198,
39098,
796,
9940,
17,
13,
33384,
7,
39098,
62,
312,
8,
198,
198,
2,
11140,
262,
15940,
329,
262,
6164,
3323,
2196,
356,
389,
2496,
889,
198,
28311,
25,
198,
220,
220,
220,
2496,
62,
17761,
62,
9641,
796,
1306,
7,
83,
14692,
11395,
8973,
329,
256,
287,
4554,
13,
31499,
611,
256,
14692,
9218,
8973,
6624,
366,
23209,
62,
9641,
4943,
198,
16341,
13707,
29993,
341,
25,
198,
220,
220,
220,
2496,
62,
17761,
62,
9641,
796,
6045,
198,
198,
2,
6822,
290,
766,
611,
356,
1053,
1541,
1392,
257,
1382,
5447,
13,
198,
28311,
25,
198,
220,
220,
220,
1459,
62,
20189,
62,
11249,
796,
1306,
7,
83,
14692,
11395,
8973,
329,
256,
287,
4554,
13,
31499,
611,
256,
14692,
9218,
8973,
6624,
366,
23209,
62,
20189,
62,
11249,
4943,
198,
16341,
13707,
29993,
341,
25,
198,
220,
220,
220,
1459,
62,
20189,
62,
11249,
796,
6045,
198,
198,
2,
3497,
262,
29472,
286,
3348,
319,
262,
1080,
198,
28311,
25,
220,
220,
198,
220,
220,
220,
3348,
62,
7753,
796,
1306,
7,
69,
329,
277,
287,
1351,
15908,
7,
17761,
62,
6978,
8,
611,
318,
7753,
7,
22179,
7,
17761,
62,
6978,
11,
277,
4008,
290,
366,
20189,
1,
287,
277,
290,
366,
9491,
1,
287,
277,
8,
198,
16341,
13707,
29993,
341,
25,
198,
220,
220,
220,
3348,
62,
7753,
796,
6045,
198,
220,
220,
220,
220,
198,
361,
407,
3348,
62,
7753,
25,
198,
220,
220,
220,
1303,
14690,
11,
356,
836,
470,
423,
257,
3348,
2393,
6589,
11,
523,
428,
1276,
307,
257,
649,
1382,
286,
262,
6164,
3323,
4382,
0,
198,
220,
220,
220,
3601,
7203,
3791,
3348,
2721,
4943,
198,
220,
220,
220,
2721,
62,
20189,
7,
16793,
62,
17761,
62,
9641,
11,
1459,
62,
20189,
62,
11249,
8,
198,
17772,
25,
198,
220,
220,
220,
1303,
775,
1053,
1541,
1392,
257,
2393,
11,
523,
356,
821,
1016,
284,
804,
379,
644,
356,
761,
284,
466,
13,
198,
220,
220,
220,
3601,
7203,
42950,
1541,
6589,
11,
1309,
338,
766,
611,
356,
761,
284,
302,
12,
17350,
1997,
4943,
198,
220,
220,
220,
279,
796,
302,
13,
5589,
576,
7,
81,
6,
20189,
30420,
30,
47,
27,
9641,
36937,
15,
12,
24,
8183,
10,
13219,
7,
30,
47,
27,
11249,
36937,
15,
12,
24,
48688,
737,
9491,
11537,
198,
220,
220,
220,
285,
796,
279,
13,
12947,
7,
20189,
62,
7753,
8,
198,
220,
220,
220,
6589,
62,
9641,
796,
285,
13,
8094,
10786,
9641,
11537,
198,
220,
220,
220,
6589,
62,
11249,
796,
220,
285,
13,
8094,
10786,
11249,
11537,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
2496,
62,
17761,
62,
9641,
6624,
6589,
62,
9641,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
775,
1541,
423,
262,
976,
2196,
11,
1309,
338,
766,
611,
356,
761,
284,
466,
1997,
351,
262,
1382,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
17761,
2196,
318,
1459,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1459,
62,
20189,
62,
11249,
6624,
6589,
62,
11249,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
20189,
1382,
318,
1459,
11,
2147,
284,
466,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
20189,
1382,
318,
5626,
1459,
11,
19698,
262,
1382,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2721,
62,
20189,
7,
16793,
62,
17761,
62,
9641,
11,
1459,
62,
20189,
62,
11249,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
383,
2196,
2125,
470,
262,
976,
11,
356,
761,
284,
4321,
257,
649,
530,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
17761,
2196,
318,
5626,
1459,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2721,
62,
20189,
7,
16793,
62,
17761,
62,
9641,
11,
1459,
62,
20189,
62,
11249,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
628,
220,
220,
220,
220,
198
] | 2.824185 | 1,166 |
from __future__ import annotations
| [
6738,
11593,
37443,
834,
1330,
37647,
628
] | 5.142857 | 7 |
from .hem import HEM
from .drem import DREM
from .aem import AEM
from .zam import ZAM
| [
6738,
764,
4411,
1330,
367,
3620,
198,
6738,
764,
67,
2787,
1330,
360,
40726,
198,
6738,
764,
64,
368,
1330,
317,
3620,
198,
6738,
764,
89,
321,
1330,
1168,
2390,
198
] | 2.774194 | 31 |
import time
from pathlib import Path
import numpy as np
import os
from py_diff_pd.env.env_base import EnvBase
from py_diff_pd.common.common import create_folder, ndarray, print_info
from py_diff_pd.common.tet_mesh import tetrahedralize, read_tetgen_file, generate_tet_mesh, tet2obj
from py_diff_pd.common.tri_mesh import generate_tri_mesh
from py_diff_pd.common.tet_mesh import get_contact_vertex as get_tet_contact_vertex
from py_diff_pd.common.project_path import root_path
from py_diff_pd.common.display import export_gif
from py_diff_pd.core.py_diff_pd_core import TetMesh3d, TetDeformable
from py_diff_pd.common.renderer import PbrtRenderer
from py_diff_pd.common.project_path import root_path
| [
11748,
640,
198,
6738,
3108,
8019,
1330,
10644,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
28686,
198,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
24330,
13,
24330,
62,
8692,
1330,
2039,
85,
14881,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
11321,
1330,
2251,
62,
43551,
11,
299,
67,
18747,
11,
3601,
62,
10951,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
83,
316,
62,
76,
5069,
1330,
28408,
430,
21962,
1096,
11,
1100,
62,
83,
316,
5235,
62,
7753,
11,
7716,
62,
83,
316,
62,
76,
5069,
11,
28408,
17,
26801,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
28461,
62,
76,
5069,
1330,
7716,
62,
28461,
62,
76,
5069,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
83,
316,
62,
76,
5069,
1330,
651,
62,
32057,
62,
332,
16886,
355,
651,
62,
83,
316,
62,
32057,
62,
332,
16886,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
16302,
62,
6978,
1330,
6808,
62,
6978,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
13812,
1330,
10784,
62,
27908,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
7295,
13,
9078,
62,
26069,
62,
30094,
62,
7295,
1330,
27351,
37031,
18,
67,
11,
27351,
5005,
687,
540,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
10920,
11882,
1330,
350,
1671,
83,
49,
437,
11882,
198,
6738,
12972,
62,
26069,
62,
30094,
13,
11321,
13,
16302,
62,
6978,
1330,
6808,
62,
6978,
198
] | 2.826613 | 248 |
import functools
import operator
from statistics import mean
import math
from anytree import LevelOrderIter, RenderTree, DoubleStyle
from anytree.exporter import DotExporter
from sympy.ntheory import factorint
from core_functionality.solver_node import SolverNode
if __name__ == '__main__':
trees_8 = [approximate_tree(6,2),approximate_tree(6,3), approximate_tree(6,4),
approximate_tree(6,5),
prime_factor_tree(6,True), prime_factor_tree(6,False), one_vs_all_split(6),
one_split_tree(6)]
for tree in trees_8:
dot_export_ideal_workload(tree) | [
11748,
1257,
310,
10141,
198,
11748,
10088,
198,
6738,
7869,
1330,
1612,
198,
198,
11748,
10688,
198,
6738,
597,
21048,
1330,
5684,
18743,
29993,
11,
46722,
27660,
11,
11198,
21466,
198,
6738,
597,
21048,
13,
1069,
26634,
1330,
22875,
3109,
26634,
198,
6738,
10558,
88,
13,
429,
258,
652,
1330,
5766,
600,
198,
198,
6738,
4755,
62,
8818,
1483,
13,
82,
14375,
62,
17440,
1330,
4294,
332,
19667,
628,
628,
628,
628,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
7150,
62,
23,
796,
685,
1324,
13907,
1920,
62,
21048,
7,
21,
11,
17,
828,
1324,
13907,
1920,
62,
21048,
7,
21,
11,
18,
828,
27665,
62,
21048,
7,
21,
11,
19,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
27665,
62,
21048,
7,
21,
11,
20,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6994,
62,
31412,
62,
21048,
7,
21,
11,
17821,
828,
6994,
62,
31412,
62,
21048,
7,
21,
11,
25101,
828,
530,
62,
14259,
62,
439,
62,
35312,
7,
21,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
530,
62,
35312,
62,
21048,
7,
21,
15437,
198,
220,
220,
220,
329,
5509,
287,
7150,
62,
23,
25,
198,
220,
220,
220,
220,
220,
220,
220,
16605,
62,
39344,
62,
485,
282,
62,
1818,
2220,
7,
21048,
8
] | 2.514286 | 245 |
import docker
from django.conf import settings
from grandchallenge.components.backends.docker import Service
| [
11748,
36253,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
198,
6738,
4490,
36747,
3540,
13,
5589,
3906,
13,
1891,
2412,
13,
45986,
1330,
4809,
628
] | 4.111111 | 27 |
# -*- coding: utf-8 -*-
# Generated by Django 1.11.3 on 2018-09-07 14:04
from __future__ import unicode_literals
import django.contrib.postgres.fields.hstore
from django.db import migrations
from django.db.utils import ProgrammingError
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
2,
2980,
515,
416,
37770,
352,
13,
1157,
13,
18,
319,
2864,
12,
2931,
12,
2998,
1478,
25,
3023,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
11748,
42625,
14208,
13,
3642,
822,
13,
7353,
34239,
13,
25747,
13,
71,
8095,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
198,
6738,
42625,
14208,
13,
9945,
13,
26791,
1330,
30297,
12331,
628,
198
] | 2.914634 | 82 |
import tensorflow as tf
def clip_uint8(im_in):
'''
clips a float value between 0 and 255 and casts to uint8
'''
with tf.variable_scope(None,default_name='clip_uint8'):
im = tf.clip_by_value(im_in, 0, 255)
return tf.cast(im, tf.uint8)
| [
11748,
11192,
273,
11125,
355,
48700,
198,
198,
4299,
10651,
62,
28611,
23,
7,
320,
62,
259,
2599,
198,
197,
7061,
6,
198,
197,
31945,
257,
12178,
1988,
1022,
657,
290,
14280,
290,
26217,
284,
20398,
23,
198,
197,
7061,
6,
198,
197,
4480,
48700,
13,
45286,
62,
29982,
7,
14202,
11,
12286,
62,
3672,
11639,
15036,
62,
28611,
23,
6,
2599,
198,
197,
197,
320,
796,
48700,
13,
15036,
62,
1525,
62,
8367,
7,
320,
62,
259,
11,
657,
11,
14280,
8,
198,
197,
197,
7783,
48700,
13,
2701,
7,
320,
11,
48700,
13,
28611,
23,
8,
198
] | 2.454545 | 99 |
# coding: utf-8
"""
:copyright: 2017-2018 H2O.ai, Inc.
:license: Apache License Version 2.0 (see LICENSE for details)
"""
# # Experiment 05: Credit card Fraud (GPU version)
#
# This experiment uses the data from the Kaggle dataset [Credit Card Fraud Detection](https://www.kaggle.com/dalpozz/creditcardfraud). The dataset is made up of a number of variables which are a result of PCA transformation.
#
# The details of the machine we used and the version of the libraries can be found in [experiment 01](01_airline.ipynb).
# In[7]:
import json
import sys
import matplotlib.pyplot as plt
import pkg_resources
from libs.loaders import load_fraud
from libs.timer import Timer
from libs.metrics import classification_metrics_binary, classification_metrics_binary_prob, binarize_prediction
import xgboost as xgb
import lightgbm as lgb
from sklearn.model_selection import train_test_split
print("System version: {}".format(sys.version))
print("XGBoost version: {}".format(pkg_resources.get_distribution('xgboost').version))
print("LightGBM version: {}".format(pkg_resources.get_distribution('lightgbm').version))
# In[2]:
random_seed = 42
# In[3]:
df = load_fraud()
# In[4]:
print(df.shape)
df.head()
# In[5]:
X = df[[col for col in df.columns if col.startswith('V')]].values
y = df['Class'].values
# In[9]:
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=random_seed, test_size=0.3)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
# In[10]:
dtrain = xgb.DMatrix(data=X_train, label=y_train, nthread=-1)
dtest = xgb.DMatrix(data=X_test, label=y_test, nthread=-1)
# In[11]:
lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False)
lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train, free_raw_data=False)
# ### XGBoost
# In[72]:
results_dict = dict()
num_rounds = 100
# In[73]:
params = {'max_depth':3,
'objective':'binary:logistic',
'min_child_weight':1,
'eta':0.1,
'colsample_bytree':1,
'scale_pos_weight':2,
'gamma':0.1,
'reg_lamda':1,
'subsample':1,
'tree_method':'gpu_exact'
}
# In[74]:
with Timer() as t_train:
xgb_clf_pipeline = xgb.train(params, dtrain, num_boost_round=num_rounds)
with Timer() as t_test:
y_prob_xgb = xgb_clf_pipeline.predict(dtest)
# In[75]:
y_pred_xgb = binarize_prediction(y_prob_xgb)
# In[76]:
report_xgb = classification_metrics_binary(y_test, y_pred_xgb)
report2_xgb = classification_metrics_binary_prob(y_test, y_prob_xgb)
report_xgb.update(report2_xgb)
# In[77]:
results_dict['xgb']={
'train_time': t_train.interval,
'test_time': t_test.interval,
'performance': report_xgb
}
# In[78]:
del xgb_clf_pipeline
# Now let's try with XGBoost histogram.
# In[79]:
params = {'max_depth':3,
'objective':'binary:logistic',
'min_child_weight':1,
'eta':0.1,
'colsample_bytree':0.80,
'scale_pos_weight':2,
'gamma':0.1,
'reg_lamda':1,
'subsample':1,
'tree_method':'gpu_hist'
}
# In[80]:
with Timer() as t_train:
xgb_hist_clf_pipeline = xgb.train(params, dtrain, num_boost_round=num_rounds)
with Timer() as t_test:
y_prob_xgb_hist = xgb_hist_clf_pipeline.predict(dtest)
# In[81]:
y_pred_xgb_hist = binarize_prediction(y_prob_xgb_hist)
# In[82]:
report_xgb_hist = classification_metrics_binary(y_test, y_pred_xgb_hist)
report2_xgb_hist = classification_metrics_binary_prob(y_test, y_prob_xgb_hist)
report_xgb_hist.update(report2_xgb_hist)
# In[83]:
results_dict['xgb_hist']={
'train_time': t_train.interval,
'test_time': t_test.interval,
'performance': report_xgb_hist
}
# In[84]:
del xgb_hist_clf_pipeline
# ### LightGBM
# In[85]:
params = {'num_leaves': 2**3,
'learning_rate': 0.1,
'scale_pos_weight': 2,
'min_split_gain': 0.1,
'min_child_weight': 1,
'reg_lambda': 1,
'subsample': 1,
'objective':'binary',
'task': 'train'
}
# In[86]:
with Timer() as t_train:
lgbm_clf_pipeline = lgb.train(params, lgb_train, num_boost_round=num_rounds)
with Timer() as t_test:
y_prob_lgbm = lgbm_clf_pipeline.predict(X_test)
# In[87]:
y_pred_lgbm = binarize_prediction(y_prob_lgbm)
# In[88]:
report_lgbm = classification_metrics_binary(y_test, y_pred_lgbm)
report2_lgbm = classification_metrics_binary_prob(y_test, y_prob_lgbm)
report_lgbm.update(report2_lgbm)
# In[89]:
results_dict['lgbm']={
'train_time': t_train.interval,
'test_time': t_test.interval,
'performance': report_lgbm
}
# In[90]:
del lgbm_clf_pipeline
# Finally, we show the results
# In[91]:
# Results
print(json.dumps(results_dict, indent=4, sort_keys=True))
| [
2,
19617,
25,
3384,
69,
12,
23,
198,
37811,
198,
25,
22163,
4766,
25,
2177,
12,
7908,
367,
17,
46,
13,
1872,
11,
3457,
13,
198,
25,
43085,
25,
220,
220,
24843,
13789,
10628,
362,
13,
15,
357,
3826,
38559,
24290,
329,
3307,
8,
198,
37811,
198,
2,
1303,
29544,
8870,
25,
10504,
2657,
39826,
357,
33346,
2196,
8,
198,
2,
220,
198,
2,
770,
6306,
3544,
262,
1366,
422,
262,
509,
9460,
293,
27039,
685,
23690,
5172,
39826,
46254,
16151,
5450,
1378,
2503,
13,
74,
9460,
293,
13,
785,
14,
31748,
7501,
3019,
14,
43082,
9517,
69,
22863,
737,
383,
27039,
318,
925,
510,
286,
257,
1271,
286,
9633,
543,
389,
257,
1255,
286,
4217,
32,
13389,
13,
198,
2,
220,
198,
2,
383,
3307,
286,
262,
4572,
356,
973,
290,
262,
2196,
286,
262,
12782,
460,
307,
1043,
287,
685,
23100,
3681,
5534,
16151,
486,
62,
958,
1370,
13,
541,
2047,
65,
737,
198,
198,
2,
554,
58,
22,
5974,
628,
198,
11748,
33918,
198,
11748,
25064,
198,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
279,
10025,
62,
37540,
198,
6738,
9195,
82,
13,
2220,
364,
1330,
3440,
62,
69,
22863,
198,
6738,
9195,
82,
13,
45016,
1330,
5045,
263,
198,
6738,
9195,
82,
13,
4164,
10466,
1330,
17923,
62,
4164,
10466,
62,
39491,
11,
17923,
62,
4164,
10466,
62,
39491,
62,
1676,
65,
11,
9874,
283,
1096,
62,
28764,
2867,
198,
11748,
2124,
70,
39521,
355,
2124,
22296,
198,
11748,
1657,
70,
20475,
355,
300,
22296,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
4512,
62,
9288,
62,
35312,
628,
198,
4798,
7203,
11964,
2196,
25,
23884,
1911,
18982,
7,
17597,
13,
9641,
4008,
198,
4798,
7203,
55,
4579,
78,
455,
2196,
25,
23884,
1911,
18982,
7,
35339,
62,
37540,
13,
1136,
62,
17080,
3890,
10786,
87,
70,
39521,
27691,
9641,
4008,
198,
4798,
7203,
15047,
4579,
44,
2196,
25,
23884,
1911,
18982,
7,
35339,
62,
37540,
13,
1136,
62,
17080,
3890,
10786,
2971,
70,
20475,
27691,
9641,
4008,
628,
198,
2,
554,
58,
17,
5974,
628,
198,
25120,
62,
28826,
796,
5433,
628,
198,
2,
554,
58,
18,
5974,
628,
198,
7568,
796,
3440,
62,
69,
22863,
3419,
628,
198,
2,
554,
58,
19,
5974,
628,
198,
4798,
7,
7568,
13,
43358,
8,
198,
7568,
13,
2256,
3419,
628,
198,
2,
554,
58,
20,
5974,
628,
198,
55,
796,
47764,
30109,
4033,
329,
951,
287,
47764,
13,
28665,
82,
611,
951,
13,
9688,
2032,
342,
10786,
53,
11537,
60,
4083,
27160,
198,
88,
796,
47764,
17816,
9487,
6,
4083,
27160,
628,
198,
2,
554,
58,
24,
5974,
628,
198,
55,
62,
27432,
11,
1395,
62,
9288,
11,
331,
62,
27432,
11,
331,
62,
9288,
796,
4512,
62,
9288,
62,
35312,
7,
55,
11,
331,
11,
25369,
1958,
28,
88,
11,
4738,
62,
5219,
28,
25120,
62,
28826,
11,
1332,
62,
7857,
28,
15,
13,
18,
8,
198,
4798,
7,
55,
62,
27432,
13,
43358,
8,
198,
4798,
7,
88,
62,
27432,
13,
43358,
8,
198,
4798,
7,
55,
62,
9288,
13,
43358,
8,
198,
4798,
7,
88,
62,
9288,
13,
43358,
8,
628,
198,
2,
554,
58,
940,
5974,
628,
198,
67,
27432,
796,
2124,
22296,
13,
35,
46912,
7,
7890,
28,
55,
62,
27432,
11,
6167,
28,
88,
62,
27432,
11,
299,
16663,
10779,
16,
8,
198,
67,
9288,
796,
2124,
22296,
13,
35,
46912,
7,
7890,
28,
55,
62,
9288,
11,
6167,
28,
88,
62,
9288,
11,
299,
16663,
10779,
16,
8,
628,
198,
2,
554,
58,
1157,
5974,
628,
198,
75,
22296,
62,
27432,
796,
300,
22296,
13,
27354,
292,
316,
7,
55,
62,
27432,
11,
331,
62,
27432,
11,
1479,
62,
1831,
62,
7890,
28,
25101,
8,
198,
75,
22296,
62,
9288,
796,
300,
22296,
13,
27354,
292,
316,
7,
55,
62,
9288,
11,
331,
62,
9288,
11,
4941,
28,
75,
22296,
62,
27432,
11,
1479,
62,
1831,
62,
7890,
28,
25101,
8,
628,
198,
2,
44386,
1395,
4579,
78,
455,
198,
198,
2,
554,
58,
4761,
5974,
628,
198,
43420,
62,
11600,
796,
8633,
3419,
198,
22510,
62,
744,
82,
796,
1802,
628,
198,
2,
554,
58,
4790,
5974,
628,
198,
37266,
796,
1391,
6,
9806,
62,
18053,
10354,
18,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15252,
425,
10354,
6,
39491,
25,
6404,
2569,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1084,
62,
9410,
62,
6551,
10354,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
17167,
10354,
15,
13,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4033,
39873,
62,
1525,
21048,
10354,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9888,
62,
1930,
62,
6551,
10354,
17,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
28483,
2611,
10354,
15,
13,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2301,
62,
2543,
6814,
10354,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
39873,
10354,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
21048,
62,
24396,
10354,
6,
46999,
62,
1069,
529,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
198,
2,
554,
58,
4524,
5974,
628,
198,
4480,
5045,
263,
3419,
355,
256,
62,
27432,
25,
198,
220,
220,
220,
2124,
22296,
62,
565,
69,
62,
79,
541,
4470,
796,
2124,
22296,
13,
27432,
7,
37266,
11,
288,
27432,
11,
997,
62,
39521,
62,
744,
28,
22510,
62,
744,
82,
8,
198,
220,
220,
220,
220,
198,
4480,
5045,
263,
3419,
355,
256,
62,
9288,
25,
198,
220,
220,
220,
331,
62,
1676,
65,
62,
87,
22296,
796,
2124,
22296,
62,
565,
69,
62,
79,
541,
4470,
13,
79,
17407,
7,
67,
9288,
8,
628,
198,
2,
554,
58,
2425,
5974,
628,
198,
88,
62,
28764,
62,
87,
22296,
796,
9874,
283,
1096,
62,
28764,
2867,
7,
88,
62,
1676,
65,
62,
87,
22296,
8,
628,
198,
2,
554,
58,
4304,
5974,
628,
198,
13116,
62,
87,
22296,
796,
17923,
62,
4164,
10466,
62,
39491,
7,
88,
62,
9288,
11,
331,
62,
28764,
62,
87,
22296,
8,
198,
13116,
17,
62,
87,
22296,
796,
17923,
62,
4164,
10466,
62,
39491,
62,
1676,
65,
7,
88,
62,
9288,
11,
331,
62,
1676,
65,
62,
87,
22296,
8,
198,
13116,
62,
87,
22296,
13,
19119,
7,
13116,
17,
62,
87,
22296,
8,
628,
198,
2,
554,
58,
3324,
5974,
628,
198,
43420,
62,
11600,
17816,
87,
22296,
20520,
34758,
198,
220,
220,
220,
705,
27432,
62,
2435,
10354,
256,
62,
27432,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
9288,
62,
2435,
10354,
256,
62,
9288,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
26585,
10354,
989,
62,
87,
22296,
220,
198,
92,
628,
198,
2,
554,
58,
3695,
5974,
628,
198,
12381,
2124,
22296,
62,
565,
69,
62,
79,
541,
4470,
628,
198,
2,
2735,
1309,
338,
1949,
351,
1395,
4579,
78,
455,
1554,
21857,
13,
198,
198,
2,
554,
58,
3720,
5974,
628,
198,
37266,
796,
1391,
6,
9806,
62,
18053,
10354,
18,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15252,
425,
10354,
6,
39491,
25,
6404,
2569,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1084,
62,
9410,
62,
6551,
10354,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
17167,
10354,
15,
13,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4033,
39873,
62,
1525,
21048,
10354,
15,
13,
1795,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9888,
62,
1930,
62,
6551,
10354,
17,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
28483,
2611,
10354,
15,
13,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2301,
62,
2543,
6814,
10354,
16,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
39873,
10354,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
21048,
62,
24396,
10354,
6,
46999,
62,
10034,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
198,
2,
554,
58,
1795,
5974,
628,
198,
4480,
5045,
263,
3419,
355,
256,
62,
27432,
25,
198,
220,
220,
220,
2124,
22296,
62,
10034,
62,
565,
69,
62,
79,
541,
4470,
796,
2124,
22296,
13,
27432,
7,
37266,
11,
288,
27432,
11,
997,
62,
39521,
62,
744,
28,
22510,
62,
744,
82,
8,
198,
220,
220,
220,
220,
198,
4480,
5045,
263,
3419,
355,
256,
62,
9288,
25,
198,
220,
220,
220,
331,
62,
1676,
65,
62,
87,
22296,
62,
10034,
796,
2124,
22296,
62,
10034,
62,
565,
69,
62,
79,
541,
4470,
13,
79,
17407,
7,
67,
9288,
8,
628,
198,
2,
554,
58,
6659,
5974,
628,
198,
88,
62,
28764,
62,
87,
22296,
62,
10034,
796,
9874,
283,
1096,
62,
28764,
2867,
7,
88,
62,
1676,
65,
62,
87,
22296,
62,
10034,
8,
628,
198,
2,
554,
58,
6469,
5974,
628,
198,
13116,
62,
87,
22296,
62,
10034,
796,
17923,
62,
4164,
10466,
62,
39491,
7,
88,
62,
9288,
11,
331,
62,
28764,
62,
87,
22296,
62,
10034,
8,
198,
13116,
17,
62,
87,
22296,
62,
10034,
796,
17923,
62,
4164,
10466,
62,
39491,
62,
1676,
65,
7,
88,
62,
9288,
11,
331,
62,
1676,
65,
62,
87,
22296,
62,
10034,
8,
198,
13116,
62,
87,
22296,
62,
10034,
13,
19119,
7,
13116,
17,
62,
87,
22296,
62,
10034,
8,
628,
198,
2,
554,
58,
5999,
5974,
628,
198,
43420,
62,
11600,
17816,
87,
22296,
62,
10034,
20520,
34758,
198,
220,
220,
220,
705,
27432,
62,
2435,
10354,
256,
62,
27432,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
9288,
62,
2435,
10354,
256,
62,
9288,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
26585,
10354,
989,
62,
87,
22296,
62,
10034,
198,
92,
628,
198,
2,
554,
58,
5705,
5974,
628,
198,
12381,
2124,
22296,
62,
10034,
62,
565,
69,
62,
79,
541,
4470,
628,
198,
2,
44386,
4401,
4579,
44,
198,
198,
2,
554,
58,
5332,
5974,
628,
198,
37266,
796,
1391,
6,
22510,
62,
293,
3080,
10354,
362,
1174,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
40684,
62,
4873,
10354,
657,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
9888,
62,
1930,
62,
6551,
10354,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1084,
62,
35312,
62,
48544,
10354,
657,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
1084,
62,
9410,
62,
6551,
10354,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
2301,
62,
50033,
10354,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
39873,
10354,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
15252,
425,
10354,
6,
39491,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
705,
35943,
10354,
705,
27432,
6,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
628,
198,
2,
554,
58,
4521,
5974,
628,
198,
4480,
5045,
263,
3419,
355,
256,
62,
27432,
25,
198,
220,
220,
220,
300,
70,
20475,
62,
565,
69,
62,
79,
541,
4470,
796,
300,
22296,
13,
27432,
7,
37266,
11,
300,
22296,
62,
27432,
11,
997,
62,
39521,
62,
744,
28,
22510,
62,
744,
82,
8,
198,
220,
220,
220,
220,
198,
4480,
5045,
263,
3419,
355,
256,
62,
9288,
25,
198,
220,
220,
220,
331,
62,
1676,
65,
62,
75,
70,
20475,
796,
300,
70,
20475,
62,
565,
69,
62,
79,
541,
4470,
13,
79,
17407,
7,
55,
62,
9288,
8,
628,
198,
2,
554,
58,
5774,
5974,
628,
198,
88,
62,
28764,
62,
75,
70,
20475,
796,
9874,
283,
1096,
62,
28764,
2867,
7,
88,
62,
1676,
65,
62,
75,
70,
20475,
8,
628,
198,
2,
554,
58,
3459,
5974,
628,
198,
13116,
62,
75,
70,
20475,
796,
17923,
62,
4164,
10466,
62,
39491,
7,
88,
62,
9288,
11,
331,
62,
28764,
62,
75,
70,
20475,
8,
198,
13116,
17,
62,
75,
70,
20475,
796,
17923,
62,
4164,
10466,
62,
39491,
62,
1676,
65,
7,
88,
62,
9288,
11,
331,
62,
1676,
65,
62,
75,
70,
20475,
8,
198,
13116,
62,
75,
70,
20475,
13,
19119,
7,
13116,
17,
62,
75,
70,
20475,
8,
628,
198,
2,
554,
58,
4531,
5974,
628,
198,
43420,
62,
11600,
17816,
75,
70,
20475,
20520,
34758,
198,
220,
220,
220,
705,
27432,
62,
2435,
10354,
256,
62,
27432,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
9288,
62,
2435,
10354,
256,
62,
9288,
13,
3849,
2100,
11,
198,
220,
220,
220,
705,
26585,
10354,
989,
62,
75,
70,
20475,
220,
198,
92,
628,
198,
2,
554,
58,
3829,
5974,
628,
198,
12381,
300,
70,
20475,
62,
565,
69,
62,
79,
541,
4470,
628,
198,
2,
9461,
11,
356,
905,
262,
2482,
198,
198,
2,
554,
58,
6420,
5974,
628,
198,
2,
15691,
198,
4798,
7,
17752,
13,
67,
8142,
7,
43420,
62,
11600,
11,
33793,
28,
19,
11,
3297,
62,
13083,
28,
17821,
4008,
628
] | 2.19982 | 2,227 |
#!/usr/bin/env python
from os import path
from setuptools import setup
with open(path.join(path.dirname(__file__), "README.rst")) as f:
readme = f.read()
setup(
name="cqstat",
version="1.0.0",
description="A colorful command line tool substitutes for Grid Engine qstat command",
long_description=readme,
url="https://github.com/ronin-gw/cqstat",
download_url="https://github.com/ronin-gw/cqstat",
author="Hayato Anzawa",
author_email="[email protected]",
license="MIT",
platforms=["POSIX", "Mac OS X"],
classifiers=[
"Development Status :: 4 - Beta",
"Environment :: Console",
"Intended Audience :: End Users/Desktop",
"License :: OSI Approved :: MIT License",
"Operating System :: Unix",
"Programming Language :: Python :: 2.7",
"Topic :: Utilities"
],
keywords="GridEngine",
packages=["cqstat"],
entry_points={
"console_scripts": ["cqstat = cqstat.__main__:main"]
}
)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
6738,
28686,
1330,
3108,
198,
6738,
900,
37623,
10141,
1330,
9058,
628,
198,
4480,
1280,
7,
6978,
13,
22179,
7,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
366,
15675,
11682,
13,
81,
301,
48774,
355,
277,
25,
198,
220,
220,
220,
1100,
1326,
796,
277,
13,
961,
3419,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
2625,
66,
80,
14269,
1600,
198,
220,
220,
220,
2196,
2625,
16,
13,
15,
13,
15,
1600,
198,
220,
220,
220,
6764,
2625,
32,
20239,
3141,
1627,
2891,
44234,
329,
24846,
7117,
10662,
14269,
3141,
1600,
198,
220,
220,
220,
890,
62,
11213,
28,
961,
1326,
11,
198,
220,
220,
220,
19016,
2625,
5450,
1378,
12567,
13,
785,
14,
1313,
259,
12,
70,
86,
14,
66,
80,
14269,
1600,
198,
220,
220,
220,
4321,
62,
6371,
2625,
5450,
1378,
12567,
13,
785,
14,
1313,
259,
12,
70,
86,
14,
66,
80,
14269,
1600,
198,
220,
220,
220,
1772,
2625,
31306,
5549,
1052,
89,
6909,
1600,
198,
220,
220,
220,
1772,
62,
12888,
2625,
10757,
31,
64,
12,
42932,
13,
785,
1600,
198,
220,
220,
220,
5964,
2625,
36393,
1600,
198,
220,
220,
220,
9554,
28,
14692,
37997,
10426,
1600,
366,
14155,
7294,
1395,
33116,
198,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
41206,
12678,
7904,
604,
532,
17993,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
31441,
7904,
24371,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
5317,
1631,
7591,
1240,
7904,
5268,
18987,
14,
36881,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
34156,
7904,
7294,
40,
20010,
1079,
7904,
17168,
13789,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18843,
803,
4482,
7904,
33501,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
362,
13,
22,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
33221,
7904,
41086,
1,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
26286,
2625,
41339,
13798,
1600,
198,
220,
220,
220,
10392,
28,
14692,
66,
80,
14269,
33116,
198,
220,
220,
220,
5726,
62,
13033,
34758,
198,
220,
220,
220,
220,
220,
220,
220,
366,
41947,
62,
46521,
1298,
14631,
66,
80,
14269,
796,
269,
80,
14269,
13,
834,
12417,
834,
25,
12417,
8973,
198,
220,
220,
220,
1782,
198,
8,
198
] | 2.492537 | 402 |
from pathlib import Path
from context_dict import ContextDict
from pprint import pprint
'''
common lists of fields
getFields is all fields in table
'''
if __name__ == "__main__":
main() | [
6738,
3108,
8019,
1330,
10644,
198,
6738,
4732,
62,
11600,
1330,
30532,
35,
713,
198,
6738,
279,
4798,
1330,
279,
4798,
198,
198,
7061,
6,
198,
11321,
8341,
286,
7032,
198,
1136,
15878,
82,
318,
477,
7032,
287,
3084,
198,
198,
7061,
6,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419
] | 3.163934 | 61 |
from datetime import datetime, time
import logging
import json
import os
import requests
import traceback
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from src import models
from src import data
from src import finance_stats
load_dotenv()
send_slack_msg('HKPORTFOLIOANALYSIS BACKEND has been initiated')
logging.basicConfig(level=logging.INFO, format="%(asctime)s:%(levelname)s: %(message)s")
LAST_CACHE_RESET = {'date': None}
DEBUG = True if os.name == 'nt' else False # assume windows is not server
app = FastAPI()
origins = [
'http://localhost:5000',
'https://hkportfolioanalysis.firebaseapp.com',
'https://hkportfolioanalysis.firebaseapp.com/'
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def buy_date_adaptor(buy_date: str):
"""
20200101 -> 2020-01-01
:param buy_date:
:return:
"""
if len(buy_date) == 8:
buy_date = f'{buy_date[:4]}-{buy_date[4:-2]}-{buy_date[-2:]}'
return buy_date
@app.post('/api/hkportfolioanalysis_bundle')
| [
6738,
4818,
8079,
1330,
4818,
8079,
11,
640,
198,
11748,
18931,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
7007,
198,
11748,
12854,
1891,
198,
198,
6738,
16605,
24330,
1330,
3440,
62,
26518,
24330,
198,
6738,
3049,
15042,
1330,
12549,
17614,
198,
6738,
3049,
15042,
13,
27171,
1574,
13,
66,
669,
1330,
23929,
12310,
2509,
1574,
198,
198,
6738,
12351,
1330,
4981,
198,
6738,
12351,
1330,
1366,
198,
6738,
12351,
1330,
9604,
62,
34242,
198,
198,
2220,
62,
26518,
24330,
3419,
628,
198,
21280,
62,
6649,
441,
62,
19662,
10786,
38730,
15490,
37,
3535,
9399,
1565,
1847,
16309,
1797,
28767,
10619,
468,
587,
16862,
11537,
628,
198,
6404,
2667,
13,
35487,
16934,
7,
5715,
28,
6404,
2667,
13,
10778,
11,
5794,
2625,
4,
7,
292,
310,
524,
8,
82,
25,
4,
7,
5715,
3672,
8,
82,
25,
4064,
7,
20500,
8,
82,
4943,
198,
198,
43,
11262,
62,
34,
2246,
13909,
62,
19535,
2767,
796,
1391,
6,
4475,
10354,
6045,
92,
198,
198,
30531,
796,
6407,
611,
28686,
13,
3672,
6624,
705,
429,
6,
2073,
10352,
220,
1303,
7048,
9168,
318,
407,
4382,
198,
1324,
796,
12549,
17614,
3419,
198,
198,
11612,
1040,
796,
685,
198,
220,
220,
220,
705,
4023,
1378,
36750,
25,
27641,
3256,
198,
220,
220,
220,
705,
5450,
1378,
71,
74,
634,
13652,
20930,
13,
6495,
8692,
1324,
13,
785,
3256,
198,
220,
220,
220,
705,
5450,
1378,
71,
74,
634,
13652,
20930,
13,
6495,
8692,
1324,
13,
785,
14,
6,
198,
60,
198,
198,
1324,
13,
2860,
62,
27171,
1574,
7,
198,
220,
220,
220,
23929,
12310,
2509,
1574,
11,
198,
220,
220,
220,
1249,
62,
11612,
1040,
28,
11612,
1040,
11,
198,
220,
220,
220,
1249,
62,
66,
445,
14817,
28,
17821,
11,
198,
220,
220,
220,
1249,
62,
24396,
82,
28,
14692,
9,
33116,
198,
220,
220,
220,
1249,
62,
50145,
28,
14692,
9,
33116,
198,
8,
628,
628,
198,
4299,
2822,
62,
4475,
62,
42552,
273,
7,
17846,
62,
4475,
25,
965,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1160,
2167,
8784,
4613,
12131,
12,
486,
12,
486,
198,
220,
220,
220,
1058,
17143,
2822,
62,
4475,
25,
198,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
18896,
7,
17846,
62,
4475,
8,
6624,
807,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2822,
62,
4475,
796,
277,
6,
90,
17846,
62,
4475,
58,
25,
19,
48999,
12,
90,
17846,
62,
4475,
58,
19,
21912,
17,
48999,
12,
90,
17846,
62,
4475,
58,
12,
17,
47715,
92,
6,
198,
220,
220,
220,
1441,
2822,
62,
4475,
628,
198,
31,
1324,
13,
7353,
10786,
14,
15042,
14,
71,
74,
634,
13652,
20930,
62,
65,
31249,
11537,
628,
198
] | 2.560175 | 457 |
# Main Program
import validate
print("""
---------------------------------------------------
| MENU |
---------------------------------------------------
| 1. Generate a 4 digit OTP |
| 2. Generate a Captcha of length as per requirement|
| 3. Check the validity of an email id |
| 4. Exit |
---------------------------------------------------
""")
while True:
ch = int(input("Enter Choice: "))
if ch == 1:
a = validate.generateOTP()
print(a)
elif ch == 2:
size = int(input("Enter the size for the Captcha: "))
print(validate.rand_captcha(size))
elif ch == 3:
email = input("Enter an Email ID: ")
validate.check(email)
elif ch == 4:
break
else:
print("INVALID INPUT!")
################################################################################
| [
198,
198,
2,
8774,
6118,
198,
198,
11748,
26571,
198,
198,
4798,
7203,
15931,
198,
220,
220,
220,
220,
220,
220,
220,
20368,
1783,
6329,
198,
220,
220,
220,
220,
220,
220,
930,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41597,
52,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
220,
20368,
1783,
6329,
198,
220,
220,
220,
220,
220,
220,
930,
352,
13,
2980,
378,
257,
604,
16839,
440,
7250,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
930,
362,
13,
2980,
378,
257,
6790,
11693,
286,
4129,
355,
583,
9079,
91,
198,
220,
220,
220,
220,
220,
220,
930,
513,
13,
6822,
262,
19648,
286,
281,
3053,
4686,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
930,
604,
13,
29739,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
930,
198,
220,
220,
220,
220,
220,
220,
220,
20368,
1783,
6329,
198,
220,
220,
220,
220,
220,
220,
220,
13538,
4943,
198,
4514,
6407,
25,
198,
220,
220,
220,
442,
796,
493,
7,
15414,
7203,
17469,
18502,
25,
366,
4008,
198,
220,
220,
220,
611,
442,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
257,
796,
26571,
13,
8612,
378,
2394,
47,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
64,
8,
198,
220,
220,
220,
1288,
361,
442,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
796,
493,
7,
15414,
7203,
17469,
262,
2546,
329,
262,
6790,
11693,
25,
366,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
12102,
378,
13,
25192,
62,
27144,
11693,
7,
7857,
4008,
198,
220,
220,
220,
1288,
361,
442,
6624,
513,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3053,
796,
5128,
7203,
17469,
281,
9570,
4522,
25,
366,
8,
198,
220,
220,
220,
220,
220,
220,
220,
26571,
13,
9122,
7,
12888,
8,
198,
220,
220,
220,
1288,
361,
442,
6624,
604,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2270,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
7203,
1268,
23428,
2389,
3268,
30076,
2474,
8,
198,
198,
29113,
29113,
14468,
198
] | 2.231102 | 463 |
import glob
import os
import torch
import tqdm
import numpy as np
from torch.nn.utils import clip_grad_norm_
def compact_batch(tensor_list):
'''
Write some code to pad the teacher predicts....
'''
bs, ch, fix = tensor_list[0].shape
max_ch = ch
pad_tensor_list = []
for tensor in tensor_list:
if max_ch < tensor.shape[1]:
max_ch = tensor.shape[1]
for tensor in tensor_list:
pad_tensor = torch.zeros(bs, max_ch - tensor.shape[1], fix).cuda()
tensor = torch.cat([tensor, pad_tensor], dim=1)
pad_tensor_list.append(tensor)
paded_tensor = torch.cat(pad_tensor_list, dim=0)
return paded_tensor
| [
11748,
15095,
198,
11748,
28686,
198,
198,
11748,
28034,
198,
11748,
256,
80,
36020,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
28034,
13,
20471,
13,
26791,
1330,
10651,
62,
9744,
62,
27237,
62,
198,
198,
4299,
16001,
62,
43501,
7,
83,
22854,
62,
4868,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
19430,
617,
2438,
284,
14841,
262,
4701,
26334,
1106,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
275,
82,
11,
442,
11,
4259,
796,
11192,
273,
62,
4868,
58,
15,
4083,
43358,
198,
220,
220,
220,
3509,
62,
354,
796,
442,
198,
220,
220,
220,
14841,
62,
83,
22854,
62,
4868,
796,
17635,
198,
220,
220,
220,
329,
11192,
273,
287,
11192,
273,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
3509,
62,
354,
1279,
11192,
273,
13,
43358,
58,
16,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
354,
796,
11192,
273,
13,
43358,
58,
16,
60,
628,
220,
220,
220,
329,
11192,
273,
287,
11192,
273,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
14841,
62,
83,
22854,
796,
28034,
13,
9107,
418,
7,
1443,
11,
3509,
62,
354,
532,
11192,
273,
13,
43358,
58,
16,
4357,
4259,
737,
66,
15339,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
11192,
273,
796,
28034,
13,
9246,
26933,
83,
22854,
11,
14841,
62,
83,
22854,
4357,
5391,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14841,
62,
83,
22854,
62,
4868,
13,
33295,
7,
83,
22854,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
279,
5286,
62,
83,
22854,
796,
28034,
13,
9246,
7,
15636,
62,
83,
22854,
62,
4868,
11,
5391,
28,
15,
8,
198,
220,
220,
220,
1441,
279,
5286,
62,
83,
22854,
628,
628,
628,
628,
628,
628
] | 2.220447 | 313 |
from .oauth import BaseOAuth2
| [
6738,
764,
12162,
1071,
1330,
7308,
23621,
1071,
17,
628
] | 3.1 | 10 |
import discord
import itertools
import re
from datetime import datetime
from .utils import *
class DiscordBets:
"""
Class that creates bets within the Discord Community
Attributes
__________
fire (Fire obj): The fire instance where information is fetched/updated
Functions
__________
async def createBet(guild, user, messageString) -> (discord.Embed)
Creates a bet for the user in the guild with the following info from messageString.
Returns a usage embed if the command is incorrectly used otherwise returns the corresponding bet.
async def showBet(guild, betId) -> (discord.Embed)
Shows the bet embed for the bet with id 'betId'
async def closeBet(guild, user, betId) -> (discord.Embed)
Closes the bet for submissions with id 'betId'.
Only the user that started the bet or an admin may close the bet.
async def completeBet(guild, user, betId, winnerOptionId) -> (discord.Embed)
Completes the bet with id 'betId' with winning option 'winnerOptionId' and pays out to the winner(s).
Only the user that started the bet or an admin may complete the bet.
async def bet(guild, user, messageString) -> (discord.Embed)
Adds a bet using the information from messageString (expected: [BetId] [Option Number] [Amount]).
Returns the bet embed with the updated information or an error/usage embed
def getAllActiveBets(guild) -> (discord.Embed)
Gets all of the active (open/closed) bets within the guild
def showBetForUser(self, guild, user) -> (discord.Embed)
Gets all of the active bets for the user
"""
fire = None
# ---------- MARK: - Private Methods ---------- | [
11748,
36446,
198,
11748,
340,
861,
10141,
198,
11748,
302,
198,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
6738,
764,
26791,
1330,
1635,
198,
198,
4871,
39462,
33,
1039,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
5016,
326,
8075,
29222,
1626,
262,
39462,
8108,
628,
220,
220,
220,
49213,
198,
220,
220,
220,
220,
2602,
834,
198,
220,
220,
220,
2046,
357,
13543,
26181,
2599,
383,
2046,
4554,
810,
1321,
318,
11351,
1740,
14,
43162,
628,
220,
220,
220,
40480,
198,
220,
220,
220,
220,
2602,
834,
198,
220,
220,
220,
30351,
825,
2251,
13056,
7,
70,
3547,
11,
2836,
11,
3275,
10100,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
7921,
274,
257,
731,
329,
262,
2836,
287,
262,
19806,
351,
262,
1708,
7508,
422,
3275,
10100,
13,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
257,
8748,
11525,
611,
262,
3141,
318,
23175,
973,
4306,
5860,
262,
11188,
731,
13,
628,
220,
220,
220,
30351,
825,
905,
13056,
7,
70,
3547,
11,
731,
7390,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
25156,
262,
731,
11525,
329,
262,
731,
351,
4686,
705,
11181,
7390,
6,
628,
220,
220,
220,
30351,
825,
1969,
13056,
7,
70,
3547,
11,
2836,
11,
731,
7390,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1012,
4629,
262,
731,
329,
22129,
351,
4686,
705,
11181,
7390,
4458,
220,
198,
220,
220,
220,
220,
220,
220,
220,
5514,
262,
2836,
326,
2067,
262,
731,
393,
281,
13169,
743,
1969,
262,
731,
13,
628,
220,
220,
220,
30351,
825,
1844,
13056,
7,
70,
3547,
11,
2836,
11,
731,
7390,
11,
8464,
19722,
7390,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
955,
1154,
4879,
262,
731,
351,
4686,
705,
11181,
7390,
6,
351,
5442,
3038,
705,
39791,
19722,
7390,
6,
290,
13831,
503,
284,
262,
8464,
7,
82,
737,
198,
220,
220,
220,
220,
220,
220,
220,
5514,
262,
2836,
326,
2067,
262,
731,
393,
281,
13169,
743,
1844,
262,
731,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
30351,
825,
731,
7,
70,
3547,
11,
2836,
11,
3275,
10100,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
34333,
257,
731,
1262,
262,
1321,
422,
3275,
10100,
357,
40319,
25,
685,
13056,
7390,
60,
685,
19722,
7913,
60,
685,
31264,
35944,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
731,
11525,
351,
262,
6153,
1321,
393,
281,
4049,
14,
26060,
11525,
628,
220,
220,
220,
825,
651,
3237,
13739,
33,
1039,
7,
70,
3547,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
29620,
477,
286,
262,
4075,
357,
9654,
14,
20225,
8,
29222,
1626,
262,
19806,
198,
220,
220,
220,
220,
198,
220,
220,
220,
825,
905,
13056,
1890,
12982,
7,
944,
11,
19806,
11,
2836,
8,
4613,
357,
15410,
585,
13,
31567,
276,
8,
198,
220,
220,
220,
220,
220,
220,
220,
29620,
477,
286,
262,
4075,
29222,
329,
262,
2836,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
2046,
796,
6045,
628,
220,
220,
220,
1303,
24200,
438,
39641,
25,
532,
15348,
25458,
24200,
438
] | 3.061947 | 565 |
# NB: do NOT import utils as this disables eager execution that seems
# to be required for proper operations of `tf.summary`.
import os
import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
# ---
default_datadir = os.getenv ('DC_DATADIR') or \
os.getenv ('TMPDIR', default = '/tmp') + '/sklearn_data'
image_kinds = set (('image', 'greyscale_image',))
normalized_kind = 'normalized'
unknown_kind = 'unknown'
normalized_kinds = set ((normalized_kind,))
kinds = image_kinds | normalized_kinds | set ((unknown_kind,))
choices = []
# MNIST
choices += ['mnist']
# Fashion-MNIST
choices += ['fashion_mnist']
# CIFAR10
choices += ['cifar10']
# ---
from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle
openml_choices = {}
openml_choices['har'] = {
'shuffle_last': True,
# , 'test_size': 0.3,
'input_kind': normalized_kind,
}
choices += ['OpenML:' + str(c) for c in openml_choices]
# ---
| [
2,
41354,
25,
466,
5626,
1330,
3384,
4487,
355,
428,
595,
2977,
11069,
9706,
326,
2331,
198,
2,
284,
307,
2672,
329,
1774,
4560,
286,
4600,
27110,
13,
49736,
44646,
198,
11748,
28686,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
1341,
35720,
13,
19849,
62,
49283,
1330,
4512,
62,
9288,
62,
35312,
198,
198,
2,
11420,
198,
198,
12286,
62,
19608,
324,
343,
796,
28686,
13,
1136,
24330,
19203,
9697,
62,
35,
1404,
2885,
4663,
11537,
393,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
1136,
24330,
19203,
15972,
5760,
4663,
3256,
4277,
796,
31051,
22065,
11537,
1343,
31051,
8135,
35720,
62,
7890,
6,
198,
198,
9060,
62,
11031,
82,
796,
900,
357,
10786,
9060,
3256,
705,
16694,
28349,
1000,
62,
9060,
3256,
4008,
198,
11265,
1143,
62,
11031,
796,
705,
11265,
1143,
6,
198,
34680,
62,
11031,
796,
705,
34680,
6,
198,
11265,
1143,
62,
11031,
82,
796,
900,
14808,
11265,
1143,
62,
11031,
11,
4008,
198,
11031,
82,
796,
2939,
62,
11031,
82,
930,
39279,
62,
11031,
82,
930,
900,
14808,
34680,
62,
11031,
11,
4008,
198,
198,
6679,
1063,
796,
17635,
198,
198,
2,
29060,
8808,
198,
198,
6679,
1063,
15853,
37250,
10295,
396,
20520,
198,
198,
2,
30958,
12,
39764,
8808,
198,
198,
6679,
1063,
15853,
37250,
25265,
62,
10295,
396,
20520,
198,
198,
2,
327,
5064,
1503,
940,
198,
198,
6679,
1063,
15853,
37250,
66,
361,
283,
940,
20520,
198,
198,
2,
11420,
198,
198,
6738,
1341,
35720,
13,
19608,
292,
1039,
1330,
21207,
62,
9654,
4029,
198,
6738,
1341,
35720,
13,
26791,
1330,
36273,
198,
198,
9654,
4029,
62,
6679,
1063,
796,
23884,
198,
9654,
4029,
62,
6679,
1063,
17816,
9869,
20520,
796,
1391,
198,
220,
220,
220,
705,
1477,
18137,
62,
12957,
10354,
6407,
11,
198,
220,
220,
220,
1303,
837,
705,
9288,
62,
7857,
10354,
657,
13,
18,
11,
198,
220,
220,
220,
705,
15414,
62,
11031,
10354,
39279,
62,
11031,
11,
198,
92,
198,
198,
6679,
1063,
15853,
37250,
11505,
5805,
32105,
1343,
965,
7,
66,
8,
329,
269,
287,
1280,
4029,
62,
6679,
1063,
60,
198,
198,
2,
11420,
198
] | 2.663073 | 371 |
"""Prints full name of all occurrences of given filename in your PATH.
Usage: findinpath.py filename"""
import os
import sys
if __name__ == '__main__':
sys.exit(main())
| [
37811,
18557,
82,
1336,
1438,
286,
477,
40279,
286,
1813,
29472,
287,
534,
46490,
13,
198,
198,
28350,
25,
1064,
259,
6978,
13,
9078,
29472,
37811,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
25064,
13,
37023,
7,
12417,
28955,
198
] | 3.142857 | 56 |
import sys
from ethwizard import __version__
from prompt_toolkit.formatted_text import HTML
from prompt_toolkit.shortcuts import button_dialog
from ethwizard.platforms import (
get_install_steps,
supported_platform,
has_su_perm,
init_logging,
quit_app,
get_save_state,
get_load_state,
enter_maintenance
)
from ethwizard.platforms.common import StepSequence, is_completed_state | [
11748,
25064,
198,
198,
6738,
4555,
86,
8669,
1330,
11593,
9641,
834,
198,
198,
6738,
6152,
62,
25981,
15813,
13,
687,
16898,
62,
5239,
1330,
11532,
198,
6738,
6152,
62,
25981,
15813,
13,
19509,
23779,
1330,
4936,
62,
38969,
519,
198,
198,
6738,
4555,
86,
8669,
13,
24254,
82,
1330,
357,
198,
220,
220,
220,
651,
62,
17350,
62,
20214,
11,
198,
220,
220,
220,
4855,
62,
24254,
11,
198,
220,
220,
220,
468,
62,
2385,
62,
16321,
11,
198,
220,
220,
220,
2315,
62,
6404,
2667,
11,
198,
220,
220,
220,
11238,
62,
1324,
11,
198,
220,
220,
220,
651,
62,
21928,
62,
5219,
11,
198,
220,
220,
220,
651,
62,
2220,
62,
5219,
11,
198,
220,
220,
220,
3802,
62,
12417,
8219,
198,
8,
198,
198,
6738,
4555,
86,
8669,
13,
24254,
82,
13,
11321,
1330,
5012,
44015,
594,
11,
318,
62,
785,
16838,
62,
5219
] | 2.783784 | 148 |
import io
from types import FunctionType
from PySide2.QtGui import *
from PySide2.QtCore import *
from PySide2.QtWidgets import *
app: QApplication = None
buffer: io.StringIO = None
old_stdout: io.StringIO = None
trayIcon: QSystemTrayIcon = None
sw: QScrollArea = None
tempDir: str = None
| [
11748,
33245,
198,
6738,
3858,
1330,
15553,
6030,
628,
198,
6738,
9485,
24819,
17,
13,
48,
83,
8205,
72,
1330,
1635,
198,
6738,
9485,
24819,
17,
13,
48,
83,
14055,
1330,
1635,
198,
6738,
9485,
24819,
17,
13,
48,
83,
54,
312,
11407,
1330,
1635,
628,
220,
220,
220,
220,
198,
198,
1324,
25,
1195,
23416,
796,
6045,
198,
22252,
25,
33245,
13,
10100,
9399,
796,
6045,
198,
727,
62,
19282,
448,
25,
33245,
13,
10100,
9399,
796,
6045,
198,
2213,
323,
19578,
25,
1195,
11964,
51,
2433,
19578,
796,
6045,
198,
2032,
25,
1195,
29261,
30547,
796,
6045,
198,
29510,
35277,
25,
965,
796,
6045,
628
] | 2.794393 | 107 |
import argparse
import pickle
import json
import time
import threading
import pprint
import deep_architect.utils as ut
from google.cloud import pubsub_v1
from deep_architect.contrib.misc.datasets.loaders import (load_cifar10,
load_mnist)
from deep_architect.contrib.misc.datasets.dataset import InMemoryDataset
from deep_architect.searchers import common as se
from deep_architect.contrib.misc import gpu_utils
from deep_architect import search_logging as sl
from deep_architect import utils as ut
from dev.google_communicator.search_space_factory import name_to_search_space_factory_fn
from deep_architect.contrib.misc.evaluators.tensorflow.tpu_estimator_classification import TPUEstimatorEvaluator
from deep_architect.contrib.communicators.communicator import get_communicator
import logging
logging.basicConfig()
publisher = pubsub_v1.PublisherClient()
subscriber = pubsub_v1.SubscriberClient()
results_topic = None
arch_subscription = None
specified = False
evaluated = False
arch_data = None
started = False
if __name__ == "__main__":
main()
| [
11748,
1822,
29572,
198,
11748,
2298,
293,
198,
11748,
33918,
198,
11748,
640,
198,
11748,
4704,
278,
198,
11748,
279,
4798,
198,
11748,
2769,
62,
998,
5712,
13,
26791,
355,
3384,
198,
6738,
23645,
13,
17721,
1330,
2240,
7266,
62,
85,
16,
198,
198,
6738,
2769,
62,
998,
5712,
13,
3642,
822,
13,
44374,
13,
19608,
292,
1039,
13,
2220,
364,
1330,
357,
2220,
62,
66,
361,
283,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3440,
62,
10295,
396,
8,
198,
6738,
2769,
62,
998,
5712,
13,
3642,
822,
13,
44374,
13,
19608,
292,
1039,
13,
19608,
292,
316,
1330,
554,
30871,
27354,
292,
316,
198,
198,
6738,
2769,
62,
998,
5712,
13,
325,
283,
3533,
1330,
2219,
355,
384,
198,
6738,
2769,
62,
998,
5712,
13,
3642,
822,
13,
44374,
1330,
308,
19944,
62,
26791,
198,
6738,
2769,
62,
998,
5712,
1330,
2989,
62,
6404,
2667,
355,
1017,
198,
6738,
2769,
62,
998,
5712,
1330,
3384,
4487,
355,
3384,
198,
198,
6738,
1614,
13,
13297,
62,
10709,
26407,
13,
12947,
62,
13200,
62,
69,
9548,
1330,
1438,
62,
1462,
62,
12947,
62,
13200,
62,
69,
9548,
62,
22184,
198,
198,
6738,
2769,
62,
998,
5712,
13,
3642,
822,
13,
44374,
13,
18206,
84,
2024,
13,
83,
22854,
11125,
13,
83,
19944,
62,
395,
320,
1352,
62,
4871,
2649,
1330,
309,
5105,
22362,
320,
1352,
36,
2100,
84,
1352,
198,
198,
6738,
2769,
62,
998,
5712,
13,
3642,
822,
13,
10709,
44549,
13,
10709,
26407,
1330,
651,
62,
10709,
26407,
198,
11748,
18931,
198,
198,
6404,
2667,
13,
35487,
16934,
3419,
198,
198,
12984,
8191,
796,
2240,
7266,
62,
85,
16,
13,
46471,
11792,
3419,
198,
7266,
1416,
24735,
796,
2240,
7266,
62,
85,
16,
13,
7004,
1416,
24735,
11792,
3419,
198,
43420,
62,
26652,
796,
6045,
198,
998,
62,
7266,
33584,
796,
6045,
198,
198,
23599,
796,
10352,
198,
18206,
6605,
796,
10352,
198,
998,
62,
7890,
796,
6045,
198,
46981,
796,
10352,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.819095 | 398 |
import angr
import claripy
project = angr.Project("./mask")
argv1 = claripy.BVS("argv1",100*8)
initial_state = project.factory.entry_state(args=["./mask",argv1])
sm = project.factory.simulation_manager(initial_state)
sm.explore(find=0x4012d6)
found = sm.found[0]
solution = found.solver.eval(argv1, cast_to=bytes)
print(repr(solution))
| [
11748,
281,
2164,
198,
11748,
10212,
541,
88,
198,
198,
16302,
796,
281,
2164,
13,
16775,
7,
1911,
14,
27932,
4943,
198,
853,
85,
16,
796,
10212,
541,
88,
13,
33,
20304,
7203,
853,
85,
16,
1600,
3064,
9,
23,
8,
198,
36733,
62,
5219,
796,
1628,
13,
69,
9548,
13,
13000,
62,
5219,
7,
22046,
41888,
1911,
14,
27932,
1600,
853,
85,
16,
12962,
198,
5796,
796,
1628,
13,
69,
9548,
13,
14323,
1741,
62,
37153,
7,
36733,
62,
5219,
8,
198,
5796,
13,
20676,
382,
7,
19796,
28,
15,
87,
21844,
17,
67,
21,
8,
198,
9275,
796,
895,
13,
9275,
58,
15,
60,
198,
82,
2122,
796,
1043,
13,
82,
14375,
13,
18206,
7,
853,
85,
16,
11,
3350,
62,
1462,
28,
33661,
8,
198,
4798,
7,
260,
1050,
7,
82,
2122,
4008,
198
] | 2.459854 | 137 |
from asposebarcode import Settings
from com.aspose.barcode import BarCodeBuilder
from com.aspose.barcode import Symbology
from com.aspose.barcode import CodeLocation
from com.aspose.barcode import BarCodeImageFormat
from java.awt import Color
if __name__ == '__main__':
CodeText() | [
6738,
355,
3455,
65,
5605,
1098,
1330,
16163,
198,
6738,
401,
13,
292,
3455,
13,
65,
5605,
1098,
1330,
2409,
10669,
32875,
198,
6738,
401,
13,
292,
3455,
13,
65,
5605,
1098,
1330,
41327,
1435,
198,
6738,
401,
13,
292,
3455,
13,
65,
5605,
1098,
1330,
6127,
14749,
198,
6738,
401,
13,
292,
3455,
13,
65,
5605,
1098,
1330,
2409,
10669,
5159,
26227,
198,
6738,
20129,
13,
707,
83,
1330,
5315,
628,
220,
220,
220,
220,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
6127,
8206,
3419
] | 2.912621 | 103 |
import operator
from functools import reduce
from typing import Tuple, Dict, Union, List
def get_dict_val(root:Dict, keys:Union[str, List[str]]):
"""
Access a nested object in root by item sequence.
Args:
root: Dict
target object for accessing the value
keys: Union[str, Tuple[str, str]]
a key or a list of key (for nested structure objecy) name
to traverse through the Dict object
Examples::
>>> obj = {"a": [1,2,3]}
>>> get_dict_val(obj, "a")
[1,2,3]
>>> obj = {"a": [ {"aa": 100, "bb": 0}, {"aa": 2, "bb": 5 } ] }
>>> get_dict_val(obj, ("a", "aa"))
[100, 2]
"""
if type(keys) == str:
return root[keys]
elif type(keys) == list:
_results = []
for item in root[keys[0]]:
_results.append(item[keys[1]])
return _results
return None
| [
11748,
10088,
198,
6738,
1257,
310,
10141,
1330,
4646,
198,
6738,
19720,
1330,
309,
29291,
11,
360,
713,
11,
4479,
11,
7343,
628,
198,
4299,
651,
62,
11600,
62,
2100,
7,
15763,
25,
35,
713,
11,
8251,
25,
38176,
58,
2536,
11,
7343,
58,
2536,
11907,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8798,
257,
28376,
2134,
287,
6808,
416,
2378,
8379,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6808,
25,
360,
713,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2496,
2134,
329,
22534,
262,
1988,
198,
220,
220,
220,
220,
220,
220,
220,
8251,
25,
4479,
58,
2536,
11,
309,
29291,
58,
2536,
11,
965,
11907,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
257,
1994,
393,
257,
1351,
286,
1994,
357,
1640,
28376,
4645,
26181,
721,
88,
8,
1438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
284,
38138,
832,
262,
360,
713,
2134,
220,
628,
220,
220,
220,
21066,
3712,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
26181,
796,
19779,
64,
1298,
685,
16,
11,
17,
11,
18,
48999,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
651,
62,
11600,
62,
2100,
7,
26801,
11,
366,
64,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
685,
16,
11,
17,
11,
18,
60,
628,
220,
220,
220,
220,
220,
220,
220,
13163,
26181,
796,
19779,
64,
1298,
685,
19779,
7252,
1298,
1802,
11,
366,
11848,
1298,
657,
5512,
19779,
7252,
1298,
362,
11,
366,
11848,
1298,
642,
1782,
2361,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
13163,
651,
62,
11600,
62,
2100,
7,
26801,
11,
5855,
64,
1600,
366,
7252,
48774,
198,
220,
220,
220,
220,
220,
220,
220,
685,
3064,
11,
362,
60,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
2099,
7,
13083,
8,
6624,
965,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
6808,
58,
13083,
60,
198,
220,
220,
220,
1288,
361,
2099,
7,
13083,
8,
6624,
1351,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
43420,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2378,
287,
6808,
58,
13083,
58,
15,
60,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
43420,
13,
33295,
7,
9186,
58,
13083,
58,
16,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
4808,
43420,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
6045,
198
] | 2.152225 | 427 |
#!/usr/bin/env python3
from collections import Counter
def are_anagrams(*args):
'return True if args are anagrams'
if len(args) < 2:
raise TypeError("expected 2 or more arguments")
c = Counter(args[0])
return all(c == Counter(a) for a in args[1:])
arg1 = "appel apple aplep leapp".split()
#print("check if {} are anagrams".format(arg1))
print("are_anagrams {} ? {} ".format(arg1, are_anagrams(*arg1)))
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
6738,
17268,
1330,
15034,
198,
198,
4299,
389,
62,
272,
6713,
82,
46491,
22046,
2599,
198,
220,
220,
220,
705,
7783,
6407,
611,
26498,
389,
281,
6713,
82,
6,
198,
220,
220,
220,
611,
18896,
7,
22046,
8,
1279,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
5994,
12331,
7203,
40319,
362,
393,
517,
7159,
4943,
198,
220,
220,
220,
269,
796,
15034,
7,
22046,
58,
15,
12962,
198,
220,
220,
220,
1441,
477,
7,
66,
6624,
15034,
7,
64,
8,
329,
257,
287,
26498,
58,
16,
25,
12962,
198,
198,
853,
16,
796,
366,
1324,
417,
17180,
257,
1154,
79,
443,
1324,
1911,
35312,
3419,
198,
2,
4798,
7203,
9122,
611,
23884,
389,
281,
6713,
82,
1911,
18982,
7,
853,
16,
4008,
198,
4798,
7203,
533,
62,
272,
6713,
82,
23884,
5633,
220,
23884,
27071,
18982,
7,
853,
16,
11,
389,
62,
272,
6713,
82,
46491,
853,
16,
22305,
628,
198
] | 2.60241 | 166 |
from src.wrapper.sh1106 import Screen
from src.modules.clock_module import Module as ClockModule
from src.modules.temperature_module import Module as TemperatureModule
from PIL import Image, ImageDraw, ImageFont
import os
font_path = os.path.join('assets', 'Font.ttf') | [
6738,
12351,
13,
48553,
13,
1477,
11442,
21,
1330,
15216,
198,
6738,
12351,
13,
18170,
13,
15750,
62,
21412,
1330,
19937,
355,
21328,
26796,
198,
6738,
12351,
13,
18170,
13,
11498,
21069,
62,
21412,
1330,
19937,
355,
34467,
26796,
198,
6738,
350,
4146,
1330,
7412,
11,
7412,
25302,
11,
7412,
23252,
198,
11748,
28686,
198,
198,
10331,
62,
6978,
796,
28686,
13,
6978,
13,
22179,
10786,
19668,
3256,
705,
23252,
13,
926,
69,
11537
] | 3.635135 | 74 |
from copy import deepcopy
# dict_merge from
# http://blog.impressiver.com/post/31434674390/deep-merge-multiple-python-dicts | [
6738,
4866,
1330,
2769,
30073,
198,
198,
2,
8633,
62,
647,
469,
422,
198,
2,
2638,
1378,
14036,
13,
320,
8439,
1428,
13,
785,
14,
7353,
14,
33638,
2682,
45385,
25964,
14,
22089,
12,
647,
469,
12,
48101,
12,
29412,
12,
11600,
82
] | 2.883721 | 43 |
frase = 'curso em video python'
print('{}'.format(frase[9:21])) | [
8310,
589,
796,
705,
22019,
568,
795,
2008,
21015,
6,
198,
4798,
10786,
90,
92,
4458,
18982,
7,
8310,
589,
58,
24,
25,
2481,
60,
4008
] | 2.423077 | 26 |
from pip._vendor.distlib.compat import raw_input
import subprocess
import pyfiglet
pf = pyfiglet.figlet_format("S-PF", font="5lineoblique")
print(pf)
print("ip example 192.168.1.1")
ipadd = raw_input("Ip-Address" r"""-------->>>> """)
print("Port range example 20-40")
pr = raw_input("Port-range" r"""-------->>>> """)
subprocess.run(["nmap", "-p", pr, "-Pn", ipadd])
hold = input("exit? [Y] >" " ")
if hold in ['Y']:
if dns == "Y":
exit
#created By eiji-codename Sakura | [
6738,
7347,
13557,
85,
18738,
13,
17080,
8019,
13,
5589,
265,
1330,
8246,
62,
15414,
201,
198,
11748,
850,
14681,
201,
198,
11748,
12972,
5647,
1616,
201,
198,
201,
198,
79,
69,
796,
12972,
5647,
1616,
13,
5647,
1616,
62,
18982,
7203,
50,
12,
42668,
1600,
10369,
2625,
20,
1370,
672,
41522,
4943,
201,
198,
4798,
7,
79,
69,
8,
201,
198,
201,
198,
4798,
7203,
541,
1672,
17817,
13,
14656,
13,
16,
13,
16,
4943,
201,
198,
541,
2860,
796,
8246,
62,
15414,
7203,
40,
79,
12,
20231,
1,
374,
37811,
982,
16471,
13538,
4943,
201,
198,
201,
198,
4798,
7203,
13924,
2837,
1672,
1160,
12,
1821,
4943,
201,
198,
1050,
796,
8246,
62,
15414,
7203,
13924,
12,
9521,
1,
374,
37811,
982,
16471,
13538,
4943,
201,
198,
201,
198,
7266,
14681,
13,
5143,
7,
14692,
77,
8899,
1600,
27444,
79,
1600,
778,
11,
27444,
47,
77,
1600,
20966,
2860,
12962,
201,
198,
201,
198,
2946,
796,
5128,
7203,
37023,
30,
685,
56,
60,
1875,
1,
366,
366,
8,
201,
198,
361,
1745,
287,
37250,
56,
6,
5974,
201,
198,
220,
220,
220,
611,
288,
5907,
6624,
366,
56,
1298,
201,
198,
220,
220,
220,
220,
220,
220,
220,
8420,
201,
198,
201,
198,
201,
198,
201,
198,
2,
25598,
2750,
304,
20770,
12,
19815,
12453,
20574
] | 2.348624 | 218 |
#!/usr/bin/env python
import argparse
import logging
import os
import webbrowser
from example_usage import load_embeddings
from vec2graph import visualize
logging.basicConfig(
format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO
)
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
help="path to vector model file. If omitted, first model with the extension "
"bin.gz (as binary) or .vec.gz (as non-binary) in working directory"
" is loaded",
default="",
)
parser.add_argument(
"-o",
"--output",
help="path to the output directory where to store visualization files."
" If omitted, a new directory will be made in the current one, with the name"
" based on the timestamp",
default="",
)
parser.add_argument(
"-s",
"--sep",
help="if this parameter is used, the words are split by a separator"
"(underscore), and only the first part is shown in visualization (E.g. "
"it is useful when PoS is attached to a word). By now, this "
"parameter accepts no value",
action="store_true",
)
args = parser.parse_args()
model = load_embeddings(args.model)
while True:
text = input('Type your query (WORD, LIM, NR_NEIGHBORS):')
word, lim, nr_n = text.strip().split()
if '_' not in word:
word = word + '_NOUN'
out = visualize(
args.output,
model,
word,
topn=int(nr_n),
threshold=float(lim),
sep=args.sep
)
if out:
print('Visualization generated!')
filepath = os.path.join(args.output, word + ".html")
webbrowser.open('file://' + os.path.realpath(filepath))
else:
print('Word not found in the model')
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
1822,
29572,
198,
11748,
18931,
198,
11748,
28686,
198,
11748,
3992,
40259,
198,
6738,
1672,
62,
26060,
1330,
3440,
62,
20521,
67,
654,
198,
6738,
43030,
17,
34960,
1330,
38350,
198,
198,
6404,
2667,
13,
35487,
16934,
7,
198,
220,
220,
220,
5794,
2625,
4,
7,
292,
310,
524,
8,
82,
1058,
4064,
7,
5715,
3672,
8,
82,
1058,
4064,
7,
20500,
8,
82,
1600,
1241,
28,
6404,
2667,
13,
10778,
198,
8,
198,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
198,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
27444,
76,
1600,
198,
220,
220,
220,
366,
438,
19849,
1600,
198,
220,
220,
220,
1037,
2625,
6978,
284,
15879,
2746,
2393,
13,
1002,
22532,
11,
717,
2746,
351,
262,
7552,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8800,
13,
34586,
357,
292,
13934,
8,
393,
764,
35138,
13,
34586,
357,
292,
1729,
12,
39491,
8,
287,
1762,
8619,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
318,
9639,
1600,
198,
220,
220,
220,
4277,
2625,
1600,
198,
8,
198,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
27444,
78,
1600,
198,
220,
220,
220,
366,
438,
22915,
1600,
198,
220,
220,
220,
1037,
2625,
6978,
284,
262,
5072,
8619,
810,
284,
3650,
32704,
3696,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1002,
22532,
11,
257,
649,
8619,
481,
307,
925,
287,
262,
1459,
530,
11,
351,
262,
1438,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1912,
319,
262,
41033,
1600,
198,
220,
220,
220,
4277,
2625,
1600,
198,
8,
198,
198,
48610,
13,
2860,
62,
49140,
7,
198,
220,
220,
220,
27444,
82,
1600,
198,
220,
220,
220,
366,
438,
325,
79,
1600,
198,
220,
220,
220,
1037,
2625,
361,
428,
11507,
318,
973,
11,
262,
2456,
389,
6626,
416,
257,
2880,
1352,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
30629,
41116,
7295,
828,
290,
691,
262,
717,
636,
318,
3402,
287,
32704,
357,
36,
13,
70,
13,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
270,
318,
4465,
618,
7695,
50,
318,
7223,
284,
257,
1573,
737,
2750,
783,
11,
428,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
366,
17143,
2357,
18178,
645,
1988,
1600,
198,
220,
220,
220,
2223,
2625,
8095,
62,
7942,
1600,
198,
8,
198,
198,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
198,
198,
19849,
796,
3440,
62,
20521,
67,
654,
7,
22046,
13,
19849,
8,
198,
198,
4514,
6407,
25,
198,
220,
220,
220,
2420,
796,
5128,
10786,
6030,
534,
12405,
357,
54,
12532,
11,
27564,
11,
23057,
62,
12161,
18060,
33,
20673,
2599,
11537,
198,
220,
220,
220,
1573,
11,
1761,
11,
299,
81,
62,
77,
796,
2420,
13,
36311,
22446,
35312,
3419,
198,
220,
220,
220,
611,
705,
62,
6,
407,
287,
1573,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1573,
796,
1573,
1343,
705,
62,
45,
19385,
6,
198,
220,
220,
220,
503,
796,
38350,
7,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
13,
22915,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2746,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1573,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1353,
77,
28,
600,
7,
48624,
62,
77,
828,
198,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
22468,
7,
2475,
828,
198,
220,
220,
220,
220,
220,
220,
220,
41767,
28,
22046,
13,
325,
79,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
611,
503,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
36259,
1634,
7560,
0,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
6978,
796,
28686,
13,
6978,
13,
22179,
7,
22046,
13,
22915,
11,
1573,
1343,
27071,
6494,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
3992,
40259,
13,
9654,
10786,
7753,
1378,
6,
1343,
28686,
13,
6978,
13,
5305,
6978,
7,
7753,
6978,
4008,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
26449,
407,
1043,
287,
262,
2746,
11537,
198
] | 2.509246 | 703 |
# Way 1
from pyspark.sql import functions as F
def stratified_split_train_test(df, frac, label, join_on, seed=42):
""" stratfied split of a dataframe in train and test set.
inspiration gotten from:
https://stackoverflow.com/a/47672336/1771155
https://stackoverflow.com/a/39889263/1771155"""
fractions = df.select(label).distinct().withColumn("fraction", F.lit(frac)).rdd.collectAsMap()
df_frac = df.stat.sampleBy(label, fractions, seed)
df_remaining = df.join(df_frac, on=join_on, how="left_anti")
return df_frac, df_remaining
# Way 2
# read in data
df = spark.read.csv(file, header=True)
# split dataframes between 0s and 1s
zeros = df.filter(df["Target"]==0)
ones = df.filter(df["Target"]==1)
# split datasets into training and testing
train0, test0 = zeros.randomSplit([0.8,0.2], seed=1234)
train1, test1 = ones.randomSplit([0.8,0.2], seed=1234)
# stack datasets back together
train = train0.union(train1)
test = test0.union(test1) | [
2,
6378,
352,
198,
6738,
279,
893,
20928,
13,
25410,
1330,
5499,
355,
376,
220,
198,
198,
4299,
25369,
1431,
62,
35312,
62,
27432,
62,
9288,
7,
7568,
11,
1216,
330,
11,
6167,
11,
4654,
62,
261,
11,
9403,
28,
3682,
2599,
198,
220,
220,
220,
37227,
25369,
69,
798,
6626,
286,
257,
1366,
14535,
287,
4512,
290,
1332,
900,
13,
198,
220,
220,
220,
12141,
7891,
422,
25,
198,
220,
220,
220,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
64,
14,
2857,
3134,
1954,
2623,
14,
22413,
1157,
2816,
198,
220,
220,
220,
3740,
1378,
25558,
2502,
11125,
13,
785,
14,
64,
14,
2670,
39121,
29558,
14,
22413,
1157,
2816,
37811,
198,
220,
220,
220,
49876,
796,
47764,
13,
19738,
7,
18242,
737,
17080,
4612,
22446,
4480,
39470,
7203,
69,
7861,
1600,
376,
13,
18250,
7,
31944,
29720,
81,
1860,
13,
33327,
1722,
13912,
3419,
198,
220,
220,
220,
47764,
62,
31944,
796,
47764,
13,
14269,
13,
39873,
3886,
7,
18242,
11,
49876,
11,
9403,
8,
198,
220,
220,
220,
47764,
62,
2787,
1397,
796,
47764,
13,
22179,
7,
7568,
62,
31944,
11,
319,
28,
22179,
62,
261,
11,
703,
2625,
9464,
62,
17096,
4943,
198,
220,
220,
220,
1441,
47764,
62,
31944,
11,
47764,
62,
2787,
1397,
628,
198,
2,
6378,
362,
198,
2,
1100,
287,
1366,
198,
7568,
796,
9009,
13,
961,
13,
40664,
7,
7753,
11,
13639,
28,
17821,
8,
198,
198,
2,
6626,
1366,
37805,
1022,
657,
82,
290,
352,
82,
198,
9107,
418,
796,
47764,
13,
24455,
7,
7568,
14692,
21745,
8973,
855,
15,
8,
198,
1952,
796,
47764,
13,
24455,
7,
7568,
14692,
21745,
8973,
855,
16,
8,
198,
198,
2,
6626,
40522,
656,
3047,
290,
4856,
198,
27432,
15,
11,
1332,
15,
796,
1976,
27498,
13,
25120,
41205,
26933,
15,
13,
23,
11,
15,
13,
17,
4357,
9403,
28,
1065,
2682,
8,
198,
27432,
16,
11,
1332,
16,
796,
3392,
13,
25120,
41205,
26933,
15,
13,
23,
11,
15,
13,
17,
4357,
9403,
28,
1065,
2682,
8,
198,
198,
2,
8931,
40522,
736,
1978,
198,
27432,
796,
4512,
15,
13,
24592,
7,
27432,
16,
8,
198,
9288,
796,
1332,
15,
13,
24592,
7,
9288,
16,
8
] | 2.665753 | 365 |
#REV: read it, separate it, use freq to make timings ;)
#REV: convert from old 7-el to 49-el, pain in the butt.
#REV: assume I have 0, 2, 4, 6, 8, 10, 12, makes 7 electrodes, at 150 spacing ugh.
#REV: I *think* 0 is x=50, 2 is x=200, 4 is x=350, 6 is x=500
#REV: Just do single correlations, if right now electrodes go from uh,
import sys
if( len( sys.argv ) != 3 ):
print( "Not enough sys args" );
exit(1);
inf = sys.argv[1];
outf = sys.argv[2];
ely_sep=150;
elx_sep=150;
elx_num=7;
ely_num=7;
el_shift=50;
fromtop=False;
print( "In: ", inf, " out: ", outf );
out = open(outf, 'w');
elevents=False;
if(elevents):
i = open( inf, 'r');
evout = open(outf + '.events', 'w');
time=200;
for line in i:
line1 = line.split('\n');
items = line1[0].split(' ');
el = items[0];
hz = float(items[1]);
if( hz > 0 ):
t=0;
while( t < time ):
evout.write( str(t) + ' ' + el + ' pulse\n' );
t += (1.0/hz)*1000.0;
i.close();
evout.close();
nel=elx_num*ely_num; #8*8;
elhei=10;
elwid=50;
eldep=50;
#REV: fuck I need to assume that center electrode is at 500/500 -_-;
for n in range(1, nel+1):
elnum=n-1;
x, z = comp_elpos(n);
y = -300;
grpname='EL'
out.write( 'nodeprop ' + 'el' + str(elnum) + ' pos ' + str(x) + ' ' + str(y-elhei/2) + ' ' + str(z) + ' ' + str(x) + ' ' + str(y+elhei/2) + ' ' + str(z) + ' ' + str(elwid) + ' ' + str(eldep) + '\n');
out.write( 'nodememb ' + grpname + ' el' + str(elnum) + '\n' );
out.close();
| [
2,
2200,
53,
25,
1100,
340,
11,
4553,
340,
11,
779,
2030,
80,
284,
787,
4628,
654,
35540,
628,
198,
2,
2200,
53,
25,
10385,
422,
1468,
767,
12,
417,
284,
5125,
12,
417,
11,
2356,
287,
262,
8530,
13,
198,
2,
2200,
53,
25,
7048,
314,
423,
657,
11,
362,
11,
604,
11,
718,
11,
807,
11,
838,
11,
1105,
11,
1838,
767,
39780,
11,
379,
6640,
31050,
334,
456,
13,
198,
2,
2200,
53,
25,
314,
1635,
14925,
9,
657,
318,
2124,
28,
1120,
11,
362,
318,
2124,
28,
2167,
11,
604,
318,
2124,
28,
14877,
11,
718,
318,
2124,
28,
4059,
198,
2,
2200,
53,
25,
2329,
466,
2060,
35811,
11,
611,
826,
783,
39780,
467,
422,
21480,
11,
220,
198,
198,
11748,
25064,
198,
198,
361,
7,
18896,
7,
25064,
13,
853,
85,
1267,
14512,
513,
15179,
198,
220,
220,
220,
3601,
7,
366,
3673,
1576,
25064,
26498,
1,
5619,
198,
220,
220,
220,
8420,
7,
16,
1776,
198,
198,
10745,
796,
25064,
13,
853,
85,
58,
16,
11208,
198,
448,
69,
796,
25064,
13,
853,
85,
58,
17,
11208,
198,
198,
68,
306,
62,
325,
79,
28,
8628,
26,
198,
417,
87,
62,
325,
79,
28,
8628,
26,
198,
417,
87,
62,
22510,
28,
22,
26,
198,
68,
306,
62,
22510,
28,
22,
26,
628,
198,
417,
62,
30846,
28,
1120,
26,
198,
198,
6738,
4852,
28,
25101,
26,
198,
198,
4798,
7,
366,
818,
25,
33172,
1167,
11,
366,
503,
25,
33172,
503,
69,
5619,
628,
198,
448,
796,
1280,
7,
448,
69,
11,
705,
86,
24036,
628,
198,
68,
2768,
658,
28,
25101,
26,
198,
361,
7,
68,
2768,
658,
2599,
198,
220,
220,
220,
1312,
796,
1280,
7,
1167,
11,
705,
81,
24036,
198,
220,
220,
220,
819,
448,
796,
1280,
7,
448,
69,
1343,
45302,
31534,
3256,
705,
86,
24036,
628,
220,
220,
220,
640,
28,
2167,
26,
198,
220,
220,
220,
329,
1627,
287,
1312,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1627,
16,
796,
1627,
13,
35312,
10786,
59,
77,
24036,
198,
220,
220,
220,
220,
220,
220,
220,
3709,
796,
1627,
16,
58,
15,
4083,
35312,
10786,
705,
1776,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
796,
3709,
58,
15,
11208,
198,
220,
220,
220,
220,
220,
220,
220,
289,
89,
796,
12178,
7,
23814,
58,
16,
36563,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7,
289,
89,
1875,
657,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
28,
15,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
981,
7,
256,
1279,
640,
15179,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
819,
448,
13,
13564,
7,
965,
7,
83,
8,
1343,
705,
705,
1343,
1288,
1343,
705,
19445,
59,
77,
6,
5619,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
256,
15853,
357,
16,
13,
15,
14,
32179,
27493,
12825,
13,
15,
26,
198,
220,
220,
220,
1312,
13,
19836,
9783,
198,
220,
220,
220,
819,
448,
13,
19836,
9783,
628,
198,
4954,
28,
417,
87,
62,
22510,
9,
68,
306,
62,
22510,
26,
1303,
23,
9,
23,
26,
198,
417,
27392,
28,
940,
26,
198,
417,
28029,
28,
1120,
26,
198,
68,
335,
538,
28,
1120,
26,
628,
198,
2,
2200,
53,
25,
5089,
314,
761,
284,
7048,
326,
3641,
46203,
318,
379,
5323,
14,
4059,
532,
22955,
26,
198,
1640,
299,
287,
2837,
7,
16,
11,
299,
417,
10,
16,
2599,
198,
220,
220,
220,
1288,
22510,
28,
77,
12,
16,
26,
198,
220,
220,
220,
2124,
11,
1976,
796,
552,
62,
417,
1930,
7,
77,
1776,
198,
220,
220,
220,
331,
796,
532,
6200,
26,
198,
220,
220,
220,
1036,
79,
3672,
11639,
3698,
6,
198,
220,
220,
220,
503,
13,
13564,
7,
705,
77,
375,
538,
1773,
705,
1343,
705,
417,
6,
1343,
965,
7,
417,
22510,
8,
1343,
705,
1426,
705,
1343,
965,
7,
87,
8,
1343,
705,
705,
1343,
965,
7,
88,
12,
417,
27392,
14,
17,
8,
1343,
705,
705,
1343,
965,
7,
89,
8,
1343,
705,
705,
1343,
220,
965,
7,
87,
8,
1343,
705,
705,
1343,
965,
7,
88,
10,
417,
27392,
14,
17,
8,
1343,
705,
705,
1343,
965,
7,
89,
8,
1343,
705,
705,
1343,
965,
7,
417,
28029,
8,
1343,
705,
705,
1343,
965,
7,
68,
335,
538,
8,
1343,
705,
59,
77,
24036,
198,
220,
220,
220,
503,
13,
13564,
7,
705,
77,
375,
368,
24419,
705,
1343,
1036,
79,
3672,
1343,
705,
1288,
6,
1343,
965,
7,
417,
22510,
8,
1343,
705,
59,
77,
6,
5619,
198,
220,
220,
220,
220,
628,
198,
448,
13,
19836,
9783,
198
] | 1.988722 | 798 |
import requests
from flask import Flask, request
import os
import info
import isolate
app = Flask(__name__)
@app.route('/')
@app.route('/compile', methods=["POST"])
@app.route('/run', methods=["POST"])
@app.before_first_request
| [
11748,
7007,
198,
6738,
42903,
1330,
46947,
11,
2581,
198,
11748,
28686,
198,
198,
11748,
7508,
198,
11748,
28091,
198,
198,
1324,
796,
46947,
7,
834,
3672,
834,
8,
198,
198,
31,
1324,
13,
38629,
10786,
14,
11537,
198,
198,
31,
1324,
13,
38629,
10786,
14,
5589,
576,
3256,
5050,
28,
14692,
32782,
8973,
8,
198,
198,
31,
1324,
13,
38629,
10786,
14,
5143,
3256,
5050,
28,
14692,
32782,
8973,
8,
198,
198,
31,
1324,
13,
19052,
62,
11085,
62,
25927,
628
] | 2.865854 | 82 |
import re
import disnake
from disnake.ext import commands
from ids import AHK_GUILD_ID
from cogs.mixins import AceMixin
from utils.context import is_mod
from utils.converters import LengthConverter
DELETE_EMOJI = '\N{Put Litter in Its Place Symbol}'
DEFAULT_LANG = 'py'
lang_converter = LangConverter(1, 32)
class Highlighter(AceMixin, commands.Cog):
'''Create highlighted code-boxes with one command.'''
@commands.command(aliases=['h1'])
@commands.bot_has_permissions(manage_messages=True, add_reactions=True)
async def hl(self, ctx, *, code):
'''Highlight some code.'''
await ctx.message.delete()
# include spaces/tabs at the beginning
code = ctx.message.content[len(ctx.prefix) + 3:]
# don't allow three backticks in a row, alternative is to throw error upon this case
code = code.replace('``', '`\u200b`')
# replace triple+ newlines with double newlines
code = re.sub('\n\n+', '\n\n', code)
# trim start and finish
code = code.strip()
# get the language this user should use
lang = await self.db.fetchval(
'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND (user_id=$2 OR user_id=$3)',
ctx.guild.id, 0, ctx.author.id
) or DEFAULT_LANG
code = '```{}\n{}\n```'.format(lang, code)
code += '*Paste by {0} - Click {1} to delete.*'.format(ctx.author.mention, DELETE_EMOJI)
if len(code) > 2000:
raise commands.CommandError('Code contents too long to paste.')
message = await ctx.send(code)
await self.db.execute(
'INSERT INTO highlight_msg (guild_id, channel_id, user_id, message_id) VALUES ($1, $2, $3, $4)',
ctx.guild.id, ctx.channel.id, ctx.author.id, message.id
)
await message.add_reaction(DELETE_EMOJI)
@commands.Cog.listener()
async def on_raw_reaction_add(self, payload):
'''Listens for raw reactions and removes a highlighted message if appropriate.'''
if payload.guild_id is None:
return
if str(payload.emoji) != DELETE_EMOJI or payload.user_id == self.bot.user.id:
return
if await self.db.execute(
'DELETE FROM highlight_msg WHERE user_id=$1 AND message_id=$2',
payload.user_id, payload.message_id
) == 'DELETE 0':
return
channel = self.bot.get_channel(payload.channel_id)
if channel is None:
return
try:
message = await channel.fetch_message(payload.message_id)
await message.delete()
except disnake.HTTPException:
return
@commands.command()
@commands.bot_has_permissions(embed_links=True)
async def lang(self, ctx, *, language: lang_converter = None):
'''Set your preferred highlighting language in this server.'''
if language is None:
server_lang = await self.db.fetchval(
'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND user_id=$2',
ctx.guild.id, 0
)
user_lang = await self.db.fetchval(
'SELECT lang FROM highlight_lang WHERE guild_id=$1 AND user_id=$2',
ctx.guild.id, ctx.author.id
)
e = disnake.Embed(description='Do `.lang clear` to clear preference.')
e.add_field(
name='Server setting',
value=f'`{DEFAULT_LANG + " (default)" if server_lang is None else server_lang}`'
)
e.add_field(
name='Personal setting',
value='Not set' if user_lang is None else f'`{user_lang}`'
)
await ctx.send(embed=e)
return
if language == 'clear':
ret = await self.db.execute(
'DELETE FROM highlight_lang WHERE guild_id=$1 AND user_id=$2',
ctx.guild.id, ctx.author.id
)
await ctx.send('No preference previously set' if ret == 'DELETE 0' else 'Preference cleared.')
else:
await self.db.execute(
'INSERT INTO highlight_lang (guild_id, user_id, lang) VALUES ($1, $2, $3) ON CONFLICT '
'(guild_id, user_id) DO UPDATE SET lang=$3',
ctx.guild.id, ctx.author.id, language
)
await ctx.send(f'Set your specific highlighting language to \'{language}\'.')
@commands.command(aliases=['guildlang'])
@is_mod()
async def serverlang(self, ctx, *, language: lang_converter):
'''Set a guild-specific highlighting language. Can be overridden individually by users.'''
if language == 'clear':
ret = await self.db.execute(
'DELETE FROM highlight_lang WHERE guild_id=$1 AND user_id=$2',
ctx.guild.id, 0
)
await ctx.send('No preference previously set' if ret == 'DELETE 0' else 'Preference cleared.')
else:
await self.db.execute(
'INSERT INTO highlight_lang (guild_id, user_id, lang) VALUES ($1, $2, $3) ON CONFLICT '
'(guild_id, user_id) DO UPDATE SET lang=$3',
ctx.guild.id, 0, language
)
await ctx.send(f'Set server-specific highlighting language to \'{language}\'.')
@commands.command(aliases=['p'], hidden=True)
async def paste(self, ctx):
'''Legacy, not removed because some people still use it instead of the newer tags in the tag system.'''
msg = 'To paste code snippets directly into the chat, use the highlight command:\n```.hl *paste code here*```'
if ctx.guild.id == AHK_GUILD_ID:
msg += (
'If you have a larger script you want to share, paste it to the AutoHotkey pastebin instead:\n'
'http://p.ahkscript.org/'
)
await ctx.send(msg)
| [
11748,
302,
198,
198,
11748,
595,
77,
539,
198,
6738,
595,
77,
539,
13,
2302,
1330,
9729,
198,
198,
6738,
220,
2340,
1330,
28159,
42,
62,
38022,
26761,
62,
2389,
198,
6738,
269,
18463,
13,
19816,
1040,
1330,
17102,
35608,
259,
198,
6738,
3384,
4487,
13,
22866,
1330,
318,
62,
4666,
198,
6738,
3384,
4487,
13,
1102,
332,
1010,
1330,
22313,
3103,
332,
353,
198,
198,
7206,
2538,
9328,
62,
3620,
46,
41,
40,
796,
705,
59,
45,
90,
11588,
406,
1967,
287,
6363,
8474,
38357,
92,
6,
198,
7206,
38865,
62,
43,
15567,
796,
705,
9078,
6,
628,
198,
198,
17204,
62,
1102,
332,
353,
796,
16332,
3103,
332,
353,
7,
16,
11,
3933,
8,
628,
198,
4871,
3334,
75,
4799,
7,
32,
344,
35608,
259,
11,
9729,
13,
34,
519,
2599,
198,
197,
7061,
6,
16447,
14537,
2438,
12,
29305,
351,
530,
3141,
2637,
7061,
628,
197,
31,
9503,
1746,
13,
21812,
7,
7344,
1386,
28,
17816,
71,
16,
6,
12962,
198,
197,
31,
9503,
1746,
13,
13645,
62,
10134,
62,
525,
8481,
7,
805,
496,
62,
37348,
1095,
28,
17821,
11,
751,
62,
260,
4658,
28,
17821,
8,
198,
197,
292,
13361,
825,
289,
75,
7,
944,
11,
269,
17602,
11,
1635,
11,
2438,
2599,
198,
197,
197,
7061,
6,
11922,
2971,
617,
2438,
2637,
7061,
628,
197,
197,
707,
4548,
269,
17602,
13,
20500,
13,
33678,
3419,
628,
197,
197,
2,
2291,
9029,
14,
8658,
82,
379,
262,
3726,
198,
197,
197,
8189,
796,
269,
17602,
13,
20500,
13,
11299,
58,
11925,
7,
49464,
13,
40290,
8,
1343,
513,
47715,
628,
197,
197,
2,
836,
470,
1249,
1115,
736,
83,
3378,
287,
257,
5752,
11,
5559,
318,
284,
3714,
4049,
2402,
428,
1339,
198,
197,
197,
8189,
796,
2438,
13,
33491,
10786,
15506,
3256,
705,
63,
59,
84,
2167,
65,
63,
11537,
628,
197,
197,
2,
6330,
15055,
10,
649,
6615,
351,
4274,
649,
6615,
198,
197,
197,
8189,
796,
302,
13,
7266,
10786,
59,
77,
59,
77,
10,
3256,
705,
59,
77,
59,
77,
3256,
2438,
8,
628,
197,
197,
2,
15797,
923,
290,
5461,
198,
197,
197,
8189,
796,
2438,
13,
36311,
3419,
628,
197,
197,
2,
651,
262,
3303,
428,
2836,
815,
779,
198,
197,
197,
17204,
796,
25507,
2116,
13,
9945,
13,
69,
7569,
2100,
7,
198,
197,
197,
197,
6,
46506,
42392,
16034,
7238,
62,
17204,
33411,
19806,
62,
312,
43641,
16,
5357,
357,
7220,
62,
312,
43641,
17,
6375,
2836,
62,
312,
43641,
18,
8,
3256,
198,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
657,
11,
269,
17602,
13,
9800,
13,
312,
198,
197,
197,
8,
393,
5550,
38865,
62,
43,
15567,
628,
197,
197,
8189,
796,
705,
15506,
63,
90,
32239,
77,
90,
32239,
77,
15506,
63,
4458,
18982,
7,
17204,
11,
2438,
8,
198,
197,
197,
8189,
15853,
705,
9,
47,
4594,
416,
1391,
15,
92,
532,
6914,
1391,
16,
92,
284,
12233,
15885,
4458,
18982,
7,
49464,
13,
9800,
13,
434,
295,
11,
5550,
2538,
9328,
62,
3620,
46,
41,
40,
8,
628,
197,
197,
361,
18896,
7,
8189,
8,
1875,
4751,
25,
198,
197,
197,
197,
40225,
9729,
13,
21575,
12331,
10786,
10669,
10154,
1165,
890,
284,
17008,
2637,
8,
628,
197,
197,
20500,
796,
25507,
269,
17602,
13,
21280,
7,
8189,
8,
628,
197,
197,
707,
4548,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
6,
20913,
17395,
39319,
7238,
62,
19662,
357,
70,
3547,
62,
312,
11,
6518,
62,
312,
11,
2836,
62,
312,
11,
3275,
62,
312,
8,
26173,
35409,
7198,
16,
11,
720,
17,
11,
720,
18,
11,
720,
19,
8,
3256,
198,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
269,
17602,
13,
17620,
13,
312,
11,
269,
17602,
13,
9800,
13,
312,
11,
3275,
13,
312,
198,
197,
197,
8,
628,
197,
197,
707,
4548,
3275,
13,
2860,
62,
260,
2673,
7,
7206,
2538,
9328,
62,
3620,
46,
41,
40,
8,
628,
197,
31,
9503,
1746,
13,
34,
519,
13,
4868,
877,
3419,
198,
197,
292,
13361,
825,
319,
62,
1831,
62,
260,
2673,
62,
2860,
7,
944,
11,
21437,
2599,
198,
197,
197,
7061,
6,
8053,
641,
329,
8246,
12737,
290,
20694,
257,
14537,
3275,
611,
5035,
2637,
7061,
628,
197,
197,
361,
21437,
13,
70,
3547,
62,
312,
318,
6045,
25,
198,
197,
197,
197,
7783,
628,
197,
197,
361,
965,
7,
15577,
2220,
13,
368,
31370,
8,
14512,
5550,
2538,
9328,
62,
3620,
46,
41,
40,
393,
21437,
13,
7220,
62,
312,
6624,
2116,
13,
13645,
13,
7220,
13,
312,
25,
198,
197,
197,
197,
7783,
628,
197,
197,
361,
25507,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
6,
7206,
2538,
9328,
16034,
7238,
62,
19662,
33411,
2836,
62,
312,
43641,
16,
5357,
3275,
62,
312,
43641,
17,
3256,
198,
197,
197,
197,
15577,
2220,
13,
7220,
62,
312,
11,
21437,
13,
20500,
62,
312,
198,
197,
197,
8,
6624,
705,
7206,
2538,
9328,
657,
10354,
198,
197,
197,
197,
7783,
628,
197,
197,
17620,
796,
2116,
13,
13645,
13,
1136,
62,
17620,
7,
15577,
2220,
13,
17620,
62,
312,
8,
198,
197,
197,
361,
6518,
318,
6045,
25,
198,
197,
197,
197,
7783,
628,
197,
197,
28311,
25,
198,
197,
197,
197,
20500,
796,
25507,
6518,
13,
69,
7569,
62,
20500,
7,
15577,
2220,
13,
20500,
62,
312,
8,
198,
197,
197,
197,
707,
4548,
3275,
13,
33678,
3419,
198,
197,
197,
16341,
595,
77,
539,
13,
40717,
16922,
25,
198,
197,
197,
197,
7783,
628,
197,
31,
9503,
1746,
13,
21812,
3419,
198,
197,
31,
9503,
1746,
13,
13645,
62,
10134,
62,
525,
8481,
7,
20521,
62,
28751,
28,
17821,
8,
198,
197,
292,
13361,
825,
42392,
7,
944,
11,
269,
17602,
11,
1635,
11,
3303,
25,
42392,
62,
1102,
332,
353,
796,
6045,
2599,
198,
197,
197,
7061,
6,
7248,
534,
9871,
21292,
3303,
287,
428,
4382,
2637,
7061,
628,
197,
197,
361,
3303,
318,
6045,
25,
198,
197,
197,
197,
15388,
62,
17204,
796,
25507,
2116,
13,
9945,
13,
69,
7569,
2100,
7,
198,
197,
197,
197,
197,
6,
46506,
42392,
16034,
7238,
62,
17204,
33411,
19806,
62,
312,
43641,
16,
5357,
2836,
62,
312,
43641,
17,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
657,
198,
197,
197,
197,
8,
628,
197,
197,
197,
7220,
62,
17204,
796,
25507,
2116,
13,
9945,
13,
69,
7569,
2100,
7,
198,
197,
197,
197,
197,
6,
46506,
42392,
16034,
7238,
62,
17204,
33411,
19806,
62,
312,
43641,
16,
5357,
2836,
62,
312,
43641,
17,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
269,
17602,
13,
9800,
13,
312,
198,
197,
197,
197,
8,
628,
197,
197,
197,
68,
796,
595,
77,
539,
13,
31567,
276,
7,
11213,
11639,
5211,
4600,
13,
17204,
1598,
63,
284,
1598,
12741,
2637,
8,
628,
197,
197,
197,
68,
13,
2860,
62,
3245,
7,
198,
197,
197,
197,
197,
3672,
11639,
10697,
4634,
3256,
198,
197,
197,
197,
197,
8367,
28,
69,
6,
63,
90,
7206,
38865,
62,
43,
15567,
1343,
366,
357,
12286,
16725,
611,
4382,
62,
17204,
318,
6045,
2073,
4382,
62,
17204,
92,
63,
6,
198,
197,
197,
197,
8,
628,
197,
197,
197,
68,
13,
2860,
62,
3245,
7,
198,
197,
197,
197,
197,
3672,
11639,
30228,
4634,
3256,
198,
197,
197,
197,
197,
8367,
11639,
3673,
900,
6,
611,
2836,
62,
17204,
318,
6045,
2073,
277,
6,
63,
90,
7220,
62,
17204,
92,
63,
6,
198,
197,
197,
197,
8,
628,
197,
197,
197,
707,
4548,
269,
17602,
13,
21280,
7,
20521,
28,
68,
8,
198,
197,
197,
197,
7783,
628,
197,
197,
361,
3303,
6624,
705,
20063,
10354,
198,
197,
197,
197,
1186,
796,
25507,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
197,
6,
7206,
2538,
9328,
16034,
7238,
62,
17204,
33411,
19806,
62,
312,
43641,
16,
5357,
2836,
62,
312,
43641,
17,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
269,
17602,
13,
9800,
13,
312,
198,
197,
197,
197,
8,
628,
197,
197,
197,
707,
4548,
269,
17602,
13,
21280,
10786,
2949,
12741,
4271,
900,
6,
611,
1005,
6624,
705,
7206,
2538,
9328,
657,
6,
2073,
705,
6719,
4288,
12539,
2637,
8,
198,
197,
197,
17772,
25,
198,
197,
197,
197,
707,
4548,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
197,
6,
20913,
17395,
39319,
7238,
62,
17204,
357,
70,
3547,
62,
312,
11,
2836,
62,
312,
11,
42392,
8,
26173,
35409,
7198,
16,
11,
720,
17,
11,
720,
18,
8,
6177,
7102,
3697,
18379,
705,
198,
197,
197,
197,
197,
6,
7,
70,
3547,
62,
312,
11,
2836,
62,
312,
8,
8410,
35717,
25823,
42392,
43641,
18,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
269,
17602,
13,
9800,
13,
312,
11,
3303,
198,
197,
197,
197,
8,
628,
197,
197,
197,
707,
4548,
269,
17602,
13,
21280,
7,
69,
6,
7248,
534,
2176,
21292,
3303,
284,
34373,
90,
16129,
32239,
6,
2637,
8,
628,
197,
31,
9503,
1746,
13,
21812,
7,
7344,
1386,
28,
17816,
70,
3547,
17204,
6,
12962,
198,
197,
31,
271,
62,
4666,
3419,
198,
197,
292,
13361,
825,
4382,
17204,
7,
944,
11,
269,
17602,
11,
1635,
11,
3303,
25,
42392,
62,
1102,
332,
353,
2599,
198,
197,
197,
7061,
6,
7248,
257,
19806,
12,
11423,
21292,
3303,
13,
1680,
307,
23170,
4651,
17033,
416,
2985,
2637,
7061,
628,
197,
197,
361,
3303,
6624,
705,
20063,
10354,
198,
197,
197,
197,
1186,
796,
25507,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
197,
6,
7206,
2538,
9328,
16034,
7238,
62,
17204,
33411,
19806,
62,
312,
43641,
16,
5357,
2836,
62,
312,
43641,
17,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
657,
198,
197,
197,
197,
8,
628,
197,
197,
197,
707,
4548,
269,
17602,
13,
21280,
10786,
2949,
12741,
4271,
900,
6,
611,
1005,
6624,
705,
7206,
2538,
9328,
657,
6,
2073,
705,
6719,
4288,
12539,
2637,
8,
198,
197,
197,
17772,
25,
198,
197,
197,
197,
707,
4548,
2116,
13,
9945,
13,
41049,
7,
198,
197,
197,
197,
197,
6,
20913,
17395,
39319,
7238,
62,
17204,
357,
70,
3547,
62,
312,
11,
2836,
62,
312,
11,
42392,
8,
26173,
35409,
7198,
16,
11,
720,
17,
11,
720,
18,
8,
6177,
7102,
3697,
18379,
705,
198,
197,
197,
197,
197,
6,
7,
70,
3547,
62,
312,
11,
2836,
62,
312,
8,
8410,
35717,
25823,
42392,
43641,
18,
3256,
198,
197,
197,
197,
197,
49464,
13,
70,
3547,
13,
312,
11,
657,
11,
3303,
198,
197,
197,
197,
8,
628,
197,
197,
197,
707,
4548,
269,
17602,
13,
21280,
7,
69,
6,
7248,
4382,
12,
11423,
21292,
3303,
284,
34373,
90,
16129,
32239,
6,
2637,
8,
628,
197,
31,
9503,
1746,
13,
21812,
7,
7344,
1386,
28,
17816,
79,
6,
4357,
7104,
28,
17821,
8,
198,
197,
292,
13361,
825,
17008,
7,
944,
11,
269,
17602,
2599,
198,
197,
197,
7061,
6,
11484,
1590,
11,
407,
4615,
780,
617,
661,
991,
779,
340,
2427,
286,
262,
15064,
15940,
287,
262,
7621,
1080,
2637,
7061,
628,
197,
197,
19662,
796,
705,
2514,
17008,
2438,
45114,
3264,
656,
262,
8537,
11,
779,
262,
7238,
3141,
7479,
77,
15506,
44646,
18519,
1635,
34274,
2438,
994,
9,
15506,
63,
6,
628,
197,
197,
361,
269,
17602,
13,
70,
3547,
13,
312,
6624,
28159,
42,
62,
38022,
26761,
62,
2389,
25,
198,
197,
197,
197,
19662,
15853,
357,
198,
197,
197,
197,
197,
6,
1532,
345,
423,
257,
4025,
4226,
345,
765,
284,
2648,
11,
17008,
340,
284,
262,
11160,
21352,
2539,
1613,
23497,
2427,
7479,
77,
6,
198,
197,
197,
197,
197,
6,
4023,
1378,
79,
13,
993,
591,
6519,
13,
2398,
14,
6,
198,
197,
197,
197,
8,
628,
197,
197,
707,
4548,
269,
17602,
13,
21280,
7,
19662,
8,
628
] | 2.55063 | 1,985 |
from mmdet.apis import init_detector, inference_detector, show_result_pyplot, show_result_ins
import mmcv
import os, glob, time
config_file = 'cfg/aug_solov2_tuned.py'
# download the checkpoint from model zoo and put it in `checkpoints/`
checkpoint_file = 'work_dirs/solov2_tianchi_tuned.pth'
# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')
# # test a single image
# img = './WechatIMG14.jpeg'
# result, cost_time = inference_detector(model, img)
# show_result_ins(img, result, model.CLASSES, score_thr=0.25,
# out_file='./WechatIMG14_out.jpeg')
imgs = glob.glob('/workspace/tianchi/tianchiyusai/JPEGImages/621838/*.jpg')
# imgs = ['./test_imgs/14755.jpg']
# imgs = glob.glob('/home/versa/dataset/MSCOCO/aug_seg/val_imgs/*.*')
save_dir = './result'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
total = 0
for i, img in enumerate(imgs):
name = img.split('/')[-1]
result, cost_time = inference_detector(model, img)
print(i, name, cost_time)
total += cost_time
try:
show_result_ins(img, result, model.CLASSES, score_thr=0.25,
out_file=os.path.join(save_dir, name))
except:
continue
print('average cost time: ', total / len(imgs)) | [
6738,
8085,
15255,
13,
499,
271,
1330,
2315,
62,
15255,
9250,
11,
32278,
62,
15255,
9250,
11,
905,
62,
20274,
62,
9078,
29487,
11,
905,
62,
20274,
62,
1040,
198,
11748,
8085,
33967,
198,
11748,
28686,
11,
15095,
11,
640,
198,
198,
11250,
62,
7753,
796,
705,
37581,
14,
7493,
62,
34453,
709,
17,
62,
28286,
276,
13,
9078,
6,
198,
2,
4321,
262,
26954,
422,
2746,
26626,
290,
1234,
340,
287,
4600,
9122,
13033,
14,
63,
198,
9122,
4122,
62,
7753,
796,
705,
1818,
62,
15908,
82,
14,
34453,
709,
17,
62,
83,
666,
11072,
62,
28286,
276,
13,
79,
400,
6,
198,
198,
2,
1382,
262,
2746,
422,
257,
4566,
2393,
290,
257,
26954,
2393,
198,
19849,
796,
2315,
62,
15255,
9250,
7,
11250,
62,
7753,
11,
26954,
62,
7753,
11,
3335,
11639,
66,
15339,
25,
15,
11537,
198,
198,
2,
1303,
1332,
257,
2060,
2939,
198,
2,
33705,
796,
705,
19571,
1135,
17006,
3955,
38,
1415,
13,
73,
22071,
6,
198,
2,
1255,
11,
1575,
62,
2435,
796,
32278,
62,
15255,
9250,
7,
19849,
11,
33705,
8,
198,
2,
905,
62,
20274,
62,
1040,
7,
9600,
11,
1255,
11,
2746,
13,
31631,
1546,
11,
4776,
62,
400,
81,
28,
15,
13,
1495,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
7753,
28,
4458,
14,
1135,
17006,
3955,
38,
1415,
62,
448,
13,
73,
22071,
11537,
198,
198,
9600,
82,
796,
15095,
13,
4743,
672,
10786,
14,
5225,
10223,
14,
83,
666,
11072,
14,
83,
666,
354,
7745,
385,
1872,
14,
12889,
7156,
29398,
14,
5237,
1507,
2548,
15211,
13,
9479,
11537,
198,
2,
545,
14542,
796,
685,
4458,
14,
9288,
62,
9600,
82,
14,
1415,
38172,
13,
9479,
20520,
198,
2,
545,
14542,
796,
15095,
13,
4743,
672,
10786,
14,
11195,
14,
690,
64,
14,
19608,
292,
316,
14,
5653,
34,
4503,
46,
14,
7493,
62,
325,
70,
14,
2100,
62,
9600,
82,
15211,
15885,
11537,
198,
21928,
62,
15908,
796,
705,
19571,
20274,
6,
198,
361,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
21928,
62,
15908,
2599,
198,
220,
220,
220,
28686,
13,
76,
4335,
17062,
7,
21928,
62,
15908,
8,
198,
198,
23350,
796,
657,
198,
1640,
1312,
11,
33705,
287,
27056,
378,
7,
9600,
82,
2599,
198,
220,
220,
220,
1438,
796,
33705,
13,
35312,
10786,
14,
11537,
58,
12,
16,
60,
198,
220,
220,
220,
1255,
11,
1575,
62,
2435,
796,
32278,
62,
15255,
9250,
7,
19849,
11,
33705,
8,
198,
220,
220,
220,
3601,
7,
72,
11,
1438,
11,
1575,
62,
2435,
8,
198,
220,
220,
220,
2472,
15853,
1575,
62,
2435,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
905,
62,
20274,
62,
1040,
7,
9600,
11,
1255,
11,
2746,
13,
31631,
1546,
11,
4776,
62,
400,
81,
28,
15,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
503,
62,
7753,
28,
418,
13,
6978,
13,
22179,
7,
21928,
62,
15908,
11,
1438,
4008,
198,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
4798,
10786,
23913,
1575,
640,
25,
46083,
2472,
1220,
18896,
7,
9600,
82,
4008
] | 2.362319 | 552 |
# !/usr/bin/env python
import rospy
from flexbe_core import EventState, Logger
'''
Created on 21.09.2017
@author: Philippe La Madeleine
'''
class SetKey(EventState):
'''
Set a Key to a predefined Value
-- Value object The desired value.
<# Key object The key to set.
<= done The key is set
'''
def __init__(self, Value):
'''
Constructor
'''
super(SetKey, self).__init__(outcomes=['done'], output_keys=['Key'])
self.Value = Value
def execute(self, userdata):
'''
Execute this state
'''
userdata.Key = self.Value;
return "done"
| [
2,
5145,
14,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
686,
2777,
88,
198,
6738,
7059,
1350,
62,
7295,
1330,
8558,
9012,
11,
5972,
1362,
198,
198,
7061,
6,
198,
41972,
319,
2310,
13,
2931,
13,
5539,
198,
31,
9800,
25,
39393,
4689,
14446,
293,
500,
198,
7061,
6,
628,
198,
4871,
5345,
9218,
7,
9237,
9012,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
5345,
257,
7383,
284,
257,
2747,
18156,
11052,
198,
220,
220,
220,
1377,
11052,
220,
220,
220,
2134,
220,
220,
220,
220,
220,
383,
10348,
1988,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1279,
2,
7383,
220,
220,
220,
220,
220,
2134,
220,
220,
220,
220,
220,
383,
1994,
284,
900,
13,
198,
220,
220,
220,
220,
198,
220,
220,
220,
19841,
1760,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
383,
1994,
318,
900,
198,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
11052,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
28407,
273,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
2208,
7,
7248,
9218,
11,
2116,
737,
834,
15003,
834,
7,
448,
8988,
28,
17816,
28060,
6,
4357,
220,
5072,
62,
13083,
28,
17816,
9218,
6,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
11395,
796,
11052,
628,
220,
220,
220,
825,
12260,
7,
944,
11,
2836,
7890,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
220,
220,
220,
220,
8393,
1133,
428,
1181,
198,
220,
220,
220,
220,
220,
220,
220,
705,
7061,
628,
220,
220,
220,
220,
220,
220,
220,
2836,
7890,
13,
9218,
796,
2116,
13,
11395,
26,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
366,
28060,
1,
198
] | 2.110092 | 327 |
from chapter2_基础.soundBase import *
from chapter4_特征提取.end_detection import *
data, fs = soundBase('C4_1_y.wav').audioread()
data -= np.mean(data)
data /= np.max(data)
IS = 0.25
wlen = 200
inc = 80
N = len(data)
time = [i / fs for i in range(N)]
wnd = np.hamming(wlen)
NIS = int((IS * fs - wlen) // inc + 1)
thr1 = 1.1
thr2 = 1.3
voiceseg, vsl, SF, NF, Rum = vad_corr(data, wnd, inc, NIS, thr1, thr2)
fn = len(SF)
frameTime = FrameTimeC(fn, wlen, inc, fs)
plt.subplot(2, 1, 1)
plt.plot(time, data)
plt.subplot(2, 1, 2)
plt.plot(frameTime, Rum)
for i in range(vsl):
plt.subplot(2, 1, 1)
plt.plot(frameTime[voiceseg[i]['start']], 0, '.k')
plt.plot(frameTime[voiceseg[i]['end']], 0, 'or')
plt.legend(['signal', 'start', 'end'])
plt.subplot(2, 1, 2)
plt.plot(frameTime[voiceseg[i]['start']], 0, '.k')
plt.plot(frameTime[voiceseg[i]['end']], 0, 'or')
plt.legend(['xcorr', 'start', 'end'])
plt.savefig('images/corr.png')
plt.close()
| [
6738,
6843,
17,
62,
161,
253,
118,
163,
94,
222,
13,
23661,
14881,
1330,
1635,
201,
198,
6738,
6843,
19,
62,
31965,
117,
36181,
223,
162,
237,
238,
20998,
244,
13,
437,
62,
15255,
3213,
1330,
1635,
201,
198,
201,
198,
7890,
11,
43458,
796,
2128,
14881,
10786,
34,
19,
62,
16,
62,
88,
13,
45137,
27691,
31330,
382,
324,
3419,
201,
198,
7890,
48185,
45941,
13,
32604,
7,
7890,
8,
201,
198,
7890,
1220,
28,
45941,
13,
9806,
7,
7890,
8,
201,
198,
1797,
796,
657,
13,
1495,
201,
198,
86,
11925,
796,
939,
201,
198,
1939,
796,
4019,
201,
198,
45,
796,
18896,
7,
7890,
8,
201,
198,
2435,
796,
685,
72,
1220,
43458,
329,
1312,
287,
2837,
7,
45,
15437,
201,
198,
86,
358,
796,
45941,
13,
2763,
2229,
7,
86,
11925,
8,
201,
198,
45,
1797,
796,
493,
19510,
1797,
1635,
43458,
532,
266,
11925,
8,
3373,
753,
1343,
352,
8,
201,
198,
400,
81,
16,
796,
352,
13,
16,
201,
198,
400,
81,
17,
796,
352,
13,
18,
201,
198,
13038,
1063,
1533,
11,
3691,
75,
11,
14362,
11,
41288,
11,
25463,
796,
410,
324,
62,
10215,
81,
7,
7890,
11,
266,
358,
11,
753,
11,
399,
1797,
11,
5636,
16,
11,
5636,
17,
8,
201,
198,
22184,
796,
18896,
7,
20802,
8,
201,
198,
14535,
7575,
796,
25184,
7575,
34,
7,
22184,
11,
266,
11925,
11,
753,
11,
43458,
8,
201,
198,
201,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
352,
11,
352,
8,
201,
198,
489,
83,
13,
29487,
7,
2435,
11,
1366,
8,
201,
198,
489,
83,
13,
7266,
29487,
7,
17,
11,
352,
11,
362,
8,
201,
198,
489,
83,
13,
29487,
7,
14535,
7575,
11,
25463,
8,
201,
198,
201,
198,
1640,
1312,
287,
2837,
7,
85,
6649,
2599,
201,
198,
220,
220,
220,
458,
83,
13,
7266,
29487,
7,
17,
11,
352,
11,
352,
8,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
14535,
7575,
58,
13038,
1063,
1533,
58,
72,
7131,
6,
9688,
20520,
4357,
657,
11,
45302,
74,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
14535,
7575,
58,
13038,
1063,
1533,
58,
72,
7131,
6,
437,
20520,
4357,
657,
11,
705,
273,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
1455,
437,
7,
17816,
12683,
282,
3256,
705,
9688,
3256,
705,
437,
6,
12962,
201,
198,
201,
198,
220,
220,
220,
458,
83,
13,
7266,
29487,
7,
17,
11,
352,
11,
362,
8,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
14535,
7575,
58,
13038,
1063,
1533,
58,
72,
7131,
6,
9688,
20520,
4357,
657,
11,
45302,
74,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
29487,
7,
14535,
7575,
58,
13038,
1063,
1533,
58,
72,
7131,
6,
437,
20520,
4357,
657,
11,
705,
273,
11537,
201,
198,
220,
220,
220,
458,
83,
13,
1455,
437,
7,
17816,
87,
10215,
81,
3256,
705,
9688,
3256,
705,
437,
6,
12962,
201,
198,
201,
198,
489,
83,
13,
21928,
5647,
10786,
17566,
14,
10215,
81,
13,
11134,
11537,
201,
198,
489,
83,
13,
19836,
3419,
201,
198
] | 1.925 | 520 |
import os
import mlflow
import argparse
from pprint import pprint
import src.data.load_data
from mlflow.tracking import MlflowClient
from tensorflow.python.saved_model import signature_constants
key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
if __name__ == '__main__':
args = argparse.ArgumentParser()
args.add_argument("--config", default="params.yaml")
parsed_args = args.parse_args()
data = log_production_model(config_path=parsed_args.config)
| [
11748,
28686,
201,
198,
11748,
285,
1652,
9319,
201,
198,
11748,
1822,
29572,
201,
198,
6738,
279,
4798,
1330,
279,
4798,
201,
198,
11748,
12351,
13,
7890,
13,
2220,
62,
7890,
201,
198,
6738,
285,
1652,
9319,
13,
36280,
1330,
337,
1652,
9319,
11792,
201,
198,
6738,
11192,
273,
11125,
13,
29412,
13,
82,
9586,
62,
19849,
1330,
9877,
62,
9979,
1187,
201,
198,
201,
198,
201,
198,
2539,
796,
9877,
62,
9979,
1187,
13,
7206,
38865,
62,
35009,
53,
2751,
62,
46224,
40086,
62,
32988,
62,
20373,
201,
198,
201,
198,
201,
198,
201,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
201,
198,
220,
220,
220,
26498,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
201,
198,
220,
220,
220,
26498,
13,
2860,
62,
49140,
7203,
438,
11250,
1600,
4277,
2625,
37266,
13,
88,
43695,
4943,
201,
198,
220,
220,
220,
44267,
62,
22046,
796,
26498,
13,
29572,
62,
22046,
3419,
201,
198,
220,
220,
220,
1366,
796,
2604,
62,
25493,
62,
19849,
7,
11250,
62,
6978,
28,
79,
945,
276,
62,
22046,
13,
11250,
8,
201,
198,
201,
198
] | 2.708108 | 185 |
from django.contrib.auth.backends import ModelBackend
from app.core.models import Customer
| [
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
1891,
2412,
1330,
9104,
7282,
437,
198,
6738,
598,
13,
7295,
13,
27530,
1330,
22092,
628,
628
] | 3.615385 | 26 |
# coding:utf-8
# File Name: Personal
# Author : yifengyou
# Date : 2021/07/18
p = Person()
print(p.name, p.age)
p.name = '李刚'
p.say("python语言很简单")
print(p.name,p.age) | [
2,
19617,
25,
40477,
12,
23,
198,
2,
9220,
6530,
171,
120,
248,
220,
220,
220,
220,
15644,
198,
2,
6434,
1058,
220,
220,
220,
220,
220,
220,
220,
331,
361,
268,
1360,
280,
198,
2,
7536,
1058,
220,
220,
220,
220,
220,
220,
220,
33448,
14,
2998,
14,
1507,
628,
198,
79,
796,
7755,
3419,
198,
4798,
7,
79,
13,
3672,
11,
279,
13,
496,
8,
198,
79,
13,
3672,
796,
705,
30266,
236,
26344,
248,
6,
198,
79,
13,
16706,
7203,
29412,
46237,
255,
164,
101,
222,
36181,
230,
163,
106,
222,
39355,
243,
4943,
198,
4798,
7,
79,
13,
3672,
11,
79,
13,
496,
8
] | 1.722222 | 108 |
from django.urls import path,include
from rest_framework.routers import DefaultRouter
from . import views
router = DefaultRouter()
router.register('hello-viewset',views.HelloViewSet, basename='hello_viewset')
router.register('profiles',views.ProfileViewSet,basename='Profiles')
router.register('feed',views.UserProfileFeedViewSet)
urlpatterns = [
path('hello-view/',views.HelloApiView.as_view(),name='hello_view'),
path('login/',views.UserLoginApiView.as_view()),
path('',include(router.urls)),
] | [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
11,
17256,
198,
6738,
1334,
62,
30604,
13,
472,
1010,
1330,
15161,
49,
39605,
198,
6738,
764,
1330,
5009,
198,
198,
472,
353,
796,
15161,
49,
39605,
3419,
198,
472,
353,
13,
30238,
10786,
31373,
12,
1177,
2617,
3256,
33571,
13,
15496,
7680,
7248,
11,
1615,
12453,
11639,
31373,
62,
1177,
2617,
11537,
198,
472,
353,
13,
30238,
10786,
5577,
2915,
3256,
33571,
13,
37046,
7680,
7248,
11,
12093,
12453,
11639,
15404,
2915,
11537,
198,
472,
353,
13,
30238,
10786,
12363,
3256,
33571,
13,
12982,
37046,
18332,
7680,
7248,
8,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
31373,
12,
1177,
14,
3256,
33571,
13,
15496,
32,
14415,
7680,
13,
292,
62,
1177,
22784,
3672,
11639,
31373,
62,
1177,
33809,
198,
220,
220,
220,
3108,
10786,
38235,
14,
3256,
33571,
13,
12982,
47790,
32,
14415,
7680,
13,
292,
62,
1177,
3419,
828,
198,
220,
220,
220,
3108,
10786,
3256,
17256,
7,
472,
353,
13,
6371,
82,
36911,
198,
198,
60
] | 2.953757 | 173 |
from .layer_normalization import LayerNormalization
| [
6738,
764,
29289,
62,
11265,
1634,
1330,
34398,
26447,
1634,
198
] | 4.727273 | 11 |
from ._Assistant import Assistant
from ._napari_plugin import napari_plugin | [
6738,
47540,
48902,
1330,
15286,
198,
6738,
47540,
77,
499,
2743,
62,
33803,
1330,
25422,
2743,
62,
33803
] | 4.166667 | 18 |
from django.db import models
from django.utils.translation import ugettext_lazy as _
from .validators import Alpha2CodeValidator, Alpha3CodeValidator, NumericCodeValidator
class GeoBaseModel(models.Model):
"""
Abstract base model for the UN M.49 geoscheme.
Refs: http://unstats.un.org/unsd/methods/m49/m49.htm
http://unstats.un.org/unsd/methods/m49/m49regin.htm
https://en.wikipedia.org/wiki/United_Nations_geoscheme
https://en.wikipedia.org/wiki/UN_M.49
"""
name = models.CharField(_("name"), max_length=100)
# https://en.wikipedia.org/wiki/ISO_3166-1_numeric
# http://unstats.un.org/unsd/methods/m49/m49alpha.htm
numeric_code = models.CharField(_("numeric code"), max_length=3, blank=True, null=True, unique=True, validators=[NumericCodeValidator],
help_text=_("ISO 3166-1 or M.49 numeric code")
)
class Region(GeoBaseModel):
"""
Macro geographical (continental) region as defined by the UN M.49 geoscheme.
"""
class SubRegion(GeoBaseModel):
"""
Geographical sub-region as defined by the UN M.49 geoscheme.
"""
region = models.ForeignKey(Region, verbose_name=_("region"))
class Country(GeoBaseModel):
"""
Geopolitical entity (country or territory) as defined by the UN M.49 geoscheme.
"""
subregion = models.ForeignKey(SubRegion, verbose_name=_("sub region"))
# https://en.wikipedia.org/wiki/ISO_3166-1
alpha2_code = models.CharField(_("alpha2 code"), max_length=2, blank=True, validators=[Alpha2CodeValidator], help_text=_("ISO 3166-1 alpha-2 code"))
alpha3_code = models.CharField(_("alpha3 code"), max_length=3, blank=True, validators=[Alpha3CodeValidator], help_text=_("ISO 3166-1 alpha-3 code"))
# http://www.oecd.org/dac/aidstatistics/daclistofodarecipients.htm
oda_recipient = models.BooleanField(_("ODA recipient"), default=False,
help_text=_(
"Whether a country is a recipient of Official Development"
"Assistance from the OECD's Development Assistance Committee."
)
)
| [
6738,
42625,
14208,
13,
9945,
1330,
4981,
198,
6738,
42625,
14208,
13,
26791,
13,
41519,
1330,
334,
1136,
5239,
62,
75,
12582,
355,
4808,
198,
6738,
764,
12102,
2024,
1330,
12995,
17,
10669,
47139,
1352,
11,
12995,
18,
10669,
47139,
1352,
11,
399,
39223,
10669,
47139,
1352,
628,
198,
4871,
32960,
14881,
17633,
7,
27530,
13,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27741,
2779,
2746,
329,
262,
4725,
337,
13,
2920,
4903,
418,
2395,
1326,
13,
198,
220,
220,
220,
6524,
82,
25,
2638,
1378,
403,
34242,
13,
403,
13,
2398,
14,
13271,
67,
14,
24396,
82,
14,
76,
2920,
14,
76,
2920,
13,
19211,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2638,
1378,
403,
34242,
13,
403,
13,
2398,
14,
13271,
67,
14,
24396,
82,
14,
76,
2920,
14,
76,
2920,
260,
1655,
13,
19211,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
17013,
62,
45,
602,
62,
469,
418,
2395,
1326,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
4944,
62,
44,
13,
2920,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1438,
796,
4981,
13,
12441,
15878,
28264,
7203,
3672,
12340,
3509,
62,
13664,
28,
3064,
8,
198,
220,
220,
220,
1303,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
40734,
62,
18,
23055,
12,
16,
62,
77,
39223,
198,
220,
220,
220,
1303,
2638,
1378,
403,
34242,
13,
403,
13,
2398,
14,
13271,
67,
14,
24396,
82,
14,
76,
2920,
14,
76,
2920,
26591,
13,
19211,
198,
220,
220,
220,
35575,
62,
8189,
796,
4981,
13,
12441,
15878,
28264,
7203,
77,
39223,
2438,
12340,
3509,
62,
13664,
28,
18,
11,
9178,
28,
17821,
11,
9242,
28,
17821,
11,
3748,
28,
17821,
11,
4938,
2024,
41888,
45,
39223,
10669,
47139,
1352,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
62,
5239,
28,
62,
7203,
40734,
513,
23055,
12,
16,
393,
337,
13,
2920,
35575,
2438,
4943,
198,
220,
220,
220,
1267,
628,
198,
4871,
17718,
7,
10082,
78,
14881,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
42755,
27465,
357,
35415,
8,
3814,
355,
5447,
416,
262,
4725,
337,
13,
2920,
4903,
418,
2395,
1326,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
3834,
47371,
7,
10082,
78,
14881,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2269,
17046,
850,
12,
36996,
355,
5447,
416,
262,
4725,
337,
13,
2920,
4903,
418,
2395,
1326,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
3814,
796,
4981,
13,
33616,
9218,
7,
47371,
11,
15942,
577,
62,
3672,
28,
62,
7203,
36996,
48774,
628,
198,
4871,
12946,
7,
10082,
78,
14881,
17633,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
2269,
404,
13781,
9312,
357,
19315,
393,
7674,
8,
355,
5447,
416,
262,
4725,
337,
13,
2920,
4903,
418,
2395,
1326,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
850,
36996,
796,
4981,
13,
33616,
9218,
7,
7004,
47371,
11,
15942,
577,
62,
3672,
28,
62,
7203,
7266,
3814,
48774,
198,
220,
220,
220,
1303,
3740,
1378,
268,
13,
31266,
13,
2398,
14,
15466,
14,
40734,
62,
18,
23055,
12,
16,
198,
220,
220,
220,
17130,
17,
62,
8189,
796,
4981,
13,
12441,
15878,
28264,
7203,
26591,
17,
2438,
12340,
3509,
62,
13664,
28,
17,
11,
9178,
28,
17821,
11,
4938,
2024,
41888,
38077,
17,
10669,
47139,
1352,
4357,
1037,
62,
5239,
28,
62,
7203,
40734,
513,
23055,
12,
16,
17130,
12,
17,
2438,
48774,
198,
220,
220,
220,
17130,
18,
62,
8189,
796,
4981,
13,
12441,
15878,
28264,
7203,
26591,
18,
2438,
12340,
3509,
62,
13664,
28,
18,
11,
9178,
28,
17821,
11,
4938,
2024,
41888,
38077,
18,
10669,
47139,
1352,
4357,
1037,
62,
5239,
28,
62,
7203,
40734,
513,
23055,
12,
16,
17130,
12,
18,
2438,
48774,
198,
220,
220,
220,
1303,
2638,
1378,
2503,
13,
78,
21142,
13,
2398,
14,
67,
330,
14,
1698,
14269,
3969,
14,
67,
330,
4868,
1659,
375,
533,
66,
541,
2334,
13,
19211,
198,
220,
220,
220,
267,
6814,
62,
8344,
48137,
796,
4981,
13,
46120,
13087,
15878,
28264,
7203,
3727,
32,
17800,
12340,
4277,
28,
25101,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1037,
62,
5239,
28,
41052,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
15354,
257,
1499,
318,
257,
17800,
286,
15934,
7712,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
8021,
9311,
422,
262,
33802,
338,
7712,
25126,
4606,
526,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1267,
198
] | 2.622785 | 790 |
from django.urls import path
from jarbas.public_admin.sites import public_admin
urlpatterns = [
path('', public_admin.urls)
]
| [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
198,
198,
6738,
17379,
12093,
13,
11377,
62,
28482,
13,
49315,
1330,
1171,
62,
28482,
628,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
3256,
1171,
62,
28482,
13,
6371,
82,
8,
198,
60,
198
] | 2.829787 | 47 |
import numpy as np
import cPickle
import re
import os
n_classes=10
image_width=32
image_height=32
image_depth=3
# regular expression that matches a datafile
r_data_file = re.compile('^data_batch_\d+')
# training and validate datasets as numpy n-d arrays,
# apropriate portions of which are ready to be fed to the placeholder variables
train_all = {'data': [], 'labels': []}
validate_all = {'data': [], 'labels': []}
test_all = {'data': {}, 'labels': []}
label_names_for_validation_and_test = None
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
| [
11748,
299,
32152,
355,
45941,
198,
11748,
269,
31686,
293,
198,
11748,
302,
198,
11748,
28686,
198,
198,
77,
62,
37724,
28,
940,
198,
9060,
62,
10394,
28,
2624,
198,
9060,
62,
17015,
28,
2624,
198,
9060,
62,
18053,
28,
18,
198,
198,
2,
3218,
5408,
326,
7466,
257,
1366,
7753,
198,
81,
62,
7890,
62,
7753,
796,
302,
13,
5589,
576,
10786,
61,
7890,
62,
43501,
62,
59,
67,
10,
11537,
198,
198,
2,
3047,
290,
26571,
40522,
355,
299,
32152,
299,
12,
67,
26515,
11,
198,
2,
257,
1676,
3448,
378,
16690,
286,
543,
389,
3492,
284,
307,
11672,
284,
262,
46076,
9633,
198,
27432,
62,
439,
796,
1391,
6,
7890,
10354,
685,
4357,
705,
23912,
1424,
10354,
17635,
92,
198,
12102,
378,
62,
439,
796,
1391,
6,
7890,
10354,
685,
4357,
705,
23912,
1424,
10354,
17635,
92,
198,
9288,
62,
439,
796,
1391,
6,
7890,
10354,
1391,
5512,
705,
23912,
1424,
10354,
17635,
92,
198,
18242,
62,
14933,
62,
1640,
62,
12102,
341,
62,
392,
62,
9288,
796,
6045,
628,
198,
4299,
15715,
62,
1462,
62,
505,
62,
8940,
7,
23912,
1424,
62,
67,
1072,
11,
997,
62,
37724,
28,
940,
2599,
198,
220,
37227,
3103,
1851,
1398,
14722,
422,
16578,
945,
284,
530,
12,
8940,
30104,
526,
15931,
198,
220,
997,
62,
23912,
1424,
796,
14722,
62,
67,
1072,
13,
43358,
58,
15,
60,
198,
220,
6376,
62,
28968,
796,
45941,
13,
283,
858,
7,
22510,
62,
23912,
1424,
8,
1635,
997,
62,
37724,
198,
220,
14722,
62,
505,
62,
8940,
796,
45941,
13,
9107,
418,
19510,
22510,
62,
23912,
1424,
11,
997,
62,
37724,
4008,
198,
220,
14722,
62,
505,
62,
8940,
13,
38568,
58,
9630,
62,
28968,
1343,
14722,
62,
67,
1072,
13,
25843,
3419,
60,
796,
352,
198,
220,
1441,
14722,
62,
505,
62,
8940,
628
] | 2.80198 | 303 |
import numpy as np
import tensorflow as tf
DIV2K_RGB_MEAN = np.array([0.4488, 0.4371, 0.4040]) * 255 | [
11748,
299,
32152,
355,
45941,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
198,
33569,
17,
42,
62,
36982,
62,
11682,
1565,
796,
45941,
13,
18747,
26933,
15,
13,
2598,
3459,
11,
657,
13,
19,
38056,
11,
657,
13,
1821,
1821,
12962,
1635,
14280
] | 2.295455 | 44 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.