content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import re # Value selectors; aliases, tags, etc. def tag(*tags): """Select a (list of) tag(s).""" vtag = [t for t in tags] return {"tag": vtag} def tag_and(*tag_ands): """Select a (list of) tag_and(s).""" vtag_and = [t for t in tag_ands] return {"tag_and": vtag_and} def tag_not(*tag_nots): """Select a (list of) tag_not(s).""" vtag_not = [t for t in tag_nots] return {"tag_not": vtag_not} def alias(*alias): """Select a (list of) alias(es).""" valias = [t for t in alias] return {"alias": valias} def registration_id(*reg_ids): """Select a (list of) registration_id(s).""" vregistration_id = [t for t in reg_ids] return {"registration_id": vregistration_id} def segment(*segments): """Select a (list of) segment(s).""" vsegment = [t for t in segments] return {"segment": vsegment} def abtest(*abtests): """Select a (list of) abtest(s).""" vabtest = [t for t in abtests] return {"abtest": vabtest}
[ 11748, 302, 198, 198, 2, 11052, 2922, 669, 26, 47217, 11, 15940, 11, 3503, 13, 198, 198, 4299, 7621, 46491, 31499, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 7621, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 12985, 796, 685, 83, 329, 256, 287, 15940, 60, 198, 220, 220, 220, 1441, 19779, 12985, 1298, 410, 12985, 92, 198, 198, 4299, 7621, 62, 392, 46491, 12985, 62, 1746, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 7621, 62, 392, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 12985, 62, 392, 796, 685, 83, 329, 256, 287, 7621, 62, 1746, 60, 198, 220, 220, 220, 1441, 19779, 12985, 62, 392, 1298, 410, 12985, 62, 392, 92, 198, 198, 4299, 7621, 62, 1662, 46491, 12985, 62, 1662, 82, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 7621, 62, 1662, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 12985, 62, 1662, 796, 685, 83, 329, 256, 287, 7621, 62, 1662, 82, 60, 198, 220, 220, 220, 1441, 19779, 12985, 62, 1662, 1298, 410, 12985, 62, 1662, 92, 198, 198, 4299, 16144, 46491, 26011, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 16144, 7, 274, 21387, 15931, 198, 220, 220, 220, 1188, 4448, 796, 685, 83, 329, 256, 287, 16144, 60, 198, 220, 220, 220, 1441, 19779, 26011, 1298, 1188, 4448, 92, 198, 198, 4299, 9352, 62, 312, 46491, 2301, 62, 2340, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 9352, 62, 312, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 2301, 33397, 62, 312, 796, 685, 83, 329, 256, 287, 842, 62, 2340, 60, 198, 220, 220, 220, 1441, 19779, 2301, 33397, 62, 312, 1298, 410, 2301, 33397, 62, 312, 92, 198, 198, 4299, 10618, 46491, 325, 11726, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 10618, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 325, 5154, 796, 685, 83, 329, 256, 287, 17894, 60, 198, 220, 220, 220, 1441, 19779, 325, 5154, 1298, 410, 325, 5154, 92, 198, 198, 4299, 450, 9288, 46491, 397, 41989, 2599, 198, 220, 220, 220, 37227, 17563, 257, 357, 4868, 286, 8, 450, 9288, 7, 82, 21387, 15931, 198, 220, 220, 220, 410, 397, 9288, 796, 685, 83, 329, 256, 287, 450, 41989, 60, 198, 220, 220, 220, 1441, 19779, 397, 9288, 1298, 410, 397, 9288, 92, 198 ]
2.414634
410
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-07-30 14:11 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 20, 319, 2864, 12, 2998, 12, 1270, 1478, 25, 1157, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.736842
57
num_vezes = 0 soma_total = 0 maior_numero = None menor_numero = None while True: num = input("Digite um número ou \"sair\" para encerrar o programa: ") if num == "sair": break try: numero = int(num) num_vezes += 1 soma_total += numero if maior_numero is None or numero > maior_numero: maior_numero = numero if menor_numero is None or numero < menor_numero: menor_numero = numero except: print("Digite apenas números ou a palavra \"sair\", por favor.") if maior_numero == None or menor_numero == None: print("Você não digitou nenhum número. Portanto é impossível calcular o número de vezes, o somatório, o menor e o maior.") print("Obrigado por utilizar o meu programa!") else: print("Números foram digitados " + str(num_vezes) + " vezes.") print("A soma total dos números digitados é " + str(int(soma_total)) + ".") print("O menor número digitado foi o número " + str(int(menor_numero)) + ".") print("O maior número digitado foi o número " + str(int(maior_numero)) + ".") print("Obrigado por utilizar o meu programa!")
[ 22510, 62, 303, 12271, 796, 657, 198, 82, 6086, 62, 23350, 796, 657, 198, 2611, 1504, 62, 22510, 3529, 796, 6045, 198, 3653, 273, 62, 22510, 3529, 796, 6045, 198, 4514, 6407, 25, 198, 220, 220, 220, 997, 796, 5128, 7203, 19511, 578, 23781, 299, 21356, 647, 78, 267, 84, 19990, 82, 958, 7879, 31215, 551, 2189, 20040, 267, 1430, 64, 25, 366, 8, 198, 220, 220, 220, 611, 997, 6624, 366, 82, 958, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 997, 3529, 796, 493, 7, 22510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 303, 12271, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 3870, 64, 62, 23350, 15853, 997, 3529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 17266, 1504, 62, 22510, 3529, 318, 6045, 393, 997, 3529, 1875, 17266, 1504, 62, 22510, 3529, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17266, 1504, 62, 22510, 3529, 796, 997, 3529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1450, 273, 62, 22510, 3529, 318, 6045, 393, 997, 3529, 1279, 1450, 273, 62, 22510, 3529, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1450, 273, 62, 22510, 3529, 796, 997, 3529, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 19511, 578, 2471, 268, 292, 299, 21356, 647, 418, 267, 84, 257, 6340, 615, 430, 19990, 82, 958, 34607, 16964, 2661, 19570, 198, 361, 17266, 1504, 62, 22510, 3529, 6624, 6045, 393, 1450, 273, 62, 22510, 3529, 6624, 6045, 25, 198, 220, 220, 220, 3601, 7203, 53, 420, 25792, 299, 28749, 16839, 280, 299, 16550, 388, 299, 21356, 647, 78, 13, 4347, 14723, 38251, 848, 793, 8836, 626, 2386, 10440, 267, 299, 21356, 647, 78, 390, 1569, 12271, 11, 267, 3870, 265, 10205, 27250, 11, 267, 1450, 273, 304, 267, 17266, 1504, 19570, 198, 220, 220, 220, 3601, 7203, 46, 1671, 328, 4533, 16964, 7736, 528, 283, 267, 502, 84, 1430, 64, 2474, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 45, 21356, 647, 418, 329, 321, 16839, 22484, 366, 1343, 965, 7, 22510, 62, 303, 12271, 8, 1343, 366, 1569, 12271, 19570, 198, 220, 220, 220, 3601, 7203, 32, 3870, 64, 2472, 23430, 299, 21356, 647, 418, 16839, 22484, 38251, 366, 1343, 965, 7, 600, 7, 82, 6086, 62, 23350, 4008, 1343, 366, 19570, 198, 220, 220, 220, 3601, 7203, 46, 1450, 273, 299, 21356, 647, 78, 16839, 4533, 11511, 72, 267, 299, 21356, 647, 78, 366, 1343, 965, 7, 600, 7, 3653, 273, 62, 22510, 3529, 4008, 1343, 366, 19570, 198, 220, 220, 220, 3601, 7203, 46, 17266, 1504, 299, 21356, 647, 78, 16839, 4533, 11511, 72, 267, 299, 21356, 647, 78, 366, 1343, 965, 7, 600, 7, 2611, 1504, 62, 22510, 3529, 4008, 1343, 366, 19570, 198, 220, 220, 220, 3601, 7203, 46, 1671, 328, 4533, 16964, 7736, 528, 283, 267, 502, 84, 1430, 64, 2474, 8, 198 ]
2.219417
515
from selenium import webdriver import time
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 11748, 640, 628 ]
4
11
""" Filter classes """ from . import etree from .base import CPIXComparableBase def encode_bool(value): """Encode booleans to produce valid XML""" if value: return "true" return "false" class KeyPeriodFilter(CPIXComparableBase): """ KeyPeriodFilter element Has single required attribute: periodId """ def element(self): """Returns XML element""" el = etree.Element("KeyPeriodFilter") el.set("periodId", str(self.period_id)) return el @staticmethod def parse(xml): """ Parse XML and return KeyPeriodFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) period_id = xml.attrib["periodId"] return KeyPeriodFilter(period_id) class LabelFilter(CPIXComparableBase): """ LabelFilter element Not yet implemented """ class VideoFilter(CPIXComparableBase): """ VideoFilter element Has optional attributes: minPixels maxPixels hdr wcg minFps maxFps """ def element(self): """Returns XML element""" el = etree.Element("VideoFilter") if self.min_pixels is not None: el.set("minPixels", str(self.min_pixels)) if self.max_pixels is not None: el.set("maxPixels", str(self.max_pixels)) if self.hdr is not None: el.set("hdr", encode_bool(self.hdr)) if self.wcg is not None: el.set("wcg", encode_bool(self.wcg)) if self.min_fps is not None: el.set("minFps", str(self.min_fps)) if self.max_fps is not None: el.set("maxFps", str(self.max_fps)) return el @staticmethod def parse(xml): """ Parse XML and return VideoFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_pixels = None max_pixels = None hdr = None wcg = None min_fps = None max_fps = None if "minPixels" in xml.attrib: min_pixels = xml.attrib["minPixels"] if "maxPixels" in xml.attrib: max_pixels = xml.attrib["maxPixels"] if "hdr" in xml.attrib: hdr = xml.attrib["hdr"] if "wcg" in xml.attrib: wcg = xml.attrib["wcg"] if "minFps" in xml.attrib: min_fps = xml.attrib["minFps"] if "maxFps" in xml.attrib: max_fps = xml.attrib["maxFps"] return VideoFilter(min_pixels, max_pixels, hdr, wcg, min_fps, max_fps) class AudioFilter(CPIXComparableBase): """ AudioFilter element Has optional attributes: minChannels maxChannels """ def element(self): """Returns XML element""" el = etree.Element("AudioFilter") if self.min_channels: el.set("minChannels", str(self.min_channels)) if self.max_channels: el.set("maxChannels", str(self.max_channels)) return el @staticmethod def parse(xml): """ Parse XML and return AudioFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_channels = None max_channels = None if "minChannels" in xml.attrib: min_channels = xml.attrib["minChannels"] if "maxChannels" in xml.attrib: max_channels = xml.attrib["maxChannels"] return AudioFilter(min_channels, max_channels) class BitrateFilter(CPIXComparableBase): """ BitrateFilter element Has optional attributes: minBitrate maxBitrate """ def element(self): """Returns XML element""" el = etree.Element("BitrateFilter") if self.min_bitrate: el.set("minBitrate", str(self.min_bitrate)) if self.max_bitrate: el.set("maxBitrate", str(self.max_bitrate)) return el @staticmethod def parse(xml): """ Parse XML and return BitrateFilter """ if isinstance(xml, (str, bytes)): xml = etree.fromstring(xml) min_bitrate = None max_bitrate = None if "minBitrate" in xml.attrib: min_bitrate = xml.attrib["minBitrate"] if "maxBitrate" in xml.attrib: max_bitrate = xml.attrib["maxBitrate"] return BitrateFilter(min_bitrate, max_bitrate)
[ 37811, 198, 22417, 6097, 198, 37811, 198, 6738, 764, 1330, 2123, 631, 198, 6738, 764, 8692, 1330, 16932, 10426, 5377, 37064, 14881, 628, 198, 4299, 37773, 62, 30388, 7, 8367, 2599, 198, 220, 220, 220, 37227, 4834, 8189, 1489, 2305, 504, 284, 4439, 4938, 23735, 37811, 198, 220, 220, 220, 611, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 7942, 1, 198, 220, 220, 220, 1441, 366, 9562, 1, 628, 198, 4871, 7383, 5990, 2101, 22417, 7, 8697, 10426, 5377, 37064, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7383, 5990, 2101, 22417, 5002, 198, 220, 220, 220, 7875, 2060, 2672, 11688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2278, 7390, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5002, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 23735, 5002, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 796, 2123, 631, 13, 20180, 7203, 9218, 5990, 2101, 22417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 41007, 7390, 1600, 965, 7, 944, 13, 41007, 62, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1288, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 21136, 7, 19875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 23735, 290, 1441, 7383, 5990, 2101, 22417, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19875, 11, 357, 2536, 11, 9881, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35555, 796, 2123, 631, 13, 6738, 8841, 7, 19875, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2278, 62, 312, 796, 35555, 13, 1078, 822, 14692, 41007, 7390, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 7383, 5990, 2101, 22417, 7, 41007, 62, 312, 8, 628, 198, 4871, 36052, 22417, 7, 8697, 10426, 5377, 37064, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 36052, 22417, 5002, 198, 220, 220, 220, 1892, 1865, 9177, 198, 220, 220, 220, 37227, 628, 198, 4871, 7623, 22417, 7, 8697, 10426, 5377, 37064, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7623, 22417, 5002, 198, 220, 220, 220, 7875, 11902, 12608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 47, 14810, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 47, 14810, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7109, 198, 220, 220, 220, 220, 220, 220, 220, 266, 66, 70, 198, 220, 220, 220, 220, 220, 220, 220, 949, 37, 862, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 37, 862, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5002, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 23735, 5002, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 796, 2123, 631, 13, 20180, 7203, 10798, 22417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1084, 62, 79, 14810, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 1084, 47, 14810, 1600, 965, 7, 944, 13, 1084, 62, 79, 14810, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 79, 14810, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 9806, 47, 14810, 1600, 965, 7, 944, 13, 9806, 62, 79, 14810, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 71, 7109, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 71, 7109, 1600, 37773, 62, 30388, 7, 944, 13, 71, 7109, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 86, 66, 70, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 86, 66, 70, 1600, 37773, 62, 30388, 7, 944, 13, 86, 66, 70, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1084, 62, 29647, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 1084, 37, 862, 1600, 965, 7, 944, 13, 1084, 62, 29647, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 29647, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 9806, 37, 862, 1600, 965, 7, 944, 13, 9806, 62, 29647, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1288, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 21136, 7, 19875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 23735, 290, 1441, 7623, 22417, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19875, 11, 357, 2536, 11, 9881, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35555, 796, 2123, 631, 13, 6738, 8841, 7, 19875, 8, 628, 220, 220, 220, 220, 220, 220, 220, 949, 62, 79, 14810, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 79, 14810, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 289, 7109, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 266, 66, 70, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 29647, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 29647, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 1084, 47, 14810, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 79, 14810, 796, 35555, 13, 1078, 822, 14692, 1084, 47, 14810, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9806, 47, 14810, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 79, 14810, 796, 35555, 13, 1078, 822, 14692, 9806, 47, 14810, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 71, 7109, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 7109, 796, 35555, 13, 1078, 822, 14692, 71, 7109, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 86, 66, 70, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 66, 70, 796, 35555, 13, 1078, 822, 14692, 86, 66, 70, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 1084, 37, 862, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 29647, 796, 35555, 13, 1078, 822, 14692, 1084, 37, 862, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9806, 37, 862, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 29647, 796, 35555, 13, 1078, 822, 14692, 9806, 37, 862, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 7623, 22417, 7, 1084, 62, 79, 14810, 11, 3509, 62, 79, 14810, 11, 289, 7109, 11, 266, 66, 70, 11, 949, 62, 29647, 11, 3509, 62, 29647, 8, 628, 198, 4871, 13491, 22417, 7, 8697, 10426, 5377, 37064, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13491, 22417, 5002, 198, 220, 220, 220, 7875, 11902, 12608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 1925, 8961, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 1925, 8961, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5002, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 23735, 5002, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 796, 2123, 631, 13, 20180, 7203, 21206, 22417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1084, 62, 354, 8961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 1084, 1925, 8961, 1600, 965, 7, 944, 13, 1084, 62, 354, 8961, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 354, 8961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 9806, 1925, 8961, 1600, 965, 7, 944, 13, 9806, 62, 354, 8961, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1288, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 21136, 7, 19875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 23735, 290, 1441, 13491, 22417, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19875, 11, 357, 2536, 11, 9881, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35555, 796, 2123, 631, 13, 6738, 8841, 7, 19875, 8, 628, 220, 220, 220, 220, 220, 220, 220, 949, 62, 354, 8961, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 8961, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 1084, 1925, 8961, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 354, 8961, 796, 35555, 13, 1078, 822, 14692, 1084, 1925, 8961, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9806, 1925, 8961, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 354, 8961, 796, 35555, 13, 1078, 822, 14692, 9806, 1925, 8961, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 13491, 22417, 7, 1084, 62, 354, 8961, 11, 3509, 62, 354, 8961, 8, 628, 198, 4871, 4722, 4873, 22417, 7, 8697, 10426, 5377, 37064, 14881, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4722, 4873, 22417, 5002, 198, 220, 220, 220, 7875, 11902, 12608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 949, 13128, 4873, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 13128, 4873, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 5002, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 23735, 5002, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 796, 2123, 631, 13, 20180, 7203, 13128, 4873, 22417, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 1084, 62, 2545, 4873, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 1084, 13128, 4873, 1600, 965, 7, 944, 13, 1084, 62, 2545, 4873, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 9806, 62, 2545, 4873, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 13, 2617, 7203, 9806, 13128, 4873, 1600, 965, 7, 944, 13, 9806, 62, 2545, 4873, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1288, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 21136, 7, 19875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2547, 325, 23735, 290, 1441, 4722, 4873, 22417, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19875, 11, 357, 2536, 11, 9881, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35555, 796, 2123, 631, 13, 6738, 8841, 7, 19875, 8, 628, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2545, 4873, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2545, 4873, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 366, 1084, 13128, 4873, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 2545, 4873, 796, 35555, 13, 1078, 822, 14692, 1084, 13128, 4873, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 9806, 13128, 4873, 1, 287, 35555, 13, 1078, 822, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2545, 4873, 796, 35555, 13, 1078, 822, 14692, 9806, 13128, 4873, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4722, 4873, 22417, 7, 1084, 62, 2545, 4873, 11, 3509, 62, 2545, 4873, 8, 198 ]
2.079683
2,146
import base64 import httplib2 from email.mime.text import MIMEText from apiclient.discovery import build from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run_flow from google_auth_oauthlib.flow import InstalledAppFlow permiso = ['https://www.googleapis.com/auth/gmail.send'] memoria = Storage('gmail.storage') IDOAuth = InstalledAppFlow.from_client_secrets_file("secreto_cliente_Gmail.json", scopes=permiso) http = httplib2.Http() credentials = memoria.get() if credentials is None or credentials.invalid: credentials = run_flow(IDOAuth, memoria, http=http) Servicio=build('gmail', 'v1', credentials=credentials) http = credentials.authorize(credentials) message = MIMEText("Message") message['to'] = "[email protected]" message['from'] = "[email protected]" message['subject'] = "Subject" body = {'raw': base64.b64encode(message.as_bytes())} Servicio.users().messages().send(userId="me",body=body).execute()
[ 11748, 2779, 2414, 198, 11748, 1841, 489, 571, 17, 198, 198, 6738, 3053, 13, 76, 524, 13, 5239, 1330, 337, 3955, 2767, 2302, 198, 198, 6738, 2471, 291, 75, 1153, 13, 67, 40821, 1330, 1382, 198, 6738, 267, 18439, 17, 16366, 13, 16366, 1330, 5202, 62, 6738, 62, 16366, 2363, 8004, 198, 6738, 267, 18439, 17, 16366, 13, 7753, 1330, 20514, 198, 6738, 267, 18439, 17, 16366, 13, 31391, 1330, 1057, 62, 11125, 198, 6738, 23645, 62, 18439, 62, 12162, 1071, 8019, 13, 11125, 1330, 2262, 4262, 4677, 37535, 198, 16321, 26786, 796, 37250, 5450, 1378, 2503, 13, 13297, 499, 271, 13, 785, 14, 18439, 14, 14816, 13, 21280, 20520, 198, 11883, 7661, 796, 20514, 10786, 14816, 13, 35350, 11537, 198, 2389, 23621, 1071, 796, 2262, 4262, 4677, 37535, 13, 6738, 62, 16366, 62, 2363, 8004, 62, 7753, 7203, 21078, 78, 62, 16366, 68, 62, 38, 4529, 13, 17752, 1600, 629, 13920, 28, 16321, 26786, 8, 198, 4023, 796, 1841, 489, 571, 17, 13, 43481, 3419, 198, 66, 445, 14817, 796, 1066, 7661, 13, 1136, 3419, 198, 361, 18031, 318, 6045, 393, 18031, 13, 259, 12102, 25, 198, 220, 18031, 796, 1057, 62, 11125, 7, 2389, 23621, 1071, 11, 1066, 7661, 11, 2638, 28, 4023, 8, 198, 198, 11838, 46441, 28, 11249, 10786, 14816, 3256, 705, 85, 16, 3256, 18031, 28, 66, 445, 14817, 8, 198, 4023, 796, 18031, 13, 9800, 1096, 7, 66, 445, 14817, 8, 198, 198, 20500, 796, 337, 3955, 2767, 2302, 7203, 12837, 4943, 198, 20500, 17816, 1462, 20520, 796, 366, 10215, 260, 516, 861, 65, 31, 14816, 13, 785, 1, 198, 20500, 17816, 6738, 20520, 796, 366, 395, 1192, 544, 929, 85, 31, 14816, 13, 785, 1, 198, 20500, 17816, 32796, 20520, 796, 366, 19776, 1, 198, 2618, 796, 1391, 6, 1831, 10354, 2779, 2414, 13, 65, 2414, 268, 8189, 7, 20500, 13, 292, 62, 33661, 28955, 92, 198, 198, 11838, 46441, 13, 18417, 22446, 37348, 1095, 22446, 21280, 7, 7220, 7390, 2625, 1326, 1600, 2618, 28, 2618, 737, 41049, 3419, 198 ]
2.970326
337
import os import shutil import traceback HOME_DIR = os.path.abspath(os.path.expanduser("~")) PATH_DEFAULT_OBS = os.path.join(HOME_DIR, "videos", "obs") DRY_RUN = False def _is_video_file(file_path: str) -> bool: """Returns True if the given file is a video file.""" _, ext = os.path.splitext(file_path.lower()) return ext in [".mp4", ".mkv"] def makedirs(new_dir: str, exist_ok: bool = False) -> None: """Make the given directory.""" print(f"make_dirs: {new_dir}") if DRY_RUN: return os.makedirs(new_dir, exist_ok=exist_ok) def movefile(src: str, dst: str) -> None: """Move the given file.""" print(f"movefile: {src} -> {dst}") if DRY_RUN: return shutil.move(src, dst) def organize(path: str = PATH_DEFAULT_OBS) -> None: """Organize the given path.""" paths = [os.path.join(path, p) for p in os.listdir(path) if _is_video_file(p)] for p in paths: try: name_ext = os.path.basename(p) name = os.path.splitext(name_ext)[0] ext = os.path.splitext(name_ext)[1] date_time = name.replace(" ", "_").split("_") new_dir = os.path.join(path, date_time[0]) new_path = os.path.join(new_dir, f"{date_time[1]}{ext}") makedirs(os.path.dirname(new_path), exist_ok=True) movefile(p, new_path) except Exception as e: traceback.print_exc() print(f"Could not process {p} because of {e}") def main() -> None: """Main entry point.""" reply = input( f"WARNING! This will organize all your videos in the obs path:\n {PATH_DEFAULT_OBS}\ncontinue? [y/n]: " ) if reply.lower() != "y": organize() if __name__ == "__main__": main()
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 12854, 1891, 198, 198, 39069, 62, 34720, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 48774, 198, 34219, 62, 7206, 38865, 62, 46, 4462, 796, 28686, 13, 6978, 13, 22179, 7, 39069, 62, 34720, 11, 366, 32861, 1600, 366, 8158, 4943, 198, 7707, 56, 62, 49, 4944, 796, 10352, 628, 198, 4299, 4808, 271, 62, 15588, 62, 7753, 7, 7753, 62, 6978, 25, 965, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 35561, 6407, 611, 262, 1813, 2393, 318, 257, 2008, 2393, 526, 15931, 198, 220, 220, 220, 4808, 11, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 7753, 62, 6978, 13, 21037, 28955, 198, 220, 220, 220, 1441, 1070, 287, 685, 1911, 3149, 19, 1600, 27071, 28015, 85, 8973, 628, 198, 4299, 285, 4335, 17062, 7, 3605, 62, 15908, 25, 965, 11, 2152, 62, 482, 25, 20512, 796, 10352, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 12050, 262, 1813, 8619, 526, 15931, 198, 220, 220, 220, 3601, 7, 69, 1, 15883, 62, 15908, 82, 25, 1391, 3605, 62, 15908, 92, 4943, 198, 220, 220, 220, 611, 10560, 56, 62, 49, 4944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 3605, 62, 15908, 11, 2152, 62, 482, 28, 38476, 62, 482, 8, 628, 198, 4299, 1445, 7753, 7, 10677, 25, 965, 11, 29636, 25, 965, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 21774, 262, 1813, 2393, 526, 15931, 198, 220, 220, 220, 3601, 7, 69, 1, 21084, 7753, 25, 1391, 10677, 92, 4613, 1391, 67, 301, 92, 4943, 198, 220, 220, 220, 611, 10560, 56, 62, 49, 4944, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 4423, 346, 13, 21084, 7, 10677, 11, 29636, 8, 628, 198, 4299, 16481, 7, 6978, 25, 965, 796, 46490, 62, 7206, 38865, 62, 46, 4462, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 26121, 1096, 262, 1813, 3108, 526, 15931, 198, 220, 220, 220, 13532, 796, 685, 418, 13, 6978, 13, 22179, 7, 6978, 11, 279, 8, 329, 279, 287, 28686, 13, 4868, 15908, 7, 6978, 8, 611, 4808, 271, 62, 15588, 62, 7753, 7, 79, 15437, 198, 220, 220, 220, 329, 279, 287, 13532, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 2302, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 3672, 62, 2302, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1070, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 3672, 62, 2302, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 62, 2435, 796, 1438, 13, 33491, 7203, 33172, 45434, 11074, 35312, 7203, 62, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 11, 3128, 62, 2435, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 3605, 62, 15908, 11, 277, 1, 90, 4475, 62, 2435, 58, 16, 60, 18477, 2302, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 3605, 62, 6978, 828, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1445, 7753, 7, 79, 11, 649, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 1891, 13, 4798, 62, 41194, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 23722, 407, 1429, 1391, 79, 92, 780, 286, 1391, 68, 92, 4943, 628, 198, 4299, 1388, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 13383, 5726, 966, 526, 15931, 198, 220, 220, 220, 10971, 796, 5128, 7, 198, 220, 220, 220, 220, 220, 220, 220, 277, 1, 31502, 0, 770, 481, 16481, 477, 534, 5861, 287, 262, 10201, 3108, 7479, 77, 220, 1391, 34219, 62, 7206, 38865, 62, 46, 4462, 32239, 77, 43043, 30, 685, 88, 14, 77, 5974, 366, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 10971, 13, 21037, 3419, 14512, 366, 88, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 16481, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.164822
813
import math x = float(input('Digite um ângulo: ')) tangente = math.tan(math.radians(x)) cos = math.acos(math.radians(x)) seno = math.asin(math.radians(x)) print(f'O cosseno de {x} é {cos:.2f}') print(f'O seno de {x} é {seno:.2f}') print(f'A tangente de {x} é {tangente:.2f}')
[ 11748, 10688, 198, 87, 796, 12178, 7, 15414, 10786, 19511, 578, 23781, 6184, 95, 782, 43348, 25, 705, 4008, 198, 83, 648, 21872, 796, 10688, 13, 38006, 7, 11018, 13, 6335, 1547, 7, 87, 4008, 198, 6966, 796, 10688, 13, 330, 418, 7, 11018, 13, 6335, 1547, 7, 87, 4008, 198, 6248, 78, 796, 10688, 13, 47337, 7, 11018, 13, 6335, 1547, 7, 87, 4008, 198, 4798, 7, 69, 6, 46, 269, 793, 23397, 390, 1391, 87, 92, 38251, 1391, 6966, 25, 13, 17, 69, 92, 11537, 198, 4798, 7, 69, 6, 46, 3308, 78, 390, 1391, 87, 92, 38251, 1391, 6248, 78, 25, 13, 17, 69, 92, 11537, 198, 4798, 7, 69, 6, 32, 13875, 21872, 390, 1391, 87, 92, 38251, 1391, 83, 648, 21872, 25, 13, 17, 69, 92, 11537, 220 ]
2.075188
133
#!/usr/local/bin/python """This demonstrates a minimal http upload cgi. This allows a user to upload up to three files at once. It is trivial to change the number of files uploaded. This script has security risks. A user could attempt to fill a disk partition with endless uploads. If you have a system open to the public you would obviously want to limit the size and number of files written to the disk. """ import cgi import cgitb; cgitb.enable() import os, sys try: # Windows needs stdio set for binary mode. import msvcrt msvcrt.setmode (0, os.O_BINARY) # stdin = 0 msvcrt.setmode (1, os.O_BINARY) # stdout = 1 except ImportError: pass UPLOAD_DIR = "/tmp" HTML_TEMPLATE = """<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html><head><title>File Upload</title> <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> </head><body><h1>File Upload</h1> <form action="%(SCRIPT_NAME)s" method="POST" enctype="multipart/form-data"> File name: <input name="file_1" type="file"><br> File name: <input name="file_2" type="file"><br> File name: <input name="file_3" type="file"><br> <input name="submit" type="submit"> </form> </body> </html>""" def print_html_form (): """This prints out the html form. Note that the action is set to the name of the script which makes this is a self-posting form. In other words, this cgi both displays a form and processes it. """ print "content-type: text/html\n" print HTML_TEMPLATE % {'SCRIPT_NAME':os.environ['SCRIPT_NAME']} def save_uploaded_file (form_field, upload_dir): """This saves a file uploaded by an HTML form. The form_field is the name of the file input field from the form. For example, the following form_field would be "file_1": <input name="file_1" type="file"> The upload_dir is the directory where the file will be written. If no file was uploaded or if the field does not exist then this does nothing. """ form = cgi.FieldStorage() if not form.has_key(form_field): return fileitem = form[form_field] if not fileitem.file: return fout = file (os.path.join(upload_dir, fileitem.filename), 'wb') while 1: chunk = fileitem.file.read(100000) if not chunk: break fout.write (chunk) fout.close() save_uploaded_file ("file_1", UPLOAD_DIR) save_uploaded_file ("file_2", UPLOAD_DIR) save_uploaded_file ("file_3", UPLOAD_DIR) print_html_form ()
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 198, 37811, 1212, 15687, 257, 10926, 2638, 9516, 269, 12397, 13, 198, 1212, 3578, 257, 2836, 284, 9516, 510, 284, 1115, 3696, 379, 1752, 13, 198, 1026, 318, 20861, 284, 1487, 262, 1271, 286, 3696, 19144, 13, 198, 198, 1212, 4226, 468, 2324, 7476, 13, 317, 2836, 714, 2230, 284, 6070, 198, 64, 11898, 18398, 351, 13079, 9516, 82, 13, 220, 198, 1532, 345, 423, 257, 1080, 1280, 284, 262, 1171, 345, 561, 6189, 765, 198, 1462, 4179, 262, 2546, 290, 1271, 286, 3696, 3194, 284, 262, 11898, 13, 198, 37811, 198, 11748, 269, 12397, 198, 11748, 269, 18300, 65, 26, 269, 18300, 65, 13, 21633, 3419, 198, 11748, 28686, 11, 25064, 198, 28311, 25, 1303, 3964, 2476, 14367, 952, 900, 329, 13934, 4235, 13, 198, 220, 220, 220, 1330, 13845, 85, 6098, 83, 198, 220, 220, 220, 13845, 85, 6098, 83, 13, 2617, 14171, 357, 15, 11, 28686, 13, 46, 62, 33, 1268, 13153, 8, 1303, 14367, 259, 220, 796, 657, 198, 220, 220, 220, 13845, 85, 6098, 83, 13, 2617, 14171, 357, 16, 11, 28686, 13, 46, 62, 33, 1268, 13153, 8, 1303, 14367, 448, 796, 352, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1208, 198, 198, 52, 6489, 41048, 62, 34720, 796, 12813, 22065, 1, 198, 198, 28656, 62, 51, 3620, 6489, 6158, 796, 37227, 27, 0, 18227, 4177, 56, 11401, 11532, 44731, 27444, 1003, 54, 18, 34, 1003, 35, 21016, 11532, 604, 13, 486, 3602, 1859, 1003, 1677, 5320, 198, 27, 6494, 6927, 2256, 6927, 7839, 29, 8979, 36803, 3556, 7839, 29, 198, 27, 28961, 2638, 12, 4853, 452, 2625, 19746, 12, 6030, 1, 2695, 2625, 5239, 14, 6494, 26, 34534, 316, 28, 26786, 12, 3459, 3270, 12, 16, 5320, 198, 3556, 2256, 6927, 2618, 6927, 71, 16, 29, 8979, 36803, 3556, 71, 16, 29, 198, 27, 687, 2223, 2625, 4, 7, 6173, 46023, 62, 20608, 8, 82, 1, 2446, 2625, 32782, 1, 551, 310, 2981, 2625, 16680, 541, 433, 14, 687, 12, 7890, 5320, 198, 8979, 1438, 25, 1279, 15414, 1438, 2625, 7753, 62, 16, 1, 2099, 2625, 7753, 22039, 1671, 29, 198, 8979, 1438, 25, 1279, 15414, 1438, 2625, 7753, 62, 17, 1, 2099, 2625, 7753, 22039, 1671, 29, 198, 8979, 1438, 25, 1279, 15414, 1438, 2625, 7753, 62, 18, 1, 2099, 2625, 7753, 22039, 1671, 29, 198, 27, 15414, 1438, 2625, 46002, 1, 2099, 2625, 46002, 5320, 198, 3556, 687, 29, 198, 3556, 2618, 29, 198, 3556, 6494, 29, 37811, 198, 198, 4299, 3601, 62, 6494, 62, 687, 357, 2599, 198, 220, 220, 220, 37227, 1212, 20842, 503, 262, 27711, 1296, 13, 5740, 326, 262, 2223, 318, 900, 284, 198, 220, 220, 220, 220, 220, 262, 1438, 286, 262, 4226, 543, 1838, 428, 318, 257, 2116, 12, 7353, 278, 1296, 13, 198, 220, 220, 220, 220, 220, 554, 584, 2456, 11, 428, 269, 12397, 1111, 11298, 257, 1296, 290, 7767, 340, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 366, 11299, 12, 4906, 25, 2420, 14, 6494, 59, 77, 1, 198, 220, 220, 220, 3601, 11532, 62, 51, 3620, 6489, 6158, 4064, 1391, 6, 6173, 46023, 62, 20608, 10354, 418, 13, 268, 2268, 17816, 6173, 46023, 62, 20608, 20520, 92, 198, 198, 4299, 3613, 62, 25850, 276, 62, 7753, 357, 687, 62, 3245, 11, 9516, 62, 15908, 2599, 198, 220, 220, 220, 37227, 1212, 16031, 257, 2393, 19144, 416, 281, 11532, 1296, 13, 198, 220, 220, 220, 220, 220, 220, 383, 1296, 62, 3245, 318, 262, 1438, 286, 262, 2393, 5128, 2214, 422, 262, 1296, 13, 198, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 262, 1708, 1296, 62, 3245, 561, 307, 366, 7753, 62, 16, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 15414, 1438, 2625, 7753, 62, 16, 1, 2099, 2625, 7753, 5320, 198, 220, 220, 220, 220, 220, 220, 383, 9516, 62, 15908, 318, 262, 8619, 810, 262, 2393, 481, 307, 3194, 13, 198, 220, 220, 220, 220, 220, 220, 1002, 645, 2393, 373, 19144, 393, 611, 262, 2214, 857, 407, 2152, 788, 198, 220, 220, 220, 220, 220, 220, 428, 857, 2147, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1296, 796, 269, 12397, 13, 15878, 31425, 3419, 198, 220, 220, 220, 611, 407, 1296, 13, 10134, 62, 2539, 7, 687, 62, 3245, 2599, 1441, 198, 220, 220, 220, 2393, 9186, 796, 1296, 58, 687, 62, 3245, 60, 198, 220, 220, 220, 611, 407, 2393, 9186, 13, 7753, 25, 1441, 198, 220, 220, 220, 277, 448, 796, 2393, 357, 418, 13, 6978, 13, 22179, 7, 25850, 62, 15908, 11, 2393, 9186, 13, 34345, 828, 705, 39346, 11537, 198, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16058, 796, 2393, 9186, 13, 7753, 13, 961, 7, 3064, 830, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16058, 25, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 277, 448, 13, 13564, 357, 354, 2954, 8, 198, 220, 220, 220, 277, 448, 13, 19836, 3419, 198, 198, 21928, 62, 25850, 276, 62, 7753, 5855, 7753, 62, 16, 1600, 471, 6489, 41048, 62, 34720, 8, 198, 21928, 62, 25850, 276, 62, 7753, 5855, 7753, 62, 17, 1600, 471, 6489, 41048, 62, 34720, 8, 198, 21928, 62, 25850, 276, 62, 7753, 5855, 7753, 62, 18, 1600, 471, 6489, 41048, 62, 34720, 8, 198, 198, 4798, 62, 6494, 62, 687, 7499, 198 ]
2.730473
909
import argparse import datetime import os import re import sys import unicodedata import libs.header import libs.unicode import libs.utf8 if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse Unicode codepoint database and write integration tests.') parser.add_argument( '-v', '--verbose', dest = 'verbose', action = 'store_true', help = 'verbose output') parser.add_argument( '--casemapping', dest = 'casemapping', action = 'store_true', help = 'write case mapping tests') parser.add_argument( '--normalization', dest = 'normalization', action = 'store_true', help = 'write normalization tests') parser.add_argument( '--is-normalized', dest = 'isnormalized', action = 'store_true', help = 'write is-normalized tests') parser.add_argument( '--casefolding', dest = 'casefolding', action = 'store_true', help = 'write casefolding tests') args = parser.parse_args() if not args.casemapping and not args.normalization and not args.isnormalized and not args.casefolding: all = True else: all = False db = unicodedata.Database() db.loadFromFiles(None) if all or args.casemapping: suite = CaseMappingIntegrationSuite(db) suite.execute() if all or args.normalization: suite = NormalizationIntegrationSuite(db) suite.execute() if all or args.isnormalized: suite = IsNormalizedIntegrationSuite(db) suite.execute() if all or args.casefolding: suite = CaseFoldingIntegrationSuite(db) suite.execute()
[ 11748, 1822, 29572, 201, 198, 11748, 4818, 8079, 201, 198, 11748, 28686, 201, 198, 11748, 302, 201, 198, 11748, 25064, 201, 198, 11748, 28000, 9043, 1045, 201, 198, 11748, 9195, 82, 13, 25677, 201, 198, 11748, 9195, 82, 13, 46903, 1098, 201, 198, 11748, 9195, 82, 13, 40477, 23, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 10044, 325, 34371, 14873, 538, 1563, 6831, 290, 3551, 11812, 5254, 2637, 8, 201, 198, 197, 48610, 13, 2860, 62, 49140, 7, 201, 198, 197, 197, 29001, 85, 3256, 705, 438, 19011, 577, 3256, 201, 198, 197, 197, 16520, 796, 705, 19011, 577, 3256, 201, 198, 197, 197, 2673, 796, 705, 8095, 62, 7942, 3256, 201, 198, 197, 197, 16794, 796, 705, 19011, 577, 5072, 11537, 201, 198, 197, 48610, 13, 2860, 62, 49140, 7, 201, 198, 197, 197, 6, 438, 34004, 368, 5912, 3256, 201, 198, 197, 197, 16520, 796, 705, 34004, 368, 5912, 3256, 201, 198, 197, 197, 2673, 796, 705, 8095, 62, 7942, 3256, 201, 198, 197, 197, 16794, 796, 705, 13564, 1339, 16855, 5254, 11537, 201, 198, 197, 48610, 13, 2860, 62, 49140, 7, 201, 198, 197, 197, 6, 438, 11265, 1634, 3256, 201, 198, 197, 197, 16520, 796, 705, 11265, 1634, 3256, 201, 198, 197, 197, 2673, 796, 705, 8095, 62, 7942, 3256, 201, 198, 197, 197, 16794, 796, 705, 13564, 3487, 1634, 5254, 11537, 201, 198, 197, 48610, 13, 2860, 62, 49140, 7, 201, 198, 197, 197, 6, 438, 271, 12, 11265, 1143, 3256, 201, 198, 197, 197, 16520, 796, 705, 271, 11265, 1143, 3256, 201, 198, 197, 197, 2673, 796, 705, 8095, 62, 7942, 3256, 201, 198, 197, 197, 16794, 796, 705, 13564, 318, 12, 11265, 1143, 5254, 11537, 201, 198, 197, 48610, 13, 2860, 62, 49140, 7, 201, 198, 197, 197, 6, 438, 7442, 11379, 278, 3256, 201, 198, 197, 197, 16520, 796, 705, 7442, 11379, 278, 3256, 201, 198, 197, 197, 2673, 796, 705, 8095, 62, 7942, 3256, 201, 198, 197, 197, 16794, 796, 705, 13564, 1339, 11379, 278, 5254, 11537, 201, 198, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 201, 198, 197, 201, 198, 197, 361, 407, 26498, 13, 34004, 368, 5912, 290, 407, 26498, 13, 11265, 1634, 290, 407, 26498, 13, 271, 11265, 1143, 290, 407, 26498, 13, 7442, 11379, 278, 25, 201, 198, 197, 197, 439, 796, 6407, 201, 198, 197, 17772, 25, 201, 198, 197, 197, 439, 796, 10352, 201, 198, 197, 201, 198, 197, 9945, 796, 28000, 9043, 1045, 13, 38105, 3419, 201, 198, 197, 9945, 13, 2220, 4863, 25876, 7, 14202, 8, 201, 198, 197, 201, 198, 197, 361, 477, 393, 26498, 13, 34004, 368, 5912, 25, 201, 198, 197, 197, 2385, 578, 796, 8913, 44, 5912, 34500, 1358, 5606, 578, 7, 9945, 8, 201, 198, 197, 197, 2385, 578, 13, 41049, 3419, 201, 198, 197, 201, 198, 197, 361, 477, 393, 26498, 13, 11265, 1634, 25, 201, 198, 197, 197, 2385, 578, 796, 14435, 1634, 34500, 1358, 5606, 578, 7, 9945, 8, 201, 198, 197, 197, 2385, 578, 13, 41049, 3419, 201, 198, 197, 201, 198, 197, 361, 477, 393, 26498, 13, 271, 11265, 1143, 25, 201, 198, 197, 197, 2385, 578, 796, 1148, 26447, 1143, 34500, 1358, 5606, 578, 7, 9945, 8, 201, 198, 197, 197, 2385, 578, 13, 41049, 3419, 201, 198, 197, 201, 198, 197, 361, 477, 393, 26498, 13, 7442, 11379, 278, 25, 201, 198, 197, 197, 2385, 578, 796, 8913, 37, 33266, 34500, 1358, 5606, 578, 7, 9945, 8, 201, 198, 197, 197, 2385, 578, 13, 41049, 3419 ]
2.567434
608
try: from PyQt4.QtCore import QSettings except ImportError: from PyQt5.QtCore import QSettings
[ 28311, 25, 198, 220, 220, 220, 422, 9485, 48, 83, 19, 13, 48, 83, 14055, 1330, 1195, 26232, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 26232, 628, 220, 220, 220, 220 ]
2.454545
44
from re import search from typing import List, Optional, Pattern
[ 6738, 302, 1330, 2989, 198, 6738, 19720, 1330, 7343, 11, 32233, 11, 23939, 628 ]
4.714286
14
""" __________________________________________________________________________________________________ :project: SiLA2_python :details: Response data type in a SiLA Command, Property, Intermediate, ... :file: data_type_response.py :authors: Timm Severin :date: (creation) 20190820 :date: (last modification) 20190820 __________________________________________________________________________________________________ **Copyright**: This file is provided "AS IS" with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. For further Information see LICENSE file that comes with this distribution. __________________________________________________________________________________________________ """ # import library packages from .data_type_parameter import ParameterDataType class ResponseDataType(ParameterDataType): """ The class for responses. This is essentially identical to a :class:`~.ParameterDataType`, however can be handled differently in the final application and thus exists as its own class/object. .. note:: When checking whether an object is a response or a parameter, note that :func:`isinstance(obj, ParameterDataType)` will also return true if the object is a :class:`ResponseDataType`, since they are derived from each other. Use ``type(obj) is ParameterDataType`` for a precise check. """
[ 37811, 198, 27193, 10221, 834, 198, 198, 25, 16302, 25, 15638, 13534, 17, 62, 29412, 198, 198, 25, 36604, 25, 18261, 1366, 2099, 287, 257, 15638, 13534, 9455, 11, 14161, 11, 42540, 11, 2644, 198, 198, 25, 7753, 25, 220, 220, 220, 1366, 62, 4906, 62, 26209, 13, 9078, 198, 25, 41617, 25, 5045, 76, 26434, 259, 198, 198, 25, 4475, 25, 357, 38793, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13130, 2919, 1238, 198, 25, 4475, 25, 357, 12957, 17613, 8, 13130, 2919, 1238, 198, 198, 27193, 10221, 834, 198, 198, 1174, 15269, 1174, 25, 198, 220, 770, 2393, 318, 2810, 366, 1921, 3180, 1, 351, 8005, 34764, 56, 3963, 15529, 509, 12115, 11, 198, 220, 47783, 2751, 3336, 34764, 11015, 3963, 22196, 16284, 11, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 628, 220, 1114, 2252, 6188, 766, 38559, 24290, 2393, 326, 2058, 351, 428, 6082, 13, 198, 27193, 10221, 834, 198, 37811, 198, 198, 2, 1330, 5888, 10392, 198, 6738, 764, 7890, 62, 4906, 62, 17143, 2357, 1330, 25139, 2357, 6601, 6030, 628, 198, 4871, 18261, 6601, 6030, 7, 36301, 6601, 6030, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 1398, 329, 9109, 13, 198, 220, 220, 220, 220, 220, 220, 220, 770, 318, 6986, 10411, 284, 257, 1058, 4871, 25, 63, 93, 13, 36301, 6601, 6030, 47671, 2158, 460, 307, 12118, 10338, 287, 262, 2457, 198, 220, 220, 220, 220, 220, 220, 220, 3586, 290, 4145, 7160, 355, 663, 898, 1398, 14, 15252, 13, 628, 220, 220, 220, 11485, 3465, 3712, 1649, 10627, 1771, 281, 2134, 318, 257, 2882, 393, 257, 11507, 11, 3465, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 63, 271, 39098, 7, 26801, 11, 25139, 2357, 6601, 6030, 8, 63, 481, 635, 1441, 2081, 611, 262, 2134, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 63, 31077, 6601, 6030, 47671, 1201, 484, 389, 10944, 422, 1123, 584, 13, 5765, 7559, 4906, 7, 26801, 8, 318, 25139, 2357, 6601, 6030, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 257, 7141, 2198, 13, 198, 220, 220, 220, 37227, 198 ]
3.801546
388
# =============================================================== # Author: Rodolfo Ferro # Email: [email protected] # Twitter: @FerroRodolfo # # ABOUT COPYING OR USING PARTIAL INFORMATION: # This script was originally created by Rodolfo Ferro, for # his workshop in PythonDay Mexico 2018 at CUCEA in Gdl, Mx. # Any explicit usage of this script or its contents is granted # according to the license provided and its conditions. # =============================================================== # -*- coding: utf-8 -*- import requests import pprint import json def get_json(url, filename): """ Download JSON response url for testing. """ # Get response: response = requests.get(url) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return def get_prediction(url, filename): """ Download JSON response url for prediction. """ # Set metadata: headers = {'Content-type': 'application/json'} input_values = {'sepal_length': 6.4, 'sepal_width': 3.2, 'petal_length': 4.5, 'petal_width': 1.5} # Get response: response = requests.post(url, json=input_values, headers=headers) # If response's status is 200: if response.status_code == requests.codes.ok: # Pretty print response: pprint.pprint(response.json()) # Save response into a JSON file: with open(filename, 'wt') as output: output.write(response.text) return if __name__ == '__main__': # Try out our JSON response downloader: get_json('http://localhost:5000/api/v0.0', 'response.json') get_prediction('http://localhost:5000/api/v0.0/predict', 'response.json')
[ 2, 46111, 4770, 25609, 855, 198, 2, 6434, 25, 6882, 4024, 78, 12880, 305, 198, 2, 9570, 25, 11354, 305, 31, 66, 320, 265, 13, 36802, 198, 2, 3009, 25, 2488, 43362, 305, 27917, 4024, 78, 198, 2, 198, 2, 33478, 27975, 45761, 6375, 1294, 2751, 16652, 12576, 38044, 25, 198, 2, 770, 4226, 373, 6198, 2727, 416, 6882, 4024, 78, 12880, 305, 11, 329, 198, 2, 465, 20243, 287, 11361, 12393, 5828, 2864, 379, 29369, 5222, 32, 287, 402, 25404, 11, 337, 87, 13, 198, 2, 4377, 7952, 8748, 286, 428, 4226, 393, 663, 10154, 318, 7520, 198, 2, 1864, 284, 262, 5964, 2810, 290, 663, 3403, 13, 198, 2, 46111, 4770, 25609, 855, 198, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 7007, 198, 11748, 279, 4798, 198, 11748, 33918, 628, 198, 4299, 651, 62, 17752, 7, 6371, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 19449, 2882, 19016, 329, 4856, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 3497, 2882, 25, 198, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 6371, 8, 628, 220, 220, 220, 1303, 1002, 2882, 338, 3722, 318, 939, 25, 198, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 7007, 13, 40148, 13, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20090, 3601, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4798, 13, 381, 22272, 7, 26209, 13, 17752, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 2882, 656, 257, 19449, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 34345, 11, 705, 46569, 11537, 355, 5072, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 13564, 7, 26209, 13, 5239, 8, 198, 220, 220, 220, 1441, 628, 198, 4299, 651, 62, 28764, 2867, 7, 6371, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 19449, 2882, 19016, 329, 17724, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 5345, 20150, 25, 198, 220, 220, 220, 24697, 796, 1391, 6, 19746, 12, 4906, 10354, 705, 31438, 14, 17752, 6, 92, 198, 220, 220, 220, 5128, 62, 27160, 796, 1391, 6, 325, 18596, 62, 13664, 10354, 718, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 325, 18596, 62, 10394, 10354, 513, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6449, 282, 62, 13664, 10354, 604, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6449, 282, 62, 10394, 10354, 352, 13, 20, 92, 628, 220, 220, 220, 1303, 3497, 2882, 25, 198, 220, 220, 220, 2882, 796, 7007, 13, 7353, 7, 6371, 11, 33918, 28, 15414, 62, 27160, 11, 24697, 28, 50145, 8, 628, 220, 220, 220, 1303, 1002, 2882, 338, 3722, 318, 939, 25, 198, 220, 220, 220, 611, 2882, 13, 13376, 62, 8189, 6624, 7007, 13, 40148, 13, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20090, 3601, 2882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 4798, 13, 381, 22272, 7, 26209, 13, 17752, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 2882, 656, 257, 19449, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 34345, 11, 705, 46569, 11537, 355, 5072, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5072, 13, 13564, 7, 26209, 13, 5239, 8, 198, 220, 220, 220, 1441, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 9993, 503, 674, 19449, 2882, 4321, 263, 25, 198, 220, 220, 220, 651, 62, 17752, 10786, 4023, 1378, 36750, 25, 27641, 14, 15042, 14, 85, 15, 13, 15, 3256, 705, 26209, 13, 17752, 11537, 198, 220, 220, 220, 651, 62, 28764, 2867, 10786, 4023, 1378, 36750, 25, 27641, 14, 15042, 14, 85, 15, 13, 15, 14, 79, 17407, 3256, 705, 26209, 13, 17752, 11537, 198 ]
2.719495
713
import pybullet_envs from stable_baselines3 import SAC_LABER model = SAC_LABER('MlpPolicy', 'HalfCheetahBulletEnv-v0', verbose=1, tensorboard_log="results/long_SAC_LABER_HalfCheetahBullet/") model.learn(total_timesteps=3000000)
[ 11748, 12972, 15065, 1616, 62, 268, 14259, 198, 6738, 8245, 62, 12093, 20655, 18, 1330, 311, 2246, 62, 48780, 1137, 198, 198, 19849, 796, 311, 2246, 62, 48780, 1137, 10786, 44, 34431, 36727, 3256, 705, 31305, 7376, 316, 993, 33481, 1616, 4834, 85, 12, 85, 15, 3256, 15942, 577, 28, 16, 11, 11192, 273, 3526, 62, 6404, 2625, 43420, 14, 6511, 62, 50, 2246, 62, 48780, 1137, 62, 31305, 7376, 316, 993, 33481, 1616, 14, 4943, 198, 19849, 13, 35720, 7, 23350, 62, 16514, 395, 25386, 28, 18, 10535, 8, 198 ]
2.516484
91
# -*- coding: utf-8 -*- """ testapplehealthdata.py: tests for the applehealthdata.py Copyright (c) 2016 Nicholas J. Radcliffe Licence: MIT """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import re import shutil import sys import unittest from collections import Counter from applehealthdata import (HealthDataExtractor, format_freqs, format_value, abbreviate, encode) CLEAN_UP = True VERBOSE = False def get_base_dir(): """ Return the directory containing this test file, which will (normally) be the applyhealthdata directory also containing the testdata dir. """ return os.path.split(os.path.abspath(__file__))[0] def get_testdata_dir(): """Return the full path to the testdata directory""" return os.path.join(get_base_dir(), 'testdata') def get_tmp_dir(): """Return the full path to the tmp directory""" return os.path.join(get_base_dir(), 'tmp') def remove_any_tmp_dir(): """ Remove the temporary directory if it exists. Returns its location either way. """ tmp_dir = get_tmp_dir() if os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) return tmp_dir def make_tmp_dir(): """ Remove any existing tmp directory. Create empty tmp direcory. Return the location of the tmp dir. """ tmp_dir = remove_any_tmp_dir() os.mkdir(tmp_dir) return tmp_dir def copy_test_data(): """ Copy the test data export6s3sample.xml from testdata directory to tmp directory. """ tmp_dir = make_tmp_dir() name = 'export6s3sample.xml' in_xml_file = os.path.join(get_testdata_dir(), name) out_xml_file = os.path.join(get_tmp_dir(), name) shutil.copyfile(in_xml_file, out_xml_file) return out_xml_file if __name__ == '__main__': unittest.main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 9288, 18040, 13948, 7890, 13, 9078, 25, 5254, 329, 262, 17180, 13948, 7890, 13, 9078, 198, 198, 15269, 357, 66, 8, 1584, 20320, 449, 13, 5325, 33783, 198, 26656, 594, 25, 17168, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4423, 346, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 198, 6738, 17268, 1330, 15034, 628, 198, 6738, 17180, 13948, 7890, 1330, 357, 18081, 6601, 11627, 40450, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 19503, 48382, 11, 5794, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37640, 378, 11, 37773, 8, 198, 198, 29931, 1565, 62, 8577, 796, 6407, 198, 5959, 33, 14058, 796, 10352, 628, 198, 4299, 651, 62, 8692, 62, 15908, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 8619, 7268, 428, 1332, 2393, 11, 198, 220, 220, 220, 543, 481, 357, 27237, 453, 8, 307, 262, 4174, 13948, 7890, 8619, 198, 220, 220, 220, 635, 7268, 262, 1332, 7890, 26672, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 35312, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 58, 15, 60, 628, 198, 4299, 651, 62, 9288, 7890, 62, 15908, 33529, 198, 220, 220, 220, 37227, 13615, 262, 1336, 3108, 284, 262, 1332, 7890, 8619, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 1136, 62, 8692, 62, 15908, 22784, 705, 9288, 7890, 11537, 628, 198, 4299, 651, 62, 22065, 62, 15908, 33529, 198, 220, 220, 220, 37227, 13615, 262, 1336, 3108, 284, 262, 45218, 8619, 37811, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 1136, 62, 8692, 62, 15908, 22784, 705, 22065, 11537, 628, 198, 4299, 4781, 62, 1092, 62, 22065, 62, 15908, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 262, 8584, 8619, 611, 340, 7160, 13, 198, 220, 220, 220, 16409, 663, 4067, 2035, 835, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45218, 62, 15908, 796, 651, 62, 22065, 62, 15908, 3419, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 22065, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 22065, 62, 15908, 8, 198, 220, 220, 220, 1441, 45218, 62, 15908, 628, 198, 4299, 787, 62, 22065, 62, 15908, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 597, 4683, 45218, 8619, 13, 198, 220, 220, 220, 13610, 6565, 45218, 19958, 66, 652, 13, 198, 220, 220, 220, 8229, 262, 4067, 286, 262, 45218, 26672, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45218, 62, 15908, 796, 4781, 62, 1092, 62, 22065, 62, 15908, 3419, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 22065, 62, 15908, 8, 198, 220, 220, 220, 1441, 45218, 62, 15908, 628, 198, 4299, 4866, 62, 9288, 62, 7890, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17393, 262, 1332, 1366, 10784, 21, 82, 18, 39873, 13, 19875, 422, 1332, 7890, 8619, 198, 220, 220, 220, 284, 45218, 8619, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45218, 62, 15908, 796, 787, 62, 22065, 62, 15908, 3419, 198, 220, 220, 220, 1438, 796, 705, 39344, 21, 82, 18, 39873, 13, 19875, 6, 198, 220, 220, 220, 287, 62, 19875, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 1136, 62, 9288, 7890, 62, 15908, 22784, 1438, 8, 198, 220, 220, 220, 503, 62, 19875, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 1136, 62, 22065, 62, 15908, 22784, 1438, 8, 198, 220, 220, 220, 4423, 346, 13, 30073, 7753, 7, 259, 62, 19875, 62, 7753, 11, 503, 62, 19875, 62, 7753, 8, 198, 220, 220, 220, 1441, 503, 62, 19875, 62, 7753, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.610372
752
import unittest from datetime import date from controller.books import Book, BookRead if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 6738, 10444, 13, 12106, 1330, 4897, 11, 4897, 5569, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.066667
45
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files
[ 6738, 220, 844, 27349, 62, 2118, 9078, 13, 8692, 1330, 7308, 198, 6738, 220, 844, 27349, 62, 2118, 9078, 13, 16624, 1330, 13283, 628 ]
3.375
24
import pytest @pytest.yield_fixture(scope="module") @pytest.yield_fixture(scope="module") @pytest.yield_fixture(scope="module")
[ 11748, 12972, 9288, 628, 198, 31, 9078, 9288, 13, 88, 1164, 62, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 88, 1164, 62, 69, 9602, 7, 29982, 2625, 21412, 4943, 628, 198, 31, 9078, 9288, 13, 88, 1164, 62, 69, 9602, 7, 29982, 2625, 21412, 4943, 198 ]
2.576923
52
import threading import os.path import time from blueThread import MainBlue # class myThread (threading.Thread): # def __init__(self, threadID, name, counter): # threading.Thread.__init__(self) # self.threadID = threadID # self.name = name # self.counter = counter # def run(self): # print("Starting " + self.name) # print_time(self.name, 5, self.counter) # print("Exiting " + self.name) run = True foo = [False] fileName = "" def LookForFile(strToFind, path): """ function repeatedly look for a file """ while run: MainBlue(foo) time.sleep(1) print("exiting file thread!") def LookForStop(strToFind, path): """ function repeatedly look for a file """ global run count = 0 filePath = path + strToFind while run: count += 1 if os.path.exists(filePath): run = False print("{0} FOUND {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) else: print("{0} not found {1} at {2} [{3}]".format(t2.getName(), strToFind, filePath, count)) time.sleep(1) print("exiting stop thread!") if __name__ == "__main__": # creating thread t1 = threading.Thread(target=LookForFile, name="THREAD_Finder", args=("rain","../"), daemon=True) # t2 = threading.Thread(name="THREAD_Stopper", target=LookForStop, args=("stop","../"), daemon=True) # starting thread 1 t1.start() # starting thread 2 # t2.start() # while run: # print("doing nothing...") # time.sleep(10) input("Press Enter to flip foo") if foo[0]: foo[0] = False else: foo[0] = True input("Press Enter to exit") run = False # wait until thread 1 is completely executed t1.join() # wait until thread 2 is completely executed # t2.join() # both threads completely executed print("Done!")
[ 11748, 4704, 278, 201, 198, 11748, 28686, 13, 6978, 201, 198, 11748, 640, 201, 198, 6738, 4171, 16818, 1330, 8774, 14573, 201, 198, 201, 198, 220, 220, 201, 198, 2, 1398, 616, 16818, 357, 16663, 278, 13, 16818, 2599, 201, 198, 2, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4704, 2389, 11, 1438, 11, 3753, 2599, 201, 198, 2, 220, 220, 220, 220, 4704, 278, 13, 16818, 13, 834, 15003, 834, 7, 944, 8, 201, 198, 2, 220, 220, 220, 220, 2116, 13, 16663, 2389, 796, 4704, 2389, 201, 198, 2, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 201, 198, 2, 220, 220, 220, 220, 2116, 13, 24588, 796, 3753, 201, 198, 2, 220, 220, 825, 1057, 7, 944, 2599, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 22851, 366, 1343, 2116, 13, 3672, 8, 201, 198, 2, 220, 220, 220, 220, 3601, 62, 2435, 7, 944, 13, 3672, 11, 642, 11, 2116, 13, 24588, 8, 201, 198, 2, 220, 220, 220, 220, 3601, 7203, 3109, 1780, 366, 1343, 2116, 13, 3672, 8, 201, 198, 220, 220, 220, 220, 201, 198, 5143, 796, 6407, 201, 198, 21943, 796, 685, 25101, 60, 201, 198, 7753, 5376, 796, 13538, 201, 198, 4299, 6803, 1890, 8979, 7, 2536, 2514, 16742, 11, 3108, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 2163, 7830, 804, 329, 257, 2393, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 981, 1057, 25, 201, 198, 220, 220, 220, 220, 220, 8774, 14573, 7, 21943, 8, 201, 198, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 201, 198, 220, 220, 220, 3601, 7203, 1069, 1780, 2393, 4704, 2474, 8, 201, 198, 201, 198, 4299, 6803, 1890, 19485, 7, 2536, 2514, 16742, 11, 3108, 2599, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 2163, 7830, 804, 329, 257, 2393, 201, 198, 220, 220, 220, 37227, 201, 198, 220, 220, 220, 3298, 1057, 201, 198, 220, 220, 220, 954, 796, 657, 201, 198, 220, 220, 220, 2393, 15235, 796, 3108, 1343, 965, 2514, 16742, 201, 198, 220, 220, 220, 981, 1057, 25, 201, 198, 220, 220, 220, 220, 220, 954, 15853, 352, 201, 198, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 1069, 1023, 7, 7753, 15235, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1057, 796, 10352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 15, 92, 376, 15919, 1391, 16, 92, 379, 1391, 17, 92, 685, 90, 18, 92, 60, 1911, 18982, 7, 83, 17, 13, 1136, 5376, 22784, 965, 2514, 16742, 11, 2393, 15235, 11, 954, 4008, 201, 198, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 90, 15, 92, 407, 1043, 1391, 16, 92, 379, 1391, 17, 92, 685, 90, 18, 92, 60, 1911, 18982, 7, 83, 17, 13, 1136, 5376, 22784, 965, 2514, 16742, 11, 2393, 15235, 11, 954, 4008, 201, 198, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 201, 198, 220, 220, 220, 3601, 7203, 1069, 1780, 2245, 4704, 2474, 8, 201, 198, 220, 220, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 201, 198, 220, 220, 220, 1303, 4441, 4704, 201, 198, 220, 220, 220, 256, 16, 796, 4704, 278, 13, 16818, 7, 16793, 28, 8567, 1890, 8979, 11, 1438, 2625, 4221, 15675, 62, 37, 5540, 1600, 26498, 28, 7203, 3201, 2430, 40720, 12340, 33386, 28, 17821, 8, 201, 198, 220, 220, 220, 1303, 256, 17, 796, 4704, 278, 13, 16818, 7, 3672, 2625, 4221, 15675, 62, 1273, 78, 2848, 1600, 2496, 28, 8567, 1890, 19485, 11, 26498, 28, 7203, 11338, 2430, 40720, 12340, 33386, 28, 17821, 8, 201, 198, 220, 220, 201, 198, 220, 220, 220, 1303, 3599, 4704, 352, 201, 198, 220, 220, 220, 256, 16, 13, 9688, 3419, 201, 198, 220, 220, 220, 1303, 3599, 4704, 362, 201, 198, 220, 220, 220, 1303, 256, 17, 13, 9688, 3419, 201, 198, 220, 220, 220, 1303, 981, 1057, 25, 201, 198, 220, 220, 220, 1303, 220, 220, 3601, 7203, 19631, 2147, 9313, 8, 201, 198, 220, 220, 220, 1303, 220, 220, 640, 13, 42832, 7, 940, 8, 201, 198, 220, 220, 220, 5128, 7203, 13800, 6062, 284, 14283, 22944, 4943, 201, 198, 220, 220, 220, 611, 22944, 58, 15, 5974, 201, 198, 220, 220, 220, 220, 220, 22944, 58, 15, 60, 796, 10352, 201, 198, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 22944, 58, 15, 60, 796, 6407, 201, 198, 220, 220, 220, 5128, 7203, 13800, 6062, 284, 8420, 4943, 201, 198, 220, 220, 220, 1057, 796, 10352, 201, 198, 201, 198, 220, 220, 220, 1303, 4043, 1566, 4704, 352, 318, 3190, 10945, 201, 198, 220, 220, 220, 256, 16, 13, 22179, 3419, 201, 198, 220, 220, 220, 1303, 4043, 1566, 4704, 362, 318, 3190, 10945, 201, 198, 220, 220, 220, 1303, 256, 17, 13, 22179, 3419, 201, 198, 220, 220, 201, 198, 220, 220, 220, 1303, 1111, 14390, 3190, 10945, 201, 198, 220, 220, 220, 3601, 7203, 45677, 2474, 8 ]
2.299534
858
import time from datetime import datetime from datetime import timedelta from uuid import uuid4 as uuid from activitystreams import parse from dino import environ from dino.auth.redis import AuthRedis from dino.cache.redis import CacheRedis from dino.config import ApiActions, RedisKeys from dino.config import ConfigKeys from dino.config import SessionKeys from dino.config import UserKeys from dino.db.rdbms.handler import DatabaseRdbms from dino.environ import ConfigDict from dino.environ import GNEnvironment from dino.exceptions import ChannelExistsException from dino.exceptions import ChannelNameExistsException from dino.exceptions import EmptyChannelNameException from dino.exceptions import EmptyRoomNameException from dino.exceptions import InvalidAclTypeException from dino.exceptions import InvalidApiActionException from dino.exceptions import NoSuchChannelException from dino.exceptions import NoSuchRoomException from dino.exceptions import NoSuchUserException from dino.exceptions import RoomExistsException from dino.exceptions import RoomNameExistsForChannelException from dino.exceptions import UserExistsException from dino.exceptions import ValidationException from dino.validation.acl import AclDisallowValidator from dino.validation.acl import AclIsAdminValidator from dino.validation.acl import AclIsSuperUserValidator from dino.validation.acl import AclRangeValidator from dino.validation.acl import AclSameChannelValidator from dino.validation.acl import AclSameRoomValidator from dino.validation.acl import AclStrInCsvValidator from test.base import BaseTest
[ 11748, 640, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 355, 334, 27112, 198, 198, 6738, 3842, 5532, 82, 1330, 21136, 198, 198, 6738, 288, 2879, 1330, 551, 2268, 198, 6738, 288, 2879, 13, 18439, 13, 445, 271, 1330, 26828, 7738, 271, 198, 6738, 288, 2879, 13, 23870, 13, 445, 271, 1330, 34088, 7738, 271, 198, 6738, 288, 2879, 13, 11250, 1330, 5949, 72, 32, 2733, 11, 2297, 271, 40729, 198, 6738, 288, 2879, 13, 11250, 1330, 17056, 40729, 198, 6738, 288, 2879, 13, 11250, 1330, 23575, 40729, 198, 6738, 288, 2879, 13, 11250, 1330, 11787, 40729, 198, 6738, 288, 2879, 13, 9945, 13, 4372, 65, 907, 13, 30281, 1330, 24047, 49, 9945, 907, 198, 6738, 288, 2879, 13, 268, 2268, 1330, 17056, 35, 713, 198, 6738, 288, 2879, 13, 268, 2268, 1330, 15484, 31441, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 11102, 3109, 1023, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 11102, 5376, 3109, 1023, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 33523, 29239, 5376, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 33523, 41178, 5376, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 17665, 32, 565, 6030, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 17665, 32, 14415, 12502, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 1400, 16678, 29239, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 1400, 16678, 41178, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 1400, 16678, 12982, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 10096, 3109, 1023, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 10096, 5376, 3109, 1023, 1890, 29239, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 11787, 3109, 1023, 16922, 198, 6738, 288, 2879, 13, 1069, 11755, 1330, 3254, 24765, 16922, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 7279, 12154, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 3792, 46787, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 3792, 12442, 12982, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 17257, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 30556, 29239, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 30556, 41178, 47139, 1352, 198, 6738, 288, 2879, 13, 12102, 341, 13, 37779, 1330, 317, 565, 13290, 818, 34, 21370, 47139, 1352, 198, 6738, 1332, 13, 8692, 1330, 7308, 14402, 628 ]
3.674365
433
"""migrate workbench state enum Revision ID: cfd1c43b5d33 Revises: c8a7073deebb Create Date: 2020-11-17 16:42:32.511722+00:00 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cfd1c43b5d33' down_revision = 'c8a7073deebb' branch_labels = None depends_on = None
[ 37811, 76, 42175, 670, 26968, 1181, 33829, 198, 198, 18009, 1166, 4522, 25, 269, 16344, 16, 66, 3559, 65, 20, 67, 2091, 198, 18009, 2696, 25, 269, 23, 64, 2154, 4790, 67, 1453, 11848, 198, 16447, 7536, 25, 12131, 12, 1157, 12, 1558, 1467, 25, 3682, 25, 2624, 13, 20, 17657, 1828, 10, 405, 25, 405, 198, 198, 37811, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 12993, 67, 16, 66, 3559, 65, 20, 67, 2091, 6, 198, 2902, 62, 260, 10178, 796, 705, 66, 23, 64, 2154, 4790, 67, 1453, 11848, 6, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.406015
133
import json fn = open('../static/alderman.js', 'w') #add alderman boundaries variable json_file = open('../maps/alderman.geojson') geo_json = json.load(json_file) fn.write('var alderman_boundaries = ') fn.write(json.dumps(geo_json)) fn.write(';\n\n') json_file.close()
[ 11748, 33918, 198, 198, 22184, 796, 1280, 10786, 40720, 12708, 14, 282, 1082, 805, 13, 8457, 3256, 705, 86, 11537, 198, 198, 2, 2860, 257, 335, 2224, 13215, 7885, 198, 17752, 62, 7753, 796, 1280, 10786, 40720, 31803, 14, 282, 1082, 805, 13, 469, 13210, 1559, 11537, 198, 469, 78, 62, 17752, 796, 33918, 13, 2220, 7, 17752, 62, 7753, 8, 198, 22184, 13, 13564, 10786, 7785, 257, 335, 2224, 62, 7784, 3166, 796, 705, 8, 198, 22184, 13, 13564, 7, 17752, 13, 67, 8142, 7, 469, 78, 62, 17752, 4008, 198, 22184, 13, 13564, 10786, 26, 59, 77, 59, 77, 11537, 198, 17752, 62, 7753, 13, 19836, 3419 ]
2.477064
109
# tables.py class MortalityTable: """mortalitytable is a matrix, by age and duration.""" class MortalityImprovementTable: """MortalityImprovementTable is a matrix, by age and year.""" class RangeTable: """range table"""
[ 2, 8893, 13, 9078, 201, 198, 201, 198, 201, 198, 201, 198, 4871, 10788, 1483, 10962, 25, 201, 198, 220, 220, 220, 37227, 76, 28337, 11487, 318, 257, 17593, 11, 416, 2479, 290, 9478, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 4871, 10788, 1483, 47531, 434, 10962, 25, 201, 198, 220, 220, 220, 37227, 44, 28337, 47531, 434, 10962, 318, 257, 17593, 11, 416, 2479, 290, 614, 526, 15931, 201, 198, 220, 220, 220, 220, 201, 198, 4871, 13667, 10962, 25, 201, 198, 220, 220, 220, 37227, 9521, 3084, 37811, 201, 198, 201, 198 ]
2.670103
97
"""Mathematical helper functions.""" def normalize(array): """Normalize the array. Set all the values betwwen 0 and 1. 0 corresponds to the min value and 1 the max. If the normalization cannot occur, will return the array. """ min_ = min(array) max_ = max(array) return ( (array - min_) / (max_ - min_) # Normalize if min_ != max_ else array / (max_ if max_ > 0 else 1) # Avoid divide by 0 )
[ 37811, 19044, 10024, 605, 31904, 5499, 526, 15931, 628, 198, 4299, 3487, 1096, 7, 18747, 2599, 198, 220, 220, 220, 37227, 26447, 1096, 262, 7177, 13, 628, 220, 220, 220, 5345, 477, 262, 3815, 731, 1383, 268, 657, 290, 352, 13, 198, 220, 220, 220, 657, 24866, 284, 262, 949, 1988, 290, 352, 262, 3509, 13, 198, 220, 220, 220, 1002, 262, 3487, 1634, 2314, 3051, 11, 481, 1441, 262, 7177, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 949, 62, 796, 949, 7, 18747, 8, 198, 220, 220, 220, 3509, 62, 796, 3509, 7, 18747, 8, 198, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 357, 18747, 532, 949, 62, 8, 1220, 357, 9806, 62, 532, 949, 62, 8, 220, 1303, 14435, 1096, 198, 220, 220, 220, 220, 220, 220, 220, 611, 949, 62, 14512, 3509, 62, 2073, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 1220, 357, 9806, 62, 611, 3509, 62, 1875, 657, 2073, 352, 8, 220, 1303, 24390, 14083, 416, 657, 198, 220, 220, 220, 1267, 198 ]
2.553073
179
nome = input('Insira nome completo: ').strip() print('Possui "Silva"?', 'silva' in nome.lower()) input()
[ 77, 462, 796, 5128, 10786, 20376, 8704, 299, 462, 1224, 1462, 25, 705, 737, 36311, 3419, 198, 4798, 10786, 47, 793, 9019, 366, 15086, 6862, 13984, 3256, 705, 18217, 6862, 6, 287, 299, 462, 13, 21037, 28955, 198, 15414, 3419, 198 ]
2.560976
41
import torch import torch.nn as nn __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] def conv3x3(in_planes, out_planes, **kwargs): """3x3 convolution with padding""" kwargs['kernel_size'] = 3 kwargs['padding'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) def conv1x1(in_planes, out_planes, **kwargs): """1x1 convolution""" kwargs['kernel_size'] = 1 kwargs['bias'] = False return nn.Conv2d(in_planes, out_planes, **kwargs) class BasicBlock(nn.Module): """BasicBlock""" expansion = 1 class Bottleneck(nn.Module): """Bottleneck""" expansion = 4 class ResNet(nn.Module): """ResNet""" def resnet18(num_classes=1000, **kwargs): """resnet18""" return ResNet([2, 2, 2, 2], num_classes, BasicBlock) def resnet34(num_classes=1000, **kwargs): """resnet34""" return ResNet([3, 4, 6, 3], num_classes, BasicBlock) def resnet50(num_classes=1000, **kwargs): """resnet50""" return ResNet([3, 4, 6, 3], num_classes, Bottleneck) def resnet101(num_classes=1000, **kwargs): """resnet101""" return ResNet([3, 4, 23, 3], num_classes, Bottleneck) def resnet152(num_classes=1000, **kwargs): """resnet152""" return ResNet([3, 8, 36, 3], num_classes, Bottleneck)
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 834, 439, 834, 796, 37250, 4965, 7934, 3256, 705, 411, 3262, 1507, 3256, 705, 411, 3262, 2682, 3256, 705, 411, 3262, 1120, 3256, 705, 411, 3262, 8784, 3256, 705, 411, 3262, 17827, 20520, 198, 198, 4299, 3063, 18, 87, 18, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 18, 87, 18, 3063, 2122, 351, 24511, 37811, 198, 220, 220, 220, 479, 86, 22046, 17816, 33885, 62, 7857, 20520, 796, 513, 198, 220, 220, 220, 479, 86, 22046, 17816, 39231, 20520, 796, 352, 198, 220, 220, 220, 479, 86, 22046, 17816, 65, 4448, 20520, 796, 10352, 198, 220, 220, 220, 1441, 299, 77, 13, 3103, 85, 17, 67, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 12429, 46265, 22046, 8, 198, 198, 4299, 3063, 16, 87, 16, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 16, 87, 16, 3063, 2122, 37811, 198, 220, 220, 220, 479, 86, 22046, 17816, 33885, 62, 7857, 20520, 796, 352, 198, 220, 220, 220, 479, 86, 22046, 17816, 65, 4448, 20520, 796, 10352, 198, 220, 220, 220, 1441, 299, 77, 13, 3103, 85, 17, 67, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 12429, 46265, 22046, 8, 198, 198, 4871, 14392, 12235, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 26416, 12235, 37811, 198, 220, 220, 220, 7118, 796, 352, 198, 220, 220, 220, 220, 198, 4871, 14835, 43163, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 28653, 43163, 37811, 198, 220, 220, 220, 7118, 796, 604, 198, 220, 220, 220, 220, 198, 4871, 1874, 7934, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4965, 7934, 37811, 198, 220, 220, 220, 220, 198, 4299, 581, 3262, 1507, 7, 22510, 62, 37724, 28, 12825, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 411, 3262, 1507, 37811, 198, 220, 220, 220, 1441, 1874, 7934, 26933, 17, 11, 362, 11, 362, 11, 362, 4357, 997, 62, 37724, 11, 14392, 12235, 8, 198, 198, 4299, 581, 3262, 2682, 7, 22510, 62, 37724, 28, 12825, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 411, 3262, 2682, 37811, 198, 220, 220, 220, 1441, 1874, 7934, 26933, 18, 11, 604, 11, 718, 11, 513, 4357, 997, 62, 37724, 11, 14392, 12235, 8, 198, 198, 4299, 581, 3262, 1120, 7, 22510, 62, 37724, 28, 12825, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 411, 3262, 1120, 37811, 198, 220, 220, 220, 1441, 1874, 7934, 26933, 18, 11, 604, 11, 718, 11, 513, 4357, 997, 62, 37724, 11, 14835, 43163, 8, 198, 198, 4299, 581, 3262, 8784, 7, 22510, 62, 37724, 28, 12825, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 411, 3262, 8784, 37811, 198, 220, 220, 220, 1441, 1874, 7934, 26933, 18, 11, 604, 11, 2242, 11, 513, 4357, 997, 62, 37724, 11, 14835, 43163, 8, 198, 198, 4299, 581, 3262, 17827, 7, 22510, 62, 37724, 28, 12825, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 411, 3262, 17827, 37811, 198, 220, 220, 220, 1441, 1874, 7934, 26933, 18, 11, 807, 11, 4570, 11, 513, 4357, 997, 62, 37724, 11, 14835, 43163, 8 ]
2.398182
550
from modelon.impact.client import ( SimpleFMUExperimentDefinition, SimpleModelicaExperimentDefinition, Range, Choices, SimpleExperimentExtension, ) import pytest from modelon.impact.client import exceptions from tests.impact.client.fixtures import *
[ 6738, 2746, 261, 13, 48240, 13, 16366, 1330, 357, 198, 220, 220, 220, 17427, 23264, 52, 20468, 3681, 36621, 11, 198, 220, 220, 220, 17427, 17633, 3970, 20468, 3681, 36621, 11, 198, 220, 220, 220, 13667, 11, 198, 220, 220, 220, 10031, 1063, 11, 198, 220, 220, 220, 17427, 20468, 3681, 11627, 3004, 11, 198, 8, 198, 11748, 12972, 9288, 198, 6738, 2746, 261, 13, 48240, 13, 16366, 1330, 13269, 198, 198, 6738, 5254, 13, 48240, 13, 16366, 13, 69, 25506, 1330, 1635, 628, 628 ]
3.223529
85
#coding:utf-8 import pymongo import records
[ 2, 66, 7656, 25, 40477, 12, 23, 198, 11748, 279, 4948, 25162, 198, 11748, 4406, 628 ]
2.8125
16
# ou-tm351 - `nb_pub_utils` #GOTCHA - Python on Mac logging in to Github: https://stackoverflow.com/a/42098127/454773 import click import os import shutil import zipfile import humanize import datetime import github from tabulate import tabulate from shlex import quote import subprocess def listify(item): ''' If presented with a string and a list is required, make a list... ''' item = [] if item is None else item #We may be passed a tuple - in which case, listify... item = list(item) if isinstance(item,(list,tuple)) else [item] return item def exclude_hidden_items(itemlist, exclude_hidden=True): ''' Exclude hidden items from ziplist ''' if exclude_hidden: rmlist=[] for x in itemlist: if x.startswith('.'): rmlist.append(x) for x in rmlist: itemlist.remove(x) def exclude_items(itemlist, excludes, exclude_hidden=True, ipynb_only=False): ''' Exclude items from ziplist ''' for xd in set(itemlist).intersection(excludes): itemlist.remove(xd) if ipynb_only: for i in [_i for _i in itemlist if not _i.endswith("ipynb")]: itemlist.remove(i) if exclude_hidden: exclude_hidden_items(itemlist) def notebookTest(path=None, filename=None, dir_excludes=None, file_excludes=None): ''' Run notebook tests over explicitly named files and directories. ''' #Could probably define this recursively to handle mulitple paths/filenames... sanitiser = """[regex1] regex: <graphviz.files.Source at [^>]*> replace: <graphviz.files.Source> [regex2] regex: CPU times: .* replace: CPU times: CPUTIME [regex3] regex: Wall time: .* replace: Wall time: WALLTIME [regex4] regex: .* per loop \(mean ± std. dev. of .* runs, .* loops each\) replace: TIMEIT_REPORT """ #tmp_fn = "_sanitise_cfg.cfg" #with open(tmp_fn, "w") as f: # f.write(sanitiser) #cmd=f'py.test --nbval-sanitize-with {tmp_fn} ' cmd=f'py.test ' file_excludes = listify(file_excludes) for d in listify(dir_excludes): cmd = cmd + ' --ignore={} '.format(quote(d)) print("*Not testing in directory: {}*".format(d)) cmd = cmd+' --nbval ' ## WARNING - TO DO - if we are running this from a notebook, also exclude path=='.' if path is None and filename is None: #Process current directory return cli_command(cmd) elif filename: #Process file(s) in directory if isinstance(filename, list): for _filename in filename: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(_filename))) resp=cli_command(cmd) else: cmd = '{cmd} {filename}'.format(cmd=cmd, filename=pathmaker(path, quote(filename))) resp=cli_command(cmd) return resp else: #Process files in path #If we pass a directory name in then the test will be run over all files in the directory #py.test accumulates the test responses resps = [] for singlepath in listify(path): for dirname, subdirs, files in os.walk(singlepath): exclude_items(subdirs, dir_excludes) exclude_items(files, file_excludes, ipynb_only=True) print('Processing directory: {}'.format(dirname)) with click.progressbar(files) as bar: for filename in bar: filepathname=os.path.join(dirname, filename) cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(filepathname)) resps.append( cli_command(cmd) ) #for singlepath in listify(path): # print("\nTesting in directory: {}".format(singlepath)) # if singlepath=='.': # print('**DO NOT test in current directory from a notebook**') # cmd = '{cmd} {path}'.format(cmd=cmd, path=quote(singlepath)) # resps.append( cli_command(cmd) ) os.unlink(tmp_fn) return resps def notebookProcessor(notebook, mode=None, outpath=None, outfile=None, inplace=True): ''' Clear notebook output cells. Process a single notebook, clearing cell outputs running cells until a warning, or running all cells despite warnings. Processed notebooks can be written to a specified directory or rendered inplace. ''' if mode is None: return (-1, 'Mode not specified.') if outpath is not None and not os.path.exists(outpath): os.makedirs(outpath) if outfile is not None: outpath = '/'.join([outpath,outfile]) if outpath is not None else outfile cmd='jupyter nbconvert --to notebook' if mode in ['clearOutput', 'clearOutputTest' ]: cmd = '{cmd} --ClearOutputPreprocessor.enabled=True'.format(cmd=cmd) elif mode == 'run': cmd = '{cmd} --execute'.format(cmd=cmd) elif mode == 'runWithErrors': cmd = '{cmd} --ExecutePreprocessor.allow_errors=True --execute'.format(cmd=cmd) else: return (-1, 'Mode not specified correctly.') if outpath is None and inplace: cmd='{cmd} --inplace'.format(cmd=cmd) #Select file cmd='{cmd} {notebook}'.format(cmd=cmd,notebook=quote(notebook)) #If output path not set, and --inplace is not set, # nbformat will create a new file with same name ending: .nbformat.ipynb if outpath is not None: cmd ='{cmd} --output-dir {outpath}'.format(cmd=cmd, outpath=quote(outpath)) return cli_command(cmd) def directoryProcessor(path, mode=None, outpath=None, inplace=True, include_hidden=False, dir_excludes=None, file_excludes=None, rmdir=False, currdir=False, subdirs=True, reportlevel=1, logfile=None): ''' Process all the notebooks in one or more directories and (optionally) in associated subdirectories. Processed notebooks can be written to a specified directory or rendered inplace. Path hierarchies to notebooks in multiple directories or subdirectories are respected when writing to a specified output directory. ''' def _process(outpath): ''' Process files associated with a particular directory ''' processfiles=[f for f in files if f.endswith('.ipynb')] if subdirs: print(dirname) if outpath is not None: outpath='/'.join([outpath, dirname]) if not os.path.exists(outpath): os.makedirs(outpath) if not mode == 'tests': #print('About to process {}'.format(processfiles)) with click.progressbar(processfiles) as bar: for filename in bar: if not currdir and dirname=='.': continue if reportlevel>1: print("Processing >{}<".format('/'.join([dirname,filename]))) resp = notebookProcessor('/'.join([dirname,filename]), mode=mode, outpath=outpath, inplace=inplace ) if reportlevel>0 and resp and resp[0]!=0: print("Error with {}".format('/'.join([dirname,filename]))) if logfile: with open(logfile, "a") as out: out.write(resp[1]) #if mode in ['tests', 'clearOutputTest']: # #Tests need to run in original dir in case of file dependencies # testreport = notebookTest(path=dirname,dir_excludes=dir_excludes) # print('tested:',dirname) # print(testreport[1]) #if mode == 'clearOutputTest': # #If we are testing for warnings, need to test in original directory # # in case there are file dependencies # outpath=None # inplace=True if mode is None: return if isinstance(path, list): if rmdir: shutil.rmtree(outpath, ignore_errors=True) #Make sure we only delete the directory on the way in... rmdir=False for _path in path: #When provided with multiple directories, process each one separately #Note that subdirs for each directory can be handled automatically directoryProcessor(_path, mode, '/'.join([outpath, _path]), inplace, include_hidden, dir_excludes, file_excludes, rmdir, currdir, subdirs, reportlevel, logfile) return #TO DO - simplify this so we just pass one exclusion type then detect if file or dir? file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) if outpath is not None and os.path.exists(outpath): if rmdir: print('\n***Deleting directory `{}` and all its contents....***\n\n'.format(outpath)) shutil.rmtree(outpath, ignore_errors=True) else: print('\nOutput directory `{}` already exists. Remove it first by setting: rmdir=True\n'.format(outpath)) #dir_excludes = [] if dir_excludes is None else dir_excludes #file_excludes = [] if file_excludes is None else file_excludes if os.path.isfile(path): notebookProcessor(path, mode=mode, outpath=outpath, inplace=inplace ) elif subdirs: for dirname, subdirs, files in os.walk(path): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) _process(outpath) # if passed a single file rather than directory path else: files=os.listdir(path) exclude_items(files, file_excludes, not include_hidden) dirname=path _process(outpath) #Running zipper with a file_processor will change the cell state in current dir #That is, notebooks are processed in place then zipped #The notebooks as seen in the dir will reflect those in the zipfile #We could modify this behaviour so it does not affect original notebooks? def zipper(dirtozip, zipfilename, include_hidden=False, dir_excludes=None, file_excludes=None, file_processor=None, reportlevel=1, rmdir=False, zip_append=False): ''' Zip the contents of a directory and its subdirectories ''' file_excludes = listify(file_excludes) dir_excludes = listify(dir_excludes) zip_permission = "a" if zip_append else "w" #Create a new/replacement zip file, rather than append if zipfile already exists zf = zipfile.ZipFile(zipfilename, zip_permission, compression=zipfile.ZIP_DEFLATED) #Don't zip files of same name as the zip file we are creating file_excludes.append(zipfilename) # if we have just a single file to zip and not a dir, zip that if os.path.isfile(dirtozip): zf.write(dirtozip) elif os.path.isdir(dirtozip): #https://stackoverflow.com/a/31779538/454773 for dirname, subdirs, files in os.walk(dirtozip): exclude_items(subdirs, dir_excludes, not include_hidden) exclude_items(files, file_excludes, not include_hidden) print('Processing directory: {}'.format(dirname)) zf.write(dirname) with click.progressbar(files) as bar: for filename in bar: if reportlevel>1:print(filename) filepathname=os.path.join(dirname, filename) #There is no point using 'run': if there is an error, nbconvert will fail if file_processor in ['clearOutput', 'runWithErrors'] and filename.endswith('.ipynb'): #This introduces side effects - notebooks are processed in current path #Should we do this in a tmpfile? notebookProcessor(filepathname, mode=file_processor, inplace=True) zf.write(filepathname) zf.close() #Is this too risky?! #if rmdir: shutil.rmtree(dirtozip, ignore_errors=True) return zipfilename def insideZip(zfn, report=True): ''' Look inside a zip file. The report contains four columns: file_size, file compressed size, datetime and filename. Setting report=True returns a pretty printed report. ''' if not os.path.isfile(zfn): print("\nHmm... {} doesn't seem to be a file?\n".format(zfn)) return print('\nLooking inside zipfile: {}\n'.format(zfn)) fz=zipfile.ZipFile(zfn) txt=[] for fn in fz.infolist(): txt.append( [fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename] ) print('{}, {}, {}, {}'.format(fn.file_size, fn.compress_size, datetime.datetime(*fn.date_time).isoformat(), fn.filename)) tabulate(txt, headers=['Full','Zip','Datetime','Path'],tablefmt="simple") return txt @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors'])) @click.option('--include-hiddenfiles', '-H', is_flag=True, help='Include hidden files') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--zip_append','-a', is_flag=True, help='Add to existing zip file') @click.argument('path', type=click.Path(resolve_path=False)) #@click.argument('zipfile', type=click.File('wb')) @click.argument('zipfile', type=click.Path()) def cli_zip(file_processor, include_hiddenfiles, exclude_dir, exclude_file, zip_append, path, zipfile): """Create a zip file from the contents of a specified directory. The zipper can optionally run a notebook processor on notebooks before zipping them to check that all cells are run or all cells are cleared. """ print('You must be crazy using this...') if not zip_append: print(f"\nOverwriting any previous {zipfile} file\n") else: print(f"\nAppending zipped files to: {zipfile}\n") fn = zipper(path, zipfile, include_hidden=include_hiddenfiles, dir_excludes=exclude_dir, file_excludes=exclude_file, file_processor=file_processor, zip_append=zip_append) print(f"\nZip file: {fn}\n") @click.command() @click.option('--quiet', '-q', is_flag=True, help='Suppress the report.') @click.option('--warnings', '-w', is_flag=True, help='Display warnings') @click.argument('filename', type=click.Path(resolve_path=True),nargs=-1) def cli_zipview(filename, warnings, quiet): """List the contents of one or more specified zipfiles. """ zip_contents = [] for f in listify(filename): zip_contents.append((f, insideZip(f))) if warnings and zip_contents: for (zn, item) in zip_contents: print(f"\n\n====== Zip file quality report: {zn} ======\n") for record in item: if record[1] > 1e6: print(f"WARNING: \"{record[3]}\" looks quite large file ({humanize.naturalsize(record[0])} unzipped, {humanize.naturalsize(record[1])} compressed)") for _path in record[3].split('/'): if len(_path) > 50: print(f"ERROR: the filepath element \"{_path}\" in \"{record[3]}\" is too long (max. 50 chars)") if _path.startswith("."): print(f"WARNING: \"{record[3]}\" is a hidden file/directory (do you really need it in the zip file?)") print("\n===========================\n\n") @click.command() @click.option('--exclude-dir','-X', multiple=True,type=click.Path(resolve_path=False), help='Do not recurse through specified directory when assembling tests.') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--outfile','-o', type=click.Path(resolve_path=False), help='Output report file. Leave this blank to display report on command line.') @click.argument('testitems', type=click.Path(resolve_path=False),nargs=-1) def cli_nbtest( exclude_dir, exclude_file, outfile, testitems): """Test specified notebooks and/or the notebooks in a specified directory or directories (`TESTITEMS`) using the `nbdime` plugin for `py.test`. Running `tm351nbtest` without any specified directory or file will assemble tests recursively from the current directory down.""" testitems = testitems or '.' _notebookTest(testitems, outfile, exclude_dir, exclude_file) @click.command() @click.option('--file-processor','-r', type=click.Choice(['clearOutput', 'runWithErrors']), help='File processor actions that can be applied to notebooks using `nbconvert`') @click.option('--outpath', '-O', type=click.Path(resolve_path=False), help='path to output directory') @click.option('--inplace/--no-inplace',default=True, help='Run processors on notebooks inplace') @click.option('--exclude-dir', '-X', multiple=True, type=click.Path(resolve_path=False), help='Exclude specified directory') @click.option('--exclude-file','-x', multiple=True,type=click.Path(resolve_path=False), help='Exclude specified file') @click.option('--include-hidden/--no-include-hidden',default=False, help='Include hidden files') @click.option('--rmdir/--no-rmdir',default=False, help='Check the output directory is empty before we use it') @click.option('--currdir/--no-currdir',default=False, help='Process files in current directory') @click.option('--subdirs/--no-subdirs',default=True, help='Process files in subdirectories') @click.option('--reportlevel', default=1, help='Reporting level') @click.argument('path',type=click.Path(resolve_path=False)) def cli_nbrun(file_processor, outpath, inplace, exclude_dir, exclude_file, include_hidden, rmdir, currdir, subdirs, reportlevel, path): """Directory processor for notebooks - allows the user to run nbconvert operations on notebooks, such as running all cells or clearing all cells. To run tests, use: tm351nbtest To zip folders (with the option or running notebook processors on zipped files), use: tm351zip """ directoryProcessor(path, mode=file_processor, outpath=outpath, inplace=inplace, include_hidden=include_hidden, dir_excludes=exclude_dir, file_excludes=exclude_file, rmdir=rmdir, currdir=currdir, subdirs=subdirs,reportlevel=reportlevel) from github import Github import getpass import base64 import logging from github.GithubException import GithubException def get_sha_for_tag(repository, tag): """ Returns a commit PyGithub object for the specified repository and tag. """ branches = repository.get_branches() matched_branches = [match for match in branches if match.name == tag] if matched_branches: return matched_branches[0].commit.sha tags = repository.get_tags() matched_tags = [match for match in tags if match.name == tag] if not matched_tags: raise ValueError('No Tag or Branch exists with that name') return matched_tags[0].commit.sha def download_directory(repository, sha, server_path, outpath='gh_downloads', file_processor=None): """ Download all contents at server_path with commit tag sha in the repository. """ contents = repository.get_dir_contents(server_path, ref=sha) if not os.path.exists(outpath): os.makedirs(outpath) for content in contents: print("Downloading: %s" % content.path) if content.type == 'dir': download_directory(repository, sha, content.path, '/'.join([outpath,content.name])) else: try: path = content.path file_content = repository.get_contents(path, ref=sha) file_data = base64.b64decode(file_content.content) outpathfile='/'.join([outpath,content.name]) file_out = open(outpathfile, "wb") file_out.write(file_data) file_out.close() except (IOError, github.GithubException) as exc: #If we fail over because of a large blog, use the data api for the download ret,error=exc.args if 'message' in error and error['message']=='Not Found': print('Hmm... file not found? {}'.format(path)) elif 'errors' in error and error['errors'][0]['code']=='too_large': #print('...large file, trying blob download instead...') file_content = repository.get_git_blob(content.sha) file_data = base64.b64decode(file_content.content) file_out = open('/'.join([outpath,content.name]), "wb") file_out.write(file_data) file_out.close() #logging.error('Error processing %s: %s', content.path, exc) #if content.name.endswith('.ipynb') and file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: # notebookProcessor(outpathfile, file_processor) DEFAULT_REPO='undercertainty/tm351' @click.command() @click.option('--github-user', '-u', help="Your Github username.") @click.option('--password', hide_input=True, confirmation_prompt=False) @click.option('--repo','-r', prompt='Repository ({})'.format(DEFAULT_REPO), help='Repository name') @click.option('--branch','-b',help='Branch or tag to download') @click.option('--directory', help='Directory to download (or: all)') @click.option('--savedir',type=click.Path(resolve_path=False), help='Directory to download repo / repo dir into; default is dir name') @click.option('--file-processor', type=click.Choice(['clearOutput', 'runWithErrors']), help='Optionally specify a file processor to be run against downloaded notebooks.') @click.option('--zip/--no-zip', default=False, help='Optionally create a zip file of the downloaded repository/directory with the same name as the repository/directory.') @click.option('--auth/--no-auth', default=True, help="By default, run with auth (prompt for credentials)") @click.option('--with-tests','-t',is_flag=True, help="Run tests on notebooks after download") @click.option('--logfile',type=click.Path(resolve_path=False), help='Path to logfile') def cli_gitrepos(github_user, password, repo, branch, directory, savedir, file_processor, zip, auth, with_tests, logfile): """Download files from a specified branch in a particular git repository. The download can also be limited to just the contents of a specified directory. Don't worry that there look to be a lot of arguments - you will be prompted for them if you just run: tm351gitrepos """ if auth or github_user: if not github_user: github_user = click.prompt('\nGithub username') if not password: password = click.prompt('\nGithub password', hide_input=True) github = Github(github_user, password) #Show we're keeping no password... password = None auth = True else: github = Github() if auth: user = github.get_user() #organisations = github.get_user().get_orgs() print('Logging into git as {} ({})'.format(github_user, user.name)) repo = repo or DEFAULT_REPO repository = github.get_repo(repo) if not branch: print('\nBranches available:\n\t{}'.format('\n\t'.join(github_repo_branches(repository)) )) branch = click.prompt('\nWhich branch? (master)') branch_or_tag_to_download = branch or 'master' sha = get_sha_for_tag(repository, branch_or_tag_to_download) another = '' while another!='-': if not directory: if branch!='master': contents = repository.get_dir_contents('.', ref=sha) else: contents = repository.get_dir_contents('.') print('\nYou can download all directories from this repo (all) or select one:\n\t{}'.format('\n\t'.join(github_repo_topdirs(contents)))) directory = click.prompt('Which directory? (all)') directory_to_download = '.' if (not directory or directory=='all') else directory outpath = savedir or directory_to_download if outpath == '.' and savedir !='.': outpath=repo.replace('/','_')+'_files' msg='\nOkay... downloading {}/{}'.format(repo,directory_to_download ) if file_processor is not None: msg = msg + ' using notebook processor: {}'.format(file_processor) else: msg = msg + ' with no notebook processing' print(msg) download_directory(repository, sha, directory_to_download, outpath,file_processor ) if file_processor in ['clearOutput', 'clearOutputTest','runWithErrors' ]: click.echo('\nRunning notebook processor: {}'.format(file_processor)) directoryProcessor(outpath, mode=file_processor, subdirs=True, reportlevel=1, logfile=logfile) if logfile: click.echo('\nLog written to {}'.format(logfile)) if with_tests: click.echo('\nRunning notebook tests over: {}'.format(outpath)) if not logfile: logfile = 'tests.log' _notebookTest(outpath, logfile ) click.echo('\nLog written to {}'.format(logfile)) if zip: print('\nZipping into: {}/nYou may also want to delete the working directory ({}).'.format(repository, outpath) ) zipper(outpath,repository) else: print('\n\nTo zip the downloaded directory, run something like: {}'.format('tm351zip {o} {z}\n\nTo run a notebook processor (OPTIONS: runWithErrors, clearOutput) while zipping: tm351zip "{o}" {z} --file-processor OPTION\n'.format(o=outpath,z=repository.name))) directory='' another = click.prompt('\Download another directory from this branch? (To quit: -)') #TODO #print('\n\nTo run this command again: {}'.format())
[ 2, 267, 84, 12, 17209, 35273, 532, 4600, 46803, 62, 12984, 62, 26791, 63, 198, 198, 2, 38, 2394, 49285, 532, 11361, 319, 4100, 18931, 287, 284, 38994, 25, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 27211, 4089, 16799, 14, 2231, 2857, 4790, 198, 198, 11748, 3904, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 19974, 7753, 198, 11748, 1692, 1096, 198, 11748, 4818, 8079, 198, 11748, 33084, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198, 6738, 427, 2588, 1330, 9577, 628, 198, 11748, 850, 14681, 198, 198, 4299, 1351, 1958, 7, 9186, 2599, 198, 220, 220, 220, 705, 7061, 1002, 5545, 351, 257, 4731, 290, 257, 1351, 318, 2672, 11, 787, 257, 1351, 986, 705, 7061, 198, 220, 220, 220, 2378, 796, 17635, 611, 2378, 318, 6045, 2073, 2378, 198, 220, 220, 220, 1303, 1135, 743, 307, 3804, 257, 46545, 532, 287, 543, 1339, 11, 1351, 1958, 986, 198, 220, 220, 220, 2378, 796, 1351, 7, 9186, 8, 611, 318, 39098, 7, 9186, 11, 7, 4868, 11, 83, 29291, 4008, 2073, 685, 9186, 60, 198, 220, 220, 220, 1441, 2378, 198, 220, 220, 220, 220, 198, 4299, 19607, 62, 30342, 62, 23814, 7, 9186, 4868, 11, 19607, 62, 30342, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 1475, 9152, 7104, 3709, 422, 1976, 24705, 396, 705, 7061, 198, 220, 220, 220, 611, 19607, 62, 30342, 25, 198, 220, 220, 220, 220, 220, 220, 220, 374, 4029, 396, 28, 21737, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 2378, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 9688, 2032, 342, 10786, 2637, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 4029, 396, 13, 33295, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 374, 4029, 396, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 4868, 13, 28956, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 19607, 62, 23814, 7, 9186, 4868, 11, 36833, 11, 19607, 62, 30342, 28, 17821, 11, 20966, 2047, 65, 62, 8807, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 1475, 9152, 3709, 422, 1976, 24705, 396, 705, 7061, 628, 220, 220, 220, 329, 2124, 67, 287, 900, 7, 9186, 4868, 737, 3849, 5458, 7, 1069, 13955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2378, 4868, 13, 28956, 7, 24954, 8, 628, 220, 220, 220, 611, 20966, 2047, 65, 62, 8807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 685, 62, 72, 329, 4808, 72, 287, 2378, 4868, 611, 407, 4808, 72, 13, 437, 2032, 342, 7203, 541, 2047, 65, 4943, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 4868, 13, 28956, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 19607, 62, 30342, 25, 19607, 62, 30342, 62, 23814, 7, 9186, 4868, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 198, 4299, 20922, 14402, 7, 6978, 28, 14202, 11, 29472, 28, 14202, 11, 26672, 62, 1069, 13955, 28, 14202, 11, 2393, 62, 1069, 13955, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 5660, 20922, 5254, 625, 11777, 3706, 3696, 290, 29196, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 23722, 2192, 8160, 428, 664, 1834, 2280, 284, 5412, 35971, 270, 1154, 13532, 14, 10379, 268, 1047, 986, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5336, 270, 5847, 796, 13538, 17912, 260, 25636, 16, 60, 198, 260, 25636, 25, 1279, 34960, 85, 528, 13, 16624, 13, 7416, 379, 685, 61, 37981, 9, 29, 198, 33491, 25, 1279, 34960, 85, 528, 13, 16624, 13, 7416, 29, 198, 198, 58, 260, 25636, 17, 60, 198, 260, 25636, 25, 9135, 1661, 25, 764, 9, 198, 33491, 25, 9135, 1661, 25, 16932, 3843, 12789, 198, 198, 58, 260, 25636, 18, 60, 198, 260, 25636, 25, 5007, 640, 25, 764, 9, 198, 33491, 25, 5007, 640, 25, 370, 7036, 34694, 198, 198, 58, 260, 25636, 19, 60, 198, 260, 25636, 25, 764, 9, 583, 9052, 16792, 32604, 6354, 14367, 13, 1614, 13, 286, 764, 9, 4539, 11, 764, 9, 23607, 1123, 22725, 198, 33491, 25, 20460, 2043, 62, 2200, 15490, 198, 37811, 198, 220, 220, 220, 1303, 22065, 62, 22184, 796, 45434, 12807, 270, 786, 62, 37581, 13, 37581, 1, 198, 220, 220, 220, 1303, 4480, 1280, 7, 22065, 62, 22184, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 277, 13, 13564, 7, 12807, 270, 5847, 8, 628, 220, 220, 220, 1303, 28758, 28, 69, 6, 9078, 13, 9288, 1377, 46803, 2100, 12, 12807, 270, 1096, 12, 4480, 1391, 22065, 62, 22184, 92, 705, 198, 220, 220, 220, 23991, 28, 69, 6, 9078, 13, 9288, 705, 628, 220, 220, 220, 2393, 62, 1069, 13955, 796, 1351, 1958, 7, 7753, 62, 1069, 13955, 8, 628, 220, 220, 220, 329, 288, 287, 1351, 1958, 7, 15908, 62, 1069, 13955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 23991, 1343, 705, 1377, 46430, 34758, 92, 45302, 18982, 7, 22708, 7, 67, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9, 3673, 4856, 287, 8619, 25, 23884, 9, 1911, 18982, 7, 67, 4008, 628, 220, 220, 220, 23991, 796, 23991, 10, 6, 1377, 46803, 2100, 705, 198, 220, 220, 220, 22492, 39410, 532, 5390, 8410, 532, 611, 356, 389, 2491, 428, 422, 257, 20922, 11, 635, 19607, 3108, 855, 6, 2637, 198, 220, 220, 220, 611, 3108, 318, 6045, 290, 29472, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18709, 1459, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 537, 72, 62, 21812, 7, 28758, 8, 198, 220, 220, 220, 1288, 361, 29472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18709, 2393, 7, 82, 8, 287, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 34345, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 34345, 287, 29472, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1391, 34345, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 29472, 28, 6978, 10297, 7, 6978, 11, 9577, 28264, 34345, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 28, 44506, 62, 21812, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1391, 34345, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 29472, 28, 6978, 10297, 7, 6978, 11, 9577, 7, 34345, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 28, 44506, 62, 21812, 7, 28758, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1217, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 18709, 3696, 287, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1532, 356, 1208, 257, 8619, 1438, 287, 788, 262, 1332, 481, 307, 1057, 625, 477, 3696, 287, 262, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9078, 13, 9288, 10507, 15968, 262, 1332, 9109, 198, 220, 220, 220, 220, 220, 220, 220, 581, 862, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2060, 6978, 287, 1351, 1958, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 3672, 11, 850, 15908, 82, 11, 3696, 287, 28686, 13, 11152, 7, 29762, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 7266, 15908, 82, 11, 26672, 62, 1069, 13955, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 16624, 11, 2393, 62, 1069, 13955, 11, 20966, 2047, 65, 62, 8807, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 278, 8619, 25, 23884, 4458, 18982, 7, 15908, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 3904, 13, 33723, 5657, 7, 16624, 8, 355, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 3672, 28, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1391, 6978, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 3108, 28, 22708, 7, 7753, 6978, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 862, 13, 33295, 7, 537, 72, 62, 21812, 7, 28758, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1640, 2060, 6978, 287, 1351, 1958, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 3601, 7203, 59, 77, 44154, 287, 8619, 25, 23884, 1911, 18982, 7, 29762, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 611, 2060, 6978, 855, 6, 2637, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 1174, 18227, 5626, 1332, 287, 1459, 8619, 422, 257, 20922, 1174, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1391, 6978, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 3108, 28, 22708, 7, 29762, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 581, 862, 13, 33295, 7, 537, 72, 62, 21812, 7, 28758, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 403, 8726, 7, 22065, 62, 22184, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 862, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 20922, 18709, 273, 7, 11295, 2070, 11, 4235, 28, 14202, 11, 503, 6978, 28, 14202, 11, 503, 7753, 28, 14202, 11, 287, 5372, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 11459, 20922, 5072, 4778, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10854, 257, 2060, 20922, 11, 17304, 2685, 23862, 2491, 4778, 1566, 198, 220, 220, 220, 220, 220, 220, 220, 257, 6509, 11, 393, 2491, 477, 4778, 3805, 14601, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10854, 276, 43935, 460, 307, 3194, 284, 257, 7368, 8619, 393, 15111, 287, 5372, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4235, 318, 6045, 25, 1441, 13841, 16, 11, 705, 19076, 407, 7368, 2637, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 503, 6978, 318, 407, 6045, 290, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 448, 6978, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 503, 7753, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 6978, 796, 31051, 4458, 22179, 26933, 448, 6978, 11, 448, 7753, 12962, 611, 503, 6978, 318, 407, 6045, 2073, 503, 7753, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23991, 11639, 73, 929, 88, 353, 299, 65, 1102, 1851, 1377, 1462, 20922, 6, 628, 220, 220, 220, 611, 4235, 287, 37250, 20063, 26410, 3256, 705, 20063, 26410, 14402, 6, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1377, 19856, 26410, 6719, 41341, 13, 25616, 28, 17821, 4458, 18982, 7, 28758, 28, 28758, 8, 198, 220, 220, 220, 1288, 361, 4235, 6624, 705, 5143, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1377, 41049, 4458, 18982, 7, 28758, 28, 28758, 8, 198, 220, 220, 220, 1288, 361, 4235, 6624, 705, 5143, 3152, 9139, 5965, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 705, 90, 28758, 92, 1377, 23002, 1133, 6719, 41341, 13, 12154, 62, 48277, 28, 17821, 1377, 41049, 4458, 18982, 7, 28758, 28, 28758, 8, 198, 220, 220, 220, 2073, 25, 1441, 13841, 16, 11, 705, 19076, 407, 7368, 9380, 2637, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 503, 6978, 318, 6045, 290, 287, 5372, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 11639, 90, 28758, 92, 1377, 259, 5372, 4458, 18982, 7, 28758, 28, 28758, 8, 628, 220, 220, 220, 1303, 17563, 2393, 198, 220, 220, 220, 23991, 11639, 90, 28758, 92, 1391, 11295, 2070, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 11295, 2070, 28, 22708, 7, 11295, 2070, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1532, 5072, 3108, 407, 900, 11, 290, 1377, 259, 5372, 318, 407, 900, 11, 198, 220, 220, 220, 1303, 220, 299, 65, 18982, 481, 2251, 257, 649, 2393, 351, 976, 1438, 7464, 25, 764, 46803, 18982, 13, 541, 2047, 65, 198, 220, 220, 220, 611, 503, 6978, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23991, 796, 6, 90, 28758, 92, 1377, 22915, 12, 15908, 1391, 448, 6978, 92, 4458, 18982, 7, 28758, 28, 28758, 11, 503, 6978, 28, 22708, 7, 448, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 537, 72, 62, 21812, 7, 28758, 8, 198, 198, 4299, 8619, 18709, 273, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 14202, 11, 503, 6978, 28, 14202, 11, 287, 5372, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 30342, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 1069, 13955, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 1069, 13955, 28, 14202, 11, 374, 9132, 343, 28, 25101, 11, 1090, 4372, 343, 28, 25101, 11, 850, 15908, 82, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 5715, 28, 16, 11, 2604, 7753, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 10854, 477, 262, 43935, 287, 530, 393, 517, 29196, 290, 198, 220, 220, 220, 220, 220, 220, 220, 357, 18076, 453, 8, 287, 3917, 850, 12942, 1749, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10854, 276, 43935, 460, 307, 3194, 284, 257, 7368, 8619, 393, 15111, 287, 5372, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 28398, 444, 284, 43935, 287, 3294, 29196, 393, 850, 12942, 1749, 389, 198, 220, 220, 220, 220, 220, 220, 220, 14462, 618, 3597, 284, 257, 7368, 5072, 8619, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 4808, 14681, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 10854, 3696, 3917, 351, 257, 1948, 8619, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 16624, 41888, 69, 329, 277, 287, 3696, 611, 277, 13, 437, 2032, 342, 7, 4458, 541, 2047, 65, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 850, 15908, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 15908, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 503, 6978, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 6978, 11639, 14, 4458, 22179, 26933, 448, 6978, 11, 26672, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 448, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4235, 6624, 705, 41989, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 8585, 284, 1429, 23884, 4458, 18982, 7, 14681, 16624, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 3904, 13, 33723, 5657, 7, 14681, 16624, 8, 355, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1090, 4372, 343, 290, 26672, 3672, 855, 6, 2637, 25, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 989, 5715, 29, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 18709, 278, 1875, 90, 92, 27, 1911, 18982, 10786, 14, 4458, 22179, 26933, 15908, 3672, 11, 34345, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 20922, 18709, 273, 10786, 14, 4458, 22179, 26933, 15908, 3672, 11, 34345, 46570, 4235, 28, 14171, 11, 503, 6978, 28, 448, 6978, 11, 287, 5372, 28, 259, 5372, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 989, 5715, 29, 15, 290, 1217, 290, 1217, 58, 15, 60, 0, 28, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 351, 23884, 1911, 18982, 10786, 14, 4458, 22179, 26933, 15908, 3672, 11, 34345, 60, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6404, 7753, 11, 366, 64, 4943, 355, 503, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 13, 13564, 7, 4363, 58, 16, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 4235, 287, 37250, 41989, 3256, 705, 20063, 26410, 14402, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1303, 51, 3558, 761, 284, 1057, 287, 2656, 26672, 287, 1339, 286, 2393, 20086, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 1332, 13116, 796, 20922, 14402, 7, 6978, 28, 15908, 3672, 11, 15908, 62, 1069, 13955, 28, 15908, 62, 1069, 13955, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 3601, 10786, 39612, 25, 3256, 15908, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 3601, 7, 9288, 13116, 58, 16, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 361, 4235, 6624, 705, 20063, 26410, 14402, 10354, 198, 220, 220, 220, 1303, 220, 220, 220, 1303, 1532, 356, 389, 4856, 329, 14601, 11, 761, 284, 1332, 287, 2656, 8619, 198, 220, 220, 220, 1303, 220, 220, 220, 1303, 220, 287, 1339, 612, 389, 2393, 20086, 198, 220, 220, 220, 1303, 220, 220, 220, 503, 6978, 28, 14202, 198, 220, 220, 220, 1303, 220, 220, 220, 287, 5372, 28, 17821, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4235, 318, 6045, 25, 1441, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 318, 39098, 7, 6978, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 374, 9132, 343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 448, 6978, 11, 8856, 62, 48277, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12050, 1654, 356, 691, 12233, 262, 8619, 319, 262, 835, 287, 986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 9132, 343, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 6978, 287, 3108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2215, 2810, 351, 3294, 29196, 11, 1429, 1123, 530, 13869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6425, 326, 850, 15908, 82, 329, 1123, 8619, 460, 307, 12118, 6338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 18709, 273, 28264, 6978, 11, 4235, 11, 31051, 4458, 22179, 26933, 448, 6978, 11, 4808, 6978, 46570, 287, 5372, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 30342, 11, 26672, 62, 1069, 13955, 11, 2393, 62, 1069, 13955, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 9132, 343, 11, 1090, 4372, 343, 11, 850, 15908, 82, 11, 989, 5715, 11, 2604, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1303, 10468, 8410, 532, 30276, 428, 523, 356, 655, 1208, 530, 19328, 2099, 788, 4886, 611, 2393, 393, 26672, 30, 198, 220, 220, 220, 2393, 62, 1069, 13955, 796, 1351, 1958, 7, 7753, 62, 1069, 13955, 8, 198, 220, 220, 220, 26672, 62, 1069, 13955, 796, 1351, 1958, 7, 15908, 62, 1069, 13955, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 503, 6978, 318, 407, 6045, 290, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 374, 9132, 343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 8162, 5005, 293, 889, 8619, 4600, 90, 92, 63, 290, 477, 663, 10154, 1106, 8162, 59, 77, 59, 77, 4458, 18982, 7, 448, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 448, 6978, 11, 8856, 62, 48277, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 26410, 8619, 4600, 90, 92, 63, 1541, 7160, 13, 17220, 340, 717, 416, 4634, 25, 374, 9132, 343, 28, 17821, 59, 77, 4458, 18982, 7, 448, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 15908, 62, 1069, 13955, 796, 17635, 611, 26672, 62, 1069, 13955, 318, 6045, 2073, 26672, 62, 1069, 13955, 220, 198, 220, 220, 220, 1303, 7753, 62, 1069, 13955, 796, 17635, 611, 2393, 62, 1069, 13955, 318, 6045, 2073, 2393, 62, 1069, 13955, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20922, 18709, 273, 7, 6978, 11, 4235, 28, 14171, 11, 503, 6978, 28, 448, 6978, 11, 287, 5372, 28, 259, 5372, 1267, 198, 220, 220, 220, 1288, 361, 850, 15908, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 3672, 11, 850, 15908, 82, 11, 3696, 287, 28686, 13, 11152, 7, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 7266, 15908, 82, 11, 26672, 62, 1069, 13955, 11, 407, 2291, 62, 30342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 16624, 11, 2393, 62, 1069, 13955, 11, 407, 2291, 62, 30342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 14681, 7, 448, 6978, 8, 198, 220, 220, 220, 1303, 611, 3804, 257, 2060, 2393, 2138, 621, 8619, 3108, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 418, 13, 4868, 15908, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 16624, 11, 2393, 62, 1069, 13955, 11, 407, 2291, 62, 30342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 28, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 14681, 7, 448, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 28768, 48992, 351, 257, 2393, 62, 41341, 481, 1487, 262, 2685, 1181, 287, 1459, 26672, 198, 2, 2504, 318, 11, 43935, 389, 13686, 287, 1295, 788, 1976, 3949, 198, 2, 464, 43935, 355, 1775, 287, 262, 26672, 481, 4079, 883, 287, 262, 19974, 7753, 198, 2, 1135, 714, 13096, 428, 9172, 523, 340, 857, 407, 2689, 2656, 43935, 30, 198, 4299, 48992, 7, 15908, 1462, 13344, 11, 19974, 34345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 30342, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 1069, 13955, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 1069, 13955, 28, 14202, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 41341, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 5715, 28, 16, 11, 374, 9132, 343, 28, 25101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 33295, 28, 25101, 2599, 198, 220, 220, 220, 705, 7061, 38636, 262, 10154, 286, 257, 8619, 290, 663, 850, 12942, 1749, 705, 7061, 198, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2393, 62, 1069, 13955, 796, 1351, 1958, 7, 7753, 62, 1069, 13955, 8, 198, 220, 220, 220, 26672, 62, 1069, 13955, 796, 1351, 1958, 7, 15908, 62, 1069, 13955, 8, 628, 220, 220, 220, 19974, 62, 525, 3411, 796, 366, 64, 1, 611, 19974, 62, 33295, 2073, 366, 86, 1, 198, 220, 220, 220, 1303, 16447, 257, 649, 14, 35666, 5592, 19974, 2393, 11, 2138, 621, 24443, 611, 19974, 7753, 1541, 7160, 198, 220, 220, 220, 1976, 69, 796, 19974, 7753, 13, 41729, 8979, 7, 13344, 34345, 11, 19974, 62, 525, 3411, 11, 19794, 28, 13344, 7753, 13, 57, 4061, 62, 7206, 3697, 11617, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3987, 470, 19974, 3696, 286, 976, 1438, 355, 262, 19974, 2393, 356, 389, 4441, 198, 220, 220, 220, 2393, 62, 1069, 13955, 13, 33295, 7, 13344, 34345, 8, 628, 220, 220, 220, 1303, 611, 356, 423, 655, 257, 2060, 2393, 284, 19974, 290, 407, 257, 26672, 11, 19974, 326, 198, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 15908, 1462, 13344, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 69, 13, 13564, 7, 15908, 1462, 13344, 8, 198, 220, 220, 220, 1288, 361, 28686, 13, 6978, 13, 9409, 343, 7, 15908, 1462, 13344, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5450, 1378, 25558, 2502, 11125, 13, 785, 14, 64, 14, 34125, 41544, 2548, 14, 2231, 2857, 4790, 198, 220, 220, 220, 220, 220, 220, 220, 329, 26672, 3672, 11, 850, 15908, 82, 11, 3696, 287, 28686, 13, 11152, 7, 15908, 1462, 13344, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 7266, 15908, 82, 11, 26672, 62, 1069, 13955, 11, 407, 2291, 62, 30342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19607, 62, 23814, 7, 16624, 11, 2393, 62, 1069, 13955, 11, 407, 2291, 62, 30342, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18709, 278, 8619, 25, 23884, 4458, 18982, 7, 15908, 3672, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 69, 13, 13564, 7, 15908, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 3904, 13, 33723, 5657, 7, 16624, 8, 355, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 2318, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 989, 5715, 29, 16, 25, 4798, 7, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 3672, 28, 418, 13, 6978, 13, 22179, 7, 15908, 3672, 11, 29472, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1858, 318, 645, 966, 1262, 705, 5143, 10354, 611, 612, 318, 281, 4049, 11, 299, 65, 1102, 1851, 481, 2038, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 41341, 287, 37250, 20063, 26410, 3256, 705, 5143, 3152, 9139, 5965, 20520, 290, 29472, 13, 437, 2032, 342, 7, 4458, 541, 2047, 65, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1212, 20718, 1735, 3048, 532, 43935, 389, 13686, 287, 1459, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19926, 356, 466, 428, 287, 257, 45218, 7753, 30, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20922, 18709, 273, 7, 7753, 6978, 3672, 11, 4235, 28, 7753, 62, 41341, 11, 287, 5372, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 69, 13, 13564, 7, 7753, 6978, 3672, 8, 198, 220, 220, 220, 1976, 69, 13, 19836, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3792, 428, 1165, 17564, 12248, 198, 220, 220, 220, 1303, 361, 374, 9132, 343, 25, 4423, 346, 13, 81, 16762, 631, 7, 15908, 1462, 13344, 11, 8856, 62, 48277, 28, 17821, 8, 198, 220, 220, 220, 1441, 19974, 34345, 198, 220, 220, 220, 220, 198, 4299, 2641, 41729, 7, 89, 22184, 11, 989, 28, 17821, 2599, 198, 220, 220, 220, 705, 7061, 6803, 2641, 257, 19974, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 989, 4909, 1440, 15180, 25, 2393, 62, 7857, 11, 2393, 25388, 2546, 11, 4818, 8079, 290, 29472, 13, 198, 220, 220, 220, 220, 220, 220, 220, 25700, 989, 28, 17821, 5860, 257, 2495, 10398, 989, 13, 705, 7061, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 4468, 576, 7, 89, 22184, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 44217, 986, 23884, 1595, 470, 1283, 284, 307, 257, 2393, 30, 59, 77, 1911, 18982, 7, 89, 22184, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 3601, 10786, 59, 77, 15784, 2641, 19974, 7753, 25, 23884, 59, 77, 4458, 18982, 7, 89, 22184, 4008, 198, 220, 220, 220, 277, 89, 28, 13344, 7753, 13, 41729, 8979, 7, 89, 22184, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 256, 742, 28, 21737, 198, 220, 220, 220, 329, 24714, 287, 277, 89, 13, 259, 9062, 396, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 256, 742, 13, 33295, 7, 685, 22184, 13, 7753, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 13, 5589, 601, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 46491, 22184, 13, 4475, 62, 2435, 737, 26786, 18982, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 13, 34345, 60, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 90, 5512, 1391, 5512, 1391, 5512, 23884, 4458, 18982, 7, 22184, 13, 7753, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 13, 5589, 601, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 8079, 13, 19608, 8079, 46491, 22184, 13, 4475, 62, 2435, 737, 26786, 18982, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24714, 13, 34345, 4008, 198, 220, 220, 220, 7400, 5039, 7, 14116, 11, 24697, 28, 17816, 13295, 41707, 41729, 41707, 27354, 8079, 41707, 15235, 6, 4357, 11487, 69, 16762, 2625, 36439, 4943, 198, 220, 220, 220, 1441, 256, 742, 220, 220, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 7753, 12, 41341, 3256, 29001, 81, 3256, 2099, 28, 12976, 13, 46770, 7, 17816, 20063, 26410, 3256, 705, 5143, 3152, 9139, 5965, 20520, 4008, 198, 31, 12976, 13, 18076, 10786, 438, 17256, 12, 30342, 16624, 3256, 705, 12, 39, 3256, 318, 62, 32109, 28, 17821, 11, 1037, 11639, 818, 9152, 7104, 3696, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 15908, 3256, 705, 12, 55, 3256, 3294, 28, 17821, 11, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 3109, 9152, 7368, 8619, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 7753, 3256, 29001, 87, 3256, 3294, 28, 17821, 11, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 3109, 9152, 7368, 2393, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 13344, 62, 33295, 3256, 29001, 64, 3256, 318, 62, 32109, 28, 17821, 11, 1037, 11639, 4550, 284, 4683, 19974, 2393, 11537, 198, 31, 12976, 13, 49140, 10786, 6978, 3256, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 4008, 198, 2, 31, 12976, 13, 49140, 10786, 13344, 7753, 3256, 2099, 28, 12976, 13, 8979, 10786, 39346, 6, 4008, 198, 31, 12976, 13, 49140, 10786, 13344, 7753, 3256, 2099, 28, 12976, 13, 15235, 28955, 198, 4299, 537, 72, 62, 13344, 7, 7753, 62, 41341, 11, 2291, 62, 30342, 16624, 11, 19607, 62, 15908, 11, 19607, 62, 7753, 11, 19974, 62, 33295, 11, 3108, 11, 19974, 7753, 2599, 198, 220, 220, 220, 37227, 16447, 257, 19974, 2393, 422, 262, 10154, 286, 257, 7368, 8619, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 383, 48992, 460, 42976, 1057, 257, 20922, 12649, 319, 43935, 878, 1976, 4501, 606, 284, 2198, 326, 477, 4778, 389, 1057, 393, 477, 4778, 389, 12539, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 10786, 1639, 1276, 307, 7165, 1262, 428, 986, 11537, 628, 220, 220, 220, 611, 407, 19974, 62, 33295, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 5886, 16502, 597, 2180, 1391, 13344, 7753, 92, 2393, 59, 77, 4943, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 4677, 1571, 1976, 3949, 3696, 284, 25, 1391, 13344, 7753, 32239, 77, 4943, 628, 220, 220, 220, 24714, 796, 48992, 7, 6978, 11, 19974, 7753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 30342, 28, 17256, 62, 30342, 16624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 1069, 13955, 28, 1069, 9152, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 1069, 13955, 28, 1069, 9152, 62, 7753, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 41341, 28, 7753, 62, 41341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 33295, 28, 13344, 62, 33295, 8, 628, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 41729, 2393, 25, 1391, 22184, 32239, 77, 4943, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 39624, 3256, 705, 12, 80, 3256, 318, 62, 32109, 28, 17821, 11, 1037, 11639, 15979, 601, 262, 989, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 40539, 654, 3256, 705, 12, 86, 3256, 318, 62, 32109, 28, 17821, 11, 1037, 11639, 23114, 14601, 11537, 198, 31, 12976, 13, 49140, 10786, 34345, 3256, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 17821, 828, 77, 22046, 10779, 16, 8, 198, 4299, 537, 72, 62, 13344, 1177, 7, 34345, 11, 14601, 11, 5897, 2599, 198, 220, 220, 220, 37227, 8053, 262, 10154, 286, 530, 393, 517, 7368, 19974, 16624, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19974, 62, 3642, 658, 796, 17635, 198, 220, 220, 220, 329, 277, 287, 1351, 1958, 7, 34345, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 3642, 658, 13, 33295, 19510, 69, 11, 2641, 41729, 7, 69, 22305, 628, 220, 220, 220, 611, 14601, 290, 19974, 62, 3642, 658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 357, 47347, 11, 2378, 8, 287, 19974, 62, 3642, 658, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 59, 77, 59, 77, 50155, 38636, 2393, 3081, 989, 25, 1391, 47347, 92, 29335, 28, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1700, 287, 2378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1700, 58, 16, 60, 1875, 352, 68, 21, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 31502, 25, 19990, 90, 22105, 58, 18, 48999, 7879, 3073, 2407, 1588, 2393, 37913, 10734, 1096, 13, 77, 2541, 874, 1096, 7, 22105, 58, 15, 12962, 92, 555, 89, 3949, 11, 1391, 10734, 1096, 13, 77, 2541, 874, 1096, 7, 22105, 58, 16, 12962, 92, 25388, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 6978, 287, 1700, 58, 18, 4083, 35312, 10786, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 28264, 6978, 8, 1875, 2026, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 24908, 25, 262, 2393, 6978, 5002, 19990, 90, 62, 6978, 92, 7879, 287, 19990, 90, 22105, 58, 18, 48999, 7879, 318, 1165, 890, 357, 9806, 13, 2026, 34534, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 6978, 13, 9688, 2032, 342, 7203, 526, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 31502, 25, 19990, 90, 22105, 58, 18, 48999, 7879, 318, 257, 7104, 2393, 14, 34945, 357, 4598, 345, 1107, 761, 340, 287, 262, 19974, 2393, 10091, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 59, 77, 4770, 2559, 18604, 59, 77, 59, 77, 4943, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 15908, 3256, 29001, 55, 3256, 3294, 28, 17821, 11, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 5211, 407, 664, 12321, 832, 7368, 8619, 618, 40525, 5254, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 7753, 3256, 29001, 87, 3256, 3294, 28, 17821, 11, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 3109, 9152, 7368, 2393, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 448, 7753, 3256, 29001, 78, 3256, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 26410, 989, 2393, 13, 17446, 428, 9178, 284, 3359, 989, 319, 3141, 1627, 2637, 8, 198, 31, 12976, 13, 49140, 10786, 9288, 23814, 3256, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 77, 22046, 10779, 16, 8, 198, 4299, 537, 72, 62, 46803, 9288, 7, 19607, 62, 15908, 11, 19607, 62, 7753, 11, 503, 7753, 11, 1332, 23814, 2599, 198, 220, 220, 220, 37227, 14402, 7368, 43935, 290, 14, 273, 262, 43935, 287, 257, 7368, 8619, 393, 29196, 357, 63, 51, 6465, 2043, 39201, 63, 8, 1262, 262, 4600, 77, 17457, 524, 63, 13877, 329, 4600, 9078, 13, 9288, 44646, 198, 220, 220, 220, 220, 198, 220, 220, 220, 18162, 4600, 17209, 35273, 46803, 9288, 63, 1231, 597, 7368, 8619, 393, 2393, 481, 25432, 5254, 664, 1834, 2280, 422, 262, 1459, 8619, 866, 526, 15931, 198, 220, 220, 220, 1332, 23814, 796, 1332, 23814, 393, 705, 2637, 198, 220, 220, 220, 4808, 11295, 2070, 14402, 7, 9288, 23814, 11, 503, 7753, 11, 19607, 62, 15908, 11, 19607, 62, 7753, 8, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 7753, 12, 41341, 3256, 29001, 81, 3256, 2099, 28, 12976, 13, 46770, 7, 17816, 20063, 26410, 3256, 705, 5143, 3152, 9139, 5965, 20520, 828, 1037, 11639, 8979, 12649, 4028, 326, 460, 307, 5625, 284, 43935, 1262, 4600, 46803, 1102, 1851, 63, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 448, 6978, 3256, 705, 12, 46, 3256, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 6978, 284, 5072, 8619, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 259, 5372, 14, 438, 3919, 12, 259, 5372, 3256, 12286, 28, 17821, 11, 1037, 11639, 10987, 20399, 319, 43935, 287, 5372, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 15908, 3256, 705, 12, 55, 3256, 3294, 28, 17821, 11, 2099, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 3109, 9152, 7368, 8619, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1069, 9152, 12, 7753, 3256, 29001, 87, 3256, 3294, 28, 17821, 11, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 3109, 9152, 7368, 2393, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 17256, 12, 30342, 14, 438, 3919, 12, 17256, 12, 30342, 3256, 12286, 28, 25101, 11, 1037, 11639, 818, 9152, 7104, 3696, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 81, 9132, 343, 14, 438, 3919, 12, 81, 9132, 343, 3256, 12286, 28, 25101, 11, 1037, 11639, 9787, 262, 5072, 8619, 318, 6565, 878, 356, 779, 340, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 22019, 4372, 343, 14, 438, 3919, 12, 22019, 4372, 343, 3256, 12286, 28, 25101, 11, 1037, 11639, 18709, 3696, 287, 1459, 8619, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 7266, 15908, 82, 14, 438, 3919, 12, 7266, 15908, 82, 3256, 12286, 28, 17821, 11, 1037, 11639, 18709, 3696, 287, 850, 12942, 1749, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 13116, 5715, 3256, 4277, 28, 16, 11, 1037, 11639, 42159, 1241, 11537, 198, 31, 12976, 13, 49140, 10786, 6978, 3256, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 4008, 198, 4299, 537, 72, 62, 77, 1671, 403, 7, 7753, 62, 41341, 11, 503, 6978, 11, 287, 5372, 11, 19607, 62, 15908, 11, 19607, 62, 7753, 11, 2291, 62, 30342, 11, 374, 9132, 343, 11, 1090, 4372, 343, 11, 850, 15908, 82, 11, 989, 5715, 11, 3108, 2599, 198, 220, 220, 220, 37227, 43055, 12649, 329, 43935, 532, 3578, 262, 2836, 284, 1057, 299, 65, 1102, 1851, 4560, 319, 43935, 11, 884, 355, 2491, 477, 4778, 393, 17304, 477, 4778, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1675, 1057, 5254, 11, 779, 25, 256, 76, 35273, 46803, 9288, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1675, 19974, 24512, 357, 4480, 262, 3038, 393, 2491, 20922, 20399, 319, 1976, 3949, 3696, 828, 779, 25, 256, 76, 35273, 13344, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8619, 18709, 273, 7, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 28, 7753, 62, 41341, 11, 503, 6978, 28, 448, 6978, 11, 287, 5372, 28, 259, 5372, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2291, 62, 30342, 28, 17256, 62, 30342, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26672, 62, 1069, 13955, 28, 1069, 9152, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 1069, 13955, 28, 1069, 9152, 62, 7753, 11, 374, 9132, 343, 28, 81, 9132, 343, 11, 1090, 4372, 343, 28, 22019, 4372, 343, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 15908, 82, 28, 7266, 15908, 82, 11, 13116, 5715, 28, 13116, 5715, 8, 628, 628, 198, 6738, 33084, 1330, 38994, 198, 11748, 651, 6603, 198, 198, 11748, 2779, 2414, 198, 11748, 18931, 198, 6738, 33084, 13, 38, 10060, 16922, 1330, 38994, 16922, 198, 198, 4299, 651, 62, 26270, 62, 1640, 62, 12985, 7, 260, 1930, 37765, 11, 7621, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 4589, 9485, 38, 10060, 2134, 329, 262, 7368, 16099, 290, 7621, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13737, 796, 16099, 13, 1136, 62, 1671, 12140, 3419, 198, 220, 220, 220, 14451, 62, 1671, 12140, 796, 685, 15699, 329, 2872, 287, 13737, 611, 2872, 13, 3672, 6624, 7621, 60, 198, 220, 220, 220, 611, 14451, 62, 1671, 12140, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 14451, 62, 1671, 12140, 58, 15, 4083, 41509, 13, 26270, 628, 220, 220, 220, 15940, 796, 16099, 13, 1136, 62, 31499, 3419, 198, 220, 220, 220, 14451, 62, 31499, 796, 685, 15699, 329, 2872, 287, 15940, 611, 2872, 13, 3672, 6624, 7621, 60, 198, 220, 220, 220, 611, 407, 14451, 62, 31499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 2949, 17467, 393, 20551, 7160, 351, 326, 1438, 11537, 198, 220, 220, 220, 1441, 14451, 62, 31499, 58, 15, 4083, 41509, 13, 26270, 198, 198, 4299, 4321, 62, 34945, 7, 260, 1930, 37765, 11, 427, 64, 11, 4382, 62, 6978, 11, 503, 6978, 11639, 456, 62, 15002, 82, 3256, 2393, 62, 41341, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10472, 477, 10154, 379, 4382, 62, 6978, 351, 4589, 7621, 427, 64, 287, 198, 220, 220, 220, 262, 16099, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10154, 796, 16099, 13, 1136, 62, 15908, 62, 3642, 658, 7, 15388, 62, 6978, 11, 1006, 28, 26270, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 448, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 448, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 329, 2695, 287, 10154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10002, 278, 25, 4064, 82, 1, 4064, 2695, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2695, 13, 4906, 6624, 705, 15908, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 34945, 7, 260, 1930, 37765, 11, 427, 64, 11, 2695, 13, 6978, 11, 31051, 4458, 22179, 26933, 448, 6978, 11, 11299, 13, 3672, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 2695, 13, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 11299, 796, 16099, 13, 1136, 62, 3642, 658, 7, 6978, 11, 1006, 28, 26270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 7890, 796, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 7753, 62, 11299, 13, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 6978, 7753, 11639, 14, 4458, 22179, 26933, 448, 6978, 11, 11299, 13, 3672, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 796, 1280, 7, 448, 6978, 7753, 11, 366, 39346, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 13, 13564, 7, 7753, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9399, 12331, 11, 33084, 13, 38, 10060, 16922, 8, 355, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1532, 356, 2038, 625, 780, 286, 257, 1588, 4130, 11, 779, 262, 1366, 40391, 329, 262, 4321, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 11, 18224, 28, 41194, 13, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 20500, 6, 287, 4049, 290, 4049, 17816, 20500, 20520, 855, 6, 3673, 4062, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 44217, 986, 2393, 407, 1043, 30, 23884, 4458, 18982, 7, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 48277, 6, 287, 4049, 290, 4049, 17816, 48277, 6, 7131, 15, 7131, 6, 8189, 20520, 855, 6, 18820, 62, 11664, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 10786, 986, 11664, 2393, 11, 2111, 44812, 4321, 2427, 986, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 11299, 796, 16099, 13, 1136, 62, 18300, 62, 2436, 672, 7, 11299, 13, 26270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 7890, 796, 2779, 2414, 13, 65, 2414, 12501, 1098, 7, 7753, 62, 11299, 13, 11299, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 796, 1280, 10786, 14, 4458, 22179, 26933, 448, 6978, 11, 11299, 13, 3672, 46570, 366, 39346, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 13, 13564, 7, 7753, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 448, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6404, 2667, 13, 18224, 10786, 12331, 7587, 4064, 82, 25, 4064, 82, 3256, 2695, 13, 6978, 11, 2859, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 2695, 13, 3672, 13, 437, 2032, 342, 7, 4458, 541, 2047, 65, 11537, 290, 2393, 62, 41341, 287, 37250, 20063, 26410, 3256, 705, 20063, 26410, 14402, 41707, 5143, 3152, 9139, 5965, 6, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 20922, 18709, 273, 7, 448, 6978, 7753, 11, 2393, 62, 41341, 8, 628, 198, 7206, 38865, 62, 2200, 16402, 11639, 4625, 39239, 774, 14, 17209, 35273, 6, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 12567, 12, 7220, 3256, 705, 12, 84, 3256, 220, 1037, 2625, 7120, 38994, 20579, 19570, 198, 31, 12976, 13, 18076, 10786, 438, 28712, 3256, 7808, 62, 15414, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12641, 62, 16963, 457, 28, 25101, 8, 198, 31, 12976, 13, 18076, 10786, 438, 260, 7501, 3256, 29001, 81, 3256, 6152, 11639, 6207, 13264, 37913, 30072, 4458, 18982, 7, 7206, 38865, 62, 2200, 16402, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 6207, 13264, 1438, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 1671, 3702, 3256, 29001, 65, 3256, 16794, 11639, 33, 25642, 393, 7621, 284, 4321, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 34945, 3256, 1037, 11639, 43055, 284, 4321, 357, 273, 25, 477, 8, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 82, 9586, 343, 3256, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 43055, 284, 4321, 29924, 1220, 29924, 26672, 656, 26, 4277, 318, 26672, 1438, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 7753, 12, 41341, 3256, 2099, 28, 12976, 13, 46770, 7, 17816, 20063, 26410, 3256, 705, 5143, 3152, 9139, 5965, 20520, 828, 1037, 11639, 19722, 453, 11986, 257, 2393, 12649, 284, 307, 1057, 1028, 15680, 43935, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 13344, 14, 438, 3919, 12, 13344, 3256, 4277, 28, 25101, 11, 1037, 11639, 19722, 453, 2251, 257, 19974, 2393, 286, 262, 15680, 16099, 14, 34945, 351, 262, 976, 1438, 355, 262, 16099, 14, 34945, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 18439, 14, 438, 3919, 12, 18439, 3256, 4277, 28, 17821, 11, 1037, 2625, 3886, 4277, 11, 1057, 351, 6284, 357, 16963, 457, 329, 18031, 8, 4943, 198, 31, 12976, 13, 18076, 10786, 438, 4480, 12, 41989, 3256, 29001, 83, 3256, 271, 62, 32109, 28, 17821, 11, 1037, 2625, 10987, 5254, 319, 43935, 706, 4321, 4943, 198, 31, 12976, 13, 18076, 10786, 438, 6404, 7753, 3256, 4906, 28, 12976, 13, 15235, 7, 411, 6442, 62, 6978, 28, 25101, 828, 1037, 11639, 15235, 284, 2604, 7753, 11537, 198, 4299, 537, 72, 62, 18300, 260, 1930, 7, 12567, 62, 7220, 11, 9206, 11, 29924, 11, 8478, 11, 8619, 11, 7448, 343, 11, 2393, 62, 41341, 11, 19974, 11, 6284, 11, 351, 62, 41989, 11, 2604, 7753, 2599, 198, 220, 220, 220, 37227, 10002, 3696, 422, 257, 7368, 8478, 287, 257, 1948, 17606, 16099, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 383, 4321, 460, 635, 307, 3614, 284, 655, 262, 10154, 286, 257, 7368, 8619, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2094, 470, 5490, 326, 612, 804, 284, 307, 257, 1256, 286, 7159, 532, 345, 481, 307, 12053, 329, 606, 611, 345, 655, 1057, 25, 256, 76, 35273, 18300, 260, 1930, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 6284, 393, 33084, 62, 7220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 33084, 62, 7220, 25, 33084, 62, 7220, 796, 3904, 13, 16963, 457, 10786, 59, 77, 38, 10060, 20579, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9206, 25, 9206, 796, 3904, 13, 16963, 457, 10786, 59, 77, 38, 10060, 9206, 3256, 7808, 62, 15414, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33084, 796, 38994, 7, 12567, 62, 7220, 11, 9206, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15307, 356, 821, 5291, 645, 9206, 986, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 6284, 796, 6407, 198, 220, 220, 220, 2073, 25, 33084, 796, 38994, 3419, 628, 198, 220, 220, 220, 611, 6284, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 33084, 13, 1136, 62, 7220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9971, 38189, 796, 33084, 13, 1136, 62, 7220, 22446, 1136, 62, 2398, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 11187, 2667, 656, 17606, 355, 23884, 37913, 30072, 4458, 18982, 7, 12567, 62, 7220, 11, 2836, 13, 3672, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 29924, 796, 29924, 393, 5550, 38865, 62, 2200, 16402, 198, 220, 220, 220, 16099, 796, 33084, 13, 1136, 62, 260, 7501, 7, 260, 7501, 8, 628, 220, 220, 220, 611, 407, 8478, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 9414, 12140, 1695, 7479, 77, 59, 83, 90, 92, 4458, 18982, 10786, 59, 77, 59, 83, 4458, 22179, 7, 12567, 62, 260, 7501, 62, 1671, 12140, 7, 260, 1930, 37765, 4008, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 796, 3904, 13, 16963, 457, 10786, 59, 77, 13828, 8478, 30, 357, 9866, 8, 11537, 628, 220, 220, 220, 8478, 62, 273, 62, 12985, 62, 1462, 62, 15002, 796, 8478, 393, 705, 9866, 6, 198, 220, 220, 220, 427, 64, 796, 651, 62, 26270, 62, 1640, 62, 12985, 7, 260, 1930, 37765, 11, 8478, 62, 273, 62, 12985, 62, 1462, 62, 15002, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1194, 796, 10148, 198, 220, 220, 220, 981, 1194, 0, 11639, 12, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8619, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8478, 0, 11639, 9866, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 16099, 13, 1136, 62, 15908, 62, 3642, 658, 10786, 2637, 11, 1006, 28, 26270, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10154, 796, 16099, 13, 1136, 62, 15908, 62, 3642, 658, 10786, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 1639, 460, 4321, 477, 29196, 422, 428, 29924, 357, 439, 8, 393, 2922, 530, 7479, 77, 59, 83, 90, 92, 4458, 18982, 10786, 59, 77, 59, 83, 4458, 22179, 7, 12567, 62, 260, 7501, 62, 4852, 15908, 82, 7, 3642, 658, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 796, 3904, 13, 16963, 457, 10786, 13828, 8619, 30, 357, 439, 8, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 8619, 62, 1462, 62, 15002, 796, 705, 2637, 611, 357, 1662, 8619, 393, 8619, 855, 6, 439, 11537, 2073, 8619, 198, 220, 220, 220, 220, 220, 220, 220, 503, 6978, 796, 7448, 343, 393, 8619, 62, 1462, 62, 15002, 198, 220, 220, 220, 220, 220, 220, 220, 611, 503, 6978, 6624, 705, 2637, 290, 7448, 343, 5145, 11639, 2637, 25, 503, 6978, 28, 260, 7501, 13, 33491, 10786, 14, 41707, 62, 11537, 10, 6, 62, 16624, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 11639, 59, 77, 16454, 986, 22023, 23884, 14, 90, 92, 4458, 18982, 7, 260, 7501, 11, 34945, 62, 1462, 62, 15002, 1267, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 41341, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 31456, 1343, 705, 1262, 20922, 12649, 25, 23884, 4458, 18982, 7, 7753, 62, 41341, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 31456, 796, 31456, 1343, 705, 351, 645, 20922, 7587, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4321, 62, 34945, 7, 260, 1930, 37765, 11, 427, 64, 11, 8619, 62, 1462, 62, 15002, 11, 503, 6978, 11, 7753, 62, 41341, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 62, 41341, 287, 37250, 20063, 26410, 3256, 705, 20063, 26410, 14402, 41707, 5143, 3152, 9139, 5965, 6, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 10786, 59, 77, 28768, 20922, 12649, 25, 23884, 4458, 18982, 7, 7753, 62, 41341, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8619, 18709, 273, 7, 448, 6978, 11, 4235, 28, 7753, 62, 41341, 11, 850, 15908, 82, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 989, 5715, 28, 16, 11, 2604, 7753, 28, 6404, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 10786, 59, 77, 11187, 3194, 284, 23884, 4458, 18982, 7, 6404, 7753, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 351, 62, 41989, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 10786, 59, 77, 28768, 20922, 5254, 625, 25, 23884, 4458, 18982, 7, 448, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2604, 7753, 25, 2604, 7753, 796, 705, 41989, 13, 6404, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11295, 2070, 14402, 7, 448, 6978, 11, 2604, 7753, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3904, 13, 30328, 10786, 59, 77, 11187, 3194, 284, 23884, 4458, 18982, 7, 6404, 7753, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19974, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 57, 4501, 656, 25, 23884, 14, 77, 1639, 743, 635, 765, 284, 12233, 262, 1762, 8619, 37913, 92, 737, 4458, 18982, 7, 260, 1930, 37765, 11, 503, 6978, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48992, 7, 448, 6978, 11, 260, 1930, 37765, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 59, 77, 59, 77, 2514, 19974, 262, 15680, 8619, 11, 1057, 1223, 588, 25, 23884, 4458, 18982, 10786, 17209, 35273, 13344, 1391, 78, 92, 1391, 89, 32239, 77, 59, 77, 2514, 1057, 257, 20922, 12649, 357, 3185, 51, 11053, 25, 1057, 3152, 9139, 5965, 11, 1598, 26410, 8, 981, 1976, 4501, 25, 256, 76, 35273, 13344, 45144, 78, 36786, 1391, 89, 92, 1377, 7753, 12, 41341, 39852, 2849, 59, 77, 4458, 18982, 7, 78, 28, 448, 6978, 11, 89, 28, 260, 1930, 37765, 13, 3672, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 8619, 28, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1194, 796, 3904, 13, 16963, 457, 10786, 59, 10002, 1194, 8619, 422, 428, 8478, 30, 357, 2514, 11238, 25, 532, 8, 11537, 628, 220, 220, 220, 220, 1303, 51, 3727, 46, 198, 220, 220, 220, 220, 1303, 4798, 10786, 59, 77, 59, 77, 2514, 1057, 428, 3141, 757, 25, 23884, 4458, 18982, 28955, 198 ]
2.404883
11,018
#!/usr/bin/env """ class definitions for standard 1 variable plots class definitions for standard 2 variable plots class definitions for standard 3 variable plots History: -------- 2019-05-21: error in calculation used corrected udata to correct vdata """ # System Stack import datetime # science stack import numpy as np # Visual Stack import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt from matplotlib.dates import ( YearLocator, WeekdayLocator, MonthLocator, DayLocator, HourLocator, DateFormatter, ) import matplotlib.ticker as ticker class TimeseriesPorpertyPropertyPlot(object): """ class to plot property vs property plots with density iso-contours""" mpl.rcParams["svg.fonttype"] = "none" mpl.rcParams["ps.fonttype"] = 42 mpl.rcParams["pdf.fonttype"] = 42 def __init__( self, fontsize=10, labelsize=10, plotstyle="k-.", stylesheet="seaborn-whitegrid" ): """Initialize the timeseries with items that do not change. This sets up the axes and station locations. The `fontsize` and `spacing` are also specified here to ensure that they are consistent between individual station elements. Parameters ---------- fontsize : int The fontsize to use for drawing text labelsize : int The fontsize to use for labels stylesheet : str Choose a mpl stylesheet [u'seaborn-darkgrid', u'seaborn-notebook', u'classic', u'seaborn-ticks', u'grayscale', u'bmh', u'seaborn-talk', u'dark_background', u'ggplot', u'fivethirtyeight', u'seaborn-colorblind', u'seaborn-deep', u'seaborn-whitegrid', u'seaborn-bright', u'seaborn-poster', u'seaborn-muted', u'seaborn-paper', u'seaborn-white', u'seaborn-pastel', u'seaborn-dark', u'seaborn-dark-palette'] """ self.fontsize = fontsize self.labelsize = labelsize self.plotstyle = plotstyle plt.style.use(stylesheet) @staticmethod def add_title(mooringid="", lat=-99.9, lon=-99.9, depth=9999, instrument=""): """Pass parameters to annotate the title of the plot This sets the standard plot title using common meta information from PMEL/EPIC style netcdf files Parameters ---------- mooringid : str Mooring Identifier lat : float The latitude of the mooring lon : float The longitude of the mooring depth : int Nominal depth of the instrument instrument : str Name/identifier of the instrument plotted """ ptitle = ( "Plotted on: {time:%Y/%m/%d %H:%M} \n from {mooringid} Lat: {latitude:3.3f} Lon: {longitude:3.3f}" " Depth: {depth}\n : {instrument}" ).format( time=datetime.datetime.now(), mooringid=mooringid, latitude=lat, longitude=lon, depth=depth, instrument=instrument, ) return ptitle @staticmethod
[ 2, 48443, 14629, 14, 8800, 14, 24330, 198, 198, 37811, 198, 4871, 17336, 329, 3210, 352, 7885, 21528, 198, 4871, 17336, 329, 3210, 362, 7885, 21528, 198, 4871, 17336, 329, 3210, 513, 7885, 21528, 628, 7443, 25, 198, 24200, 198, 13130, 12, 2713, 12, 2481, 25, 4049, 287, 17952, 973, 19267, 334, 7890, 284, 3376, 410, 7890, 220, 198, 198, 37811, 198, 198, 2, 4482, 23881, 198, 11748, 4818, 8079, 198, 198, 2, 3783, 8931, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 15612, 23881, 198, 198, 11748, 2603, 29487, 8019, 355, 285, 489, 198, 198, 76, 489, 13, 1904, 7203, 46384, 4943, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 19581, 1330, 357, 198, 220, 220, 220, 6280, 33711, 1352, 11, 198, 220, 220, 220, 6119, 820, 33711, 1352, 11, 198, 220, 220, 220, 16061, 33711, 1352, 11, 198, 220, 220, 220, 3596, 33711, 1352, 11, 198, 220, 220, 220, 19123, 33711, 1352, 11, 198, 220, 220, 220, 7536, 8479, 1436, 11, 198, 8, 198, 11748, 2603, 29487, 8019, 13, 83, 15799, 355, 4378, 263, 628, 628, 628, 628, 628, 198, 4871, 3782, 10640, 47, 273, 9287, 21746, 43328, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1398, 284, 7110, 3119, 3691, 3119, 21528, 351, 12109, 47279, 12, 3642, 4662, 37811, 628, 220, 220, 220, 285, 489, 13, 6015, 10044, 4105, 14692, 21370, 70, 13, 10331, 4906, 8973, 796, 366, 23108, 1, 198, 220, 220, 220, 285, 489, 13, 6015, 10044, 4105, 14692, 862, 13, 10331, 4906, 8973, 796, 5433, 198, 220, 220, 220, 285, 489, 13, 6015, 10044, 4105, 14692, 12315, 13, 10331, 4906, 8973, 796, 5433, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 10369, 7857, 28, 940, 11, 14722, 1096, 28, 940, 11, 7110, 7635, 2625, 74, 12, 33283, 12186, 25473, 2625, 325, 397, 1211, 12, 11186, 25928, 1, 198, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 262, 1661, 10640, 351, 3709, 326, 466, 407, 1487, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 5621, 510, 262, 34197, 290, 4429, 7064, 13, 383, 4600, 10331, 7857, 63, 290, 4600, 2777, 4092, 63, 198, 220, 220, 220, 220, 220, 220, 220, 389, 635, 7368, 994, 284, 4155, 326, 484, 389, 6414, 1022, 1981, 198, 220, 220, 220, 220, 220, 220, 220, 4429, 4847, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10369, 7857, 284, 779, 329, 8263, 2420, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 1096, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 10369, 7857, 284, 779, 329, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 12186, 25473, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17489, 257, 285, 489, 12186, 25473, 685, 84, 338, 68, 397, 1211, 12, 21953, 25928, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 338, 68, 397, 1211, 12, 11295, 2070, 3256, 334, 6, 49421, 3256, 334, 338, 68, 397, 1211, 12, 83, 3378, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 2164, 592, 38765, 3256, 334, 6, 20475, 71, 3256, 334, 338, 68, 397, 1211, 12, 16620, 3256, 334, 1549, 668, 62, 25249, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 6, 1130, 29487, 3256, 334, 6, 13261, 400, 5893, 26022, 3256, 334, 338, 68, 397, 1211, 12, 8043, 27461, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 338, 68, 397, 1211, 12, 22089, 3256, 334, 338, 68, 397, 1211, 12, 11186, 25928, 3256, 334, 338, 68, 397, 1211, 12, 29199, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 338, 68, 397, 1211, 12, 79, 6197, 3256, 334, 338, 68, 397, 1211, 12, 76, 7241, 3256, 334, 338, 68, 397, 1211, 12, 20189, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 338, 68, 397, 1211, 12, 11186, 3256, 334, 338, 68, 397, 1211, 12, 30119, 417, 3256, 334, 338, 68, 397, 1211, 12, 21953, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 338, 68, 397, 1211, 12, 21953, 12, 18596, 5857, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10331, 7857, 796, 10369, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23912, 1424, 1096, 796, 14722, 1096, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 7635, 796, 7110, 7635, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 7635, 13, 1904, 7, 47720, 25473, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 751, 62, 7839, 7, 76, 2675, 278, 312, 2625, 1600, 3042, 10779, 2079, 13, 24, 11, 300, 261, 10779, 2079, 13, 24, 11, 6795, 28, 24214, 11, 8875, 33151, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14478, 10007, 284, 24708, 378, 262, 3670, 286, 262, 7110, 628, 220, 220, 220, 220, 220, 770, 5621, 262, 3210, 7110, 3670, 1262, 2219, 13634, 1321, 422, 3122, 3698, 14, 8905, 2149, 3918, 2010, 66, 7568, 3696, 628, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 285, 2675, 278, 312, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 31451, 278, 11440, 7483, 198, 220, 220, 220, 220, 220, 3042, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 32477, 286, 262, 285, 2675, 278, 198, 220, 220, 220, 220, 220, 300, 261, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 383, 890, 3984, 286, 262, 285, 2675, 278, 198, 220, 220, 220, 220, 220, 6795, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 21198, 1292, 6795, 286, 262, 8875, 198, 220, 220, 220, 220, 220, 8875, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 14, 738, 7483, 286, 262, 8875, 37515, 198, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 279, 7839, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3646, 8426, 319, 25, 1391, 2435, 25, 4, 56, 14, 4, 76, 14, 4, 67, 4064, 39, 25, 4, 44, 92, 3467, 77, 422, 1391, 76, 2675, 278, 312, 92, 5476, 25, 1391, 15460, 3984, 25, 18, 13, 18, 69, 92, 220, 39295, 25, 1391, 6511, 3984, 25, 18, 13, 18, 69, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 36350, 25, 1391, 18053, 32239, 77, 1058, 1391, 259, 43872, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 28, 19608, 8079, 13, 19608, 8079, 13, 2197, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 2675, 278, 312, 28, 76, 2675, 278, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32477, 28, 15460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 890, 3984, 28, 14995, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6795, 28, 18053, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8875, 28, 259, 43872, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 7839, 628, 220, 220, 220, 2488, 12708, 24396, 198 ]
2.362253
1,314
""" The tests for omit interaction feature """ import os import sys from collections import namedtuple from pyplif_hippos import ParseConfig, hippos, similarity def test_configuration_single_omit_interaction(tmpdir): """Test configuration for omitting specific interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG223"] def test_configuration_omit_multiple_residue_interaction(tmpdir): """Test configuration for omitting multiple residue interaction""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG150 TRP177 ARG223 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction = hippos_config.omit_interaction[0] # Assert assert omit_interaction.interaction_type == "hydrophobic" assert omit_interaction.res_name == ["ARG150", "TRP177", "ARG223"] def test_configuration_omit_multiple_interaction_type(tmpdir): """Test configuration for omitting multiple interaction type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG223 omit_interaction h_bond ARG292 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG223"] assert omit_interaction_2.interaction_type == "h_bond" assert omit_interaction_2.res_name == ["ARG292"] def test_configuration_long_interaction_type(tmpdir): """Test configuration checking all long interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction hydrophobic ARG116 omit_interaction aromatic GLU117 omit_interaction h_bond LEU132 omit_interaction electrostatic LYS148 omit_interaction h_bond_donor ASP149 omit_interaction h_bond_acceptor ARG150 omit_interaction electrostatic_positive ARG154 omit_interaction electrostatic_negative TRP177 omit_interaction aromatic_facetoface SER178 omit_interaction aromatic_edgetoface ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_configuration_short_interaction_type(tmpdir): """Test configuration checking all short interaction_type""" # Arrange config_file = tmpdir.mkdir("sub").join("config.txt") config_file.write( """ docking_method plants # plants or vina docking_conf plants-003.conf similarity_coef tanimoto mcconnaughey full_ref 00000100000000000000000000000000000100000000000001000000000000010000001000000000000000000001000000000000000000000000000000101000000000000000000101000000000010000 00010101000000000000000000000000000100000000000001010000000000010000001000000000000010000000000000000000000001011000001000001000000000000000000101000000000000000 00010101000000100000000000000000000100000000000001010100100000010000001000000000000010000001000000000000010000000000100000101010000000000000000001000000000000000 residue_name ARG116 GLU117 LEU132 LYS148 ASP149 ARG150 ARG154 TRP177 SER178 ILE221 ARG223 THR224 GLU226 ALA245 HIS273 GLU275 GLU276 ARG292 ASP294 GLY347 ARG374 TRP408 TYR409 residue_number 40 41 56 72 73 74 78 101 102 145 147 148 150 169 197 199 200 216 218 271 298 332 333 omit_interaction HPB ARG116 omit_interaction ARM GLU117 omit_interaction HBD LEU132 omit_interaction ELE LYS148 omit_interaction HBD_DON ASP149 omit_interaction HBD_ACC ARG150 omit_interaction ELE_POS ARG154 omit_interaction ELE_NEG TRP177 omit_interaction ARM_F2F SER178 omit_interaction ARM_E2F ILE221 full_outfile plants_full_ifp.csv sim_outfile plants_similarity.csv logfile plants.log """ ) arg = os.path.join(config_file.dirname, config_file.basename) if len(sys.argv) > 1: sys.argv[1] = arg else: sys.argv.append(arg) # Act hippos_config = ParseConfig() hippos_config.parse_config() omit_interaction_1 = hippos_config.omit_interaction[0] omit_interaction_2 = hippos_config.omit_interaction[1] omit_interaction_3 = hippos_config.omit_interaction[2] omit_interaction_4 = hippos_config.omit_interaction[3] omit_interaction_5 = hippos_config.omit_interaction[4] omit_interaction_6 = hippos_config.omit_interaction[5] omit_interaction_7 = hippos_config.omit_interaction[6] omit_interaction_8 = hippos_config.omit_interaction[7] omit_interaction_9 = hippos_config.omit_interaction[8] omit_interaction_10 = hippos_config.omit_interaction[9] # Assert assert omit_interaction_1.interaction_type == "hydrophobic" assert omit_interaction_1.res_name == ["ARG116"] assert omit_interaction_2.interaction_type == "aromatic" assert omit_interaction_2.res_name == ["GLU117"] assert omit_interaction_3.interaction_type == "h_bond" assert omit_interaction_3.res_name == ["LEU132"] assert omit_interaction_4.interaction_type == "electrostatic" assert omit_interaction_4.res_name == ["LYS148"] assert omit_interaction_5.interaction_type == "h_bond_donor" assert omit_interaction_5.res_name == ["ASP149"] assert omit_interaction_6.interaction_type == "h_bond_acceptor" assert omit_interaction_6.res_name == ["ARG150"] assert omit_interaction_7.interaction_type == "electrostatic_positive" assert omit_interaction_7.res_name == ["ARG154"] assert omit_interaction_8.interaction_type == "electrostatic_negative" assert omit_interaction_8.res_name == ["TRP177"] assert omit_interaction_9.interaction_type == "aromatic_facetoface" assert omit_interaction_9.res_name == ["SER178"] assert omit_interaction_10.interaction_type == "aromatic_edgetoface" assert omit_interaction_10.res_name == ["ILE221"] def test_replace_bit_char(): """Test bit replacement function for omitted residue""" # Arrange bitstring = "1000001" omit_hydrophobic = [1, 0, 0, 0, 0, 0, 0] omit_aromatic = [0, 1, 1, 0, 0, 0, 0] omit_h_bond = [0, 0, 0, 1, 1, 0, 0] omit_electrostatic = [0, 0, 0, 0, 0, 1, 1] omit_h_bond_donor = [0, 0, 0, 1, 0, 0, 0] omit_h_bond_acceptor = [0, 0, 0, 0, 1, 0, 0] omit_electrostatic_positive = [0, 0, 0, 0, 0, 1, 0] omit_electrostatic_negative = [0, 0, 0, 0, 0, 0, 1] omit_aromatic_facetoface = [0, 1, 0, 0, 0, 0, 0] omit_aromatic_edgetoface = [0, 0, 1, 0, 0, 0, 0] # Act bitstring_1 = hippos.replace_bit_char(bitstring, omit_hydrophobic) bitstring_2 = hippos.replace_bit_char(bitstring, omit_aromatic) bitstring_3 = hippos.replace_bit_char(bitstring, omit_h_bond) bitstring_4 = hippos.replace_bit_char(bitstring, omit_electrostatic) bitstring_5 = hippos.replace_bit_char(bitstring, omit_h_bond_donor) bitstring_6 = hippos.replace_bit_char(bitstring, omit_h_bond_acceptor) bitstring_7 = hippos.replace_bit_char(bitstring, omit_electrostatic_positive) bitstring_8 = hippos.replace_bit_char(bitstring, omit_electrostatic_negative) bitstring_9 = hippos.replace_bit_char(bitstring, omit_aromatic_facetoface) bitstring_10 = hippos.replace_bit_char(bitstring, omit_aromatic_edgetoface) # Assert assert bitstring_1 == "n000001" assert bitstring_2 == "1nn0001" assert bitstring_3 == "100nn01" assert bitstring_4 == "10000nn" assert bitstring_5 == "100n001" assert bitstring_6 == "1000n01" assert bitstring_7 == "10000n1" assert bitstring_8 == "100000n" assert bitstring_9 == "1n00001" assert bitstring_10 == "10n0001" def test_cleanup_omitted_interaction(): """Test for bitstring preparation prior to similarity calculation""" # Arrange refbit = "000001000101" tgtbit = "11n00n000011" # Act clean_refbit, clean_tgtbit = similarity.clean_omitted_interactions(refbit, tgtbit) # Assert assert clean_refbit == "0000000101" assert clean_tgtbit == "1100000011"
[ 37811, 198, 464, 5254, 329, 42848, 10375, 3895, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 198, 6738, 12972, 489, 361, 62, 71, 3974, 418, 1330, 2547, 325, 16934, 11, 18568, 418, 11, 26789, 628, 198, 4299, 1332, 62, 11250, 3924, 62, 29762, 62, 296, 270, 62, 3849, 2673, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 14402, 8398, 329, 267, 16138, 2176, 10375, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 4566, 62, 7753, 796, 45218, 15908, 13, 28015, 15908, 7203, 7266, 11074, 22179, 7203, 11250, 13, 14116, 4943, 198, 220, 220, 220, 4566, 62, 7753, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 67, 8629, 62, 24396, 220, 220, 220, 6134, 220, 220, 220, 1303, 6134, 393, 410, 1437, 198, 67, 8629, 62, 10414, 220, 220, 220, 220, 220, 6134, 12, 11245, 13, 10414, 198, 198, 38610, 414, 62, 1073, 891, 220, 220, 256, 11227, 2069, 285, 535, 261, 77, 7493, 20342, 198, 198, 12853, 62, 5420, 220, 17643, 486, 25645, 8269, 2388, 486, 8269, 2388, 486, 8269, 2388, 486, 2388, 8298, 25645, 2388, 16, 25645, 8269, 2388, 8298, 486, 25645, 8298, 486, 8269, 8298, 2388, 3571, 486, 486, 486, 25645, 8269, 18005, 8269, 2388, 486, 486, 8269, 18005, 2388, 8298, 8269, 2388, 486, 25645, 8269, 8784, 49388, 486, 2388, 486, 25645, 8298, 486, 8269, 24598, 3571, 486, 486, 486, 2388, 8298, 25645, 2388, 16, 8269, 2388, 486, 486, 486, 8298, 2388, 8298, 2388, 8298, 8269, 2388, 486, 2388, 8298, 8269, 2388, 486, 8269, 8298, 2388, 486, 486, 486, 25645, 8298, 8269, 24598, 198, 198, 411, 312, 518, 62, 3672, 5923, 38, 18298, 10188, 52, 17657, 12509, 52, 19924, 406, 16309, 18294, 34658, 19442, 5923, 38, 8628, 5923, 38, 21526, 7579, 47, 22413, 18871, 23188, 314, 2538, 26115, 5923, 38, 22047, 35383, 24137, 10188, 52, 24909, 8355, 32, 22995, 33700, 27367, 10188, 52, 23195, 10188, 52, 27988, 5923, 38, 32759, 34658, 27696, 10188, 56, 30995, 5923, 38, 31020, 7579, 47, 26200, 24412, 49, 29416, 198, 411, 312, 518, 62, 17618, 2319, 6073, 7265, 7724, 8854, 8915, 8699, 8949, 15143, 20299, 22909, 22613, 6640, 27191, 29903, 1594, 939, 26881, 29217, 33797, 37576, 41423, 23460, 198, 198, 296, 270, 62, 3849, 2673, 220, 7409, 10051, 20803, 220, 5923, 38, 22047, 198, 198, 12853, 62, 448, 7753, 6134, 62, 12853, 62, 361, 79, 13, 40664, 198, 14323, 62, 448, 7753, 6134, 62, 38610, 414, 13, 40664, 198, 6404, 7753, 6134, 13, 6404, 198, 37811, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1822, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 7753, 13, 15908, 3672, 11, 4566, 62, 7753, 13, 12093, 12453, 8, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 796, 1822, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 13, 33295, 7, 853, 8, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 18568, 418, 62, 11250, 796, 2547, 325, 16934, 3419, 198, 220, 220, 220, 18568, 418, 62, 11250, 13, 29572, 62, 11250, 3419, 198, 220, 220, 220, 42848, 62, 3849, 2673, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 15, 60, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 13, 3849, 2673, 62, 4906, 6624, 366, 15511, 10051, 20803, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 22047, 8973, 628, 198, 4299, 1332, 62, 11250, 3924, 62, 296, 270, 62, 48101, 62, 411, 312, 518, 62, 3849, 2673, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 14402, 8398, 329, 267, 16138, 3294, 35186, 10375, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 4566, 62, 7753, 796, 45218, 15908, 13, 28015, 15908, 7203, 7266, 11074, 22179, 7203, 11250, 13, 14116, 4943, 198, 220, 220, 220, 4566, 62, 7753, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 67, 8629, 62, 24396, 220, 220, 220, 6134, 220, 220, 220, 1303, 6134, 393, 410, 1437, 198, 67, 8629, 62, 10414, 220, 220, 220, 220, 220, 6134, 12, 11245, 13, 10414, 198, 198, 38610, 414, 62, 1073, 891, 220, 220, 256, 11227, 2069, 285, 535, 261, 77, 7493, 20342, 198, 198, 12853, 62, 5420, 220, 17643, 486, 25645, 8269, 2388, 486, 8269, 2388, 486, 8269, 2388, 486, 2388, 8298, 25645, 2388, 16, 25645, 8269, 2388, 8298, 486, 25645, 8298, 486, 8269, 8298, 2388, 3571, 486, 486, 486, 25645, 8269, 18005, 8269, 2388, 486, 486, 8269, 18005, 2388, 8298, 8269, 2388, 486, 25645, 8269, 8784, 49388, 486, 2388, 486, 25645, 8298, 486, 8269, 24598, 3571, 486, 486, 486, 2388, 8298, 25645, 2388, 16, 8269, 2388, 486, 486, 486, 8298, 2388, 8298, 2388, 8298, 8269, 2388, 486, 2388, 8298, 8269, 2388, 486, 8269, 8298, 2388, 486, 486, 486, 25645, 8298, 8269, 24598, 198, 198, 411, 312, 518, 62, 3672, 5923, 38, 18298, 10188, 52, 17657, 12509, 52, 19924, 406, 16309, 18294, 34658, 19442, 5923, 38, 8628, 5923, 38, 21526, 7579, 47, 22413, 18871, 23188, 314, 2538, 26115, 5923, 38, 22047, 35383, 24137, 10188, 52, 24909, 8355, 32, 22995, 33700, 27367, 10188, 52, 23195, 10188, 52, 27988, 5923, 38, 32759, 34658, 27696, 10188, 56, 30995, 5923, 38, 31020, 7579, 47, 26200, 24412, 49, 29416, 198, 411, 312, 518, 62, 17618, 2319, 6073, 7265, 7724, 8854, 8915, 8699, 8949, 15143, 20299, 22909, 22613, 6640, 27191, 29903, 1594, 939, 26881, 29217, 33797, 37576, 41423, 23460, 198, 198, 296, 270, 62, 3849, 2673, 220, 7409, 10051, 20803, 220, 5923, 38, 8628, 7579, 47, 22413, 5923, 38, 22047, 198, 198, 12853, 62, 448, 7753, 6134, 62, 12853, 62, 361, 79, 13, 40664, 198, 14323, 62, 448, 7753, 6134, 62, 38610, 414, 13, 40664, 198, 6404, 7753, 6134, 13, 6404, 198, 37811, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1822, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 7753, 13, 15908, 3672, 11, 4566, 62, 7753, 13, 12093, 12453, 8, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 796, 1822, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 13, 33295, 7, 853, 8, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 18568, 418, 62, 11250, 796, 2547, 325, 16934, 3419, 198, 220, 220, 220, 18568, 418, 62, 11250, 13, 29572, 62, 11250, 3419, 198, 220, 220, 220, 42848, 62, 3849, 2673, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 15, 60, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 13, 3849, 2673, 62, 4906, 6624, 366, 15511, 10051, 20803, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 8628, 1600, 366, 5446, 47, 22413, 1600, 366, 1503, 38, 22047, 8973, 628, 198, 4299, 1332, 62, 11250, 3924, 62, 296, 270, 62, 48101, 62, 3849, 2673, 62, 4906, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 14402, 8398, 329, 267, 16138, 3294, 10375, 2099, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 4566, 62, 7753, 796, 45218, 15908, 13, 28015, 15908, 7203, 7266, 11074, 22179, 7203, 11250, 13, 14116, 4943, 198, 220, 220, 220, 4566, 62, 7753, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 67, 8629, 62, 24396, 220, 220, 220, 6134, 220, 220, 220, 1303, 6134, 393, 410, 1437, 198, 67, 8629, 62, 10414, 220, 220, 220, 220, 220, 6134, 12, 11245, 13, 10414, 198, 198, 38610, 414, 62, 1073, 891, 220, 220, 256, 11227, 2069, 285, 535, 261, 77, 7493, 20342, 198, 198, 12853, 62, 5420, 220, 17643, 486, 25645, 8269, 2388, 486, 8269, 2388, 486, 8269, 2388, 486, 2388, 8298, 25645, 2388, 16, 25645, 8269, 2388, 8298, 486, 25645, 8298, 486, 8269, 8298, 2388, 3571, 486, 486, 486, 25645, 8269, 18005, 8269, 2388, 486, 486, 8269, 18005, 2388, 8298, 8269, 2388, 486, 25645, 8269, 8784, 49388, 486, 2388, 486, 25645, 8298, 486, 8269, 24598, 3571, 486, 486, 486, 2388, 8298, 25645, 2388, 16, 8269, 2388, 486, 486, 486, 8298, 2388, 8298, 2388, 8298, 8269, 2388, 486, 2388, 8298, 8269, 2388, 486, 8269, 8298, 2388, 486, 486, 486, 25645, 8298, 8269, 24598, 198, 198, 411, 312, 518, 62, 3672, 5923, 38, 18298, 10188, 52, 17657, 12509, 52, 19924, 406, 16309, 18294, 34658, 19442, 5923, 38, 8628, 5923, 38, 21526, 7579, 47, 22413, 18871, 23188, 314, 2538, 26115, 5923, 38, 22047, 35383, 24137, 10188, 52, 24909, 8355, 32, 22995, 33700, 27367, 10188, 52, 23195, 10188, 52, 27988, 5923, 38, 32759, 34658, 27696, 10188, 56, 30995, 5923, 38, 31020, 7579, 47, 26200, 24412, 49, 29416, 198, 411, 312, 518, 62, 17618, 2319, 6073, 7265, 7724, 8854, 8915, 8699, 8949, 15143, 20299, 22909, 22613, 6640, 27191, 29903, 1594, 939, 26881, 29217, 33797, 37576, 41423, 23460, 198, 198, 296, 270, 62, 3849, 2673, 220, 7409, 10051, 20803, 220, 5923, 38, 22047, 198, 296, 270, 62, 3849, 2673, 220, 289, 62, 65, 623, 220, 5923, 38, 32759, 198, 198, 12853, 62, 448, 7753, 6134, 62, 12853, 62, 361, 79, 13, 40664, 198, 14323, 62, 448, 7753, 6134, 62, 38610, 414, 13, 40664, 198, 6404, 7753, 6134, 13, 6404, 198, 37811, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1822, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 7753, 13, 15908, 3672, 11, 4566, 62, 7753, 13, 12093, 12453, 8, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 796, 1822, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 13, 33295, 7, 853, 8, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 18568, 418, 62, 11250, 796, 2547, 325, 16934, 3419, 198, 220, 220, 220, 18568, 418, 62, 11250, 13, 29572, 62, 11250, 3419, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 16, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 15, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 17, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 16, 60, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 3849, 2673, 62, 4906, 6624, 366, 15511, 10051, 20803, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 22047, 8973, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 32759, 8973, 628, 198, 4299, 1332, 62, 11250, 3924, 62, 6511, 62, 3849, 2673, 62, 4906, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 14402, 8398, 10627, 477, 890, 10375, 62, 4906, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 4566, 62, 7753, 796, 45218, 15908, 13, 28015, 15908, 7203, 7266, 11074, 22179, 7203, 11250, 13, 14116, 4943, 198, 220, 220, 220, 4566, 62, 7753, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 67, 8629, 62, 24396, 220, 220, 220, 6134, 220, 220, 220, 1303, 6134, 393, 410, 1437, 198, 67, 8629, 62, 10414, 220, 220, 220, 220, 220, 6134, 12, 11245, 13, 10414, 198, 198, 38610, 414, 62, 1073, 891, 220, 220, 256, 11227, 2069, 285, 535, 261, 77, 7493, 20342, 198, 198, 12853, 62, 5420, 220, 17643, 486, 25645, 8269, 2388, 486, 8269, 2388, 486, 8269, 2388, 486, 2388, 8298, 25645, 2388, 16, 25645, 8269, 2388, 8298, 486, 25645, 8298, 486, 8269, 8298, 2388, 3571, 486, 486, 486, 25645, 8269, 18005, 8269, 2388, 486, 486, 8269, 18005, 2388, 8298, 8269, 2388, 486, 25645, 8269, 8784, 49388, 486, 2388, 486, 25645, 8298, 486, 8269, 24598, 3571, 486, 486, 486, 2388, 8298, 25645, 2388, 16, 8269, 2388, 486, 486, 486, 8298, 2388, 8298, 2388, 8298, 8269, 2388, 486, 2388, 8298, 8269, 2388, 486, 8269, 8298, 2388, 486, 486, 486, 25645, 8298, 8269, 24598, 198, 198, 411, 312, 518, 62, 3672, 5923, 38, 18298, 10188, 52, 17657, 12509, 52, 19924, 406, 16309, 18294, 34658, 19442, 5923, 38, 8628, 5923, 38, 21526, 7579, 47, 22413, 18871, 23188, 314, 2538, 26115, 5923, 38, 22047, 35383, 24137, 10188, 52, 24909, 8355, 32, 22995, 33700, 27367, 10188, 52, 23195, 10188, 52, 27988, 5923, 38, 32759, 34658, 27696, 10188, 56, 30995, 5923, 38, 31020, 7579, 47, 26200, 24412, 49, 29416, 198, 411, 312, 518, 62, 17618, 2319, 6073, 7265, 7724, 8854, 8915, 8699, 8949, 15143, 20299, 22909, 22613, 6640, 27191, 29903, 1594, 939, 26881, 29217, 33797, 37576, 41423, 23460, 198, 198, 296, 270, 62, 3849, 2673, 220, 7409, 10051, 20803, 220, 5923, 38, 18298, 198, 296, 270, 62, 3849, 2673, 220, 48440, 220, 10188, 52, 17657, 198, 296, 270, 62, 3849, 2673, 220, 289, 62, 65, 623, 220, 220, 12509, 52, 19924, 198, 296, 270, 62, 3849, 2673, 220, 15206, 12708, 220, 406, 16309, 18294, 198, 296, 270, 62, 3849, 2673, 220, 289, 62, 65, 623, 62, 9099, 273, 220, 34658, 19442, 198, 296, 270, 62, 3849, 2673, 220, 289, 62, 65, 623, 62, 13635, 273, 220, 5923, 38, 8628, 198, 296, 270, 62, 3849, 2673, 220, 15206, 12708, 62, 24561, 220, 5923, 38, 21526, 198, 296, 270, 62, 3849, 2673, 220, 15206, 12708, 62, 31591, 220, 7579, 47, 22413, 198, 296, 270, 62, 3849, 2673, 220, 48440, 62, 69, 23253, 1659, 558, 220, 18871, 23188, 198, 296, 270, 62, 3849, 2673, 220, 48440, 62, 276, 1136, 1659, 558, 220, 314, 2538, 26115, 198, 198, 12853, 62, 448, 7753, 6134, 62, 12853, 62, 361, 79, 13, 40664, 198, 14323, 62, 448, 7753, 6134, 62, 38610, 414, 13, 40664, 198, 6404, 7753, 6134, 13, 6404, 198, 37811, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1822, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 7753, 13, 15908, 3672, 11, 4566, 62, 7753, 13, 12093, 12453, 8, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 796, 1822, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 13, 33295, 7, 853, 8, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 18568, 418, 62, 11250, 796, 2547, 325, 16934, 3419, 198, 220, 220, 220, 18568, 418, 62, 11250, 13, 29572, 62, 11250, 3419, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 16, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 15, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 17, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 16, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 18, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 17, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 19, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 18, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 20, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 19, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 21, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 20, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 22, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 21, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 23, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 22, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 24, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 23, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 940, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 24, 60, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 3849, 2673, 62, 4906, 6624, 366, 15511, 10051, 20803, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 18298, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 411, 62, 3672, 6624, 14631, 8763, 52, 17657, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 18, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 18, 13, 411, 62, 3672, 6624, 14631, 2538, 52, 19924, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 19, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 19, 13, 411, 62, 3672, 6624, 14631, 11319, 50, 18294, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 20, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 62, 9099, 273, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 20, 13, 411, 62, 3672, 6624, 14631, 1921, 47, 19442, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 21, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 62, 13635, 273, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 21, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 8628, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 22, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 62, 24561, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 22, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 21526, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 23, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 62, 31591, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 23, 13, 411, 62, 3672, 6624, 14631, 5446, 47, 22413, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 24, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 62, 69, 23253, 1659, 558, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 24, 13, 411, 62, 3672, 6624, 14631, 35009, 23188, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 940, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 62, 276, 1136, 1659, 558, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 940, 13, 411, 62, 3672, 6624, 14631, 41119, 26115, 8973, 628, 198, 4299, 1332, 62, 11250, 3924, 62, 19509, 62, 3849, 2673, 62, 4906, 7, 22065, 15908, 2599, 198, 220, 220, 220, 37227, 14402, 8398, 10627, 477, 1790, 10375, 62, 4906, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 4566, 62, 7753, 796, 45218, 15908, 13, 28015, 15908, 7203, 7266, 11074, 22179, 7203, 11250, 13, 14116, 4943, 198, 220, 220, 220, 4566, 62, 7753, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 67, 8629, 62, 24396, 220, 220, 220, 6134, 220, 220, 220, 1303, 6134, 393, 410, 1437, 198, 67, 8629, 62, 10414, 220, 220, 220, 220, 220, 6134, 12, 11245, 13, 10414, 198, 198, 38610, 414, 62, 1073, 891, 220, 220, 256, 11227, 2069, 285, 535, 261, 77, 7493, 20342, 198, 198, 12853, 62, 5420, 220, 17643, 486, 25645, 8269, 2388, 486, 8269, 2388, 486, 8269, 2388, 486, 2388, 8298, 25645, 2388, 16, 25645, 8269, 2388, 8298, 486, 25645, 8298, 486, 8269, 8298, 2388, 3571, 486, 486, 486, 25645, 8269, 18005, 8269, 2388, 486, 486, 8269, 18005, 2388, 8298, 8269, 2388, 486, 25645, 8269, 8784, 49388, 486, 2388, 486, 25645, 8298, 486, 8269, 24598, 3571, 486, 486, 486, 2388, 8298, 25645, 2388, 16, 8269, 2388, 486, 486, 486, 8298, 2388, 8298, 2388, 8298, 8269, 2388, 486, 2388, 8298, 8269, 2388, 486, 8269, 8298, 2388, 486, 486, 486, 25645, 8298, 8269, 24598, 198, 198, 411, 312, 518, 62, 3672, 5923, 38, 18298, 10188, 52, 17657, 12509, 52, 19924, 406, 16309, 18294, 34658, 19442, 5923, 38, 8628, 5923, 38, 21526, 7579, 47, 22413, 18871, 23188, 314, 2538, 26115, 5923, 38, 22047, 35383, 24137, 10188, 52, 24909, 8355, 32, 22995, 33700, 27367, 10188, 52, 23195, 10188, 52, 27988, 5923, 38, 32759, 34658, 27696, 10188, 56, 30995, 5923, 38, 31020, 7579, 47, 26200, 24412, 49, 29416, 198, 411, 312, 518, 62, 17618, 2319, 6073, 7265, 7724, 8854, 8915, 8699, 8949, 15143, 20299, 22909, 22613, 6640, 27191, 29903, 1594, 939, 26881, 29217, 33797, 37576, 41423, 23460, 198, 198, 296, 270, 62, 3849, 2673, 220, 6574, 33, 220, 5923, 38, 18298, 198, 296, 270, 62, 3849, 2673, 220, 20359, 220, 10188, 52, 17657, 198, 296, 270, 62, 3849, 2673, 220, 367, 14529, 220, 220, 12509, 52, 19924, 198, 296, 270, 62, 3849, 2673, 220, 40342, 220, 406, 16309, 18294, 198, 296, 270, 62, 3849, 2673, 220, 367, 14529, 62, 41173, 220, 34658, 19442, 198, 296, 270, 62, 3849, 2673, 220, 367, 14529, 62, 26861, 220, 5923, 38, 8628, 198, 296, 270, 62, 3849, 2673, 220, 40342, 62, 37997, 220, 5923, 38, 21526, 198, 296, 270, 62, 3849, 2673, 220, 40342, 62, 45, 7156, 220, 7579, 47, 22413, 198, 296, 270, 62, 3849, 2673, 220, 20359, 62, 37, 17, 37, 220, 18871, 23188, 198, 296, 270, 62, 3849, 2673, 220, 20359, 62, 36, 17, 37, 220, 314, 2538, 26115, 198, 198, 12853, 62, 448, 7753, 6134, 62, 12853, 62, 361, 79, 13, 40664, 198, 14323, 62, 448, 7753, 6134, 62, 38610, 414, 13, 40664, 198, 6404, 7753, 6134, 13, 6404, 198, 37811, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1822, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 62, 7753, 13, 15908, 3672, 11, 4566, 62, 7753, 13, 12093, 12453, 8, 628, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 58, 16, 60, 796, 1822, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 853, 85, 13, 33295, 7, 853, 8, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 18568, 418, 62, 11250, 796, 2547, 325, 16934, 3419, 198, 220, 220, 220, 18568, 418, 62, 11250, 13, 29572, 62, 11250, 3419, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 16, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 15, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 17, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 16, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 18, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 17, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 19, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 18, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 20, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 19, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 21, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 20, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 22, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 21, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 23, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 22, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 24, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 23, 60, 198, 220, 220, 220, 42848, 62, 3849, 2673, 62, 940, 796, 18568, 418, 62, 11250, 13, 296, 270, 62, 3849, 2673, 58, 24, 60, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 3849, 2673, 62, 4906, 6624, 366, 15511, 10051, 20803, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 16, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 18298, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 17, 13, 411, 62, 3672, 6624, 14631, 8763, 52, 17657, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 18, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 18, 13, 411, 62, 3672, 6624, 14631, 2538, 52, 19924, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 19, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 19, 13, 411, 62, 3672, 6624, 14631, 11319, 50, 18294, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 20, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 62, 9099, 273, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 20, 13, 411, 62, 3672, 6624, 14631, 1921, 47, 19442, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 21, 13, 3849, 2673, 62, 4906, 6624, 366, 71, 62, 65, 623, 62, 13635, 273, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 21, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 8628, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 22, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 62, 24561, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 22, 13, 411, 62, 3672, 6624, 14631, 1503, 38, 21526, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 23, 13, 3849, 2673, 62, 4906, 6624, 366, 9509, 305, 12708, 62, 31591, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 23, 13, 411, 62, 3672, 6624, 14631, 5446, 47, 22413, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 24, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 62, 69, 23253, 1659, 558, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 24, 13, 411, 62, 3672, 6624, 14631, 35009, 23188, 8973, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 940, 13, 3849, 2673, 62, 4906, 6624, 366, 283, 13730, 62, 276, 1136, 1659, 558, 1, 198, 220, 220, 220, 6818, 42848, 62, 3849, 2673, 62, 940, 13, 411, 62, 3672, 6624, 14631, 41119, 26115, 8973, 628, 198, 4299, 1332, 62, 33491, 62, 2545, 62, 10641, 33529, 198, 220, 220, 220, 37227, 14402, 1643, 9014, 2163, 329, 22532, 35186, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 1643, 8841, 796, 366, 49388, 486, 1, 628, 220, 220, 220, 42848, 62, 15511, 10051, 20803, 796, 685, 16, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 283, 13730, 796, 685, 15, 11, 352, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 71, 62, 65, 623, 796, 685, 15, 11, 657, 11, 657, 11, 352, 11, 352, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 9509, 305, 12708, 796, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 352, 60, 198, 220, 220, 220, 42848, 62, 71, 62, 65, 623, 62, 9099, 273, 796, 685, 15, 11, 657, 11, 657, 11, 352, 11, 657, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 71, 62, 65, 623, 62, 13635, 273, 796, 685, 15, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 9509, 305, 12708, 62, 24561, 796, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 9509, 305, 12708, 62, 31591, 796, 685, 15, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 11, 352, 60, 198, 220, 220, 220, 42848, 62, 283, 13730, 62, 69, 23253, 1659, 558, 796, 685, 15, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 11, 657, 60, 198, 220, 220, 220, 42848, 62, 283, 13730, 62, 276, 1136, 1659, 558, 796, 685, 15, 11, 657, 11, 352, 11, 657, 11, 657, 11, 657, 11, 657, 60, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 1643, 8841, 62, 16, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 15511, 10051, 20803, 8, 198, 220, 220, 220, 1643, 8841, 62, 17, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 283, 13730, 8, 198, 220, 220, 220, 1643, 8841, 62, 18, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 71, 62, 65, 623, 8, 198, 220, 220, 220, 1643, 8841, 62, 19, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 9509, 305, 12708, 8, 198, 220, 220, 220, 1643, 8841, 62, 20, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 71, 62, 65, 623, 62, 9099, 273, 8, 198, 220, 220, 220, 1643, 8841, 62, 21, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 71, 62, 65, 623, 62, 13635, 273, 8, 198, 220, 220, 220, 1643, 8841, 62, 22, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 9509, 305, 12708, 62, 24561, 8, 198, 220, 220, 220, 1643, 8841, 62, 23, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 9509, 305, 12708, 62, 31591, 8, 198, 220, 220, 220, 1643, 8841, 62, 24, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 283, 13730, 62, 69, 23253, 1659, 558, 8, 198, 220, 220, 220, 1643, 8841, 62, 940, 796, 18568, 418, 13, 33491, 62, 2545, 62, 10641, 7, 2545, 8841, 11, 42848, 62, 283, 13730, 62, 276, 1136, 1659, 558, 8, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 1643, 8841, 62, 16, 6624, 366, 77, 2388, 486, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 17, 6624, 366, 16, 20471, 18005, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 18, 6624, 366, 3064, 20471, 486, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 19, 6624, 366, 49388, 20471, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 20, 6624, 366, 3064, 77, 8298, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 21, 6624, 366, 12825, 77, 486, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 22, 6624, 366, 49388, 77, 16, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 23, 6624, 366, 3064, 830, 77, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 24, 6624, 366, 16, 77, 2388, 16, 1, 198, 220, 220, 220, 6818, 1643, 8841, 62, 940, 6624, 366, 940, 77, 18005, 1, 628, 198, 4299, 1332, 62, 27773, 929, 62, 296, 2175, 62, 3849, 2673, 33529, 198, 220, 220, 220, 37227, 14402, 329, 1643, 8841, 11824, 3161, 284, 26789, 17952, 37811, 628, 220, 220, 220, 1303, 943, 9521, 628, 220, 220, 220, 1006, 2545, 796, 366, 2388, 486, 18005, 486, 1, 198, 220, 220, 220, 256, 13655, 2545, 796, 366, 1157, 77, 405, 77, 2388, 1157, 1, 628, 220, 220, 220, 1303, 2191, 628, 220, 220, 220, 3424, 62, 5420, 2545, 11, 3424, 62, 83, 13655, 2545, 796, 26789, 13, 27773, 62, 296, 2175, 62, 3849, 4658, 7, 5420, 2545, 11, 256, 13655, 2545, 8, 628, 220, 220, 220, 1303, 2195, 861, 628, 220, 220, 220, 6818, 3424, 62, 5420, 2545, 6624, 366, 10535, 486, 486, 1, 198, 220, 220, 220, 6818, 3424, 62, 83, 13655, 2545, 6624, 366, 1157, 10535, 1157, 1, 198 ]
2.755917
5,408
#!/usr/bin/python3 import sys from lib.demucs import demucs from lib.demucs.demucs import model from lib.demucs.demucs.audio import AudioFile from lib.demucs.demucs.utils import apply_model, load_model from pathlib import Path from scipy.io import wavfile # within the demucs directory sys.modules['demucs.model'] = model sys.modules['demucs'] = demucs class DemucsService(): """ def encode_mp3(wav, path, bitrate=320, verbose=False): try: import lameenc except ImportError: print("Failed to call lame encoder. Maybe it is not installed? " "On windows, run `python.exe -m pip install -U lameenc`, " "on OSX/Linux, run `python3 -m pip install -U lameenc`, " "then try again.", file=sys.stderr) sys.exit(1) encoder = lameenc.Encoder() encoder.set_bit_rate(bitrate) encoder.set_in_sample_rate(44100) encoder.set_channels(2) encoder.set_quality(2) # 2-highest, 7-fastest if not verbose: encoder.silence() mp3_data = encoder.encode(wav.tostring()) mp3_data += encoder.flush() with open(path, "wb") as f: f.write(mp3_data) """
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 11748, 25064, 198, 198, 6738, 9195, 13, 9536, 1229, 82, 1330, 1357, 1229, 82, 198, 6738, 9195, 13, 9536, 1229, 82, 13, 9536, 1229, 82, 1330, 2746, 198, 6738, 9195, 13, 9536, 1229, 82, 13, 9536, 1229, 82, 13, 24051, 1330, 13491, 8979, 198, 6738, 9195, 13, 9536, 1229, 82, 13, 9536, 1229, 82, 13, 26791, 1330, 4174, 62, 19849, 11, 3440, 62, 19849, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 629, 541, 88, 13, 952, 1330, 266, 615, 7753, 628, 198, 2, 1626, 262, 1357, 1229, 82, 8619, 198, 17597, 13, 18170, 17816, 9536, 1229, 82, 13, 19849, 20520, 796, 2746, 198, 17597, 13, 18170, 17816, 9536, 1229, 82, 20520, 796, 1357, 1229, 82, 628, 198, 4871, 1897, 1229, 82, 16177, 33529, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 825, 37773, 62, 3149, 18, 7, 45137, 11, 3108, 11, 1643, 4873, 28, 19504, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 30248, 12685, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 37, 6255, 284, 869, 30248, 2207, 12342, 13, 6674, 340, 318, 407, 6589, 30, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2202, 9168, 11, 1057, 4600, 29412, 13, 13499, 532, 76, 7347, 2721, 532, 52, 30248, 12685, 47671, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 261, 7294, 55, 14, 19314, 11, 1057, 4600, 29412, 18, 532, 76, 7347, 2721, 532, 52, 30248, 12685, 47671, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8524, 1949, 757, 33283, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 796, 30248, 12685, 13, 27195, 12342, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 13, 2617, 62, 2545, 62, 4873, 7, 2545, 4873, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 13, 2617, 62, 259, 62, 39873, 62, 4873, 7, 2598, 3064, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 13, 2617, 62, 354, 8961, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 13, 2617, 62, 13237, 7, 17, 8, 220, 1303, 362, 12, 35323, 11, 767, 12, 7217, 395, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 15942, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 13, 18217, 594, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 18, 62, 7890, 796, 2207, 12342, 13, 268, 8189, 7, 45137, 13, 83, 455, 1806, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 29034, 18, 62, 7890, 15853, 2207, 12342, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 11, 366, 39346, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 3149, 18, 62, 7890, 8, 198, 220, 220, 220, 37227, 198 ]
2.162587
572
import pymysql conn = pymysql.Connection( host = '192.168.160.33', port = 3306, user = 'develop', password='xs_dev', database='test', charset='utf8' ) cursor = conn.cursor() sql = """ select * from user1 """ try: cursor.execute(sql) res = cursor.fetchall() for row in res: id = row[0] fname=row[1] lname=row[2] age =row[3] sex=row[4] income=row[5] print("id=%s,fname=%s,lname=%s,age=%s,sex=%s,income=%s" % (id, fname, lname, age, sex, income)) except Exception as e: print(e) # 关闭连接 conn.close()
[ 11748, 279, 4948, 893, 13976, 198, 198, 37043, 796, 279, 4948, 893, 13976, 13, 32048, 7, 198, 220, 220, 220, 2583, 796, 705, 17477, 13, 14656, 13, 14198, 13, 2091, 3256, 198, 220, 220, 220, 2493, 796, 513, 20548, 11, 198, 220, 220, 220, 2836, 796, 705, 16244, 3256, 198, 220, 220, 220, 9206, 11639, 34223, 62, 7959, 3256, 198, 220, 220, 220, 6831, 11639, 9288, 3256, 198, 220, 220, 220, 34534, 316, 11639, 40477, 23, 6, 198, 8, 198, 198, 66, 21471, 796, 48260, 13, 66, 21471, 3419, 198, 198, 25410, 796, 37227, 198, 19738, 1635, 422, 2836, 16, 198, 37811, 198, 198, 28311, 25, 198, 220, 220, 220, 23493, 13, 41049, 7, 25410, 8, 198, 220, 220, 220, 581, 796, 23493, 13, 69, 7569, 439, 3419, 198, 220, 220, 220, 329, 5752, 287, 581, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 796, 5752, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 28, 808, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 300, 3672, 28, 808, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2479, 796, 808, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1714, 28, 808, 58, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3739, 28, 808, 58, 20, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 312, 28, 4, 82, 11, 69, 3672, 28, 4, 82, 11, 75, 3672, 28, 4, 82, 11, 496, 28, 4, 82, 11, 8044, 28, 4, 82, 11, 12519, 28, 4, 82, 1, 4064, 357, 312, 11, 277, 3672, 11, 300, 3672, 11, 2479, 11, 1714, 11, 3739, 4008, 198, 16341, 35528, 355, 304, 25, 198, 220, 220, 220, 3601, 7, 68, 8, 198, 198, 2, 10263, 227, 111, 29785, 255, 32573, 252, 162, 236, 98, 198, 37043, 13, 19836, 3419 ]
1.904153
313
from nfmanagementapi.models import ServiceObject from nfmanagementapi.schemata import ServiceObjectSchema from marshmallow.exceptions import ValidationError from .BaseResource import BaseResource from flask import request from app import db from uuid import uuid4 path = 'service_objects' endpoint = 'service_objects'
[ 6738, 299, 69, 27604, 15042, 13, 27530, 1330, 4809, 10267, 198, 6738, 299, 69, 27604, 15042, 13, 1416, 4411, 1045, 1330, 4809, 10267, 27054, 2611, 198, 6738, 22397, 42725, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 764, 14881, 26198, 1330, 7308, 26198, 198, 6738, 42903, 1330, 2581, 198, 6738, 598, 1330, 20613, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 198, 6978, 796, 705, 15271, 62, 48205, 6, 198, 437, 4122, 796, 705, 15271, 62, 48205, 6, 198 ]
3.938272
81
# Generated by Django 3.1.6 on 2021-02-12 00:15 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 21, 319, 33448, 12, 2999, 12, 1065, 3571, 25, 1314, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.818182
44
config = { "frequency": 440.0, "duration": 20.0, "sampling_rate": 44100, "filename": "test_v1.wav", "overtones": [ [ 440.0, 1.0 ], [ 12447.350408741928, 0.1098108639573242 ], [ 12465.3571923053, 0.843727285302496 ], [ 21539.57505590213, 0.17496422223017305 ], [ 14675.669378957353, 0.013028474684831037 ], [ 20577.216573422433, 0.23529784971612777 ], [ 21425.497754119715, 0.6436550795219932 ], [ 11410.89145988607, 0.011826877382886125 ] ], "amp_ctrl_points": [ [ 0.0, 0.0 ], [ 20.0, 100.0 ], [ 33.0, 20.0 ], [ 47.0, 88.0 ], [ 56.0, 45.0 ], [ 76.0, 80.0 ], [ 90.0, 5.0 ], [ 100.0, 20.0 ] ] }
[ 11250, 796, 1391, 201, 198, 220, 220, 220, 366, 35324, 1298, 33879, 13, 15, 11, 201, 198, 220, 220, 220, 366, 32257, 1298, 1160, 13, 15, 11, 201, 198, 220, 220, 220, 366, 37687, 11347, 62, 4873, 1298, 5846, 3064, 11, 201, 198, 220, 220, 220, 366, 34345, 1298, 366, 9288, 62, 85, 16, 13, 45137, 1600, 201, 198, 220, 220, 220, 366, 2502, 36257, 1298, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33879, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1105, 34825, 13, 14877, 26200, 4524, 1129, 2078, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 940, 4089, 940, 4521, 2670, 48638, 27877, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19755, 2996, 13, 27277, 17477, 1270, 4310, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 5705, 2718, 1983, 26279, 1270, 1731, 4846, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22951, 2670, 13, 3553, 1120, 38605, 2999, 1485, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 1558, 2920, 2414, 1828, 1828, 18938, 22, 22515, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22986, 2425, 13, 36657, 2718, 4531, 3553, 33319, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 486, 1270, 2078, 2857, 38472, 2780, 26717, 2718, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22538, 3324, 13, 20666, 3553, 2682, 24137, 2091, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 22370, 1959, 3695, 38073, 1433, 1065, 29331, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28277, 1495, 13, 2920, 34483, 3901, 24991, 1314, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2414, 2623, 22730, 3720, 4309, 19104, 2624, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17342, 940, 13, 4531, 1415, 3270, 3459, 31980, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 486, 1507, 25022, 3324, 2548, 2078, 4521, 11623, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 366, 696, 62, 44755, 62, 13033, 1298, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4747, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6298, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9193, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7265, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4153, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8684, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4019, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4101, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 201, 198, 220, 220, 220, 220, 220, 220, 220, 685, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1802, 13, 15, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1160, 13, 15, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 201, 198, 220, 220, 220, 2361, 201, 198, 92, 201, 198 ]
1.307617
1,024
import datetime import re import os import struct from dataclasses import dataclass, field from itertools import combinations, product from typing import List, Dict import pandas as pd import numpy as np import peakutils from matplotlib import pyplot as plt from scipy import signal as spsig import plotly.graph_objs as go from tqdm.autonotebook import tqdm import networkx as nx from ipywidgets import interactive, VBox, HBox from lmfit.models import LinearModel from pyspectools import routines from pyspectools import figurefactory as ff from pyspectools import fitting from pyspectools.spectra import analysis from pyspectools import parsers def parse_spectrum(filename, threshold=20.0): """ Function to read in a blackchirp or QtFTM spectrum from file """ dataframe = pd.read_csv( filename, delimiter="\t", names=["Frequency", "Intensity"], skiprows=1 ) return dataframe[dataframe["Intensity"] <= threshold] def center_cavity(dataframe, thres=0.3, verbose=True): """ Finds the center frequency of a Doppler pair in cavity FTM measurements and provides a column of offset frequencies. Sometimes the peak finding threshold has to be tweaked to get the center frequency correctly. """ # Find the peak intensities center_indexes = peakutils.indexes(dataframe["Intensity"], thres=thres) peak_frequencies = dataframe.iloc[center_indexes]["Frequency"] # Calculate the center frequency as the average center = np.average(peak_frequencies) if verbose is True: print("Center frequency at " + str(center)) dataframe["Offset Frequency"] = dataframe["Frequency"] - center @dataclass @dataclass class Scan: """ DataClass for a Scan. Holds all of the relevant information that describes a FT scan, such as the ID, what machine it was collected on, and the experimental settings. Has a few class methods that will make look ups easily such as the date the scan was collected and the gases used. """ id: int machine: str fid: np.array date: datetime.datetime shots: int = 0 cavity_voltage: int = 0 cavity_atten: int = 0 cavity_frequency: float = 0.0 dr_frequency: float = 0.0 dr_power: int = 0 fid_points: int = 0 fid_spacing: float = 0.0 discharge: bool = False magnet: bool = False gases: Dict = field(default_factory=dict) filter: List = field(default_factory=list) exp: float = 0.0 zeropad: bool = False window: str = "" def __post_init__(self): """ Functions called after __init__ is called. """ # Perform FFT self.process_fid() def __deepcopy__(self): """ Dunder method to produce a deep copy - this will be used when manipulating multiple Scan objects. :return: A deep copy of the current Scan object """ new_scan = Empty() new_scan.__class__ = self.__class__ new_scan.__dict__.update(self.__dict__) return new_scan def average(self, others): """ Dunder method to co-average two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() try: new_scan.fid = np.average(others.extend(new_scan.fid), axis=0) new_scan.average_ids = [scan.id for scan in others] # If there is no extend method, then assume we're working with a # single Scan except AttributeError: new_scan.fid = np.average([new_scan.fid, others.fid], axis=0) new_scan.average_ids = [others.id] new_scan.process_fid() return new_scan def __add__(self, other): """ Dunder method to co-add two or more Scans in the time domain. :param other: Scan object, or tuple/list :return: A new Scan object with the co-added FID """ new_scan = self.__deepcopy__() new_scan.fid = np.sum([new_scan.fid, other.fid], axis=0) new_scan.process_fid() return new_scan def __sub__(self, other): """ Dunder method to subtract another Scan from the current Scan in the time domain. i.e. this scan - other scan :param other: Scan object, or tuple/list :return: A new Scan object with the subtracted FID """ new_scan = self.__deepcopy__() new_scan.fid = np.subtract(new_scan.fid, other.fid) new_scan.process_fid() return new_scan def subtract_frequency(self, other): """ Method to subtract another Scan from the current in the frequency domain. :param other: Scan object to subtract with :return: A new Scan object with the subtracted spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] - other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan def add_frequency(self, other): """ Method to add another Scan from the current in the frequency domain. :param other: Scan object to add with :return: A new Scan object with the co-added spectrum """ new_scan = self.__deepcopy__() new_scan.spectrum["Intensity"] = ( new_scan.spectrum["Intensity"] + other.spectrum["Intensity"] ) new_scan.subtracted = other.id return new_scan @classmethod def from_dict(cls, data_dict): """ Function to initialize a Scan object from a dictionary of FT scan data collected from `parse_scan`. :param data_dict: dict containing parsed data from FT :return: Scan object """ scan_obj = cls(**data_dict) return scan_obj @classmethod def from_qtftm(cls, filepath): """ Method to initialize a Scan object from a FT scan file. Will load the lines into memory and parse the data into a dictionary, which then gets passed into a Scan object. :param filepath: str path to FID file :return: Scan object """ with open(filepath) as read_file: data_dict = parse_scan(read_file.readlines()) scan_obj = cls(**data_dict) return scan_obj @classmethod def from_pickle(cls, filepath): """ Method to create a Scan object from a previously pickled Scan. :param filepath: path to the Scan pickle :return: instance of the Scan object """ scan_obj = routines.read_obj(filepath) if isinstance(scan_obj, Scan) is False: raise Exception("File is not a Scan object; {}".format(type(scan_obj))) else: return scan_obj @classmethod def from_remote(cls, remote_path, ssh_obj=None): """ Method to initialize a Scan object from a remote server. Has the option to pass an instance of a paramiko SSHClient, which would be useful in a Batch. If none is supplied, an instance will be created. :param remote_path: str remote path to the file :param ssh_obj: optional argument to supply a paramiko SSHClient object :return: Scan object from remote QtFTM file """ if ssh_obj is None: default_keypath = os.path.join(os.path.expanduser("~"), ".ssh/id_rsa.pub") hostname = input("Please provide remote hostname: ") username = input("Please provide login: ") ssh_settings = {"hostname": hostname, "username": username} if os.path.isfile(default_keypath) is True: ssh_settings["key_filename"] = default_keypath else: password = input("Please provide password: ") ssh_settings["password"] = password ssh_obj = routines.RemoteClient(**ssh_settings) # Parse the scan data from remote file data_dict = parse_scan(ssh_obj.open_remote(remote_path)) scan_obj = cls(**data_dict) return scan_obj def to_file(self, filepath, format="yaml"): """ Method to dump data to YAML format. Extensions are automatically decided, but can also be supplied. parameters: -------------------- :param filepath - str path to yaml file :param format - str denoting the syntax used for dumping. Defaults to YAML. """ if "." not in filepath: if format == "json": filepath += ".json" else: filepath += ".yml" if format == "json": writer = routines.dump_json else: writer = routines.dump_yaml writer(filepath, self.__dict__) def to_pickle(self, filepath=None, **kwargs): """ Pickles the Scan object with the joblib wrapper implemented in routines. :param filepath: optional argument to pickle to. Defaults to the id.pkl :param kwargs: additional settings for the pickle operation """ if filepath is None: filepath = "{}.pkl".format(self.id) routines.save_obj(self, filepath, **kwargs) def process_fid(self, **kwargs): """ Perform an FFT on the FID to yield the frequency domain spectrum. Kwargs are passed into the FID processing, which will override the Scan attributes. :param kwargs: Optional keyword arguments for processing the FID """ # Calculate the frequency bins frequencies = np.linspace( self.cavity_frequency, self.cavity_frequency + 1.0, len(self.fid) ) # Calculate the time bins time = np.linspace(0.0, self.fid_spacing * self.fid_points, self.fid_points) process_list = ["window", "filter", "exp", "zeropad"] process_dict = { key: value for key, value in self.__dict__.items() if key in process_list } # Override with user settings process_dict.update(**kwargs) temp_fid = np.copy(self.fid) self.spectrum = fid2fft( temp_fid, 1.0 / self.fid_spacing, frequencies, **process_dict ) self.fid_df = pd.DataFrame({"Time (us)": time * 1e6, "FID": temp_fid}) def within_time(self, date_range): """ Function for determining of the scan was taken between a specified date range in month/day/year, in the format 04/09/08 for April 9th, 2008. :param date_range: list containing the beginning and end date strings :return: bool - True if within range, False otherwise """ try: early = datetime.datetime.strptime(date_range[0], "%m/%d/%y") except: early = datetime.datetime(1, 1, 1) try: late = datetime.datetime.strptime(date_range[1], "%m/%d/%y") except: late = datetime.datetime(9999, 1, 1) return early <= self.date <= late def is_depleted(self, ref, roi=None, depletion=None): """ Function for determining if the signal in this Scan is less than that of another scan. This is done by a simple comparison of the average of 10 largest intensities in the two spectra. If the current scan is less intense than the reference by the expected depletion percentage, then it is "depleted". This function can be used to determine if a scan if depleted in DR/magnet/discharge assays. TODO - implement a chi squared test of sorts to determine if a depletion is statistically significant :param ref: second Scan object for comparison :param depletion: percentage of depletion expected of the reference :return: bool - True if signal in this Scan is less intense than the reference """ y_ref = ref.spectrum["Intensity"].values y_obs = self.spectrum["Intensity"].values self.ref_freq = ref.fit.frequency self.ref_id = ref.id if roi: y_ref = y_ref[roi] y_obs = y_obs[roi] # This doesn't work, or is not particularly discriminating. # chisq, p_value = chisquare( # y_obs, y_ref # ) if depletion is None: sigma = np.std(y_obs, axis=0) * 16.0 else: sigma = depletion expected = np.sum(y_ref, axis=0) - sigma return np.sum(y_obs, axis=0) <= expected def scatter_trace(self): """ Create a Plotly Scattergl trace. Called by the Batch function, although performance-wise it takes forever to plot up ~3000 scans. :return trace: Scattergl object """ text = "Scan ID: {}<br>Cavity: {}<br>DR: {}<br>Magnet: {}<br>Attn: {}".format( self.id, self.cavity_frequency, self.dr_frequency, self.magnet, self.cavity_atten, ) trace = go.Scattergl( x=np.linspace(self.id, self.id + 1, len(self.spectrum["Intensity"])), y=self.spectrum["Intensity"], text=text, marker={"color": "rgb(43,140,190)"}, hoverinfo="text", ) return trace def fit_cavity(self, plot=True, verbose=False): """ Perform a fit to the cavity spectrum. Uses a paired Gaussian model that minimizes the number of fitting parameters. :param plot: bool specify whether a Plotly figure is made :return: Model Fit result """ y = self.spectrum["Intensity"].dropna().values x = self.spectrum["Frequency (MHz)"].dropna().values model = fitting.PairGaussianModel() result = model.fit_pair(x, y, verbose=verbose) self.spectrum["Fit"] = result.best_fit self.fit = result self.fit.frequency = self.fit.best_values["x0"] if plot is True: fig = go.FigureWidget() fig.layout["xaxis"]["title"] = "Frequency (MHz)" fig.layout["xaxis"]["tickformat"] = ".2f" fig.add_scatter(x=x, y=y, name="Observed") fig.add_scatter(x=x, y=result.best_fit, name="Fit") return result, fig else: return result def parse_scan(filecontents): """ Function for extracting the FID data from an FT scan. The data is returned as a dictionary, which can be used to initialize a Scan object. :param filecontents: list of lines from an FID file :return: dict containing parsed data from FID """ data = {"gases": dict()} # FID regex fid_regex = re.compile(r"^fid\d*", re.M) # Regex to find gas channels gas_regex = re.compile(r"^#Gas \d name", re.M) flow_regex = re.compile(r"^#Gas \d flow", re.M) # Regex to detect which channel is set to the discharge dc_regex = re.compile(r"^#Pulse ch \d name\s*DC", re.M) dc_channel = None for index, line in enumerate(filecontents): if "#Scan" in line: split_line = line.split() data["id"] = int(split_line[1]) try: data["machine"] = split_line[2] except IndexError: data["machine"] = "FT1" if "#Probe freq" in line: data["cavity_frequency"] = float(line.split()[2]) if "#Shots" in line: data["shots"] = int(line.split()[-1]) if "#Date" in line: strip_targets = ["#Date", "\t", "\n"] data["date"] = datetime.datetime.strptime( re.sub("|".join(strip_targets), "", line), "%a %b %d %H:%M:%S %Y" ) if "#Cavity Voltage" in line: data["cavity_voltage"] = int(line.split()[2]) if "#Attenuation" in line: data["cavity_atten"] = int(line.split()[1]) if "#DR freq" in line: data["dr_frequency"] = float(line.split()[2]) if "#DR power" in line: data["dr_power"] = int(line.split()[2]) if "#FID spacing" in line: data["fid_spacing"] = float(re.findall(r"\de[+-]?\d\d", line)[0]) if "#FID points" in line: data["fid_points"] = int(line.split()[-1]) # Get the name of the gas if gas_regex.match(line): split_line = line.split() # Only bother parsing if the channel is used gas_index = int(split_line[1]) try: data["gases"][gas_index] = {"gas": " ".join(split_line[3:])} except IndexError: data["gases"][gas_index] = {"gas": ""} # Get the flow rate for channel if flow_regex.match(line): split_line = line.split() gas_index = int(split_line[1]) data["gases"][gas_index]["flow"] = float(split_line[3]) if "#Magnet enabled" in line: data["magnet"] = bool(int(line.split()[2])) # Find the channel the discharge is set to and compile a regex # to look for the channel if dc_regex.match(line): dc_index = line.split()[2] dc_channel = re.compile(r"^#Pulse ch {} enabled".format(dc_index), re.M) # Once the discharge channel index is known, start searching for it if dc_channel: if dc_channel.match(line): data["discharge"] = bool(int(line.split()[-1])) # Find when the FID lines start popping up if fid_regex.match(line): fid = filecontents[index + 1 :] fid = [float(value) for value in fid] data["fid"] = np.array(fid) return data def perform_fft(fid, spacing, start=0, stop=-1, window="boxcar"): """ Perform an FFT on an FID to get the frequency domain spectrum. All of the arguments are optional, and provide control over how the FFT is performed, as well as post-processing parameters like window functions and zero-padding. This is based on the FFT code by Kyle Crabtree, with modifications to fit this dataclass. Parameters ---------- fid - Numpy 1D array Array holding the values of the FID spacing - float Time spacing between FID points in microseconds start - int, optional Starting index for the FID array to perform the FFT stop - int, optional End index for the FID array to perform the FFT zpf - int, optional Pad the FID with zeros to nth nearest power of 2 window - str Specify the window function used to process the FID. Defaults to boxcar, which is effectively no filtering. The names of the window functions available can be found at: https://docs.scipy.org/doc/scipy/reference/signal.windows.html Returns ------- """ fid = np.copy(fid) if window is not None and window in spsig.windows.__all__: window_f = spsig.windows.get_window(window, fid.size) fid *= window_f else: raise Exception("Specified window function is not implemented in SciPy!") # Set values to zero up to starting index fid[:start] = 0.0 if stop < 0: # If we're using negative indexes fid[fid.size + stop :] = 0.0 else: # Otherwise, index with a positive number fid[stop:] = 0.0 # Perform the FFT fft = np.fft.rfft(fid) read_length = len(fid) // 2 + 1 df = 1.0 / fid.size / spacing # Generate the frequency array frequency = np.linspace(0.0, self.header["sideband"] * df, read_length) frequency += self.header["probe_freq"] fft[(frequency >= f_max) & (frequency <= f_min)] = 0.0 fft *= 1000.0 return frequency, fft def fid2fft(fid, rate, frequencies, **kwargs): """ Process an FID by performing an FFT to yield the frequency domain information. Kwargs are passed as additional processing options, and are implemented as some case statements to ensure the settings are valid (e.g. conforms to sampling rate, etc.) :param fid: np.array corresponding to the FID intensity :param rate: sampling rate in Hz :param frequencies: np.array corresponding to the frequency bins :param kwargs: signal processing options: delay - delays the FID processing by setting the start of the FID to zero zeropad - Toggles whether or not the number of sampled points is doubled to get artificially higher resolution in the FFT window - Various window functions provided by `scipy.signal` exp - Specifies an exponential filter filter - 2-tuple specifying the frequency cutoffs for a band pass filter :return: freq_df - pandas dataframe with the FFT spectrum """ # Remove DC new_fid = fid - np.average(fid) if "delay" in kwargs: delay = int(kwargs["delay"] / (1.0 / rate) / 1e6) new_fid[:delay] = 0.0 # Zero-pad the FID if "zeropad" in kwargs: if kwargs["zeropad"] is True: # Pad the FID with zeros to get higher resolution fid = np.append(new_fid, np.zeros(len(new_fid))) # Since we've padded with zeros, we'll have to update the # frequency array frequencies = spsig.resample(frequencies, len(frequencies) * 2) # Apply a window function to the FID if "window" in kwargs: if kwargs["window"] in spsig.windows.__all__: new_fid *= spsig.get_window(kwargs["window"], new_fid.size) # Apply an exponential filter on the FID if "exp" in kwargs: if kwargs["exp"] > 0.0: new_fid *= spsig.exponential(len(new_fid), tau=kwargs["exp"]) # Apply a bandpass filter on the FID if ("filter" in kwargs) and (len(kwargs["filter"]) == 2): low, high = sorted(kwargs["filter"]) if low < high: new_fid = apply_butter_filter(new_fid, low, high, rate) # Perform the FFT fft = np.fft.rfft(new_fid) # Get the real part of the FFT, and only the non-duplicated side real_fft = np.abs(fft[: int(len(new_fid) / 2)]) / len(new_fid) * 1e3 frequencies = spsig.resample(frequencies, real_fft.size) # For some reason, resampling screws up the frequency ordering... real_fft = real_fft[np.argsort(frequencies)] frequencies = np.sort(frequencies) # Package into a pandas dataframe freq_df = pd.DataFrame({"Frequency (MHz)": frequencies, "Intensity": real_fft}) return freq_df def butter_bandpass(low, high, rate, order=1): """ A modified version of the Butterworth bandpass filter described here, adapted for use with the FID signal. http://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html The arguments are: :param low The low frequency cut-off, given in kHz. :param high The high frequency cut-off, given in kHz. :param rate The sampling rate, given in Hz. From the FIDs, this means that the inverse of the FID spacing is used. :return bandpass window """ # Calculate the Nyquist frequency nyq = 0.5 * (rate / (2.0 * np.pi)) low = (low * 1e3) / nyq high = (high * 1e3) / nyq if high > 1.0: raise Exception("High frequency cut-off exceeds the Nyquist frequency.") b, a = spsig.butter(order, [low, high], btype="band", analog=False) return b, a def apply_butter_filter(data, low, high, rate, order=1): """ A modified Butterworth bandpass filter, adapted from the Scipy cookbook. The argument data supplies the FID, which then uses the scipy signal processing function to apply the digital filter, and returns the filtered FID. See the `butter_bandpass` function for additional arguments. """ b, a = butter_bandpass(low, high, rate, order=order) y = spsig.lfilter(b, a, data) return y def generate_ftb_line(frequency, shots, **kwargs): """ Function that generates an FTB file for a list of frequencies, plus categorization tests. kwargs are passed as additional options for the ftb batch. Keywords are: magnet: bool dipole: float atten: int skiptune: bool drfreq: float drpower: int cal parameters: --------------- :param frequency: float for frequency in MHz :param shots: int number of shots to integrate for returns: --------------- :return ftbline: str """ line = "ftm:{:.4f} shots:{}".format(frequency, shots) for key, value in kwargs.items(): line += " {}:{}".format(key, value) line += "\n" return line def neu_categorize_frequencies(frequencies, intensities=None, nshots=50, **kwargs): """ Routine to generate an FTB batch file for performing a series of tests on frequencies. """ ftb_string = "" if intensities: norm_int = intensities / np.max(intensities) shotcounts = np.round(nshots / norm_int).astype(int) else: shotcounts = np.full(len(frequencies), nshots, dtype=int) # default settings for all stuff param_dict = { "dipole": 1.0, "magnet": "false", "drpower": "10", "skiptune": "false", } param_dict.update(kwargs) for freq, shot in zip(frequencies, shotcounts): ftb_string += generate_ftb_str(freq, shot, **param_dict) if "magnet" in kwargs: param_dict["magnet"] = "true" ftb_string += generate_ftb_str(freq, shot, **param_dict) def categorize_frequencies( frequencies, nshots=50, intensities=None, power=None, attn_list=None, dipole=None, attn=None, magnet=False, dr=False, discharge=False, ): """ Function that will format an FT batch file to perform categorization tests, with some flexibility on how certain tests are performed. """ ftb_str = "" if intensities is None: shots = np.full(len(frequencies), nshots, dtype=int) else: shots = np.sqrt(nshots / intensities).astype(int) if dipole: if attn is None: # If dipole test requested, but no attenuation # supplied do the default sweep dipole_test = [0.01, 0.1, 1.0, 3.0, 5.0] dipole_flag = "dipole" else: # Otherwise run specific attenuations dipole_test = attn_list dipole_flag = "atten" if dr is True: freq_list = combinations(frequencies, 2) print(list(freq_list)) else: freq_list = frequencies # loop over each frequency and number of shots for value, shotcount in zip(freq_list, shots): if dr is True: freq, dr_freq = value else: freq = value # Generate normal observation try: freq = float(freq) shotcount = int(shotcount) if dr is True: dr_freq = float(dr_freq) ftb_str += generate_ftb_line(freq, shotcount, **{"skiptune": "false"}) if dr is True: ftb_str += generate_ftb_line( freq, shotcount, **{"skiptune": "true", "drfreq": dr_freq} ) if dipole is True: for dipole_value in dipole_test: ftb_str += generate_ftb_line( freq, shotcount, **{dipole_flag: dipole_value} ) if magnet is True: ftb_str += generate_ftb_line(freq, shotcount, **{"magnet": "true"}) if discharge is True: # Toggle the discharge stack on and off ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "false"} ) ftb_str += generate_ftb_line( freq, shotcount, **{"pulse,1,enabled": "true"} ) except ValueError: print("Error with " + str(value)) return ftb_str def calculate_integration_times(intensity, nshots=50): """ Method for calculating the expected integration time in shot counts based on the intensity; either theoretical line strengths or SNR. parameters: --------------- intensity - array of intensity metric; e.g. SNR nshots - optional int number of shots used for the strongest line returns: --------------- shot_counts - array of shot counts for each frequency """ norm_int = intensity / np.max(intensity) shot_counts = np.round(nshots / norm_int).astype(int) return shot_counts @dataclass @dataclass
[ 11748, 4818, 8079, 198, 11748, 302, 198, 11748, 28686, 198, 11748, 2878, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 340, 861, 10141, 1330, 17790, 11, 1720, 198, 6738, 19720, 1330, 7343, 11, 360, 713, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 9103, 26791, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 629, 541, 88, 1330, 6737, 355, 599, 82, 328, 198, 11748, 7110, 306, 13, 34960, 62, 672, 8457, 355, 467, 198, 6738, 256, 80, 36020, 13, 2306, 261, 1258, 2070, 1330, 256, 80, 36020, 198, 11748, 3127, 87, 355, 299, 87, 198, 6738, 20966, 88, 28029, 11407, 1330, 14333, 11, 569, 14253, 11, 367, 14253, 198, 6738, 300, 76, 11147, 13, 27530, 1330, 44800, 17633, 198, 198, 6738, 279, 893, 806, 10141, 1330, 31878, 198, 6738, 279, 893, 806, 10141, 1330, 3785, 69, 9548, 355, 31246, 198, 6738, 279, 893, 806, 10141, 1330, 15830, 198, 6738, 279, 893, 806, 10141, 13, 4443, 430, 1330, 3781, 198, 6738, 279, 893, 806, 10141, 1330, 13544, 364, 628, 198, 198, 4299, 21136, 62, 4443, 6582, 7, 34345, 11, 11387, 28, 1238, 13, 15, 2599, 198, 220, 220, 220, 37227, 15553, 284, 1100, 287, 257, 2042, 354, 343, 79, 393, 33734, 9792, 44, 10958, 422, 2393, 37227, 198, 220, 220, 220, 1366, 14535, 796, 279, 67, 13, 961, 62, 40664, 7, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 11, 46728, 2676, 2625, 59, 83, 1600, 3891, 28, 14692, 37, 28707, 1600, 366, 5317, 6377, 33116, 14267, 8516, 28, 16, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1441, 1366, 14535, 58, 7890, 14535, 14692, 5317, 6377, 8973, 19841, 11387, 60, 628, 198, 4299, 3641, 62, 66, 615, 414, 7, 7890, 14535, 11, 294, 411, 28, 15, 13, 18, 11, 15942, 577, 28, 17821, 2599, 198, 220, 220, 220, 37227, 9938, 82, 262, 3641, 8373, 286, 257, 2141, 381, 1754, 5166, 287, 31643, 376, 15972, 13871, 198, 220, 220, 220, 220, 220, 220, 220, 290, 3769, 257, 5721, 286, 11677, 19998, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8975, 262, 9103, 4917, 11387, 468, 284, 307, 38304, 284, 651, 262, 3641, 198, 220, 220, 220, 220, 220, 220, 220, 8373, 9380, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 9938, 262, 9103, 17509, 871, 198, 220, 220, 220, 3641, 62, 9630, 274, 796, 9103, 26791, 13, 9630, 274, 7, 7890, 14535, 14692, 5317, 6377, 33116, 294, 411, 28, 400, 411, 8, 198, 220, 220, 220, 9103, 62, 69, 8897, 3976, 796, 1366, 14535, 13, 346, 420, 58, 16159, 62, 9630, 274, 7131, 1, 37, 28707, 8973, 198, 220, 220, 220, 1303, 27131, 378, 262, 3641, 8373, 355, 262, 2811, 198, 220, 220, 220, 3641, 796, 45941, 13, 23913, 7, 36729, 62, 69, 8897, 3976, 8, 198, 220, 220, 220, 611, 15942, 577, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 23656, 8373, 379, 366, 1343, 965, 7, 16159, 4008, 198, 220, 220, 220, 1366, 14535, 14692, 34519, 31902, 8973, 796, 1366, 14535, 14692, 37, 28707, 8973, 532, 3641, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 198, 4871, 20937, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 9487, 329, 257, 20937, 13, 9340, 82, 477, 286, 262, 5981, 1321, 326, 198, 220, 220, 220, 8477, 257, 19446, 9367, 11, 884, 355, 262, 4522, 11, 644, 4572, 340, 373, 7723, 198, 220, 220, 220, 319, 11, 290, 262, 11992, 6460, 13, 628, 220, 220, 220, 7875, 257, 1178, 1398, 5050, 326, 481, 787, 804, 19649, 3538, 884, 355, 198, 220, 220, 220, 262, 3128, 262, 9367, 373, 7723, 290, 262, 21678, 973, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4686, 25, 493, 198, 220, 220, 220, 4572, 25, 965, 198, 220, 220, 220, 49909, 25, 45941, 13, 18747, 198, 220, 220, 220, 3128, 25, 4818, 8079, 13, 19608, 8079, 198, 220, 220, 220, 6934, 25, 493, 796, 657, 198, 220, 220, 220, 31643, 62, 37764, 496, 25, 493, 796, 657, 198, 220, 220, 220, 31643, 62, 41769, 25, 493, 796, 657, 198, 220, 220, 220, 31643, 62, 35324, 25, 12178, 796, 657, 13, 15, 198, 220, 220, 220, 1553, 62, 35324, 25, 12178, 796, 657, 13, 15, 198, 220, 220, 220, 1553, 62, 6477, 25, 493, 796, 657, 198, 220, 220, 220, 49909, 62, 13033, 25, 493, 796, 657, 198, 220, 220, 220, 49909, 62, 2777, 4092, 25, 12178, 796, 657, 13, 15, 198, 220, 220, 220, 17655, 25, 20512, 796, 10352, 198, 220, 220, 220, 19972, 25, 20512, 796, 10352, 198, 220, 220, 220, 21678, 25, 360, 713, 796, 2214, 7, 12286, 62, 69, 9548, 28, 11600, 8, 198, 220, 220, 220, 8106, 25, 7343, 796, 2214, 7, 12286, 62, 69, 9548, 28, 4868, 8, 198, 220, 220, 220, 1033, 25, 12178, 796, 657, 13, 15, 198, 220, 220, 220, 1976, 263, 404, 324, 25, 20512, 796, 10352, 198, 220, 220, 220, 4324, 25, 965, 796, 13538, 628, 220, 220, 220, 825, 11593, 7353, 62, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40480, 1444, 706, 11593, 15003, 834, 318, 1444, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35006, 376, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14681, 62, 69, 312, 3419, 628, 220, 220, 220, 825, 11593, 22089, 30073, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 4625, 2446, 284, 4439, 257, 2769, 4866, 532, 428, 481, 307, 973, 618, 198, 220, 220, 220, 220, 220, 220, 220, 29349, 3294, 20937, 5563, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 2769, 4866, 286, 262, 1459, 20937, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 33523, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 834, 4871, 834, 796, 2116, 13, 834, 4871, 834, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 834, 11600, 834, 13, 19119, 7, 944, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 825, 2811, 7, 944, 11, 1854, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 4625, 2446, 284, 763, 12, 23913, 734, 393, 517, 1446, 504, 287, 262, 640, 7386, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 20937, 2134, 11, 393, 46545, 14, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 649, 20937, 2134, 351, 262, 763, 12, 29373, 376, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 2116, 13, 834, 22089, 30073, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 69, 312, 796, 45941, 13, 23913, 7, 847, 82, 13, 2302, 437, 7, 3605, 62, 35836, 13, 69, 312, 828, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 23913, 62, 2340, 796, 685, 35836, 13, 312, 329, 9367, 287, 1854, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 612, 318, 645, 9117, 2446, 11, 788, 7048, 356, 821, 1762, 351, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2060, 20937, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 69, 312, 796, 45941, 13, 23913, 26933, 3605, 62, 35836, 13, 69, 312, 11, 1854, 13, 69, 312, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 23913, 62, 2340, 796, 685, 847, 82, 13, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 14681, 62, 69, 312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 825, 11593, 2860, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 4625, 2446, 284, 763, 12, 2860, 734, 393, 517, 1446, 504, 287, 262, 640, 7386, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 20937, 2134, 11, 393, 46545, 14, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 649, 20937, 2134, 351, 262, 763, 12, 29373, 376, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 2116, 13, 834, 22089, 30073, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 69, 312, 796, 45941, 13, 16345, 26933, 3605, 62, 35836, 13, 69, 312, 11, 584, 13, 69, 312, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 14681, 62, 69, 312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 825, 11593, 7266, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 360, 4625, 2446, 284, 34128, 1194, 20937, 422, 262, 1459, 20937, 287, 262, 640, 7386, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 68, 13, 428, 9367, 532, 584, 9367, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 20937, 2134, 11, 393, 46545, 14, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 649, 20937, 2134, 351, 262, 13284, 20216, 376, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 2116, 13, 834, 22089, 30073, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 69, 312, 796, 45941, 13, 7266, 83, 974, 7, 3605, 62, 35836, 13, 69, 312, 11, 584, 13, 69, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 14681, 62, 69, 312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 825, 34128, 62, 35324, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 34128, 1194, 20937, 422, 262, 1459, 287, 262, 8373, 7386, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 20937, 2134, 284, 34128, 351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 649, 20937, 2134, 351, 262, 13284, 20216, 10958, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 2116, 13, 834, 22089, 30073, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 4443, 6582, 14692, 5317, 6377, 8973, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 4443, 6582, 14692, 5317, 6377, 8973, 532, 584, 13, 4443, 6582, 14692, 5317, 6377, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 7266, 83, 20216, 796, 584, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 825, 751, 62, 35324, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 751, 1194, 20937, 422, 262, 1459, 287, 262, 8373, 7386, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 584, 25, 20937, 2134, 284, 751, 351, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 649, 20937, 2134, 351, 262, 763, 12, 29373, 10958, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 796, 2116, 13, 834, 22089, 30073, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 4443, 6582, 14692, 5317, 6377, 8973, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 4443, 6582, 14692, 5317, 6377, 8973, 1343, 584, 13, 4443, 6582, 14692, 5317, 6377, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 35836, 13, 7266, 83, 20216, 796, 584, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 649, 62, 35836, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 11600, 7, 565, 82, 11, 1366, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 284, 41216, 257, 20937, 2134, 422, 257, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 286, 19446, 9367, 1366, 7723, 422, 4600, 29572, 62, 35836, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1366, 62, 11600, 25, 8633, 7268, 44267, 1366, 422, 19446, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 20937, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9367, 62, 26801, 796, 537, 82, 7, 1174, 7890, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9367, 62, 26801, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 39568, 701, 76, 7, 565, 82, 11, 2393, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 41216, 257, 20937, 2134, 422, 257, 19446, 9367, 2393, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2561, 3440, 262, 3951, 656, 4088, 290, 21136, 262, 1366, 656, 198, 220, 220, 220, 220, 220, 220, 220, 257, 22155, 11, 543, 788, 3011, 3804, 656, 257, 20937, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2393, 6978, 25, 965, 3108, 284, 376, 2389, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 20937, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 6978, 8, 355, 1100, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 796, 21136, 62, 35836, 7, 961, 62, 7753, 13, 961, 6615, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 9367, 62, 26801, 796, 537, 82, 7, 1174, 7890, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9367, 62, 26801, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 27729, 293, 7, 565, 82, 11, 2393, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 2251, 257, 20937, 2134, 422, 257, 4271, 2298, 992, 198, 220, 220, 220, 220, 220, 220, 220, 20937, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2393, 6978, 25, 3108, 284, 262, 20937, 2298, 293, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 4554, 286, 262, 20937, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9367, 62, 26801, 796, 31878, 13, 961, 62, 26801, 7, 7753, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 35836, 62, 26801, 11, 20937, 8, 318, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 8979, 318, 407, 257, 20937, 2134, 26, 23884, 1911, 18982, 7, 4906, 7, 35836, 62, 26801, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9367, 62, 26801, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 422, 62, 47960, 7, 565, 82, 11, 6569, 62, 6978, 11, 26678, 62, 26801, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 284, 41216, 257, 20937, 2134, 422, 257, 6569, 4382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 7875, 262, 3038, 284, 1208, 281, 4554, 286, 257, 5772, 12125, 33825, 11792, 11, 543, 561, 307, 198, 220, 220, 220, 220, 220, 220, 220, 4465, 287, 257, 347, 963, 13, 1002, 4844, 318, 14275, 11, 281, 4554, 481, 307, 2727, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6569, 62, 6978, 25, 965, 6569, 3108, 284, 262, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 26678, 62, 26801, 25, 11902, 4578, 284, 5127, 257, 5772, 12125, 33825, 11792, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 20937, 2134, 422, 6569, 33734, 9792, 44, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26678, 62, 26801, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 2539, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 12340, 27071, 45824, 14, 312, 62, 3808, 64, 13, 12984, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2583, 3672, 796, 5128, 7203, 5492, 2148, 6569, 2583, 3672, 25, 220, 220, 220, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 5128, 7203, 5492, 2148, 17594, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 62, 33692, 796, 19779, 4774, 3672, 1298, 2583, 3672, 11, 366, 29460, 1298, 20579, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 12286, 62, 2539, 6978, 8, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 62, 33692, 14692, 2539, 62, 34345, 8973, 796, 4277, 62, 2539, 6978, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 5128, 7203, 5492, 2148, 9206, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 62, 33692, 14692, 28712, 8973, 796, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26678, 62, 26801, 796, 31878, 13, 36510, 11792, 7, 1174, 45824, 62, 33692, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 262, 9367, 1366, 422, 6569, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 796, 21136, 62, 35836, 7, 45824, 62, 26801, 13, 9654, 62, 47960, 7, 47960, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9367, 62, 26801, 796, 537, 82, 7, 1174, 7890, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9367, 62, 26801, 628, 220, 220, 220, 825, 284, 62, 7753, 7, 944, 11, 2393, 6978, 11, 5794, 2625, 88, 43695, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11789, 284, 10285, 1366, 284, 575, 2390, 43, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49751, 389, 6338, 3066, 11, 475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 635, 307, 14275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41436, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2393, 6978, 532, 965, 3108, 284, 331, 43695, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5794, 532, 965, 2853, 10720, 262, 15582, 973, 329, 30231, 13, 2896, 13185, 284, 575, 2390, 43, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 526, 407, 287, 2393, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5794, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 15853, 27071, 17752, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 15853, 27071, 88, 4029, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5794, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 31878, 13, 39455, 62, 17752, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6260, 796, 31878, 13, 39455, 62, 88, 43695, 198, 220, 220, 220, 220, 220, 220, 220, 6260, 7, 7753, 6978, 11, 2116, 13, 834, 11600, 834, 8, 628, 220, 220, 220, 825, 284, 62, 27729, 293, 7, 944, 11, 2393, 6978, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 12346, 829, 262, 20937, 2134, 351, 262, 1693, 8019, 29908, 9177, 198, 220, 220, 220, 220, 220, 220, 220, 287, 31878, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2393, 6978, 25, 11902, 4578, 284, 2298, 293, 284, 13, 2896, 13185, 284, 262, 4686, 13, 79, 41582, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 3224, 6460, 329, 262, 2298, 293, 4905, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2393, 6978, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 6978, 796, 45144, 27422, 79, 41582, 1911, 18982, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31878, 13, 21928, 62, 26801, 7, 944, 11, 2393, 6978, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 1429, 62, 69, 312, 7, 944, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 35006, 281, 376, 9792, 319, 262, 376, 2389, 284, 7800, 262, 8373, 7386, 10958, 13, 198, 220, 220, 220, 220, 220, 220, 220, 31767, 22046, 389, 3804, 656, 262, 376, 2389, 7587, 11, 543, 481, 20957, 262, 198, 220, 220, 220, 220, 220, 220, 220, 20937, 12608, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 32233, 21179, 7159, 329, 7587, 262, 376, 2389, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 8373, 41701, 198, 220, 220, 220, 220, 220, 220, 220, 19998, 796, 45941, 13, 21602, 10223, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 615, 414, 62, 35324, 11, 2116, 13, 66, 615, 414, 62, 35324, 1343, 352, 13, 15, 11, 18896, 7, 944, 13, 69, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27131, 378, 262, 640, 41701, 198, 220, 220, 220, 220, 220, 220, 220, 640, 796, 45941, 13, 21602, 10223, 7, 15, 13, 15, 11, 2116, 13, 69, 312, 62, 2777, 4092, 1635, 2116, 13, 69, 312, 62, 13033, 11, 2116, 13, 69, 312, 62, 13033, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 4868, 796, 14631, 17497, 1600, 366, 24455, 1600, 366, 11201, 1600, 366, 9107, 404, 324, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 1988, 329, 1994, 11, 1988, 287, 2116, 13, 834, 11600, 834, 13, 23814, 3419, 611, 1994, 287, 1429, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3827, 13154, 351, 2836, 6460, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 62, 11600, 13, 19119, 7, 1174, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 69, 312, 796, 45941, 13, 30073, 7, 944, 13, 69, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4443, 6582, 796, 49909, 17, 487, 83, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 69, 312, 11, 352, 13, 15, 1220, 2116, 13, 69, 312, 62, 2777, 4092, 11, 19998, 11, 12429, 14681, 62, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 69, 312, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 4895, 7575, 357, 385, 8, 1298, 640, 1635, 352, 68, 21, 11, 366, 37, 2389, 1298, 20218, 62, 69, 312, 30072, 628, 220, 220, 220, 825, 1626, 62, 2435, 7, 944, 11, 3128, 62, 9521, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 329, 13213, 286, 262, 9367, 373, 2077, 1022, 198, 220, 220, 220, 220, 220, 220, 220, 257, 7368, 3128, 2837, 287, 1227, 14, 820, 14, 1941, 11, 287, 262, 5794, 198, 220, 220, 220, 220, 220, 220, 220, 8702, 14, 2931, 14, 2919, 329, 3035, 860, 400, 11, 3648, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3128, 62, 9521, 25, 1351, 7268, 262, 3726, 290, 886, 3128, 13042, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 20512, 532, 6407, 611, 1626, 2837, 11, 10352, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1903, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 4475, 62, 9521, 58, 15, 4357, 36521, 76, 14, 4, 67, 14, 4, 88, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1903, 796, 4818, 8079, 13, 19608, 8079, 7, 16, 11, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2739, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 4475, 62, 9521, 58, 16, 4357, 36521, 76, 14, 4, 67, 14, 4, 88, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2739, 796, 4818, 8079, 13, 19608, 8079, 7, 24214, 11, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1903, 19841, 2116, 13, 4475, 19841, 2739, 628, 220, 220, 220, 825, 318, 62, 10378, 33342, 7, 944, 11, 1006, 11, 686, 72, 28, 14202, 11, 42435, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 329, 13213, 611, 262, 6737, 287, 428, 20937, 318, 1342, 198, 220, 220, 220, 220, 220, 220, 220, 621, 326, 286, 1194, 9367, 13, 770, 318, 1760, 416, 257, 2829, 7208, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 2811, 286, 838, 4387, 17509, 871, 287, 262, 734, 5444, 430, 13, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1459, 9367, 318, 1342, 8157, 621, 262, 4941, 416, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 42435, 5873, 11, 788, 340, 318, 366, 10378, 33342, 1911, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2163, 460, 307, 973, 284, 5004, 611, 257, 9367, 611, 34069, 198, 220, 220, 220, 220, 220, 220, 220, 287, 10560, 14, 19726, 3262, 14, 6381, 10136, 840, 592, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 532, 3494, 257, 33166, 44345, 1332, 286, 10524, 284, 5004, 611, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42435, 318, 19941, 2383, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1006, 25, 1218, 20937, 2134, 329, 7208, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 42435, 25, 5873, 286, 42435, 2938, 286, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 20512, 532, 6407, 611, 6737, 287, 428, 20937, 318, 1342, 8157, 621, 262, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 5420, 796, 1006, 13, 4443, 6582, 14692, 5317, 6377, 1, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 8158, 796, 2116, 13, 4443, 6582, 14692, 5317, 6377, 1, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 62, 19503, 80, 796, 1006, 13, 11147, 13, 35324, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5420, 62, 312, 796, 1006, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 611, 686, 72, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 5420, 796, 331, 62, 5420, 58, 305, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 8158, 796, 331, 62, 8158, 58, 305, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 1595, 470, 670, 11, 393, 318, 407, 3573, 48212, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 442, 271, 80, 11, 279, 62, 8367, 796, 442, 271, 421, 533, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 331, 62, 8158, 11, 331, 62, 5420, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 45941, 13, 19282, 7, 88, 62, 8158, 11, 16488, 28, 15, 8, 1635, 1467, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 42435, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 796, 45941, 13, 16345, 7, 88, 62, 5420, 11, 16488, 28, 15, 8, 532, 264, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 16345, 7, 88, 62, 8158, 11, 16488, 28, 15, 8, 19841, 2938, 628, 220, 220, 220, 825, 41058, 62, 40546, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13610, 257, 28114, 306, 1446, 1436, 4743, 12854, 13, 34099, 416, 262, 347, 963, 2163, 11, 3584, 198, 220, 220, 220, 220, 220, 220, 220, 2854, 12, 3083, 340, 2753, 8097, 284, 7110, 510, 5299, 23924, 23824, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 12854, 25, 1446, 1436, 4743, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 796, 366, 33351, 4522, 25, 23884, 27, 1671, 29, 34, 615, 414, 25, 23884, 27, 1671, 29, 7707, 25, 23884, 27, 1671, 29, 13436, 3262, 25, 23884, 27, 1671, 29, 8086, 77, 25, 23884, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 615, 414, 62, 35324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7109, 62, 35324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19726, 3262, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 66, 615, 414, 62, 41769, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 12854, 796, 467, 13, 3351, 1436, 4743, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 37659, 13, 21602, 10223, 7, 944, 13, 312, 11, 2116, 13, 312, 1343, 352, 11, 18896, 7, 944, 13, 4443, 6582, 14692, 5317, 6377, 8973, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 944, 13, 4443, 6582, 14692, 5317, 6377, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 28, 5239, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18364, 28, 4895, 8043, 1298, 366, 81, 22296, 7, 3559, 11, 15187, 11, 19782, 16725, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20599, 10951, 2625, 5239, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12854, 628, 220, 220, 220, 825, 4197, 62, 66, 615, 414, 7, 944, 11, 7110, 28, 17821, 11, 15942, 577, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 35006, 257, 4197, 284, 262, 31643, 10958, 13, 36965, 257, 20312, 12822, 31562, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 326, 10356, 4340, 262, 1271, 286, 15830, 10007, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7110, 25, 20512, 11986, 1771, 257, 28114, 306, 3785, 318, 925, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 9104, 25048, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 2116, 13, 4443, 6582, 14692, 5317, 6377, 1, 4083, 14781, 2616, 22446, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 4443, 6582, 14692, 37, 28707, 357, 25983, 16725, 4083, 14781, 2616, 22446, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 796, 15830, 13, 47, 958, 35389, 31562, 17633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 2746, 13, 11147, 62, 24874, 7, 87, 11, 331, 11, 15942, 577, 28, 19011, 577, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4443, 6582, 14692, 31805, 8973, 796, 1255, 13, 13466, 62, 11147, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11147, 796, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11147, 13, 35324, 796, 2116, 13, 11147, 13, 13466, 62, 27160, 14692, 87, 15, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7110, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 467, 13, 11337, 38300, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 39786, 14692, 87, 22704, 1, 7131, 1, 7839, 8973, 796, 366, 37, 28707, 357, 25983, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 39786, 14692, 87, 22704, 1, 7131, 1, 42298, 18982, 8973, 796, 27071, 17, 69, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 1416, 1436, 7, 87, 28, 87, 11, 331, 28, 88, 11, 1438, 2625, 31310, 8520, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 1416, 1436, 7, 87, 28, 87, 11, 331, 28, 20274, 13, 13466, 62, 11147, 11, 1438, 2625, 31805, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 11, 2336, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 628, 198, 4299, 21136, 62, 35836, 7, 7753, 3642, 658, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 329, 37895, 262, 376, 2389, 1366, 422, 281, 19446, 9367, 13, 383, 1366, 198, 220, 220, 220, 318, 4504, 355, 257, 22155, 11, 543, 460, 307, 973, 284, 41216, 257, 198, 220, 220, 220, 20937, 2134, 13, 198, 220, 220, 220, 1058, 17143, 2393, 3642, 658, 25, 1351, 286, 3951, 422, 281, 376, 2389, 2393, 198, 220, 220, 220, 1058, 7783, 25, 8633, 7268, 44267, 1366, 422, 376, 2389, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1366, 796, 19779, 70, 1386, 1298, 8633, 3419, 92, 198, 220, 220, 220, 1303, 376, 2389, 40364, 198, 220, 220, 220, 49909, 62, 260, 25636, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 69, 312, 59, 67, 9, 1600, 302, 13, 44, 8, 198, 220, 220, 220, 1303, 797, 25636, 284, 1064, 3623, 9619, 198, 220, 220, 220, 3623, 62, 260, 25636, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 2, 39699, 3467, 67, 1438, 1600, 302, 13, 44, 8, 198, 220, 220, 220, 5202, 62, 260, 25636, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 2, 39699, 3467, 67, 5202, 1600, 302, 13, 44, 8, 198, 220, 220, 220, 1303, 797, 25636, 284, 4886, 543, 6518, 318, 900, 284, 262, 17655, 198, 220, 220, 220, 30736, 62, 260, 25636, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 2, 47, 9615, 442, 3467, 67, 1438, 59, 82, 9, 9697, 1600, 302, 13, 44, 8, 198, 220, 220, 220, 30736, 62, 17620, 796, 6045, 198, 220, 220, 220, 329, 6376, 11, 1627, 287, 27056, 378, 7, 7753, 3642, 658, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 33351, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 1370, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 312, 8973, 796, 493, 7, 35312, 62, 1370, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 30243, 8973, 796, 6626, 62, 1370, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 30243, 8973, 796, 366, 9792, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 2964, 1350, 2030, 80, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 66, 615, 414, 62, 35324, 8973, 796, 12178, 7, 1370, 13, 35312, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 2484, 1747, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 20910, 8973, 796, 493, 7, 1370, 13, 35312, 3419, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 10430, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10283, 62, 83, 853, 1039, 796, 14631, 2, 10430, 1600, 37082, 83, 1600, 37082, 77, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 4475, 8973, 796, 4818, 8079, 13, 19608, 8079, 13, 2536, 457, 524, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 302, 13, 7266, 7203, 91, 1911, 22179, 7, 36311, 62, 83, 853, 1039, 828, 366, 1600, 1627, 828, 36521, 64, 4064, 65, 4064, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 4064, 56, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 34, 615, 414, 45444, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 66, 615, 414, 62, 37764, 496, 8973, 796, 493, 7, 1370, 13, 35312, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 8086, 268, 2288, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 66, 615, 414, 62, 41769, 8973, 796, 493, 7, 1370, 13, 35312, 3419, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 7707, 2030, 80, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 7109, 62, 35324, 8973, 796, 12178, 7, 1370, 13, 35312, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 7707, 1176, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 7109, 62, 6477, 8973, 796, 493, 7, 1370, 13, 35312, 3419, 58, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 37, 2389, 31050, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 69, 312, 62, 2777, 4092, 8973, 796, 12178, 7, 260, 13, 19796, 439, 7, 81, 1, 59, 2934, 58, 10, 12, 60, 30, 59, 67, 59, 67, 1600, 1627, 38381, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 37, 2389, 2173, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 69, 312, 62, 13033, 8973, 796, 493, 7, 1370, 13, 35312, 3419, 58, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 1438, 286, 262, 3623, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3623, 62, 260, 25636, 13, 15699, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 1370, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5514, 11393, 32096, 611, 262, 6518, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9630, 796, 493, 7, 35312, 62, 1370, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 70, 1386, 1, 7131, 22649, 62, 9630, 60, 796, 19779, 22649, 1298, 366, 27071, 22179, 7, 35312, 62, 1370, 58, 18, 25, 12962, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 70, 1386, 1, 7131, 22649, 62, 9630, 60, 796, 19779, 22649, 1298, 13538, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 262, 5202, 2494, 329, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5202, 62, 260, 25636, 13, 15699, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 62, 1370, 796, 1627, 13, 35312, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3623, 62, 9630, 796, 493, 7, 35312, 62, 1370, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 70, 1386, 1, 7131, 22649, 62, 9630, 7131, 1, 11125, 8973, 796, 12178, 7, 35312, 62, 1370, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 25113, 13436, 3262, 9343, 1, 287, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 19726, 3262, 8973, 796, 20512, 7, 600, 7, 1370, 13, 35312, 3419, 58, 17, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 262, 6518, 262, 17655, 318, 900, 284, 290, 17632, 257, 40364, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 804, 329, 262, 6518, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30736, 62, 260, 25636, 13, 15699, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30736, 62, 9630, 796, 1627, 13, 35312, 3419, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30736, 62, 17620, 796, 302, 13, 5589, 576, 7, 81, 1, 61, 2, 47, 9615, 442, 23884, 9343, 1911, 18982, 7, 17896, 62, 9630, 828, 302, 13, 44, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4874, 262, 17655, 6518, 6376, 318, 1900, 11, 923, 10342, 329, 340, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30736, 62, 17620, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30736, 62, 17620, 13, 15699, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 6381, 10136, 8973, 796, 20512, 7, 600, 7, 1370, 13, 35312, 3419, 58, 12, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 618, 262, 376, 2389, 3951, 923, 26324, 510, 198, 220, 220, 220, 220, 220, 220, 220, 611, 49909, 62, 260, 25636, 13, 15699, 7, 1370, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49909, 796, 2393, 3642, 658, 58, 9630, 1343, 352, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49909, 796, 685, 22468, 7, 8367, 8, 329, 1988, 287, 49909, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 69, 312, 8973, 796, 45941, 13, 18747, 7, 69, 312, 8, 198, 220, 220, 220, 1441, 1366, 628, 198, 4299, 1620, 62, 487, 83, 7, 69, 312, 11, 31050, 11, 923, 28, 15, 11, 2245, 10779, 16, 11, 4324, 2625, 3524, 7718, 1, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35006, 281, 376, 9792, 319, 281, 376, 2389, 284, 651, 262, 8373, 7386, 10958, 13, 198, 220, 220, 220, 1439, 286, 262, 7159, 389, 11902, 11, 290, 2148, 1630, 625, 703, 262, 376, 9792, 318, 6157, 11, 355, 880, 355, 1281, 12, 36948, 198, 220, 220, 220, 10007, 588, 4324, 5499, 290, 6632, 12, 39231, 13, 628, 220, 220, 220, 770, 318, 1912, 319, 262, 376, 9792, 2438, 416, 14316, 32379, 21048, 11, 351, 19008, 284, 4197, 428, 4818, 330, 31172, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 49909, 532, 399, 32152, 352, 35, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 4769, 262, 3815, 286, 262, 376, 2389, 198, 220, 220, 220, 31050, 532, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 3862, 31050, 1022, 376, 2389, 2173, 287, 4580, 43012, 198, 220, 220, 220, 923, 532, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 17962, 6376, 329, 262, 376, 2389, 7177, 284, 1620, 262, 376, 9792, 198, 220, 220, 220, 2245, 532, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 5268, 6376, 329, 262, 376, 2389, 7177, 284, 1620, 262, 376, 9792, 198, 220, 220, 220, 1976, 79, 69, 532, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 15744, 262, 376, 2389, 351, 1976, 27498, 284, 299, 400, 16936, 1176, 286, 362, 198, 220, 220, 220, 4324, 532, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 262, 4324, 2163, 973, 284, 1429, 262, 376, 2389, 13, 2896, 13185, 284, 3091, 7718, 11, 543, 318, 6840, 645, 25431, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 3891, 286, 262, 4324, 5499, 1695, 460, 307, 1043, 379, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3740, 1378, 31628, 13, 1416, 541, 88, 13, 2398, 14, 15390, 14, 1416, 541, 88, 14, 35790, 14, 12683, 282, 13, 28457, 13, 6494, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49909, 796, 45941, 13, 30073, 7, 69, 312, 8, 198, 220, 220, 220, 611, 4324, 318, 407, 6045, 290, 4324, 287, 599, 82, 328, 13, 28457, 13, 834, 439, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 62, 69, 796, 599, 82, 328, 13, 28457, 13, 1136, 62, 17497, 7, 17497, 11, 49909, 13, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 49909, 1635, 28, 4324, 62, 69, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 22882, 1431, 4324, 2163, 318, 407, 9177, 287, 10286, 20519, 2474, 8, 198, 220, 220, 220, 1303, 5345, 3815, 284, 6632, 510, 284, 3599, 6376, 198, 220, 220, 220, 49909, 58, 25, 9688, 60, 796, 657, 13, 15, 198, 220, 220, 220, 611, 2245, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 356, 821, 1262, 4633, 39199, 198, 220, 220, 220, 220, 220, 220, 220, 49909, 58, 69, 312, 13, 7857, 1343, 2245, 1058, 60, 796, 657, 13, 15, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 11, 6376, 351, 257, 3967, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 49909, 58, 11338, 47715, 796, 657, 13, 15, 198, 220, 220, 220, 1303, 35006, 262, 376, 9792, 198, 220, 220, 220, 277, 701, 796, 45941, 13, 487, 83, 13, 81, 487, 83, 7, 69, 312, 8, 198, 220, 220, 220, 1100, 62, 13664, 796, 18896, 7, 69, 312, 8, 3373, 362, 1343, 352, 198, 220, 220, 220, 47764, 796, 352, 13, 15, 1220, 49909, 13, 7857, 1220, 31050, 198, 220, 220, 220, 1303, 2980, 378, 262, 8373, 7177, 198, 220, 220, 220, 8373, 796, 45941, 13, 21602, 10223, 7, 15, 13, 15, 11, 2116, 13, 25677, 14692, 1589, 3903, 8973, 1635, 47764, 11, 1100, 62, 13664, 8, 198, 220, 220, 220, 8373, 15853, 2116, 13, 25677, 14692, 1676, 1350, 62, 19503, 80, 8973, 198, 220, 220, 220, 277, 701, 58, 7, 35324, 18189, 277, 62, 9806, 8, 1222, 357, 35324, 19841, 277, 62, 1084, 15437, 796, 657, 13, 15, 198, 220, 220, 220, 277, 701, 1635, 28, 8576, 13, 15, 198, 220, 220, 220, 1441, 8373, 11, 277, 701, 628, 198, 4299, 49909, 17, 487, 83, 7, 69, 312, 11, 2494, 11, 19998, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10854, 281, 376, 2389, 416, 9489, 281, 376, 9792, 284, 7800, 262, 8373, 7386, 198, 220, 220, 220, 1321, 13, 31767, 22046, 389, 3804, 355, 3224, 7587, 3689, 11, 198, 220, 220, 220, 290, 389, 9177, 355, 617, 1339, 6299, 284, 4155, 262, 6460, 198, 220, 220, 220, 389, 4938, 357, 68, 13, 70, 13, 17216, 82, 284, 19232, 2494, 11, 3503, 2014, 628, 220, 220, 220, 1058, 17143, 49909, 25, 45941, 13, 18747, 11188, 284, 262, 376, 2389, 12245, 198, 220, 220, 220, 1058, 17143, 2494, 25, 19232, 2494, 287, 26109, 198, 220, 220, 220, 1058, 17143, 19998, 25, 45941, 13, 18747, 11188, 284, 262, 8373, 41701, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 6737, 7587, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5711, 532, 16119, 262, 376, 2389, 7587, 416, 4634, 262, 923, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 376, 2389, 284, 6632, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 263, 404, 324, 532, 309, 48549, 1771, 393, 407, 262, 1271, 286, 35846, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 318, 15229, 284, 651, 32455, 2440, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6323, 287, 262, 376, 9792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 532, 26386, 4324, 5499, 2810, 416, 4600, 1416, 541, 88, 13, 12683, 282, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1033, 532, 18291, 6945, 281, 39682, 8106, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8106, 532, 362, 12, 83, 29291, 31577, 262, 8373, 2005, 8210, 329, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 1208, 8106, 198, 220, 220, 220, 1058, 7783, 25, 2030, 80, 62, 7568, 532, 19798, 292, 1366, 14535, 351, 262, 376, 9792, 10958, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 17220, 6257, 198, 220, 220, 220, 649, 62, 69, 312, 796, 49909, 532, 45941, 13, 23913, 7, 69, 312, 8, 198, 220, 220, 220, 611, 366, 40850, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5711, 796, 493, 7, 46265, 22046, 14692, 40850, 8973, 1220, 357, 16, 13, 15, 1220, 2494, 8, 1220, 352, 68, 21, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 69, 312, 58, 25, 40850, 60, 796, 657, 13, 15, 198, 220, 220, 220, 1303, 12169, 12, 15636, 262, 376, 2389, 198, 220, 220, 220, 611, 366, 9107, 404, 324, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 14692, 9107, 404, 324, 8973, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15744, 262, 376, 2389, 351, 1976, 27498, 284, 651, 2440, 6323, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49909, 796, 45941, 13, 33295, 7, 3605, 62, 69, 312, 11, 45941, 13, 9107, 418, 7, 11925, 7, 3605, 62, 69, 312, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4619, 356, 1053, 44582, 351, 1976, 27498, 11, 356, 1183, 423, 284, 4296, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8373, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19998, 796, 599, 82, 328, 13, 411, 1403, 7, 69, 8897, 3976, 11, 18896, 7, 69, 8897, 3976, 8, 1635, 362, 8, 198, 220, 220, 220, 1303, 27967, 257, 4324, 2163, 284, 262, 376, 2389, 198, 220, 220, 220, 611, 366, 17497, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 14692, 17497, 8973, 287, 599, 82, 328, 13, 28457, 13, 834, 439, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 69, 312, 1635, 28, 599, 82, 328, 13, 1136, 62, 17497, 7, 46265, 22046, 14692, 17497, 33116, 649, 62, 69, 312, 13, 7857, 8, 198, 220, 220, 220, 1303, 27967, 281, 39682, 8106, 319, 262, 376, 2389, 198, 220, 220, 220, 611, 366, 11201, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 86, 22046, 14692, 11201, 8973, 1875, 657, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 69, 312, 1635, 28, 599, 82, 328, 13, 11201, 35470, 7, 11925, 7, 3605, 62, 69, 312, 828, 256, 559, 28, 46265, 22046, 14692, 11201, 8973, 8, 198, 220, 220, 220, 1303, 27967, 257, 4097, 6603, 8106, 319, 262, 376, 2389, 198, 220, 220, 220, 611, 5855, 24455, 1, 287, 479, 86, 22046, 8, 290, 357, 11925, 7, 46265, 22046, 14692, 24455, 8973, 8, 6624, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 11, 1029, 796, 23243, 7, 46265, 22046, 14692, 24455, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1877, 1279, 1029, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 69, 312, 796, 4174, 62, 4360, 353, 62, 24455, 7, 3605, 62, 69, 312, 11, 1877, 11, 1029, 11, 2494, 8, 198, 220, 220, 220, 1303, 35006, 262, 376, 9792, 198, 220, 220, 220, 277, 701, 796, 45941, 13, 487, 83, 13, 81, 487, 83, 7, 3605, 62, 69, 312, 8, 198, 220, 220, 220, 1303, 3497, 262, 1103, 636, 286, 262, 376, 9792, 11, 290, 691, 262, 1729, 12, 646, 489, 3474, 1735, 198, 220, 220, 220, 1103, 62, 487, 83, 796, 45941, 13, 8937, 7, 487, 83, 58, 25, 493, 7, 11925, 7, 3605, 62, 69, 312, 8, 1220, 362, 8, 12962, 1220, 18896, 7, 3605, 62, 69, 312, 8, 1635, 352, 68, 18, 198, 220, 220, 220, 19998, 796, 599, 82, 328, 13, 411, 1403, 7, 69, 8897, 3976, 11, 1103, 62, 487, 83, 13, 7857, 8, 198, 220, 220, 220, 1303, 1114, 617, 1738, 11, 581, 321, 11347, 23742, 510, 262, 8373, 16216, 986, 198, 220, 220, 220, 1103, 62, 487, 83, 796, 1103, 62, 487, 83, 58, 37659, 13, 22046, 419, 7, 69, 8897, 3976, 15437, 198, 220, 220, 220, 19998, 796, 45941, 13, 30619, 7, 69, 8897, 3976, 8, 198, 220, 220, 220, 1303, 15717, 656, 257, 19798, 292, 1366, 14535, 198, 220, 220, 220, 2030, 80, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 4895, 37, 28707, 357, 25983, 8, 1298, 19998, 11, 366, 5317, 6377, 1298, 1103, 62, 487, 83, 30072, 198, 220, 220, 220, 1441, 2030, 80, 62, 7568, 628, 198, 4299, 9215, 62, 3903, 6603, 7, 9319, 11, 1029, 11, 2494, 11, 1502, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 9518, 2196, 286, 262, 18971, 9268, 4097, 6603, 8106, 3417, 994, 11, 198, 220, 220, 220, 220, 220, 220, 220, 16573, 329, 779, 351, 262, 376, 2389, 6737, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2638, 1378, 1416, 541, 88, 12, 27916, 2070, 13, 961, 83, 704, 420, 82, 13, 952, 14, 23814, 14, 1537, 353, 9268, 31407, 6603, 13, 6494, 198, 220, 220, 220, 220, 220, 220, 220, 383, 7159, 389, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1877, 383, 1877, 8373, 2005, 12, 2364, 11, 1813, 287, 37597, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1029, 383, 1029, 8373, 2005, 12, 2364, 11, 1813, 287, 37597, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2494, 383, 19232, 2494, 11, 1813, 287, 26109, 13, 3574, 262, 376, 47954, 11, 428, 1724, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 34062, 286, 262, 376, 2389, 31050, 318, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 4097, 6603, 4324, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 27131, 378, 262, 17735, 30062, 8373, 198, 220, 220, 220, 299, 88, 80, 796, 657, 13, 20, 1635, 357, 4873, 1220, 357, 17, 13, 15, 1635, 45941, 13, 14415, 4008, 198, 220, 220, 220, 1877, 796, 357, 9319, 1635, 352, 68, 18, 8, 1220, 299, 88, 80, 198, 220, 220, 220, 1029, 796, 357, 8929, 1635, 352, 68, 18, 8, 1220, 299, 88, 80, 198, 220, 220, 220, 611, 1029, 1875, 352, 13, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 11922, 8373, 2005, 12, 2364, 21695, 262, 17735, 30062, 8373, 19570, 198, 220, 220, 220, 275, 11, 257, 796, 599, 82, 328, 13, 4360, 353, 7, 2875, 11, 685, 9319, 11, 1029, 4357, 275, 4906, 2625, 3903, 1600, 15075, 28, 25101, 8, 198, 220, 220, 220, 1441, 275, 11, 257, 628, 198, 4299, 4174, 62, 4360, 353, 62, 24455, 7, 7890, 11, 1877, 11, 1029, 11, 2494, 11, 1502, 28, 16, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 317, 9518, 18971, 9268, 4097, 6603, 8106, 11, 16573, 422, 262, 1446, 541, 88, 4255, 2070, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4578, 1366, 9416, 262, 376, 2389, 11, 543, 788, 3544, 262, 629, 541, 88, 6737, 198, 220, 220, 220, 220, 220, 220, 220, 7587, 2163, 284, 4174, 262, 4875, 8106, 11, 290, 5860, 262, 29083, 198, 220, 220, 220, 220, 220, 220, 220, 376, 2389, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4091, 262, 4600, 4360, 353, 62, 3903, 6603, 63, 2163, 329, 3224, 7159, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 275, 11, 257, 796, 9215, 62, 3903, 6603, 7, 9319, 11, 1029, 11, 2494, 11, 1502, 28, 2875, 8, 198, 220, 220, 220, 331, 796, 599, 82, 328, 13, 1652, 346, 353, 7, 65, 11, 257, 11, 1366, 8, 198, 220, 220, 220, 1441, 331, 628, 198, 198, 4299, 7716, 62, 701, 65, 62, 1370, 7, 35324, 11, 6934, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 15553, 326, 18616, 281, 19446, 33, 2393, 329, 257, 1351, 286, 198, 220, 220, 220, 220, 220, 220, 220, 19998, 11, 5556, 17851, 1634, 5254, 13, 628, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 389, 3804, 355, 3224, 3689, 329, 262, 10117, 65, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 13, 7383, 10879, 389, 25, 628, 220, 220, 220, 220, 220, 220, 220, 19972, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 19550, 2305, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 31919, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1341, 10257, 1726, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1553, 19503, 80, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 1553, 6477, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 2386, 628, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 24305, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8373, 25, 12178, 329, 8373, 287, 19805, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 6934, 25, 493, 1271, 286, 6934, 284, 19386, 329, 628, 220, 220, 220, 220, 220, 220, 220, 5860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 24305, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 10117, 65, 1370, 25, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1627, 796, 366, 701, 76, 29164, 25, 13, 19, 69, 92, 6934, 29164, 92, 1911, 18982, 7, 35324, 11, 6934, 8, 198, 220, 220, 220, 329, 1994, 11, 1988, 287, 479, 86, 22046, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 15853, 366, 23884, 29164, 92, 1911, 18982, 7, 2539, 11, 1988, 8, 198, 220, 220, 220, 1627, 15853, 37082, 77, 1, 198, 220, 220, 220, 1441, 1627, 628, 198, 4299, 497, 84, 62, 66, 47467, 1096, 62, 69, 8897, 3976, 7, 69, 8897, 3976, 11, 17509, 871, 28, 14202, 11, 299, 20910, 28, 1120, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 371, 28399, 284, 7716, 281, 19446, 33, 15458, 2393, 329, 9489, 257, 2168, 286, 5254, 198, 220, 220, 220, 220, 220, 220, 220, 319, 19998, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10117, 65, 62, 8841, 796, 13538, 198, 220, 220, 220, 611, 17509, 871, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 600, 796, 17509, 871, 1220, 45941, 13, 9806, 7, 600, 641, 871, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2823, 9127, 82, 796, 45941, 13, 744, 7, 77, 20910, 1220, 2593, 62, 600, 737, 459, 2981, 7, 600, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2823, 9127, 82, 796, 45941, 13, 12853, 7, 11925, 7, 69, 8897, 3976, 828, 299, 20910, 11, 288, 4906, 28, 600, 8, 628, 220, 220, 220, 1303, 4277, 6460, 329, 477, 3404, 198, 220, 220, 220, 5772, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 541, 2305, 1298, 352, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19726, 3262, 1298, 366, 9562, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7109, 6477, 1298, 366, 940, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20545, 457, 1726, 1298, 366, 9562, 1600, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 5772, 62, 11600, 13, 19119, 7, 46265, 22046, 8, 198, 220, 220, 220, 329, 2030, 80, 11, 2823, 287, 19974, 7, 69, 8897, 3976, 11, 2823, 9127, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 8841, 15853, 7716, 62, 701, 65, 62, 2536, 7, 19503, 80, 11, 2823, 11, 12429, 17143, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 19726, 3262, 1, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 11600, 14692, 19726, 3262, 8973, 796, 366, 7942, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 8841, 15853, 7716, 62, 701, 65, 62, 2536, 7, 19503, 80, 11, 2823, 11, 12429, 17143, 62, 11600, 8, 628, 198, 4299, 17851, 1096, 62, 69, 8897, 3976, 7, 198, 220, 220, 220, 19998, 11, 198, 220, 220, 220, 299, 20910, 28, 1120, 11, 198, 220, 220, 220, 17509, 871, 28, 14202, 11, 198, 220, 220, 220, 1176, 28, 14202, 11, 198, 220, 220, 220, 708, 77, 62, 4868, 28, 14202, 11, 198, 220, 220, 220, 19550, 2305, 28, 14202, 11, 198, 220, 220, 220, 708, 77, 28, 14202, 11, 198, 220, 220, 220, 19972, 28, 25101, 11, 198, 220, 220, 220, 1553, 28, 25101, 11, 198, 220, 220, 220, 17655, 28, 25101, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 15553, 326, 481, 5794, 281, 19446, 15458, 2393, 284, 1620, 17851, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 5254, 11, 351, 617, 13688, 319, 703, 1728, 5254, 389, 6157, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10117, 65, 62, 2536, 796, 13538, 198, 220, 220, 220, 611, 17509, 871, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6934, 796, 45941, 13, 12853, 7, 11925, 7, 69, 8897, 3976, 828, 299, 20910, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6934, 796, 45941, 13, 31166, 17034, 7, 77, 20910, 1220, 17509, 871, 737, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 611, 19550, 2305, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 708, 77, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 19550, 2305, 1332, 9167, 11, 475, 645, 31919, 2288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14275, 466, 262, 4277, 16085, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19550, 2305, 62, 9288, 796, 685, 15, 13, 486, 11, 657, 13, 16, 11, 352, 13, 15, 11, 513, 13, 15, 11, 642, 13, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19550, 2305, 62, 32109, 796, 366, 67, 541, 2305, 1, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15323, 1057, 2176, 31919, 6055, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19550, 2305, 62, 9288, 796, 708, 77, 62, 4868, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19550, 2305, 62, 32109, 796, 366, 41769, 1, 628, 220, 220, 220, 611, 1553, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 4868, 796, 17790, 7, 69, 8897, 3976, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4868, 7, 19503, 80, 62, 4868, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 62, 4868, 796, 19998, 628, 220, 220, 220, 1303, 9052, 625, 1123, 8373, 290, 1271, 286, 6934, 198, 220, 220, 220, 329, 1988, 11, 2823, 9127, 287, 19974, 7, 19503, 80, 62, 4868, 11, 6934, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1553, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 11, 1553, 62, 19503, 80, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2980, 378, 3487, 13432, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 796, 12178, 7, 19503, 80, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2823, 9127, 796, 493, 7, 9442, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1553, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1553, 62, 19503, 80, 796, 12178, 7, 7109, 62, 19503, 80, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 19503, 80, 11, 2823, 9127, 11, 12429, 4895, 20545, 457, 1726, 1298, 366, 9562, 20662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1553, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 11, 2823, 9127, 11, 12429, 4895, 20545, 457, 1726, 1298, 366, 7942, 1600, 366, 7109, 19503, 80, 1298, 1553, 62, 19503, 80, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19550, 2305, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 19550, 2305, 62, 8367, 287, 19550, 2305, 62, 9288, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 11, 2823, 9127, 11, 12429, 90, 67, 541, 2305, 62, 32109, 25, 19550, 2305, 62, 8367, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 19972, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 19503, 80, 11, 2823, 9127, 11, 12429, 4895, 19726, 3262, 1298, 366, 7942, 20662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17655, 318, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 34098, 262, 17655, 8931, 319, 290, 572, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 11, 2823, 9127, 11, 12429, 4895, 79, 9615, 11, 16, 11, 25616, 1298, 366, 9562, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10117, 65, 62, 2536, 15853, 7716, 62, 701, 65, 62, 1370, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2030, 80, 11, 2823, 9127, 11, 12429, 4895, 79, 9615, 11, 16, 11, 25616, 1298, 366, 7942, 20662, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12331, 351, 366, 1343, 965, 7, 8367, 4008, 628, 220, 220, 220, 1441, 10117, 65, 62, 2536, 628, 198, 4299, 15284, 62, 18908, 1358, 62, 22355, 7, 47799, 11, 299, 20910, 28, 1120, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11789, 329, 26019, 262, 2938, 11812, 640, 198, 220, 220, 220, 220, 220, 220, 220, 287, 2823, 9853, 1912, 319, 262, 12245, 26, 2035, 16200, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 18929, 393, 11346, 49, 13, 628, 220, 220, 220, 220, 220, 220, 220, 10007, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 24305, 198, 220, 220, 220, 220, 220, 220, 220, 12245, 532, 7177, 286, 12245, 18663, 26, 304, 13, 70, 13, 11346, 49, 198, 220, 220, 220, 220, 220, 220, 220, 299, 20910, 532, 11902, 493, 1271, 286, 6934, 973, 329, 262, 12841, 1627, 628, 220, 220, 220, 220, 220, 220, 220, 5860, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 24305, 198, 220, 220, 220, 220, 220, 220, 220, 2823, 62, 9127, 82, 532, 7177, 286, 2823, 9853, 329, 1123, 8373, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2593, 62, 600, 796, 12245, 1220, 45941, 13, 9806, 7, 47799, 8, 198, 220, 220, 220, 2823, 62, 9127, 82, 796, 45941, 13, 744, 7, 77, 20910, 1220, 2593, 62, 600, 737, 459, 2981, 7, 600, 8, 198, 220, 220, 220, 1441, 2823, 62, 9127, 82, 628, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 198 ]
2.307527
12,555
import json from dataclasses import dataclass import omitempty from dnsimple.struct import Struct class DomainRenewRequest(dict): """DomainRenewRequest represents the attributes you can pass to a renew API request.""" @dataclass class DomainRenewal(Struct): """Represents the result of a domain renewal call.""" id = None """The domain registration ID in DNSimple""" domain_id = None """The associated domain ID""" state = None """The state of the renewal""" period = None """The number of years the domain was registered for""" created_at = None """When the domain renewal was created in DNSimple""" updated_at = None """When the domain renewal was last updated in DNSimple"""
[ 11748, 33918, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 11748, 42848, 28920, 198, 198, 6738, 288, 5907, 320, 1154, 13, 7249, 1330, 32112, 628, 198, 4871, 20021, 26764, 413, 18453, 7, 11600, 2599, 198, 220, 220, 220, 37227, 43961, 26764, 413, 18453, 6870, 262, 12608, 345, 460, 1208, 284, 257, 6931, 7824, 2581, 526, 15931, 628, 198, 31, 19608, 330, 31172, 198, 4871, 20021, 26764, 413, 282, 7, 44909, 2599, 628, 220, 220, 220, 37227, 6207, 6629, 262, 1255, 286, 257, 7386, 22901, 869, 526, 15931, 198, 220, 220, 220, 4686, 796, 6045, 198, 220, 220, 220, 37227, 464, 7386, 9352, 4522, 287, 18538, 320, 1154, 37811, 198, 220, 220, 220, 7386, 62, 312, 796, 6045, 198, 220, 220, 220, 37227, 464, 3917, 7386, 4522, 37811, 198, 220, 220, 220, 1181, 796, 6045, 198, 220, 220, 220, 37227, 464, 1181, 286, 262, 22901, 37811, 198, 220, 220, 220, 2278, 796, 6045, 198, 220, 220, 220, 37227, 464, 1271, 286, 812, 262, 7386, 373, 6823, 329, 37811, 198, 220, 220, 220, 2727, 62, 265, 796, 6045, 198, 220, 220, 220, 37227, 2215, 262, 7386, 22901, 373, 2727, 287, 18538, 320, 1154, 37811, 198, 220, 220, 220, 6153, 62, 265, 796, 6045, 198, 220, 220, 220, 37227, 2215, 262, 7386, 22901, 373, 938, 6153, 287, 18538, 320, 1154, 37811, 198 ]
3.337838
222
class RequestAdapter(object): """ RequestAdapters bridge transmute's representation of a request, with the framework's implementation. implement the unimplemented methods. """ @property def body(self): """ return the request body. """ raise NotImplementedError() def _get_framework_args(self): """ often, a framework provides specific variables that are passed into the handler function (e.g. the request object in aiohttp). return a dictionary of these arguments, which will be added to the function arguments if they appear. """ raise NotImplementedError()
[ 4871, 19390, 47307, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19390, 2782, 12126, 7696, 21595, 1133, 338, 198, 220, 220, 220, 10552, 286, 257, 2581, 11, 351, 262, 9355, 338, 198, 220, 220, 220, 7822, 13, 628, 220, 220, 220, 3494, 262, 28418, 1154, 12061, 5050, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1767, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1441, 262, 2581, 1767, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 220, 220, 220, 825, 4808, 1136, 62, 30604, 62, 22046, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1690, 11, 257, 9355, 3769, 2176, 9633, 326, 389, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 656, 262, 21360, 2163, 357, 68, 13, 70, 13, 262, 2581, 2134, 287, 198, 220, 220, 220, 220, 220, 220, 220, 257, 952, 4023, 737, 1441, 257, 22155, 286, 777, 7159, 11, 543, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 2087, 284, 262, 2163, 7159, 611, 484, 1656, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 198 ]
2.938596
228
# python3 """ Task: Count the number of inversions of a given sequence """ tot_count = 0 n = int ( input () ) seq = [ int ( i ) for i in input ().split () ] mergesort ( seq ) print ( tot_count )
[ 2, 21015, 18, 198, 198, 37811, 15941, 25, 2764, 262, 1271, 286, 287, 47178, 286, 257, 1813, 8379, 37227, 628, 628, 198, 83, 313, 62, 9127, 796, 657, 198, 77, 796, 493, 357, 5128, 7499, 1267, 198, 41068, 796, 685, 493, 357, 1312, 1267, 329, 1312, 287, 5128, 27972, 35312, 7499, 2361, 198, 647, 3212, 419, 357, 33756, 1267, 198, 4798, 357, 2006, 62, 9127, 1267, 198 ]
2.985075
67
import numpy as np import scipy.misc import os import time # from PIL import Image DATA_DIR = '/home/ubuntu/lsun/bedrooms/' NEW_DATA_DIR = '/home/ubuntu/lsun/bedrooms_128/' # with open(DATA_DIR+'files.txt', 'r') as f: # files = [l[:-1] for l in f] # # images = np.zeros((batch_size, 3, 256, 256), dtype='int32') # random_state = np.random.RandomState(42) # random_state.shuffle(files) # z = 1729468 # for i, path in enumerate(files): # if i < 1729500: # continue # try: # image = scipy.misc.imread( # os.path.normpath(os.path.join(DATA_DIR, path)) # ) # # try: # # image = image.transpose(2,0,1) # offset_y = (image.shape[0]-256)/2 # offset_x = (image.shape[1]-256)/2 # image = image[offset_y:offset_y+256, offset_x:offset_x+256] # image = image[::2,::2]+image[1::2,::2]+image[::2,1::2]+image[1::2,1::2] # image = image / 4 # # image = image.astype('int32') # # im = Image.fromarray(image) # # p = os.path.normpath(os.path.join(NEW_DATA_DIR, path)) # # try: # # os.makedirs(os.path.dirname(p)) # # except: # # pass # scipy.misc.imsave(NEW_DATA_DIR+'{}.jpg'.format(z), image) # # im.save(p[:-4]+'jpg') # if z % 100 == 0: # print z # z += 1 # except: # print "skip" # # if i > 0 and i % batch_size == 0: # # if downscale: # # downscaled_images = images[:,:,::2,::2] + images[:,:,1::2,::2] + images[:,:,::2,1::2] + images[:,:,1::2,1::2] # # downscaled_images = downscaled_images / 4. # # yield (downscaled_images.astype('int32'),) # # else: # # yield (images,) # # except Exception as ex: # # print ex # # print "warning data preprocess failed for path {}".format(path) if __name__ == '__main__': train_gen = load(64) t0 = time.time() for i, batch in enumerate(train_gen(), start=1): print "{}\t{}".format(str(time.time() - t0), batch[0][0,0,0,0]) if i == 1000: break t0 = time.time()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 44374, 198, 11748, 28686, 198, 11748, 640, 198, 2, 422, 350, 4146, 1330, 7412, 198, 198, 26947, 62, 34720, 796, 31051, 11195, 14, 32230, 14, 7278, 403, 14, 3077, 9649, 14, 6, 198, 13965, 62, 26947, 62, 34720, 796, 31051, 11195, 14, 32230, 14, 7278, 403, 14, 3077, 9649, 62, 12762, 14, 6, 198, 198, 2, 351, 1280, 7, 26947, 62, 34720, 10, 6, 16624, 13, 14116, 3256, 705, 81, 11537, 355, 277, 25, 198, 2, 220, 220, 220, 220, 3696, 796, 685, 75, 58, 21912, 16, 60, 329, 300, 287, 277, 60, 198, 2, 1303, 4263, 796, 45941, 13, 9107, 418, 19510, 43501, 62, 7857, 11, 513, 11, 17759, 11, 17759, 828, 288, 4906, 11639, 600, 2624, 11537, 198, 2, 4738, 62, 5219, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 3682, 8, 198, 2, 4738, 62, 5219, 13, 1477, 18137, 7, 16624, 8, 198, 198, 2, 1976, 796, 1596, 27696, 3104, 198, 2, 329, 1312, 11, 3108, 287, 27056, 378, 7, 16624, 2599, 198, 2, 220, 220, 220, 220, 611, 1312, 1279, 1596, 1959, 4059, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 2, 220, 220, 220, 220, 1949, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 629, 541, 88, 13, 44374, 13, 320, 961, 7, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 27237, 6978, 7, 418, 13, 6978, 13, 22179, 7, 26947, 62, 34720, 11, 3108, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 796, 2939, 13, 7645, 3455, 7, 17, 11, 15, 11, 16, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 88, 796, 357, 9060, 13, 43358, 58, 15, 45297, 11645, 20679, 17, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 11677, 62, 87, 796, 357, 9060, 13, 43358, 58, 16, 45297, 11645, 20679, 17, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 58, 28968, 62, 88, 25, 28968, 62, 88, 10, 11645, 11, 11677, 62, 87, 25, 28968, 62, 87, 10, 11645, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 58, 3712, 17, 11, 3712, 17, 48688, 9060, 58, 16, 3712, 17, 11, 3712, 17, 48688, 9060, 58, 3712, 17, 11, 16, 3712, 17, 48688, 9060, 58, 16, 3712, 17, 11, 16, 3712, 17, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 1220, 604, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 796, 2939, 13, 459, 2981, 10786, 600, 2624, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 545, 796, 7412, 13, 6738, 18747, 7, 9060, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 796, 28686, 13, 6978, 13, 27237, 6978, 7, 418, 13, 6978, 13, 22179, 7, 13965, 62, 26947, 62, 34720, 11, 3108, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 79, 4008, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2845, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1208, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 629, 541, 88, 13, 44374, 13, 12078, 1015, 7, 13965, 62, 26947, 62, 34720, 10, 6, 90, 27422, 9479, 4458, 18982, 7, 89, 828, 2939, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 545, 13, 21928, 7, 79, 58, 21912, 19, 48688, 6, 9479, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1976, 4064, 1802, 6624, 657, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 1976, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 15853, 352, 198, 2, 220, 220, 220, 220, 2845, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 48267, 1, 198, 198, 2, 220, 220, 220, 220, 1303, 611, 1312, 1875, 657, 290, 1312, 4064, 15458, 62, 7857, 6624, 657, 25, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 866, 9888, 25, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 866, 1416, 3021, 62, 17566, 796, 4263, 58, 45299, 45299, 3712, 17, 11, 3712, 17, 60, 1343, 4263, 58, 45299, 45299, 16, 3712, 17, 11, 3712, 17, 60, 1343, 4263, 58, 45299, 45299, 3712, 17, 11, 16, 3712, 17, 60, 1343, 4263, 58, 45299, 45299, 16, 3712, 17, 11, 16, 3712, 17, 60, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 866, 1416, 3021, 62, 17566, 796, 866, 1416, 3021, 62, 17566, 1220, 604, 13, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 357, 2902, 1416, 3021, 62, 17566, 13, 459, 2981, 10786, 600, 2624, 33809, 8, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 357, 17566, 35751, 198, 2, 220, 220, 220, 220, 1303, 2845, 35528, 355, 409, 25, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 409, 198, 2, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 366, 43917, 1366, 662, 14681, 4054, 329, 3108, 23884, 1911, 18982, 7, 6978, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4512, 62, 5235, 796, 3440, 7, 2414, 8, 198, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 329, 1312, 11, 15458, 287, 27056, 378, 7, 27432, 62, 5235, 22784, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 45144, 32239, 83, 90, 92, 1911, 18982, 7, 2536, 7, 2435, 13, 2435, 3419, 532, 256, 15, 828, 15458, 58, 15, 7131, 15, 11, 15, 11, 15, 11, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 8576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 256, 15, 796, 640, 13, 2435, 3419, 198 ]
1.919326
1,128
from django.db.utils import IntegrityError from django.db.models import Q from rest_framework import serializers from core.models import FavoriteThing from core.models import Category from .helper import reorder_rankings, reorder_rankings_subtract
[ 6738, 42625, 14208, 13, 9945, 13, 26791, 1330, 39348, 12331, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 4755, 13, 27530, 1330, 33992, 51, 722, 198, 6738, 4755, 13, 27530, 1330, 21743, 198, 6738, 764, 2978, 525, 1330, 302, 2875, 62, 43027, 654, 11, 302, 2875, 62, 43027, 654, 62, 7266, 83, 974, 628 ]
3.772727
66
# Tests for the Genomics Data Quality Pipeline import mock, datetime, pytz from rdr_service import clock from rdr_service.api_util import open_cloud_file from rdr_service.genomic_enums import GenomicJob, GenomicSubProcessStatus, GenomicSubProcessResult, \ GenomicManifestTypes, GenomicIncidentCode from tests.helpers.unittest_base import BaseTestCase from rdr_service.genomic.genomic_job_controller import DataQualityJobController from rdr_service.genomic.genomic_data_quality_components import ReportingComponent
[ 2, 30307, 329, 262, 5215, 31994, 6060, 14156, 37709, 198, 11748, 15290, 11, 4818, 8079, 11, 12972, 22877, 198, 198, 6738, 374, 7109, 62, 15271, 1330, 8801, 198, 6738, 374, 7109, 62, 15271, 13, 15042, 62, 22602, 1330, 1280, 62, 17721, 62, 7753, 198, 6738, 374, 7109, 62, 15271, 13, 5235, 10179, 62, 268, 5700, 1330, 5215, 10179, 33308, 11, 5215, 10179, 7004, 18709, 19580, 11, 5215, 10179, 7004, 18709, 23004, 11, 3467, 198, 220, 220, 220, 5215, 10179, 5124, 8409, 31431, 11, 5215, 10179, 25517, 738, 10669, 198, 6738, 5254, 13, 16794, 364, 13, 403, 715, 395, 62, 8692, 1330, 7308, 14402, 20448, 198, 6738, 374, 7109, 62, 15271, 13, 5235, 10179, 13, 5235, 10179, 62, 21858, 62, 36500, 1330, 6060, 35013, 33308, 22130, 198, 6738, 374, 7109, 62, 15271, 13, 5235, 10179, 13, 5235, 10179, 62, 7890, 62, 13237, 62, 5589, 3906, 1330, 29595, 21950, 628, 628 ]
3.503356
149
# Time limit exceeded while True: try: A = input() B = input() lA = len(A) lB = len(B) biggest = "" shortest = "" lshortest = 0 if max(lA, lB) == lA: biggest, shortest = A, B lbiggest = lA lshortest = lB else: biggest, shortest = B, A lbiggest = lB lshortest = lA bSub = 0 currentSub = 0 for k in range(lshortest): for w in range(lbiggest): if shortest[k] == biggest[w]: currentSub = 1 q = w+1 for p in range(k+1,lshortest): if q >= lbiggest: break if shortest[p] == biggest[q]: currentSub += 1 q += 1 else: break if currentSub >= bSub: bSub = currentSub print(bSub) except: break
[ 2, 3862, 4179, 20672, 198, 198, 4514, 6407, 25, 198, 197, 28311, 25, 198, 197, 197, 32, 796, 5128, 3419, 198, 197, 197, 33, 796, 5128, 3419, 628, 197, 197, 75, 32, 796, 18896, 7, 32, 8, 198, 197, 197, 75, 33, 796, 18896, 7, 33, 8, 628, 197, 197, 14261, 3495, 796, 13538, 198, 197, 197, 19509, 395, 796, 13538, 198, 197, 197, 75, 19509, 395, 796, 657, 198, 197, 197, 361, 3509, 7, 75, 32, 11, 300, 33, 8, 6624, 300, 32, 25, 198, 197, 197, 197, 14261, 3495, 11, 35581, 796, 317, 11, 347, 198, 197, 197, 197, 75, 14261, 3495, 796, 300, 32, 198, 197, 197, 197, 75, 19509, 395, 796, 300, 33, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 14261, 3495, 11, 35581, 796, 347, 11, 317, 198, 197, 197, 197, 75, 14261, 3495, 796, 300, 33, 198, 197, 197, 197, 75, 19509, 395, 796, 300, 32, 628, 198, 197, 197, 65, 7004, 796, 657, 198, 197, 197, 14421, 7004, 796, 657, 198, 197, 197, 1640, 479, 287, 2837, 7, 75, 19509, 395, 2599, 198, 197, 197, 197, 1640, 266, 287, 2837, 7, 75, 14261, 3495, 2599, 198, 197, 197, 197, 197, 361, 35581, 58, 74, 60, 6624, 4094, 58, 86, 5974, 198, 197, 197, 197, 197, 197, 14421, 7004, 796, 352, 628, 197, 197, 197, 197, 197, 80, 796, 266, 10, 16, 628, 197, 197, 197, 197, 197, 1640, 279, 287, 2837, 7, 74, 10, 16, 11, 75, 19509, 395, 2599, 198, 197, 197, 197, 197, 197, 197, 361, 10662, 18189, 300, 14261, 3495, 25, 198, 197, 197, 197, 197, 197, 197, 197, 9032, 198, 197, 197, 197, 197, 197, 197, 361, 35581, 58, 79, 60, 6624, 4094, 58, 80, 5974, 198, 197, 197, 197, 197, 197, 197, 197, 14421, 7004, 15853, 352, 198, 197, 197, 197, 197, 197, 197, 197, 80, 15853, 352, 198, 197, 197, 197, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 197, 197, 197, 9032, 628, 197, 197, 197, 197, 361, 1459, 7004, 18189, 275, 7004, 25, 198, 197, 197, 197, 197, 197, 65, 7004, 796, 1459, 7004, 628, 197, 197, 4798, 7, 65, 7004, 8, 198, 197, 198, 197, 16341, 25, 198, 197, 197, 9032 ]
1.929919
371
import os, urllib, requests, json priority = 1
[ 11748, 28686, 11, 2956, 297, 571, 11, 7007, 11, 33918, 198, 49336, 796, 352, 198 ]
3.133333
15
list1 = [1, 4, 8, 2, 9] print len(list1) print max(list1), min(list1) print list1[-2] print list1[-5:3] print list1[-3:]
[ 198, 4868, 16, 796, 685, 16, 11, 604, 11, 807, 11, 362, 11, 860, 60, 198, 198, 4798, 18896, 7, 4868, 16, 8, 198, 4798, 3509, 7, 4868, 16, 828, 949, 7, 4868, 16, 8, 198, 4798, 1351, 16, 58, 12, 17, 60, 198, 4798, 1351, 16, 58, 12, 20, 25, 18, 60, 198, 4798, 1351, 16, 58, 12, 18, 47715, 628 ]
2
62
from matplotlib import pyplot as plt from script import sales_times1 from script import sales_times2 # normed=True This command divides the height of each column by # a constant such that the total shaded area of the histogram sums # to 1 plt.hist(sales_times1, bins=20, alpha=0.4, normed=True) plt.hist(sales_times2, bins=20, alpha=0.4, normed=True) plt.show() #%% from matplotlib import pyplot as plt exam_scores1 = [62.58, 67.63, 81.37, 52.53, 62.98, 72.15, 59.05, 73.85, 97.24, 76.81, 89.34, 74.44, 68.52, 85.13, 90.75, 70.29, 75.62, 85.38, 77.82, 98.31, 79.08, 61.72, 71.33, 80.77, 80.31, 78.16, 61.15, 64.99, 72.67, 78.94] exam_scores2 = [72.38, 71.28, 79.24, 83.86, 84.42, 79.38, 75.51, 76.63, 81.48,78.81,79.23,74.38,79.27,81.07,75.42,90.35,82.93,86.74,81.33,95.1,86.57,83.66,85.58,81.87,92.14,72.15,91.64,74.21,89.04,76.54,81.9,96.5,80.05,74.77,72.26,73.23,92.6,66.22,70.09,77.2] # Make your plot here plt.figure(figsize=(10,8)) plt.hist(exam_scores1,bins=12,normed=True, histtype='step',linewidth=2) plt.hist(exam_scores2,bins=12,normed=True, histtype='step',linewidth=2) legends=["1st Yr Teaching","2nd Yr Teaching"] plt.legend(legends) plt.title("Final Exam Score Distribution") plt.xlabel("Percentage") plt.ylabel("Frequency") plt.savefig("my_histogram.png") #%% import numpy as np import pandas as pd # Import matplotlib pyplot from matplotlib import pyplot as plt # Read in transactions data greatest_books = pd.read_csv("top-hundred-books.csv") # Save transaction times to a separate numpy array author_ages = greatest_books['Ages'] # Use numpy to calculate the average age of the top 100 authors average_age = np.average(author_ages) print("The average age of the 100 greatest authors, according to Le Monde is: " + str(average_age)) # Plot the figure plt.hist(author_ages, range=(10, 80), bins=14, edgecolor='black') plt.title("Age of Top 100 Novel Authors at Publication") plt.xlabel("Publication Age") plt.ylabel("Count") plt.axvline(average_age, color='r', linestyle='solid', linewidth=2, label="Mean") plt.legend() plt.show()
[ 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 4226, 1330, 4200, 62, 22355, 16, 198, 6738, 4226, 1330, 4200, 62, 22355, 17, 198, 2, 2593, 276, 28, 17821, 770, 3141, 36319, 262, 6001, 286, 1123, 5721, 416, 198, 2, 257, 6937, 884, 326, 262, 2472, 427, 5286, 1989, 286, 262, 1554, 21857, 21784, 198, 2, 284, 352, 220, 198, 489, 83, 13, 10034, 7, 82, 2040, 62, 22355, 16, 11, 41701, 28, 1238, 11, 17130, 28, 15, 13, 19, 11, 2593, 276, 28, 17821, 8, 198, 489, 83, 13, 10034, 7, 82, 2040, 62, 22355, 17, 11, 41701, 28, 1238, 11, 17130, 28, 15, 13, 19, 11, 2593, 276, 28, 17821, 8, 198, 198, 489, 83, 13, 12860, 3419, 198, 2, 16626, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 1069, 321, 62, 1416, 2850, 16, 796, 685, 5237, 13, 3365, 11, 8275, 13, 5066, 11, 9773, 13, 2718, 11, 6740, 13, 4310, 11, 8190, 13, 4089, 11, 7724, 13, 1314, 11, 7863, 13, 2713, 11, 8854, 13, 5332, 11, 10111, 13, 1731, 11, 8684, 13, 6659, 11, 9919, 13, 2682, 11, 8915, 13, 2598, 11, 8257, 13, 4309, 11, 7600, 13, 1485, 11, 4101, 13, 2425, 11, 4317, 13, 1959, 11, 5441, 13, 5237, 11, 7600, 13, 2548, 11, 8541, 13, 6469, 11, 9661, 13, 3132, 11, 9225, 13, 2919, 11, 8454, 13, 4761, 11, 9166, 13, 2091, 11, 4019, 13, 3324, 11, 4019, 13, 3132, 11, 8699, 13, 1433, 11, 8454, 13, 1314, 11, 5598, 13, 2079, 11, 7724, 13, 3134, 11, 8699, 13, 5824, 60, 198, 1069, 321, 62, 1416, 2850, 17, 796, 685, 4761, 13, 2548, 11, 9166, 13, 2078, 11, 9225, 13, 1731, 11, 9698, 13, 4521, 11, 9508, 13, 3682, 11, 9225, 13, 2548, 11, 5441, 13, 4349, 11, 8684, 13, 5066, 11, 9773, 13, 2780, 11, 3695, 13, 6659, 11, 3720, 13, 1954, 11, 4524, 13, 2548, 11, 3720, 13, 1983, 11, 6659, 13, 2998, 11, 2425, 13, 3682, 11, 3829, 13, 2327, 11, 6469, 13, 6052, 11, 4521, 13, 4524, 11, 6659, 13, 2091, 11, 3865, 13, 16, 11, 4521, 13, 3553, 11, 5999, 13, 2791, 11, 5332, 13, 3365, 11, 6659, 13, 5774, 11, 5892, 13, 1415, 11, 4761, 13, 1314, 11, 6420, 13, 2414, 11, 4524, 13, 2481, 11, 4531, 13, 3023, 11, 4304, 13, 4051, 11, 6659, 13, 24, 11, 4846, 13, 20, 11, 1795, 13, 2713, 11, 4524, 13, 3324, 11, 4761, 13, 2075, 11, 4790, 13, 1954, 11, 5892, 13, 21, 11, 2791, 13, 1828, 11, 2154, 13, 2931, 11, 3324, 13, 17, 60, 198, 198, 2, 6889, 534, 7110, 994, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 940, 11, 23, 4008, 198, 489, 83, 13, 10034, 7, 1069, 321, 62, 1416, 2850, 16, 11, 65, 1040, 28, 1065, 11, 27237, 276, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 4906, 11639, 9662, 3256, 2815, 413, 5649, 28, 17, 8, 198, 489, 83, 13, 10034, 7, 1069, 321, 62, 1416, 2850, 17, 11, 65, 1040, 28, 1065, 11, 27237, 276, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1554, 4906, 11639, 9662, 3256, 2815, 413, 5649, 28, 17, 8, 198, 1455, 2412, 28, 14692, 16, 301, 575, 81, 38094, 2430, 17, 358, 575, 81, 38094, 8973, 198, 489, 83, 13, 1455, 437, 7, 1455, 2412, 8, 198, 489, 83, 13, 7839, 7203, 19006, 35909, 15178, 27484, 4943, 198, 489, 83, 13, 87, 18242, 7203, 31905, 496, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 37, 28707, 4943, 198, 198, 489, 83, 13, 21928, 5647, 7203, 1820, 62, 10034, 21857, 13, 11134, 4943, 198, 2, 16626, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 17267, 2603, 29487, 8019, 12972, 29487, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 2, 4149, 287, 8945, 1366, 198, 18223, 395, 62, 12106, 796, 279, 67, 13, 961, 62, 40664, 7203, 4852, 12, 71, 3229, 12, 12106, 13, 40664, 4943, 198, 198, 2, 12793, 8611, 1661, 284, 257, 4553, 299, 32152, 7177, 198, 9800, 62, 1095, 796, 6000, 62, 12106, 17816, 32, 3212, 20520, 198, 198, 2, 5765, 299, 32152, 284, 15284, 262, 2811, 2479, 286, 262, 1353, 1802, 7035, 198, 23913, 62, 496, 796, 45941, 13, 23913, 7, 9800, 62, 1095, 8, 198, 198, 4798, 7203, 464, 2811, 2479, 286, 262, 1802, 6000, 7035, 11, 1864, 284, 1004, 337, 14378, 318, 25, 366, 1343, 965, 7, 23913, 62, 496, 4008, 198, 198, 2, 28114, 262, 3785, 198, 489, 83, 13, 10034, 7, 9800, 62, 1095, 11, 2837, 16193, 940, 11, 4019, 828, 41701, 28, 1415, 11, 220, 5743, 8043, 11639, 13424, 11537, 198, 489, 83, 13, 7839, 7203, 23396, 286, 5849, 1802, 24467, 46665, 379, 45065, 4943, 198, 489, 83, 13, 87, 18242, 7203, 15202, 341, 7129, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 12332, 4943, 198, 489, 83, 13, 897, 85, 1370, 7, 23913, 62, 496, 11, 3124, 11639, 81, 3256, 9493, 10992, 11639, 39390, 3256, 9493, 413, 5649, 28, 17, 11, 6167, 2625, 5308, 272, 4943, 198, 489, 83, 13, 1455, 437, 3419, 198, 198, 489, 83, 13, 12860, 3419, 198 ]
2.376
875
# print(123456) # print('Kaic', 'Pierre', 'Outra Coisa') # print('Kaic', 'Pierre', sep='-', end='') # print('Testando', 'Outras', 'Coisas', sep='-', end='') print('428', '330', '048', sep='.', end='-') print('93')
[ 2, 3601, 7, 10163, 29228, 8, 198, 2, 3601, 10786, 42, 18452, 3256, 705, 36910, 3256, 705, 7975, 430, 1766, 9160, 11537, 198, 2, 3601, 10786, 42, 18452, 3256, 705, 36910, 3256, 41767, 11639, 12, 3256, 886, 28, 7061, 8, 198, 2, 3601, 10786, 14402, 25440, 3256, 705, 7975, 8847, 3256, 705, 7222, 271, 292, 3256, 41767, 11639, 12, 3256, 886, 28, 7061, 8, 198, 4798, 10786, 40173, 3256, 705, 26073, 3256, 705, 47202, 3256, 41767, 11639, 2637, 11, 886, 11639, 12, 11537, 198, 4798, 10786, 6052, 11537, 198 ]
2.404494
89
import sys sys.path.append("../") # KoBERT 모델 import config import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import gluonnlp as nlp from tqdm import tqdm, tqdm_notebook from KoBERT.kobert.utils import get_tokenizer from KoBERT.kobert.pytorch_kobert import get_pytorch_kobert_model from transformers import AdamW # from transformers.optimization import WarmupLinearSchedule from transformers import get_linear_schedule_with_warmup device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') bertmodel, vocab = get_pytorch_kobert_model() # 토크나이저 메서드를 tokenizer에 호출 # 코퍼스를 토큰으로 만드는 과정을 수행, 이 때 토크나이저는 kobert 패키지에 있는 get_tokenizer()를 사용하고, # 토큰화를 위해 필요한 단어 사전은 kobert의 vocab을 사용함. # uncased로 투입해야 하므로 lower = False tokenizer = get_tokenizer() tok = nlp.data.BERTSPTokenizer(tokenizer, vocab, lower = False) print(f'device using: {device}') model_config=config.model_config class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 path (str): Path for the checkpoint to be saved to. Default: 'checkpoint.pt' trace_func (function): trace print function. Default: print """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta self.path = path self.trace_func = trace_func def save_checkpoint(self, val_loss, model): '''Saves model when validation loss decrease.''' if self.verbose: self.trace_func(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.path) self.val_loss_min = val_loss
[ 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 4943, 198, 198, 2, 17634, 13246, 51, 31619, 103, 101, 167, 235, 116, 198, 198, 11748, 4566, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1881, 21352, 27195, 12342, 198, 198, 11748, 28034, 198, 6738, 28034, 1330, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 11748, 1278, 84, 261, 21283, 79, 355, 299, 34431, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 11, 256, 80, 36020, 62, 11295, 2070, 628, 198, 198, 6738, 17634, 13246, 51, 13, 74, 2023, 83, 13, 26791, 1330, 651, 62, 30001, 7509, 198, 6738, 17634, 13246, 51, 13, 74, 2023, 83, 13, 9078, 13165, 354, 62, 74, 2023, 83, 1330, 651, 62, 9078, 13165, 354, 62, 74, 2023, 83, 62, 19849, 198, 198, 6738, 6121, 364, 1330, 7244, 54, 198, 2, 422, 6121, 364, 13, 40085, 1634, 1330, 25692, 929, 14993, 451, 27054, 5950, 198, 198, 6738, 6121, 364, 1330, 651, 62, 29127, 62, 15952, 5950, 62, 4480, 62, 31975, 929, 198, 198, 25202, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 198, 198, 4835, 19849, 11, 12776, 397, 796, 651, 62, 9078, 13165, 354, 62, 74, 2023, 83, 62, 19849, 3419, 198, 198, 2, 220, 169, 228, 254, 169, 223, 105, 167, 224, 246, 35975, 112, 168, 254, 222, 31619, 102, 242, 168, 226, 250, 167, 241, 250, 167, 98, 120, 11241, 7509, 168, 245, 238, 220, 169, 246, 116, 168, 114, 250, 198, 2, 23821, 121, 242, 169, 235, 120, 168, 232, 97, 167, 98, 120, 220, 169, 228, 254, 169, 223, 108, 168, 250, 120, 167, 94, 250, 31619, 100, 234, 167, 241, 250, 167, 232, 242, 220, 166, 111, 120, 168, 254, 243, 35975, 226, 23821, 230, 246, 169, 244, 231, 11, 23821, 251, 112, 31619, 243, 234, 220, 169, 228, 254, 169, 223, 105, 167, 224, 246, 35975, 112, 168, 254, 222, 167, 232, 242, 479, 2023, 83, 220, 169, 234, 101, 169, 224, 97, 168, 100, 222, 168, 245, 238, 23821, 252, 230, 167, 232, 242, 651, 62, 30001, 7509, 3419, 167, 98, 120, 23821, 8955, 168, 248, 102, 47991, 246, 166, 111, 254, 11, 198, 2, 220, 169, 228, 254, 169, 223, 108, 169, 247, 242, 167, 98, 120, 23821, 250, 226, 47991, 112, 220, 47991, 226, 168, 248, 242, 47991, 250, 31619, 233, 101, 168, 244, 112, 23821, 8955, 168, 254, 226, 35975, 222, 479, 2023, 83, 35975, 246, 12776, 397, 35975, 226, 23821, 8955, 168, 248, 102, 47991, 101, 13, 198, 2, 4591, 839, 167, 94, 250, 220, 169, 230, 105, 168, 252, 227, 47991, 112, 168, 243, 120, 220, 47991, 246, 167, 107, 222, 167, 94, 250, 2793, 796, 10352, 198, 198, 30001, 7509, 796, 651, 62, 30001, 7509, 3419, 198, 83, 482, 796, 299, 34431, 13, 7890, 13, 13246, 51, 4303, 30642, 7509, 7, 30001, 7509, 11, 12776, 397, 11, 2793, 796, 10352, 8, 198, 4798, 7, 69, 1549, 1990, 501, 1262, 25, 1391, 25202, 92, 11537, 628, 198, 19849, 62, 11250, 28, 11250, 13, 19849, 62, 11250, 628, 198, 220, 220, 220, 220, 198, 198, 4871, 12556, 1273, 33307, 25, 198, 220, 220, 220, 37227, 20457, 9911, 262, 3047, 611, 21201, 2994, 1595, 470, 2987, 706, 257, 1813, 16336, 526, 15931, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 16336, 28, 22, 11, 15942, 577, 28, 25101, 11, 25979, 28, 15, 11, 3108, 11639, 9122, 4122, 13, 457, 3256, 12854, 62, 20786, 28, 4798, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16336, 357, 600, 2599, 1374, 890, 284, 4043, 706, 938, 640, 21201, 2994, 6596, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 767, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 357, 30388, 2599, 1002, 6407, 11, 20842, 257, 3275, 329, 1123, 21201, 2994, 9025, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25979, 357, 22468, 2599, 26265, 1487, 287, 262, 20738, 12040, 284, 12780, 355, 281, 9025, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 10644, 329, 262, 26954, 284, 307, 7448, 284, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 705, 9122, 4122, 13, 457, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 62, 20786, 357, 8818, 2599, 12854, 3601, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 25, 3601, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8071, 1240, 796, 16336, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19011, 577, 796, 15942, 577, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24588, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13466, 62, 26675, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11458, 62, 11338, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 62, 22462, 62, 1084, 796, 45941, 13, 18943, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 12514, 796, 25979, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40546, 62, 20786, 796, 12854, 62, 20786, 628, 220, 220, 220, 825, 3613, 62, 9122, 4122, 7, 944, 11, 1188, 62, 22462, 11, 2746, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 50, 3080, 2746, 618, 21201, 2994, 10070, 2637, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 19011, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40546, 62, 20786, 7, 69, 6, 7762, 24765, 2994, 11832, 37913, 944, 13, 2100, 62, 22462, 62, 1084, 25, 13, 21, 69, 92, 14610, 1391, 2100, 62, 22462, 25, 13, 21, 69, 92, 737, 220, 34689, 2746, 2644, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 19849, 13, 5219, 62, 11600, 22784, 2116, 13, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2100, 62, 22462, 62, 1084, 796, 1188, 62, 22462, 198 ]
2.075623
1,243
import urllib.parse from .saucenao import get_saucenao_detail, SauceNAOError
[ 11748, 2956, 297, 571, 13, 29572, 198, 198, 6738, 764, 82, 14272, 268, 5488, 1330, 651, 62, 82, 14272, 268, 5488, 62, 49170, 11, 37618, 4535, 46, 12331, 628 ]
2.724138
29
A = True B = False print(A and B) print(A or B)
[ 32, 796, 6407, 198, 33, 796, 10352, 198, 4798, 7, 32, 290, 347, 8, 198, 4798, 7, 32, 393, 347, 8, 198 ]
2.181818
22
#!/usr/bin/env python # Author : Pierre Schnizer """ Collection of Callbacks systems for pygsl. They follow the GSL definitions as close as possible. Instead os a struct python classes are used. All solvers accept a C void pointer, which is passed to the callback. In Pygsl this is an abitrary python object. See the doc strings of the various classes for further detail. """ from . import _callback class gsl_function(_gsl_function): """ This class defines the callbacks known as gsl_function to gsl. e.g to supply the function f: def f(x, params): a = params[0] b = parmas[1] c = params[3] return a * x ** 2 + b * x + c to some solver, use function = gsl_function(f, params) """ initfunc = _callback.gsl_function_init freefunc = _callback.gsl_function_free class gsl_function_fdf(_gsl_function_fdf): """ This class defines the callbacks known as gsl_function_fdf to gsl. e.g to supply the function f: def f(x, None): return exp(2 * x) def df(x, None): return 2 * exp(2 * x) def fdf(x, None): myf = f(x, None) mydf = df(x, None) return myf, mydf to some solver, accepting gsl_function_fdf, use function = gsl_function_fdf(f, df, fdf, params) """ initfunc = _callback.gsl_function_init_fdf freefunc = _callback.gsl_function_free_fdf class gsl_multiroot_function(_gsl_function): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the function: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y sys = multiroots.gsl_multiroot_function(rosenbrock_f, params, 2) """ initfunc = _callback.gsl_multiroot_function_init freefunc = _callback.gsl_multiroot_function_free class gsl_multiroot_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multiroot_function. To supply the function rosenbrock define the functions: def rosenbrock_f(x, params): a = params[0] b = params[1] y = copy.copy(x) y[0] = a * (1 - x[0]) y[1] = b * (x[1] - x[0] * x[0]) return y def rosenbrock_df(x, params): a = params[0] b = params[1] df = Numeric.zeros((x.shape[0], x.shape[0]), Numeric.Float) df[0,0] = -a df[0,1] = 0 df[1,0] = -2 * b * x[0] df[1,1] = b return df def rosenbrock_fdf(x, params): f = rosenbrock_f(x, params) df = rosenbrock_df(x, params) return f, df # dimension of x size = 2 sys = multiroots.gsl_multiroot_function(rosenbrock_f, rosenbrock_df, rosenbrock_fdf, params, size) """ initfunc = _callback.gsl_multiroot_function_init_fdf freefunc = _callback.gsl_multiroot_function_free_fdf class gsl_multifit_function(_gsl_function): """ This class defines the callbacks for gsl_multimin_function. To fit a exponential function to data write the following function: def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function(exp_f, data, n, p) """ initfunc = _callback.gsl_multifit_function_init freefunc = _callback.gsl_multifit_function_free class gsl_multifit_function_fdf(_gsl_function_fdf): """ This class defines the callbacks for gsl_multimin_function. def exp_f(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] Yi = A * exp(-lambda_ * t) + b f = yi - Yi / sigma return f def exp_df(x, params): A = x[0] lambda_ = x[1] b = x[2] t= params[0] yi = params[1] sigma = params[2] e = exp(-lambda_ * t) e_s = e/sigma df = Numeric.array((e_s, -t * A * e_s, 1/sigma)) df = Numeric.transpose(df) print df.shape return df def exp_fdf(x, params): f = exp_f(x, params) df = exp_df(x, params) return f, df # Number of data samples n = len(data) # Number of paramters p = 3 multifit_nlin.gsl_multifit_function_fdf(exp_f, exp_df, exp_fdf, data, n, p) """ initfunc = _callback.gsl_multifit_function_init_fdf freefunc = _callback.gsl_multifit_function_free_fdf class gsl_multimin_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_multimin_function. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, params, 2) """ initfunc = _callback.gsl_multimin_function_init freefunc = _callback.gsl_multimin_function_free class gsl_multimin_function_fdf(gsl_multiroot_function_fdf): """ This class defines the callbacks for gsl_multimin_function_fdf. The following example function defines a simple paraboloid with two parameters. To supply the system define the function: def my_f(v, params): x = v[0] y = v[1] dp = params t1 = (x - dp[0]) t2 = (y - dp[1]) f = 10.0 * t1 * t1 + 20.0 * t2 * t2 + 30.0 return f def my_df(v, params): x = v[0] y = v[1] df = Numeric.zeros(v.shape, Numeric.Float) dp = params df[0] = 20. * (x - dp[0]) df[1] = 40. * (y - dp[1]) return df def my_fdf(v, params): f = my_f(v, params) df = my_df(v,params) return f, df # dimension of x size = 2 sys = multimin.gsl_multifit_function(my_f, my_df, my_fdf, params, size) """ initfunc = _callback.gsl_multimin_function_init_fdf freefunc = _callback.gsl_multimin_function_free_fdf class gsl_monte_function(gsl_multiroot_function): """ This class defines the callbacks for gsl_monte_function. """ initfunc = _callback.gsl_monte_function_init freefunc = _callback.gsl_monte_function_free
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 6434, 1058, 21204, 45606, 7509, 220, 198, 37811, 198, 36307, 286, 4889, 10146, 3341, 329, 220, 12972, 70, 6649, 13, 1119, 1061, 262, 46326, 17336, 355, 198, 19836, 355, 1744, 13, 5455, 28686, 257, 2878, 21015, 6097, 389, 973, 13, 198, 198, 3237, 1540, 690, 2453, 257, 327, 7951, 17562, 11, 543, 318, 3804, 284, 262, 23838, 13, 554, 9485, 70, 6649, 198, 5661, 318, 281, 450, 270, 11619, 21015, 2134, 13, 220, 4091, 262, 2205, 13042, 286, 262, 2972, 6097, 198, 1640, 2252, 3703, 13, 198, 198, 37811, 198, 6738, 764, 1330, 4808, 47423, 628, 198, 4871, 308, 6649, 62, 8818, 28264, 70, 6649, 62, 8818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 1900, 355, 308, 6649, 62, 8818, 284, 198, 220, 220, 220, 308, 6649, 13, 628, 220, 220, 220, 304, 13, 70, 284, 5127, 262, 2163, 277, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 277, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 1582, 5356, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 42287, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 1635, 2124, 12429, 362, 1343, 275, 1635, 2124, 1343, 269, 628, 220, 220, 220, 284, 617, 1540, 332, 11, 779, 628, 220, 220, 220, 2163, 796, 308, 6649, 62, 8818, 7, 69, 11, 42287, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 8818, 62, 15003, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 8818, 62, 5787, 198, 220, 220, 220, 220, 198, 4871, 308, 6649, 62, 8818, 62, 69, 7568, 28264, 70, 6649, 62, 8818, 62, 69, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 1900, 355, 308, 6649, 62, 8818, 62, 69, 7568, 284, 198, 220, 220, 220, 308, 6649, 13, 628, 220, 220, 220, 304, 13, 70, 284, 5127, 262, 2163, 277, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 277, 7, 87, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1033, 7, 17, 1635, 2124, 8, 628, 220, 220, 220, 825, 47764, 7, 87, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 1033, 7, 17, 1635, 2124, 8, 628, 220, 220, 220, 825, 277, 7568, 7, 87, 11, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 616, 69, 220, 796, 220, 277, 7, 87, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 616, 7568, 796, 47764, 7, 87, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 616, 69, 11, 616, 7568, 628, 198, 220, 220, 220, 284, 617, 1540, 332, 11, 12598, 308, 6649, 62, 8818, 62, 69, 7568, 11, 779, 628, 220, 220, 220, 2163, 796, 308, 6649, 62, 8818, 62, 69, 7568, 7, 69, 11, 47764, 11, 277, 7568, 11, 42287, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 8818, 62, 15003, 62, 69, 7568, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 8818, 62, 5787, 62, 69, 7568, 628, 198, 198, 4871, 308, 6649, 62, 16680, 7058, 313, 62, 8818, 28264, 70, 6649, 62, 8818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 7058, 313, 62, 8818, 13, 628, 220, 220, 220, 1675, 5127, 262, 2163, 686, 6248, 7957, 694, 8160, 262, 2163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 686, 6248, 7957, 694, 62, 69, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 4866, 13, 30073, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 15, 60, 796, 257, 1635, 357, 16, 532, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 16, 60, 796, 275, 1635, 357, 87, 58, 16, 60, 532, 2124, 58, 15, 60, 1635, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 628, 220, 220, 220, 25064, 796, 5021, 19150, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 7, 4951, 268, 7957, 694, 62, 69, 11, 42287, 11, 362, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 15003, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 5787, 628, 198, 198, 4871, 308, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 69, 7568, 28264, 70, 6649, 62, 8818, 62, 69, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 7058, 313, 62, 8818, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1675, 5127, 262, 2163, 686, 6248, 7957, 694, 8160, 262, 5499, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 686, 6248, 7957, 694, 62, 69, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 4866, 13, 30073, 7, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 15, 60, 796, 257, 1635, 357, 16, 532, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 58, 16, 60, 796, 275, 1635, 357, 87, 58, 16, 60, 532, 2124, 58, 15, 60, 1635, 2124, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 686, 6248, 7957, 694, 62, 7568, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 399, 39223, 13, 9107, 418, 19510, 87, 13, 43358, 58, 15, 4357, 2124, 13, 43358, 58, 15, 46570, 399, 39223, 13, 43879, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 15, 11, 15, 60, 796, 532, 64, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 15, 11, 16, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 16, 11, 15, 60, 796, 532, 17, 1635, 275, 1635, 2124, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 16, 11, 16, 60, 796, 275, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 686, 6248, 7957, 694, 62, 69, 7568, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 686, 6248, 7957, 694, 62, 69, 7, 87, 11, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 686, 6248, 7957, 694, 62, 7568, 7, 87, 11, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 11, 47764, 628, 220, 220, 220, 1303, 15793, 286, 2124, 198, 220, 220, 220, 2546, 796, 362, 198, 220, 220, 220, 25064, 796, 5021, 19150, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 7, 4951, 268, 7957, 694, 62, 69, 11, 686, 6248, 7957, 694, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 6248, 7957, 694, 62, 69, 7568, 11, 42287, 11, 2546, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 15003, 62, 69, 7568, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 5787, 62, 69, 7568, 628, 198, 4871, 308, 6649, 62, 16680, 361, 270, 62, 8818, 28264, 70, 6649, 62, 8818, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 320, 259, 62, 8818, 13, 628, 220, 220, 220, 1675, 4197, 257, 39682, 2163, 284, 1366, 3551, 262, 1708, 2163, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 825, 1033, 62, 69, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 2124, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 62, 796, 2124, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2124, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 256, 28, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 72, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 42287, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 26463, 796, 317, 1635, 1033, 32590, 50033, 62, 1635, 256, 8, 1343, 275, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 331, 72, 532, 26463, 1220, 264, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 628, 220, 220, 220, 1303, 7913, 286, 1366, 8405, 198, 220, 220, 220, 299, 796, 18896, 7, 7890, 8, 198, 220, 220, 220, 1303, 7913, 286, 5772, 1010, 198, 220, 220, 220, 279, 220, 796, 513, 198, 220, 220, 220, 43543, 270, 62, 77, 2815, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 7, 11201, 62, 69, 11, 1366, 11, 299, 11, 279, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 62, 15003, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 62, 5787, 628, 220, 220, 220, 220, 198, 4871, 308, 6649, 62, 16680, 361, 270, 62, 8818, 62, 69, 7568, 28264, 70, 6649, 62, 8818, 62, 69, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 320, 259, 62, 8818, 13, 198, 220, 220, 220, 825, 1033, 62, 69, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 2124, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 62, 796, 2124, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2124, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 256, 28, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 72, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 42287, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 26463, 796, 317, 1635, 1033, 32590, 50033, 62, 1635, 256, 8, 1343, 275, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 331, 72, 532, 26463, 1220, 264, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 628, 220, 220, 220, 825, 1033, 62, 7568, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 317, 796, 2124, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 37456, 62, 796, 2124, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 2124, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 256, 28, 42287, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 72, 796, 42287, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 42287, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 1033, 32590, 50033, 62, 1635, 256, 8, 198, 220, 220, 220, 220, 220, 220, 220, 304, 62, 82, 796, 304, 14, 82, 13495, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 399, 39223, 13, 18747, 19510, 68, 62, 82, 11, 532, 83, 1635, 317, 1635, 304, 62, 82, 11, 352, 14, 82, 13495, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 399, 39223, 13, 7645, 3455, 7, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 47764, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 628, 220, 220, 220, 825, 1033, 62, 69, 7568, 7, 87, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 1033, 62, 69, 7, 87, 11, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 1033, 62, 7568, 7, 87, 11, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 11, 47764, 628, 220, 220, 220, 1303, 7913, 286, 1366, 8405, 198, 220, 220, 220, 299, 796, 18896, 7, 7890, 8, 198, 220, 220, 220, 1303, 7913, 286, 5772, 1010, 198, 220, 220, 220, 279, 220, 796, 513, 198, 220, 220, 220, 43543, 270, 62, 77, 2815, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 62, 69, 7568, 7, 11201, 62, 69, 11, 1033, 62, 7568, 11, 1033, 62, 69, 7568, 11, 1366, 11, 299, 11, 279, 8, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 62, 15003, 62, 69, 7568, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 62, 5787, 62, 69, 7568, 198, 198, 4871, 308, 6649, 62, 16680, 320, 259, 62, 8818, 7, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 2599, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 320, 259, 62, 8818, 13, 628, 220, 220, 220, 383, 1708, 1672, 2163, 15738, 257, 2829, 1582, 28426, 1868, 351, 734, 198, 220, 220, 220, 10007, 13, 628, 220, 220, 220, 1675, 5127, 220, 262, 1080, 8160, 262, 2163, 25, 198, 220, 220, 220, 825, 616, 62, 69, 7, 85, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 410, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 410, 58, 16, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 256, 16, 220, 796, 357, 87, 532, 288, 79, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 256, 17, 220, 796, 357, 88, 532, 288, 79, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 838, 13, 15, 1635, 256, 16, 1635, 256, 16, 1343, 1160, 13, 15, 1635, 256, 17, 1635, 256, 17, 1343, 1542, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 15793, 286, 2124, 198, 220, 220, 220, 2546, 796, 362, 628, 220, 220, 220, 25064, 796, 43104, 259, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 7, 1820, 62, 69, 11, 42287, 11, 362, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 320, 259, 62, 8818, 62, 15003, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 320, 259, 62, 8818, 62, 5787, 198, 198, 4871, 308, 6649, 62, 16680, 320, 259, 62, 8818, 62, 69, 7568, 7, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 62, 69, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 16680, 320, 259, 62, 8818, 62, 69, 7568, 13, 628, 220, 220, 220, 383, 1708, 1672, 2163, 15738, 257, 2829, 1582, 28426, 1868, 351, 734, 198, 220, 220, 220, 10007, 13, 628, 220, 220, 220, 1675, 5127, 220, 262, 1080, 8160, 262, 2163, 25, 198, 220, 220, 220, 825, 616, 62, 69, 7, 85, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 410, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 410, 58, 16, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 256, 16, 220, 796, 357, 87, 532, 288, 79, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 256, 17, 220, 796, 357, 88, 532, 288, 79, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 838, 13, 15, 1635, 256, 16, 1635, 256, 16, 1343, 1160, 13, 15, 1635, 256, 17, 1635, 256, 17, 1343, 1542, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 198, 220, 220, 220, 825, 616, 62, 7568, 7, 85, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 410, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 410, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 399, 39223, 13, 9107, 418, 7, 85, 13, 43358, 11, 399, 39223, 13, 43879, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 15, 60, 796, 1160, 13, 1635, 357, 87, 532, 288, 79, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 16, 60, 796, 2319, 13, 1635, 357, 88, 532, 288, 79, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 628, 220, 220, 220, 825, 616, 62, 69, 7568, 7, 85, 11, 42287, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 616, 62, 69, 7, 85, 11, 42287, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 616, 62, 7568, 7, 85, 11, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 11, 47764, 628, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 15793, 286, 2124, 198, 220, 220, 220, 2546, 796, 362, 198, 220, 220, 220, 25064, 796, 43104, 259, 13, 70, 6649, 62, 16680, 361, 270, 62, 8818, 7, 1820, 62, 69, 11, 616, 62, 7568, 11, 616, 62, 69, 7568, 11, 42287, 11, 2546, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 320, 259, 62, 8818, 62, 15003, 62, 69, 7568, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 16680, 320, 259, 62, 8818, 62, 5787, 62, 69, 7568, 198, 198, 4871, 308, 6649, 62, 2144, 660, 62, 8818, 7, 70, 6649, 62, 16680, 7058, 313, 62, 8818, 2599, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 1398, 15738, 262, 869, 10146, 329, 308, 6649, 62, 2144, 660, 62, 8818, 13, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 2315, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 2144, 660, 62, 8818, 62, 15003, 198, 220, 220, 220, 1479, 20786, 796, 220, 4808, 47423, 13, 70, 6649, 62, 2144, 660, 62, 8818, 62, 5787, 198 ]
2.066425
3,312
import argparse if __name__ == "__main__": main()
[ 11748, 1822, 29572, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.545455
22
from collections import Counter def partial_digest(distances): '''Returns a set whose positive pairwise differences generate 'distances'.''' # Initialize variables. X = {0} width = max(distances) # Create lambda functions for multiset operations. new_dist = lambda y, S: Counter(abs(y-s) for s in S) containment = lambda a, b: all(a[x] <= b[x] for x in a) # Create the multiset which generates 'distances'. while len(distances) > 0: y = max(distances) if containment(new_dist(y, X), distances): X |= {y} distances -= new_dist(y, X) else: X |= {width - y} distances -= new_dist(width - y, X) return X def main(): '''Main call. Reads, runs, and saves problem specific data.''' # Read the input data. with open('data/data.dat') as input_data: distances = Counter(map(int,input_data.read().strip().split())) # Get the partial digest. X = sorted(list(partial_digest(distances))) # Print and save the answer. print ' '.join(map(str, X)) if __name__ == '__main__': main()
[ 6738, 17268, 1330, 15034, 628, 198, 4299, 13027, 62, 12894, 395, 7, 17080, 1817, 2599, 198, 220, 220, 220, 705, 7061, 35561, 257, 900, 3025, 3967, 5166, 3083, 5400, 7716, 705, 17080, 1817, 6, 2637, 7061, 198, 220, 220, 220, 1303, 20768, 1096, 9633, 13, 198, 220, 220, 220, 1395, 796, 1391, 15, 92, 198, 220, 220, 220, 9647, 796, 3509, 7, 17080, 1817, 8, 628, 220, 220, 220, 1303, 13610, 37456, 5499, 329, 1963, 271, 316, 4560, 13, 198, 220, 220, 220, 649, 62, 17080, 796, 37456, 331, 11, 311, 25, 15034, 7, 8937, 7, 88, 12, 82, 8, 329, 264, 287, 311, 8, 198, 220, 220, 220, 37149, 796, 37456, 257, 11, 275, 25, 477, 7, 64, 58, 87, 60, 19841, 275, 58, 87, 60, 329, 2124, 287, 257, 8, 628, 220, 220, 220, 1303, 13610, 262, 1963, 271, 316, 543, 18616, 705, 17080, 1817, 4458, 198, 220, 220, 220, 981, 18896, 7, 17080, 1817, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 3509, 7, 17080, 1817, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 37149, 7, 3605, 62, 17080, 7, 88, 11, 1395, 828, 18868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 930, 28, 1391, 88, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18868, 48185, 649, 62, 17080, 7, 88, 11, 1395, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 930, 28, 1391, 10394, 532, 331, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18868, 48185, 649, 62, 17080, 7, 10394, 532, 331, 11, 1395, 8, 628, 220, 220, 220, 1441, 1395, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 13383, 869, 13, 4149, 82, 11, 4539, 11, 290, 16031, 1917, 2176, 1366, 2637, 7061, 198, 220, 220, 220, 1303, 4149, 262, 5128, 1366, 13, 198, 220, 220, 220, 351, 1280, 10786, 7890, 14, 7890, 13, 19608, 11537, 355, 5128, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18868, 796, 15034, 7, 8899, 7, 600, 11, 15414, 62, 7890, 13, 961, 22446, 36311, 22446, 35312, 3419, 4008, 628, 220, 220, 220, 1303, 3497, 262, 13027, 16274, 13, 198, 220, 220, 220, 1395, 796, 23243, 7, 4868, 7, 47172, 62, 12894, 395, 7, 17080, 1817, 22305, 628, 220, 220, 220, 1303, 12578, 290, 3613, 262, 3280, 13, 198, 220, 220, 220, 3601, 705, 45302, 22179, 7, 8899, 7, 2536, 11, 1395, 4008, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.501109
451
if __name__ == '__main__': text = input("Give words: ") print(pig_latin(text))
[ 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2420, 796, 5128, 7203, 23318, 2456, 25, 366, 8, 198, 220, 220, 220, 3601, 7, 79, 328, 62, 75, 10680, 7, 5239, 4008, 198 ]
2.225
40
# -*- coding: utf-8 -*- """ Created on Wed Aug 15 13:35:23 2018 @author: Victor Onink Here we create a figure that has the 24h, and the 3h flow field densities for the North Pacific """ import numpy as np from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt from scipy import io import pandas as pd # cbar=my_map.colorbar(density) # cbar.ax.tick_params(labelsize=12) # cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=12) #%% location='D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\OutputFiles\Onink et al\Densities/' File=['NorthPacificTotalDensity24h','NorthPacificStokesTotalDensity24h', 'NorthPacificTotalDensity3h','NorthPacificStokesTotalDensity3h'] axeslabelsize=14 textsize=12 fig,axes=plt.subplots(nrows=2, ncols=1,figsize=(10*2,8*1)) for i in range(len(File)): density=np.load(location+File[i]) density[np.isnan(density)]=0 meanFinalYear=np.sum(density[-183:,:,:]/density[-183:,:,:].shape[0],axis=0) meanFinalYear[meanFinalYear==0]=np.nan latD=np.linspace(-80,80,160) lonD=np.linspace(0,359,360) plt.subplot(2,2,i+1) density=plotDensity(i,lonD,latD,meanFinalYear) fig.subplots_adjust(right=0.9) cbar_ax = fig.add_axes([0.93, 0.12, 0.02, 0.74]) cbar=fig.colorbar(density,cax=cbar_ax) cbar.ax.tick_params(labelsize=textsize) cbar.set_label("Plastic Counts ($10^{-3}$ # km$^{-2}$)", rotation=90,fontsize=axeslabelsize) cbar.ax.set_yticklabels(['<0.1','0.3','0.5','0.7','0.9','1.1','1.3','1.5','1.7','1.9<']) plt.subplots_adjust(wspace=0.06) plt.savefig('D:\Desktop\Thesis\ParcelsFigData\Data\North Pacific\Figures\NorthPacificTimeStepDensities.jpg', bbox_inches='tight')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 2447, 1315, 1511, 25, 2327, 25, 1954, 2864, 198, 198, 31, 9800, 25, 12622, 1550, 676, 198, 4342, 356, 2251, 257, 3785, 326, 468, 262, 1987, 71, 11, 290, 262, 513, 71, 5202, 2214, 29509, 871, 198, 1640, 262, 2258, 8211, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 285, 489, 62, 25981, 74, 896, 13, 12093, 368, 499, 1330, 6455, 368, 499, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 629, 541, 88, 1330, 33245, 198, 11748, 19798, 292, 355, 279, 67, 198, 2, 220, 220, 220, 269, 5657, 28, 1820, 62, 8899, 13, 8043, 5657, 7, 43337, 8, 198, 2, 220, 220, 220, 269, 5657, 13, 897, 13, 42298, 62, 37266, 7, 23912, 1424, 1096, 28, 1065, 8, 198, 2, 220, 220, 220, 269, 5657, 13, 2617, 62, 18242, 7203, 3646, 3477, 2764, 82, 7198, 940, 36796, 12, 18, 92, 3, 1303, 10571, 3, 36796, 12, 17, 92, 3, 42501, 13179, 28, 3829, 11, 10331, 7857, 28, 1065, 8, 198, 198, 2, 16626, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 24886, 11639, 35, 7479, 36881, 59, 464, 13429, 59, 10044, 5276, 82, 14989, 6601, 59, 6601, 59, 14157, 8211, 59, 26410, 25876, 59, 2202, 676, 2123, 435, 59, 35, 641, 871, 14, 6, 198, 8979, 28, 17816, 14157, 22933, 14957, 35, 6377, 1731, 71, 41707, 14157, 22933, 1273, 3369, 14957, 35, 6377, 1731, 71, 3256, 198, 220, 220, 220, 220, 220, 705, 14157, 22933, 14957, 35, 6377, 18, 71, 41707, 14157, 22933, 1273, 3369, 14957, 35, 6377, 18, 71, 20520, 198, 897, 274, 23912, 1424, 1096, 28, 1415, 198, 5239, 7857, 28, 1065, 198, 5647, 11, 897, 274, 28, 489, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 17, 11, 299, 4033, 82, 28, 16, 11, 5647, 7857, 16193, 940, 9, 17, 11, 23, 9, 16, 4008, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 8979, 8, 2599, 198, 220, 220, 220, 12109, 28, 37659, 13, 2220, 7, 24886, 10, 8979, 58, 72, 12962, 198, 220, 220, 220, 12109, 58, 37659, 13, 271, 12647, 7, 43337, 15437, 28, 15, 198, 220, 220, 220, 1612, 19006, 17688, 28, 37659, 13, 16345, 7, 43337, 58, 12, 24839, 45299, 45299, 47715, 14, 43337, 58, 12, 24839, 45299, 45299, 25, 4083, 43358, 58, 15, 4357, 22704, 28, 15, 8, 198, 220, 220, 220, 1612, 19006, 17688, 58, 32604, 19006, 17688, 855, 15, 22241, 37659, 13, 12647, 198, 220, 220, 220, 3042, 35, 28, 37659, 13, 21602, 10223, 32590, 1795, 11, 1795, 11, 14198, 8, 198, 220, 220, 220, 300, 261, 35, 28, 37659, 13, 21602, 10223, 7, 15, 11, 30743, 11, 15277, 8, 198, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 17, 11, 17, 11, 72, 10, 16, 8, 198, 220, 220, 220, 12109, 28, 29487, 35, 6377, 7, 72, 11, 14995, 35, 11, 15460, 35, 11, 32604, 19006, 17688, 8, 198, 5647, 13, 7266, 489, 1747, 62, 23032, 7, 3506, 28, 15, 13, 24, 8, 198, 66, 5657, 62, 897, 796, 2336, 13, 2860, 62, 897, 274, 26933, 15, 13, 6052, 11, 657, 13, 1065, 11, 657, 13, 2999, 11, 657, 13, 4524, 12962, 198, 66, 5657, 28, 5647, 13, 8043, 5657, 7, 43337, 11, 66, 897, 28, 66, 5657, 62, 897, 8, 198, 66, 5657, 13, 897, 13, 42298, 62, 37266, 7, 23912, 1424, 1096, 28, 5239, 7857, 8, 198, 66, 5657, 13, 2617, 62, 18242, 7203, 3646, 3477, 2764, 82, 7198, 940, 36796, 12, 18, 92, 3, 1303, 10571, 3, 36796, 12, 17, 92, 3, 42501, 13179, 28, 3829, 11, 10331, 7857, 28, 897, 274, 23912, 1424, 1096, 8, 198, 66, 5657, 13, 897, 13, 2617, 62, 20760, 624, 23912, 1424, 7, 17816, 27, 15, 13, 16, 41707, 15, 13, 18, 41707, 15, 13, 20, 41707, 15, 13, 22, 41707, 15, 13, 24, 41707, 16, 13, 16, 41707, 16, 13, 18, 41707, 16, 13, 20, 41707, 16, 13, 22, 41707, 16, 13, 24, 27, 6, 12962, 198, 489, 83, 13, 7266, 489, 1747, 62, 23032, 7, 86, 13200, 28, 15, 13, 3312, 8, 198, 489, 83, 13, 21928, 5647, 10786, 35, 7479, 36881, 59, 464, 13429, 59, 10044, 5276, 82, 14989, 6601, 59, 6601, 59, 14157, 8211, 59, 14989, 942, 59, 14157, 22933, 7575, 8600, 35, 641, 871, 13, 9479, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 45457, 11639, 33464, 11537, 220, 198 ]
2.212005
783
from settings import * BASE_URL = os.getenv('OPENDUTY_BASE_URL', "http://localhost") XMPP_SETTINGS = { 'user': os.getenv('OPENDUTY_XMPP_USER'), 'password': os.getenv('OPENDUTY_XMPP_PASS'), 'server': os.getenv('OPENDUTY_XMPP_SERVER', 'xmpp'), 'port': os.getenv('OPENDUTY_XMPP_PORT', 5222), } EMAIL_SETTINGS = { 'user': os.getenv('OPENDUTY_EMAIL_USER'), 'password': os.getenv('OPENDUTY_EMAIL_PASS'), } ''' TWILIO_SETTINGS = { 'SID': "TWILIO_ACCOUNT_SID", 'token': "TWILIO_ACCOUNT_TOKEN", 'phone_number': "your_twilio_phone_number", 'sms_number': "your_twilio_sms_number", 'twiml_url': "http://www.website.org/voice.xml" } ''' SLACK_SETTINGS = { 'apikey': os.getenv('OPENDUTY_SLACK_APIKEY', "YOUR_SLACK_API_KEY") } ''' PROWL_SETTINGS = { 'priority': 0 'application': 'openduty' } ''' DATABASES = { 'default': { 'ENGINE': os.getenv('OPENDUTY_DATABASE_ENGINE', 'django.db.backends.mysql'), 'NAME': os.getenv('OPENDUTY_DATABASE_NAME', 'openduty'), 'USER': os.getenv('OPENDUTY_DATABASE_USER', 'openduty'), 'PASSWORD': os.getenv('OPENDUTY_DATABASE_PASS', 'dutyfree'), 'HOST': os.getenv('OPENDUTY_DATABASE_HOST', 'db'), 'PORT': os.getenv('OPENDUTY_DATABASE_PORT', '3306') } } # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.getenv('OPENDUTY_SECRET_KEY', 'yoursecretkey') ALLOWED_HOSTS = ['your.dutyfree.host'] DEBUG = os.getenv('OPENDUTY_DEBUG', False) TEMPLATE_DEBUG = os.getenv('OPENDUTY_TEMPLATE_DEBUG', False)
[ 6738, 6460, 1330, 1635, 628, 198, 33, 11159, 62, 21886, 796, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 33, 11159, 62, 21886, 3256, 366, 4023, 1378, 36750, 4943, 198, 198, 55, 7378, 47, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 7220, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 55, 7378, 47, 62, 29904, 33809, 198, 220, 220, 220, 705, 28712, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 55, 7378, 47, 62, 47924, 33809, 198, 220, 220, 220, 705, 15388, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 55, 7378, 47, 62, 35009, 5959, 3256, 705, 87, 76, 381, 33809, 198, 220, 220, 220, 705, 634, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 55, 7378, 47, 62, 15490, 3256, 642, 23148, 828, 198, 92, 198, 198, 27630, 4146, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 7220, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 27630, 4146, 62, 29904, 33809, 198, 220, 220, 220, 705, 28712, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 27630, 4146, 62, 47924, 33809, 198, 92, 198, 198, 7061, 6, 198, 34551, 4146, 9399, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 50, 2389, 10354, 366, 34551, 4146, 9399, 62, 26861, 28270, 62, 50, 2389, 1600, 198, 220, 220, 220, 705, 30001, 10354, 366, 34551, 4146, 9399, 62, 26861, 28270, 62, 10468, 43959, 1600, 198, 220, 220, 220, 705, 4862, 62, 17618, 10354, 366, 14108, 62, 4246, 346, 952, 62, 4862, 62, 17618, 1600, 198, 220, 220, 220, 705, 82, 907, 62, 17618, 10354, 366, 14108, 62, 4246, 346, 952, 62, 82, 907, 62, 17618, 1600, 198, 220, 220, 220, 705, 4246, 320, 75, 62, 6371, 10354, 366, 4023, 1378, 2503, 13, 732, 12485, 13, 2398, 14, 38888, 13, 19875, 1, 198, 92, 198, 7061, 6, 198, 198, 8634, 8120, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 499, 522, 88, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 8634, 8120, 62, 17614, 20373, 3256, 366, 56, 11698, 62, 8634, 8120, 62, 17614, 62, 20373, 4943, 198, 92, 198, 198, 7061, 6, 198, 4805, 3913, 43, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 49336, 10354, 657, 198, 220, 220, 220, 705, 31438, 10354, 705, 404, 437, 3935, 6, 198, 92, 198, 7061, 6, 198, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 26808, 8881, 3256, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 20608, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 20608, 3256, 705, 404, 437, 3935, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29904, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 29904, 3256, 705, 404, 437, 3935, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47924, 54, 12532, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 47924, 3256, 705, 26278, 5787, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 39, 10892, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 39, 10892, 3256, 705, 9945, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15490, 10354, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 35, 1404, 6242, 11159, 62, 15490, 3256, 705, 18, 20548, 11537, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 2, 10729, 4261, 9050, 39410, 25, 1394, 262, 3200, 1994, 973, 287, 3227, 3200, 0, 198, 23683, 26087, 62, 20373, 796, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 23683, 26087, 62, 20373, 3256, 705, 14108, 21078, 2539, 11537, 198, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 37250, 14108, 13, 26278, 5787, 13, 4774, 20520, 198, 198, 30531, 796, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 30531, 3256, 10352, 8, 198, 51, 3620, 6489, 6158, 62, 30531, 796, 28686, 13, 1136, 24330, 10786, 3185, 10619, 3843, 56, 62, 51, 3620, 6489, 6158, 62, 30531, 3256, 10352, 8, 198 ]
2.086782
749
# Conventional Machine Learning Algorithms # Test Script for Class of "NaiveBayes". # Author: Qixun Qu # Create on: 2018/04/24 # Modify on: 2018/04/25 # ,,, ,,, # ;" '; ;' ", # ; @.ss$$$$$$s.@ ; # `s$$$$$$$$$$$$$$$' # $$$$$$$$$$$$$$$$$$ # $$$$P""Y$$$Y""W$$$$$ # $$$$ p"$$$"q $$$$$ # $$$$ .$$$$$. $$$$' # $$$DaU$$O$$DaU$$$' # '$$$$'.^.'$$$$' # '&$$$$$&' from __future__ import division from __future__ import print_function from utils import * from NaiveBayes import * from sklearn.datasets import make_hastie_10_2 # Basic settings random_state = 9527 n_samples = 10000 test_size = 0.2 # Generate Dataset for training and testing # Obtain all samples X, y = make_hastie_10_2(n_samples=n_samples, random_state=random_state) # Split dataset X_train, y_train, X_test, y_test = split_dataset(X, y, test_size, random_state) # Normalize dataset X_train_scaled, X_test_scaled = scale_dataset(X_train, X_test) # Train Gaussian Naive Bayes Classifier nb = NaiveBayes(alpha=1) nb.fit(X_train_scaled, y_train, cont_feat_idx="all") # Predict test set and evaluate results y_pred = nb.predict(X_test_scaled) print("Accuracy of test set:", accuracy(y_pred, y_test)) # Accuracy can reach 0.9765.
[ 2, 1482, 20405, 10850, 18252, 978, 7727, 907, 198, 2, 6208, 12327, 329, 5016, 286, 366, 26705, 425, 15262, 274, 1911, 198, 2, 6434, 25, 1195, 844, 403, 2264, 198, 2, 13610, 319, 25, 2864, 14, 3023, 14, 1731, 198, 2, 3401, 1958, 319, 25, 2864, 14, 3023, 14, 1495, 198, 198, 2, 220, 220, 220, 220, 837, 9832, 220, 220, 220, 220, 220, 220, 220, 220, 837, 9832, 198, 2, 220, 220, 2162, 1, 220, 220, 705, 26, 220, 220, 220, 220, 2162, 6, 220, 220, 33172, 198, 2, 220, 220, 2162, 220, 2488, 13, 824, 36737, 13702, 82, 13, 31, 220, 2162, 198, 2, 220, 220, 4600, 82, 36737, 36737, 36737, 13702, 3, 6, 198, 2, 220, 220, 720, 36737, 36737, 36737, 36737, 3, 198, 2, 220, 720, 13702, 3, 47, 15931, 56, 13702, 3, 56, 15931, 54, 36737, 3, 198, 2, 220, 720, 13702, 3, 220, 279, 1, 13702, 3, 1, 80, 220, 720, 36737, 198, 2, 220, 720, 13702, 3, 220, 764, 36737, 35307, 220, 720, 13702, 3, 6, 198, 2, 220, 220, 720, 13702, 26531, 52, 13702, 46, 13702, 26531, 52, 13702, 3, 6, 198, 2, 220, 220, 220, 705, 36737, 4458, 61, 2637, 36737, 6, 198, 2, 220, 220, 220, 220, 220, 220, 705, 5, 36737, 3, 5, 6, 628, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 628, 198, 6738, 3384, 4487, 1330, 1635, 198, 6738, 11013, 425, 15262, 274, 1330, 1635, 198, 6738, 1341, 35720, 13, 19608, 292, 1039, 1330, 787, 62, 71, 459, 494, 62, 940, 62, 17, 628, 198, 2, 14392, 6460, 198, 25120, 62, 5219, 796, 6957, 1983, 198, 77, 62, 82, 12629, 796, 33028, 198, 9288, 62, 7857, 796, 657, 13, 17, 628, 198, 2, 2980, 378, 16092, 292, 316, 329, 3047, 290, 4856, 198, 2, 1835, 3153, 477, 8405, 198, 55, 11, 331, 796, 787, 62, 71, 459, 494, 62, 940, 62, 17, 7, 77, 62, 82, 12629, 28, 77, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 8, 198, 2, 27758, 27039, 198, 55, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 9288, 796, 6626, 62, 19608, 292, 316, 7, 55, 11, 331, 11, 1332, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 8, 198, 2, 14435, 1096, 27039, 198, 55, 62, 27432, 62, 1416, 3021, 11, 1395, 62, 9288, 62, 1416, 3021, 796, 5046, 62, 19608, 292, 316, 7, 55, 62, 27432, 11, 1395, 62, 9288, 8, 628, 198, 2, 16835, 12822, 31562, 11013, 425, 4696, 274, 5016, 7483, 198, 46803, 796, 11013, 425, 15262, 274, 7, 26591, 28, 16, 8, 198, 46803, 13, 11147, 7, 55, 62, 27432, 62, 1416, 3021, 11, 331, 62, 27432, 11, 542, 62, 27594, 62, 312, 87, 2625, 439, 4943, 198, 198, 2, 49461, 1332, 900, 290, 13446, 2482, 198, 88, 62, 28764, 796, 299, 65, 13, 79, 17407, 7, 55, 62, 9288, 62, 1416, 3021, 8, 198, 4798, 7203, 17320, 23843, 286, 1332, 900, 25, 1600, 9922, 7, 88, 62, 28764, 11, 331, 62, 9288, 4008, 198, 2, 33222, 460, 3151, 657, 13, 5607, 2996, 13, 198 ]
2.20302
596
from Bridge import Proxy2Server import os from DataTypes import Packet, A_Packet_Class from DataTypes import VarInt, Output_Streamer, Bytes_Streamer, Socket_Streamer import time output = Output_Streamer() input = Bytes_Streamer() login_packets = A_Packet_Class() SOCK = Socket_Streamer('connect.2b2t.org', 25565, login_packets) handshake = Packet(login_packets) handshake.set(['VarInt', 'VarInt', 'String', 'Ushort', 'VarInt']) status = Packet(login_packets) status.set(['VarInt', 'String']) request = Packet(login_packets) request.set(['VarInt']) ping_pong = Packet(login_packets) ping_pong.set(['VarInt', 'Long']) encryption_req = Packet(login_packets) encryption_req.set(['VarInt', 'String', 'String', 'String']) encryption_res = Packet(login_packets) encryption_res.set(['VarInt', 'String', 'String']) login_success = Packet(login_packets) login_success.set(['VarInt', 'String', 'String']) set_compression = Packet(login_packets) set_compression.set(['VarInt', 'VarInt']) login_packets.map_pack(pack_0) login_packets.map_unpack(unpack_0) # data = handshake.pack([0x00, 340, b'2b2t.org', 25565, 1]) # server_sock.write(data) # data = request.pack([0x00]) # server_sock.write(data) # status.unpack(server_sock, output) input.write(handshake.pack([0x00, 340, b'2b2t.org', 25565, 2])) SOCK.write(input) input.write(status.pack([0x00, b'ThBlitz'])) SOCK.write(input) SOCK.read(input) encryption_req.unpack(input, output) print(f'encryption_req : {output.getvalue()}') data = output.getvalue() login_packets.server_id = data[1] login_packets.server_public_key = data[2] login_packets.verification_token = data[3] import secrets login_packets.aes_key = secrets.randbits(128).to_bytes(16, 'big') hash , ver_token , shared_secret = login_packets.get_hash() import mojang_api uuid , name , token , login_data = mojang_api.login_through_microsoft() res = mojang_api.join_server(token, uuid, hash) print(f'response from mojang : {res}') input.reset() input.write(encryption_res.pack([0x01, shared_secret, ver_token])) SOCK.write(input) login_packets.encryption_enabled = True SOCK.read(input) set_compression.unpack(input, output) login_packets.compression_threshold = output.getvalue()[1] login_packets.compression_enabled = True print(f'compression_packet : {output.getvalue()}') SOCK.read(input) login_success.unpack(input, output) print(f'login_success : {output.getvalue()}') SOCK.read(input) status.unpack(input, output) print(input.getvalue()) while True: SOCK.read(input) print(hex(VarInt.unpack(input))) print(input.read()) time.sleep(1) # t
[ 6738, 10290, 1330, 38027, 17, 10697, 198, 11748, 28686, 198, 6738, 6060, 31431, 1330, 6400, 316, 11, 317, 62, 47, 8317, 62, 9487, 198, 6738, 6060, 31431, 1330, 12372, 5317, 11, 25235, 62, 28696, 11, 2750, 4879, 62, 28696, 11, 47068, 62, 28696, 198, 11748, 640, 628, 198, 22915, 796, 25235, 62, 28696, 3419, 198, 198, 15414, 796, 2750, 4879, 62, 28696, 3419, 198, 198, 38235, 62, 8002, 1039, 796, 317, 62, 47, 8317, 62, 9487, 3419, 198, 198, 50, 11290, 796, 47068, 62, 28696, 10786, 8443, 13, 17, 65, 17, 83, 13, 2398, 3256, 14280, 2996, 11, 17594, 62, 8002, 1039, 8, 198, 198, 4993, 32431, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 4993, 32431, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 19852, 5317, 3256, 705, 10100, 3256, 705, 52, 19509, 3256, 705, 19852, 5317, 6, 12962, 198, 198, 13376, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 13376, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 10100, 6, 12962, 198, 198, 25927, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 25927, 13, 2617, 7, 17816, 19852, 5317, 6, 12962, 198, 198, 13886, 62, 79, 506, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 13886, 62, 79, 506, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 14617, 6, 12962, 198, 198, 12685, 13168, 62, 42180, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 12685, 13168, 62, 42180, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 10100, 3256, 705, 10100, 3256, 705, 10100, 6, 12962, 198, 198, 12685, 13168, 62, 411, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 12685, 13168, 62, 411, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 10100, 3256, 705, 10100, 6, 12962, 198, 198, 38235, 62, 13138, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 38235, 62, 13138, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 10100, 3256, 705, 10100, 6, 12962, 198, 198, 2617, 62, 5589, 2234, 796, 6400, 316, 7, 38235, 62, 8002, 1039, 8, 198, 2617, 62, 5589, 2234, 13, 2617, 7, 17816, 19852, 5317, 3256, 705, 19852, 5317, 6, 12962, 198, 198, 38235, 62, 8002, 1039, 13, 8899, 62, 8002, 7, 8002, 62, 15, 8, 198, 38235, 62, 8002, 1039, 13, 8899, 62, 403, 8002, 7, 403, 8002, 62, 15, 8, 628, 628, 198, 2, 1366, 796, 42231, 13, 8002, 26933, 15, 87, 405, 11, 28560, 11, 275, 6, 17, 65, 17, 83, 13, 2398, 3256, 14280, 2996, 11, 352, 12962, 198, 2, 4382, 62, 82, 735, 13, 13564, 7, 7890, 8, 198, 2, 1366, 796, 2581, 13, 8002, 26933, 15, 87, 405, 12962, 198, 2, 4382, 62, 82, 735, 13, 13564, 7, 7890, 8, 198, 198, 2, 3722, 13, 403, 8002, 7, 15388, 62, 82, 735, 11, 5072, 8, 198, 198, 15414, 13, 13564, 7, 4993, 32431, 13, 8002, 26933, 15, 87, 405, 11, 28560, 11, 275, 6, 17, 65, 17, 83, 13, 2398, 3256, 14280, 2996, 11, 362, 60, 4008, 198, 198, 50, 11290, 13, 13564, 7, 15414, 8, 198, 198, 15414, 13, 13564, 7, 13376, 13, 8002, 26933, 15, 87, 405, 11, 275, 6, 817, 3629, 4224, 20520, 4008, 198, 198, 50, 11290, 13, 13564, 7, 15414, 8, 198, 198, 50, 11290, 13, 961, 7, 15414, 8, 198, 198, 12685, 13168, 62, 42180, 13, 403, 8002, 7, 15414, 11, 5072, 8, 198, 198, 4798, 7, 69, 6, 12685, 13168, 62, 42180, 1058, 1391, 22915, 13, 1136, 8367, 3419, 92, 11537, 198, 198, 7890, 796, 5072, 13, 1136, 8367, 3419, 198, 38235, 62, 8002, 1039, 13, 15388, 62, 312, 796, 1366, 58, 16, 60, 198, 38235, 62, 8002, 1039, 13, 15388, 62, 11377, 62, 2539, 796, 1366, 58, 17, 60, 198, 38235, 62, 8002, 1039, 13, 332, 2649, 62, 30001, 796, 1366, 58, 18, 60, 198, 198, 11748, 13141, 198, 38235, 62, 8002, 1039, 13, 64, 274, 62, 2539, 796, 13141, 13, 25192, 9895, 7, 12762, 737, 1462, 62, 33661, 7, 1433, 11, 705, 14261, 11537, 198, 198, 17831, 837, 3326, 62, 30001, 837, 4888, 62, 21078, 796, 17594, 62, 8002, 1039, 13, 1136, 62, 17831, 3419, 198, 198, 11748, 6941, 73, 648, 62, 15042, 198, 12303, 312, 837, 1438, 837, 11241, 837, 17594, 62, 7890, 796, 6941, 73, 648, 62, 15042, 13, 38235, 62, 9579, 62, 40485, 3419, 198, 411, 796, 6941, 73, 648, 62, 15042, 13, 22179, 62, 15388, 7, 30001, 11, 334, 27112, 11, 12234, 8, 198, 4798, 7, 69, 821, 2777, 2591, 422, 6941, 73, 648, 1058, 1391, 411, 92, 11537, 198, 198, 15414, 13, 42503, 3419, 198, 15414, 13, 13564, 7, 12685, 13168, 62, 411, 13, 8002, 26933, 15, 87, 486, 11, 4888, 62, 21078, 11, 3326, 62, 30001, 60, 4008, 198, 198, 50, 11290, 13, 13564, 7, 15414, 8, 198, 198, 38235, 62, 8002, 1039, 13, 12685, 13168, 62, 25616, 796, 6407, 198, 198, 50, 11290, 13, 961, 7, 15414, 8, 198, 198, 2617, 62, 5589, 2234, 13, 403, 8002, 7, 15414, 11, 5072, 8, 198, 198, 38235, 62, 8002, 1039, 13, 5589, 2234, 62, 400, 10126, 796, 5072, 13, 1136, 8367, 3419, 58, 16, 60, 198, 38235, 62, 8002, 1039, 13, 5589, 2234, 62, 25616, 796, 6407, 198, 198, 4798, 7, 69, 6, 5589, 2234, 62, 8002, 316, 1058, 1391, 22915, 13, 1136, 8367, 3419, 92, 11537, 198, 198, 50, 11290, 13, 961, 7, 15414, 8, 198, 198, 38235, 62, 13138, 13, 403, 8002, 7, 15414, 11, 5072, 8, 198, 198, 4798, 7, 69, 6, 38235, 62, 13138, 1058, 1391, 22915, 13, 1136, 8367, 3419, 92, 11537, 198, 198, 50, 11290, 13, 961, 7, 15414, 8, 198, 198, 13376, 13, 403, 8002, 7, 15414, 11, 5072, 8, 198, 4798, 7, 15414, 13, 1136, 8367, 28955, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 311, 11290, 13, 961, 7, 15414, 8, 198, 220, 220, 220, 3601, 7, 33095, 7, 19852, 5317, 13, 403, 8002, 7, 15414, 22305, 198, 220, 220, 220, 3601, 7, 15414, 13, 961, 28955, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 628, 628, 628, 628, 198, 198, 2, 256, 198 ]
2.585149
1,010
# -*- coding: utf-8 -*- """ Created on Wed Mar 17 13:35:39 2021 @author: ejgen ------ What is this file? ------ This script targets the files goodreads_reviews_cleaned.csv and review_sentences_analyzed.csv, calculating summary statistics such as review length and sentiment score. This script targets the following files: ../../data/cleaned/goodreads_reviews_cleaned.csv ../../data/analysis_results/review_sentences_analyzed.csv The resulting csv file is located at: ../../data/analysis_results/goodreads_reviews_analyzed.csv """ #%% --- Import required packages --- import os from pathlib import Path # To wrap around filepaths import pandas as pd #%% --- Set proper directory to assure integration with doit --- abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) #%% --- Import data --- #goodreads_reviews_cleaned import_fp = Path("../../data/cleaned/goodreads_reviews_cleaned.csv") goodreads_reviews = pd.read_csv(import_fp, encoding = "utf-8", index_col = False) #review_sentences_analyzed import_fp = Path("../../data/analysis_results/review_sentences_analyzed.csv") sentences_analyzed = pd.read_csv(import_fp, encoding = "utf-8") #%% --- Prepare data --- sentences_analyzed = sentences_analyzed.loc[:,["review_id", "sentence_id", "sent_mentions_original", "sent_mentions_trans", "length_in_words", "VADER_score_compound"]] # Take a subset of goodreads reviews to include only reviews whose review no # appear in sentences_analyzed. rid_mask = goodreads_reviews["review_id"].isin(sentences_analyzed["review_id"]) goodreads_reviews = goodreads_reviews.loc[rid_mask, :] #%% --- Analyze: review length in sentences and words. --- length_per_review = (sentences_analyzed .groupby("review_id") ["length_in_words"] .agg(["sum","count"]) .rename({"sum" : "total_length_in_words", "count" : "total_length_in_sentences"}, axis = 1)) goodreads_reviews = (goodreads_reviews .merge(length_per_review, how = "left", on = "review_id")) #%% --- Analyze: mention ratios for explicit translation/author mentions orig_mention_mask = sentences_analyzed["sent_mentions_original"] == True trans_mention_mask = sentences_analyzed["sent_mentions_trans"] == True only_orig_mention_mask = (orig_mention_mask & ~trans_mention_mask) only_trans_mention_mask = (~orig_mention_mask & trans_mention_mask) both_mention_mask = (orig_mention_mask & trans_mention_mask) masks = {"share_of_only_trans_mentions" : only_trans_mention_mask, "share_of_trans_mentions" : trans_mention_mask, "share_of_only_orig_mentions": only_orig_mention_mask, "share_of_orig_mentions": orig_mention_mask} for prefix, mask in masks.items(): calc = (sentences_analyzed[mask]. groupby("review_id") ["length_in_words"] .agg(["count"]) .rename({"count": prefix}, axis = 1) .reset_index()) goodreads_reviews = (goodreads_reviews.merge(calc, how = "left", on = "review_id") .fillna(value = 0, axis = 0)) goodreads_reviews[prefix] = ((goodreads_reviews[prefix] / goodreads_reviews["total_length_in_sentences"]) * 100) #%% --- Analyze: VADER score for the whole review --- VADER_score_per_review = (sentences_analyzed .groupby("review_id") ["VADER_score_compound"] .agg(["sum","count"]) .reset_index()) VADER_score_per_review["avg_VADER_score"] = (VADER_score_per_review["sum"] / VADER_score_per_review["count"]) VADER_score_per_review = VADER_score_per_review.drop(labels = ["sum","count"], axis = "columns") goodreads_reviews = goodreads_reviews.merge(VADER_score_per_review, how = "left", on = "review_id") #%% --- Export data --- export_fp = Path("../../data/analysis_results/goodreads_reviews_analyzed.csv") goodreads_reviews.to_csv(export_fp, encoding = "utf-8", index = False)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 1526, 1596, 1511, 25, 2327, 25, 2670, 33448, 198, 198, 31, 9800, 25, 304, 73, 5235, 198, 198, 23031, 1867, 318, 428, 2393, 30, 40103, 198, 198, 1212, 4226, 6670, 262, 3696, 922, 40779, 62, 19023, 82, 62, 2375, 22739, 13, 40664, 290, 198, 19023, 62, 34086, 3007, 62, 38200, 8863, 13, 40664, 11, 26019, 10638, 7869, 884, 355, 198, 19023, 4129, 290, 15598, 4776, 13, 198, 198, 1212, 4226, 6670, 262, 1708, 3696, 25, 198, 220, 220, 220, 11485, 14, 40720, 7890, 14, 2375, 22739, 14, 11274, 40779, 62, 19023, 82, 62, 2375, 22739, 13, 40664, 198, 220, 220, 220, 11485, 14, 40720, 7890, 14, 20930, 62, 43420, 14, 19023, 62, 34086, 3007, 62, 38200, 8863, 13, 40664, 198, 220, 220, 220, 220, 198, 464, 7186, 269, 21370, 2393, 318, 5140, 379, 25, 198, 220, 220, 220, 11485, 14, 40720, 7890, 14, 20930, 62, 43420, 14, 11274, 40779, 62, 19023, 82, 62, 38200, 8863, 13, 40664, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 37811, 198, 2, 16626, 11420, 17267, 2672, 10392, 11420, 198, 198, 11748, 28686, 198, 198, 6738, 3108, 8019, 1330, 10644, 1303, 1675, 14441, 1088, 2393, 6978, 82, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 2, 16626, 11420, 5345, 1774, 8619, 284, 19832, 11812, 351, 466, 270, 11420, 198, 198, 397, 2777, 776, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 8, 198, 67, 3672, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 397, 2777, 776, 8, 198, 418, 13, 354, 15908, 7, 67, 3672, 8, 198, 198, 2, 16626, 11420, 17267, 1366, 11420, 198, 198, 2, 11274, 40779, 62, 19023, 82, 62, 2375, 22739, 198, 11748, 62, 46428, 796, 10644, 7203, 40720, 40720, 7890, 14, 2375, 22739, 14, 11274, 40779, 62, 19023, 82, 62, 2375, 22739, 13, 40664, 4943, 198, 11274, 40779, 62, 19023, 82, 796, 279, 67, 13, 961, 62, 40664, 7, 11748, 62, 46428, 11, 21004, 796, 366, 40477, 12, 23, 1600, 6376, 62, 4033, 796, 10352, 8, 198, 198, 2, 19023, 62, 34086, 3007, 62, 38200, 8863, 198, 11748, 62, 46428, 796, 10644, 7203, 40720, 40720, 7890, 14, 20930, 62, 43420, 14, 19023, 62, 34086, 3007, 62, 38200, 8863, 13, 40664, 4943, 198, 34086, 3007, 62, 38200, 8863, 796, 279, 67, 13, 961, 62, 40664, 7, 11748, 62, 46428, 11, 21004, 796, 366, 40477, 12, 23, 4943, 198, 198, 2, 16626, 11420, 43426, 1366, 11420, 198, 198, 34086, 3007, 62, 38200, 8863, 796, 13439, 62, 38200, 8863, 13, 17946, 58, 45299, 14692, 19023, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 62, 434, 507, 62, 14986, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 62, 434, 507, 62, 7645, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13664, 62, 259, 62, 10879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 53, 2885, 1137, 62, 26675, 62, 5589, 633, 8973, 60, 198, 198, 2, 7214, 257, 24637, 286, 922, 40779, 8088, 284, 2291, 691, 8088, 3025, 2423, 645, 198, 2, 1656, 287, 13439, 62, 38200, 8863, 13, 198, 198, 6058, 62, 27932, 796, 922, 40779, 62, 19023, 82, 14692, 19023, 62, 312, 1, 4083, 45763, 7, 34086, 3007, 62, 38200, 8863, 14692, 19023, 62, 312, 8973, 8, 198, 11274, 40779, 62, 19023, 82, 796, 922, 40779, 62, 19023, 82, 13, 17946, 58, 6058, 62, 27932, 11, 1058, 60, 198, 2, 16626, 11420, 16213, 2736, 25, 2423, 4129, 287, 13439, 290, 2456, 13, 11420, 198, 198, 13664, 62, 525, 62, 19023, 796, 357, 34086, 3007, 62, 38200, 8863, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 1525, 7203, 19023, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 13664, 62, 259, 62, 10879, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 9460, 7, 14692, 16345, 2430, 9127, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 918, 480, 7, 4895, 16345, 1, 1058, 366, 23350, 62, 13664, 62, 259, 62, 10879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9127, 1, 1058, 366, 23350, 62, 13664, 62, 259, 62, 34086, 3007, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 352, 4008, 198, 198, 11274, 40779, 62, 19023, 82, 796, 357, 11274, 40779, 62, 19023, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 647, 469, 7, 13664, 62, 525, 62, 19023, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 703, 796, 366, 9464, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 796, 366, 19023, 62, 312, 48774, 198, 198, 2, 16626, 11420, 16213, 2736, 25, 3068, 22423, 329, 7952, 11059, 14, 9800, 15802, 198, 198, 11612, 62, 434, 295, 62, 27932, 796, 13439, 62, 38200, 8863, 14692, 34086, 62, 434, 507, 62, 14986, 8973, 6624, 6407, 198, 7645, 62, 434, 295, 62, 27932, 796, 13439, 62, 38200, 8863, 14692, 34086, 62, 434, 507, 62, 7645, 8973, 6624, 6407, 198, 8807, 62, 11612, 62, 434, 295, 62, 27932, 796, 357, 11612, 62, 434, 295, 62, 27932, 1222, 5299, 7645, 62, 434, 295, 62, 27932, 8, 198, 8807, 62, 7645, 62, 434, 295, 62, 27932, 796, 31034, 11612, 62, 434, 295, 62, 27932, 1222, 1007, 62, 434, 295, 62, 27932, 8, 198, 16885, 62, 434, 295, 62, 27932, 796, 357, 11612, 62, 434, 295, 62, 27932, 1222, 1007, 62, 434, 295, 62, 27932, 8, 198, 198, 5356, 591, 796, 19779, 20077, 62, 1659, 62, 8807, 62, 7645, 62, 434, 507, 1, 1058, 691, 62, 7645, 62, 434, 295, 62, 27932, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20077, 62, 1659, 62, 7645, 62, 434, 507, 1, 1058, 1007, 62, 434, 295, 62, 27932, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20077, 62, 1659, 62, 8807, 62, 11612, 62, 434, 507, 1298, 691, 62, 11612, 62, 434, 295, 62, 27932, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20077, 62, 1659, 62, 11612, 62, 434, 507, 1298, 1796, 62, 434, 295, 62, 27932, 92, 198, 198, 1640, 21231, 11, 9335, 287, 20680, 13, 23814, 33529, 198, 220, 220, 220, 42302, 796, 357, 34086, 3007, 62, 38200, 8863, 58, 27932, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1448, 1525, 7203, 19023, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 13664, 62, 259, 62, 10879, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 9460, 7, 14692, 9127, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 918, 480, 7, 4895, 9127, 1298, 21231, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 42503, 62, 9630, 28955, 198, 220, 220, 220, 220, 198, 220, 220, 220, 922, 40779, 62, 19023, 82, 796, 357, 11274, 40779, 62, 19023, 82, 13, 647, 469, 7, 9948, 66, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 703, 796, 366, 9464, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 796, 366, 19023, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 20797, 2616, 7, 8367, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 657, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 922, 40779, 62, 19023, 82, 58, 40290, 60, 796, 14808, 11274, 40779, 62, 19023, 82, 58, 40290, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 922, 40779, 62, 19023, 82, 14692, 23350, 62, 13664, 62, 259, 62, 34086, 3007, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1802, 8, 198, 220, 220, 220, 220, 198, 2, 16626, 11420, 16213, 2736, 25, 569, 2885, 1137, 4776, 329, 262, 2187, 2423, 11420, 198, 198, 53, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 796, 357, 34086, 3007, 62, 38200, 8863, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 8094, 1525, 7203, 19023, 62, 312, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14631, 53, 2885, 1137, 62, 26675, 62, 5589, 633, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 9460, 7, 14692, 16345, 2430, 9127, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 42503, 62, 9630, 28955, 198, 198, 53, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 14692, 615, 70, 62, 53, 2885, 1137, 62, 26675, 8973, 796, 357, 53, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 14692, 16345, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 569, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 14692, 9127, 8973, 8, 198, 198, 53, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 796, 569, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 13, 14781, 7, 23912, 1424, 796, 14631, 16345, 2430, 9127, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 796, 366, 28665, 82, 4943, 198, 198, 11274, 40779, 62, 19023, 82, 796, 922, 40779, 62, 19023, 82, 13, 647, 469, 7, 53, 2885, 1137, 62, 26675, 62, 525, 62, 19023, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 703, 796, 366, 9464, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 319, 796, 366, 19023, 62, 312, 4943, 198, 198, 2, 16626, 11420, 36472, 1366, 11420, 198, 198, 39344, 62, 46428, 796, 10644, 7203, 40720, 40720, 7890, 14, 20930, 62, 43420, 14, 11274, 40779, 62, 19023, 82, 62, 38200, 8863, 13, 40664, 4943, 198, 11274, 40779, 62, 19023, 82, 13, 1462, 62, 40664, 7, 39344, 62, 46428, 11, 21004, 796, 366, 40477, 12, 23, 1600, 6376, 796, 10352, 8, 198 ]
1.998347
2,420
import cv2, json, sys, datetime import tensorflow as tf import numpy as np from face_filter import c_face_filter from mtcnn_detect import c_MTCNNDetect from face_attr import c_face_attr_reader standard_face_size = 160 # 160(weight) * 160(height) detect_resolution = 80 # 80(weight) * 80(height) the_face_attrs_reader = c_face_attr_reader(standard_face_size) the_filter = c_face_filter() face_detect = c_MTCNNDetect(tf.Graph(), scale_factor=2) #scale_factor, rescales image for faster detection vs = cv2.VideoCapture(0) ret = 0 while ret >= 0: ret = record_single_face()
[ 11748, 269, 85, 17, 11, 33918, 11, 25064, 11, 4818, 8079, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 1986, 62, 24455, 1330, 269, 62, 2550, 62, 24455, 198, 6738, 285, 23047, 20471, 62, 15255, 478, 1330, 269, 62, 44, 4825, 6144, 47504, 198, 6738, 1986, 62, 35226, 1330, 269, 62, 2550, 62, 35226, 62, 46862, 198, 198, 20307, 62, 2550, 62, 7857, 796, 13454, 1303, 13454, 7, 6551, 8, 1635, 13454, 7, 17015, 8, 198, 15255, 478, 62, 29268, 796, 4019, 1303, 4019, 7, 6551, 8, 1635, 4019, 7, 17015, 8, 198, 198, 1169, 62, 2550, 62, 1078, 3808, 62, 46862, 796, 269, 62, 2550, 62, 35226, 62, 46862, 7, 20307, 62, 2550, 62, 7857, 8, 198, 1169, 62, 24455, 796, 269, 62, 2550, 62, 24455, 3419, 198, 2550, 62, 15255, 478, 796, 269, 62, 44, 4825, 6144, 47504, 7, 27110, 13, 37065, 22784, 5046, 62, 31412, 28, 17, 8, 1303, 9888, 62, 31412, 11, 6811, 2040, 2939, 329, 5443, 13326, 198, 14259, 796, 269, 85, 17, 13, 10798, 49630, 7, 15, 8, 198, 198, 1186, 796, 657, 198, 4514, 1005, 18189, 657, 25, 198, 220, 220, 220, 1005, 796, 1700, 62, 29762, 62, 2550, 3419 ]
2.814634
205
from pandac import PandaModules as PM from direct.directnotify import DirectNotifyGlobal from direct.showbase.PythonUtil import list2dict, uniqueElements import string import LevelConstants import types if __dev__: import os
[ 6738, 19798, 330, 1330, 41112, 5841, 5028, 355, 3122, 198, 6738, 1277, 13, 12942, 1662, 1958, 1330, 4128, 3673, 1958, 22289, 198, 6738, 1277, 13, 12860, 8692, 13, 37906, 18274, 346, 1330, 1351, 17, 11600, 11, 3748, 36, 3639, 198, 11748, 4731, 198, 11748, 5684, 34184, 1187, 198, 11748, 3858, 198, 361, 11593, 7959, 834, 25, 198, 220, 220, 220, 1330, 28686, 198 ]
3.634921
63
#!/usr/bin/env python # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Copyright (c) 2017 Jamf. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Jamf nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY JAMF SOFTWARE, LLC "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL JAMF SOFTWARE, LLC BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This script was modified from Andrina Kelly's version presented at JNUC2013 for allowing # a user to elevate their privelages to administrator once per day for 60 minutes. After # the 60 minutes if a user created a new admin account that account will have admin rights # also revoked. # # To accomplish this the following will be performed: # - A launch daemon will be put in place in order to remove admin rights # - Log will be written to tempAdmin.log # - This policy in Jamf will be set to only be allowed once per day # # REQUIREMENTS: # - Jamf Pro # - Policy for enabling tempAdmin via Self Service # - Policy to remove tempAdmin via custom trigger # - tempAdmin.sh & removeTempAdmin.sh Scripts # # # Written by: Joshua Roskos | Professional Services Engineer | Jamf # # Created On: June 20th, 2017 # Updated On: July 26th, 2017 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # IMPORTS # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # import os, plistlib, pwd, grp, subprocess, sys from SystemConfiguration import SCDynamicStoreCopyConsoleUser from datetime import datetime # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # VARIABLES # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # userName = (SCDynamicStoreCopyConsoleUser(None, None, None) or [None])[0] # get the logged in user's name workingDir = '/usr/local/jamfps/' # working directory for script launchdFile = 'com.jamfps.adminremove.plist' # launch daemon file name launchdLabel = launchdFile.replace('.plist', '') # launch daemon label plistFile = 'MakeMeAdmin.plist' # settings file name tempAdminLog = 'tempAdmin.log' # script log file adminTimer = 3600 # how long should they have admin rights for (in seconds) policyCustomTrigger = 'adminremove' # custom trigger specified for removeTempAdmin.py policy # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # LAUNCH DAEMON # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # place launchd plist to call JSS policy to remove admin rights. print 'Creating LaunchDaemon...' launchDaemon = { 'Label':launchdLabel, 'LaunchOnlyOnce':True, 'ProgramArguments':['/usr/local/jamf/bin/jamf', 'policy', '-trigger', policyCustomTrigger], 'StartInterval':adminTimer, 'UserName':'root', } plistlib.writePlist(launchDaemon, '/Library/LaunchDaemons/' + launchdFile) # set the permission on the file just made. userID = pwd.getpwnam("root").pw_uid groupID = grp.getgrnam("wheel").gr_gid os.chown('/Library/LaunchDaemons/' + launchdFile, userID, groupID) os.chmod('/Library/LaunchDaemons/' + launchdFile, 0644) # load the removal plist timer. print 'Loading LaunchDaemon...' subprocess.call(["launchctl", "load", "-w", '/Library/LaunchDaemons/' + launchdFile]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # APPLICATION # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # build log files if not os.path.exists(workingDir): os.makedirs(workingDir) # record user that will need to have admin rights removed # record current existing admins print 'Retrieving List of Current Admins...' currentAdmins = grp.getgrnam('admin').gr_mem print 'Updating Plist...' plist = { 'User2Remove':userName, 'CurrentAdminUsers':currentAdmins} plistlib.writePlist(plist, workingDir + plistFile) # give current logged user admin rights subprocess.call(["dseditgroup", "-o", "edit", "-a", userName, "-t", "user", "admin"]) # add log entry log = open(workingDir + tempAdminLog, "a+") log.write("{} - MakeMeAdmin Granted Admin Rights for {}\r\n".format(datetime.now(), userName)) log.close() print 'Granted Admin Right to ' + userName
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 198, 2, 15069, 357, 66, 8, 2177, 9986, 69, 13, 220, 1439, 2489, 10395, 13, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 220, 220, 220, 220, 220, 220, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 16126, 262, 1438, 286, 262, 9986, 69, 4249, 262, 3891, 286, 663, 20420, 743, 307, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 284, 11438, 393, 7719, 3186, 10944, 422, 428, 3788, 1231, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2176, 3161, 3194, 7170, 13, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 449, 2390, 37, 47466, 11, 11419, 366, 1921, 3180, 1, 5357, 15529, 198, 2, 220, 220, 220, 220, 220, 220, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 220, 220, 220, 220, 220, 220, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 198, 2, 220, 220, 220, 220, 220, 220, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 449, 2390, 37, 47466, 11, 11419, 9348, 43031, 19146, 7473, 15529, 198, 2, 220, 220, 220, 220, 220, 220, 42242, 11, 3268, 17931, 23988, 11, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 198, 2, 220, 220, 220, 220, 220, 220, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 220, 220, 220, 220, 220, 220, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 198, 2, 220, 220, 220, 220, 220, 220, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 43031, 25382, 11, 6375, 309, 9863, 198, 2, 220, 220, 220, 220, 220, 220, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 198, 2, 220, 220, 220, 220, 220, 220, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 220, 198, 2, 770, 4226, 373, 9518, 422, 843, 22267, 9077, 338, 2196, 5545, 379, 449, 45, 9598, 6390, 329, 5086, 198, 2, 257, 2836, 284, 36830, 511, 1293, 626, 1095, 284, 18382, 1752, 583, 1110, 329, 3126, 2431, 13, 2293, 220, 198, 2, 262, 3126, 2431, 611, 257, 2836, 2727, 257, 649, 13169, 1848, 326, 1848, 481, 423, 13169, 2489, 198, 2, 635, 30809, 13, 198, 2, 198, 2, 1675, 9989, 428, 262, 1708, 481, 307, 6157, 25, 198, 2, 197, 197, 197, 12, 317, 4219, 33386, 481, 307, 1234, 287, 1295, 287, 1502, 284, 4781, 13169, 2489, 198, 2, 197, 197, 197, 12, 5972, 481, 307, 3194, 284, 20218, 46787, 13, 6404, 198, 2, 197, 197, 197, 12, 770, 2450, 287, 9986, 69, 481, 307, 900, 284, 691, 307, 3142, 1752, 583, 1110, 198, 2, 198, 2, 4526, 49128, 28957, 25, 198, 2, 197, 197, 197, 12, 9986, 69, 1041, 198, 2, 197, 197, 197, 12, 7820, 329, 15882, 20218, 46787, 2884, 12189, 4809, 198, 2, 197, 197, 197, 12, 7820, 284, 4781, 20218, 46787, 2884, 2183, 7616, 198, 2, 197, 197, 197, 12, 20218, 46787, 13, 1477, 1222, 4781, 30782, 46787, 13, 1477, 12327, 82, 198, 2, 198, 2, 198, 2, 22503, 416, 25, 20700, 10018, 46150, 930, 18612, 6168, 23164, 930, 9986, 69, 198, 2, 198, 2, 15622, 1550, 25, 2795, 1160, 400, 11, 2177, 198, 2, 19433, 1550, 25, 2901, 2608, 400, 11, 2177, 198, 2, 220, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 30023, 33002, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 11748, 28686, 11, 458, 396, 8019, 11, 279, 16993, 11, 1036, 79, 11, 850, 14681, 11, 25064, 198, 6738, 4482, 38149, 1330, 6374, 44090, 22658, 29881, 47581, 12982, 198, 6738, 4818, 8079, 1330, 4818, 8079, 628, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 569, 1503, 3539, 9148, 1546, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 7220, 5376, 796, 357, 6173, 44090, 22658, 29881, 47581, 12982, 7, 14202, 11, 6045, 11, 6045, 8, 393, 685, 14202, 12962, 58, 15, 60, 220, 220, 1303, 651, 262, 18832, 287, 2836, 338, 1438, 198, 16090, 35277, 796, 31051, 14629, 14, 12001, 14, 39159, 29647, 14, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1762, 8619, 329, 4226, 198, 35681, 67, 8979, 796, 705, 785, 13, 39159, 29647, 13, 28482, 28956, 13, 489, 396, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4219, 33386, 2393, 1438, 198, 35681, 67, 33986, 796, 4219, 67, 8979, 13, 33491, 7, 4458, 489, 396, 3256, 10148, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4219, 33386, 6167, 198, 489, 396, 8979, 796, 705, 12050, 5308, 46787, 13, 489, 396, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6460, 2393, 1438, 198, 29510, 46787, 11187, 796, 705, 29510, 46787, 13, 6404, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4226, 2604, 2393, 198, 28482, 48801, 796, 4570, 405, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 703, 890, 815, 484, 423, 13169, 2489, 329, 357, 259, 4201, 8, 198, 30586, 15022, 48344, 796, 705, 28482, 28956, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2183, 7616, 7368, 329, 4781, 30782, 46787, 13, 9078, 2450, 198, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 9131, 47461, 17051, 3620, 1340, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 2, 1295, 4219, 67, 458, 396, 284, 869, 449, 5432, 2450, 284, 4781, 13169, 2489, 13, 198, 4798, 705, 32071, 21225, 26531, 7966, 986, 6, 198, 35681, 26531, 7966, 796, 1391, 705, 33986, 10354, 35681, 67, 33986, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38296, 10049, 7454, 10354, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 28100, 2886, 10354, 17816, 14, 14629, 14, 12001, 14, 39159, 69, 14, 8800, 14, 39159, 69, 3256, 705, 30586, 3256, 705, 12, 46284, 3256, 2450, 15022, 48344, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10434, 9492, 2100, 10354, 28482, 48801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12982, 5376, 10354, 6, 15763, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 489, 396, 8019, 13, 13564, 3646, 396, 7, 35681, 26531, 7966, 11, 31051, 23377, 14, 38296, 26531, 368, 684, 14, 6, 1343, 4219, 67, 8979, 8, 198, 198, 2, 900, 262, 7170, 319, 262, 2393, 655, 925, 13, 198, 7220, 2389, 796, 279, 16993, 13, 1136, 79, 675, 321, 7203, 15763, 11074, 79, 86, 62, 27112, 198, 8094, 2389, 796, 1036, 79, 13, 1136, 2164, 7402, 7203, 22001, 11074, 2164, 62, 70, 312, 198, 418, 13, 354, 593, 10786, 14, 23377, 14, 38296, 26531, 368, 684, 14, 6, 1343, 4219, 67, 8979, 11, 2836, 2389, 11, 1448, 2389, 8, 198, 418, 13, 354, 4666, 10786, 14, 23377, 14, 38296, 26531, 368, 684, 14, 6, 1343, 4219, 67, 8979, 11, 657, 29173, 8, 198, 198, 2, 3440, 262, 9934, 458, 396, 19781, 13, 220, 198, 4798, 705, 19031, 21225, 26531, 7966, 986, 6, 198, 7266, 14681, 13, 13345, 7, 14692, 35681, 34168, 1600, 366, 2220, 1600, 27444, 86, 1600, 31051, 23377, 14, 38296, 26531, 368, 684, 14, 6, 1343, 4219, 67, 8979, 12962, 198, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 2, 39421, 6234, 198, 2, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 1303, 220, 198, 198, 2, 1382, 2604, 3696, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 16090, 35277, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 16090, 35277, 8, 198, 198, 2, 1700, 2836, 326, 481, 761, 284, 423, 13169, 2489, 4615, 198, 2, 1700, 1459, 4683, 44563, 198, 4798, 705, 9781, 37418, 7343, 286, 9236, 1215, 42951, 986, 6, 198, 14421, 2782, 42951, 796, 1036, 79, 13, 1136, 2164, 7402, 10786, 28482, 27691, 2164, 62, 11883, 198, 4798, 705, 4933, 38734, 1345, 396, 986, 6, 198, 489, 396, 796, 1391, 705, 12982, 17, 27914, 10354, 7220, 5376, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11297, 46787, 14490, 10354, 14421, 2782, 42951, 92, 198, 489, 396, 8019, 13, 13564, 3646, 396, 7, 489, 396, 11, 1762, 35277, 1343, 458, 396, 8979, 8, 198, 198, 2, 1577, 1459, 18832, 2836, 13169, 2489, 198, 7266, 14681, 13, 13345, 7, 14692, 9310, 19312, 8094, 1600, 27444, 78, 1600, 366, 19312, 1600, 27444, 64, 1600, 2836, 5376, 11, 27444, 83, 1600, 366, 7220, 1600, 366, 28482, 8973, 8, 198, 198, 2, 751, 2604, 5726, 198, 6404, 796, 1280, 7, 16090, 35277, 1343, 20218, 46787, 11187, 11, 366, 64, 10, 4943, 198, 6404, 13, 13564, 7203, 90, 92, 532, 6889, 5308, 46787, 38842, 32053, 6923, 329, 23884, 59, 81, 59, 77, 1911, 18982, 7, 19608, 8079, 13, 2197, 22784, 2836, 5376, 4008, 198, 6404, 13, 19836, 3419, 198, 198, 4798, 705, 8642, 4126, 32053, 6498, 284, 705, 1343, 2836, 5376, 198 ]
2.492737
2,547
import hashlib message = input() print(hashlib.sha256(message.encode()).hexdigest())
[ 11748, 12234, 8019, 198, 198, 20500, 796, 5128, 3419, 198, 198, 4798, 7, 17831, 8019, 13, 26270, 11645, 7, 20500, 13, 268, 8189, 3419, 737, 33095, 12894, 395, 28955 ]
2.965517
29
# Generated by Django 3.1.6 on 2021-04-17 11:19 import django.contrib.postgres.fields from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 13, 21, 319, 33448, 12, 3023, 12, 1558, 1367, 25, 1129, 198, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 7353, 34239, 13, 25747, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.931818
44
# ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ from enum import Enum from typing import Any, Dict, List, Optional, Tuple import param import pytest from abex.common.generic_parsing import GenericConfig, IntTuple def test_overridable_parameter() -> None: """ Test to check overridable parameters are correctly identified. """ param_dict = ParamClass.get_overridable_parameters() assert "name" in param_dict assert "flag" in param_dict assert "seed" in param_dict assert "number" in param_dict assert "integers" in param_dict assert "optional_int" in param_dict assert "optional_float" in param_dict assert "tuple1" in param_dict assert "int_tuple" in param_dict assert "enum" in param_dict assert "readonly" not in param_dict assert "_non_override" not in param_dict assert "constant" not in param_dict def test_create_parser() -> None: """ Check that parse_args works as expected, with both non default and default values. """ check(["--name=foo"], "name", "foo") check(["--seed", "42"], "seed", 42) check(["--seed", ""], "seed", 42) check(["--number", "2.17"], "number", 2.17) check(["--number", ""], "number", 3.14) check(["--integers", "1,2,3"], "integers", [1, 2, 3]) check(["--optional_int", ""], "optional_int", None) check(["--optional_int", "2"], "optional_int", 2) check(["--optional_float", ""], "optional_float", None) check(["--optional_float", "3.14"], "optional_float", 3.14) check(["--tuple1", "1,2"], "tuple1", (1, 2.0)) check(["--int_tuple", "1,2,3"], "int_tuple", (1, 2, 3)) check(["--enum=2"], "enum", ParamEnum.EnumValue2) check(["--floats=1,2,3.14"], "floats", [1.0, 2.0, 3.14]) check(["--integers=1,2,3"], "integers", [1, 2, 3]) check(["--flag"], "flag", True) # Check that default values are created as expected, and that the non-overridable parameters # are omitted. defaults = vars(ParamClass.create_argparser().parse_args([])) assert defaults["seed"] == 42 assert defaults["tuple1"] == (1, 2.3) assert defaults["int_tuple"] == (1, 1, 1) assert defaults["enum"] == ParamEnum.EnumValue1 assert "readonly" not in defaults assert "constant" not in defaults assert "_non_override" not in defaults # We can't test if all invalid cases are handled because argparse call sys.exit # upon errors. def test_apply_overrides() -> None: """ Test that overrides are applied correctly, ond only to overridable parameters, """ m = ParamClass() overrides = {"name": "newName", "int_tuple": (0, 1, 2)} actual_overrides = m.apply_overrides(overrides) assert actual_overrides == overrides assert all([x == i and isinstance(x, int) for i, x in enumerate(m.int_tuple)]) assert m.name == "newName" # Attempt to change seed and constant, but the latter should be ignored. change_seed: Dict[str, Any] = {"seed": 123} old_constant = m.constant changes2 = m.apply_overrides({**change_seed, "constant": "Nothing"}) assert changes2 == change_seed assert m.seed == 123 assert m.constant == old_constant @pytest.mark.parametrize("value_idx_0", [1.0, 1]) @pytest.mark.parametrize("value_idx_1", [2.0, 2]) @pytest.mark.parametrize("value_idx_2", [3.0, 3]) def test_int_tuple_validation(value_idx_0: Any, value_idx_1: Any, value_idx_2: Any) -> None: """ Test integer tuple parameter is validated correctly. """ m = ParamClass() val = (value_idx_0, value_idx_1, value_idx_2) if not all([isinstance(x, int) for x in val]): with pytest.raises(ValueError): m.int_tuple = (value_idx_0, value_idx_1, value_idx_2) else: m.int_tuple = (value_idx_0, value_idx_1, value_idx_2)
[ 2, 220, 16529, 22369, 438, 198, 2, 220, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 220, 49962, 739, 262, 17168, 13789, 357, 36393, 737, 4091, 38559, 24290, 287, 262, 29924, 6808, 329, 5964, 1321, 13, 198, 2, 220, 16529, 22369, 438, 198, 6738, 33829, 1330, 2039, 388, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 198, 198, 11748, 5772, 198, 11748, 12972, 9288, 198, 6738, 450, 1069, 13, 11321, 13, 41357, 62, 79, 945, 278, 1330, 42044, 16934, 11, 2558, 51, 29291, 628, 628, 198, 4299, 1332, 62, 2502, 6058, 540, 62, 17143, 2357, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 284, 2198, 625, 6058, 540, 10007, 389, 9380, 5174, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5772, 62, 11600, 796, 25139, 9487, 13, 1136, 62, 2502, 6058, 540, 62, 17143, 7307, 3419, 198, 220, 220, 220, 6818, 366, 3672, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 32109, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 28826, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 17618, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 18908, 364, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 25968, 62, 600, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 25968, 62, 22468, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 83, 29291, 16, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 600, 62, 83, 29291, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 44709, 1, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 961, 8807, 1, 407, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 45434, 13159, 62, 2502, 13154, 1, 407, 287, 5772, 62, 11600, 198, 220, 220, 220, 6818, 366, 9979, 415, 1, 407, 287, 5772, 62, 11600, 628, 198, 4299, 1332, 62, 17953, 62, 48610, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 326, 21136, 62, 22046, 2499, 355, 2938, 11, 351, 1111, 1729, 4277, 290, 4277, 3815, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2198, 7, 14692, 438, 3672, 28, 21943, 33116, 366, 3672, 1600, 366, 21943, 4943, 198, 220, 220, 220, 2198, 7, 14692, 438, 28826, 1600, 366, 3682, 33116, 366, 28826, 1600, 5433, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 28826, 1600, 13538, 4357, 366, 28826, 1600, 5433, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 17618, 1600, 366, 17, 13, 1558, 33116, 366, 17618, 1600, 362, 13, 1558, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 17618, 1600, 13538, 4357, 366, 17618, 1600, 513, 13, 1415, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 18908, 364, 1600, 366, 16, 11, 17, 11, 18, 33116, 366, 18908, 364, 1600, 685, 16, 11, 362, 11, 513, 12962, 198, 220, 220, 220, 2198, 7, 14692, 438, 25968, 62, 600, 1600, 13538, 4357, 366, 25968, 62, 600, 1600, 6045, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 25968, 62, 600, 1600, 366, 17, 33116, 366, 25968, 62, 600, 1600, 362, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 25968, 62, 22468, 1600, 13538, 4357, 366, 25968, 62, 22468, 1600, 6045, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 25968, 62, 22468, 1600, 366, 18, 13, 1415, 33116, 366, 25968, 62, 22468, 1600, 513, 13, 1415, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 83, 29291, 16, 1600, 366, 16, 11, 17, 33116, 366, 83, 29291, 16, 1600, 357, 16, 11, 362, 13, 15, 4008, 198, 220, 220, 220, 2198, 7, 14692, 438, 600, 62, 83, 29291, 1600, 366, 16, 11, 17, 11, 18, 33116, 366, 600, 62, 83, 29291, 1600, 357, 16, 11, 362, 11, 513, 4008, 198, 220, 220, 220, 2198, 7, 14692, 438, 44709, 28, 17, 33116, 366, 44709, 1600, 25139, 4834, 388, 13, 4834, 388, 11395, 17, 8, 198, 220, 220, 220, 2198, 7, 14692, 438, 48679, 1381, 28, 16, 11, 17, 11, 18, 13, 1415, 33116, 366, 48679, 1381, 1600, 685, 16, 13, 15, 11, 362, 13, 15, 11, 513, 13, 1415, 12962, 198, 220, 220, 220, 2198, 7, 14692, 438, 18908, 364, 28, 16, 11, 17, 11, 18, 33116, 366, 18908, 364, 1600, 685, 16, 11, 362, 11, 513, 12962, 198, 220, 220, 220, 2198, 7, 14692, 438, 32109, 33116, 366, 32109, 1600, 6407, 8, 198, 220, 220, 220, 1303, 6822, 326, 4277, 3815, 389, 2727, 355, 2938, 11, 290, 326, 262, 1729, 12, 2502, 6058, 540, 10007, 198, 220, 220, 220, 1303, 389, 22532, 13, 198, 220, 220, 220, 26235, 796, 410, 945, 7, 22973, 9487, 13, 17953, 62, 853, 48610, 22446, 29572, 62, 22046, 7, 21737, 4008, 198, 220, 220, 220, 6818, 26235, 14692, 28826, 8973, 6624, 5433, 198, 220, 220, 220, 6818, 26235, 14692, 83, 29291, 16, 8973, 6624, 357, 16, 11, 362, 13, 18, 8, 198, 220, 220, 220, 6818, 26235, 14692, 600, 62, 83, 29291, 8973, 6624, 357, 16, 11, 352, 11, 352, 8, 198, 220, 220, 220, 6818, 26235, 14692, 44709, 8973, 6624, 25139, 4834, 388, 13, 4834, 388, 11395, 16, 198, 220, 220, 220, 6818, 366, 961, 8807, 1, 407, 287, 26235, 198, 220, 220, 220, 6818, 366, 9979, 415, 1, 407, 287, 26235, 198, 220, 220, 220, 6818, 45434, 13159, 62, 2502, 13154, 1, 407, 287, 26235, 198, 220, 220, 220, 1303, 775, 460, 470, 1332, 611, 477, 12515, 2663, 389, 12118, 780, 1822, 29572, 869, 25064, 13, 37023, 198, 220, 220, 220, 1303, 2402, 8563, 13, 628, 198, 4299, 1332, 62, 39014, 62, 2502, 81, 1460, 3419, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 326, 23170, 1460, 389, 5625, 9380, 11, 319, 67, 691, 284, 625, 6058, 540, 10007, 11, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 285, 796, 25139, 9487, 3419, 198, 220, 220, 220, 23170, 1460, 796, 19779, 3672, 1298, 366, 3605, 5376, 1600, 366, 600, 62, 83, 29291, 1298, 357, 15, 11, 352, 11, 362, 38165, 198, 220, 220, 220, 4036, 62, 2502, 81, 1460, 796, 285, 13, 39014, 62, 2502, 81, 1460, 7, 2502, 81, 1460, 8, 198, 220, 220, 220, 6818, 4036, 62, 2502, 81, 1460, 6624, 23170, 1460, 198, 220, 220, 220, 6818, 477, 26933, 87, 6624, 1312, 290, 318, 39098, 7, 87, 11, 493, 8, 329, 1312, 11, 2124, 287, 27056, 378, 7, 76, 13, 600, 62, 83, 29291, 8, 12962, 198, 220, 220, 220, 6818, 285, 13, 3672, 6624, 366, 3605, 5376, 1, 198, 220, 220, 220, 1303, 25770, 284, 1487, 9403, 290, 6937, 11, 475, 262, 6846, 815, 307, 9514, 13, 198, 220, 220, 220, 1487, 62, 28826, 25, 360, 713, 58, 2536, 11, 4377, 60, 796, 19779, 28826, 1298, 17031, 92, 198, 220, 220, 220, 1468, 62, 9979, 415, 796, 285, 13, 9979, 415, 198, 220, 220, 220, 2458, 17, 796, 285, 13, 39014, 62, 2502, 81, 1460, 15090, 1174, 3803, 62, 28826, 11, 366, 9979, 415, 1298, 366, 18465, 20662, 8, 198, 220, 220, 220, 6818, 2458, 17, 6624, 1487, 62, 28826, 198, 220, 220, 220, 6818, 285, 13, 28826, 6624, 17031, 198, 220, 220, 220, 6818, 285, 13, 9979, 415, 6624, 1468, 62, 9979, 415, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 8367, 62, 312, 87, 62, 15, 1600, 685, 16, 13, 15, 11, 352, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 8367, 62, 312, 87, 62, 16, 1600, 685, 17, 13, 15, 11, 362, 12962, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 8367, 62, 312, 87, 62, 17, 1600, 685, 18, 13, 15, 11, 513, 12962, 198, 4299, 1332, 62, 600, 62, 83, 29291, 62, 12102, 341, 7, 8367, 62, 312, 87, 62, 15, 25, 4377, 11, 1988, 62, 312, 87, 62, 16, 25, 4377, 11, 1988, 62, 312, 87, 62, 17, 25, 4377, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 18253, 46545, 11507, 318, 31031, 9380, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 285, 796, 25139, 9487, 3419, 198, 220, 220, 220, 1188, 796, 357, 8367, 62, 312, 87, 62, 15, 11, 1988, 62, 312, 87, 62, 16, 11, 1988, 62, 312, 87, 62, 17, 8, 198, 220, 220, 220, 611, 407, 477, 26933, 271, 39098, 7, 87, 11, 493, 8, 329, 2124, 287, 1188, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 13, 600, 62, 83, 29291, 796, 357, 8367, 62, 312, 87, 62, 15, 11, 1988, 62, 312, 87, 62, 16, 11, 1988, 62, 312, 87, 62, 17, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 285, 13, 600, 62, 83, 29291, 796, 357, 8367, 62, 312, 87, 62, 15, 11, 1988, 62, 312, 87, 62, 16, 11, 1988, 62, 312, 87, 62, 17, 8, 198 ]
2.676509
1,524
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class VirtualNetworkConfiguration(Model): """Configuration of a virtual network to which API Management service is deployed. Variables are only populated by the server, and will be ignored when sending a request. :ivar vnetid: The virtual network ID. This is typically a GUID. Expect a null GUID by default. :vartype vnetid: str :ivar subnetname: The name of the subnet. :vartype subnetname: str :param subnet_resource_id: The full resource ID of a subnet in a virtual network to deploy the API Management service in. :type subnet_resource_id: str """ _validation = { 'vnetid': {'readonly': True}, 'subnetname': {'readonly': True}, 'subnet_resource_id': {'pattern': r'^/subscriptions/[^/]*/resourceGroups/[^/]*/providers/Microsoft.(ClassicNetwork|Network)/virtualNetworks/[^/]*/subnets/[^/]*$'}, } _attribute_map = { 'vnetid': {'key': 'vnetid', 'type': 'str'}, 'subnetname': {'key': 'subnetname', 'type': 'str'}, 'subnet_resource_id': {'key': 'subnetResourceId', 'type': 'str'}, }
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 16529, 35937, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 198, 2, 6127, 7560, 416, 5413, 357, 49, 8, 11160, 19452, 6127, 35986, 13, 198, 2, 19179, 743, 2728, 11491, 4069, 290, 481, 307, 2626, 611, 262, 2438, 318, 198, 2, 16935, 515, 13, 198, 2, 16529, 35937, 198, 198, 6738, 13845, 2118, 13, 46911, 1634, 1330, 9104, 628, 198, 4871, 15595, 26245, 38149, 7, 17633, 2599, 198, 220, 220, 220, 37227, 38149, 286, 257, 7166, 3127, 284, 543, 7824, 8549, 2139, 318, 198, 220, 220, 220, 12380, 13, 628, 220, 220, 220, 15965, 2977, 389, 691, 22331, 416, 262, 4382, 11, 290, 481, 307, 9514, 618, 198, 220, 220, 220, 7216, 257, 2581, 13, 628, 220, 220, 220, 1058, 452, 283, 410, 3262, 312, 25, 383, 7166, 3127, 4522, 13, 770, 318, 6032, 257, 19348, 2389, 13, 23600, 257, 198, 220, 220, 220, 220, 9242, 19348, 2389, 416, 4277, 13, 198, 220, 220, 220, 1058, 85, 433, 2981, 410, 3262, 312, 25, 965, 198, 220, 220, 220, 1058, 452, 283, 850, 3262, 3672, 25, 383, 1438, 286, 262, 850, 3262, 13, 198, 220, 220, 220, 1058, 85, 433, 2981, 850, 3262, 3672, 25, 965, 198, 220, 220, 220, 1058, 17143, 850, 3262, 62, 31092, 62, 312, 25, 383, 1336, 8271, 4522, 286, 257, 850, 3262, 287, 257, 7166, 198, 220, 220, 220, 220, 3127, 284, 6061, 262, 7824, 8549, 2139, 287, 13, 198, 220, 220, 220, 1058, 4906, 850, 3262, 62, 31092, 62, 312, 25, 965, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 12102, 341, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 85, 3262, 312, 10354, 1391, 6, 961, 8807, 10354, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 3262, 3672, 10354, 1391, 6, 961, 8807, 10354, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 3262, 62, 31092, 62, 312, 10354, 1391, 6, 33279, 10354, 374, 6, 61, 14, 7266, 12048, 507, 14, 58, 61, 14, 60, 16208, 31092, 38, 14459, 14, 58, 61, 14, 60, 16208, 15234, 4157, 14, 15905, 12195, 39914, 26245, 91, 26245, 20679, 32844, 7934, 5225, 14, 58, 61, 14, 60, 16208, 7266, 45938, 14, 58, 61, 14, 60, 9, 3, 6, 5512, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 4808, 42348, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 85, 3262, 312, 10354, 1391, 6, 2539, 10354, 705, 85, 3262, 312, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 3262, 3672, 10354, 1391, 6, 2539, 10354, 705, 7266, 3262, 3672, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 3262, 62, 31092, 62, 312, 10354, 1391, 6, 2539, 10354, 705, 7266, 3262, 26198, 7390, 3256, 705, 4906, 10354, 705, 2536, 6, 5512, 198, 220, 220, 220, 1782, 198 ]
3.099617
522
import django.shortcuts def main(request): """ request handler for '/'. """ return django.shortcuts.render(request, 'app_website/index.html', {}) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # global error handlers for app_website # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def error_400(request, exception): """ request handler for a 400 error. """ context = { 'err': '[400 Bad Request] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_403(request, exception): """ request handler for a 403 error. """ context = { 'err': '[403 Permission Denied] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_404(request, exception): """ request handler for a 404 error. """ context = { 'err': '[404 Page Not Found] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context) def error_500(request): """ request handler for a 500 error. """ context = { 'err': '[500 Server Error] Path: ' + request.path, } return django.shortcuts.render(request, 'app_website/error.html', context)
[ 11748, 42625, 14208, 13, 19509, 23779, 628, 198, 4299, 1388, 7, 25927, 2599, 198, 220, 37227, 198, 220, 2581, 21360, 329, 31051, 4458, 198, 220, 37227, 198, 220, 1441, 42625, 14208, 13, 19509, 23779, 13, 13287, 7, 25927, 11, 705, 1324, 62, 732, 12485, 14, 9630, 13, 6494, 3256, 23884, 8, 628, 198, 2, 220, 27156, 27156, 27156, 27156, 15116, 8728, 93, 198, 2, 3298, 4049, 32847, 329, 598, 62, 732, 12485, 198, 2, 220, 27156, 27156, 27156, 27156, 15116, 8728, 93, 628, 198, 4299, 4049, 62, 7029, 7, 25927, 11, 6631, 2599, 198, 220, 37227, 198, 220, 2581, 21360, 329, 257, 7337, 4049, 13, 198, 220, 37227, 198, 220, 4732, 796, 1391, 198, 220, 220, 220, 705, 8056, 10354, 44438, 7029, 7772, 19390, 60, 10644, 25, 705, 1343, 2581, 13, 6978, 11, 198, 220, 1782, 198, 220, 1441, 42625, 14208, 13, 19509, 23779, 13, 13287, 7, 25927, 11, 705, 1324, 62, 732, 12485, 14, 18224, 13, 6494, 3256, 4732, 8, 628, 198, 4299, 4049, 62, 31552, 7, 25927, 11, 6631, 2599, 198, 220, 37227, 198, 220, 2581, 21360, 329, 257, 38210, 4049, 13, 198, 220, 37227, 198, 220, 4732, 796, 1391, 198, 220, 220, 220, 705, 8056, 10354, 44438, 31552, 2448, 3411, 5601, 798, 60, 10644, 25, 705, 1343, 2581, 13, 6978, 11, 198, 220, 1782, 198, 220, 1441, 42625, 14208, 13, 19509, 23779, 13, 13287, 7, 25927, 11, 705, 1324, 62, 732, 12485, 14, 18224, 13, 6494, 3256, 4732, 8, 628, 198, 4299, 4049, 62, 26429, 7, 25927, 11, 6631, 2599, 198, 220, 37227, 198, 220, 2581, 21360, 329, 257, 32320, 4049, 13, 198, 220, 37227, 198, 220, 4732, 796, 1391, 198, 220, 220, 220, 705, 8056, 10354, 44438, 26429, 7873, 1892, 4062, 60, 10644, 25, 705, 1343, 2581, 13, 6978, 11, 198, 220, 1782, 198, 220, 1441, 42625, 14208, 13, 19509, 23779, 13, 13287, 7, 25927, 11, 705, 1324, 62, 732, 12485, 14, 18224, 13, 6494, 3256, 4732, 8, 628, 198, 4299, 4049, 62, 4059, 7, 25927, 2599, 198, 220, 37227, 198, 220, 2581, 21360, 329, 257, 5323, 4049, 13, 198, 220, 37227, 198, 220, 4732, 796, 1391, 198, 220, 220, 220, 705, 8056, 10354, 44438, 4059, 9652, 13047, 60, 10644, 25, 705, 1343, 2581, 13, 6978, 11, 198, 220, 1782, 198, 220, 1441, 42625, 14208, 13, 19509, 23779, 13, 13287, 7, 25927, 11, 705, 1324, 62, 732, 12485, 14, 18224, 13, 6494, 3256, 4732, 8, 198 ]
3.2225
400
from .SculptASequenceView import SculptASequenceView
[ 6738, 764, 50, 3129, 457, 1921, 4853, 594, 7680, 1330, 1446, 13327, 1921, 4853, 594, 7680, 198 ]
3.117647
17
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c) 2015 Peter Sprygada, <[email protected]> # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import itertools import re from ansible.module_utils.six import string_types from ansible.module_utils.six.moves import zip, zip_longest DEFAULT_COMMENT_TOKENS = ['#', '!', '/*', '*/']
[ 2, 770, 2438, 318, 636, 286, 28038, 856, 11, 475, 318, 281, 4795, 7515, 13, 198, 2, 770, 1948, 2393, 39442, 11, 290, 428, 2393, 39442, 691, 11, 318, 347, 10305, 11971, 13, 198, 2, 3401, 5028, 345, 3551, 1262, 428, 39442, 11, 543, 318, 14553, 32366, 416, 28038, 856, 198, 2, 991, 5594, 284, 262, 1772, 286, 262, 8265, 11, 290, 743, 8333, 511, 898, 5964, 198, 2, 284, 262, 1844, 670, 13, 198, 2, 198, 2, 15069, 357, 66, 8, 1853, 5613, 1338, 563, 70, 4763, 11, 1279, 862, 79, 563, 70, 4763, 31, 504, 856, 13, 785, 29, 198, 2, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 17613, 11, 198, 2, 389, 10431, 2810, 326, 262, 1708, 3403, 389, 1138, 25, 198, 2, 198, 2, 220, 220, 220, 1635, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 220, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 220, 220, 1635, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 4003, 11, 198, 2, 220, 220, 220, 220, 220, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 262, 10314, 198, 2, 220, 220, 220, 220, 220, 290, 14, 273, 584, 5696, 2810, 351, 262, 6082, 13, 198, 2, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 366, 1921, 3180, 1, 5357, 198, 2, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 40880, 5390, 11, 3336, 8959, 49094, 198, 2, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 198, 2, 3268, 8005, 49261, 50163, 3336, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 198, 2, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 21728, 5626, 40880, 5390, 11, 198, 2, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 198, 2, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 198, 2, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 15529, 34882, 16289, 3963, 3336, 198, 2, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 2, 198, 198, 11748, 340, 861, 10141, 198, 11748, 302, 198, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13, 19412, 1330, 4731, 62, 19199, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13, 19412, 13, 76, 5241, 1330, 19974, 11, 19974, 62, 6511, 395, 198, 198, 7206, 38865, 62, 9858, 10979, 62, 10468, 42, 16938, 796, 37250, 2, 3256, 705, 0, 3256, 705, 15211, 3256, 705, 16208, 20520, 628, 198 ]
3.416819
547
import os import pytest from dvc.ignore import DvcIgnore from dvc.main import main @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] ) @pytest.mark.parametrize( "file,ret,output", [ ("file", 0, "{}:1:f*\tfile\n".format(DvcIgnore.DVCIGNORE_FILE)), ("foo", 0, "{}:2:!foo\tfoo\n".format(DvcIgnore.DVCIGNORE_FILE)), ( os.path.join("dir", "foobar"), 0, "{}:1:foobar\t{}\n".format( os.path.join("dir", DvcIgnore.DVCIGNORE_FILE), os.path.join("dir", "foobar"), ), ), ], ) @pytest.mark.parametrize("non_matching", [True, False]) @pytest.mark.parametrize( "args", [ ["-n", "file"], ["-a", "file"], ["-q", "-d", "file"], ["--stdin", "file"], [], ], ) @pytest.mark.parametrize("path,ret", [({"dir": {}}, 0), ({"dir": "files"}, 1)]) @pytest.mark.parametrize( "file,ret,output", [("ignored", 0, True), ("not_ignored", 1, False)] )
[ 11748, 28686, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 288, 28435, 13, 46430, 1330, 360, 28435, 32916, 382, 198, 6738, 288, 28435, 13, 12417, 1330, 1388, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 7753, 11, 1186, 11, 22915, 1600, 685, 7203, 570, 1850, 1600, 657, 11, 6407, 828, 5855, 1662, 62, 570, 1850, 1600, 352, 11, 10352, 15437, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 7753, 11, 1186, 11, 22915, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 7753, 1600, 657, 11, 45144, 38362, 16, 25, 69, 9, 59, 83, 7753, 59, 77, 1911, 18982, 7, 35, 28435, 32916, 382, 13, 35, 15922, 16284, 6965, 62, 25664, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 5855, 21943, 1600, 657, 11, 45144, 38362, 17, 25, 0, 21943, 59, 83, 21943, 59, 77, 1911, 18982, 7, 35, 28435, 32916, 382, 13, 35, 15922, 16284, 6965, 62, 25664, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7203, 15908, 1600, 366, 6513, 30973, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 38362, 16, 25, 6513, 30973, 59, 83, 90, 32239, 77, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7203, 15908, 1600, 360, 28435, 32916, 382, 13, 35, 15922, 16284, 6965, 62, 25664, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7203, 15908, 1600, 366, 6513, 30973, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 13159, 62, 15699, 278, 1600, 685, 17821, 11, 10352, 12962, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 22046, 1600, 198, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 12, 77, 1600, 366, 7753, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 12, 64, 1600, 366, 7753, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 12, 80, 1600, 27444, 67, 1600, 366, 7753, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 438, 19282, 259, 1600, 366, 7753, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 685, 4357, 198, 220, 220, 220, 16589, 198, 8, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 6978, 11, 1186, 1600, 47527, 4895, 15908, 1298, 23884, 5512, 657, 828, 357, 4895, 15908, 1298, 366, 16624, 25719, 352, 8, 12962, 628, 628, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 7753, 11, 1186, 11, 22915, 1600, 685, 7203, 570, 1850, 1600, 657, 11, 6407, 828, 5855, 1662, 62, 570, 1850, 1600, 352, 11, 10352, 15437, 198, 8, 198 ]
1.910394
558
import os import threading import time from networktables import NetworkTables from PIL import Image from PIL.ImageColor import getcolor, getrgb from PIL.ImageOps import grayscale from StreamDeck.DeviceManager import DeviceManager from StreamDeck.ImageHelpers import PILHelper ASSETS_PATH = os.path.join(os.path.dirname(__file__), "assets") ASSETS_PATH = os.path.join(os.path.dirname(__file__), "icons") # As a client to connect to a robot NetworkTables.initialize(server="10.11.89.2") # NetworkTables.initialize(server="127.0.0.1") time.sleep(3) sd = NetworkTables.getTable("StreamDeck/0") # a = [ # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # "default", # ] # sd.putStringArray("Icons", a) buttons = [] for i in range(0, 15): sd.putBoolean(f"Action/{i}", False) sd.putBoolean(f"Status/{i}", False) button = Button(i) buttons.append(button) deck = DeviceManager().enumerate()[0] deck.open() deck.reset() print( "Opened '{}' device (serial number: '{}')".format( deck.deck_type(), deck.get_serial_number() ) ) # Set initial screen brightness to 30%. deck.set_brightness(30) # Set initial key images. # for key in range(deck.key_count()): # update_key_image(deck, key, False) # Register callback function for when a key state changes. deck.set_key_callback(key_change_callback) while True: for button in buttons: button.update(deck) # Wait until all application threads have terminated (for this example, # this is when all deck handles are closed). for t in threading.enumerate(): if t is threading.currentThread(): continue if t.is_alive(): t.join()
[ 11748, 28686, 198, 11748, 4704, 278, 198, 11748, 640, 198, 198, 6738, 3127, 83, 2977, 1330, 7311, 51, 2977, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 350, 4146, 13, 5159, 10258, 1330, 651, 8043, 11, 651, 81, 22296, 198, 6738, 350, 4146, 13, 5159, 41472, 1330, 1036, 592, 38765, 198, 198, 6738, 13860, 5005, 694, 13, 24728, 13511, 1330, 16232, 13511, 198, 6738, 13860, 5005, 694, 13, 5159, 12621, 19276, 1330, 350, 4146, 47429, 198, 198, 10705, 32716, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 19668, 4943, 628, 198, 198, 10705, 32716, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 366, 34280, 4943, 628, 628, 198, 198, 2, 1081, 257, 5456, 284, 2018, 284, 257, 9379, 198, 26245, 51, 2977, 13, 36733, 1096, 7, 15388, 2625, 940, 13, 1157, 13, 4531, 13, 17, 4943, 198, 2, 7311, 51, 2977, 13, 36733, 1096, 7, 15388, 2625, 16799, 13, 15, 13, 15, 13, 16, 4943, 198, 2435, 13, 42832, 7, 18, 8, 628, 198, 21282, 796, 7311, 51, 2977, 13, 1136, 10962, 7203, 12124, 5005, 694, 14, 15, 4943, 198, 2, 257, 796, 685, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 220, 220, 220, 220, 366, 12286, 1600, 198, 2, 2361, 198, 2, 45647, 13, 1996, 10100, 19182, 7203, 40, 5936, 1600, 257, 8, 198, 198, 4360, 27288, 796, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 15, 11, 1315, 2599, 198, 220, 220, 220, 45647, 13, 1996, 46120, 13087, 7, 69, 1, 12502, 14, 90, 72, 92, 1600, 10352, 8, 198, 220, 220, 220, 45647, 13, 1996, 46120, 13087, 7, 69, 1, 19580, 14, 90, 72, 92, 1600, 10352, 8, 198, 220, 220, 220, 4936, 796, 20969, 7, 72, 8, 198, 220, 220, 220, 12163, 13, 33295, 7, 16539, 8, 198, 198, 35875, 796, 16232, 13511, 22446, 268, 6975, 378, 3419, 58, 15, 60, 198, 35875, 13, 9654, 3419, 198, 35875, 13, 42503, 3419, 198, 4798, 7, 198, 220, 220, 220, 366, 18257, 2945, 705, 90, 92, 6, 3335, 357, 46911, 1271, 25, 705, 90, 92, 11537, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6203, 13, 35875, 62, 4906, 22784, 6203, 13, 1136, 62, 46911, 62, 17618, 3419, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 2, 5345, 4238, 3159, 22204, 284, 1542, 7225, 198, 35875, 13, 2617, 62, 29199, 1108, 7, 1270, 8, 198, 2, 5345, 4238, 1994, 4263, 13, 198, 2, 329, 1994, 287, 2837, 7, 35875, 13, 2539, 62, 9127, 3419, 2599, 198, 2, 220, 220, 220, 4296, 62, 2539, 62, 9060, 7, 35875, 11, 1994, 11, 10352, 8, 198, 198, 2, 17296, 23838, 2163, 329, 618, 257, 1994, 1181, 2458, 13, 198, 35875, 13, 2617, 62, 2539, 62, 47423, 7, 2539, 62, 3803, 62, 47423, 8, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 329, 4936, 287, 12163, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4936, 13, 19119, 7, 35875, 8, 198, 198, 2, 16314, 1566, 477, 3586, 14390, 423, 23083, 357, 1640, 428, 1672, 11, 198, 2, 428, 318, 618, 477, 6203, 17105, 389, 4838, 737, 198, 1640, 256, 287, 4704, 278, 13, 268, 6975, 378, 33529, 198, 220, 220, 220, 611, 256, 318, 4704, 278, 13, 14421, 16818, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 611, 256, 13, 271, 62, 282, 425, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 22179, 3419, 198 ]
2.577031
714
from dragonfly import (Grammar, CompoundRule, Text, MappingRule, Dictation, Function, Choice) from macro_utilities import (replace_in_text, comment_choice, execute_with_dictation) from vim.rules.letter import (camel_case, proper) comparison_choice_map = { "equal": "==", "not equal": "/=", "less or equal": "<=", "greater or equal": ">=", "less": "<", "greater": ">", } stack_command_choice_map = { "build fast": "build --fast", "build": "build", "shell": "repl", "shall": "repl", "test": "test", "test fast": "test --fast", "run": "run", "install": "install", } # The main Curry grammar rules are activated here curryBootstrap = Grammar("curry bootstrap") curryBootstrap.add_rule(CurryEnabler()) curryBootstrap.load() curryGrammar = Grammar("curry grammar") curryGrammar.add_rule(CurryUtilities()) curryGrammar.add_rule(CurryDisabler()) curryGrammar.load() curryGrammar.disable()
[ 6738, 10441, 12254, 1330, 357, 38, 859, 3876, 11, 3082, 633, 31929, 11, 8255, 11, 337, 5912, 31929, 11, 360, 713, 341, 11, 15553, 11, 18502, 8, 198, 6738, 15021, 62, 315, 2410, 1330, 357, 33491, 62, 259, 62, 5239, 11, 2912, 62, 25541, 11, 12260, 62, 4480, 62, 11600, 341, 8, 198, 6738, 43907, 13, 38785, 13, 9291, 1330, 357, 66, 17983, 62, 7442, 11, 1774, 8, 628, 628, 628, 628, 198, 785, 1845, 1653, 62, 25541, 62, 8899, 796, 1391, 198, 220, 220, 220, 366, 40496, 1298, 366, 855, 1600, 198, 220, 220, 220, 366, 1662, 4961, 1298, 12813, 28, 1600, 198, 220, 220, 220, 366, 1203, 393, 4961, 1298, 33490, 28, 1600, 198, 220, 220, 220, 366, 18223, 263, 393, 4961, 1298, 366, 29, 28, 1600, 198, 220, 220, 220, 366, 1203, 1298, 33490, 1600, 198, 220, 220, 220, 366, 18223, 263, 1298, 366, 29, 1600, 198, 92, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 25558, 62, 21812, 62, 25541, 62, 8899, 796, 1391, 198, 220, 220, 220, 366, 11249, 3049, 1298, 366, 11249, 1377, 7217, 1600, 198, 220, 220, 220, 366, 11249, 1298, 366, 11249, 1600, 198, 220, 220, 220, 366, 29149, 1298, 366, 35666, 1600, 198, 220, 220, 220, 366, 49271, 1298, 366, 35666, 1600, 198, 220, 220, 220, 366, 9288, 1298, 366, 9288, 1600, 198, 220, 220, 220, 366, 9288, 3049, 1298, 366, 9288, 1377, 7217, 1600, 198, 220, 220, 220, 366, 5143, 1298, 366, 5143, 1600, 198, 220, 220, 220, 366, 17350, 1298, 366, 17350, 1600, 198, 92, 628, 628, 198, 198, 2, 383, 1388, 20920, 23491, 3173, 389, 13906, 994, 198, 66, 16682, 36476, 26418, 796, 20159, 3876, 7203, 66, 16682, 6297, 26418, 4943, 198, 66, 16682, 36476, 26418, 13, 2860, 62, 25135, 7, 34, 16682, 4834, 397, 1754, 28955, 198, 66, 16682, 36476, 26418, 13, 2220, 3419, 198, 198, 66, 16682, 38, 859, 3876, 796, 20159, 3876, 7203, 66, 16682, 23491, 4943, 198, 66, 16682, 38, 859, 3876, 13, 2860, 62, 25135, 7, 34, 16682, 18274, 2410, 28955, 198, 66, 16682, 38, 859, 3876, 13, 2860, 62, 25135, 7, 34, 16682, 7279, 397, 1754, 28955, 198, 66, 16682, 38, 859, 3876, 13, 2220, 3419, 198, 66, 16682, 38, 859, 3876, 13, 40223, 3419, 628 ]
2.578249
377
from deluge.plugins.init import PluginInitBase VERSION = (0, 1, 8)
[ 6738, 1619, 2217, 13, 37390, 13, 15003, 1330, 42636, 31768, 14881, 628, 198, 43717, 796, 357, 15, 11, 352, 11, 807, 8, 628, 628 ]
3
24
from django.shortcuts import reverse from django.views.generic import UpdateView from applications.users.forms.profile import ProfileForm from applications.users.layouts.profile import ProfileLayout from applications.users.mixins.authenticated import AuthenticatedMixin from applications.common.mixins.add_message import AddMessageMixin from applications.common.mixins.add_request_to_form import AddRequestToFormMixin Profile = ProfileCBV.as_view()
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 9575, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 10133, 7680, 198, 198, 6738, 5479, 13, 18417, 13, 23914, 13, 13317, 1330, 13118, 8479, 198, 6738, 5479, 13, 18417, 13, 10724, 5269, 13, 13317, 1330, 13118, 32517, 198, 6738, 5479, 13, 18417, 13, 19816, 1040, 13, 41299, 3474, 1330, 31885, 3474, 35608, 259, 198, 6738, 5479, 13, 11321, 13, 19816, 1040, 13, 2860, 62, 20500, 1330, 3060, 12837, 35608, 259, 198, 6738, 5479, 13, 11321, 13, 19816, 1040, 13, 2860, 62, 25927, 62, 1462, 62, 687, 1330, 3060, 18453, 2514, 8479, 35608, 259, 628, 198, 198, 37046, 796, 13118, 23199, 53, 13, 292, 62, 1177, 3419, 198 ]
3.93913
115
# -*- coding: utf-8 -*- import csv import os import cv2 import numpy as np from flask import render_template, request, redirect, url_for from flask import jsonify from app.main import main from app.utils.frame.frame import base64_to_png from app.utils.frame.site import Site from app.utils.frame.sub import PictureSub from config import Config import json @main.route('/') @main.route('/picture/', methods=['GET', 'POST']) # INFO 2019/12/25 15:18 liliangbin 背景图片设置 @main.route('/background/', methods=['GET', 'POST']) # TODO 2020/1/4 15:13 liliangbin 返回的地址应该是画框的位置(视频名字和时间位置)通过前端设置了 @main.route('/site/', methods=['GET', 'POST']) # TODO 2020/6/12 15:50 liliangbin 代码可以优化一波 @main.route('/change_datas/', methods=['GET', 'POST']) # INFO 2020/6/12 15:51 liliangbin 获取用户 @main.route("/site_get/", methods=['GET', 'POST']) @main.route('/video_location/', methods=['POST'])
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 269, 21370, 198, 11748, 28686, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 42903, 1330, 8543, 62, 28243, 11, 2581, 11, 18941, 11, 19016, 62, 1640, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 598, 13, 12417, 1330, 1388, 198, 6738, 598, 13, 26791, 13, 14535, 13, 14535, 1330, 2779, 2414, 62, 1462, 62, 11134, 198, 6738, 598, 13, 26791, 13, 14535, 13, 15654, 1330, 14413, 198, 6738, 598, 13, 26791, 13, 14535, 13, 7266, 1330, 17741, 7004, 198, 6738, 4566, 1330, 17056, 198, 11748, 33918, 628, 198, 31, 12417, 13, 38629, 10786, 14, 11537, 628, 198, 31, 12417, 13, 38629, 10786, 14, 34053, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 2, 24890, 13130, 14, 1065, 14, 1495, 1315, 25, 1507, 300, 2403, 648, 8800, 220, 5525, 225, 234, 162, 247, 107, 32368, 122, 31965, 229, 164, 106, 122, 163, 121, 106, 198, 31, 12417, 13, 38629, 10786, 14, 25249, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 2, 16926, 46, 12131, 14, 16, 14, 19, 1315, 25, 1485, 300, 2403, 648, 8800, 5525, 123, 242, 32368, 252, 21410, 28839, 108, 161, 251, 222, 41753, 242, 46237, 98, 42468, 18796, 119, 162, 94, 228, 21410, 19526, 235, 163, 121, 106, 171, 120, 230, 164, 100, 228, 165, 95, 239, 28938, 235, 27764, 245, 161, 240, 234, 33768, 114, 29785, 112, 19526, 235, 163, 121, 106, 171, 120, 231, 34460, 248, 32573, 229, 30298, 235, 44165, 107, 164, 106, 122, 163, 121, 106, 12859, 228, 198, 31, 12417, 13, 38629, 10786, 14, 15654, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 2, 16926, 46, 12131, 14, 21, 14, 1065, 1315, 25, 1120, 300, 2403, 648, 8800, 220, 47987, 163, 254, 223, 20998, 107, 20015, 98, 27670, 246, 44293, 244, 31660, 37345, 95, 198, 31, 12417, 13, 38629, 10786, 14, 3803, 62, 19608, 292, 14, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 2, 24890, 12131, 14, 21, 14, 1065, 1315, 25, 4349, 300, 2403, 648, 8800, 220, 5525, 236, 115, 20998, 244, 18796, 101, 22755, 115, 198, 31, 12417, 13, 38629, 7203, 14, 15654, 62, 1136, 14, 1600, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 12417, 13, 38629, 10786, 14, 15588, 62, 24886, 14, 3256, 5050, 28, 17816, 32782, 6, 12962, 198 ]
2.119617
418
# django imports from django.forms import ModelForm # lfs imports from lfs.discounts.models import Discount class DiscountForm(ModelForm): """ Form to manage discount data. """
[ 2, 42625, 14208, 17944, 198, 6738, 42625, 14208, 13, 23914, 1330, 9104, 8479, 198, 198, 2, 300, 9501, 17944, 198, 6738, 300, 9501, 13, 15410, 608, 82, 13, 27530, 1330, 43474, 628, 198, 4871, 43474, 8479, 7, 17633, 8479, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5178, 284, 6687, 9780, 1366, 13, 198, 220, 220, 220, 37227, 198 ]
3.147541
61
# MIT License # # Copyright (c) 2020 SCL team at Red Hat # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from contextlib import contextmanager import logging import shutil import os import json import jinja2 import subprocess from pathlib import Path from betka.constants import HOME logger = logging.getLogger(__name__) def run_cmd(cmd, return_output=False, ignore_error=False, shell=False, **kwargs): """ Run provided command on host system using the same user as invoked this code. Raises subprocess.CalledProcessError if it fails. :param cmd: list or str :param return_output: bool, return output of the command :param ignore_error: bool, do not fail in case nonzero return code :param shell: bool, run command in shell :param kwargs: pass keyword arguments to subprocess.check_* functions; for more info, please check `help(subprocess.Popen)` :return: None or str """ logger.debug("command: %r", cmd) try: if return_output: return subprocess.check_output( cmd, stderr=subprocess.STDOUT, universal_newlines=True, shell=shell, **kwargs, ) else: return subprocess.check_call(cmd, shell=shell, **kwargs) except subprocess.CalledProcessError as cpe: if ignore_error: if return_output: return cpe.output else: return cpe.returncode else: logger.error(f"failed with code {cpe.returncode} and output:\n{cpe.output}") raise cpe def text_from_template(template_dir, template_filename, template_data): """ Create text based on template in path template_dir/template_filename :param template_dir: string, directory containing templates :param template_filename: template for text in jinja :param template_data: dict, data for substitution in template :return: string """ if not os.path.exists(os.path.join(template_dir, template_filename)): raise FileNotFoundError("Path to template not found.") template_loader = jinja2.FileSystemLoader(searchpath=template_dir) template_env = jinja2.Environment(loader=template_loader) template = template_env.get_template(template_filename) output_text = template.render(template_data=template_data) logger.debug("Text from template created:") logger.debug(output_text) return output_text def copy_upstream2downstream(src_parent: Path, dest_parent: Path): """Copies content from upstream repo to downstream repo Copies all files/dirs/symlinks from upstream source to dist-git one by one, while removing previous if exists. :param src_parent: path to source directory :param dest_parent: path to destination directory """ for f in src_parent.iterdir(): if f.name.startswith(".git"): continue dest = dest_parent / f.name src = src_parent / f.name logger.debug(f"Copying {str(src)} to {str(dest)}.") # First remove the dest only if it is not symlink. if dest.is_dir() and not dest.is_symlink(): logger.debug("rmtree %s", dest) shutil.rmtree(dest) else: if dest.exists(): dest.unlink() # Now copy the src to dest if src.is_symlink() or not src.is_dir(): logger.debug("cp %s %s", src, dest) shutil.copy2(src, dest, follow_symlinks=False) else: logger.debug("cp -r %s %s", src, dest) shutil.copytree(src, dest, symlinks=True) def clean_directory(path: Path): """ Function cleans directory except itself :param path: directory path which is cleaned """ for d in path.iterdir(): src = path / d if src.is_dir(): logger.debug("rmtree %s", str(src)) shutil.rmtree(src) else: src.unlink() def list_dir_content(dir_name: Path): """ Lists all content of dir_name :param dir_name: Directory for showing files """ logger.info("Look for a content in '%s' directory", str(dir_name)) for f in dir_name.rglob("*"): if str(f).startswith(".git"): continue logger.debug(f"{f.parent / f.name}") @contextmanager def cwd(path): """ Switch to Path directory and once action is done returns back :param path: :return: """ prev_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd)
[ 2, 17168, 13789, 198, 2, 198, 2, 15069, 357, 66, 8, 12131, 311, 5097, 1074, 379, 2297, 10983, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 628, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 11748, 18931, 198, 11748, 4423, 346, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 11748, 474, 259, 6592, 17, 198, 11748, 850, 14681, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 731, 4914, 13, 9979, 1187, 1330, 41779, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 1057, 62, 28758, 7, 28758, 11, 1441, 62, 22915, 28, 25101, 11, 8856, 62, 18224, 28, 25101, 11, 7582, 28, 25101, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5660, 2810, 3141, 319, 2583, 1080, 1262, 262, 976, 2836, 355, 24399, 428, 2438, 13, 198, 220, 220, 220, 7567, 2696, 850, 14681, 13, 34, 4262, 18709, 12331, 611, 340, 10143, 13, 628, 220, 220, 220, 1058, 17143, 23991, 25, 1351, 393, 965, 198, 220, 220, 220, 1058, 17143, 1441, 62, 22915, 25, 20512, 11, 1441, 5072, 286, 262, 3141, 198, 220, 220, 220, 1058, 17143, 8856, 62, 18224, 25, 20512, 11, 466, 407, 2038, 287, 1339, 1729, 22570, 1441, 2438, 198, 220, 220, 220, 1058, 17143, 7582, 25, 20512, 11, 1057, 3141, 287, 7582, 198, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 1208, 21179, 7159, 284, 850, 14681, 13, 9122, 62, 9, 5499, 26, 329, 517, 7508, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3387, 2198, 4600, 16794, 7, 7266, 14681, 13, 47, 9654, 8, 63, 198, 220, 220, 220, 1058, 7783, 25, 6045, 393, 965, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 24442, 7203, 21812, 25, 4064, 81, 1600, 23991, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 850, 14681, 13, 9122, 62, 22915, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 7266, 14681, 13, 36886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10112, 62, 3605, 6615, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 29149, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 850, 14681, 13, 9122, 62, 13345, 7, 28758, 11, 7582, 28, 29149, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 2845, 850, 14681, 13, 34, 4262, 18709, 12331, 355, 269, 431, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8856, 62, 18224, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1441, 62, 22915, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 431, 13, 22915, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 269, 431, 13, 7783, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 47904, 351, 2438, 1391, 66, 431, 13, 7783, 8189, 92, 290, 5072, 7479, 77, 90, 66, 431, 13, 22915, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 269, 431, 628, 198, 4299, 2420, 62, 6738, 62, 28243, 7, 28243, 62, 15908, 11, 11055, 62, 34345, 11, 11055, 62, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 2420, 1912, 319, 11055, 287, 3108, 11055, 62, 15908, 14, 28243, 62, 34345, 198, 220, 220, 220, 1058, 17143, 11055, 62, 15908, 25, 4731, 11, 8619, 7268, 24019, 198, 220, 220, 220, 1058, 17143, 11055, 62, 34345, 25, 11055, 329, 2420, 287, 474, 259, 6592, 198, 220, 220, 220, 1058, 17143, 11055, 62, 7890, 25, 8633, 11, 1366, 329, 32097, 287, 11055, 198, 220, 220, 220, 1058, 7783, 25, 4731, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 418, 13, 6978, 13, 22179, 7, 28243, 62, 15908, 11, 11055, 62, 34345, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 9220, 3673, 21077, 12331, 7203, 15235, 284, 11055, 407, 1043, 19570, 628, 220, 220, 220, 11055, 62, 29356, 796, 474, 259, 6592, 17, 13, 8979, 11964, 17401, 7, 12947, 6978, 28, 28243, 62, 15908, 8, 198, 220, 220, 220, 11055, 62, 24330, 796, 474, 259, 6592, 17, 13, 31441, 7, 29356, 28, 28243, 62, 29356, 8, 198, 220, 220, 220, 11055, 796, 11055, 62, 24330, 13, 1136, 62, 28243, 7, 28243, 62, 34345, 8, 198, 220, 220, 220, 5072, 62, 5239, 796, 11055, 13, 13287, 7, 28243, 62, 7890, 28, 28243, 62, 7890, 8, 198, 220, 220, 220, 49706, 13, 24442, 7203, 8206, 422, 11055, 2727, 25, 4943, 198, 220, 220, 220, 49706, 13, 24442, 7, 22915, 62, 5239, 8, 628, 220, 220, 220, 1441, 5072, 62, 5239, 628, 198, 4299, 4866, 62, 929, 5532, 17, 2902, 5532, 7, 10677, 62, 8000, 25, 10644, 11, 2244, 62, 8000, 25, 10644, 2599, 198, 220, 220, 220, 37227, 13379, 444, 2695, 422, 28717, 29924, 284, 33218, 29924, 628, 220, 220, 220, 220, 6955, 444, 477, 3696, 14, 15908, 82, 14, 37047, 28751, 422, 28717, 2723, 284, 1233, 12, 18300, 530, 416, 530, 11, 198, 220, 220, 220, 220, 981, 10829, 2180, 611, 7160, 13, 628, 220, 220, 220, 220, 1058, 17143, 12351, 62, 8000, 25, 3108, 284, 2723, 8619, 198, 220, 220, 220, 220, 1058, 17143, 2244, 62, 8000, 25, 3108, 284, 10965, 8619, 198, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 277, 287, 12351, 62, 8000, 13, 2676, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 277, 13, 3672, 13, 9688, 2032, 342, 7, 1911, 18300, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 796, 2244, 62, 8000, 1220, 277, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 12351, 62, 8000, 1220, 277, 13, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 13379, 1112, 1391, 2536, 7, 10677, 38165, 284, 1391, 2536, 7, 16520, 38165, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3274, 4781, 262, 2244, 691, 611, 340, 318, 407, 827, 4029, 676, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2244, 13, 271, 62, 15908, 3419, 290, 407, 2244, 13, 271, 62, 1837, 4029, 676, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 81, 16762, 631, 4064, 82, 1600, 2244, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 16520, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2244, 13, 1069, 1023, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2244, 13, 403, 8726, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 4866, 262, 12351, 284, 2244, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 13, 271, 62, 1837, 4029, 676, 3419, 393, 407, 12351, 13, 271, 62, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 13155, 4064, 82, 4064, 82, 1600, 12351, 11, 2244, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 17, 7, 10677, 11, 2244, 11, 1061, 62, 37047, 28751, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 13155, 532, 81, 4064, 82, 4064, 82, 1600, 12351, 11, 2244, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 30073, 21048, 7, 10677, 11, 2244, 11, 5659, 28751, 28, 17821, 8, 628, 198, 4299, 3424, 62, 34945, 7, 6978, 25, 10644, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 15553, 20658, 8619, 2845, 2346, 198, 220, 220, 220, 1058, 17143, 3108, 25, 8619, 3108, 543, 318, 20750, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 288, 287, 3108, 13, 2676, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 12351, 796, 3108, 1220, 288, 198, 220, 220, 220, 220, 220, 220, 220, 611, 12351, 13, 271, 62, 15908, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 81, 16762, 631, 4064, 82, 1600, 965, 7, 10677, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4423, 346, 13, 81, 16762, 631, 7, 10677, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 13, 403, 8726, 3419, 628, 198, 4299, 1351, 62, 15908, 62, 11299, 7, 15908, 62, 3672, 25, 10644, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 44968, 477, 2695, 286, 26672, 62, 3672, 198, 220, 220, 220, 1058, 17143, 26672, 62, 3672, 25, 27387, 329, 4478, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49706, 13, 10951, 7203, 8567, 329, 257, 2695, 287, 705, 4, 82, 6, 8619, 1600, 965, 7, 15908, 62, 3672, 4008, 198, 220, 220, 220, 329, 277, 287, 26672, 62, 3672, 13, 81, 4743, 672, 7203, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 69, 737, 9688, 2032, 342, 7, 1911, 18300, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 90, 69, 13, 8000, 1220, 277, 13, 3672, 92, 4943, 628, 198, 198, 31, 22866, 37153, 198, 4299, 269, 16993, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14645, 284, 10644, 8619, 290, 1752, 2223, 318, 1760, 198, 220, 220, 220, 5860, 736, 198, 220, 220, 220, 1058, 17143, 3108, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8654, 62, 66, 16993, 796, 10644, 13, 66, 16993, 3419, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 6978, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 198, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 47050, 62, 66, 16993, 8, 198 ]
2.603809
2,153
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from deepspeech.frontend.utility import IGNORE_ID from deepspeech.io.utility import pad_sequence from deepspeech.utils.log import Log __all__ = ["SpeechCollator"] logger = Log(__name__).getlog()
[ 2, 15069, 357, 66, 8, 33448, 350, 37382, 47, 37382, 46665, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2769, 45862, 13, 8534, 437, 13, 315, 879, 1330, 28730, 6965, 62, 2389, 198, 6738, 2769, 45862, 13, 952, 13, 315, 879, 1330, 14841, 62, 43167, 198, 6738, 2769, 45862, 13, 26791, 13, 6404, 1330, 5972, 198, 198, 834, 439, 834, 796, 14631, 5248, 3055, 22667, 1352, 8973, 198, 198, 6404, 1362, 796, 5972, 7, 834, 3672, 834, 737, 1136, 6404, 3419, 628 ]
3.6
230
# -*-python-*- # # Copyright (C) 1999-2018 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- "Version Control lib driver for remotely accessible Subversion repositories." import vclib import sys import os import re import tempfile import time import urllib from svn_repos import Revision, SVNChangedPath, _datestr_to_date, \ _compare_paths, _path_parts, _cleanup_path, \ _rev2optrev, _fix_subversion_exception, \ _split_revprops, _canonicalize_path from svn import core, delta, client, wc, ra ### Require Subversion 1.3.1 or better. (for svn_ra_get_locations support) if (core.SVN_VER_MAJOR, core.SVN_VER_MINOR, core.SVN_VER_PATCH) < (1, 3, 1): raise Exception, "Version requirement not met (needs 1.3.1 or better)" ### BEGIN COMPATABILITY CODE ### try: SVN_INVALID_REVNUM = core.SVN_INVALID_REVNUM except AttributeError: # The 1.4.x bindings are missing core.SVN_INVALID_REVNUM SVN_INVALID_REVNUM = -1 ### END COMPATABILITY CODE ### def cat_to_tempfile(svnrepos, path, rev): """Check out file revision to temporary file""" temp = tempfile.mktemp() stream = core.svn_stream_from_aprfile(temp) url = svnrepos._geturl(path) client.svn_client_cat(core.Stream(stream), url, _rev2optrev(rev), svnrepos.ctx) core.svn_stream_close(stream) return temp
[ 2, 532, 9, 12, 29412, 12, 9, 12, 198, 2, 198, 2, 15069, 357, 34, 8, 7358, 12, 7908, 383, 3582, 34, 20304, 4912, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 2750, 1262, 428, 2393, 11, 345, 4236, 284, 262, 2846, 290, 3403, 900, 6071, 287, 198, 2, 262, 38559, 24290, 13, 6494, 2393, 543, 460, 307, 1043, 379, 262, 1353, 1241, 286, 262, 3582, 15922, 198, 2, 6082, 393, 379, 2638, 1378, 1177, 28435, 13, 2398, 14, 43085, 12, 16, 13, 6494, 13, 198, 2, 198, 2, 1114, 517, 1321, 11, 3187, 2638, 1378, 1177, 28435, 13, 2398, 14, 198, 2, 198, 2, 16529, 26866, 198, 198, 1, 14815, 6779, 9195, 4639, 329, 19863, 9857, 3834, 9641, 38072, 526, 198, 198, 11748, 410, 565, 571, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 20218, 7753, 198, 11748, 640, 198, 11748, 2956, 297, 571, 198, 6738, 38487, 77, 62, 260, 1930, 1330, 46604, 11, 20546, 45, 31813, 15235, 11, 4808, 19608, 395, 81, 62, 1462, 62, 4475, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 5589, 533, 62, 6978, 82, 11, 4808, 6978, 62, 42632, 11, 4808, 27773, 929, 62, 6978, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 18218, 17, 8738, 18218, 11, 4808, 13049, 62, 7266, 9641, 62, 1069, 4516, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 35312, 62, 18218, 1676, 862, 11, 4808, 49883, 605, 1096, 62, 6978, 198, 6738, 38487, 77, 1330, 4755, 11, 25979, 11, 5456, 11, 266, 66, 11, 2179, 628, 198, 21017, 9394, 557, 3834, 9641, 352, 13, 18, 13, 16, 393, 1365, 13, 357, 1640, 38487, 77, 62, 430, 62, 1136, 62, 17946, 602, 1104, 8, 198, 361, 357, 7295, 13, 50, 53, 45, 62, 5959, 62, 5673, 41, 1581, 11, 4755, 13, 50, 53, 45, 62, 5959, 62, 23678, 1581, 11, 4755, 13, 50, 53, 45, 62, 5959, 62, 47, 11417, 8, 1279, 357, 16, 11, 513, 11, 352, 2599, 198, 220, 5298, 35528, 11, 366, 14815, 9079, 407, 1138, 357, 50032, 352, 13, 18, 13, 16, 393, 1365, 16725, 628, 198, 21017, 347, 43312, 24301, 13563, 25382, 42714, 44386, 198, 198, 28311, 25, 198, 220, 20546, 45, 62, 1268, 23428, 2389, 62, 2200, 53, 41359, 796, 4755, 13, 50, 53, 45, 62, 1268, 23428, 2389, 62, 2200, 53, 41359, 198, 16341, 3460, 4163, 12331, 25, 1303, 383, 352, 13, 19, 13, 87, 34111, 389, 4814, 4755, 13, 50, 53, 45, 62, 1268, 23428, 2389, 62, 2200, 53, 41359, 198, 220, 20546, 45, 62, 1268, 23428, 2389, 62, 2200, 53, 41359, 796, 532, 16, 628, 198, 21017, 23578, 24301, 13563, 25382, 42714, 44386, 628, 220, 220, 220, 220, 198, 4299, 3797, 62, 1462, 62, 29510, 7753, 7, 21370, 77, 260, 1930, 11, 3108, 11, 2710, 2599, 198, 220, 37227, 9787, 503, 2393, 18440, 284, 8584, 2393, 37811, 198, 220, 20218, 796, 20218, 7753, 13, 28015, 29510, 3419, 198, 220, 4269, 796, 4755, 13, 21370, 77, 62, 5532, 62, 6738, 62, 499, 81, 7753, 7, 29510, 8, 198, 220, 19016, 796, 38487, 77, 260, 1930, 13557, 1136, 6371, 7, 6978, 8, 198, 220, 5456, 13, 21370, 77, 62, 16366, 62, 9246, 7, 7295, 13, 12124, 7, 5532, 828, 19016, 11, 4808, 18218, 17, 8738, 18218, 7, 18218, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38487, 77, 260, 1930, 13, 49464, 8, 198, 220, 4755, 13, 21370, 77, 62, 5532, 62, 19836, 7, 5532, 8, 198, 220, 1441, 20218, 628, 198 ]
2.631415
643
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import io import pathlib import sys import tempfile from multiprocessing import Pool, cpu_count import PyPDF2 as PyPDF2 import click import pdfminer.pdftypes as pdftypes import pdfminer.settings from fpdf import FPDF from pdfminer.converter import TextConverter from pdfminer.layout import LAParams, LTAnno, LTContainer, LTText, LTTextBox from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from pdfminer.psparser import PSLiteral, PSLiteralTable from tqdm import tqdm pdfminer.settings.STRICT = False SUBSTITUTIONS = { u'ff': 'ff', u'fi': 'fi', u'fl': 'fl', u'’': "'", } ANNOT_SUBTYPES = set(['Text', 'Highlight', 'Squiggly', 'StrikeOut', 'Underline']) DEBUG_BOXHIT = False OUTDIR = "" @click.command() @click.option('--outdir', default="", help='Specify output directory') @click.argument('files', nargs=-1) if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 11748, 33245, 198, 11748, 3108, 8019, 198, 11748, 25064, 198, 11748, 20218, 7753, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 11, 42804, 62, 9127, 198, 198, 11748, 9485, 20456, 17, 355, 9485, 20456, 17, 198, 11748, 3904, 198, 11748, 37124, 1084, 263, 13, 30094, 701, 9497, 355, 279, 67, 701, 9497, 198, 11748, 37124, 1084, 263, 13, 33692, 198, 6738, 277, 12315, 1330, 376, 20456, 198, 6738, 37124, 1084, 263, 13, 1102, 332, 353, 1330, 8255, 3103, 332, 353, 198, 6738, 37124, 1084, 263, 13, 39786, 1330, 406, 2969, 283, 4105, 11, 34146, 2025, 3919, 11, 34146, 29869, 11, 34146, 8206, 11, 34146, 8206, 14253, 198, 6738, 37124, 1084, 263, 13, 12315, 22897, 1330, 12960, 24941, 11, 12960, 2949, 7975, 6615, 198, 6738, 37124, 1084, 263, 13, 12315, 3849, 79, 1330, 14340, 5837, 496, 9492, 3866, 353, 11, 12960, 26198, 13511, 198, 6738, 37124, 1084, 263, 13, 12315, 7700, 1330, 14340, 5837, 496, 198, 6738, 37124, 1084, 263, 13, 12315, 48610, 1330, 14340, 5837, 28198, 198, 6738, 37124, 1084, 263, 13, 862, 48610, 1330, 6599, 43, 270, 1691, 11, 6599, 43, 270, 1691, 10962, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 12315, 1084, 263, 13, 33692, 13, 18601, 18379, 796, 10352, 198, 198, 50, 10526, 2257, 2043, 3843, 11053, 796, 1391, 198, 220, 220, 220, 334, 6, 171, 105, 222, 10354, 705, 487, 3256, 198, 220, 220, 220, 334, 6, 171, 105, 223, 10354, 705, 12463, 3256, 198, 220, 220, 220, 334, 6, 171, 105, 224, 10354, 705, 2704, 3256, 198, 220, 220, 220, 334, 6, 447, 247, 10354, 24018, 1600, 198, 92, 198, 198, 1565, 11929, 62, 50, 10526, 9936, 47, 1546, 796, 900, 7, 17816, 8206, 3256, 705, 11922, 2971, 3256, 705, 22266, 6950, 306, 3256, 705, 31584, 7975, 3256, 705, 9203, 1370, 6, 12962, 198, 198, 30531, 62, 39758, 39, 2043, 796, 10352, 198, 198, 12425, 34720, 796, 13538, 628, 628, 628, 628, 628, 628, 628, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 448, 15908, 3256, 4277, 2625, 1600, 1037, 11639, 22882, 1958, 5072, 8619, 11537, 198, 31, 12976, 13, 49140, 10786, 16624, 3256, 299, 22046, 10779, 16, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.671569
408
import torch def heatmap_focal_loss(preds, gt_heatmap, alpha, gamma, eps=1e-3): """ Params: preds: Tensor[num_classes, height, width] gt_heatmap: Tensor[num_classes, height, width] alpha: gamma: how much you want to reduce penalty around the ground truth locations eps: add small number to prevent inf error Returns: loss: Tensor[] """ # See CornerNet paper for detail https://arxiv.org/abs/1808.01244 loss = -torch.where( gt_heatmap == 1, (1 - preds)**alpha * torch.log(preds + eps), # Loss for positive locations (1 - gt_heatmap) ** gamma * (preds)**alpha * torch.log(1 - preds - eps) # loss for negative locations ).sum() return loss def dice_loss(inputs, targets, smooth=1.0): """ Params: inputs: arbitrary size of Tensor targets: arbitrary size of Tensor smooth: smoothing factor Returns: loss: Tensor[] """ inputs = inputs.view(-1) targets = targets.view(-1) # Squred denominator version of Dice loss dice = (2 * (inputs*targets).sum() + smooth) / ((inputs**2).sum() + (targets**2).sum() + smooth) return 1 - dice
[ 11748, 28034, 198, 198, 4299, 4894, 8899, 62, 69, 4374, 62, 22462, 7, 28764, 82, 11, 308, 83, 62, 25080, 8899, 11, 17130, 11, 34236, 11, 304, 862, 28, 16, 68, 12, 18, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 4105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 82, 25, 309, 22854, 58, 22510, 62, 37724, 11, 6001, 11, 9647, 60, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 25080, 8899, 25, 309, 22854, 58, 22510, 62, 37724, 11, 6001, 11, 9647, 60, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 25, 198, 220, 220, 220, 220, 220, 220, 220, 34236, 25, 703, 881, 345, 765, 284, 4646, 7389, 1088, 262, 2323, 3872, 7064, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 25, 751, 1402, 1271, 284, 2948, 1167, 4049, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 25, 309, 22854, 21737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 4091, 26212, 7934, 3348, 329, 3703, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1507, 2919, 13, 486, 25707, 198, 220, 220, 220, 2994, 796, 532, 13165, 354, 13, 3003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 25080, 8899, 6624, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 532, 2747, 82, 8, 1174, 26591, 1635, 28034, 13, 6404, 7, 28764, 82, 1343, 304, 862, 828, 1303, 22014, 329, 3967, 7064, 198, 220, 220, 220, 220, 220, 220, 220, 357, 16, 532, 308, 83, 62, 25080, 8899, 8, 12429, 34236, 1635, 357, 28764, 82, 8, 1174, 26591, 1635, 28034, 13, 6404, 7, 16, 532, 2747, 82, 532, 304, 862, 8, 1303, 2994, 329, 4633, 7064, 198, 220, 220, 220, 6739, 16345, 3419, 198, 220, 220, 220, 1441, 2994, 198, 198, 4299, 17963, 62, 22462, 7, 15414, 82, 11, 6670, 11, 7209, 28, 16, 13, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 4105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 14977, 2546, 286, 309, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 25, 14977, 2546, 286, 309, 22854, 198, 220, 220, 220, 220, 220, 220, 220, 7209, 25, 32746, 722, 5766, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 25, 309, 22854, 21737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17311, 796, 17311, 13, 1177, 32590, 16, 8, 198, 220, 220, 220, 6670, 796, 6670, 13, 1177, 32590, 16, 8, 628, 220, 220, 220, 1303, 5056, 445, 31457, 1352, 2196, 286, 34381, 2994, 198, 220, 220, 220, 17963, 796, 357, 17, 1635, 357, 15414, 82, 9, 83, 853, 1039, 737, 16345, 3419, 1343, 7209, 8, 1220, 14808, 15414, 82, 1174, 17, 737, 16345, 3419, 1343, 357, 83, 853, 1039, 1174, 17, 737, 16345, 3419, 1343, 7209, 8, 628, 220, 220, 220, 1441, 352, 532, 17963, 198 ]
2.406439
497
import pygments.lexers.hdl as lexers from multiprocessing import Process import helpers.common as common tokenizer = lexers.VerilogLexer()
[ 11748, 12972, 11726, 13, 2588, 364, 13, 71, 25404, 355, 31191, 364, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 198, 11748, 49385, 13, 11321, 355, 2219, 198, 30001, 7509, 796, 31191, 364, 13, 13414, 346, 519, 45117, 263, 3419, 628 ]
3.414634
41
""" .. module:: dj-stripe.tests.test_event_handlers :synopsis: dj-stripe Event Handler Tests. .. moduleauthor:: Alex Kavanaugh (@kavdev) .. moduleauthor:: Lee Skillen (@lskillen) """ from copy import deepcopy import decimal from django.contrib.auth import get_user_model from django.test import TestCase from mock import patch from djstripe.models import Event, Charge, Transfer, Account, Plan, Customer, InvoiceItem, Invoice, Card, Subscription from tests import (FAKE_CARD, FAKE_CHARGE, FAKE_CHARGE_II, FAKE_CUSTOMER, FAKE_CUSTOMER_II, FAKE_EVENT_CHARGE_SUCCEEDED, FAKE_EVENT_CUSTOMER_CREATED, FAKE_EVENT_CUSTOMER_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_CREATED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED, FAKE_EVENT_CUSTOMER_SOURCE_DELETED_DUPE, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_CREATED, FAKE_EVENT_CUSTOMER_SUBSCRIPTION_DELETED, FAKE_EVENT_INVOICE_CREATED, FAKE_EVENT_INVOICE_DELETED, FAKE_EVENT_INVOICEITEM_CREATED, FAKE_EVENT_INVOICEITEM_DELETED, FAKE_EVENT_PLAN_CREATED, FAKE_EVENT_PLAN_DELETED, FAKE_EVENT_TRANSFER_CREATED, FAKE_EVENT_TRANSFER_DELETED, FAKE_INVOICE, FAKE_INVOICE_II, FAKE_INVOICEITEM, FAKE_PLAN, FAKE_SUBSCRIPTION, FAKE_SUBSCRIPTION_III, FAKE_TRANSFER)
[ 37811, 198, 492, 8265, 3712, 42625, 12, 33565, 431, 13, 41989, 13, 9288, 62, 15596, 62, 4993, 8116, 198, 220, 220, 1058, 28869, 24608, 25, 42625, 12, 33565, 431, 8558, 32412, 30307, 13, 198, 198, 492, 8265, 9800, 3712, 4422, 21195, 4275, 74, 615, 7959, 8, 198, 492, 8265, 9800, 3712, 5741, 16023, 268, 4275, 7278, 12728, 268, 8, 198, 198, 37811, 198, 198, 6738, 4866, 1330, 2769, 30073, 198, 11748, 32465, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 15290, 1330, 8529, 198, 198, 6738, 42625, 33565, 431, 13, 27530, 1330, 8558, 11, 20260, 11, 20558, 11, 10781, 11, 5224, 11, 22092, 11, 10001, 2942, 7449, 11, 10001, 2942, 11, 5172, 11, 3834, 33584, 198, 6738, 5254, 1330, 357, 7708, 7336, 62, 34, 9795, 11, 9677, 7336, 62, 38019, 8264, 11, 9677, 7336, 62, 38019, 8264, 62, 3978, 11, 9677, 7336, 62, 34, 7759, 2662, 1137, 11, 9677, 7336, 62, 34, 7759, 2662, 1137, 62, 3978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 38019, 8264, 62, 12564, 4093, 41841, 1961, 11, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 43387, 11617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 7206, 28882, 1961, 11, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 47690, 62, 43387, 11617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 47690, 62, 7206, 28882, 1961, 11, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 47690, 62, 7206, 28882, 1961, 62, 35, 8577, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 12564, 4462, 40165, 62, 43387, 11617, 11, 9677, 7336, 62, 20114, 3525, 62, 34, 7759, 2662, 1137, 62, 12564, 4462, 40165, 62, 7206, 28882, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 1268, 29516, 8476, 62, 43387, 11617, 11, 9677, 7336, 62, 20114, 3525, 62, 1268, 29516, 8476, 62, 7206, 28882, 1961, 11, 9677, 7336, 62, 20114, 3525, 62, 1268, 29516, 8476, 2043, 3620, 62, 43387, 11617, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 1268, 29516, 8476, 2043, 3620, 62, 7206, 28882, 1961, 11, 9677, 7336, 62, 20114, 3525, 62, 6489, 1565, 62, 43387, 11617, 11, 9677, 7336, 62, 20114, 3525, 62, 6489, 1565, 62, 7206, 28882, 1961, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 20114, 3525, 62, 5446, 15037, 24302, 62, 43387, 11617, 11, 9677, 7336, 62, 20114, 3525, 62, 5446, 15037, 24302, 62, 7206, 28882, 1961, 11, 9677, 7336, 62, 1268, 29516, 8476, 11, 9677, 7336, 62, 1268, 29516, 8476, 62, 3978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9677, 7336, 62, 1268, 29516, 8476, 2043, 3620, 11, 9677, 7336, 62, 6489, 1565, 11, 9677, 7336, 62, 12564, 4462, 40165, 11, 9677, 7336, 62, 12564, 4462, 40165, 62, 10855, 11, 9677, 7336, 62, 5446, 15037, 24302, 8, 628, 628, 628, 628 ]
2.114105
631
import common import json import logging import os import subprocess import time from dateutil import parser head_vault_hosts = 'OLD_IFS=${IFS};IFS=\',\' read -r -a VAULT_HOSTS <<< \"$STRING_VAULT_HOST\";IFS=${OLD_IFS};' source_kms_utils = '. /usr/sbin/kms_utils.sh;' global vault_token global vault_accessor global MAX_PERCENTAGE_EXPIRATION vault_token = os.getenv('VAULT_TOKEN', '') vault_accessor = os.getenv('ACCESSOR_TOKEN','') MIN_PERCENTAGE_EXPIRATION = 0.2 logger = None
[ 11748, 2219, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 850, 14681, 198, 11748, 640, 198, 198, 6738, 3128, 22602, 1330, 30751, 198, 198, 2256, 62, 85, 1721, 62, 4774, 82, 796, 705, 15173, 62, 5064, 50, 28, 38892, 5064, 50, 19629, 5064, 50, 28, 59, 3256, 43054, 1100, 532, 81, 532, 64, 13753, 16724, 62, 39, 10892, 50, 9959, 27, 19990, 3, 18601, 2751, 62, 11731, 16724, 62, 39, 10892, 7879, 26, 5064, 50, 28, 38892, 15173, 62, 5064, 50, 19629, 6, 198, 10459, 62, 74, 907, 62, 26791, 796, 45302, 1220, 14629, 14, 82, 8800, 14, 74, 907, 62, 26791, 13, 1477, 26, 6, 198, 198, 20541, 22563, 62, 30001, 198, 20541, 22563, 62, 15526, 273, 198, 20541, 25882, 62, 18973, 43960, 11879, 62, 49864, 4663, 6234, 198, 198, 85, 1721, 62, 30001, 796, 28686, 13, 1136, 24330, 10786, 11731, 16724, 62, 10468, 43959, 3256, 10148, 8, 198, 85, 1721, 62, 15526, 273, 796, 28686, 13, 1136, 24330, 10786, 26861, 7597, 1581, 62, 10468, 43959, 3256, 7061, 8, 198, 23678, 62, 18973, 43960, 11879, 62, 49864, 4663, 6234, 796, 657, 13, 17, 198, 198, 6404, 1362, 796, 6045, 628 ]
2.5
194
"Introducing the sys Module" import sys print(sys.platform) print(sys.maxsize) print(sys.version) if sys.platform[:3] == 'win': print('hello windows')
[ 1, 15005, 2259, 262, 25064, 19937, 1, 198, 11748, 25064, 220, 198, 4798, 7, 17597, 13, 24254, 8, 198, 4798, 7, 17597, 13, 9806, 7857, 8, 198, 4798, 7, 17597, 13, 9641, 8, 628, 198, 361, 25064, 13, 24254, 58, 25, 18, 60, 6624, 705, 5404, 10354, 3601, 10786, 31373, 9168, 11537, 198 ]
2.90566
53
from .orion import parse_orion
[ 6738, 764, 273, 295, 1330, 21136, 62, 273, 295, 198 ]
3.1
10
with open("./day09.input") as file: data = [int(line.strip()) for line in file.readlines()] p1 = get_first_not_matching(25) print(p1) p2 = get_contiguous_ns_that_add_to(p1) print(p2)
[ 4480, 1280, 7, 1911, 14, 820, 2931, 13, 15414, 4943, 355, 2393, 25, 198, 197, 7890, 796, 685, 600, 7, 1370, 13, 36311, 28955, 329, 1627, 287, 2393, 13, 961, 6615, 3419, 60, 628, 198, 198, 79, 16, 796, 651, 62, 11085, 62, 1662, 62, 15699, 278, 7, 1495, 8, 198, 4798, 7, 79, 16, 8, 198, 198, 79, 17, 796, 651, 62, 3642, 29709, 62, 5907, 62, 5562, 62, 2860, 62, 1462, 7, 79, 16, 8, 198, 4798, 7, 79, 17, 8 ]
2.253012
83
import json import os import nibabel as nib import numpy as np import pandas as pd ROOT = "./" DATA = os.path.join(ROOT, "data/")
[ 11748, 33918, 198, 11748, 28686, 198, 198, 11748, 33272, 9608, 355, 33272, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 13252, 2394, 796, 366, 19571, 1, 198, 26947, 796, 28686, 13, 6978, 13, 22179, 7, 13252, 2394, 11, 366, 7890, 14, 4943, 198 ]
2.64
50
import matplotlib import random import operator import csv import drunkframework import matplotlib.animation import matplotlib.pyplot """WARNING!!!!!""" """This code was tested using Spyder 5.0.4, should any problems be encountered using older models please try """ #creates a new empty list for what will be the csv environment data, see https://docs.python.org/3/library/csv.html for more environment = [] #drunks adapted from agents from GUI's practical replacing "agents" drunks = [] #density is an empty list which will track agent movement independent of the movement process density= [] #specifies number of drunks/agents num_of_drunks = 25 #outlines the number of iterations the line 64-78 code will undergo num_of_iterations = 100 #sets the dimensions for the matplotlib plots fig = matplotlib.pyplot.figure(figsize=(7, 7)) ax = fig.add_axes([0, 0, 1, 1]) f = open('drunk.txt', newline='') #Note that the correct directory must be navigated to in the terminal else the full file path will be needed reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) #Used for testing purposes to ascertain the lay of the environment #matplotlib.pyplot.xlim(0, 300) #matplotlib.pyplot.ylim(0, 300) #matplotlib.pyplot.imshow(environment) for row in reader: rowlist =[] for value in row: rowlist.append(value) environment.append(rowlist) f.close() #print (rowlist) Used this to check list structure #Code on lines 46-50 appends the density list output to a 300x300 grid, this code is needed #to prevent the error "IndexError: list index out of range" for i in range(300): rowlist = [] for j in range(300): rowlist.append(0) density.append(rowlist) #matplotlib.pyplot.imshow(environment) run this in isolation to check the environment is #correct ## Make drunks and assign them with an identification number. for i in range(num_of_drunks): identification = ((1+i)*10) # print(identification) #this should print 10-250 giving each of the drunks an identification number, later to be matched up with houses drunks.append(drunkframework.Drunk(environment, drunks, identification)) #This is is supposed to work whereby if the co-ordinates of stilldrunk match their identification number they are home #In the prototype density of the environment changed throughout the iterations, as such the drunks would #often stop in areas which were not their home. The work around this was seperating the process of track #and move through the creation of the density list. Track is left in but commented. for i in range (num_of_drunks): stilldrunk = drunks[i] for j in range(num_of_iterations): while environment [stilldrunk._y][stilldrunk._x] != stilldrunk.identification: density[drunks[i]._y][drunks[i]._x]+=1 drunks[i].move() #drunks[i].track() omitted from the final iteration of the application #saves density list (see lines 68 to 73) with open('density.txt', 'w', newline='') as f: csvwriter = csv.writer(f, delimiter=',', quoting=csv.QUOTE_NONNUMERIC) for row in density: csvwriter.writerow(row) #lines 79 to 90 serve the purpose of display the density and drunks in relation #to their finishing position within the environment matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(density) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.show(drunks) matplotlib.pyplot.xlim(0, 300) matplotlib.pyplot.ylim(0, 300) matplotlib.pyplot.imshow(environment) #Code below just prints we're home for each of the 25 agents following a resolution of #the code for i in range(num_of_drunks): matplotlib.pyplot.scatter(drunks[i]._x, drunks[i]._y) print("we're home!")
[ 11748, 2603, 29487, 8019, 201, 198, 11748, 4738, 201, 198, 11748, 10088, 201, 198, 11748, 269, 21370, 201, 198, 11748, 10785, 30604, 201, 198, 11748, 2603, 29487, 8019, 13, 11227, 341, 220, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 37811, 31502, 13896, 2474, 15931, 201, 198, 37811, 1212, 2438, 373, 6789, 1262, 23688, 1082, 642, 13, 15, 13, 19, 11, 815, 597, 2761, 307, 12956, 1262, 4697, 201, 198, 27530, 3387, 1949, 37227, 201, 198, 201, 198, 2, 20123, 274, 257, 649, 6565, 1351, 329, 644, 481, 307, 262, 269, 21370, 2858, 1366, 11, 766, 3740, 1378, 31628, 13, 29412, 13, 2398, 14, 18, 14, 32016, 14, 40664, 13, 6494, 329, 517, 201, 198, 38986, 796, 17635, 201, 198, 2, 67, 5143, 591, 16573, 422, 6554, 422, 25757, 338, 8472, 13586, 366, 49638, 1, 201, 198, 67, 5143, 591, 796, 17635, 201, 198, 2, 43337, 318, 281, 6565, 1351, 543, 481, 2610, 5797, 3356, 4795, 286, 262, 3356, 1429, 201, 198, 43337, 28, 17635, 201, 198, 2, 16684, 6945, 1271, 286, 1553, 14125, 14, 49638, 201, 198, 22510, 62, 1659, 62, 67, 5143, 591, 796, 1679, 201, 198, 2, 448, 6615, 262, 1271, 286, 34820, 262, 1627, 5598, 12, 3695, 2438, 481, 17777, 201, 198, 22510, 62, 1659, 62, 2676, 602, 796, 1802, 201, 198, 201, 198, 201, 198, 2, 28709, 262, 15225, 329, 262, 2603, 29487, 8019, 21528, 201, 198, 5647, 796, 2603, 29487, 8019, 13, 9078, 29487, 13, 26875, 7, 5647, 7857, 16193, 22, 11, 767, 4008, 201, 198, 897, 796, 2336, 13, 2860, 62, 897, 274, 26933, 15, 11, 657, 11, 352, 11, 352, 12962, 201, 198, 201, 198, 201, 198, 201, 198, 69, 796, 1280, 10786, 7109, 2954, 13, 14116, 3256, 649, 1370, 28, 7061, 8, 201, 198, 2, 6425, 326, 262, 3376, 8619, 1276, 307, 20436, 515, 284, 287, 262, 12094, 2073, 262, 1336, 2393, 3108, 481, 307, 2622, 201, 198, 46862, 796, 269, 21370, 13, 46862, 7, 69, 11, 28411, 28, 40664, 13, 10917, 23051, 62, 45, 1340, 41359, 1137, 2149, 8, 201, 198, 201, 198, 2, 38052, 329, 4856, 4959, 284, 35520, 262, 3830, 286, 262, 2858, 201, 198, 2, 6759, 29487, 8019, 13, 9078, 29487, 13, 87, 2475, 7, 15, 11, 5867, 8, 201, 198, 2, 6759, 29487, 8019, 13, 9078, 29487, 13, 88, 2475, 7, 15, 11, 5867, 8, 201, 198, 2, 6759, 29487, 8019, 13, 9078, 29487, 13, 320, 12860, 7, 38986, 8, 201, 198, 201, 198, 1640, 5752, 287, 9173, 25, 201, 198, 220, 220, 220, 5752, 4868, 796, 21737, 201, 198, 220, 220, 220, 329, 1988, 287, 5752, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 4868, 13, 33295, 7, 8367, 8, 201, 198, 220, 220, 220, 2858, 13, 33295, 7, 808, 4868, 8, 201, 198, 69, 13, 19836, 3419, 201, 198, 2, 4798, 357, 808, 4868, 8, 16718, 428, 284, 2198, 1351, 4645, 201, 198, 201, 198, 2, 10669, 319, 3951, 6337, 12, 1120, 598, 2412, 262, 12109, 1351, 5072, 284, 257, 5867, 87, 6200, 10706, 11, 428, 2438, 318, 2622, 220, 201, 198, 2, 1462, 2948, 262, 4049, 366, 15732, 12331, 25, 1351, 6376, 503, 286, 2837, 1, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 1640, 1312, 287, 2837, 7, 6200, 2599, 201, 198, 220, 220, 220, 5752, 4868, 796, 17635, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 6200, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 5752, 4868, 13, 33295, 7, 15, 8, 201, 198, 220, 220, 220, 12109, 13, 33295, 7, 808, 4868, 8, 201, 198, 2, 6759, 29487, 8019, 13, 9078, 29487, 13, 320, 12860, 7, 38986, 8, 1057, 428, 287, 15133, 284, 2198, 262, 2858, 318, 201, 198, 2, 30283, 201, 198, 201, 198, 201, 198, 2235, 6889, 1553, 14125, 290, 8333, 606, 351, 281, 11795, 1271, 13, 201, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 1659, 62, 67, 5143, 591, 2599, 201, 198, 220, 220, 220, 11795, 796, 14808, 16, 10, 72, 27493, 940, 8, 220, 201, 198, 220, 220, 1303, 3601, 7, 738, 2649, 8, 1303, 5661, 815, 3601, 838, 12, 9031, 3501, 1123, 286, 262, 1553, 14125, 281, 11795, 1271, 11, 1568, 284, 307, 14451, 510, 351, 7777, 201, 198, 220, 220, 220, 1553, 14125, 13, 33295, 7, 7109, 2954, 30604, 13, 6187, 2954, 7, 38986, 11, 1553, 14125, 11, 11795, 4008, 201, 198, 220, 220, 220, 220, 201, 198, 201, 198, 201, 198, 2, 1212, 318, 318, 4385, 284, 670, 23482, 611, 262, 763, 12, 585, 17540, 286, 991, 7109, 2954, 2872, 511, 11795, 1271, 484, 389, 1363, 220, 201, 198, 2, 818, 262, 14879, 12109, 286, 262, 2858, 3421, 3690, 262, 34820, 11, 355, 884, 262, 1553, 14125, 561, 201, 198, 2, 28950, 2245, 287, 3006, 543, 547, 407, 511, 1363, 13, 383, 670, 1088, 428, 373, 384, 525, 803, 262, 1429, 286, 2610, 201, 198, 2, 392, 1445, 832, 262, 6282, 286, 262, 12109, 1351, 13, 17762, 318, 1364, 287, 475, 16476, 13, 201, 198, 1640, 1312, 287, 2837, 357, 22510, 62, 1659, 62, 67, 5143, 591, 2599, 201, 198, 220, 220, 220, 991, 7109, 2954, 796, 1553, 14125, 58, 72, 60, 201, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 22510, 62, 1659, 62, 2676, 602, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2858, 685, 24219, 7109, 2954, 13557, 88, 7131, 24219, 7109, 2954, 13557, 87, 60, 14512, 991, 7109, 2954, 13, 738, 2649, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12109, 58, 67, 5143, 591, 58, 72, 4083, 62, 88, 7131, 67, 5143, 591, 58, 72, 4083, 62, 87, 60, 47932, 16, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1553, 14125, 58, 72, 4083, 21084, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 67, 5143, 591, 58, 72, 4083, 11659, 3419, 22532, 422, 262, 2457, 24415, 286, 262, 3586, 201, 198, 201, 198, 2, 82, 3080, 12109, 1351, 357, 3826, 3951, 8257, 284, 8854, 8, 201, 198, 4480, 1280, 10786, 43337, 13, 14116, 3256, 705, 86, 3256, 649, 1370, 28, 7061, 8, 355, 277, 25, 201, 198, 220, 220, 220, 269, 21370, 16002, 796, 269, 21370, 13, 16002, 7, 69, 11, 46728, 2676, 28, 3256, 3256, 28411, 28, 40664, 13, 10917, 23051, 62, 45, 1340, 41359, 1137, 2149, 8, 201, 198, 220, 220, 220, 329, 5752, 287, 12109, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 16002, 13, 16002, 322, 7, 808, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 220, 220, 201, 198, 2, 6615, 9225, 284, 4101, 4691, 262, 4007, 286, 3359, 262, 12109, 290, 1553, 14125, 287, 8695, 201, 198, 2, 1462, 511, 12848, 2292, 1626, 262, 2858, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 87, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 88, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 320, 12860, 7, 43337, 8, 201, 198, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 87, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 88, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 12860, 7, 67, 5143, 591, 8, 201, 198, 201, 198, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 87, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 88, 2475, 7, 15, 11, 5867, 8, 201, 198, 6759, 29487, 8019, 13, 9078, 29487, 13, 320, 12860, 7, 38986, 8, 201, 198, 201, 198, 2, 10669, 2174, 655, 20842, 356, 821, 1363, 329, 1123, 286, 262, 1679, 6554, 1708, 257, 6323, 286, 201, 198, 2, 1169, 2438, 201, 198, 201, 198, 1640, 1312, 287, 2837, 7, 22510, 62, 1659, 62, 67, 5143, 591, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2603, 29487, 8019, 13, 9078, 29487, 13, 1416, 1436, 7, 67, 5143, 591, 58, 72, 4083, 62, 87, 11, 1553, 14125, 58, 72, 4083, 62, 88, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 732, 821, 1363, 2474, 8, 220, 220, 220, 220, 201, 198 ]
2.713701
1,467
"""Loading a .caffemodel and figure out the encoding. Author: Yuhuang Hu Email : [email protected] """ from __future__ import absolute_import from __future__ import print_function import os # from keras.utils.visualize_util import plot from keras.datasets import mnist as dataset from keras.utils import np_utils import transcaffe as tc batch_size = 128 nb_classes = 10 nb_epoch = 40 # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling nb_pool = 2 # convolution kernel size nb_conv = 3 # color channels chnls = 1 # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = dataset.load_data() X_train = X_train.reshape(X_train.shape[0], chnls, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], chnls, img_rows, img_cols) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # define model for testing data_path = os.environ["TRANSCAFFE_DATA"] # model_str = os.path.join(data_path, # "VGG_ILSVRC_16_layers_deploy.prototxt.txt") model_str = os.path.join(data_path, "lenet.prototxt.txt") model_bin = os.path.join(data_path, "lenet_iter_10000.caffemodel") model = tc.load(model_str, model_bin, target_lib="keras") model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1])
[ 37811, 19031, 257, 764, 66, 2001, 368, 375, 417, 290, 3785, 503, 262, 21004, 13, 198, 198, 13838, 25, 575, 7456, 84, 648, 11256, 198, 15333, 1058, 18735, 4669, 518, 3064, 31, 14816, 13, 785, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 11748, 28686, 198, 2, 422, 41927, 292, 13, 26791, 13, 41464, 1096, 62, 22602, 1330, 7110, 198, 198, 6738, 41927, 292, 13, 19608, 292, 1039, 1330, 285, 77, 396, 355, 27039, 198, 6738, 41927, 292, 13, 26791, 1330, 45941, 62, 26791, 198, 198, 11748, 23589, 21223, 355, 37096, 198, 198, 43501, 62, 7857, 796, 13108, 198, 46803, 62, 37724, 796, 838, 198, 46803, 62, 538, 5374, 796, 2319, 198, 198, 2, 5128, 2939, 15225, 198, 9600, 62, 8516, 11, 33705, 62, 4033, 82, 796, 2579, 11, 2579, 198, 2, 1271, 286, 3063, 2122, 282, 16628, 284, 779, 198, 46803, 62, 10379, 1010, 796, 3933, 198, 2, 2546, 286, 5933, 278, 1989, 329, 3509, 5933, 278, 198, 46803, 62, 7742, 796, 362, 198, 2, 3063, 2122, 9720, 2546, 198, 46803, 62, 42946, 796, 513, 198, 2, 3124, 9619, 198, 1349, 7278, 796, 352, 198, 198, 2, 262, 1366, 11, 32299, 992, 290, 6626, 1022, 4512, 290, 1332, 5621, 198, 7, 55, 62, 27432, 11, 331, 62, 27432, 828, 357, 55, 62, 9288, 11, 331, 62, 9288, 8, 796, 27039, 13, 2220, 62, 7890, 3419, 198, 198, 55, 62, 27432, 796, 1395, 62, 27432, 13, 3447, 1758, 7, 55, 62, 27432, 13, 43358, 58, 15, 4357, 442, 77, 7278, 11, 33705, 62, 8516, 11, 33705, 62, 4033, 82, 8, 198, 55, 62, 9288, 796, 1395, 62, 9288, 13, 3447, 1758, 7, 55, 62, 9288, 13, 43358, 58, 15, 4357, 442, 77, 7278, 11, 33705, 62, 8516, 11, 33705, 62, 4033, 82, 8, 198, 55, 62, 27432, 796, 1395, 62, 27432, 13, 459, 2981, 7203, 22468, 2624, 4943, 198, 55, 62, 9288, 796, 1395, 62, 9288, 13, 459, 2981, 7203, 22468, 2624, 4943, 198, 55, 62, 27432, 1220, 28, 14280, 198, 55, 62, 9288, 1220, 28, 14280, 198, 198, 2, 10385, 1398, 30104, 284, 13934, 1398, 2603, 45977, 198, 56, 62, 27432, 796, 45941, 62, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 88, 62, 27432, 11, 299, 65, 62, 37724, 8, 198, 56, 62, 9288, 796, 45941, 62, 26791, 13, 1462, 62, 66, 2397, 12409, 7, 88, 62, 9288, 11, 299, 65, 62, 37724, 8, 198, 198, 4798, 10786, 55, 62, 27432, 5485, 25, 3256, 1395, 62, 27432, 13, 43358, 8, 198, 4798, 7, 55, 62, 27432, 13, 43358, 58, 15, 4357, 705, 27432, 8405, 11537, 198, 4798, 7, 55, 62, 9288, 13, 43358, 58, 15, 4357, 705, 9288, 8405, 11537, 628, 198, 2, 8160, 2746, 329, 4856, 198, 7890, 62, 6978, 796, 28686, 13, 268, 2268, 14692, 5446, 1565, 6173, 32, 5777, 36, 62, 26947, 8973, 198, 198, 2, 2746, 62, 2536, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 6978, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 53, 11190, 62, 45484, 53, 7397, 62, 1433, 62, 75, 6962, 62, 2934, 1420, 13, 11235, 313, 742, 13, 14116, 4943, 198, 19849, 62, 2536, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 6978, 11, 366, 11925, 316, 13, 11235, 313, 742, 13, 14116, 4943, 198, 19849, 62, 8800, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 6978, 11, 366, 11925, 316, 62, 2676, 62, 49388, 13, 66, 2001, 368, 375, 417, 4943, 198, 198, 19849, 796, 37096, 13, 2220, 7, 19849, 62, 2536, 11, 2746, 62, 8800, 11, 2496, 62, 8019, 2625, 6122, 292, 4943, 198, 198, 19849, 13, 5589, 576, 7, 22462, 11639, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 6436, 7509, 11639, 324, 324, 12514, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 28, 17816, 4134, 23843, 6, 12962, 198, 26675, 796, 2746, 13, 49786, 7, 55, 62, 9288, 11, 575, 62, 9288, 11, 15942, 577, 28, 15, 8, 198, 4798, 10786, 14402, 4776, 25, 3256, 4776, 58, 15, 12962, 198, 4798, 10786, 14402, 9922, 25, 3256, 4776, 58, 16, 12962, 198 ]
2.582048
713
from typing import Dict, List, Optional from kubernetes import client from tlaunch.lp_k8s.resource import Resource from tlaunch.lp_k8s.util import map_opt DEFAULT_PORT = 8001 DEFAULT_NAME = 'launchpad' REVERB_IMAGE = 'reg.real-ai.cn/launchpad/reverb' DEFAULT_COMMAND = ['python3', '-u', '-mlaunchpad_kubernetes.process_entry']
[ 6738, 19720, 1330, 360, 713, 11, 7343, 11, 32233, 198, 198, 6738, 479, 18478, 3262, 274, 1330, 5456, 198, 198, 6738, 256, 35681, 13, 34431, 62, 74, 23, 82, 13, 31092, 1330, 20857, 198, 6738, 256, 35681, 13, 34431, 62, 74, 23, 82, 13, 22602, 1330, 3975, 62, 8738, 198, 198, 7206, 38865, 62, 15490, 796, 807, 8298, 198, 7206, 38865, 62, 20608, 796, 705, 35681, 15636, 6, 198, 2200, 5959, 33, 62, 3955, 11879, 796, 705, 2301, 13, 5305, 12, 1872, 13, 31522, 14, 35681, 15636, 14, 260, 19011, 6, 198, 7206, 38865, 62, 9858, 44, 6981, 796, 37250, 29412, 18, 3256, 705, 12, 84, 3256, 705, 12, 4029, 11429, 15636, 62, 74, 18478, 3262, 274, 13, 14681, 62, 13000, 20520, 628, 628 ]
2.685484
124
"""Retry downloading files that caused errors in http_downloader. We can find files to try downloading again by parsing the err.txt file for error messages. Error log lines we are interested in look like: 09-04-2017 12:45:17..Error_http_downloader 'exports/CalStateTEACH Term 1/grios/Schedule/Mentor Info.docx', 'https://ourdomain.instructure.com/files/8080/download?download_frd=1&verifier=zVZdnkpTmmJIGYAg2U0PaDqESrJBFLi0Xsm73Eldu' A regex string that captures the file name & URL looks like: [0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$ 09.04.2017 tps Created. 09.17.2018 tps Change bad global Null reference to None. """ import script_logging import http_downloader import os import re import shutil ######### Constants ######### # Regex pattern for extracting file download details from error log. REGEX_PATTERN = "[0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9] [0-9][0-9]:[0-9][0-9]:[0-9][0-9]\.\.Error_http_downloader '(.*)', '(.*)'$" def make_cp_file_name(): """Create a unique file that looks like "retry000.txt", "retry001.txt", "retry002.txt", etc. """ cp_file_name = None # Function return variable n = 0 while True: cp_file_name = 'retry%03d.txt' % n if (not os.path.exists(cp_file_name)): break else: n = n + 1 continue return cp_file_name ######### Stand-Alone Execution ######### if __name__ == "__main__": load_errors()
[ 37811, 9781, 563, 22023, 3696, 326, 4073, 8563, 287, 2638, 62, 15002, 263, 13, 198, 1135, 460, 1064, 3696, 284, 1949, 22023, 757, 416, 32096, 262, 11454, 13, 14116, 2393, 329, 4049, 6218, 13, 198, 12331, 2604, 3951, 356, 389, 4609, 287, 804, 588, 25, 198, 198, 2931, 12, 3023, 12, 5539, 1105, 25, 2231, 25, 1558, 492, 12331, 62, 4023, 62, 15002, 263, 705, 1069, 3742, 14, 9771, 9012, 9328, 16219, 35118, 352, 14, 70, 380, 418, 14, 27054, 5950, 14, 44, 298, 273, 14151, 13, 15390, 87, 3256, 705, 5450, 1378, 454, 27830, 13, 8625, 5620, 13, 785, 14, 16624, 14, 1795, 1795, 14, 15002, 30, 15002, 62, 69, 4372, 28, 16, 5, 332, 7483, 28, 89, 53, 57, 32656, 74, 79, 51, 3020, 41, 3528, 56, 10262, 17, 52, 15, 28875, 35, 80, 1546, 81, 47858, 3697, 72, 15, 55, 5796, 4790, 36, 335, 84, 6, 198, 198, 32, 40364, 4731, 326, 23007, 262, 2393, 1438, 1222, 10289, 3073, 588, 25, 198, 198, 58, 15, 12, 24, 7131, 15, 12, 24, 45297, 58, 15, 12, 24, 7131, 15, 12, 24, 45297, 58, 15, 12, 24, 7131, 15, 12, 24, 7131, 15, 12, 24, 7131, 15, 12, 24, 60, 685, 15, 12, 24, 7131, 15, 12, 24, 5974, 58, 15, 12, 24, 7131, 15, 12, 24, 5974, 58, 15, 12, 24, 7131, 15, 12, 24, 60, 17405, 17405, 12331, 62, 4023, 62, 15002, 263, 29513, 15885, 8, 3256, 29513, 15885, 33047, 3, 198, 198, 2931, 13, 3023, 13, 5539, 256, 862, 15622, 13, 198, 2931, 13, 1558, 13, 7908, 256, 862, 9794, 2089, 3298, 35886, 4941, 284, 6045, 13, 198, 37811, 198, 11748, 4226, 62, 6404, 2667, 198, 11748, 2638, 62, 15002, 263, 198, 11748, 28686, 198, 11748, 302, 198, 11748, 4423, 346, 628, 198, 7804, 2, 4757, 1187, 1303, 7804, 198, 198, 2, 797, 25636, 3912, 329, 37895, 2393, 4321, 3307, 422, 4049, 2604, 13, 198, 31553, 6369, 62, 47, 1404, 31800, 796, 12878, 15, 12, 24, 7131, 15, 12, 24, 45297, 58, 15, 12, 24, 7131, 15, 12, 24, 45297, 58, 15, 12, 24, 7131, 15, 12, 24, 7131, 15, 12, 24, 7131, 15, 12, 24, 60, 685, 15, 12, 24, 7131, 15, 12, 24, 5974, 58, 15, 12, 24, 7131, 15, 12, 24, 5974, 58, 15, 12, 24, 7131, 15, 12, 24, 60, 17405, 17405, 12331, 62, 4023, 62, 15002, 263, 29513, 15885, 8, 3256, 29513, 15885, 33047, 3, 1, 198, 220, 198, 198, 4299, 787, 62, 13155, 62, 7753, 62, 3672, 33529, 198, 220, 220, 220, 37227, 16447, 257, 3748, 2393, 326, 3073, 588, 366, 1186, 563, 830, 13, 14116, 1600, 366, 1186, 563, 8298, 13, 14116, 1600, 220, 198, 220, 220, 220, 366, 1186, 563, 21601, 13, 14116, 1600, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 31396, 62, 7753, 62, 3672, 796, 6045, 220, 1303, 15553, 1441, 7885, 198, 220, 220, 220, 299, 796, 657, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31396, 62, 7753, 62, 3672, 796, 705, 1186, 563, 4, 3070, 67, 13, 14116, 6, 4064, 299, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1662, 28686, 13, 6978, 13, 1069, 1023, 7, 13155, 62, 7753, 62, 3672, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 796, 299, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 1441, 31396, 62, 7753, 62, 3672, 628, 628, 198, 7804, 2, 5751, 12, 2348, 505, 37497, 1303, 7804, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3440, 62, 48277, 3419, 198 ]
2.370313
640
from nltk import RegexpTokenizer # Common stopwords in french and english # Clean text or sentence, removing stopwords # return list
[ 6738, 299, 2528, 74, 1330, 797, 25636, 79, 30642, 7509, 198, 198, 2, 8070, 2245, 10879, 287, 48718, 290, 46932, 198, 198, 2, 5985, 2420, 393, 6827, 11, 10829, 2245, 10879, 198, 2, 1441, 1351, 198 ]
3.75
36
import random from enum import Enum import numpy as np from custom_decorators import profile from shapes import Box from shared_constants import BBREG_MULTIPLIERS, DEFAULT_ANCHORS from util import calc_iou, cross_ious, get_reg_params, get_bbox_coords POS_OVERLAP = 0.7 NEG_OVERLAP = 0.3 SAMPLE_SIZE = 256 MAX_POS_SAMPLES = 128 class RpnTrainingManager: """ Encapsulates the details of generating training inputs for a region proposal network for a given image. """ def __init__(self, calc_conv_dims, stride, preprocess_func, anchor_dims=DEFAULT_ANCHORS): """ :param calc_conv_dims: function that accepts a tuple of the image's height and width in pixels and returns the height and width of the convolutional layer prior to the rpn layers. :param stride: positive integer, the cumulative stride at the convolutional layer prior to the rpn layers. :param preprocess_func: function that applies the same transformation to the image's pixels as used for Imagenet training. Otherwise the Imagenet pre-trained weights will be mismatched. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. """ self._cache = {} self.calc_conv_dims = calc_conv_dims self.stride = stride self.preprocess_func = preprocess_func self.anchor_dims = anchor_dims @profile def batched_image(self, image): """ Returns the image data to be fed into the network. :param image: shapes.Image object. :return: 4-d numpy array with a single batch of the image, should can be used as a Keras model input. """ return np.expand_dims(self.preprocess_func(image.data), axis=0) @profile @profile def rpn_y_true(self, image): """ Takes an image and returns the Keras model inputs to train with. :param image: shapes.Image object to generate training inputs for. :return: tuple where the first element is a numpy array of the ground truth network output for whether each anchor overlaps with an object, and the second element is a numpy array of the ground truth network output for the bounding box transformation parameters to transform each anchor into an object's bounding box. """ ''' Consider removing caching - added when self.process was taking 0.4s to run. Since then, optimized it down to 0.02s locally, 0.003s on aws so the cache isn't too useful anymore. ''' if image.cache_key not in self._cache: self._process(image) results = self._cache[image.cache_key] # TODO: why is the cached result being deleted? Investigate whether restoring it improves training time. del self._cache[image.cache_key] can_use = _apply_sampling(results['is_pos'], results['can_use']) conv_rows, conv_cols = self.calc_conv_dims(image.height, image.width) is_pos = np.reshape(results['is_pos'], (conv_rows, conv_cols, len(self.anchor_dims))) can_use = np.reshape(can_use, (conv_rows, conv_cols, len(self.anchor_dims))) selected_is_pos = np.logical_and(is_pos, can_use) # combine arrays with whether or not to use for the loss function y_class = np.concatenate([can_use, is_pos], axis=2) bbreg_can_use = np.repeat(selected_is_pos, 4, axis = 2) bbreg_targets = np.reshape(results['bbreg_targets'], (conv_rows, conv_cols, 4 * len(self.anchor_dims))) y_bbreg = np.concatenate([bbreg_can_use, bbreg_targets], axis = 2) y_class = np.expand_dims(y_class, axis=0) y_bbreg = np.expand_dims(y_bbreg, axis=0) return y_class, y_bbreg def _idx_to_conv(idx, conv_width, anchors_per_loc): """ Converts an anchor box index in a 1-d numpy array to its corresponding 3-d index representing its convolution position and anchor index. :param idx: non-negative integer, the position in a 1-d numpy array of anchors. :param conv_width: the number of possible horizontal positions the convolutional layer's filters can occupy, i.e. close to the width in pixels divided by the cumulative stride at that layer. :param anchors_per_loc: positive integer, the number of anchors at each convolutional filter position. :return: tuple of the row, column, and anchor index of the convolutional filter position for this index. """ divisor = conv_width * anchors_per_loc y, remainder = idx // divisor, idx % divisor x, anchor_idx = remainder // anchors_per_loc, remainder % anchors_per_loc return y, x, anchor_idx @profile def _get_conv_center(conv_x, conv_y, stride): """ Finds the center of this convolution position in the image's original coordinate space. :param conv_x: non-negative integer, x coordinate of the convolution position. :param conv_y: non-negative integer, y coordinate of the convolution position. :param stride: positive integer, the cumulative stride in pixels at this layer of the network. :return: tuple of positive integers, the x and y coordinates of the center of the convolution position. """ x_center = stride * (conv_x + 0.5) y_center = stride * (conv_y + 0.5) return int(x_center), int(y_center) @profile @profile @profile @profile # this function was a huge bottleneck so threw away box abstractions to optimize performance @profile def _get_all_anchor_coords(conv_rows, conv_cols, anchor_dims, stride): """ Given the shape of a convolutional layer and the anchors to generate for each position, return all anchors. :param conv_rows: positive integer, height of this convolutional layer. :param conv_cols: positive integer, width of this convolutional layer. :param anchor_dims: list of lists of positive integers, one height and width pair for each anchor. :param stride: positive integer, cumulative stride of this anchor position in pixels. :return: 2-d numpy array with one row for each anchor box containing its [x1, y1, x2, y2] coordinates. """ num_boxes = conv_rows * conv_cols * len(anchor_dims) y, x, anchor_idxs = _num_boxes_to_conv_np(num_boxes, conv_cols, len(anchor_dims)) x_center, y_center = _get_conv_center_np(x, y, stride) anchor_coords = np.zeros((num_boxes, 4), dtype=np.float32) anchor_height = anchor_dims[anchor_idxs, 0] anchor_width = anchor_dims[anchor_idxs, 1] anchor_coords[:, 0] = x_center - anchor_width // 2 anchor_coords[:, 1] = y_center - anchor_height // 2 anchor_coords[:, 2] = anchor_coords[:, 0] + anchor_width anchor_coords[:, 3] = anchor_coords[:, 1] + anchor_height return anchor_coords @profile @profile def _apply_sampling(is_pos, can_use): """ Applies the sampling logic described in the Faster R-CNN paper to determine which anchors should be evaluated in the loss function. :param is_pos: 1-d numpy array of booleans for whether each anchor is a true positive for some object. :param can_use: 1-d numpy array of booleans for whether each anchor can be used at all in the loss function. :return: 1-d numpy array of booleans of which anchors were chosen to be used in the loss function. """ # extract [0] due to np.where returning a tuple pos_locs = np.where(np.logical_and(is_pos == 1, can_use == 1))[0] neg_locs = np.where(np.logical_and(is_pos == 0, can_use == 1))[0] num_pos = len(pos_locs) num_neg = len(neg_locs) # cap the number of positive samples per batch to no more than half the batch size if num_pos > MAX_POS_SAMPLES: locs_off = random.sample(range(num_pos), num_pos - MAX_POS_SAMPLES) can_use[pos_locs[locs_off]] = 0 num_pos = MAX_POS_SAMPLES # fill remaining portion of the batch size with negative samples if num_neg + num_pos > SAMPLE_SIZE: locs_off = random.sample(range(num_neg), num_neg + num_pos - SAMPLE_SIZE) can_use[neg_locs[locs_off]] = 0 return can_use
[ 11748, 4738, 198, 6738, 33829, 1330, 2039, 388, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2183, 62, 12501, 273, 2024, 1330, 7034, 198, 6738, 15268, 1330, 8315, 198, 6738, 4888, 62, 9979, 1187, 1330, 12597, 31553, 62, 44, 16724, 4061, 31271, 4877, 11, 5550, 38865, 62, 1565, 3398, 20673, 198, 6738, 7736, 1330, 42302, 62, 72, 280, 11, 3272, 62, 699, 11, 651, 62, 2301, 62, 37266, 11, 651, 62, 65, 3524, 62, 1073, 3669, 198, 198, 37997, 62, 41983, 43, 2969, 796, 657, 13, 22, 198, 45, 7156, 62, 41983, 43, 2969, 796, 657, 13, 18, 198, 198, 49302, 16437, 62, 33489, 796, 17759, 198, 22921, 62, 37997, 62, 49302, 6489, 1546, 796, 13108, 628, 198, 198, 4871, 371, 21999, 44357, 13511, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 14711, 1686, 15968, 262, 3307, 286, 15453, 3047, 17311, 329, 257, 3814, 6961, 3127, 329, 257, 1813, 2939, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 42302, 62, 42946, 62, 67, 12078, 11, 33769, 11, 662, 14681, 62, 20786, 11, 18021, 62, 67, 12078, 28, 7206, 38865, 62, 1565, 3398, 20673, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 42302, 62, 42946, 62, 67, 12078, 25, 2163, 326, 18178, 257, 46545, 286, 262, 2939, 338, 6001, 290, 9647, 287, 17848, 290, 5860, 262, 198, 220, 220, 220, 220, 220, 220, 220, 6001, 290, 9647, 286, 262, 3063, 2122, 282, 7679, 3161, 284, 262, 374, 21999, 11685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 33769, 25, 3967, 18253, 11, 262, 23818, 33769, 379, 262, 3063, 2122, 282, 7679, 3161, 284, 262, 374, 21999, 11685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 662, 14681, 62, 20786, 25, 2163, 326, 8991, 262, 976, 13389, 284, 262, 2939, 338, 17848, 355, 973, 329, 1846, 11286, 316, 198, 220, 220, 220, 220, 220, 220, 220, 3047, 13, 15323, 262, 1846, 11286, 316, 662, 12, 35311, 19590, 481, 307, 32691, 14265, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18021, 62, 67, 12078, 25, 1351, 286, 8341, 286, 3967, 37014, 11, 530, 6001, 290, 9647, 5166, 329, 1123, 18021, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 23870, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9948, 66, 62, 42946, 62, 67, 12078, 796, 42302, 62, 42946, 62, 67, 12078, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 485, 796, 33769, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3866, 14681, 62, 20786, 796, 662, 14681, 62, 20786, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3702, 273, 62, 67, 12078, 796, 18021, 62, 67, 12078, 628, 220, 220, 220, 2488, 13317, 198, 220, 220, 220, 825, 7365, 1740, 62, 9060, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2939, 1366, 284, 307, 11672, 656, 262, 3127, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 15268, 13, 5159, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 604, 12, 67, 299, 32152, 7177, 351, 257, 2060, 15458, 286, 262, 2939, 11, 815, 460, 307, 973, 355, 257, 17337, 292, 2746, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 11201, 392, 62, 67, 12078, 7, 944, 13, 3866, 14681, 62, 20786, 7, 9060, 13, 7890, 828, 16488, 28, 15, 8, 628, 220, 220, 220, 2488, 13317, 628, 220, 220, 220, 2488, 13317, 198, 220, 220, 220, 825, 374, 21999, 62, 88, 62, 7942, 7, 944, 11, 2939, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33687, 281, 2939, 290, 5860, 262, 17337, 292, 2746, 17311, 284, 4512, 351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2939, 25, 15268, 13, 5159, 2134, 284, 7716, 3047, 17311, 329, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 46545, 810, 262, 717, 5002, 318, 257, 299, 32152, 7177, 286, 262, 2323, 3872, 3127, 5072, 329, 1771, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 18021, 12893, 1686, 351, 281, 2134, 11, 290, 262, 1218, 5002, 318, 257, 299, 32152, 7177, 286, 262, 2323, 3872, 3127, 5072, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5421, 278, 3091, 13389, 10007, 284, 6121, 1123, 18021, 656, 281, 2134, 338, 5421, 278, 3091, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 12642, 10829, 40918, 532, 2087, 618, 2116, 13, 14681, 373, 2263, 657, 13, 19, 82, 284, 1057, 13, 4619, 788, 11, 23392, 340, 866, 284, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2999, 82, 15726, 11, 657, 13, 11245, 82, 319, 3253, 82, 523, 262, 12940, 2125, 470, 1165, 4465, 7471, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 23870, 62, 2539, 407, 287, 2116, 13557, 23870, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 7, 9060, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13557, 23870, 58, 9060, 13, 23870, 62, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 1521, 318, 262, 39986, 1255, 852, 13140, 30, 7488, 10055, 1771, 25646, 340, 19575, 3047, 640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2116, 13557, 23870, 58, 9060, 13, 23870, 62, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 460, 62, 1904, 796, 4808, 39014, 62, 37687, 11347, 7, 43420, 17816, 271, 62, 1930, 6, 4357, 2482, 17816, 5171, 62, 1904, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 3063, 62, 8516, 11, 3063, 62, 4033, 82, 796, 2116, 13, 9948, 66, 62, 42946, 62, 67, 12078, 7, 9060, 13, 17015, 11, 2939, 13, 10394, 8, 628, 220, 220, 220, 220, 220, 220, 220, 318, 62, 1930, 796, 45941, 13, 3447, 1758, 7, 43420, 17816, 271, 62, 1930, 6, 4357, 357, 42946, 62, 8516, 11, 3063, 62, 4033, 82, 11, 18896, 7, 944, 13, 3702, 273, 62, 67, 12078, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 460, 62, 1904, 796, 45941, 13, 3447, 1758, 7, 5171, 62, 1904, 11, 357, 42946, 62, 8516, 11, 3063, 62, 4033, 82, 11, 18896, 7, 944, 13, 3702, 273, 62, 67, 12078, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 6163, 62, 271, 62, 1930, 796, 45941, 13, 6404, 605, 62, 392, 7, 271, 62, 1930, 11, 460, 62, 1904, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12082, 26515, 351, 1771, 393, 407, 284, 779, 329, 262, 2994, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 4871, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 5171, 62, 1904, 11, 318, 62, 1930, 4357, 16488, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 65, 2301, 62, 5171, 62, 1904, 796, 45941, 13, 44754, 7, 34213, 62, 271, 62, 1930, 11, 604, 11, 16488, 796, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 65, 2301, 62, 83, 853, 1039, 796, 45941, 13, 3447, 1758, 7, 43420, 17816, 11848, 2301, 62, 83, 853, 1039, 6, 4357, 357, 42946, 62, 8516, 11, 3063, 62, 4033, 82, 11, 604, 1635, 18896, 7, 944, 13, 3702, 273, 62, 67, 12078, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 11848, 2301, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 11848, 2301, 62, 5171, 62, 1904, 11, 275, 65, 2301, 62, 83, 853, 1039, 4357, 16488, 796, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 331, 62, 4871, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 88, 62, 4871, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 11848, 2301, 796, 45941, 13, 11201, 392, 62, 67, 12078, 7, 88, 62, 11848, 2301, 11, 16488, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 331, 62, 4871, 11, 331, 62, 11848, 2301, 628, 198, 4299, 4808, 312, 87, 62, 1462, 62, 42946, 7, 312, 87, 11, 3063, 62, 10394, 11, 43360, 62, 525, 62, 17946, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1482, 24040, 281, 18021, 3091, 6376, 287, 257, 352, 12, 67, 299, 32152, 7177, 284, 663, 11188, 513, 12, 67, 6376, 10200, 663, 3063, 2122, 198, 220, 220, 220, 2292, 290, 18021, 6376, 13, 198, 220, 220, 220, 1058, 17143, 4686, 87, 25, 1729, 12, 31591, 18253, 11, 262, 2292, 287, 257, 352, 12, 67, 299, 32152, 7177, 286, 43360, 13, 198, 220, 220, 220, 1058, 17143, 3063, 62, 10394, 25, 262, 1271, 286, 1744, 16021, 6116, 262, 3063, 2122, 282, 7679, 338, 16628, 460, 22265, 11, 1312, 13, 68, 13, 198, 220, 220, 220, 1969, 284, 262, 9647, 287, 17848, 9086, 416, 262, 23818, 33769, 379, 326, 7679, 13, 198, 220, 220, 220, 1058, 17143, 43360, 62, 525, 62, 17946, 25, 3967, 18253, 11, 262, 1271, 286, 43360, 379, 1123, 3063, 2122, 282, 8106, 2292, 13, 198, 220, 220, 220, 1058, 7783, 25, 46545, 286, 262, 5752, 11, 5721, 11, 290, 18021, 6376, 286, 262, 3063, 2122, 282, 8106, 2292, 329, 428, 6376, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2659, 271, 273, 796, 3063, 62, 10394, 1635, 43360, 62, 525, 62, 17946, 198, 220, 220, 220, 331, 11, 17675, 796, 4686, 87, 3373, 2659, 271, 273, 11, 4686, 87, 4064, 2659, 271, 273, 198, 220, 220, 220, 2124, 11, 18021, 62, 312, 87, 796, 17675, 3373, 43360, 62, 525, 62, 17946, 11, 17675, 4064, 43360, 62, 525, 62, 17946, 198, 220, 220, 220, 1441, 331, 11, 2124, 11, 18021, 62, 312, 87, 628, 198, 31, 13317, 628, 198, 4299, 4808, 1136, 62, 42946, 62, 16159, 7, 42946, 62, 87, 11, 3063, 62, 88, 11, 33769, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9938, 82, 262, 3641, 286, 428, 3063, 2122, 2292, 287, 262, 2939, 338, 2656, 20435, 2272, 13, 198, 220, 220, 220, 1058, 17143, 3063, 62, 87, 25, 1729, 12, 31591, 18253, 11, 2124, 20435, 286, 262, 3063, 2122, 2292, 13, 198, 220, 220, 220, 1058, 17143, 3063, 62, 88, 25, 1729, 12, 31591, 18253, 11, 331, 20435, 286, 262, 3063, 2122, 2292, 13, 198, 220, 220, 220, 1058, 17143, 33769, 25, 3967, 18253, 11, 262, 23818, 33769, 287, 17848, 379, 428, 7679, 286, 262, 3127, 13, 198, 220, 220, 220, 1058, 7783, 25, 46545, 286, 3967, 37014, 11, 262, 2124, 290, 331, 22715, 286, 262, 3641, 286, 262, 3063, 2122, 2292, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 62, 16159, 796, 33769, 1635, 357, 42946, 62, 87, 1343, 657, 13, 20, 8, 198, 220, 220, 220, 331, 62, 16159, 796, 33769, 1635, 357, 42946, 62, 88, 1343, 657, 13, 20, 8, 628, 220, 220, 220, 1441, 493, 7, 87, 62, 16159, 828, 493, 7, 88, 62, 16159, 8, 628, 198, 31, 13317, 628, 198, 31, 13317, 628, 198, 31, 13317, 628, 198, 31, 13317, 198, 2, 428, 2163, 373, 257, 3236, 49936, 523, 9617, 1497, 3091, 12531, 507, 284, 27183, 2854, 628, 198, 31, 13317, 198, 4299, 4808, 1136, 62, 439, 62, 3702, 273, 62, 1073, 3669, 7, 42946, 62, 8516, 11, 3063, 62, 4033, 82, 11, 18021, 62, 67, 12078, 11, 33769, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 262, 5485, 286, 257, 3063, 2122, 282, 7679, 290, 262, 43360, 284, 7716, 329, 1123, 2292, 11, 1441, 477, 43360, 13, 198, 220, 220, 220, 1058, 17143, 3063, 62, 8516, 25, 3967, 18253, 11, 6001, 286, 428, 3063, 2122, 282, 7679, 13, 198, 220, 220, 220, 1058, 17143, 3063, 62, 4033, 82, 25, 3967, 18253, 11, 9647, 286, 428, 3063, 2122, 282, 7679, 13, 198, 220, 220, 220, 1058, 17143, 18021, 62, 67, 12078, 25, 1351, 286, 8341, 286, 3967, 37014, 11, 530, 6001, 290, 9647, 5166, 329, 1123, 18021, 13, 198, 220, 220, 220, 1058, 17143, 33769, 25, 3967, 18253, 11, 23818, 33769, 286, 428, 18021, 2292, 287, 17848, 13, 198, 220, 220, 220, 1058, 7783, 25, 362, 12, 67, 299, 32152, 7177, 351, 530, 5752, 329, 1123, 18021, 3091, 7268, 663, 685, 87, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 60, 22715, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 997, 62, 29305, 796, 3063, 62, 8516, 1635, 3063, 62, 4033, 82, 1635, 18896, 7, 3702, 273, 62, 67, 12078, 8, 628, 220, 220, 220, 331, 11, 2124, 11, 18021, 62, 312, 34223, 796, 4808, 22510, 62, 29305, 62, 1462, 62, 42946, 62, 37659, 7, 22510, 62, 29305, 11, 3063, 62, 4033, 82, 11, 18896, 7, 3702, 273, 62, 67, 12078, 4008, 198, 220, 220, 220, 2124, 62, 16159, 11, 331, 62, 16159, 796, 4808, 1136, 62, 42946, 62, 16159, 62, 37659, 7, 87, 11, 331, 11, 33769, 8, 198, 220, 220, 220, 18021, 62, 1073, 3669, 796, 45941, 13, 9107, 418, 19510, 22510, 62, 29305, 11, 604, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 18021, 62, 17015, 796, 18021, 62, 67, 12078, 58, 3702, 273, 62, 312, 34223, 11, 657, 60, 198, 220, 220, 220, 18021, 62, 10394, 796, 18021, 62, 67, 12078, 58, 3702, 273, 62, 312, 34223, 11, 352, 60, 628, 220, 220, 220, 18021, 62, 1073, 3669, 58, 45299, 657, 60, 796, 2124, 62, 16159, 532, 18021, 62, 10394, 3373, 362, 198, 220, 220, 220, 18021, 62, 1073, 3669, 58, 45299, 352, 60, 796, 331, 62, 16159, 532, 18021, 62, 17015, 3373, 362, 198, 220, 220, 220, 18021, 62, 1073, 3669, 58, 45299, 362, 60, 796, 18021, 62, 1073, 3669, 58, 45299, 657, 60, 1343, 18021, 62, 10394, 198, 220, 220, 220, 18021, 62, 1073, 3669, 58, 45299, 513, 60, 796, 18021, 62, 1073, 3669, 58, 45299, 352, 60, 1343, 18021, 62, 17015, 628, 220, 220, 220, 1441, 18021, 62, 1073, 3669, 628, 198, 31, 13317, 628, 628, 198, 31, 13317, 198, 4299, 4808, 39014, 62, 37687, 11347, 7, 271, 62, 1930, 11, 460, 62, 1904, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2034, 13508, 262, 19232, 9156, 3417, 287, 262, 38996, 371, 12, 18474, 3348, 284, 5004, 543, 43360, 815, 307, 16726, 287, 262, 198, 220, 220, 220, 2994, 2163, 13, 198, 220, 220, 220, 1058, 17143, 318, 62, 1930, 25, 352, 12, 67, 299, 32152, 7177, 286, 1489, 2305, 504, 329, 1771, 1123, 18021, 318, 257, 2081, 3967, 329, 617, 2134, 13, 198, 220, 220, 220, 1058, 17143, 460, 62, 1904, 25, 352, 12, 67, 299, 32152, 7177, 286, 1489, 2305, 504, 329, 1771, 1123, 18021, 460, 307, 973, 379, 477, 287, 262, 2994, 2163, 13, 198, 220, 220, 220, 1058, 7783, 25, 352, 12, 67, 299, 32152, 7177, 286, 1489, 2305, 504, 286, 543, 43360, 547, 7147, 284, 307, 973, 287, 262, 2994, 2163, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 7925, 685, 15, 60, 2233, 284, 45941, 13, 3003, 8024, 257, 46545, 198, 220, 220, 220, 1426, 62, 17946, 82, 796, 45941, 13, 3003, 7, 37659, 13, 6404, 605, 62, 392, 7, 271, 62, 1930, 6624, 352, 11, 460, 62, 1904, 6624, 352, 4008, 58, 15, 60, 198, 220, 220, 220, 2469, 62, 17946, 82, 796, 45941, 13, 3003, 7, 37659, 13, 6404, 605, 62, 392, 7, 271, 62, 1930, 6624, 657, 11, 460, 62, 1904, 6624, 352, 4008, 58, 15, 60, 628, 220, 220, 220, 997, 62, 1930, 796, 18896, 7, 1930, 62, 17946, 82, 8, 198, 220, 220, 220, 997, 62, 12480, 796, 18896, 7, 12480, 62, 17946, 82, 8, 628, 220, 220, 220, 1303, 1451, 262, 1271, 286, 3967, 8405, 583, 15458, 284, 645, 517, 621, 2063, 262, 15458, 2546, 198, 220, 220, 220, 611, 997, 62, 1930, 1875, 25882, 62, 37997, 62, 49302, 6489, 1546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1179, 82, 62, 2364, 796, 4738, 13, 39873, 7, 9521, 7, 22510, 62, 1930, 828, 997, 62, 1930, 532, 25882, 62, 37997, 62, 49302, 6489, 1546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 460, 62, 1904, 58, 1930, 62, 17946, 82, 58, 17946, 82, 62, 2364, 11907, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1930, 796, 25882, 62, 37997, 62, 49302, 6489, 1546, 628, 220, 220, 220, 1303, 6070, 5637, 6903, 286, 262, 15458, 2546, 351, 4633, 8405, 198, 220, 220, 220, 611, 997, 62, 12480, 1343, 997, 62, 1930, 1875, 28844, 16437, 62, 33489, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1179, 82, 62, 2364, 796, 4738, 13, 39873, 7, 9521, 7, 22510, 62, 12480, 828, 997, 62, 12480, 1343, 997, 62, 1930, 532, 28844, 16437, 62, 33489, 8, 198, 220, 220, 220, 220, 220, 220, 220, 460, 62, 1904, 58, 12480, 62, 17946, 82, 58, 17946, 82, 62, 2364, 11907, 796, 657, 628, 220, 220, 220, 1441, 460, 62, 1904, 198 ]
2.777241
2,900
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint # noqa: F401 import re # noqa: F401 import six # noqa: F401 from petstore_api.exceptions import ( # noqa: F401 ApiKeyError, ApiTypeError, ApiValueError, ) from petstore_api.model_utils import ( # noqa: F401 ModelNormal, ModelSimple, check_allowed_values, check_validations, date, datetime, file_type, get_simple_class, int, model_to_dict, none_type, str, type_error_message, validate_and_convert_types ) class XmlItem(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. openapi_types (dict): The key is attribute name and the value is attribute type. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } attribute_map = { 'attribute_string': 'attribute_string', # noqa: E501 'attribute_number': 'attribute_number', # noqa: E501 'attribute_integer': 'attribute_integer', # noqa: E501 'attribute_boolean': 'attribute_boolean', # noqa: E501 'wrapped_array': 'wrapped_array', # noqa: E501 'name_string': 'name_string', # noqa: E501 'name_number': 'name_number', # noqa: E501 'name_integer': 'name_integer', # noqa: E501 'name_boolean': 'name_boolean', # noqa: E501 'name_array': 'name_array', # noqa: E501 'name_wrapped_array': 'name_wrapped_array', # noqa: E501 'prefix_string': 'prefix_string', # noqa: E501 'prefix_number': 'prefix_number', # noqa: E501 'prefix_integer': 'prefix_integer', # noqa: E501 'prefix_boolean': 'prefix_boolean', # noqa: E501 'prefix_array': 'prefix_array', # noqa: E501 'prefix_wrapped_array': 'prefix_wrapped_array', # noqa: E501 'namespace_string': 'namespace_string', # noqa: E501 'namespace_number': 'namespace_number', # noqa: E501 'namespace_integer': 'namespace_integer', # noqa: E501 'namespace_boolean': 'namespace_boolean', # noqa: E501 'namespace_array': 'namespace_array', # noqa: E501 'namespace_wrapped_array': 'namespace_wrapped_array', # noqa: E501 'prefix_ns_string': 'prefix_ns_string', # noqa: E501 'prefix_ns_number': 'prefix_ns_number', # noqa: E501 'prefix_ns_integer': 'prefix_ns_integer', # noqa: E501 'prefix_ns_boolean': 'prefix_ns_boolean', # noqa: E501 'prefix_ns_array': 'prefix_ns_array', # noqa: E501 'prefix_ns_wrapped_array': 'prefix_ns_wrapped_array' # noqa: E501 } openapi_types = { 'attribute_string': (str,), # noqa: E501 'attribute_number': (float,), # noqa: E501 'attribute_integer': (int,), # noqa: E501 'attribute_boolean': (bool,), # noqa: E501 'wrapped_array': ([int],), # noqa: E501 'name_string': (str,), # noqa: E501 'name_number': (float,), # noqa: E501 'name_integer': (int,), # noqa: E501 'name_boolean': (bool,), # noqa: E501 'name_array': ([int],), # noqa: E501 'name_wrapped_array': ([int],), # noqa: E501 'prefix_string': (str,), # noqa: E501 'prefix_number': (float,), # noqa: E501 'prefix_integer': (int,), # noqa: E501 'prefix_boolean': (bool,), # noqa: E501 'prefix_array': ([int],), # noqa: E501 'prefix_wrapped_array': ([int],), # noqa: E501 'namespace_string': (str,), # noqa: E501 'namespace_number': (float,), # noqa: E501 'namespace_integer': (int,), # noqa: E501 'namespace_boolean': (bool,), # noqa: E501 'namespace_array': ([int],), # noqa: E501 'namespace_wrapped_array': ([int],), # noqa: E501 'prefix_ns_string': (str,), # noqa: E501 'prefix_ns_number': (float,), # noqa: E501 'prefix_ns_integer': (int,), # noqa: E501 'prefix_ns_boolean': (bool,), # noqa: E501 'prefix_ns_array': ([int],), # noqa: E501 'prefix_ns_wrapped_array': ([int],), # noqa: E501 } validations = { } additional_properties_type = None discriminator = None def __init__(self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs): # noqa: E501 """XmlItem - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. attribute_string (str): [optional] # noqa: E501 attribute_number (float): [optional] # noqa: E501 attribute_integer (int): [optional] # noqa: E501 attribute_boolean (bool): [optional] # noqa: E501 wrapped_array ([int]): [optional] # noqa: E501 name_string (str): [optional] # noqa: E501 name_number (float): [optional] # noqa: E501 name_integer (int): [optional] # noqa: E501 name_boolean (bool): [optional] # noqa: E501 name_array ([int]): [optional] # noqa: E501 name_wrapped_array ([int]): [optional] # noqa: E501 prefix_string (str): [optional] # noqa: E501 prefix_number (float): [optional] # noqa: E501 prefix_integer (int): [optional] # noqa: E501 prefix_boolean (bool): [optional] # noqa: E501 prefix_array ([int]): [optional] # noqa: E501 prefix_wrapped_array ([int]): [optional] # noqa: E501 namespace_string (str): [optional] # noqa: E501 namespace_number (float): [optional] # noqa: E501 namespace_integer (int): [optional] # noqa: E501 namespace_boolean (bool): [optional] # noqa: E501 namespace_array ([int]): [optional] # noqa: E501 namespace_wrapped_array ([int]): [optional] # noqa: E501 prefix_ns_string (str): [optional] # noqa: E501 prefix_ns_number (float): [optional] # noqa: E501 prefix_ns_integer (int): [optional] # noqa: E501 prefix_ns_boolean (bool): [optional] # noqa: E501 prefix_ns_array ([int]): [optional] # noqa: E501 prefix_ns_wrapped_array ([int]): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration for var_name, var_value in six.iteritems(kwargs): self.__set_item(var_name, var_value) def __setitem__(self, name, value): """this allows us to set values with instance[field_name] = val""" self.__set_item(name, value) def __getitem__(self, name): """this allows us to get a value with val = instance[field_name]""" return self.__get_item(name) @property def attribute_string(self): """Gets the attribute_string of this XmlItem. # noqa: E501 Returns: (str): The attribute_string of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_string') @attribute_string.setter def attribute_string(self, value): """Sets the attribute_string of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_string', value) @property def attribute_number(self): """Gets the attribute_number of this XmlItem. # noqa: E501 Returns: (float): The attribute_number of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_number') @attribute_number.setter def attribute_number(self, value): """Sets the attribute_number of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_number', value) @property def attribute_integer(self): """Gets the attribute_integer of this XmlItem. # noqa: E501 Returns: (int): The attribute_integer of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_integer') @attribute_integer.setter def attribute_integer(self, value): """Sets the attribute_integer of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_integer', value) @property def attribute_boolean(self): """Gets the attribute_boolean of this XmlItem. # noqa: E501 Returns: (bool): The attribute_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('attribute_boolean') @attribute_boolean.setter def attribute_boolean(self, value): """Sets the attribute_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('attribute_boolean', value) @property def wrapped_array(self): """Gets the wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('wrapped_array') @wrapped_array.setter def wrapped_array(self, value): """Sets the wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('wrapped_array', value) @property def name_string(self): """Gets the name_string of this XmlItem. # noqa: E501 Returns: (str): The name_string of this XmlItem. # noqa: E501 """ return self.__get_item('name_string') @name_string.setter def name_string(self, value): """Sets the name_string of this XmlItem. # noqa: E501 """ return self.__set_item('name_string', value) @property def name_number(self): """Gets the name_number of this XmlItem. # noqa: E501 Returns: (float): The name_number of this XmlItem. # noqa: E501 """ return self.__get_item('name_number') @name_number.setter def name_number(self, value): """Sets the name_number of this XmlItem. # noqa: E501 """ return self.__set_item('name_number', value) @property def name_integer(self): """Gets the name_integer of this XmlItem. # noqa: E501 Returns: (int): The name_integer of this XmlItem. # noqa: E501 """ return self.__get_item('name_integer') @name_integer.setter def name_integer(self, value): """Sets the name_integer of this XmlItem. # noqa: E501 """ return self.__set_item('name_integer', value) @property def name_boolean(self): """Gets the name_boolean of this XmlItem. # noqa: E501 Returns: (bool): The name_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('name_boolean') @name_boolean.setter def name_boolean(self, value): """Sets the name_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('name_boolean', value) @property def name_array(self): """Gets the name_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_array') @name_array.setter def name_array(self, value): """Sets the name_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_array', value) @property def name_wrapped_array(self): """Gets the name_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('name_wrapped_array') @name_wrapped_array.setter def name_wrapped_array(self, value): """Sets the name_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('name_wrapped_array', value) @property def prefix_string(self): """Gets the prefix_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_string') @prefix_string.setter def prefix_string(self, value): """Sets the prefix_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_string', value) @property def prefix_number(self): """Gets the prefix_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_number') @prefix_number.setter def prefix_number(self, value): """Sets the prefix_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_number', value) @property def prefix_integer(self): """Gets the prefix_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_integer') @prefix_integer.setter def prefix_integer(self, value): """Sets the prefix_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_integer', value) @property def prefix_boolean(self): """Gets the prefix_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_boolean') @prefix_boolean.setter def prefix_boolean(self, value): """Sets the prefix_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_boolean', value) @property def prefix_array(self): """Gets the prefix_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_array') @prefix_array.setter def prefix_array(self, value): """Sets the prefix_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_array', value) @property def prefix_wrapped_array(self): """Gets the prefix_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_wrapped_array') @prefix_wrapped_array.setter def prefix_wrapped_array(self, value): """Sets the prefix_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_wrapped_array', value) @property def namespace_string(self): """Gets the namespace_string of this XmlItem. # noqa: E501 Returns: (str): The namespace_string of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_string') @namespace_string.setter def namespace_string(self, value): """Sets the namespace_string of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_string', value) @property def namespace_number(self): """Gets the namespace_number of this XmlItem. # noqa: E501 Returns: (float): The namespace_number of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_number') @namespace_number.setter def namespace_number(self, value): """Sets the namespace_number of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_number', value) @property def namespace_integer(self): """Gets the namespace_integer of this XmlItem. # noqa: E501 Returns: (int): The namespace_integer of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_integer') @namespace_integer.setter def namespace_integer(self, value): """Sets the namespace_integer of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_integer', value) @property def namespace_boolean(self): """Gets the namespace_boolean of this XmlItem. # noqa: E501 Returns: (bool): The namespace_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_boolean') @namespace_boolean.setter def namespace_boolean(self, value): """Sets the namespace_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_boolean', value) @property def namespace_array(self): """Gets the namespace_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_array') @namespace_array.setter def namespace_array(self, value): """Sets the namespace_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_array', value) @property def namespace_wrapped_array(self): """Gets the namespace_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('namespace_wrapped_array') @namespace_wrapped_array.setter def namespace_wrapped_array(self, value): """Sets the namespace_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('namespace_wrapped_array', value) @property def prefix_ns_string(self): """Gets the prefix_ns_string of this XmlItem. # noqa: E501 Returns: (str): The prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_string') @prefix_ns_string.setter def prefix_ns_string(self, value): """Sets the prefix_ns_string of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_string', value) @property def prefix_ns_number(self): """Gets the prefix_ns_number of this XmlItem. # noqa: E501 Returns: (float): The prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_number') @prefix_ns_number.setter def prefix_ns_number(self, value): """Sets the prefix_ns_number of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_number', value) @property def prefix_ns_integer(self): """Gets the prefix_ns_integer of this XmlItem. # noqa: E501 Returns: (int): The prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_integer') @prefix_ns_integer.setter def prefix_ns_integer(self, value): """Sets the prefix_ns_integer of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_integer', value) @property def prefix_ns_boolean(self): """Gets the prefix_ns_boolean of this XmlItem. # noqa: E501 Returns: (bool): The prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_boolean') @prefix_ns_boolean.setter def prefix_ns_boolean(self, value): """Sets the prefix_ns_boolean of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_boolean', value) @property def prefix_ns_array(self): """Gets the prefix_ns_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_array') @prefix_ns_array.setter def prefix_ns_array(self, value): """Sets the prefix_ns_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_array', value) @property def prefix_ns_wrapped_array(self): """Gets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 Returns: ([int]): The prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__get_item('prefix_ns_wrapped_array') @prefix_ns_wrapped_array.setter def prefix_ns_wrapped_array(self, value): """Sets the prefix_ns_wrapped_array of this XmlItem. # noqa: E501 """ return self.__set_item('prefix_ns_wrapped_array', value) def to_dict(self): """Returns the model properties as a dict""" return model_to_dict(self, serialize=False) def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, XmlItem): return False if not set(self._data_store.keys()) == set(other._data_store.keys()): return False for _var_name, this_val in six.iteritems(self._data_store): that_val = other._data_store[_var_name] types = set() types.add(this_val.__class__) types.add(that_val.__class__) vals_equal = this_val == that_val if (not six.PY3 and len(types) == 2 and unicode in types): # noqa: F821 vals_equal = ( this_val.encode('utf-8') == that_val.encode('utf-8') ) if not vals_equal: return False return True def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 37811, 198, 220, 220, 220, 4946, 17614, 4767, 8095, 628, 220, 220, 220, 770, 1020, 318, 8384, 329, 4856, 4767, 8095, 4382, 290, 4909, 8390, 886, 13033, 11, 4981, 13, 4222, 466, 407, 779, 428, 329, 597, 584, 4007, 13, 6093, 3435, 25, 19990, 26867, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 383, 2196, 286, 262, 4946, 17614, 3188, 25, 352, 13, 15, 13, 15, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 279, 4798, 220, 1303, 645, 20402, 25, 376, 21844, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 11748, 2237, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 6738, 4273, 8095, 62, 15042, 13, 1069, 11755, 1330, 357, 220, 1303, 645, 20402, 25, 376, 21844, 198, 220, 220, 220, 5949, 72, 9218, 12331, 11, 198, 220, 220, 220, 5949, 72, 6030, 12331, 11, 198, 220, 220, 220, 5949, 72, 11395, 12331, 11, 198, 8, 198, 6738, 4273, 8095, 62, 15042, 13, 19849, 62, 26791, 1330, 357, 220, 1303, 645, 20402, 25, 376, 21844, 198, 220, 220, 220, 9104, 26447, 11, 198, 220, 220, 220, 9104, 26437, 11, 198, 220, 220, 220, 2198, 62, 40845, 62, 27160, 11, 198, 220, 220, 220, 2198, 62, 12102, 602, 11, 198, 220, 220, 220, 3128, 11, 198, 220, 220, 220, 4818, 8079, 11, 198, 220, 220, 220, 2393, 62, 4906, 11, 198, 220, 220, 220, 651, 62, 36439, 62, 4871, 11, 198, 220, 220, 220, 493, 11, 198, 220, 220, 220, 2746, 62, 1462, 62, 11600, 11, 198, 220, 220, 220, 4844, 62, 4906, 11, 198, 220, 220, 220, 965, 11, 198, 220, 220, 220, 2099, 62, 18224, 62, 20500, 11, 198, 220, 220, 220, 26571, 62, 392, 62, 1102, 1851, 62, 19199, 198, 8, 628, 198, 4871, 1395, 4029, 7449, 7, 17633, 26447, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 13, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 3142, 62, 27160, 357, 11600, 2599, 383, 1994, 318, 262, 46545, 3108, 284, 262, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 329, 1401, 62, 3672, 428, 318, 357, 7785, 62, 3672, 11, 737, 383, 1988, 318, 257, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 257, 3139, 1143, 1994, 12059, 262, 3142, 1988, 290, 281, 3142, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 13, 2312, 8633, 82, 3650, 262, 3142, 33829, 3815, 13, 198, 220, 220, 220, 220, 220, 11688, 62, 8899, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 33918, 1994, 287, 6770, 13, 198, 220, 220, 220, 220, 220, 6534, 20900, 62, 8367, 62, 4871, 62, 8899, 357, 11600, 2599, 317, 8633, 284, 467, 422, 262, 6534, 20900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7885, 1988, 284, 262, 6534, 20900, 1398, 1438, 13, 198, 220, 220, 220, 220, 220, 1280, 15042, 62, 19199, 357, 11600, 2599, 383, 1994, 318, 11688, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 1988, 318, 11688, 2099, 13, 198, 220, 220, 220, 220, 220, 4938, 602, 357, 11600, 2599, 383, 1994, 318, 262, 46545, 3108, 284, 262, 11688, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 262, 329, 1401, 62, 3672, 428, 318, 357, 7785, 62, 3672, 11, 737, 383, 1988, 318, 257, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 7000, 4938, 602, 329, 3509, 62, 13664, 11, 949, 62, 13664, 11, 3509, 62, 23814, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 23814, 11, 8568, 62, 47033, 11, 19889, 62, 47033, 11, 8568, 62, 39504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19889, 62, 39504, 11, 290, 40364, 13, 198, 220, 220, 220, 220, 220, 3224, 62, 48310, 62, 4906, 357, 83, 29291, 2599, 317, 46545, 286, 6097, 6292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 3224, 6608, 3815, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3142, 62, 27160, 796, 1391, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 11688, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 8841, 10354, 705, 42348, 62, 8841, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 17618, 10354, 705, 42348, 62, 17618, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 41433, 10354, 705, 42348, 62, 41433, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 2127, 21052, 10354, 705, 42348, 62, 2127, 21052, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29988, 1496, 62, 18747, 10354, 705, 29988, 1496, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 8841, 10354, 705, 3672, 62, 8841, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 17618, 10354, 705, 3672, 62, 17618, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 41433, 10354, 705, 3672, 62, 41433, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 2127, 21052, 10354, 705, 3672, 62, 2127, 21052, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 18747, 10354, 705, 3672, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 29988, 1496, 62, 18747, 10354, 705, 3672, 62, 29988, 1496, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 8841, 10354, 705, 40290, 62, 8841, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 17618, 10354, 705, 40290, 62, 17618, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 41433, 10354, 705, 40290, 62, 41433, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 2127, 21052, 10354, 705, 40290, 62, 2127, 21052, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 18747, 10354, 705, 40290, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 29988, 1496, 62, 18747, 10354, 705, 40290, 62, 29988, 1496, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 8841, 10354, 705, 14933, 10223, 62, 8841, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 17618, 10354, 705, 14933, 10223, 62, 17618, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 41433, 10354, 705, 14933, 10223, 62, 41433, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 2127, 21052, 10354, 705, 14933, 10223, 62, 2127, 21052, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 18747, 10354, 705, 14933, 10223, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 29988, 1496, 62, 18747, 10354, 705, 14933, 10223, 62, 29988, 1496, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 8841, 10354, 705, 40290, 62, 5907, 62, 8841, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 17618, 10354, 705, 40290, 62, 5907, 62, 17618, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 41433, 10354, 705, 40290, 62, 5907, 62, 41433, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 2127, 21052, 10354, 705, 40290, 62, 5907, 62, 2127, 21052, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 18747, 10354, 705, 40290, 62, 5907, 62, 18747, 3256, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 10354, 705, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 6, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 1280, 15042, 62, 19199, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 8841, 10354, 357, 2536, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 17618, 10354, 357, 22468, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 41433, 10354, 357, 600, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42348, 62, 2127, 21052, 10354, 357, 30388, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29988, 1496, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 8841, 10354, 357, 2536, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 17618, 10354, 357, 22468, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 41433, 10354, 357, 600, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 2127, 21052, 10354, 357, 30388, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 62, 29988, 1496, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 8841, 10354, 357, 2536, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 17618, 10354, 357, 22468, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 41433, 10354, 357, 600, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 2127, 21052, 10354, 357, 30388, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 29988, 1496, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 8841, 10354, 357, 2536, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 17618, 10354, 357, 22468, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 41433, 10354, 357, 600, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 2127, 21052, 10354, 357, 30388, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14933, 10223, 62, 29988, 1496, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 8841, 10354, 357, 2536, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 17618, 10354, 357, 22468, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 41433, 10354, 357, 600, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 2127, 21052, 10354, 357, 30388, 11, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 705, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 10354, 29565, 600, 4357, 828, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 4938, 602, 796, 1391, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 3224, 62, 48310, 62, 4906, 796, 6045, 628, 220, 220, 220, 6534, 20900, 796, 6045, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 4808, 9122, 62, 4906, 28, 17821, 11, 4808, 6738, 62, 15388, 28, 25101, 11, 4808, 6978, 62, 1462, 62, 9186, 16193, 828, 4808, 11250, 3924, 28, 14202, 11, 12429, 46265, 22046, 2599, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 55, 4029, 7449, 532, 257, 2746, 5447, 287, 4946, 17614, 628, 198, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9122, 62, 4906, 357, 30388, 2599, 611, 6407, 11, 3815, 329, 10007, 287, 1280, 15042, 62, 19199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 2099, 10667, 290, 257, 5994, 12331, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4376, 611, 262, 2642, 2099, 318, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2896, 13185, 284, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6978, 62, 1462, 62, 9186, 357, 83, 29291, 14, 4868, 2599, 770, 318, 257, 1351, 286, 8251, 393, 3815, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16007, 866, 284, 262, 2746, 287, 2722, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 748, 48499, 2890, 257, 2882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 6738, 62, 15388, 357, 30388, 2599, 6407, 611, 262, 1366, 318, 422, 262, 4382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 611, 262, 1366, 318, 422, 262, 5456, 357, 12286, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 11250, 3924, 357, 38149, 2599, 262, 4554, 284, 779, 618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 748, 48499, 2890, 257, 2393, 62, 4906, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 3804, 11, 2099, 11315, 318, 7482, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 22532, 645, 2099, 11315, 318, 1760, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 8841, 357, 2536, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 17618, 357, 22468, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 41433, 357, 600, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11688, 62, 2127, 21052, 357, 30388, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12908, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 8841, 357, 2536, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 17618, 357, 22468, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 41433, 357, 600, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 2127, 21052, 357, 30388, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 62, 29988, 1496, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 8841, 357, 2536, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 17618, 357, 22468, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 41433, 357, 600, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 2127, 21052, 357, 30388, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 29988, 1496, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 8841, 357, 2536, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 17618, 357, 22468, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 41433, 357, 600, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 2127, 21052, 357, 30388, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25745, 62, 29988, 1496, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 8841, 357, 2536, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 17618, 357, 22468, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 41433, 357, 600, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 2127, 21052, 357, 30388, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 29565, 600, 60, 2599, 685, 25968, 60, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7890, 62, 8095, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 4906, 796, 4808, 9122, 62, 4906, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6738, 62, 15388, 796, 4808, 6738, 62, 15388, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6978, 62, 1462, 62, 9186, 796, 4808, 6978, 62, 1462, 62, 9186, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11250, 3924, 796, 4808, 11250, 3924, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1401, 62, 3672, 11, 1401, 62, 8367, 287, 2237, 13, 2676, 23814, 7, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2617, 62, 9186, 7, 7785, 62, 3672, 11, 1401, 62, 8367, 8, 628, 220, 220, 220, 825, 11593, 2617, 9186, 834, 7, 944, 11, 1438, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5661, 3578, 514, 284, 900, 3815, 351, 4554, 58, 3245, 62, 3672, 60, 796, 1188, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2617, 62, 9186, 7, 3672, 11, 1988, 8, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 1438, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5661, 3578, 514, 284, 651, 257, 1988, 351, 1188, 796, 4554, 58, 3245, 62, 3672, 60, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 7, 3672, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 11688, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 11688, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 2599, 383, 11688, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 42348, 62, 8841, 11537, 628, 220, 220, 220, 2488, 42348, 62, 8841, 13, 2617, 353, 198, 220, 220, 220, 825, 11688, 62, 8841, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 11688, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 42348, 62, 8841, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 11688, 62, 17618, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 11688, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 2599, 383, 11688, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 42348, 62, 17618, 11537, 628, 220, 220, 220, 2488, 42348, 62, 17618, 13, 2617, 353, 198, 220, 220, 220, 825, 11688, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 11688, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 42348, 62, 17618, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 11688, 62, 41433, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 11688, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 11688, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 42348, 62, 41433, 11537, 628, 220, 220, 220, 2488, 42348, 62, 41433, 13, 2617, 353, 198, 220, 220, 220, 825, 11688, 62, 41433, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 11688, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 42348, 62, 41433, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 11688, 62, 2127, 21052, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 11688, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 30388, 2599, 383, 11688, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 42348, 62, 2127, 21052, 11537, 628, 220, 220, 220, 2488, 42348, 62, 2127, 21052, 13, 2617, 353, 198, 220, 220, 220, 825, 11688, 62, 2127, 21052, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 11688, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 42348, 62, 2127, 21052, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 12908, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 12908, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 12908, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 29988, 1496, 62, 18747, 11537, 628, 220, 220, 220, 2488, 29988, 1496, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 12908, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 12908, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 29988, 1496, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 2599, 383, 1438, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 8841, 11537, 628, 220, 220, 220, 2488, 3672, 62, 8841, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 8841, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 8841, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 17618, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 2599, 383, 1438, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 17618, 11537, 628, 220, 220, 220, 2488, 3672, 62, 17618, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 17618, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 41433, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 1438, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 41433, 11537, 628, 220, 220, 220, 2488, 3672, 62, 41433, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 41433, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 41433, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 2127, 21052, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 30388, 2599, 383, 1438, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 2127, 21052, 11537, 628, 220, 220, 220, 2488, 3672, 62, 2127, 21052, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 2127, 21052, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 2127, 21052, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 1438, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 18747, 11537, 628, 220, 220, 220, 2488, 3672, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1438, 62, 29988, 1496, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 1438, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 1438, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 3672, 62, 29988, 1496, 62, 18747, 11537, 628, 220, 220, 220, 2488, 3672, 62, 29988, 1496, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 1438, 62, 29988, 1496, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 1438, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 3672, 62, 29988, 1496, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 2599, 383, 21231, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 8841, 11537, 628, 220, 220, 220, 2488, 40290, 62, 8841, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 8841, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 8841, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 17618, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 2599, 383, 21231, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 17618, 11537, 628, 220, 220, 220, 2488, 40290, 62, 17618, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 17618, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 41433, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 21231, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 41433, 11537, 628, 220, 220, 220, 2488, 40290, 62, 41433, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 41433, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 41433, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 2127, 21052, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 30388, 2599, 383, 21231, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 2127, 21052, 11537, 628, 220, 220, 220, 2488, 40290, 62, 2127, 21052, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 2127, 21052, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 2127, 21052, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 21231, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 18747, 11537, 628, 220, 220, 220, 2488, 40290, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 29988, 1496, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 21231, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 29988, 1496, 62, 18747, 11537, 628, 220, 220, 220, 2488, 40290, 62, 29988, 1496, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 29988, 1496, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 29988, 1496, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 2599, 383, 25745, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 8841, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 8841, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 8841, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 8841, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 17618, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 2599, 383, 25745, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 17618, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 17618, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 17618, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 41433, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 25745, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 41433, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 41433, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 41433, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 41433, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 2127, 21052, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 30388, 2599, 383, 25745, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 2127, 21052, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 2127, 21052, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 2127, 21052, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 2127, 21052, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 25745, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 18747, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 25745, 62, 29988, 1496, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 25745, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 25745, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 14933, 10223, 62, 29988, 1496, 62, 18747, 11537, 628, 220, 220, 220, 2488, 14933, 10223, 62, 29988, 1496, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 25745, 62, 29988, 1496, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 25745, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 14933, 10223, 62, 29988, 1496, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2536, 2599, 383, 21231, 62, 5907, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 8841, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 8841, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 8841, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 8841, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 8841, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 17618, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 22468, 2599, 383, 21231, 62, 5907, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 17618, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 17618, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 17618, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 17618, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 17618, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 41433, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 2599, 383, 21231, 62, 5907, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 41433, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 41433, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 41433, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 41433, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 41433, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 2127, 21052, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 30388, 2599, 383, 21231, 62, 5907, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 2127, 21052, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 2127, 21052, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 2127, 21052, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 2127, 21052, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 2127, 21052, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 21231, 62, 5907, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 18747, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 1039, 262, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 600, 60, 2599, 383, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 1136, 62, 9186, 10786, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 11537, 628, 220, 220, 220, 2488, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 13, 2617, 353, 198, 220, 220, 220, 825, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 50, 1039, 262, 21231, 62, 5907, 62, 29988, 1496, 62, 18747, 286, 428, 1395, 4029, 7449, 13, 220, 1303, 645, 20402, 25, 412, 33548, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 2617, 62, 9186, 10786, 40290, 62, 5907, 62, 29988, 1496, 62, 18747, 3256, 1988, 8, 628, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 2746, 6608, 355, 257, 8633, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2746, 62, 1462, 62, 11600, 7, 944, 11, 11389, 1096, 28, 25101, 8, 628, 220, 220, 220, 825, 284, 62, 2536, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 262, 4731, 10552, 286, 262, 2746, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 279, 4798, 13, 79, 18982, 7, 944, 13, 1462, 62, 11600, 28955, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 1890, 4600, 4798, 63, 290, 4600, 381, 22272, 63, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 1462, 62, 2536, 3419, 628, 220, 220, 220, 825, 11593, 27363, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 847, 11, 1395, 4029, 7449, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 900, 7, 944, 13557, 7890, 62, 8095, 13, 13083, 28955, 6624, 900, 7, 847, 13557, 7890, 62, 8095, 13, 13083, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 7785, 62, 3672, 11, 428, 62, 2100, 287, 2237, 13, 2676, 23814, 7, 944, 13557, 7890, 62, 8095, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 62, 2100, 796, 584, 13557, 7890, 62, 8095, 29795, 7785, 62, 3672, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 796, 900, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 13, 2860, 7, 5661, 62, 2100, 13, 834, 4871, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3858, 13, 2860, 7, 5562, 62, 2100, 13, 834, 4871, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 62, 40496, 796, 428, 62, 2100, 6624, 326, 62, 2100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1662, 2237, 13, 47, 56, 18, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 19199, 8, 6624, 362, 290, 28000, 1098, 287, 3858, 2599, 220, 1303, 645, 20402, 25, 376, 23, 2481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 874, 62, 40496, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 62, 2100, 13, 268, 8189, 10786, 40477, 12, 23, 11537, 6624, 326, 62, 2100, 13, 268, 8189, 10786, 40477, 12, 23, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 410, 874, 62, 40496, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 11593, 710, 834, 7, 944, 11, 584, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 2081, 611, 1111, 5563, 389, 407, 4961, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 407, 2116, 6624, 584, 198 ]
2.241857
10,684
""" Die Modelle für Projektweite Daten: Nutzer/Profile """ from django.db import models from django.contrib.auth.models import AbstractUser from django.conf import settings from django.utils.translation import ugettext as _ from userena.models import UserenaBaseProfile from django.core.validators import RegexValidator import random, string from django.template.defaultfilters import slugify from django.urls import reverse def knoepfe_kopf(user): """ gibt Knöpfe für Kopfleiste als Liste von Tupeln zurück """ anmelden = (reverse('userena_signin'), 'Anmelden') registrieren = (reverse('userena_signup'), 'Registrieren') abmelden = (reverse('userena_signout'), 'Abmelden') profil = lambda nutzer: (reverse('userena_profile_detail', kwargs={'username': nutzer.username}), 'Profil') spam = ('spam', 'spam') admin = ('/admin/', 'admin') if user.username == 'admin': liste = [abmelden, profil(user), spam] elif user.is_authenticated(): liste = [abmelden, profil(user)] else: liste = [anmelden, registrieren] if user.is_staff and user.get_all_permissions(): liste.append(admin) return liste def knoepfe_menü(user): """ gibt Knöpfe für Menüleiste als Liste von Tupeln zurück """ alle = { 'index': ('/', 'Startseite'), 'olymp': (reverse('Wettbewerbe:index'), 'Wettbewerbe'), 'ehemalige': (reverse('Ehemalige:index'), 'Ehemalige'), 'impressum': (reverse('impressum'), 'Impressum'), 'db': ('https://olymp.piokg.de/static/db.pdf', 'Datenbanklayout'), # quick and very dirty :) 'todo': ('/todo/', 'ToDo-Liste'), } if user.username == 'admin': return [alle[name] for name in ('index', 'olymp', 'ehemalige', 'todo', 'db')] else: return [alle[name] for name in ('index', 'olymp', 'db', 'impressum')] class Nutzer(AbstractUser): """ Nutzer-Klasse """ def knoepfe_kopf(nutzer): """ soll Liste von Paaren für Knöpfe der Kopfleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_kopf(nutzer) def knoepfe_menü(self): """ soll Liste von Paaren für Knöpfe der Menüleiste ausgeben Nutzt im Moment die module-fkt gleichen Namens, könnte später vll die Gruppenzugehörigkeit heranziehen, etc, ist flexibel """ return knoepfe_menü(self)
[ 37811, 198, 32423, 9104, 293, 277, 25151, 1041, 73, 988, 83, 732, 578, 16092, 268, 25, 11959, 9107, 14, 37046, 198, 198, 37811, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 27741, 12982, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 355, 4808, 198, 6738, 779, 918, 64, 13, 27530, 1330, 5765, 918, 64, 14881, 37046, 198, 6738, 42625, 14208, 13, 7295, 13, 12102, 2024, 1330, 797, 25636, 47139, 1352, 198, 11748, 4738, 11, 4731, 198, 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 31065, 1958, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 628, 198, 198, 4299, 638, 78, 538, 5036, 62, 74, 404, 69, 7, 7220, 2599, 198, 220, 220, 220, 37227, 46795, 83, 6102, 9101, 79, 5036, 277, 25151, 40500, 27919, 40833, 435, 82, 7343, 68, 18042, 49595, 45542, 1976, 333, 9116, 694, 37227, 198, 220, 220, 220, 281, 1326, 335, 268, 796, 357, 50188, 10786, 1904, 918, 64, 62, 12683, 259, 33809, 705, 2025, 1326, 335, 268, 11537, 198, 220, 220, 220, 4214, 380, 14226, 796, 357, 50188, 10786, 1904, 918, 64, 62, 12683, 929, 33809, 705, 8081, 396, 380, 14226, 11537, 220, 198, 220, 220, 220, 450, 1326, 335, 268, 796, 357, 50188, 10786, 1904, 918, 64, 62, 12683, 448, 33809, 705, 4826, 1326, 335, 268, 11537, 198, 220, 220, 220, 1534, 346, 796, 37456, 6701, 9107, 25, 357, 50188, 10786, 1904, 918, 64, 62, 13317, 62, 49170, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 34758, 6, 29460, 10354, 6701, 9107, 13, 29460, 92, 828, 705, 2964, 10379, 11537, 220, 198, 220, 220, 220, 18084, 796, 19203, 2777, 321, 3256, 705, 2777, 321, 11537, 220, 198, 220, 220, 220, 13169, 796, 19203, 14, 28482, 14, 3256, 705, 28482, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2836, 13, 29460, 6624, 705, 28482, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 796, 685, 397, 1326, 335, 268, 11, 1534, 346, 7, 7220, 828, 18084, 60, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1288, 361, 2836, 13, 271, 62, 41299, 3474, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 796, 685, 397, 1326, 335, 268, 11, 1534, 346, 7, 7220, 15437, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 796, 685, 272, 1326, 335, 268, 11, 4214, 380, 14226, 60, 198, 220, 220, 220, 611, 2836, 13, 271, 62, 28120, 290, 2836, 13, 1136, 62, 439, 62, 525, 8481, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 68, 13, 33295, 7, 28482, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1351, 68, 198, 198, 4299, 638, 78, 538, 5036, 62, 3653, 9116, 7, 7220, 2599, 198, 220, 220, 220, 37227, 46795, 83, 6102, 9101, 79, 5036, 277, 25151, 6065, 9116, 293, 40833, 435, 82, 7343, 68, 18042, 49595, 45542, 1976, 333, 9116, 694, 37227, 198, 220, 220, 220, 28654, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9630, 10354, 19203, 14, 3256, 705, 10434, 325, 578, 33809, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3366, 3149, 10354, 357, 50188, 10786, 54, 3087, 65, 413, 263, 1350, 25, 9630, 33809, 705, 54, 3087, 65, 413, 263, 1350, 33809, 220, 198, 220, 220, 220, 220, 220, 220, 220, 705, 68, 4411, 282, 10045, 10354, 357, 50188, 10786, 36, 4411, 282, 10045, 25, 9630, 33809, 705, 36, 4411, 282, 10045, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 320, 8439, 388, 10354, 357, 50188, 10786, 320, 8439, 388, 33809, 705, 26950, 601, 388, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9945, 10354, 19203, 5450, 1378, 3366, 3149, 13, 14415, 482, 70, 13, 2934, 14, 12708, 14, 9945, 13, 12315, 3256, 705, 27354, 268, 17796, 39786, 33809, 1303, 2068, 290, 845, 11841, 14373, 198, 220, 220, 220, 220, 220, 220, 220, 705, 83, 24313, 10354, 19203, 14, 83, 24313, 14, 3256, 705, 2514, 5211, 12, 8053, 68, 33809, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2836, 13, 29460, 6624, 705, 28482, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 6765, 58, 3672, 60, 329, 1438, 287, 19203, 9630, 3256, 705, 3366, 3149, 3256, 705, 68, 4411, 282, 10045, 3256, 705, 83, 24313, 3256, 705, 9945, 11537, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 6765, 58, 3672, 60, 329, 1438, 287, 19203, 9630, 3256, 705, 3366, 3149, 3256, 705, 9945, 3256, 705, 320, 8439, 388, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4871, 11959, 9107, 7, 23839, 12982, 2599, 198, 220, 220, 220, 37227, 11959, 9107, 12, 42, 75, 21612, 37227, 198, 220, 220, 220, 825, 638, 78, 538, 5036, 62, 74, 404, 69, 7, 14930, 9107, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 523, 297, 7343, 68, 18042, 11243, 5757, 277, 25151, 6102, 9101, 79, 5036, 4587, 40500, 27919, 40833, 257, 385, 469, 11722, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11959, 89, 83, 545, 29278, 4656, 8265, 12, 69, 21841, 26852, 41437, 17871, 641, 11, 479, 48863, 429, 68, 599, 11033, 353, 410, 297, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 25665, 381, 19471, 2217, 71, 9101, 4359, 365, 270, 607, 35410, 494, 831, 11, 3503, 11, 318, 83, 7059, 43837, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 638, 78, 538, 5036, 62, 74, 404, 69, 7, 14930, 9107, 8, 628, 220, 220, 220, 825, 638, 78, 538, 5036, 62, 3653, 9116, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 523, 297, 7343, 68, 18042, 11243, 5757, 277, 25151, 6102, 9101, 79, 5036, 4587, 6065, 9116, 293, 40833, 257, 385, 469, 11722, 220, 198, 220, 220, 220, 220, 220, 220, 220, 11959, 89, 83, 545, 29278, 4656, 8265, 12, 69, 21841, 26852, 41437, 17871, 641, 11, 479, 48863, 429, 68, 599, 11033, 353, 410, 297, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 25665, 381, 19471, 2217, 71, 9101, 4359, 365, 270, 607, 35410, 494, 831, 11, 3503, 11, 318, 83, 7059, 43837, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 638, 78, 538, 5036, 62, 3653, 9116, 7, 944, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198 ]
2.281982
1,110
import numpy as np import cv2 import sys import torch sys.path.append('..') from torch.utils import data from torch.utils.data import DataLoader if __name__ == '__main__': file_list = './data/test_data/list.txt' wlfwdataset = WLFWDatasets(file_list) dataloader = DataLoader(wlfwdataset, batch_size=256, shuffle=True, num_workers=0, drop_last=False) for img, landmark, attribute, euler_angle in dataloader: print("img shape", img.shape) print("landmark size", landmark.size()) print("attrbute size", attribute) print("euler_angle", euler_angle.size())
[ 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 25064, 198, 11748, 28034, 198, 198, 17597, 13, 6978, 13, 33295, 10786, 492, 11537, 198, 198, 6738, 28034, 13, 26791, 1330, 1366, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 628, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2393, 62, 4868, 796, 705, 19571, 7890, 14, 9288, 62, 7890, 14, 4868, 13, 14116, 6, 198, 220, 220, 220, 266, 1652, 16993, 265, 292, 316, 796, 370, 43, 37, 22332, 265, 292, 1039, 7, 7753, 62, 4868, 8, 198, 220, 220, 220, 4818, 282, 1170, 263, 796, 6060, 17401, 7, 86, 1652, 16993, 265, 292, 316, 11, 15458, 62, 7857, 28, 11645, 11, 36273, 28, 17821, 11, 997, 62, 22896, 28, 15, 11, 4268, 62, 12957, 28, 25101, 8, 198, 220, 220, 220, 329, 33705, 11, 20533, 11, 11688, 11, 304, 18173, 62, 9248, 287, 4818, 282, 1170, 263, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9600, 5485, 1600, 33705, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1044, 4102, 2546, 1600, 20533, 13, 7857, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 1078, 26145, 1133, 2546, 1600, 11688, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 68, 18173, 62, 9248, 1600, 304, 18173, 62, 9248, 13, 7857, 28955, 198 ]
2.541322
242
import os import numpy as np import pytest from nexusformat.nexus.tree import NXfield, NXgroup, NXroot, nxload @pytest.mark.parametrize("save", ["False", "True"])
[ 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 9288, 198, 6738, 45770, 18982, 13, 44520, 13, 21048, 1330, 42482, 3245, 11, 42482, 8094, 11, 42482, 15763, 11, 299, 87, 2220, 628, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 21928, 1600, 14631, 25101, 1600, 366, 17821, 8973, 8, 198 ]
2.87931
58