content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import random from typing import Any, Callable, Dict, List, Optional, Tuple, Union import augly.audio.functional as F import augly.utils as utils import numpy as np from augly.audio.utils import RNGSeed """ Base Classes for Transforms """ """ Non-Random Transforms These classes below are essentially class-based versions of the augmentation functions previously defined. These classes were developed such that they can be used with Composition operators (such as `torchvision`'s) and to support use cases where a specific transform with specific attributes needs to be applied multiple times. Example: >>> audio_array = np.array([...]) >>> pitch_shift_tsfm = PitchShift(n_steps=4.0, p=0.5) >>> shifted_audio = pitch_shift_tsfm(audio_array, sample_rate) """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 357, 66, 8, 3203, 11, 3457, 13, 290, 663, 29116, 13, 198, 198, 11748, 4738, 198, 6738, 19720, 1330, 4377, 11, 4889, 540, 11, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 11, 4479, 198, 198, 11748, 16339, 306, 13, 24051, 13, 45124, 355, 376, 198, 11748, 16339, 306, 13, 26791, 355, 3384, 4487, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 16339, 306, 13, 24051, 13, 26791, 1330, 371, 10503, 50, 2308, 628, 198, 37811, 198, 14881, 38884, 329, 3602, 23914, 198, 37811, 628, 198, 198, 37811, 198, 15419, 12, 29531, 3602, 23914, 198, 198, 4711, 6097, 2174, 389, 6986, 1398, 12, 3106, 6300, 286, 262, 16339, 14374, 198, 12543, 2733, 4271, 5447, 13, 2312, 6097, 547, 4166, 884, 326, 484, 460, 198, 1350, 973, 351, 955, 9150, 12879, 357, 10508, 355, 4600, 13165, 354, 10178, 63, 6, 82, 8, 290, 284, 1104, 198, 1904, 2663, 810, 257, 2176, 6121, 351, 2176, 12608, 2476, 284, 307, 198, 1324, 18511, 3294, 1661, 13, 198, 198, 16281, 25, 198, 13163, 6597, 62, 18747, 796, 45941, 13, 18747, 26933, 986, 12962, 198, 13163, 7078, 62, 30846, 62, 912, 38353, 796, 33517, 33377, 7, 77, 62, 20214, 28, 19, 13, 15, 11, 279, 28, 15, 13, 20, 8, 198, 13163, 14869, 62, 24051, 796, 7078, 62, 30846, 62, 912, 38353, 7, 24051, 62, 18747, 11, 6291, 62, 4873, 8, 198, 37811, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.438247
251
# Copyright (c) 2021 - present, Timur Shenkao # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from collections import OrderedDict from typing import List # 412. Fizz Buzz https://leetcode.com/problems/fizz-buzz/ # Given an integer n, return a string array resultwer (1-indexed) where: # resultwer[i] == "FizzBuzz" if i is divisible by 3 and 5. # resultwer[i] == "Fizz" if i is divisible by 3. # resultwer[i] == "Buzz" if i is divisible by 5. # resultwer[i] == i (as a string) if none of the above conditions are true. # 1 <= n <= 104
[ 2, 15069, 357, 66, 8, 33448, 532, 1944, 11, 5045, 333, 22323, 4914, 78, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 29113, 29113, 7804, 4242, 2235, 198, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 19720, 1330, 7343, 198, 198, 2, 42215, 13, 376, 6457, 15753, 220, 3740, 1378, 293, 316, 8189, 13, 785, 14, 1676, 22143, 14, 69, 6457, 12, 65, 4715, 14, 198, 2, 11259, 281, 18253, 299, 11, 1441, 257, 4731, 7177, 1255, 15448, 357, 16, 12, 9630, 276, 8, 810, 25, 198, 2, 220, 220, 220, 220, 1255, 15448, 58, 72, 60, 6624, 366, 37, 6457, 48230, 1, 611, 1312, 318, 2659, 12843, 416, 513, 290, 642, 13, 198, 2, 220, 220, 220, 220, 1255, 15448, 58, 72, 60, 6624, 366, 37, 6457, 1, 611, 1312, 318, 2659, 12843, 416, 513, 13, 198, 2, 220, 220, 220, 220, 1255, 15448, 58, 72, 60, 6624, 366, 48230, 1, 611, 1312, 318, 2659, 12843, 416, 642, 13, 198, 2, 220, 220, 220, 220, 1255, 15448, 58, 72, 60, 6624, 1312, 357, 292, 257, 4731, 8, 611, 4844, 286, 262, 2029, 3403, 389, 2081, 13, 198, 2, 352, 19841, 299, 19841, 14436, 628 ]
3.443114
334
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-11-08 18:16 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 24, 13, 22, 319, 1584, 12, 1157, 12, 2919, 1248, 25, 1433, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.724638
69
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # Simple topography viewer server - takes textual commands from a single socket # and renders the appropriate graph import pygame from Physics import Particle as BaseParticle class RenderingParticle(BaseParticle): """Version of Physics.Particle with added rendering functions. """ def render(self, surface): """Rendering passes. A generator method that renders in multiple passes. Use yields to specify a wait until the pass the next stage of rendering should take place at. Example, that renders bonds 'behind' the blobs. def render(self, surface): yield 1 self.renderBonds(surface) # render bonds on pass 1 yield 5 self.renderSelf(surface) # render 'blob' on pass 5 If another particle type rendered, for example, on pass 3, then it would be rendered on top of the bonds, but behind the blobs. Use this mechanism to order rendering into layers. """ x = int(self.pos[0]) - self.left y = int(self.pos[1]) - self.top yield 1 for p in self.bondedTo: pygame.draw.line(surface, (128,128,255), (x,y), (int(p.pos[0] -self.left),int(p.pos[1] - self.top)) ) yield 2 pygame.draw.circle(surface, (255,128,128), (x,y), self.radius) if self.selected: pygame.draw.circle(surface, (0,0,0), (x,y), self.radius, 2) surface.blit(self.label, (x - self.label.get_width()/2, y - self.label.get_height()/2)) def setOffset( self, (left,top) ): """Inform of a change to the coords of the top left of the drawing surface, so that this entity can render, as if the top left had moved """ self.left = left self.top = top def select( self ): """Tell this particle it is selected""" self.selected = True def deselect( self ): """Tell this particle it is selected""" self.selected = False
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 3050, 3517, 32250, 10501, 290, 509, 1689, 25418, 25767, 669, 7, 16, 8, 198, 2, 198, 2, 357, 16, 8, 509, 1689, 25418, 25767, 669, 389, 5610, 287, 262, 37195, 20673, 2393, 290, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 74, 1689, 25418, 13, 2398, 14, 32, 24318, 20673, 532, 3387, 9117, 428, 2393, 11, 198, 2, 220, 220, 220, 220, 407, 428, 4003, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 16529, 45537, 198, 198, 2, 17427, 1353, 4867, 19091, 4382, 532, 2753, 40577, 9729, 422, 257, 2060, 17802, 198, 2, 290, 30111, 262, 5035, 4823, 198, 198, 11748, 12972, 6057, 198, 6738, 23123, 1330, 2142, 1548, 355, 7308, 7841, 1548, 198, 198, 4871, 28703, 1586, 7841, 1548, 7, 14881, 7841, 1548, 2599, 198, 220, 220, 220, 37227, 14815, 286, 23123, 13, 7841, 1548, 351, 2087, 14837, 5499, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 8543, 7, 944, 11, 4417, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 49, 437, 1586, 8318, 13, 317, 17301, 2446, 326, 30111, 287, 3294, 8318, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5765, 19299, 284, 11986, 257, 4043, 1566, 262, 1208, 262, 1306, 3800, 286, 14837, 198, 220, 220, 220, 220, 220, 220, 220, 815, 1011, 1295, 379, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 17934, 11, 326, 30111, 13100, 705, 42200, 6, 262, 698, 8158, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 8543, 7, 944, 11, 4417, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 33, 24764, 7, 42029, 8, 220, 220, 220, 220, 220, 220, 220, 1303, 8543, 13100, 319, 1208, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 642, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13287, 24704, 7, 42029, 8, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8543, 705, 2436, 672, 6, 319, 1208, 642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 1194, 18758, 2099, 15111, 11, 329, 1672, 11, 319, 1208, 513, 11, 788, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 561, 307, 15111, 319, 1353, 286, 262, 13100, 11, 475, 2157, 262, 698, 8158, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 428, 9030, 284, 1502, 14837, 656, 11685, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 493, 7, 944, 13, 1930, 58, 15, 12962, 532, 2116, 13, 9464, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 493, 7, 944, 13, 1930, 58, 16, 12962, 532, 2116, 13, 4852, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 2116, 13, 65, 623, 276, 2514, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 1370, 7, 42029, 11, 357, 12762, 11, 12762, 11, 13381, 828, 357, 87, 11, 88, 828, 220, 357, 600, 7, 79, 13, 1930, 58, 15, 60, 532, 944, 13, 9464, 828, 600, 7, 79, 13, 1930, 58, 16, 60, 532, 2116, 13, 4852, 4008, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 362, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 45597, 7, 42029, 11, 357, 13381, 11, 12762, 11, 12762, 828, 357, 87, 11, 88, 828, 2116, 13, 42172, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 34213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 45597, 7, 42029, 11, 357, 15, 11, 15, 11, 15, 828, 357, 87, 11, 88, 828, 2116, 13, 42172, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4417, 13, 2436, 270, 7, 944, 13, 18242, 11, 357, 87, 532, 2116, 13, 18242, 13, 1136, 62, 10394, 3419, 14, 17, 11, 331, 532, 2116, 13, 18242, 13, 1136, 62, 17015, 3419, 14, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 900, 34519, 7, 2116, 11, 357, 9464, 11, 4852, 8, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 818, 687, 286, 257, 1487, 284, 262, 763, 3669, 286, 262, 1353, 1364, 286, 262, 8263, 4417, 11, 198, 220, 220, 220, 220, 220, 220, 220, 523, 326, 428, 9312, 460, 8543, 11, 355, 611, 262, 1353, 1364, 550, 3888, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9464, 796, 1364, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4852, 220, 796, 1353, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 825, 2922, 7, 2116, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24446, 428, 18758, 340, 318, 6163, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34213, 796, 6407, 628, 220, 220, 220, 825, 748, 9509, 7, 2116, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24446, 428, 18758, 340, 318, 6163, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34213, 796, 10352, 198 ]
2.626866
1,139
import datetime import marisa import sys time_begin = datetime.datetime.now() keys = [] for line in sys.stdin: keys.append(line.rstrip()) time_end = datetime.datetime.now() print "input:", time_end - time_begin time_begin = datetime.datetime.now() dic = dict() for i in range(len(keys)): dic[keys[i]] = i time_end = datetime.datetime.now() print "dict_build:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: dic.get(key) time_end = datetime.datetime.now() print "dict_lookup:", time_end - time_begin time_begin = datetime.datetime.now() keyset = marisa.Keyset() for key in keys: keyset.push_back(key) time_end = datetime.datetime.now() print "keyset_build:", time_end - time_begin time_begin = datetime.datetime.now() trie = marisa.Trie() trie.build(keyset) time_end = datetime.datetime.now() print "trie_build:", time_end - time_begin time_begin = datetime.datetime.now() agent = marisa.Agent() for key in keys: agent.set_query(key) trie.lookup(agent) agent.key_id() time_end = datetime.datetime.now() print "trie_agent_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: trie.lookup(key) time_end = datetime.datetime.now() print "trie_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): agent.set_query(i) trie.reverse_lookup(agent) agent.key_str() time_end = datetime.datetime.now() print "trie_agent_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for i in range(len(keys)): trie.reverse_lookup(i) time_end = datetime.datetime.now() print "trie_reverse_lookup:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.common_prefix_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_common_prefix_search:", time_end - time_begin time_begin = datetime.datetime.now() for key in keys: agent.set_query(key) while trie.predictive_search(agent): agent.key_str() time_end = datetime.datetime.now() print "trie_agent_predictive_search:", time_end - time_begin
[ 11748, 4818, 8079, 198, 11748, 1667, 9160, 198, 11748, 25064, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 13083, 796, 17635, 198, 1640, 1627, 287, 25064, 13, 19282, 259, 25, 198, 220, 8251, 13, 33295, 7, 1370, 13, 81, 36311, 28955, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 15414, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 67, 291, 796, 8633, 3419, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 13083, 8, 2599, 198, 220, 288, 291, 58, 13083, 58, 72, 11907, 796, 1312, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 11600, 62, 11249, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 288, 291, 13, 1136, 7, 2539, 8, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 11600, 62, 5460, 929, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 13083, 316, 796, 1667, 9160, 13, 40729, 316, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 8251, 316, 13, 14689, 62, 1891, 7, 2539, 8, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 13083, 316, 62, 11249, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 83, 5034, 796, 1667, 9160, 13, 51, 5034, 3419, 198, 83, 5034, 13, 11249, 7, 13083, 316, 8, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 11249, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 25781, 796, 1667, 9160, 13, 36772, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 5797, 13, 2617, 62, 22766, 7, 2539, 8, 198, 220, 1333, 68, 13, 5460, 929, 7, 25781, 8, 198, 220, 5797, 13, 2539, 62, 312, 3419, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 25781, 62, 5460, 929, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 1333, 68, 13, 5460, 929, 7, 2539, 8, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 5460, 929, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 13083, 8, 2599, 198, 220, 5797, 13, 2617, 62, 22766, 7, 72, 8, 198, 220, 1333, 68, 13, 50188, 62, 5460, 929, 7, 25781, 8, 198, 220, 5797, 13, 2539, 62, 2536, 3419, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 25781, 62, 50188, 62, 5460, 929, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 13083, 8, 2599, 198, 220, 1333, 68, 13, 50188, 62, 5460, 929, 7, 72, 8, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 50188, 62, 5460, 929, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 5797, 13, 2617, 62, 22766, 7, 2539, 8, 198, 220, 981, 1333, 68, 13, 11321, 62, 40290, 62, 12947, 7, 25781, 2599, 198, 220, 220, 220, 5797, 13, 2539, 62, 2536, 3419, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 25781, 62, 11321, 62, 40290, 62, 12947, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198, 198, 2435, 62, 27471, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 1640, 1994, 287, 8251, 25, 198, 220, 5797, 13, 2617, 62, 22766, 7, 2539, 8, 198, 220, 981, 1333, 68, 13, 79, 17407, 425, 62, 12947, 7, 25781, 2599, 198, 220, 220, 220, 5797, 13, 2539, 62, 2536, 3419, 198, 2435, 62, 437, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 4798, 366, 83, 5034, 62, 25781, 62, 79, 17407, 425, 62, 12947, 25, 1600, 640, 62, 437, 532, 640, 62, 27471, 198 ]
2.600733
819
""" Copyright 2021 Lukas Kreisköther Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf import PIL.Image import numpy as np import os import random class RandomConceptBuilder: """RandomConceptBuilder objects capsule the functionality for building random concept images necessary for using the TCAV framework in industrial usecases. For that random crops from defined sets of images (e.g. from good class when testing the bad class) with size crop_size are build. The random concept images are stored in folders with name prefix 'random500_' so that they can be used for the TCAV framework. """ def __init__(self, path, folders_for_building, store_fmt, image_shape, crop_size, num_fold=30, num_imgs_per_fold=100): """Initializes a RandomConceptBuilder object. Args: path (str): path which leads to the directory in which the folders are laying based upon which the random concept images should be build (e.g. '/home/lukas/Documents/02_Data/FGUSS_subsets_grey/'). folders_for_building (list of str): list of strings for all folders in the directory from which the algorithm should choose images to build the random concept images (e.g. ['good'] or ['one', 'two', 'three']) image_shape (list of int): list with len=2 which defines the shape the produced images should have (normally equals the input size of the model to investigate). crop_size (list of int): list with len=3 defining the size of the random crops (e.g. [56, 56, 3]). num_fold (int): number of folders of random concept images the algorithm should build. num_imgs_per_fold (int): number of images per folder for the folders of random concept images. store_fmt (str): store format of produced images. """ self.path = path self.folders_for_building = folders_for_building self.name_prefix = 'random500_' self.store_fmt = store_fmt self.image_shape = image_shape self.crop_size = crop_size self.num_fold = num_fold self.num_imgs_per_fold = num_imgs_per_fold if len(self.folders_for_building) == 1: self.X_names = [str(self.folders_for_building[0] + '/' + name) for name in os.listdir(self.path + self.folders_for_building[0]) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)] else: X_temp = [] for folder_name in self.folders_for_building: X_temp = X_temp + ([str(folder_name + '/' + name) for name in os.listdir(self.path + folder_name) if not os.path.isdir(self.path + self.folders_for_building[0] + '/' + name)]) self.X_names = X_temp np.random.shuffle(self.X_names) self.img_tensor = tf.placeholder(tf.float32, shape=(self.image_shape[0], self.image_shape[1], 3)) self.out = tf.image.random_crop(value=self.img_tensor, size=self.crop_size) def build_random_concept_image(self, img): """Method for building the random concept image from an input image. Args: img (numpy.ndarray[float]): image to build a random concept image from. Returns: PIL.Image: Random concept image as PIL.Image. """ img = np.array(img, dtype=np.float32) with tf.Session(): i = self.out.eval(feed_dict={self.img_tensor: img}) i = np.tile(i, (int(img.shape[0] / i.shape[0]), int(img.shape[1] / i.shape[1]), 1)) img = np.pad(array=i, pad_width=((0, img.shape[0] % i.shape[0]), (0, img.shape[1] % i.shape[1]), (0, 0)), mode='wrap') return PIL.Image.fromarray(img.astype(np.uint8)) def build(self): """Method to call to start building the concept images. Function looks how many images are already in the folders and fills the folders respectively. """ for i in range(self.num_fold): sub_fold = self.name_prefix + str(i) if not os.path.isdir(self.path + sub_fold): try: os.mkdir(self.path + sub_fold + '/') except Exception as e: print("Creation of the directory %s failed" % sub_fold) print(e) else: print("Successfully created the directory %s " % sub_fold) num_files = len([name for name in os.listdir(self.path + sub_fold) if os.path.isfile(os.path.join(self.path + sub_fold, name))]) if not (num_files == self.num_imgs_per_fold): for j in range(self.num_imgs_per_fold - num_files): img = random.choice(self.X_names) img = np.array(PIL.Image.open(tf.gfile.Open(self.path + '/' + img, 'rb')).convert('RGB'), dtype=np.float32) # todo: resize (right now, we don't do it since images have to be in right size for TCAV anyway) img_ran = self.build_random_concept_image(img) img_ran.save(self.path + sub_fold + '/' + str(num_files + j) + '.' + self.store_fmt)
[ 37811, 198, 15269, 33448, 28102, 292, 25732, 1984, 9101, 490, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 350, 4146, 13, 5159, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 4738, 628, 198, 4871, 14534, 3103, 984, 32875, 25, 198, 220, 220, 220, 37227, 29531, 3103, 984, 32875, 5563, 27855, 262, 11244, 329, 2615, 4738, 3721, 4263, 3306, 329, 1262, 262, 198, 220, 220, 220, 309, 8141, 53, 9355, 287, 7593, 779, 33964, 13, 1114, 326, 4738, 14450, 422, 5447, 5621, 286, 4263, 357, 68, 13, 70, 13, 422, 922, 1398, 198, 220, 220, 220, 618, 4856, 262, 2089, 1398, 8, 351, 2546, 13833, 62, 7857, 389, 1382, 13, 383, 4738, 3721, 4263, 389, 8574, 287, 24512, 198, 220, 220, 220, 351, 1438, 21231, 705, 25120, 4059, 62, 6, 523, 326, 484, 460, 307, 973, 329, 262, 309, 8141, 53, 9355, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3108, 11, 24512, 62, 1640, 62, 16894, 11, 3650, 62, 69, 16762, 11, 2939, 62, 43358, 11, 13833, 62, 7857, 11, 997, 62, 11379, 28, 1270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 9600, 82, 62, 525, 62, 11379, 28, 3064, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 4340, 257, 14534, 3103, 984, 32875, 2134, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 357, 2536, 2599, 3108, 543, 5983, 284, 262, 8619, 287, 543, 262, 24512, 389, 16299, 1912, 2402, 543, 262, 4738, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3721, 4263, 815, 307, 1382, 357, 68, 13, 70, 13, 31051, 11195, 14, 2290, 42749, 14, 38354, 14, 2999, 62, 6601, 14, 30386, 32835, 62, 7266, 28709, 62, 49502, 14, 27691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24512, 62, 1640, 62, 16894, 357, 4868, 286, 965, 2599, 1351, 286, 13042, 329, 477, 24512, 287, 262, 8619, 422, 543, 262, 11862, 815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3853, 4263, 284, 1382, 262, 4738, 3721, 4263, 357, 68, 13, 70, 13, 37250, 11274, 20520, 393, 37250, 505, 3256, 705, 11545, 3256, 705, 15542, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43358, 357, 4868, 286, 493, 2599, 1351, 351, 18896, 28, 17, 543, 15738, 262, 5485, 262, 4635, 4263, 815, 423, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 27237, 453, 21767, 262, 5128, 2546, 286, 262, 2746, 284, 9161, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 62, 7857, 357, 4868, 286, 493, 2599, 1351, 351, 18896, 28, 18, 16215, 262, 2546, 286, 262, 4738, 14450, 357, 68, 13, 70, 13, 685, 3980, 11, 7265, 11, 513, 35944, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 11379, 357, 600, 2599, 1271, 286, 24512, 286, 4738, 3721, 4263, 262, 11862, 815, 1382, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 9600, 82, 62, 525, 62, 11379, 357, 600, 2599, 1271, 286, 4263, 583, 9483, 329, 262, 24512, 286, 4738, 3721, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3650, 62, 69, 16762, 357, 2536, 2599, 3650, 5794, 286, 4635, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 796, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11379, 364, 62, 1640, 62, 16894, 796, 24512, 62, 1640, 62, 16894, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 62, 40290, 796, 705, 25120, 4059, 62, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8095, 62, 69, 16762, 796, 3650, 62, 69, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9060, 62, 43358, 796, 2939, 62, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31476, 62, 7857, 796, 13833, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 11379, 796, 997, 62, 11379, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 9600, 82, 62, 525, 62, 11379, 796, 997, 62, 9600, 82, 62, 525, 62, 11379, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 944, 13, 11379, 364, 62, 1640, 62, 16894, 8, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 62, 14933, 796, 685, 2536, 7, 944, 13, 11379, 364, 62, 1640, 62, 16894, 58, 15, 60, 1343, 31051, 6, 1343, 1438, 8, 329, 1438, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 4868, 15908, 7, 944, 13, 6978, 1343, 2116, 13, 11379, 364, 62, 1640, 62, 16894, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 944, 13, 6978, 1343, 2116, 13, 11379, 364, 62, 1640, 62, 16894, 58, 15, 60, 1343, 31051, 6, 1343, 1438, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 29510, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 9483, 62, 3672, 287, 2116, 13, 11379, 364, 62, 1640, 62, 16894, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 29510, 796, 1395, 62, 29510, 1343, 29565, 2536, 7, 43551, 62, 3672, 1343, 31051, 6, 1343, 1438, 8, 329, 1438, 287, 28686, 13, 4868, 15908, 7, 944, 13, 6978, 1343, 9483, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 944, 13, 6978, 1343, 2116, 13, 11379, 364, 62, 1640, 62, 16894, 58, 15, 60, 1343, 31051, 6, 1343, 1438, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 55, 62, 14933, 796, 1395, 62, 29510, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 62, 83, 22854, 796, 48700, 13, 5372, 13829, 7, 27110, 13, 22468, 2624, 11, 5485, 16193, 944, 13, 9060, 62, 43358, 58, 15, 4357, 2116, 13, 9060, 62, 43358, 58, 16, 4357, 513, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 448, 796, 48700, 13, 9060, 13, 25120, 62, 31476, 7, 8367, 28, 944, 13, 9600, 62, 83, 22854, 11, 2546, 28, 944, 13, 31476, 62, 7857, 8, 628, 220, 220, 220, 825, 1382, 62, 25120, 62, 43169, 62, 9060, 7, 944, 11, 33705, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17410, 329, 2615, 262, 4738, 3721, 2939, 422, 281, 5128, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 357, 77, 32152, 13, 358, 18747, 58, 22468, 60, 2599, 2939, 284, 1382, 257, 4738, 3721, 2939, 422, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 350, 4146, 13, 5159, 25, 14534, 3721, 2939, 355, 350, 4146, 13, 5159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 18747, 7, 9600, 11, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 351, 48700, 13, 36044, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 2116, 13, 448, 13, 18206, 7, 12363, 62, 11600, 34758, 944, 13, 9600, 62, 83, 22854, 25, 33705, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 45941, 13, 40927, 7, 72, 11, 357, 600, 7, 9600, 13, 43358, 58, 15, 60, 1220, 1312, 13, 43358, 58, 15, 46570, 493, 7, 9600, 13, 43358, 58, 16, 60, 1220, 1312, 13, 43358, 58, 16, 46570, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 15636, 7, 18747, 28, 72, 11, 14841, 62, 10394, 16193, 7, 15, 11, 33705, 13, 43358, 58, 15, 60, 4064, 1312, 13, 43358, 58, 15, 46570, 357, 15, 11, 33705, 13, 43358, 58, 16, 60, 4064, 1312, 13, 43358, 58, 16, 46570, 357, 15, 11, 657, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 11639, 37150, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 350, 4146, 13, 5159, 13, 6738, 18747, 7, 9600, 13, 459, 2981, 7, 37659, 13, 28611, 23, 4008, 628, 220, 220, 220, 825, 1382, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17410, 284, 869, 284, 923, 2615, 262, 3721, 4263, 13, 15553, 3073, 703, 867, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 389, 1541, 287, 262, 24512, 290, 23816, 262, 24512, 8148, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 944, 13, 22510, 62, 11379, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 62, 11379, 796, 2116, 13, 3672, 62, 40290, 1343, 965, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 9409, 343, 7, 944, 13, 6978, 1343, 850, 62, 11379, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 944, 13, 6978, 1343, 850, 62, 11379, 1343, 31051, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 12443, 341, 286, 262, 8619, 4064, 82, 4054, 1, 4064, 850, 62, 11379, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 33244, 2759, 2727, 262, 8619, 4064, 82, 366, 4064, 850, 62, 11379, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 16624, 796, 18896, 26933, 3672, 329, 1438, 287, 28686, 13, 4868, 15908, 7, 944, 13, 6978, 1343, 850, 62, 11379, 8, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 4468, 576, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 6978, 1343, 850, 62, 11379, 11, 1438, 4008, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 22510, 62, 16624, 6624, 2116, 13, 22510, 62, 9600, 82, 62, 525, 62, 11379, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 944, 13, 22510, 62, 9600, 82, 62, 525, 62, 11379, 532, 997, 62, 16624, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 4738, 13, 25541, 7, 944, 13, 55, 62, 14933, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 18747, 7, 47, 4146, 13, 5159, 13, 9654, 7, 27110, 13, 70, 7753, 13, 11505, 7, 944, 13, 6978, 1343, 31051, 6, 1343, 33705, 11, 705, 26145, 11537, 737, 1102, 1851, 10786, 36982, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 284, 4598, 25, 47558, 357, 3506, 783, 11, 356, 836, 470, 466, 340, 1201, 4263, 423, 284, 307, 287, 826, 2546, 329, 309, 8141, 53, 6949, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 2596, 796, 2116, 13, 11249, 62, 25120, 62, 43169, 62, 9060, 7, 9600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 2596, 13, 21928, 7, 944, 13, 6978, 1343, 850, 62, 11379, 1343, 31051, 6, 1343, 965, 7, 22510, 62, 16624, 1343, 474, 8, 1343, 705, 2637, 1343, 2116, 13, 8095, 62, 69, 16762, 8, 198 ]
2.376671
2,469
# -*- coding: utf-8 -*- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io from functools import partial import numpy as np import jieba import paddle from paddlenlp.data import Stack, Tuple, Pad, Vocab from paddlenlp.transformers import BertTokenizer from paddlenlp.datasets import load_dataset from utils import convert_example_for_lstm, convert_example_for_distill, convert_pair_example def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = {} with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n").split("\t")[0] vocab[token] = index return vocab def apply_data_augmentation(data, task_name, tokenizer, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 6), whole_word_mask=False, seed=0): """ Data Augmentation contains Masking and n-gram sampling. Tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, after what sampling is performed. """ np.random.seed(seed) new_data = [] for example in data: if task_name == 'qqp': data_list = tokenizer.tokenize(example['sentence1']) data_list_2 = tokenizer.tokenize(example['sentence2']) new_data.append({ "sentence1": data_list, "sentence2": data_list_2, "labels": example['labels'] }) else: data_list = tokenizer.tokenize(example['sentence']) new_data.append({ "sentence": data_list, "labels": example['labels'] }) for example in data: for _ in range(n_iter): if task_name == 'qqp': words = _data_augmentation(example['sentence1'], data_list) words_2 = _data_augmentation(example['sentence2'], data_list_2) new_data.append({ "sentence1": words, "sentence2": words_2, "labels": example['labels'] }) else: words = _data_augmentation(example['sentence'], data_list) new_data.append({ "sentence": words, "labels": example['labels'] }) return new_data def apply_data_augmentation_for_cn(data, tokenizer, vocab, n_iter=20, p_mask=0.1, p_ng=0.25, ngram_range=(2, 10), seed=0): """ Because BERT and jieba have different `tokenize` function, it returns jieba_tokenizer(example['text'], bert_tokenizer(example['text']) and example['label]) for each example in data. jieba tokenization and Masking are performed at the same time, so that the masked token can be directly replaced by `mask_token`, and other tokens could be tokenized by BERT's tokenizer, from which tokenized example for student model and teacher model would get at the same time. """ np.random.seed(seed) new_data = [] for example in data: text_tokenized = list(jieba.cut(example['text'])) lstm_tokens = text_tokenized bert_tokens = tokenizer.tokenize(example['text']) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) for _ in range(n_iter): # 1. Masking lstm_tokens, bert_tokens = [], [] for word in text_tokenized: if np.random.rand() < p_mask: lstm_tokens.append([vocab.unk_token]) bert_tokens.append([tokenizer.unk_token]) else: lstm_tokens.append([word]) bert_tokens.append(tokenizer.tokenize(word)) # 2. N-gram sampling lstm_tokens, bert_tokens = ngram_sampling(lstm_tokens, bert_tokens, p_ng, ngram_range) lstm_tokens, bert_tokens = flatten(lstm_tokens), flatten( bert_tokens) new_data.append({ "lstm_tokens": lstm_tokens, "bert_tokens": bert_tokens, "label": example['label'] }) return new_data def create_data_loader_for_small_model(task_name, vocab_path, model_name=None, batch_size=64, max_seq_length=128, shuffle=True): """Data loader for bi-lstm, not bert.""" if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) if task_name == 'chnsenticorp': vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] else: vocab = BertTokenizer.from_pretrained(model_name) pad_val = vocab.pad_token_id trans_fn = partial( convert_example_for_lstm, task_name=task_name, vocab=vocab, max_seq_length=max_seq_length, is_test=False) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=pad_val), # input_ids Stack(dtype="int64"), # seq len Stack(dtype="int64") # label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_distill_loader(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, n_iter=20, whole_word_mask=False, seed=0): """ Returns batch data for bert and small model. Bert and small model have different input representations. """ tokenizer = BertTokenizer.from_pretrained(model_name) if task_name == 'chnsenticorp': train_ds, dev_ds = load_dataset(task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) pad_val = vocab['[PAD]'] data_aug_fn = partial( apply_data_augmentation_for_cn, tokenizer=tokenizer, vocab=vocab, n_iter=n_iter, seed=seed) else: train_ds, dev_ds = load_dataset( 'glue', task_name, splits=["train", "dev"]) vocab = tokenizer pad_val = tokenizer.pad_token_id data_aug_fn = partial( apply_data_augmentation, task_name=task_name, tokenizer=tokenizer, n_iter=n_iter, whole_word_mask=whole_word_mask, seed=seed) train_ds = train_ds.map(data_aug_fn, batched=True) print("Data augmentation has been applied.") trans_fn = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab) trans_fn_dev = partial( convert_example_for_distill, task_name=task_name, tokenizer=tokenizer, label_list=train_ds.label_list, max_seq_length=max_seq_length, vocab=vocab, is_tokenized=False) if task_name == 'qqp': batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) else: batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # bert input Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # bert segment Pad(axis=0, pad_val=pad_val), # small input_ids Stack(dtype="int64"), # small seq len Stack(dtype="int64") # small label ): fn(samples) train_ds = train_ds.map(trans_fn, lazy=True) dev_ds = dev_ds.map(trans_fn_dev, lazy=True) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader def create_pair_loader_for_small_model(task_name, model_name, vocab_path, batch_size=64, max_seq_length=128, shuffle=True, is_test=False): """Only support QQP now.""" tokenizer = BertTokenizer.from_pretrained(model_name) train_ds, dev_ds = load_dataset('glue', task_name, splits=["train", "dev"]) vocab = Vocab.load_vocabulary( vocab_path, unk_token='[UNK]', pad_token='[PAD]', bos_token=None, eos_token=None, ) trans_func = partial( convert_pair_example, task_name=task_name, vocab=tokenizer, is_tokenized=False, max_seq_length=max_seq_length, is_test=is_test) train_ds = train_ds.map(trans_func, lazy=True) dev_ds = dev_ds.map(trans_func, lazy=True) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Pad(axis=0, pad_val=vocab['[PAD]']), # input Stack(), # length Stack(dtype="int64" if train_ds.label_list else "float32") # label ): fn(samples) train_data_loader, dev_data_loader = create_dataloader( train_ds, dev_ds, batch_size, batchify_fn, shuffle) return train_data_loader, dev_data_loader
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 15069, 357, 66, 8, 33448, 350, 37382, 47, 37382, 46665, 13, 1439, 6923, 12224, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 33245, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 474, 494, 7012, 198, 198, 11748, 39517, 198, 6738, 14098, 11925, 34431, 13, 7890, 1330, 23881, 11, 309, 29291, 11, 15744, 11, 47208, 397, 198, 6738, 14098, 11925, 34431, 13, 35636, 364, 1330, 22108, 30642, 7509, 198, 6738, 14098, 11925, 34431, 13, 19608, 292, 1039, 1330, 3440, 62, 19608, 292, 316, 198, 198, 6738, 3384, 4487, 1330, 10385, 62, 20688, 62, 1640, 62, 75, 301, 76, 11, 10385, 62, 20688, 62, 1640, 62, 17080, 359, 11, 10385, 62, 24874, 62, 20688, 628, 198, 4299, 3440, 62, 18893, 397, 7, 18893, 397, 62, 7753, 2599, 198, 220, 220, 220, 37227, 8912, 82, 257, 25818, 2393, 656, 257, 22155, 526, 15931, 198, 220, 220, 220, 12776, 397, 796, 23884, 198, 220, 220, 220, 351, 1280, 7, 18893, 397, 62, 7753, 11, 366, 81, 1600, 21004, 2625, 40477, 12, 23, 4943, 355, 9173, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 9173, 13, 961, 6615, 3419, 198, 220, 220, 220, 329, 6376, 11, 11241, 287, 27056, 378, 7, 83, 482, 641, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 11241, 13, 81, 36311, 7203, 59, 77, 11074, 35312, 7203, 59, 83, 4943, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 58, 30001, 60, 796, 6376, 198, 220, 220, 220, 1441, 12776, 397, 628, 628, 198, 4299, 4174, 62, 7890, 62, 559, 5154, 341, 7, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27932, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 782, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 4546, 62, 9521, 16193, 17, 11, 718, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2187, 62, 4775, 62, 27932, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6060, 2447, 14374, 4909, 18007, 278, 290, 299, 12, 4546, 19232, 13, 29130, 1634, 290, 198, 220, 220, 220, 18007, 278, 389, 6157, 379, 262, 976, 640, 11, 523, 326, 262, 29229, 11241, 460, 307, 198, 220, 220, 220, 3264, 6928, 416, 4600, 27932, 62, 30001, 47671, 706, 644, 19232, 318, 6157, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 649, 62, 7890, 796, 17635, 198, 220, 220, 220, 329, 1672, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 38227, 79, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4868, 796, 11241, 7509, 13, 30001, 1096, 7, 20688, 17816, 34086, 594, 16, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4868, 62, 17, 796, 11241, 7509, 13, 30001, 1096, 7, 20688, 17816, 34086, 594, 17, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 16, 1298, 1366, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 17, 1298, 1366, 62, 4868, 62, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23912, 1424, 1298, 1672, 17816, 23912, 1424, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 4868, 796, 11241, 7509, 13, 30001, 1096, 7, 20688, 17816, 34086, 594, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 1298, 1366, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23912, 1424, 1298, 1672, 17816, 23912, 1424, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 329, 1672, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 77, 62, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 38227, 79, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 4808, 7890, 62, 559, 5154, 341, 7, 20688, 17816, 34086, 594, 16, 6, 4357, 1366, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 62, 17, 796, 4808, 7890, 62, 559, 5154, 341, 7, 20688, 17816, 34086, 594, 17, 6, 4357, 1366, 62, 4868, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 16, 1298, 2456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 17, 1298, 2456, 62, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23912, 1424, 1298, 1672, 17816, 23912, 1424, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2456, 796, 4808, 7890, 62, 559, 5154, 341, 7, 20688, 17816, 34086, 594, 6, 4357, 1366, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 34086, 594, 1298, 2456, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23912, 1424, 1298, 1672, 17816, 23912, 1424, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 649, 62, 7890, 628, 198, 4299, 4174, 62, 7890, 62, 559, 5154, 341, 62, 1640, 62, 31522, 7, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 27932, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 782, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 4546, 62, 9521, 16193, 17, 11, 838, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4362, 347, 17395, 290, 474, 494, 7012, 423, 1180, 4600, 30001, 1096, 63, 2163, 11, 340, 5860, 198, 220, 220, 220, 474, 494, 7012, 62, 30001, 7509, 7, 20688, 17816, 5239, 6, 4357, 275, 861, 62, 30001, 7509, 7, 20688, 17816, 5239, 6, 12962, 290, 198, 220, 220, 220, 1672, 17816, 18242, 12962, 329, 1123, 1672, 287, 1366, 13, 198, 220, 220, 220, 474, 494, 7012, 11241, 1634, 290, 18007, 278, 389, 6157, 379, 262, 976, 640, 11, 523, 326, 262, 198, 220, 220, 220, 29229, 11241, 460, 307, 3264, 6928, 416, 4600, 27932, 62, 30001, 47671, 290, 584, 16326, 198, 220, 220, 220, 714, 307, 11241, 1143, 416, 347, 17395, 338, 11241, 7509, 11, 422, 543, 11241, 1143, 1672, 329, 198, 220, 220, 220, 3710, 2746, 290, 4701, 2746, 561, 651, 379, 262, 976, 640, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 45941, 13, 25120, 13, 28826, 7, 28826, 8, 198, 220, 220, 220, 649, 62, 7890, 796, 17635, 628, 220, 220, 220, 329, 1672, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 30001, 1143, 796, 1351, 7, 73, 494, 7012, 13, 8968, 7, 20688, 17816, 5239, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 796, 2420, 62, 30001, 1143, 198, 220, 220, 220, 220, 220, 220, 220, 275, 861, 62, 83, 482, 641, 796, 11241, 7509, 13, 30001, 1096, 7, 20688, 17816, 5239, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 301, 76, 62, 83, 482, 641, 1298, 300, 301, 76, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4835, 62, 83, 482, 641, 1298, 275, 861, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 1672, 17816, 18242, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 77, 62, 2676, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 13, 18007, 278, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 11, 275, 861, 62, 83, 482, 641, 796, 685, 4357, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1573, 287, 2420, 62, 30001, 1143, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 25120, 13, 25192, 3419, 1279, 279, 62, 27932, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 13, 33295, 26933, 18893, 397, 13, 2954, 62, 30001, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 861, 62, 83, 482, 641, 13, 33295, 26933, 30001, 7509, 13, 2954, 62, 30001, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 13, 33295, 26933, 4775, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 861, 62, 83, 482, 641, 13, 33295, 7, 30001, 7509, 13, 30001, 1096, 7, 4775, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 13, 399, 12, 4546, 19232, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 11, 275, 861, 62, 83, 482, 641, 796, 299, 4546, 62, 37687, 11347, 7, 75, 301, 76, 62, 83, 482, 641, 11, 275, 861, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 782, 11, 299, 4546, 62, 9521, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 301, 76, 62, 83, 482, 641, 11, 275, 861, 62, 83, 482, 641, 796, 27172, 268, 7, 75, 301, 76, 62, 83, 482, 641, 828, 27172, 268, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 861, 62, 83, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7890, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 301, 76, 62, 83, 482, 641, 1298, 300, 301, 76, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4835, 62, 83, 482, 641, 1298, 275, 861, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18242, 1298, 1672, 17816, 18242, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 649, 62, 7890, 628, 198, 4299, 2251, 62, 7890, 62, 29356, 62, 1640, 62, 17470, 62, 19849, 7, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 2599, 198, 220, 220, 220, 37227, 6601, 40213, 329, 3182, 12, 75, 301, 76, 11, 407, 275, 861, 526, 15931, 198, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 1349, 34086, 291, 16300, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 796, 3440, 62, 19608, 292, 316, 7, 35943, 62, 3672, 11, 30778, 28, 14692, 27432, 1600, 366, 7959, 8973, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 796, 3440, 62, 19608, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 518, 3256, 4876, 62, 3672, 11, 30778, 28, 14692, 27432, 1600, 366, 7959, 8973, 8, 198, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 1349, 34086, 291, 16300, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 796, 47208, 397, 13, 2220, 62, 18893, 22528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 74, 62, 30001, 11639, 58, 4944, 42, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 30001, 11639, 58, 47, 2885, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37284, 62, 30001, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 418, 62, 30001, 28, 14202, 11, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 2100, 796, 12776, 397, 17816, 58, 47, 2885, 60, 20520, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 796, 22108, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 19849, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 2100, 796, 12776, 397, 13, 15636, 62, 30001, 62, 312, 628, 220, 220, 220, 1007, 62, 22184, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 20688, 62, 1640, 62, 75, 301, 76, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 28, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 28, 18893, 397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 9288, 28, 25101, 8, 628, 220, 220, 220, 15458, 1958, 62, 22184, 796, 37456, 8405, 11, 24714, 28, 51, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 15636, 62, 2100, 828, 220, 1303, 5128, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 12340, 220, 1303, 33756, 18896, 198, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 4943, 220, 1303, 6167, 198, 220, 220, 220, 15179, 24714, 7, 82, 12629, 8, 628, 220, 220, 220, 4512, 62, 9310, 796, 4512, 62, 9310, 13, 8899, 7, 7645, 62, 22184, 11, 16931, 28, 17821, 8, 198, 220, 220, 220, 1614, 62, 9310, 796, 1614, 62, 9310, 13, 8899, 7, 7645, 62, 22184, 11, 16931, 28, 17821, 8, 628, 220, 220, 220, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 796, 2251, 62, 67, 10254, 1170, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 11, 15458, 62, 7857, 11, 15458, 1958, 62, 22184, 11, 36273, 8, 628, 220, 220, 220, 1441, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 628, 198, 4299, 2251, 62, 17080, 359, 62, 29356, 7, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2187, 62, 4775, 62, 27932, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 15458, 1366, 329, 275, 861, 290, 1402, 2746, 13, 198, 220, 220, 220, 22108, 290, 1402, 2746, 423, 1180, 5128, 24612, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11241, 7509, 796, 22108, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 19849, 62, 3672, 8, 198, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 1349, 34086, 291, 16300, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 796, 3440, 62, 19608, 292, 316, 7, 35943, 62, 3672, 11, 30778, 28, 14692, 27432, 1600, 366, 7959, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 796, 47208, 397, 13, 2220, 62, 18893, 22528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 555, 74, 62, 30001, 11639, 58, 4944, 42, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 30001, 11639, 58, 47, 2885, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37284, 62, 30001, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 418, 62, 30001, 28, 14202, 11, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 2100, 796, 12776, 397, 17816, 58, 47, 2885, 60, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 7493, 62, 22184, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 7890, 62, 559, 5154, 341, 62, 1640, 62, 31522, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 28, 18893, 397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 28, 77, 62, 2676, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 28826, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 796, 3440, 62, 19608, 292, 316, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4743, 518, 3256, 4876, 62, 3672, 11, 30778, 28, 14692, 27432, 1600, 366, 7959, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 796, 11241, 7509, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 2100, 796, 11241, 7509, 13, 15636, 62, 30001, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 7493, 62, 22184, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 62, 7890, 62, 559, 5154, 341, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 28, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 2676, 28, 77, 62, 2676, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2187, 62, 4775, 62, 27932, 28, 1929, 2305, 62, 4775, 62, 27932, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 28826, 8, 198, 220, 220, 220, 4512, 62, 9310, 796, 4512, 62, 9310, 13, 8899, 7, 7890, 62, 7493, 62, 22184, 11, 7365, 1740, 28, 17821, 8, 198, 220, 220, 220, 3601, 7203, 6601, 16339, 14374, 468, 587, 5625, 19570, 628, 220, 220, 220, 1007, 62, 22184, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 20688, 62, 1640, 62, 17080, 359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 28, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 4868, 28, 27432, 62, 9310, 13, 18242, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 28, 18893, 397, 8, 628, 220, 220, 220, 1007, 62, 22184, 62, 7959, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 20688, 62, 1640, 62, 17080, 359, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 28, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 7509, 28, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 4868, 28, 27432, 62, 9310, 13, 18242, 62, 4868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 28, 18893, 397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 30001, 1143, 28, 25101, 8, 628, 220, 220, 220, 611, 4876, 62, 3672, 6624, 705, 38227, 79, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1958, 62, 22184, 796, 37456, 8405, 11, 24714, 28, 51, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 30001, 7509, 13, 15636, 62, 30001, 62, 312, 828, 220, 1303, 275, 861, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 30001, 7509, 13, 15636, 62, 30001, 62, 4906, 62, 312, 828, 220, 1303, 275, 861, 10618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 15636, 62, 2100, 828, 220, 1303, 1402, 5128, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 12340, 220, 1303, 1402, 33756, 18896, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 15636, 62, 2100, 828, 220, 1303, 1402, 5128, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 12340, 220, 1303, 1402, 33756, 18896, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 4943, 220, 1303, 1402, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 24714, 7, 82, 12629, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 1958, 62, 22184, 796, 37456, 8405, 11, 24714, 28, 51, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 30001, 7509, 13, 15636, 62, 30001, 62, 312, 828, 220, 1303, 275, 861, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 30001, 7509, 13, 15636, 62, 30001, 62, 4906, 62, 312, 828, 220, 1303, 275, 861, 10618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 15636, 62, 2100, 828, 220, 1303, 1402, 5128, 62, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 12340, 220, 1303, 1402, 33756, 18896, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 4943, 220, 1303, 1402, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 24714, 7, 82, 12629, 8, 628, 220, 220, 220, 4512, 62, 9310, 796, 4512, 62, 9310, 13, 8899, 7, 7645, 62, 22184, 11, 16931, 28, 17821, 8, 198, 220, 220, 220, 1614, 62, 9310, 796, 1614, 62, 9310, 13, 8899, 7, 7645, 62, 22184, 62, 7959, 11, 16931, 28, 17821, 8, 198, 220, 220, 220, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 796, 2251, 62, 67, 10254, 1170, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 11, 15458, 62, 7857, 11, 15458, 1958, 62, 22184, 11, 36273, 8, 198, 220, 220, 220, 1441, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 628, 198, 4299, 2251, 62, 24874, 62, 29356, 62, 1640, 62, 17470, 62, 19849, 7, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 12762, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36273, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 9288, 28, 25101, 2599, 198, 220, 220, 220, 37227, 10049, 1104, 1195, 48, 47, 783, 526, 15931, 198, 220, 220, 220, 11241, 7509, 796, 22108, 30642, 7509, 13, 6738, 62, 5310, 13363, 7, 19849, 62, 3672, 8, 198, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 796, 3440, 62, 19608, 292, 316, 10786, 4743, 518, 3256, 4876, 62, 3672, 11, 30778, 28, 14692, 27432, 1600, 366, 7959, 8973, 8, 198, 220, 220, 220, 12776, 397, 796, 47208, 397, 13, 2220, 62, 18893, 22528, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 62, 6978, 11, 198, 220, 220, 220, 220, 220, 220, 220, 555, 74, 62, 30001, 11639, 58, 4944, 42, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 14841, 62, 30001, 11639, 58, 47, 2885, 60, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 37284, 62, 30001, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 304, 418, 62, 30001, 28, 14202, 11, 1267, 628, 220, 220, 220, 1007, 62, 20786, 796, 13027, 7, 198, 220, 220, 220, 220, 220, 220, 220, 10385, 62, 24874, 62, 20688, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4876, 62, 3672, 28, 35943, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 28, 30001, 7509, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 30001, 1143, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 41068, 62, 13664, 28, 9806, 62, 41068, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 9288, 28, 271, 62, 9288, 8, 198, 220, 220, 220, 4512, 62, 9310, 796, 4512, 62, 9310, 13, 8899, 7, 7645, 62, 20786, 11, 16931, 28, 17821, 8, 198, 220, 220, 220, 1614, 62, 9310, 796, 1614, 62, 9310, 13, 8899, 7, 7645, 62, 20786, 11, 16931, 28, 17821, 8, 628, 220, 220, 220, 15458, 1958, 62, 22184, 796, 37456, 8405, 11, 24714, 28, 51, 29291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 18893, 397, 17816, 58, 47, 2885, 60, 20520, 828, 220, 1303, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 23881, 22784, 220, 1303, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 15744, 7, 22704, 28, 15, 11, 14841, 62, 2100, 28, 18893, 397, 17816, 58, 47, 2885, 60, 20520, 828, 220, 1303, 5128, 198, 220, 220, 220, 220, 220, 220, 220, 23881, 22784, 220, 1303, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 23881, 7, 67, 4906, 2625, 600, 2414, 1, 611, 4512, 62, 9310, 13, 18242, 62, 4868, 2073, 366, 22468, 2624, 4943, 220, 1303, 6167, 198, 220, 220, 220, 15179, 24714, 7, 82, 12629, 8, 628, 220, 220, 220, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 796, 2251, 62, 67, 10254, 1170, 263, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 9310, 11, 1614, 62, 9310, 11, 15458, 62, 7857, 11, 15458, 1958, 62, 22184, 11, 36273, 8, 198, 220, 220, 220, 1441, 4512, 62, 7890, 62, 29356, 11, 1614, 62, 7890, 62, 29356, 628 ]
1.906173
6,107
from .pametis import * __all__ = [ 'OPT', 'configure', 'reset', 'sitemap', 'PametisException', 'AmbiguousOptions', 'BadParam', 'PametisCacheError', 'BadDomain', 'CantRemove', 'Pametis_cache', 'Sql_cache', 'postgres', 'sqlite', 'Pametis_spider', 'file_spider', 'sitemap_spider', ] __version__ = "0.4" __version_info__ = ( 0, 4, 0 )
[ 6738, 764, 79, 321, 316, 271, 1330, 1635, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3185, 51, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11250, 495, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 42503, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 9186, 499, 3256, 628, 220, 220, 220, 220, 220, 220, 220, 705, 47, 321, 316, 271, 16922, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 35649, 29709, 29046, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22069, 22973, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47, 321, 316, 271, 30562, 12331, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22069, 43961, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34, 415, 27914, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47, 321, 316, 271, 62, 23870, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 50, 13976, 62, 23870, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7353, 34239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25410, 578, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 47, 321, 316, 271, 62, 2777, 1304, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7753, 62, 2777, 1304, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 9186, 499, 62, 2777, 1304, 3256, 198, 220, 220, 220, 2361, 198, 834, 9641, 834, 796, 366, 15, 13, 19, 1, 198, 834, 9641, 62, 10951, 834, 796, 357, 657, 11, 604, 11, 657, 1267, 198 ]
1.722628
274
#coding: utf-8 import re from pyquery import PyQuery as pq from lxml import etree page = ''' ''' doc = pq(page) div = doc('div').find('.proxylistitem') div.each(perser) #print d('p') #返回<p>test 1</p><p>test 2</p> #print d('p').html() #返回test 1 #print d('p').eq(1).html() #返回test 2
[ 2, 66, 7656, 25, 3384, 69, 12, 23, 198, 11748, 302, 198, 6738, 12972, 22766, 1330, 9485, 20746, 355, 279, 80, 198, 6738, 300, 19875, 1330, 2123, 631, 198, 198, 7700, 796, 705, 7061, 628, 198, 7061, 6, 628, 198, 15390, 796, 279, 80, 7, 7700, 8, 198, 7146, 796, 2205, 10786, 7146, 27691, 19796, 7, 4458, 1676, 87, 2645, 396, 9186, 11537, 198, 7146, 13, 27379, 7, 19276, 263, 8, 628, 198, 2, 4798, 288, 10786, 79, 11537, 1303, 32573, 242, 32368, 252, 27, 79, 29, 9288, 352, 3556, 79, 6927, 79, 29, 9288, 362, 3556, 79, 29, 198, 2, 4798, 288, 10786, 79, 27691, 6494, 3419, 1303, 32573, 242, 32368, 252, 9288, 352, 198, 2, 4798, 288, 10786, 79, 27691, 27363, 7, 16, 737, 6494, 3419, 1303, 32573, 242, 32368, 252, 9288, 362 ]
2.125926
135
"""Classes and functions used by multiple modules in the system.""" import uuid from hashlib import md5 import bcrypt from voluptuous import Invalid, MultipleInvalid def token(): """ Generate a random but insecure token. Returns: The randomly generated token """ return str(uuid.uuid4().hex) def hash(string): """ Hash a string. Args: string: string to be hashed. Returns: The hex digest of the string. """ return md5(string.encode("utf-8")).hexdigest() class PicoException(Exception): """ General class for exceptions in the picoCTF API. Allows specification of a message and response code to display to the client, as well as an optional field for arbitrary data. The 'data' field will not be displayed to clients but will be stored in the database, making it ideal for storing stack traces, etc. """ def __init__(self, message, status_code=500, data=None): """Initialize a new PicoException.""" Exception.__init__(self) self.message = message self.status_code = status_code self.data = data def to_dict(self): """Convert a PicoException to a dict for serialization.""" rv = dict() rv["message"] = self.message return rv def check(*callback_tuples): """ Voluptuous wrapper function to raise our PicoException. Args: callback_tuples: a callback_tuple should contain (status, msg, callbacks) Returns: Returns a function callback for the Schema """ def v(value): """ Try to validate the value with the given callbacks. Args: value: the item to validate Raises: PicoException with 400 status code and error msg. Returns: The value if the validation callbacks are satisfied. """ for msg, callbacks in callback_tuples: for callback in callbacks: try: result = callback(value) if not result and type(result) == bool: raise Invalid() except Exception: raise PicoException(msg, 400) return value return v def validate(schema, data): """ Wrap the call to voluptuous schema to raise the proper exception. Args: schema: The voluptuous Schema object data: The validation data for the schema object Raises: PicoException with 400 status code and the voluptuous error message """ try: schema(data) except MultipleInvalid as error: raise PicoException(error.msg, 400) def hash_password(password): """ Hash plaintext password. Args: password: plaintext password Returns: Secure hash of password. """ return bcrypt.hashpw(password.encode("utf-8"), bcrypt.gensalt(8))
[ 37811, 9487, 274, 290, 5499, 973, 416, 3294, 13103, 287, 262, 1080, 526, 15931, 198, 11748, 334, 27112, 198, 6738, 12234, 8019, 1330, 45243, 20, 198, 198, 11748, 275, 29609, 198, 6738, 2322, 37623, 5623, 1330, 17665, 11, 20401, 44651, 628, 198, 4299, 11241, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2980, 378, 257, 4738, 475, 31955, 11241, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 15456, 7560, 11241, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 965, 7, 12303, 312, 13, 12303, 312, 19, 22446, 33095, 8, 628, 198, 4299, 12234, 7, 8841, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21059, 257, 4731, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 25, 4731, 284, 307, 468, 704, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 383, 17910, 16274, 286, 262, 4731, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 45243, 20, 7, 8841, 13, 268, 8189, 7203, 40477, 12, 23, 4943, 737, 33095, 12894, 395, 3419, 628, 198, 4871, 350, 3713, 16922, 7, 16922, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3611, 1398, 329, 13269, 287, 262, 279, 3713, 4177, 37, 7824, 13, 628, 220, 220, 220, 40402, 20855, 286, 257, 3275, 290, 2882, 2438, 284, 3359, 284, 262, 198, 220, 220, 220, 5456, 11, 355, 880, 355, 281, 11902, 2214, 329, 14977, 1366, 13, 628, 220, 220, 220, 383, 705, 7890, 6, 2214, 481, 407, 307, 9066, 284, 7534, 475, 481, 307, 8574, 198, 220, 220, 220, 287, 262, 6831, 11, 1642, 340, 7306, 329, 23069, 8931, 20675, 11, 3503, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3275, 11, 3722, 62, 8189, 28, 4059, 11, 1366, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 257, 649, 350, 3713, 16922, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 35528, 13, 834, 15003, 834, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20500, 796, 3275, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13376, 62, 8189, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 796, 1366, 628, 220, 220, 220, 825, 284, 62, 11600, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3103, 1851, 257, 350, 3713, 16922, 284, 257, 8633, 329, 11389, 1634, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 374, 85, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 374, 85, 14692, 20500, 8973, 796, 2116, 13, 20500, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 374, 85, 628, 198, 4299, 2198, 46491, 47423, 62, 28047, 2374, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4709, 37623, 5623, 29908, 2163, 284, 5298, 674, 350, 3713, 16922, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23838, 62, 28047, 2374, 25, 257, 23838, 62, 83, 29291, 815, 3994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 13376, 11, 31456, 11, 869, 10146, 8, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 2163, 23838, 329, 262, 10011, 2611, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 410, 7, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 9993, 284, 26571, 262, 1988, 351, 262, 1813, 869, 10146, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 262, 2378, 284, 26571, 198, 220, 220, 220, 220, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 3713, 16922, 351, 7337, 3722, 2438, 290, 4049, 31456, 13, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 611, 262, 21201, 869, 10146, 389, 11378, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 31456, 11, 869, 10146, 287, 23838, 62, 28047, 2374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 23838, 287, 869, 10146, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 23838, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1255, 290, 2099, 7, 20274, 8, 6624, 20512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 17665, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 350, 3713, 16922, 7, 19662, 11, 7337, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628, 220, 220, 220, 1441, 410, 628, 198, 4299, 26571, 7, 15952, 2611, 11, 1366, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 41028, 262, 869, 284, 2322, 37623, 5623, 32815, 284, 5298, 262, 1774, 6631, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32815, 25, 383, 2322, 37623, 5623, 10011, 2611, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 25, 383, 21201, 1366, 329, 262, 32815, 2134, 628, 220, 220, 220, 7567, 2696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 350, 3713, 16922, 351, 7337, 3722, 2438, 290, 262, 2322, 37623, 5623, 4049, 3275, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 32815, 7, 7890, 8, 198, 220, 220, 220, 2845, 20401, 44651, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 350, 3713, 16922, 7, 18224, 13, 19662, 11, 7337, 8, 628, 198, 4299, 12234, 62, 28712, 7, 28712, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 21059, 8631, 5239, 9206, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9206, 25, 8631, 5239, 9206, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26707, 12234, 286, 9206, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 275, 29609, 13, 17831, 79, 86, 7, 28712, 13, 268, 8189, 7203, 40477, 12, 23, 12340, 275, 29609, 13, 70, 641, 2501, 7, 23, 4008, 198 ]
2.499157
1,186
import numpy as np import matplotlib.pyplot as plt import os from keras import layers, optimizers from keras.models import Model, Sequential from keras.layers import Dense, LSTM, Dropout from keras import optimizers, regularizers from tensorflow import keras from tensorflow.keras import layers from train_model import * if __name__ == "__main__": learning_cycle = 0 for _ in range(learning_cycle): mymodel = train() multi_step_inference() new_exp() query_new_data()
[ 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 28686, 198, 6738, 41927, 292, 1330, 11685, 11, 6436, 11341, 198, 6738, 41927, 292, 13, 27530, 1330, 9104, 11, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 360, 1072, 11, 406, 2257, 44, 11, 14258, 448, 198, 6738, 41927, 292, 1330, 6436, 11341, 11, 3218, 11341, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 11685, 198, 6738, 4512, 62, 19849, 1330, 1635, 628, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 220, 198, 220, 220, 220, 4673, 62, 13696, 796, 657, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 40684, 62, 13696, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 616, 19849, 796, 4512, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 9662, 62, 259, 4288, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 11201, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 12405, 62, 3605, 62, 7890, 3419, 198 ]
2.678571
196
from firebase_admin import storage
[ 6738, 2046, 8692, 62, 28482, 1330, 6143 ]
4.857143
7
# Do not REMOVE
[ 2, 2141, 407, 22657, 46, 6089, 198 ]
2.285714
7
from gym.envs.registration import register register( id='SimpleFlappy-v0', entry_point='gym_simpleflappy.envs:FlappyEnv', ) register( id='SimpleFlappyDistance-v0', entry_point='gym_simpleflappy.envs:FlappyEnvDistance', )
[ 6738, 11550, 13, 268, 14259, 13, 2301, 33397, 1330, 7881, 198, 198, 30238, 7, 198, 220, 220, 220, 4686, 11639, 26437, 7414, 7774, 12, 85, 15, 3256, 198, 220, 220, 220, 5726, 62, 4122, 11639, 1360, 76, 62, 36439, 2704, 7774, 13, 268, 14259, 25, 7414, 7774, 4834, 85, 3256, 198, 8, 198, 198, 30238, 7, 198, 220, 220, 220, 4686, 11639, 26437, 7414, 7774, 45767, 12, 85, 15, 3256, 198, 220, 220, 220, 5726, 62, 4122, 11639, 1360, 76, 62, 36439, 2704, 7774, 13, 268, 14259, 25, 7414, 7774, 4834, 85, 45767, 3256, 198, 8, 198 ]
2.463918
97
from gym.scoreboard.registration import add_task, add_group add_group( id='bandits', name='Bandits', description='Various N-Armed Bandit environments' ) add_task( id='BanditTwoArmedDeterministicFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Simplest bandit where one action always pays, and the other never does.", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1, 0] r_dist = [1, 1] """, background="" ) add_task( id='BanditTwoArmedHighHighFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are likely", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.9] r_dist = [1, 1] """, background="Bandit B Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedLowLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a small difference between which bandit pays where both are unlikley", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.1, 0.2] r_dist = [1, 1] """, background="Bandit A Figure 2.3 from Reinforcement Learning: An Introduction (Sutton & Barto) [link](https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node18.html)" ) add_task( id='BanditTwoArmedHighLowFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="Stochastic version with a large difference between which bandit pays out of two choices", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [0.8, 0.2] r_dist = [1, 1] """, background="" ) add_task( id='BanditTenArmedGaussian-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit mentioned with reward based on a Gaussian distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = [1] (* 10) r_dist = [numpy.random.normal(0, 1), 1] (* 10) Every bandit always pays out Each action has a reward mean (selected from a normal distribution with mean 0 and std 1), and the actual reward returns is selected with a std of 1 around the selected mean """, background="Described on page 30 of Sutton and Barto's [Reinforcement Learning: An Introduction](https://www.dropbox.com/s/b3psxv2r0ccmf80/book2015oct.pdf?dl=0)" ) add_task( id='BanditTenArmedRandomRandom-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to both payouts and rewards", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.random.uniform(size=10) Bandits have uniform probability of paying out and payout a reward of uniform probability """, background="" ) add_task( id='BanditTenArmedRandomFixed-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with random probabilities assigned to how often the action will provide a reward", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.random.uniform(size=10) r_dist = numpy.full(bandits, 1) Bandits have a uniform probability of rewarding and always reward 1 """, background="" ) add_task( id='BanditTenArmedUniformDistributedReward-v0', group='bandits', experimental=True, contributor='jkcooper2', summary="10 armed bandit with that always pays out with a reward selected from a uniform distribution", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = numpy.full(bandits, 1) r_dist = numpy.random.uniform(size=10) Bandits always pay out. Reward is selected from uniform distribution """, background="Based on comparisons from http://sudeepraja.github.io/Bandits/" ) add_task( id='BanditTwoArmedIndependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Simple two independent armed bandit giving a reward of one with probabilities p_1 and p_2", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p_dist = np.random.uniform(2) r_dist = [1, 1] """, background="For the first experience, called 'Bandit with independent arms' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentUniform-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0,1] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = np.random.uniform() p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentEasy-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.1,0.9] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.1,0,9][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentMedium-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.25,0.75] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.25,0,75][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditTwoArmedDependentHard-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="Two armed bandit giving a reward of one with probabilities p_1 ~ U[0.4,0.6] and p_2 = 1 - p_1", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. p = [0.4,0,6][np.random.randint(0,2)] p_dist = [p, 1-p] r_dist = [1, 1] """, background="For the experience called 'Bandits with dependent arms (I)' of https://arxiv.org/abs/1611.05763" add_task( id='BanditEleveArmedWithIndex-v0', group='bandits', experimental=True, contributor='Thomas_Lecat', summary="11 armed bandit with deterministic payouts. \ Nine 'non-target' return a reward of 1.1, \ one 'target' returns a reward of 5, \ the 11th arm has reward = 0.1 * index of the target arm (ranging from 0.1 to 1.0)", description=""" Each bandit takes in a probability distribution, which is the likelihood of the action paying out, and a reward distribution, which is the value or distribution of what the agent will be rewarded the bandit does payout. index = np.random.randint(0,10) p_dist = np.full(11,1) r_dist = np.full(11,1.1) r_dist[index] = 5 r_dist[-1] = 0.1*index BanditEnv.__init__(self, p_dist = p_dist, r_dist = r_dist) """, background="For the experience called 'Bandits with dependent arms (II)' of https://arxiv.org/abs/1611.05763"
[ 6738, 11550, 13, 26675, 3526, 13, 2301, 33397, 1330, 751, 62, 35943, 11, 751, 62, 8094, 628, 198, 2860, 62, 8094, 7, 198, 220, 220, 220, 4686, 11639, 3903, 896, 3256, 198, 220, 220, 220, 1438, 11639, 31407, 896, 3256, 198, 220, 220, 220, 6764, 11639, 40009, 399, 12, 3163, 1150, 10243, 270, 12493, 6, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 35, 2357, 49228, 13715, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 8890, 489, 395, 4097, 270, 810, 530, 2223, 1464, 13831, 11, 290, 262, 584, 1239, 857, 33283, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 685, 16, 11, 657, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 33151, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 11922, 11922, 13715, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 1273, 5374, 3477, 2196, 351, 257, 1402, 3580, 1022, 543, 4097, 270, 13831, 810, 1111, 389, 1884, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 685, 15, 13, 23, 11, 657, 13, 24, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 31407, 270, 347, 11291, 362, 13, 18, 422, 22299, 13442, 18252, 25, 1052, 22395, 357, 50, 21115, 1222, 13167, 78, 8, 685, 8726, 16151, 5450, 1378, 12384, 31628, 13, 6359, 13, 723, 4835, 64, 13, 6888, 14, 93, 82, 21115, 14, 2070, 14, 16497, 14, 17440, 1507, 13, 6494, 16725, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 20535, 20535, 13715, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 1273, 5374, 3477, 2196, 351, 257, 1402, 3580, 1022, 543, 4097, 270, 13831, 810, 1111, 389, 9642, 1134, 1636, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 685, 15, 13, 16, 11, 657, 13, 17, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 31407, 270, 317, 11291, 362, 13, 18, 422, 22299, 13442, 18252, 25, 1052, 22395, 357, 50, 21115, 1222, 13167, 78, 8, 685, 8726, 16151, 5450, 1378, 12384, 31628, 13, 6359, 13, 723, 4835, 64, 13, 6888, 14, 93, 82, 21115, 14, 2070, 14, 16497, 14, 17440, 1507, 13, 6494, 16725, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 11922, 20535, 13715, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 1273, 5374, 3477, 2196, 351, 257, 1588, 3580, 1022, 543, 4097, 270, 13831, 503, 286, 734, 7747, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 685, 15, 13, 23, 11, 657, 13, 17, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 33151, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 24893, 3163, 1150, 35389, 31562, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 940, 6936, 4097, 270, 4750, 351, 6721, 1912, 319, 257, 12822, 31562, 6082, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 685, 16, 60, 20789, 838, 8, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 77, 32152, 13, 25120, 13, 11265, 7, 15, 11, 352, 828, 352, 60, 20789, 838, 8, 628, 220, 220, 220, 3887, 4097, 270, 1464, 13831, 503, 198, 220, 220, 220, 5501, 2223, 468, 257, 6721, 1612, 357, 34213, 422, 257, 3487, 6082, 351, 1612, 657, 290, 14367, 352, 828, 290, 262, 4036, 198, 220, 220, 220, 6721, 5860, 318, 6163, 351, 257, 14367, 286, 352, 1088, 262, 6163, 1612, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 24564, 8725, 319, 2443, 1542, 286, 39964, 290, 13167, 78, 338, 685, 3041, 259, 13442, 18252, 25, 1052, 22395, 16151, 5450, 1378, 2503, 13, 14781, 3524, 13, 785, 14, 82, 14, 65, 18, 862, 87, 85, 17, 81, 15, 535, 76, 69, 1795, 14, 2070, 4626, 38441, 13, 12315, 30, 25404, 28, 15, 16725, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 24893, 3163, 1150, 29531, 29531, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 940, 6936, 4097, 270, 351, 4738, 39522, 8686, 284, 1111, 1414, 5269, 290, 11530, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 7857, 28, 940, 8, 198, 220, 220, 220, 374, 62, 17080, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 7857, 28, 940, 8, 628, 220, 220, 220, 10243, 896, 423, 8187, 12867, 286, 5989, 503, 290, 40055, 257, 6721, 286, 8187, 12867, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 33151, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 24893, 3163, 1150, 29531, 13715, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 940, 6936, 4097, 270, 351, 4738, 39522, 8686, 284, 703, 1690, 262, 2223, 481, 2148, 257, 6721, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 220, 220, 220, 220, 279, 62, 17080, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 7857, 28, 940, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 62, 17080, 796, 299, 32152, 13, 12853, 7, 3903, 896, 11, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10243, 896, 423, 257, 8187, 12867, 286, 23404, 290, 1464, 6721, 352, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 33151, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 24893, 3163, 1150, 3118, 6933, 20344, 6169, 48123, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 73, 74, 1073, 3575, 17, 3256, 198, 220, 220, 220, 10638, 2625, 940, 6936, 4097, 270, 351, 326, 1464, 13831, 503, 351, 257, 6721, 6163, 422, 257, 8187, 6082, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 220, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 220, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 220, 220, 220, 220, 279, 62, 17080, 796, 299, 32152, 13, 12853, 7, 3903, 896, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 374, 62, 17080, 796, 299, 32152, 13, 25120, 13, 403, 6933, 7, 7857, 28, 940, 8, 628, 220, 220, 220, 220, 220, 220, 220, 10243, 896, 1464, 1414, 503, 13, 32307, 318, 6163, 422, 8187, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 15001, 319, 17909, 422, 2638, 1378, 82, 2507, 538, 430, 6592, 13, 12567, 13, 952, 14, 31407, 896, 30487, 198, 8, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 40566, 3118, 6933, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 26437, 734, 4795, 6936, 4097, 270, 3501, 257, 6721, 286, 530, 351, 39522, 279, 62, 16, 290, 279, 62, 17, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 62, 17080, 796, 45941, 13, 25120, 13, 403, 6933, 7, 17, 8, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 717, 1998, 11, 1444, 705, 31407, 270, 351, 4795, 5101, 6, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 35, 8682, 3118, 6933, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 7571, 6936, 4097, 270, 3501, 257, 6721, 286, 530, 351, 39522, 279, 62, 16, 5299, 471, 58, 15, 11, 16, 60, 290, 279, 62, 17, 796, 352, 532, 279, 62, 16, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 796, 45941, 13, 25120, 13, 403, 6933, 3419, 198, 220, 220, 220, 279, 62, 17080, 796, 685, 79, 11, 352, 12, 79, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 1998, 1444, 705, 31407, 896, 351, 10795, 5101, 357, 40, 33047, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 35, 8682, 28406, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 7571, 6936, 4097, 270, 3501, 257, 6721, 286, 530, 351, 39522, 279, 62, 16, 5299, 471, 58, 15, 13, 16, 11, 15, 13, 24, 60, 290, 279, 62, 17, 796, 352, 532, 279, 62, 16, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 796, 685, 15, 13, 16, 11, 15, 11, 24, 7131, 37659, 13, 25120, 13, 25192, 600, 7, 15, 11, 17, 15437, 198, 220, 220, 220, 279, 62, 17080, 796, 685, 79, 11, 352, 12, 79, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 1998, 1444, 705, 31407, 896, 351, 10795, 5101, 357, 40, 33047, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 35, 8682, 31205, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 7571, 6936, 4097, 270, 3501, 257, 6721, 286, 530, 351, 39522, 279, 62, 16, 5299, 471, 58, 15, 13, 1495, 11, 15, 13, 2425, 60, 290, 279, 62, 17, 796, 352, 532, 279, 62, 16, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 796, 685, 15, 13, 1495, 11, 15, 11, 2425, 7131, 37659, 13, 25120, 13, 25192, 600, 7, 15, 11, 17, 15437, 198, 220, 220, 220, 279, 62, 17080, 796, 685, 79, 11, 352, 12, 79, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 1998, 1444, 705, 31407, 896, 351, 10795, 5101, 357, 40, 33047, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 198, 198, 2860, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 7571, 3163, 1150, 35, 8682, 17309, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 7571, 6936, 4097, 270, 3501, 257, 6721, 286, 530, 351, 39522, 279, 62, 16, 5299, 471, 58, 15, 13, 19, 11, 15, 13, 21, 60, 290, 279, 62, 17, 796, 352, 532, 279, 62, 16, 1600, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 279, 796, 685, 15, 13, 19, 11, 15, 11, 21, 7131, 37659, 13, 25120, 13, 25192, 600, 7, 15, 11, 17, 15437, 198, 220, 220, 220, 279, 62, 17080, 796, 685, 79, 11, 352, 12, 79, 60, 198, 220, 220, 220, 374, 62, 17080, 796, 685, 16, 11, 352, 60, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 1998, 1444, 705, 31407, 896, 351, 10795, 5101, 357, 40, 33047, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 628, 220, 220, 220, 751, 62, 35943, 7, 198, 220, 220, 220, 4686, 11639, 31407, 270, 28827, 303, 3163, 1150, 3152, 15732, 12, 85, 15, 3256, 198, 220, 220, 220, 1448, 11639, 3903, 896, 3256, 198, 220, 220, 220, 11992, 28, 17821, 11, 198, 220, 220, 220, 18920, 11639, 22405, 62, 43, 721, 265, 3256, 198, 220, 220, 220, 10638, 2625, 1157, 6936, 4097, 270, 351, 2206, 49228, 1414, 5269, 13, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 16431, 705, 13159, 12, 16793, 6, 1441, 257, 6721, 286, 352, 13, 16, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 530, 705, 16793, 6, 5860, 257, 6721, 286, 642, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1367, 400, 3211, 468, 6721, 796, 657, 13, 16, 1635, 6376, 286, 262, 2496, 3211, 357, 32319, 422, 657, 13, 16, 284, 352, 13, 15, 42501, 198, 220, 220, 220, 6764, 2625, 15931, 198, 220, 220, 220, 5501, 4097, 270, 2753, 287, 257, 12867, 6082, 11, 543, 318, 262, 14955, 286, 262, 2223, 5989, 503, 11, 198, 220, 220, 220, 290, 257, 6721, 6082, 11, 543, 318, 262, 1988, 393, 6082, 286, 644, 262, 5797, 481, 307, 20945, 198, 220, 220, 220, 262, 4097, 270, 857, 40055, 13, 628, 220, 220, 220, 6376, 796, 45941, 13, 25120, 13, 25192, 600, 7, 15, 11, 940, 8, 198, 220, 220, 220, 279, 62, 17080, 796, 45941, 13, 12853, 7, 1157, 11, 16, 8, 198, 220, 220, 220, 374, 62, 17080, 796, 45941, 13, 12853, 7, 1157, 11, 16, 13, 16, 8, 198, 220, 220, 220, 374, 62, 17080, 58, 9630, 60, 796, 642, 198, 220, 220, 220, 374, 62, 17080, 58, 12, 16, 60, 796, 657, 13, 16, 9, 9630, 198, 220, 220, 220, 10243, 270, 4834, 85, 13, 834, 15003, 834, 7, 944, 11, 279, 62, 17080, 796, 279, 62, 17080, 11, 374, 62, 17080, 796, 374, 62, 17080, 8, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 4469, 2625, 1890, 262, 1998, 1444, 705, 31407, 896, 351, 10795, 5101, 357, 3978, 33047, 286, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 1157, 13, 2713, 49641, 1, 198 ]
2.93978
3,454
from django import forms from django.contrib.auth import forms as auth_forms from django.contrib.auth.models import User from books.widgets import NoNameTextInput # TODO: Might be good to update this later to update the username too so we aren't doing two database saves PRODUCTS = [ ('ebook', 'eBook Only'), ('paperback', 'Paperback'), ('video', 'Video'), ]
[ 6738, 42625, 14208, 1330, 5107, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 5107, 355, 6284, 62, 23914, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 198, 6738, 3835, 13, 28029, 11407, 1330, 1400, 5376, 8206, 20560, 198, 198, 2, 16926, 46, 25, 24213, 307, 922, 284, 4296, 428, 1568, 284, 4296, 262, 20579, 1165, 523, 356, 3588, 470, 1804, 734, 6831, 16031, 628, 628, 628, 198, 4805, 28644, 50, 796, 685, 198, 220, 220, 220, 19203, 16497, 3256, 705, 68, 10482, 5514, 33809, 198, 220, 220, 220, 19203, 20189, 1891, 3256, 705, 42950, 1891, 33809, 198, 220, 220, 220, 19203, 15588, 3256, 705, 10798, 33809, 198, 60, 628 ]
3.228814
118
# -*- coding: utf-8 -*- """ It generates plots that shows similarity for anomalies in each dataset. """ import copy import math import numpy as np import matplotlib import matplotlib.mlab import matplotlib.pyplot as plt from matplotlib import gridspec import nslkdd.preprocessing as preprocessing import nslkdd.data.model as model if __name__ == '__main__': import time start = time.time() df_training_20, df_training_full, gmms_training_20, gmms_training_full = preprocessing.get_preprocessed_training_data() df_test_plus, df_test_21, gmms_test_plus, gmms_test_21 = preprocessing.get_preprocessed_test_data() generate_plots_for_df(df_training_20, gmms_training_20, "training20") generate_plots_for_df(df_training_full, gmms_training_full, "trainingfull") generate_plots_for_df(df_test_plus, gmms_test_plus, "testplus") generate_plots_for_df(df_test_21, gmms_test_21, "test21")
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 1026, 18616, 21528, 326, 2523, 26789, 329, 35907, 287, 1123, 27039, 13, 198, 37811, 198, 198, 11748, 4866, 198, 11748, 10688, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 4029, 397, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 1330, 50000, 43106, 198, 198, 11748, 299, 6649, 74, 1860, 13, 3866, 36948, 355, 662, 36948, 198, 11748, 299, 6649, 74, 1860, 13, 7890, 13, 19849, 355, 2746, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 640, 198, 220, 220, 220, 923, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 47764, 62, 34409, 62, 1238, 11, 47764, 62, 34409, 62, 12853, 11, 308, 76, 907, 62, 34409, 62, 1238, 11, 308, 76, 907, 62, 34409, 62, 12853, 796, 662, 36948, 13, 1136, 62, 3866, 14681, 276, 62, 34409, 62, 7890, 3419, 198, 220, 220, 220, 47764, 62, 9288, 62, 9541, 11, 47764, 62, 9288, 62, 2481, 11, 308, 76, 907, 62, 9288, 62, 9541, 11, 308, 76, 907, 62, 9288, 62, 2481, 796, 662, 36948, 13, 1136, 62, 3866, 14681, 276, 62, 9288, 62, 7890, 3419, 628, 220, 220, 220, 7716, 62, 489, 1747, 62, 1640, 62, 7568, 7, 7568, 62, 34409, 62, 1238, 11, 308, 76, 907, 62, 34409, 62, 1238, 11, 366, 34409, 1238, 4943, 198, 220, 220, 220, 7716, 62, 489, 1747, 62, 1640, 62, 7568, 7, 7568, 62, 34409, 62, 12853, 11, 308, 76, 907, 62, 34409, 62, 12853, 11, 366, 34409, 12853, 4943, 198, 220, 220, 220, 7716, 62, 489, 1747, 62, 1640, 62, 7568, 7, 7568, 62, 9288, 62, 9541, 11, 308, 76, 907, 62, 9288, 62, 9541, 11, 366, 9288, 9541, 4943, 198, 220, 220, 220, 7716, 62, 489, 1747, 62, 1640, 62, 7568, 7, 7568, 62, 9288, 62, 2481, 11, 308, 76, 907, 62, 9288, 62, 2481, 11, 366, 9288, 2481, 4943, 628 ]
2.670554
343
from nose.tools import assert_equal from nose import SkipTest import random from pbtools.pbdagcon.aligngraph import *
[ 6738, 9686, 13, 31391, 1330, 6818, 62, 40496, 198, 6738, 9686, 1330, 32214, 14402, 198, 11748, 4738, 198, 6738, 279, 18347, 10141, 13, 79, 17457, 363, 1102, 13, 31494, 34960, 1330, 1635, 628, 198 ]
3.529412
34
from django.utils import timezone from django.utils.translation import gettext_lazy as _ from rest_framework import serializers from rest_framework.exceptions import ValidationError from ggongsul.member.models import Member from ggongsul.member.serializers import MemberSerializer from ggongsul.partner.models import Partner from ggongsul.partner.serializers import PartnerShortInfoSerializer from ggongsul.visitation.models import Visitation
[ 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 651, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 1334, 62, 30604, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 198, 6738, 308, 70, 28079, 377, 13, 19522, 13, 27530, 1330, 10239, 198, 6738, 308, 70, 28079, 377, 13, 19522, 13, 46911, 11341, 1330, 10239, 32634, 7509, 198, 6738, 308, 70, 28079, 377, 13, 3911, 1008, 13, 27530, 1330, 35532, 198, 6738, 308, 70, 28079, 377, 13, 3911, 1008, 13, 46911, 11341, 1330, 35532, 16438, 12360, 32634, 7509, 198, 6738, 308, 70, 28079, 377, 13, 4703, 3780, 13, 27530, 1330, 6911, 3780, 628, 198 ]
3.725
120
import json import os import random import bottle from api import ping_response, start_response, move_response, end_response # Moving towards a tail is safe as long as that snake does not have food witihn reach. # If it is te only possible move, that move should be made anyway @bottle.route('/') @bottle.route('/static/<path:path>') def static(path): """ Given a path, return the static file located relative to the static folder. This can be used to return the snake head URL in an API response. """ return bottle.static_file(path, root='static/') @bottle.post('/ping') def ping(): """ A keep-alive endpoint used to prevent cloud application platforms, such as Heroku, from sleeping the application instance. """ return ping_response() @bottle.post('/start') @bottle.post('/move') # int x,y or tuple (NEXT STEP) ##Only looks for dead end ##def snake_head_area(snake_heads, my_head): ## avoid_heads = [] ## snake_heads1 = snake_heads ## snake_heads1.remove(my_head) ## ## for heads in snake_heads1: ## avoid_heads.append((heads[0]+1, heads[1])) ## avoid_heads.append((heads[0] - 1, heads[1])) ## avoid_heads.append((heads[0], heads[1] + 1)) ## avoid_heads.append((heads[0], heads[1] - 1)) ## ## return avoid_heads # def safetyLevel(x,y, stuffToAvoid): @bottle.post('/end') # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() if __name__ == '__main__': bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
[ 11748, 33918, 198, 11748, 28686, 198, 11748, 4738, 198, 11748, 9294, 198, 198, 6738, 40391, 1330, 29400, 62, 26209, 11, 923, 62, 26209, 11, 1445, 62, 26209, 11, 886, 62, 26209, 628, 198, 2, 26768, 3371, 257, 7894, 318, 3338, 355, 890, 355, 326, 17522, 857, 407, 423, 2057, 20868, 4449, 77, 3151, 13, 198, 2, 1002, 340, 318, 573, 691, 1744, 1445, 11, 326, 1445, 815, 307, 925, 6949, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 11537, 628, 198, 31, 10985, 293, 13, 38629, 10786, 14, 12708, 14, 27, 6978, 25, 6978, 29, 11537, 198, 4299, 9037, 7, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 257, 3108, 11, 1441, 262, 9037, 2393, 5140, 3585, 198, 220, 220, 220, 284, 262, 9037, 9483, 13, 628, 220, 220, 220, 770, 460, 307, 973, 284, 1441, 262, 17522, 1182, 10289, 287, 281, 7824, 2882, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 9294, 13, 12708, 62, 7753, 7, 6978, 11, 6808, 11639, 12708, 14, 11537, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 13886, 11537, 198, 4299, 29400, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 1394, 12, 282, 425, 36123, 973, 284, 2948, 6279, 3586, 9554, 11, 198, 220, 220, 220, 884, 355, 2332, 11601, 11, 422, 11029, 262, 3586, 4554, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 29400, 62, 26209, 3419, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 9688, 11537, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 21084, 11537, 628, 198, 2, 493, 2124, 11, 88, 393, 46545, 357, 45, 13918, 49154, 8, 198, 198, 2235, 10049, 3073, 329, 2636, 886, 628, 198, 2235, 4299, 17522, 62, 2256, 62, 20337, 7, 16184, 539, 62, 16600, 11, 616, 62, 2256, 2599, 198, 2235, 220, 220, 220, 3368, 62, 16600, 796, 17635, 198, 2235, 220, 220, 220, 17522, 62, 16600, 16, 796, 17522, 62, 16600, 198, 2235, 220, 220, 220, 17522, 62, 16600, 16, 13, 28956, 7, 1820, 62, 2256, 8, 198, 2235, 198, 2235, 220, 220, 220, 329, 6665, 287, 17522, 62, 16600, 16, 25, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3368, 62, 16600, 13, 33295, 19510, 16600, 58, 15, 48688, 16, 11, 6665, 58, 16, 60, 4008, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3368, 62, 16600, 13, 33295, 19510, 16600, 58, 15, 60, 532, 352, 11, 6665, 58, 16, 60, 4008, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3368, 62, 16600, 13, 33295, 19510, 16600, 58, 15, 4357, 6665, 58, 16, 60, 1343, 352, 4008, 198, 2235, 220, 220, 220, 220, 220, 220, 220, 3368, 62, 16600, 13, 33295, 19510, 16600, 58, 15, 4357, 6665, 58, 16, 60, 532, 352, 4008, 198, 2235, 198, 2235, 220, 220, 220, 1441, 3368, 62, 16600, 628, 198, 2, 825, 3747, 4971, 7, 87, 11, 88, 11, 3404, 2514, 38618, 2599, 628, 198, 31, 10985, 293, 13, 7353, 10786, 14, 437, 11537, 628, 198, 2, 1475, 3455, 25290, 18878, 598, 357, 568, 2485, 291, 1211, 460, 1064, 340, 8, 198, 31438, 796, 9294, 13, 12286, 62, 1324, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 9294, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3586, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 28, 418, 13, 1136, 24330, 10786, 4061, 3256, 705, 15, 13, 15, 13, 15, 13, 15, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 28, 418, 13, 1136, 24330, 10786, 15490, 3256, 705, 1795, 1795, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 14257, 28, 418, 13, 1136, 24330, 10786, 30531, 3256, 6407, 8, 198, 220, 220, 220, 1267, 198 ]
2.645367
626
""" Internal model of a report during generation """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import time as _time import warnings as _warnings from pathlib import Path as _Path import shutil as _shutil from collections import defaultdict as _defaultdict, OrderedDict as _OrderedDict import pickle as _pickle from . import autotitle as _autotitle from . import merge_helpers as _merge from .. import _version, tools as _tools from ..objects import VerbosityPrinter as _VerbosityPrinter, ExplicitOpModel as _ExplicitOpModel from . import workspace as _ws from .notebook import Notebook as _Notebook # TODO this whole thing needs to be rewritten with different reports as derived classes class Report: """ The internal model of a report. This class should never be instantiated directly. Instead, users should use the appropriate factory method in `pygsti.report.factory`. """ def _build(self, build_options=None): """ Render all sections to a map of report elements for templating """ full_params = { 'results': self._results, **self._report_params } full_params.update(self._build_defaults) full_params.update(build_options or {}) qtys = self._global_qtys.copy() for section in self._sections: qtys.update(section.render(self._workspace, **full_params)) return qtys def write_html(self, path, auto_open=False, link_to=None, connected=False, build_options=None, brevity=0, precision=None, resizable=True, autosize='initial', single_file=False, verbosity=0): """ Write this report to the disk as a collection of HTML documents. Parameters ---------- path : str or path-like object The filesystem path of a directory to write the report to. If the specified directory does not exist, it will be created automatically auto_open : bool, optional Whether the output file should be automatically opened in a web browser. link_to : list, optional If not None, a list of one or more items from the set {"tex", "pdf", "pkl"} indicating whether or not to create and include links to Latex, PDF, and Python pickle files, respectively. connected : bool, optional Whether output HTML should assume an active internet connection. If True, then the resulting HTML file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. resizable : bool, optional Whether plots and tables are made with resize handles and can be resized within the report. autosize : {'none', 'initial', 'continual'} Whether tables and plots should be resized, either initially -- i.e. just upon first rendering (`"initial"`) -- or whenever the browser window is resized (`"continual"`). single_file : bool, optional If true, the report will be written to a single HTML document, with external dependencies baked-in. This mode is not recommended for large reports, because this file can grow large enough that major web browsers may struggle to render it. verbosity : int, optional Amount of detail to print to stdout. """ build_options = build_options or {} toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True # Render sections qtys = self._build(build_options) # TODO this really should be a parameter of this method embed_figures = self._report_params.get('embed_figures', True) if single_file: assert(embed_figures), \ "Single-file mode requires `embed_figures` to be True" _merge.merge_jinja_template( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, verbosity=verbosity ) else: _merge.merge_jinja_template_dir( qtys, path, templateDir=self._templates['html'], auto_open=auto_open, precision=precision, link_to=link_to, connected=connected, toggles=toggles, renderMath=True, resizable=resizable, autosize=autosize, embed_figures=embed_figures, verbosity=verbosity ) def write_notebook(self, path, auto_open=False, connected=False, verbosity=0): """ Write this report to the disk as an IPython notebook A notebook report allows the user to interact more flexibly with the data underlying the figures, and to easily generate customized variants on the figures. As such, this type of report will be most useful for experts who want to tinker with the standard analysis presented in the static HTML or LaTeX format reports. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.ipynb` file extension. auto_open : bool, optional If True, automatically open the report in a web browser after it has been generated. connected : bool, optional Whether output notebook should assume an active internet connection. If True, then the resulting file size will be reduced because it will link to web resources (e.g. CDN libraries) instead of embedding them. verbosity : int, optional How much detail to send to stdout. """ # TODO this only applies to standard reports; rewrite generally title = self._global_qtys['title'] confidenceLevel = self._report_params['confidence_level'] path = _Path(path) printer = _VerbosityPrinter.build_printer(verbosity) templatePath = _Path(__file__).parent / 'templates' / self._templates['notebook'] outputDir = path.parent #Copy offline directory into position if not connected: _merge.rsync_offline_dir(outputDir) #Save results to file # basename = _os.path.splitext(_os.path.basename(filename))[0] basename = path.stem results_file_base = basename + '_results.pkl' results_file = outputDir / results_file_base with open(str(results_file), 'wb') as f: _pickle.dump(self._results, f) nb = _Notebook() nb.add_markdown('# {title}\n(Created on {date})'.format( title=title, date=_time.strftime("%B %d, %Y"))) nb.add_code("""\ import pickle import pygsti""") dsKeys = list(self._results.keys()) results = self._results[dsKeys[0]] #Note: `results` is always a single Results obj from here down nb.add_code("""\ #Load results dictionary with open('{infile}', 'rb') as infile: results_dict = pickle.load(infile) print("Available dataset keys: ", ', '.join(results_dict.keys()))\ """.format(infile=results_file_base)) nb.add_code("""\ #Set which dataset should be used below results = results_dict['{dsKey}'] print("Available estimates: ", ', '.join(results.estimates.keys()))\ """.format(dsKey=dsKeys[0])) estLabels = list(results.estimates.keys()) estimate = results.estimates[estLabels[0]] nb.add_code("""\ #Set which estimate is to be used below estimate = results.estimates['{estLabel}'] print("Available gauge opts: ", ', '.join(estimate.goparameters.keys()))\ """.format(estLabel=estLabels[0])) goLabels = list(estimate.goparameters.keys()) nb.add_code("""\ gopt = '{goLabel}' ds = results.dataset gssFinal = results.circuit_structs['final'] Ls = results.circuit_structs['final'].Ls gssPerIter = results.circuit_structs['iteration'] #ALL_L prepStrs = results.circuit_lists['prep fiducials'] effectStrs = results.circuit_lists['meas fiducials'] germs = results.circuit_lists['germs'] strs = (prepStrs, effectStrs) params = estimate.parameters objective = estimate.parameters['objective'] if objective == "logl": mpc = estimate.parameters['minProbClip'] else: mpc = estimate.parameters['minProbClipForWeighting'] clifford_compilation = estimate.parameters.get('clifford_compilation',None) effective_ds, scale_subMxs = estimate.get_effective_dataset(True) scaledSubMxsDict = {{'scaling': scale_subMxs, 'scaling.colormap': "revseq"}} models = estimate.models mdl = models[gopt] #FINAL mdl_final = models['final iteration estimate'] #ITER target_model = models['target'] mdlPerIter = models['iteration estimates'] mdl_eigenspace_projected = pygsti.tools.project_to_target_eigenspace(mdl, target_model) goparams = estimate.goparameters[gopt] confidenceLevel = {CL} if confidenceLevel is None: cri = None else: crfactory = estimate.get_confidence_region_factory(gopt) region_type = "normal" if confidenceLevel >= 0 else "non-markovian" cri = crfactory.view(abs(confidenceLevel), region_type)\ """.format(goLabel=goLabels[0], CL=confidenceLevel)) nb.add_code("""\ from pygsti.report import Workspace ws = Workspace() ws.init_notebook_mode(connected={conn}, autodisplay=True)\ """.format(conn=str(connected))) nb.add_notebook_text_files([ templatePath / 'summary.txt', templatePath / 'goodness.txt', templatePath / 'gauge_invariant.txt', templatePath / 'gauge_variant.txt']) #Insert multi-dataset specific analysis if len(dsKeys) > 1: nb.add_markdown(('# Dataset comparisons\n' 'This report contains information for more than one data set.' 'This page shows comparisons between different data sets.')) nb.add_code("""\ dslbl1 = '{dsLbl1}' dslbl2 = '{dsLbl2}' dscmp_gss = results_dict[dslbl1].circuit_structs['final'] ds1 = results_dict[dslbl1].dataset ds2 = results_dict[dslbl2].dataset dscmp = pygsti.obj.DataComparator([ds1, ds2], DS_names=[dslbl1, dslbl2]) """.format(dsLbl1=dsKeys[0], dsLbl2=dsKeys[1])) nb.add_notebook_text_files([ templatePath / 'data_comparison.txt']) #Add reference material nb.add_notebook_text_files([ templatePath / 'input.txt', templatePath / 'meta.txt']) printer.log("Report Notebook created as %s" % path) if auto_open: port = "auto" if auto_open is True else int(auto_open) nb.launch(str(path), port=port) else: nb.save_to(str(path)) def write_pdf(self, path, latex_cmd='pdflatex', latex_flags=None, build_options=None, brevity=0, precision=None, auto_open=False, comm=None, verbosity=0): """ Write this report to the disk as a PDF document. Parameters ---------- path : str or path-like object The filesystem path to write the report to. By convention, this should use the `.pdf` file extension. latex_cmd : str, optional Shell command to run to compile a PDF document from the generated LaTeX source. latex_flags : [str], optional List of flags to pass when calling `latex_cmd`. build_options : dict Dict of options for building plots. Expected values are defined during construction of this report object. brevity : int, optional Amount of detail to include in the report. Larger values mean smaller "more briefr" reports, which reduce generation time, load time, and disk space consumption. In particular: - 1: Plots showing per-sequences quantities disappear at brevity=1 - 2: Reference sections disappear at brevity=2 - 3: Germ-level estimate tables disappear at brevity=3 - 4: Everything but summary figures disappears at brevity=4 precision : int or dict, optional The amount of precision to display. A dictionary with keys "polar", "sci", and "normal" can separately specify the precision for complex angles, numbers in scientific notation, and everything else, respectively. If an integer is given, it this same value is taken for all precision types. If None, then `{'normal': 6, 'polar': 3, 'sci': 0}` is used. auto_open : bool, optional Whether the output file should be automatically opened in a web browser. comm : mpi4py.MPI.Comm, optional When not None, an MPI communicator for distributing the computation across multiple processors. verbosity : int, optional Amount of detail to print to stdout. """ if not self._pdf_available: raise ValueError(("PDF output unavailable. (Usually this is because this report" " has multiple gauge optimizations and/or datasets.)")) toggles = _defaultdict(lambda: False) toggles.update( {k: True for k in self._flags} ) for k in range(brevity, 4): toggles['BrevityLT' + str(k + 1)] = True printer = _VerbosityPrinter.build_printer(verbosity, comm=comm) path = _Path(path) latex_flags = latex_flags or ["-interaction=nonstopmode", "-halt-on-error", "-shell-escape"] # Render sections qtys = self._build(build_options) # TODO: filter while generating plots to remove need for sanitization qtys = {k: v for k, v in qtys.items() if not(isinstance(v, _ws.Switchboard) or isinstance(v, _ws.SwitchboardView))} printer.log("Generating LaTeX source...") _merge.merge_latex_template( qtys, self._templates['pdf'], str(path.with_suffix('.tex')), toggles, precision, printer ) printer.log("Compiling with `{} {}`".format(latex_cmd, ' '.join(latex_flags))) _merge.compile_latex_report(str(path.parent / path.stem), [latex_cmd] + latex_flags, printer, auto_open)
[ 37811, 18628, 2746, 286, 257, 989, 1141, 5270, 37227, 198, 2, 17174, 17174, 17174, 8162, 198, 2, 15069, 1853, 11, 13130, 2351, 8987, 1222, 14044, 23555, 286, 3837, 544, 11, 11419, 357, 11251, 7597, 737, 198, 2, 4698, 262, 2846, 286, 17453, 5550, 12, 4535, 830, 2327, 1495, 351, 24563, 7597, 11, 262, 471, 13, 50, 13, 5070, 27452, 1728, 2489, 198, 2, 287, 428, 3788, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 198, 2, 287, 11846, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 393, 287, 262, 38559, 24290, 2393, 287, 262, 6808, 12972, 38, 2257, 72, 8619, 13, 198, 2, 17174, 17174, 17174, 8162, 198, 198, 11748, 640, 355, 4808, 2435, 198, 11748, 14601, 355, 4808, 40539, 654, 198, 6738, 3108, 8019, 1330, 10644, 355, 4808, 15235, 198, 11748, 4423, 346, 355, 4808, 1477, 22602, 198, 6738, 17268, 1330, 4277, 11600, 355, 4808, 12286, 11600, 11, 14230, 1068, 35, 713, 355, 4808, 35422, 1068, 35, 713, 198, 11748, 2298, 293, 355, 4808, 27729, 293, 198, 198, 6738, 764, 1330, 1960, 313, 2578, 355, 4808, 2306, 313, 2578, 198, 6738, 764, 1330, 20121, 62, 16794, 364, 355, 4808, 647, 469, 198, 6738, 11485, 1330, 4808, 9641, 11, 4899, 355, 4808, 31391, 198, 6738, 11485, 48205, 1330, 49973, 16579, 6836, 3849, 355, 4808, 13414, 65, 16579, 6836, 3849, 11, 11884, 18257, 17633, 355, 4808, 18438, 3628, 18257, 17633, 198, 6738, 764, 1330, 44573, 355, 4808, 18504, 198, 6738, 764, 11295, 2070, 1330, 5740, 2070, 355, 4808, 6425, 2070, 628, 198, 2, 16926, 46, 428, 2187, 1517, 2476, 284, 307, 30101, 351, 1180, 3136, 355, 10944, 6097, 198, 4871, 6358, 25, 198, 220, 220, 220, 37227, 383, 5387, 2746, 286, 257, 989, 13, 628, 220, 220, 220, 770, 1398, 815, 1239, 307, 9113, 12931, 3264, 13, 5455, 11, 2985, 198, 220, 220, 220, 815, 779, 262, 5035, 8860, 2446, 287, 198, 220, 220, 220, 4600, 9078, 70, 301, 72, 13, 13116, 13, 69, 9548, 44646, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 11249, 7, 944, 11, 1382, 62, 25811, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46722, 477, 9004, 284, 257, 3975, 286, 989, 4847, 329, 2169, 489, 803, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 37266, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 43420, 10354, 2116, 13557, 43420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 944, 13557, 13116, 62, 37266, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 37266, 13, 19119, 7, 944, 13557, 11249, 62, 12286, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 37266, 13, 19119, 7, 11249, 62, 25811, 393, 23884, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 796, 2116, 13557, 20541, 62, 80, 774, 82, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 287, 2116, 13557, 23946, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 13, 19119, 7, 5458, 13, 13287, 7, 944, 13557, 5225, 10223, 11, 12429, 12853, 62, 37266, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 10662, 774, 82, 628, 220, 220, 220, 825, 3551, 62, 6494, 7, 944, 11, 3108, 11, 8295, 62, 9654, 28, 25101, 11, 2792, 62, 1462, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5884, 28, 25101, 11, 1382, 62, 25811, 28, 14202, 11, 1449, 21319, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 28, 14202, 11, 581, 13821, 28, 17821, 11, 44619, 1096, 11639, 36733, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2060, 62, 7753, 28, 25101, 11, 15942, 16579, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19430, 428, 989, 284, 262, 11898, 355, 257, 4947, 286, 11532, 4963, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 965, 393, 3108, 12, 2339, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 29905, 3108, 286, 257, 8619, 284, 3551, 262, 989, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 13, 1002, 262, 7368, 8619, 857, 407, 2152, 11, 340, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 6338, 628, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 5072, 2393, 815, 307, 6338, 4721, 287, 257, 3992, 6444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2792, 62, 1462, 1058, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 407, 6045, 11, 257, 1351, 286, 530, 393, 517, 3709, 422, 262, 900, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 16886, 1600, 366, 12315, 1600, 366, 79, 41582, 20662, 12739, 1771, 393, 407, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 290, 2291, 6117, 284, 18319, 87, 11, 12960, 11, 290, 11361, 2298, 293, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 11, 8148, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5884, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 5072, 11532, 815, 7048, 281, 4075, 5230, 4637, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 11, 788, 262, 7186, 11532, 2393, 2546, 481, 307, 5322, 780, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 2792, 284, 3992, 4133, 357, 68, 13, 70, 13, 6458, 45, 12782, 8, 2427, 286, 11525, 12083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 606, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 25811, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 286, 3689, 329, 2615, 21528, 13, 1475, 7254, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5447, 1141, 5103, 286, 428, 989, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1449, 21319, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 3703, 284, 2291, 287, 262, 989, 13, 220, 406, 32270, 3815, 1612, 4833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3549, 4506, 81, 1, 3136, 11, 543, 4646, 5270, 640, 11, 3440, 640, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11898, 2272, 7327, 13, 220, 554, 1948, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 352, 25, 1345, 1747, 4478, 583, 12, 3107, 3007, 17794, 10921, 379, 1449, 21319, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 362, 25, 20984, 9004, 10921, 379, 1449, 21319, 28, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 513, 25, 14164, 12, 5715, 8636, 8893, 10921, 379, 1449, 21319, 28, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 604, 25, 11391, 475, 10638, 5538, 27934, 379, 1449, 21319, 28, 19, 628, 220, 220, 220, 220, 220, 220, 220, 15440, 1058, 493, 393, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 15440, 284, 3359, 13, 220, 317, 22155, 351, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 6192, 1600, 366, 36216, 1600, 290, 366, 11265, 1, 460, 13869, 11986, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 329, 3716, 18333, 11, 3146, 287, 5654, 33274, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2279, 2073, 11, 8148, 13, 220, 1002, 281, 18253, 318, 1813, 11, 340, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 976, 1988, 318, 2077, 329, 477, 15440, 3858, 13, 220, 1002, 6045, 11, 788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 90, 6, 11265, 10354, 718, 11, 705, 79, 6192, 10354, 513, 11, 705, 36216, 10354, 657, 92, 63, 318, 973, 13, 628, 220, 220, 220, 220, 220, 220, 220, 581, 13821, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 21528, 290, 8893, 389, 925, 351, 47558, 17105, 290, 460, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 1143, 1626, 262, 989, 13, 628, 220, 220, 220, 220, 220, 220, 220, 44619, 1096, 1058, 1391, 6, 23108, 3256, 705, 36733, 3256, 705, 18487, 723, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 8893, 290, 21528, 815, 307, 581, 1143, 11, 2035, 7317, 1377, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 68, 13, 655, 2402, 717, 14837, 357, 63, 1, 36733, 1, 63, 8, 1377, 393, 8797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 6444, 4324, 318, 581, 1143, 357, 63, 1, 18487, 723, 1, 63, 737, 628, 220, 220, 220, 220, 220, 220, 220, 2060, 62, 7753, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 2081, 11, 262, 989, 481, 307, 3194, 284, 257, 2060, 11532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3188, 11, 351, 7097, 20086, 22979, 12, 259, 13, 770, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 407, 7151, 329, 1588, 3136, 11, 780, 428, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 460, 1663, 1588, 1576, 326, 1688, 3992, 22616, 743, 6531, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 8543, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15942, 16579, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 3703, 284, 3601, 284, 14367, 448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 25811, 796, 1382, 62, 25811, 393, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 796, 4808, 12286, 11600, 7, 50033, 25, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 74, 25, 6407, 329, 479, 287, 2116, 13557, 33152, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 4679, 21319, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 17816, 12679, 21319, 27734, 6, 1343, 965, 7, 74, 1343, 352, 15437, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 46722, 9004, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 796, 2116, 13557, 11249, 7, 11249, 62, 25811, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 428, 1107, 815, 307, 257, 11507, 286, 428, 2446, 198, 220, 220, 220, 220, 220, 220, 220, 11525, 62, 5647, 942, 796, 2116, 13557, 13116, 62, 37266, 13, 1136, 10786, 20521, 62, 5647, 942, 3256, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2060, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 7, 20521, 62, 5647, 942, 828, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28008, 12, 7753, 4235, 4433, 4600, 20521, 62, 5647, 942, 63, 284, 307, 6407, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 647, 469, 13, 647, 469, 62, 18594, 6592, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 11, 3108, 11, 11055, 35277, 28, 944, 13557, 11498, 17041, 17816, 6494, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 28, 23736, 62, 9654, 11, 15440, 28, 3866, 16005, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2792, 62, 1462, 28, 8726, 62, 1462, 11, 5884, 28, 15236, 11, 284, 32723, 28, 83, 48549, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 37372, 28, 17821, 11, 581, 13821, 28, 411, 13821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44619, 1096, 28, 2306, 418, 1096, 11, 15942, 16579, 28, 19011, 16579, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 647, 469, 13, 647, 469, 62, 18594, 6592, 62, 28243, 62, 15908, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 11, 3108, 11, 11055, 35277, 28, 944, 13557, 11498, 17041, 17816, 6494, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 28, 23736, 62, 9654, 11, 15440, 28, 3866, 16005, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2792, 62, 1462, 28, 8726, 62, 1462, 11, 5884, 28, 15236, 11, 284, 32723, 28, 83, 48549, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8543, 37372, 28, 17821, 11, 581, 13821, 28, 411, 13821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44619, 1096, 28, 2306, 418, 1096, 11, 11525, 62, 5647, 942, 28, 20521, 62, 5647, 942, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 16579, 28, 19011, 16579, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 3551, 62, 11295, 2070, 7, 944, 11, 3108, 11, 8295, 62, 9654, 28, 25101, 11, 5884, 28, 25101, 11, 15942, 16579, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19430, 428, 989, 284, 262, 11898, 355, 281, 6101, 7535, 20922, 628, 220, 220, 220, 220, 220, 220, 220, 317, 20922, 989, 3578, 262, 2836, 284, 9427, 517, 7059, 3193, 351, 262, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 10238, 262, 5538, 11, 290, 284, 3538, 7716, 27658, 17670, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5538, 13, 220, 1081, 884, 11, 428, 2099, 286, 989, 481, 307, 749, 4465, 329, 6154, 198, 220, 220, 220, 220, 220, 220, 220, 508, 765, 284, 256, 24275, 351, 262, 3210, 3781, 5545, 287, 262, 9037, 198, 220, 220, 220, 220, 220, 220, 220, 11532, 393, 4689, 49568, 5794, 3136, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 965, 393, 3108, 12, 2339, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 29905, 3108, 284, 3551, 262, 989, 284, 13, 2750, 9831, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 815, 779, 262, 4600, 13, 541, 2047, 65, 63, 2393, 7552, 13, 198, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 6407, 11, 6338, 1280, 262, 989, 287, 257, 3992, 6444, 706, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 587, 7560, 13, 628, 220, 220, 220, 220, 220, 220, 220, 5884, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 5072, 20922, 815, 7048, 281, 4075, 5230, 4637, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6407, 11, 788, 262, 7186, 2393, 2546, 481, 307, 5322, 780, 340, 481, 2792, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 3992, 4133, 357, 68, 13, 70, 13, 6458, 45, 12782, 8, 2427, 286, 11525, 12083, 606, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15942, 16579, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1374, 881, 3703, 284, 3758, 284, 14367, 448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 428, 691, 8991, 284, 3210, 3136, 26, 28183, 4143, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 2116, 13557, 20541, 62, 80, 774, 82, 17816, 7839, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 6628, 4971, 796, 2116, 13557, 13116, 62, 37266, 17816, 39745, 62, 5715, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 4808, 15235, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 20632, 796, 4808, 13414, 65, 16579, 6836, 3849, 13, 11249, 62, 1050, 3849, 7, 19011, 16579, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 796, 4808, 15235, 7, 834, 7753, 834, 737, 8000, 1220, 705, 11498, 17041, 6, 1220, 2116, 13557, 11498, 17041, 17816, 11295, 2070, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 35277, 796, 3108, 13, 8000, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29881, 18043, 8619, 656, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 5884, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 647, 469, 13, 81, 27261, 62, 2364, 1370, 62, 15908, 7, 22915, 35277, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16928, 2482, 284, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1615, 12453, 796, 4808, 418, 13, 6978, 13, 22018, 578, 742, 28264, 418, 13, 6978, 13, 12093, 12453, 7, 34345, 4008, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1615, 12453, 796, 3108, 13, 927, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 7753, 62, 8692, 796, 1615, 12453, 1343, 705, 62, 43420, 13, 79, 41582, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 7753, 796, 5072, 35277, 1220, 2482, 62, 7753, 62, 8692, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 2536, 7, 43420, 62, 7753, 828, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 27729, 293, 13, 39455, 7, 944, 13557, 43420, 11, 277, 8, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 796, 4808, 6425, 2070, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 4102, 2902, 10786, 2, 1391, 7839, 32239, 77, 7, 41972, 319, 1391, 4475, 30072, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 7839, 11, 3128, 28, 62, 2435, 13, 2536, 31387, 7203, 4, 33, 4064, 67, 11, 4064, 56, 1, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 2298, 293, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 12972, 70, 301, 72, 15931, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 288, 82, 40729, 796, 1351, 7, 944, 13557, 43420, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2116, 13557, 43420, 58, 9310, 40729, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6425, 25, 4600, 43420, 63, 318, 1464, 257, 2060, 15691, 26181, 422, 994, 866, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8912, 2482, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 90, 259, 7753, 92, 3256, 705, 26145, 11537, 355, 1167, 576, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 11600, 796, 2298, 293, 13, 2220, 7, 259, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10493, 27039, 8251, 25, 33172, 46083, 45302, 22179, 7, 43420, 62, 11600, 13, 13083, 3419, 4008, 59, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 259, 7753, 28, 43420, 62, 7753, 62, 8692, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 543, 27039, 815, 307, 973, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 796, 2482, 62, 11600, 17816, 90, 9310, 9218, 92, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10493, 7746, 25, 33172, 46083, 45302, 22179, 7, 43420, 13, 395, 26748, 13, 13083, 3419, 4008, 59, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 9310, 9218, 28, 9310, 40729, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1556, 17822, 1424, 796, 1351, 7, 43420, 13, 395, 26748, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 8636, 796, 2482, 13, 395, 26748, 58, 395, 17822, 1424, 58, 15, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 7248, 543, 8636, 318, 284, 307, 973, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 8636, 796, 2482, 13, 395, 26748, 17816, 90, 395, 33986, 92, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 10493, 18266, 2172, 82, 25, 33172, 46083, 45302, 22179, 7, 395, 1920, 13, 70, 404, 41158, 7307, 13, 13083, 3419, 4008, 59, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 395, 33986, 28, 395, 17822, 1424, 58, 15, 60, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 467, 17822, 1424, 796, 1351, 7, 395, 1920, 13, 70, 404, 41158, 7307, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 8738, 220, 220, 220, 220, 220, 796, 705, 90, 2188, 33986, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 220, 220, 220, 220, 220, 220, 220, 796, 2482, 13, 19608, 292, 316, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 824, 19006, 220, 796, 2482, 13, 21170, 5013, 62, 7249, 82, 17816, 20311, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 406, 82, 220, 220, 220, 220, 220, 220, 220, 796, 2482, 13, 21170, 5013, 62, 7249, 82, 17816, 20311, 6, 4083, 43, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 824, 5990, 29993, 796, 2482, 13, 21170, 5013, 62, 7249, 82, 17816, 2676, 341, 20520, 1303, 7036, 62, 43, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3143, 1273, 3808, 796, 2482, 13, 21170, 5013, 62, 20713, 17816, 46012, 49909, 1229, 8231, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1245, 1273, 3808, 796, 2482, 13, 21170, 5013, 62, 20713, 17816, 1326, 292, 49909, 1229, 8231, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27602, 907, 796, 2482, 13, 21170, 5013, 62, 20713, 17816, 1362, 907, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 82, 796, 357, 46012, 1273, 3808, 11, 1245, 1273, 3808, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 8636, 13, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9432, 796, 8636, 13, 17143, 7307, 17816, 15252, 425, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9432, 6624, 366, 6404, 75, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 14751, 796, 8636, 13, 17143, 7307, 17816, 1084, 2964, 65, 2601, 541, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 14751, 796, 8636, 13, 17143, 7307, 17816, 1084, 2964, 65, 2601, 541, 1890, 25844, 278, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19516, 585, 62, 5589, 10520, 796, 8636, 13, 17143, 7307, 13, 1136, 10786, 565, 733, 585, 62, 5589, 10520, 3256, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4050, 62, 9310, 11, 5046, 62, 7266, 44, 34223, 796, 8636, 13, 1136, 62, 16803, 62, 19608, 292, 316, 7, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27464, 7004, 44, 34223, 35, 713, 796, 22935, 6, 1416, 4272, 10354, 5046, 62, 7266, 44, 34223, 11, 705, 1416, 4272, 13, 4033, 579, 499, 10354, 366, 18218, 41068, 1, 11709, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4981, 220, 220, 220, 220, 220, 220, 796, 8636, 13, 27530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4981, 58, 70, 8738, 60, 1303, 37, 17961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 62, 20311, 220, 220, 220, 796, 4981, 17816, 20311, 24415, 8636, 20520, 1303, 2043, 1137, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 19849, 796, 4981, 17816, 16793, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 5990, 29993, 220, 220, 796, 4981, 17816, 2676, 341, 7746, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 25404, 62, 68, 328, 641, 10223, 62, 16302, 276, 796, 12972, 70, 301, 72, 13, 31391, 13, 16302, 62, 1462, 62, 16793, 62, 68, 328, 641, 10223, 7, 9132, 75, 11, 2496, 62, 19849, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 404, 283, 4105, 796, 8636, 13, 70, 404, 41158, 7307, 58, 70, 8738, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6628, 4971, 796, 1391, 5097, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6628, 4971, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 380, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1067, 69, 9548, 796, 8636, 13, 1136, 62, 39745, 62, 36996, 62, 69, 9548, 7, 70, 8738, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3814, 62, 4906, 796, 366, 11265, 1, 611, 6628, 4971, 18189, 657, 2073, 366, 13159, 12, 4102, 709, 666, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 380, 796, 1067, 69, 9548, 13, 1177, 7, 8937, 7, 39745, 4971, 828, 3814, 62, 4906, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 2188, 33986, 28, 2188, 17822, 1424, 58, 15, 4357, 7852, 28, 39745, 4971, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 12972, 70, 301, 72, 13, 13116, 1330, 10933, 10223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 82, 796, 10933, 10223, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 82, 13, 15003, 62, 11295, 2070, 62, 14171, 7, 15236, 34758, 37043, 5512, 1960, 375, 271, 1759, 28, 17821, 19415, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 37043, 28, 2536, 7, 15236, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 11295, 2070, 62, 5239, 62, 16624, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 49736, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 11274, 1108, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 70, 559, 469, 62, 16340, 2743, 415, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 70, 559, 469, 62, 25641, 415, 13, 14116, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 44402, 5021, 12, 19608, 292, 316, 2176, 3781, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 9310, 40729, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 4102, 2902, 7, 10786, 2, 16092, 292, 316, 17909, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1212, 989, 4909, 1321, 329, 517, 621, 530, 1366, 900, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1212, 2443, 2523, 17909, 1022, 1180, 1366, 5621, 2637, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 8189, 7203, 15931, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 6649, 2436, 16, 796, 705, 90, 9310, 43, 2436, 16, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 6649, 2436, 17, 796, 705, 90, 9310, 43, 2436, 17, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 1416, 3149, 62, 70, 824, 796, 2482, 62, 11600, 58, 67, 6649, 2436, 16, 4083, 21170, 5013, 62, 7249, 82, 17816, 20311, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 16, 796, 2482, 62, 11600, 58, 67, 6649, 2436, 16, 4083, 19608, 292, 316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 82, 17, 796, 2482, 62, 11600, 58, 67, 6649, 2436, 17, 4083, 19608, 292, 316, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 1416, 3149, 796, 12972, 70, 301, 72, 13, 26801, 13, 6601, 50249, 1352, 26933, 9310, 16, 11, 288, 82, 17, 4357, 17400, 62, 14933, 41888, 67, 6649, 2436, 16, 11, 288, 6649, 2436, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 9310, 43, 2436, 16, 28, 9310, 40729, 58, 15, 4357, 288, 82, 43, 2436, 17, 28, 9310, 40729, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 11295, 2070, 62, 5239, 62, 16624, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 7890, 62, 785, 1845, 1653, 13, 14116, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4550, 4941, 2587, 198, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 2860, 62, 11295, 2070, 62, 5239, 62, 16624, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 15414, 13, 14116, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11055, 15235, 1220, 705, 28961, 13, 14116, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 20632, 13, 6404, 7203, 19100, 5740, 2070, 2727, 355, 4064, 82, 1, 4064, 3108, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 8295, 62, 9654, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 796, 366, 23736, 1, 611, 8295, 62, 9654, 318, 6407, 2073, 493, 7, 23736, 62, 9654, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 35681, 7, 2536, 7, 6978, 828, 2493, 28, 634, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 13, 21928, 62, 1462, 7, 2536, 7, 6978, 4008, 628, 220, 220, 220, 825, 3551, 62, 12315, 7, 944, 11, 3108, 11, 47038, 62, 28758, 11639, 30094, 2704, 378, 87, 3256, 47038, 62, 33152, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 25811, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1449, 21319, 28, 15, 11, 15440, 28, 14202, 11, 8295, 62, 9654, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 725, 28, 14202, 11, 15942, 16579, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 19430, 428, 989, 284, 262, 11898, 355, 257, 12960, 3188, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 965, 393, 3108, 12, 2339, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 29905, 3108, 284, 3551, 262, 989, 284, 13, 2750, 9831, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 428, 815, 779, 262, 4600, 13, 12315, 63, 2393, 7552, 13, 628, 220, 220, 220, 220, 220, 220, 220, 47038, 62, 28758, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17537, 3141, 284, 1057, 284, 17632, 257, 12960, 3188, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7560, 4689, 49568, 2723, 13, 628, 220, 220, 220, 220, 220, 220, 220, 47038, 62, 33152, 1058, 685, 2536, 4357, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 9701, 284, 1208, 618, 4585, 4600, 17660, 87, 62, 28758, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1382, 62, 25811, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 286, 3689, 329, 2615, 21528, 13, 1475, 7254, 3815, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5447, 1141, 5103, 286, 428, 989, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1449, 21319, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 3703, 284, 2291, 287, 262, 989, 13, 220, 406, 32270, 3815, 1612, 4833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3549, 4506, 81, 1, 3136, 11, 543, 4646, 5270, 640, 11, 3440, 640, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11898, 2272, 7327, 13, 220, 554, 1948, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 352, 25, 1345, 1747, 4478, 583, 12, 3107, 3007, 17794, 10921, 379, 1449, 21319, 28, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 362, 25, 20984, 9004, 10921, 379, 1449, 21319, 28, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 513, 25, 14164, 12, 5715, 8636, 8893, 10921, 379, 1449, 21319, 28, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 604, 25, 11391, 475, 10638, 5538, 27934, 379, 1449, 21319, 28, 19, 628, 220, 220, 220, 220, 220, 220, 220, 15440, 1058, 493, 393, 8633, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 2033, 286, 15440, 284, 3359, 13, 220, 317, 22155, 351, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 79, 6192, 1600, 366, 36216, 1600, 290, 366, 11265, 1, 460, 13869, 11986, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15440, 329, 3716, 18333, 11, 3146, 287, 5654, 33274, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2279, 2073, 11, 8148, 13, 220, 1002, 281, 18253, 318, 1813, 11, 340, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 976, 1988, 318, 2077, 329, 477, 15440, 3858, 13, 220, 1002, 6045, 11, 788, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 90, 6, 11265, 10354, 718, 11, 705, 79, 6192, 10354, 513, 11, 705, 36216, 10354, 657, 92, 63, 318, 973, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8295, 62, 9654, 1058, 20512, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 5072, 2393, 815, 307, 6338, 4721, 287, 257, 3992, 6444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 725, 1058, 285, 14415, 19, 9078, 13, 7378, 40, 13, 6935, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1649, 407, 6045, 11, 281, 4904, 40, 1316, 26407, 329, 25950, 262, 29964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1973, 3294, 20399, 13, 628, 220, 220, 220, 220, 220, 220, 220, 15942, 16579, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 3703, 284, 3601, 284, 14367, 448, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 12315, 62, 15182, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 7203, 20456, 5072, 23485, 13, 220, 357, 37887, 428, 318, 780, 428, 989, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 468, 3294, 18266, 41446, 290, 14, 273, 40522, 2014, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 796, 4808, 12286, 11600, 7, 50033, 25, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 13, 19119, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 74, 25, 6407, 329, 479, 287, 2116, 13557, 33152, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 4679, 21319, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 17816, 12679, 21319, 27734, 6, 1343, 965, 7, 74, 1343, 352, 15437, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 20632, 796, 4808, 13414, 65, 16579, 6836, 3849, 13, 11249, 62, 1050, 3849, 7, 19011, 16579, 11, 725, 28, 9503, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 796, 4808, 15235, 7, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47038, 62, 33152, 796, 47038, 62, 33152, 393, 14631, 12, 3849, 2673, 28, 13159, 11338, 14171, 1600, 27444, 71, 2501, 12, 261, 12, 18224, 1600, 27444, 29149, 12, 41915, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 46722, 9004, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 796, 2116, 13557, 11249, 7, 11249, 62, 25811, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 8106, 981, 15453, 21528, 284, 4781, 761, 329, 5336, 270, 1634, 198, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 796, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 10662, 774, 82, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 7, 271, 39098, 7, 85, 11, 4808, 18504, 13, 38978, 3526, 8, 393, 318, 39098, 7, 85, 11, 4808, 18504, 13, 38978, 3526, 7680, 4008, 92, 628, 220, 220, 220, 220, 220, 220, 220, 20632, 13, 6404, 7203, 8645, 803, 4689, 49568, 2723, 9313, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 647, 469, 13, 647, 469, 62, 17660, 87, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 774, 82, 11, 2116, 13557, 11498, 17041, 17816, 12315, 6, 4357, 965, 7, 6978, 13, 4480, 62, 37333, 844, 7, 4458, 16886, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 32723, 11, 15440, 11, 20632, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 20632, 13, 6404, 7203, 7293, 4386, 351, 4600, 90, 92, 23884, 63, 1911, 18982, 7, 17660, 87, 62, 28758, 11, 705, 45302, 22179, 7, 17660, 87, 62, 33152, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 647, 469, 13, 5589, 576, 62, 17660, 87, 62, 13116, 7, 2536, 7, 6978, 13, 8000, 1220, 3108, 13, 927, 828, 685, 17660, 87, 62, 28758, 60, 1343, 47038, 62, 33152, 11, 20632, 11, 8295, 62, 9654, 8, 198 ]
2.399412
7,148
import pytest from datetime import datetime from update import lambda_handler import boto3 import os import json dynamodb = boto3.resource('dynamodb') table = dynamodb.Table(os.environ['TABLE_NAME']) # ------------------------------------------ # valid pattern # ------------------------------------------ @pytest.mark.parametrize("word,is_done,priority", [ (word, is_done, priority) for word in [None, "", "修正後内容"] for is_done in ['true', 'false', True, False] for priority in ['high', 'medium', 'low'] ]) # ------------------------------------------ # not found pattern # ------------------------------------------ @pytest.fixture() # ------------------------------------------ # invalid pattern # ------------------------------------------ INVALID_PAYLOAD_LIST = [ { "title": "" }, { "title": None }, { "title": "a" * 101 }, { "content": "a" * 2001 }, { "priority": "invalid_priority_value" }, { "is_done": "invalid_is_done_value" }, ] @pytest.fixture(params=INVALID_PAYLOAD_LIST)
[ 11748, 12972, 9288, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 4296, 1330, 37456, 62, 30281, 198, 11748, 275, 2069, 18, 198, 11748, 28686, 198, 11748, 33918, 198, 198, 67, 4989, 375, 65, 796, 275, 2069, 18, 13, 31092, 10786, 67, 4989, 375, 65, 11537, 198, 11487, 796, 6382, 375, 65, 13, 10962, 7, 418, 13, 268, 2268, 17816, 38148, 62, 20608, 6, 12962, 628, 198, 2, 20368, 35937, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 3912, 198, 2, 20368, 35937, 198, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7203, 4775, 11, 271, 62, 28060, 11, 49336, 1600, 685, 198, 220, 220, 220, 357, 4775, 11, 318, 62, 28060, 11, 8475, 8, 198, 220, 220, 220, 329, 1573, 287, 685, 14202, 11, 366, 1600, 366, 46479, 106, 29826, 96, 36181, 234, 37863, 227, 22522, 117, 8973, 198, 220, 220, 220, 329, 318, 62, 28060, 287, 37250, 7942, 3256, 705, 9562, 3256, 6407, 11, 10352, 60, 198, 220, 220, 220, 329, 8475, 287, 37250, 8929, 3256, 705, 24132, 3256, 705, 9319, 20520, 198, 12962, 628, 198, 2, 20368, 35937, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 407, 1043, 3912, 198, 2, 20368, 35937, 198, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 198, 198, 2, 20368, 35937, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12515, 3912, 198, 2, 20368, 35937, 628, 198, 1268, 23428, 2389, 62, 4537, 56, 35613, 62, 45849, 796, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7839, 1298, 13538, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7839, 1298, 6045, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7839, 1298, 366, 64, 1, 1635, 8949, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11299, 1298, 366, 64, 1, 1635, 5878, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 49336, 1298, 366, 259, 12102, 62, 49336, 62, 8367, 1, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 28060, 1298, 366, 259, 12102, 62, 271, 62, 28060, 62, 8367, 1, 198, 220, 220, 220, 8964, 198, 60, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 37266, 28, 1268, 23428, 2389, 62, 4537, 56, 35613, 62, 45849, 8, 628 ]
2.574944
447
from bot import DOWNLOAD_DIR, LOGGER from bot.helper.ext_utils.bot_utils import MirrorStatus, get_readable_file_size, get_readable_time from time import sleep
[ 6738, 10214, 1330, 30320, 35613, 62, 34720, 11, 41605, 30373, 198, 6738, 10214, 13, 2978, 525, 13, 2302, 62, 26791, 13, 13645, 62, 26791, 1330, 17918, 19580, 11, 651, 62, 46155, 62, 7753, 62, 7857, 11, 651, 62, 46155, 62, 2435, 198, 6738, 640, 1330, 3993, 628 ]
3.404255
47
#!/usr/bin/env python3 import pyaudio import sys sys.path.insert(0, "../") from pwmaudio import noALSAerror with noALSAerror(): p = pyaudio.PyAudio() info = p.get_host_api_info_by_index(0) print(p.get_host_api_count()) print(info) numdevices = info.get('deviceCount') for i in range(0, numdevices): if (p.get_device_info_by_host_api_device_index(0, i).get('maxOutputChannels')) > 0: # print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i).get('name')) print("Output Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 12972, 24051, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 366, 40720, 4943, 198, 198, 6738, 279, 86, 2611, 463, 952, 1330, 645, 1847, 4090, 18224, 198, 198, 4480, 645, 1847, 4090, 18224, 33529, 198, 220, 220, 220, 279, 796, 12972, 24051, 13, 20519, 21206, 3419, 198, 220, 220, 220, 7508, 796, 279, 13, 1136, 62, 4774, 62, 15042, 62, 10951, 62, 1525, 62, 9630, 7, 15, 8, 198, 220, 220, 220, 3601, 7, 79, 13, 1136, 62, 4774, 62, 15042, 62, 9127, 28955, 198, 220, 220, 220, 3601, 7, 10951, 8, 198, 220, 220, 220, 997, 42034, 796, 7508, 13, 1136, 10786, 25202, 12332, 11537, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 997, 42034, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 79, 13, 1136, 62, 25202, 62, 10951, 62, 1525, 62, 4774, 62, 15042, 62, 25202, 62, 9630, 7, 15, 11, 1312, 737, 1136, 10786, 9806, 26410, 1925, 8961, 6, 4008, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7203, 26410, 16232, 4686, 33172, 1312, 11, 366, 532, 33172, 279, 13, 1136, 62, 25202, 62, 10951, 62, 1525, 62, 4774, 62, 15042, 62, 25202, 62, 9630, 7, 15, 11, 1312, 737, 1136, 10786, 3672, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 26410, 16232, 4686, 33172, 1312, 11, 366, 532, 33172, 279, 13, 1136, 62, 25202, 62, 10951, 62, 1525, 62, 4774, 62, 15042, 62, 25202, 62, 9630, 7, 15, 11, 1312, 4008, 198 ]
2.229167
288
import sys import math import random import imp from java import jclass from controller.leds import leds from controller.message import message from controller.sensor import sensor from controller.motion_sensor import motion_sensor from controller.button import button from controller.color_sensor import color_sensor from controller.infrared_sensor import infrared_sensor from controller.sound_sensor import sound_sensor from controller.timer import timer imp.load_source('controllerleds', '/data/data/com.matatalab.matatacode/run/controller/leds.py') imp.load_source('controllermessage', '/data/data/com.matatalab.matatacode/run/controller/message.py') imp.load_source('controllesensor', '/data/data/com.matatalab.matatacode/run/controller/sensor.py') imp.load_source('controllemotion_sensor', '/data/data/com.matatalab.matatacode/run/controller/motion_sensor.py') imp.load_source('controllebutton', '/data/data/com.matatalab.matatacode/run/controller/button.py') imp.load_source('controllecolor_sensor', '/data/data/com.matatalab.matatacode/run/controller/color_sensor.py') imp.load_source('controlleinfrared_sensor', '/data/data/com.matatalab.matatacode/run/controller/infrared_sensor.py') imp.load_source('controllesound_sensor', '/data/data/com.matatalab.matatacode/run/controller/sound_sensor.py') imp.load_source('controlletimer', '/data/data/com.matatalab.matatacode/run/controller/timer.py')
[ 11748, 25064, 198, 11748, 10688, 198, 11748, 4738, 198, 11748, 848, 198, 6738, 20129, 1330, 474, 4871, 198, 6738, 10444, 13, 992, 82, 1330, 2957, 82, 198, 6738, 10444, 13, 20500, 1330, 3275, 198, 6738, 10444, 13, 82, 22854, 1330, 12694, 198, 6738, 10444, 13, 38714, 62, 82, 22854, 1330, 6268, 62, 82, 22854, 198, 6738, 10444, 13, 16539, 1330, 4936, 198, 6738, 10444, 13, 8043, 62, 82, 22854, 1330, 3124, 62, 82, 22854, 198, 6738, 10444, 13, 10745, 25122, 62, 82, 22854, 1330, 30624, 62, 82, 22854, 198, 6738, 10444, 13, 23661, 62, 82, 22854, 1330, 2128, 62, 82, 22854, 198, 6738, 10444, 13, 45016, 1330, 19781, 198, 11011, 13, 2220, 62, 10459, 10786, 36500, 992, 82, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 992, 82, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 3642, 2487, 7780, 7589, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 20500, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 3642, 2487, 274, 22854, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 82, 22854, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 13716, 10671, 9650, 62, 82, 22854, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 38714, 62, 82, 22854, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 13716, 293, 16539, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 16539, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 13716, 293, 8043, 62, 82, 22854, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 8043, 62, 82, 22854, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 13716, 293, 10745, 25122, 62, 82, 22854, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 10745, 25122, 62, 82, 22854, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 3642, 2487, 274, 633, 62, 82, 22854, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 23661, 62, 82, 22854, 13, 9078, 11537, 198, 11011, 13, 2220, 62, 10459, 10786, 13716, 1616, 22723, 3256, 31051, 7890, 14, 7890, 14, 785, 13, 6759, 10254, 397, 13, 6759, 265, 330, 1098, 14, 5143, 14, 36500, 14, 45016, 13, 9078, 11537, 628 ]
3.083516
455
# -*- coding: utf-8 -*- """OpenCTI CrowdStrike actor importer module.""" from typing import Any, Generator, List, Mapping, Optional from crowdstrike_client.api.intel.actors import Actors from crowdstrike_client.api.models import Response from crowdstrike_client.api.models.actor import Actor from pycti.connector.opencti_connector_helper import OpenCTIConnectorHelper # type: ignore # noqa: E501 from stix2 import Bundle, Identity, MarkingDefinition # type: ignore from crowdstrike.actor.builder import ActorBundleBuilder from crowdstrike.importer import BaseImporter from crowdstrike.utils import datetime_to_timestamp, paginate, timestamp_to_datetime class ActorImporter(BaseImporter): """CrowdStrike actor importer.""" _LATEST_ACTOR_TIMESTAMP = "latest_actor_timestamp" def __init__( self, helper: OpenCTIConnectorHelper, actors_api: Actors, update_existing_data: bool, author: Identity, default_latest_timestamp: int, tlp_marking: MarkingDefinition, ) -> None: """Initialize CrowdStrike actor importer.""" super().__init__(helper, author, tlp_marking, update_existing_data) self.actors_api = actors_api self.default_latest_timestamp = default_latest_timestamp def run(self, state: Mapping[str, Any]) -> Mapping[str, Any]: """Run importer.""" self._info("Running actor importer with state: {0}...", state) fetch_timestamp = state.get( self._LATEST_ACTOR_TIMESTAMP, self.default_latest_timestamp ) latest_fetched_actor_timestamp = None for actors_batch in self._fetch_actors(fetch_timestamp): if not actors_batch: break if latest_fetched_actor_timestamp is None: first_in_batch = actors_batch[0] created_date = first_in_batch.created_date if created_date is None: self._error( "Missing created date for actor {0} ({1})", first_in_batch.name, first_in_batch.id, ) break latest_fetched_actor_timestamp = datetime_to_timestamp(created_date) self._process_actors(actors_batch) state_timestamp = latest_fetched_actor_timestamp or fetch_timestamp self._info( "Actor importer completed, latest fetch {0}.", timestamp_to_datetime(state_timestamp), ) return {self._LATEST_ACTOR_TIMESTAMP: state_timestamp}
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 11505, 4177, 40, 29452, 31584, 8674, 848, 4337, 8265, 526, 15931, 198, 198, 6738, 19720, 1330, 4377, 11, 35986, 11, 7343, 11, 337, 5912, 11, 32233, 198, 198, 6738, 4315, 33069, 62, 16366, 13, 15042, 13, 48779, 13, 529, 669, 1330, 2191, 669, 198, 6738, 4315, 33069, 62, 16366, 13, 15042, 13, 27530, 1330, 18261, 198, 6738, 4315, 33069, 62, 16366, 13, 15042, 13, 27530, 13, 11218, 1330, 27274, 198, 198, 6738, 12972, 310, 72, 13, 8443, 273, 13, 9654, 310, 72, 62, 8443, 273, 62, 2978, 525, 1330, 4946, 4177, 2149, 261, 1606, 273, 47429, 220, 1303, 2099, 25, 8856, 220, 1303, 645, 20402, 25, 412, 33548, 198, 198, 6738, 336, 844, 17, 1330, 25282, 11, 27207, 11, 2940, 278, 36621, 220, 1303, 2099, 25, 8856, 198, 198, 6738, 4315, 33069, 13, 11218, 13, 38272, 1330, 27274, 33, 31249, 32875, 198, 6738, 4315, 33069, 13, 320, 26634, 1330, 7308, 3546, 26634, 198, 6738, 4315, 33069, 13, 26791, 1330, 4818, 8079, 62, 1462, 62, 16514, 27823, 11, 42208, 4559, 11, 41033, 62, 1462, 62, 19608, 8079, 628, 198, 4871, 27274, 3546, 26634, 7, 14881, 3546, 26634, 2599, 198, 220, 220, 220, 37227, 34, 3986, 31584, 8674, 848, 4337, 526, 15931, 628, 220, 220, 220, 4808, 43, 1404, 6465, 62, 10659, 1581, 62, 51, 3955, 6465, 23518, 796, 366, 42861, 62, 11218, 62, 16514, 27823, 1, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 31904, 25, 4946, 4177, 2149, 261, 1606, 273, 47429, 11, 198, 220, 220, 220, 220, 220, 220, 220, 10544, 62, 15042, 25, 2191, 669, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4296, 62, 25687, 62, 7890, 25, 20512, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1772, 25, 27207, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 42861, 62, 16514, 27823, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 256, 34431, 62, 4102, 278, 25, 2940, 278, 36621, 11, 198, 220, 220, 220, 1267, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24243, 1096, 29452, 31584, 8674, 848, 4337, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 7, 2978, 525, 11, 1772, 11, 256, 34431, 62, 4102, 278, 11, 4296, 62, 25687, 62, 7890, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 529, 669, 62, 15042, 796, 10544, 62, 15042, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12286, 62, 42861, 62, 16514, 27823, 796, 4277, 62, 42861, 62, 16514, 27823, 628, 220, 220, 220, 825, 1057, 7, 944, 11, 1181, 25, 337, 5912, 58, 2536, 11, 4377, 12962, 4613, 337, 5912, 58, 2536, 11, 4377, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 848, 4337, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10951, 7203, 28768, 8674, 848, 4337, 351, 1181, 25, 1391, 15, 92, 9313, 11, 1181, 8, 628, 220, 220, 220, 220, 220, 220, 220, 21207, 62, 16514, 27823, 796, 1181, 13, 1136, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 43, 1404, 6465, 62, 10659, 1581, 62, 51, 3955, 6465, 23518, 11, 2116, 13, 12286, 62, 42861, 62, 16514, 27823, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 3452, 62, 50012, 62, 11218, 62, 16514, 27823, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 329, 10544, 62, 43501, 287, 2116, 13557, 69, 7569, 62, 529, 669, 7, 69, 7569, 62, 16514, 27823, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 10544, 62, 43501, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3452, 62, 50012, 62, 11218, 62, 16514, 27823, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 259, 62, 43501, 796, 10544, 62, 43501, 58, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2727, 62, 4475, 796, 717, 62, 259, 62, 43501, 13, 25598, 62, 4475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2727, 62, 4475, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43730, 2727, 3128, 329, 8674, 1391, 15, 92, 37913, 16, 30072, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 259, 62, 43501, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 62, 259, 62, 43501, 13, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3452, 62, 50012, 62, 11218, 62, 16514, 27823, 796, 4818, 8079, 62, 1462, 62, 16514, 27823, 7, 25598, 62, 4475, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 14681, 62, 529, 669, 7, 529, 669, 62, 43501, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1181, 62, 16514, 27823, 796, 3452, 62, 50012, 62, 11218, 62, 16514, 27823, 393, 21207, 62, 16514, 27823, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 40277, 848, 4337, 5668, 11, 3452, 21207, 1391, 15, 92, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41033, 62, 1462, 62, 19608, 8079, 7, 5219, 62, 16514, 27823, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 944, 13557, 43, 1404, 6465, 62, 10659, 1581, 62, 51, 3955, 6465, 23518, 25, 1181, 62, 16514, 27823, 92, 198 ]
2.326165
1,116
from datetime import date from zerobouncesdk import zerobouncesdk, ZBApiException, \ ZBMissingApiKeyException test()
[ 6738, 4818, 8079, 1330, 3128, 198, 6738, 1976, 263, 672, 45982, 34388, 1330, 1976, 263, 672, 45982, 34388, 11, 1168, 4339, 14415, 16922, 11, 3467, 198, 220, 220, 220, 1168, 12261, 747, 278, 32, 14415, 9218, 16922, 628, 628, 628, 628, 628, 198, 9288, 3419, 198 ]
2.847826
46
#!/usr/bin/python ################################################################################# # MIT License # # Copyright (c) 2019 Aaron Jense, Amy Heidner, Dennis Heidner # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ################################################################################# from third_party.Adafruit_I2C import * from IAQ_Exceptions import * import struct
[ 2, 48443, 14629, 14, 8800, 14, 29412, 201, 198, 201, 198, 29113, 29113, 14468, 2, 201, 198, 2, 17168, 13789, 201, 198, 2, 201, 198, 2, 15069, 357, 66, 8, 13130, 12139, 449, 1072, 11, 14235, 679, 312, 1008, 11, 16902, 679, 312, 1008, 201, 198, 2, 201, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 201, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 201, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 201, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 201, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 201, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 201, 198, 2, 201, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 201, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 201, 198, 2, 201, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 201, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 201, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 201, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 201, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 201, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 201, 198, 2, 47466, 13, 201, 198, 2, 201, 198, 29113, 29113, 14468, 2, 201, 198, 201, 198, 6738, 2368, 62, 10608, 13, 2782, 1878, 4872, 62, 40, 17, 34, 1330, 1635, 201, 198, 6738, 35229, 48, 62, 3109, 11755, 1330, 1635, 201, 198, 11748, 2878, 201, 198 ]
3.801061
377
import numpy as np import math import logging log = logging.getLogger(__name__) def fairness_reward(actions, queues=None): """Compute Jain"s fairness index for a list of values. See http://en.wikipedia.org/wiki/Fairness_measure for fairness equations. @param values: list of values @return fairness: JFI """ if len(actions) == 0: return 1.0 num = sum(actions) ** 2 denom = len(actions) * sum([i ** 2 for i in actions]) return num / float(denom) def gini_reward(actions, queues=None): """Calculate the Gini coefficient of a numpy array.""" # based on bottom eq: # http://www.statsdirect.com/help/generatedimages/equations/equation154.svg # from: # http://www.statsdirect.com/help/default.htm#nonparametric_methods/gini.htm # All values are treated equally, arrays must be 1d: # Values must be sorted: actions = np.sort(actions) # Number of array elements: n = actions.shape[0] # Index per array element: index = np.arange(1, n + 1) # Gini coefficient: return ((np.sum((2 * index - n - 1) * actions)) / (n * np.sum(actions))) # small script to visualize the reward output if __name__ == "__main__": import matplotlib.pyplot as plt queues = [i * 0.1 for i in range(0, 11)] actions = [i * .001 for i in range(0, 1000)] for queue in queues: rewards = [] queue_input = np.array([queue]) for action in actions: action_input = np.array([action]) rewards.append((joint_queue_reward(action_input, queue_input))) plt.plot(actions, rewards, label="Queue Size %f" % queue) plt.xlabel("Action Input") plt.ylabel("Reward") plt.legend() plt.show()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 11748, 18931, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 22692, 62, 260, 904, 7, 4658, 11, 43359, 28, 14202, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 449, 391, 1, 82, 22692, 6376, 329, 257, 1351, 286, 3815, 13, 198, 220, 220, 220, 4091, 2638, 1378, 268, 13, 31266, 13, 2398, 14, 15466, 14, 30099, 1108, 62, 1326, 5015, 329, 22692, 27490, 13, 198, 220, 220, 220, 2488, 17143, 3815, 25, 1351, 286, 3815, 198, 220, 220, 220, 2488, 7783, 22692, 25, 449, 11674, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18896, 7, 4658, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 13, 15, 198, 220, 220, 220, 997, 796, 2160, 7, 4658, 8, 12429, 362, 198, 220, 220, 220, 2853, 296, 796, 18896, 7, 4658, 8, 1635, 2160, 26933, 72, 12429, 362, 329, 1312, 287, 4028, 12962, 198, 220, 220, 220, 1441, 997, 1220, 12178, 7, 6559, 296, 8, 628, 198, 4299, 308, 5362, 62, 260, 904, 7, 4658, 11, 43359, 28, 14202, 2599, 198, 220, 220, 220, 37227, 9771, 3129, 378, 262, 402, 5362, 35381, 286, 257, 299, 32152, 7177, 526, 15931, 198, 220, 220, 220, 1303, 1912, 319, 4220, 37430, 25, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 34242, 12942, 13, 785, 14, 16794, 14, 27568, 17566, 14, 4853, 602, 14, 4853, 341, 21526, 13, 21370, 70, 198, 220, 220, 220, 1303, 422, 25, 198, 220, 220, 220, 1303, 2638, 1378, 2503, 13, 34242, 12942, 13, 785, 14, 16794, 14, 12286, 13, 19211, 2, 13159, 17143, 19482, 62, 24396, 82, 14, 1655, 72, 13, 19211, 198, 220, 220, 220, 1303, 1439, 3815, 389, 5716, 8603, 11, 26515, 1276, 307, 352, 67, 25, 198, 220, 220, 220, 1303, 27068, 1276, 307, 23243, 25, 198, 220, 220, 220, 4028, 796, 45941, 13, 30619, 7, 4658, 8, 198, 220, 220, 220, 1303, 7913, 286, 7177, 4847, 25, 198, 220, 220, 220, 299, 796, 4028, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 1303, 12901, 583, 7177, 5002, 25, 198, 220, 220, 220, 6376, 796, 45941, 13, 283, 858, 7, 16, 11, 299, 1343, 352, 8, 198, 220, 220, 220, 1303, 402, 5362, 35381, 25, 198, 220, 220, 220, 1441, 14808, 37659, 13, 16345, 19510, 17, 1635, 6376, 532, 299, 532, 352, 8, 1635, 4028, 4008, 1220, 357, 77, 1635, 45941, 13, 16345, 7, 4658, 22305, 628, 628, 628, 628, 628, 198, 2, 1402, 4226, 284, 38350, 262, 6721, 5072, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 220, 220, 220, 43359, 796, 685, 72, 1635, 657, 13, 16, 329, 1312, 287, 2837, 7, 15, 11, 1367, 15437, 198, 220, 220, 220, 4028, 796, 685, 72, 1635, 764, 8298, 329, 1312, 287, 2837, 7, 15, 11, 8576, 15437, 198, 220, 220, 220, 329, 16834, 287, 43359, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11530, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 16834, 62, 15414, 796, 45941, 13, 18747, 26933, 36560, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 4028, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 62, 15414, 796, 45941, 13, 18747, 26933, 2673, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11530, 13, 33295, 19510, 73, 1563, 62, 36560, 62, 260, 904, 7, 2673, 62, 15414, 11, 16834, 62, 15414, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 7, 4658, 11, 11530, 11, 6167, 2625, 34991, 12849, 4064, 69, 1, 4064, 16834, 8, 198, 220, 220, 220, 458, 83, 13, 87, 18242, 7203, 12502, 23412, 4943, 198, 220, 220, 220, 458, 83, 13, 2645, 9608, 7203, 48123, 4943, 198, 220, 220, 220, 458, 83, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.580357
672
# -*- coding: utf-8 -*- import os
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 628, 628 ]
2.055556
18
print('vamos calcular seu IMC') a = float(input('Sua altura: ')) p = float(input('Seu peso: ')) n = (p/(a**2)) print(f'Seu IMC e: {n:.1f}') if n < 18.5: print('Abaixo do peso.') elif n <= 25 and n > 18.5: print('Peso ideal.') elif n < 30 and n > 25: print('Sobrepeso.') elif n <= 40 and 30 < n: print('obsidade.') else: print('obsidade mórbida.')
[ 4798, 10786, 85, 321, 418, 2386, 10440, 384, 84, 8959, 34, 11537, 198, 64, 796, 12178, 7, 15414, 10786, 5606, 64, 5988, 5330, 25, 705, 4008, 198, 79, 796, 12178, 7, 15414, 10786, 4653, 84, 32317, 78, 25, 705, 4008, 198, 77, 796, 357, 79, 29006, 64, 1174, 17, 4008, 198, 4798, 7, 69, 6, 4653, 84, 8959, 34, 304, 25, 1391, 77, 25, 13, 16, 69, 92, 11537, 198, 361, 299, 1279, 1248, 13, 20, 25, 198, 220, 220, 220, 3601, 10786, 4826, 64, 844, 78, 466, 32317, 78, 2637, 8, 198, 417, 361, 299, 19841, 1679, 290, 299, 1875, 1248, 13, 20, 25, 198, 220, 220, 220, 3601, 10786, 47, 274, 78, 7306, 2637, 8, 198, 417, 361, 299, 1279, 1542, 290, 299, 1875, 1679, 25, 198, 220, 220, 220, 3601, 10786, 50, 672, 7856, 274, 78, 2637, 8, 198, 417, 361, 299, 19841, 2319, 290, 1542, 1279, 299, 25, 198, 220, 220, 220, 3601, 10786, 8158, 312, 671, 2637, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 10786, 8158, 312, 671, 285, 10205, 26145, 3755, 2637, 8, 198, 220, 220, 220, 220 ]
1.994624
186
from unittest import TestCase import logging from supplychainpy._helpers import _data_cleansing from supplychainpy.sample_data.config import ABS_FILE_PATH #logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 11748, 18931, 198, 198, 6738, 5127, 7983, 9078, 13557, 16794, 364, 1330, 4808, 7890, 62, 2375, 504, 278, 198, 6738, 5127, 7983, 9078, 13, 39873, 62, 7890, 13, 11250, 1330, 29950, 62, 25664, 62, 34219, 198, 198, 2, 6404, 2667, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 5794, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 11537, 198 ]
2.988095
84
switchApp("System Preferences.app") click("1273526123226.png") click("1273526171905.png") thumbs = findAll("1273527194228.png") for t in list(thumbs)[:2]: # only take the first two dragLeft(t) # off #dragRight(t) # on #dragToMute(t)
[ 198, 31943, 4677, 7203, 11964, 49780, 13, 1324, 4943, 198, 12976, 7203, 16799, 2327, 2075, 10163, 24909, 13, 11134, 4943, 198, 12976, 7203, 16799, 2327, 2075, 1558, 1129, 2713, 13, 11134, 4943, 198, 400, 18146, 796, 1064, 3237, 7203, 16799, 2327, 1983, 22913, 23815, 13, 11134, 4943, 198, 1640, 256, 287, 1351, 7, 400, 18146, 38381, 25, 17, 5974, 1303, 691, 1011, 262, 717, 734, 220, 198, 220, 6715, 18819, 7, 83, 8, 1303, 572, 198, 220, 1303, 7109, 363, 11028, 7, 83, 8, 220, 1303, 319, 198, 220, 1303, 7109, 363, 2514, 44, 1133, 7, 83, 8, 628 ]
2.454545
99
import os import sys from .tracking import FunctionIndexer, get_full_function_name def pytest_addoption(parser): """ Pytest hook - register command line arguments. We want to register the --func_cov argument to explicitly pass the location of the package to discover and the ignore_func_names ini setting. Args: parser: """ group = parser.getgroup("func_cov") group.addoption( "--func_cov", dest="func_cov_source", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) group.addoption( "--func_cov_report", dest="func_cov_report", action="append", default=[], metavar="SOURCE", nargs="?", const=True, ) parser.addini("ignore_func_names", "function names to ignore", "linelist", [])
[ 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 764, 36280, 1330, 15553, 15732, 263, 11, 651, 62, 12853, 62, 8818, 62, 3672, 628, 198, 4299, 12972, 9288, 62, 2860, 18076, 7, 48610, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9485, 9288, 8011, 532, 7881, 3141, 1627, 7159, 13, 775, 765, 284, 7881, 262, 198, 220, 220, 220, 1377, 20786, 62, 66, 709, 4578, 284, 11777, 1208, 262, 4067, 286, 262, 5301, 284, 198, 220, 220, 220, 7073, 290, 262, 8856, 62, 20786, 62, 14933, 287, 72, 4634, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1448, 796, 30751, 13, 1136, 8094, 7203, 20786, 62, 66, 709, 4943, 198, 220, 220, 220, 1448, 13, 2860, 18076, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 20786, 62, 66, 709, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 20786, 62, 66, 709, 62, 10459, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 33295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 47690, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 1500, 28, 17821, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1448, 13, 2860, 18076, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 438, 20786, 62, 66, 709, 62, 13116, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2244, 2625, 20786, 62, 66, 709, 62, 13116, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 33295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 2625, 47690, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22046, 2625, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 1500, 28, 17821, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 30751, 13, 2860, 5362, 7203, 46430, 62, 20786, 62, 14933, 1600, 366, 8818, 3891, 284, 8856, 1600, 366, 2815, 46331, 1600, 685, 12962, 628, 198 ]
2.339572
374
#! /usr/bin/env python from .toy_problem_test import ToyProblemTest from .reconciliation_problem_test import ReconciliationProblemTest from .reconciliation_problem_2_test import ReconciliationProblem2Test from .recon3_test import Recon3Test from .optgapc1_test import OptGapC1Test from .optgapc2_test import OptGapC2Test from .optgapc3_test import OptGapC3Test from .optgap4_test import OptGap4Test from .single_edge_b import SingleEdgeBTest from .feasibility_test import FeasibilityTest from .flow_path_construction_test import FlowPathConstructionTest from .we_need_to_fix_this_test import WeNeedToFixThisTest from .abstract_test import bcolors import argparse ALL_TESTS = [ToyProblemTest(), ReconciliationProblemTest(), ReconciliationProblem2Test(), Recon3Test(), OptGapC1Test(), OptGapC2Test(), OptGapC3Test(), FeasibilityTest(), OptGap4Test(), FlowPathConstructionTest(), WeNeedToFixThisTest(), SingleEdgeBTest()] TEST_NAME_DICT = {test.name: test for test in ALL_TESTS} if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--tests', nargs='+', required=False) args = parser.parse_args() if args.tests is not None: tests_to_run = [TEST_NAME_DICT[name] for name in args.tests] else: tests_to_run = ALL_TESTS print('RUNNING THE FOLLOWING TESTS: {}'.format( [test.name for test in tests_to_run])) run_tests(tests_to_run)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 628, 198, 6738, 764, 83, 726, 62, 45573, 62, 9288, 1330, 10977, 40781, 14402, 198, 6738, 764, 260, 1102, 66, 15547, 62, 45573, 62, 9288, 1330, 23419, 66, 15547, 40781, 14402, 198, 6738, 764, 260, 1102, 66, 15547, 62, 45573, 62, 17, 62, 9288, 1330, 23419, 66, 15547, 40781, 17, 14402, 198, 6738, 764, 260, 1102, 18, 62, 9288, 1330, 23419, 18, 14402, 198, 6738, 764, 8738, 43554, 66, 16, 62, 9288, 1330, 13123, 38, 499, 34, 16, 14402, 198, 6738, 764, 8738, 43554, 66, 17, 62, 9288, 1330, 13123, 38, 499, 34, 17, 14402, 198, 6738, 764, 8738, 43554, 66, 18, 62, 9288, 1330, 13123, 38, 499, 34, 18, 14402, 198, 6738, 764, 8738, 43554, 19, 62, 9288, 1330, 13123, 38, 499, 19, 14402, 198, 6738, 764, 29762, 62, 14907, 62, 65, 1330, 14206, 37021, 33, 14402, 198, 6738, 764, 5036, 292, 2247, 62, 9288, 1330, 5452, 292, 2247, 14402, 198, 6738, 764, 11125, 62, 6978, 62, 9979, 2762, 62, 9288, 1330, 27782, 15235, 36687, 14402, 198, 6738, 764, 732, 62, 31227, 62, 1462, 62, 13049, 62, 5661, 62, 9288, 1330, 775, 23037, 2514, 22743, 1212, 14402, 198, 6738, 764, 397, 8709, 62, 9288, 1330, 275, 4033, 669, 628, 198, 11748, 1822, 29572, 628, 198, 7036, 62, 51, 1546, 4694, 796, 685, 48236, 40781, 14402, 22784, 23419, 66, 15547, 40781, 14402, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23419, 66, 15547, 40781, 17, 14402, 22784, 23419, 18, 14402, 22784, 13123, 38, 499, 34, 16, 14402, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13123, 38, 499, 34, 17, 14402, 22784, 13123, 38, 499, 34, 18, 14402, 22784, 5452, 292, 2247, 14402, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13123, 38, 499, 19, 14402, 22784, 27782, 15235, 36687, 14402, 22784, 775, 23037, 2514, 22743, 1212, 14402, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14206, 37021, 33, 14402, 3419, 60, 198, 51, 6465, 62, 20608, 62, 35, 18379, 796, 1391, 9288, 13, 3672, 25, 1332, 329, 1332, 287, 11096, 62, 51, 1546, 4694, 92, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 41989, 3256, 299, 22046, 11639, 10, 3256, 2672, 28, 25101, 8, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 26498, 13, 41989, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5254, 62, 1462, 62, 5143, 796, 685, 51, 6465, 62, 20608, 62, 35, 18379, 58, 3672, 60, 329, 1438, 287, 26498, 13, 41989, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5254, 62, 1462, 62, 5143, 796, 11096, 62, 51, 1546, 4694, 628, 220, 220, 220, 3601, 10786, 49, 4944, 15871, 3336, 11895, 44765, 2751, 309, 1546, 4694, 25, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 9288, 13, 3672, 329, 1332, 287, 5254, 62, 1462, 62, 5143, 60, 4008, 198, 220, 220, 220, 1057, 62, 41989, 7, 41989, 62, 1462, 62, 5143, 8, 628 ]
2.642086
556
"""Test getting/setting variables and subjacs with promoted/relative/absolute names.""" import unittest import numpy as np from openmdao.api import Problem, Group, ExecComp, IndepVarComp, DirectSolver, ParallelGroup from openmdao.utils.mpi import MPI try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None @unittest.skipUnless(MPI and PETScVector, "MPI and PETSc are required.") if __name__ == '__main__': unittest.main()
[ 37811, 14402, 1972, 14, 33990, 9633, 290, 850, 73, 16436, 351, 13722, 14, 43762, 14, 48546, 3891, 526, 15931, 198, 198, 11748, 555, 715, 395, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1280, 9132, 5488, 13, 15042, 1330, 20647, 11, 4912, 11, 8393, 7293, 11, 1423, 538, 19852, 7293, 11, 4128, 50, 14375, 11, 42945, 13247, 198, 6738, 1280, 9132, 5488, 13, 26791, 13, 3149, 72, 1330, 4904, 40, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 1280, 9132, 5488, 13, 303, 5217, 13, 79, 1039, 66, 62, 31364, 1330, 32043, 3351, 38469, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 32043, 3351, 38469, 796, 6045, 628, 198, 198, 31, 403, 715, 395, 13, 48267, 28042, 7, 7378, 40, 290, 32043, 3351, 38469, 11, 366, 7378, 40, 290, 32043, 3351, 389, 2672, 19570, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.044025
159
from django.test import TestCase from heltour.tournament.models import * from django.core.urlresolvers import reverse # For now we just have sanity checks for the templates used # This could be enhanced by verifying the context data
[ 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 932, 83, 454, 13, 83, 5138, 13, 27530, 1330, 1635, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 198, 2, 1114, 783, 356, 655, 423, 34182, 8794, 329, 262, 24019, 973, 198, 2, 770, 714, 307, 13105, 416, 45505, 262, 4732, 1366, 198 ]
3.966102
59
from skydb import SkydbTable from random import choice from string import ascii_letters table_name = ''.join([choice(ascii_letters) for i in range(20)]) import time print("Creating table") table = SkydbTable(table_name, columns=['c1','c2','c3'], seed="some_random", verbose=1) print("Added table successfully")
[ 6738, 1341, 5173, 65, 1330, 5274, 9945, 10962, 198, 6738, 4738, 1330, 3572, 198, 6738, 4731, 1330, 355, 979, 72, 62, 15653, 198, 198, 11487, 62, 3672, 796, 705, 4458, 22179, 26933, 25541, 7, 292, 979, 72, 62, 15653, 8, 329, 1312, 287, 2837, 7, 1238, 8, 12962, 198, 11748, 640, 198, 198, 4798, 7203, 32071, 3084, 4943, 198, 11487, 796, 5274, 9945, 10962, 7, 11487, 62, 3672, 11, 15180, 28, 17816, 66, 16, 41707, 66, 17, 41707, 66, 18, 6, 4357, 9403, 2625, 11246, 62, 25120, 1600, 15942, 577, 28, 16, 8, 198, 4798, 7203, 13003, 3084, 7675, 4943, 628, 198 ]
3.088235
102
from rabbitai.db_engine_specs.athena import AthenaEngineSpec from tests.db_engine_specs.base_tests import TestDbEngineSpec
[ 6738, 22746, 1872, 13, 9945, 62, 18392, 62, 4125, 6359, 13, 265, 831, 64, 1330, 21341, 13798, 22882, 198, 6738, 5254, 13, 9945, 62, 18392, 62, 4125, 6359, 13, 8692, 62, 41989, 1330, 6208, 43832, 13798, 22882, 628 ]
3.263158
38
import os import sys import errno import math from math import * sys.path.append('../../common') from env_indigo import * if not os.path.exists(joinPathPy("out", __file__)): try: os.makedirs(joinPathPy("out", __file__)) except OSError as e: if e.errno != errno.EEXIST: raise indigo = Indigo() indigo.setOption("molfile-saving-skip-date", "1") indigo.setOption("treat-x-as-pseudoatom", "1") indigo.setOption("smart-layout", "1") ref_path = getRefFilepath("template_layout.sdf") ref = indigo.iterateSDFile(ref_path) print("**** Test template layout *****") saver = indigo.writeFile(joinPathPy("out/template_layout.sdf", __file__)) for idx, item in enumerate(indigo.iterateSDFile(joinPathPy("molecules/template_layout.sdf", __file__))): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, ref.at(idx).rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e))) print("**** Test rings templates layout *****") ref_path = getRefFilepath("rings_templates.sdf") ref = indigo.iterateSDFile(ref_path) saver = indigo.writeFile(joinPathPy("out/rings_templates.sdf", __file__)) for idx, item in enumerate(ref): try: mol = item.clone() mol.layout() res = moleculeLayoutDiff(indigo, mol, item.rawData(), ref_is_file = False) print(" Item #{}: Result: {}".format(idx, res)) saver.sdfAppend(mol) except IndigoException as e: print("Exception for #%s: %s" % (idx, getIntemplate_layout.sdfdigoExceptionText(e)))
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 11454, 3919, 198, 11748, 10688, 198, 6738, 10688, 1330, 1635, 198, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 40720, 11321, 11537, 198, 6738, 17365, 62, 521, 14031, 1330, 1635, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 22179, 15235, 20519, 7203, 448, 1600, 11593, 7753, 834, 8, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 22179, 15235, 20519, 7203, 448, 1600, 11593, 7753, 834, 4008, 198, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 8056, 3919, 14512, 11454, 3919, 13, 36, 6369, 8808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 198, 198, 521, 14031, 796, 40673, 3419, 198, 521, 14031, 13, 2617, 19722, 7203, 76, 4024, 576, 12, 29336, 12, 48267, 12, 4475, 1600, 366, 16, 4943, 198, 521, 14031, 13, 2617, 19722, 7203, 83, 630, 12, 87, 12, 292, 12, 7752, 12003, 37696, 1600, 366, 16, 4943, 198, 521, 14031, 13, 2617, 19722, 7203, 27004, 12, 39786, 1600, 366, 16, 4943, 628, 198, 198, 5420, 62, 6978, 796, 651, 8134, 8979, 6978, 7203, 28243, 62, 39786, 13, 82, 7568, 4943, 198, 5420, 796, 773, 14031, 13, 2676, 378, 50, 8068, 576, 7, 5420, 62, 6978, 8, 198, 198, 4798, 7203, 2466, 6208, 11055, 12461, 25998, 9, 4943, 198, 198, 82, 8770, 796, 773, 14031, 13, 13564, 8979, 7, 22179, 15235, 20519, 7203, 448, 14, 28243, 62, 39786, 13, 82, 7568, 1600, 11593, 7753, 834, 4008, 198, 1640, 4686, 87, 11, 2378, 287, 27056, 378, 7, 521, 14031, 13, 2676, 378, 50, 8068, 576, 7, 22179, 15235, 20519, 7203, 76, 2305, 13930, 14, 28243, 62, 39786, 13, 82, 7568, 1600, 11593, 7753, 834, 4008, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 796, 2378, 13, 21018, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 13, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 27756, 32517, 28813, 7, 521, 14031, 11, 18605, 11, 1006, 13, 265, 7, 312, 87, 737, 1831, 6601, 22784, 1006, 62, 271, 62, 7753, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 220, 9097, 1303, 90, 38362, 25414, 25, 23884, 1911, 18982, 7, 312, 87, 11, 581, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 82, 7568, 4677, 437, 7, 43132, 8, 198, 220, 220, 220, 2845, 40673, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16922, 329, 1303, 4, 82, 25, 4064, 82, 1, 4064, 357, 312, 87, 11, 651, 5317, 368, 6816, 62, 39786, 13, 82, 7568, 12894, 78, 16922, 8206, 7, 68, 22305, 628, 198, 4798, 7203, 2466, 6208, 13917, 24019, 12461, 25998, 9, 4943, 198, 198, 5420, 62, 6978, 796, 651, 8134, 8979, 6978, 7203, 33173, 62, 11498, 17041, 13, 82, 7568, 4943, 198, 5420, 796, 773, 14031, 13, 2676, 378, 50, 8068, 576, 7, 5420, 62, 6978, 8, 198, 198, 82, 8770, 796, 773, 14031, 13, 13564, 8979, 7, 22179, 15235, 20519, 7203, 448, 14, 33173, 62, 11498, 17041, 13, 82, 7568, 1600, 11593, 7753, 834, 4008, 198, 1640, 4686, 87, 11, 2378, 287, 27056, 378, 7, 5420, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 796, 2378, 13, 21018, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 18605, 13, 39786, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 27756, 32517, 28813, 7, 521, 14031, 11, 18605, 11, 2378, 13, 1831, 6601, 22784, 1006, 62, 271, 62, 7753, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 220, 9097, 1303, 90, 38362, 25414, 25, 23884, 1911, 18982, 7, 312, 87, 11, 581, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 473, 332, 13, 82, 7568, 4677, 437, 7, 43132, 8, 198, 220, 220, 220, 2845, 40673, 16922, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 16922, 329, 1303, 4, 82, 25, 4064, 82, 1, 4064, 357, 312, 87, 11, 651, 5317, 368, 6816, 62, 39786, 13, 82, 7568, 12894, 78, 16922, 8206, 7, 68, 22305 ]
2.410292
719
from builtins import str from django import forms from django.forms.widgets import TextInput from .version import Version from .constants import DEFAULT_NUMBER_BITS from .utils import convert_version_int_to_string
[ 6738, 3170, 1040, 1330, 965, 198, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 23914, 13, 28029, 11407, 1330, 8255, 20560, 198, 6738, 764, 9641, 1330, 10628, 198, 6738, 764, 9979, 1187, 1330, 5550, 38865, 62, 41359, 13246, 62, 26094, 50, 198, 6738, 764, 26791, 1330, 10385, 62, 9641, 62, 600, 62, 1462, 62, 8841, 628 ]
3.661017
59
''' Created on Oct 20, 2021 @author: mballance ''' from tblink_rpc_utils.idl_spec import IDLSpec from tblink_rpc_utils.input_reader import InputReader from tblink_rpc_utils.input_spec import InputSpec from tblink_rpc_utils.yaml_idl_parser import YamlIDLParser
[ 7061, 6, 198, 41972, 319, 2556, 1160, 11, 33448, 198, 198, 31, 9800, 25, 285, 1894, 590, 198, 7061, 6, 198, 6738, 256, 2436, 676, 62, 81, 14751, 62, 26791, 13, 312, 75, 62, 16684, 1330, 4522, 43, 22882, 198, 6738, 256, 2436, 676, 62, 81, 14751, 62, 26791, 13, 15414, 62, 46862, 1330, 23412, 33634, 198, 6738, 256, 2436, 676, 62, 81, 14751, 62, 26791, 13, 15414, 62, 16684, 1330, 23412, 22882, 198, 6738, 256, 2436, 676, 62, 81, 14751, 62, 26791, 13, 88, 43695, 62, 312, 75, 62, 48610, 1330, 14063, 75, 2389, 19930, 28198, 198 ]
2.663265
98
import misaka as m from django import template from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe from MedusaII.settings import MARKDOWNX_MARKDOWN_EXTENSIONS register = template.Library() @register.filter(is_safe=True) @stringfilter
[ 11748, 2984, 8130, 355, 285, 198, 6738, 42625, 14208, 1330, 11055, 198, 6738, 42625, 14208, 13, 28243, 13, 12286, 10379, 1010, 1330, 4731, 24455, 198, 6738, 42625, 14208, 13, 26791, 13, 49585, 395, 1806, 1330, 1317, 62, 21230, 198, 198, 6738, 2019, 22064, 3978, 13, 33692, 1330, 39641, 41925, 55, 62, 44, 14175, 41925, 62, 13918, 16938, 11053, 198, 198, 30238, 796, 11055, 13, 23377, 3419, 628, 198, 31, 30238, 13, 24455, 7, 271, 62, 21230, 28, 17821, 8, 198, 31, 8841, 24455, 198 ]
3.428571
84
#! /usr/bin/env python import sys from rpython.jit.codewriter.policy import JitPolicy from rsqueakvm import model, objspace, interpreter, squeakimage # This loads an image file in advance and includes it in the # translation-output. At run-time, the defined selector is sent # to the defined SmallInteger. This way we get an RPython # "image" frozen into the executable, mmap'ed by the OS from # there and loaded lazily when needed :-) # Besides testing etc., this can be used to create standalone # binaries executing a smalltalk program. sys.setrecursionlimit(100000) imagefile = "images/mini.image" selector = "loopTest" receiver = 0 interp, s_frame = setup() # _____ Define and setup target ___ if __name__ == "__main__": entry_point(sys.argv)
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 25064, 198, 6738, 374, 29412, 13, 45051, 13, 19815, 413, 43407, 13, 30586, 1330, 449, 270, 36727, 198, 6738, 44608, 4188, 461, 14761, 1330, 2746, 11, 26181, 13200, 11, 28846, 11, 35776, 461, 9060, 198, 198, 2, 770, 15989, 281, 2939, 2393, 287, 5963, 290, 3407, 340, 287, 262, 198, 2, 11059, 12, 22915, 13, 1629, 1057, 12, 2435, 11, 262, 5447, 31870, 318, 1908, 198, 2, 284, 262, 5447, 10452, 46541, 13, 770, 835, 356, 651, 281, 25812, 7535, 198, 2, 366, 9060, 1, 12912, 656, 262, 28883, 11, 8085, 499, 6, 276, 416, 262, 7294, 422, 198, 2, 612, 290, 9639, 37296, 813, 618, 2622, 47226, 198, 2, 16238, 4856, 3503, 1539, 428, 460, 307, 973, 284, 2251, 27669, 198, 2, 38640, 23710, 257, 1402, 16620, 1430, 13, 198, 198, 17597, 13, 2617, 8344, 24197, 32374, 7, 3064, 830, 8, 198, 198, 9060, 7753, 796, 366, 17566, 14, 45313, 13, 9060, 1, 198, 19738, 273, 796, 366, 26268, 14402, 1, 198, 260, 39729, 796, 657, 198, 198, 3849, 79, 11, 264, 62, 14535, 796, 9058, 3419, 628, 198, 2, 220, 29343, 2896, 500, 290, 9058, 2496, 46444, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 5726, 62, 4122, 7, 17597, 13, 853, 85, 8, 198 ]
3.358407
226
from model.modelfactory import *
[ 6738, 2746, 13, 4666, 7046, 9548, 1330, 1635 ]
4
8
from cursor import Cursor from node import Node
[ 6738, 23493, 1330, 327, 21471, 198, 6738, 10139, 1330, 19081, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.275862
29
load( "@com_googlesource_gerrit_bazlets//tools:classpath.bzl", "classpath_collector", )
[ 2220, 7, 198, 220, 220, 220, 44212, 785, 62, 2188, 519, 829, 1668, 62, 1362, 799, 62, 65, 1031, 5289, 1003, 31391, 25, 4871, 6978, 13, 65, 48274, 1600, 198, 220, 220, 220, 366, 4871, 6978, 62, 33327, 273, 1600, 198, 8, 198 ]
2.232558
43
# -*- coding: utf-8 -*- import inspect import llbc class pyllbcStream(object): """ Stream class encapsulation, use to pack/unpack data sequence. """ @property def endian(self): """ Get stream endian setting(see llbc.Endian module). """ return llbc.inl.GetPyStreamEndian(self.__c_obj) @endian.setter def endian(self, e): """ Set stream endian(see llbc.Endian module). """ llbc.inl.SetPyStreamEndian(self.__c_obj, e) @property def pos(self): """ Get stream current reading/writing position. """ return llbc.inl.GetPyStreamPos(self.__c_obj) @pos.setter def pos(self, p): """ Set stream current reading/writing position. """ llbc.inl.SetPyStreamPos(self.__c_obj, p) @property def size(self): """ Get stream size(unsafe method, size will automatic adjust by stream). """ return llbc.inl.GetPyStreamSize(self.__c_obj) @size.setter def size(self, s): """ Set stream size(unsafe method, size will automatic adjust by stream). """ llbc.inl.SetPyStreamSize(self.__c_obj, s) @property def raw(self): """ Get stream memery view as buffer. """ return llbc.inl.PyStreamGetRaw(self.__c_obj) @raw.setter def raw(self, r): """ Set stream raw memory from str/buffer/bytearray. """ llbc.inl.PyStreamSetRaw(self.__c_obj, r) @property def cobj(self): """ Get raw pyllbc stream object(calling by c/c++ layer). """ return self.__c_obj def __str__(self): """ Get human readable stream data's string representation. """ import binascii return binascii.hexlify(self.raw) @staticmethod @staticmethod @staticmethod @staticmethod @staticmethod def unpack(self, fmt): """ Unpack data according to the given format. the result is a tuple even if it contents exactly one item. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. The format examples: iiS (i) (U) [i] {i:S} {i:(C<int>)} ([SC<int>NA(i)]{int:S}B """ return self.__unpack(fmt) def pack(self, fmt, *values): """ Pack values according to the given format, the arguments must match the values required by the format exactly. format strings: c: char value(like b). b: byte value(like c). B: boolean value. s: short value. i: integer value. q: signed long long value. f: float value. d: double value(only support Fomat method). S: string value. S#: string value, use another pack/unpack algorithm, 4 bytes length + string content(not include NULL character). S$: string value, will read stream to end as string content, write like 'S', but not append string end character '\0'. U: unicode value. A: byte array value. F: buffer value. N: None value. C: class type, will automatic call class.encode() method to decode, must tell stream this class name, use C<ClassName> semantic. (): tuple type, if only has one element, it represent tuple all element type is the given type, otherwise the tuple size must equal your given element count. []: list type, the same as tuple type: (). {key:value}: dictionary type. """ caller_env = None if fmt.find('C') >= 0 and not llbc.inl.PyStreamIsExprCompiled(fmt): caller_env = inspect.stack()[1][0].f_globals return llbc.inl.PyStreamFmtWrite(self.__c_obj, fmt, values, caller_env) llbc.Stream = pyllbcStream
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 10104, 198, 198, 11748, 32660, 15630, 198, 198, 4871, 12972, 297, 15630, 12124, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13860, 1398, 32652, 1741, 11, 779, 284, 2353, 14, 403, 8002, 1366, 8379, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 886, 666, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 4269, 886, 666, 4634, 7, 3826, 32660, 15630, 13, 12915, 666, 8265, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 15630, 13, 259, 75, 13, 3855, 20519, 12124, 12915, 666, 7, 944, 13, 834, 66, 62, 26801, 8, 628, 220, 220, 220, 2488, 437, 666, 13, 2617, 353, 198, 220, 220, 220, 825, 886, 666, 7, 944, 11, 304, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 4269, 886, 666, 7, 3826, 32660, 15630, 13, 12915, 666, 8265, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 15630, 13, 259, 75, 13, 7248, 20519, 12124, 12915, 666, 7, 944, 13, 834, 66, 62, 26801, 11, 304, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 1426, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 4269, 1459, 3555, 14, 16502, 2292, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 15630, 13, 259, 75, 13, 3855, 20519, 12124, 21604, 7, 944, 13, 834, 66, 62, 26801, 8, 628, 220, 220, 220, 2488, 1930, 13, 2617, 353, 198, 220, 220, 220, 825, 1426, 7, 944, 11, 279, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 4269, 1459, 3555, 14, 16502, 2292, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 15630, 13, 259, 75, 13, 7248, 20519, 12124, 21604, 7, 944, 13, 834, 66, 62, 26801, 11, 279, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 2546, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 4269, 2546, 7, 13271, 8635, 2446, 11, 2546, 481, 11353, 4532, 416, 4269, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 15630, 13, 259, 75, 13, 3855, 20519, 12124, 10699, 7, 944, 13, 834, 66, 62, 26801, 8, 628, 220, 220, 220, 2488, 7857, 13, 2617, 353, 198, 220, 220, 220, 825, 2546, 7, 944, 11, 264, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 4269, 2546, 7, 13271, 8635, 2446, 11, 2546, 481, 11353, 4532, 416, 4269, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 15630, 13, 259, 75, 13, 7248, 20519, 12124, 10699, 7, 944, 13, 834, 66, 62, 26801, 11, 264, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 8246, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 4269, 1066, 1924, 1570, 355, 11876, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 15630, 13, 259, 75, 13, 20519, 12124, 3855, 27369, 7, 944, 13, 834, 66, 62, 26801, 8, 628, 220, 220, 220, 2488, 1831, 13, 2617, 353, 198, 220, 220, 220, 825, 8246, 7, 944, 11, 374, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5345, 4269, 8246, 4088, 422, 965, 14, 22252, 14, 1525, 83, 451, 2433, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 32660, 15630, 13, 259, 75, 13, 20519, 12124, 7248, 27369, 7, 944, 13, 834, 66, 62, 26801, 11, 374, 8, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 825, 22843, 73, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 8246, 12972, 297, 15630, 4269, 2134, 7, 44714, 416, 269, 14, 66, 4880, 7679, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 66, 62, 26801, 628, 220, 220, 220, 825, 11593, 2536, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 1692, 31744, 4269, 1366, 338, 4731, 10552, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 9874, 292, 979, 72, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 9874, 292, 979, 72, 13, 33095, 75, 1958, 7, 944, 13, 1831, 8, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 555, 8002, 7, 944, 11, 46996, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 791, 8002, 1366, 1864, 284, 262, 1813, 5794, 13, 262, 1255, 318, 257, 46545, 772, 611, 340, 10154, 3446, 530, 2378, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 13042, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 25, 1149, 1988, 7, 2339, 275, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 25, 18022, 1988, 7, 2339, 269, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 25, 25131, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 25, 1790, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 25, 18253, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 25, 4488, 890, 890, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 25, 12178, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 25, 4274, 1988, 7, 8807, 1104, 376, 296, 265, 2446, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 25, 4731, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 2, 25, 4731, 1988, 11, 779, 1194, 2353, 14, 403, 8002, 11862, 11, 604, 9881, 4129, 1343, 4731, 2695, 7, 1662, 2291, 15697, 2095, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 3, 25, 4731, 1988, 11, 481, 1100, 4269, 284, 886, 355, 4731, 2695, 11, 3551, 588, 705, 50, 3256, 475, 407, 24443, 4731, 886, 2095, 705, 59, 15, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 471, 25, 28000, 1098, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 25, 18022, 7177, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 25, 11876, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 25, 6045, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 25, 1398, 2099, 11, 481, 11353, 869, 1398, 13, 268, 8189, 3419, 2446, 284, 36899, 1276, 1560, 4269, 428, 1398, 1438, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 327, 27, 9487, 5376, 29, 37865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2599, 46545, 2099, 11, 611, 691, 468, 530, 5002, 11, 220, 340, 2380, 46545, 477, 5002, 2099, 318, 262, 1813, 2099, 11, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 46545, 2546, 1276, 4961, 534, 1813, 5002, 954, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 5974, 1351, 2099, 11, 262, 976, 355, 46545, 2099, 25, 27972, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 2539, 25, 8367, 38362, 22155, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 383, 5794, 6096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21065, 50, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 52, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 72, 25, 50, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 72, 37498, 34, 27, 600, 29, 38165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29565, 6173, 27, 600, 29, 4535, 7, 72, 15437, 90, 600, 25, 50, 92, 33, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 834, 403, 8002, 7, 69, 16762, 8, 628, 220, 220, 220, 825, 2353, 7, 944, 11, 46996, 11, 1635, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6400, 3815, 1864, 284, 262, 1813, 5794, 11, 262, 7159, 1276, 2872, 262, 3815, 2672, 416, 262, 5794, 3446, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 13042, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 25, 1149, 1988, 7, 2339, 275, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 25, 18022, 1988, 7, 2339, 269, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 25, 25131, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 25, 1790, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 25, 18253, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 25, 4488, 890, 890, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 25, 12178, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 25, 4274, 1988, 7, 8807, 1104, 376, 296, 265, 2446, 737, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 25, 4731, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 2, 25, 4731, 1988, 11, 779, 1194, 2353, 14, 403, 8002, 11862, 11, 604, 9881, 4129, 1343, 4731, 2695, 7, 1662, 2291, 15697, 2095, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 311, 3, 25, 4731, 1988, 11, 481, 1100, 4269, 284, 886, 355, 4731, 2695, 11, 3551, 588, 705, 50, 3256, 475, 407, 24443, 4731, 886, 2095, 705, 59, 15, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 471, 25, 28000, 1098, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 25, 18022, 7177, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 25, 11876, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 25, 6045, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 25, 1398, 2099, 11, 481, 11353, 869, 1398, 13, 268, 8189, 3419, 2446, 284, 36899, 11, 1276, 1560, 4269, 428, 1398, 1438, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 327, 27, 9487, 5376, 29, 37865, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 2599, 46545, 2099, 11, 611, 691, 468, 530, 5002, 11, 220, 340, 2380, 46545, 477, 5002, 2099, 318, 262, 1813, 2099, 11, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 46545, 2546, 1276, 4961, 534, 1813, 5002, 954, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 5974, 1351, 2099, 11, 262, 976, 355, 46545, 2099, 25, 27972, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 2539, 25, 8367, 38362, 22155, 2099, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 24955, 62, 24330, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 46996, 13, 19796, 10786, 34, 11537, 18189, 657, 290, 407, 32660, 15630, 13, 259, 75, 13, 20519, 12124, 3792, 3109, 1050, 7293, 3902, 7, 69, 16762, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24955, 62, 24330, 796, 10104, 13, 25558, 3419, 58, 16, 7131, 15, 4083, 69, 62, 4743, 672, 874, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 32660, 15630, 13, 259, 75, 13, 20519, 12124, 37, 16762, 16594, 7, 944, 13, 834, 66, 62, 26801, 11, 46996, 11, 3815, 11, 24955, 62, 24330, 8, 198, 198, 297, 15630, 13, 12124, 796, 12972, 297, 15630, 12124, 628 ]
2.215063
2,297
#import hashlib #from random import randint # # def hash2(self, str1): # # result=0 # b_str1=str.encode(str1) # h=hashlib.sha1(b_str1).hexdigest() # for c in str1: # result += ord(c) # return result % self.filter_len # if __name__ == '__main__': # dataset=["0123456789", "1234567890", "sdfsdfsdf", "sdf2143124", "hophey", "abirvaolg", "8901234567", "2356sdfqix,ed", "9012345678"] # dataset2=["012345678932", "12345623e47890", "sdfdsfq1sdfsdf", "sdf2gs2143124", "qwerhophey", "atgxcvbirvaolg", "8sdgaw901234567", "321452356sdfqix,ed", "5124e39012345678"] # BLOOM_TEST=BloomFilter(32) # for data in dataset: # BLOOM_TEST.add(data) # for data in dataset2: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # for data in dataset: # if BLOOM_TEST.is_value(data): # print(f'It seems {data} is here') # else: # print(f'No {data} by the name of bloom filter ') # print( BLOOM_TEST.bloom_array)
[ 2, 11748, 12234, 8019, 198, 2, 6738, 4738, 1330, 43720, 600, 628, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 825, 12234, 17, 7, 944, 11, 965, 16, 2599, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1255, 28, 15, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 275, 62, 2536, 16, 28, 2536, 13, 268, 8189, 7, 2536, 16, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 289, 28, 17831, 8019, 13, 26270, 16, 7, 65, 62, 2536, 16, 737, 33095, 12894, 395, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 269, 287, 965, 16, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 2760, 7, 66, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1441, 1255, 4064, 2116, 13, 24455, 62, 11925, 198, 198, 2, 611, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 2, 220, 220, 220, 220, 27039, 28, 14692, 486, 1954, 2231, 3134, 4531, 1600, 366, 10163, 2231, 30924, 3829, 1600, 366, 82, 7568, 82, 7568, 82, 7568, 1600, 366, 82, 7568, 17, 21139, 17464, 1600, 220, 366, 8548, 20342, 1600, 366, 397, 343, 6862, 349, 70, 1600, 366, 4531, 486, 1954, 2231, 3134, 1600, 366, 1954, 3980, 82, 7568, 80, 844, 11, 276, 1600, 366, 46815, 1954, 2231, 30924, 8973, 198, 2, 220, 220, 220, 220, 27039, 17, 28, 14692, 486, 1954, 2231, 3134, 4531, 2624, 1600, 366, 10163, 29228, 1954, 68, 29059, 3829, 1600, 366, 82, 7568, 9310, 69, 80, 16, 82, 7568, 82, 7568, 1600, 366, 82, 7568, 17, 14542, 17, 21139, 17464, 1600, 220, 366, 80, 15448, 8548, 20342, 1600, 366, 265, 70, 25306, 85, 65, 343, 6862, 349, 70, 1600, 366, 23, 21282, 70, 707, 46815, 1954, 2231, 3134, 1600, 366, 2624, 18781, 1954, 3980, 82, 7568, 80, 844, 11, 276, 1600, 366, 20, 17464, 68, 2670, 486, 1954, 2231, 30924, 8973, 198, 2, 220, 220, 220, 220, 9878, 46, 2662, 62, 51, 6465, 28, 38941, 22417, 7, 2624, 8, 198, 2, 220, 220, 220, 220, 329, 1366, 287, 27039, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 9878, 46, 2662, 62, 51, 6465, 13, 2860, 7, 7890, 8, 198, 2, 220, 220, 220, 220, 329, 1366, 287, 27039, 17, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9878, 46, 2662, 62, 51, 6465, 13, 271, 62, 8367, 7, 7890, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1026, 2331, 1391, 7890, 92, 318, 994, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 2949, 1391, 7890, 92, 416, 262, 1438, 286, 29955, 8106, 705, 8, 198, 2, 220, 220, 220, 220, 329, 1366, 287, 27039, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 9878, 46, 2662, 62, 51, 6465, 13, 271, 62, 8367, 7, 7890, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 1026, 2331, 1391, 7890, 92, 318, 994, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 2949, 1391, 7890, 92, 416, 262, 1438, 286, 29955, 8106, 705, 8, 198, 2, 220, 220, 220, 220, 3601, 7, 9878, 46, 2662, 62, 51, 6465, 13, 2436, 4207, 62, 18747, 8 ]
1.900498
603
import os.path
[ 11748, 28686, 13, 6978, 628 ]
3.2
5
""" .. module:: Facemovie :platform: Unix, Windows :synopsis: Main class of the application. Contains the core image processing functions.Plays the role of a controller for the application, as it supports the communication layer. .. moduleauthor:: Julien Lengrand-Lambert <[email protected]> """ import threading import logging import Facemovie_lib from util.Notifier import Observer from util.Notifier import Observable class FacemovieThread(threading.Thread, Observable, Observer): ''' Creates a Thread version of Facemovie using the facemovie_lib. This class can then be run anywhere, from a GUI, script, ... ''' def __init__(self, face_params): """ Initializes all parameters of the application. Input and output folders are defined, together with the classifier profile. :param face_params: A faceparams object that contains all needed information to run the Facemovie. :type face_params: FaceParams """ threading.Thread.__init__(self) Observable.__init__(self) Observer.__init__(self, "Application") self.stop_process = False self.face_params = face_params self.facemovie = Facemovie_lib.FaceMovie(self.face_params) self.facemovie.subscribe(self) # Subscribing to facemovie reports self.subscribe(self.facemovie) # Used to send request to stop self.my_logger = logging.getLogger('IvolutionFile.Thread') #self.console_logger = logging.getLogger('ConsoleLog') def update(self, message): """ Trigerred by IvolutionWindow. Uses the Observer pattern to inform the user about the progress of the GUI. """ if len(message) == 1: # system commands if message[0] == "STOP": #self.console_logger.debug("Facemovie is going to stop") self.my_logger.debug("Facemovie is going to stop") self.stop_process = True self.notify(["Lib", ["STOP"]]) else: #self.console_logger.debug("Unrecognized system command") self.my_logger.debug("Unrecognized system command") ##self.console_logger.debug(message) self.my_logger.debug(message) elif len(message) == 2: # notifications ##self.console_logger.debug(message) self.my_logger.debug(message) if message[0] == "FILEADD": self.notify(["Interface", [message[0], message[1], 0]]) else: # notify gui about small updates self.notify(["Interface", ["STATUS", message[0], message[1]]]) # checking for fatal error if message[0] == "Error": #self.console_logger.debug("Fatal Error detected") self.my_logger.debug("Fatal Error detected") self.stop_process = True self.notify(["Lib", ["STOP"]]) elif len(message) == 3: # notifications if message[0] == "FILEDONE": self.notify(["Interface", message]) else: #self.console_logger.debug("Unrecognized command") self.my_logger.debug("Unrecognized command") #self.console_logger.debug(message) self.my_logger.debug(message)
[ 37811, 198, 492, 8265, 3712, 13585, 368, 10739, 198, 220, 220, 1058, 24254, 25, 33501, 11, 3964, 198, 220, 220, 1058, 28869, 24608, 25, 8774, 1398, 286, 262, 3586, 13, 49850, 262, 4755, 2939, 7587, 5499, 13, 3646, 592, 262, 2597, 286, 257, 10444, 329, 262, 3586, 11, 355, 340, 6971, 262, 6946, 7679, 13, 198, 198, 492, 8265, 9800, 3712, 5979, 2013, 406, 1516, 25192, 12, 43, 321, 4835, 1279, 20362, 1516, 25192, 31, 14816, 13, 785, 29, 198, 198, 37811, 198, 11748, 4704, 278, 198, 198, 11748, 18931, 198, 198, 11748, 13585, 368, 10739, 62, 8019, 198, 198, 6738, 7736, 13, 3673, 7483, 1330, 27058, 198, 6738, 7736, 13, 3673, 7483, 1330, 19243, 540, 628, 198, 4871, 13585, 368, 10739, 16818, 7, 16663, 278, 13, 16818, 11, 19243, 540, 11, 27058, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 7921, 274, 257, 14122, 2196, 286, 13585, 368, 10739, 1262, 262, 1777, 368, 10739, 62, 8019, 13, 198, 220, 220, 220, 770, 1398, 460, 788, 307, 1057, 6609, 11, 422, 257, 25757, 11, 4226, 11, 2644, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 1986, 62, 37266, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20768, 4340, 477, 10007, 286, 262, 3586, 13, 23412, 290, 5072, 24512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 389, 5447, 11, 1978, 351, 262, 1398, 7483, 7034, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1986, 62, 37266, 25, 317, 1777, 538, 283, 4105, 2134, 326, 4909, 477, 2622, 1321, 284, 1057, 262, 13585, 368, 10739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1986, 62, 37266, 25, 15399, 10044, 4105, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 4704, 278, 13, 16818, 13, 834, 15003, 834, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19243, 540, 13, 834, 15003, 834, 7, 944, 8, 198, 220, 220, 220, 220, 220, 220, 220, 27058, 13, 834, 15003, 834, 7, 944, 11, 366, 23416, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 14681, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2550, 62, 37266, 796, 1986, 62, 37266, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38942, 368, 10739, 796, 13585, 368, 10739, 62, 8019, 13, 32388, 25097, 7, 944, 13, 2550, 62, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 38942, 368, 10739, 13, 7266, 12522, 7, 944, 8, 220, 1303, 3834, 1416, 23098, 284, 1777, 368, 10739, 3136, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7266, 12522, 7, 944, 13, 38942, 368, 10739, 8, 220, 1303, 16718, 284, 3758, 2581, 284, 2245, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 45766, 2122, 8979, 13, 16818, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 47581, 11187, 11537, 628, 220, 220, 220, 825, 4296, 7, 944, 11, 3275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 833, 8254, 445, 416, 16975, 2122, 27703, 13, 198, 220, 220, 220, 220, 220, 220, 220, 36965, 262, 27058, 3912, 284, 4175, 262, 2836, 546, 262, 4371, 286, 262, 25757, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20500, 8, 6624, 352, 25, 220, 1303, 1080, 9729, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 58, 15, 60, 6624, 366, 2257, 3185, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7203, 47522, 368, 10739, 318, 1016, 284, 2245, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7203, 47522, 368, 10739, 318, 1016, 284, 2245, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 14681, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1662, 1958, 7, 14692, 25835, 1600, 14631, 2257, 3185, 8973, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7203, 3118, 26243, 1143, 1080, 3141, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7203, 3118, 26243, 1143, 1080, 3141, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 20500, 8, 6624, 362, 25, 220, 1303, 19605, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22492, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 58, 15, 60, 6624, 366, 25664, 29266, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1662, 1958, 7, 14692, 39317, 1600, 685, 20500, 58, 15, 4357, 3275, 58, 16, 4357, 657, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 19361, 11774, 546, 1402, 5992, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1662, 1958, 7, 14692, 39317, 1600, 14631, 35744, 2937, 1600, 3275, 58, 15, 4357, 3275, 58, 16, 11907, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10627, 329, 10800, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 58, 15, 60, 6624, 366, 12331, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7203, 37, 10254, 13047, 12326, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7203, 37, 10254, 13047, 12326, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 14681, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1662, 1958, 7, 14692, 25835, 1600, 14631, 2257, 3185, 8973, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 20500, 8, 6624, 513, 25, 220, 1303, 19605, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3275, 58, 15, 60, 6624, 366, 46700, 1961, 11651, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1662, 1958, 7, 14692, 39317, 1600, 3275, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7203, 3118, 26243, 1143, 3141, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7203, 3118, 26243, 1143, 3141, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 944, 13, 41947, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1820, 62, 6404, 1362, 13, 24442, 7, 20500, 8, 198 ]
2.355384
1,421
#Question 24 #Implement a queue class in Python: It should support 3 APIs: #queue.top(): prints current element at front of queue #queue.pop(): takes out an element from front of queue #queue.add(): adds a new element at end of stack queue_1 = Queue() queue_1.add(12) queue_1.add(11) queue_1.add(55) queue_1.add(66) queue_1.add(56) queue_1.add(43) queue_1.add(33) queue_1.add(88) queue_1.add(56) queue_1.add(34) print queue_1 print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop() print queue_1.top() queue_1.pop()
[ 2, 24361, 1987, 198, 2, 3546, 26908, 257, 16834, 1398, 287, 11361, 25, 632, 815, 1104, 513, 23113, 25, 198, 2, 36560, 13, 4852, 33529, 20842, 1459, 5002, 379, 2166, 286, 16834, 198, 2, 36560, 13, 12924, 33529, 2753, 503, 281, 5002, 422, 2166, 286, 16834, 198, 2, 36560, 13, 2860, 33529, 6673, 257, 649, 5002, 379, 886, 286, 8931, 628, 198, 36560, 62, 16, 796, 4670, 518, 3419, 198, 36560, 62, 16, 13, 2860, 7, 1065, 8, 198, 36560, 62, 16, 13, 2860, 7, 1157, 8, 198, 36560, 62, 16, 13, 2860, 7, 2816, 8, 198, 36560, 62, 16, 13, 2860, 7, 2791, 8, 198, 36560, 62, 16, 13, 2860, 7, 3980, 8, 198, 36560, 62, 16, 13, 2860, 7, 3559, 8, 198, 36560, 62, 16, 13, 2860, 7, 2091, 8, 198, 36560, 62, 16, 13, 2860, 7, 3459, 8, 198, 36560, 62, 16, 13, 2860, 7, 3980, 8, 198, 36560, 62, 16, 13, 2860, 7, 2682, 8, 198, 4798, 16834, 62, 16, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198, 4798, 16834, 62, 16, 13, 4852, 3419, 198, 36560, 62, 16, 13, 12924, 3419, 198 ]
2.430303
330
from typing import Any, Dict, List, Optional, cast from uuid import UUID from tortoise.query_utils import Q from app import models, schemas from app.services.searchers import AbstractSearcher
[ 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 32233, 11, 3350, 198, 6738, 334, 27112, 1330, 471, 27586, 198, 198, 6738, 7619, 25678, 13, 22766, 62, 26791, 1330, 1195, 198, 198, 6738, 598, 1330, 4981, 11, 3897, 5356, 198, 6738, 598, 13, 30416, 13, 325, 283, 3533, 1330, 27741, 50, 50194, 628 ]
3.611111
54
# -*- coding: utf-8 -*- """ Just for test """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 5703, 329, 1332, 198, 37811 ]
2.142857
21
import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': # tcfile = './Thermal_conductivity_Se.txt' tcfile = './Thermal_conductivity_S.txt' plt_tc(tcfile)
[ 11748, 299, 32152, 355, 45941, 220, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 2, 37096, 7753, 796, 705, 19571, 35048, 7617, 62, 36495, 3458, 62, 4653, 13, 14116, 6, 198, 197, 23047, 7753, 796, 705, 19571, 35048, 7617, 62, 36495, 3458, 62, 50, 13, 14116, 6, 628, 198, 197, 489, 83, 62, 23047, 7, 23047, 7753, 8 ]
2.402597
77
""" Scatter plot between """ import pandas as pd import numpy as np from numpy.random import random from math import pi from bokeh.io import output_notebook output_notebook() from bokeh.io import show, output_file from bokeh.palettes import RdYlGn6 from bokeh.models import ( BasicTicker, ColorBar, LinearColorMapper, PrintfTickFormatter, ColumnDataSource, HoverTool, Span, ) from bokeh.plotting import figure, save, show, output_file from bokeh.palettes import BuGn, Blues8, Oranges256 def plot_vs_population(districts_budget_df): """ From district budget to scatter plots vs total population """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df["num_total"] = df["num_male"] + df["num_female"] df = df.groupby(["dname", "num_total"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["num_total"] / 10000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.num_total.mean() / 10000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "จำนวนผู้อยู่อาศัย (หมื่นคน)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("จำนวนผู้อาศัย", "@x หมื่นคน"), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget.html", mode="inline") save(p) def plot_vs_area(districts_budget_df): """ From district budget to scatter plots vs area size """ for q in districts_budget_df.budget_type.unique(): df = districts_budget_df.query("budget_type == '{}'".format(q)) df = df.groupby(["dname", "AREA"])["budget"].sum().reset_index() source = ColumnDataSource( data=dict( x=df["AREA"] / 1000000, y=df["budget"] / 1000000, desc=df["dname"] ) ) p = figure(title="", tools="hover,box_zoom,reset") vline = Span( location=df.AREA.mean() / 1000000, dimension="height", line_color="gold", line_width=1.5, ) hline = Span( location=df["budget"].mean() / 1000000, dimension="width", line_color="gold", line_width=1.5, ) p.circle( "x", "y", source=source, fill_alpha=0.2, size=10, ) p.xaxis.axis_label = "ขนาดพื้นที่ (ตร.กม.)" p.yaxis.axis_label = f"งบประมาณ{q} (ล้านบาท)" p.xaxis.axis_label_text_font_size = "15pt" p.yaxis.axis_label_text_font_size = "15pt" p.xaxis.major_label_text_font_size = "12pt" p.yaxis.major_label_text_font_size = "12pt" hover = HoverTool( tooltips=[ ("เขต", "@desc"), (f"งบ{q}", "@y ล้านบาท"), ("ขนาดพื้นที่", "@x ตร.กม."), ] ) p.add_tools(hover) p.renderers.extend([vline, hline]) output_file(f"plots/scatter-{q_map[q]}-budget-area.html", mode="inline") save(p) if __name__ == "__main__": districts_budget_df = pd.read_csv("data/districts_budget.csv")[ ["dname", "ประเภทแผนงาน", "งบแผนงาน", "AREA", "num_male", "num_female"] ] districts_budget_df["num_total"] = ( districts_budget_df.num_male + districts_budget_df.num_female ) districts_budget_df.rename( columns={"ประเภทแผนงาน": "budget_type", "งบแผนงาน": "budget"}, inplace=True ) q_map = { "ทั่วไป/บริหาร/อื่นๆ": "gen", "การคลัง": "treasury", "เทศกิจ/รักษาความสะอาด": "clean", "โยธา/ก่อสร้าง/จราจร": "civil", "น้ำท่วม/ทางเท้า": "pedes", "สิ่งแวดล้อม": "env", "พัฒนาชุมชน/อาชีพ": "enh", "อนามัย/สาธารณะสุข": "health", "การศึกษา": "edu", } plot_vs_population(districts_budget_df) plot_vs_area(districts_budget_df)
[ 37811, 198, 3351, 1436, 7110, 1022, 198, 37811, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 299, 32152, 13, 25120, 1330, 4738, 198, 6738, 10688, 1330, 31028, 198, 198, 6738, 1489, 365, 71, 13, 952, 1330, 5072, 62, 11295, 2070, 198, 198, 22915, 62, 11295, 2070, 3419, 198, 6738, 1489, 365, 71, 13, 952, 1330, 905, 11, 5072, 62, 7753, 198, 6738, 1489, 365, 71, 13, 18596, 23014, 1330, 20769, 56, 75, 38, 77, 21, 198, 6738, 1489, 365, 71, 13, 27530, 1330, 357, 198, 220, 220, 220, 14392, 51, 15799, 11, 198, 220, 220, 220, 5315, 10374, 11, 198, 220, 220, 220, 44800, 10258, 44, 11463, 11, 198, 220, 220, 220, 12578, 69, 51, 624, 8479, 1436, 11, 198, 220, 220, 220, 29201, 6601, 7416, 11, 198, 220, 220, 220, 38452, 25391, 11, 198, 220, 220, 220, 49101, 11, 198, 8, 198, 6738, 1489, 365, 71, 13, 29487, 889, 1330, 3785, 11, 3613, 11, 905, 11, 5072, 62, 7753, 198, 6738, 1489, 365, 71, 13, 18596, 23014, 1330, 9842, 38, 77, 11, 15261, 23, 11, 1471, 6231, 11645, 628, 198, 4299, 7110, 62, 14259, 62, 39748, 7, 17080, 2012, 82, 62, 37315, 62, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3574, 4783, 4466, 284, 41058, 21528, 3691, 2472, 3265, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 10662, 287, 12815, 62, 37315, 62, 7568, 13, 37315, 62, 4906, 13, 34642, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 12815, 62, 37315, 62, 7568, 13, 22766, 7203, 37315, 62, 4906, 6624, 705, 90, 92, 6, 1911, 18982, 7, 80, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 14692, 22510, 62, 23350, 8973, 796, 47764, 14692, 22510, 62, 22606, 8973, 1343, 47764, 14692, 22510, 62, 24724, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 8094, 1525, 7, 14692, 67, 3672, 1600, 366, 22510, 62, 23350, 8973, 8, 14692, 37315, 1, 4083, 16345, 22446, 42503, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 29201, 6601, 7416, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 7568, 14692, 22510, 62, 23350, 8973, 1220, 33028, 11, 331, 28, 7568, 14692, 37315, 8973, 1220, 1802, 2388, 11, 1715, 28, 7568, 14692, 67, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 3785, 7, 7839, 2625, 1600, 4899, 2625, 43753, 11, 3524, 62, 89, 4207, 11, 42503, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1370, 796, 49101, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 7568, 13, 22510, 62, 23350, 13, 32604, 3419, 1220, 33028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15793, 2625, 17015, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 2625, 24267, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 10394, 28, 16, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 289, 1370, 796, 49101, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 7568, 14692, 37315, 1, 4083, 32604, 3419, 1220, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15793, 2625, 10394, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 2625, 24267, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 10394, 28, 16, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 45597, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 1600, 366, 88, 1600, 2723, 28, 10459, 11, 6070, 62, 26591, 28, 15, 13, 17, 11, 2546, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22704, 62, 18242, 796, 366, 19567, 230, 19567, 111, 19567, 247, 19567, 100, 19567, 247, 19567, 250, 19567, 117, 31479, 231, 19567, 255, 19567, 95, 19567, 117, 31479, 230, 19567, 255, 19567, 110, 19567, 101, 19567, 109, 19567, 95, 357, 19567, 104, 19567, 94, 19567, 115, 31479, 230, 19567, 247, 19567, 226, 19567, 247, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22704, 62, 18242, 796, 277, 1, 19567, 229, 19567, 248, 19567, 249, 19567, 96, 19567, 108, 19567, 94, 19567, 110, 19567, 241, 90, 80, 92, 357, 19567, 98, 31479, 231, 19567, 110, 19567, 247, 19567, 248, 19567, 110, 19567, 245, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22704, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1314, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22704, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1314, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22478, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1065, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22478, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1065, 457, 1, 628, 220, 220, 220, 220, 220, 220, 220, 20599, 796, 38452, 25391, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 41315, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 31479, 222, 19567, 224, 19567, 243, 1600, 44212, 20147, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 69, 1, 19567, 229, 19567, 248, 90, 80, 92, 1600, 44212, 88, 220, 19567, 98, 31479, 231, 19567, 110, 19567, 247, 19567, 248, 19567, 110, 19567, 245, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 19567, 230, 19567, 111, 19567, 247, 19567, 100, 19567, 247, 19567, 250, 19567, 117, 31479, 231, 19567, 255, 19567, 110, 19567, 101, 19567, 109, 19567, 95, 1600, 44212, 87, 220, 19567, 104, 19567, 94, 19567, 115, 31479, 230, 19567, 247, 19567, 226, 19567, 247, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 2860, 62, 31391, 7, 43753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 10920, 19288, 13, 2302, 437, 26933, 85, 1370, 11, 289, 1370, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7753, 7, 69, 1, 489, 1747, 14, 1416, 1436, 12, 90, 80, 62, 8899, 58, 80, 48999, 12, 37315, 13, 6494, 1600, 4235, 2625, 45145, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 7, 79, 8, 628, 198, 4299, 7110, 62, 14259, 62, 20337, 7, 17080, 2012, 82, 62, 37315, 62, 7568, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3574, 4783, 4466, 284, 41058, 21528, 3691, 1989, 2546, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 10662, 287, 12815, 62, 37315, 62, 7568, 13, 37315, 62, 4906, 13, 34642, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 12815, 62, 37315, 62, 7568, 13, 22766, 7203, 37315, 62, 4906, 6624, 705, 90, 92, 6, 1911, 18982, 7, 80, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 47764, 13, 8094, 1525, 7, 14692, 67, 3672, 1600, 366, 12203, 32, 8973, 8, 14692, 37315, 1, 4083, 16345, 22446, 42503, 62, 9630, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 29201, 6601, 7416, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 7568, 14692, 12203, 32, 8973, 1220, 1802, 2388, 11, 331, 28, 7568, 14692, 37315, 8973, 1220, 1802, 2388, 11, 1715, 28, 7568, 14692, 67, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 3785, 7, 7839, 2625, 1600, 4899, 2625, 43753, 11, 3524, 62, 89, 4207, 11, 42503, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 410, 1370, 796, 49101, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 7568, 13, 12203, 32, 13, 32604, 3419, 1220, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15793, 2625, 17015, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 2625, 24267, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 10394, 28, 16, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 289, 1370, 796, 49101, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4067, 28, 7568, 14692, 37315, 1, 4083, 32604, 3419, 1220, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15793, 2625, 10394, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 8043, 2625, 24267, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 10394, 28, 16, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 279, 13, 45597, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 1600, 366, 88, 1600, 2723, 28, 10459, 11, 6070, 62, 26591, 28, 15, 13, 17, 11, 2546, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22704, 62, 18242, 796, 366, 19567, 224, 19567, 247, 19567, 110, 19567, 242, 19567, 252, 19567, 115, 31479, 231, 19567, 247, 19567, 245, 19567, 113, 31479, 230, 357, 19567, 243, 19567, 96, 13, 19567, 223, 19567, 94, 2014, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22704, 62, 18242, 796, 277, 1, 19567, 229, 19567, 248, 19567, 249, 19567, 96, 19567, 108, 19567, 94, 19567, 110, 19567, 241, 90, 80, 92, 357, 19567, 98, 31479, 231, 19567, 110, 19567, 247, 19567, 248, 19567, 110, 19567, 245, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22704, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1314, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22704, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1314, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 87, 22704, 13, 22478, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1065, 457, 1, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 88, 22704, 13, 22478, 62, 18242, 62, 5239, 62, 10331, 62, 7857, 796, 366, 1065, 457, 1, 628, 220, 220, 220, 220, 220, 220, 220, 20599, 796, 38452, 25391, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 41315, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 31479, 222, 19567, 224, 19567, 243, 1600, 44212, 20147, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 69, 1, 19567, 229, 19567, 248, 90, 80, 92, 1600, 44212, 88, 220, 19567, 98, 31479, 231, 19567, 110, 19567, 247, 19567, 248, 19567, 110, 19567, 245, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 19567, 224, 19567, 247, 19567, 110, 19567, 242, 19567, 252, 19567, 115, 31479, 231, 19567, 247, 19567, 245, 19567, 113, 31479, 230, 1600, 44212, 87, 220, 19567, 243, 19567, 96, 13, 19567, 223, 19567, 94, 526, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 2860, 62, 31391, 7, 43753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 10920, 19288, 13, 2302, 437, 26933, 85, 1370, 11, 289, 1370, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 7753, 7, 69, 1, 489, 1747, 14, 1416, 1436, 12, 90, 80, 62, 8899, 58, 80, 48999, 12, 37315, 12, 20337, 13, 6494, 1600, 4235, 2625, 45145, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 3613, 7, 79, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 12815, 62, 37315, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 7203, 7890, 14, 17080, 2012, 82, 62, 37315, 13, 40664, 4943, 58, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 67, 3672, 1600, 366, 19567, 249, 19567, 96, 19567, 108, 31479, 222, 19567, 254, 19567, 245, 31479, 223, 19567, 250, 19567, 247, 19567, 229, 19567, 110, 19567, 247, 1600, 366, 19567, 229, 19567, 248, 31479, 223, 19567, 250, 19567, 247, 19567, 229, 19567, 110, 19567, 247, 1600, 366, 12203, 32, 1600, 366, 22510, 62, 22606, 1600, 366, 22510, 62, 24724, 8973, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 12815, 62, 37315, 62, 7568, 14692, 22510, 62, 23350, 8973, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 12815, 62, 37315, 62, 7568, 13, 22510, 62, 22606, 1343, 12815, 62, 37315, 62, 7568, 13, 22510, 62, 24724, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 12815, 62, 37315, 62, 7568, 13, 918, 480, 7, 198, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 4895, 19567, 249, 19567, 96, 19567, 108, 31479, 222, 19567, 254, 19567, 245, 31479, 223, 19567, 250, 19567, 247, 19567, 229, 19567, 110, 19567, 247, 1298, 366, 37315, 62, 4906, 1600, 366, 19567, 229, 19567, 248, 31479, 223, 19567, 250, 19567, 247, 19567, 229, 19567, 110, 19567, 247, 1298, 366, 37315, 25719, 287, 5372, 28, 17821, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 10662, 62, 8899, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 245, 19567, 109, 31479, 230, 19567, 100, 31479, 226, 19567, 249, 14, 19567, 248, 19567, 96, 19567, 112, 19567, 104, 19567, 110, 19567, 96, 14, 19567, 255, 19567, 115, 31479, 230, 19567, 247, 31479, 228, 1298, 366, 5235, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 223, 19567, 110, 19567, 96, 19567, 226, 19567, 98, 19567, 109, 19567, 229, 1298, 366, 33945, 11579, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 31479, 222, 19567, 245, 19567, 101, 19567, 223, 19567, 112, 19567, 230, 14, 19567, 96, 19567, 109, 19567, 223, 19567, 102, 19567, 110, 19567, 226, 19567, 100, 19567, 110, 19567, 94, 19567, 103, 19567, 108, 19567, 255, 19567, 110, 19567, 242, 1298, 366, 27773, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 31479, 224, 19567, 95, 19567, 246, 19567, 110, 14, 19567, 223, 31479, 230, 19567, 255, 19567, 103, 19567, 96, 31479, 231, 19567, 110, 19567, 229, 14, 19567, 230, 19567, 96, 19567, 110, 19567, 230, 19567, 96, 1298, 366, 37636, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 247, 31479, 231, 19567, 111, 19567, 245, 31479, 230, 19567, 100, 19567, 94, 14, 19567, 245, 19567, 110, 19567, 229, 31479, 222, 19567, 245, 31479, 231, 19567, 110, 1298, 366, 9124, 274, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 103, 19567, 112, 31479, 230, 19567, 229, 31479, 223, 19567, 100, 19567, 242, 19567, 98, 31479, 231, 19567, 255, 19567, 94, 1298, 366, 24330, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 252, 19567, 109, 19567, 240, 19567, 247, 19567, 110, 19567, 232, 19567, 116, 19567, 94, 19567, 232, 19567, 247, 14, 19567, 255, 19567, 110, 19567, 232, 19567, 113, 19567, 252, 1298, 366, 16550, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 255, 19567, 247, 19567, 110, 19567, 94, 19567, 109, 19567, 95, 14, 19567, 103, 19567, 110, 19567, 246, 19567, 110, 19567, 96, 19567, 241, 19567, 108, 19567, 103, 19567, 116, 19567, 224, 1298, 366, 13948, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19567, 223, 19567, 110, 19567, 96, 19567, 101, 19567, 114, 19567, 223, 19567, 102, 19567, 110, 1298, 366, 15532, 1600, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 7110, 62, 14259, 62, 39748, 7, 17080, 2012, 82, 62, 37315, 62, 7568, 8, 198, 220, 220, 220, 7110, 62, 14259, 62, 20337, 7, 17080, 2012, 82, 62, 37315, 62, 7568, 8, 198 ]
1.650313
2,874
APItoken = 'ffb1bf6df27099919ca9ab63da88b1929016a7f7468d477f65241f61e1f457ab4' \ 'f53c50ead0371ce632b283b5dc803fae33b34b3601053d2bde24f4ebc921b1b' config = { 'url': 'https://q-console-api.mybluemix.net/api', 'hub': 'ibmq', 'group': 'qc-ware', 'project': 'default' }
[ 2969, 1026, 4233, 796, 705, 487, 65, 16, 19881, 21, 7568, 20233, 17032, 1129, 6888, 24, 397, 5066, 6814, 3459, 65, 1129, 1959, 27037, 64, 22, 69, 4524, 3104, 67, 32883, 69, 2996, 28872, 69, 5333, 68, 16, 69, 33032, 397, 19, 6, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 69, 4310, 66, 1120, 1329, 15, 38056, 344, 21, 2624, 65, 30290, 65, 20, 17896, 43564, 69, 3609, 2091, 65, 2682, 65, 2623, 486, 2713, 18, 67, 17, 65, 2934, 1731, 69, 19, 1765, 66, 24, 2481, 65, 16, 65, 6, 198, 198, 11250, 796, 1391, 198, 220, 220, 220, 220, 220, 705, 6371, 10354, 705, 5450, 1378, 80, 12, 41947, 12, 15042, 13, 1820, 65, 2290, 368, 844, 13, 3262, 14, 15042, 3256, 198, 220, 220, 220, 220, 220, 705, 40140, 10354, 705, 571, 76, 80, 3256, 198, 220, 220, 220, 220, 220, 705, 8094, 10354, 705, 80, 66, 12, 1574, 3256, 198, 220, 220, 220, 220, 220, 705, 16302, 10354, 705, 12286, 6, 198, 92, 198 ]
1.735632
174
#!/usr/bin/python # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ansible.module_utils.basic import * # noqa if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 9093, 856, 13, 21412, 62, 26791, 13, 35487, 1330, 1635, 220, 1303, 645, 20402, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.521505
186
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import unittest from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, SQLContext, Row from pyspark.sql.functions import col from pyspark.testing.sqlutils import ReusedSQLTestCase from pyspark.testing.utils import PySparkTestCase # We can't include this test into SQLTests because we will stop class's SparkContext and cause # other tests failed. # This test is separate because it's closely related with session's start and stop. # See SPARK-23228. if __name__ == "__main__": from pyspark.sql.tests.test_session import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
[ 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 393, 517, 198, 2, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 9387, 351, 198, 2, 428, 670, 329, 3224, 1321, 5115, 6634, 9238, 13, 198, 2, 383, 7054, 37, 16625, 428, 2393, 284, 921, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 198, 2, 357, 1169, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 198, 2, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 279, 893, 20928, 1330, 17732, 18546, 11, 17732, 21947, 198, 6738, 279, 893, 20928, 13, 25410, 1330, 17732, 36044, 11, 16363, 21947, 11, 11314, 198, 6738, 279, 893, 20928, 13, 25410, 13, 12543, 2733, 1330, 951, 198, 6738, 279, 893, 20928, 13, 33407, 13, 25410, 26791, 1330, 797, 1484, 17861, 14402, 20448, 198, 6738, 279, 893, 20928, 13, 33407, 13, 26791, 1330, 9485, 4561, 668, 14402, 20448, 628, 628, 220, 220, 220, 1303, 775, 460, 470, 2291, 428, 1332, 656, 16363, 51, 3558, 780, 356, 481, 2245, 1398, 338, 17732, 21947, 290, 2728, 198, 220, 220, 220, 1303, 584, 5254, 4054, 13, 628, 198, 220, 220, 220, 1303, 770, 1332, 318, 4553, 780, 340, 338, 7173, 3519, 351, 6246, 338, 923, 290, 2245, 13, 198, 220, 220, 220, 1303, 4091, 6226, 14175, 12, 1954, 23815, 13, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 279, 893, 20928, 13, 25410, 13, 41989, 13, 9288, 62, 29891, 1330, 1635, 220, 1303, 645, 20402, 25, 376, 21844, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 35555, 16737, 220, 1303, 2099, 25, 8856, 58, 11748, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1332, 49493, 796, 35555, 16737, 13, 55, 5805, 14402, 49493, 7, 22915, 2625, 16793, 14, 9288, 12, 48922, 1600, 15942, 16579, 28, 17, 8, 198, 220, 220, 220, 2845, 17267, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 49493, 796, 6045, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 9288, 49493, 28, 9288, 49493, 11, 15942, 16579, 28, 17, 8, 198 ]
3.444444
477
import argparse import numpy as np import os import sys sys.path.append('../data') sys.path.append('../plot') import torch from load import sigmoid, quadratic, chf, parkinsons, load_data_format from data_utils import parse_data, change_missing from plot_utils import plot_subtypes, plot_latent from models import Sublign if __name__=='__main__': main()
[ 11748, 1822, 29572, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 7890, 11537, 198, 17597, 13, 6978, 13, 33295, 10786, 40720, 29487, 11537, 198, 198, 11748, 28034, 198, 198, 6738, 3440, 1330, 264, 17225, 1868, 11, 15094, 81, 1512, 11, 442, 69, 11, 3952, 1040, 684, 11, 3440, 62, 7890, 62, 18982, 198, 6738, 1366, 62, 26791, 1330, 21136, 62, 7890, 11, 1487, 62, 45688, 198, 6738, 7110, 62, 26791, 1330, 7110, 62, 7266, 19199, 11, 7110, 62, 15460, 298, 198, 198, 6738, 4981, 1330, 3834, 75, 570, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
3.050847
118
from Bio.PDB import PDBParser as BioPDBParser import io import itertools from operator import itemgetter from utils.exceptions import InvalidFormat VALID_AMINOACIDS = {"A", "R", "N", "D", "C", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "M", "F", "P", "O", "S", "U", "T", "W", "Y", "V", "B", "Z", "X", "X", "J"} def get_chain_contacts(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" contacts = [] residue_range = list(range(1, len(chain) + 1)) assert len(residue_range) == len(chain) iterator = itertools.product(list(zip(residue_range, chain)), list(zip(residue_range, chain))) for (resseq1_alt, residue1), (resseq2_alt, residue2) in iterator: seq_distance = int(residue1.id[1]) - int(residue2.id[1]) if seq_distance <= 4: continue for atom1, atom2 in itertools.product(residue1, residue2): xyz_distance = atom1 - atom2 if xyz_distance > 20: d_bin = 9 elif xyz_distance <= 4: d_bin = 0 else: d_bin = int(round((xyz_distance - 4) / 2, 0)) if xyz_distance < 8: contact = (int(residue1.id[1]), int(residue2.id[1]), round(1.0 - (xyz_distance / 100), 6), d_bin, 1) else: contact = (int(residue1.id[1]), int(residue2.id[1]), 0, d_bin, 1) contacts.append(contact) return contacts def remove_atoms(chain): """Credits to Felix Simkovic; code taken from GitHub rigdenlab/conkit/conkit/io/pdb.py""" for residue in chain.copy(): if residue.id[0].strip() and residue.resname not in VALID_AMINOACIDS: chain.detach_child(residue.id) continue for atom in residue.copy(): # if atom.is_disordered(): # chain[residue.id].detach_child(atom.id) if residue.resname == "GLY" and atom.id == "CA": continue elif atom.id != "CB": chain[residue.id].detach_child(atom.id)
[ 6738, 16024, 13, 5760, 33, 1330, 350, 11012, 46677, 355, 16024, 5760, 20866, 28198, 198, 11748, 33245, 198, 11748, 340, 861, 10141, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 6738, 3384, 4487, 13, 1069, 11755, 1330, 17665, 26227, 198, 198, 23428, 2389, 62, 2390, 46016, 2246, 14255, 796, 19779, 32, 1600, 366, 49, 1600, 366, 45, 1600, 366, 35, 1600, 366, 34, 1600, 366, 34, 1600, 366, 48, 1600, 366, 36, 1600, 366, 38, 1600, 366, 39, 1600, 366, 40, 1600, 366, 43, 1600, 366, 42, 1600, 366, 44, 1600, 366, 44, 1600, 366, 37, 1600, 366, 47, 1600, 366, 46, 1600, 366, 50, 1600, 366, 52, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 51, 1600, 366, 54, 1600, 366, 56, 1600, 366, 53, 1600, 366, 33, 1600, 366, 57, 1600, 366, 55, 1600, 366, 55, 1600, 366, 41, 20662, 628, 198, 4299, 651, 62, 7983, 62, 3642, 8656, 7, 7983, 2599, 198, 220, 220, 220, 37227, 42855, 284, 29721, 3184, 74, 17215, 26, 2438, 2077, 422, 21722, 7805, 6559, 23912, 14, 1102, 15813, 14, 1102, 15813, 14, 952, 14, 79, 9945, 13, 9078, 37811, 198, 220, 220, 220, 13961, 796, 17635, 198, 220, 220, 220, 35186, 62, 9521, 796, 1351, 7, 9521, 7, 16, 11, 18896, 7, 7983, 8, 1343, 352, 4008, 198, 220, 220, 220, 6818, 18896, 7, 411, 312, 518, 62, 9521, 8, 6624, 18896, 7, 7983, 8, 198, 220, 220, 220, 41313, 796, 340, 861, 10141, 13, 11167, 7, 4868, 7, 13344, 7, 411, 312, 518, 62, 9521, 11, 6333, 36911, 1351, 7, 13344, 7, 411, 312, 518, 62, 9521, 11, 6333, 22305, 198, 220, 220, 220, 329, 357, 411, 41068, 16, 62, 2501, 11, 35186, 16, 828, 357, 411, 41068, 17, 62, 2501, 11, 35186, 17, 8, 287, 41313, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 30246, 796, 493, 7, 411, 312, 518, 16, 13, 312, 58, 16, 12962, 532, 493, 7, 411, 312, 518, 17, 13, 312, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 33756, 62, 30246, 19841, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 329, 22037, 16, 11, 22037, 17, 287, 340, 861, 10141, 13, 11167, 7, 411, 312, 518, 16, 11, 35186, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 45579, 62, 30246, 796, 22037, 16, 532, 22037, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 45579, 62, 30246, 1875, 1160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 8800, 796, 860, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2124, 45579, 62, 30246, 19841, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 8800, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 62, 8800, 796, 493, 7, 744, 19510, 5431, 89, 62, 30246, 532, 604, 8, 1220, 362, 11, 657, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 45579, 62, 30246, 1279, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 796, 357, 600, 7, 411, 312, 518, 16, 13, 312, 58, 16, 46570, 493, 7, 411, 312, 518, 17, 13, 312, 58, 16, 46570, 2835, 7, 16, 13, 15, 532, 357, 5431, 89, 62, 30246, 1220, 1802, 828, 718, 828, 288, 62, 8800, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2800, 796, 357, 600, 7, 411, 312, 518, 16, 13, 312, 58, 16, 46570, 493, 7, 411, 312, 518, 17, 13, 312, 58, 16, 46570, 657, 11, 288, 62, 8800, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13961, 13, 33295, 7, 32057, 8, 198, 220, 220, 220, 1441, 13961, 628, 198, 4299, 4781, 62, 265, 3150, 7, 7983, 2599, 198, 220, 220, 220, 37227, 42855, 284, 29721, 3184, 74, 17215, 26, 2438, 2077, 422, 21722, 7805, 6559, 23912, 14, 1102, 15813, 14, 1102, 15813, 14, 952, 14, 79, 9945, 13, 9078, 37811, 198, 220, 220, 220, 329, 35186, 287, 6333, 13, 30073, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 35186, 13, 312, 58, 15, 4083, 36311, 3419, 290, 35186, 13, 411, 3672, 407, 287, 26173, 2389, 62, 2390, 46016, 2246, 14255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6333, 13, 15255, 620, 62, 9410, 7, 411, 312, 518, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 329, 22037, 287, 35186, 13, 30073, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 22037, 13, 271, 62, 6381, 24071, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 6333, 58, 411, 312, 518, 13, 312, 4083, 15255, 620, 62, 9410, 7, 37696, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 35186, 13, 411, 3672, 6624, 366, 8763, 56, 1, 290, 22037, 13, 312, 6624, 366, 8141, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 22037, 13, 312, 14512, 366, 23199, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6333, 58, 411, 312, 518, 13, 312, 4083, 15255, 620, 62, 9410, 7, 37696, 13, 312, 8, 628 ]
2.034213
1,023
import re from salmon.search.base import IdentData, SearchMixin from salmon.sources import DiscogsBase SOURCES = { "Vinyl": "Vinyl", "File": "WEB", "CD": "CD", } def sanitize_artist_name(name): """ Remove parenthentical number disambiguation bullshit from artist names, as well as the asterisk stuff. """ name = re.sub(r" \(\d+\)$", "", name) return re.sub(r"\*+$", "", name) def parse_source(formats): """ Take the list of format strings provided by Discogs and iterate over them to find a possible source for the release. """ for format_s, source in SOURCES.items(): if any(format_s in f for f in formats): return source
[ 11748, 302, 198, 198, 6738, 24535, 13, 12947, 13, 8692, 1330, 11440, 6601, 11, 11140, 35608, 259, 198, 6738, 24535, 13, 82, 2203, 1330, 8444, 18463, 14881, 198, 198, 50, 2606, 7397, 1546, 796, 1391, 198, 220, 220, 220, 366, 53, 19754, 1298, 366, 53, 19754, 1600, 198, 220, 220, 220, 366, 8979, 1298, 366, 8845, 33, 1600, 198, 220, 220, 220, 366, 8610, 1298, 366, 8610, 1600, 198, 92, 628, 198, 198, 4299, 5336, 270, 1096, 62, 49016, 62, 3672, 7, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17220, 2560, 6925, 605, 1271, 595, 4131, 328, 2288, 20041, 422, 6802, 3891, 11, 198, 220, 220, 220, 355, 880, 355, 262, 18503, 1984, 3404, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1438, 796, 302, 13, 7266, 7, 81, 1, 40719, 67, 10, 22725, 3, 1600, 366, 1600, 1438, 8, 198, 220, 220, 220, 1441, 302, 13, 7266, 7, 81, 1, 59, 9, 10, 3, 1600, 366, 1600, 1438, 8, 628, 198, 4299, 21136, 62, 10459, 7, 687, 1381, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7214, 262, 1351, 286, 5794, 13042, 2810, 416, 8444, 18463, 290, 11629, 378, 625, 606, 198, 220, 220, 220, 284, 1064, 257, 1744, 2723, 329, 262, 2650, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 5794, 62, 82, 11, 2723, 287, 30065, 7397, 1546, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 7, 18982, 62, 82, 287, 277, 329, 277, 287, 17519, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2723, 198 ]
2.605166
271
import RPi.GPIO as GPIO
[ 11748, 25812, 72, 13, 16960, 9399, 355, 50143, 198 ]
2.666667
9
import logging from django.utils.html import strip_tags from . import settings as sendgrid_settings from .signals import message_composed logger = logging.getLogger('threaded_messages') if sendgrid_settings.THREADED_MESSAGES_USE_SENDGRID: from sendgrid_parse_api.signals import email_received else: email_received = None
[ 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 26791, 13, 6494, 1330, 10283, 62, 31499, 198, 198, 6738, 764, 1330, 6460, 355, 3758, 25928, 62, 33692, 198, 6738, 764, 12683, 874, 1330, 3275, 62, 5589, 1335, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 16663, 276, 62, 37348, 1095, 11537, 198, 198, 361, 3758, 25928, 62, 33692, 13, 4221, 15675, 1961, 62, 44, 1546, 4090, 48075, 62, 19108, 62, 50, 10619, 10761, 2389, 25, 198, 220, 220, 220, 422, 3758, 25928, 62, 29572, 62, 15042, 13, 12683, 874, 1330, 3053, 62, 47844, 198, 17772, 25, 198, 220, 220, 220, 3053, 62, 47844, 796, 6045, 628, 198 ]
3.073394
109
# coding:utf-8 ''' @author = super_fazai @File : free_api_utils.py @connect : [email protected] ''' """ 一些免费api 接口的封装 """ from pprint import pprint import re # from fzutils.ip_pools import tri_ip_pool # from fzutils.spider.fz_requests import Requests # from fzutils.common_utils import json_2_dict # from fzutils.internet_utils import ( # get_base_headers,) from .ip_pools import tri_ip_pool from .spider.fz_requests import Requests from .common_utils import json_2_dict from .internet_utils import ( get_base_headers,) __all__ = [ 'get_jd_one_goods_price_info', # 获取京东单个商品价格 'get_express_info', # 获取快递信息 'get_phone_num_info', # 获取手机号信息 'get_baidu_baike_info', # 获取某关键字的百度百科信息 # map 'get_bd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] 'get_gd_map_shop_info_list_by_keyword_and_area_name', # 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) 'get_gd_input_prompt_info', # 根据关键字和城市名获取输入提示(高德api) 'get_gd_reverse_geocode_info', # 根据地址str获取逆向地理编码(高德api) 'get_gd_map_shop_info_list_by_lng_and_lat_and_keyword', # 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) 'get_gd_map_shop_info_list_by_gd_id', # 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] ] def get_jd_one_goods_price_info(goods_id) -> list: ''' 获取京东单个商品价格 :param goods_id: 商品id :return: ''' base_url = 'http://p.3.cn/prices/mgets' params = ( ('skuIds', 'J_' + goods_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params) return json_2_dict(body, default_res=[]) def get_express_info(express_type, express_id) -> dict: ''' 获取快递信息 express_type: ps: 传字典对应的value { '申通': 'shentong', 'ems': 'ems', '顺丰': 'shunfeng', '圆通': 'yuantong', '中通': 'zhongtong', '韵达': 'yunda', '天天': 'tiantian', '汇通': 'huitongkuaidi', '全峰': 'quanfengkuaidi', '德邦': 'debangwuliu', '宅急送': 'zhaijisong', ... } :param express_type: 快递公司名 :param express_id: 快递号 :return: ''' base_url = 'http://www.kuaidi100.com/query' params = ( ('type', express_type), ('postid', express_id), ) body = Requests.get_url_body( url=base_url, use_proxy=False, params=params,) return json_2_dict(body) def get_phone_num_info(phone_num) -> dict: ''' 获取手机号信息 :param phone_num: 手机号 :return: ''' url = 'https://tcc.taobao.com/cc/json/mobile_tel_segment.htm' params = ( ('tel', str(phone_num)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) try: res = re.compile('__GetZoneResult_ = (.*)').findall(body)[0] return json_2_dict(res) except IndexError: return {} def get_baidu_baike_info(keyword, bk_length=1000) -> dict: ''' 获取某关键字的百度百科信息 :param keyword: :return: ''' url = 'http://baike.baidu.com/api/openapi/BaikeLemmaCardApi' params = ( ('scope', '103'), ('format', 'json'), ('appid', '379020'), ('bk_key', str(keyword)), ('bk_length', str(bk_length)), ) body = Requests.get_url_body( url=url, params=params, use_proxy=False) return json_2_dict(body) def get_bd_map_shop_info_list_by_keyword_and_area_name(ak:str, keyword:str, area_name:str, page_num:int, page_size:int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据关键字和区域检索店铺信息(百度api 关键字搜索服务)[测试最多前400个] :param ak: 百度地图申请的ak :param keyword: eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 多为省份, 城市, 具体区域 :param page_num: start 1, 最大20 :param page_size: 固定 :param ip_pool_type: :param num_retries: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('query', str(keyword)), ('region', str(area_name)), ('output', 'json'), ('ak', str(ak)), ('page_num', str(page_num)), ('page_size', str(page_size)), ) url = 'http://api.map.baidu.com/place/v2/search' body = Requests.get_url_body( url=url, headers=headers, params=params, use_proxy=use_proxy, ip_pool_type=ip_pool_type, num_retries=num_retries, timeout=timeout,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('results', []) # pprint(data) return data def get_gd_map_shop_info_list_by_keyword_and_area_name(gd_key:str, keyword:str, area_name:str, page_num: int, page_size: int=20, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, children=0, extensions='all', poi_type='', logger=None,) -> list: """ 根据关键字和区域检索店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param keyword: 关键字 eg: '鞋子' :param area_name: eg: '杭州' 待搜索的区域, 城市名 :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param children: 按照层级展示子POI数据, 取值0 or 1 :param extensions: 返回结果控制 :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('types', str(poi_type)), ('city', str(area_name)), ('citylimit', 'true'), ('children', str(children)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'http://restapi.amap.com/v3/place/text' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_input_prompt_info(gd_key:str, keyword, city_name:str, poi_type='', lng:float=0., lat:float=0., ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据关键字和城市名获取输入提示(高德api) :param gd_key: 申请的key :param keyword: eg: '美食' :param city_name: eg: '杭州' :param poi_type: eg: '050301' :param lng: :param lat: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) # eg: '116.481488,39.990464' 经纬度 location = ','.join([str(lng), str(lat)]) if lng != 0. or lat != 0. else '' params = ( ('key', str(gd_key)), ('keywords', str(keyword)), ('type', poi_type), ('location', location), ('city', str(city_name)), ('datatype', 'all'), ) url= 'https://restapi.amap.com/v3/assistant/inputtips' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('tips', []) # pprint(data) return data def get_gd_reverse_geocode_info(gd_key:str, address:str, city_name:str, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, use_proxy=True, logger=None,) -> list: """ 根据地址str获取逆向地理编码(高德api) :param gd_key: :param address: eg: '方恒国际中心A座' :param city_name: eg: '北京' :param ip_pool_type: :param num_retries: :param timeout: :param use_proxy: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('address', str(address)), ('city', str(city_name)), ) url= 'https://restapi.amap.com/v3/geocode/geo' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, logger=logger,).get('geocodes', []) # pprint(data) return data def get_gd_map_shop_info_list_by_lng_and_lat_and_keyword(gd_key:str, lng:float, lat:float, keyword:str='', radius:int=1000, page_num:int=1, page_size:int=20, poi_type='', extensions='all', use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据经纬度(主要根据), 关键字(附加条件)等条件检索附近店铺信息(高德api 关键字搜索服务) :param gd_key: 申请的key :param lng: 经度 :param lat: 纬度 :param keyword: 关键字 eg: '鞋子', 默认空值! :param radius: 半径 (如果已知的经纬度能准确定位到某家店铺, 可将radius=100, 来提高定位返回信息精确度!!) :param page_num: 最大翻页数100 :param page_size: 默认值'20' :param poi_type: 查询POI类型, eg: '061205', 可默认为空值! :param extensions: 返回结果控制 :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('key', str(gd_key)), ('location', ','.join([str(lng), str(lat)])), ('keywords', str(keyword)), ('types', str(poi_type)), ('radius', str(radius)), ('offset', str(page_size)), ('page', str(page_num)), ('extensions', str(extensions)), ) url = 'https://restapi.amap.com/v3/place/around' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data def get_gd_map_shop_info_list_by_gd_id(gd_key:str, gd_id:str, use_proxy=True, ip_pool_type=tri_ip_pool, num_retries=6, timeout=20, logger=None,) -> list: """ 根据gd_id来得到指定的shop info list(一般为第一个)[测试发现不准确, 根据id, 常返回不相干商家] :param gd_key: 申请的key :param gd_id: eg: 'B0FFIR6P0B' :param use_proxy: :param ip_pool_type: :param num_retries: :param timeout: :param logger: :return: """ headers = get_base_headers() headers.update({ 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', }) params = ( ('id', gd_id), ('output', ''), ('key', gd_key), ) url = 'https://restapi.amap.com/v3/place/detail' body = Requests.get_url_body( use_proxy=use_proxy, url=url, headers=headers, params=params, ip_pool_type=ip_pool_type, timeout=timeout, num_retries=num_retries,) # print(body) data = json_2_dict( json_str=body, default_res={}, logger=logger,).get('pois', []) # pprint(data) return data
[ 2, 19617, 25, 40477, 12, 23, 198, 198, 7061, 6, 198, 31, 9800, 796, 2208, 62, 69, 1031, 1872, 198, 31, 8979, 220, 220, 220, 1058, 1479, 62, 15042, 62, 26791, 13, 9078, 198, 31, 8443, 1058, 2208, 1952, 69, 1031, 1872, 31, 14816, 13, 785, 198, 7061, 6, 198, 198, 37811, 198, 31660, 12859, 249, 17739, 235, 164, 112, 117, 15042, 10545, 236, 98, 20998, 96, 21410, 22887, 223, 35318, 198, 37811, 198, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 11748, 302, 198, 198, 2, 422, 277, 89, 26791, 13, 541, 62, 7742, 82, 1330, 1333, 62, 541, 62, 7742, 198, 2, 422, 277, 89, 26791, 13, 2777, 1304, 13, 69, 89, 62, 8897, 3558, 1330, 9394, 3558, 198, 2, 422, 277, 89, 26791, 13, 11321, 62, 26791, 1330, 33918, 62, 17, 62, 11600, 198, 2, 422, 277, 89, 26791, 13, 37675, 62, 26791, 1330, 357, 198, 2, 220, 220, 220, 220, 651, 62, 8692, 62, 50145, 35751, 198, 198, 6738, 764, 541, 62, 7742, 82, 1330, 1333, 62, 541, 62, 7742, 198, 6738, 764, 2777, 1304, 13, 69, 89, 62, 8897, 3558, 1330, 9394, 3558, 198, 6738, 764, 11321, 62, 26791, 1330, 33918, 62, 17, 62, 11600, 198, 6738, 764, 37675, 62, 26791, 1330, 357, 198, 220, 220, 220, 651, 62, 8692, 62, 50145, 35751, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 1136, 62, 73, 67, 62, 505, 62, 11274, 82, 62, 20888, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 12859, 105, 10310, 250, 39355, 243, 10310, 103, 161, 243, 228, 161, 241, 223, 20015, 115, 43718, 120, 198, 220, 220, 220, 705, 1136, 62, 42712, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 33232, 104, 34460, 240, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 705, 1136, 62, 4862, 62, 22510, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 33699, 233, 17312, 118, 20998, 115, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 705, 1136, 62, 65, 1698, 84, 62, 7012, 522, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5525, 236, 115, 20998, 244, 162, 253, 238, 17739, 111, 165, 242, 106, 27764, 245, 21410, 163, 247, 122, 41753, 99, 163, 247, 122, 163, 100, 239, 46479, 94, 162, 223, 107, 628, 220, 220, 220, 1303, 3975, 198, 220, 220, 220, 705, 1136, 62, 17457, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 2539, 4775, 62, 392, 62, 20337, 62, 3672, 3256, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 44293, 118, 161, 253, 253, 162, 96, 222, 163, 112, 95, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 163, 247, 122, 41753, 99, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 38381, 38184, 233, 46237, 243, 17312, 222, 13783, 248, 30298, 235, 7029, 10310, 103, 60, 198, 220, 220, 220, 705, 1136, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 2539, 4775, 62, 392, 62, 20337, 62, 3672, 3256, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 44293, 118, 161, 253, 253, 162, 96, 222, 163, 112, 95, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 165, 45865, 36181, 115, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 8, 198, 220, 220, 220, 705, 1136, 62, 21287, 62, 15414, 62, 16963, 457, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 161, 253, 236, 30585, 224, 28938, 235, 164, 236, 115, 20998, 244, 164, 122, 241, 17739, 98, 162, 237, 238, 163, 97, 118, 7, 165, 45865, 36181, 115, 15042, 8, 198, 220, 220, 220, 705, 1136, 62, 21287, 62, 50188, 62, 469, 420, 1098, 62, 10951, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 28839, 108, 161, 251, 222, 2536, 164, 236, 115, 20998, 244, 34460, 228, 28938, 239, 28839, 108, 49426, 228, 163, 120, 244, 163, 254, 223, 7, 165, 45865, 36181, 115, 15042, 8, 198, 220, 220, 220, 705, 1136, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 75, 782, 62, 392, 62, 15460, 62, 392, 62, 2539, 4775, 3256, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 163, 119, 237, 163, 118, 105, 41753, 99, 7, 10310, 119, 17358, 223, 43718, 117, 162, 235, 106, 828, 10263, 227, 111, 165, 242, 106, 27764, 245, 7, 165, 247, 226, 27950, 254, 30266, 94, 20015, 114, 8, 163, 255, 231, 30266, 94, 20015, 35050, 96, 222, 163, 112, 95, 165, 247, 226, 32573, 239, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 165, 45865, 36181, 115, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 8, 198, 220, 220, 220, 705, 1136, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 21287, 62, 312, 3256, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10545, 254, 117, 162, 235, 106, 21287, 62, 312, 30266, 98, 36181, 245, 26344, 108, 162, 234, 229, 22522, 248, 21410, 24643, 7508, 1351, 7, 31660, 48958, 105, 10310, 118, 163, 105, 105, 31660, 10310, 103, 38381, 38184, 233, 46237, 243, 20998, 239, 163, 236, 108, 38834, 49035, 228, 163, 94, 106, 11, 10545, 254, 117, 162, 235, 106, 312, 11, 10263, 116, 116, 32573, 242, 32368, 252, 38834, 33566, 116, 33176, 110, 161, 243, 228, 22522, 114, 60, 198, 60, 198, 198, 4299, 651, 62, 73, 67, 62, 505, 62, 11274, 82, 62, 20888, 62, 10951, 7, 11274, 82, 62, 312, 8, 4613, 1351, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 12859, 105, 10310, 250, 39355, 243, 10310, 103, 161, 243, 228, 161, 241, 223, 20015, 115, 43718, 120, 198, 220, 220, 220, 1058, 17143, 7017, 62, 312, 25, 10263, 243, 228, 161, 241, 223, 312, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2779, 62, 6371, 796, 705, 4023, 1378, 79, 13, 18, 13, 31522, 14, 1050, 1063, 14, 11296, 1039, 6, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 8135, 84, 7390, 82, 3256, 705, 41, 62, 6, 1343, 7017, 62, 312, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 8692, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 8, 628, 220, 220, 220, 1441, 33918, 62, 17, 62, 11600, 7, 2618, 11, 4277, 62, 411, 41888, 12962, 198, 198, 4299, 651, 62, 42712, 62, 10951, 7, 42712, 62, 4906, 11, 4911, 62, 312, 8, 4613, 8633, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 33232, 104, 34460, 240, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 4911, 62, 4906, 25, 26692, 25, 220, 27670, 254, 27764, 245, 17739, 116, 43380, 117, 41753, 242, 21410, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18796, 111, 34460, 248, 10354, 705, 82, 6925, 506, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5232, 10354, 705, 5232, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 165, 94, 118, 10310, 108, 10354, 705, 1477, 403, 69, 1516, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28839, 228, 34460, 248, 10354, 705, 24767, 415, 506, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 40792, 34460, 248, 10354, 705, 23548, 506, 83, 506, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 165, 253, 113, 164, 122, 122, 10354, 705, 88, 46535, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25465, 25465, 10354, 705, 83, 3014, 666, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 162, 109, 229, 34460, 248, 10354, 705, 71, 5013, 506, 23063, 1698, 72, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17739, 101, 161, 111, 108, 10354, 705, 421, 272, 69, 1516, 23063, 1698, 72, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36181, 115, 165, 224, 99, 10354, 705, 11275, 648, 86, 377, 16115, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22522, 227, 45250, 98, 34460, 223, 10354, 705, 23548, 1872, 73, 271, 506, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1058, 17143, 4911, 62, 4906, 25, 10263, 123, 104, 34460, 240, 17739, 105, 20998, 116, 28938, 235, 198, 220, 220, 220, 1058, 17143, 4911, 62, 312, 25, 10263, 123, 104, 34460, 240, 20998, 115, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2779, 62, 6371, 796, 705, 4023, 1378, 2503, 13, 23063, 1698, 72, 3064, 13, 785, 14, 22766, 6, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 4906, 3256, 4911, 62, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7353, 312, 3256, 4911, 62, 312, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 8692, 62, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 35751, 628, 220, 220, 220, 1441, 33918, 62, 17, 62, 11600, 7, 2618, 8, 198, 198, 4299, 651, 62, 4862, 62, 22510, 62, 10951, 7, 4862, 62, 22510, 8, 4613, 8633, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 33699, 233, 17312, 118, 20998, 115, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 1058, 17143, 3072, 62, 22510, 25, 10545, 231, 233, 17312, 118, 20998, 115, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 19016, 796, 705, 5450, 1378, 83, 535, 13, 8326, 672, 5488, 13, 785, 14, 535, 14, 17752, 14, 24896, 62, 37524, 62, 325, 5154, 13, 19211, 6, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 37524, 3256, 965, 7, 4862, 62, 22510, 36911, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 25101, 8, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 581, 796, 302, 13, 5589, 576, 10786, 834, 3855, 26961, 23004, 62, 796, 357, 15885, 8, 27691, 19796, 439, 7, 2618, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 33918, 62, 17, 62, 11600, 7, 411, 8, 198, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 23884, 198, 198, 4299, 651, 62, 65, 1698, 84, 62, 7012, 522, 62, 10951, 7, 2539, 4775, 11, 275, 74, 62, 13664, 28, 12825, 8, 4613, 8633, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5525, 236, 115, 20998, 244, 162, 253, 238, 17739, 111, 165, 242, 106, 27764, 245, 21410, 163, 247, 122, 41753, 99, 163, 247, 122, 163, 100, 239, 46479, 94, 162, 223, 107, 198, 220, 220, 220, 1058, 17143, 21179, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 19016, 796, 705, 4023, 1378, 7012, 522, 13, 65, 1698, 84, 13, 785, 14, 15042, 14, 9654, 15042, 14, 34458, 522, 43, 368, 2611, 16962, 32, 14415, 6, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 29982, 3256, 705, 15197, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 18982, 3256, 705, 17752, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 1324, 312, 3256, 705, 2718, 3829, 1238, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 65, 74, 62, 2539, 3256, 965, 7, 2539, 4775, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 65, 74, 62, 13664, 3256, 965, 7, 65, 74, 62, 13664, 36911, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 25101, 8, 628, 220, 220, 220, 1441, 33918, 62, 17, 62, 11600, 7, 2618, 8, 198, 198, 4299, 651, 62, 17457, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 2539, 4775, 62, 392, 62, 20337, 62, 3672, 7, 461, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21179, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 62, 3672, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 22510, 25, 600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 7857, 25, 600, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 44293, 118, 161, 253, 253, 162, 96, 222, 163, 112, 95, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 163, 247, 122, 41753, 99, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 38381, 38184, 233, 46237, 243, 17312, 222, 13783, 248, 30298, 235, 7029, 10310, 103, 60, 198, 220, 220, 220, 1058, 17143, 47594, 25, 13328, 247, 122, 41753, 99, 28839, 108, 32368, 122, 18796, 111, 46237, 115, 21410, 461, 198, 220, 220, 220, 1058, 17143, 21179, 25, 29206, 25, 705, 165, 252, 233, 36310, 6, 198, 220, 220, 220, 1058, 17143, 1989, 62, 3672, 25, 29206, 25, 705, 30266, 255, 32432, 252, 6, 10263, 122, 227, 162, 238, 250, 163, 112, 95, 21410, 44293, 118, 161, 253, 253, 11, 36469, 248, 10310, 118, 40367, 223, 20015, 121, 11, 10263, 253, 236, 30585, 224, 11, 10263, 227, 115, 19526, 241, 44293, 118, 161, 253, 253, 198, 220, 220, 220, 1058, 17143, 2443, 62, 22510, 25, 923, 352, 11, 42164, 222, 32014, 1238, 198, 220, 220, 220, 1058, 17143, 2443, 62, 7857, 25, 10263, 249, 118, 22522, 248, 198, 220, 220, 220, 1058, 17143, 20966, 62, 7742, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 997, 62, 1186, 1678, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 22766, 3256, 965, 7, 2539, 4775, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 36996, 3256, 965, 7, 20337, 62, 3672, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 22915, 3256, 705, 17752, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 461, 3256, 965, 7, 461, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7700, 62, 22510, 3256, 965, 7, 7700, 62, 22510, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7700, 62, 7857, 3256, 965, 7, 7700, 62, 7857, 36911, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 796, 705, 4023, 1378, 15042, 13, 8899, 13, 65, 1698, 84, 13, 785, 14, 5372, 14, 85, 17, 14, 12947, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 411, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 43420, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198, 198, 4299, 651, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 2539, 4775, 62, 392, 62, 20337, 62, 3672, 7, 21287, 62, 2539, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21179, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1989, 62, 3672, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 22510, 25, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 7857, 25, 493, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1751, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 11639, 439, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 72, 62, 4906, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 44293, 118, 161, 253, 253, 162, 96, 222, 163, 112, 95, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 165, 45865, 36181, 115, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 8, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 2539, 25, 13328, 242, 111, 46237, 115, 21410, 2539, 198, 220, 220, 220, 1058, 17143, 21179, 25, 10263, 227, 111, 165, 242, 106, 27764, 245, 29206, 25, 705, 165, 252, 233, 36310, 6, 198, 220, 220, 220, 1058, 17143, 1989, 62, 3672, 25, 29206, 25, 705, 30266, 255, 32432, 252, 6, 10263, 122, 227, 162, 238, 250, 163, 112, 95, 21410, 44293, 118, 161, 253, 253, 11, 10263, 253, 236, 30585, 224, 28938, 235, 198, 220, 220, 220, 1058, 17143, 2443, 62, 22510, 25, 42164, 222, 32014, 163, 123, 119, 165, 94, 113, 46763, 108, 3064, 198, 220, 220, 220, 1058, 17143, 2443, 62, 7857, 25, 16268, 119, 246, 164, 106, 97, 161, 222, 120, 6, 1238, 6, 198, 220, 220, 220, 1058, 17143, 779, 62, 36436, 25, 198, 220, 220, 220, 1058, 17143, 20966, 62, 7742, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 997, 62, 1186, 1678, 25, 198, 220, 220, 220, 1058, 17143, 26827, 25, 198, 220, 220, 220, 1058, 17143, 1751, 25, 10545, 234, 231, 163, 227, 100, 161, 109, 224, 163, 118, 100, 161, 109, 243, 163, 97, 118, 36310, 16402, 40, 46763, 108, 162, 235, 106, 11, 10263, 237, 244, 161, 222, 120, 15, 393, 352, 198, 220, 220, 220, 1058, 17143, 18366, 25, 5525, 123, 242, 32368, 252, 163, 119, 241, 162, 252, 250, 162, 236, 100, 26344, 114, 198, 220, 220, 220, 1058, 17143, 745, 72, 62, 4906, 25, 10545, 253, 98, 46237, 95, 16402, 40, 163, 109, 119, 161, 252, 233, 11, 29206, 25, 705, 3312, 1065, 2713, 3256, 10263, 237, 107, 165, 119, 246, 164, 106, 97, 10310, 118, 163, 102, 118, 161, 222, 120, 0, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 3256, 965, 7, 21287, 62, 2539, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 10879, 3256, 965, 7, 2539, 4775, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19199, 3256, 965, 7, 7501, 72, 62, 4906, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19205, 3256, 965, 7, 20337, 62, 3672, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19205, 32374, 3256, 705, 7942, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 17197, 3256, 965, 7, 17197, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 28968, 3256, 965, 7, 7700, 62, 7857, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7700, 3256, 965, 7, 7700, 62, 22510, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2302, 5736, 3256, 965, 7, 2302, 5736, 36911, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 796, 705, 4023, 1378, 2118, 15042, 13, 321, 499, 13, 785, 14, 85, 18, 14, 5372, 14, 5239, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 411, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 7501, 271, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198, 198, 4299, 651, 62, 21287, 62, 15414, 62, 16963, 457, 62, 10951, 7, 21287, 62, 2539, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21179, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 3672, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 72, 62, 4906, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 782, 25, 22468, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 25, 22468, 28, 15, 1539, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 17739, 111, 165, 242, 106, 27764, 245, 161, 240, 234, 161, 253, 236, 30585, 224, 28938, 235, 164, 236, 115, 20998, 244, 164, 122, 241, 17739, 98, 162, 237, 238, 163, 97, 118, 7, 165, 45865, 36181, 115, 15042, 8, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 2539, 25, 13328, 242, 111, 46237, 115, 21410, 2539, 198, 220, 220, 220, 1058, 17143, 21179, 25, 29206, 25, 705, 163, 122, 236, 45617, 253, 6, 198, 220, 220, 220, 1058, 17143, 1748, 62, 3672, 25, 29206, 25, 705, 30266, 255, 32432, 252, 6, 198, 220, 220, 220, 1058, 17143, 745, 72, 62, 4906, 25, 29206, 25, 705, 28669, 18938, 6, 198, 220, 220, 220, 1058, 17143, 300, 782, 25, 198, 220, 220, 220, 1058, 17143, 3042, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 1303, 29206, 25, 705, 18298, 13, 2780, 1415, 3459, 11, 2670, 13, 2079, 3023, 2414, 6, 13328, 119, 237, 163, 118, 105, 41753, 99, 198, 220, 220, 220, 4067, 796, 705, 4032, 13, 22179, 26933, 2536, 7, 75, 782, 828, 965, 7, 15460, 8, 12962, 611, 300, 782, 14512, 657, 13, 393, 3042, 14512, 657, 13, 2073, 10148, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 3256, 965, 7, 21287, 62, 2539, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 10879, 3256, 965, 7, 2539, 4775, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 4906, 3256, 745, 72, 62, 4906, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 24886, 3256, 4067, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19205, 3256, 965, 7, 19205, 62, 3672, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19608, 265, 2981, 3256, 705, 439, 33809, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 28, 705, 5450, 1378, 2118, 15042, 13, 321, 499, 13, 785, 14, 85, 18, 14, 562, 10167, 14, 15414, 41315, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 41315, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198, 198, 4299, 651, 62, 21287, 62, 50188, 62, 469, 420, 1098, 62, 10951, 7, 21287, 62, 2539, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1748, 62, 3672, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 28839, 108, 161, 251, 222, 2536, 164, 236, 115, 20998, 244, 34460, 228, 28938, 239, 28839, 108, 49426, 228, 163, 120, 244, 163, 254, 223, 7, 165, 45865, 36181, 115, 15042, 8, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 2539, 25, 198, 220, 220, 220, 1058, 17143, 2209, 25, 29206, 25, 705, 43095, 162, 223, 240, 32368, 121, 165, 247, 227, 40792, 33232, 225, 32, 41753, 100, 6, 198, 220, 220, 220, 1058, 17143, 1748, 62, 3672, 25, 29206, 25, 705, 44293, 245, 12859, 105, 6, 198, 220, 220, 220, 1058, 17143, 20966, 62, 7742, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 997, 62, 1186, 1678, 25, 198, 220, 220, 220, 1058, 17143, 26827, 25, 198, 220, 220, 220, 1058, 17143, 779, 62, 36436, 25, 198, 220, 220, 220, 1058, 17143, 49706, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 3256, 965, 7, 21287, 62, 2539, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 21975, 3256, 965, 7, 21975, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19205, 3256, 965, 7, 19205, 62, 3672, 36911, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 28, 705, 5450, 1378, 2118, 15042, 13, 321, 499, 13, 785, 14, 85, 18, 14, 469, 420, 1098, 14, 469, 78, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 469, 420, 4147, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198, 198, 4299, 651, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 75, 782, 62, 392, 62, 15460, 62, 392, 62, 2539, 4775, 7, 21287, 62, 2539, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 782, 25, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3042, 25, 22468, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21179, 25, 2536, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16874, 25, 600, 28, 12825, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 22510, 25, 600, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 7857, 25, 600, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 72, 62, 4906, 11639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18366, 11639, 439, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 163, 119, 237, 163, 118, 105, 41753, 99, 7, 10310, 119, 17358, 223, 43718, 117, 162, 235, 106, 828, 10263, 227, 111, 165, 242, 106, 27764, 245, 7, 165, 247, 226, 27950, 254, 30266, 94, 20015, 114, 8, 163, 255, 231, 30266, 94, 20015, 35050, 96, 222, 163, 112, 95, 165, 247, 226, 32573, 239, 41753, 245, 165, 241, 118, 46479, 94, 162, 223, 107, 7, 165, 45865, 36181, 115, 15042, 10263, 227, 111, 165, 242, 106, 27764, 245, 162, 238, 250, 163, 112, 95, 17312, 235, 27950, 94, 8, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 2539, 25, 13328, 242, 111, 46237, 115, 21410, 2539, 198, 220, 220, 220, 1058, 17143, 300, 782, 25, 13328, 119, 237, 41753, 99, 198, 220, 220, 220, 1058, 17143, 3042, 25, 13328, 118, 105, 41753, 99, 198, 220, 220, 220, 1058, 17143, 21179, 25, 10263, 227, 111, 165, 242, 106, 27764, 245, 29206, 25, 705, 165, 252, 233, 36310, 3256, 16268, 119, 246, 164, 106, 97, 163, 102, 118, 161, 222, 120, 0, 198, 220, 220, 220, 1058, 17143, 16874, 25, 10263, 235, 232, 36181, 226, 357, 36685, 224, 162, 252, 250, 32432, 110, 163, 253, 98, 21410, 163, 119, 237, 163, 118, 105, 41753, 99, 47797, 121, 49035, 228, 163, 94, 106, 22522, 248, 19526, 235, 26344, 108, 162, 253, 238, 22522, 114, 41753, 245, 165, 241, 118, 11, 10263, 237, 107, 49546, 42172, 28, 3064, 11, 10545, 251, 98, 162, 237, 238, 165, 45865, 22522, 248, 19526, 235, 32573, 242, 32368, 252, 46479, 94, 162, 223, 107, 163, 39333, 163, 94, 106, 41753, 99, 3228, 8, 198, 220, 220, 220, 1058, 17143, 2443, 62, 22510, 25, 42164, 222, 32014, 163, 123, 119, 165, 94, 113, 46763, 108, 3064, 198, 220, 220, 220, 1058, 17143, 2443, 62, 7857, 25, 16268, 119, 246, 164, 106, 97, 161, 222, 120, 6, 1238, 6, 198, 220, 220, 220, 1058, 17143, 745, 72, 62, 4906, 25, 10545, 253, 98, 46237, 95, 16402, 40, 163, 109, 119, 161, 252, 233, 11, 29206, 25, 705, 3312, 1065, 2713, 3256, 10263, 237, 107, 165, 119, 246, 164, 106, 97, 10310, 118, 163, 102, 118, 161, 222, 120, 0, 198, 220, 220, 220, 1058, 17143, 18366, 25, 5525, 123, 242, 32368, 252, 163, 119, 241, 162, 252, 250, 162, 236, 100, 26344, 114, 198, 220, 220, 220, 1058, 17143, 779, 62, 36436, 25, 198, 220, 220, 220, 1058, 17143, 20966, 62, 7742, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 997, 62, 1186, 1678, 25, 198, 220, 220, 220, 1058, 17143, 26827, 25, 198, 220, 220, 220, 1058, 17143, 49706, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 3256, 965, 7, 21287, 62, 2539, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 24886, 3256, 705, 4032, 13, 22179, 26933, 2536, 7, 75, 782, 828, 965, 7, 15460, 8, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 10879, 3256, 965, 7, 2539, 4775, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 19199, 3256, 965, 7, 7501, 72, 62, 4906, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 42172, 3256, 965, 7, 42172, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 28968, 3256, 965, 7, 7700, 62, 7857, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7700, 3256, 965, 7, 7700, 62, 22510, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2302, 5736, 3256, 965, 7, 2302, 5736, 36911, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 796, 705, 5450, 1378, 2118, 15042, 13, 321, 499, 13, 785, 14, 85, 18, 14, 5372, 14, 14145, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 411, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 7501, 271, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198, 198, 4299, 651, 62, 21287, 62, 8899, 62, 24643, 62, 10951, 62, 4868, 62, 1525, 62, 21287, 62, 312, 7, 21287, 62, 2539, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 67, 62, 312, 25, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 28461, 62, 541, 62, 7742, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 1238, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 14202, 35751, 4613, 1351, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10545, 254, 117, 162, 235, 106, 21287, 62, 312, 30266, 98, 36181, 245, 26344, 108, 162, 234, 229, 22522, 248, 21410, 24643, 7508, 1351, 7, 31660, 48958, 105, 10310, 118, 163, 105, 105, 31660, 10310, 103, 38381, 38184, 233, 46237, 243, 20998, 239, 163, 236, 108, 38834, 49035, 228, 163, 94, 106, 11, 10545, 254, 117, 162, 235, 106, 312, 11, 10263, 116, 116, 32573, 242, 32368, 252, 38834, 33566, 116, 33176, 110, 161, 243, 228, 22522, 114, 60, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 2539, 25, 13328, 242, 111, 46237, 115, 21410, 2539, 198, 220, 220, 220, 1058, 17143, 308, 67, 62, 312, 25, 29206, 25, 705, 33, 15, 5777, 4663, 21, 47, 15, 33, 6, 198, 220, 220, 220, 1058, 17143, 779, 62, 36436, 25, 198, 220, 220, 220, 1058, 17143, 20966, 62, 7742, 62, 4906, 25, 198, 220, 220, 220, 1058, 17143, 997, 62, 1186, 1678, 25, 198, 220, 220, 220, 1058, 17143, 26827, 25, 198, 220, 220, 220, 1058, 17143, 49706, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24697, 796, 651, 62, 8692, 62, 50145, 3419, 198, 220, 220, 220, 24697, 13, 19119, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 705, 32048, 10354, 705, 14894, 12, 282, 425, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30562, 12, 15988, 10354, 705, 9806, 12, 496, 28, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 44948, 12, 818, 22390, 12, 16844, 3558, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 10354, 705, 5239, 14, 6494, 11, 31438, 14, 87, 6494, 10, 19875, 11, 31438, 14, 19875, 26, 80, 28, 15, 13, 24, 11, 9060, 14, 12384, 79, 11, 9060, 14, 499, 782, 11, 9, 15211, 26, 80, 28, 15, 13, 23, 11, 31438, 14, 32696, 12, 1069, 3803, 26, 85, 28, 65, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13635, 12, 16129, 10354, 705, 23548, 12, 44175, 11, 23548, 26, 80, 28, 15, 13, 24, 11, 268, 26, 80, 28, 15, 13, 23, 3256, 198, 220, 220, 220, 32092, 198, 220, 220, 220, 42287, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 312, 3256, 308, 67, 62, 312, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 22915, 3256, 10148, 828, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 2539, 3256, 308, 67, 62, 2539, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 19016, 796, 705, 5450, 1378, 2118, 15042, 13, 321, 499, 13, 785, 14, 85, 18, 14, 5372, 14, 49170, 6, 198, 220, 220, 220, 1767, 796, 9394, 3558, 13, 1136, 62, 6371, 62, 2618, 7, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36436, 28, 1904, 62, 36436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24697, 28, 50145, 11, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 28, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 20966, 62, 7742, 62, 4906, 28, 541, 62, 7742, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 26827, 28, 48678, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1186, 1678, 28, 22510, 62, 1186, 1678, 35751, 198, 220, 220, 220, 1303, 3601, 7, 2618, 8, 198, 220, 220, 220, 1366, 796, 33918, 62, 17, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 28, 2618, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 411, 34758, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 28, 6404, 1362, 11, 737, 1136, 10786, 7501, 271, 3256, 685, 12962, 198, 220, 220, 220, 1303, 279, 4798, 7, 7890, 8, 628, 220, 220, 220, 1441, 1366, 198 ]
1.523067
10,383
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_axpy_weather ---------------------------------- Tests for `axpy_weather` module. """ import sys import unittest from axpy_weather import axpy_weather
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 9288, 62, 897, 9078, 62, 23563, 198, 3880, 438, 198, 198, 51, 3558, 329, 4600, 897, 9078, 62, 23563, 63, 8265, 13, 198, 37811, 628, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 198, 6738, 7877, 9078, 62, 23563, 1330, 7877, 9078, 62, 23563, 628, 198 ]
2.90411
73
from setuptools import setup, find_packages setup( name="jupyterhub-configurator", version="1.0", packages=find_packages(), license="3-BSD", author="yuvipanda", author_email="[email protected]", install_requires=["tornado", "aiohttp", "jupyterhub", "deepmerge", "pluggy"], include_package_data=True, entry_points={ "jupyterhub_configurator": ["z2jh = jupyterhub_configurator.schemas.z2jh"] }, )
[ 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 73, 929, 88, 353, 40140, 12, 11250, 333, 1352, 1600, 198, 220, 220, 220, 2196, 2625, 16, 13, 15, 1600, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 5964, 2625, 18, 12, 21800, 1600, 198, 220, 220, 220, 1772, 2625, 88, 14795, 541, 5282, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 88, 14795, 541, 5282, 31, 14816, 13, 785, 1600, 198, 220, 220, 220, 2721, 62, 47911, 28, 14692, 45910, 4533, 1600, 366, 64, 952, 4023, 1600, 366, 73, 929, 88, 353, 40140, 1600, 366, 22089, 647, 469, 1600, 366, 16875, 1360, 33116, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 73, 929, 88, 353, 40140, 62, 11250, 333, 1352, 1298, 14631, 89, 17, 73, 71, 796, 474, 929, 88, 353, 40140, 62, 11250, 333, 1352, 13, 1416, 4411, 292, 13, 89, 17, 73, 71, 8973, 198, 220, 220, 220, 8964, 198, 8, 198 ]
2.310881
193
from __future__ import annotations from typing import List, Tuple, Dict try: import urequests as requests except ImportError: import requests try: import ujson as json except ImportError: import json
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 6738, 19720, 1330, 7343, 11, 309, 29291, 11, 360, 713, 198, 198, 28311, 25, 198, 197, 11748, 334, 8897, 3558, 355, 7007, 198, 16341, 17267, 12331, 25, 198, 197, 11748, 7007, 198, 198, 28311, 25, 198, 197, 11748, 334, 17752, 355, 33918, 198, 16341, 17267, 12331, 25, 198, 197, 11748, 33918, 628, 628 ]
3.483333
60
# Start your code below (tip: Make sure to indent your code)
[ 198, 220, 220, 220, 1303, 7253, 534, 2438, 2174, 357, 22504, 25, 6889, 1654, 284, 33793, 534, 2438, 8, 198 ]
3.3
20
import sys sys.path.append("../../") from unittest import TestCase from pmst.geometry import Point, Ray from pmst.component import Lens from pmst.microscope import Microscope import pmst.source import numpy as np # self.assertTrue(self.s.ray_list.get_ray(1) == Ray(Point(0, .5, 1), Point(0, .5, 2))) # self.assertTrue(self.s.ray_list.get_ray(2) == Ray(Point(.1, .1, 1), Point(.1, .1, 2))) # Plane source converges
[ 11748, 25064, 198, 17597, 13, 6978, 13, 33295, 7203, 40720, 40720, 4943, 198, 198, 6738, 555, 715, 395, 1330, 6208, 20448, 198, 6738, 9114, 301, 13, 469, 15748, 1330, 6252, 11, 7760, 198, 6738, 9114, 301, 13, 42895, 1330, 30092, 198, 6738, 9114, 301, 13, 24055, 29982, 1330, 4527, 29982, 198, 11748, 9114, 301, 13, 10459, 198, 198, 11748, 299, 32152, 355, 45941, 628, 198, 220, 220, 220, 220, 220, 1303, 220, 2116, 13, 30493, 17821, 7, 944, 13, 82, 13, 2433, 62, 4868, 13, 1136, 62, 2433, 7, 16, 8, 6624, 7760, 7, 12727, 7, 15, 11, 764, 20, 11, 352, 828, 6252, 7, 15, 11, 764, 20, 11, 362, 22305, 198, 220, 220, 220, 220, 220, 1303, 220, 2116, 13, 30493, 17821, 7, 944, 13, 82, 13, 2433, 62, 4868, 13, 1136, 62, 2433, 7, 17, 8, 6624, 7760, 7, 12727, 7, 13, 16, 11, 764, 16, 11, 352, 828, 6252, 7, 13, 16, 11, 764, 16, 11, 362, 22305, 198, 198, 2, 36829, 2723, 6718, 3212, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.469274
179
import os import inspect import typing import threading from contextlib import suppress from functools import wraps def enforce_types(callable): """ From: https://stackoverflow.com/questions/50563546/validating-detailed-types-in-python-dataclasses """ spec = inspect.getfullargspec(callable) if inspect.isclass(callable): callable.__init__ = decorate(callable.__init__) return callable return decorate(callable)
[ 11748, 28686, 198, 11748, 10104, 198, 11748, 19720, 198, 11748, 4704, 278, 198, 6738, 4732, 8019, 1330, 18175, 198, 6738, 1257, 310, 10141, 1330, 27521, 628, 198, 198, 4299, 4605, 62, 19199, 7, 13345, 540, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3574, 25, 198, 220, 220, 220, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 1120, 3980, 2327, 3510, 14, 12102, 803, 12, 15255, 6255, 12, 19199, 12, 259, 12, 29412, 12, 19608, 330, 28958, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1020, 796, 10104, 13, 1136, 12853, 853, 16684, 7, 13345, 540, 8, 628, 220, 220, 220, 611, 10104, 13, 271, 4871, 7, 13345, 540, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 869, 540, 13, 834, 15003, 834, 796, 11705, 378, 7, 13345, 540, 13, 834, 15003, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 869, 540, 628, 220, 220, 220, 1441, 11705, 378, 7, 13345, 540, 8, 628, 628, 628, 628, 198 ]
2.791667
168
from django.db.models.signals import post_save from django.dispatch import receiver from .models import Vote from .serializers import VoteSerializer from asgiref.sync import async_to_sync import channels.layers @receiver(post_save, sender=Vote)
[ 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12683, 874, 1330, 1281, 62, 21928, 198, 6738, 42625, 14208, 13, 6381, 17147, 1330, 9733, 198, 6738, 764, 27530, 1330, 19175, 198, 6738, 764, 46911, 11341, 1330, 19175, 32634, 7509, 198, 198, 6738, 355, 70, 557, 69, 13, 27261, 1330, 30351, 62, 1462, 62, 27261, 198, 11748, 9619, 13, 75, 6962, 628, 198, 31, 260, 39729, 7, 7353, 62, 21928, 11, 29788, 28, 37394, 8, 198 ]
3.351351
74
#!/usr/bin/env python """MariaDB slave status checker""" import sys import argparse import MySQLdb class NagiosPlugin(object): """Nagios Plugin base class""" class SlaveStatusCheck(NagiosPlugin): """Class to help us run slave status queries against MariaDB""" REPLICATION_LAG_MODE = 'replication_lag' SLAVESQL_MODE = 'slave_sql' SLAVEIO_MODE = 'slave_io' MODES = (REPLICATION_LAG_MODE, SLAVESQL_MODE, SLAVEIO_MODE) def run_check(self): """Execute the check against the given mode""" check_fn = getattr(self, self.mode) check_fn() def replication_lag(self): """Check replication lag thresholds""" lag = self._slave_status.get('Seconds_Behind_Master') if lag is None: self.unknown_state("No replication lag reported") if not self.warning or not self.critical: self.unknown_state("Warning and critical thresholds undefined") lag = int(lag) warning = int(self.warning) critical = int(self.critical) lag_performance_msg = "log={0}s;{1};{2};0".format(lag,warning,critical) lag_display_msg = "Slave is {0} seconds behinds master".format(lag) lag_msg = "{0} | {1}".format(lag_display_msg,lag_performance_msg) if lag >= warning and lag < critical: self.warning_state(lag_msg) elif lag >= critical: self.critical_state(lag_msg) self.ok_state(lag_msg) def slave_sql(self): """Check that Slave_SQL_Running = Yes""" if self._slave_status.get('Slave_SQL_Running') == "No": msg = "Slave sql is not running. Last error: {0}".format( self._slave_status.get('Last_SQL_Error')) self.critical_state(msg) self.ok_state("Slave sql is running") def slave_io(self): """Check that Slave_IO_Running = Yes""" if self._slave_status.get('Slave_IO_Running') == "No": msg = "Slave io is not running. Last error: {0}".format( self._slave_status.get('Last_IO_Error')) self.critical_state(msg) self.ok_state("Slave io is running") def get_slave_status(self): """Run the query!""" try: sql = 'SHOW SLAVE "{0}" STATUS'.format(self.connection_name) conn = None conn = MySQLdb.Connection( self.hostname, self.username, self.password) curs = conn.cursor(MySQLdb.cursors.DictCursor) curs.execute(sql) conn.commit() self._slave_status = curs.fetchall()[0] if self.verbose: print self._slave_status except MySQLdb.Error, exc: msg = "{0}: {1}".format(exc.args[0], exc.args[1]) self.unknown_state(msg) finally: if conn: conn.close() def main(args=None): """starter method""" if args is None: args = sys.argv[1:] parser = argparse.ArgumentParser(description='MariaDB slave status checker') parser.add_argument('--hostname', default='localhost', type=str, help="MariaDB hostname") parser.add_argument('--username', type=str, help="MariaDB username") parser.add_argument('--password', type=str, help="MariaDB password") parser.add_argument('--connection', required=True, type=str, help="MariaDB slave connection name") parser.add_argument('--mode', type=str, required=True, choices=SlaveStatusCheck.MODES, help="slave state to check") parser.add_argument('-w', '--warning', type=int, default=None, help="warning limit") parser.add_argument('-c', '--critical', type=int, default=None, help="critical limit") parser.add_argument('--verbose', action='store_true', default=False, help="enable verbose mode") args = parser.parse_args(args) ssc = SlaveStatusCheck(args.hostname, args.username, args.password, args.connection, args.mode, args.verbose, args.warning, args.critical) ssc.get_slave_status() ssc.run_check() if __name__ == '__main__': main() # pragma: no cover
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 46827, 11012, 11778, 3722, 2198, 263, 37811, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 11748, 33476, 9945, 628, 198, 4871, 15196, 4267, 37233, 7, 15252, 2599, 198, 220, 220, 220, 37227, 45, 363, 4267, 42636, 2779, 1398, 37811, 628, 198, 4871, 38795, 19580, 9787, 7, 45, 363, 4267, 37233, 2599, 198, 220, 220, 220, 37227, 9487, 284, 1037, 514, 1057, 11778, 3722, 20743, 1028, 14200, 11012, 37811, 198, 220, 220, 220, 4526, 31484, 6234, 62, 43, 4760, 62, 49058, 796, 705, 35666, 3299, 62, 30909, 6, 198, 220, 220, 220, 12419, 10116, 1546, 9711, 62, 49058, 796, 705, 36341, 62, 25410, 6, 198, 220, 220, 220, 12419, 32, 6089, 9399, 62, 49058, 796, 705, 36341, 62, 952, 6, 198, 220, 220, 220, 19164, 1546, 796, 357, 2200, 31484, 6234, 62, 43, 4760, 62, 49058, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12419, 10116, 1546, 9711, 62, 49058, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12419, 32, 6089, 9399, 62, 49058, 8, 628, 220, 220, 220, 825, 1057, 62, 9122, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 23002, 1133, 262, 2198, 1028, 262, 1813, 4235, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 22184, 796, 651, 35226, 7, 944, 11, 2116, 13, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 22184, 3419, 628, 220, 220, 220, 825, 30330, 62, 30909, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 30330, 19470, 40885, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 19470, 796, 2116, 13557, 36341, 62, 13376, 13, 1136, 10786, 12211, 82, 62, 34163, 62, 18254, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19470, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34680, 62, 5219, 7203, 2949, 30330, 19470, 2098, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 43917, 393, 407, 2116, 13, 34666, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34680, 62, 5219, 7203, 20361, 290, 4688, 40885, 28721, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 19470, 796, 493, 7, 30909, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6509, 796, 493, 7, 944, 13, 43917, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4688, 796, 493, 7, 944, 13, 34666, 8, 198, 197, 30909, 62, 26585, 62, 19662, 796, 366, 6404, 34758, 15, 92, 82, 26, 90, 16, 19629, 90, 17, 19629, 15, 1911, 18982, 7, 30909, 11, 43917, 11, 34666, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19470, 62, 13812, 62, 19662, 796, 366, 11122, 1015, 318, 1391, 15, 92, 4201, 2157, 82, 4958, 1911, 18982, 7, 30909, 8, 198, 220, 220, 220, 220, 220, 220, 220, 19470, 62, 19662, 796, 45144, 15, 92, 930, 1391, 16, 92, 1911, 18982, 7, 30909, 62, 13812, 62, 19662, 11, 30909, 62, 26585, 62, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 19470, 18189, 6509, 290, 19470, 1279, 4688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43917, 62, 5219, 7, 30909, 62, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 19470, 18189, 4688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34666, 62, 5219, 7, 30909, 62, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 482, 62, 5219, 7, 30909, 62, 19662, 8, 628, 220, 220, 220, 825, 11778, 62, 25410, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 38795, 62, 17861, 62, 28768, 796, 3363, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 36341, 62, 13376, 13, 1136, 10786, 11122, 1015, 62, 17861, 62, 28768, 11537, 6624, 366, 2949, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 11122, 1015, 44161, 318, 407, 2491, 13, 4586, 4049, 25, 1391, 15, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36341, 62, 13376, 13, 1136, 10786, 5956, 62, 17861, 62, 12331, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34666, 62, 5219, 7, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 482, 62, 5219, 7203, 11122, 1015, 44161, 318, 2491, 4943, 628, 220, 220, 220, 825, 11778, 62, 952, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 326, 38795, 62, 9399, 62, 28768, 796, 3363, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 36341, 62, 13376, 13, 1136, 10786, 11122, 1015, 62, 9399, 62, 28768, 11537, 6624, 366, 2949, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 366, 11122, 1015, 33245, 318, 407, 2491, 13, 4586, 4049, 25, 1391, 15, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36341, 62, 13376, 13, 1136, 10786, 5956, 62, 9399, 62, 12331, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34666, 62, 5219, 7, 19662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 482, 62, 5219, 7203, 11122, 1015, 33245, 318, 2491, 4943, 628, 220, 220, 220, 825, 651, 62, 36341, 62, 13376, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10987, 262, 12405, 2474, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44161, 796, 705, 9693, 3913, 12419, 32, 6089, 45144, 15, 36786, 15486, 2937, 4458, 18982, 7, 944, 13, 38659, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 796, 33476, 9945, 13, 32048, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4774, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28712, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13882, 796, 48260, 13, 66, 21471, 7, 3666, 17861, 9945, 13, 66, 1834, 669, 13, 35, 713, 34, 21471, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13882, 13, 41049, 7, 25410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 36341, 62, 13376, 796, 13882, 13, 69, 7569, 439, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 19011, 577, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 2116, 13557, 36341, 62, 13376, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 33476, 9945, 13, 12331, 11, 2859, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 45144, 15, 38362, 1391, 16, 92, 1911, 18982, 7, 41194, 13, 22046, 58, 15, 4357, 2859, 13, 22046, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 34680, 62, 5219, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 48260, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 48260, 13, 19836, 3419, 628, 198, 4299, 1388, 7, 22046, 28, 14202, 2599, 198, 220, 220, 220, 37227, 12339, 2446, 37811, 198, 220, 220, 220, 611, 26498, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 25064, 13, 853, 85, 58, 16, 47715, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 46827, 11012, 11778, 3722, 2198, 263, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 4774, 3672, 3256, 4277, 11639, 36750, 3256, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 46827, 11012, 2583, 3672, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 29460, 3256, 2099, 28, 2536, 11, 1037, 2625, 46827, 11012, 20579, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 28712, 3256, 2099, 28, 2536, 11, 1037, 2625, 46827, 11012, 9206, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 38659, 3256, 2672, 28, 17821, 11, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 46827, 11012, 11778, 4637, 1438, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 14171, 3256, 2099, 28, 2536, 11, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7747, 28, 11122, 1015, 19580, 9787, 13, 33365, 1546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 36341, 1181, 284, 2198, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 86, 3256, 705, 438, 43917, 3256, 2099, 28, 600, 11, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 43917, 4179, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 705, 438, 34666, 3256, 2099, 28, 600, 11, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 34666, 4179, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19011, 577, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 21633, 15942, 577, 4235, 4943, 628, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 7, 22046, 8, 198, 220, 220, 220, 264, 1416, 796, 38795, 19580, 9787, 7, 22046, 13, 4774, 3672, 11, 26498, 13, 29460, 11, 26498, 13, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 38659, 11, 26498, 13, 14171, 11, 26498, 13, 19011, 577, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 43917, 11, 26498, 13, 34666, 8, 198, 220, 220, 220, 264, 1416, 13, 1136, 62, 36341, 62, 13376, 3419, 198, 220, 220, 220, 264, 1416, 13, 5143, 62, 9122, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 1303, 23864, 2611, 25, 645, 3002, 198 ]
2.201621
1,974
import sys, os, platform import ocr_image_analyzer as OCR try: import PIL.Image import PIL.ImageTk except ModuleNotFoundError: print('Required libraries not found, please install PIL') if __name__ == "__main__": raise Exception('Cannot be called as main script') debug = True #******************************************** Program state independent logic filepathSlash = '\\' if isWindowsOS() else '/' #******************************************** Object that contains program state
[ 11748, 25064, 11, 28686, 11, 3859, 201, 198, 11748, 267, 6098, 62, 9060, 62, 38200, 9107, 355, 440, 9419, 201, 198, 28311, 25, 201, 198, 220, 220, 220, 1330, 350, 4146, 13, 5159, 201, 198, 220, 220, 220, 1330, 350, 4146, 13, 5159, 51, 74, 201, 198, 16341, 19937, 3673, 21077, 12331, 25, 201, 198, 220, 220, 220, 3601, 10786, 37374, 12782, 407, 1043, 11, 3387, 2721, 350, 4146, 11537, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 201, 198, 220, 220, 220, 5298, 35528, 10786, 34, 34574, 307, 1444, 355, 1388, 4226, 11537, 201, 198, 201, 198, 24442, 796, 6407, 201, 198, 201, 198, 2, 17174, 46068, 220, 220, 6118, 1181, 4795, 9156, 201, 198, 220, 220, 220, 220, 201, 198, 7753, 6978, 11122, 1077, 796, 705, 6852, 6, 611, 318, 11209, 2640, 3419, 2073, 31051, 6, 201, 198, 220, 220, 220, 220, 201, 198, 2, 17174, 46068, 220, 220, 9515, 326, 4909, 1430, 1181, 201, 198, 201, 198 ]
3.222892
166
# exercise 10.2.1 from matplotlib.pyplot import figure, show from scipy.io import loadmat from toolbox_02450 import clusterplot from scipy.cluster.hierarchy import linkage, fcluster, dendrogram # Load Matlab data file and extract variables of interest mat_data = loadmat('../Data/synth1.mat') X = mat_data['X'] y = mat_data['y'].squeeze() attributeNames = [name[0] for name in mat_data['attributeNames'].squeeze()] classNames = [name[0][0] for name in mat_data['classNames']] N, M = X.shape C = len(classNames) # Perform hierarchical/agglomerative clustering on data matrix Method = 'single' Metric = 'euclidean' Z = linkage(X, method=Method, metric=Metric) # Compute and display clusters by thresholding the dendrogram Maxclust = 4 cls = fcluster(Z, criterion='maxclust', t=Maxclust) figure(1) clusterplot(X, cls.reshape(cls.shape[0],1), y=y) # Display dendrogram max_display_levels=6 figure(2,figsize=(10,4)) dendrogram(Z, truncate_mode='level', p=max_display_levels) show() print('Ran Exercise 10.2.1')
[ 2, 5517, 838, 13, 17, 13, 16, 198, 6738, 2603, 29487, 8019, 13, 9078, 29487, 1330, 3785, 11, 905, 198, 6738, 629, 541, 88, 13, 952, 1330, 3440, 6759, 198, 6738, 2891, 3524, 62, 40839, 1120, 1330, 13946, 29487, 198, 6738, 629, 541, 88, 13, 565, 5819, 13, 71, 959, 9282, 1330, 45945, 11, 277, 565, 5819, 11, 288, 437, 39529, 198, 198, 2, 8778, 6550, 23912, 1366, 2393, 290, 7925, 9633, 286, 1393, 198, 6759, 62, 7890, 796, 3440, 6759, 10786, 40720, 6601, 14, 28869, 400, 16, 13, 6759, 11537, 198, 55, 796, 2603, 62, 7890, 17816, 55, 20520, 198, 88, 796, 2603, 62, 7890, 17816, 88, 6, 4083, 16485, 1453, 2736, 3419, 198, 42348, 36690, 796, 685, 3672, 58, 15, 60, 329, 1438, 287, 2603, 62, 7890, 17816, 42348, 36690, 6, 4083, 16485, 1453, 2736, 3419, 60, 198, 4871, 36690, 796, 685, 3672, 58, 15, 7131, 15, 60, 329, 1438, 287, 2603, 62, 7890, 17816, 4871, 36690, 6, 11907, 198, 45, 11, 337, 796, 1395, 13, 43358, 198, 34, 796, 18896, 7, 4871, 36690, 8, 628, 198, 2, 35006, 38958, 14, 363, 37757, 876, 32966, 1586, 319, 1366, 17593, 198, 17410, 796, 705, 29762, 6, 198, 9171, 1173, 796, 705, 12496, 565, 485, 272, 6, 198, 198, 57, 796, 45945, 7, 55, 11, 2446, 28, 17410, 11, 18663, 28, 9171, 1173, 8, 198, 198, 2, 3082, 1133, 290, 3359, 23163, 416, 11387, 278, 262, 288, 437, 39529, 198, 11518, 565, 436, 796, 604, 198, 565, 82, 796, 277, 565, 5819, 7, 57, 11, 34054, 11639, 9806, 565, 436, 3256, 256, 28, 11518, 565, 436, 8, 198, 26875, 7, 16, 8, 198, 565, 5819, 29487, 7, 55, 11, 537, 82, 13, 3447, 1758, 7, 565, 82, 13, 43358, 58, 15, 4357, 16, 828, 331, 28, 88, 8, 198, 198, 2, 16531, 288, 437, 39529, 198, 9806, 62, 13812, 62, 46170, 28, 21, 198, 26875, 7, 17, 11, 5647, 7857, 16193, 940, 11, 19, 4008, 198, 67, 437, 39529, 7, 57, 11, 40122, 378, 62, 14171, 11639, 5715, 3256, 279, 28, 9806, 62, 13812, 62, 46170, 8, 198, 198, 12860, 3419, 198, 198, 4798, 10786, 49, 272, 32900, 838, 13, 17, 13, 16, 11537 ]
2.782967
364
from js9 import j app = j.tools.prefab._getBaseAppClass()
[ 6738, 44804, 24, 1330, 474, 198, 198, 1324, 796, 474, 13, 31391, 13, 3866, 36434, 13557, 1136, 14881, 4677, 9487, 3419, 628 ]
2.727273
22
#!/usr/bin/env python # Copyright (c) 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Python utility that triggers and waits for tasks to complete on CTFE.""" import base64 import hashlib import json import math import optparse import requests import sys import time CTFE_HOST = "https://ct.skia.org" CTFE_QUEUE = CTFE_HOST + '/queue/' CHROMIUM_PERF_TASK_POST_URI = CTFE_HOST + "/_/webhook_add_chromium_perf_task" GET_CHROMIUM_PERF_RUN_STATUS_URI = CTFE_HOST + "/get_chromium_perf_run_status" CHROMIUM_PERF_RUNS_HISTORY = CTFE_HOST + "/chromium_perf_runs/" GCE_WEBHOOK_SALT_METADATA_URI = ( "http://metadata/computeMetadata/v1/project/attributes/" "webhook_request_salt") CTFE_CONNECTION_RETRIES = 5 CONNECTION_WAIT_BASE = 5 POLLING_FREQUENCY_SECS = 30 # 30 seconds. TRYBOT_DEADLINE_SECS = 24 * 60 * 60 # 24 hours. def retry(): """A retry decorator with exponential backoff.""" return decorator @retry() @retry() def _CreateTaskJSON(options): """Creates a JSON representation of the requested task.""" task_params = {} task_params["username"] = options.requester task_params["benchmark"] = options.benchmark task_params["platform"] = "Linux" task_params["page_sets"] = "10k" task_params["repeat_runs"] = "3" task_params["run_in_parallel"] = str(options.parallel) task_params["benchmark_args"] = "--output-format=csv-pivot-table" task_params["browser_args_nopatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") task_params["browser_args_withpatch"] = ( "--disable-setuid-sandbox --enable-threaded-compositing " "--enable-impl-side-painting") trybot_params = {} trybot_params["issue"] = options.issue trybot_params["patchset"] = options.patchset trybot_params["task"] = task_params return json.dumps(trybot_params) def _GetWebhookSaltFromMetadata(): """Gets webhook_request_salt from GCE's metadata server.""" headers = {"Metadata-Flavor": "Google"} resp = requests.get(GCE_WEBHOOK_SALT_METADATA_URI, headers=headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (GCE_WEBHOOK_SALT_METADATA_URI, resp.status_code)) return base64.standard_b64decode(resp.text) def _TriggerTask(options): """Triggers the requested task on CTFE and returns the new task's ID.""" task = _CreateTaskJSON(options) m = hashlib.sha512() m.update(task) m.update('notverysecret' if options.local else _GetWebhookSaltFromMetadata()) encoded = base64.standard_b64encode(m.digest()) headers = { "Content-type": "application/x-www-form-urlencoded", "Accept": "application/json", "X-Webhook-Auth-Hash": encoded} resp = _AddTaskToCTFE(task, headers) if resp.status_code != 200: raise CtTrybotException( 'Return code from %s was %s' % (CHROMIUM_PERF_TASK_POST_URI, resp.status_code)) try: ret = json.loads(resp.text) except ValueError, e: raise CtTrybotException( 'Did not get a JSON response from %s: %s' % ( CHROMIUM_PERF_TASK_POST_URI, e)) return ret["taskID"] if '__main__' == __name__: option_parser = optparse.OptionParser() option_parser.add_option( '', '--issue', help='The Rietveld CL number to get the patch from.') option_parser.add_option( '', '--patchset', help='The Rietveld CL patchset to use.') option_parser.add_option( '', '--requester', help='Email address of the user who requested this run.') option_parser.add_option( '', '--benchmark', help='The CT benchmark to run on the patch.') option_parser.add_option( '', '--parallel', default=False, action='store_true', help='Whether to run this benchmark in parallel.') option_parser.add_option( '', '--local', default=False, action='store_true', help='Uses a dummy metadata salt if this flag is true else it tries to ' 'get the salt from GCE metadata.') options, unused_args = option_parser.parse_args() if (not options.issue or not options.patchset or not options.requester or not options.benchmark): option_parser.error('Must specify issue, patchset, requester and benchmark') sys.exit(TriggerAndWait(options))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 357, 66, 8, 1853, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 37906, 10361, 326, 20022, 290, 28364, 329, 8861, 284, 1844, 319, 327, 10234, 36, 526, 15931, 198, 198, 11748, 2779, 2414, 198, 11748, 12234, 8019, 198, 11748, 33918, 198, 11748, 10688, 198, 11748, 2172, 29572, 198, 11748, 7007, 198, 11748, 25064, 198, 11748, 640, 628, 198, 4177, 15112, 62, 39, 10892, 796, 366, 5450, 1378, 310, 13, 8135, 544, 13, 2398, 1, 198, 4177, 15112, 62, 48, 8924, 8924, 796, 327, 10234, 36, 62, 39, 10892, 1343, 31051, 36560, 14, 6, 198, 3398, 33676, 41796, 62, 18973, 37, 62, 51, 1921, 42, 62, 32782, 62, 47269, 796, 327, 10234, 36, 62, 39, 10892, 1343, 12813, 62, 14, 12384, 25480, 62, 2860, 62, 28663, 1505, 62, 525, 69, 62, 35943, 1, 198, 18851, 62, 3398, 33676, 41796, 62, 18973, 37, 62, 49, 4944, 62, 35744, 2937, 62, 47269, 796, 327, 10234, 36, 62, 39, 10892, 1343, 12813, 1136, 62, 28663, 1505, 62, 525, 69, 62, 5143, 62, 13376, 1, 198, 3398, 33676, 41796, 62, 18973, 37, 62, 49, 4944, 50, 62, 39, 42480, 796, 327, 10234, 36, 62, 39, 10892, 1343, 12813, 28663, 1505, 62, 525, 69, 62, 48381, 30487, 198, 38, 5222, 62, 8845, 33, 39, 15308, 62, 50, 31429, 62, 47123, 2885, 13563, 62, 47269, 796, 357, 198, 220, 220, 220, 366, 4023, 1378, 38993, 14, 5589, 1133, 9171, 14706, 14, 85, 16, 14, 16302, 14, 1078, 7657, 30487, 198, 220, 220, 220, 366, 12384, 25480, 62, 25927, 62, 82, 2501, 4943, 198, 198, 4177, 15112, 62, 10943, 45, 24565, 62, 2200, 5446, 11015, 796, 642, 198, 10943, 45, 24565, 62, 15543, 2043, 62, 33, 11159, 796, 642, 198, 198, 16402, 3069, 2751, 62, 37, 2200, 10917, 45155, 62, 23683, 50, 796, 1542, 220, 1303, 1542, 4201, 13, 198, 40405, 33, 2394, 62, 7206, 2885, 24027, 62, 23683, 50, 796, 1987, 1635, 3126, 1635, 3126, 220, 1303, 1987, 2250, 13, 628, 198, 198, 4299, 1005, 563, 33529, 198, 220, 37227, 32, 1005, 563, 11705, 1352, 351, 39682, 736, 2364, 526, 15931, 198, 220, 1441, 11705, 1352, 628, 198, 31, 1186, 563, 3419, 628, 198, 31, 1186, 563, 3419, 628, 198, 4299, 4808, 16447, 25714, 40386, 7, 25811, 2599, 198, 220, 37227, 16719, 274, 257, 19449, 10552, 286, 262, 9167, 4876, 526, 15931, 198, 220, 4876, 62, 37266, 796, 23884, 198, 220, 4876, 62, 37266, 14692, 29460, 8973, 796, 3689, 13, 8897, 7834, 198, 220, 4876, 62, 37266, 14692, 26968, 4102, 8973, 796, 3689, 13, 26968, 4102, 198, 220, 4876, 62, 37266, 14692, 24254, 8973, 796, 366, 19314, 1, 198, 220, 4876, 62, 37266, 14692, 7700, 62, 28709, 8973, 796, 366, 940, 74, 1, 198, 220, 4876, 62, 37266, 14692, 44754, 62, 48381, 8973, 796, 366, 18, 1, 198, 220, 4876, 62, 37266, 14692, 5143, 62, 259, 62, 1845, 29363, 8973, 796, 965, 7, 25811, 13, 1845, 29363, 8, 198, 220, 4876, 62, 37266, 14692, 26968, 4102, 62, 22046, 8973, 796, 366, 438, 22915, 12, 18982, 28, 40664, 12, 79, 45785, 12, 11487, 1, 198, 220, 4876, 62, 37266, 14692, 40259, 62, 22046, 62, 77, 404, 963, 8973, 796, 357, 198, 220, 220, 220, 220, 220, 366, 438, 40223, 12, 2617, 27112, 12, 38142, 3524, 1377, 21633, 12, 16663, 276, 12, 785, 1930, 1780, 366, 198, 220, 220, 220, 220, 220, 366, 438, 21633, 12, 23928, 12, 1589, 12, 35436, 889, 4943, 198, 220, 4876, 62, 37266, 14692, 40259, 62, 22046, 62, 4480, 17147, 8973, 796, 357, 198, 220, 220, 220, 220, 220, 366, 438, 40223, 12, 2617, 27112, 12, 38142, 3524, 1377, 21633, 12, 16663, 276, 12, 785, 1930, 1780, 366, 198, 220, 220, 220, 220, 220, 366, 438, 21633, 12, 23928, 12, 1589, 12, 35436, 889, 4943, 628, 220, 1949, 13645, 62, 37266, 796, 23884, 198, 220, 1949, 13645, 62, 37266, 14692, 21949, 8973, 796, 3689, 13, 21949, 198, 220, 1949, 13645, 62, 37266, 14692, 17147, 2617, 8973, 796, 3689, 13, 17147, 2617, 198, 220, 1949, 13645, 62, 37266, 14692, 35943, 8973, 796, 4876, 62, 37266, 198, 220, 1441, 33918, 13, 67, 8142, 7, 28311, 13645, 62, 37266, 8, 628, 198, 4299, 4808, 3855, 13908, 25480, 43061, 4863, 9171, 14706, 33529, 198, 220, 37227, 38, 1039, 3992, 25480, 62, 25927, 62, 82, 2501, 422, 402, 5222, 338, 20150, 4382, 526, 15931, 198, 220, 24697, 796, 19779, 9171, 14706, 12, 7414, 5570, 1298, 366, 11708, 20662, 198, 220, 1217, 796, 7007, 13, 1136, 7, 38, 5222, 62, 8845, 33, 39, 15308, 62, 50, 31429, 62, 47123, 2885, 13563, 62, 47269, 11, 24697, 28, 50145, 8, 198, 220, 611, 1217, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 220, 220, 5298, 43166, 23433, 13645, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 13615, 2438, 422, 4064, 82, 373, 4064, 82, 6, 4064, 357, 38, 5222, 62, 8845, 33, 39, 15308, 62, 50, 31429, 62, 47123, 2885, 13563, 62, 47269, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 13, 13376, 62, 8189, 4008, 198, 220, 1441, 2779, 2414, 13, 20307, 62, 65, 2414, 12501, 1098, 7, 4363, 13, 5239, 8, 628, 198, 4299, 4808, 48344, 25714, 7, 25811, 2599, 198, 220, 37227, 2898, 328, 5355, 262, 9167, 4876, 319, 327, 10234, 36, 290, 5860, 262, 649, 4876, 338, 4522, 526, 15931, 198, 220, 4876, 796, 4808, 16447, 25714, 40386, 7, 25811, 8, 198, 220, 285, 796, 12234, 8019, 13, 26270, 25836, 3419, 198, 220, 285, 13, 19119, 7, 35943, 8, 198, 220, 285, 13, 19119, 10786, 1662, 548, 21078, 6, 611, 3689, 13, 12001, 2073, 4808, 3855, 13908, 25480, 43061, 4863, 9171, 14706, 28955, 198, 220, 30240, 796, 2779, 2414, 13, 20307, 62, 65, 2414, 268, 8189, 7, 76, 13, 12894, 395, 28955, 628, 220, 24697, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 19746, 12, 4906, 1298, 366, 31438, 14, 87, 12, 2503, 12, 687, 12, 6371, 12685, 9043, 1600, 198, 220, 220, 220, 220, 220, 366, 38855, 1298, 366, 31438, 14, 17752, 1600, 198, 220, 220, 220, 220, 220, 366, 55, 12, 13908, 25480, 12, 30515, 12, 26257, 1298, 30240, 92, 198, 220, 1217, 796, 4808, 4550, 25714, 2514, 4177, 15112, 7, 35943, 11, 24697, 8, 628, 220, 611, 1217, 13, 13376, 62, 8189, 14512, 939, 25, 198, 220, 220, 220, 5298, 43166, 23433, 13645, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13615, 2438, 422, 4064, 82, 373, 4064, 82, 6, 4064, 357, 3398, 33676, 41796, 62, 18973, 37, 62, 51, 1921, 42, 62, 32782, 62, 47269, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 13, 13376, 62, 8189, 4008, 198, 220, 1949, 25, 198, 220, 220, 220, 1005, 796, 33918, 13, 46030, 7, 4363, 13, 5239, 8, 198, 220, 2845, 11052, 12331, 11, 304, 25, 198, 220, 220, 220, 5298, 43166, 23433, 13645, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11633, 407, 651, 257, 19449, 2882, 422, 4064, 82, 25, 4064, 82, 6, 4064, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32567, 2662, 41796, 62, 18973, 37, 62, 51, 1921, 42, 62, 32782, 62, 47269, 11, 304, 4008, 198, 220, 1441, 1005, 14692, 35943, 2389, 8973, 628, 198, 198, 361, 705, 834, 12417, 834, 6, 6624, 11593, 3672, 834, 25, 198, 220, 3038, 62, 48610, 796, 2172, 29572, 13, 19722, 46677, 3419, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 21949, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 464, 371, 1155, 303, 335, 7852, 1271, 284, 651, 262, 8529, 422, 2637, 8, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 17147, 2617, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 464, 371, 1155, 303, 335, 7852, 8529, 2617, 284, 779, 2637, 8, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 8897, 7834, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 15333, 2209, 286, 262, 2836, 508, 9167, 428, 1057, 2637, 8, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 26968, 4102, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 464, 16356, 18335, 284, 1057, 319, 262, 8529, 2637, 8, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 1845, 29363, 3256, 4277, 28, 25101, 11, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 15354, 284, 1057, 428, 18335, 287, 10730, 2637, 8, 198, 220, 3038, 62, 48610, 13, 2860, 62, 18076, 7, 198, 220, 220, 220, 220, 220, 705, 3256, 705, 438, 12001, 3256, 4277, 28, 25101, 11, 2223, 11639, 8095, 62, 7942, 3256, 198, 220, 220, 220, 220, 220, 1037, 11639, 5842, 274, 257, 31548, 20150, 8268, 611, 428, 6056, 318, 2081, 2073, 340, 8404, 284, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1136, 262, 8268, 422, 402, 5222, 20150, 2637, 8, 198, 220, 3689, 11, 21958, 62, 22046, 796, 3038, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 611, 357, 1662, 3689, 13, 21949, 393, 407, 3689, 13, 17147, 2617, 393, 407, 3689, 13, 8897, 7834, 198, 220, 220, 220, 220, 220, 393, 407, 3689, 13, 26968, 4102, 2599, 198, 220, 220, 220, 3038, 62, 48610, 13, 18224, 10786, 34320, 11986, 2071, 11, 8529, 2617, 11, 1038, 7834, 290, 18335, 11537, 628, 220, 25064, 13, 37023, 7, 48344, 1870, 21321, 7, 25811, 4008, 628 ]
2.589025
1,713
from dataclasses import dataclass, field from typing import Optional @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 32233, 628, 198, 31, 19608, 330, 31172, 198 ]
3.727273
22
import functools from flask_appify.util import request_wants_json try: from google.appengine.api import datastore_errors except ImportError: # not on the AppEngine platform datastore_errors = None __all__ = [ 'init_app', ] html_response = { 503: """<!doctype html><html><head><title>503 Service Unavailable</title></head><body><h1>Service Unavailable</h1><p>Service is temporarily unavailable. Please try again later.</p></body></html>""" } json_response = { 503: """{"status":"error","code":503,"message":"Service is temporarily unavailable. Please try again later."}""" } def handle_temp_error(app, err): """ This is a Flask `errorhandler` handling `datastore_errors.InternalError`. According to `https://cloud.google.com/appengine/docs/standard/python/ datastore/exceptions` this exception does not necessarily mean that the underlying operation failed. :param app: The flask app that received the error. :param err: The exception that was raised. """ response = app.make_response( json_response[503] if request_wants_json() else html_response[503] ) response.status_code = 503 return response
[ 11748, 1257, 310, 10141, 198, 198, 6738, 42903, 62, 1324, 1958, 13, 22602, 1330, 2581, 62, 86, 1187, 62, 17752, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 23645, 13, 1324, 18392, 13, 15042, 1330, 4818, 459, 382, 62, 48277, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 407, 319, 262, 2034, 13798, 3859, 198, 220, 220, 220, 4818, 459, 382, 62, 48277, 796, 6045, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 15003, 62, 1324, 3256, 198, 60, 628, 198, 6494, 62, 26209, 796, 1391, 198, 220, 220, 220, 44541, 25, 37227, 27, 0, 4598, 310, 2981, 27711, 6927, 6494, 6927, 2256, 6927, 7839, 29, 31938, 4809, 198, 3118, 15182, 3556, 7839, 12240, 2256, 6927, 2618, 6927, 71, 16, 29, 16177, 791, 15182, 3556, 71, 16, 6927, 79, 29, 16177, 318, 198, 11498, 1819, 3093, 23485, 13, 4222, 1949, 757, 1568, 25970, 79, 12240, 2618, 12240, 6494, 29, 37811, 198, 92, 198, 198, 17752, 62, 26209, 796, 1391, 198, 220, 220, 220, 44541, 25, 37227, 4895, 13376, 2404, 18224, 2430, 8189, 1298, 31938, 553, 20500, 2404, 16177, 318, 198, 11498, 1819, 3093, 23485, 13, 4222, 1949, 757, 1568, 526, 92, 37811, 198, 92, 628, 198, 4299, 5412, 62, 29510, 62, 18224, 7, 1324, 11, 11454, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 257, 46947, 4600, 18224, 30281, 63, 9041, 4600, 19608, 459, 382, 62, 48277, 13, 37693, 12331, 44646, 628, 220, 220, 220, 4784, 284, 4600, 5450, 1378, 17721, 13, 13297, 13, 785, 14, 1324, 18392, 14, 31628, 14, 20307, 14, 29412, 14, 198, 220, 220, 220, 4818, 459, 382, 14, 1069, 11755, 63, 428, 6631, 857, 407, 6646, 1612, 326, 262, 198, 220, 220, 220, 10238, 4905, 4054, 13, 628, 220, 220, 220, 1058, 17143, 598, 25, 383, 42903, 598, 326, 2722, 262, 4049, 13, 198, 220, 220, 220, 1058, 17143, 11454, 25, 383, 6631, 326, 373, 4376, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2882, 796, 598, 13, 15883, 62, 26209, 7, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 26209, 58, 31938, 60, 611, 2581, 62, 86, 1187, 62, 17752, 3419, 2073, 27711, 62, 26209, 58, 31938, 60, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 2882, 13, 13376, 62, 8189, 796, 44541, 628, 220, 220, 220, 1441, 2882, 628 ]
3.038265
392
from datetime import datetime from pathlib import Path import pytest from my_receipts.apps.receipts.parsers import TaxcomParser CURRENT_DIR = Path(__file__).resolve(strict=True).parent pytestmark = pytest.mark.django_db
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 616, 62, 260, 344, 10257, 82, 13, 18211, 13, 260, 344, 10257, 82, 13, 79, 945, 364, 1330, 9241, 785, 46677, 198, 198, 34, 39237, 62, 34720, 796, 10644, 7, 834, 7753, 834, 737, 411, 6442, 7, 301, 2012, 28, 17821, 737, 8000, 198, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628 ]
2.848101
79
# Generated by Django 3.2.9 on 2021-11-18 17:50 from django.db import migrations
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 24, 319, 33448, 12, 1157, 12, 1507, 1596, 25, 1120, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 628 ]
2.766667
30
import sublime import sublime_plugin from structs.thread_handler import * from api.inspect import highlighting from lookup import file_type as lookup_file_type
[ 11748, 41674, 198, 11748, 41674, 62, 33803, 198, 198, 6738, 2878, 82, 13, 16663, 62, 30281, 1330, 1635, 198, 6738, 40391, 13, 1040, 806, 1330, 21292, 198, 6738, 35847, 1330, 2393, 62, 4906, 355, 35847, 62, 7753, 62, 4906, 628 ]
4.05
40
from src import *
[ 6738, 12351, 1330, 1635, 198 ]
3.6
5
from django.contrib.auth import login, logout from django.contrib.auth.decorators import login_required from django.db import transaction from django.shortcuts import render, redirect from django.views.generic import TemplateView from grocery_store.grocery_auth.forms import SignInForm, SignUpForm from grocery_store.product.models import Category from grocery_store.profiles.forms import ProfileForm, ProfileAddressForm @login_required
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 17594, 11, 2604, 448, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 8611, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 37350, 7680, 198, 198, 6738, 16918, 62, 8095, 13, 70, 12204, 1924, 62, 18439, 13, 23914, 1330, 5865, 818, 8479, 11, 5865, 4933, 8479, 198, 6738, 16918, 62, 8095, 13, 11167, 13, 27530, 1330, 21743, 198, 6738, 16918, 62, 8095, 13, 5577, 2915, 13, 23914, 1330, 13118, 8479, 11, 13118, 20231, 8479, 628, 628, 198, 198, 31, 38235, 62, 35827, 198 ]
3.7
120
# -*- coding: utf-8 -*- """ Created on Wed Nov 30 17:56:58 2016 @author: Vivian Zhong """ import click import pymc3 as pm import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import logging @click.command() @click.option('--filename', default='data.csv', help='File name of the data in CSV format.') @click.option('--output_col', default='output', help='Name of column that contains data.') @click.option('--sample_col', default='sample_name', help='Name of column that contains sample names.') @click.option('--baseline_name', default='control', help='Name of positive control in sample names column.') @click.option('--n_steps', default=300000, help='Number of iterations for ADVI.') class BEST(object): """BEST Model, based on Kruschke (2013). Parameters ---------- data : pandas DataFrame A pandas dataframe which has the following data: - Each row is one replicate measurement. - There is a column that records the treatment name. - There is a column that records the measured value for that replicate. sample_col : str The name of the column containing sample names. output_col : str The name of the column containing values to estimate. baseline_name : str The name of the "control" or "baseline". Output ------ model : PyMC3 model Returns the BEST model containing """ def _convert_to_indices(self): """ Adds the "indices" column to self.data (DataFrame). This is necessary for the simplified model specification in the "fit" function below. """ sample_names = dict() for i, name in enumerate( list(np.unique(self.data[self.sample_col].values))): logging.info('Sample name {0} has the index {1}'.format(name, i)) sample_names[name] = i self.data['indices'] = self.data[self.sample_col].apply( lambda x: sample_names[x]) def fit(self, n_steps=50000): """ Creates a Bayesian Estimation model for replicate measurements of treatment(s) vs. control. Parameters ---------- n_steps : int The number of steps to run ADVI. """ sample_names = set(self.data[self.sample_col].values) # mean_test = self.data.groupby('indices').mean()[self.output_col].values # sd_test = self.data.groupby('indices').std()[self.output_col].values # print(mean_test, sd_test) with pm.Model() as model: # Hyperpriors # upper = pm.Exponential('upper', lam=0.05) nu = pm.Exponential('nu_minus_one', 1/29.) + 1 # "fold", which is the estimated fold change. fold = pm.Flat('fold', shape=len(sample_names)) # Assume that data have heteroskedastic (i.e. variable) error but # are drawn from the same HalfCauchy distribution. sigma = pm.HalfCauchy('sigma', beta=1, shape=len(sample_names)) # Model prediction mu = fold[self.data['indices']] sig = sigma[self.data['indices']] # Data likelihood like = pm.StudentT('like', nu=nu, mu=mu, sd=sig**-2, observed=self.data[self.output_col]) # Sample from posterior v_params = pm.variational.advi(n=n_steps) start = pm.variational.sample_vp(v_params, 1)[0] cov = np.power(model.dict_to_array(v_params.stds), 2) step = pm.NUTS(scaling=cov, is_cov=True) logging.info('Starting MCMC sampling') trace = pm.sample(step=step, start=start, draws=2000) self.trace = trace self.model = model def plot_posterior(self, rotate_xticks=False): """ Plots a swarm plot of the data overlaid on top of the 95% HPD and IQR of the posterior distribution. """ # Make summary plot # fig = plt.figure() ax = fig.add_subplot(111) # 1. Get the lower error and upper errorbars for 95% HPD and IQR. lower, lower_q, upper_q, upper = np.percentile(self.trace['fold'][500:], [2.5, 25, 75, 97.5], axis=0) summary_stats = pd.DataFrame() summary_stats['mean'] = self.trace['fold'].mean(axis=0) err_low = summary_stats['mean'] - lower err_high = upper - summary_stats['mean'] iqr_low = summary_stats['mean'] - lower_q iqr_high = upper_q - summary_stats['mean'] # 2. Plot the swarmplot and errorbars. summary_stats['mean'].plot(ls='', ax=ax, yerr=[err_low, err_high]) summary_stats['mean'].plot(ls='', ax=ax, yerr=[iqr_low, iqr_high], elinewidth=4, color='red') sns.swarmplot(data=self.data, x=self.sample_col, y=self.output_col, ax=ax, alpha=0.5) if rotate_xticks: logging.info('rotating xticks') plt.xticks(rotation='vertical') plt.ylabel(self.output_col) return fig, ax def plot_elbo(self): """ Plots the ELBO values to help check for convergence. """ fig = plt.figure() plt.plot(-np.log10(-self.params.elbo_vals)) return fig if __name__ == '__main__': main()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 5267, 1542, 1596, 25, 3980, 25, 3365, 1584, 198, 198, 31, 9800, 25, 25313, 666, 10511, 506, 198, 37811, 198, 198, 11748, 3904, 198, 11748, 279, 4948, 66, 18, 355, 9114, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 11748, 18931, 198, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 438, 34345, 3256, 4277, 11639, 7890, 13, 40664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 8979, 1438, 286, 262, 1366, 287, 44189, 5794, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 22915, 62, 4033, 3256, 4277, 11639, 22915, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 5721, 326, 4909, 1366, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 39873, 62, 4033, 3256, 4277, 11639, 39873, 62, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 5721, 326, 4909, 6291, 3891, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 12093, 4470, 62, 3672, 3256, 4277, 11639, 13716, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 5376, 286, 3967, 1630, 287, 6291, 3891, 5721, 2637, 8, 198, 31, 12976, 13, 18076, 10786, 438, 77, 62, 20214, 3256, 220, 4277, 28, 6200, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 15057, 286, 34820, 329, 5984, 12861, 2637, 8, 628, 198, 198, 4871, 38502, 7, 15252, 2599, 198, 220, 220, 220, 37227, 33, 6465, 9104, 11, 1912, 319, 13685, 385, 354, 365, 357, 6390, 737, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1366, 1058, 19798, 292, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 317, 19798, 292, 1366, 14535, 543, 468, 262, 1708, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 5501, 5752, 318, 530, 24340, 15558, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1318, 318, 257, 5721, 326, 4406, 262, 3513, 1438, 13, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1318, 318, 257, 5721, 326, 4406, 262, 8630, 1988, 329, 326, 24340, 13, 198, 220, 220, 220, 6291, 62, 4033, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 5721, 7268, 6291, 3891, 13, 198, 220, 220, 220, 5072, 62, 4033, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 5721, 7268, 3815, 284, 8636, 13, 198, 220, 220, 220, 14805, 62, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1438, 286, 262, 366, 13716, 1, 393, 366, 12093, 4470, 1911, 198, 220, 220, 220, 25235, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 2746, 1058, 9485, 9655, 18, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 38502, 2746, 7268, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 4808, 1102, 1851, 62, 1462, 62, 521, 1063, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34333, 262, 366, 521, 1063, 1, 5721, 284, 2116, 13, 7890, 357, 6601, 19778, 737, 770, 318, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 329, 262, 27009, 2746, 20855, 287, 262, 366, 11147, 1, 2163, 2174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 14933, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 1438, 287, 27056, 378, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 7, 37659, 13, 34642, 7, 944, 13, 7890, 58, 944, 13, 39873, 62, 4033, 4083, 27160, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 36674, 1438, 1391, 15, 92, 468, 262, 6376, 1391, 16, 92, 4458, 18982, 7, 3672, 11, 1312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 14933, 58, 3672, 60, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7890, 17816, 521, 1063, 20520, 796, 2116, 13, 7890, 58, 944, 13, 39873, 62, 4033, 4083, 39014, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 2124, 25, 6291, 62, 14933, 58, 87, 12962, 628, 220, 220, 220, 825, 4197, 7, 944, 11, 299, 62, 20214, 28, 20, 2388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7921, 274, 257, 4696, 35610, 10062, 18991, 2746, 329, 24340, 13871, 286, 198, 220, 220, 220, 220, 220, 220, 220, 3513, 7, 82, 8, 3691, 13, 1630, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 20214, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1271, 286, 4831, 284, 1057, 5984, 12861, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 14933, 796, 900, 7, 944, 13, 7890, 58, 944, 13, 39873, 62, 4033, 4083, 27160, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1612, 62, 9288, 796, 2116, 13, 7890, 13, 8094, 1525, 10786, 521, 1063, 27691, 32604, 3419, 58, 944, 13, 22915, 62, 4033, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 45647, 62, 9288, 796, 2116, 13, 7890, 13, 8094, 1525, 10786, 521, 1063, 27691, 19282, 3419, 58, 944, 13, 22915, 62, 4033, 4083, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 32604, 62, 9288, 11, 45647, 62, 9288, 8, 628, 220, 220, 220, 220, 220, 220, 220, 351, 9114, 13, 17633, 3419, 355, 2746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15079, 3448, 669, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6727, 796, 9114, 13, 16870, 35470, 10786, 45828, 3256, 30592, 28, 15, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14364, 796, 9114, 13, 16870, 35470, 10786, 28803, 62, 40191, 62, 505, 3256, 352, 14, 1959, 2014, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 11379, 1600, 543, 318, 262, 6108, 5591, 1487, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5591, 796, 9114, 13, 7414, 265, 10786, 11379, 3256, 5485, 28, 11925, 7, 39873, 62, 14933, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 2454, 326, 1366, 423, 14445, 418, 9091, 3477, 357, 72, 13, 68, 13, 7885, 8, 4049, 475, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 389, 7428, 422, 262, 976, 13139, 34, 559, 29658, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 13495, 796, 9114, 13, 31305, 34, 559, 29658, 10786, 82, 13495, 3256, 12159, 28, 16, 11, 5485, 28, 11925, 7, 39873, 62, 14933, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9104, 17724, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38779, 796, 5591, 58, 944, 13, 7890, 17816, 521, 1063, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43237, 796, 264, 13495, 58, 944, 13, 7890, 17816, 521, 1063, 6, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6060, 14955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 588, 796, 9114, 13, 38778, 51, 10786, 2339, 3256, 14364, 28, 28803, 11, 38779, 28, 30300, 11, 45647, 28, 82, 328, 1174, 12, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6515, 28, 944, 13, 7890, 58, 944, 13, 22915, 62, 4033, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27565, 422, 34319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 62, 37266, 796, 9114, 13, 25641, 864, 13, 324, 8903, 7, 77, 28, 77, 62, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 796, 9114, 13, 25641, 864, 13, 39873, 62, 36133, 7, 85, 62, 37266, 11, 352, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 39849, 796, 45941, 13, 6477, 7, 19849, 13, 11600, 62, 1462, 62, 18747, 7, 85, 62, 37266, 13, 301, 9310, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 9114, 13, 45, 3843, 50, 7, 1416, 4272, 28, 66, 709, 11, 318, 62, 66, 709, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 22851, 13122, 9655, 19232, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12854, 796, 9114, 13, 39873, 7, 9662, 28, 9662, 11, 923, 28, 9688, 11, 14293, 28, 11024, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40546, 796, 12854, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19849, 796, 2746, 628, 220, 220, 220, 825, 7110, 62, 79, 6197, 1504, 7, 944, 11, 23064, 62, 742, 3378, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1345, 1747, 257, 30077, 7110, 286, 262, 1366, 12893, 1698, 319, 1353, 286, 262, 6957, 4, 367, 5760, 290, 18248, 49, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 34319, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6889, 10638, 7110, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 796, 2336, 13, 2860, 62, 7266, 29487, 7, 16243, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 13, 3497, 262, 2793, 4049, 290, 6727, 4049, 34046, 329, 6957, 4, 367, 5760, 290, 18248, 49, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2793, 11, 2793, 62, 80, 11, 6727, 62, 80, 11, 6727, 796, 45941, 13, 25067, 576, 7, 944, 13, 40546, 17816, 11379, 6, 7131, 4059, 25, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 17, 13, 20, 11, 1679, 11, 5441, 11, 10111, 13, 20, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 34242, 796, 279, 67, 13, 6601, 19778, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 34242, 17816, 32604, 20520, 796, 2116, 13, 40546, 17816, 11379, 6, 4083, 32604, 7, 22704, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 62, 9319, 796, 10638, 62, 34242, 17816, 32604, 20520, 532, 2793, 198, 220, 220, 220, 220, 220, 220, 220, 11454, 62, 8929, 796, 6727, 532, 10638, 62, 34242, 17816, 32604, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 80, 81, 62, 9319, 796, 10638, 62, 34242, 17816, 32604, 20520, 532, 2793, 62, 80, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 80, 81, 62, 8929, 796, 6727, 62, 80, 532, 10638, 62, 34242, 17816, 32604, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 362, 13, 28114, 262, 30077, 29487, 290, 4049, 34046, 13, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 34242, 17816, 32604, 6, 4083, 29487, 7, 7278, 11639, 3256, 7877, 28, 897, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 8056, 41888, 8056, 62, 9319, 11, 11454, 62, 8929, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 10638, 62, 34242, 17816, 32604, 6, 4083, 29487, 7, 7278, 11639, 3256, 7877, 28, 897, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 8056, 41888, 25011, 81, 62, 9319, 11, 1312, 80, 81, 62, 8929, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 259, 413, 5649, 28, 19, 11, 3124, 11639, 445, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3013, 82, 13, 2032, 1670, 29487, 7, 7890, 28, 944, 13, 7890, 11, 2124, 28, 944, 13, 39873, 62, 4033, 11, 331, 28, 944, 13, 22915, 62, 4033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 28, 897, 11, 17130, 28, 15, 13, 20, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 23064, 62, 742, 3378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 10599, 803, 220, 742, 3378, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 742, 3378, 7, 10599, 341, 11639, 1851, 605, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 2645, 9608, 7, 944, 13, 22915, 62, 4033, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2336, 11, 7877, 628, 220, 220, 220, 825, 7110, 62, 417, 2127, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1345, 1747, 262, 17852, 8202, 3815, 284, 1037, 2198, 329, 40826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 29487, 32590, 37659, 13, 6404, 940, 32590, 944, 13, 37266, 13, 417, 2127, 62, 12786, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2336, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.167895
2,579
#!/usr/local/bin/python3 if __name__ == "__main__": arm(2)
[ 2, 48443, 14629, 14, 12001, 14, 8800, 14, 29412, 18, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3211, 7, 17, 8, 628 ]
2.096774
31
''' TO-DO: GET BETTER RESULTS CLEAN UP THIS CODE TO GET THE SINGLE PROCESSING EASIER TO USE REDO AS A PR TO ORIGINAL REPO ''' import os import argparse from solver import Solver from data_loader import get_loader from torch.backends import cudnn # celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, # config.celeba_crop_size, config.image_size, config.batch_size, # 'CelebA', config.mode, config.num_workers) if __name__ == '__main__': config = Alt_config() celeba_loader = get_loader(config.celeba_image_dir, config.attr_path, config.selected_attrs, config.celeba_crop_size, config.image_size, config.batch_size, 'CelebA', config.mode, config.num_workers) solver = Solver(celeba_loader, None, config) solver.test_single() main(config)
[ 7061, 6, 198, 10468, 12, 18227, 25, 198, 18851, 38651, 5781, 15731, 35342, 198, 29931, 1565, 15958, 12680, 42714, 5390, 17151, 3336, 311, 2751, 2538, 41755, 7597, 2751, 412, 1921, 38311, 5390, 23210, 198, 22083, 46, 7054, 317, 4810, 5390, 43901, 17961, 4526, 16402, 198, 7061, 6, 628, 198, 198, 11748, 28686, 198, 11748, 1822, 29572, 198, 6738, 1540, 332, 1330, 4294, 332, 198, 6738, 1366, 62, 29356, 1330, 651, 62, 29356, 198, 6738, 28034, 13, 1891, 2412, 1330, 269, 463, 20471, 198, 198, 2, 3879, 7012, 62, 29356, 796, 651, 62, 29356, 7, 11250, 13, 49840, 7012, 62, 9060, 62, 15908, 11, 4566, 13, 35226, 62, 6978, 11, 4566, 13, 34213, 62, 1078, 3808, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 49840, 7012, 62, 31476, 62, 7857, 11, 4566, 13, 9060, 62, 7857, 11, 4566, 13, 43501, 62, 7857, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 42741, 65, 32, 3256, 4566, 13, 14171, 11, 4566, 13, 22510, 62, 22896, 8, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4566, 796, 12344, 62, 11250, 3419, 198, 220, 220, 220, 3879, 7012, 62, 29356, 796, 651, 62, 29356, 7, 11250, 13, 49840, 7012, 62, 9060, 62, 15908, 11, 4566, 13, 35226, 62, 6978, 11, 4566, 13, 34213, 62, 1078, 3808, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 49840, 7012, 62, 31476, 62, 7857, 11, 4566, 13, 9060, 62, 7857, 11, 4566, 13, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 42741, 65, 32, 3256, 4566, 13, 14171, 11, 4566, 13, 22510, 62, 22896, 8, 198, 220, 220, 220, 1540, 332, 796, 4294, 332, 7, 49840, 7012, 62, 29356, 11, 6045, 11, 4566, 8, 198, 220, 220, 220, 1540, 332, 13, 9288, 62, 29762, 3419, 628, 628, 220, 220, 220, 1388, 7, 11250, 8, 198 ]
2.277641
407
# modified from https://github.com/tkipf/pygcn/blob/master/pygcn/layers.py import math import torch import torch.nn as nn from torch.nn.parameter import Parameter class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """
[ 2, 9518, 422, 3740, 1378, 12567, 13, 785, 14, 30488, 541, 69, 14, 9078, 70, 31522, 14, 2436, 672, 14, 9866, 14, 9078, 70, 31522, 14, 75, 6962, 13, 9078, 198, 198, 11748, 10688, 198, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 6738, 28034, 13, 20471, 13, 17143, 2357, 1330, 25139, 2357, 628, 198, 4871, 29681, 3103, 85, 2122, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17427, 20145, 45, 7679, 11, 2092, 284, 3740, 1378, 283, 87, 452, 13, 2398, 14, 8937, 14, 1433, 2931, 13, 48891, 2998, 198, 220, 220, 220, 37227, 198 ]
2.663551
107
OC_OKAPI_KEY = "xxx" OC_USERNAME = "xxx" OC_PASSWORD = "xxx" OC_QUERYID = "xxx"
[ 4503, 62, 11380, 17614, 62, 20373, 796, 366, 31811, 1, 198, 4503, 62, 29904, 20608, 796, 366, 31811, 1, 198, 4503, 62, 47924, 54, 12532, 796, 366, 31811, 1, 198, 4503, 62, 10917, 19664, 2389, 796, 366, 31811, 1, 198 ]
2
40
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from data_validation import data_validation, consts TERADATA_PASSWORD = os.getenv("TERADATA_PASSWORD") TERADATA_HOST = os.getenv("TERADATA_HOST") PROJECT_ID = os.getenv("PROJECT_ID") conn = { "source_type": "Teradata", "host": TERADATA_HOST, "user_name": "udf", "password": TERADATA_PASSWORD, "port": 1025, } TERADATA_CONFIG = { # Specific Connection Config consts.CONFIG_SOURCE_CONN: conn, consts.CONFIG_TARGET_CONN: conn, # Validation Type consts.CONFIG_TYPE: "Column", # Configuration Required Depending on Validator Type consts.CONFIG_SCHEMA_NAME: "Sys_Calendar", consts.CONFIG_TABLE_NAME: "CALENDAR", consts.CONFIG_AGGREGATES: [ { consts.CONFIG_TYPE: "count", consts.CONFIG_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FIELD_ALIAS: "count", }, ], consts.CONFIG_FORMAT: "table", consts.CONFIG_FILTERS: [ { consts.CONFIG_TYPE: consts.FILTER_TYPE_EQUALS, consts.CONFIG_FILTER_SOURCE_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_SOURCE_VALUE: 2010, consts.CONFIG_FILTER_TARGET_COLUMN: "year_of_calendar", consts.CONFIG_FILTER_TARGET_VALUE: 2010, }, ], }
[ 2, 15069, 12131, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 28686, 198, 198, 6738, 1366, 62, 12102, 341, 1330, 1366, 62, 12102, 341, 11, 1500, 82, 198, 198, 5781, 2885, 13563, 62, 47924, 54, 12532, 796, 28686, 13, 1136, 24330, 7203, 5781, 2885, 13563, 62, 47924, 54, 12532, 4943, 198, 5781, 2885, 13563, 62, 39, 10892, 796, 28686, 13, 1136, 24330, 7203, 5781, 2885, 13563, 62, 39, 10892, 4943, 198, 31190, 23680, 62, 2389, 796, 28686, 13, 1136, 24330, 7203, 31190, 23680, 62, 2389, 4943, 198, 198, 37043, 796, 1391, 198, 220, 220, 220, 366, 10459, 62, 4906, 1298, 366, 15156, 14706, 1600, 198, 220, 220, 220, 366, 4774, 1298, 28994, 2885, 13563, 62, 39, 10892, 11, 198, 220, 220, 220, 366, 7220, 62, 3672, 1298, 366, 463, 69, 1600, 198, 220, 220, 220, 366, 28712, 1298, 28994, 2885, 13563, 62, 47924, 54, 12532, 11, 198, 220, 220, 220, 366, 634, 1298, 838, 1495, 11, 198, 92, 628, 198, 5781, 2885, 13563, 62, 10943, 16254, 796, 1391, 198, 220, 220, 220, 1303, 17377, 26923, 17056, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 47690, 62, 10943, 45, 25, 48260, 11, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 51, 46095, 62, 10943, 45, 25, 48260, 11, 198, 220, 220, 220, 1303, 3254, 24765, 5994, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 25216, 25, 366, 39470, 1600, 198, 220, 220, 220, 1303, 28373, 20906, 23591, 319, 48951, 1352, 5994, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 50, 3398, 27630, 62, 20608, 25, 366, 44387, 62, 9771, 9239, 1600, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 38148, 62, 20608, 25, 366, 34, 1847, 10619, 1503, 1600, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 4760, 28934, 38, 29462, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 25216, 25, 366, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 47690, 62, 25154, 5883, 45, 25, 366, 1941, 62, 1659, 62, 9948, 9239, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 51, 46095, 62, 25154, 5883, 45, 25, 366, 1941, 62, 1659, 62, 9948, 9239, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 44603, 62, 1847, 43429, 25, 366, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 21389, 1404, 25, 366, 11487, 1600, 198, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 46700, 51, 4877, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 25216, 25, 1500, 82, 13, 46700, 5781, 62, 25216, 62, 36, 10917, 23333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 46700, 5781, 62, 47690, 62, 25154, 5883, 45, 25, 366, 1941, 62, 1659, 62, 9948, 9239, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 46700, 5781, 62, 47690, 62, 39488, 25, 3050, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 46700, 5781, 62, 51, 46095, 62, 25154, 5883, 45, 25, 366, 1941, 62, 1659, 62, 9948, 9239, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 82, 13, 10943, 16254, 62, 46700, 5781, 62, 51, 46095, 62, 39488, 25, 3050, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 16589, 198, 92, 628 ]
2.407035
796
#------------------------------------------------------------------------------- # Name: MNIST TensorFlow example # Purpose: Experiments with TensorFlow # # Author: kol # # Created: 09.01.2020 # Copyright: (c) kol 2020 #------------------------------------------------------------------------------- import tensorflow as tf import matplotlib.pyplot as plt from pathlib import Path import numpy as np from random import randrange mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 if Path('./mnist.m').exists(): print("Loading pre-trained model") model = tf.keras.models.load_model('mnist.m') else: print("Training the model") model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.save('./mnist.m') model.evaluate(x_test, y_test, verbose=2) predictions = model.predict(x_test) max_count = 10 num_rows = 5 fig = plt.figure(figsize=(8,4)) for i in range(max_count): n = randrange(0, predictions.shape[0]-1) fig.add_subplot(num_rows, max_count / num_rows, i+1) plot_image(predictions[n], y_test[n], x_test[n]) if i >= max_count-1: break plt.tight_layout() plt.show()
[ 2, 10097, 24305, 198, 2, 6530, 25, 220, 220, 220, 220, 220, 220, 220, 29060, 8808, 309, 22854, 37535, 1672, 198, 2, 32039, 25, 220, 220, 220, 220, 8170, 6800, 351, 309, 22854, 37535, 198, 2, 198, 2, 6434, 25, 220, 220, 220, 220, 220, 479, 349, 198, 2, 198, 2, 15622, 25, 220, 220, 220, 220, 7769, 13, 486, 13, 42334, 198, 2, 15069, 25, 220, 220, 357, 66, 8, 479, 349, 12131, 198, 2, 10097, 24305, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4738, 1330, 43720, 9521, 628, 198, 10295, 396, 796, 48700, 13, 6122, 292, 13, 19608, 292, 1039, 13, 10295, 396, 198, 7, 87, 62, 27432, 11, 331, 62, 27432, 828, 357, 87, 62, 9288, 11, 331, 62, 9288, 8, 796, 285, 77, 396, 13, 2220, 62, 7890, 3419, 198, 87, 62, 27432, 11, 2124, 62, 9288, 796, 2124, 62, 27432, 1220, 14280, 13, 15, 11, 2124, 62, 9288, 1220, 14280, 13, 15, 198, 198, 361, 10644, 7, 4458, 14, 10295, 396, 13, 76, 27691, 1069, 1023, 33529, 198, 220, 220, 220, 3601, 7203, 19031, 662, 12, 35311, 2746, 4943, 198, 220, 220, 220, 2746, 796, 48700, 13, 6122, 292, 13, 27530, 13, 2220, 62, 19849, 10786, 10295, 396, 13, 76, 11537, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 44357, 262, 2746, 4943, 198, 220, 220, 220, 2746, 796, 48700, 13, 6122, 292, 13, 27530, 13, 44015, 1843, 26933, 198, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 7414, 41769, 7, 15414, 62, 43358, 16193, 2078, 11, 2579, 36911, 198, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 12762, 11, 14916, 11639, 260, 2290, 33809, 198, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 26932, 448, 7, 15, 13, 17, 828, 198, 220, 220, 220, 220, 220, 48700, 13, 6122, 292, 13, 75, 6962, 13, 35, 1072, 7, 940, 11, 14916, 11639, 4215, 9806, 11537, 198, 220, 220, 220, 33761, 628, 220, 220, 220, 2746, 13, 5589, 576, 7, 40085, 7509, 11639, 324, 321, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 11639, 82, 29572, 62, 66, 2397, 12409, 62, 19692, 298, 28338, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20731, 28, 17816, 4134, 23843, 6, 12962, 628, 220, 220, 220, 2746, 13, 11147, 7, 87, 62, 27432, 11, 331, 62, 27432, 11, 36835, 82, 28, 20, 8, 198, 220, 220, 220, 2746, 13, 21928, 7, 4458, 14, 10295, 396, 13, 76, 11537, 198, 198, 19849, 13, 49786, 7, 87, 62, 9288, 11, 220, 331, 62, 9288, 11, 15942, 577, 28, 17, 8, 198, 28764, 9278, 796, 2746, 13, 79, 17407, 7, 87, 62, 9288, 8, 198, 198, 9806, 62, 9127, 796, 838, 198, 22510, 62, 8516, 796, 642, 198, 198, 5647, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 23, 11, 19, 4008, 198, 198, 1640, 1312, 287, 2837, 7, 9806, 62, 9127, 2599, 198, 220, 220, 220, 299, 796, 43720, 9521, 7, 15, 11, 16277, 13, 43358, 58, 15, 45297, 16, 8, 198, 220, 220, 220, 2336, 13, 2860, 62, 7266, 29487, 7, 22510, 62, 8516, 11, 3509, 62, 9127, 1220, 997, 62, 8516, 11, 1312, 10, 16, 8, 198, 220, 220, 220, 7110, 62, 9060, 7, 28764, 9278, 58, 77, 4357, 331, 62, 9288, 58, 77, 4357, 2124, 62, 9288, 58, 77, 12962, 198, 220, 220, 220, 611, 1312, 18189, 3509, 62, 9127, 12, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 198, 489, 83, 13, 33464, 62, 39786, 3419, 198, 489, 83, 13, 12860, 3419, 198 ]
2.462963
648
""" test data for orientation functions """ # global import numpy as np
[ 37811, 198, 9288, 1366, 329, 12852, 5499, 198, 37811, 198, 198, 2, 3298, 198, 11748, 299, 32152, 355, 45941, 628 ]
3.7
20
from dataclasses import dataclass from moonleap import Resource @dataclass
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 198, 6738, 8824, 293, 499, 1330, 20857, 628, 198, 31, 19608, 330, 31172, 198 ]
3.391304
23
from typing import Any, Iterable, Iterator, List, Optional, Union AnyString = Union[str, Iterable[Any]] def split_string(string: Optional[AnyString], separator: str = ",") -> List[str]: """ Breaks given *string* by the specified *separator*. If *string* is a non-``str`` iterable, then return a list if it is not already. >>> split_string('A, B, C') # Str ['A', 'B', 'C'] >>> split_string(['A', 'B', 'C']) # List, a non-str iterable ['A', 'B', 'C'] >>> split_string(('A', 'B', 'C')) # Tuple, a non-str iterable ['A', 'B', 'C'] """ return list(iter_split_string(string=string, separator=separator)) def iter_split_string(string: Optional[AnyString], separator: str = ",") -> Iterator[str]: """Generator version of :func:`split_string`.""" if string is None: return elif isinstance(string, str): parts = str(string).split(separator) for part in parts: part = part.strip() if part: yield part elif isinstance(string, Iterable): # NOTE: Text is also an Iterable, so this should always be after the Text check. for part in string: part = str(part).strip() if part: yield part else: raise TypeError("Cannot split string of {!r}".format(type(string))) def is_instance_of_all(obj, classes: Iterable[type]) -> bool: """ Returns ``True`` if the ``obj`` argument is an instance of all of the classes in the ``classes`` argument. :raises TypeError: If any element of classes is not a type. """ if any(not isinstance(classinfo, type) for classinfo in classes): raise TypeError("classes must contain types") return all(isinstance(obj, classinfo) for classinfo in classes)
[ 6738, 19720, 1330, 4377, 11, 40806, 540, 11, 40806, 1352, 11, 7343, 11, 32233, 11, 4479, 198, 198, 7149, 10100, 796, 4479, 58, 2536, 11, 40806, 540, 58, 7149, 11907, 628, 198, 4299, 6626, 62, 8841, 7, 8841, 25, 32233, 58, 7149, 10100, 4357, 2880, 1352, 25, 965, 796, 366, 553, 8, 4613, 7343, 58, 2536, 5974, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3719, 4730, 1813, 1635, 8841, 9, 416, 262, 7368, 1635, 25512, 1352, 24620, 628, 220, 220, 220, 1002, 1635, 8841, 9, 318, 257, 1729, 12, 15506, 2536, 15506, 11629, 540, 11, 788, 1441, 257, 1351, 611, 340, 318, 407, 1541, 13, 628, 220, 220, 220, 13163, 6626, 62, 8841, 10786, 32, 11, 347, 11, 327, 11537, 220, 1303, 4285, 198, 220, 220, 220, 37250, 32, 3256, 705, 33, 3256, 705, 34, 20520, 628, 220, 220, 220, 13163, 6626, 62, 8841, 7, 17816, 32, 3256, 705, 33, 3256, 705, 34, 6, 12962, 220, 1303, 7343, 11, 257, 1729, 12, 2536, 11629, 540, 198, 220, 220, 220, 37250, 32, 3256, 705, 33, 3256, 705, 34, 20520, 628, 220, 220, 220, 13163, 6626, 62, 8841, 7, 10786, 32, 3256, 705, 33, 3256, 705, 34, 6, 4008, 220, 1303, 309, 29291, 11, 257, 1729, 12, 2536, 11629, 540, 198, 220, 220, 220, 37250, 32, 3256, 705, 33, 3256, 705, 34, 20520, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1351, 7, 2676, 62, 35312, 62, 8841, 7, 8841, 28, 8841, 11, 2880, 1352, 28, 25512, 1352, 4008, 628, 198, 4299, 11629, 62, 35312, 62, 8841, 7, 8841, 25, 32233, 58, 7149, 10100, 4357, 2880, 1352, 25, 965, 796, 366, 553, 8, 4613, 40806, 1352, 58, 2536, 5974, 198, 220, 220, 220, 37227, 8645, 1352, 2196, 286, 1058, 20786, 25, 63, 35312, 62, 8841, 63, 526, 15931, 628, 220, 220, 220, 611, 4731, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 1288, 361, 318, 39098, 7, 8841, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3354, 796, 965, 7, 8841, 737, 35312, 7, 25512, 1352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 636, 287, 3354, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 636, 796, 636, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 636, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 636, 628, 220, 220, 220, 1288, 361, 318, 39098, 7, 8841, 11, 40806, 540, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24550, 25, 8255, 318, 635, 281, 40806, 540, 11, 523, 428, 815, 1464, 307, 706, 262, 8255, 2198, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 636, 287, 4731, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 636, 796, 965, 7, 3911, 737, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 636, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 636, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 34, 34574, 6626, 4731, 286, 1391, 0, 81, 92, 1911, 18982, 7, 4906, 7, 8841, 22305, 628, 198, 4299, 318, 62, 39098, 62, 1659, 62, 439, 7, 26801, 11, 6097, 25, 40806, 540, 58, 4906, 12962, 4613, 20512, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 7559, 17821, 15506, 611, 262, 7559, 26801, 15506, 4578, 318, 281, 4554, 286, 477, 286, 262, 198, 220, 220, 220, 6097, 287, 262, 7559, 37724, 15506, 4578, 13, 628, 220, 220, 220, 1058, 430, 2696, 5994, 12331, 25, 1002, 597, 5002, 286, 6097, 318, 407, 257, 2099, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 597, 7, 1662, 318, 39098, 7, 4871, 10951, 11, 2099, 8, 329, 1398, 10951, 287, 6097, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 37724, 1276, 3994, 3858, 4943, 198, 220, 220, 220, 1441, 477, 7, 271, 39098, 7, 26801, 11, 1398, 10951, 8, 329, 1398, 10951, 287, 6097, 8, 198 ]
2.567568
703
#======================================================================= # verilator_cffi.py #======================================================================= from __future__ import print_function import os import shutil import verilog_structural from ...tools.simulation.vcd import get_vcd_timescale from subprocess import check_output, STDOUT, CalledProcessError from ...model.signals import InPort, OutPort from ...model.PortBundle import PortBundle from exceptions import VerilatorCompileError #----------------------------------------------------------------------- # verilog_to_pymtl #----------------------------------------------------------------------- # Create a PyMTL compatible interface for Verilog HDL. #----------------------------------------------------------------------- # verilate_model #----------------------------------------------------------------------- # Convert Verilog HDL into a C++ simulator using Verilator. # http://www.veripool.org/wiki/verilator #----------------------------------------------------------------------- # create_c_wrapper #----------------------------------------------------------------------- # Generate a C wrapper file for Verilated C++. #----------------------------------------------------------------------- # create_shared_lib #----------------------------------------------------------------------- # Compile the cpp wrapper into a shared library. # # Verilator suggests: # # For best performance, run Verilator with the "-O3 --x-assign=fast # --noassert" flags. The -O3 flag will require longer compile times, and # --x-assign=fast may increase the risk of reset bugs in trade for # performance; see the above documentation for these flags. # # Minor Verilog code changes can also give big wins. You should not have # any UNOPTFLAT warnings from Verilator. Fixing these warnings can # result in huge improvements; one user fixed their one UNOPTFLAT # warning by making a simple change to a clock latch used to gate clocks # and gained a 60% performance improvement. # # Beyond that, the performance of a Verilated model depends mostly on # your C++ compiler and size of your CPU's caches. # # By default, the lib/verilated.mk file has optimization # turned off. This is for the benefit of new users, as it improves # compile times at the cost of runtimes. To add optimization as the # default, set one of three variables, OPT, OPT_FAST, or OPT_SLOW # lib/verilated.mk. Or, use the -CFLAGS and/or -LDFLAGS option on the # verilator command line to pass the flags directly to the compiler or # linker. Or, just for one run, pass them on the command line to make: # # make OPT_FAST="-O2" -f Vour.mk Vour__ALL.a # OPT_FAST specifies optimizations for those programs that are part of # the fast path, mostly code that is executed every cycle. OPT_SLOW # specifies optimizations for slow-path files (plus tracing), which # execute only rarely, yet take a long time to compile with optimization # on. OPT specifies overall optimization and affects all compiles, # including those OPT_FAST and OPT_SLOW affect. For best results, use # OPT="-O2", and link with "-static". Nearly the same results can be had # with much better compile times with OPT_FAST="-O1 -fstrict-aliasing". # Higher optimization such as "-O3" may help, but gcc compile times may # be excessive under O3 on even medium sized designs. Alternatively, # some larger designs report better performance using "-Os". # # http://www.veripool.org/projects/verilator/wiki/Manual-verilator # I have added a new feature which compiles all of the standard Verilator # code into a static library and then simply links this in. This reduces # compile times. #----------------------------------------------------------------------- # create_verilator_py_wrapper #----------------------------------------------------------------------- #----------------------------------------------------------------------- # get_indices #----------------------------------------------------------------------- # Utility function for determining assignment of wide ports #----------------------------------------------------------------------- # set_input_stmt #----------------------------------------------------------------------- #----------------------------------------------------------------------- # set_output_stmt #----------------------------------------------------------------------- # TODO: no way to distinguish between combinational and sequential # outputs, so we set outputs both ways... # This seems broken, but I can't think of a better way. #----------------------------------------------------------------------- # verilator_mangle #----------------------------------------------------------------------- #----------------------------------------------------------------------- # pymtl_wrapper_from_ports #-----------------------------------------------------------------------
[ 2, 23926, 1421, 18604, 198, 2, 3326, 346, 1352, 62, 66, 487, 72, 13, 9078, 198, 2, 23926, 1421, 18604, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 11748, 3326, 346, 519, 62, 7249, 1523, 198, 6738, 2644, 31391, 13, 14323, 1741, 13, 85, 10210, 1330, 651, 62, 85, 10210, 62, 22355, 38765, 198, 198, 6738, 850, 14681, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 2198, 62, 22915, 11, 48571, 12425, 11, 34099, 18709, 12331, 198, 6738, 2644, 19849, 13, 12683, 874, 220, 220, 220, 1330, 554, 13924, 11, 3806, 13924, 198, 6738, 2644, 19849, 13, 13924, 33, 31249, 1330, 4347, 33, 31249, 198, 6738, 13269, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 4643, 346, 1352, 7293, 576, 12331, 198, 198, 2, 10097, 26866, 198, 2, 3326, 346, 519, 62, 1462, 62, 79, 4948, 28781, 198, 2, 10097, 26866, 198, 2, 13610, 257, 9485, 13752, 43, 11670, 7071, 329, 4643, 346, 519, 48867, 13, 198, 198, 2, 10097, 26866, 198, 2, 3326, 346, 378, 62, 19849, 198, 2, 10097, 26866, 198, 2, 38240, 4643, 346, 519, 48867, 656, 257, 327, 4880, 35375, 1262, 4643, 346, 1352, 13, 198, 2, 2638, 1378, 2503, 13, 332, 541, 970, 13, 2398, 14, 15466, 14, 332, 346, 1352, 198, 198, 2, 10097, 26866, 198, 2, 2251, 62, 66, 62, 48553, 198, 2, 10097, 26866, 198, 2, 2980, 378, 257, 327, 29908, 2393, 329, 4643, 40080, 327, 4880, 13, 198, 198, 2, 10097, 26866, 198, 2, 2251, 62, 28710, 62, 8019, 198, 2, 10097, 26866, 198, 2, 3082, 576, 262, 269, 381, 29908, 656, 257, 4888, 5888, 13, 198, 2, 198, 2, 4643, 346, 1352, 5644, 25, 198, 2, 198, 2, 1114, 1266, 2854, 11, 1057, 4643, 346, 1352, 351, 262, 27444, 46, 18, 1377, 87, 12, 562, 570, 28, 7217, 198, 2, 1377, 3919, 30493, 1, 9701, 13, 383, 532, 46, 18, 6056, 481, 2421, 2392, 17632, 1661, 11, 290, 198, 2, 1377, 87, 12, 562, 570, 28, 7217, 743, 2620, 262, 2526, 286, 13259, 11316, 287, 3292, 329, 198, 2, 2854, 26, 766, 262, 2029, 10314, 329, 777, 9701, 13, 198, 2, 198, 2, 15367, 4643, 346, 519, 2438, 2458, 460, 635, 1577, 1263, 7864, 13, 921, 815, 407, 423, 198, 2, 597, 4725, 3185, 51, 3697, 1404, 14601, 422, 4643, 346, 1352, 13, 13268, 278, 777, 14601, 460, 198, 2, 1255, 287, 3236, 8561, 26, 530, 2836, 5969, 511, 530, 4725, 3185, 51, 3697, 1404, 198, 2, 6509, 416, 1642, 257, 2829, 1487, 284, 257, 8801, 43140, 973, 284, 8946, 29906, 198, 2, 290, 8618, 257, 3126, 4, 2854, 9025, 13, 198, 2, 198, 2, 12197, 326, 11, 262, 2854, 286, 257, 4643, 40080, 2746, 8338, 4632, 319, 198, 2, 534, 327, 4880, 17050, 290, 2546, 286, 534, 9135, 338, 50177, 13, 198, 2, 198, 2, 2750, 4277, 11, 262, 9195, 14, 332, 40080, 13, 28015, 2393, 468, 23989, 198, 2, 2900, 572, 13, 770, 318, 329, 262, 4414, 286, 649, 2985, 11, 355, 340, 19575, 198, 2, 17632, 1661, 379, 262, 1575, 286, 1057, 22355, 13, 1675, 751, 23989, 355, 262, 198, 2, 4277, 11, 900, 530, 286, 1115, 9633, 11, 39852, 11, 39852, 62, 37, 11262, 11, 393, 39852, 62, 8634, 3913, 198, 2, 9195, 14, 332, 40080, 13, 28015, 13, 1471, 11, 779, 262, 532, 34, 38948, 50, 290, 14, 273, 532, 11163, 38948, 50, 3038, 319, 262, 198, 2, 3326, 346, 1352, 3141, 1627, 284, 1208, 262, 9701, 3264, 284, 262, 17050, 393, 198, 2, 2792, 263, 13, 1471, 11, 655, 329, 530, 1057, 11, 1208, 606, 319, 262, 3141, 1627, 284, 787, 25, 198, 2, 198, 2, 220, 220, 787, 39852, 62, 37, 11262, 2625, 12, 46, 17, 1, 532, 69, 569, 454, 13, 28015, 569, 454, 834, 7036, 13, 64, 198, 198, 2, 39852, 62, 37, 11262, 26052, 41446, 329, 883, 4056, 326, 389, 636, 286, 198, 2, 262, 3049, 3108, 11, 4632, 2438, 326, 318, 10945, 790, 6772, 13, 39852, 62, 8634, 3913, 198, 2, 26052, 41446, 329, 3105, 12, 6978, 3696, 357, 9541, 35328, 828, 543, 198, 2, 12260, 691, 8365, 11, 1865, 1011, 257, 890, 640, 284, 17632, 351, 23989, 198, 2, 319, 13, 39852, 26052, 4045, 23989, 290, 10975, 477, 552, 2915, 11, 198, 2, 1390, 883, 39852, 62, 37, 11262, 290, 39852, 62, 8634, 3913, 2689, 13, 1114, 1266, 2482, 11, 779, 198, 2, 39852, 2625, 12, 46, 17, 1600, 290, 2792, 351, 27444, 12708, 1911, 21233, 262, 976, 2482, 460, 307, 550, 198, 2, 351, 881, 1365, 17632, 1661, 351, 39852, 62, 37, 11262, 2625, 12, 46, 16, 532, 69, 301, 2012, 12, 7344, 2313, 1911, 198, 2, 16038, 23989, 884, 355, 27444, 46, 18, 1, 743, 1037, 11, 475, 49582, 17632, 1661, 743, 198, 2, 307, 13181, 739, 440, 18, 319, 772, 7090, 19943, 9824, 13, 25929, 11, 198, 2, 617, 4025, 9824, 989, 1365, 2854, 1262, 27444, 16748, 1911, 198, 2, 198, 2, 2638, 1378, 2503, 13, 332, 541, 970, 13, 2398, 14, 42068, 14, 332, 346, 1352, 14, 15466, 14, 5124, 723, 12, 332, 346, 1352, 198, 198, 2, 314, 423, 2087, 257, 649, 3895, 543, 552, 2915, 477, 286, 262, 3210, 4643, 346, 1352, 198, 2, 2438, 656, 257, 9037, 5888, 290, 788, 2391, 6117, 428, 287, 13, 770, 12850, 198, 2, 17632, 1661, 13, 198, 198, 2, 10097, 26866, 198, 2, 2251, 62, 332, 346, 1352, 62, 9078, 62, 48553, 198, 2, 10097, 26866, 198, 198, 2, 10097, 26866, 198, 2, 651, 62, 521, 1063, 198, 2, 10097, 26866, 198, 2, 34030, 2163, 329, 13213, 16237, 286, 3094, 14090, 198, 198, 2, 10097, 26866, 198, 2, 900, 62, 15414, 62, 301, 16762, 198, 2, 10097, 26866, 198, 198, 2, 10097, 26866, 198, 2, 900, 62, 22915, 62, 301, 16762, 198, 2, 10097, 26866, 198, 2, 16926, 46, 25, 645, 835, 284, 15714, 1022, 1974, 26201, 290, 35582, 198, 2, 220, 220, 220, 220, 220, 220, 23862, 11, 523, 356, 900, 23862, 1111, 2842, 986, 198, 2, 220, 220, 220, 220, 220, 220, 770, 2331, 5445, 11, 475, 314, 460, 470, 892, 286, 257, 1365, 835, 13, 198, 198, 2, 10097, 26866, 198, 2, 3326, 346, 1352, 62, 76, 9248, 198, 2, 10097, 26866, 198, 198, 2, 10097, 26866, 198, 2, 279, 4948, 28781, 62, 48553, 62, 6738, 62, 3742, 198, 2, 10097, 26866, 198 ]
4.640112
1,067
from django.conf.urls import include, url from django.contrib.sitemaps.views import sitemap from django.contrib.sitemaps import FlatPageSitemap, GenericSitemap, Sitemap from django.core.urlresolvers import reverse from django.contrib import admin from blog.models import Article, News, Category, Column from demoproject import views import suit; import xadmin; xadmin.autodiscover(); from xadmin.plugins import xversion xversion.register_models() sitemaps = { 'article-is-top': GenericSitemap( { 'queryset': Article.objects.filter( status=0, is_top=True ).all(), 'date_field': 'pub_time' }, priority=1.0, changefreq='daily' ), 'article-is-not-top': GenericSitemap( { 'queryset': Article.objects.filter(status=0).all(), 'date_field': 'pub_time' }, priority=0.8, changefreq='daily' ), 'news': GenericSitemap( { 'queryset': News.objects.all(), 'data_field': 'pub_time' }, priority=0.6, changefreq='daily' ), 'category': GenericSitemap( { 'queryset': Category.objects.all() }, priority=0.9, changefreq='daily' ), 'column': GenericSitemap( { 'queryset': Column.objects.all() }, priority=0.9, changefreq='daily' ), 'static': StaticViewSitemap } urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'', include('blog.urls')), url(r'', include('vmaig_comments.urls')), url(r'', include('vmaig_auth.urls')), url(r'^sitemap\.xml$', sitemap, {'sitemaps': sitemaps}, name='django.contrib.sitemaps.views.sitemap'), url(r'^piechart/', views.demo_piechart, name='demo_piechart'), url(r'^linechart/', views.demo_linechart, name='demo_linechart'), url(r'^linechart_without_date/', views.demo_linechart_without_date, name='demo_linechart_without_date'), url(r'^linewithfocuschart/', views.demo_linewithfocuschart, name='demo_linewithfocuschart'), url(r'^multibarchart/', views.demo_multibarchart, name='demo_multibarchart'), url(r'^stackedareachart/', views.demo_stackedareachart, name='demo_stackedareachart'), url(r'^multibarhorizontalchart/', views.demo_multibarhorizontalchart, name='demo_multibarhorizontalchart'), url(r'^lineplusbarchart/', views.demo_lineplusbarchart, name='demo_lineplusbarchart'), url(r'^cumulativelinechart/', views.demo_cumulativelinechart, name='demo_cumulativelinechart'), url(r'^discretebarchart/', views.demo_discretebarchart, name='demo_discretebarchart'), url(r'^discretebarchart_with_date/', views.demo_discretebarchart_with_date, name='demo_discretebarchart_date'), url(r'^scatterchart/', views.demo_scatterchart, name='demo_scatterchart'), url(r'^linechart_with_ampm/', views.demo_linechart_with_ampm, name='demo_linechart_with_ampm'), url(r'^charthome$', views.home, name='charthome'), url(r'^xadmin/', include(xadmin.site.urls)), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 2291, 11, 19016, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 82, 9186, 1686, 13, 33571, 1330, 1650, 368, 499, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 82, 9186, 1686, 1330, 21939, 9876, 50, 9186, 499, 11, 42044, 50, 9186, 499, 11, 311, 9186, 499, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 6738, 4130, 13, 27530, 1330, 10172, 11, 3000, 11, 21743, 11, 29201, 198, 6738, 1357, 404, 305, 752, 1330, 5009, 198, 198, 11748, 6050, 26, 198, 198, 11748, 2124, 28482, 26, 198, 87, 28482, 13, 2306, 375, 29392, 9783, 198, 6738, 2124, 28482, 13, 37390, 1330, 2124, 9641, 198, 87, 9641, 13, 30238, 62, 27530, 3419, 198, 198, 82, 9186, 1686, 796, 1391, 198, 220, 220, 220, 705, 20205, 12, 271, 12, 4852, 10354, 42044, 50, 9186, 499, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10819, 893, 316, 10354, 10172, 13, 48205, 13, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 28, 15, 11, 318, 62, 4852, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 439, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 3245, 10354, 705, 12984, 62, 2435, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 19503, 80, 11639, 29468, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 20205, 12, 271, 12, 1662, 12, 4852, 10354, 42044, 50, 9186, 499, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10819, 893, 316, 10354, 10172, 13, 48205, 13, 24455, 7, 13376, 28, 15, 737, 439, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 3245, 10354, 705, 12984, 62, 2435, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 15, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 19503, 80, 11639, 29468, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 10827, 10354, 42044, 50, 9186, 499, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10819, 893, 316, 10354, 3000, 13, 48205, 13, 439, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 62, 3245, 10354, 705, 12984, 62, 2435, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 15, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 19503, 80, 11639, 29468, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 22872, 10354, 42044, 50, 9186, 499, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10819, 893, 316, 10354, 21743, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 15, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 19503, 80, 11639, 29468, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 28665, 10354, 42044, 50, 9186, 499, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10819, 893, 316, 10354, 29201, 13, 48205, 13, 439, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8475, 28, 15, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1487, 19503, 80, 11639, 29468, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 705, 12708, 10354, 36125, 7680, 50, 9186, 499, 198, 92, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 28482, 14, 3256, 2291, 7, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 220, 220, 220, 19016, 7, 81, 6, 3256, 2291, 10786, 14036, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 3256, 2291, 10786, 85, 2611, 328, 62, 15944, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 3256, 2291, 10786, 85, 2611, 328, 62, 18439, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 82, 9186, 499, 17405, 19875, 3, 3256, 1650, 368, 499, 11, 1391, 6, 82, 9186, 1686, 10354, 1650, 368, 1686, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 11639, 28241, 14208, 13, 3642, 822, 13, 82, 9186, 1686, 13, 33571, 13, 82, 9186, 499, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 21749, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 21749, 40926, 11, 1438, 11639, 9536, 78, 62, 21749, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1370, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 1370, 40926, 11, 1438, 11639, 9536, 78, 62, 1370, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1370, 40926, 62, 19419, 62, 4475, 14, 3256, 5009, 13, 9536, 78, 62, 1370, 40926, 62, 19419, 62, 4475, 11, 1438, 11639, 9536, 78, 62, 1370, 40926, 62, 19419, 62, 4475, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 2815, 413, 342, 37635, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 2815, 413, 342, 37635, 40926, 11, 1438, 11639, 9536, 78, 62, 2815, 413, 342, 37635, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16680, 571, 998, 433, 14, 3256, 5009, 13, 9536, 78, 62, 16680, 571, 998, 433, 11, 1438, 11639, 9536, 78, 62, 16680, 571, 998, 433, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 301, 6021, 533, 620, 433, 14, 3256, 5009, 13, 9536, 78, 62, 301, 6021, 533, 620, 433, 11, 1438, 11639, 9536, 78, 62, 301, 6021, 533, 620, 433, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 16680, 571, 283, 17899, 38342, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 16680, 571, 283, 17899, 38342, 40926, 11, 1438, 11639, 9536, 78, 62, 16680, 571, 283, 17899, 38342, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1370, 9541, 65, 998, 433, 14, 3256, 5009, 13, 9536, 78, 62, 1370, 9541, 65, 998, 433, 11, 1438, 11639, 9536, 78, 62, 1370, 9541, 65, 998, 433, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 36340, 13628, 1370, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 36340, 13628, 1370, 40926, 11, 1438, 11639, 9536, 78, 62, 36340, 13628, 1370, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15410, 8374, 65, 998, 433, 14, 3256, 5009, 13, 9536, 78, 62, 15410, 8374, 65, 998, 433, 11, 1438, 11639, 9536, 78, 62, 15410, 8374, 65, 998, 433, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15410, 8374, 65, 998, 433, 62, 4480, 62, 4475, 14, 3256, 5009, 13, 9536, 78, 62, 15410, 8374, 65, 998, 433, 62, 4480, 62, 4475, 11, 1438, 11639, 9536, 78, 62, 15410, 8374, 65, 998, 433, 62, 4475, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1416, 1436, 40926, 14, 3256, 5009, 13, 9536, 78, 62, 1416, 1436, 40926, 11, 1438, 11639, 9536, 78, 62, 1416, 1436, 40926, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 1370, 40926, 62, 4480, 62, 696, 76, 14, 3256, 5009, 13, 9536, 78, 62, 1370, 40926, 62, 4480, 62, 696, 76, 11, 1438, 11639, 9536, 78, 62, 1370, 40926, 62, 4480, 62, 696, 76, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 10641, 400, 462, 3, 3256, 5009, 13, 11195, 11, 1438, 11639, 10641, 400, 462, 33809, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 87, 28482, 14, 3256, 2291, 7, 87, 28482, 13, 15654, 13, 6371, 82, 36911, 198, 198, 60, 198 ]
2.003544
1,693
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import luigi class SparkeyExportTask(luigi.Task): """ A luigi task that writes to a local sparkey log file. Subclasses should implement the requires and output methods. The output must be a luigi.LocalTarget. The resulting sparkey log file will contain one entry for every line in the input, mapping from the first value to a tab-separated list of the rest of the line. To generate a simple key-value index, yield "key", "value" pairs from the input(s) to this task. """ # the separator used to split input lines separator = '\t'
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 2321, 12, 4626, 26778, 9564, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 300, 84, 25754, 628, 198, 4871, 1338, 283, 2539, 43834, 25714, 7, 2290, 25754, 13, 25714, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 300, 84, 25754, 4876, 326, 6797, 284, 257, 1957, 37331, 2539, 2604, 2393, 13, 628, 220, 220, 220, 3834, 37724, 815, 3494, 262, 4433, 290, 5072, 5050, 13, 383, 5072, 198, 220, 220, 220, 1276, 307, 257, 300, 84, 25754, 13, 14565, 21745, 13, 628, 220, 220, 220, 383, 7186, 37331, 2539, 2604, 2393, 481, 3994, 530, 5726, 329, 790, 1627, 287, 198, 220, 220, 220, 262, 5128, 11, 16855, 422, 262, 717, 1988, 284, 257, 7400, 12, 25512, 515, 1351, 286, 262, 198, 220, 220, 220, 1334, 286, 262, 1627, 13, 628, 220, 220, 220, 1675, 7716, 257, 2829, 1994, 12, 8367, 6376, 11, 7800, 366, 2539, 1600, 366, 8367, 1, 14729, 422, 262, 5128, 7, 82, 8, 284, 428, 4876, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 262, 2880, 1352, 973, 284, 6626, 5128, 3951, 198, 220, 220, 220, 2880, 1352, 796, 705, 59, 83, 6, 198 ]
3.438202
356
A_23_01_11 = {0: {'A': 0.076, 'C': 0.036, 'E': 0.046, 'D': -0.002, 'G': 0.043, 'F': -0.067, 'I': 0.002, 'H': 0.011, 'K': 0.104, 'M': -0.205, 'L': -0.209, 'N': -0.039, 'Q': 0.186, 'P': 0.065, 'S': 0.074, 'R': -0.03, 'T': 0.087, 'W': 0.0, 'V': -0.11, 'Y': -0.068}, 1: {'A': 0.014, 'C': 0.002, 'E': 0.031, 'D': -0.004, 'G': 0.0, 'F': -0.074, 'I': 0.001, 'H': 0.0, 'K': 0.0, 'M': -0.014, 'L': 0.07, 'N': 0.0, 'Q': 0.0, 'P': -0.078, 'S': -0.005, 'R': 0.016, 'T': 0.007, 'W': 0.0, 'V': 0.059, 'Y': -0.025}, 2: {'A': -0.338, 'C': 0.178, 'E': 0.018, 'D': 0.311, 'G': 0.124, 'F': -0.229, 'I': 0.137, 'H': -0.023, 'K': 0.196, 'M': 0.154, 'L': -0.043, 'N': -0.241, 'Q': 0.259, 'P': 0.392, 'S': -0.575, 'R': 0.058, 'T': -0.008, 'W': -0.276, 'V': 0.025, 'Y': -0.12}, 3: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': 0.0, 'H': -0.0, 'K': -0.0, 'M': 0.0, 'L': -0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': 0.0, 'R': -0.0, 'T': -0.0, 'W': -0.0, 'V': 0.0, 'Y': 0.0}, 4: {'A': 0.082, 'C': 0.0, 'E': 0.032, 'D': -0.128, 'G': -0.03, 'F': -0.132, 'I': -0.005, 'H': 0.036, 'K': -0.01, 'M': 0.131, 'L': -0.311, 'N': 0.064, 'Q': 0.008, 'P': 0.114, 'S': 0.029, 'R': -0.046, 'T': 0.06, 'W': 0.0, 'V': 0.106, 'Y': 0.0}, 5: {'A': -0.124, 'C': 0.112, 'E': 0.071, 'D': -0.001, 'G': 0.024, 'F': -0.01, 'I': 0.127, 'H': 0.05, 'K': -0.081, 'M': 0.0, 'L': -0.126, 'N': -0.003, 'Q': 0.065, 'P': 0.128, 'S': -0.208, 'R': 0.061, 'T': -0.106, 'W': 0.107, 'V': -0.134, 'Y': 0.046}, 6: {'A': 0.127, 'C': 0.032, 'E': 0.007, 'D': 0.097, 'G': 0.051, 'F': 0.015, 'I': 0.058, 'H': -0.182, 'K': -0.08, 'M': 0.0, 'L': -0.126, 'N': 0.0, 'Q': -0.066, 'P': 0.081, 'S': -0.056, 'R': -0.078, 'T': 0.082, 'W': 0.0, 'V': 0.088, 'Y': -0.051}, 7: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': -0.0, 'N': 0.0, 'Q': 0.0, 'P': -0.0, 'S': 0.0, 'R': 0.0, 'T': -0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 8: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': -0.0, 'F': -0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': -0.0, 'L': 0.0, 'N': 0.0, 'Q': -0.0, 'P': -0.0, 'S': -0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': -0.0, 'Y': 0.0}, 9: {'A': 0.014, 'C': 0.0, 'E': 0.02, 'D': -0.027, 'G': 0.038, 'F': 0.013, 'I': 0.018, 'H': 0.0, 'K': 0.021, 'M': 0.027, 'L': -0.029, 'N': 0.027, 'Q': -0.022, 'P': -0.062, 'S': 0.003, 'R': -0.035, 'T': 0.004, 'W': 0.0, 'V': 0.014, 'Y': -0.025}, 10: {'A': 0.184, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.852, 'I': -0.072, 'H': 0.0, 'K': 0.274, 'M': -0.026, 'L': -0.286, 'N': 0.0, 'Q': 0.179, 'P': -0.188, 'S': 0.149, 'R': 0.541, 'T': 0.0, 'W': -0.056, 'V': 0.16, 'Y': -0.007}, -1: {'con': 4.16437}}
[ 32, 62, 1954, 62, 486, 62, 1157, 796, 1391, 15, 25, 1391, 6, 32, 10354, 657, 13, 2998, 21, 11, 705, 34, 10354, 657, 13, 48597, 11, 705, 36, 10354, 657, 13, 45438, 11, 705, 35, 10354, 532, 15, 13, 21601, 11, 705, 38, 10354, 657, 13, 48768, 11, 705, 37, 10354, 532, 15, 13, 15, 3134, 11, 705, 40, 10354, 657, 13, 21601, 11, 705, 39, 10354, 657, 13, 28555, 11, 705, 42, 10354, 657, 13, 13464, 11, 705, 44, 10354, 532, 15, 13, 21261, 11, 705, 43, 10354, 532, 15, 13, 22567, 11, 705, 45, 10354, 532, 15, 13, 15, 2670, 11, 705, 48, 10354, 657, 13, 25096, 11, 705, 47, 10354, 657, 13, 15, 2996, 11, 705, 50, 10354, 657, 13, 2998, 19, 11, 705, 49, 10354, 532, 15, 13, 3070, 11, 705, 51, 10354, 657, 13, 2919, 22, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 532, 15, 13, 1157, 11, 705, 56, 10354, 532, 15, 13, 15, 3104, 5512, 352, 25, 1391, 6, 32, 10354, 657, 13, 28645, 11, 705, 34, 10354, 657, 13, 21601, 11, 705, 36, 10354, 657, 13, 43637, 11, 705, 35, 10354, 532, 15, 13, 22914, 11, 705, 38, 10354, 657, 13, 15, 11, 705, 37, 10354, 532, 15, 13, 2998, 19, 11, 705, 40, 10354, 657, 13, 8298, 11, 705, 39, 10354, 657, 13, 15, 11, 705, 42, 10354, 657, 13, 15, 11, 705, 44, 10354, 532, 15, 13, 28645, 11, 705, 43, 10354, 657, 13, 2998, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 657, 13, 15, 11, 705, 47, 10354, 532, 15, 13, 2998, 23, 11, 705, 50, 10354, 532, 15, 13, 22544, 11, 705, 49, 10354, 657, 13, 27037, 11, 705, 51, 10354, 657, 13, 25816, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 657, 13, 46712, 11, 705, 56, 10354, 532, 15, 13, 36629, 5512, 362, 25, 1391, 6, 32, 10354, 532, 15, 13, 28460, 11, 705, 34, 10354, 657, 13, 23188, 11, 705, 36, 10354, 657, 13, 29159, 11, 705, 35, 10354, 657, 13, 36244, 11, 705, 38, 10354, 657, 13, 17464, 11, 705, 37, 10354, 532, 15, 13, 23539, 11, 705, 40, 10354, 657, 13, 19708, 11, 705, 39, 10354, 532, 15, 13, 45310, 11, 705, 42, 10354, 657, 13, 25272, 11, 705, 44, 10354, 657, 13, 21526, 11, 705, 43, 10354, 532, 15, 13, 48768, 11, 705, 45, 10354, 532, 15, 13, 28872, 11, 705, 48, 10354, 657, 13, 25191, 11, 705, 47, 10354, 657, 13, 32321, 11, 705, 50, 10354, 532, 15, 13, 36189, 11, 705, 49, 10354, 657, 13, 2713, 23, 11, 705, 51, 10354, 532, 15, 13, 25257, 11, 705, 54, 10354, 532, 15, 13, 27988, 11, 705, 53, 10354, 657, 13, 36629, 11, 705, 56, 10354, 532, 15, 13, 1065, 5512, 513, 25, 1391, 6, 32, 10354, 657, 13, 15, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 657, 13, 15, 11, 705, 35, 10354, 657, 13, 15, 11, 705, 38, 10354, 657, 13, 15, 11, 705, 37, 10354, 532, 15, 13, 15, 11, 705, 40, 10354, 657, 13, 15, 11, 705, 39, 10354, 532, 15, 13, 15, 11, 705, 42, 10354, 532, 15, 13, 15, 11, 705, 44, 10354, 657, 13, 15, 11, 705, 43, 10354, 532, 15, 13, 15, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 532, 15, 13, 15, 11, 705, 47, 10354, 532, 15, 13, 15, 11, 705, 50, 10354, 657, 13, 15, 11, 705, 49, 10354, 532, 15, 13, 15, 11, 705, 51, 10354, 532, 15, 13, 15, 11, 705, 54, 10354, 532, 15, 13, 15, 11, 705, 53, 10354, 657, 13, 15, 11, 705, 56, 10354, 657, 13, 15, 5512, 604, 25, 1391, 6, 32, 10354, 657, 13, 2919, 17, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 657, 13, 49959, 11, 705, 35, 10354, 532, 15, 13, 12762, 11, 705, 38, 10354, 532, 15, 13, 3070, 11, 705, 37, 10354, 532, 15, 13, 19924, 11, 705, 40, 10354, 532, 15, 13, 22544, 11, 705, 39, 10354, 657, 13, 48597, 11, 705, 42, 10354, 532, 15, 13, 486, 11, 705, 44, 10354, 657, 13, 22042, 11, 705, 43, 10354, 532, 15, 13, 36244, 11, 705, 45, 10354, 657, 13, 15, 2414, 11, 705, 48, 10354, 657, 13, 25257, 11, 705, 47, 10354, 657, 13, 16562, 11, 705, 50, 10354, 657, 13, 48891, 11, 705, 49, 10354, 532, 15, 13, 45438, 11, 705, 51, 10354, 657, 13, 3312, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 657, 13, 15801, 11, 705, 56, 10354, 657, 13, 15, 5512, 642, 25, 1391, 6, 32, 10354, 532, 15, 13, 17464, 11, 705, 34, 10354, 657, 13, 14686, 11, 705, 36, 10354, 657, 13, 2998, 16, 11, 705, 35, 10354, 532, 15, 13, 8298, 11, 705, 38, 10354, 657, 13, 40839, 11, 705, 37, 10354, 532, 15, 13, 486, 11, 705, 40, 10354, 657, 13, 16799, 11, 705, 39, 10354, 657, 13, 2713, 11, 705, 42, 10354, 532, 15, 13, 2919, 16, 11, 705, 44, 10354, 657, 13, 15, 11, 705, 43, 10354, 532, 15, 13, 19420, 11, 705, 45, 10354, 532, 15, 13, 11245, 11, 705, 48, 10354, 657, 13, 15, 2996, 11, 705, 47, 10354, 657, 13, 12762, 11, 705, 50, 10354, 532, 15, 13, 21315, 11, 705, 49, 10354, 657, 13, 3312, 16, 11, 705, 51, 10354, 532, 15, 13, 15801, 11, 705, 54, 10354, 657, 13, 15982, 11, 705, 53, 10354, 532, 15, 13, 19880, 11, 705, 56, 10354, 657, 13, 45438, 5512, 718, 25, 1391, 6, 32, 10354, 657, 13, 16799, 11, 705, 34, 10354, 657, 13, 49959, 11, 705, 36, 10354, 657, 13, 25816, 11, 705, 35, 10354, 657, 13, 2931, 22, 11, 705, 38, 10354, 657, 13, 2713, 16, 11, 705, 37, 10354, 657, 13, 25150, 11, 705, 40, 10354, 657, 13, 2713, 23, 11, 705, 39, 10354, 532, 15, 13, 24294, 11, 705, 42, 10354, 532, 15, 13, 2919, 11, 705, 44, 10354, 657, 13, 15, 11, 705, 43, 10354, 532, 15, 13, 19420, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 532, 15, 13, 15, 2791, 11, 705, 47, 10354, 657, 13, 2919, 16, 11, 705, 50, 10354, 532, 15, 13, 2713, 21, 11, 705, 49, 10354, 532, 15, 13, 2998, 23, 11, 705, 51, 10354, 657, 13, 2919, 17, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 657, 13, 46556, 11, 705, 56, 10354, 532, 15, 13, 2713, 16, 5512, 767, 25, 1391, 6, 32, 10354, 532, 15, 13, 15, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 532, 15, 13, 15, 11, 705, 35, 10354, 657, 13, 15, 11, 705, 38, 10354, 657, 13, 15, 11, 705, 37, 10354, 532, 15, 13, 15, 11, 705, 40, 10354, 532, 15, 13, 15, 11, 705, 39, 10354, 657, 13, 15, 11, 705, 42, 10354, 532, 15, 13, 15, 11, 705, 44, 10354, 532, 15, 13, 15, 11, 705, 43, 10354, 532, 15, 13, 15, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 657, 13, 15, 11, 705, 47, 10354, 532, 15, 13, 15, 11, 705, 50, 10354, 657, 13, 15, 11, 705, 49, 10354, 657, 13, 15, 11, 705, 51, 10354, 532, 15, 13, 15, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 657, 13, 15, 11, 705, 56, 10354, 657, 13, 15, 5512, 807, 25, 1391, 6, 32, 10354, 532, 15, 13, 15, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 532, 15, 13, 15, 11, 705, 35, 10354, 657, 13, 15, 11, 705, 38, 10354, 532, 15, 13, 15, 11, 705, 37, 10354, 532, 15, 13, 15, 11, 705, 40, 10354, 532, 15, 13, 15, 11, 705, 39, 10354, 657, 13, 15, 11, 705, 42, 10354, 532, 15, 13, 15, 11, 705, 44, 10354, 532, 15, 13, 15, 11, 705, 43, 10354, 657, 13, 15, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 532, 15, 13, 15, 11, 705, 47, 10354, 532, 15, 13, 15, 11, 705, 50, 10354, 532, 15, 13, 15, 11, 705, 49, 10354, 657, 13, 15, 11, 705, 51, 10354, 657, 13, 15, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 532, 15, 13, 15, 11, 705, 56, 10354, 657, 13, 15, 5512, 860, 25, 1391, 6, 32, 10354, 657, 13, 28645, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 657, 13, 2999, 11, 705, 35, 10354, 532, 15, 13, 44698, 11, 705, 38, 10354, 657, 13, 15, 2548, 11, 705, 37, 10354, 657, 13, 30273, 11, 705, 40, 10354, 657, 13, 29159, 11, 705, 39, 10354, 657, 13, 15, 11, 705, 42, 10354, 657, 13, 46821, 11, 705, 44, 10354, 657, 13, 44698, 11, 705, 43, 10354, 532, 15, 13, 48891, 11, 705, 45, 10354, 657, 13, 44698, 11, 705, 48, 10354, 532, 15, 13, 44087, 11, 705, 47, 10354, 532, 15, 13, 3312, 17, 11, 705, 50, 10354, 657, 13, 11245, 11, 705, 49, 10354, 532, 15, 13, 44215, 11, 705, 51, 10354, 657, 13, 22914, 11, 705, 54, 10354, 657, 13, 15, 11, 705, 53, 10354, 657, 13, 28645, 11, 705, 56, 10354, 532, 15, 13, 36629, 5512, 838, 25, 1391, 6, 32, 10354, 657, 13, 22883, 11, 705, 34, 10354, 657, 13, 15, 11, 705, 36, 10354, 657, 13, 15, 11, 705, 35, 10354, 657, 13, 15, 11, 705, 38, 10354, 657, 13, 15, 11, 705, 37, 10354, 532, 15, 13, 23, 4309, 11, 705, 40, 10354, 532, 15, 13, 2998, 17, 11, 705, 39, 10354, 657, 13, 15, 11, 705, 42, 10354, 657, 13, 28857, 11, 705, 44, 10354, 532, 15, 13, 45987, 11, 705, 43, 10354, 532, 15, 13, 27033, 11, 705, 45, 10354, 657, 13, 15, 11, 705, 48, 10354, 657, 13, 21738, 11, 705, 47, 10354, 532, 15, 13, 20356, 11, 705, 50, 10354, 657, 13, 19442, 11, 705, 49, 10354, 657, 13, 20, 3901, 11, 705, 51, 10354, 657, 13, 15, 11, 705, 54, 10354, 532, 15, 13, 2713, 21, 11, 705, 53, 10354, 657, 13, 1433, 11, 705, 56, 10354, 532, 15, 13, 25816, 5512, 532, 16, 25, 1391, 6, 1102, 10354, 604, 13, 23237, 2718, 11709 ]
1.540572
1,713
import logging from .resource import BaseResource logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 6738, 764, 31092, 1330, 7308, 26198, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198 ]
3.52
25
from django import forms from django.core.mail.message import EmailMessage from django.forms.widgets import Textarea
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 13, 20500, 1330, 9570, 12837, 198, 6738, 42625, 14208, 13, 23914, 13, 28029, 11407, 1330, 8255, 20337 ]
3.866667
30