content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
''' Created on 2014-03-23 @author: Nich ''' class SystemSet(object): ''' classdocs '''
[ 7061, 6, 198, 41972, 319, 1946, 12, 3070, 12, 1954, 198, 198, 31, 9800, 25, 12760, 198, 7061, 6, 198, 198, 4871, 4482, 7248, 7, 15252, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1398, 31628, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220 ]
1.736842
76
import argparse import warnings warnings.filterwarnings("ignore") import numpy as np import tensorflow as tf import os from helper import AttackEvaluate from helper import load_data, retrain ####for solving some specific problems, don't care config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True sess = tf.compat.v1.Session(config=config) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--model_name", default='lenet1', type=str) parser.add_argument("--dataset", default='mnist', type=str) parser.add_argument("--model_layer", default=8, type=int) parser.add_argument("--order_number", default=1, type=int) args = parser.parse_args() model_name = args.model_name model_layer = args.model_layer dataset = args.dataset order_number = args.order_number l = [0, model_layer] os.makedirs("attack_results", exist_ok=True) x_train, y_train, x_test, y_test = load_data(dataset) x_test_new = np.load('x_test_new.npy') # ## load mine trained model from keras.models import load_model model = load_model('../data/' + dataset + '_data/model/' + model_name + '.h5') model.summary() T = 1 for i in range(T): index = np.load('fuzzing/nc_index_{}.npy'.format(i), allow_pickle=True).item() for y, x in index.items(): x_train = np.concatenate((x_train, np.expand_dims(x, axis=0)), axis=0) y_train = np.concatenate((y_train, np.expand_dims(y_train[y], axis=0)), axis=0) retrained_model = retrain(model, x_train, y_train, x_test, y_test, batch_size=32, epochs=5) retrained_model.save('new_model/' + dataset +'/model_{}.h5'.format(T-1)) criteria = AttackEvaluate(retrained_model, x_test, y_test, x_test_new) MR = criteria.misclassification_rate() ACAC = criteria.avg_confidence_adv_class() ACTC = criteria.avg_confidence_true_class() ALP_L0, ALP_L2, ALP_Li = criteria.avg_lp_distortion() ASS = criteria.avg_SSIM() PSD = criteria.avg_PSD() NTE = criteria.avg_noise_tolerance_estimation() _, _, RGB = criteria.robust_gaussian_blur() _, _, RIC = criteria.robust_image_compression(1) with open("attack_results/attack_evaluate_result_{}.txt".format(T), "a") as f: f.write("\n------------------------------------------------------------------------------\n") f.write('the result of {} {} is: \n'.format(dataset, model_name)) f.write('MR: {} \n'.format(MR)) f.write('ACAC: {} \n'.format(ACAC)) f.write('ACTC: {} \n'.format(ACTC)) f.write('ALP_L0: {} \n'.format(ALP_L0)) f.write('ALP_L2: {} \n'.format(ALP_L2)) f.write('ALP_Li: {} \n'.format(ALP_Li)) f.write('ASS: {} \n'.format(ASS)) f.write('PSD: {} \n'.format(PSD)) f.write('NTE: {} \n'.format(NTE)) f.write('RGB: {} \n'.format(RGB)) f.write('RIC: {} \n'.format(RIC))
[ 11748, 1822, 29572, 198, 11748, 14601, 198, 198, 40539, 654, 13, 24455, 40539, 654, 7203, 46430, 4943, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 28686, 198, 6738, 31904, 1330, 8307, 36, 2100, 4985, 198, 6738, 31904, 1330, 3440, 62, 7890, 11, 1005, 3201, 198, 198, 4242, 1640, 18120, 617, 2176, 2761, 11, 836, 470, 1337, 198, 11250, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 16934, 2964, 1462, 3419, 198, 11250, 13, 46999, 62, 25811, 13, 12154, 62, 27922, 796, 6407, 198, 82, 408, 796, 48700, 13, 5589, 265, 13, 85, 16, 13, 36044, 7, 11250, 28, 11250, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19849, 62, 3672, 1600, 4277, 11639, 11925, 316, 16, 3256, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19608, 292, 316, 1600, 4277, 11639, 10295, 396, 3256, 2099, 28, 2536, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 19849, 62, 29289, 1600, 4277, 28, 23, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 2875, 62, 17618, 1600, 4277, 28, 16, 11, 2099, 28, 600, 8, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 2746, 62, 3672, 796, 26498, 13, 19849, 62, 3672, 198, 220, 220, 220, 2746, 62, 29289, 796, 26498, 13, 19849, 62, 29289, 198, 220, 220, 220, 27039, 796, 26498, 13, 19608, 292, 316, 198, 220, 220, 220, 1502, 62, 17618, 796, 26498, 13, 2875, 62, 17618, 628, 220, 220, 220, 300, 796, 685, 15, 11, 2746, 62, 29289, 60, 628, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7203, 20358, 62, 43420, 1600, 2152, 62, 482, 28, 17821, 8, 628, 220, 220, 220, 2124, 62, 27432, 11, 331, 62, 27432, 11, 2124, 62, 9288, 11, 331, 62, 9288, 796, 3440, 62, 7890, 7, 19608, 292, 316, 8, 198, 220, 220, 220, 2124, 62, 9288, 62, 3605, 796, 45941, 13, 2220, 10786, 87, 62, 9288, 62, 3605, 13, 77, 9078, 11537, 628, 220, 220, 220, 1303, 22492, 3440, 6164, 8776, 2746, 198, 220, 220, 220, 422, 41927, 292, 13, 27530, 1330, 3440, 62, 19849, 628, 220, 220, 220, 2746, 796, 3440, 62, 19849, 10786, 40720, 7890, 14, 6, 1343, 27039, 1343, 705, 62, 7890, 14, 19849, 14, 6, 1343, 2746, 62, 3672, 1343, 45302, 71, 20, 11537, 198, 220, 220, 220, 2746, 13, 49736, 3419, 628, 220, 220, 220, 309, 796, 352, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 51, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 45941, 13, 2220, 10786, 69, 4715, 278, 14, 10782, 62, 9630, 23330, 27422, 77, 9078, 4458, 18982, 7, 72, 828, 1249, 62, 27729, 293, 28, 17821, 737, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 11, 2124, 287, 6376, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 27432, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 87, 62, 27432, 11, 45941, 13, 11201, 392, 62, 67, 12078, 7, 87, 11, 16488, 28, 15, 36911, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27432, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 88, 62, 27432, 11, 45941, 13, 11201, 392, 62, 67, 12078, 7, 88, 62, 27432, 58, 88, 4357, 16488, 28, 15, 36911, 16488, 28, 15, 8, 628, 220, 220, 220, 1005, 13363, 62, 19849, 796, 1005, 3201, 7, 19849, 11, 2124, 62, 27432, 11, 331, 62, 27432, 11, 2124, 62, 9288, 11, 331, 62, 9288, 11, 15458, 62, 7857, 28, 2624, 11, 36835, 82, 28, 20, 8, 198, 220, 220, 220, 1005, 13363, 62, 19849, 13, 21928, 10786, 3605, 62, 19849, 14, 6, 1343, 27039, 1343, 26488, 19849, 23330, 27422, 71, 20, 4458, 18982, 7, 51, 12, 16, 4008, 628, 220, 220, 220, 9987, 796, 8307, 36, 2100, 4985, 7, 1186, 13363, 62, 19849, 11, 2124, 62, 9288, 11, 331, 62, 9288, 11, 2124, 62, 9288, 62, 3605, 8, 628, 220, 220, 220, 17242, 796, 9987, 13, 25413, 4871, 2649, 62, 4873, 3419, 198, 220, 220, 220, 7125, 2246, 796, 9987, 13, 615, 70, 62, 39745, 62, 32225, 62, 4871, 3419, 198, 220, 220, 220, 11741, 34, 796, 9987, 13, 615, 70, 62, 39745, 62, 7942, 62, 4871, 3419, 198, 220, 220, 220, 42674, 62, 43, 15, 11, 42674, 62, 43, 17, 11, 42674, 62, 32304, 796, 9987, 13, 615, 70, 62, 34431, 62, 17080, 5817, 3419, 198, 220, 220, 220, 24994, 796, 9987, 13, 615, 70, 62, 5432, 3955, 3419, 198, 220, 220, 220, 6599, 35, 796, 9987, 13, 615, 70, 62, 3705, 35, 3419, 198, 220, 220, 220, 399, 9328, 796, 9987, 13, 615, 70, 62, 3919, 786, 62, 83, 37668, 62, 395, 18991, 3419, 198, 220, 220, 220, 4808, 11, 4808, 11, 25228, 796, 9987, 13, 22609, 436, 62, 4908, 31562, 62, 2436, 333, 3419, 198, 220, 220, 220, 4808, 11, 4808, 11, 371, 2149, 796, 9987, 13, 22609, 436, 62, 9060, 62, 5589, 2234, 7, 16, 8, 628, 220, 220, 220, 351, 1280, 7203, 20358, 62, 43420, 14, 20358, 62, 49786, 62, 20274, 23330, 27422, 14116, 1911, 18982, 7, 51, 828, 366, 64, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7203, 59, 77, 10097, 26171, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 1169, 1255, 286, 23884, 23884, 318, 25, 3467, 77, 4458, 18982, 7, 19608, 292, 316, 11, 2746, 62, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 13599, 25, 23884, 3467, 77, 4458, 18982, 7, 13599, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 2246, 2246, 25, 23884, 3467, 77, 4458, 18982, 7, 2246, 2246, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 2246, 4825, 25, 23884, 3467, 77, 4458, 18982, 7, 2246, 4825, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 1847, 47, 62, 43, 15, 25, 23884, 3467, 77, 4458, 18982, 7, 1847, 47, 62, 43, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 1847, 47, 62, 43, 17, 25, 23884, 3467, 77, 4458, 18982, 7, 1847, 47, 62, 43, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 1847, 47, 62, 32304, 25, 23884, 3467, 77, 4458, 18982, 7, 1847, 47, 62, 32304, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 10705, 25, 23884, 3467, 77, 4458, 18982, 7, 10705, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 3705, 35, 25, 23884, 3467, 77, 4458, 18982, 7, 3705, 35, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 45, 9328, 25, 23884, 3467, 77, 4458, 18982, 7, 45, 9328, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 36982, 25, 23884, 3467, 77, 4458, 18982, 7, 36982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 41132, 25, 23884, 3467, 77, 4458, 18982, 7, 41132, 4008 ]
2.380567
1,235
# Generated by Django 3.0.4 on 2020-06-10 22:56 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 19, 319, 12131, 12, 3312, 12, 940, 2534, 25, 3980, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
import pandas as pd import os path = r'C:\Users\Vangelis\Desktop\Courses & Projects\Data Analysis Projects\NBA Datasets Analysis\Data' os.chdir(path) #seasonList1 = ['1996_1997'] seasonList = ['1996_1997', '1997_1998', '1998_1999', '1999_2000', '2000_2001', '2001_2002', '2002_2003', '2003_2004', '2004_2005', '2005_2006', '2006_2007', '2007_2008', '2008_2009', '2009_2010', '2010_2011', '2011_2012', '2012_2013', '2013_2014', '2014_2015', '2015_2016', '2016_2017', '2017_2018', '2018_2019', '2019_2020', '2020_2021' ] Nbadf = getStats(10) NbaQ4df = getStats(4) with pd.ExcelWriter('NbaStats.xlsx') as writer : Nbadf.to_excel(writer, sheet_name = 'Full Games') NbaQ4df.to_excel(writer, sheet_name = '4th Quarter') print(Nbadf) print(NbaQ4df)
[ 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 28686, 201, 198, 201, 198, 6978, 796, 374, 6, 34, 7479, 14490, 59, 53, 8368, 271, 59, 36881, 59, 34, 39975, 1222, 29898, 59, 6601, 14691, 29898, 59, 32470, 16092, 292, 1039, 14691, 59, 6601, 6, 201, 198, 418, 13, 354, 15908, 7, 6978, 8, 201, 198, 201, 198, 2, 6230, 8053, 16, 796, 37250, 22288, 62, 21498, 20520, 201, 198, 6230, 8053, 796, 37250, 22288, 62, 21498, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21498, 62, 21113, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21113, 62, 18946, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18946, 62, 11024, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11024, 62, 14585, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14585, 62, 16942, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16942, 62, 16088, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16088, 62, 15724, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15724, 62, 14315, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14315, 62, 13330, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13330, 62, 12726, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12726, 62, 11528, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11528, 62, 10531, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10531, 62, 10333, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10333, 62, 9804, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9804, 62, 6999, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6999, 62, 6390, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6390, 62, 4967, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4967, 62, 4626, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4626, 62, 5304, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5304, 62, 5539, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5539, 62, 7908, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7908, 62, 23344, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23344, 62, 42334, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 42334, 62, 1238, 2481, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 201, 198, 45, 14774, 69, 796, 651, 29668, 7, 940, 8, 201, 198, 45, 7012, 48, 19, 7568, 796, 651, 29668, 7, 19, 8, 201, 198, 201, 198, 4480, 279, 67, 13, 3109, 5276, 34379, 10786, 45, 7012, 29668, 13, 87, 7278, 87, 11537, 355, 6260, 1058, 201, 198, 220, 220, 220, 399, 14774, 69, 13, 1462, 62, 1069, 5276, 7, 16002, 11, 9629, 62, 3672, 796, 705, 13295, 5776, 11537, 201, 198, 220, 220, 220, 399, 7012, 48, 19, 7568, 13, 1462, 62, 1069, 5276, 7, 16002, 11, 9629, 62, 3672, 796, 705, 19, 400, 17264, 11537, 201, 198, 4798, 7, 45, 14774, 69, 8, 201, 198, 4798, 7, 45, 7012, 48, 19, 7568, 8, 201, 198 ]
1.648921
695
import chess board = chess.Bitboard() board.push_san("e4") board.push_san("e5") board.push_san("Qh5") board.push_san("Nc6") board.push_san("Bc4") board.push_san("Nf6") board.push_san("Qxf7") print "is_checkmate: " +str(board.is_checkmate()) print "is_stalemate: " +str(board.is_stalemate()) print "is_insufficient_material: " +str(board.is_insufficient_material()) print "board.is_game_over: " + str(board.is_game_over())
[ 11748, 19780, 198, 3526, 796, 19780, 13, 13128, 3526, 3419, 198, 3526, 13, 14689, 62, 12807, 7203, 68, 19, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 68, 20, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 48, 71, 20, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 45, 66, 21, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 33, 66, 19, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 45, 69, 21, 4943, 198, 3526, 13, 14689, 62, 12807, 7203, 48, 26152, 22, 4943, 198, 4798, 366, 271, 62, 9122, 9830, 25, 366, 1343, 2536, 7, 3526, 13, 271, 62, 9122, 9830, 28955, 198, 4798, 366, 271, 62, 7757, 47686, 25, 366, 1343, 2536, 7, 3526, 13, 271, 62, 7757, 47686, 28955, 198, 4798, 366, 271, 62, 1040, 15267, 62, 33665, 25, 366, 1343, 2536, 7, 3526, 13, 271, 62, 1040, 15267, 62, 33665, 28955, 198, 4798, 366, 3526, 13, 271, 62, 6057, 62, 2502, 25, 366, 1343, 965, 7, 3526, 13, 271, 62, 6057, 62, 2502, 28955 ]
2.491124
169
"""Given a string s, find the length of the longest substring without repeating characters. Example 1: Input: s = "abcabcbb" Output: 3 Explanation: The answer is "abc", with the length of 3. Example 2: Input: s = "bbbbb" Output: 1 Explanation: The answer is "b", with the length of 1. Example 3: Input: s = "pwwkew" Output: 3 Explanation: The answer is "wke", with the length of 3. Notice that the answer must be a substring, "pwke" is a subsequence and not a substring. Example 4: Input: s = "" Output: 0 Constraints: 0 <= s.length <= 5 * 104 s consists of English letters, digits, symbols and spaces."""
[ 37811, 15056, 257, 4731, 264, 11, 1064, 262, 4129, 286, 262, 14069, 3293, 1806, 1231, 20394, 3435, 13, 198, 198, 16281, 352, 25, 198, 20560, 25, 264, 796, 366, 39305, 39305, 11848, 1, 198, 26410, 25, 513, 198, 3109, 11578, 341, 25, 383, 3280, 318, 366, 39305, 1600, 351, 262, 4129, 286, 513, 13, 198, 198, 16281, 362, 25, 198, 20560, 25, 264, 796, 366, 11848, 11848, 65, 1, 198, 26410, 25, 352, 198, 3109, 11578, 341, 25, 383, 3280, 318, 366, 65, 1600, 351, 262, 4129, 286, 352, 13, 198, 198, 16281, 513, 25, 198, 20560, 25, 264, 796, 366, 79, 1383, 365, 86, 1, 198, 26410, 25, 513, 198, 3109, 11578, 341, 25, 383, 3280, 318, 366, 86, 365, 1600, 351, 262, 4129, 286, 513, 13, 198, 26396, 326, 262, 3280, 1276, 307, 257, 3293, 1806, 11, 366, 79, 86, 365, 1, 318, 257, 6399, 594, 290, 407, 257, 3293, 1806, 13, 198, 198, 16281, 604, 25, 198, 20560, 25, 264, 796, 13538, 198, 26410, 25, 657, 198, 198, 3103, 2536, 6003, 25, 198, 198, 15, 19841, 264, 13, 13664, 19841, 642, 1635, 14436, 198, 82, 10874, 286, 3594, 7475, 11, 19561, 11, 14354, 290, 9029, 526, 15931, 628, 220, 220, 220, 220 ]
3.009756
205
# define string # - method 1 first_name = 'kaveh' # - method 2 last_name = "mehrbanian" # - method 3(multi-line) bio = '''this is about me ''' # - method 4(multi-line) description = """some description about kaveh mehrbanian """ # access characters in string first_name[1] # 'a' first_name[3] # 'e' bio[-2] # 'm' # edit string???! # you cannot change string # remove a character by index from string???! # you ... # get number of characters in string len(bio) # slice string first_name[2:] # 'veh' bio[:3] # 'thi' description[2:5] # 'me ' # check substring in string 'about' in bio # True 'xi' in description # False # concat strings first_name + ' ' + last_name # 'kaveh mehrbanian' # format strings # - method 1 'hello %s' % first_name # 'hello kaveh' # - method 2 'hello {}'.format(first_name) # 'hello kaveh' # - method 3 f'hello {first_name}' # 'hello kaveh' # string methods hello_string = 'Hello wOrld' # lower hello_string.lower() # 'hello world' # upper hello_string.upper() # 'HELLO WORLD' # capitalize hello_string.capitalize() # 'Hello world' # title hello_string.title() # 'Hello World' # swapcase hello_string.swapcase() # 'hELLO WoRLD' # count hello_string.count('o') # 2 # encode encoded_hello = hello_string.encode() # b'Hello wOrld' # decode encoded_hello.decode() # 'Hello wOrld' # find hello_string.find('wO') # 6 # startswith hello_string.startswith('H') # True hello_string.startswith('x') # False # endswith hello_string.endswith('ld') # True hello_string.endswith('bye') # False # join '-'.join(['kaveh', 'mehrbanian']) # 'kaveh-mehrbanian' # split 'keveh-mehrbanian'.split('-') # ['kaveh', 'mehrbanian'] # rsplit 'Recipient.V1.64.exe'.split('.') # ['Recipient', 'V1', '64', 'exe'] 'Recipient.V1.64.exe'.rsplit('.', 1) # ['Recipient.V1.64', 'exe'] 'Recipient.V1.64.exe'.rsplit('.', 2) # ['Recipient.V1', '64', 'exe'] # splitlines 'hello\nworld\nsalam'.splitlines() # ['hello', 'world', 'salam'] # strip ' hello '.strip() # 'hello' # rstrip ' hello '.rstrip() # ' hello' # lstrip ' hello '.lstrip() # 'hello ' # isdigit '66565'.isdigit() # True 'hello'.isdigit() # False # isdecimal '66.6'.isdecimal() # False '986'.isdecimal() # True # isalpha 'xyzabc'.isalpha() # True '$%abcxyz'.isalpha() # False # islower 'Hello'.islower() # False 'hello'.islower() # True
[ 2, 8160, 4731, 198, 2, 532, 2446, 352, 198, 11085, 62, 3672, 796, 705, 74, 1015, 71, 6, 198, 198, 2, 532, 2446, 362, 198, 12957, 62, 3672, 796, 366, 1326, 11840, 3820, 666, 1, 198, 198, 2, 532, 2446, 513, 7, 41684, 12, 1370, 8, 198, 65, 952, 796, 705, 7061, 5661, 318, 198, 10755, 502, 198, 7061, 6, 198, 198, 2, 532, 2446, 604, 7, 41684, 12, 1370, 8, 198, 11213, 796, 37227, 11246, 6764, 198, 10755, 479, 1015, 71, 502, 11840, 3820, 666, 198, 37811, 628, 198, 2, 1895, 3435, 287, 4731, 198, 11085, 62, 3672, 58, 16, 60, 220, 220, 1303, 705, 64, 6, 198, 11085, 62, 3672, 58, 18, 60, 220, 220, 1303, 705, 68, 6, 198, 65, 952, 58, 12, 17, 60, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 76, 6, 628, 198, 2, 4370, 4731, 3548, 12248, 198, 220, 220, 220, 1303, 345, 2314, 1487, 4731, 628, 198, 2, 4781, 257, 2095, 416, 6376, 422, 4731, 3548, 12248, 198, 220, 220, 220, 1303, 345, 2644, 628, 198, 2, 651, 1271, 286, 3435, 287, 4731, 198, 11925, 7, 65, 952, 8, 628, 198, 2, 16416, 4731, 198, 11085, 62, 3672, 58, 17, 47715, 220, 220, 220, 220, 220, 1303, 705, 33892, 6, 198, 65, 952, 58, 25, 18, 60, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 400, 72, 6, 198, 11213, 58, 17, 25, 20, 60, 220, 220, 220, 1303, 705, 1326, 705, 628, 198, 2, 2198, 3293, 1806, 287, 4731, 198, 6, 10755, 6, 287, 13401, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 6, 29992, 6, 287, 6764, 220, 220, 220, 220, 1303, 10352, 628, 198, 2, 1673, 265, 13042, 198, 11085, 62, 3672, 1343, 705, 705, 1343, 938, 62, 3672, 220, 220, 220, 1303, 705, 74, 1015, 71, 502, 11840, 3820, 666, 6, 628, 198, 2, 5794, 13042, 198, 2, 532, 2446, 352, 198, 6, 31373, 4064, 82, 6, 4064, 717, 62, 3672, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 31373, 479, 1015, 71, 6, 198, 2, 532, 2446, 362, 198, 6, 31373, 23884, 4458, 18982, 7, 11085, 62, 3672, 8, 220, 220, 1303, 705, 31373, 479, 1015, 71, 6, 198, 2, 532, 2446, 513, 198, 69, 6, 31373, 1391, 11085, 62, 3672, 92, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 31373, 479, 1015, 71, 6, 628, 198, 2, 4731, 5050, 198, 31373, 62, 8841, 796, 705, 15496, 266, 5574, 335, 6, 198, 198, 2, 2793, 198, 31373, 62, 8841, 13, 21037, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 31373, 995, 6, 198, 2, 6727, 198, 31373, 62, 8841, 13, 45828, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 13909, 3069, 46, 29564, 6, 198, 2, 35160, 198, 31373, 62, 8841, 13, 27544, 1096, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 15496, 995, 6, 198, 2, 3670, 198, 31373, 62, 8841, 13, 7839, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 15496, 2159, 6, 198, 2, 16075, 7442, 198, 31373, 62, 8841, 13, 2032, 499, 7442, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 71, 23304, 46, 22173, 7836, 35, 6, 198, 2, 954, 198, 31373, 62, 8841, 13, 9127, 10786, 78, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 198, 2, 37773, 198, 12685, 9043, 62, 31373, 796, 23748, 62, 8841, 13, 268, 8189, 3419, 220, 220, 1303, 275, 6, 15496, 266, 5574, 335, 6, 198, 2, 36899, 198, 12685, 9043, 62, 31373, 13, 12501, 1098, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 15496, 266, 5574, 335, 6, 198, 2, 1064, 198, 31373, 62, 8841, 13, 19796, 10786, 86, 46, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 718, 198, 2, 923, 2032, 342, 198, 31373, 62, 8841, 13, 9688, 2032, 342, 10786, 39, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 31373, 62, 8841, 13, 9688, 2032, 342, 10786, 87, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 2, 886, 2032, 342, 198, 31373, 62, 8841, 13, 437, 2032, 342, 10786, 335, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 31373, 62, 8841, 13, 437, 2032, 342, 10786, 16390, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 2, 4654, 198, 29001, 4458, 22179, 7, 17816, 74, 1015, 71, 3256, 705, 1326, 11840, 3820, 666, 6, 12962, 220, 220, 220, 220, 220, 220, 1303, 705, 74, 1015, 71, 12, 1326, 11840, 3820, 666, 6, 198, 2, 6626, 198, 6, 365, 33892, 12, 1326, 11840, 3820, 666, 4458, 35312, 10786, 12, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37250, 74, 1015, 71, 3256, 705, 1326, 11840, 3820, 666, 20520, 198, 2, 374, 35312, 198, 6, 6690, 48137, 13, 53, 16, 13, 2414, 13, 13499, 4458, 35312, 10786, 2637, 8, 220, 220, 220, 220, 220, 220, 220, 1303, 37250, 6690, 48137, 3256, 705, 53, 16, 3256, 705, 2414, 3256, 705, 13499, 20520, 198, 6, 6690, 48137, 13, 53, 16, 13, 2414, 13, 13499, 4458, 3808, 489, 270, 10786, 2637, 11, 352, 8, 220, 220, 220, 1303, 37250, 6690, 48137, 13, 53, 16, 13, 2414, 3256, 705, 13499, 20520, 198, 6, 6690, 48137, 13, 53, 16, 13, 2414, 13, 13499, 4458, 3808, 489, 270, 10786, 2637, 11, 362, 8, 220, 220, 220, 1303, 37250, 6690, 48137, 13, 53, 16, 3256, 705, 2414, 3256, 705, 13499, 20520, 198, 2, 6626, 6615, 198, 6, 31373, 59, 77, 6894, 59, 5907, 44949, 4458, 35312, 6615, 3419, 220, 220, 220, 220, 220, 1303, 37250, 31373, 3256, 705, 6894, 3256, 705, 21680, 321, 20520, 198, 2, 10283, 198, 6, 220, 220, 23748, 220, 220, 45302, 36311, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 31373, 6, 198, 2, 374, 36311, 198, 6, 220, 220, 23748, 220, 220, 45302, 81, 36311, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 220, 220, 23748, 6, 198, 2, 300, 36311, 198, 6, 220, 220, 23748, 220, 220, 45302, 75, 36311, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 31373, 220, 220, 705, 198, 2, 318, 27003, 198, 6, 36879, 2996, 4458, 9409, 328, 270, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 6, 31373, 4458, 9409, 328, 270, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 2, 318, 12501, 4402, 198, 6, 2791, 13, 21, 4458, 9409, 721, 4402, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 6, 49087, 4458, 9409, 721, 4402, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 2, 318, 26591, 198, 6, 5431, 89, 39305, 4458, 271, 26591, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198, 6, 3, 4, 39305, 5431, 89, 4458, 271, 26591, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 2, 318, 21037, 198, 6, 15496, 4458, 3044, 789, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10352, 198, 6, 31373, 4458, 3044, 789, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6407, 198 ]
1.976323
1,436
# Code generated by `typeddictgen`. DO NOT EDIT. """V1NodeSystemInfoDict generated type.""" from typing import TypedDict V1NodeSystemInfoDict = TypedDict( "V1NodeSystemInfoDict", { "architecture": str, "bootID": str, "containerRuntimeVersion": str, "kernelVersion": str, "kubeProxyVersion": str, "kubeletVersion": str, "machineID": str, "operatingSystem": str, "osImage": str, "systemUUID": str, }, total=False, )
[ 2, 6127, 7560, 416, 4600, 28004, 6048, 713, 5235, 44646, 8410, 5626, 48483, 13, 198, 37811, 53, 16, 19667, 11964, 12360, 35, 713, 7560, 2099, 526, 15931, 198, 6738, 19720, 1330, 17134, 276, 35, 713, 198, 198, 53, 16, 19667, 11964, 12360, 35, 713, 796, 17134, 276, 35, 713, 7, 198, 220, 220, 220, 366, 53, 16, 19667, 11964, 12360, 35, 713, 1600, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 998, 5712, 495, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18769, 2389, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34924, 41006, 14815, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33885, 14815, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 3266, 44148, 14815, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 3266, 1616, 14815, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30243, 2389, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3575, 803, 11964, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 418, 5159, 1298, 965, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 10057, 52, 27586, 1298, 965, 11, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 2472, 28, 25101, 11, 198, 8, 198 ]
2.202586
232
from django.test import TestCase from openhub_django.models import ( InfographicDetail, Organization)
[ 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 6738, 1280, 40140, 62, 28241, 14208, 13, 27530, 1330, 357, 198, 220, 220, 220, 4806, 6826, 11242, 603, 11, 198, 220, 220, 220, 12275, 8, 628 ]
3.111111
36
import firebase_admin as fb from firebase_admin import db from json import load from requests import get from fb_folder import fb_exception import logging class Firebase(db.Reference): """Firebase object""" def __init__(self, key_path, options=None): """a main contructor of firebase objects""" self.__default_app = None self.__listen_object = None self.__connect_fb(key_path, options=options) client = self.__my_reference(self.__default_app) super().__init__(client=client, path='/') @staticmethod @staticmethod def __key_checker(key_path): """ check whether the key is correct or not :param key_path: :return tuple :raises fb_exception.SecurityKeyError TypeError ValueError KeyError """ if not isinstance(key_path, str): raise TypeError("key_path parameter must be argument.") if not key_path.endswith('.json'): raise ValueError("key_path must be json file.") with open(key_path, 'r') as key: key_dict = load(key) for foo in ['type', 'project_id', 'private_key_id', 'private_key', 'client_email', 'client_id', 'auth_uri', 'token_uri', 'auth_provider_x509_cert_url', 'client_x509_cert_url']: if foo not in key_dict: raise KeyError('firebase security key is not correct.') link_for_checking = key_dict['client_x509_cert_url'] if not get(link_for_checking).ok: raise fb_exception.SecurityKeyError("Firebase project does not exist.") index = link_for_checking.find("%40") + 3 index2 = link_for_checking.rfind(".iam") db_link = "https://{}.firebaseio.com/".format(link_for_checking[index: index2]) cred = fb.credentials.Certificate(key_path) return db_link, cred def __connect_fb(self, key_path, options=None): """ Connect to the firebase :param key_path: :return: :raises TypeError KeyError """ db_link, cred = self.__key_checker(key_path) if not options: self.__default_app = fb.initialize_app(cred, {'databaseURL': db_link}) else: if not isinstance(options, dict): raise TypeError("options must be dict") if "databaseURL" not in options: raise KeyError("databaseURL not in") self.__default_app = fb.initialize_app(cred, options=options) def start_listen(self, _function): """ start to listen to the database :param _function: function object :return: :raises fb_exception.ListenError TypeError """ if isinstance(self.__listen_object, db.ListenerRegistration): raise fb_exception.ListenError("Listen is active") if not callable(_function): raise TypeError("_function must be function") def __listen_function(event): """ If server changes data on database, listen function does not process the changes. :param event: :return: """ if event.data is None: # if event.data is None, the data on database was deleted. So the server must delete the plc changer_id = 'other' elif event.event_type == 'put': if event.path == '/': changer_id = 'other' else: plc_uid = event.path.split('/')[1] if not isinstance(event.data, dict): changer_id = self.child(plc_uid).child("changer_id").get() else: try: changer_id = event.data['changer_id'] except KeyError: logging.error("Wrong data and the data is deleted") self.delete_plc(plc_uid) changer_id = None else: if event.path == '/': # if event.path is '/', the data was changed via multi-location method plc_uid = list(event.data.keys())[0].split('/')[0] else: # if event.path is not '/', the data was changed via single-location method plc_uid = event.path.split('/')[1] changer_id = self.child(plc_uid).child("changer_id").get() if changer_id == "server": my_server = True elif changer_id is None: my_server = None else: my_server = False if my_server is None: print("event_type: ", event.event_type) print("path: ", event.path) print("data: ", event.data) raise TypeError("Something is wrong") if not my_server: _function(event) self.__listen_object = self.listen(__listen_function) def close_listen(self): """ Close to listen to the database :return: :raise fb_exception.ListenError """ if isinstance(self.__listen_object, db.ListenerRegistration) and \ not self.__listen_object.is_alive or self.__listen_object is None: logging.warning("listen is closed") return self.__listen_object.close() self.__listen_object = None def update_plc_data(self, lst): """ update plc data :param lst: a list contains tuple which a format is (path, value) and lst[0]=plc_uid :return: :raises TypeError fb_exception.ChildError """ if lst is None: return if not isinstance(lst, list): raise TypeError("lst must be list") "lst = [plc_uid, blabla" "gelen data ('current/datablocks/DB{_num}/data', data)" _data = {} plc_uid = lst[0] for foo in lst[1:]: path = "{}/{}/{}/Value" for key, value in foo[-1].items(): _data[path.format(plc_uid, foo[0], key)] = value _data[plc_uid + '/permission/to_write'] = True _data[plc_uid + '/changer_id'] = 'server' self.update(_data) def change_new(self, plc_uid): """ change new to current :param plc_uid :return: :raises TypeError """ if not isinstance(plc_uid, str): raise TypeError("plc_uid must be string") child_node = self.child(plc_uid + "/new") data_ = child_node.get() self.update({ plc_uid + "/new": None, plc_uid + "/current": data_, plc_uid + "/permission/to_write": True, plc_uid + '/changer_id': 'server' }) def delete_plc(self, plc_uid): """ Delete plc on database :param plc_uid: :return: :raise: TypeError """ if not isinstance(plc_uid, str): raise TypeError("plc_uid must be str") self.child(plc_uid).delete() @property def does_listen(self): """ return listen situation Return :return: Boolean """ return self.__listen_object.is_alive
[ 11748, 2046, 8692, 62, 28482, 355, 277, 65, 198, 6738, 2046, 8692, 62, 28482, 1330, 20613, 198, 6738, 33918, 1330, 3440, 198, 6738, 7007, 1330, 651, 198, 6738, 277, 65, 62, 43551, 1330, 277, 65, 62, 1069, 4516, 198, 11748, 18931, 628, 198, 4871, 3764, 8692, 7, 9945, 13, 26687, 2599, 198, 220, 220, 220, 37227, 13543, 8692, 2134, 37811, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1994, 62, 6978, 11, 3689, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 64, 1388, 542, 1356, 273, 286, 2046, 8692, 5563, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12286, 62, 1324, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 4868, 268, 62, 15252, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 8443, 62, 21855, 7, 2539, 62, 6978, 11, 3689, 28, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 5456, 796, 2116, 13, 834, 1820, 62, 35790, 7, 944, 13, 834, 12286, 62, 1324, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 16366, 28, 16366, 11, 3108, 11639, 14, 11537, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 11593, 2539, 62, 9122, 263, 7, 2539, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 1771, 262, 1994, 318, 3376, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1994, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 65, 62, 1069, 4516, 13, 24074, 9218, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7383, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 2539, 62, 6978, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 2539, 62, 6978, 11507, 1276, 307, 4578, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1994, 62, 6978, 13, 437, 2032, 342, 7, 4458, 17752, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 2539, 62, 6978, 1276, 307, 33918, 2393, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 2539, 62, 6978, 11, 705, 81, 11537, 355, 1994, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 11600, 796, 3440, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 22944, 287, 37250, 4906, 3256, 705, 16302, 62, 312, 3256, 705, 19734, 62, 2539, 62, 312, 3256, 705, 19734, 62, 2539, 3256, 705, 16366, 62, 12888, 3256, 705, 16366, 62, 312, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18439, 62, 9900, 3256, 705, 30001, 62, 9900, 3256, 705, 18439, 62, 15234, 1304, 62, 87, 29022, 62, 22583, 62, 6371, 3256, 705, 16366, 62, 87, 29022, 62, 22583, 62, 6371, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 22944, 407, 287, 1994, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 10786, 6495, 8692, 2324, 1994, 318, 407, 3376, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2792, 62, 1640, 62, 41004, 796, 1994, 62, 11600, 17816, 16366, 62, 87, 29022, 62, 22583, 62, 6371, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 651, 7, 8726, 62, 1640, 62, 41004, 737, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 277, 65, 62, 1069, 4516, 13, 24074, 9218, 12331, 7203, 13543, 8692, 1628, 857, 407, 2152, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 2792, 62, 1640, 62, 41004, 13, 19796, 7203, 4, 1821, 4943, 1343, 513, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 17, 796, 2792, 62, 1640, 62, 41004, 13, 81, 19796, 7, 1911, 1789, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 8726, 796, 366, 5450, 1378, 90, 27422, 6495, 8692, 952, 13, 785, 14, 1911, 18982, 7, 8726, 62, 1640, 62, 41004, 58, 9630, 25, 6376, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2600, 796, 277, 65, 13, 66, 445, 14817, 13, 37608, 22460, 7, 2539, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 20613, 62, 8726, 11, 2600, 628, 220, 220, 220, 825, 11593, 8443, 62, 21855, 7, 944, 11, 1994, 62, 6978, 11, 3689, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8113, 284, 262, 2046, 8692, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1994, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7383, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 8726, 11, 2600, 796, 2116, 13, 834, 2539, 62, 9122, 263, 7, 2539, 62, 6978, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12286, 62, 1324, 796, 277, 65, 13, 36733, 1096, 62, 1324, 7, 66, 445, 11, 1391, 6, 48806, 21886, 10354, 20613, 62, 8726, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 25811, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 25811, 1276, 307, 8633, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 48806, 21886, 1, 407, 287, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7383, 12331, 7203, 48806, 21886, 407, 287, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 12286, 62, 1324, 796, 277, 65, 13, 36733, 1096, 62, 1324, 7, 66, 445, 11, 3689, 28, 25811, 8, 628, 220, 220, 220, 825, 923, 62, 4868, 268, 7, 944, 11, 4808, 8818, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 923, 284, 6004, 284, 262, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4808, 8818, 25, 2163, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 65, 62, 1069, 4516, 13, 23061, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 834, 4868, 268, 62, 15252, 11, 20613, 13, 33252, 47133, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 277, 65, 62, 1069, 4516, 13, 23061, 12331, 7203, 23061, 318, 4075, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 869, 540, 28264, 8818, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 62, 8818, 1276, 307, 2163, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 825, 11593, 4868, 268, 62, 8818, 7, 15596, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 4382, 2458, 1366, 319, 6831, 11, 6004, 2163, 857, 407, 1429, 262, 2458, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1785, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 7890, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1785, 13, 7890, 318, 6045, 11, 262, 1366, 319, 6831, 373, 13140, 13, 1406, 262, 4382, 1276, 12233, 262, 458, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 705, 847, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1785, 13, 15596, 62, 4906, 6624, 705, 1996, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 6978, 6624, 31051, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 705, 847, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 796, 1785, 13, 6978, 13, 35312, 10786, 14, 11537, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 15596, 13, 7890, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 2116, 13, 9410, 7, 489, 66, 62, 27112, 737, 9410, 7203, 354, 2564, 62, 312, 11074, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 1785, 13, 7890, 17816, 354, 2564, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 18224, 7203, 39213, 506, 1366, 290, 262, 1366, 318, 13140, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 33678, 62, 489, 66, 7, 489, 66, 62, 27112, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1785, 13, 6978, 6624, 31051, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1785, 13, 6978, 318, 31051, 3256, 262, 1366, 373, 3421, 2884, 5021, 12, 24886, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 796, 1351, 7, 15596, 13, 7890, 13, 13083, 28955, 58, 15, 4083, 35312, 10786, 14, 11537, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1785, 13, 6978, 318, 407, 31051, 3256, 262, 1366, 373, 3421, 2884, 2060, 12, 24886, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 796, 1785, 13, 6978, 13, 35312, 10786, 14, 11537, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1488, 263, 62, 312, 796, 2116, 13, 9410, 7, 489, 66, 62, 27112, 737, 9410, 7203, 354, 2564, 62, 312, 11074, 1136, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1488, 263, 62, 312, 6624, 366, 15388, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 62, 15388, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1488, 263, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 62, 15388, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 62, 15388, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 616, 62, 15388, 318, 6045, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 15596, 62, 4906, 25, 33172, 1785, 13, 15596, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 6978, 25, 33172, 1785, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 7890, 25, 33172, 1785, 13, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 22210, 318, 2642, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 616, 62, 15388, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 8818, 7, 15596, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 4868, 268, 62, 15252, 796, 2116, 13, 4868, 268, 7, 834, 4868, 268, 62, 8818, 8, 628, 220, 220, 220, 825, 1969, 62, 4868, 268, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13872, 284, 6004, 284, 262, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 40225, 277, 65, 62, 1069, 4516, 13, 23061, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 834, 4868, 268, 62, 15252, 11, 20613, 13, 33252, 47133, 8, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 2116, 13, 834, 4868, 268, 62, 15252, 13, 271, 62, 282, 425, 393, 2116, 13, 834, 4868, 268, 62, 15252, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 43917, 7203, 4868, 268, 318, 4838, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 4868, 268, 62, 15252, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 4868, 268, 62, 15252, 796, 6045, 628, 220, 220, 220, 825, 4296, 62, 489, 66, 62, 7890, 7, 944, 11, 300, 301, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 458, 66, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 300, 301, 25, 257, 1351, 4909, 46545, 543, 257, 5794, 318, 357, 6978, 11, 1988, 8, 290, 300, 301, 58, 15, 22241, 489, 66, 62, 27112, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 65, 62, 1069, 4516, 13, 16424, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 301, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 75, 301, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 75, 301, 1276, 307, 1351, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 366, 75, 301, 796, 685, 489, 66, 62, 27112, 11, 698, 397, 5031, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25280, 268, 1366, 19203, 14421, 14, 19608, 23117, 3320, 14, 11012, 90, 62, 22510, 92, 14, 7890, 3256, 1366, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 7890, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 796, 300, 301, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 22944, 287, 300, 301, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 45144, 92, 14, 90, 92, 14, 90, 92, 14, 11395, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 22944, 58, 12, 16, 4083, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 7890, 58, 6978, 13, 18982, 7, 489, 66, 62, 27112, 11, 22944, 58, 15, 4357, 1994, 15437, 796, 1988, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 7890, 58, 489, 66, 62, 27112, 1343, 31051, 525, 3411, 14, 1462, 62, 13564, 20520, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 7890, 58, 489, 66, 62, 27112, 1343, 31051, 354, 2564, 62, 312, 20520, 796, 705, 15388, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 28264, 7890, 8, 628, 220, 220, 220, 825, 1487, 62, 3605, 7, 944, 11, 458, 66, 62, 27112, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1487, 649, 284, 1459, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 458, 66, 62, 27112, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 489, 66, 62, 27112, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 489, 66, 62, 27112, 1276, 307, 4731, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1200, 62, 17440, 796, 2116, 13, 9410, 7, 489, 66, 62, 27112, 1343, 12813, 3605, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 796, 1200, 62, 17440, 13, 1136, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 1343, 12813, 3605, 1298, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 1343, 12813, 14421, 1298, 1366, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 1343, 12813, 525, 3411, 14, 1462, 62, 13564, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 66, 62, 27112, 1343, 31051, 354, 2564, 62, 312, 10354, 705, 15388, 6, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 825, 12233, 62, 489, 66, 7, 944, 11, 458, 66, 62, 27112, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23520, 458, 66, 319, 6831, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 458, 66, 62, 27112, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 40225, 25, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 489, 66, 62, 27112, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 489, 66, 62, 27112, 1276, 307, 965, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9410, 7, 489, 66, 62, 27112, 737, 33678, 3419, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 857, 62, 4868, 268, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6004, 3074, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 41146, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 4868, 268, 62, 15252, 13, 271, 62, 282, 425, 198 ]
1.995465
3,749
from .base import Env from .env_spec import EnvSpec try: from .servoing_env import ServoingEnv from .panda3d_env import Panda3dEnv from .car_panda3d_env import CarPanda3dEnv, StraightCarPanda3dEnv, SimpleGeometricCarPanda3dEnv, GeometricCarPanda3dEnv from .quad_panda3d_env import SimpleQuadPanda3dEnv, Point3dSimpleQuadPanda3dEnv except ImportError: pass try: from .ros_env import RosEnv from .pr2_env import Pr2Env from .quad_ros_env import QuadRosEnv from .transform_quad_ros_env import TransformQuadRosEnv except ImportError: pass try: from .rllab_env import RllabEnv except ImportError: pass
[ 6738, 764, 8692, 1330, 2039, 85, 198, 6738, 764, 24330, 62, 16684, 1330, 2039, 85, 22882, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 3168, 40519, 62, 24330, 1330, 3116, 40519, 4834, 85, 198, 220, 220, 220, 422, 764, 79, 5282, 18, 67, 62, 24330, 1330, 41112, 18, 67, 4834, 85, 198, 220, 220, 220, 422, 764, 7718, 62, 79, 5282, 18, 67, 62, 24330, 1330, 1879, 47, 5282, 18, 67, 4834, 85, 11, 27680, 9914, 47, 5282, 18, 67, 4834, 85, 11, 17427, 10082, 16996, 9914, 47, 5282, 18, 67, 4834, 85, 11, 2269, 16996, 9914, 47, 5282, 18, 67, 4834, 85, 198, 220, 220, 220, 422, 764, 47003, 62, 79, 5282, 18, 67, 62, 24330, 1330, 17427, 4507, 324, 47, 5282, 18, 67, 4834, 85, 11, 6252, 18, 67, 26437, 4507, 324, 47, 5282, 18, 67, 4834, 85, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 4951, 62, 24330, 1330, 10018, 4834, 85, 198, 220, 220, 220, 422, 764, 1050, 17, 62, 24330, 1330, 1736, 17, 4834, 85, 198, 220, 220, 220, 422, 764, 47003, 62, 4951, 62, 24330, 1330, 20648, 35740, 4834, 85, 198, 220, 220, 220, 422, 764, 35636, 62, 47003, 62, 4951, 62, 24330, 1330, 26981, 4507, 324, 35740, 4834, 85, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 28311, 25, 198, 220, 220, 220, 422, 764, 81, 297, 397, 62, 24330, 1330, 371, 297, 397, 4834, 85, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198 ]
2.490347
259
from app import launch_server if __name__ == '__main__': launch_server()
[ 6738, 598, 1330, 4219, 62, 15388, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4219, 62, 15388, 3419, 198 ]
2.888889
27
from collections import Counter from libraries import Digits from math import factorial
[ 6738, 17268, 1330, 15034, 198, 6738, 12782, 1330, 7367, 896, 198, 6738, 10688, 1330, 1109, 5132, 628, 220, 220, 220, 220 ]
4.428571
21
import sys from ..common import chdir, run from ..common.run_status import RunStatus from ..specs.spec_repos import get_spec_download_url, format_supported_course_list from ..toolkit import global_vars
[ 11748, 25064, 198, 198, 6738, 11485, 11321, 1330, 442, 15908, 11, 1057, 198, 6738, 11485, 11321, 13, 5143, 62, 13376, 1330, 5660, 19580, 198, 6738, 11485, 4125, 6359, 13, 16684, 62, 260, 1930, 1330, 651, 62, 16684, 62, 15002, 62, 6371, 11, 5794, 62, 15999, 62, 17319, 62, 4868, 198, 6738, 11485, 25981, 15813, 1330, 3298, 62, 85, 945, 628, 198 ]
3.360656
61
import pandas as pd import datetime import sys import os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))))) from ..model.connect import Query as sc
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 4818, 8079, 198, 11748, 25064, 198, 11748, 28686, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 35514, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 35514, 4008, 198, 6738, 11485, 19849, 13, 8443, 1330, 43301, 355, 629, 198 ]
2.614679
109
from __future__ import absolute_import, print_function from .snake_env import SnakeEnv
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 3601, 62, 8818, 198, 198, 6738, 764, 16184, 539, 62, 24330, 1330, 16705, 4834, 85, 198 ]
3.52
25
""" Contains all the logic for decoding inform text strings. http://inform-fiction.org/zmachine/standards/z1point0/sect03.html describes the text encoding scheme. This package does not handle custom dictionaries, abbrevations, and v1 files as I have not been able to find any while testing. """ """ The base (a1 and a2) alphabet dictionary. Some special characters: 0 - space 1,2,3 - use an abbrevation stored at 32((1,2,3)-1) + next z-character. Not implemented. 4 - shift lock to uppercase the next character 5 - shift lock to use the shift dictionary for the next character """ ALPHABET_DICT = {0: " ", 1: "", 2: "", 3: "", 4: "", 5: "", 6: "a", 7: "b", 8: "c", 9: "d", 10: "e", 11: "f", 12: "g", 13: "h", 14: "i", 15: "j", 16: "k", 17: "l", 18: "m", 19: "n", 20: "o", 21: "p", 22: "q", 23: "r", 24: "s", 25: "t", 26: "u", 27: "v", 28: "w", 29: "x", 30: "y", 31: "z"} """ The shift (a3) alphabet dictionary. Some special characters: 0 - space 1,2,3 - use an abbrevation stored at 32((1,2,3)-1) + next z-character. Not implemented. 4 - shift lock to uppercase the next character 5 - shift lock to use the shift dictionary for the next character 6 - the next ten bits represent an ascii character code 7 - newline """ SHIFT_DICT = {0: " ", 1: "", 2: "", 3: "", 4: "", 5: "", 6: "", 7: "", 8: "0", 9: "1", 10: "2", 11: "3", 12: "4", 13: "5", 14: "6", 15: "7", 16: "8", 17: "9", 18: ".", 19: ",", 20: "!", 21: "?", 22: "_", 23: "#", 24: "'", 25: "\"", 26: "/", 27: "\\", 28: "-", 29: ":", 30: "(", 31: ")"} def decode_z_bytes_into_z_chars(z_bytes): """ z bytes are grouped in 16 bit segments (words) that contain 3 z characters and 1 end of word bit. Since a z string can have any amount of z characters, this function creates a stream of each word's z characters. """ binary_representation = bin(int(z_bytes, 16))[2:].zfill(16) is_end_byte = binary_representation[0] return (is_end_byte, [binary_representation[1:6], binary_representation[6:11], binary_representation[11:16]]) def decode_z_word(z_bytes): """Given an array of bytes, decode the z word.""" word = "" is_end_byte = False shift_code = 0 if len(z_bytes) % 2 != 0: return word # Loop through the byte stream and assemble all the character bits. word_binary_stream = [] for i in range(0, len(z_bytes), 4): (is_end_byte, temp_binary) = decode_z_bytes_into_z_chars( z_bytes[i:i + 4]) word_binary_stream += temp_binary if is_end_byte is True: break i = 0 # Loop through all the character bits and encode them according to the z-engine rules. while i < len(word_binary_stream): temp_code = int(word_binary_stream[i], 2) if temp_code == 4 or temp_code == 5: shift_code = temp_code else: if shift_code == 4: word += ALPHABET_DICT[temp_code].upper() elif shift_code == 5: if temp_code == 6: word += chr(int(word_binary_stream[i + 1] + word_binary_stream[i + 2], 2)) i += 2 else: word += SHIFT_DICT[temp_code] else: word += ALPHABET_DICT[temp_code] shift_code = 0 i += 1 return word def decode_ascii_bytes(ascii_bytes, amount): """Given an array of bytes and an amount, return the ascii representation of them.""" letters = "" for i in range(0, amount * 2, 2): letters += chr(int(ascii_bytes[i:i + 2], 16)) return letters
[ 37811, 198, 4264, 1299, 477, 262, 9156, 329, 39938, 4175, 2420, 13042, 13, 198, 198, 4023, 1378, 259, 687, 12, 24046, 13, 2398, 14, 89, 30243, 14, 1481, 1371, 14, 89, 16, 4122, 15, 14, 8831, 3070, 13, 6494, 8477, 262, 2420, 198, 12685, 7656, 7791, 13, 198, 198, 1212, 5301, 857, 407, 5412, 2183, 48589, 3166, 11, 28873, 85, 602, 11, 290, 410, 16, 3696, 355, 314, 198, 14150, 407, 587, 1498, 284, 1064, 597, 981, 4856, 13, 198, 37811, 198, 198, 37811, 198, 464, 2779, 357, 64, 16, 290, 257, 17, 8, 24830, 22155, 13, 2773, 2041, 3435, 25, 198, 15, 220, 220, 220, 220, 220, 220, 532, 220, 220, 2272, 198, 16, 11, 17, 11, 18, 220, 220, 532, 220, 220, 779, 281, 28873, 10473, 8574, 379, 3933, 19510, 16, 11, 17, 11, 18, 13219, 16, 8, 1343, 1306, 1976, 12, 22769, 13, 1892, 9177, 13, 198, 19, 220, 220, 220, 220, 220, 220, 532, 220, 220, 6482, 5793, 284, 334, 39921, 589, 262, 1306, 2095, 198, 20, 220, 220, 220, 220, 220, 220, 532, 220, 220, 6482, 5793, 284, 779, 262, 6482, 22155, 329, 262, 1306, 2095, 198, 37811, 198, 1847, 11909, 6242, 2767, 62, 35, 18379, 796, 1391, 15, 25, 366, 33172, 352, 25, 366, 1600, 362, 25, 366, 1600, 513, 25, 366, 1600, 604, 25, 366, 1600, 642, 25, 366, 1600, 718, 25, 366, 64, 1600, 767, 25, 366, 65, 1600, 807, 25, 366, 66, 1600, 860, 25, 366, 67, 1600, 838, 25, 366, 68, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1367, 25, 366, 69, 1600, 1105, 25, 366, 70, 1600, 1511, 25, 366, 71, 1600, 1478, 25, 366, 72, 1600, 1315, 25, 366, 73, 1600, 1467, 25, 366, 74, 1600, 1596, 25, 366, 75, 1600, 1248, 25, 366, 76, 1600, 678, 25, 366, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 25, 366, 78, 1600, 2310, 25, 366, 79, 1600, 2534, 25, 366, 80, 1600, 2242, 25, 366, 81, 1600, 1987, 25, 366, 82, 1600, 1679, 25, 366, 83, 1600, 2608, 25, 366, 84, 1600, 2681, 25, 366, 85, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2579, 25, 366, 86, 1600, 2808, 25, 366, 87, 1600, 1542, 25, 366, 88, 1600, 3261, 25, 366, 89, 20662, 198, 198, 37811, 198, 464, 6482, 357, 64, 18, 8, 24830, 22155, 13, 2773, 2041, 3435, 25, 198, 15, 220, 220, 220, 220, 220, 220, 532, 220, 220, 2272, 198, 16, 11, 17, 11, 18, 220, 220, 532, 220, 220, 779, 281, 28873, 10473, 8574, 379, 3933, 19510, 16, 11, 17, 11, 18, 13219, 16, 8, 1343, 1306, 1976, 12, 22769, 13, 1892, 9177, 13, 198, 19, 220, 220, 220, 220, 220, 220, 532, 220, 220, 6482, 5793, 284, 334, 39921, 589, 262, 1306, 2095, 198, 20, 220, 220, 220, 220, 220, 220, 532, 220, 220, 6482, 5793, 284, 779, 262, 6482, 22155, 329, 262, 1306, 2095, 198, 21, 220, 220, 220, 220, 220, 220, 532, 220, 220, 262, 1306, 3478, 10340, 2380, 281, 355, 979, 72, 2095, 2438, 198, 22, 220, 220, 220, 220, 220, 220, 532, 220, 220, 649, 1370, 198, 37811, 198, 9693, 32297, 62, 35, 18379, 796, 1391, 15, 25, 366, 33172, 352, 25, 366, 1600, 362, 25, 366, 1600, 513, 25, 366, 1600, 604, 25, 366, 1600, 642, 25, 366, 1600, 718, 25, 366, 1600, 767, 25, 366, 1600, 807, 25, 366, 15, 1600, 860, 25, 366, 16, 1600, 838, 25, 366, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1367, 25, 366, 18, 1600, 1105, 25, 366, 19, 1600, 1511, 25, 366, 20, 1600, 1478, 25, 366, 21, 1600, 1315, 25, 366, 22, 1600, 1467, 25, 366, 23, 1600, 1596, 25, 366, 24, 1600, 1248, 25, 366, 33283, 678, 25, 366, 553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 25, 366, 40754, 2310, 25, 366, 35379, 2534, 25, 45434, 1600, 2242, 25, 25113, 1600, 1987, 25, 24018, 1600, 1679, 25, 366, 7879, 1600, 2608, 25, 12813, 1600, 2681, 25, 366, 6852, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2579, 25, 27444, 1600, 2808, 25, 366, 25, 1600, 1542, 25, 30629, 1600, 3261, 25, 366, 16725, 92, 628, 198, 4299, 36899, 62, 89, 62, 33661, 62, 20424, 62, 89, 62, 354, 945, 7, 89, 62, 33661, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1976, 9881, 389, 32824, 287, 1467, 1643, 17894, 357, 10879, 8, 326, 3994, 513, 1976, 3435, 290, 352, 886, 286, 1573, 198, 220, 220, 220, 1643, 13, 4619, 257, 1976, 4731, 460, 423, 597, 2033, 286, 1976, 3435, 11, 428, 2163, 8075, 257, 4269, 286, 198, 220, 220, 220, 1123, 1573, 338, 1976, 3435, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13934, 62, 15603, 341, 796, 9874, 7, 600, 7, 89, 62, 33661, 11, 1467, 4008, 58, 17, 25, 4083, 89, 20797, 7, 1433, 8, 628, 220, 220, 220, 318, 62, 437, 62, 26327, 796, 13934, 62, 15603, 341, 58, 15, 60, 628, 220, 220, 220, 1441, 357, 271, 62, 437, 62, 26327, 11, 685, 39491, 62, 15603, 341, 58, 16, 25, 21, 4357, 13934, 62, 15603, 341, 58, 21, 25, 1157, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13934, 62, 15603, 341, 58, 1157, 25, 1433, 11907, 8, 628, 198, 4299, 36899, 62, 89, 62, 4775, 7, 89, 62, 33661, 2599, 198, 220, 220, 220, 37227, 15056, 281, 7177, 286, 9881, 11, 36899, 262, 1976, 1573, 526, 15931, 198, 220, 220, 220, 1573, 796, 13538, 198, 220, 220, 220, 318, 62, 437, 62, 26327, 796, 10352, 198, 220, 220, 220, 6482, 62, 8189, 796, 657, 628, 220, 220, 220, 611, 18896, 7, 89, 62, 33661, 8, 4064, 362, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1573, 628, 220, 220, 220, 1303, 26304, 832, 262, 18022, 4269, 290, 25432, 477, 262, 2095, 10340, 13, 198, 220, 220, 220, 1573, 62, 39491, 62, 5532, 796, 17635, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 89, 62, 33661, 828, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 357, 271, 62, 437, 62, 26327, 11, 20218, 62, 39491, 8, 796, 36899, 62, 89, 62, 33661, 62, 20424, 62, 89, 62, 354, 945, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 33661, 58, 72, 25, 72, 1343, 604, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 39491, 62, 5532, 15853, 20218, 62, 39491, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 437, 62, 26327, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1312, 796, 657, 628, 220, 220, 220, 1303, 26304, 832, 477, 262, 2095, 10340, 290, 37773, 606, 1864, 284, 262, 1976, 12, 18392, 3173, 13, 198, 220, 220, 220, 981, 1312, 1279, 18896, 7, 4775, 62, 39491, 62, 5532, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 8189, 796, 493, 7, 4775, 62, 39491, 62, 5532, 58, 72, 4357, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 62, 8189, 6624, 604, 393, 20218, 62, 8189, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6482, 62, 8189, 796, 20218, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6482, 62, 8189, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 15853, 8355, 11909, 6242, 2767, 62, 35, 18379, 58, 29510, 62, 8189, 4083, 45828, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 6482, 62, 8189, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 62, 8189, 6624, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 15853, 442, 81, 7, 600, 7, 4775, 62, 39491, 62, 5532, 58, 72, 1343, 352, 60, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 62, 39491, 62, 5532, 58, 72, 1343, 362, 4357, 362, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 15853, 6006, 32297, 62, 35, 18379, 58, 29510, 62, 8189, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1573, 15853, 8355, 11909, 6242, 2767, 62, 35, 18379, 58, 29510, 62, 8189, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6482, 62, 8189, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 1441, 1573, 628, 198, 4299, 36899, 62, 292, 979, 72, 62, 33661, 7, 292, 979, 72, 62, 33661, 11, 2033, 2599, 198, 220, 220, 220, 37227, 15056, 281, 7177, 286, 9881, 290, 281, 2033, 11, 1441, 262, 355, 979, 72, 10552, 286, 606, 526, 15931, 198, 220, 220, 220, 7475, 796, 13538, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 2033, 1635, 362, 11, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7475, 15853, 442, 81, 7, 600, 7, 292, 979, 72, 62, 33661, 58, 72, 25, 72, 1343, 362, 4357, 1467, 4008, 628, 220, 220, 220, 1441, 7475, 198 ]
2.196532
1,730
""" Examples from Paul Harrenstein, Marie-Louise Lackner, and Martin Lackner. *A Mathematical Analysis of an Election System Proposed by Gottlob Frege*. To appear in Erkenntnis. 2020. Preprint: https://arxiv.org/abs/1907.03643 """ from __future__ import print_function from frege import frege, modfrege import apportionment print("************************************************") print("Example 1 (Frege's original method)") profile = [5, 3, 2] k = 10 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", frege(profile, k)) print("details (verbose=True):") frege(profile, k, verbose=True) print() print("************************************************") print("Example 2 (Frege's original method)") profile = [1, 1, 1, 1, 1, 5] k = 17 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", frege(profile, k)) print("details (verbose=True):") frege(profile, k, verbose=True) print() print("************************************************") print("Example 3 (Frege's original method)") print("Frege's original method with variable electorate") print(" may not converge to quota") profiles = [] k = 100 for i in range(k): profiles.append([2**(i + 1), 2**i]) print("rounds: ", k) print("representatives distribution:", frege(profiles)) print() print("************************************************") print("Example 4 (Frege's modified method)") profile = [1, 1, 1, 1, 1, 5] k = 10 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", modfrege(profile, k)) print("details (verbose=True):") modfrege(profile, k, verbose=True) print() print("************************************************") print("Example 4 (Frege's modified method)") print("Frege's modified method violates variable lower quota") print(" for m=6") profile = [1001, 1000, 161, 151, 146, 141] k = 13 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", modfrege(profile, k)) print("details (verbose=True):") modfrege(profile, k, verbose=True, checkquota=True) print() print("************************************************") print("Example 5 (Frege's modified method)") print("Frege's modified method violates variable lower quota") print(" for m=5") profile = [1001, 1000, 300, 107, 92] k = 15 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", modfrege(profile, k)) print("details (verbose=True):") modfrege(profile, k, verbose=True, checkquota=True) print() print("************************************************") print("Example 5 (Frege's modified method)") print("Frege's modified method violates variable lower quota") print(" for m=4") profile = [1001, 1000, 115, 26] k = 30 print("input (fixed electorate): ", profile) print("rounds: ", k) print("representatives distribution:", modfrege(profile, k, tiebreakingallowed=False)) print("details (verbose=True):") modfrege(profile, k, verbose=True, checkquota=True) print() print("************************************************") print("Example 8 (apportionment)") print("all apportionment methods yield different results") methods = ["quota", "largest_remainder", "dhondt", "saintelague", "huntington", "adams", "modfrege"] distribution = (79, 7, 6, 3, 2, 1) seats = 20 print("vote distribution : ", distribution) print("seats: ", k) print("\nresults: ") for method in methods: if method == "frege": rep = frege( distribution, seats, modifiedfrege=False, verbose=False) elif method == "modfrege": rep = frege( distribution, seats, modifiedfrege=True, verbose=False) else: rep = apportionment.compute( method, distribution, seats, tiesallowed=False, verbose=False) print(method, "." * (25 - len(method)), rep)
[ 37811, 21066, 422, 198, 12041, 2113, 918, 5714, 11, 20492, 12, 24016, 786, 38289, 1008, 11, 290, 5780, 38289, 1008, 13, 198, 9, 32, 30535, 605, 14691, 286, 281, 14219, 4482, 8772, 1335, 416, 198, 38, 1252, 75, 672, 4848, 469, 24620, 1675, 1656, 287, 5256, 3464, 429, 21361, 13, 12131, 13, 198, 6719, 4798, 25, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1129, 2998, 13, 3070, 41813, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 2030, 469, 1330, 2030, 469, 11, 953, 19503, 469, 198, 11748, 598, 5817, 434, 628, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 352, 357, 20366, 469, 338, 2656, 2446, 8, 4943, 198, 13317, 796, 685, 20, 11, 513, 11, 362, 60, 198, 74, 796, 838, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 2030, 469, 7, 13317, 11, 479, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 362, 357, 20366, 469, 338, 2656, 2446, 8, 4943, 198, 13317, 796, 685, 16, 11, 352, 11, 352, 11, 352, 11, 352, 11, 642, 60, 198, 74, 796, 1596, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 2030, 469, 7, 13317, 11, 479, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 513, 357, 20366, 469, 338, 2656, 2446, 8, 4943, 198, 4798, 7203, 20366, 469, 338, 2656, 2446, 351, 7885, 23879, 4943, 198, 4798, 7203, 220, 743, 407, 47873, 284, 32539, 4943, 198, 5577, 2915, 796, 17635, 198, 74, 796, 1802, 198, 1640, 1312, 287, 2837, 7, 74, 2599, 198, 220, 220, 220, 16545, 13, 33295, 26933, 17, 1174, 7, 72, 1343, 352, 828, 362, 1174, 72, 12962, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 2030, 469, 7, 5577, 2915, 4008, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 604, 357, 20366, 469, 338, 9518, 2446, 8, 4943, 198, 13317, 796, 685, 16, 11, 352, 11, 352, 11, 352, 11, 352, 11, 642, 60, 198, 74, 796, 838, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 953, 19503, 469, 7, 13317, 11, 479, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 4666, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 604, 357, 20366, 469, 338, 9518, 2446, 8, 4943, 198, 4798, 7203, 20366, 469, 338, 9518, 2446, 21806, 7885, 2793, 32539, 4943, 198, 4798, 7203, 329, 285, 28, 21, 4943, 198, 13317, 796, 685, 47705, 11, 8576, 11, 27829, 11, 25326, 11, 22986, 11, 25500, 60, 198, 74, 796, 1511, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 953, 19503, 469, 7, 13317, 11, 479, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 4666, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 11, 2198, 421, 4265, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 642, 357, 20366, 469, 338, 9518, 2446, 8, 4943, 198, 4798, 7203, 20366, 469, 338, 9518, 2446, 21806, 7885, 2793, 32539, 4943, 198, 4798, 7203, 329, 285, 28, 20, 4943, 198, 13317, 796, 685, 47705, 11, 8576, 11, 5867, 11, 16226, 11, 10190, 60, 198, 74, 796, 1315, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 953, 19503, 469, 7, 13317, 11, 479, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 4666, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 11, 2198, 421, 4265, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 642, 357, 20366, 469, 338, 9518, 2446, 8, 4943, 198, 4798, 7203, 20366, 469, 338, 9518, 2446, 21806, 7885, 2793, 32539, 4943, 198, 4798, 7203, 329, 285, 28, 19, 4943, 198, 13317, 796, 685, 47705, 11, 8576, 11, 12279, 11, 2608, 60, 198, 74, 796, 1542, 198, 4798, 7203, 15414, 357, 34021, 23879, 2599, 220, 220, 220, 33172, 7034, 8, 198, 4798, 7203, 744, 82, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 4798, 7203, 15603, 2929, 6082, 25, 1600, 198, 220, 220, 220, 220, 220, 953, 19503, 469, 7, 13317, 11, 479, 11, 9839, 13395, 40845, 28, 25101, 4008, 198, 4798, 7203, 36604, 357, 19011, 577, 28, 17821, 2599, 4943, 198, 4666, 19503, 469, 7, 13317, 11, 479, 11, 15942, 577, 28, 17821, 11, 2198, 421, 4265, 28, 17821, 8, 198, 4798, 3419, 198, 198, 4798, 7203, 17174, 8412, 4943, 198, 4798, 7203, 16281, 807, 357, 1324, 5817, 434, 8, 4943, 198, 4798, 7203, 439, 598, 5817, 434, 5050, 7800, 1180, 2482, 4943, 198, 198, 24396, 82, 796, 14631, 421, 4265, 1600, 366, 28209, 62, 2787, 391, 1082, 1600, 366, 34985, 623, 83, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2913, 417, 2064, 1600, 366, 20088, 889, 1122, 1600, 366, 324, 4105, 1600, 366, 4666, 19503, 469, 8973, 198, 17080, 3890, 796, 357, 3720, 11, 767, 11, 718, 11, 513, 11, 362, 11, 352, 8, 198, 325, 1381, 796, 1160, 198, 198, 4798, 7203, 27257, 6082, 1058, 220, 220, 220, 220, 33172, 6082, 8, 198, 4798, 7203, 325, 1381, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33172, 479, 8, 198, 198, 4798, 7203, 59, 77, 43420, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8, 198, 1640, 2446, 287, 5050, 25, 198, 220, 220, 220, 611, 2446, 6624, 366, 19503, 469, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 796, 2030, 469, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 11, 8632, 11, 9518, 19503, 469, 28, 25101, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 1288, 361, 2446, 6624, 366, 4666, 19503, 469, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 796, 2030, 469, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 11, 8632, 11, 9518, 19503, 469, 28, 17821, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1128, 796, 598, 5817, 434, 13, 5589, 1133, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 11, 6082, 11, 8632, 11, 8470, 40845, 28, 25101, 11, 15942, 577, 28, 25101, 8, 198, 220, 220, 220, 3601, 7, 24396, 11, 366, 526, 1635, 357, 1495, 532, 18896, 7, 24396, 36911, 1128, 8, 198 ]
2.885694
1,426
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
from django.db.models import Q, CharField, TextField from django.apps import apps from anaf.core.models import Object params = [] for model in apps.get_models(): if issubclass(model, Object) and getattr(model, 'searcheable', True): for field in model._meta.fields: if isinstance(field, (CharField, TextField)) and 'password' not in field.name and \ 'object_name' not in field.name and 'object_type' not in field.name \ and 'nuvius' not in field.name: params.append('{0!s}__{1!s}'.format(model._meta.model_name, field.name)) def search(term): "Use database backend for searching" query = Q() # query_dict = {} attr = 'search' if term and term[0] == '*': attr = 'icontains' term = term[1:] for param in params: kwargs = {'{0!s}__{1!s}'.format(param, attr): term} # query_dict[param] = term query = query | Q(**kwargs) # from pprint import pprint # pprint(query_dict) return Object.objects.filter(query)
[ 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 11, 3178, 15878, 11, 8255, 15878, 198, 6738, 42625, 14208, 13, 18211, 1330, 6725, 198, 198, 6738, 281, 1878, 13, 7295, 13, 27530, 1330, 9515, 198, 198, 37266, 796, 17635, 198, 198, 1640, 2746, 287, 6725, 13, 1136, 62, 27530, 33529, 198, 220, 220, 220, 611, 1189, 549, 4871, 7, 19849, 11, 9515, 8, 290, 651, 35226, 7, 19849, 11, 705, 325, 283, 2395, 540, 3256, 6407, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2214, 287, 2746, 13557, 28961, 13, 25747, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 3245, 11, 357, 12441, 15878, 11, 8255, 15878, 4008, 290, 705, 28712, 6, 407, 287, 2214, 13, 3672, 290, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15252, 62, 3672, 6, 407, 287, 2214, 13, 3672, 290, 705, 15252, 62, 4906, 6, 407, 287, 2214, 13, 3672, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 705, 77, 14795, 3754, 6, 407, 287, 2214, 13, 3672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 13, 33295, 10786, 90, 15, 0, 82, 92, 834, 90, 16, 0, 82, 92, 4458, 18982, 7, 19849, 13557, 28961, 13, 19849, 62, 3672, 11, 2214, 13, 3672, 4008, 628, 198, 4299, 2989, 7, 4354, 2599, 198, 220, 220, 220, 366, 11041, 6831, 30203, 329, 10342, 1, 198, 220, 220, 220, 12405, 796, 1195, 3419, 198, 220, 220, 220, 1303, 12405, 62, 11600, 796, 23884, 198, 220, 220, 220, 708, 81, 796, 705, 12947, 6, 198, 220, 220, 220, 611, 3381, 290, 3381, 58, 15, 60, 6624, 705, 9, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 708, 81, 796, 705, 291, 756, 1299, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3381, 796, 3381, 58, 16, 47715, 198, 220, 220, 220, 329, 5772, 287, 42287, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 1391, 6, 90, 15, 0, 82, 92, 834, 90, 16, 0, 82, 92, 4458, 18982, 7, 17143, 11, 708, 81, 2599, 3381, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12405, 62, 11600, 58, 17143, 60, 796, 3381, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 796, 12405, 930, 1195, 7, 1174, 46265, 22046, 8, 628, 220, 220, 220, 1303, 422, 279, 4798, 1330, 279, 4798, 198, 220, 220, 220, 1303, 279, 4798, 7, 22766, 62, 11600, 8, 628, 220, 220, 220, 1441, 9515, 13, 48205, 13, 24455, 7, 22766, 8, 198 ]
2.305376
465
import os from typing import Generator import pytest from neo4j import Driver, GraphDatabase from graphdatascience.graph_data_science import GraphDataScience from graphdatascience.query_runner.neo4j_query_runner import Neo4jQueryRunner URI = os.environ.get("NEO4J_URI", "bolt://localhost:7687") AUTH = None if os.environ.get("NEO4J_USER") is not None: AUTH = ( os.environ.get("NEO4J_USER"), os.environ.get("NEO4J_PASSWORD", "neo4j"), ) @pytest.fixture(scope="package") @pytest.fixture(scope="package") @pytest.fixture(scope="package")
[ 11748, 28686, 198, 6738, 19720, 1330, 35986, 198, 198, 11748, 12972, 9288, 198, 6738, 19102, 19, 73, 1330, 12434, 11, 29681, 38105, 198, 198, 6738, 4823, 19608, 292, 4234, 13, 34960, 62, 7890, 62, 16801, 1330, 29681, 6601, 26959, 198, 6738, 4823, 19608, 292, 4234, 13, 22766, 62, 16737, 13, 710, 78, 19, 73, 62, 22766, 62, 16737, 1330, 21227, 19, 73, 20746, 49493, 198, 198, 47269, 796, 28686, 13, 268, 2268, 13, 1136, 7203, 45, 4720, 19, 41, 62, 47269, 1600, 366, 25593, 1378, 36750, 25, 30610, 22, 4943, 198, 198, 32, 24318, 796, 6045, 198, 361, 28686, 13, 268, 2268, 13, 1136, 7203, 45, 4720, 19, 41, 62, 29904, 4943, 318, 407, 6045, 25, 198, 220, 220, 220, 37195, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 13, 1136, 7203, 45, 4720, 19, 41, 62, 29904, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 13, 1136, 7203, 45, 4720, 19, 41, 62, 47924, 54, 12532, 1600, 366, 710, 78, 19, 73, 12340, 198, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 26495, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 26495, 4943, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 29982, 2625, 26495, 4943, 198 ]
2.586364
220
from api.manager import ( deploy_manager_contract, get_proposals, accept_proposal, ) from api.contributor import ( propose_iteration, ) from api.common import ( check_share_value, check_balance, check_total_supply, check_total_value, redeem_shares, )
[ 6738, 40391, 13, 37153, 1330, 357, 198, 220, 220, 220, 6061, 62, 37153, 62, 28484, 11, 198, 220, 220, 220, 651, 62, 1676, 1930, 874, 11, 198, 220, 220, 220, 2453, 62, 1676, 40007, 11, 198, 8, 198, 198, 6738, 40391, 13, 3642, 2455, 273, 1330, 357, 198, 220, 220, 220, 18077, 62, 2676, 341, 11, 198, 8, 198, 198, 6738, 40391, 13, 11321, 1330, 357, 198, 220, 220, 220, 2198, 62, 20077, 62, 8367, 11, 198, 220, 220, 220, 2198, 62, 20427, 11, 198, 220, 220, 220, 2198, 62, 23350, 62, 18608, 306, 11, 198, 220, 220, 220, 2198, 62, 23350, 62, 8367, 11, 198, 220, 220, 220, 26509, 62, 1477, 3565, 11, 198, 8, 628 ]
2.478632
117
import pytest from uteis.permutacoes import ( numero_de_permutacoes_caoticas, numero_de_permutacoes_caoticas_com_elementos_fixos, ) @pytest.mark.parametrize('inteiro, perms_esperadas', [(6, 265), (8, 14833), (15, 481066515734)]) @pytest.mark.parametrize('els, fixos, perms_esperadas', [(10, 4, 55650), (10, 2, 667485), ])
[ 11748, 12972, 9288, 198, 6738, 220, 1133, 271, 13, 16321, 315, 330, 3028, 1330, 357, 198, 220, 220, 220, 997, 3529, 62, 2934, 62, 16321, 315, 330, 3028, 62, 6888, 6210, 292, 11, 198, 220, 220, 220, 997, 3529, 62, 2934, 62, 16321, 315, 330, 3028, 62, 6888, 6210, 292, 62, 785, 62, 30854, 418, 62, 13049, 418, 11, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 600, 68, 7058, 11, 583, 907, 62, 274, 525, 38768, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 21, 11, 32090, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 23, 11, 22613, 2091, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 1314, 11, 4764, 940, 36879, 18458, 2682, 8, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 10786, 1424, 11, 4259, 418, 11, 583, 907, 62, 274, 525, 38768, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47527, 940, 11, 604, 11, 642, 3980, 1120, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 940, 11, 362, 11, 718, 3134, 32642, 828, 33761, 198 ]
1.655914
279
# Copyright 2020 the v8App authors. All right reserved. # Use of this source code is governed by the MIT license # that can be found in the LICENSE file.
[ 2, 15069, 12131, 262, 410, 23, 4677, 7035, 13, 1439, 826, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 262, 17168, 5964, 198, 2, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198 ]
3.948718
39
# -*- coding: utf-8 -*- from setuptools import setup setup( name='sceptre-resolver-aws-secrets-manager', version="1.0.0", py_modules=['aws_secrets_manager'], entry_points={ 'sceptre.resolvers': [ 'aws_secrets_manager = aws_secrets_manager:AwsSecretsManager', ], } )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 82, 984, 260, 12, 411, 14375, 12, 8356, 12, 2363, 8004, 12, 37153, 3256, 198, 220, 220, 220, 2196, 2625, 16, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 12972, 62, 18170, 28, 17816, 8356, 62, 2363, 8004, 62, 37153, 6, 4357, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 984, 260, 13, 411, 349, 690, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8356, 62, 2363, 8004, 62, 37153, 796, 3253, 82, 62, 2363, 8004, 62, 37153, 25, 32, 18504, 6558, 8004, 13511, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1782, 198, 8, 198 ]
2.1
150
from typing import List, Tuple from .texture import StudioTexture from ....source_shared.base import Base from ....utilities.byte_io_mdl import ByteIO
[ 6738, 19720, 1330, 7343, 11, 309, 29291, 198, 198, 6738, 764, 41293, 1330, 11733, 32742, 198, 6738, 19424, 10459, 62, 28710, 13, 8692, 1330, 7308, 198, 6738, 19424, 315, 2410, 13, 26327, 62, 952, 62, 9132, 75, 1330, 30589, 9399, 628, 198 ]
3.666667
42
import json import html import string import random import requests from utils import * from create_invoicePDF import create_invoice from flask import * from sqlalchemy.sql.elements import * from database import Database from datetime import date from dateutil.relativedelta import relativedelta dashboard = Blueprint('dashboard', __name__, template_folder='views', static_folder='assets', static_url_path='/assets') typeOfBees = { 0: "Comune", 1: "Preziosa", 2: "Minerale", 3: "Nether" } @dashboard.route('/', methods=['GET', 'POST']) @login_required @is_member @dashboard.route('/view/<int:ids>') @login_required @is_member @dashboard.route('/notMember') @dashboard.route('/add/beehive', methods=['GET', 'POST']) @login_required @is_member @dashboard.route('/add/apiary', methods=['GET', 'POST']) @login_required @is_member @dashboard.route('/delete/beehive', methods=['GET', 'POST']) @login_required @is_member @dashboard.route('/delete/apiary', methods=['GET', 'POST']) @login_required @is_member @dashboard.route('/payInvoices') @login_required @is_member @dashboard.route('/payInvoices/<int:id>') @login_required @is_member @dashboard.route('/downloadInvoices/<int:id>') @login_required @is_member
[ 11748, 33918, 201, 198, 11748, 27711, 201, 198, 11748, 4731, 201, 198, 11748, 4738, 201, 198, 11748, 7007, 201, 198, 201, 198, 201, 198, 6738, 3384, 4487, 1330, 1635, 201, 198, 6738, 2251, 62, 16340, 2942, 20456, 1330, 2251, 62, 16340, 2942, 201, 198, 6738, 42903, 1330, 1635, 201, 198, 6738, 44161, 282, 26599, 13, 25410, 13, 68, 3639, 1330, 1635, 201, 198, 6738, 6831, 1330, 24047, 201, 198, 6738, 4818, 8079, 1330, 3128, 201, 198, 6738, 3128, 22602, 13, 2411, 265, 1572, 12514, 1330, 48993, 1572, 12514, 201, 198, 201, 198, 42460, 3526, 796, 39932, 10786, 42460, 3526, 3256, 11593, 3672, 834, 11, 11055, 62, 43551, 11639, 33571, 3256, 9037, 62, 43551, 11639, 19668, 3256, 9037, 62, 6371, 62, 6978, 11639, 14, 19668, 11537, 201, 198, 201, 198, 4906, 5189, 33, 2841, 796, 1391, 201, 198, 220, 220, 220, 657, 25, 366, 5377, 1726, 1600, 201, 198, 220, 220, 220, 352, 25, 366, 6719, 89, 4267, 64, 1600, 201, 198, 220, 220, 220, 362, 25, 366, 44, 7274, 1000, 1600, 201, 198, 220, 220, 220, 513, 25, 366, 45, 6750, 1, 201, 198, 92, 201, 198, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 1177, 14, 27, 600, 25, 2340, 29, 11537, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 1662, 27608, 11537, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 2860, 14, 1350, 17231, 425, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 2860, 14, 499, 8042, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 33678, 14, 1350, 17231, 425, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 33678, 14, 499, 8042, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 15577, 818, 13038, 1063, 11537, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 15577, 818, 13038, 1063, 14, 27, 600, 25, 312, 29, 11537, 220, 220, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201, 198, 201, 198, 201, 198, 31, 42460, 3526, 13, 38629, 10786, 14, 15002, 818, 13038, 1063, 14, 27, 600, 25, 312, 29, 11537, 201, 198, 31, 38235, 62, 35827, 201, 198, 31, 271, 62, 19522, 201 ]
2.501916
522
# Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. # This file contains a set of utilities functions used by other Python-based # scripts. import commands import os import platform import re import shutil import subprocess import tempfile import sys # Try to guess the host operating system. # Try to guess the host architecture. # Try to guess the number of cpus on this machine. # Try to guess Visual Studio location when buiding on Windows. # Returns true if we're running under Windows. # Reads a text file into an array of strings - one for each # line. Strips comments in the process. # Filters out all arguments until the next '--' argument # occurs. # Filters out all argument until the first non '-' or the # '--' argument occurs. # Mapping table between build mode and build configuration. BUILD_MODES = { 'debug': 'Debug', 'release': 'Release', } # Mapping table between OS and build output location. BUILD_ROOT = { 'win32': os.path.join('build'), 'linux': os.path.join('out'), 'freebsd': os.path.join('out'), 'macos': os.path.join('xcodebuild'), } ARCH_FAMILY = { 'ia32': 'ia32', 'x64': 'ia32', 'arm': 'arm', 'arm64': 'arm', 'mips': 'mips', 'simarm': 'ia32', 'simmips': 'ia32', 'simarm64': 'ia32', } ARCH_GUESS = GuessArchitecture() BASE_DIR = os.path.abspath(os.path.join(os.curdir, '..')) DART_DIR = os.path.abspath(os.path.join(__file__, '..', '..')) def ParseGitInfoOutput(output): """Given a git log, determine the latest corresponding svn revision.""" for line in output.split('\n'): tokens = line.split() if len(tokens) > 0 and tokens[0] == 'git-svn-id:': return tokens[1].split('@')[1] return None def Daemonize(): """ Create a detached background process (daemon). Returns True for the daemon, False for the parent process. See: http://www.faqs.org/faqs/unix-faq/programmer/faq/ "1.7 How do I get my program to act like a daemon?" """ if os.fork() > 0: return False os.setsid() if os.fork() > 0: exit(0) raise return True def PrintError(string): """Writes and flushes a string to stderr.""" sys.stderr.write(string) sys.stderr.write('\n') def CheckedUnlink(name): """Unlink a file without throwing an exception.""" try: os.unlink(name) except OSError, e: PrintError("os.unlink() " + str(e)) class ToolError(Exception): """Deprecated exception, use Error instead.""" def ExecuteCommand(cmd): """Execute a command in a subprocess.""" print 'Executing: ' + ' '.join(cmd) pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=IsWindows()) output = pipe.communicate() if pipe.returncode != 0: raise Exception('Execution failed: ' + str(output)) return pipe.returncode, output if __name__ == "__main__": import sys Main()
[ 2, 15069, 357, 66, 8, 2321, 11, 262, 29032, 1628, 7035, 13, 220, 4222, 766, 262, 37195, 20673, 2393, 198, 2, 329, 3307, 13, 1439, 2489, 10395, 13, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 198, 2, 347, 10305, 12, 7635, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 2, 770, 2393, 4909, 257, 900, 286, 20081, 5499, 973, 416, 584, 11361, 12, 3106, 198, 2, 14750, 13, 198, 198, 11748, 9729, 198, 11748, 28686, 198, 11748, 3859, 198, 11748, 302, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 11748, 25064, 198, 198, 2, 9993, 284, 4724, 262, 2583, 5361, 1080, 13, 628, 198, 2, 9993, 284, 4724, 262, 2583, 10959, 13, 628, 198, 2, 9993, 284, 4724, 262, 1271, 286, 31396, 385, 319, 428, 4572, 13, 198, 198, 2, 9993, 284, 4724, 15612, 11733, 4067, 618, 809, 2530, 319, 3964, 13, 628, 198, 2, 16409, 2081, 611, 356, 821, 2491, 739, 3964, 13, 628, 198, 2, 4149, 82, 257, 2420, 2393, 656, 281, 7177, 286, 13042, 532, 530, 329, 1123, 198, 2, 1627, 13, 26137, 862, 3651, 287, 262, 1429, 13, 198, 198, 2, 7066, 1010, 503, 477, 7159, 1566, 262, 1306, 705, 438, 6, 4578, 198, 2, 8833, 13, 628, 198, 2, 7066, 1010, 503, 477, 4578, 1566, 262, 717, 1729, 705, 19355, 393, 262, 198, 2, 705, 438, 6, 4578, 8833, 13, 628, 198, 2, 337, 5912, 3084, 1022, 1382, 4235, 290, 1382, 8398, 13, 198, 19499, 26761, 62, 33365, 1546, 796, 1391, 198, 220, 705, 24442, 10354, 705, 27509, 3256, 198, 220, 705, 20979, 10354, 705, 26362, 3256, 198, 92, 628, 198, 2, 337, 5912, 3084, 1022, 7294, 290, 1382, 5072, 4067, 13, 198, 19499, 26761, 62, 13252, 2394, 796, 1391, 198, 220, 705, 5404, 2624, 10354, 28686, 13, 6978, 13, 22179, 10786, 11249, 33809, 198, 220, 705, 23289, 10354, 28686, 13, 6978, 13, 22179, 10786, 448, 33809, 198, 220, 705, 5787, 1443, 67, 10354, 28686, 13, 6978, 13, 22179, 10786, 448, 33809, 198, 220, 705, 20285, 418, 10354, 28686, 13, 6978, 13, 22179, 10786, 87, 8189, 11249, 33809, 198, 92, 198, 198, 31315, 62, 37, 2390, 33340, 796, 1391, 198, 220, 705, 544, 2624, 10354, 705, 544, 2624, 3256, 198, 220, 705, 87, 2414, 10354, 705, 544, 2624, 3256, 198, 220, 705, 1670, 10354, 705, 1670, 3256, 198, 220, 705, 1670, 2414, 10354, 705, 1670, 3256, 198, 220, 705, 76, 2419, 10354, 705, 76, 2419, 3256, 198, 220, 705, 14323, 1670, 10354, 705, 544, 2624, 3256, 198, 220, 705, 82, 8608, 2419, 10354, 705, 544, 2624, 3256, 198, 220, 705, 14323, 1670, 2414, 10354, 705, 544, 2624, 3256, 198, 92, 198, 198, 31315, 62, 38022, 7597, 796, 37571, 19895, 5712, 495, 3419, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 66, 2799, 343, 11, 705, 492, 6, 4008, 198, 35, 7227, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 834, 7753, 834, 11, 705, 492, 3256, 705, 492, 6, 4008, 198, 198, 4299, 2547, 325, 38, 270, 12360, 26410, 7, 22915, 2599, 198, 220, 37227, 15056, 257, 17606, 2604, 11, 5004, 262, 3452, 11188, 38487, 77, 18440, 526, 15931, 198, 220, 329, 1627, 287, 5072, 13, 35312, 10786, 59, 77, 6, 2599, 198, 220, 220, 220, 16326, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 611, 18896, 7, 83, 482, 641, 8, 1875, 657, 290, 16326, 58, 15, 60, 6624, 705, 18300, 12, 21370, 77, 12, 312, 25, 10354, 198, 220, 220, 220, 220, 220, 1441, 16326, 58, 16, 4083, 35312, 10786, 31, 11537, 58, 16, 60, 198, 220, 1441, 6045, 628, 628, 198, 198, 4299, 9637, 7966, 1096, 33529, 198, 220, 37227, 198, 220, 13610, 257, 30795, 4469, 1429, 357, 6814, 7966, 737, 16409, 6407, 329, 198, 220, 262, 33386, 11, 10352, 329, 262, 2560, 1429, 13, 198, 220, 4091, 25, 2638, 1378, 2503, 13, 13331, 48382, 13, 2398, 14, 13331, 48382, 14, 403, 844, 12, 13331, 80, 14, 23065, 647, 14, 13331, 80, 14, 198, 220, 366, 16, 13, 22, 1374, 466, 314, 651, 616, 1430, 284, 719, 588, 257, 33386, 1701, 198, 220, 37227, 198, 220, 611, 28686, 13, 32523, 3419, 1875, 657, 25, 198, 220, 220, 220, 1441, 10352, 198, 220, 28686, 13, 28709, 312, 3419, 198, 220, 611, 28686, 13, 32523, 3419, 1875, 657, 25, 198, 220, 220, 220, 8420, 7, 15, 8, 198, 220, 220, 220, 5298, 198, 220, 1441, 6407, 628, 198, 4299, 12578, 12331, 7, 8841, 2599, 198, 220, 37227, 20257, 274, 290, 781, 17237, 257, 4731, 284, 336, 1082, 81, 526, 15931, 198, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7, 8841, 8, 198, 220, 25064, 13, 301, 1082, 81, 13, 13564, 10786, 59, 77, 11537, 628, 198, 4299, 6822, 276, 3118, 8726, 7, 3672, 2599, 198, 220, 37227, 3118, 8726, 257, 2393, 1231, 9644, 281, 6631, 526, 15931, 198, 220, 1949, 25, 198, 220, 220, 220, 28686, 13, 403, 8726, 7, 3672, 8, 198, 220, 2845, 440, 5188, 81, 1472, 11, 304, 25, 198, 220, 220, 220, 12578, 12331, 7203, 418, 13, 403, 8726, 3419, 366, 1343, 965, 7, 68, 4008, 628, 628, 198, 4871, 16984, 12331, 7, 16922, 2599, 198, 220, 37227, 12156, 31023, 6631, 11, 779, 13047, 2427, 526, 15931, 628, 628, 198, 198, 4299, 8393, 1133, 21575, 7, 28758, 2599, 198, 220, 37227, 23002, 1133, 257, 3141, 287, 257, 850, 14681, 526, 15931, 198, 220, 3601, 705, 23002, 15129, 25, 705, 1343, 705, 45302, 22179, 7, 28758, 8, 198, 220, 12656, 796, 850, 14681, 13, 47, 9654, 7, 28758, 11, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 336, 1082, 81, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 7582, 28, 3792, 11209, 28955, 198, 220, 5072, 796, 12656, 13, 10709, 5344, 3419, 198, 220, 611, 12656, 13, 7783, 8189, 14512, 657, 25, 198, 220, 220, 220, 5298, 35528, 10786, 23002, 1009, 4054, 25, 705, 1343, 965, 7, 22915, 4008, 198, 220, 1441, 12656, 13, 7783, 8189, 11, 5072, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 1330, 25064, 198, 220, 8774, 3419, 198 ]
2.873563
1,044
# -*- coding: utf-8 -*- """ Created on Mon Nov 8 14:48:20 2021 @author: utilisateur """ import numpy as np import heapq import matplotlib.pyplot as plt from PIL import Image # Trouver la zone inexplorée la plus proche du robot M = np.array([[0,0,1,1], [0,1,0.5,1], [0,0,1,1], [1,0,0,0]]) #fonction utile pour le programme suivant #Algorithme du plus court chemin #On renvoit les consignes de Rotation/Déplacement pour le robot # Driver code main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 2892, 5267, 220, 807, 1478, 25, 2780, 25, 1238, 33448, 198, 198, 31, 9800, 25, 7736, 271, 15093, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 24575, 80, 220, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 350, 4146, 1330, 7412, 220, 628, 198, 198, 2, 22141, 332, 8591, 6516, 33199, 273, 22161, 8591, 5556, 386, 2395, 7043, 9379, 198, 44, 796, 45941, 13, 18747, 26933, 58, 15, 11, 15, 11, 16, 11, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 16, 11, 15, 13, 20, 11, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 15, 11, 15, 11, 16, 11, 16, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 16, 11, 15, 11, 15, 11, 15, 11907, 8, 628, 198, 2, 69, 261, 596, 3384, 576, 12797, 443, 11383, 424, 452, 415, 198, 198, 2, 2348, 7727, 1326, 7043, 5556, 2184, 1125, 1084, 198, 2, 2202, 8851, 13038, 270, 10287, 762, 570, 274, 390, 371, 14221, 14, 35, 2634, 489, 5592, 12797, 443, 9379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 198, 2, 12434, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 12417, 3419, 628, 198, 220, 220, 220, 220, 198 ]
2.049618
262
#!/usr/bin/python import time import datetime from Libs.Clock import Clock from Libs.PiTFT import Display from Libs.Weather import Weather from Libs.Input import Button from Libs.GStreamer import Speaker from config import configuration # The weather station station_name = configuration.get('weather_station') weather_station = Weather(station_name) # Connect to the internal machine clock clock = Clock() # Connect to the LED display display = Display() # Connect to the speaker speaker = Speaker() # Play some music # Wake us up at 8:30 in the morning clock.atTime(8, 30, playMusic) # Show the current weather # What to do when you press a button Button(24).whenPressed(switchWeatherStations) # Show the current time # What to do when the internal clock ticks clock.onTick(showCurrentTime) # Set the brightness (0 to 15, 15 is the brightest) display.setBrightness(1)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 201, 198, 201, 198, 11748, 640, 201, 198, 11748, 4818, 8079, 201, 198, 6738, 7980, 82, 13, 44758, 1330, 21328, 201, 198, 6738, 7980, 82, 13, 38729, 51, 9792, 1330, 16531, 201, 198, 6738, 7980, 82, 13, 41865, 1330, 15615, 201, 198, 6738, 7980, 82, 13, 20560, 1330, 20969, 201, 198, 6738, 7980, 82, 13, 38, 28696, 1330, 14931, 201, 198, 6738, 4566, 1330, 8398, 201, 198, 201, 198, 2, 383, 6193, 4429, 201, 198, 17529, 62, 3672, 796, 8398, 13, 1136, 10786, 23563, 62, 17529, 11537, 201, 198, 23563, 62, 17529, 796, 15615, 7, 17529, 62, 3672, 8, 201, 198, 201, 198, 2, 8113, 284, 262, 5387, 4572, 8801, 201, 198, 15750, 796, 21328, 3419, 201, 198, 201, 198, 2, 8113, 284, 262, 12365, 3359, 201, 198, 13812, 796, 16531, 3419, 201, 198, 201, 198, 2, 8113, 284, 262, 10834, 201, 198, 4125, 3110, 796, 14931, 3419, 201, 198, 201, 198, 2, 3811, 617, 2647, 201, 198, 201, 198, 2, 20441, 514, 510, 379, 807, 25, 1270, 287, 262, 3329, 201, 198, 15750, 13, 265, 7575, 7, 23, 11, 1542, 11, 711, 22648, 8, 201, 198, 201, 198, 2, 5438, 262, 1459, 6193, 201, 198, 201, 198, 2, 1867, 284, 466, 618, 345, 1803, 257, 4936, 201, 198, 21864, 7, 1731, 737, 12518, 47, 2790, 7, 31943, 41865, 1273, 602, 8, 201, 198, 201, 198, 2, 5438, 262, 1459, 640, 201, 198, 201, 198, 2, 1867, 284, 466, 618, 262, 5387, 8801, 36066, 201, 198, 15750, 13, 261, 51, 624, 7, 12860, 11297, 7575, 8, 201, 198, 201, 198, 2, 5345, 262, 22204, 357, 15, 284, 1315, 11, 1315, 318, 262, 33871, 8, 201, 198, 13812, 13, 2617, 41267, 1108, 7, 16, 8, 201, 198 ]
3.150171
293
import unittest from programy.clients.events.console.config import ConsoleConfiguration from programy.config.brain.dynamic import BrainDynamicsConfiguration from programy.config.file.yaml_file import YamlConfigurationFile from programy.dynamic.dynamics import DynamicsCollection from programy.dynamic.sets.numeric import IsNumeric from programy.dynamic.maps.plural import PluralMap from programy.dynamic.maps.singular import SingularMap from programy.dynamic.maps.predecessor import PredecessorMap from programy.dynamic.maps.successor import SuccessorMap from programy.dynamic.variables.variable import DynamicSettableVariable
[ 11748, 555, 715, 395, 198, 198, 6738, 1430, 88, 13, 565, 2334, 13, 31534, 13, 41947, 13, 11250, 1330, 24371, 38149, 198, 6738, 1430, 88, 13, 11250, 13, 27825, 13, 67, 28995, 1330, 14842, 35, 4989, 873, 38149, 198, 6738, 1430, 88, 13, 11250, 13, 7753, 13, 88, 43695, 62, 7753, 1330, 14063, 75, 38149, 8979, 198, 6738, 1430, 88, 13, 67, 28995, 13, 67, 4989, 873, 1330, 33806, 36307, 198, 6738, 1430, 88, 13, 67, 28995, 13, 28709, 13, 77, 39223, 1330, 1148, 45, 39223, 198, 6738, 1430, 88, 13, 67, 28995, 13, 31803, 13, 489, 1523, 1330, 1345, 1523, 13912, 198, 6738, 1430, 88, 13, 67, 28995, 13, 31803, 13, 12215, 934, 1330, 5573, 934, 13912, 198, 6738, 1430, 88, 13, 67, 28995, 13, 31803, 13, 28764, 721, 5987, 1330, 14322, 721, 5987, 13912, 198, 6738, 1430, 88, 13, 67, 28995, 13, 31803, 13, 13138, 273, 1330, 16282, 273, 13912, 198, 6738, 1430, 88, 13, 67, 28995, 13, 25641, 2977, 13, 45286, 1330, 26977, 50, 3087, 540, 43015, 628, 628 ]
3.668605
172
#!/usr/bin/python3 #.py for test load data.. import sys sys.path.append("../") import insummer from insummer.read_conf import config import pickle duc_conf = config('../../conf/question.conf') if __name__ == "__main__": test_question(duc_conf['duc_question'])
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 2, 13, 9078, 329, 1332, 3440, 1366, 492, 198, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 4943, 198, 11748, 1035, 31647, 198, 6738, 1035, 31647, 13, 961, 62, 10414, 1330, 4566, 198, 198, 11748, 2298, 293, 198, 198, 6077, 62, 10414, 796, 4566, 10786, 40720, 40720, 10414, 14, 25652, 13, 10414, 11537, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1332, 62, 25652, 7, 6077, 62, 10414, 17816, 6077, 62, 25652, 6, 12962, 198 ]
2.802083
96
from json import load from InquirerPy.utils import color_print from InquirerPy import inquirer from .loadouts_manager import Loadouts_Manager from ..loadout_grid import Loadout_Grid
[ 6738, 33918, 1330, 3440, 198, 6738, 17193, 557, 81, 20519, 13, 26791, 1330, 3124, 62, 4798, 198, 6738, 17193, 557, 81, 20519, 1330, 38212, 81, 220, 198, 198, 6738, 764, 2220, 5269, 62, 37153, 1330, 8778, 5269, 62, 13511, 198, 6738, 11485, 2220, 448, 62, 25928, 1330, 8778, 448, 62, 41339, 198 ]
3.538462
52
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/bigtable/v1/bigtable_service.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from gcloud.bigtable._generated import annotations_pb2 as google_dot_api_dot_annotations__pb2 from gcloud.bigtable._generated import bigtable_data_pb2 as google_dot_bigtable_dot_v1_dot_bigtable__data__pb2 from gcloud.bigtable._generated import bigtable_service_messages_pb2 as google_dot_bigtable_dot_v1_dot_bigtable__service__messages__pb2 from gcloud.bigtable._generated import empty_pb2 as google_dot_protobuf_dot_empty__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/bigtable/v1/bigtable_service.proto', package='google.bigtable.v1', syntax='proto3', serialized_pb=b'\n)google/bigtable/v1/bigtable_service.proto\x12\x12google.bigtable.v1\x1a\x1cgoogle/api/annotations.proto\x1a&google/bigtable/v1/bigtable_data.proto\x1a\x32google/bigtable/v1/bigtable_service_messages.proto\x1a\x1bgoogle/protobuf/empty.proto2\xb0\x07\n\x0f\x42igtableService\x12\xa5\x01\n\x08ReadRows\x12#.google.bigtable.v1.ReadRowsRequest\x1a$.google.bigtable.v1.ReadRowsResponse\"L\x82\xd3\xe4\x93\x02\x46\"A/v1/{table_name=projects/*/zones/*/clusters/*/tables/*}/rows:read:\x01*0\x01\x12\xb7\x01\n\rSampleRowKeys\x12(.google.bigtable.v1.SampleRowKeysRequest\x1a).google.bigtable.v1.SampleRowKeysResponse\"O\x82\xd3\xe4\x93\x02I\x12G/v1/{table_name=projects/*/zones/*/clusters/*/tables/*}/rows:sampleKeys0\x01\x12\xa3\x01\n\tMutateRow\x12$.google.bigtable.v1.MutateRowRequest\x1a\x16.google.protobuf.Empty\"X\x82\xd3\xe4\x93\x02R\"M/v1/{table_name=projects/*/zones/*/clusters/*/tables/*}/rows/{row_key}:mutate:\x01*\x12\xd2\x01\n\x11\x43heckAndMutateRow\x12,.google.bigtable.v1.CheckAndMutateRowRequest\x1a-.google.bigtable.v1.CheckAndMutateRowResponse\"`\x82\xd3\xe4\x93\x02Z\"U/v1/{table_name=projects/*/zones/*/clusters/*/tables/*}/rows/{row_key}:checkAndMutate:\x01*\x12\xbf\x01\n\x12ReadModifyWriteRow\x12-.google.bigtable.v1.ReadModifyWriteRowRequest\x1a\x17.google.bigtable.v1.Row\"a\x82\xd3\xe4\x93\x02[\"V/v1/{table_name=projects/*/zones/*/clusters/*/tables/*}/rows/{row_key}:readModifyWrite:\x01*B4\n\x16\x63om.google.bigtable.v1B\x15\x42igtableServicesProtoP\x01\x88\x01\x01\x62\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_bigtable_dot_v1_dot_bigtable__data__pb2.DESCRIPTOR,google_dot_bigtable_dot_v1_dot_bigtable__service__messages__pb2.DESCRIPTOR,google_dot_protobuf_dot_empty__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), b'\n\026com.google.bigtable.v1B\025BigtableServicesProtoP\001\210\001\001') import abc from grpc.beta import implementations as beta_implementations from grpc.early_adopter import implementations as early_adopter_implementations from grpc.framework.alpha import utilities as alpha_utilities from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities class EarlyAdopterBigtableServiceServicer(object): """<fill me in later!>""" __metaclass__ = abc.ABCMeta @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod class EarlyAdopterBigtableServiceServer(object): """<fill me in later!>""" __metaclass__ = abc.ABCMeta @abc.abstractmethod @abc.abstractmethod class EarlyAdopterBigtableServiceStub(object): """<fill me in later!>""" __metaclass__ = abc.ABCMeta @abc.abstractmethod ReadRows.async = None @abc.abstractmethod SampleRowKeys.async = None @abc.abstractmethod MutateRow.async = None @abc.abstractmethod CheckAndMutateRow.async = None @abc.abstractmethod ReadModifyWriteRow.async = None class BetaBigtableServiceServicer(object): """<fill me in later!>""" __metaclass__ = abc.ABCMeta @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod class BetaBigtableServiceStub(object): """The interface to which stubs will conform.""" __metaclass__ = abc.ABCMeta @abc.abstractmethod @abc.abstractmethod @abc.abstractmethod MutateRow.future = None @abc.abstractmethod CheckAndMutateRow.future = None @abc.abstractmethod ReadModifyWriteRow.future = None # @@protoc_insertion_point(module_scope)
[ 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 23645, 14, 14261, 11487, 14, 85, 16, 14, 14261, 11487, 62, 15271, 13, 1676, 1462, 198, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 62, 40842, 17, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 308, 17721, 13, 14261, 11487, 13557, 27568, 1330, 37647, 62, 40842, 17, 355, 23645, 62, 26518, 62, 15042, 62, 26518, 62, 34574, 602, 834, 40842, 17, 198, 6738, 308, 17721, 13, 14261, 11487, 13557, 27568, 1330, 1263, 11487, 62, 7890, 62, 40842, 17, 355, 23645, 62, 26518, 62, 14261, 11487, 62, 26518, 62, 85, 16, 62, 26518, 62, 14261, 11487, 834, 7890, 834, 40842, 17, 198, 6738, 308, 17721, 13, 14261, 11487, 13557, 27568, 1330, 1263, 11487, 62, 15271, 62, 37348, 1095, 62, 40842, 17, 355, 23645, 62, 26518, 62, 14261, 11487, 62, 26518, 62, 85, 16, 62, 26518, 62, 14261, 11487, 834, 15271, 834, 37348, 1095, 834, 40842, 17, 198, 6738, 308, 17721, 13, 14261, 11487, 13557, 27568, 1330, 6565, 62, 40842, 17, 355, 23645, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 28920, 834, 40842, 17, 628, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 13, 8979, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 13297, 14, 14261, 11487, 14, 85, 16, 14, 14261, 11487, 62, 15271, 13, 1676, 1462, 3256, 198, 220, 5301, 11639, 13297, 13, 14261, 11487, 13, 85, 16, 3256, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 11389, 1143, 62, 40842, 28, 65, 6, 59, 77, 8, 13297, 14, 14261, 11487, 14, 85, 16, 14, 14261, 11487, 62, 15271, 13, 1676, 1462, 59, 87, 1065, 59, 87, 1065, 13297, 13, 14261, 11487, 13, 85, 16, 59, 87, 16, 64, 59, 87, 16, 66, 13297, 14, 15042, 14, 34574, 602, 13, 1676, 1462, 59, 87, 16, 64, 5, 13297, 14, 14261, 11487, 14, 85, 16, 14, 14261, 11487, 62, 7890, 13, 1676, 1462, 59, 87, 16, 64, 59, 87, 2624, 13297, 14, 14261, 11487, 14, 85, 16, 14, 14261, 11487, 62, 15271, 62, 37348, 1095, 13, 1676, 1462, 59, 87, 16, 64, 59, 87, 16, 65, 13297, 14, 11235, 672, 3046, 14, 28920, 13, 1676, 1462, 17, 59, 30894, 15, 59, 87, 2998, 59, 77, 59, 87, 15, 69, 59, 87, 3682, 328, 11487, 16177, 59, 87, 1065, 59, 27865, 20, 59, 87, 486, 59, 77, 59, 87, 2919, 5569, 49, 1666, 59, 87, 1065, 2, 13, 13297, 13, 14261, 11487, 13, 85, 16, 13, 5569, 49, 1666, 18453, 59, 87, 16, 64, 35307, 13297, 13, 14261, 11487, 13, 85, 16, 13, 5569, 49, 1666, 31077, 7879, 43, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 59, 87, 3510, 7879, 32, 14, 85, 16, 14, 90, 11487, 62, 3672, 28, 42068, 15211, 14, 89, 1952, 15211, 14, 565, 13654, 15211, 14, 83, 2977, 15211, 92, 14, 8516, 25, 961, 7479, 87, 486, 9, 15, 59, 87, 486, 59, 87, 1065, 59, 30894, 22, 59, 87, 486, 59, 77, 59, 81, 36674, 25166, 40729, 59, 87, 1065, 7, 13, 13297, 13, 14261, 11487, 13, 85, 16, 13, 36674, 25166, 40729, 18453, 59, 87, 16, 64, 737, 13297, 13, 14261, 11487, 13, 85, 16, 13, 36674, 25166, 40729, 31077, 7879, 46, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 40, 59, 87, 1065, 38, 14, 85, 16, 14, 90, 11487, 62, 3672, 28, 42068, 15211, 14, 89, 1952, 15211, 14, 565, 13654, 15211, 14, 83, 2977, 15211, 92, 14, 8516, 25, 39873, 40729, 15, 59, 87, 486, 59, 87, 1065, 59, 27865, 18, 59, 87, 486, 59, 77, 59, 83, 41603, 378, 25166, 59, 87, 1065, 35307, 13297, 13, 14261, 11487, 13, 85, 16, 13, 41603, 378, 25166, 18453, 59, 87, 16, 64, 59, 87, 1433, 13, 13297, 13, 11235, 672, 3046, 13, 40613, 7879, 55, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 49, 7879, 44, 14, 85, 16, 14, 90, 11487, 62, 3672, 28, 42068, 15211, 14, 89, 1952, 15211, 14, 565, 13654, 15211, 14, 83, 2977, 15211, 92, 14, 8516, 14, 90, 808, 62, 2539, 38362, 21973, 378, 7479, 87, 486, 9, 59, 87, 1065, 59, 24954, 17, 59, 87, 486, 59, 77, 59, 87, 1157, 59, 87, 3559, 258, 694, 1870, 41603, 378, 25166, 59, 87, 1065, 38508, 13297, 13, 14261, 11487, 13, 85, 16, 13, 9787, 1870, 41603, 378, 25166, 18453, 59, 87, 16, 64, 34507, 13297, 13, 14261, 11487, 13, 85, 16, 13, 9787, 1870, 41603, 378, 25166, 31077, 7879, 63, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 57, 7879, 52, 14, 85, 16, 14, 90, 11487, 62, 3672, 28, 42068, 15211, 14, 89, 1952, 15211, 14, 565, 13654, 15211, 14, 83, 2977, 15211, 92, 14, 8516, 14, 90, 808, 62, 2539, 38362, 9122, 1870, 41603, 378, 7479, 87, 486, 9, 59, 87, 1065, 59, 87, 19881, 59, 87, 486, 59, 77, 59, 87, 1065, 5569, 5841, 1958, 16594, 25166, 59, 87, 1065, 34507, 13297, 13, 14261, 11487, 13, 85, 16, 13, 5569, 5841, 1958, 16594, 25166, 18453, 59, 87, 16, 64, 59, 87, 1558, 13, 13297, 13, 14261, 11487, 13, 85, 16, 13, 25166, 7879, 64, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 58, 7879, 53, 14, 85, 16, 14, 90, 11487, 62, 3672, 28, 42068, 15211, 14, 89, 1952, 15211, 14, 565, 13654, 15211, 14, 83, 2977, 15211, 92, 14, 8516, 14, 90, 808, 62, 2539, 38362, 961, 5841, 1958, 16594, 7479, 87, 486, 9, 33, 19, 59, 77, 59, 87, 1433, 59, 87, 5066, 296, 13, 13297, 13, 14261, 11487, 13, 85, 16, 33, 59, 87, 1314, 59, 87, 3682, 328, 11487, 31007, 2964, 1462, 47, 59, 87, 486, 59, 87, 3459, 59, 87, 486, 59, 87, 486, 59, 87, 5237, 59, 87, 3312, 1676, 1462, 18, 6, 198, 220, 837, 198, 220, 20086, 41888, 13297, 62, 26518, 62, 15042, 62, 26518, 62, 34574, 602, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 13297, 62, 26518, 62, 14261, 11487, 62, 26518, 62, 85, 16, 62, 26518, 62, 14261, 11487, 834, 7890, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 13297, 62, 26518, 62, 14261, 11487, 62, 26518, 62, 85, 16, 62, 26518, 62, 14261, 11487, 834, 15271, 834, 37348, 1095, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 13297, 62, 26518, 62, 11235, 672, 3046, 62, 26518, 62, 28920, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 12962, 198, 62, 37047, 62, 9945, 13, 38804, 8979, 24564, 1968, 273, 7, 30910, 36584, 32961, 8, 628, 628, 198, 198, 30910, 36584, 32961, 13, 10134, 62, 25811, 796, 6407, 198, 30910, 36584, 32961, 13557, 25811, 796, 4808, 20147, 1968, 273, 13557, 10044, 325, 29046, 7, 20147, 1968, 273, 62, 40842, 17, 13, 8979, 29046, 22784, 275, 6, 59, 77, 59, 45987, 785, 13, 13297, 13, 14261, 11487, 13, 85, 16, 33, 59, 36629, 12804, 11487, 31007, 2964, 1462, 47, 59, 8298, 59, 21536, 59, 8298, 59, 8298, 11537, 198, 11748, 450, 66, 198, 6738, 1036, 14751, 13, 31361, 1330, 25504, 355, 12159, 62, 320, 26908, 602, 198, 6738, 1036, 14751, 13, 11458, 62, 324, 32563, 1330, 25504, 355, 1903, 62, 324, 32563, 62, 320, 26908, 602, 198, 6738, 1036, 14751, 13, 30604, 13, 26591, 1330, 20081, 355, 17130, 62, 315, 2410, 198, 6738, 1036, 14751, 13, 30604, 13, 11321, 1330, 38691, 414, 198, 6738, 1036, 14751, 13, 30604, 13, 3849, 32186, 13, 2550, 1330, 20081, 355, 1986, 62, 315, 2410, 198, 4871, 12556, 2782, 32563, 12804, 11487, 16177, 11838, 16647, 7, 15252, 2599, 198, 220, 37227, 27, 20797, 502, 287, 1568, 0, 29, 37811, 198, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 4871, 12556, 2782, 32563, 12804, 11487, 16177, 10697, 7, 15252, 2599, 198, 220, 37227, 27, 20797, 502, 287, 1568, 0, 29, 37811, 198, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 4871, 12556, 2782, 32563, 12804, 11487, 16177, 1273, 549, 7, 15252, 2599, 198, 220, 37227, 27, 20797, 502, 287, 1568, 0, 29, 37811, 198, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 4149, 49, 1666, 13, 292, 13361, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 27565, 25166, 40729, 13, 292, 13361, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 13859, 378, 25166, 13, 292, 13361, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 6822, 1870, 41603, 378, 25166, 13, 292, 13361, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 4149, 5841, 1958, 16594, 25166, 13, 292, 13361, 796, 6045, 198, 198, 4871, 17993, 12804, 11487, 16177, 11838, 16647, 7, 15252, 2599, 198, 220, 37227, 27, 20797, 502, 287, 1568, 0, 29, 37811, 198, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 198, 4871, 17993, 12804, 11487, 16177, 1273, 549, 7, 15252, 2599, 198, 220, 37227, 464, 7071, 284, 543, 17071, 82, 481, 17216, 526, 15931, 198, 220, 11593, 4164, 330, 31172, 834, 796, 450, 66, 13, 24694, 48526, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 13859, 378, 25166, 13, 37443, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 6822, 1870, 41603, 378, 25166, 13, 37443, 796, 6045, 198, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 4149, 5841, 1958, 16594, 25166, 13, 37443, 796, 6045, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.58804
1,806
# coding=utf-8 # Copyright Huawei Noah's Ark Lab. """ Generates model predictions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys import tensorflow as tf from noahnmt.utils import data_utils from noahnmt.utils import train_utils from noahnmt.utils import trainer_lib from noahnmt.configurable import _deep_merge_dict from noahnmt.bin import train as nmt_train from noahnmt.metrics import multi_bleu from noahnmt.utils import registry from noahnmt.utils import hook_utils try: LOCAL_CACHE_DIR = os.environ['DLS_LOCAL_CACHE_PATH'] import moxing as mox except KeyError: tf.logging.info("Local machine mode") def find_all_checkpoints(model_dir, min_step=0, max_step=0, last_n=0): """ find all checkpoints within [min_step, max_step] Return: list of tuple (step, path) """ path_prefix = model_dir path_suffix = ".index" if not path_prefix.endswith(os.sep) and tf.gfile.IsDirectory(path_prefix): path_prefix += os.sep pattern = path_prefix + "model.ckpt-[0-9]*" + path_suffix try: checkpoints = tf.gfile.Glob(pattern) except tf.errors.NotFoundError: checkpoints = tf.gfile.Glob(pattern) if len(checkpoints) < 1: raise ValueError("Do not find checkpoints!") checkpoints = [name[:-len(path_suffix)] for name in checkpoints] checkpoints = [c for c in checkpoints if checkpoint_exists(c)] # sort according to steps checkpoints = [(int(name.rsplit("-")[-1]), name) for name in checkpoints] checkpoints = [(step, name) for step, name in checkpoints if step >= min_step] if max_step > 0: checkpoints = [(step, name) for step, name in checkpoints if step <= max_step] if len(checkpoints) < 1: raise ValueError("Do not find checkpoints!") checkpoints = sorted(checkpoints, key=lambda x: x[0]) if last_n > 0 and len(checkpoints) > last_n: checkpoints = checkpoints[-last_n:] return checkpoints
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 43208, 18394, 338, 9128, 3498, 13, 198, 198, 37811, 2980, 689, 2746, 16277, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 640, 198, 11748, 25064, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 645, 15386, 16762, 13, 26791, 1330, 1366, 62, 26791, 198, 6738, 645, 15386, 16762, 13, 26791, 1330, 4512, 62, 26791, 198, 6738, 645, 15386, 16762, 13, 26791, 1330, 21997, 62, 8019, 198, 6738, 645, 15386, 16762, 13, 11250, 11970, 1330, 4808, 22089, 62, 647, 469, 62, 11600, 198, 6738, 645, 15386, 16762, 13, 8800, 1330, 4512, 355, 299, 16762, 62, 27432, 198, 6738, 645, 15386, 16762, 13, 4164, 10466, 1330, 5021, 62, 903, 84, 198, 6738, 645, 15386, 16762, 13, 26791, 1330, 20478, 198, 6738, 645, 15386, 16762, 13, 26791, 1330, 8011, 62, 26791, 198, 198, 28311, 25, 198, 220, 37347, 1847, 62, 34, 2246, 13909, 62, 34720, 796, 28686, 13, 268, 2268, 17816, 35, 6561, 62, 29701, 1847, 62, 34, 2246, 13909, 62, 34219, 20520, 198, 220, 1330, 285, 1140, 278, 355, 285, 1140, 198, 16341, 7383, 12331, 25, 198, 220, 48700, 13, 6404, 2667, 13, 10951, 7203, 14565, 4572, 4235, 4943, 628, 198, 4299, 1064, 62, 439, 62, 9122, 13033, 7, 19849, 62, 15908, 11, 949, 62, 9662, 28, 15, 11, 3509, 62, 9662, 28, 15, 11, 938, 62, 77, 28, 15, 2599, 198, 220, 37227, 1064, 477, 36628, 1626, 685, 1084, 62, 9662, 11, 3509, 62, 9662, 60, 628, 220, 8229, 25, 198, 220, 220, 220, 1351, 286, 46545, 357, 9662, 11, 3108, 8, 198, 220, 37227, 198, 220, 3108, 62, 40290, 796, 2746, 62, 15908, 198, 220, 3108, 62, 37333, 844, 796, 27071, 9630, 1, 198, 220, 611, 407, 3108, 62, 40290, 13, 437, 2032, 342, 7, 418, 13, 325, 79, 8, 290, 48700, 13, 70, 7753, 13, 3792, 43055, 7, 6978, 62, 40290, 2599, 198, 220, 220, 220, 3108, 62, 40290, 15853, 28686, 13, 325, 79, 198, 220, 3912, 796, 3108, 62, 40290, 1343, 366, 19849, 13, 694, 457, 49146, 15, 12, 24, 60, 9, 1, 1343, 3108, 62, 37333, 844, 628, 220, 1949, 25, 198, 220, 220, 220, 36628, 796, 48700, 13, 70, 7753, 13, 9861, 672, 7, 33279, 8, 198, 220, 2845, 48700, 13, 48277, 13, 3673, 21077, 12331, 25, 198, 220, 220, 220, 36628, 796, 48700, 13, 70, 7753, 13, 9861, 672, 7, 33279, 8, 628, 220, 611, 18896, 7, 9122, 13033, 8, 1279, 352, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 5211, 407, 1064, 36628, 2474, 8, 628, 220, 36628, 796, 685, 3672, 58, 21912, 11925, 7, 6978, 62, 37333, 844, 15437, 329, 1438, 287, 36628, 60, 198, 220, 36628, 796, 685, 66, 329, 269, 287, 36628, 611, 26954, 62, 1069, 1023, 7, 66, 15437, 198, 220, 1303, 3297, 1864, 284, 4831, 198, 220, 36628, 796, 47527, 600, 7, 3672, 13, 3808, 489, 270, 7203, 12, 4943, 58, 12, 16, 46570, 1438, 8, 329, 1438, 287, 36628, 60, 198, 220, 36628, 796, 47527, 9662, 11, 1438, 8, 329, 2239, 11, 1438, 287, 36628, 611, 2239, 18189, 949, 62, 9662, 60, 198, 220, 611, 3509, 62, 9662, 1875, 657, 25, 198, 220, 220, 220, 36628, 796, 47527, 9662, 11, 1438, 8, 329, 2239, 11, 1438, 287, 36628, 611, 2239, 19841, 3509, 62, 9662, 60, 198, 220, 611, 18896, 7, 9122, 13033, 8, 1279, 352, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 5211, 407, 1064, 36628, 2474, 8, 628, 220, 36628, 796, 23243, 7, 9122, 13033, 11, 1994, 28, 50033, 2124, 25, 2124, 58, 15, 12962, 198, 220, 611, 938, 62, 77, 1875, 657, 290, 18896, 7, 9122, 13033, 8, 1875, 938, 62, 77, 25, 198, 220, 220, 220, 36628, 796, 36628, 58, 12, 12957, 62, 77, 47715, 628, 220, 1441, 36628, 628, 628, 198 ]
2.99848
658
from __future__ import absolute_import import scipy.stats import autograd.numpy as np from autograd.numpy.numpy_vjps import unbroadcast_f from autograd.extend import primitive, defvjp pdf = primitive(scipy.stats.multivariate_normal.pdf) logpdf = primitive(scipy.stats.multivariate_normal.logpdf) entropy = primitive(scipy.stats.multivariate_normal.entropy) # With thanks to Eric Bresch. # Some formulas are from # "An extended collection of matrix derivative results # for forward and reverse mode algorithmic differentiation" # by Mike Giles # https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf defvjp(logpdf, lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(x, lambda g: -np.expand_dims(g, 1) * solve(allow_singular)(cov, (x - mean).T).T), lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(mean, lambda g: np.expand_dims(g, 1) * solve(allow_singular)(cov, (x - mean).T).T), lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(cov, lambda g: np.reshape(g, np.shape(g) + (1, 1)) * covgrad(x, mean, cov, allow_singular))) # Same as log pdf, but multiplied by the pdf (ans). defvjp(pdf, lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(x, lambda g: -np.expand_dims(ans * g, 1) * solve(allow_singular)(cov, (x - mean).T).T), lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(mean, lambda g: np.expand_dims(ans * g, 1) * solve(allow_singular)(cov, (x - mean).T).T), lambda ans, x, mean, cov, allow_singular=False: unbroadcast_f(cov, lambda g: np.reshape(ans * g, np.shape(g) + (1, 1)) * covgrad(x, mean, cov, allow_singular))) defvjp(entropy, None, lambda ans, mean, cov: unbroadcast_f(cov, lambda g: 0.5 * g * np.linalg.inv(cov).T))
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 629, 541, 88, 13, 34242, 198, 198, 11748, 1960, 519, 6335, 13, 77, 32152, 355, 45941, 198, 6738, 1960, 519, 6335, 13, 77, 32152, 13, 77, 32152, 62, 85, 73, 862, 1330, 22619, 6344, 2701, 62, 69, 198, 6738, 1960, 519, 6335, 13, 2302, 437, 1330, 20049, 11, 825, 85, 34523, 628, 198, 12315, 220, 220, 220, 796, 220, 20049, 7, 1416, 541, 88, 13, 34242, 13, 16680, 42524, 62, 11265, 13, 12315, 8, 198, 6404, 12315, 796, 220, 20049, 7, 1416, 541, 88, 13, 34242, 13, 16680, 42524, 62, 11265, 13, 6404, 12315, 8, 198, 298, 28338, 796, 20049, 7, 1416, 541, 88, 13, 34242, 13, 16680, 42524, 62, 11265, 13, 298, 28338, 8, 198, 198, 2, 2080, 5176, 284, 7651, 347, 411, 354, 13, 198, 2, 2773, 32126, 389, 422, 198, 2, 366, 2025, 7083, 4947, 286, 17593, 27255, 2482, 198, 2, 220, 329, 2651, 290, 9575, 4235, 8385, 9383, 32488, 1, 198, 2, 416, 4995, 37538, 198, 2, 3740, 1378, 15332, 13, 11018, 82, 13, 1140, 13, 330, 13, 2724, 14, 70, 2915, 76, 14, 16624, 14, 4535, 12, 2919, 12, 486, 13, 12315, 198, 198, 4299, 85, 34523, 7, 6404, 12315, 11, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 87, 11, 37456, 308, 25, 532, 37659, 13, 11201, 392, 62, 67, 12078, 7, 70, 11, 352, 8, 1635, 8494, 7, 12154, 62, 12215, 934, 5769, 66, 709, 11, 357, 87, 532, 1612, 737, 51, 737, 51, 828, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 32604, 11, 37456, 308, 25, 220, 45941, 13, 11201, 392, 62, 67, 12078, 7, 70, 11, 352, 8, 1635, 8494, 7, 12154, 62, 12215, 934, 5769, 66, 709, 11, 357, 87, 532, 1612, 737, 51, 737, 51, 828, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 66, 709, 11, 37456, 308, 25, 45941, 13, 3447, 1758, 7, 70, 11, 45941, 13, 43358, 7, 70, 8, 1343, 357, 16, 11, 352, 4008, 1635, 39849, 9744, 7, 87, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 22305, 198, 198, 2, 16766, 355, 2604, 37124, 11, 475, 33096, 416, 262, 37124, 357, 504, 737, 198, 4299, 85, 34523, 7, 12315, 11, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 87, 11, 37456, 308, 25, 532, 37659, 13, 11201, 392, 62, 67, 12078, 7, 504, 1635, 308, 11, 352, 8, 1635, 8494, 7, 12154, 62, 12215, 934, 5769, 66, 709, 11, 357, 87, 532, 1612, 737, 51, 737, 51, 828, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 32604, 11, 37456, 308, 25, 220, 45941, 13, 11201, 392, 62, 67, 12078, 7, 504, 1635, 308, 11, 352, 8, 1635, 8494, 7, 12154, 62, 12215, 934, 5769, 66, 709, 11, 357, 87, 532, 1612, 737, 51, 737, 51, 828, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 2124, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 28, 25101, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 66, 709, 11, 37456, 308, 25, 45941, 13, 3447, 1758, 7, 504, 1635, 308, 11, 45941, 13, 43358, 7, 70, 8, 1343, 357, 16, 11, 352, 4008, 1635, 39849, 9744, 7, 87, 11, 1612, 11, 39849, 11, 1249, 62, 12215, 934, 22305, 198, 198, 4299, 85, 34523, 7, 298, 28338, 11, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 37456, 9093, 11, 1612, 11, 39849, 25, 198, 220, 220, 220, 220, 220, 220, 22619, 6344, 2701, 62, 69, 7, 66, 709, 11, 37456, 308, 25, 657, 13, 20, 1635, 308, 1635, 45941, 13, 75, 1292, 70, 13, 16340, 7, 66, 709, 737, 51, 4008, 198 ]
2.420348
747
""" ============================ Author:柠檬班-木森 Time:2021/5/13 20:52 E-mail:[email protected] Company:湖南零檬信息技术有限公司 ======= """
[ 37811, 198, 4770, 25609, 198, 13838, 25, 162, 253, 254, 162, 103, 105, 163, 237, 255, 12, 17312, 101, 162, 96, 106, 198, 7575, 25, 1238, 2481, 14, 20, 14, 1485, 1160, 25, 4309, 198, 36, 12, 4529, 25, 33916, 4869, 24991, 2078, 31, 38227, 13, 785, 198, 39154, 25, 162, 117, 244, 39355, 245, 37239, 35050, 103, 105, 46479, 94, 162, 223, 107, 162, 232, 222, 17312, 107, 17312, 231, 165, 247, 238, 17739, 105, 20998, 116, 198, 1421, 18604, 198, 37811 ]
1.506024
83
#Ask the user for a number and determine whether the number is prime or not. # (For those who have forgotten, a prime number is a number that has no divisors.). # You can (and should!) use your answer to Exercise 4 to help you. Take this # opportunity to practice using functions, described below. userNumber = int(input("Give me a number: ")) if howManyDivisors(userNumber) == 2: print("{0} is prime!".format(userNumber)) else: print("{0} is not prime!".format(userNumber))
[ 2, 25214, 262, 2836, 329, 257, 1271, 290, 5004, 1771, 262, 1271, 318, 6994, 393, 407, 13, 220, 198, 2, 357, 1890, 883, 508, 423, 11564, 11, 257, 6994, 1271, 318, 257, 1271, 326, 468, 645, 2659, 271, 669, 15729, 220, 198, 2, 921, 460, 357, 392, 815, 8133, 779, 534, 3280, 284, 32900, 604, 284, 1037, 345, 13, 7214, 428, 220, 198, 2, 3663, 284, 3357, 1262, 5499, 11, 3417, 2174, 13, 198, 198, 7220, 15057, 796, 493, 7, 15414, 7203, 23318, 502, 257, 1271, 25, 366, 4008, 198, 198, 361, 703, 7085, 24095, 271, 669, 7, 7220, 15057, 8, 6624, 362, 25, 198, 220, 220, 220, 3601, 7203, 90, 15, 92, 318, 6994, 48220, 18982, 7, 7220, 15057, 4008, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 90, 15, 92, 318, 407, 6994, 48220, 18982, 7, 7220, 15057, 4008 ]
3.429577
142
# -*- coding: utf-8 -*- from django import forms from django.test import TestCase from django.utils.encoding import force_text from sortedm2m.forms import SortedMultipleChoiceField from .models import Book, MessyStore, Shelf # regression test
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 5239, 198, 6738, 23243, 76, 17, 76, 13, 23914, 1330, 311, 9741, 31217, 46770, 15878, 198, 198, 6738, 764, 27530, 1330, 4897, 11, 10626, 88, 22658, 11, 1375, 1652, 628, 628, 198, 220, 220, 220, 1303, 20683, 1332, 198 ]
3.189873
79
import fire from __PACKAGE_NAME__ import ioc from appdirs import user_config_dir from pathlib import Path if __name__ == "__main__": test()
[ 11748, 2046, 198, 6738, 11593, 47, 8120, 11879, 62, 20608, 834, 1330, 1312, 420, 198, 6738, 598, 15908, 82, 1330, 2836, 62, 11250, 62, 15908, 198, 6738, 3108, 8019, 1330, 10644, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1332, 3419, 198 ]
2.901961
51
#!/usr/bin/env python3 from aoc_utils import get_input_path, print_elapsed_time from math import ceil, floor import re from timeit import default_timer as timer from typing import List RE_LAST_NUMBER = re.compile(r"(\d+)(?!.*\d)") RE_NUMBER = re.compile(r"\d+") RE_PAIR = re.compile(r"\[\d+,\d+\]") RE_NUMBER_GT_10 = re.compile(r"[\d]{2,}") SnailfishNumber = str def add_without_reduce(a: SnailfishNumber, b: SnailfishNumber) -> SnailfishNumber: """Add the two snailfish numbers` a and b without reducing them""" return "[" + a + "," + b + "]" def insert(s: str, startpos: int, endpos: int, value: str) -> str: """Insert `value` into string `s` at the specified position""" return s[:startpos] + value + s[endpos:] def explode(number: SnailfishNumber) -> SnailfishNumber: """Perform a single explode operation on the given snailfish `number`""" level = 0 for idx, char in enumerate(number): if char == "[": level += 1 elif char == "]": level -= 1 if level == 5: pair_match = RE_PAIR.search(number, pos=idx) assert pair_match != None pair = [*map(int, pair_match.group()[1:-1].split(","))] number = insert(number, pair_match.start(), pair_match.end(), "0") left = RE_LAST_NUMBER.search(number, endpos=idx) right = RE_NUMBER.search(number, pos=idx + 2) if right != None: updated_value = int(right.group()) + pair[1] number = insert(number, right.start(), right.end(), str(updated_value)) if left != None: updated_value = int(left.group()) + pair[0] number = insert(number, left.start(), left.end(), str(updated_value)) # Updated the number, break out of the loop break return number def split(number: SnailfishNumber) -> SnailfishNumber: """Perform a single split operation on the given snailfish `number`""" big_value_match = RE_NUMBER_GT_10.search(number) if big_value_match == None: return number value = int(big_value_match.group()) left = floor(value / 2) right = ceil(value / 2) new_pair = add_without_reduce(str(left), str(right)) return insert(number, big_value_match.start(), big_value_match.end(), new_pair) def reduce(number: SnailfishNumber) -> SnailfishNumber: """Reduce (explode and split) the given snailfish `number`""" while True: updated_number = explode(number) if updated_number != number: number = updated_number continue updated_number = split(number) if updated_number != number: number = updated_number continue # Both explore and split did not change the number, so we're finished return updated_number def add_numbers(a: SnailfishNumber, b: SnailfishNumber) -> SnailfishNumber: """Add the two snailfish numbers `a` and `b`""" unreduced = add_without_reduce(a, b) return reduce(unreduced) def calculate_magnitude(number: SnailfishNumber) -> int: """Calculate the magnitude of the given `number`""" while (pair_match := RE_PAIR.search(number)) != None: pair = [*map(int, pair_match.group()[1:-1].split(","))] result = (3 * pair[0]) + (2 * pair[1]) number = insert(number, pair_match.start(), pair_match.end(), str(result)) return int(number) def calculate_largest_magnitude(numbers: List[SnailfishNumber]) -> int: """Calculate the largest magnitude of the sum of any two `numbers`""" current_max: int = 0 for idx, a in enumerate(numbers): for b in numbers[idx:]: current_max = max(current_max, calculate_magnitude(add_numbers(a, b))) current_max = max(current_max, calculate_magnitude(add_numbers(b, a))) return current_max if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 257, 420, 62, 26791, 1330, 651, 62, 15414, 62, 6978, 11, 3601, 62, 417, 28361, 62, 2435, 198, 6738, 10688, 1330, 2906, 346, 11, 4314, 198, 11748, 302, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 355, 19781, 198, 6738, 19720, 1330, 7343, 198, 198, 2200, 62, 43, 11262, 62, 41359, 13246, 796, 302, 13, 5589, 576, 7, 81, 18109, 59, 67, 10, 5769, 12248, 15885, 59, 67, 8, 4943, 198, 2200, 62, 41359, 13246, 796, 302, 13, 5589, 576, 7, 81, 1, 59, 67, 10, 4943, 198, 2200, 62, 4537, 4663, 796, 302, 13, 5589, 576, 7, 81, 1, 59, 58, 59, 67, 28200, 59, 67, 10, 59, 60, 4943, 198, 2200, 62, 41359, 13246, 62, 19555, 62, 940, 796, 302, 13, 5589, 576, 7, 81, 17912, 59, 67, 60, 90, 17, 11, 92, 4943, 198, 198, 16501, 603, 11084, 15057, 796, 965, 628, 198, 4299, 751, 62, 19419, 62, 445, 7234, 7, 64, 25, 5489, 603, 11084, 15057, 11, 275, 25, 5489, 603, 11084, 15057, 8, 4613, 5489, 603, 11084, 15057, 25, 198, 220, 220, 220, 37227, 4550, 262, 734, 47374, 11084, 3146, 63, 257, 290, 275, 1231, 8868, 606, 37811, 198, 220, 220, 220, 1441, 12878, 1, 1343, 257, 1343, 366, 553, 1343, 275, 1343, 366, 30866, 628, 198, 4299, 7550, 7, 82, 25, 965, 11, 923, 1930, 25, 493, 11, 886, 1930, 25, 493, 11, 1988, 25, 965, 8, 4613, 965, 25, 198, 220, 220, 220, 37227, 44402, 4600, 8367, 63, 656, 4731, 4600, 82, 63, 379, 262, 7368, 2292, 37811, 198, 220, 220, 220, 1441, 264, 58, 25, 9688, 1930, 60, 1343, 1988, 1343, 264, 58, 437, 1930, 47715, 628, 198, 4299, 22818, 7, 17618, 25, 5489, 603, 11084, 15057, 8, 4613, 5489, 603, 11084, 15057, 25, 198, 220, 220, 220, 37227, 5990, 687, 257, 2060, 22818, 4905, 319, 262, 1813, 47374, 11084, 4600, 17618, 63, 37811, 198, 220, 220, 220, 1241, 796, 657, 198, 220, 220, 220, 329, 4686, 87, 11, 1149, 287, 27056, 378, 7, 17618, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1149, 6624, 12878, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1149, 6624, 366, 60, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 48185, 352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1241, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5166, 62, 15699, 796, 4526, 62, 4537, 4663, 13, 12947, 7, 17618, 11, 1426, 28, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 5166, 62, 15699, 14512, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5166, 796, 30138, 8899, 7, 600, 11, 5166, 62, 15699, 13, 8094, 3419, 58, 16, 21912, 16, 4083, 35312, 7, 2430, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 7550, 7, 17618, 11, 5166, 62, 15699, 13, 9688, 22784, 5166, 62, 15699, 13, 437, 22784, 366, 15, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1364, 796, 4526, 62, 43, 11262, 62, 41359, 13246, 13, 12947, 7, 17618, 11, 886, 1930, 28, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 826, 796, 4526, 62, 41359, 13246, 13, 12947, 7, 17618, 11, 1426, 28, 312, 87, 1343, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 826, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6153, 62, 8367, 796, 493, 7, 3506, 13, 8094, 28955, 1343, 5166, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 7550, 7, 17618, 11, 826, 13, 9688, 22784, 826, 13, 437, 22784, 965, 7, 43162, 62, 8367, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1364, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6153, 62, 8367, 796, 493, 7, 9464, 13, 8094, 28955, 1343, 5166, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 7550, 7, 17618, 11, 1364, 13, 9688, 22784, 1364, 13, 437, 22784, 965, 7, 43162, 62, 8367, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19433, 262, 1271, 11, 2270, 503, 286, 262, 9052, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1441, 1271, 628, 198, 4299, 6626, 7, 17618, 25, 5489, 603, 11084, 15057, 8, 4613, 5489, 603, 11084, 15057, 25, 198, 220, 220, 220, 37227, 5990, 687, 257, 2060, 6626, 4905, 319, 262, 1813, 47374, 11084, 4600, 17618, 63, 37811, 198, 220, 220, 220, 1263, 62, 8367, 62, 15699, 796, 4526, 62, 41359, 13246, 62, 19555, 62, 940, 13, 12947, 7, 17618, 8, 198, 220, 220, 220, 611, 1263, 62, 8367, 62, 15699, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1271, 628, 220, 220, 220, 1988, 796, 493, 7, 14261, 62, 8367, 62, 15699, 13, 8094, 28955, 198, 220, 220, 220, 1364, 796, 4314, 7, 8367, 1220, 362, 8, 198, 220, 220, 220, 826, 796, 2906, 346, 7, 8367, 1220, 362, 8, 198, 220, 220, 220, 649, 62, 24874, 796, 751, 62, 19419, 62, 445, 7234, 7, 2536, 7, 9464, 828, 965, 7, 3506, 4008, 628, 220, 220, 220, 1441, 7550, 7, 17618, 11, 1263, 62, 8367, 62, 15699, 13, 9688, 22784, 1263, 62, 8367, 62, 15699, 13, 437, 22784, 649, 62, 24874, 8, 628, 198, 4299, 4646, 7, 17618, 25, 5489, 603, 11084, 15057, 8, 4613, 5489, 603, 11084, 15057, 25, 198, 220, 220, 220, 37227, 7738, 7234, 357, 20676, 1098, 290, 6626, 8, 262, 1813, 47374, 11084, 4600, 17618, 63, 37811, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6153, 62, 17618, 796, 22818, 7, 17618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6153, 62, 17618, 14512, 1271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 6153, 62, 17618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 6153, 62, 17618, 796, 6626, 7, 17618, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6153, 62, 17618, 14512, 1271, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 6153, 62, 17618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5747, 7301, 290, 6626, 750, 407, 1487, 262, 1271, 11, 523, 356, 821, 5201, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6153, 62, 17618, 628, 198, 4299, 751, 62, 77, 17024, 7, 64, 25, 5489, 603, 11084, 15057, 11, 275, 25, 5489, 603, 11084, 15057, 8, 4613, 5489, 603, 11084, 15057, 25, 198, 220, 220, 220, 37227, 4550, 262, 734, 47374, 11084, 3146, 4600, 64, 63, 290, 4600, 65, 63, 37811, 198, 220, 220, 220, 555, 445, 19513, 796, 751, 62, 19419, 62, 445, 7234, 7, 64, 11, 275, 8, 198, 220, 220, 220, 1441, 4646, 7, 403, 445, 19513, 8, 628, 198, 4299, 15284, 62, 76, 4660, 3984, 7, 17618, 25, 5489, 603, 11084, 15057, 8, 4613, 493, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 14735, 286, 262, 1813, 4600, 17618, 63, 37811, 198, 220, 220, 220, 981, 357, 24874, 62, 15699, 19039, 4526, 62, 4537, 4663, 13, 12947, 7, 17618, 4008, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5166, 796, 30138, 8899, 7, 600, 11, 5166, 62, 15699, 13, 8094, 3419, 58, 16, 21912, 16, 4083, 35312, 7, 2430, 4008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 357, 18, 1635, 5166, 58, 15, 12962, 1343, 357, 17, 1635, 5166, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 7550, 7, 17618, 11, 5166, 62, 15699, 13, 9688, 22784, 5166, 62, 15699, 13, 437, 22784, 965, 7, 20274, 4008, 198, 220, 220, 220, 1441, 493, 7, 17618, 8, 628, 198, 4299, 15284, 62, 28209, 62, 76, 4660, 3984, 7, 77, 17024, 25, 7343, 58, 16501, 603, 11084, 15057, 12962, 4613, 493, 25, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 4387, 14735, 286, 262, 2160, 286, 597, 734, 4600, 77, 17024, 63, 37811, 198, 220, 220, 220, 1459, 62, 9806, 25, 493, 796, 657, 198, 220, 220, 220, 329, 4686, 87, 11, 257, 287, 27056, 378, 7, 77, 17024, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 275, 287, 3146, 58, 312, 87, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9806, 796, 3509, 7, 14421, 62, 9806, 11, 15284, 62, 76, 4660, 3984, 7, 2860, 62, 77, 17024, 7, 64, 11, 275, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 9806, 796, 3509, 7, 14421, 62, 9806, 11, 15284, 62, 76, 4660, 3984, 7, 2860, 62, 77, 17024, 7, 65, 11, 257, 22305, 198, 220, 220, 220, 1441, 1459, 62, 9806, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.441469
1,606
#!/usr/bin/env python # coding: utf-8 # In[1]: get_ipython().system('pip install ibm_watson') # In[2]: from ibm_watson import TextToSpeechV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator # In[3]: apikey = '4R5OHrdqVaLXzVXrIVJkYOkUHOzIQb4-GhREAzsm8S5D' url = 'https://api.au-syd.text-to-speech.watson.cloud.ibm.com/instances/30839c81-94d8-4d7b-900e-d1e51c7ac6c5' # In[4]: authenticator = IAMAuthenticator(apikey) tts = TextToSpeechV1(authenticator=authenticator) tts.set_service_url(url) # In[ ]: # In[18]: with open('mario.txt', 'r') as f: text = f.readlines() # In[19]: text = [line.replace('\n','') for line in text] # In[20]: text = ''.join(str(line) for line in text) # In[21]: with open('./marioB.mp3', 'wb') as audio_file: res = tts.synthesize(mario, accept='audio/mp3', voice='pt-BR_IsabelaV3Voice').get_result() audio_file.write(res.content) # In[14]: import json voices = tts.list_voices().get_result() print(json.dumps(voices, indent=2)) # In[24]: mario = """MÁRIO BROTHERS: O PAI DOS JOGOS ANTIGOS. Mário, o encanador mais famoso do mundo dos games, e seu irmão Luigi, são certamente um dos maores fenômenos da história dos videogames. O objetivo básico do jogo é enfrentar as tartarugas e outras criaturas em inúmeras fases e níveis. A jogabilidade é horizontal e bastante simples.""" # In[25]: with open('./MarioBRO.mp3', 'wb') as audio_file: res = tts.synthesize(mario, accept='audio/mp3', voice='pt-BR_IsabelaV3Voice').get_result() audio_file.write(res.content) # In[ ]:
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 554, 58, 16, 5974, 628, 198, 1136, 62, 541, 7535, 22446, 10057, 10786, 79, 541, 2721, 24283, 76, 62, 86, 13506, 11537, 628, 198, 2, 554, 58, 17, 5974, 628, 198, 6738, 24283, 76, 62, 86, 13506, 1330, 8255, 2514, 5248, 3055, 53, 16, 198, 6738, 24283, 76, 62, 17721, 62, 21282, 74, 62, 7295, 13, 41299, 44549, 1330, 314, 2390, 47649, 26407, 628, 198, 2, 554, 58, 18, 5974, 628, 198, 499, 522, 88, 796, 705, 19, 49, 20, 12096, 4372, 80, 33906, 43, 55, 89, 53, 55, 81, 3824, 41, 74, 56, 18690, 52, 32298, 89, 33866, 65, 19, 12, 41126, 2200, 26903, 5796, 23, 50, 20, 35, 6, 198, 6371, 796, 705, 5450, 1378, 15042, 13, 559, 12, 1837, 67, 13, 5239, 12, 1462, 12, 45862, 13, 86, 13506, 13, 17721, 13, 571, 76, 13, 785, 14, 8625, 1817, 14, 21495, 2670, 66, 6659, 12, 5824, 67, 23, 12, 19, 67, 22, 65, 12, 12865, 68, 12, 67, 16, 68, 4349, 66, 22, 330, 21, 66, 20, 6, 628, 198, 2, 554, 58, 19, 5974, 628, 198, 41299, 26407, 796, 314, 2390, 47649, 26407, 7, 499, 522, 88, 8, 198, 83, 912, 796, 8255, 2514, 5248, 3055, 53, 16, 7, 41299, 26407, 28, 41299, 26407, 8, 198, 83, 912, 13, 2617, 62, 15271, 62, 6371, 7, 6371, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198, 198, 2, 554, 58, 1507, 5974, 628, 198, 4480, 1280, 10786, 3876, 952, 13, 14116, 3256, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 2420, 796, 277, 13, 961, 6615, 3419, 628, 198, 2, 554, 58, 1129, 5974, 628, 198, 5239, 796, 685, 1370, 13, 33491, 10786, 59, 77, 3256, 7061, 8, 329, 1627, 287, 2420, 60, 628, 198, 2, 554, 58, 1238, 5974, 628, 198, 5239, 796, 705, 4458, 22179, 7, 2536, 7, 1370, 8, 329, 1627, 287, 2420, 8, 628, 198, 2, 554, 58, 2481, 5974, 628, 198, 4480, 1280, 7, 4458, 14, 3876, 952, 33, 13, 3149, 18, 3256, 705, 39346, 11537, 355, 6597, 62, 7753, 25, 198, 220, 220, 220, 581, 796, 256, 912, 13, 1837, 429, 956, 1096, 7, 3876, 952, 11, 2453, 11639, 24051, 14, 3149, 18, 3256, 3809, 11639, 457, 12, 11473, 62, 3792, 9608, 64, 53, 18, 35708, 27691, 1136, 62, 20274, 3419, 198, 220, 220, 220, 6597, 62, 7753, 13, 13564, 7, 411, 13, 11299, 8, 628, 198, 2, 554, 58, 1415, 5974, 628, 198, 11748, 33918, 198, 13038, 1063, 796, 256, 912, 13, 4868, 62, 13038, 1063, 22446, 1136, 62, 20274, 3419, 198, 4798, 7, 17752, 13, 67, 8142, 7, 13038, 1063, 11, 33793, 28, 17, 4008, 628, 198, 2, 554, 58, 1731, 5974, 628, 198, 3876, 952, 796, 37227, 44, 127, 223, 7112, 46, 11177, 26946, 4877, 25, 440, 8147, 40, 43036, 449, 7730, 2640, 3537, 51, 3528, 2640, 13, 337, 6557, 27250, 11, 267, 2207, 272, 7079, 285, 15152, 1145, 28213, 466, 27943, 78, 23430, 1830, 11, 304, 384, 84, 220, 2533, 28749, 39139, 11, 264, 28749, 5051, 3263, 68, 23781, 23430, 17266, 2850, 277, 268, 27083, 3653, 418, 12379, 1554, 10205, 7496, 23430, 36342, 1047, 13, 440, 26181, 316, 23593, 275, 40138, 3713, 466, 474, 24076, 38251, 551, 69, 1156, 283, 355, 35842, 283, 1018, 292, 304, 503, 8847, 269, 380, 2541, 292, 795, 287, 21356, 647, 292, 277, 1386, 304, 299, 8836, 303, 271, 13, 317, 48342, 14991, 312, 671, 38251, 16021, 304, 19918, 12427, 985, 2374, 526, 15931, 628, 198, 2, 554, 58, 1495, 5974, 628, 198, 4480, 1280, 7, 4458, 14, 42315, 11473, 46, 13, 3149, 18, 3256, 705, 39346, 11537, 355, 6597, 62, 7753, 25, 198, 220, 220, 220, 581, 796, 256, 912, 13, 1837, 429, 956, 1096, 7, 3876, 952, 11, 2453, 11639, 24051, 14, 3149, 18, 3256, 3809, 11639, 457, 12, 11473, 62, 3792, 9608, 64, 53, 18, 35708, 27691, 1136, 62, 20274, 3419, 198, 220, 220, 220, 6597, 62, 7753, 13, 13564, 7, 411, 13, 11299, 8, 628, 198, 2, 554, 58, 2361, 25, 628, 628, 198 ]
2.288824
689
from pyzil.zilliqa import chain from flask import Flask, jsonify import json app = Flask(__name__) app.config.from_object(__name__) @app.route('/addressState/<address>, 'methods=['GET']) if __name__ == '__main__': # address = "fe001824823b12b58708bf24edd94d8b5e1cfcf7" app.run()
[ 6738, 12972, 89, 346, 13, 89, 50173, 20402, 1330, 6333, 198, 6738, 42903, 1330, 46947, 11, 33918, 1958, 198, 11748, 33918, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 11250, 13, 6738, 62, 15252, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 21975, 9012, 14, 27, 21975, 22330, 705, 24396, 82, 28, 17816, 18851, 6, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 2, 2209, 796, 366, 5036, 405, 1507, 23045, 1954, 65, 1065, 65, 3365, 32583, 19881, 1731, 6048, 5824, 67, 23, 65, 20, 68, 16, 12993, 12993, 22, 1, 198, 220, 220, 220, 598, 13, 5143, 3419, 198 ]
2.461538
117
# voor nu: qt of wx toolkit = 'qt'
[ 2, 410, 2675, 14364, 25, 10662, 83, 286, 266, 87, 198, 25981, 15813, 796, 705, 39568, 6, 198 ]
1.944444
18
# Generated by Django 3.1.13 on 2021-08-22 17:49 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 1485, 319, 33448, 12, 2919, 12, 1828, 1596, 25, 2920, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.875
32
""" Solution to Numbers in Words Based off this Algorithm: https://stackoverflow.com/a/3299672/7396801 """ import math zero_to_nineteen_map = [ 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen' ] tens_map = [ 'twenty', 'thirty', 'forty', 'fifty', 'sixty', 'seventy', 'eighty', 'ninety' ] denom_map = [ '' ,'thousand', 'million', 'billion', 'trillion', 'quadrillion', 'quintillion', 'sextillion', 'septillion', 'octillion', 'nonillion', 'decillion', 'undecillion', 'duodecillion', 'tredecillion', 'quattuordecillion', 'sexdecillion', 'septendecillion', 'octodecillion', 'novemdecillion', 'vigintillion', ] if __name__ == '__main__': while True: number = input('Enter a number: ') # type checking here try: number = int(number) except ValueError: number = -1 if number < 0: # corner case print('Invalid Amount') exit(0) english_number = number_to_words(number) print(english_number + '\n')
[ 37811, 201, 198, 220, 220, 220, 28186, 284, 27797, 287, 23087, 201, 198, 220, 220, 220, 13403, 572, 428, 978, 42289, 25, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 18, 22579, 43864, 14, 22, 2670, 3104, 486, 201, 198, 37811, 201, 198, 201, 198, 11748, 10688, 201, 198, 201, 198, 22570, 62, 1462, 62, 35073, 34026, 62, 8899, 796, 685, 201, 198, 220, 220, 220, 705, 22570, 3256, 705, 505, 3256, 705, 11545, 3256, 705, 15542, 3256, 705, 14337, 3256, 705, 13261, 3256, 705, 19412, 3256, 201, 198, 220, 220, 220, 705, 26548, 3256, 705, 26022, 3256, 705, 30888, 3256, 705, 1452, 3256, 705, 11129, 574, 3256, 705, 4246, 9954, 3256, 705, 400, 22530, 3256, 201, 198, 220, 220, 220, 705, 14337, 7821, 3256, 705, 32041, 7821, 3256, 705, 19412, 7821, 3256, 705, 325, 1151, 6429, 3256, 705, 26022, 6429, 3256, 705, 35073, 34026, 6, 201, 198, 60, 201, 198, 201, 198, 83, 641, 62, 8899, 796, 685, 201, 198, 220, 220, 220, 705, 4246, 3787, 3256, 705, 400, 5893, 3256, 705, 3319, 88, 3256, 705, 69, 24905, 3256, 705, 82, 19404, 3256, 705, 325, 1151, 88, 3256, 705, 68, 14400, 3256, 705, 35073, 2963, 6, 201, 198, 60, 201, 198, 201, 198, 6559, 296, 62, 8899, 796, 685, 201, 198, 220, 220, 220, 10148, 837, 6, 400, 29910, 3256, 705, 14100, 3256, 705, 24540, 3256, 705, 2213, 1131, 3256, 705, 421, 41909, 1131, 3256, 201, 198, 220, 220, 220, 705, 421, 600, 1131, 3256, 705, 325, 742, 1131, 3256, 705, 325, 457, 1131, 3256, 705, 38441, 1131, 3256, 705, 13159, 1131, 3256, 201, 198, 220, 220, 220, 705, 12501, 1131, 3256, 705, 917, 721, 1131, 3256, 705, 646, 375, 721, 1131, 3256, 705, 83, 445, 721, 1131, 3256, 705, 421, 1078, 84, 585, 721, 1131, 3256, 201, 198, 220, 220, 220, 705, 8044, 12501, 1131, 3256, 705, 325, 457, 437, 721, 1131, 3256, 705, 38441, 375, 721, 1131, 3256, 705, 77, 659, 9132, 721, 1131, 3256, 705, 85, 328, 600, 1131, 3256, 201, 198, 60, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 201, 198, 220, 220, 220, 981, 6407, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 5128, 10786, 17469, 257, 1271, 25, 705, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2099, 10627, 994, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 493, 7, 17618, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 796, 532, 16, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1271, 1279, 657, 25, 1303, 5228, 1339, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 44651, 26308, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 15, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 46932, 62, 17618, 796, 1271, 62, 1462, 62, 10879, 7, 17618, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 39126, 62, 17618, 1343, 705, 59, 77, 11537, 201, 198 ]
2.194296
561
""" Copyright 2020 Expedia, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from setuptools import setup, find_packages import pathlib import versioneer HERE = pathlib.Path(__file__).parent README = (HERE / "README.md").read_text() setup( name="map_maker", version=versioneer.get_version(), packages=find_packages(exclude=["data/", "scripts/"]), author="Tim Renner", install_requires=[ "click>=7.0", "toolz>=0.9", "bokeh>=1.1.0", "Shapely>=1.6.4.post2", "pyproj>=1.9.5.1,<2", "folium>=0.10.0,<1", ], entry_points={"console_scripts": ["map_maker=map_maker.cli:cli"]}, cmdclass=versioneer.get_cmdclass(), long_description=README, long_description_content_type="text/markdown", url="https://github.com/ExpediaGroup/map-maker", license="Apache 2.0", classifiers=[ # From https://pypi.org/classifiers/ "Development Status :: 4 - Beta", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
[ 37811, 198, 15269, 12131, 5518, 5507, 11, 3457, 13, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 11748, 3108, 8019, 198, 11748, 2196, 28153, 198, 198, 39, 9338, 796, 3108, 8019, 13, 15235, 7, 834, 7753, 834, 737, 8000, 198, 15675, 11682, 796, 357, 39, 9338, 1220, 366, 15675, 11682, 13, 9132, 11074, 961, 62, 5239, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 8899, 62, 10297, 1600, 198, 220, 220, 220, 2196, 28, 690, 7935, 263, 13, 1136, 62, 9641, 22784, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7, 1069, 9152, 28, 14692, 7890, 14, 1600, 366, 46521, 14, 8973, 828, 198, 220, 220, 220, 1772, 2625, 14967, 7152, 1008, 1600, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12976, 29, 28, 22, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25981, 89, 29, 28, 15, 13, 24, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 65, 2088, 71, 29, 28, 16, 13, 16, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33383, 306, 29, 28, 16, 13, 21, 13, 19, 13, 7353, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 1676, 73, 29, 28, 16, 13, 24, 13, 20, 13, 16, 11, 27, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9062, 1505, 29, 28, 15, 13, 940, 13, 15, 11, 27, 16, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5726, 62, 13033, 28, 4895, 41947, 62, 46521, 1298, 14631, 8899, 62, 10297, 28, 8899, 62, 10297, 13, 44506, 25, 44506, 8973, 5512, 198, 220, 220, 220, 23991, 4871, 28, 690, 7935, 263, 13, 1136, 62, 28758, 4871, 22784, 198, 220, 220, 220, 890, 62, 11213, 28, 15675, 11682, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 19016, 2625, 5450, 1378, 12567, 13, 785, 14, 16870, 5507, 13247, 14, 8899, 12, 10297, 1600, 198, 220, 220, 220, 5964, 2625, 25189, 4891, 362, 13, 15, 1600, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3574, 3740, 1378, 79, 4464, 72, 13, 2398, 14, 4871, 13350, 14, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 604, 532, 17993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 24843, 10442, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 1600, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.652244
624
""" Simple example set LCD (c) 2016 EKM Metering. """ from ekmmeters import * #set up port my_port_name = "/dev/ttyO4" my_meter_address = "000300001463" # log to console ekm_set_log(ekm_print_log) # init port and create meter port = SerialPort(my_port_name) if (port.initPort() == True): my_meter = V4Meter(my_meter_address) my_meter.attachPort(port) else: print("Cannot open port") exit() # Method one: preferred lcd_items = [LCDItems.RMS_Volts_Ln_1, LCDItems.Line_Freq] if my_meter.setLCDCmd(lcd_items): print("Meter should now show Line 1 Volts and Frequency.") # Method two: parsing strings (use append normally) lcd_items = [my_meter.lcdString("RMS_Volts_Ln_1"), my_meter.lcdString("Line_Freq")] if my_meter.setLCDCmd(lcd_items): print("Meter should now show Line 1 Volts and Frequency.") port.closePort()
[ 37811, 17427, 1672, 900, 23598, 198, 7, 66, 8, 1584, 412, 42, 44, 3395, 1586, 13, 198, 37811, 198, 6738, 304, 74, 3020, 7307, 1330, 1635, 198, 198, 2, 2617, 510, 2493, 198, 1820, 62, 634, 62, 3672, 796, 12813, 7959, 14, 42852, 46, 19, 1, 198, 1820, 62, 27231, 62, 21975, 796, 366, 830, 18, 2388, 1415, 5066, 1, 198, 2, 2604, 284, 8624, 198, 988, 76, 62, 2617, 62, 6404, 7, 988, 76, 62, 4798, 62, 6404, 8, 198, 198, 2, 2315, 2493, 290, 2251, 16430, 198, 634, 796, 23283, 13924, 7, 1820, 62, 634, 62, 3672, 8, 198, 361, 357, 634, 13, 15003, 13924, 3419, 6624, 6407, 2599, 198, 220, 220, 220, 616, 62, 27231, 796, 569, 19, 44, 2357, 7, 1820, 62, 27231, 62, 21975, 8, 198, 220, 220, 220, 616, 62, 27231, 13, 47348, 13924, 7, 634, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 34, 34574, 1280, 2493, 4943, 198, 220, 220, 220, 8420, 3419, 198, 198, 2, 11789, 530, 25, 9871, 198, 75, 10210, 62, 23814, 796, 685, 5639, 35, 23022, 13, 49, 5653, 62, 16598, 912, 62, 43, 77, 62, 16, 11, 23598, 23022, 13, 13949, 62, 20366, 80, 60, 198, 361, 616, 62, 27231, 13, 2617, 5639, 9697, 9132, 7, 75, 10210, 62, 23814, 2599, 198, 220, 220, 220, 3601, 7203, 44, 2357, 815, 783, 905, 6910, 352, 4709, 912, 290, 31902, 19570, 198, 198, 2, 11789, 734, 25, 32096, 13042, 357, 1904, 24443, 7685, 8, 198, 75, 10210, 62, 23814, 796, 685, 1820, 62, 27231, 13, 75, 10210, 10100, 7203, 49, 5653, 62, 16598, 912, 62, 43, 77, 62, 16, 12340, 616, 62, 27231, 13, 75, 10210, 10100, 7203, 13949, 62, 20366, 80, 4943, 60, 198, 361, 616, 62, 27231, 13, 2617, 5639, 9697, 9132, 7, 75, 10210, 62, 23814, 2599, 198, 220, 220, 220, 3601, 7203, 44, 2357, 815, 783, 905, 6910, 352, 4709, 912, 290, 31902, 19570, 198, 198, 634, 13, 19836, 13924, 3419, 198 ]
2.553191
329
import numpy as np import tensorflow as tf from source.model import Model from source.model_lidar import ModelLiDAR import utils from utils import get_normal_map
[ 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 2723, 13, 19849, 1330, 9104, 198, 6738, 2723, 13, 19849, 62, 75, 312, 283, 1330, 9104, 32304, 35, 1503, 198, 11748, 3384, 4487, 198, 6738, 3384, 4487, 1330, 651, 62, 11265, 62, 8899, 198 ]
3.375
48
import numpy as np import gzip import cPickle as pickle import matplotlib.pyplot as plt import matplotlib.cm as cm import scipy.ndimage.interpolation as scipint import sys sys.path.insert(0, '../mlp_test') from data_utils import load_mnist data_set = load_mnist()[0] index_1 = 4 rotangle = 30 img_arr_1 = data_set[0][index_1].reshape((28, 28)) img_val_1 = data_set[1][index_1] rotArr = scipint.rotate(img_arr_1, rotangle, order=0, reshape = False) plt.subplot(1, 2, 1) plt.title(str(img_val_1)) fig = plt.imshow(img_arr_1, cmap=cm.binary) fig.axes.get_xaxis().set_ticks([]) fig.axes.get_yaxis().set_ticks([]) plt.subplot(1, 2, 2) plt.title("Rotated scipy") fig = plt.imshow(rotArr, cmap=cm.binary) fig.axes.get_xaxis().set_ticks([]) fig.axes.get_yaxis().set_ticks([]) plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 308, 13344, 198, 11748, 269, 31686, 293, 355, 2298, 293, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 13, 11215, 355, 12067, 198, 11748, 629, 541, 88, 13, 358, 9060, 13, 3849, 16104, 341, 355, 629, 541, 600, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 705, 40720, 4029, 79, 62, 9288, 11537, 198, 6738, 220, 1366, 62, 26791, 1330, 3440, 62, 10295, 396, 198, 198, 7890, 62, 2617, 796, 3440, 62, 10295, 396, 3419, 58, 15, 60, 628, 198, 9630, 62, 16, 796, 604, 198, 10599, 9248, 796, 1542, 198, 198, 9600, 62, 3258, 62, 16, 796, 1366, 62, 2617, 58, 15, 7131, 9630, 62, 16, 4083, 3447, 1758, 19510, 2078, 11, 2579, 4008, 198, 9600, 62, 2100, 62, 16, 796, 1366, 62, 2617, 58, 16, 7131, 9630, 62, 16, 60, 198, 198, 10599, 3163, 81, 796, 629, 541, 600, 13, 10599, 378, 7, 9600, 62, 3258, 62, 16, 11, 5724, 9248, 11, 1502, 28, 15, 11, 27179, 1758, 796, 10352, 8, 628, 198, 489, 83, 13, 7266, 29487, 7, 16, 11, 362, 11, 352, 8, 198, 489, 83, 13, 7839, 7, 2536, 7, 9600, 62, 2100, 62, 16, 4008, 198, 5647, 796, 458, 83, 13, 320, 12860, 7, 9600, 62, 3258, 62, 16, 11, 269, 8899, 28, 11215, 13, 39491, 8, 198, 5647, 13, 897, 274, 13, 1136, 62, 87, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 5647, 13, 897, 274, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 628, 198, 489, 83, 13, 7266, 29487, 7, 16, 11, 362, 11, 362, 8, 198, 489, 83, 13, 7839, 7203, 24864, 515, 629, 541, 88, 4943, 198, 5647, 796, 458, 83, 13, 320, 12860, 7, 10599, 3163, 81, 11, 269, 8899, 28, 11215, 13, 39491, 8, 198, 5647, 13, 897, 274, 13, 1136, 62, 87, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 5647, 13, 897, 274, 13, 1136, 62, 88, 22704, 22446, 2617, 62, 83, 3378, 26933, 12962, 198, 198, 489, 83, 13, 12860, 3419, 628 ]
2.234463
354
# Next Token Prediction with Transformers # ======================================= # https://pytorch.org/tutorials/beginner/transformer_tutorial.html # # Purpose: Train the transformer model described in "Attention Is All You Need" # (https://arxiv.org/pdf/1706.03762.pdf) on a language modeling task to predict # the next token in a sequence. # # Model: # - Embeddings are generated for each token in the a sequence # - Positional encodings are added to the token embeddings # - Square attention mask only allows tokens to see previous positions # - Embeddings and attention mask are passed through Transformer encoder layers # - Linear layer predicts the next token # Modules import math import time import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import TransformerEncoder, TransformerEncoderLayer import torchtext from torchtext.data.utils import get_tokenizer # Parameters batch_train = 20 batch_evaluate = 10 chunks = 35 dropout = 0.2 epochs = 3 token_embedding = 200 transformer_heads = 2 transformer_dimensions = 200 transformer_layers = 2 class TransformerModel(nn.Module): """Transformer model based on https://arxiv.org/pdf/1706.03762.pdf""" def __init__(self, vocabulary, token_embedding, transformer_heads, transformer_dimensions, transformer_layers, dropout=0.5): """Initialize transformer model Arguments: vocabulary {int} -- Size of the token vocabulary token_embedding {int} -- Size of token embedding transformer_heads {int} -- Number of transformer encoder attention heads transformer_dimensions {int} -- Dimension of transformer encoder feedforward network transformer_layers {int} -- Number of transformer encoder layers Keyword Arguments: dropout {float} -- Dropout rate (default: {0.5}) """ super(TransformerModel, self).__init__() self.token_embedding = token_embedding # Embedding and positional encoding of tokens self.embedder = nn.Embedding(vocabulary, token_embedding) self.positional_encoder = PositionalEncoding(token_embedding, dropout) # Transformer encoder layers transformer_layer = TransformerEncoderLayer(token_embedding, transformer_heads, transformer_dimensions, dropout) self.transformer_encoder = TransformerEncoder(transformer_layer, transformer_layers) # Linear layer for predicting next token self.linear = nn.Linear(token_embedding, vocabulary) # Initialize weights self.init_weights() class PositionalEncoding(nn.Module): """Add sinusoidal positional information about the tokens""" def batch_text(text, batches): """Truncate text to a multiple of batches and reshape into batched tensor Arguments: text {generator} -- Text generator batches {int} -- Token batch size Returns: tensor -- Text reshaped into rectangular tensor """ text = wiki_text.numericalize([text.examples[0].text]) text = text.narrow(0, 0, (text.size(0) // batches) * batches) return text.view(batches, -1).t().contiguous() def get_batch(text, batch): """Generate input and target sequence for batch Arguments: text {tensor} -- Text tensor batch {[type]} -- Batch number to call Returns: tuple -- Data and target tensors """ length = min(chunks, len(text) - 1 - batch) data = text[batch:batch+length] target = text[batch+1:batch+1+length].view(-1) return data, target # Use GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Import Wikitext-2 dataset wiki_text = torchtext.data.Field(tokenize=get_tokenizer('basic_english'), init_token='<sos>', eos_token='<eos>', lower=True) train_txt, validation_txt, test_txt = torchtext.datasets.WikiText2.splits(wiki_text) wiki_text.build_vocab(train_txt) # Batch Wikitext-2 for training and evaluation train_data = batch_text(train_txt, batch_train).to(device) validation_data = batch_text(validation_txt, batch_evaluate).to(device) test_data = batch_text(test_txt, batch_evaluate).to(device) # Instantiate model vocabulary = len(wiki_text.vocab.stoi) model = TransformerModel(vocabulary, token_embedding, transformer_heads, transformer_dimensions, transformer_layers, dropout).to(device) # Set criterion and optimizer for learning criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=5.0) # Adjust learning rate through epochs scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) def train(): """Train model""" model.train() total_loss = 0. start_time = time.time() for batch, i in enumerate(range(0, train_data.size(0) - 1, chunks)): data, targets = get_batch(train_data, i) optimizer.zero_grad() output = model(data) loss = criterion(output.view(-1, vocabulary), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() total_loss += loss.item() log_interval = 200 if batch % log_interval == 0 and batch > 0: cur_loss = total_loss / log_interval elapsed_time = time.time() - start_time print(f'| epoch {epoch:3d} | {batch:5d}/{len(train_data) // chunks:5d} batches | lr ' f'{scheduler.get_lr()[0]:02.2f} | {elapsed_time * 1000 / log_interval:5.2f}' f' ms/batch | loss {cur_loss:5.2f} | ppl {math.exp(cur_loss):8.2f}') total_loss = 0 start_time = time.time() def evaluate(model, validation_data): """Evaluate model""" model.eval() total_loss = 0. with torch.no_grad(): for i in range(0, validation_data.size(0) - 1, chunks): data, targets = get_batch(validation_data, i) output = model(data) output_flat = output.view(-1, vocabulary) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(validation_data) - 1) # Train over multiple epochs best_model = None best_validation_loss = float('inf') for epoch in range(1, epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(model, validation_data) print('-' * 89) print(f'| end of epoch {epoch:3d} | time: {time.time() - epoch_start_time:5.2f}s | ' f'valid loss {val_loss:5.2f} | valid ppl {math.exp(val_loss):8.2f}') print('-' * 89) # Save model if best validation loss observed thus far if val_loss < best_validation_loss: best_validation_loss = val_loss best_model = model # Adjust learning rate scheduler.step() # Evaluate the model on the test dataset test_loss = evaluate(best_model, test_data) print('=' * 89) print(f'| End of training | test loss {test_loss:5.2f} | test ppl {math.exp(test_loss):8.2f}') print('=' * 89)
[ 2, 7406, 29130, 46690, 351, 39185, 198, 2, 46111, 50155, 198, 2, 3740, 1378, 9078, 13165, 354, 13, 2398, 14, 83, 44917, 82, 14, 27471, 1008, 14, 7645, 16354, 62, 83, 44917, 13, 6494, 198, 2, 220, 198, 2, 32039, 25, 16835, 262, 47385, 2746, 3417, 287, 366, 8086, 1463, 1148, 1439, 921, 10664, 1, 198, 2, 357, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1558, 3312, 13, 15, 2718, 5237, 13, 12315, 8, 319, 257, 3303, 21128, 4876, 284, 4331, 198, 2, 262, 1306, 11241, 287, 257, 8379, 13, 198, 2, 198, 2, 9104, 25, 198, 2, 532, 13302, 6048, 654, 389, 7560, 329, 1123, 11241, 287, 262, 257, 8379, 198, 2, 532, 18574, 1859, 2207, 375, 654, 389, 2087, 284, 262, 11241, 11525, 67, 654, 198, 2, 532, 9276, 3241, 9335, 691, 3578, 16326, 284, 766, 2180, 6116, 198, 2, 532, 13302, 6048, 654, 290, 3241, 9335, 389, 3804, 832, 3602, 16354, 2207, 12342, 11685, 198, 2, 532, 44800, 7679, 26334, 262, 1306, 11241, 198, 198, 2, 3401, 5028, 198, 11748, 10688, 198, 11748, 640, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 20471, 1330, 3602, 16354, 27195, 12342, 11, 3602, 16354, 27195, 12342, 49925, 198, 11748, 28034, 5239, 198, 6738, 28034, 5239, 13, 7890, 13, 26791, 1330, 651, 62, 30001, 7509, 198, 198, 2, 40117, 198, 43501, 62, 27432, 796, 1160, 198, 43501, 62, 49786, 796, 838, 198, 354, 14125, 796, 3439, 198, 14781, 448, 796, 657, 13, 17, 198, 538, 5374, 82, 796, 513, 198, 30001, 62, 20521, 12083, 796, 939, 198, 7645, 16354, 62, 16600, 796, 362, 198, 7645, 16354, 62, 27740, 5736, 796, 939, 198, 7645, 16354, 62, 75, 6962, 796, 362, 628, 198, 4871, 3602, 16354, 17633, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 8291, 16354, 2746, 1912, 319, 3740, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1558, 3312, 13, 15, 2718, 5237, 13, 12315, 37811, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 25818, 11, 11241, 62, 20521, 12083, 11, 47385, 62, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 27740, 5736, 11, 47385, 62, 75, 6962, 11, 4268, 448, 28, 15, 13, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 47385, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25818, 1391, 600, 92, 1377, 12849, 286, 262, 11241, 25818, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 62, 20521, 12083, 1391, 600, 92, 1377, 12849, 286, 11241, 11525, 12083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 16600, 1391, 600, 92, 1377, 7913, 286, 47385, 2207, 12342, 3241, 6665, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 27740, 5736, 1391, 600, 92, 1377, 34024, 286, 47385, 2207, 12342, 3745, 11813, 3127, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 75, 6962, 1391, 600, 92, 1377, 7913, 286, 47385, 2207, 12342, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4268, 448, 1391, 22468, 92, 1377, 14258, 448, 2494, 357, 12286, 25, 1391, 15, 13, 20, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 8291, 16354, 17633, 11, 2116, 737, 834, 15003, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30001, 62, 20521, 12083, 796, 11241, 62, 20521, 12083, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13302, 6048, 278, 290, 45203, 21004, 286, 16326, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20521, 1082, 796, 299, 77, 13, 31567, 6048, 278, 7, 18893, 22528, 11, 11241, 62, 20521, 12083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1930, 1859, 62, 12685, 12342, 796, 18574, 1859, 27195, 7656, 7, 30001, 62, 20521, 12083, 11, 4268, 448, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3602, 16354, 2207, 12342, 11685, 198, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 29289, 796, 3602, 16354, 27195, 12342, 49925, 7, 30001, 62, 20521, 12083, 11, 47385, 62, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 27740, 5736, 11, 4268, 448, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7645, 16354, 62, 12685, 12342, 796, 3602, 16354, 27195, 12342, 7, 7645, 16354, 62, 29289, 11, 47385, 62, 75, 6962, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44800, 7679, 329, 25539, 1306, 11241, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29127, 796, 299, 77, 13, 14993, 451, 7, 30001, 62, 20521, 12083, 11, 25818, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 20768, 1096, 19590, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15003, 62, 43775, 3419, 628, 198, 4871, 18574, 1859, 27195, 7656, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4550, 7813, 385, 47502, 45203, 1321, 546, 262, 16326, 37811, 628, 198, 4299, 15458, 62, 5239, 7, 5239, 11, 37830, 2599, 198, 220, 220, 220, 37227, 2898, 19524, 378, 2420, 284, 257, 3294, 286, 37830, 290, 27179, 1758, 656, 7365, 1740, 11192, 273, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 1391, 8612, 1352, 92, 1377, 8255, 17301, 198, 220, 220, 220, 220, 220, 220, 220, 37830, 1391, 600, 92, 1377, 29130, 15458, 2546, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11192, 273, 1377, 8255, 27179, 5813, 656, 36954, 11192, 273, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2420, 796, 22719, 62, 5239, 13, 77, 6975, 605, 1096, 26933, 5239, 13, 1069, 12629, 58, 15, 4083, 5239, 12962, 198, 220, 220, 220, 2420, 796, 2420, 13, 77, 6018, 7, 15, 11, 657, 11, 357, 5239, 13, 7857, 7, 15, 8, 3373, 37830, 8, 1635, 37830, 8, 198, 220, 220, 220, 1441, 2420, 13, 1177, 7, 8664, 2052, 11, 532, 16, 737, 83, 22446, 3642, 29709, 3419, 198, 198, 4299, 651, 62, 43501, 7, 5239, 11, 15458, 2599, 198, 220, 220, 220, 37227, 8645, 378, 5128, 290, 2496, 8379, 329, 15458, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 1391, 83, 22854, 92, 1377, 8255, 11192, 273, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1391, 58, 4906, 48999, 1377, 347, 963, 1271, 284, 869, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 46545, 1377, 6060, 290, 2496, 11192, 669, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4129, 796, 949, 7, 354, 14125, 11, 18896, 7, 5239, 8, 532, 352, 532, 15458, 8, 198, 220, 220, 220, 1366, 796, 2420, 58, 43501, 25, 43501, 10, 13664, 60, 198, 220, 220, 220, 2496, 796, 2420, 58, 43501, 10, 16, 25, 43501, 10, 16, 10, 13664, 4083, 1177, 32590, 16, 8, 198, 220, 220, 220, 1441, 1366, 11, 2496, 198, 198, 2, 5765, 11362, 611, 1695, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 198, 198, 2, 17267, 11145, 578, 742, 12, 17, 27039, 198, 15466, 62, 5239, 796, 28034, 5239, 13, 7890, 13, 15878, 7, 30001, 1096, 28, 1136, 62, 30001, 7509, 10786, 35487, 62, 39126, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2315, 62, 30001, 11639, 27, 82, 418, 29, 3256, 304, 418, 62, 30001, 11639, 27, 68, 418, 29, 3256, 2793, 28, 17821, 8, 198, 27432, 62, 14116, 11, 21201, 62, 14116, 11, 1332, 62, 14116, 796, 28034, 5239, 13, 19608, 292, 1039, 13, 32603, 8206, 17, 13, 22018, 896, 7, 15466, 62, 5239, 8, 198, 15466, 62, 5239, 13, 11249, 62, 18893, 397, 7, 27432, 62, 14116, 8, 198, 198, 2, 347, 963, 11145, 578, 742, 12, 17, 329, 3047, 290, 12660, 198, 27432, 62, 7890, 796, 15458, 62, 5239, 7, 27432, 62, 14116, 11, 15458, 62, 27432, 737, 1462, 7, 25202, 8, 198, 12102, 341, 62, 7890, 796, 15458, 62, 5239, 7, 12102, 341, 62, 14116, 11, 15458, 62, 49786, 737, 1462, 7, 25202, 8, 198, 9288, 62, 7890, 796, 15458, 62, 5239, 7, 9288, 62, 14116, 11, 15458, 62, 49786, 737, 1462, 7, 25202, 8, 198, 198, 2, 24470, 9386, 2746, 198, 18893, 22528, 796, 18896, 7, 15466, 62, 5239, 13, 18893, 397, 13, 301, 23013, 8, 198, 19849, 796, 3602, 16354, 17633, 7, 18893, 22528, 11, 11241, 62, 20521, 12083, 11, 47385, 62, 16600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47385, 62, 27740, 5736, 11, 47385, 62, 75, 6962, 11, 4268, 448, 737, 1462, 7, 25202, 8, 198, 198, 2, 5345, 34054, 290, 6436, 7509, 329, 4673, 198, 22213, 28019, 796, 299, 77, 13, 21544, 14539, 28338, 43, 793, 3419, 198, 40085, 7509, 796, 28034, 13, 40085, 13, 38475, 35, 7, 19849, 13, 17143, 7307, 22784, 300, 81, 28, 20, 13, 15, 8, 198, 198, 2, 20292, 4673, 2494, 832, 36835, 82, 198, 1416, 704, 18173, 796, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 13, 8600, 35972, 7, 40085, 7509, 11, 352, 13, 15, 11, 34236, 28, 15, 13, 3865, 8, 198, 198, 4299, 4512, 33529, 198, 220, 220, 220, 37227, 44077, 2746, 37811, 198, 220, 220, 220, 2746, 13, 27432, 3419, 198, 220, 220, 220, 2472, 62, 22462, 796, 657, 13, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 15458, 11, 1312, 287, 27056, 378, 7, 9521, 7, 15, 11, 4512, 62, 7890, 13, 7857, 7, 15, 8, 532, 352, 11, 22716, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 6670, 796, 651, 62, 43501, 7, 27432, 62, 7890, 11, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 34054, 7, 22915, 13, 1177, 32590, 16, 11, 25818, 828, 6670, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 20471, 13, 26791, 13, 15036, 62, 9744, 62, 27237, 41052, 19849, 13, 17143, 7307, 22784, 657, 13, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22462, 15853, 2994, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 3849, 2100, 796, 939, 198, 220, 220, 220, 220, 220, 220, 220, 611, 15458, 4064, 2604, 62, 3849, 2100, 6624, 657, 290, 15458, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 22462, 796, 2472, 62, 22462, 1220, 2604, 62, 3849, 2100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42118, 62, 2435, 796, 640, 13, 2435, 3419, 532, 923, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 91, 36835, 1391, 538, 5374, 25, 18, 67, 92, 930, 1391, 43501, 25, 20, 67, 92, 14, 90, 11925, 7, 27432, 62, 7890, 8, 3373, 22716, 25, 20, 67, 92, 37830, 930, 300, 81, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 90, 1416, 704, 18173, 13, 1136, 62, 14050, 3419, 58, 15, 5974, 2999, 13, 17, 69, 92, 930, 1391, 417, 28361, 62, 2435, 1635, 8576, 1220, 2604, 62, 3849, 2100, 25, 20, 13, 17, 69, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 13845, 14, 43501, 930, 2994, 1391, 22019, 62, 22462, 25, 20, 13, 17, 69, 92, 930, 279, 489, 1391, 11018, 13, 11201, 7, 22019, 62, 22462, 2599, 23, 13, 17, 69, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22462, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 198, 4299, 13446, 7, 19849, 11, 21201, 62, 7890, 2599, 198, 220, 220, 220, 37227, 36, 2100, 4985, 2746, 37811, 198, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 2472, 62, 22462, 796, 657, 13, 198, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 21201, 62, 7890, 13, 7857, 7, 15, 8, 532, 352, 11, 22716, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 6670, 796, 651, 62, 43501, 7, 12102, 341, 62, 7890, 11, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2746, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 38568, 796, 5072, 13, 1177, 32590, 16, 11, 25818, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 22462, 15853, 18896, 7, 7890, 8, 1635, 34054, 7, 22915, 62, 38568, 11, 6670, 737, 9186, 3419, 198, 220, 220, 220, 1441, 2472, 62, 22462, 1220, 357, 11925, 7, 12102, 341, 62, 7890, 8, 532, 352, 8, 198, 198, 2, 16835, 625, 3294, 36835, 82, 198, 13466, 62, 19849, 796, 6045, 198, 13466, 62, 12102, 341, 62, 22462, 796, 12178, 10786, 10745, 11537, 198, 1640, 36835, 287, 2837, 7, 16, 11, 36835, 82, 1343, 352, 2599, 198, 220, 220, 220, 36835, 62, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 4512, 3419, 198, 220, 220, 220, 1188, 62, 22462, 796, 13446, 7, 19849, 11, 21201, 62, 7890, 8, 198, 220, 220, 220, 3601, 10786, 19355, 1635, 9919, 8, 198, 220, 220, 220, 3601, 7, 69, 6, 91, 886, 286, 36835, 1391, 538, 5374, 25, 18, 67, 92, 930, 640, 25, 1391, 2435, 13, 2435, 3419, 532, 36835, 62, 9688, 62, 2435, 25, 20, 13, 17, 69, 92, 82, 930, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 12102, 2994, 1391, 2100, 62, 22462, 25, 20, 13, 17, 69, 92, 930, 4938, 279, 489, 1391, 11018, 13, 11201, 7, 2100, 62, 22462, 2599, 23, 13, 17, 69, 92, 11537, 198, 220, 220, 220, 3601, 10786, 19355, 1635, 9919, 8, 628, 220, 220, 220, 1303, 12793, 2746, 611, 1266, 21201, 2994, 6515, 4145, 1290, 198, 220, 220, 220, 611, 1188, 62, 22462, 1279, 1266, 62, 12102, 341, 62, 22462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 12102, 341, 62, 22462, 796, 1188, 62, 22462, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 19849, 796, 2746, 628, 220, 220, 220, 1303, 20292, 4673, 2494, 198, 220, 220, 220, 6038, 18173, 13, 9662, 3419, 198, 198, 2, 26439, 4985, 262, 2746, 319, 262, 1332, 27039, 198, 9288, 62, 22462, 796, 13446, 7, 13466, 62, 19849, 11, 1332, 62, 7890, 8, 198, 4798, 10786, 11639, 1635, 9919, 8, 198, 4798, 7, 69, 6, 91, 5268, 286, 3047, 930, 1332, 2994, 1391, 9288, 62, 22462, 25, 20, 13, 17, 69, 92, 930, 1332, 279, 489, 1391, 11018, 13, 11201, 7, 9288, 62, 22462, 2599, 23, 13, 17, 69, 92, 11537, 198, 4798, 10786, 11639, 1635, 9919, 8 ]
2.573551
2,760
# Token from Token import botToken, botUsername # Public libraries from aiogram import Bot, Dispatcher, executor, types from aiogram.types.message import ContentType from aiogram.types.inline_keyboard import InlineKeyboardMarkup, InlineKeyboardButton import numberize from threading import Thread import sys from datetime import datetime import time import os # Own libraries import DBH from NewPrint import Print, EnableLogging, DisableLogging, PrintMainInfo from SkipUpdates import EnableUpdates, DisableUpdates, IsUpdate from GetExchangeRates import SheduleUpdate, SheduleCryptoUpdate from BlackList import IsUserInBlackList, LoadBlackList, RemoveFromBlackList, AddToBlackList import Processing from Processing import AnswerText, LoadCurrencies, LoadCrypto, LoadDictionaries, LoadFlags, SearchValuesAndCurrencies, SpecialSplit, TextToDigit, RemoveLinksAndWords import TextHelper as CustomMarkup from TextHelper import LoadTexts, GetText import ListsCache import StopDDoS # Main variables bot = Bot(token=botToken) dp = Dispatcher(bot) IsStartedCount = False numberizerUA = numberize.Numberizer(lang='uk') numberizerRU = numberize.Numberizer(lang='ru') numberizerEN = numberize.Numberizer(lang='en') # Public commands @dp.message_handler(commands=['about']) # analog about and source @dp.message_handler(commands=['help']) @dp.message_handler(commands=['settings']) @dp.message_handler(commands=['donate']) @dp.message_handler(commands=['wrong']) # Admin`s commands @dp.message_handler(commands=['echo']) @dp.message_handler(commands=['count']) # Analog of "count". @dp.message_handler(commands=['newadmin']) @dp.message_handler(commands=['stats']) @dp.message_handler(commands=['fullstats']) @dp.message_handler(commands=['backup']) # analog "backup", "logs" and "reports". @dp.message_handler(commands=['unban']) @dp.message_handler(commands=['ban']) # Technical commands @dp.message_handler(commands=['start']) @dp.message_handler(content_types=ContentType.ANY) @dp.callback_query_handler(lambda call: True) if __name__ == '__main__': LoadDataForBot() if len(sys.argv) == 3: if not CheckArgument(sys.argv[1], sys.argv[2]): Print("Error arg.", "E") sys.exit() elif len(sys.argv) == 5 and sys.argv[1] != sys.argv[3]: if not CheckArgument(sys.argv[1], sys.argv[2]): Print("Error arg.", "E") sys.exit() elif not CheckArgument(sys.argv[3], sys.argv[4]): Print("Error arg.", "E") sys.exit() elif len(sys.argv) == 7 and sys.argv[1] != sys.argv[3] and sys.argv[1] != sys.argv[2] and sys.argv[2] != sys.argv[3]: if not CheckArgument(sys.argv[1], sys.argv[2]): Print("Error arg.", "E") sys.exit() elif not CheckArgument(sys.argv[3], sys.argv[4]): Print("Error arg.", "E") sys.exit() elif not CheckArgument(sys.argv[5], sys.argv[6]): Print("Error arg.", "E") sys.exit() elif len(sys.argv) == 5 and not sys.argv[1] != sys.argv[3] or len(sys.argv) == 7 and not (sys.argv[1] != sys.argv[3] and sys.argv[1] != sys.argv[2] and sys.argv[2] != sys.argv[3]): Print("Error. Duplicate argument.", "E") sys.exit() ThreadUpdateExchangeRates = Thread(target = SheduleUpdate) ThreadUpdateExchangeRates.start() ThreadUpdateCryptoRates = Thread(target = SheduleCryptoUpdate) ThreadUpdateCryptoRates.start() ThreadRegularBackup = Thread(target = RegularBackup) ThreadRegularBackup.start() ThreadRegularStats = Thread(target = RegularStats) ThreadRegularStats.start() executor.start_polling(dp, skip_updates = IsUpdate())
[ 2, 29130, 198, 6738, 29130, 1330, 10214, 30642, 11, 10214, 5842, 13292, 198, 198, 2, 5094, 12782, 198, 6738, 257, 72, 21857, 1330, 18579, 11, 3167, 8071, 2044, 11, 3121, 273, 11, 3858, 198, 6738, 257, 72, 21857, 13, 19199, 13, 20500, 1330, 14041, 6030, 198, 6738, 257, 72, 21857, 13, 19199, 13, 45145, 62, 2539, 3526, 1330, 554, 1370, 9218, 3526, 9704, 929, 11, 554, 1370, 9218, 3526, 21864, 198, 11748, 1271, 1096, 198, 6738, 4704, 278, 1330, 14122, 198, 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 198, 11748, 28686, 198, 198, 2, 11744, 12782, 198, 11748, 20137, 39, 198, 6738, 968, 18557, 1330, 12578, 11, 27882, 11187, 2667, 11, 31529, 11187, 2667, 11, 12578, 13383, 12360, 198, 6738, 32214, 4933, 19581, 1330, 27882, 4933, 19581, 11, 31529, 4933, 19581, 11, 1148, 10260, 198, 6738, 3497, 3109, 3803, 49, 689, 1330, 1375, 5950, 10260, 11, 1375, 5950, 23919, 78, 10260, 220, 198, 6738, 2619, 8053, 1330, 1148, 12982, 818, 9915, 8053, 11, 8778, 9915, 8053, 11, 17220, 4863, 9915, 8053, 11, 3060, 2514, 9915, 8053, 198, 11748, 28403, 198, 6738, 28403, 1330, 23998, 8206, 11, 8778, 26628, 14038, 11, 8778, 23919, 78, 11, 8778, 35, 2867, 3166, 11, 8778, 40053, 11, 11140, 40161, 1870, 26628, 14038, 11, 6093, 41205, 11, 8255, 2514, 19511, 270, 11, 17220, 31815, 1870, 37117, 198, 11748, 8255, 47429, 355, 8562, 9704, 929, 198, 6738, 8255, 47429, 1330, 8778, 8206, 82, 11, 3497, 8206, 198, 11748, 44968, 30562, 198, 11748, 13707, 35, 46498, 198, 198, 2, 8774, 9633, 198, 13645, 796, 18579, 7, 30001, 28, 13645, 30642, 8, 198, 26059, 796, 3167, 8071, 2044, 7, 13645, 8, 198, 3792, 10434, 276, 12332, 796, 10352, 198, 198, 17618, 7509, 34970, 796, 1271, 1096, 13, 15057, 7509, 7, 17204, 11639, 2724, 11537, 198, 17618, 7509, 49, 52, 796, 1271, 1096, 13, 15057, 7509, 7, 17204, 11639, 622, 11537, 198, 17618, 7509, 1677, 796, 1271, 1096, 13, 15057, 7509, 7, 17204, 11639, 268, 11537, 198, 198, 2, 5094, 9729, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 10755, 6, 12962, 220, 1303, 15075, 546, 290, 2723, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 16794, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 33692, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 9099, 378, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 36460, 6, 12962, 198, 198, 2, 32053, 63, 82, 9729, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 30328, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 9127, 6, 12962, 220, 1303, 50088, 286, 366, 9127, 1911, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 3605, 28482, 6, 12962, 220, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 34242, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 12853, 34242, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 1891, 929, 6, 12962, 1303, 15075, 366, 1891, 929, 1600, 366, 6404, 82, 1, 290, 366, 48922, 1911, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 403, 3820, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 3820, 6, 12962, 198, 198, 2, 20671, 9729, 198, 31, 26059, 13, 20500, 62, 30281, 7, 9503, 1746, 28, 17816, 9688, 6, 12962, 198, 198, 31, 26059, 13, 20500, 62, 30281, 7, 11299, 62, 19199, 28, 19746, 6030, 13, 31827, 8, 198, 198, 31, 26059, 13, 47423, 62, 22766, 62, 30281, 7, 50033, 869, 25, 6407, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 8778, 6601, 1890, 20630, 3419, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 16, 4357, 25064, 13, 853, 85, 58, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 1288, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 642, 290, 25064, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 18, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 16, 4357, 25064, 13, 853, 85, 58, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 18, 4357, 25064, 13, 853, 85, 58, 19, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 1288, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 767, 290, 25064, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 18, 60, 290, 25064, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 17, 60, 290, 25064, 13, 853, 85, 58, 17, 60, 14512, 25064, 13, 853, 85, 58, 18, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 16, 4357, 25064, 13, 853, 85, 58, 17, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 18, 4357, 25064, 13, 853, 85, 58, 19, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 6822, 28100, 1713, 7, 17597, 13, 853, 85, 58, 20, 4357, 25064, 13, 853, 85, 58, 21, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 1822, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 198, 220, 220, 220, 1288, 361, 18896, 7, 17597, 13, 853, 85, 8, 6624, 642, 290, 407, 25064, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 18, 60, 393, 18896, 7, 17597, 13, 853, 85, 8, 6624, 767, 290, 407, 357, 17597, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 18, 60, 290, 25064, 13, 853, 85, 58, 16, 60, 14512, 25064, 13, 853, 85, 58, 17, 60, 290, 25064, 13, 853, 85, 58, 17, 60, 14512, 25064, 13, 853, 85, 58, 18, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 12578, 7203, 12331, 13, 49821, 5344, 4578, 33283, 366, 36, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 3419, 628, 220, 220, 220, 14122, 10260, 3109, 3803, 49, 689, 796, 14122, 7, 16793, 796, 1375, 5950, 10260, 8, 198, 220, 220, 220, 14122, 10260, 3109, 3803, 49, 689, 13, 9688, 3419, 198, 220, 220, 220, 14122, 10260, 23919, 78, 49, 689, 796, 14122, 7, 16793, 796, 1375, 5950, 23919, 78, 10260, 8, 198, 220, 220, 220, 14122, 10260, 23919, 78, 49, 689, 13, 9688, 3419, 198, 220, 220, 220, 14122, 40164, 7282, 929, 796, 14122, 7, 16793, 796, 23603, 7282, 929, 8, 198, 220, 220, 220, 14122, 40164, 7282, 929, 13, 9688, 3419, 198, 220, 220, 220, 14122, 40164, 29668, 796, 14122, 7, 16793, 796, 23603, 29668, 8, 198, 220, 220, 220, 14122, 40164, 29668, 13, 9688, 3419, 198, 220, 220, 220, 3121, 273, 13, 9688, 62, 30393, 278, 7, 26059, 11, 14267, 62, 929, 19581, 796, 1148, 10260, 28955 ]
2.59059
1,424
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 628 ]
2.891892
37
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None
[ 2, 30396, 329, 257, 13934, 5509, 10139, 13, 198, 2, 1398, 12200, 19667, 7, 15252, 2599, 198, 2, 220, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2124, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 796, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 6045, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3506, 796, 6045, 198 ]
2.207792
77
import os import sys import dataclasses import openpyxl from typing import Any, List from PySide2.QtCore import ( Qt, QModelIndex, QAbstractTableModel ) # For Sample from PySide2 import QtWidgets, QtCore, QtGui from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * path, fname = os.path.split(__file__) os.chdir(path) @dataclasses.dataclass # custom Data class @dataclasses.dataclass # setupUi if __name__ == "__main__": app = QApplication(sys.argv) window = TestWindow() window.show() sys.exit(app.exec_())
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 4818, 330, 28958, 198, 11748, 1280, 9078, 87, 75, 198, 198, 6738, 19720, 1330, 4377, 11, 7343, 198, 6738, 9485, 24819, 17, 13, 48, 83, 14055, 1330, 357, 198, 220, 220, 220, 33734, 11, 198, 220, 220, 220, 1195, 17633, 15732, 11, 198, 220, 220, 220, 1195, 23839, 10962, 17633, 198, 8, 198, 198, 2, 1114, 27565, 198, 6738, 9485, 24819, 17, 1330, 33734, 54, 312, 11407, 11, 33734, 14055, 11, 33734, 8205, 72, 198, 6738, 9485, 24819, 17, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 24819, 17, 13, 48, 83, 8205, 72, 1330, 1635, 198, 6738, 9485, 24819, 17, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 198, 6978, 11, 277, 3672, 796, 28686, 13, 6978, 13, 35312, 7, 834, 7753, 834, 8, 198, 418, 13, 354, 15908, 7, 6978, 8, 628, 198, 31, 19608, 330, 28958, 13, 19608, 330, 31172, 198, 220, 220, 220, 220, 198, 198, 2, 2183, 6060, 1398, 198, 31, 19608, 330, 28958, 13, 19608, 330, 31172, 628, 628, 628, 198, 220, 220, 220, 1303, 9058, 52, 72, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 796, 1195, 23416, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 4324, 796, 6208, 27703, 3419, 198, 220, 220, 220, 4324, 13, 12860, 3419, 628, 220, 220, 220, 25064, 13, 37023, 7, 1324, 13, 18558, 62, 28955 ]
2.479167
240
import os import json main()
[ 11748, 28686, 198, 11748, 33918, 628, 628, 198, 12417, 3419, 198 ]
3
11
# Compute GradCam with predicted captions as input from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import sys import json import os.path as osp import scipy import numpy as np import argparse from im2txt import metrics coco_dir = 'data/mscoco/' dataType = 'val2014' cocoImgDir = '{}/images/{}/'.format(coco_dir, dataType) coco_masks = '{}/masks/{}/'.format(coco_dir, dataType) def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Generate bbox output from a Fast R-CNN network') parser.add_argument('--checkpoint_path', dest='checkpoint_path', help='Model checkpoint file.', default='', type=str) parser.add_argument('--vocab_file', dest='vocab_file', help='Text file containing the vocabulary.', default='', type=str) parser.add_argument('--json_path', dest='json_path', help='JSON file with model predictions.', default='', type=str) parser.add_argument('--img_path', dest='img_path', help='Text file containing image IDs', default='', type=str) parser.add_argument('--save_path', dest='save_path', help='Path to the location where outputs are saved.', default='', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() count, acc = evaluate(args.checkpoint_path, args.vocab_file, args.json_path, args.img_path, args.save_path) print("\ncount: %d instances" % (count)) print("pointing: %.5f" % acc)
[ 2, 3082, 1133, 17701, 21701, 351, 11001, 3144, 507, 355, 5128, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 25064, 198, 11748, 33918, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 629, 541, 88, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 1822, 29572, 198, 198, 6738, 545, 17, 14116, 1330, 20731, 198, 198, 66, 25634, 62, 15908, 796, 705, 7890, 14, 907, 66, 25634, 14, 6, 198, 7890, 6030, 796, 705, 2100, 4967, 6, 198, 66, 25634, 3546, 70, 35277, 796, 705, 90, 92, 14, 17566, 14, 90, 92, 14, 4458, 18982, 7, 66, 25634, 62, 15908, 11, 1366, 6030, 8, 198, 66, 25634, 62, 5356, 591, 796, 705, 90, 92, 14, 5356, 591, 14, 90, 92, 14, 4458, 18982, 7, 66, 25634, 62, 15908, 11, 1366, 6030, 8, 198, 198, 4299, 21136, 62, 22046, 33529, 198, 220, 37227, 198, 220, 2547, 325, 5128, 7159, 198, 220, 37227, 198, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 8645, 378, 275, 3524, 5072, 422, 257, 12549, 371, 12, 18474, 3127, 11537, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 9122, 4122, 62, 6978, 3256, 2244, 11639, 9122, 4122, 62, 6978, 3256, 1037, 11639, 17633, 26954, 2393, 2637, 11, 4277, 11639, 3256, 2099, 28, 2536, 8, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 18893, 397, 62, 7753, 3256, 2244, 11639, 18893, 397, 62, 7753, 3256, 1037, 11639, 8206, 2393, 7268, 262, 25818, 2637, 11, 4277, 11639, 3256, 2099, 28, 2536, 8, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 17752, 62, 6978, 3256, 2244, 11639, 17752, 62, 6978, 3256, 1037, 11639, 40386, 2393, 351, 2746, 16277, 2637, 11, 4277, 11639, 3256, 2099, 28, 2536, 8, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 9600, 62, 6978, 3256, 2244, 11639, 9600, 62, 6978, 3256, 1037, 11639, 8206, 2393, 7268, 2939, 32373, 3256, 4277, 11639, 3256, 2099, 28, 2536, 8, 198, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 21928, 62, 6978, 3256, 2244, 11639, 21928, 62, 6978, 3256, 1037, 11639, 15235, 284, 262, 4067, 810, 23862, 389, 7448, 2637, 11, 4277, 11639, 3256, 2099, 28, 2536, 8, 628, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 6624, 352, 25, 198, 220, 220, 220, 30751, 13, 4798, 62, 16794, 3419, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 628, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 1441, 26498, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 26498, 796, 21136, 62, 22046, 3419, 198, 220, 954, 11, 697, 796, 13446, 7, 22046, 13, 9122, 4122, 62, 6978, 11, 26498, 13, 18893, 397, 62, 7753, 11, 26498, 13, 17752, 62, 6978, 11, 26498, 13, 9600, 62, 6978, 11, 26498, 13, 21928, 62, 6978, 8, 198, 220, 3601, 7203, 59, 77, 9127, 25, 4064, 67, 10245, 1, 4064, 357, 9127, 4008, 198, 220, 3601, 7203, 4122, 278, 25, 4064, 13, 20, 69, 1, 4064, 697, 8, 628 ]
3.007663
522
''' Created on Jan 31, 2021 @author: mballance ''' from endpoint_mgr import EndpointMgr
[ 7061, 6, 198, 41972, 319, 2365, 3261, 11, 33448, 198, 198, 31, 9800, 25, 285, 1894, 590, 198, 7061, 6, 198, 6738, 36123, 62, 76, 2164, 1330, 5268, 4122, 44, 2164, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220 ]
2.295455
44
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2016 Alexander Maul # # Author(s): # # Alexander Maul <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ''' Created on Sep 15, 2016 @author: amaul ''' import logging from .errors import BufrTableError from .tables import Tables from . import parse_bufrdc, parse_eccodes, parse_libdwd parse_modules = {'bufrdc': parse_bufrdc, 'eccodes': parse_eccodes, 'libdwd': parse_libdwd} logger = logging.getLogger("trollbufr") def load_differ(tables,meta,tab_p, tab_f): """Load all tables referenced by the BUFR, if the versions differ from those already loaded.""" if tables is None or tables.differs( meta['master'], meta['mver'], meta['lver'], meta['center'], meta['subcenter']): tables = load_all( meta['master'], meta['center'], meta['subcenter'], meta['mver'], meta['lver'], tab_p, tab_f ) return tables _text_tab_loaded = "Table loaded: '%s'" def load_all(master, center, subcenter, master_vers, local_vers, base_path, tabf="eccodes"): """Load all given versions of tables""" try: tparse = parse_modules[tabf] except: raise BufrTableError("Unknown table parser '%s'!" % tabf) tables = Tables(master, master_vers, local_vers, center, subcenter) # Table A (centres) try: mp, _ = tparse.get_file("A", base_path, master, center, subcenter, master_vers, local_vers) tparse.load_tab_a(tables, mp) logger.info(_text_tab_loaded, mp) except Exception as e: logger.warning(e) # # Table B (elements) try: mp, lp = tparse.get_file("B", base_path, master, center, subcenter, master_vers, local_vers) # International (master) table tparse.load_tab_b(tables, mp) logger.info(_text_tab_loaded, mp) # Local table if local_vers: tparse.load_tab_b(tables, lp) logger.info(_text_tab_loaded, lp) except Exception as e: logger.error(e) raise e # # Table C (operators) try: mp, _ = tparse.get_file("C", base_path, master, center, subcenter, master_vers, local_vers) tparse.load_tab_c(tables, mp) logger.info(_text_tab_loaded, mp) except Exception as e: logger.warning(e) # # Table D (sequences) try: mp, lp = tparse.get_file("D", base_path, master, center, subcenter, master_vers, local_vers) # International (master) table tparse.load_tab_d(tables, mp) logger.info(_text_tab_loaded, mp) # Local table if local_vers: tparse.load_tab_d(tables, lp) logger.info(_text_tab_loaded, lp) except Exception as e: logger.error(e) raise e # # Table CF (code/flags) try: mp, lp = tparse.get_file("CF", base_path, master, center, subcenter, master_vers, local_vers) # International (master) table tparse.load_tab_cf(tables, mp) logger.info(_text_tab_loaded, mp) # Local table if local_vers: tparse.load_tab_cf(tables, lp) logger.info(_text_tab_loaded, lp) except Exception as er: logger.warning(er) return tables
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 201, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 2, 201, 198, 2, 15069, 357, 66, 8, 1584, 10009, 40580, 201, 198, 2, 201, 198, 2, 6434, 7, 82, 2599, 201, 198, 2, 201, 198, 2, 220, 220, 10009, 40580, 1279, 1000, 87, 4066, 13, 76, 2518, 31, 67, 16993, 13, 2934, 29, 201, 198, 2, 201, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 201, 198, 2, 340, 739, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 201, 198, 2, 262, 3232, 10442, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 201, 198, 2, 357, 265, 534, 3038, 8, 597, 1568, 2196, 13, 201, 198, 2, 201, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 201, 198, 2, 475, 42881, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 201, 198, 2, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 220, 4091, 262, 201, 198, 2, 22961, 3611, 5094, 13789, 329, 517, 3307, 13, 201, 198, 2, 201, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 201, 198, 2, 1863, 351, 428, 1430, 13, 220, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 201, 198, 7061, 6, 201, 198, 41972, 319, 8621, 1315, 11, 1584, 201, 198, 31, 9800, 25, 716, 2518, 201, 198, 7061, 6, 201, 198, 201, 198, 11748, 18931, 201, 198, 6738, 764, 48277, 1330, 347, 3046, 81, 10962, 12331, 201, 198, 6738, 764, 83, 2977, 1330, 33220, 201, 198, 201, 198, 6738, 764, 1330, 21136, 62, 29325, 4372, 66, 11, 21136, 62, 68, 535, 4147, 11, 21136, 62, 8019, 67, 16993, 201, 198, 201, 198, 29572, 62, 18170, 796, 1391, 6, 29325, 4372, 66, 10354, 21136, 62, 29325, 4372, 66, 11, 705, 68, 535, 4147, 10354, 21136, 62, 68, 535, 4147, 11, 705, 8019, 67, 16993, 10354, 21136, 62, 8019, 67, 16993, 92, 201, 198, 201, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 83, 2487, 29325, 81, 4943, 201, 198, 201, 198, 201, 198, 4299, 3440, 62, 26069, 263, 7, 83, 2977, 11, 28961, 11, 8658, 62, 79, 11, 7400, 62, 69, 2599, 201, 198, 220, 220, 220, 37227, 8912, 477, 8893, 20717, 416, 262, 20571, 10913, 11, 611, 262, 6300, 13238, 422, 883, 1541, 9639, 526, 15931, 201, 198, 220, 220, 220, 611, 8893, 318, 6045, 393, 8893, 13, 26069, 364, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 9866, 6, 4357, 13634, 17816, 76, 332, 6, 4357, 13634, 17816, 75, 332, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 16159, 6, 4357, 13634, 17816, 7266, 16159, 20520, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 8893, 796, 3440, 62, 439, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 9866, 6, 4357, 13634, 17816, 16159, 6, 4357, 13634, 17816, 7266, 16159, 6, 4357, 13634, 17816, 76, 332, 6, 4357, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13634, 17816, 75, 332, 6, 4357, 7400, 62, 79, 11, 7400, 62, 69, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 201, 198, 220, 220, 220, 1441, 8893, 201, 198, 201, 198, 62, 5239, 62, 8658, 62, 14578, 796, 366, 10962, 9639, 25, 705, 4, 82, 29653, 201, 198, 4299, 3440, 62, 439, 7, 9866, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 11, 2779, 62, 6978, 11, 7400, 69, 2625, 68, 535, 4147, 1, 2599, 201, 198, 220, 220, 220, 37227, 8912, 477, 1813, 6300, 286, 8893, 37811, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 796, 21136, 62, 18170, 58, 8658, 69, 60, 201, 198, 220, 220, 220, 2845, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 347, 3046, 81, 10962, 12331, 7203, 20035, 3084, 30751, 705, 4, 82, 6, 2474, 4064, 7400, 69, 8, 201, 198, 220, 220, 220, 8893, 796, 33220, 7, 9866, 11, 4958, 62, 690, 11, 1957, 62, 690, 11, 3641, 11, 850, 16159, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 8655, 317, 357, 1087, 411, 8, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 11, 4808, 796, 256, 29572, 13, 1136, 62, 7753, 7203, 32, 1600, 2779, 62, 6978, 11, 4958, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 64, 7, 83, 2977, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 29034, 8, 201, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 68, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 8655, 347, 357, 68, 3639, 8, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 11, 300, 79, 796, 256, 29572, 13, 1136, 62, 7753, 7203, 33, 1600, 2779, 62, 6978, 11, 4958, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4037, 357, 9866, 8, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 65, 7, 83, 2977, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10714, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 62, 690, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 65, 7, 83, 2977, 11, 300, 79, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 300, 79, 8, 201, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 8655, 327, 357, 3575, 2024, 8, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 11, 4808, 796, 256, 29572, 13, 1136, 62, 7753, 7203, 34, 1600, 2779, 62, 6978, 11, 4958, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 66, 7, 83, 2977, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 29034, 8, 201, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 68, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 8655, 360, 357, 3107, 3007, 8, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 11, 300, 79, 796, 256, 29572, 13, 1136, 62, 7753, 7203, 35, 1600, 2779, 62, 6978, 11, 4958, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4037, 357, 9866, 8, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 67, 7, 83, 2977, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10714, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 62, 690, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 67, 7, 83, 2977, 11, 300, 79, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 300, 79, 8, 201, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 68, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 304, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 8655, 18551, 357, 8189, 14, 33152, 8, 201, 198, 220, 220, 220, 1949, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 11, 300, 79, 796, 256, 29572, 13, 1136, 62, 7753, 7203, 22495, 1600, 2779, 62, 6978, 11, 4958, 11, 3641, 11, 850, 16159, 11, 4958, 62, 690, 11, 1957, 62, 690, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4037, 357, 9866, 8, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 12993, 7, 83, 2977, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 29034, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 10714, 3084, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 62, 690, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 29572, 13, 2220, 62, 8658, 62, 12993, 7, 83, 2977, 11, 300, 79, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 28264, 5239, 62, 8658, 62, 14578, 11, 300, 79, 8, 201, 198, 220, 220, 220, 2845, 35528, 355, 1931, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 263, 8, 201, 198, 201, 198, 220, 220, 220, 1441, 8893 ]
2.274532
1,763
from collections import OrderedDict import csv import json import requests import time from collections import defaultdict #print code_to_name if __name__ =="__main__": matrix, reversed_matrix, code_to_name = load_matrices() f = open('code_to_name.json','w') code_to_name["WSAHARA"]="Western Sahara", f.write(json.dumps(code_to_name)) f.close() print get_sorted_tuples(matrix,"MEX", code_to_name) print get_sorted_tuples(reversed_matrix,"MEX",code_to_name)
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 11748, 269, 21370, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 640, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 2, 4798, 2438, 62, 1462, 62, 3672, 628, 198, 198, 361, 11593, 3672, 834, 796, 2625, 834, 12417, 834, 1298, 198, 220, 220, 220, 17593, 11, 17687, 62, 6759, 8609, 11, 2438, 62, 1462, 62, 3672, 796, 3440, 62, 6759, 45977, 3419, 628, 198, 220, 220, 220, 277, 796, 1280, 10786, 8189, 62, 1462, 62, 3672, 13, 17752, 41707, 86, 11537, 628, 220, 220, 220, 2438, 62, 1462, 62, 3672, 14692, 54, 4090, 39, 24401, 8973, 2625, 24227, 46882, 1600, 628, 220, 220, 220, 277, 13, 13564, 7, 17752, 13, 67, 8142, 7, 8189, 62, 1462, 62, 3672, 4008, 198, 220, 220, 220, 277, 13, 19836, 3419, 198, 220, 220, 220, 3601, 651, 62, 82, 9741, 62, 28047, 2374, 7, 6759, 8609, 553, 44, 6369, 1600, 2438, 62, 1462, 62, 3672, 8, 198, 220, 220, 220, 3601, 651, 62, 82, 9741, 62, 28047, 2374, 7, 260, 690, 276, 62, 6759, 8609, 553, 44, 6369, 1600, 8189, 62, 1462, 62, 3672, 8, 628, 198 ]
2.591623
191
# -*- coding: utf-8 -*- """ reference: https://www.kaggle.com/fizzbuzz/toxic-data-preprocessing/code Created on Fri Jun 1 18:00:22 2018 @author: bwhe """ import pandas as pd import copy import re RE_PATTERNS = {'party':['party']} ####################### train title ########################## readfile = '../data/train_list_info.csv.gz' savefile = '../data/pid2more_clean_name.pkl' build_clean_title(readfile, savefile) ####################### test title ########################### readfile = '../data/test_list_info.csv.gz' savefile = '../data/test_pid2more_clean_name.pkl' build_clean_title(readfile, savefile)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 35790, 25, 201, 198, 220, 220, 220, 3740, 1378, 2503, 13, 74, 9460, 293, 13, 785, 14, 69, 6457, 65, 4715, 14, 83, 18047, 12, 7890, 12, 3866, 36948, 14, 8189, 201, 198, 201, 198, 41972, 319, 19480, 7653, 220, 352, 1248, 25, 405, 25, 1828, 2864, 201, 198, 201, 198, 31, 9800, 25, 275, 12491, 201, 198, 37811, 201, 198, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 4866, 201, 198, 11748, 302, 201, 198, 201, 198, 201, 198, 2200, 62, 47, 1404, 5781, 8035, 796, 1391, 6, 10608, 10354, 17816, 10608, 20520, 92, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 14468, 4242, 21017, 4512, 3670, 1303, 14468, 7804, 2, 201, 198, 961, 7753, 796, 705, 40720, 7890, 14, 27432, 62, 4868, 62, 10951, 13, 40664, 13, 34586, 6, 201, 198, 21928, 7753, 796, 705, 40720, 7890, 14, 35317, 17, 3549, 62, 27773, 62, 3672, 13, 79, 41582, 6, 201, 198, 11249, 62, 27773, 62, 7839, 7, 961, 7753, 11, 3613, 7753, 8, 201, 198, 201, 198, 14468, 4242, 21017, 1332, 3670, 1303, 14468, 7804, 2235, 201, 198, 961, 7753, 796, 705, 40720, 7890, 14, 9288, 62, 4868, 62, 10951, 13, 40664, 13, 34586, 6, 201, 198, 21928, 7753, 796, 705, 40720, 7890, 14, 9288, 62, 35317, 17, 3549, 62, 27773, 62, 3672, 13, 79, 41582, 6, 201, 198, 11249, 62, 27773, 62, 7839, 7, 961, 7753, 11, 3613, 7753, 8 ]
2.492537
268
""" Different Losses """ import torch.nn as nn import torch import torch.nn.functional as F from typing import Optional, Union, List import numpy as np class LogSoftmaxCELoss(Loss): """ log softmax + cross entropy loss """ def __call__(self, preds: torch.tensor, gts: torch.tensor): """ calculate mean loss of the batch :param preds: (batch_size, n_class, height, width) :param gts: (batch_size, height, width) """ assert preds.shape[0] == gts.shape[0], f"loss input preds has different batchsize({preds.shape[0]}) "\ f"compared to that of gts({gts.shape[0]})" self.loss = torch.zeros_like(self.loss) batch_size = preds.shape[0] preds = F.log_softmax(preds, dim=1) gts = self.weighted_smoothed_one_hot(gts) preds = preds.reshape(batch_size, self.n_class, -1) # gts (batch_size, n_class, height * width) # preds (batch_size, n_class, height * width) self.loss = torch.sum(-gts * preds, dim=1) return torch.mean(self.loss, dim=[0, 1]) class SigmoidDiceLoss(Loss): """ sigmoid + dice loss dice_loss = 1 - (2 * |X ∩ Y| + eps) / (|X| + |Y| + eps) """ def __call__(self, preds: torch.tensor, gts: torch.tensor): """ calculate mean loss of the batch :param preds: (batch_size, n_class, height, width) :param gts: (batch_size, height, width) """ assert preds.shape[0] == gts.shape[0], f"loss input preds has different batchsize({preds.shape[0]}) " \ f"compared to that of gts({gts.shape[0]})" self.loss = torch.zeros_like(self.loss) batch_size = preds.shape[0] preds = torch.sigmoid(preds) gts = self.weighted_smoothed_one_hot(gts) # preds: (batch_size, n_class, height, width) # gts: (batch_size, n_class, height * width) count = 0 for i in torch.arange(self.n_class): if self.ignore_index is None or i not in self.ignore_index: # take label = i as foreground, others as background # gts_single, preds_single: (batch_size, height * width) gts_single = gts[:, i] preds_single = preds[:, i].view(batch_size, -1) intersection = gts_single * preds_single # intersection: (batch_size, height * width) tem = (2 * intersection.sum(1) + self.eps) / (gts_single.sum(1) + preds_single.sum(1) + self.eps) self.loss += (1 - tem).mean() count += 1 return self.loss / count class ComposedLoss(Loss): """ LogSoftmaxCELoss + rate * SigmoidDiceLoss """ def __call__(self, preds: torch.tensor, gts: torch.tensor): """ calculate mean loss of the batch :param preds: (batch_size, n_class, height, width) :param gts: (batch_size, height, width) """ # print("CELoss", self.CELoss(preds, gts)) # print("Dice", self.DiceLoss(preds, gts)) return self.CELoss(preds, gts) + self.rate * self.DiceLoss(preds, gts) def to(self, device): """ transfer criterion to device """ self.CELoss.to(device) self.DiceLoss.to(device)
[ 37811, 198, 40341, 22014, 274, 198, 37811, 198, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 19720, 1330, 32233, 11, 4479, 11, 7343, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 4871, 5972, 18380, 9806, 34, 3698, 793, 7, 43, 793, 2599, 198, 220, 220, 220, 37227, 2604, 2705, 9806, 1343, 3272, 40709, 2994, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 2747, 82, 25, 28034, 13, 83, 22854, 11, 308, 912, 25, 28034, 13, 83, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15284, 1612, 2994, 286, 262, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2747, 82, 25, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 308, 912, 25, 357, 43501, 62, 7857, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2747, 82, 13, 43358, 58, 15, 60, 6624, 308, 912, 13, 43358, 58, 15, 4357, 277, 1, 22462, 5128, 2747, 82, 468, 1180, 15458, 7857, 15090, 28764, 82, 13, 43358, 58, 15, 60, 30072, 37082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5589, 1144, 284, 326, 286, 308, 912, 15090, 70, 912, 13, 43358, 58, 15, 48999, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22462, 796, 28034, 13, 9107, 418, 62, 2339, 7, 944, 13, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 2747, 82, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 376, 13, 6404, 62, 4215, 9806, 7, 28764, 82, 11, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 912, 796, 2116, 13, 6551, 276, 62, 5796, 1025, 704, 62, 505, 62, 8940, 7, 70, 912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 2747, 82, 13, 3447, 1758, 7, 43501, 62, 7857, 11, 2116, 13, 77, 62, 4871, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 912, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 1635, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2747, 82, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 1635, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22462, 796, 28034, 13, 16345, 32590, 70, 912, 1635, 2747, 82, 11, 5391, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 28034, 13, 32604, 7, 944, 13, 22462, 11, 5391, 41888, 15, 11, 352, 12962, 628, 198, 4871, 311, 17225, 1868, 35, 501, 43, 793, 7, 43, 793, 2599, 198, 220, 220, 220, 37227, 264, 17225, 1868, 1343, 17963, 2994, 198, 220, 220, 220, 17963, 62, 22462, 796, 352, 532, 357, 17, 1635, 930, 55, 18872, 102, 575, 91, 1343, 304, 862, 8, 1220, 357, 91, 55, 91, 1343, 930, 56, 91, 1343, 304, 862, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 2747, 82, 25, 28034, 13, 83, 22854, 11, 308, 912, 25, 28034, 13, 83, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15284, 1612, 2994, 286, 262, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2747, 82, 25, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 308, 912, 25, 357, 43501, 62, 7857, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2747, 82, 13, 43358, 58, 15, 60, 6624, 308, 912, 13, 43358, 58, 15, 4357, 277, 1, 22462, 5128, 2747, 82, 468, 1180, 15458, 7857, 15090, 28764, 82, 13, 43358, 58, 15, 60, 30072, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 5589, 1144, 284, 326, 286, 308, 912, 15090, 70, 912, 13, 43358, 58, 15, 48999, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22462, 796, 28034, 13, 9107, 418, 62, 2339, 7, 944, 13, 22462, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 796, 2747, 82, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 796, 28034, 13, 82, 17225, 1868, 7, 28764, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 308, 912, 796, 2116, 13, 6551, 276, 62, 5796, 1025, 704, 62, 505, 62, 8940, 7, 70, 912, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2747, 82, 25, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 912, 25, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 1635, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 28034, 13, 283, 858, 7, 944, 13, 77, 62, 4871, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 46430, 62, 9630, 318, 6045, 393, 1312, 407, 287, 2116, 13, 46430, 62, 9630, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1011, 6167, 796, 1312, 355, 36282, 11, 1854, 355, 4469, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 912, 62, 29762, 11, 2747, 82, 62, 29762, 25, 357, 43501, 62, 7857, 11, 6001, 1635, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 912, 62, 29762, 796, 308, 912, 58, 45299, 1312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 62, 29762, 796, 2747, 82, 58, 45299, 1312, 4083, 1177, 7, 43501, 62, 7857, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16246, 796, 308, 912, 62, 29762, 1635, 2747, 82, 62, 29762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16246, 25, 357, 43501, 62, 7857, 11, 6001, 1635, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2169, 796, 357, 17, 1635, 16246, 13, 16345, 7, 16, 8, 1343, 2116, 13, 25386, 8, 1220, 357, 70, 912, 62, 29762, 13, 16345, 7, 16, 8, 1343, 2747, 82, 62, 29762, 13, 16345, 7, 16, 8, 1343, 2116, 13, 25386, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22462, 15853, 357, 16, 532, 2169, 737, 32604, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22462, 1220, 954, 628, 198, 4871, 3082, 1335, 43, 793, 7, 43, 793, 2599, 198, 220, 220, 220, 37227, 5972, 18380, 9806, 34, 3698, 793, 1343, 2494, 1635, 311, 17225, 1868, 35, 501, 43, 793, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 2747, 82, 25, 28034, 13, 83, 22854, 11, 308, 912, 25, 28034, 13, 83, 22854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15284, 1612, 2994, 286, 262, 15458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2747, 82, 25, 357, 43501, 62, 7857, 11, 299, 62, 4871, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 308, 912, 25, 357, 43501, 62, 7857, 11, 6001, 11, 9647, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 34, 3698, 793, 1600, 2116, 13, 34, 3698, 793, 7, 28764, 82, 11, 308, 912, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 35, 501, 1600, 2116, 13, 35, 501, 43, 793, 7, 28764, 82, 11, 308, 912, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 34, 3698, 793, 7, 28764, 82, 11, 308, 912, 8, 1343, 2116, 13, 4873, 1635, 2116, 13, 35, 501, 43, 793, 7, 28764, 82, 11, 308, 912, 8, 628, 220, 220, 220, 825, 284, 7, 944, 11, 3335, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4351, 34054, 284, 3335, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34, 3698, 793, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35, 501, 43, 793, 13, 1462, 7, 25202, 8, 198 ]
2.098027
1,571
# encoding: utf-8 ################################################## # This script shows how to visualise distribution from a single variable using matplotlib and seaborn # Multiple tutorials inspired the current design but they mostly came from: # https://seaborn.pydata.org/tutorial/distributions.html # References for histograms using matplotlib https://matplotlib.org/stable/gallery/statistics/hist.html # References for histograms using Seaborn https://seaborn.pydata.org/generated/seaborn.histplot.html # Data uses the Open Data Barcelona API and especially the dataset # # Note: the project keeps updating every course almost yearly ################################################## # ################################################## # Author: Diego Pajarito # Credits: [Institute for Advanced Architecture of Catalonia - IAAC, Advanced Architecture group] # License: Apache License Version 2.0 # Version: 0.7.0 # Maintainer: Diego Pajarito # Email: [email protected] # Status: development ################################################## # We need to import numpy and matplotlib library import matplotlib.pyplot as plt import seaborn as sns import pandas as pd plt.style.use('seaborn-pastel') # default histogram meteocat_2021 = pd.read_csv('../data/barcelona/2021_MeteoCat_Detall_Estacions.csv') t_mean = meteocat_2021[meteocat_2021['ACRÒNIM'] == 'TM'] # challenge: to integrate historical data # histogram sns.histplot(data=t_mean, x="VALOR", bins=50, kde=True) plt.show() # histogram by station sns.displot(data=t_mean, x="VALOR", hue="CODI_ESTACIO", kind="kde") plt.show()
[ 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 29113, 14468, 2235, 198, 2, 770, 4226, 2523, 703, 284, 5874, 786, 6082, 422, 257, 2060, 7885, 1262, 2603, 29487, 8019, 290, 384, 397, 1211, 198, 2, 20401, 27992, 7867, 262, 1459, 1486, 475, 484, 4632, 1625, 422, 25, 198, 2, 3740, 1378, 325, 397, 1211, 13, 79, 5173, 1045, 13, 2398, 14, 83, 44917, 14, 17080, 2455, 507, 13, 6494, 198, 2, 31458, 329, 1554, 26836, 1262, 2603, 29487, 8019, 3740, 1378, 6759, 29487, 8019, 13, 2398, 14, 31284, 14, 24460, 14, 14269, 3969, 14, 10034, 13, 6494, 198, 2, 31458, 329, 1554, 26836, 1262, 1001, 397, 1211, 3740, 1378, 325, 397, 1211, 13, 79, 5173, 1045, 13, 2398, 14, 27568, 14, 325, 397, 1211, 13, 10034, 29487, 13, 6494, 198, 2, 6060, 3544, 262, 4946, 6060, 15142, 7824, 290, 2592, 262, 27039, 198, 2, 198, 2, 5740, 25, 262, 1628, 7622, 19698, 790, 1781, 2048, 24169, 198, 29113, 14468, 2235, 198, 2, 198, 29113, 14468, 2235, 198, 2, 6434, 25, 9500, 350, 1228, 283, 10094, 198, 2, 29501, 25, 685, 6310, 3678, 329, 13435, 29778, 286, 33859, 532, 35229, 2246, 11, 13435, 29778, 1448, 60, 198, 2, 13789, 25, 220, 24843, 13789, 10628, 362, 13, 15, 198, 2, 10628, 25, 657, 13, 22, 13, 15, 198, 2, 337, 2913, 10613, 25, 9500, 350, 1228, 283, 10094, 198, 2, 9570, 25, 4656, 2188, 13, 79, 1228, 283, 10094, 31, 544, 330, 13, 3262, 198, 2, 12678, 25, 2478, 198, 29113, 14468, 2235, 198, 198, 2, 775, 761, 284, 1330, 299, 32152, 290, 2603, 29487, 8019, 5888, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 19798, 292, 355, 279, 67, 198, 489, 83, 13, 7635, 13, 1904, 10786, 325, 397, 1211, 12, 30119, 417, 11537, 198, 198, 2, 4277, 1554, 21857, 198, 4164, 68, 420, 265, 62, 1238, 2481, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 7890, 14, 5657, 14308, 14, 1238, 2481, 62, 9171, 68, 78, 21979, 62, 11242, 439, 62, 22362, 330, 507, 13, 40664, 11537, 198, 83, 62, 32604, 796, 47091, 420, 265, 62, 1238, 2481, 58, 4164, 68, 420, 265, 62, 1238, 2481, 17816, 2246, 49, 127, 240, 45, 3955, 20520, 6624, 705, 15972, 20520, 198, 2, 4427, 25, 284, 19386, 6754, 1366, 198, 198, 2, 1554, 21857, 198, 82, 5907, 13, 10034, 29487, 7, 7890, 28, 83, 62, 32604, 11, 2124, 2625, 23428, 1581, 1600, 41701, 28, 1120, 11, 479, 2934, 28, 17821, 8, 198, 489, 83, 13, 12860, 3419, 198, 198, 2, 1554, 21857, 416, 4429, 198, 82, 5907, 13, 6381, 29487, 7, 7890, 28, 83, 62, 32604, 11, 2124, 2625, 23428, 1581, 1600, 37409, 2625, 34, 3727, 40, 62, 6465, 2246, 9399, 1600, 1611, 2625, 74, 2934, 4943, 198, 489, 83, 13, 12860, 3419, 628 ]
3.362683
477
# Generated with ThrustCoefficientModel # from enum import Enum from enum import auto class ThrustCoefficientModel(Enum): """""" INTERNAL = auto() FORWARD = auto() SEPARATE = auto()
[ 2, 2980, 515, 351, 49794, 34, 2577, 5632, 17633, 198, 2, 220, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 33829, 1330, 8295, 198, 198, 4871, 49794, 34, 2577, 5632, 17633, 7, 4834, 388, 2599, 198, 220, 220, 220, 13538, 15931, 15931, 198, 220, 220, 220, 23255, 45, 1847, 796, 8295, 3419, 198, 220, 220, 220, 7473, 39743, 796, 8295, 3419, 198, 220, 220, 220, 7946, 27082, 6158, 796, 8295, 3419 ]
2.802817
71
# This function is used to predict the rank using Linear Regression import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression
[ 2, 770, 2163, 318, 973, 284, 4331, 262, 4279, 1262, 44800, 3310, 2234, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 44800, 8081, 2234, 198 ]
3.907407
54
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-05-10 05:28 from __future__ import unicode_literals import sys from django.db import migrations import debug # pyflakes:ignore
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1065, 319, 2864, 12, 2713, 12, 940, 8870, 25, 2078, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 25064, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 198, 198, 11748, 14257, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12972, 2704, 1124, 25, 46430, 198 ]
2.28125
96
#!/usr/bin/env python3 from time import sleep from random import random from retry import retry @retry_when((Exception,)) touch()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 6738, 640, 1330, 3993, 198, 6738, 4738, 1330, 4738, 198, 6738, 1005, 563, 1330, 1005, 563, 628, 198, 31, 1186, 563, 62, 12518, 19510, 16922, 11, 4008, 198, 198, 29332, 3419, 628 ]
3.190476
42
from email import Email from sms import SMS from fbmsg import FBMsg from phone import Phone from bankwire import BankWire from paypal import Paypal from debitcard import DebitCard from contactlesscard import ContactlessCard from tube import Tube from fbstatus import FBStatus from tweet import Tweet
[ 6738, 3053, 1330, 9570, 198, 6738, 895, 82, 1330, 29287, 198, 6738, 277, 65, 19662, 1330, 13186, 50108, 198, 6738, 3072, 1330, 14484, 198, 6738, 3331, 21809, 1330, 5018, 29451, 198, 6738, 1414, 18596, 1330, 7119, 18596, 198, 6738, 30977, 9517, 1330, 1024, 2545, 16962, 198, 6738, 2800, 1203, 9517, 1330, 14039, 1203, 16962, 198, 6738, 12403, 1330, 34510, 198, 6738, 277, 65, 13376, 1330, 13186, 19580, 198, 6738, 6126, 1330, 18752, 198 ]
4.109589
73
import networkx as nx from ..config.gameconfig import maps
[ 11748, 3127, 87, 355, 299, 87, 198, 198, 6738, 11485, 11250, 13, 6057, 11250, 1330, 8739, 628 ]
3.588235
17
import unittest import evil_mystery_word test_words = ['i', 'spoke', 'to', 'several', 'people', 'with', 'delayed', 'sleep', 'phase', 'a', 'condition', 'that', 'congressional'] if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 11748, 6181, 62, 1820, 41991, 62, 4775, 198, 198, 9288, 62, 10879, 796, 37250, 72, 3256, 705, 2777, 2088, 3256, 705, 1462, 3256, 705, 28116, 282, 3256, 705, 15332, 3256, 705, 4480, 3256, 705, 12381, 16548, 3256, 705, 42832, 3256, 705, 40715, 3256, 705, 64, 3256, 705, 31448, 3256, 705, 5562, 3256, 705, 36801, 601, 1538, 20520, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.658824
85
from . import training, processing, models
[ 6738, 764, 1330, 3047, 11, 7587, 11, 4981 ]
5.25
8
from .enums.direction import Direction from .enums.event import Event from . import blocks, computer, monitor from .utils.chilog import chilog
[ 6738, 764, 268, 5700, 13, 37295, 1330, 41837, 198, 6738, 764, 268, 5700, 13, 15596, 1330, 8558, 198, 6738, 764, 1330, 7021, 11, 3644, 11, 5671, 198, 6738, 764, 26791, 13, 354, 346, 519, 1330, 442, 346, 519, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
2.875
56
# Generated by Django 3.0.8 on 2020-09-22 06:41 import json import uuid from django.db import migrations, models def gen_default_lines(): """gen_default_lines.""" template = { "useCountingLine": True, "countingLines": [ { "id": "$UUID_PLACE_HOLDER", "type": "Line", "label": [{"x": 229, "y": 215}, {"x": 916, "y": 255}], } ], } template["countingLines"][0]["id"] = str(uuid.uuid4()) return json.dumps(template) def gen_default_zones(): """gen_default_zones.""" template = { "useDangerZone": True, "dangerZones": [ { "id": "$UUID_PLACE_HOLDER", "type": "BBox", "label": {"x1": 23, "y1": 58, "x2": 452, "y2": 502}, } ], } template["dangerZones"][0]["id"] = str(uuid.uuid4()) return json.dumps(template)
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 23, 319, 12131, 12, 2931, 12, 1828, 9130, 25, 3901, 198, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628, 198, 4299, 2429, 62, 12286, 62, 6615, 33529, 198, 220, 220, 220, 37227, 5235, 62, 12286, 62, 6615, 526, 15931, 198, 220, 220, 220, 11055, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 12332, 278, 13949, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9127, 278, 43, 1127, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 17971, 52, 27586, 62, 6489, 11598, 62, 39, 3535, 14418, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 13949, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 685, 4895, 87, 1298, 31064, 11, 366, 88, 1298, 22951, 5512, 19779, 87, 1298, 860, 1433, 11, 366, 88, 1298, 14280, 92, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 11055, 14692, 9127, 278, 43, 1127, 1, 7131, 15, 7131, 1, 312, 8973, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 28243, 8, 628, 198, 4299, 2429, 62, 12286, 62, 89, 1952, 33529, 198, 220, 220, 220, 37227, 5235, 62, 12286, 62, 89, 1952, 526, 15931, 198, 220, 220, 220, 11055, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1904, 35, 2564, 26961, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 38537, 57, 1952, 1298, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 17971, 52, 27586, 62, 6489, 11598, 62, 39, 3535, 14418, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 366, 33, 14253, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 19779, 87, 16, 1298, 2242, 11, 366, 88, 16, 1298, 7618, 11, 366, 87, 17, 1298, 4153, 17, 11, 366, 88, 17, 1298, 47233, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 11055, 14692, 38537, 57, 1952, 1, 7131, 15, 7131, 1, 312, 8973, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 220, 220, 220, 1441, 33918, 13, 67, 8142, 7, 28243, 8, 628 ]
1.854043
507
from __future__ import absolute_import import math import threading from time import sleep import rospy from geometry_msgs.msg import Twist from nav_msgs.msg import Odometry from tf.transformations import euler_from_quaternion import collisions from .exceptions import MovementObstructed from .odometry import Odometer from time import time
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 10688, 198, 11748, 4704, 278, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 686, 2777, 88, 198, 6738, 22939, 62, 907, 14542, 13, 19662, 1330, 44088, 198, 6738, 6812, 62, 907, 14542, 13, 19662, 1330, 10529, 15748, 198, 6738, 48700, 13, 35636, 602, 1330, 304, 18173, 62, 6738, 62, 421, 9205, 295, 198, 198, 11748, 31998, 198, 6738, 764, 1069, 11755, 1330, 15477, 5944, 16242, 198, 6738, 764, 375, 15748, 1330, 10529, 15635, 198, 198, 6738, 640, 1330, 640, 198 ]
3.822222
90
# ExampleHub = TechnicHub PrimeHub from pybricks.hubs import ExampleHub from pybricks.tools import wait # Initialize the hub. hub = ExampleHub() while True: # Read the tilt values. pitch, roll = hub.imu.tilt() # Print the result. print(pitch, roll) wait(200)
[ 2, 17934, 16066, 796, 5429, 291, 16066, 5537, 16066, 198, 6738, 12972, 65, 23706, 13, 71, 23161, 1330, 17934, 16066, 198, 6738, 12972, 65, 23706, 13, 31391, 1330, 4043, 198, 198, 2, 20768, 1096, 262, 12575, 13, 198, 40140, 796, 17934, 16066, 3419, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 1303, 4149, 262, 26500, 3815, 13, 198, 220, 220, 220, 7078, 11, 4836, 796, 12575, 13, 320, 84, 13, 83, 2326, 3419, 628, 220, 220, 220, 1303, 12578, 262, 1255, 13, 198, 220, 220, 220, 3601, 7, 79, 2007, 11, 4836, 8, 198, 220, 220, 220, 4043, 7, 2167, 8, 198 ]
2.737864
103
from celery import shared_task from muonic.lib.app import App from muonic.lib.consumers import BufferedConsumer from muonic_django.consumer import Consumer as DjangoConsumer from muonic.lib.analyzers import * from django.conf import settings @shared_task(bind=True)
[ 6738, 18725, 1924, 1330, 4888, 62, 35943, 198, 6738, 38779, 9229, 13, 8019, 13, 1324, 1330, 2034, 198, 6738, 38779, 9229, 13, 8019, 13, 5936, 31260, 1330, 8792, 1068, 49106, 198, 6738, 38779, 9229, 62, 28241, 14208, 13, 49827, 1330, 18110, 355, 37770, 49106, 198, 6738, 38779, 9229, 13, 8019, 13, 38200, 47031, 1330, 1635, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 628, 198, 31, 28710, 62, 35943, 7, 21653, 28, 17821, 8 ]
3.608108
74
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable from core.config import cfg import nn as mynn import utils.net as net_utils import utils.boxes as box_utils import numpy as np # ---------------------------------------------------------------------------- # # Box heads # ---------------------------------------------------------------------------- # class roi_2mlp_head(nn.Module): """Add a ReLU MLP with two hidden layers.""" class roi_Xconv1fc_head(nn.Module): """Add a X conv + 1fc head, as a reference if not using GroupNorm""" class roi_Xconv1fc_gn_head(nn.Module): """Add a X conv + 1fc head, with GroupNorm"""
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 20471, 13, 15003, 355, 2315, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 198, 6738, 4755, 13, 11250, 1330, 30218, 70, 198, 11748, 299, 77, 355, 616, 20471, 198, 11748, 3384, 4487, 13, 3262, 355, 2010, 62, 26791, 198, 11748, 3384, 4487, 13, 29305, 355, 3091, 62, 26791, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 2, 16529, 10541, 1303, 198, 2, 8315, 6665, 198, 2, 16529, 10541, 1303, 198, 198, 4871, 686, 72, 62, 17, 4029, 79, 62, 2256, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4550, 257, 797, 41596, 10373, 47, 351, 734, 7104, 11685, 526, 15931, 628, 198, 4871, 686, 72, 62, 55, 42946, 16, 16072, 62, 2256, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4550, 257, 1395, 3063, 1343, 352, 16072, 1182, 11, 355, 257, 4941, 611, 407, 1262, 4912, 35393, 37811, 628, 198, 4871, 686, 72, 62, 55, 42946, 16, 16072, 62, 4593, 62, 2256, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4550, 257, 1395, 3063, 1343, 352, 16072, 1182, 11, 351, 4912, 35393, 37811, 198 ]
3.5
206
""" Created by Benjamin Bowes, 4-19-19 This script records depth and flood values at each swmm model time step and plots them. """ from pyswmm import Simulation, Nodes, Links, Subcatchments import matplotlib.pyplot as plt from smart_stormwater_rl.pyswmm_utils import save_out control_time_step = 900 # control time step in seconds swmm_inp = "RL_Class_S19/rl_project/simple_2_ctl_smt.inp" # swmm input file St1_depth = [] St2_depth = [] J3_depth = [] St1_flooding = [] St2_flooding = [] J3_flooding = [] with Simulation(swmm_inp) as sim: # loop through all steps in the simulation sim.step_advance(control_time_step) node_object = Nodes(sim) # init node object St1 = node_object["St1"] St2 = node_object["St2"] J3 = node_object["J3"] St1.full_depth = 4 St2.full_depth = 4 link_object = Links(sim) # init link object R1 = link_object["R1"] R2 = link_object["R2"] subcatchment_object = Subcatchments(sim) S1 = subcatchment_object["S1"] S2 = subcatchment_object["S2"] for step in sim: St1_depth.append(St1.depth) St2_depth.append(St2.depth) J3_depth.append(J3.depth) St1_flooding.append(St1.flooding) St2_flooding.append(St2.flooding) J3_flooding.append(J3.flooding) out_lists = [St1_depth, St2_depth, J3_depth, St1_flooding, St2_flooding, J3_flooding] save_out(out_lists, "Uncontrolled_smallpond") # plot results plt.subplot(2, 2, 1) plt.plot(St1_depth) plt.title('St1_depth') plt.ylabel("ft") plt.xlabel("time step") plt.subplot(2, 2, 2) plt.plot(St2_depth) plt.title('St2_depth') plt.ylabel("ft") plt.xlabel("time step") plt.subplot(2, 2, 3) plt.plot(J3_depth) plt.title('J3_depth') plt.ylabel("ft") plt.xlabel("time step") # bar graph for total flooding plt.subplot(2, 2, 4) plt.bar([0, 1, 2], [sum(St1_flooding), sum(St2_flooding), sum(J3_flooding)], tick_label=["ST1", "St2", "J3"]) plt.title('total_flooding') plt.ylabel("10^3 cubic feet") plt.tight_layout() # plt.show() plt.savefig("RL_Class_S19/rl_project/plots/baseline_model_results_smallpond.png", dpi=300) plt.close()
[ 37811, 201, 198, 41972, 416, 14533, 9740, 274, 11, 604, 12, 1129, 12, 1129, 201, 198, 1212, 4226, 4406, 6795, 290, 6947, 3815, 379, 1123, 1509, 3020, 2746, 640, 2239, 290, 21528, 606, 13, 201, 198, 37811, 201, 198, 201, 198, 6738, 279, 893, 86, 3020, 1330, 41798, 11, 399, 4147, 11, 21691, 11, 3834, 40198, 902, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 6738, 4451, 62, 12135, 7050, 62, 45895, 13, 79, 893, 86, 3020, 62, 26791, 1330, 3613, 62, 448, 201, 198, 201, 198, 13716, 62, 2435, 62, 9662, 796, 15897, 220, 1303, 1630, 640, 2239, 287, 4201, 201, 198, 2032, 3020, 62, 259, 79, 796, 366, 7836, 62, 9487, 62, 50, 1129, 14, 45895, 62, 16302, 14, 36439, 62, 17, 62, 34168, 62, 5796, 83, 13, 259, 79, 1, 220, 1303, 1509, 3020, 5128, 2393, 201, 198, 201, 198, 1273, 16, 62, 18053, 796, 17635, 201, 198, 1273, 17, 62, 18053, 796, 17635, 201, 198, 41, 18, 62, 18053, 796, 17635, 201, 198, 1273, 16, 62, 2704, 702, 278, 796, 17635, 201, 198, 1273, 17, 62, 2704, 702, 278, 796, 17635, 201, 198, 41, 18, 62, 2704, 702, 278, 796, 17635, 201, 198, 201, 198, 4480, 41798, 7, 2032, 3020, 62, 259, 79, 8, 355, 985, 25, 220, 1303, 9052, 832, 477, 4831, 287, 262, 18640, 201, 198, 220, 220, 220, 985, 13, 9662, 62, 324, 19259, 7, 13716, 62, 2435, 62, 9662, 8, 201, 198, 220, 220, 220, 10139, 62, 15252, 796, 399, 4147, 7, 14323, 8, 220, 1303, 2315, 10139, 2134, 201, 198, 220, 220, 220, 520, 16, 796, 10139, 62, 15252, 14692, 1273, 16, 8973, 201, 198, 220, 220, 220, 520, 17, 796, 10139, 62, 15252, 14692, 1273, 17, 8973, 201, 198, 220, 220, 220, 449, 18, 796, 10139, 62, 15252, 14692, 41, 18, 8973, 201, 198, 201, 198, 220, 220, 220, 520, 16, 13, 12853, 62, 18053, 796, 604, 201, 198, 220, 220, 220, 520, 17, 13, 12853, 62, 18053, 796, 604, 201, 198, 201, 198, 220, 220, 220, 2792, 62, 15252, 796, 21691, 7, 14323, 8, 220, 1303, 2315, 2792, 2134, 201, 198, 220, 220, 220, 371, 16, 796, 2792, 62, 15252, 14692, 49, 16, 8973, 201, 198, 220, 220, 220, 371, 17, 796, 2792, 62, 15252, 14692, 49, 17, 8973, 201, 198, 201, 198, 220, 220, 220, 850, 40198, 434, 62, 15252, 796, 3834, 40198, 902, 7, 14323, 8, 201, 198, 220, 220, 220, 311, 16, 796, 850, 40198, 434, 62, 15252, 14692, 50, 16, 8973, 201, 198, 220, 220, 220, 311, 17, 796, 850, 40198, 434, 62, 15252, 14692, 50, 17, 8973, 201, 198, 201, 198, 220, 220, 220, 329, 2239, 287, 985, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 520, 16, 62, 18053, 13, 33295, 7, 1273, 16, 13, 18053, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 520, 17, 62, 18053, 13, 33295, 7, 1273, 17, 13, 18053, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 449, 18, 62, 18053, 13, 33295, 7, 41, 18, 13, 18053, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 520, 16, 62, 2704, 702, 278, 13, 33295, 7, 1273, 16, 13, 2704, 702, 278, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 520, 17, 62, 2704, 702, 278, 13, 33295, 7, 1273, 17, 13, 2704, 702, 278, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 449, 18, 62, 2704, 702, 278, 13, 33295, 7, 41, 18, 13, 2704, 702, 278, 8, 201, 198, 201, 198, 448, 62, 20713, 796, 685, 1273, 16, 62, 18053, 11, 520, 17, 62, 18053, 11, 449, 18, 62, 18053, 11, 520, 16, 62, 2704, 702, 278, 11, 520, 17, 62, 2704, 702, 278, 11, 449, 18, 62, 2704, 702, 278, 60, 201, 198, 201, 198, 21928, 62, 448, 7, 448, 62, 20713, 11, 366, 3118, 14401, 62, 17470, 79, 623, 4943, 201, 198, 201, 198, 2, 7110, 2482, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 362, 11, 352, 8, 201, 198, 489, 83, 13, 29487, 7, 1273, 16, 62, 18053, 8, 201, 198, 489, 83, 13, 7839, 10786, 1273, 16, 62, 18053, 11537, 201, 198, 489, 83, 13, 2645, 9608, 7203, 701, 4943, 201, 198, 489, 83, 13, 87, 18242, 7203, 2435, 2239, 4943, 201, 198, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 362, 11, 362, 8, 201, 198, 489, 83, 13, 29487, 7, 1273, 17, 62, 18053, 8, 201, 198, 489, 83, 13, 7839, 10786, 1273, 17, 62, 18053, 11537, 201, 198, 489, 83, 13, 2645, 9608, 7203, 701, 4943, 201, 198, 489, 83, 13, 87, 18242, 7203, 2435, 2239, 4943, 201, 198, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 362, 11, 513, 8, 201, 198, 489, 83, 13, 29487, 7, 41, 18, 62, 18053, 8, 201, 198, 489, 83, 13, 7839, 10786, 41, 18, 62, 18053, 11537, 201, 198, 489, 83, 13, 2645, 9608, 7203, 701, 4943, 201, 198, 489, 83, 13, 87, 18242, 7203, 2435, 2239, 4943, 201, 198, 201, 198, 2, 2318, 4823, 329, 2472, 17448, 201, 198, 489, 83, 13, 7266, 29487, 7, 17, 11, 362, 11, 604, 8, 201, 198, 489, 83, 13, 5657, 26933, 15, 11, 352, 11, 362, 4357, 685, 16345, 7, 1273, 16, 62, 2704, 702, 278, 828, 2160, 7, 1273, 17, 62, 2704, 702, 278, 828, 2160, 7, 41, 18, 62, 2704, 702, 278, 8, 4357, 4378, 62, 18242, 28, 14692, 2257, 16, 1600, 366, 1273, 17, 1600, 366, 41, 18, 8973, 8, 201, 198, 489, 83, 13, 7839, 10786, 23350, 62, 2704, 702, 278, 11537, 201, 198, 489, 83, 13, 2645, 9608, 7203, 940, 61, 18, 27216, 3625, 4943, 201, 198, 201, 198, 489, 83, 13, 33464, 62, 39786, 3419, 201, 198, 2, 458, 83, 13, 12860, 3419, 201, 198, 489, 83, 13, 21928, 5647, 7203, 7836, 62, 9487, 62, 50, 1129, 14, 45895, 62, 16302, 14, 489, 1747, 14, 12093, 4470, 62, 19849, 62, 43420, 62, 17470, 79, 623, 13, 11134, 1600, 288, 14415, 28, 6200, 8, 201, 198, 489, 83, 13, 19836, 3419, 201, 198 ]
2.138235
1,020
fn = Solution().shortestCompletingWord print(fn(licensePlate="1s3 PSt", words=["step", "steps", "stripe", "stepple"])) print(fn(licensePlate="1s3 456", words=["looks", "pest", "stew", "show"]))
[ 198, 198, 22184, 796, 28186, 22446, 19509, 395, 5377, 47130, 26449, 198, 198, 4798, 7, 22184, 7, 43085, 3646, 378, 2625, 16, 82, 18, 350, 1273, 1600, 2456, 28, 14692, 9662, 1600, 366, 20214, 1600, 366, 33565, 431, 1600, 366, 4169, 381, 293, 8973, 4008, 198, 4798, 7, 22184, 7, 43085, 3646, 378, 2625, 16, 82, 18, 604, 3980, 1600, 2456, 28, 14692, 5460, 82, 1600, 366, 79, 395, 1600, 366, 301, 413, 1600, 366, 12860, 8973, 4008, 198 ]
2.493671
79
from rest_framework import serializers from authentication.models import User from social.models import Followers, Request from utils import paginator
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 18239, 13, 27530, 1330, 11787, 198, 6738, 1919, 13, 27530, 1330, 7281, 364, 11, 19390, 198, 6738, 3384, 4487, 1330, 42208, 20900, 628 ]
4.75
32
import numpy as np import cv2 import imutils import pytesseract from PIL import Image pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe' # Get text from a cropped image of a license plate # Detect a license plate in a picture
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 545, 26791, 198, 11748, 12972, 83, 408, 263, 529, 198, 6738, 350, 4146, 1330, 7412, 198, 9078, 83, 408, 263, 529, 13, 9078, 83, 408, 263, 529, 13, 83, 408, 263, 529, 62, 28758, 796, 705, 34, 25, 6852, 15167, 13283, 6852, 51, 408, 263, 529, 12, 4503, 49, 6852, 83, 408, 263, 529, 13, 13499, 6, 198, 198, 2, 3497, 2420, 422, 257, 48998, 2939, 286, 257, 5964, 7480, 628, 198, 2, 35874, 257, 5964, 7480, 287, 257, 4286, 198, 220, 220, 220, 220, 628, 628 ]
2.787879
99
#!/usr/bin/env python """ CMakeModules.py ================== This copies cmake/Modules into the installation directory which is necessary to allow building against the release. Usage Example --------------- Note that the destination directory is deleted and populated on every run :: [blyth@localhost ~]$ CMakeModules.py $(opticks-home) --dest $(opticks-dir) """ import sys, re, os, logging, argparse, shutil log = logging.getLogger(__name__) if __name__ == '__main__': parser = argparse.ArgumentParser(__doc__) parser.add_argument( "--home", default=os.path.expanduser("~/opticks"), help="Base opticks-home directory in which to look for cmake/Modules " ) parser.add_argument( "--dest", default="/tmp/test-CMakeModules-py", help="destination directory inside which a cmake/Modules directory will be removed if present, recreated and populated" ) parser.add_argument( "--level", default="info", help="logging level" ) args = parser.parse_args() fmt = '[%(asctime)s] p%(process)s {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s' logging.basicConfig(level=getattr(logging,args.level.upper()), format=fmt) src = SourceTree(args.home, args.dest)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 34, 12050, 5841, 5028, 13, 9078, 198, 4770, 855, 198, 198, 1212, 9088, 12067, 539, 14, 5841, 5028, 656, 262, 9988, 8619, 220, 198, 4758, 318, 3306, 284, 1249, 2615, 1028, 262, 2650, 13, 220, 198, 198, 28350, 17934, 198, 24305, 198, 220, 198, 6425, 326, 262, 10965, 8619, 318, 13140, 290, 22331, 319, 790, 1057, 220, 198, 198, 3712, 628, 220, 220, 220, 685, 36874, 400, 31, 36750, 5299, 60, 3, 220, 327, 12050, 5841, 5028, 13, 9078, 29568, 8738, 3378, 12, 11195, 8, 1377, 16520, 29568, 8738, 3378, 12, 15908, 8, 628, 628, 198, 37811, 198, 11748, 25064, 11, 302, 11, 28686, 11, 18931, 11, 1822, 29572, 11, 4423, 346, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 834, 15390, 834, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 220, 220, 220, 220, 366, 438, 11195, 1600, 220, 4277, 28, 418, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 14, 8738, 3378, 12340, 1037, 2625, 14881, 2172, 3378, 12, 11195, 8619, 287, 543, 284, 804, 329, 12067, 539, 14, 5841, 5028, 366, 1267, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 220, 220, 220, 220, 366, 438, 16520, 1600, 4277, 35922, 22065, 14, 9288, 12, 34, 12050, 5841, 5028, 12, 9078, 1600, 1037, 2625, 16520, 1883, 8619, 2641, 543, 257, 12067, 539, 14, 5841, 5028, 8619, 481, 307, 4615, 611, 1944, 11, 11027, 515, 290, 22331, 1, 1267, 220, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 220, 220, 220, 220, 366, 438, 5715, 1600, 4277, 2625, 10951, 1600, 1037, 2625, 6404, 2667, 1241, 1, 1267, 220, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 46996, 796, 44438, 4, 7, 292, 310, 524, 8, 82, 60, 279, 4, 7, 14681, 8, 82, 1391, 4, 7, 6978, 3672, 8, 82, 25, 4, 7, 2815, 23397, 8, 67, 92, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 6, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 1136, 35226, 7, 6404, 2667, 11, 22046, 13, 5715, 13, 45828, 3419, 828, 5794, 28, 69, 16762, 8, 628, 220, 220, 220, 12351, 796, 8090, 27660, 7, 22046, 13, 11195, 11, 26498, 13, 16520, 8, 628, 628 ]
2.880562
427
# -*- coding: utf-8 -*- """ Created on Mon Jan 13 00:32:45 2020 @author: mam22 """ from flask import Flask, render_template,request,jsonify,session from get_anime_characters_from_database import get_anime_characters_for_quiz import gc app = Flask(__name__) app.secret_key = b'_5#y2L"F4Q8z\n\xec]/' @app.route('/') @app.route('/about') @app.route('/howto') @app.route('/quiz') @app.route('/get-characters') if __name__ == "__main__": app.run(debug=False)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 2892, 2365, 1511, 3571, 25, 2624, 25, 2231, 12131, 198, 198, 31, 9800, 25, 285, 321, 1828, 198, 37811, 198, 198, 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 11, 25927, 11, 17752, 1958, 11, 29891, 198, 6738, 651, 62, 272, 524, 62, 10641, 19858, 62, 6738, 62, 48806, 1330, 651, 62, 272, 524, 62, 10641, 19858, 62, 1640, 62, 421, 528, 198, 11748, 308, 66, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 1324, 13, 21078, 62, 2539, 796, 275, 6, 62, 20, 2, 88, 17, 43, 1, 37, 19, 48, 23, 89, 59, 77, 59, 87, 721, 60, 14, 6, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 198, 31, 1324, 13, 38629, 10786, 14, 10755, 11537, 198, 31, 1324, 13, 38629, 10786, 14, 4919, 1462, 11537, 198, 31, 1324, 13, 38629, 10786, 14, 421, 528, 11537, 198, 31, 1324, 13, 38629, 10786, 14, 1136, 12, 10641, 19858, 11537, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 25101, 8 ]
2.352041
196
from create_semi_supervised_train_set import filter_train_set from constants import * if __name__ == "__main__": for i in [10, 100, 500, 1000]: for task in LOCALIZATION_TASKS: print("FILTERING TASK: ", task) filter_train_set(task, i)
[ 6738, 2251, 62, 325, 11632, 62, 16668, 16149, 62, 27432, 62, 2617, 1330, 8106, 62, 27432, 62, 2617, 198, 6738, 38491, 1330, 1635, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 329, 1312, 287, 685, 940, 11, 1802, 11, 5323, 11, 8576, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4876, 287, 37347, 1847, 14887, 6234, 62, 51, 1921, 27015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 46700, 5781, 2751, 309, 1921, 42, 25, 33172, 4876, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 62, 27432, 62, 2617, 7, 35943, 11, 1312, 8, 198 ]
2.29661
118
import sys import json import time import requests from couchbase.bucket import Bucket from couchbase.n1ql import N1QLQuery, N1QLError from couchbase.exceptions import CouchbaseTransientError, CouchbaseNetworkError from requests.exceptions import RequestException from log.config import set_log_config, logging logger = logging.getLogger("couchbase.connection")
[ 11748, 25064, 198, 11748, 33918, 198, 11748, 640, 198, 11748, 7007, 198, 198, 6738, 18507, 8692, 13, 27041, 316, 1330, 48353, 198, 6738, 18507, 8692, 13, 77, 16, 13976, 1330, 399, 16, 9711, 20746, 11, 399, 16, 48, 2538, 81, 1472, 198, 6738, 18507, 8692, 13, 1069, 11755, 1330, 48225, 8692, 8291, 1153, 12331, 11, 48225, 8692, 26245, 12331, 198, 198, 6738, 7007, 13, 1069, 11755, 1330, 19390, 16922, 198, 198, 6738, 2604, 13, 11250, 1330, 900, 62, 6404, 62, 11250, 11, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 66, 7673, 8692, 13, 38659, 4943, 628 ]
3.66
100
import pytest from lpipe.exceptions import InvalidTaxonomyURI from lpipe.taxonomy import Brand, Company, Product, TaxonomyURI
[ 11748, 12972, 9288, 198, 198, 6738, 300, 34360, 13, 1069, 11755, 1330, 17665, 27017, 30565, 47269, 198, 6738, 300, 34360, 13, 19290, 30565, 1330, 13512, 11, 5834, 11, 8721, 11, 9241, 30565, 47269, 628, 628, 198 ]
3.638889
36
import numpy as np from score_analysis.measure_clusterer import MeasureClusterer from util.dirs import get_musicdata_scores, get_parts if __name__ == '__main__': for score in get_musicdata_scores(follow_parts=False): print('Clustering {}...'.format(score.name)) dist_matrix_path = score / 'dist_matrix.npy' if not dist_matrix_path.exists(): print('Skipping {}: no dist_matrix'.format(score.name)) continue dist_matrix = np.load(dist_matrix_path) if ((dist_matrix == 0).sum() - dist_matrix.shape[0]) > 0: print('Skipping {}: incomplete dist_matrix'.format(score.name)) continue measures_path = score / 'measures' images_path = score / 'measure_images' parts = get_parts(score) if len(parts) > 0: measures_path = [score / part.name / 'measures' for part in parts] images_path = [score / part.name / 'measure_images' for part in parts] cluster_images = score / 'cluster_images' cluster_images.mkdir(exist_ok=True, parents=True) clusterer = MeasureClusterer(measures_path, images_path, dist_matrix_path) clusterer.load_measure_images() clusterer.get_distance_matrix() clusterer.cluster() for i, c in enumerate(clusterer.clusters): images = clusterer.visualize_cluster(c) for j, image in enumerate(images): image.save(cluster_images / 'cluster_{}.{}.png'.format(i, j))
[ 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4776, 62, 20930, 13, 1326, 5015, 62, 565, 436, 11882, 1330, 24291, 2601, 436, 11882, 198, 6738, 7736, 13, 15908, 82, 1330, 651, 62, 28965, 7890, 62, 1416, 2850, 11, 651, 62, 42632, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 329, 4776, 287, 651, 62, 28965, 7890, 62, 1416, 2850, 7, 27780, 62, 42632, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2601, 436, 1586, 23884, 986, 4458, 18982, 7, 26675, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 62, 6759, 8609, 62, 6978, 796, 4776, 1220, 705, 17080, 62, 6759, 8609, 13, 77, 9078, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1233, 62, 6759, 8609, 62, 6978, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 4106, 2105, 23884, 25, 645, 1233, 62, 6759, 8609, 4458, 18982, 7, 26675, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1233, 62, 6759, 8609, 796, 45941, 13, 2220, 7, 17080, 62, 6759, 8609, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 17080, 62, 6759, 8609, 6624, 657, 737, 16345, 3419, 532, 1233, 62, 6759, 8609, 13, 43358, 58, 15, 12962, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 4106, 2105, 23884, 25, 17503, 1233, 62, 6759, 8609, 4458, 18982, 7, 26675, 13, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 5260, 62, 6978, 796, 4776, 1220, 705, 47336, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 62, 6978, 796, 4776, 1220, 705, 1326, 5015, 62, 17566, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 651, 62, 42632, 7, 26675, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 42632, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5260, 62, 6978, 796, 685, 26675, 1220, 636, 13, 3672, 1220, 705, 47336, 6, 329, 636, 287, 3354, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 62, 6978, 796, 685, 26675, 1220, 636, 13, 3672, 1220, 705, 1326, 5015, 62, 17566, 6, 329, 636, 287, 3354, 60, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 17566, 796, 4776, 1220, 705, 565, 5819, 62, 17566, 6, 198, 220, 220, 220, 220, 220, 220, 220, 13946, 62, 17566, 13, 28015, 15908, 7, 38476, 62, 482, 28, 17821, 11, 3397, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32966, 11882, 796, 24291, 2601, 436, 11882, 7, 47336, 62, 6978, 11, 4263, 62, 6978, 11, 1233, 62, 6759, 8609, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 32966, 11882, 13, 2220, 62, 1326, 5015, 62, 17566, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 32966, 11882, 13, 1136, 62, 30246, 62, 6759, 8609, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 32966, 11882, 13, 565, 5819, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 269, 287, 27056, 378, 7, 565, 436, 11882, 13, 565, 13654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4263, 796, 32966, 11882, 13, 41464, 1096, 62, 565, 5819, 7, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 11, 2939, 287, 27056, 378, 7, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 21928, 7, 565, 5819, 62, 17566, 1220, 705, 565, 5819, 23330, 27422, 90, 27422, 11134, 4458, 18982, 7, 72, 11, 474, 4008, 198 ]
2.298326
657
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import absolute_import from django.db import models, migrations import jsonfield.fields
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 198, 11748, 33918, 3245, 13, 25747, 628 ]
3.269231
52
# Generated by Django 2.2.5 on 2019-09-29 21:17 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 20, 319, 13130, 12, 2931, 12, 1959, 2310, 25, 1558, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from rest_framework import viewsets, permissions from .serializers import PokemonSerializer from .models import Pokemon
[ 6738, 1334, 62, 30604, 1330, 5009, 1039, 11, 21627, 198, 198, 6738, 764, 46911, 11341, 1330, 14878, 32634, 7509, 198, 6738, 764, 27530, 1330, 14878, 628 ]
4.692308
26
from typing import Callable import torchvision.transforms as T
[ 6738, 19720, 1330, 4889, 540, 198, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 309, 628 ]
4.0625
16
""" Cartesian grid for fold interpolator """ import logging import numpy as np logger = logging.getLogger(__name__) class StructuredGrid: """ """ def __init__(self, origin=np.zeros(3), nsteps=np.array([10, 10, 10]), step_vector=np.ones(3), ): """ Parameters ---------- origin - 3d list or numpy array nsteps - 3d list or numpy array of ints step_vector - 3d list or numpy array of int """ self.nsteps = np.array(nsteps) self.step_vector = np.array(step_vector) self.origin = np.array(origin) self.maximum = origin+self.nsteps*self.step_vector # self.nsteps+=1 self.n_nodes = self.nsteps[0] * self.nsteps[1] * self.nsteps[2] # self.nsteps-=1 self.dim = 3 self.nsteps_cells = self.nsteps - 1 self.n_cell_x = self.nsteps[0] - 1 self.n_cell_y = self.nsteps[1] - 1 self.n_cell_z = self.nsteps[2] - 1 self.properties = {} self.n_elements = self.n_cell_x * self.n_cell_y * self.n_cell_z # calculate the node positions using numpy (this should probably not # be stored as it defeats # the purpose of a structured grid # self.barycentre = self.cell_centres(np.arange(self.n_elements)) self.regions = {} self.regions['everywhere'] = np.ones(self.n_nodes).astype(bool) @property # @property # def barycentre(self): # return self.cell_centres(np.arange(self.n_elements)) def update_property(self, propertyname, values): """[summary] [extended_summary] Parameters ---------- propertyname : [type] [description] values : [type] [description] """ if values.shape[0] == self.n_nodes: self.properties[propertyname] = values if values.shape[0] == self.n_elements: self.cell_properties[propertyname] = values def cell_centres(self, global_index): """[summary] [extended_summary] Parameters ---------- global_index : [type] [description] Returns ------- [type] [description] """ ix, iy, iz = self.global_index_to_cell_index(global_index) x = self.origin[None, 0] + self.step_vector[None, 0] * .5 + \ self.step_vector[None, 0] * ix y = self.origin[None, 1] + self.step_vector[None, 1] * .5 + \ self.step_vector[None, 1] * iy z = self.origin[None, 2] + self.step_vector[None, 2] * .5 + \ self.step_vector[None, 2] * iz return np.array([x, y, z]).T def position_to_cell_index(self, pos): """[summary] [extended_summary] Parameters ---------- pos : [type] [description] Returns ------- [type] [description] """ pos = self.check_position(pos) ix = pos[:, 0] - self.origin[None, 0] iy = pos[:, 1] - self.origin[None, 1] iz = pos[:, 2] - self.origin[None, 2] ix = ix // self.step_vector[None, 0] iy = iy // self.step_vector[None, 1] iz = iz // self.step_vector[None, 2] return ix.astype(int), iy.astype(int), iz.astype(int) def check_position(self, pos): """[summary] [extended_summary] Parameters ---------- pos : [type] [description] Returns ------- [type] [description] """ if len(pos.shape) == 1: pos = np.array([pos]) if len(pos.shape) != 2: print("Position array needs to be a list of points or a point") return False return pos def trilinear(self, x, y, z): """ returns the trilinear interpolation for the local coordinates Parameters ---------- x - double, array of doubles y - double, array of doubles z - double, array of doubles Returns ------- array of interpolation coefficients """ return np.array([(1 - x) * (1 - y) * (1 - z), x * (1 - y) * (1 - z), (1 - x) * y * (1 - z), (1 - x) * (1 - y) * z, x * (1 - y) * z, (1 - x) * y * z, x * y * (1 - z), x * y * z]) def position_to_local_coordinates(self, pos): """ Convert from global to local coordinates within a cel Parameters ---------- pos - array of positions inside Returns ------- localx, localy, localz """ # TODO check if inside mesh # calculate local coordinates for positions local_x = ((pos[:, 0] - self.origin[None, 0]) % self.step_vector[ None, 0]) / self.step_vector[None, 0] local_y = ((pos[:, 1] - self.origin[None, 1]) % self.step_vector[ None, 1]) / self.step_vector[None, 1] local_z = ((pos[:, 2] - self.origin[None, 2]) % self.step_vector[ None, 2]) / self.step_vector[None, 2] return local_x, local_y, local_z def position_to_dof_coefs(self, pos): """ global posotion to interpolation coefficients Parameters ---------- pos Returns ------- """ x_local, y_local, local_z = self.position_to_local_coordinates(pos) weights = self.trilinear(x_local, y_local, local_z) return weights def global_indicies(self, indexes): """ xi, yi, zi to global index Parameters ---------- indexes Returns ------- """ indexes = np.array(indexes).swapaxes(0, 2) return indexes[:, :, 0] + self.nsteps[None, None, 0] * indexes[:, :, 1] + \ self.nsteps[None, None, 0] * self.nsteps[ None, None, 1] * indexes[:, :, 2] def neighbour_global_indexes(self, mask = None, **kwargs): """ Get neighbour indexes Parameters ---------- kwargs - indexes array specifying the cells to return neighbours Returns ------- """ indexes = None if "indexes" in kwargs: indexes = kwargs['indexes'] if "indexes" not in kwargs: ii = [] jj = [] kk = [] for i in range(1, self.nsteps[0] - 1): for j in range(1, self.nsteps[1] - 1): for k in range(1, self.nsteps[2] - 1): kk.append(k) ii.append(i) jj.append(j) indexes = np.array([ii, jj, kk]) # indexes = np.array(indexes).T if indexes.ndim != 2: print(indexes.ndim) return # determine which neighbours to return default is diagonals included. if mask is None: mask = np.array([ [-1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0, 1], [-1, -1, -1, 0, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 0, 1, 1, 1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1] ]) neighbours = indexes[:, None, :] + mask[:, :, None] return(neighbours[0, :, :] + self.nsteps[0, None, None] * neighbours[1, :, :] + \ self.nsteps[0, None, None] * self.nsteps[ 1, None, None] * neighbours[2, :, :]).astype(np.int64) def cell_corner_indexes(self, x_cell_index, y_cell_index, z_cell_index): """ Returns the indexes of the corners of a cell given its location xi, yi, zi Parameters ---------- x_cell_index y_cell_index z_cell_index Returns ------- """ xcorner = np.array([0, 1, 0, 0, 1, 0, 1, 1]) ycorner = np.array([0, 0, 1, 0, 0, 1, 1, 1]) zcorner = np.array([0, 0, 0, 1, 1, 1, 0, 1]) xcorners = x_cell_index[:, None] + xcorner[None, :] ycorners = y_cell_index[:, None] + ycorner[None, :] zcorners = z_cell_index[:, None] + zcorner[None, :] return xcorners, ycorners, zcorners def global_index_to_cell_index(self, global_index): """ Convert from global indexes to xi,yi,zi Parameters ---------- global_index Returns ------- """ # determine the ijk indices for the global index. # remainder when dividing by nx = i # remained when dividing modulus of nx by ny is j x_index = global_index % self.nsteps_cells[0, None] y_index = global_index // self.nsteps_cells[0, None] % \ self.nsteps_cells[1, None] z_index = global_index // self.nsteps_cells[0, None] // \ self.nsteps_cells[1, None] return x_index, y_index, z_index def evaluate_value(self, evaluation_points, property_name): """ Evaluate the value of of the property at the locations. Trilinear interpolation dot corner values Parameters ---------- evaluation_points np array of locations property_name string of property name Returns ------- """ idc, inside = self.position_to_cell_corners(evaluation_points) v = np.zeros(idc.shape) v[:, :] = np.nan v[inside, :] = self.position_to_dof_coefs( evaluation_points[inside, :]).T v[inside, :] *= self.properties[property_name][idc[inside, :]] return np.sum(v, axis=1) def calcul_T(self, pos): """ Calculates the gradient matrix at location pos :param pos: numpy array of location Nx3 :return: Nx3x4 matrix """ # 6_ _ _ _ 8 # /| /| # 4 /_| 5/ | # | 2|_ _|_| 7 # | / | / # |/_ _ _|/ # 0 1 # # xindex, yindex, zindex = self.position_to_cell_index(pos) # cellx, celly, cellz = self.cell_corner_indexes(xindex, yindex,zindex) # x, y, z = self.node_indexes_to_position(cellx, celly, cellz) T = np.zeros((pos.shape[0], 3, 8)) x, y, z = self.position_to_local_coordinates(pos) # div = self.step_vector[0] * self.step_vector[1] * self.step_vector[2] T[:, 0, 0] = -(1 - y) * (1 - z) # v000 T[:, 0, 1] = (1 - y) * (1 - z) # (y[:, 3] - pos[:, 1]) / div T[:, 0, 2] = -y * (1 - z) # (pos[:, 1] - y[:, 0]) / div T[:, 0, 3] = -(1 - y) * z # (pos[:, 1] - y[:, 1]) / div T[:, 0, 4] = (1 - y) * z T[:, 0, 5] = - y * z T[:, 0, 6] = y * (1 - z) T[:, 0, 7] = y * z T[:, 1, 0] = - (1 - x) * (1 - z) T[:, 1, 1] = - x * (1 - z) T[:, 1, 2] = (1 - x) * (1 - z) T[:, 1, 3] = -(1 - x) * z T[:, 1, 4] = -x * z T[:, 1, 5] = (1 - x) * z T[:, 1, 6] = x * (1 - z) T[:, 1, 7] = x * z T[:, 2, 0] = -(1 - x) * (1 - y) T[:, 2, 1] = - x * (1 - y) T[:, 2, 2] = - (1 - x) * y T[:, 2, 3] = (1 - x) * (1 - y) T[:, 2, 4] = x * (1 - y) T[:, 2, 5] = (1 - x) * y T[:, 2, 6] = - x * y T[:, 2, 7] = x * y return T
[ 37811, 198, 43476, 35610, 10706, 329, 5591, 39555, 1352, 198, 198, 37811, 198, 11748, 18931, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4871, 32112, 1522, 41339, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8159, 28, 37659, 13, 9107, 418, 7, 18, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 28, 37659, 13, 18747, 26933, 940, 11, 838, 11, 838, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 62, 31364, 28, 37659, 13, 1952, 7, 18, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 8159, 532, 513, 67, 1351, 393, 299, 32152, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 299, 20214, 532, 513, 67, 1351, 393, 299, 32152, 7177, 286, 493, 82, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 62, 31364, 532, 513, 67, 1351, 393, 299, 32152, 7177, 286, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 796, 45941, 13, 18747, 7, 77, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 31364, 796, 45941, 13, 18747, 7, 9662, 62, 31364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47103, 796, 45941, 13, 18747, 7, 47103, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47033, 796, 8159, 10, 944, 13, 77, 20214, 9, 944, 13, 9662, 62, 31364, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 77, 20214, 47932, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 77, 4147, 796, 2116, 13, 77, 20214, 58, 15, 60, 1635, 2116, 13, 77, 20214, 58, 16, 60, 1635, 2116, 13, 77, 20214, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 77, 20214, 12, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27740, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 62, 46342, 796, 2116, 13, 77, 20214, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 3846, 62, 87, 796, 2116, 13, 77, 20214, 58, 15, 60, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 3846, 62, 88, 796, 2116, 13, 77, 20214, 58, 16, 60, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 3846, 62, 89, 796, 2116, 13, 77, 20214, 58, 17, 60, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48310, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 62, 68, 3639, 796, 2116, 13, 77, 62, 3846, 62, 87, 1635, 2116, 13, 77, 62, 3846, 62, 88, 1635, 2116, 13, 77, 62, 3846, 62, 89, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 262, 10139, 6116, 1262, 299, 32152, 357, 5661, 815, 2192, 407, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 307, 8574, 355, 340, 29234, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4007, 286, 257, 20793, 10706, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 65, 560, 1087, 260, 796, 2116, 13, 3846, 62, 1087, 411, 7, 37659, 13, 283, 858, 7, 944, 13, 77, 62, 68, 3639, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2301, 507, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2301, 507, 17816, 16833, 3003, 20520, 796, 45941, 13, 1952, 7, 944, 13, 77, 62, 77, 4147, 737, 459, 2981, 7, 30388, 8, 628, 198, 220, 220, 220, 2488, 26745, 628, 220, 220, 220, 1303, 2488, 26745, 198, 220, 220, 220, 1303, 825, 275, 560, 1087, 260, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 2116, 13, 3846, 62, 1087, 411, 7, 37659, 13, 283, 858, 7, 944, 13, 77, 62, 68, 3639, 4008, 628, 220, 220, 220, 825, 4296, 62, 26745, 7, 944, 11, 3119, 3672, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 685, 2302, 1631, 62, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3119, 3672, 1058, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 1058, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3815, 13, 43358, 58, 15, 60, 6624, 2116, 13, 77, 62, 77, 4147, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48310, 58, 26745, 3672, 60, 796, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3815, 13, 43358, 58, 15, 60, 6624, 2116, 13, 77, 62, 68, 3639, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3846, 62, 48310, 58, 26745, 3672, 60, 796, 3815, 628, 220, 220, 220, 825, 2685, 62, 1087, 411, 7, 944, 11, 3298, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 685, 2302, 1631, 62, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9630, 1058, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 844, 11, 1312, 88, 11, 220, 528, 796, 2116, 13, 20541, 62, 9630, 62, 1462, 62, 3846, 62, 9630, 7, 20541, 62, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 47103, 58, 14202, 11, 657, 60, 1343, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 657, 60, 1635, 764, 20, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 657, 60, 1635, 220, 844, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2116, 13, 47103, 58, 14202, 11, 352, 60, 1343, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 352, 60, 1635, 764, 20, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 352, 60, 1635, 1312, 88, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 2116, 13, 47103, 58, 14202, 11, 362, 60, 1343, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 362, 60, 1635, 764, 20, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 362, 60, 1635, 220, 528, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 87, 11, 331, 11, 1976, 35944, 51, 628, 220, 220, 220, 825, 2292, 62, 1462, 62, 3846, 62, 9630, 7, 944, 11, 1426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 685, 2302, 1631, 62, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 1058, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 2116, 13, 9122, 62, 9150, 7, 1930, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 844, 796, 1426, 58, 45299, 657, 60, 532, 2116, 13, 47103, 58, 14202, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 88, 796, 1426, 58, 45299, 352, 60, 532, 2116, 13, 47103, 58, 14202, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 528, 796, 1426, 58, 45299, 362, 60, 532, 2116, 13, 47103, 58, 14202, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 844, 796, 220, 844, 3373, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 88, 796, 1312, 88, 3373, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 528, 796, 220, 528, 3373, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 220, 844, 13, 459, 2981, 7, 600, 828, 1312, 88, 13, 459, 2981, 7, 600, 828, 220, 528, 13, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 825, 2198, 62, 9150, 7, 944, 11, 1426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 17912, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 685, 2302, 1631, 62, 49736, 60, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 1058, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4906, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 11213, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1930, 13, 43358, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1426, 796, 45941, 13, 18747, 26933, 1930, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1930, 13, 43358, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 26545, 7177, 2476, 284, 307, 257, 1351, 286, 2173, 393, 257, 966, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1426, 628, 220, 220, 220, 825, 491, 346, 259, 451, 7, 944, 11, 2124, 11, 331, 11, 1976, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 262, 491, 346, 259, 451, 39555, 341, 329, 262, 1957, 22715, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 532, 4274, 11, 7177, 286, 21938, 198, 220, 220, 220, 220, 220, 220, 220, 331, 532, 4274, 11, 7177, 286, 21938, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 532, 4274, 11, 7177, 286, 21938, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 286, 39555, 341, 44036, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 26933, 7, 16, 532, 2124, 8, 1635, 357, 16, 532, 331, 8, 1635, 357, 16, 532, 1976, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 357, 16, 532, 331, 8, 1635, 357, 16, 532, 1976, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 532, 2124, 8, 1635, 331, 1635, 357, 16, 532, 1976, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 532, 2124, 8, 1635, 357, 16, 532, 331, 8, 1635, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 357, 16, 532, 331, 8, 1635, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 16, 532, 2124, 8, 1635, 331, 1635, 1976, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 331, 1635, 357, 16, 532, 1976, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 1635, 331, 1635, 1976, 12962, 628, 220, 220, 220, 825, 2292, 62, 1462, 62, 12001, 62, 37652, 17540, 7, 944, 11, 1426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 422, 3298, 284, 1957, 22715, 1626, 257, 18725, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 532, 7177, 286, 6116, 2641, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 87, 11, 1957, 88, 11, 1957, 89, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 2198, 611, 2641, 19609, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 1957, 22715, 329, 6116, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 87, 796, 14808, 1930, 58, 45299, 657, 60, 532, 2116, 13, 47103, 58, 14202, 11, 657, 12962, 4064, 2116, 13, 9662, 62, 31364, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 657, 12962, 1220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 88, 796, 14808, 1930, 58, 45299, 352, 60, 532, 2116, 13, 47103, 58, 14202, 11, 352, 12962, 4064, 2116, 13, 9662, 62, 31364, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 352, 12962, 1220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 89, 796, 14808, 1930, 58, 45299, 362, 60, 532, 2116, 13, 47103, 58, 14202, 11, 362, 12962, 4064, 2116, 13, 9662, 62, 31364, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 362, 12962, 1220, 2116, 13, 9662, 62, 31364, 58, 14202, 11, 362, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1957, 62, 87, 11, 1957, 62, 88, 11, 1957, 62, 89, 628, 220, 220, 220, 825, 2292, 62, 1462, 62, 67, 1659, 62, 1073, 891, 82, 7, 944, 11, 1426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 1426, 9650, 284, 39555, 341, 44036, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 12001, 11, 331, 62, 12001, 11, 1957, 62, 89, 796, 2116, 13, 9150, 62, 1462, 62, 12001, 62, 37652, 17540, 7, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19590, 796, 2116, 13, 2213, 346, 259, 451, 7, 87, 62, 12001, 11, 331, 62, 12001, 11, 1957, 62, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 19590, 628, 220, 220, 220, 825, 3298, 62, 521, 291, 444, 7, 944, 11, 39199, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 11, 331, 72, 11, 1976, 72, 284, 3298, 6376, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 796, 45941, 13, 18747, 7, 9630, 274, 737, 2032, 499, 897, 274, 7, 15, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 39199, 58, 45299, 1058, 11, 657, 60, 1343, 2116, 13, 77, 20214, 58, 14202, 11, 6045, 11, 657, 60, 1635, 39199, 58, 45299, 1058, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 58, 14202, 11, 6045, 11, 657, 60, 1635, 2116, 13, 77, 20214, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 6045, 11, 352, 60, 1635, 39199, 58, 45299, 1058, 11, 362, 60, 628, 220, 220, 220, 825, 12250, 62, 20541, 62, 9630, 274, 7, 944, 11, 9335, 796, 6045, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 12250, 39199, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 532, 39199, 7177, 31577, 262, 4778, 284, 1441, 23788, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 39199, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9630, 274, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39199, 796, 479, 86, 22046, 17816, 9630, 274, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9630, 274, 1, 407, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21065, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 73, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 74, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 2116, 13, 77, 20214, 58, 15, 60, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 16, 11, 2116, 13, 77, 20214, 58, 16, 60, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 16, 11, 2116, 13, 77, 20214, 58, 17, 60, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 74, 13, 33295, 7, 74, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21065, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 73, 13, 33295, 7, 73, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39199, 796, 45941, 13, 18747, 26933, 4178, 11, 474, 73, 11, 479, 74, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 39199, 796, 45941, 13, 18747, 7, 9630, 274, 737, 51, 198, 220, 220, 220, 220, 220, 220, 220, 611, 39199, 13, 358, 320, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 9630, 274, 13, 358, 320, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 543, 23788, 284, 1441, 4277, 318, 2566, 1840, 874, 3017, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9335, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 45941, 13, 18747, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 11, 532, 16, 11, 657, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 11, 532, 16, 11, 532, 16, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 532, 16, 11, 532, 16, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 16, 11, 532, 16, 11, 532, 16, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25915, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 532, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 11, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 220, 220, 220, 220, 23788, 796, 39199, 58, 45299, 6045, 11, 1058, 60, 1343, 9335, 58, 45299, 1058, 11, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7, 710, 394, 65, 4662, 58, 15, 11, 1058, 11, 1058, 60, 1343, 2116, 13, 77, 20214, 58, 15, 11, 6045, 11, 6045, 60, 1635, 23788, 58, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 11, 1058, 60, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 58, 15, 11, 6045, 11, 6045, 60, 1635, 2116, 13, 77, 20214, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 11, 6045, 11, 6045, 60, 1635, 23788, 58, 17, 11, 1058, 11, 1058, 35944, 459, 2981, 7, 37659, 13, 600, 2414, 8, 628, 220, 220, 220, 825, 2685, 62, 10215, 1008, 62, 9630, 274, 7, 944, 11, 2124, 62, 3846, 62, 9630, 11, 331, 62, 3846, 62, 9630, 11, 1976, 62, 3846, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 39199, 286, 262, 14371, 286, 257, 2685, 1813, 663, 4067, 2124, 72, 11, 198, 220, 220, 220, 220, 220, 220, 220, 331, 72, 11, 1976, 72, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 3846, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 3846, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 3846, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 10215, 1008, 796, 45941, 13, 18747, 26933, 15, 11, 352, 11, 657, 11, 657, 11, 352, 11, 657, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 10215, 1008, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 352, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 10215, 1008, 796, 45941, 13, 18747, 26933, 15, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 657, 11, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 20772, 364, 796, 2124, 62, 3846, 62, 9630, 58, 45299, 6045, 60, 1343, 2124, 10215, 1008, 58, 14202, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 20772, 364, 796, 331, 62, 3846, 62, 9630, 58, 45299, 6045, 60, 1343, 331, 10215, 1008, 58, 14202, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 20772, 364, 796, 1976, 62, 3846, 62, 9630, 58, 45299, 6045, 60, 1343, 1976, 10215, 1008, 58, 14202, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 20772, 364, 11, 331, 20772, 364, 11, 1976, 20772, 364, 628, 220, 220, 220, 825, 3298, 62, 9630, 62, 1462, 62, 3846, 62, 9630, 7, 944, 11, 3298, 62, 9630, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 38240, 422, 3298, 39199, 284, 2124, 72, 11, 48111, 11, 17027, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 9630, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5004, 262, 1312, 73, 74, 36525, 329, 262, 3298, 6376, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17675, 618, 27241, 416, 299, 87, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6150, 618, 27241, 953, 23515, 286, 299, 87, 416, 299, 88, 318, 474, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9630, 796, 3298, 62, 9630, 4064, 2116, 13, 77, 20214, 62, 46342, 58, 15, 11, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9630, 796, 3298, 62, 9630, 3373, 2116, 13, 77, 20214, 62, 46342, 58, 15, 11, 6045, 60, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 62, 46342, 58, 16, 11, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 9630, 796, 3298, 62, 9630, 3373, 2116, 13, 77, 20214, 62, 46342, 58, 15, 11, 6045, 60, 3373, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 77, 20214, 62, 46342, 58, 16, 11, 6045, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 62, 9630, 11, 331, 62, 9630, 11, 1976, 62, 9630, 628, 220, 220, 220, 825, 13446, 62, 8367, 7, 944, 11, 12660, 62, 13033, 11, 3119, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 26439, 4985, 262, 1988, 286, 286, 262, 3119, 379, 262, 7064, 13, 198, 220, 220, 220, 220, 220, 220, 220, 833, 346, 259, 451, 39555, 341, 16605, 5228, 3815, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 13033, 45941, 7177, 286, 7064, 198, 220, 220, 220, 220, 220, 220, 220, 3119, 62, 3672, 4731, 286, 3119, 1438, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 66, 11, 2641, 796, 2116, 13, 9150, 62, 1462, 62, 3846, 62, 20772, 364, 7, 18206, 2288, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 45941, 13, 9107, 418, 7, 312, 66, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 58, 45299, 1058, 60, 796, 45941, 13, 12647, 628, 220, 220, 220, 220, 220, 220, 220, 410, 58, 48787, 11, 1058, 60, 796, 2116, 13, 9150, 62, 1462, 62, 67, 1659, 62, 1073, 891, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 13033, 58, 48787, 11, 1058, 35944, 51, 198, 220, 220, 220, 220, 220, 220, 220, 410, 58, 48787, 11, 1058, 60, 1635, 28, 2116, 13, 48310, 58, 26745, 62, 3672, 7131, 312, 66, 58, 48787, 11, 1058, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 16345, 7, 85, 11, 16488, 28, 16, 8, 628, 220, 220, 220, 825, 5204, 62, 51, 7, 944, 11, 1426, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 262, 31312, 17593, 379, 4067, 1426, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1426, 25, 299, 32152, 7177, 286, 4067, 399, 87, 18, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 399, 87, 18, 87, 19, 17593, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 718, 62, 4808, 4808, 4808, 807, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 1220, 91, 220, 220, 220, 1220, 91, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 604, 1220, 62, 91, 220, 642, 14, 930, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 930, 362, 91, 62, 4808, 91, 62, 91, 767, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 930, 1220, 220, 220, 220, 930, 1220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 930, 47835, 4808, 4808, 91, 14, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 657, 220, 220, 220, 220, 220, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2124, 9630, 11, 331, 9630, 11, 1976, 9630, 796, 2116, 13, 9150, 62, 1462, 62, 3846, 62, 9630, 7, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2685, 87, 11, 2685, 88, 11, 2685, 89, 796, 2116, 13, 3846, 62, 10215, 1008, 62, 9630, 274, 7, 87, 9630, 11, 331, 9630, 11, 89, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2124, 11, 331, 11, 1976, 796, 2116, 13, 17440, 62, 9630, 274, 62, 1462, 62, 9150, 7, 3846, 87, 11, 2685, 88, 11, 2685, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 796, 45941, 13, 9107, 418, 19510, 1930, 13, 43358, 58, 15, 4357, 513, 11, 807, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 11, 1976, 796, 2116, 13, 9150, 62, 1462, 62, 12001, 62, 37652, 17540, 7, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2659, 796, 2116, 13, 9662, 62, 31364, 58, 15, 60, 1635, 2116, 13, 9662, 62, 31364, 58, 16, 60, 1635, 2116, 13, 9662, 62, 31364, 58, 17, 60, 628, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 657, 60, 796, 532, 7, 16, 532, 331, 8, 1635, 357, 16, 532, 1976, 8, 220, 1303, 410, 830, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 352, 60, 796, 357, 16, 532, 331, 8, 1635, 357, 16, 532, 1976, 8, 220, 1303, 357, 88, 58, 45299, 513, 60, 532, 1426, 58, 45299, 352, 12962, 1220, 2659, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 362, 60, 796, 532, 88, 1635, 357, 16, 532, 1976, 8, 220, 1303, 357, 1930, 58, 45299, 352, 60, 532, 331, 58, 45299, 657, 12962, 1220, 2659, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 513, 60, 796, 532, 7, 16, 532, 331, 8, 1635, 1976, 220, 1303, 357, 1930, 58, 45299, 352, 60, 532, 331, 58, 45299, 352, 12962, 1220, 2659, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 604, 60, 796, 357, 16, 532, 331, 8, 1635, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 642, 60, 796, 532, 331, 1635, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 718, 60, 796, 331, 1635, 357, 16, 532, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 657, 11, 767, 60, 796, 331, 1635, 1976, 628, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 657, 60, 796, 532, 357, 16, 532, 2124, 8, 1635, 357, 16, 532, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 352, 60, 796, 532, 2124, 1635, 357, 16, 532, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 362, 60, 796, 357, 16, 532, 2124, 8, 1635, 357, 16, 532, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 513, 60, 796, 532, 7, 16, 532, 2124, 8, 1635, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 604, 60, 796, 532, 87, 1635, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 642, 60, 796, 357, 16, 532, 2124, 8, 1635, 1976, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 718, 60, 796, 2124, 1635, 357, 16, 532, 1976, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 352, 11, 767, 60, 796, 2124, 1635, 1976, 628, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 657, 60, 796, 532, 7, 16, 532, 2124, 8, 1635, 357, 16, 532, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 352, 60, 796, 532, 2124, 1635, 357, 16, 532, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 362, 60, 796, 532, 357, 16, 532, 2124, 8, 1635, 331, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 513, 60, 796, 357, 16, 532, 2124, 8, 1635, 357, 16, 532, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 604, 60, 796, 2124, 1635, 357, 16, 532, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 642, 60, 796, 357, 16, 532, 2124, 8, 1635, 331, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 718, 60, 796, 532, 2124, 1635, 331, 198, 220, 220, 220, 220, 220, 220, 220, 309, 58, 45299, 362, 11, 767, 60, 796, 2124, 1635, 331, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 309, 198 ]
1.869991
6,338
# -*- coding: utf-8 -*- from behave import given, when, then from selenium import webdriver from should_dsl import should @given(u'que o usuário abre o navegador') @when(u'acessa a url "{url}"') @then(u'o sistema exibe a pagina de login')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 17438, 1330, 1813, 11, 618, 11, 788, 198, 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 815, 62, 67, 6649, 1330, 815, 628, 198, 31, 35569, 7, 84, 6, 4188, 267, 514, 84, 6557, 27250, 450, 260, 267, 299, 1015, 70, 7079, 11537, 628, 198, 31, 12518, 7, 84, 6, 330, 21411, 257, 19016, 45144, 6371, 36786, 11537, 628, 198, 31, 8524, 7, 84, 6, 78, 264, 396, 19687, 409, 32438, 257, 42208, 1437, 390, 17594, 11537, 198 ]
2.606383
94
""" 仓库服务的库存监控 """ from alarm.page.ding_talk import DingTalk from crontab.config import prod_filter_warehouse_ids, ROBOT_TOKEN from crontab.model.mysql.order_goods import OrderGoods from crontab.model.mysql.order_info import OrderInfo from crontab.model.mysql.product import Product if __name__ == '__main__': StockMonitor().run()
[ 37811, 198, 20015, 241, 41753, 241, 17312, 235, 27950, 94, 21410, 41753, 241, 27764, 246, 33566, 239, 162, 236, 100, 198, 37811, 198, 6738, 10436, 13, 7700, 13, 12083, 62, 16620, 1330, 46980, 25685, 198, 6738, 1067, 756, 397, 13, 11250, 1330, 40426, 62, 24455, 62, 1574, 4803, 62, 2340, 11, 36449, 2394, 62, 10468, 43959, 198, 6738, 1067, 756, 397, 13, 19849, 13, 28744, 13976, 13, 2875, 62, 11274, 82, 1330, 8284, 10248, 82, 198, 6738, 1067, 756, 397, 13, 19849, 13, 28744, 13976, 13, 2875, 62, 10951, 1330, 8284, 12360, 198, 6738, 1067, 756, 397, 13, 19849, 13, 28744, 13976, 13, 11167, 1330, 8721, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 10500, 35479, 22446, 5143, 3419, 198 ]
2.612403
129
import tensorflow as tf __all__ = ["batchify"]
[ 11748, 11192, 273, 11125, 355, 48700, 628, 198, 834, 439, 834, 796, 14631, 43501, 1958, 8973, 628 ]
2.941176
17
# shebang goes here import argparse, shutil parser = argparse.ArgumentParser(description='TODO') parser.add_argument('destination', help='Destination to copy files') parser.add_argument('-f',action='count',help='Force script to copy all files regardless of size') args = parser.parse_args() if __name__ == "__main__": dest_path = args.destination print("End")
[ 2, 673, 36668, 2925, 994, 198, 198, 11748, 1822, 29572, 11, 4423, 346, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 51, 3727, 46, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 16520, 1883, 3256, 1037, 11639, 24159, 1883, 284, 4866, 3696, 11537, 198, 48610, 13, 2860, 62, 49140, 10786, 12, 69, 3256, 2673, 11639, 9127, 3256, 16794, 11639, 10292, 4226, 284, 4866, 477, 3696, 7692, 286, 2546, 11537, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2244, 62, 6978, 796, 26498, 13, 16520, 1883, 628, 220, 220, 220, 3601, 7203, 12915, 4943, 198 ]
3.206897
116
#!/usr/bin/env python from os.path import dirname, join from setuptools import setup, find_packages name = "ktop" brand = "ripxl" full_name = "Dead Pixel Collective" with open(join(dirname(__file__), "src", name, "__init__.py")) as fp: for i, line in enumerate(fp.readlines()): if line.startswith("__version__ ="): __version__ = line.split(" ")[2][1:-2] setup( name=name, version=__version__, url=f"https://github.com/{brand}/{name}", author=full_name, author_email=f"{brand}@googlegroups.com", description="Use Notebooks and Kernels like Widgets", packages=find_packages("src"), package_dir={"": "src"}, install_requires=[ "ipywidgets >=7.0.0", "jupyter_client >=5.2.1", "nbformat >=4.4.0", ], license="BSD-3-Clause", include_package_data=True, zip_safe=False, keywords="jupyter notebook kernel widget ipywidgets traitlets ipynb", )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 4654, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 3672, 796, 366, 16201, 1, 198, 17938, 796, 366, 5528, 87, 75, 1, 198, 12853, 62, 3672, 796, 366, 20489, 11349, 29128, 1, 198, 198, 4480, 1280, 7, 22179, 7, 15908, 3672, 7, 834, 7753, 834, 828, 366, 10677, 1600, 1438, 11, 366, 834, 15003, 834, 13, 9078, 48774, 355, 277, 79, 25, 198, 220, 220, 220, 329, 1312, 11, 1627, 287, 27056, 378, 7, 46428, 13, 961, 6615, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 834, 9641, 834, 796, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11593, 9641, 834, 796, 1627, 13, 35312, 7203, 366, 38381, 17, 7131, 16, 21912, 17, 60, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 2196, 28, 834, 9641, 834, 11, 198, 220, 220, 220, 19016, 28, 69, 1, 5450, 1378, 12567, 13, 785, 14, 90, 17938, 92, 14, 90, 3672, 92, 1600, 198, 220, 220, 220, 1772, 28, 12853, 62, 3672, 11, 198, 220, 220, 220, 1772, 62, 12888, 28, 69, 1, 90, 17938, 92, 31, 2188, 519, 1455, 14459, 13, 785, 1600, 198, 220, 220, 220, 6764, 2625, 11041, 5740, 12106, 290, 509, 44930, 588, 24801, 11407, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 7203, 10677, 12340, 198, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 10677, 25719, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 541, 88, 28029, 11407, 18189, 22, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 73, 929, 88, 353, 62, 16366, 18189, 20, 13, 17, 13, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 46803, 18982, 18189, 19, 13, 19, 13, 15, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5964, 2625, 21800, 12, 18, 12, 2601, 682, 1600, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 26286, 2625, 73, 929, 88, 353, 20922, 9720, 26295, 20966, 88, 28029, 11407, 1291, 2578, 912, 20966, 2047, 65, 1600, 198, 8, 198 ]
2.340796
402
#!/usr/bin/env python """ A python library for the Udacity Project Advanced Lane Lines This library is designed to abstract away some useful functions, so that using this code for images/video becomes almost like calling an API """ import numpy as np import cv2 import glob import pickle from pprint import pprint # The following globals are designed to make development/debug easier. In a more real world enviornment, # Both of these would be turned off. DEBUG = 1 # A switch for print statements. Turn off to make the script not print out anything OUTPUT_STEPS = 1 # A switch for writing out files. Turn on to output images from each individual step. # From the Udactiy Lessons, we have some helpful functions. # I have left the comments in to help explain what is happening here
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 220, 198, 37811, 198, 32, 21015, 5888, 329, 262, 35774, 4355, 4935, 13435, 15016, 26299, 198, 198, 1212, 5888, 318, 3562, 284, 12531, 1497, 617, 4465, 5499, 11, 523, 326, 1262, 428, 2438, 198, 1640, 4263, 14, 15588, 4329, 2048, 588, 4585, 281, 7824, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 15095, 198, 11748, 2298, 293, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 2, 383, 1708, 15095, 874, 389, 3562, 284, 787, 2478, 14, 24442, 4577, 13, 220, 554, 257, 517, 1103, 995, 551, 8903, 1211, 434, 11, 198, 2, 5747, 286, 777, 561, 307, 2900, 572, 13, 198, 30531, 796, 352, 1303, 317, 5078, 329, 3601, 6299, 13, 220, 6756, 572, 284, 787, 262, 4226, 407, 3601, 503, 1997, 198, 2606, 7250, 3843, 62, 30516, 3705, 796, 352, 1303, 317, 5078, 329, 3597, 503, 3696, 13, 220, 6756, 319, 284, 5072, 4263, 422, 1123, 1981, 2239, 13, 198, 198, 2, 3574, 262, 35774, 529, 7745, 46885, 11, 356, 423, 617, 7613, 5499, 13, 198, 2, 314, 423, 1364, 262, 3651, 287, 284, 1037, 4727, 644, 318, 5836, 994 ]
4
197
#!/usr/bin/env python3 # Natural Language Processing example performing # sentiment analysis and setting a Belleds light to # a color matching sentiment. # # Example usage: # echo "I hate you and I'm having a terrible day" | ./sample-sentiment.py # => user is angry, light turns red # echo "I love chocolate. So awesome!" | ./sample-sentiment.py # => user is happy, light turns green from belleds import Belleds import json import sys import urllib.request, urllib.parse # main code b = Belleds() b.connect('192.168.1.139') lights = b.get_lights() text = "".join(sys.stdin.readlines()) params = urllib.parse.urlencode({'text': text }) request = urllib.request.urlopen("http://text-processing.com/api/sentiment/", params.encode('utf-8')) data = json.loads(request.read().decode('utf-8')) print(data) r = int(data.get('probability',{}).get('neg',1)*255) g = int(data.get('probability',{}).get('pos',1)*255) b = int(data.get('probability',{}).get('neutral',1)*255) for light in lights: light.color = (r, g, b)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 12068, 15417, 28403, 1672, 9489, 198, 2, 15598, 3781, 290, 4634, 257, 7459, 5379, 1657, 284, 198, 2, 257, 3124, 12336, 15598, 13, 198, 2, 198, 2, 17934, 8748, 25, 198, 2, 9809, 366, 40, 5465, 345, 290, 314, 1101, 1719, 257, 7818, 1110, 1, 930, 24457, 39873, 12, 34086, 3681, 13, 9078, 198, 2, 5218, 2836, 318, 7954, 11, 1657, 4962, 2266, 198, 2, 9809, 366, 40, 1842, 11311, 13, 1406, 7427, 2474, 930, 24457, 39873, 12, 34086, 3681, 13, 9078, 198, 2, 5218, 2836, 318, 3772, 11, 1657, 4962, 4077, 198, 198, 6738, 307, 3353, 82, 1330, 7459, 5379, 198, 11748, 33918, 198, 11748, 25064, 198, 11748, 2956, 297, 571, 13, 25927, 11, 2956, 297, 571, 13, 29572, 198, 198, 2, 1388, 2438, 198, 198, 65, 796, 7459, 5379, 3419, 198, 65, 13, 8443, 10786, 17477, 13, 14656, 13, 16, 13, 20219, 11537, 198, 8091, 796, 275, 13, 1136, 62, 8091, 3419, 198, 198, 5239, 796, 366, 1911, 22179, 7, 17597, 13, 19282, 259, 13, 961, 6615, 28955, 198, 198, 37266, 796, 2956, 297, 571, 13, 29572, 13, 6371, 268, 8189, 15090, 6, 5239, 10354, 2420, 32092, 198, 25927, 796, 2956, 297, 571, 13, 25927, 13, 6371, 9654, 7203, 4023, 1378, 5239, 12, 36948, 13, 785, 14, 15042, 14, 34086, 3681, 14, 1600, 42287, 13, 268, 8189, 10786, 40477, 12, 23, 6, 4008, 198, 7890, 796, 33918, 13, 46030, 7, 25927, 13, 961, 22446, 12501, 1098, 10786, 40477, 12, 23, 6, 4008, 198, 4798, 7, 7890, 8, 198, 81, 796, 493, 7, 7890, 13, 1136, 10786, 1676, 65, 1799, 3256, 90, 92, 737, 1136, 10786, 12480, 3256, 16, 27493, 13381, 8, 198, 70, 796, 493, 7, 7890, 13, 1136, 10786, 1676, 65, 1799, 3256, 90, 92, 737, 1136, 10786, 1930, 3256, 16, 27493, 13381, 8, 198, 65, 796, 493, 7, 7890, 13, 1136, 10786, 1676, 65, 1799, 3256, 90, 92, 737, 1136, 10786, 29797, 3256, 16, 27493, 13381, 8, 198, 198, 1640, 1657, 287, 7588, 25, 198, 220, 1657, 13, 8043, 796, 357, 81, 11, 308, 11, 275, 8, 198 ]
2.870056
354
from dplaapi import models
[ 198, 6738, 288, 489, 64, 15042, 1330, 4981, 628, 198 ]
3
10