content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
from random import shuffle import random import math import string import sys import os import string import pdb eng_punctuation = string.punctuation + '\xe2\x80\x9c' + '\xe2\x80\x9d' hindi_punctuation = ['\xe0\xa5\xa4'] #danda # words like don't are split into don ' t # This version doesn't do anything about punctuation inside words # and only considers punctuation at the beginning or end of a word print sys.argv if len(sys.argv) < 3: print('python parseHindi.py nameOfSaveDir cutOff') exit() data_dir = '/deep/group/speech/asamar/nlp/data/hindi/source/' save_dir = sys.argv[1] + '/' cutOff = int(sys.argv[2]) print('Only sentences less than ' + str(cutOff) + ' will be taken from English.') print('Only sentences less than ' + str(2*cutOff) + ' will be taken from Hindi.') if not os.path.exists(save_dir): print('Making directory ' + save_dir) os.makedirs(save_dir) print('Loading Original Hindi Dataset') train_set_size = 273000 data = open(data_dir + 'hindencorp05.plaintext','r') lines = data.readlines() count = 0 print('Creating Train and Test Source Sets') train_f = open(save_dir + 'ptb.train.txt', 'w') test_f = open(save_dir + 'ptb.test.txt', 'w') for line in lines: if count < train_set_size: train_f.write(line) else: test_f.write(line) count = count + 1 data.close() train_f.close() test_f.close() print('Building Vocabulary from Training Set') punctuation = string.punctuation eng_vocab = {} hindi_vocab = {} data = open(save_dir + 'ptb.train.txt','r') num_lines = 0 max_eng_length = 0 max_hindi_length = 0 corresponding_line = '' for line in data: orig_line = line.lower().strip() split_line = orig_line.split('\t') eng_sent = splitSentence(split_line[3]) hindi_sent = splitSentence(split_line[4]) if len(eng_sent) < cutOff and len(hindi_sent) < 2*cutOff: addToVocab(eng_vocab,eng_sent) addToVocab(hindi_vocab,hindi_sent) num_lines = num_lines + 1 if len(eng_sent) > max_eng_length: max_eng_length = len(eng_sent) if len(hindi_sent) > max_hindi_length: max_hindi_length = len(hindi_sent) corresponding_line = orig_line print('Lines below cutoff: ' + str(num_lines)) print('Max English Length: ' + str(max_eng_length)) print('Max Hindi Length: ' + str(max_hindi_length)) print(corresponding_line) data.close() print('Sorting Eng Vocab') eng_vocab = sorted(eng_vocab,key = lambda x: eng_vocab[x]) eng_vocab.reverse() print('Sorting Hindi Vocab') hindi_vocab = sorted(hindi_vocab,key = lambda x: hindi_vocab[x]) hindi_vocab.reverse() print('Parsing Train and Test Set') for a in [['ptb.train.txt','enc_train.txt','dec_train.txt'],['ptb.test.txt','enc_test.txt','dec_test.txt']]: data = open(save_dir + a[0],'r') enc_to = open(save_dir + a[1],'w') dec_to = open(save_dir + a[2],'w') count = 0 for line in data: orig_line = line.lower().strip() s = orig_line.split('\t') eng_sent = splitSentence(s[3]) hindi_sent = splitSentence(s[4]) if len(eng_sent) < cutOff and len(hindi_sent) < 2*cutOff: enc_to.write(removeOOV(eng_vocab,eng_sent).strip() + '\n') dec_to.write(removeOOV(hindi_vocab,hindi_sent).strip() + '\n') count = count + 1 if (count % 1000 == 0): print('Finished parsing ' + str(count)) sys.stdout.flush() data.close() enc_to.close() dec_to.close() print('Total parsed: ' + str(count))
[ 6738, 4738, 1330, 36273, 198, 11748, 4738, 198, 11748, 10688, 198, 11748, 4731, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 4731, 198, 11748, 279, 9945, 198, 198, 1516, 62, 79, 16260, 2288, 796, 4731, 13, 79, 16260, 2288, 1343, 705, 59, 27705, 17, 59, 87, 1795, 59, 87, 24, 66, 6, 1343, 705, 59, 27705, 17, 59, 87, 1795, 59, 87, 24, 67, 6, 198, 71, 521, 72, 62, 79, 16260, 2288, 796, 37250, 59, 27705, 15, 59, 27865, 20, 59, 27865, 19, 20520, 1303, 67, 5282, 198, 198, 2, 2456, 588, 836, 470, 389, 6626, 656, 836, 705, 256, 628, 198, 2, 770, 2196, 1595, 470, 466, 1997, 546, 21025, 2288, 2641, 2456, 198, 2, 290, 691, 14358, 21025, 2288, 379, 262, 3726, 393, 886, 286, 257, 1573, 198, 198, 4798, 25064, 13, 853, 85, 198, 198, 361, 18896, 7, 17597, 13, 853, 85, 8, 1279, 513, 25, 198, 220, 220, 220, 3601, 10786, 29412, 21136, 39, 521, 72, 13, 9078, 1438, 5189, 16928, 35277, 2005, 9362, 11537, 198, 220, 220, 220, 8420, 3419, 198, 198, 7890, 62, 15908, 796, 31051, 22089, 14, 8094, 14, 45862, 14, 292, 39236, 14, 21283, 79, 14, 7890, 14, 71, 521, 72, 14, 10459, 14, 6, 198, 21928, 62, 15908, 796, 25064, 13, 853, 85, 58, 16, 60, 1343, 31051, 6, 198, 8968, 9362, 796, 493, 7, 17597, 13, 853, 85, 58, 17, 12962, 198, 4798, 10786, 10049, 13439, 1342, 621, 705, 1343, 965, 7, 8968, 9362, 8, 1343, 705, 481, 307, 2077, 422, 3594, 2637, 8, 198, 4798, 10786, 10049, 13439, 1342, 621, 705, 1343, 965, 7, 17, 9, 8968, 9362, 8, 1343, 705, 481, 307, 2077, 422, 43443, 2637, 8, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 21928, 62, 15908, 2599, 198, 220, 220, 220, 3601, 10786, 23874, 8619, 705, 1343, 3613, 62, 15908, 8, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 21928, 62, 15908, 8, 198, 198, 4798, 10786, 19031, 13745, 43443, 16092, 292, 316, 11537, 198, 27432, 62, 2617, 62, 7857, 796, 2681, 23924, 198, 7890, 796, 1280, 7, 7890, 62, 15908, 1343, 705, 71, 521, 268, 10215, 79, 2713, 13, 25638, 5239, 41707, 81, 11537, 198, 6615, 796, 1366, 13, 961, 6615, 3419, 198, 9127, 796, 657, 198, 198, 4798, 10786, 32071, 16835, 290, 6208, 8090, 21394, 11537, 198, 27432, 62, 69, 796, 1280, 7, 21928, 62, 15908, 1343, 705, 457, 65, 13, 27432, 13, 14116, 3256, 705, 86, 11537, 198, 9288, 62, 69, 796, 1280, 7, 21928, 62, 15908, 1343, 705, 457, 65, 13, 9288, 13, 14116, 3256, 705, 86, 11537, 198, 1640, 1627, 287, 3951, 25, 198, 220, 220, 220, 611, 954, 1279, 4512, 62, 2617, 62, 7857, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 69, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 69, 13, 13564, 7, 1370, 8, 198, 220, 220, 220, 954, 796, 954, 1343, 352, 198, 7890, 13, 19836, 3419, 198, 27432, 62, 69, 13, 19836, 3419, 198, 9288, 62, 69, 13, 19836, 3419, 198, 198, 4798, 10786, 25954, 47208, 22528, 422, 13614, 5345, 11537, 198, 198, 79, 16260, 2288, 796, 4731, 13, 79, 16260, 2288, 198, 1516, 62, 18893, 397, 796, 23884, 198, 71, 521, 72, 62, 18893, 397, 796, 23884, 198, 198, 7890, 796, 1280, 7, 21928, 62, 15908, 1343, 705, 457, 65, 13, 27432, 13, 14116, 41707, 81, 11537, 198, 22510, 62, 6615, 796, 657, 198, 9806, 62, 1516, 62, 13664, 796, 657, 198, 9806, 62, 71, 521, 72, 62, 13664, 796, 657, 198, 10215, 5546, 278, 62, 1370, 796, 10148, 198, 1640, 1627, 287, 1366, 25, 198, 220, 220, 220, 1796, 62, 1370, 796, 1627, 13, 21037, 22446, 36311, 3419, 198, 220, 220, 220, 6626, 62, 1370, 796, 1796, 62, 1370, 13, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 1786, 62, 34086, 796, 6626, 31837, 594, 7, 35312, 62, 1370, 58, 18, 12962, 198, 220, 220, 220, 16222, 72, 62, 34086, 796, 6626, 31837, 594, 7, 35312, 62, 1370, 58, 19, 12962, 628, 220, 220, 220, 611, 18896, 7, 1516, 62, 34086, 8, 1279, 2005, 9362, 290, 18896, 7, 71, 521, 72, 62, 34086, 8, 1279, 362, 9, 8968, 9362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 751, 2514, 53, 420, 397, 7, 1516, 62, 18893, 397, 11, 1516, 62, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 751, 2514, 53, 420, 397, 7, 71, 521, 72, 62, 18893, 397, 11, 71, 521, 72, 62, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 6615, 796, 997, 62, 6615, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1516, 62, 34086, 8, 1875, 3509, 62, 1516, 62, 13664, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1516, 62, 13664, 796, 18896, 7, 1516, 62, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 71, 521, 72, 62, 34086, 8, 1875, 3509, 62, 71, 521, 72, 62, 13664, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 71, 521, 72, 62, 13664, 796, 18896, 7, 71, 521, 72, 62, 34086, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11188, 62, 1370, 796, 1796, 62, 1370, 198, 198, 4798, 10786, 43, 1127, 2174, 45616, 25, 705, 1343, 965, 7, 22510, 62, 6615, 4008, 198, 4798, 10786, 11518, 3594, 22313, 25, 705, 1343, 965, 7, 9806, 62, 1516, 62, 13664, 4008, 198, 4798, 10786, 11518, 43443, 22313, 25, 705, 1343, 965, 7, 9806, 62, 71, 521, 72, 62, 13664, 4008, 198, 4798, 7, 10215, 5546, 278, 62, 1370, 8, 198, 7890, 13, 19836, 3419, 198, 198, 4798, 10786, 50, 24707, 1985, 47208, 397, 11537, 198, 1516, 62, 18893, 397, 796, 23243, 7, 1516, 62, 18893, 397, 11, 2539, 796, 37456, 2124, 25, 1786, 62, 18893, 397, 58, 87, 12962, 198, 1516, 62, 18893, 397, 13, 50188, 3419, 198, 4798, 10786, 50, 24707, 43443, 47208, 397, 11537, 198, 71, 521, 72, 62, 18893, 397, 796, 23243, 7, 71, 521, 72, 62, 18893, 397, 11, 2539, 796, 37456, 2124, 25, 16222, 72, 62, 18893, 397, 58, 87, 12962, 198, 71, 521, 72, 62, 18893, 397, 13, 50188, 3419, 198, 198, 4798, 10786, 47, 945, 278, 16835, 290, 6208, 5345, 11537, 198, 1640, 257, 287, 16410, 6, 457, 65, 13, 27432, 13, 14116, 41707, 12685, 62, 27432, 13, 14116, 41707, 12501, 62, 27432, 13, 14116, 6, 4357, 17816, 457, 65, 13, 9288, 13, 14116, 41707, 12685, 62, 9288, 13, 14116, 41707, 12501, 62, 9288, 13, 14116, 20520, 5974, 198, 220, 220, 220, 1366, 796, 1280, 7, 21928, 62, 15908, 1343, 257, 58, 15, 60, 4032, 81, 11537, 198, 220, 220, 220, 2207, 62, 1462, 796, 1280, 7, 21928, 62, 15908, 1343, 257, 58, 16, 60, 4032, 86, 11537, 198, 220, 220, 220, 875, 62, 1462, 796, 1280, 7, 21928, 62, 15908, 1343, 257, 58, 17, 60, 4032, 86, 11537, 198, 220, 220, 220, 954, 796, 657, 198, 220, 220, 220, 329, 1627, 287, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 1370, 796, 1627, 13, 21037, 22446, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 264, 796, 1796, 62, 1370, 13, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1786, 62, 34086, 796, 6626, 31837, 594, 7, 82, 58, 18, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 16222, 72, 62, 34086, 796, 6626, 31837, 594, 7, 82, 58, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 1516, 62, 34086, 8, 1279, 2005, 9362, 290, 18896, 7, 71, 521, 72, 62, 34086, 8, 1279, 362, 9, 8968, 9362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2207, 62, 1462, 13, 13564, 7, 28956, 6684, 53, 7, 1516, 62, 18893, 397, 11, 1516, 62, 34086, 737, 36311, 3419, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 875, 62, 1462, 13, 13564, 7, 28956, 6684, 53, 7, 71, 521, 72, 62, 18893, 397, 11, 71, 521, 72, 62, 34086, 737, 36311, 3419, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 954, 796, 954, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 9127, 4064, 8576, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 18467, 1348, 32096, 705, 1343, 965, 7, 9127, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 1366, 13, 19836, 3419, 198, 220, 220, 220, 2207, 62, 1462, 13, 19836, 3419, 198, 220, 220, 220, 875, 62, 1462, 13, 19836, 3419, 198, 220, 220, 220, 3601, 10786, 14957, 44267, 25, 705, 1343, 965, 7, 9127, 4008, 198 ]
2.329808
1,513
# Solution A # Solution B
[ 2, 28186, 317, 628, 198, 2, 28186, 347, 198 ]
3.111111
9
import asyncio import logging import socket logger = logging.getLogger(__name__) all_endpoints = [] def reset_pypeman_endpoints(): """ clears book keeping of all endpoints Can be useful for unit testing. """ all_endpoints.clear() from pypeman.helpers import lazyload # noqa: E402 wrap = lazyload.Wrapper(__name__) wrap.add_lazy('pypeman.contrib.http', 'HTTPEndpoint', ['aiohttp']) wrap.add_lazy('pypeman.contrib.hl7', 'MLLPEndpoint', ['hl7'])
[ 11748, 30351, 952, 198, 11748, 18931, 198, 11748, 17802, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 439, 62, 437, 13033, 796, 17635, 628, 198, 4299, 13259, 62, 79, 4464, 8463, 62, 437, 13033, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37526, 1492, 5291, 286, 477, 886, 13033, 628, 220, 220, 220, 1680, 307, 4465, 329, 4326, 4856, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 477, 62, 437, 13033, 13, 20063, 3419, 628, 628, 198, 6738, 279, 4464, 8463, 13, 16794, 364, 1330, 16931, 2220, 220, 1303, 645, 20402, 25, 412, 32531, 198, 198, 37150, 796, 16931, 2220, 13, 36918, 2848, 7, 834, 3672, 834, 8, 198, 198, 37150, 13, 2860, 62, 75, 12582, 10786, 79, 4464, 8463, 13, 3642, 822, 13, 4023, 3256, 705, 40717, 12915, 4122, 3256, 37250, 64, 952, 4023, 6, 12962, 198, 198, 37150, 13, 2860, 62, 75, 12582, 10786, 79, 4464, 8463, 13, 3642, 822, 13, 18519, 22, 3256, 705, 44, 3069, 11401, 358, 4122, 3256, 37250, 18519, 22, 6, 12962, 198 ]
2.620879
182
import networkx as nx import matplotlib.pyplot as plt G_fb = nx.read_edgelist("facebook_combined.txt", create_using = nx.Graph(), nodetype=int) print(nx.info(G_fb)) # if need drawing ps = nx.spring_layout(G_fb) nx.draw(G_fb, ps, with_labels = False, node_size = 5) plt.show() # ps = nx.spring_layout(G_fb) # betCent = nx.betweenness_centrality(G_fb, normalized=True, endpoints=True) # node_color = [20000.0 * G_fb.degree(v) for v in G_fb] # node_size = [v * 10000 for v in betCent.values()] # plt.figure(figsize=(20,20)) # nx.draw_networkx(G_fb, pos=ps, with_labels=False, # node_color=node_color, # node_size=node_size ) # plt.axis('off')
[ 11748, 3127, 87, 355, 299, 87, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 38, 62, 21855, 796, 299, 87, 13, 961, 62, 276, 25280, 396, 7203, 19024, 62, 24011, 1389, 13, 14116, 1600, 2251, 62, 3500, 796, 299, 87, 13, 37065, 22784, 18666, 2963, 431, 28, 600, 8, 198, 4798, 7, 77, 87, 13, 10951, 7, 38, 62, 21855, 4008, 198, 198, 2, 611, 761, 8263, 198, 862, 796, 299, 87, 13, 16469, 62, 39786, 7, 38, 62, 21855, 8, 198, 77, 87, 13, 19334, 7, 38, 62, 21855, 11, 26692, 11, 351, 62, 23912, 1424, 796, 10352, 11, 10139, 62, 7857, 796, 642, 8, 198, 489, 83, 13, 12860, 3419, 198, 198, 2, 26692, 796, 299, 87, 13, 16469, 62, 39786, 7, 38, 62, 21855, 8, 198, 2, 731, 19085, 796, 299, 87, 13, 23395, 1108, 62, 31463, 414, 7, 38, 62, 21855, 11, 39279, 28, 17821, 11, 886, 13033, 28, 17821, 8, 198, 2, 10139, 62, 8043, 796, 685, 2167, 405, 13, 15, 1635, 402, 62, 21855, 13, 16863, 7, 85, 8, 329, 410, 287, 402, 62, 21855, 60, 198, 2, 10139, 62, 7857, 796, 220, 685, 85, 1635, 33028, 329, 410, 287, 731, 19085, 13, 27160, 3419, 60, 198, 2, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1238, 11, 1238, 4008, 198, 2, 299, 87, 13, 19334, 62, 27349, 87, 7, 38, 62, 21855, 11, 1426, 28, 862, 11, 351, 62, 23912, 1424, 28, 25101, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 8043, 28, 17440, 62, 8043, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 7857, 28, 17440, 62, 7857, 1267, 198, 2, 458, 83, 13, 22704, 10786, 2364, 11537 ]
2.190939
309
from pyqtgraph.Qt import QtGui, QtCore import numpy as np import pyqtgraph as pg import random # Create the main application instance pg.setConfigOption('background', 'w') app = pg.mkQApp() view = pg.PlotWidget() view.resize(800, 600) view.setWindowTitle('Scatter plot using pyqtgraph with PyQT5') view.setAspectLocked(True) view.show() n = 1000 print('Number of points: ' + str(n)) data = np.random.normal(size=(2, n)) # Create the scatter plot and add it to the view scatter = pg.ScatterPlotItem(pen=pg.mkPen(width=5, color='r'), symbol='d', size=2) view.setXRange(-10, 10) view.setYRange(-10, 10) view.addItem(scatter) pos = [{'pos': data[:, i]} for i in range(n)] now = pg.ptime.time() scatter.setData(pos) print("Plot time: {} sec".format(pg.ptime.time() - now)) timer = QtCore.QTimer() timer.timeout.connect(update) timer.start(0) if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
[ 6738, 12972, 80, 25297, 1470, 13, 48, 83, 1330, 33734, 8205, 72, 11, 33734, 14055, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 12972, 80, 25297, 1470, 355, 23241, 198, 11748, 4738, 198, 198, 2, 13610, 262, 1388, 3586, 4554, 198, 6024, 13, 2617, 16934, 19722, 10786, 25249, 3256, 705, 86, 11537, 198, 1324, 796, 23241, 13, 28015, 48, 4677, 3419, 198, 198, 1177, 796, 23241, 13, 43328, 38300, 3419, 198, 1177, 13, 411, 1096, 7, 7410, 11, 10053, 8, 198, 1177, 13, 2617, 27703, 19160, 10786, 3351, 1436, 7110, 1262, 12972, 80, 25297, 1470, 351, 9485, 48, 51, 20, 11537, 198, 1177, 13, 2617, 1722, 806, 43, 3543, 7, 17821, 8, 198, 1177, 13, 12860, 3419, 198, 198, 77, 796, 8576, 198, 4798, 10786, 15057, 286, 2173, 25, 705, 1343, 965, 7, 77, 4008, 198, 7890, 796, 45941, 13, 25120, 13, 11265, 7, 7857, 16193, 17, 11, 299, 4008, 198, 198, 2, 13610, 262, 41058, 7110, 290, 751, 340, 284, 262, 1570, 198, 1416, 1436, 796, 23241, 13, 3351, 1436, 43328, 7449, 7, 3617, 28, 6024, 13, 28015, 25553, 7, 10394, 28, 20, 11, 3124, 11639, 81, 33809, 6194, 11639, 67, 3256, 2546, 28, 17, 8, 198, 1177, 13, 2617, 55, 17257, 32590, 940, 11, 838, 8, 198, 1177, 13, 2617, 56, 17257, 32590, 940, 11, 838, 8, 198, 1177, 13, 2860, 7449, 7, 1416, 1436, 8, 198, 198, 1930, 796, 685, 90, 6, 1930, 10354, 1366, 58, 45299, 1312, 48999, 329, 1312, 287, 2837, 7, 77, 15437, 198, 198, 2197, 796, 23241, 13, 457, 524, 13, 2435, 3419, 198, 1416, 1436, 13, 2617, 6601, 7, 1930, 8, 198, 4798, 7203, 43328, 640, 25, 23884, 792, 1911, 18982, 7, 6024, 13, 457, 524, 13, 2435, 3419, 532, 783, 4008, 628, 198, 198, 45016, 796, 33734, 14055, 13, 48, 48801, 3419, 198, 45016, 13, 48678, 13, 8443, 7, 19119, 8, 198, 45016, 13, 9688, 7, 15, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1330, 25064, 628, 220, 220, 220, 611, 357, 17597, 13, 33152, 13, 3849, 5275, 14512, 352, 8, 393, 407, 468, 35226, 7, 48, 83, 14055, 11, 705, 47, 56, 48, 51, 62, 43717, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33734, 8205, 72, 13, 48, 23416, 13, 39098, 22446, 18558, 62, 3419, 198 ]
2.604113
389
#!/usr/bin/env python __author__ = 'Tony Beltramelli - www.tonybeltramelli.com' import tensorflow as tf sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) import sys from classes.dataset.Generator import * from classes.model.pix2code import * if __name__ == "__main__": argv = sys.argv[1:] if len(argv) < 2: print "Error: not enough argument supplied:" print "train.py <input path> <output path> <is memory intensive (default: 0)> <pretrained weights (optional)>" exit(0) else: input_path = argv[0] output_path = argv[1] use_generator = False if len(argv) < 3 else True if int(argv[2]) == 1 else False pretrained_weigths = None if len(argv) < 4 else argv[3] run(input_path, output_path, is_memory_intensive=use_generator, pretrained_model=pretrained_weigths)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 834, 9800, 834, 796, 705, 29387, 16734, 28073, 15516, 532, 7324, 13, 1122, 88, 37976, 28073, 15516, 13, 785, 6, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 82, 408, 796, 48700, 13, 36044, 7, 11250, 28, 27110, 13, 16934, 2964, 1462, 7, 6404, 62, 25202, 62, 489, 5592, 28, 17821, 4008, 198, 198, 11748, 25064, 198, 198, 6738, 6097, 13, 19608, 292, 316, 13, 8645, 1352, 1330, 1635, 198, 6738, 6097, 13, 19849, 13, 79, 844, 17, 8189, 1330, 1635, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1822, 85, 796, 25064, 13, 853, 85, 58, 16, 47715, 628, 220, 220, 220, 611, 18896, 7, 853, 85, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 12331, 25, 407, 1576, 4578, 14275, 11097, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 27432, 13, 9078, 1279, 15414, 3108, 29, 1279, 22915, 3108, 29, 1279, 271, 4088, 18590, 357, 12286, 25, 657, 8, 29, 1279, 5310, 13363, 19590, 357, 25968, 8, 24618, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 15, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 796, 1822, 85, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 6978, 796, 1822, 85, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 779, 62, 8612, 1352, 796, 10352, 611, 18896, 7, 853, 85, 8, 1279, 513, 2073, 6407, 611, 493, 7, 853, 85, 58, 17, 12962, 6624, 352, 2073, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 62, 732, 328, 9998, 796, 6045, 611, 18896, 7, 853, 85, 8, 1279, 604, 2073, 1822, 85, 58, 18, 60, 628, 220, 220, 220, 1057, 7, 15414, 62, 6978, 11, 5072, 62, 6978, 11, 318, 62, 31673, 62, 38096, 28, 1904, 62, 8612, 1352, 11, 2181, 13363, 62, 19849, 28, 5310, 13363, 62, 732, 328, 9998, 8, 198 ]
2.5
342
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Create function which removes the specified device policies from ChromeDeviceSettingsProto. This function is primarily intended to be used for the implementation of the DeviceOffHours policy. """ from optparse import OptionParser import sys file_header = """// // DO NOT MODIFY THIS FILE DIRECTLY! // IT IS GENERATED BY generate_device_policy_remover.py // FROM chrome_device_policy_pb2.py // #include "chrome/browser/ash/policy/core/device_policy_remover.h" namespace policy { void RemovePolicies(enterprise_management::ChromeDeviceSettingsProto* policies, const std::vector<int>& policy_proto_tags_to_remove) { for (const int tag : policy_proto_tags_to_remove) { switch(tag) { """ file_footer = """ } } } } // namespace policy """ if __name__ == '__main__': sys.exit(main())
[ 2, 15069, 2177, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 37811, 16447, 2163, 543, 20694, 262, 7368, 3335, 4788, 198, 6738, 13282, 24728, 26232, 2964, 1462, 13, 198, 1212, 2163, 318, 7525, 5292, 284, 307, 973, 198, 1640, 262, 7822, 286, 262, 16232, 9362, 39792, 2450, 13, 198, 37811, 198, 198, 6738, 2172, 29572, 1330, 16018, 46677, 198, 11748, 25064, 198, 198, 7753, 62, 25677, 796, 37227, 1003, 198, 1003, 8410, 5626, 19164, 5064, 56, 12680, 45811, 42242, 11319, 0, 198, 1003, 7283, 3180, 24700, 1137, 11617, 11050, 7716, 62, 25202, 62, 30586, 62, 2787, 2502, 13, 9078, 198, 1003, 16034, 32030, 62, 25202, 62, 30586, 62, 40842, 17, 13, 9078, 198, 1003, 198, 198, 2, 17256, 366, 46659, 14, 40259, 14, 1077, 14, 30586, 14, 7295, 14, 25202, 62, 30586, 62, 2787, 2502, 13, 71, 1, 198, 198, 14933, 10223, 2450, 1391, 198, 198, 19382, 17220, 47, 4160, 444, 7, 9255, 7919, 62, 27604, 3712, 1925, 5998, 24728, 26232, 2964, 1462, 9, 4788, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 14367, 3712, 31364, 27, 600, 29, 5, 2450, 62, 1676, 1462, 62, 31499, 62, 1462, 62, 28956, 8, 1391, 198, 220, 329, 357, 9979, 493, 7621, 1058, 2450, 62, 1676, 1462, 62, 31499, 62, 1462, 62, 28956, 8, 1391, 198, 220, 220, 220, 5078, 7, 12985, 8, 1391, 198, 37811, 198, 198, 7753, 62, 5898, 263, 796, 37227, 220, 220, 220, 1782, 198, 220, 1782, 198, 92, 198, 92, 3373, 25745, 2450, 198, 37811, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 25064, 13, 37023, 7, 12417, 28955, 198 ]
3.140575
313
import math import os import shutil import torch from collections import OrderedDict
[ 11748, 10688, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 198, 11748, 28034, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 628, 628, 198 ]
3.75
24
import json from logging import getLogger import attr from sqlalchemy import Text, TypeDecorator, create_engine from sqlalchemy.orm import sessionmaker logger = getLogger(__name__) @attr.s(auto_attribs=True)
[ 11748, 33918, 198, 6738, 18931, 1330, 651, 11187, 1362, 198, 198, 11748, 708, 81, 198, 6738, 44161, 282, 26599, 1330, 8255, 11, 5994, 10707, 273, 1352, 11, 2251, 62, 18392, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 6246, 10297, 198, 198, 6404, 1362, 796, 651, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 8, 198 ]
3.042857
70
# This modules contains definitions used in Exercise Files from typing import Any def print_with_title( output: Any, title: str = '', linebreaks_before: int = 2, linebreaks_after: int = 2, put_stars_after: bool = True, ) -> None: """ Print linebreak-padded output with a title and optional line of 80 stars afterward """ print( '\n' * linebreaks_before + title + '\n' * 2, output, '\n' * linebreaks_after, sep='', ) if put_stars_after: print('*' * 80) if __name__ == '__main__': print_with_title('This module is working as expected!')
[ 2, 770, 13103, 4909, 17336, 973, 287, 32900, 13283, 198, 6738, 19720, 1330, 4377, 628, 198, 4299, 3601, 62, 4480, 62, 7839, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 25, 4377, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 25, 965, 796, 705, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 30058, 62, 19052, 25, 493, 796, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 30058, 62, 8499, 25, 493, 796, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1234, 62, 30783, 62, 8499, 25, 20512, 796, 6407, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 1627, 9032, 12, 79, 29373, 5072, 351, 257, 3670, 290, 11902, 1627, 286, 4019, 5788, 198, 220, 220, 220, 20875, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 59, 77, 6, 1635, 1627, 30058, 62, 19052, 1343, 3670, 1343, 705, 59, 77, 6, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 59, 77, 6, 1635, 1627, 30058, 62, 8499, 11, 198, 220, 220, 220, 220, 220, 220, 220, 41767, 11639, 3256, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 1234, 62, 30783, 62, 8499, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 9, 6, 1635, 4019, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 62, 4480, 62, 7839, 10786, 1212, 8265, 318, 1762, 355, 2938, 0, 11537, 198 ]
2.367273
275
'''MobileNetV3 in PyTorch. See the paper "Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation" for more details. ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import os import sys sys.path.append(".") from meta_utils.meta_quantized_module import MetaQuantConv, MetaQuantLinear def conv3x3(in_planes, out_planes, kernel_size=3, stride=0, padding=1, bias=False, bitW=1): " 3x3 convolution with padding " return MetaQuantConv(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias, bitW=bitW) ''' nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(in_size // reduction), nn.ReLU(inplace=True), nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(in_size), hsigmoid() ''' class Block(nn.Module): '''expand + depthwise + pointwise''' from ptflops import get_model_complexity_info test()
[ 7061, 6, 17066, 7934, 53, 18, 287, 9485, 15884, 354, 13, 198, 198, 6214, 262, 3348, 366, 818, 13658, 1874, 312, 723, 82, 290, 44800, 14835, 11925, 721, 591, 25, 198, 17066, 27862, 329, 40984, 11, 46254, 290, 1001, 5154, 341, 1, 329, 517, 3307, 13, 198, 7061, 6, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 6738, 28034, 13, 20471, 1330, 2315, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 19570, 198, 6738, 13634, 62, 26791, 13, 28961, 62, 40972, 1143, 62, 21412, 1330, 30277, 24915, 3103, 85, 11, 30277, 24915, 14993, 451, 628, 198, 4299, 3063, 18, 87, 18, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 9720, 62, 7857, 28, 18, 11, 33769, 28, 15, 11, 24511, 28, 16, 11, 10690, 28, 25101, 11, 1643, 54, 28, 16, 2599, 198, 220, 220, 220, 366, 513, 87, 18, 3063, 2122, 351, 24511, 366, 198, 220, 220, 220, 1441, 30277, 24915, 3103, 85, 7, 259, 62, 22587, 11, 503, 62, 22587, 11, 9720, 62, 7857, 28, 33885, 62, 7857, 11, 33769, 28, 2536, 485, 11, 24511, 28, 39231, 11, 10690, 28, 65, 4448, 11, 1643, 54, 28, 2545, 54, 8, 628, 198, 198, 7061, 6, 198, 20471, 13, 48003, 425, 48997, 27201, 17, 67, 7, 16, 828, 198, 20471, 13, 3103, 85, 17, 67, 7, 259, 62, 7857, 11, 287, 62, 7857, 3373, 7741, 11, 9720, 62, 7857, 28, 16, 11, 33769, 28, 16, 11, 24511, 28, 15, 11, 10690, 28, 25101, 828, 198, 20471, 13, 33, 963, 35393, 17, 67, 7, 259, 62, 7857, 3373, 7741, 828, 198, 20471, 13, 3041, 41596, 7, 259, 5372, 28, 17821, 828, 198, 20471, 13, 3103, 85, 17, 67, 7, 259, 62, 7857, 3373, 7741, 11, 287, 62, 7857, 11, 9720, 62, 7857, 28, 16, 11, 33769, 28, 16, 11, 24511, 28, 15, 11, 10690, 28, 25101, 828, 198, 20471, 13, 33, 963, 35393, 17, 67, 7, 259, 62, 7857, 828, 198, 11994, 17225, 1868, 3419, 198, 7061, 6, 628, 198, 4871, 9726, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 705, 7061, 11201, 392, 1343, 6795, 3083, 1343, 966, 3083, 7061, 6, 628, 628, 198, 198, 6738, 42975, 2704, 2840, 1330, 651, 62, 19849, 62, 41887, 414, 62, 10951, 198, 198, 9288, 3419, 198 ]
2.743655
394
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1beta1.schema.trainingjob.definition", manifest={ "AutoMlImageClassification", "AutoMlImageClassificationInputs", "AutoMlImageClassificationMetadata", }, ) class AutoMlImageClassification(proto.Message): r"""A TrainingJob that trains and uploads an AutoML Image Classification Model. Attributes: inputs (~.automl_image_classification.AutoMlImageClassificationInputs): The input parameters of this TrainingJob. metadata (~.automl_image_classification.AutoMlImageClassificationMetadata): The metadata information. """ inputs = proto.Field( proto.MESSAGE, number=1, message="AutoMlImageClassificationInputs", ) metadata = proto.Field( proto.MESSAGE, number=2, message="AutoMlImageClassificationMetadata", ) class AutoMlImageClassificationInputs(proto.Message): r""" Attributes: model_type (~.automl_image_classification.AutoMlImageClassificationInputs.ModelType): base_model_id (str): The ID of the ``base`` model. If it is specified, the new model will be trained based on the ``base`` model. Otherwise, the new model will be trained from scratch. The ``base`` model must be in the same Project and Location as the new Model to train, and have the same modelType. budget_milli_node_hours (int): The training budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour. The actual metadata.costMilliNodeHours will be equal or less than this value. If further model training ceases to provide any improvements, it will stop without using the full budget and the metadata.successfulStopReason will be ``model-converged``. Note, node_hour = actual_hour \* number_of_nodes_involved. For modelType ``cloud``\ (default), the budget must be between 8,000 and 800,000 milli node hours, inclusive. The default value is 192,000 which represents one day in wall time, considering 8 nodes are used. For model types ``mobile-tf-low-latency-1``, ``mobile-tf-versatile-1``, ``mobile-tf-high-accuracy-1``, the training budget must be between 1,000 and 100,000 milli node hours, inclusive. The default value is 24,000 which represents one day in wall time on a single node that is used. disable_early_stopping (bool): Use the entire training budget. This disables the early stopping feature. When false the early stopping feature is enabled, which means that AutoML Image Classification might stop training before the entire training budget has been used. multi_label (bool): If false, a single-label (multi-class) Model will be trained (i.e. assuming that for each image just up to one annotation may be applicable). If true, a multi-label Model will be trained (i.e. assuming that for each image multiple annotations may be applicable). """ class ModelType(proto.Enum): r"""""" MODEL_TYPE_UNSPECIFIED = 0 CLOUD = 1 MOBILE_TF_LOW_LATENCY_1 = 2 MOBILE_TF_VERSATILE_1 = 3 MOBILE_TF_HIGH_ACCURACY_1 = 4 model_type = proto.Field(proto.ENUM, number=1, enum=ModelType,) base_model_id = proto.Field(proto.STRING, number=2) budget_milli_node_hours = proto.Field(proto.INT64, number=3) disable_early_stopping = proto.Field(proto.BOOL, number=4) multi_label = proto.Field(proto.BOOL, number=5) class AutoMlImageClassificationMetadata(proto.Message): r""" Attributes: cost_milli_node_hours (int): The actual training cost of creating this model, expressed in milli node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed to not exceed inputs.budgetMilliNodeHours. successful_stop_reason (~.automl_image_classification.AutoMlImageClassificationMetadata.SuccessfulStopReason): For successful job completions, this is the reason why the job has finished. """ class SuccessfulStopReason(proto.Enum): r"""""" SUCCESSFUL_STOP_REASON_UNSPECIFIED = 0 BUDGET_REACHED = 1 MODEL_CONVERGED = 2 cost_milli_node_hours = proto.Field(proto.INT64, number=1) successful_stop_reason = proto.Field( proto.ENUM, number=2, enum=SuccessfulStopReason, ) __all__ = tuple(sorted(__protobuf__.manifest))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 15069, 12131, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 44876, 220, 1303, 2099, 25, 8856, 628, 198, 834, 11235, 672, 3046, 834, 796, 44876, 13, 21412, 7, 198, 220, 220, 220, 5301, 2625, 13297, 13, 17721, 13, 1872, 24254, 13, 85, 16, 31361, 16, 13, 15952, 2611, 13, 34409, 21858, 13, 46758, 1600, 198, 220, 220, 220, 10561, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27722, 44, 75, 5159, 9487, 2649, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27722, 44, 75, 5159, 9487, 2649, 20560, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27722, 44, 75, 5159, 9487, 2649, 9171, 14706, 1600, 198, 220, 220, 220, 8964, 198, 8, 628, 198, 4871, 11160, 44, 75, 5159, 9487, 2649, 7, 1676, 1462, 13, 12837, 2599, 198, 220, 220, 220, 374, 37811, 32, 13614, 33308, 326, 13404, 290, 9516, 82, 281, 11160, 5805, 7412, 198, 220, 220, 220, 40984, 9104, 13, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 17311, 31034, 13, 2306, 296, 75, 62, 9060, 62, 4871, 2649, 13, 27722, 44, 75, 5159, 9487, 2649, 20560, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 10007, 286, 428, 13614, 33308, 13, 198, 220, 220, 220, 220, 220, 220, 220, 20150, 31034, 13, 2306, 296, 75, 62, 9060, 62, 4871, 2649, 13, 27722, 44, 75, 5159, 9487, 2649, 9171, 14706, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 20150, 1321, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 17311, 796, 44876, 13, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44876, 13, 44, 1546, 4090, 8264, 11, 1271, 28, 16, 11, 3275, 2625, 27722, 44, 75, 5159, 9487, 2649, 20560, 82, 1600, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 20150, 796, 44876, 13, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44876, 13, 44, 1546, 4090, 8264, 11, 1271, 28, 17, 11, 3275, 2625, 27722, 44, 75, 5159, 9487, 2649, 9171, 14706, 1600, 198, 220, 220, 220, 1267, 628, 198, 4871, 11160, 44, 75, 5159, 9487, 2649, 20560, 82, 7, 1676, 1462, 13, 12837, 2599, 198, 220, 220, 220, 374, 37811, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 4906, 31034, 13, 2306, 296, 75, 62, 9060, 62, 4871, 2649, 13, 27722, 44, 75, 5159, 9487, 2649, 20560, 82, 13, 17633, 6030, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 62, 19849, 62, 312, 357, 2536, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4522, 286, 262, 7559, 8692, 15506, 2746, 13, 1002, 340, 318, 7368, 11, 262, 649, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 481, 307, 8776, 1912, 319, 262, 7559, 8692, 15506, 2746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15323, 11, 262, 649, 2746, 481, 307, 8776, 422, 12692, 13, 383, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 8692, 15506, 2746, 1276, 307, 287, 262, 976, 4935, 290, 13397, 355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 649, 9104, 284, 4512, 11, 290, 423, 262, 976, 2746, 6030, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4466, 62, 17805, 72, 62, 17440, 62, 24425, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 3047, 4466, 286, 4441, 428, 2746, 11, 6241, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3939, 72, 10139, 2250, 1312, 13, 68, 13, 352, 11, 830, 1988, 287, 428, 2214, 1724, 352, 10139, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1711, 13, 383, 4036, 20150, 13, 15805, 22603, 72, 19667, 39792, 481, 307, 4961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 1342, 621, 428, 1988, 13, 1002, 2252, 2746, 3047, 42217, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2148, 597, 8561, 11, 340, 481, 2245, 1231, 1262, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 4466, 290, 262, 20150, 13, 17212, 19485, 45008, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 19849, 12, 1102, 332, 2004, 15506, 13, 5740, 11, 10139, 62, 9769, 796, 4036, 62, 9769, 3467, 9, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 62, 1659, 62, 77, 4147, 62, 44697, 13, 1114, 2746, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 17721, 15506, 59, 357, 12286, 828, 262, 4466, 1276, 307, 1022, 807, 11, 830, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10460, 11, 830, 3939, 72, 10139, 2250, 11, 19889, 13, 383, 4277, 1988, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17817, 11, 830, 543, 6870, 530, 1110, 287, 3355, 640, 11, 6402, 807, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13760, 389, 973, 13, 1114, 2746, 3858, 7559, 24896, 12, 27110, 12, 9319, 12, 15460, 1387, 12, 16, 15506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 24896, 12, 27110, 12, 690, 12610, 12, 16, 15506, 11, 7559, 24896, 12, 27110, 12, 8929, 12, 4134, 23843, 12, 16, 15506, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 3047, 4466, 1276, 307, 1022, 352, 11, 830, 290, 1802, 11, 830, 3939, 72, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 2250, 11, 19889, 13, 383, 4277, 1988, 318, 1987, 11, 830, 543, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6870, 530, 1110, 287, 3355, 640, 319, 257, 2060, 10139, 326, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15560, 62, 11458, 62, 301, 33307, 357, 30388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5765, 262, 2104, 3047, 4466, 13, 770, 595, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1903, 12225, 3895, 13, 1649, 3991, 262, 1903, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12225, 3895, 318, 9343, 11, 543, 1724, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11160, 5805, 7412, 40984, 1244, 2245, 3047, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 878, 262, 2104, 3047, 4466, 468, 587, 973, 13, 198, 220, 220, 220, 220, 220, 220, 220, 5021, 62, 18242, 357, 30388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 3991, 11, 257, 2060, 12, 18242, 357, 41684, 12, 4871, 8, 9104, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 8776, 357, 72, 13, 68, 13, 13148, 326, 329, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 655, 510, 284, 530, 23025, 743, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9723, 737, 1002, 2081, 11, 257, 5021, 12, 18242, 9104, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 307, 8776, 357, 72, 13, 68, 13, 13148, 326, 329, 1123, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3294, 37647, 743, 307, 9723, 737, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1398, 9104, 6030, 7, 1676, 1462, 13, 4834, 388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 15931, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 19164, 3698, 62, 25216, 62, 4944, 48451, 28343, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 7852, 2606, 35, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 13070, 3483, 2538, 62, 10234, 62, 43, 3913, 62, 43, 1404, 45155, 62, 16, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 13070, 3483, 2538, 62, 10234, 62, 28884, 1404, 41119, 62, 16, 796, 513, 198, 220, 220, 220, 220, 220, 220, 220, 13070, 3483, 2538, 62, 10234, 62, 39, 18060, 62, 26861, 4261, 43300, 62, 16, 796, 604, 628, 220, 220, 220, 2746, 62, 4906, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 1677, 5883, 11, 1271, 28, 16, 11, 33829, 28, 17633, 6030, 35751, 628, 220, 220, 220, 2779, 62, 19849, 62, 312, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 18601, 2751, 11, 1271, 28, 17, 8, 628, 220, 220, 220, 4466, 62, 17805, 72, 62, 17440, 62, 24425, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 12394, 2414, 11, 1271, 28, 18, 8, 628, 220, 220, 220, 15560, 62, 11458, 62, 301, 33307, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 8202, 3535, 11, 1271, 28, 19, 8, 628, 220, 220, 220, 5021, 62, 18242, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 8202, 3535, 11, 1271, 28, 20, 8, 628, 198, 4871, 11160, 44, 75, 5159, 9487, 2649, 9171, 14706, 7, 1676, 1462, 13, 12837, 2599, 198, 220, 220, 220, 374, 37811, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 62, 17805, 72, 62, 17440, 62, 24425, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4036, 3047, 1575, 286, 4441, 428, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 11, 6241, 287, 3939, 72, 10139, 2250, 11, 1312, 13, 68, 13, 352, 11, 830, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 287, 428, 2214, 1724, 352, 10139, 1711, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34234, 2308, 284, 407, 7074, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 13, 37315, 22603, 72, 19667, 39792, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4388, 62, 11338, 62, 41181, 31034, 13, 2306, 296, 75, 62, 9060, 62, 4871, 2649, 13, 27722, 44, 75, 5159, 9487, 2649, 9171, 14706, 13, 33244, 913, 19485, 45008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 4388, 1693, 1224, 45240, 11, 428, 318, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 1521, 262, 1693, 468, 5201, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1398, 16282, 913, 19485, 45008, 7, 1676, 1462, 13, 4834, 388, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 374, 15931, 15931, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 13558, 4093, 7597, 46476, 62, 2257, 3185, 62, 2200, 36033, 62, 4944, 48451, 28343, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 347, 8322, 18851, 62, 2200, 16219, 1961, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 19164, 3698, 62, 10943, 5959, 38, 1961, 796, 362, 628, 220, 220, 220, 1575, 62, 17805, 72, 62, 17440, 62, 24425, 796, 44876, 13, 15878, 7, 1676, 1462, 13, 12394, 2414, 11, 1271, 28, 16, 8, 628, 220, 220, 220, 4388, 62, 11338, 62, 41181, 796, 44876, 13, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 44876, 13, 1677, 5883, 11, 1271, 28, 17, 11, 33829, 28, 33244, 913, 19485, 45008, 11, 198, 220, 220, 220, 1267, 628, 198, 834, 439, 834, 796, 46545, 7, 82, 9741, 7, 834, 11235, 672, 3046, 834, 13, 805, 8409, 4008, 198 ]
2.580569
2,110
""" This package is used to simulate RPi.GPIO library during development or if GPIO are not available. """
[ 37811, 198, 1212, 5301, 318, 973, 284, 29308, 25812, 72, 13, 16960, 9399, 5888, 1141, 2478, 393, 611, 50143, 389, 407, 1695, 13, 198, 37811 ]
4.24
25
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 18 15:34:25 2018 @author: philld """ import requests import json import re specfile="../../docs/spec/src/info_openapi.json" #docsfile="../../docs/input/web_api.cm" docsfile="/home/philld/reps/dhis2-docs/src/commonmark/en/content/developer/web-api.md" ofile=open(specfile,'r') openapi = json.load(ofile) ofile.close() docfile = open(docsfile, "r") docs = docfile.read() docfile.close() recurseDict(openapi,"DESC") apifile= open(specfile,'w') apifile.write(json.dumps(openapi , sort_keys=False, indent=2, separators=(',', ': '))) apifile.close()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3300, 2758, 1248, 1315, 25, 2682, 25, 1495, 2864, 198, 198, 31, 9800, 25, 872, 359, 67, 198, 37811, 198, 198, 11748, 7007, 198, 11748, 33918, 198, 11748, 302, 198, 198, 16684, 7753, 2625, 40720, 40720, 31628, 14, 16684, 14, 10677, 14, 10951, 62, 9654, 15042, 13, 17752, 1, 198, 2, 31628, 7753, 2625, 40720, 40720, 31628, 14, 15414, 14, 12384, 62, 15042, 13, 11215, 1, 198, 198, 31628, 7753, 35922, 11195, 14, 746, 359, 67, 14, 260, 862, 14, 67, 14363, 17, 12, 31628, 14, 10677, 14, 11321, 4102, 14, 268, 14, 11299, 14, 16244, 263, 14, 12384, 12, 15042, 13, 9132, 1, 628, 198, 1659, 576, 28, 9654, 7, 16684, 7753, 4032, 81, 11537, 198, 198, 9654, 15042, 796, 33918, 13, 2220, 7, 1659, 576, 8, 198, 1659, 576, 13, 19836, 3419, 198, 198, 15390, 7753, 796, 1280, 7, 31628, 7753, 11, 366, 81, 4943, 220, 198, 31628, 796, 2205, 7753, 13, 961, 3419, 220, 198, 15390, 7753, 13, 19836, 3419, 628, 198, 198, 8344, 12321, 35, 713, 7, 9654, 15042, 553, 30910, 34, 4943, 198, 198, 499, 361, 576, 28, 1280, 7, 16684, 7753, 4032, 86, 11537, 198, 499, 361, 576, 13, 13564, 7, 17752, 13, 67, 8142, 7, 9654, 15042, 837, 3297, 62, 13083, 28, 25101, 11, 33793, 28, 17, 11, 2880, 2024, 16193, 3256, 3256, 705, 25, 705, 22305, 198, 499, 361, 576, 13, 19836, 3419, 628, 628 ]
2.417625
261
from __future__ import print_function from __future__ import absolute_import from __future__ import division import rhinoscriptsyntax as rs from compas_rhino.geometry import RhinoCurve __all__ = [ 'RhinoCurve' ]
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 198, 11748, 9529, 11996, 6519, 1837, 41641, 355, 44608, 198, 6738, 552, 292, 62, 17179, 2879, 13, 469, 15748, 1330, 47759, 26628, 303, 628, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 705, 38576, 2879, 26628, 303, 6, 198, 60, 628 ]
3.235294
68
from rest_framework import serializers from .models import CaseDetail class CaseDetailSerializer(serializers.ModelSerializer): """CaseDetailSerializer use the CaseDetail Model"""
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 198, 6738, 764, 27530, 1330, 8913, 11242, 603, 628, 198, 4871, 8913, 11242, 603, 32634, 7509, 7, 46911, 11341, 13, 17633, 32634, 7509, 2599, 628, 220, 220, 220, 37227, 20448, 11242, 603, 32634, 7509, 779, 262, 8913, 11242, 603, 9104, 37811, 198 ]
3.74
50
from __future__ import unicode_literals from requests import auth
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 7007, 1330, 6284, 628, 628 ]
3.888889
18
from pyrocko import moment_tensor as mtm magnitude = 5.4 exp = mtm.magnitude_to_moment(magnitude) # convert the mag to moment in [Nm] # init pyrocko moment tensor m = mtm.MomentTensor( mnn = 0.04*exp, mee = 0.6*exp, mdd = -0.63*exp, mne = 0.04*exp, mnd = 0.5*exp, med = 0.21*exp) print(m) # print moment tensor
[ 6738, 12972, 10823, 78, 1330, 2589, 62, 83, 22854, 355, 285, 17209, 198, 198, 76, 4660, 3984, 796, 642, 13, 19, 198, 198, 11201, 796, 285, 17209, 13, 76, 4660, 3984, 62, 1462, 62, 32542, 298, 7, 76, 4660, 3984, 8, 220, 1303, 10385, 262, 2153, 284, 2589, 287, 685, 45, 76, 60, 198, 198, 2, 2315, 12972, 10823, 78, 2589, 11192, 273, 198, 76, 796, 285, 17209, 13, 29252, 298, 51, 22854, 7, 198, 220, 220, 220, 285, 20471, 796, 657, 13, 3023, 9, 11201, 11, 198, 220, 220, 220, 502, 68, 796, 657, 13, 21, 9, 11201, 11, 198, 220, 220, 220, 285, 1860, 796, 532, 15, 13, 5066, 9, 11201, 11, 198, 220, 220, 220, 285, 710, 796, 657, 13, 3023, 9, 11201, 11, 198, 220, 220, 220, 285, 358, 796, 657, 13, 20, 9, 11201, 11, 198, 220, 220, 220, 1117, 796, 657, 13, 2481, 9, 11201, 8, 198, 198, 4798, 7, 76, 8, 220, 1303, 3601, 2589, 11192, 273, 628, 198 ]
2.066265
166
# -*- coding: utf-8 -*- """Falcon app used for testing.""" # standard library import logging from typing import Any # third-party import falcon # first-party from falcon_provider_logger.middleware import LoggerMiddleware class LoggerCustomLoggerResource: """Logger middleware testing resource.""" log = None def on_get(self, req: falcon.Request, resp: falcon.Response) -> None: """Support GET method.""" key: str = req.get_param('key') self.log.debug(f'DEBUG {key}') self.log.info(f'INFO {key}') self.log.warning(f'WARNING {key}') self.log.error(f'ERROR {key}') self.log.critical(f'CRITICAL {key}') resp.body = f'Logged - {key}' def on_post(self, req: falcon.Request, resp: falcon.Response) -> None: """Support POST method.""" key: str = req.get_param('key') value: Any = req.get_param('value') self.log.debug(f'DEBUG {key} {value}') self.log.info(f'INFO {key} {value}') self.log.warning(f'WARNING {key} {value}') self.log.error(f'ERROR {key} {value}') self.log.critical(f'CRITICAL {key} {value}') resp.body = f'Logged - {key}' logger: object = logging.getLogger('custom') app_custom_logger = falcon.API(middleware=[LoggerMiddleware(logger=logger)]) app_custom_logger.add_route('/middleware', LoggerCustomLoggerResource())
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 41129, 1102, 598, 973, 329, 4856, 526, 15931, 198, 2, 3210, 5888, 198, 11748, 18931, 198, 6738, 19720, 1330, 4377, 198, 198, 2, 2368, 12, 10608, 198, 11748, 24215, 1102, 198, 198, 2, 717, 12, 10608, 198, 6738, 24215, 1102, 62, 15234, 1304, 62, 6404, 1362, 13, 27171, 1574, 1330, 5972, 1362, 34621, 1574, 628, 198, 4871, 5972, 1362, 15022, 11187, 1362, 26198, 25, 198, 220, 220, 220, 37227, 11187, 1362, 3504, 1574, 4856, 8271, 526, 15931, 628, 220, 220, 220, 2604, 796, 6045, 628, 220, 220, 220, 825, 319, 62, 1136, 7, 944, 11, 43089, 25, 24215, 1102, 13, 18453, 11, 1217, 25, 24215, 1102, 13, 31077, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15514, 17151, 2446, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 965, 796, 43089, 13, 1136, 62, 17143, 10786, 2539, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 24442, 7, 69, 6, 30531, 1391, 2539, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 10951, 7, 69, 6, 10778, 1391, 2539, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 43917, 7, 69, 6, 31502, 1391, 2539, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 18224, 7, 69, 6, 24908, 1391, 2539, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 34666, 7, 69, 6, 9419, 2043, 20151, 1391, 2539, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 13, 2618, 796, 277, 6, 11187, 2004, 532, 1391, 2539, 92, 6, 628, 220, 220, 220, 825, 319, 62, 7353, 7, 944, 11, 43089, 25, 24215, 1102, 13, 18453, 11, 1217, 25, 24215, 1102, 13, 31077, 8, 4613, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 15514, 24582, 2446, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 25, 965, 796, 43089, 13, 1136, 62, 17143, 10786, 2539, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 4377, 796, 43089, 13, 1136, 62, 17143, 10786, 8367, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 24442, 7, 69, 6, 30531, 1391, 2539, 92, 1391, 8367, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 10951, 7, 69, 6, 10778, 1391, 2539, 92, 1391, 8367, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 43917, 7, 69, 6, 31502, 1391, 2539, 92, 1391, 8367, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 18224, 7, 69, 6, 24908, 1391, 2539, 92, 1391, 8367, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 13, 34666, 7, 69, 6, 9419, 2043, 20151, 1391, 2539, 92, 1391, 8367, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1217, 13, 2618, 796, 277, 6, 11187, 2004, 532, 1391, 2539, 92, 6, 628, 198, 6404, 1362, 25, 2134, 796, 18931, 13, 1136, 11187, 1362, 10786, 23144, 11537, 198, 1324, 62, 23144, 62, 6404, 1362, 796, 24215, 1102, 13, 17614, 7, 27171, 1574, 41888, 11187, 1362, 34621, 1574, 7, 6404, 1362, 28, 6404, 1362, 8, 12962, 198, 1324, 62, 23144, 62, 6404, 1362, 13, 2860, 62, 38629, 10786, 14, 27171, 1574, 3256, 5972, 1362, 15022, 11187, 1362, 26198, 28955, 198 ]
2.3821
581
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Poshan Didi! """ import logging import logging.handlers import beneficiary_bot import nurse_bot from telegram.ext import Updater, CommandHandler, MessageHandler, Filters from simple_settings import settings from registration import registration_conversation # Enable logging logging.basicConfig(filename=settings.LOG_FILENAME, format=settings.LOG_FORMAT, level=settings.LOG_LEVEL) logger = logging.getLogger(__name__) handler = logging.handlers.RotatingFileHandler( settings.LOG_FILENAME, maxBytes=10*1024*1024, backupCount=100 ) logger.addHandler(handler) # Define a few command handlers. These usually take the two arguments bot and # update. Error handlers also receive the raised TelegramError object in error. def error(update, context): """Log Errors caused by Updates.""" logger.warning('Update "%s" caused error "%s"', update, context.error) def main(): """Start the bot.""" beneficiary_bot.setup_state_machines() # Create the Updater and pass it the bot's token. # Make sure to set use_context=True to use the new context based callbacks updater = Updater(settings.TELEGRAM_TOKEN, use_context=True) # Get the dispatcher to register handlers dp = updater.dispatcher # Add the regsitration conversation, which handles the /start command dp.add_handler(registration_conversation) # Add a nurse command to skip the current escalated message # (only allow the nurse to access this command) # dp.add_handler(CommandHandler('noreply', nurse_bot.skip, # Filters.chat(settings.NURSE_CHAT_ID))) # Add a nurse command to set state for a user (only allow the nurse to access this command) # dp.add_handler(CommandHandler('state', nurse_bot.set_state, # Filters.chat(settings.NURSE_CHAT_ID))) # Add a nurse command to set state for a user (only allow the nurse to access this command) # dp.add_handler(CommandHandler('state', nurse_bot.set_super_state, # Filters.chat(settings.GOD_MODE))) # dp.add_handler(CommandHandler('cohortstate', nurse_bot.set_cohort_super_state, # Filters.chat(settings.GOD_MODE))) # Add a nurse command to set state for a user (only allow the nurse to access this command) # dp.add_handler(CommandHandler('send_next_modules', nurse_bot.send_next_modules, # Filters.chat(settings.GOD_MODE))) # Add a nurse command to set state for a user (only allow the nurse to access this command) # dp.add_handler(CommandHandler('vhnd', nurse_bot.send_vhnd_reminder, # Filters.chat(settings.GOD_MODE))) # sign off messages dp.add_handler(CommandHandler('sendglobal', nurse_bot.send_global_msg, Filters.chat(settings.GOD_MODE))) # on non-command i.e., a normal message message - process_user_input the # message from Telegram. Use different handlers for the nurse and user # messages dp.add_handler(MessageHandler( (Filters.text & (~ Filters.chat(settings.NURSE_CHAT_ID))), beneficiary_bot.all_done)) # dp.add_handler(MessageHandler( # (Filters.text & (~ Filters.chat(settings.NURSE_CHAT_ID))), beneficiary_bot.process_user_input)) # dp.add_handler(MessageHandler( # (Filters.text & Filters.chat(settings.NURSE_CHAT_ID)), nurse_bot.process_nurse_input)) # log all errors dp.add_error_handler(error) logger.info( '************************** POSHAN DIDI HAS RETURNED **************************') # Start the Bot. updater.start_polling() # Run the bot until you press Ctrl-C or the process receives SIGINT, # SIGTERM or SIGABRT. This should be used most of the time, since # start_polling() is non-blocking and will stop the bot gracefully. updater.idle() if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 47, 3768, 272, 7731, 72, 0, 198, 37811, 198, 198, 11748, 18931, 198, 11748, 18931, 13, 4993, 8116, 198, 198, 11748, 33867, 62, 13645, 198, 11748, 15849, 62, 13645, 198, 6738, 573, 30536, 13, 2302, 1330, 3205, 67, 729, 11, 9455, 25060, 11, 16000, 25060, 11, 7066, 1010, 198, 6738, 2829, 62, 33692, 1330, 6460, 198, 6738, 9352, 1330, 9352, 62, 1102, 690, 341, 198, 198, 2, 27882, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 34345, 28, 33692, 13, 25294, 62, 46700, 1677, 10067, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 28, 33692, 13, 25294, 62, 21389, 1404, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 33692, 13, 25294, 62, 2538, 18697, 8, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 30281, 796, 18931, 13, 4993, 8116, 13, 24864, 803, 8979, 25060, 7, 198, 220, 220, 220, 6460, 13, 25294, 62, 46700, 1677, 10067, 11, 198, 220, 220, 220, 3509, 45992, 28, 940, 9, 35500, 9, 35500, 11, 198, 220, 220, 220, 11559, 12332, 28, 3064, 198, 8, 198, 198, 6404, 1362, 13, 2860, 25060, 7, 30281, 8, 198, 198, 2, 2896, 500, 257, 1178, 3141, 32847, 13, 2312, 3221, 1011, 262, 734, 7159, 10214, 290, 198, 2, 4296, 13, 13047, 32847, 635, 3328, 262, 4376, 50203, 12331, 2134, 287, 4049, 13, 198, 198, 4299, 4049, 7, 19119, 11, 4732, 2599, 198, 220, 220, 220, 37227, 11187, 44225, 4073, 416, 28090, 526, 15931, 198, 220, 220, 220, 49706, 13, 43917, 10786, 10260, 36521, 82, 1, 4073, 4049, 36521, 82, 1, 3256, 4296, 11, 4732, 13, 18224, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 10434, 262, 10214, 526, 15931, 198, 220, 220, 220, 33867, 62, 13645, 13, 40406, 62, 5219, 62, 76, 620, 1127, 3419, 628, 220, 220, 220, 1303, 13610, 262, 3205, 67, 729, 290, 1208, 340, 262, 10214, 338, 11241, 13, 198, 220, 220, 220, 1303, 6889, 1654, 284, 900, 779, 62, 22866, 28, 17821, 284, 779, 262, 649, 4732, 1912, 869, 10146, 198, 220, 220, 220, 2325, 729, 796, 3205, 67, 729, 7, 33692, 13, 9328, 2538, 10761, 2390, 62, 10468, 43959, 11, 779, 62, 22866, 28, 17821, 8, 628, 220, 220, 220, 1303, 3497, 262, 49952, 284, 7881, 32847, 198, 220, 220, 220, 288, 79, 796, 2325, 729, 13, 6381, 8071, 2044, 628, 220, 220, 220, 1303, 3060, 262, 842, 48937, 1358, 5273, 11, 543, 17105, 262, 1220, 9688, 3141, 198, 220, 220, 220, 288, 79, 13, 2860, 62, 30281, 7, 2301, 33397, 62, 1102, 690, 341, 8, 628, 220, 220, 220, 1303, 3060, 257, 15849, 3141, 284, 14267, 262, 1459, 33190, 3275, 220, 198, 220, 220, 220, 1303, 357, 8807, 1249, 262, 15849, 284, 1895, 428, 3141, 8, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 77, 382, 2145, 3256, 15849, 62, 13645, 13, 48267, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 45, 4261, 5188, 62, 31542, 62, 2389, 22305, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3060, 257, 15849, 3141, 284, 900, 1181, 329, 257, 2836, 357, 8807, 1249, 262, 15849, 284, 1895, 428, 3141, 8, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 5219, 3256, 15849, 62, 13645, 13, 2617, 62, 5219, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 45, 4261, 5188, 62, 31542, 62, 2389, 22305, 628, 220, 220, 220, 1303, 3060, 257, 15849, 3141, 284, 900, 1181, 329, 257, 2836, 357, 8807, 1249, 262, 15849, 284, 1895, 428, 3141, 8, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 5219, 3256, 15849, 62, 13645, 13, 2617, 62, 16668, 62, 5219, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 38, 3727, 62, 49058, 22305, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 1073, 71, 419, 5219, 3256, 15849, 62, 13645, 13, 2617, 62, 1073, 71, 419, 62, 16668, 62, 5219, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 38, 3727, 62, 49058, 22305, 628, 220, 220, 220, 1303, 3060, 257, 15849, 3141, 284, 900, 1181, 329, 257, 2836, 357, 8807, 1249, 262, 15849, 284, 1895, 428, 3141, 8, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 21280, 62, 19545, 62, 18170, 3256, 15849, 62, 13645, 13, 21280, 62, 19545, 62, 18170, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 38, 3727, 62, 49058, 22305, 628, 220, 220, 220, 1303, 3060, 257, 15849, 3141, 284, 900, 1181, 329, 257, 2836, 357, 8807, 1249, 262, 15849, 284, 1895, 428, 3141, 8, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 85, 71, 358, 3256, 15849, 62, 13645, 13, 21280, 62, 85, 71, 358, 62, 2787, 5540, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 38, 3727, 62, 49058, 22305, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1051, 572, 6218, 198, 220, 220, 220, 288, 79, 13, 2860, 62, 30281, 7, 21575, 25060, 10786, 21280, 20541, 3256, 15849, 62, 13645, 13, 21280, 62, 20541, 62, 19662, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7066, 1010, 13, 17006, 7, 33692, 13, 38, 3727, 62, 49058, 22305, 628, 220, 220, 220, 1303, 319, 1729, 12, 21812, 1312, 13, 68, 1539, 257, 3487, 3275, 3275, 532, 1429, 62, 7220, 62, 15414, 262, 198, 220, 220, 220, 1303, 3275, 422, 50203, 13, 5765, 1180, 32847, 329, 262, 15849, 290, 2836, 198, 220, 220, 220, 1303, 6218, 198, 220, 220, 220, 288, 79, 13, 2860, 62, 30281, 7, 12837, 25060, 7, 198, 220, 220, 220, 220, 220, 220, 220, 357, 11928, 1010, 13, 5239, 1222, 31034, 7066, 1010, 13, 17006, 7, 33692, 13, 45, 4261, 5188, 62, 31542, 62, 2389, 4008, 828, 33867, 62, 13645, 13, 439, 62, 28060, 4008, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 12837, 25060, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 357, 11928, 1010, 13, 5239, 1222, 31034, 7066, 1010, 13, 17006, 7, 33692, 13, 45, 4261, 5188, 62, 31542, 62, 2389, 4008, 828, 33867, 62, 13645, 13, 14681, 62, 7220, 62, 15414, 4008, 198, 220, 220, 220, 1303, 288, 79, 13, 2860, 62, 30281, 7, 12837, 25060, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 357, 11928, 1010, 13, 5239, 1222, 7066, 1010, 13, 17006, 7, 33692, 13, 45, 4261, 5188, 62, 31542, 62, 2389, 36911, 15849, 62, 13645, 13, 14681, 62, 77, 12321, 62, 15414, 4008, 628, 220, 220, 220, 1303, 2604, 477, 8563, 198, 220, 220, 220, 288, 79, 13, 2860, 62, 18224, 62, 30281, 7, 18224, 8, 198, 220, 220, 220, 49706, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 8412, 4557, 1174, 28069, 39, 1565, 35697, 40, 33930, 30826, 27064, 1961, 220, 8412, 4557, 1174, 11537, 628, 220, 220, 220, 1303, 7253, 262, 18579, 13, 198, 220, 220, 220, 2325, 729, 13, 9688, 62, 30393, 278, 3419, 628, 220, 220, 220, 1303, 5660, 262, 10214, 1566, 345, 1803, 19212, 12, 34, 393, 262, 1429, 11583, 33993, 12394, 11, 198, 220, 220, 220, 1303, 33993, 5781, 44, 393, 33993, 6242, 14181, 13, 770, 815, 307, 973, 749, 286, 262, 640, 11, 1201, 198, 220, 220, 220, 1303, 923, 62, 30393, 278, 3419, 318, 1729, 12, 41938, 290, 481, 2245, 262, 10214, 11542, 2759, 13, 198, 220, 220, 220, 2325, 729, 13, 312, 293, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.62129
1,550
''' Policy and intrinsic reward models. ''' import numpy as np import tensorflow as tf from curiosity.models.model_building_blocks import ConvNetwithBypasses from curiosity.models import explicit_future_prediction_base as fp_base from curiosity.models import jerk_models import distutils.version use_tf1 = distutils.version.LooseVersion(tf.VERSION) >= distutils.version.LooseVersion('1.0.0') #TODO replace all these makeshift helpers def postprocess_depths(depths): ''' Assumes depths is of shape [batch_size, time_number, height, width, 3] ''' depths = tf.cast(depths, tf.float32) depths = (depths[:,:,:,:,0:1] * 256. + depths[:,:,:,:,1:2] + \ depths[:,:,:,:,2:3] / 256.0) / 1000.0 depths /= 4. # normalization return depths default_damian_cfg = jerk_models.cfg_mom_complete_bypass(768, use_segmentation=False, method='concat', nonlin='relu') default_damian_cfg.update({'state_shape' : [2, 128, 170, 3], 'action_shape' : [2, 8]}) sample_depth_future_cfg = { 'state_shape' : [2, 64, 64, 3], 'action_shape' : [2, 8], 'action_join' : { 'reshape_dims' : [8, 8, 5], 'mlp' : { 'hidden_depth' : 2, 'hidden' : { 1 : {'num_features' : 320, 'dropout' : .75}, 2 : {'num_features' : 320, 'activation' : 'identity'} } } }, 'encode' : { 'encode_depth' : 3, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 5}}, } }, 'deconv' : { 'deconv_depth' : 3, 'deconv' : { 1 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}, 'bypass' : 0}, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}, 'bypass' : 0}, 3 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 1}, 'bypass' : 0} } } } a_bigger_depth_future_config = { 'state_shape' : [2, 64, 64, 3], 'action_shape' : [2, 8], 'action_join' : { 'reshape_dims' : [8, 8, 5], 'mlp' : { 'hidden_depth' : 3, 'hidden' : { 1 : {'num_features' : 320}, 2 : {'num_features' : 320}, 3 : {'num_features' : 320, 'activation' : 'identity'} } } }, 'encode' : { 'encode_depth' : 5, 'encode' : { 1 : {'conv' : {'filter_size' : 5, 'stride' : 2, 'num_filters' : 20}}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 20}}, 3 : {'conv' : {'filter_size' : 5, 'stride' : 2, 'num_filters' : 20}}, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 10}}, 5 : {'conv' : {'filter_size' : 5, 'stride' : 2, 'num_filters' : 5}}, } }, 'deconv' : { 'deconv_depth' : 5, 'deconv' : { 1 : {'deconv' : {'filter_size' : 5, 'stride' : 2, 'num_filters' : 20}, 'bypass' : 4}, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 20}, 'bypass' : 3}, 3 : {'deconv' : {'filter_size' : 5, 'stride' : 2, 'num_filters' : 20}, 'bypass' : 2}, 4 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}, 'bypass' : 1}, 5 : {'deconv' : {'filter_size' : 5, 'stride' : 1, 'num_filters' : 1}, 'bypass' : 0} } } } hourglass_latent_model_cfg = { 'state_shape' : [2, 64, 64, 3], 'action_shape' : [2, 8], 'encode' : { 'encode_depth' : 4, 'encode' : { 1: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 2: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 3: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 4: {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 8}} } }, 'action_model' : { 'mlp' : { 'hidden_depth' : 2, 'hidden' : { 1: {'num_features' : 256}, 2: {'num_features' : 16, 'activation' : 'identity'} } } }, 'future_model' : { 'mlp' : { 'hidden_depth' : 2, 'hidden' : { 1: {'num_features' : 256}, 2: {'num_features' : 128, 'activation' : 'identity'} } }, 'reshape_dims' : [4, 4, 8], 'deconv' : { 'deconv_depth' : 3, 'deconv' : { 1 : {'deconv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 16}, 'bypass' : 0}, 2 : {'deconv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 16}, 'bypass' : 0}, 3 : {'deconv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 8}, 'bypass' : 0} } } } } mario_world_model_config = { 'state_shape' : [2, 64, 64, 3], 'action_shape' : [2, 8], 'encode' : { 'encode_depth' : 4, 'encode' : { 1: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 2: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 3: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}}, 4: {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 32}} } }, 'action_model' : { 'mlp' : { 'hidden_depth' : 2, 'hidden' : { 1: {'num_features' : 256}, 2: {'num_features' : 16, 'activation' : 'identity'} } } }, 'future_model' : { 'mlp' : { 'hidden_depth' : 2, 'hidden' : { 1: {'num_features' : 512}, 2: {'num_features' : 512, 'activation' : 'identity'} } } } } class MixedUncertaintyModel: '''For both action and future uncertainty prediction, simultaneously, as separate predictions. Consider merging with UncertaintyModel, but right now that might look too messy. Want to leave that functionality alone. ''' class ObjectThereWorldModel: ''' A dummy oracle world model that just says the true value of whether an object is in the field of view. ''' class ForceMagSquareWorldModel: ''' Similar to the above, but just gives the square of the force. ''' sample_cfg = { 'uncertainty_model' : { 'state_shape' : [2, 64, 64, 3], 'action_dim' : 8, 'n_action_samples' : 50, 'encode' : { 'encode_depth' : 3, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 10}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 5}}, } }, 'mlp' : { 'hidden_depth' : 2, 'hidden' : {1 : {'num_features' : 20, 'dropout' : .75}, 2 : {'num_features' : 1, 'activation' : 'identity'} } } }, 'world_model' : sample_depth_future_cfg, 'seed' : 0 } another_sample_cfg = { 'uncertainty_model' : { 'state_shape' : [2, 64, 64, 3], 'action_dim' : 8, 'n_action_samples' : 50, 'encode' : { 'encode_depth' : 5, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 20}}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 20}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 20}}, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 10}}, 5 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 5}}, } }, 'mlp' : { 'hidden_depth' : 2, 'hidden' : {1 : {'num_features' : 20, 'dropout' : .75}, 2 : {'num_features' : 1, 'activation' : 'identity'} } } }, 'world_model' : a_bigger_depth_future_config, 'seed' : 0 } default_damian_full_cfg = { 'uncertainty_model' : { 'state_shape' : [2, 128, 170, 3], 'action_dim' : 8, 'n_action_samples' : 50, 'encode' : { 'encode_depth' : 5, 'encode' : { 1 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 20}}, 2 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 20}}, 3 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 20}}, 4 : {'conv' : {'filter_size' : 3, 'stride' : 1, 'num_filters' : 10}}, 5 : {'conv' : {'filter_size' : 3, 'stride' : 2, 'num_filters' : 5}}, } }, 'mlp' : { 'hidden_depth' : 2, 'hidden' : {1 : {'num_features' : 20, 'dropout' : .75}, 2 : {'num_features' : 1, 'activation' : 'identity'} } } }, 'world_model' : default_damian_cfg, 'seed' : 0 }
[ 7061, 6, 198, 36727, 290, 28327, 6721, 4981, 13, 198, 7061, 6, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 20136, 13, 27530, 13, 19849, 62, 16894, 62, 27372, 1330, 34872, 7934, 4480, 3886, 6603, 274, 198, 6738, 20136, 13, 27530, 1330, 7952, 62, 37443, 62, 28764, 2867, 62, 8692, 355, 277, 79, 62, 8692, 198, 6738, 20136, 13, 27530, 1330, 29757, 62, 27530, 198, 198, 11748, 1233, 26791, 13, 9641, 198, 1904, 62, 27110, 16, 796, 1233, 26791, 13, 9641, 13, 27654, 577, 14815, 7, 27110, 13, 43717, 8, 18189, 1233, 26791, 13, 9641, 13, 27654, 577, 14815, 10786, 16, 13, 15, 13, 15, 11537, 198, 198, 2, 51, 3727, 46, 6330, 477, 777, 34064, 49385, 628, 628, 198, 4299, 1281, 14681, 62, 10378, 9998, 7, 10378, 9998, 2599, 198, 197, 7061, 6, 198, 197, 197, 8021, 8139, 21593, 318, 286, 5485, 685, 43501, 62, 7857, 11, 640, 62, 17618, 11, 6001, 11, 9647, 11, 513, 60, 198, 197, 7061, 6, 198, 197, 10378, 9998, 796, 48700, 13, 2701, 7, 10378, 9998, 11, 48700, 13, 22468, 2624, 8, 198, 197, 10378, 9998, 796, 357, 10378, 9998, 58, 45299, 45299, 45299, 45299, 15, 25, 16, 60, 1635, 17759, 13, 1343, 21593, 58, 45299, 45299, 45299, 45299, 16, 25, 17, 60, 1343, 3467, 198, 197, 220, 220, 220, 220, 220, 220, 220, 21593, 58, 45299, 45299, 45299, 45299, 17, 25, 18, 60, 1220, 17759, 13, 15, 8, 1220, 8576, 13, 15, 220, 198, 197, 10378, 9998, 1220, 28, 604, 13, 1303, 3487, 1634, 198, 197, 7783, 21593, 628, 628, 628, 628, 628, 628, 198, 12286, 62, 11043, 666, 62, 37581, 796, 29757, 62, 27530, 13, 37581, 62, 32542, 62, 20751, 62, 1525, 6603, 7, 30610, 11, 779, 62, 325, 5154, 341, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 11639, 1102, 9246, 3256, 1729, 2815, 11639, 260, 2290, 11537, 198, 198, 12286, 62, 11043, 666, 62, 37581, 13, 19119, 15090, 6, 5219, 62, 43358, 6, 1058, 685, 17, 11, 13108, 11, 16677, 11, 513, 4357, 705, 2673, 62, 43358, 6, 1058, 685, 17, 11, 807, 60, 30072, 628, 197, 197, 628, 628, 628, 628, 628, 628, 198, 39873, 62, 18053, 62, 37443, 62, 37581, 796, 1391, 198, 197, 338, 83, 378, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 197, 6, 2673, 62, 43358, 6, 1058, 685, 17, 11, 807, 4357, 198, 197, 6, 2673, 62, 22179, 6, 1058, 1391, 198, 197, 197, 821, 43358, 62, 67, 12078, 6, 1058, 685, 23, 11, 807, 11, 642, 4357, 628, 197, 197, 1101, 34431, 6, 1058, 1391, 198, 197, 197, 197, 6, 30342, 62, 18053, 6, 1058, 362, 11, 198, 197, 197, 197, 6, 30342, 6, 1058, 1391, 198, 197, 197, 197, 197, 16, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 20959, 11, 705, 14781, 448, 6, 1058, 764, 2425, 5512, 198, 197, 197, 197, 197, 17, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 20959, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 197, 197, 197, 92, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 6, 268, 8189, 62, 18053, 6, 1058, 513, 11, 198, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 16, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 17, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 18, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 642, 92, 5512, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 1549, 721, 261, 85, 6, 1058, 1391, 198, 197, 197, 1549, 721, 261, 85, 62, 18053, 6, 1058, 513, 11, 628, 197, 197, 1549, 721, 261, 85, 6, 1058, 1391, 198, 197, 197, 197, 16, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 5512, 705, 1525, 6603, 6, 1058, 657, 5512, 198, 197, 197, 197, 17, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 5512, 705, 1525, 6603, 6, 1058, 657, 5512, 198, 197, 197, 197, 18, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 352, 5512, 705, 1525, 6603, 6, 1058, 657, 92, 198, 197, 197, 92, 628, 198, 197, 92, 198, 92, 628, 198, 64, 62, 14261, 1362, 62, 18053, 62, 37443, 62, 11250, 796, 1391, 198, 197, 338, 83, 378, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 197, 6, 2673, 62, 43358, 6, 1058, 685, 17, 11, 807, 4357, 628, 197, 6, 2673, 62, 22179, 6, 1058, 1391, 198, 197, 197, 821, 43358, 62, 67, 12078, 6, 1058, 685, 23, 11, 807, 11, 642, 4357, 628, 197, 197, 1101, 34431, 6, 1058, 1391, 198, 197, 197, 197, 6, 30342, 62, 18053, 6, 1058, 513, 11, 198, 197, 197, 197, 6, 30342, 6, 1058, 1391, 198, 197, 197, 197, 197, 16, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 20959, 5512, 198, 197, 197, 197, 197, 17, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 20959, 5512, 198, 197, 197, 197, 197, 18, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 20959, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 197, 197, 197, 92, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 6, 268, 8189, 62, 18053, 6, 1058, 642, 11, 198, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 16, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 17, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 18, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 19, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 20, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 642, 92, 5512, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 1549, 721, 261, 85, 6, 1058, 1391, 198, 197, 197, 1549, 721, 261, 85, 62, 18053, 6, 1058, 642, 11, 628, 197, 197, 1549, 721, 261, 85, 6, 1058, 1391, 198, 197, 197, 197, 16, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 5512, 705, 1525, 6603, 6, 1058, 604, 5512, 198, 197, 197, 197, 17, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 5512, 705, 1525, 6603, 6, 1058, 513, 5512, 198, 197, 197, 197, 18, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 5512, 705, 1525, 6603, 6, 1058, 362, 5512, 198, 197, 197, 197, 19, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 5512, 705, 1525, 6603, 6, 1058, 352, 5512, 198, 197, 197, 197, 20, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 642, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 352, 5512, 220, 705, 1525, 6603, 6, 1058, 657, 92, 198, 197, 197, 92, 628, 198, 197, 92, 628, 198, 92, 628, 628, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628, 628, 198, 9769, 20721, 62, 15460, 298, 62, 19849, 62, 37581, 796, 1391, 198, 220, 220, 220, 705, 5219, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 220, 220, 220, 705, 2673, 62, 43358, 6, 1058, 685, 17, 11, 807, 4357, 198, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 62, 18053, 6, 1058, 604, 11, 628, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 604, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 807, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 628, 220, 220, 220, 705, 2673, 62, 19849, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 79, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 18053, 6, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 17759, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 1467, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 8964, 628, 220, 220, 220, 705, 37443, 62, 19849, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 79, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 18053, 6, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 17759, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 13108, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 705, 3447, 1758, 62, 67, 12078, 6, 1058, 685, 19, 11, 604, 11, 807, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 705, 12501, 261, 85, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12501, 261, 85, 62, 18053, 6, 1058, 513, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12501, 261, 85, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1467, 5512, 705, 1525, 6603, 6, 1058, 657, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1467, 5512, 705, 1525, 6603, 6, 1058, 657, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 1058, 1391, 6, 12501, 261, 85, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 807, 5512, 705, 1525, 6603, 6, 1058, 657, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 220, 220, 220, 1782, 628, 628, 198, 198, 92, 198, 198, 3876, 952, 62, 6894, 62, 19849, 62, 11250, 796, 1391, 198, 220, 220, 220, 705, 5219, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 220, 220, 220, 705, 2673, 62, 43358, 6, 1058, 685, 17, 11, 807, 4357, 198, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 62, 18053, 6, 1058, 604, 11, 628, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 604, 25, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 3933, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 628, 220, 220, 220, 705, 2673, 62, 19849, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 79, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 18053, 6, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 17759, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 1467, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 8964, 628, 220, 220, 220, 705, 37443, 62, 19849, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 79, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 18053, 6, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 22243, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 25, 1391, 6, 22510, 62, 40890, 6, 1058, 22243, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 198, 220, 220, 220, 1782, 628, 198, 92, 628, 198, 4871, 35250, 3118, 39239, 774, 17633, 25, 198, 197, 7061, 6, 1890, 1111, 2223, 290, 2003, 13479, 17724, 11, 11640, 11, 355, 4553, 16277, 13, 198, 197, 19626, 35981, 351, 28304, 1425, 774, 17633, 11, 475, 826, 783, 326, 1244, 804, 1165, 24097, 13, 16168, 284, 2666, 326, 11244, 3436, 13, 198, 197, 7061, 6, 628, 628, 198, 4871, 9515, 1858, 10603, 17633, 25, 198, 197, 7061, 6, 198, 197, 32, 31548, 393, 6008, 995, 2746, 326, 655, 1139, 262, 2081, 1988, 286, 1771, 281, 2134, 318, 287, 262, 2214, 286, 1570, 13, 198, 197, 7061, 6, 198, 198, 4871, 5221, 13436, 48011, 10603, 17633, 25, 198, 197, 7061, 6, 198, 197, 18925, 284, 262, 2029, 11, 475, 655, 3607, 262, 6616, 286, 262, 2700, 13, 198, 197, 7061, 6, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628, 628, 628, 628, 198, 197, 197, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 39873, 62, 37581, 796, 1391, 198, 197, 6, 19524, 1425, 774, 62, 19849, 6, 1058, 1391, 198, 197, 197, 338, 83, 378, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 197, 197, 6, 2673, 62, 27740, 6, 1058, 807, 11, 198, 197, 197, 6, 77, 62, 2673, 62, 82, 12629, 6, 1058, 2026, 11, 198, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 6, 268, 8189, 62, 18053, 6, 1058, 513, 11, 198, 197, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 197, 16, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 197, 17, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 197, 18, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 642, 92, 5512, 198, 197, 197, 197, 92, 198, 197, 197, 5512, 198, 197, 197, 1101, 34431, 6, 1058, 1391, 198, 197, 197, 197, 6, 30342, 62, 18053, 6, 1058, 362, 11, 198, 197, 197, 197, 6, 30342, 6, 1058, 1391, 16, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 1160, 11, 705, 14781, 448, 6, 1058, 764, 2425, 5512, 198, 197, 197, 197, 197, 197, 197, 17, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 352, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 197, 197, 197, 92, 197, 197, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 6, 6894, 62, 19849, 6, 1058, 6291, 62, 18053, 62, 37443, 62, 37581, 11, 628, 197, 338, 2308, 6, 1058, 657, 198, 92, 198, 198, 29214, 62, 39873, 62, 37581, 796, 1391, 198, 197, 6, 19524, 1425, 774, 62, 19849, 6, 1058, 1391, 198, 197, 197, 338, 83, 378, 62, 43358, 6, 1058, 685, 17, 11, 5598, 11, 5598, 11, 513, 4357, 198, 197, 197, 6, 2673, 62, 27740, 6, 1058, 807, 11, 198, 197, 197, 6, 77, 62, 2673, 62, 82, 12629, 6, 1058, 2026, 11, 198, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 6, 268, 8189, 62, 18053, 6, 1058, 642, 11, 198, 197, 197, 197, 6, 268, 8189, 6, 1058, 1391, 198, 197, 197, 197, 197, 16, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 197, 17, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 197, 18, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 197, 197, 197, 197, 19, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 197, 197, 197, 197, 20, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 642, 92, 5512, 198, 197, 197, 197, 92, 198, 197, 197, 5512, 198, 197, 197, 1101, 34431, 6, 1058, 1391, 198, 197, 197, 197, 6, 30342, 62, 18053, 6, 1058, 362, 11, 198, 197, 197, 197, 6, 30342, 6, 1058, 1391, 16, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 1160, 11, 705, 14781, 448, 6, 1058, 764, 2425, 5512, 198, 197, 197, 197, 197, 197, 197, 17, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 352, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 197, 197, 197, 92, 197, 197, 198, 197, 197, 92, 198, 197, 5512, 628, 197, 6, 6894, 62, 19849, 6, 1058, 257, 62, 14261, 1362, 62, 18053, 62, 37443, 62, 11250, 11, 628, 197, 338, 2308, 6, 1058, 657, 628, 198, 92, 628, 628, 198, 12286, 62, 11043, 666, 62, 12853, 62, 37581, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 19524, 1425, 774, 62, 19849, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5219, 62, 43358, 6, 1058, 685, 17, 11, 13108, 11, 16677, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2673, 62, 27740, 6, 1058, 807, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 62, 2673, 62, 82, 12629, 6, 1058, 2026, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 62, 18053, 6, 1058, 642, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 268, 8189, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 513, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 1160, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 604, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 352, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 838, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 1058, 1391, 6, 42946, 6, 1058, 1391, 6, 24455, 62, 7857, 6, 1058, 513, 11, 705, 2536, 485, 6, 1058, 362, 11, 705, 22510, 62, 10379, 1010, 6, 1058, 642, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4029, 79, 6, 1058, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 62, 18053, 6, 1058, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30342, 6, 1058, 1391, 16, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 1160, 11, 705, 14781, 448, 6, 1058, 764, 2425, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1058, 1391, 6, 22510, 62, 40890, 6, 1058, 352, 11, 705, 48545, 6, 1058, 705, 738, 414, 6, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 628, 197, 6, 6894, 62, 19849, 6, 1058, 4277, 62, 11043, 666, 62, 37581, 11, 198, 197, 338, 2308, 6, 1058, 657, 198, 198, 92, 628, 628 ]
1.873996
4,730
print("part1包被导入了~")
[ 4798, 7203, 3911, 16, 44293, 227, 164, 95, 104, 43380, 120, 17739, 98, 12859, 228, 93, 4943 ]
1.176471
17
from dictdiffer import diff from sqlalchemy import Column, Integer, String from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.ext.declarative import declarative_base Base = declarative_base()
[ 6738, 8633, 26069, 263, 1330, 814, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 34142, 11, 10903, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 7353, 34239, 13976, 1330, 19449, 33, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 32446, 283, 876, 1330, 2377, 283, 876, 62, 8692, 198, 198, 14881, 796, 2377, 283, 876, 62, 8692, 3419, 628 ]
3.409836
61
import komand from .schema import DecodeInput, DecodeOutput import base64
[ 11748, 479, 296, 392, 198, 6738, 764, 15952, 2611, 1330, 4280, 1098, 20560, 11, 4280, 1098, 26410, 198, 11748, 2779, 2414, 628 ]
3.409091
22
import os import shutil import json import time import cv2 import numpy as np import PIL if __name__ == '__main__' : erode_all(True)
[ 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 33918, 198, 11748, 640, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 350, 4146, 220, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 6, 1058, 198, 220, 220, 220, 1931, 1098, 62, 439, 7, 17821, 8 ]
2.622642
53
import sys import unittest import re from operator import itemgetter import argparse import traceback # print arg if __name__=='__main__': codes = [] for line in sys.stdin: codes.append(line.strip()) print(part_one(codes)) print(part_two(codes))
[ 11748, 25064, 198, 11748, 555, 715, 395, 198, 11748, 302, 198, 6738, 10088, 1330, 2378, 1136, 353, 198, 11748, 1822, 29572, 198, 11748, 12854, 1891, 628, 198, 2, 220, 220, 220, 3601, 1822, 198, 198, 361, 11593, 3672, 834, 855, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 12416, 796, 17635, 198, 220, 220, 220, 329, 1627, 287, 25064, 13, 19282, 259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12416, 13, 33295, 7, 1370, 13, 36311, 28955, 198, 220, 220, 220, 3601, 7, 3911, 62, 505, 7, 40148, 4008, 198, 220, 220, 220, 3601, 7, 3911, 62, 11545, 7, 40148, 4008, 198 ]
2.628571
105
from collections import defaultdict # name list obtained from: https://www.ssa.gov/oact/babynames/decades/century.html # accessed on Nov 6th, 2018 if __name__ == '__main__': lex = PronounLexicon() all_words = lex.all_words() in_file_path = "data/CBTest/data/cbt_train.txt" all_lens = [] all_gaps = [] with open(in_file_path) as f: for line in f: line = line.strip() marked_sentence = [1 if w in all_words else 0 for w in line.split(' ')] all_lens.append(len(marked_sentence)) # print(marked_sentence) gaps = find_gaps(marked_sentence) # print(gaps) all_gaps.extend(gaps) import numpy as np print(np.mean(all_lens), np.std(all_lens)) print(np.mean(all_gaps), np.std(all_gaps)) # l = 32 covers 81.5% of the sentences # l = 64 covers 98.4% of the sentences l = 64 print(len(list(filter(lambda x: x <= l, all_lens))) / float(len(all_lens))) # l = 10 covers 82.7% of the gaps # l = 20 covers 97.2% of the gaps # l = 30 covers 99.4% of the gaps l = 20 print(len(list(filter(lambda x: x <= l, all_gaps))) / float(len(all_gaps)))
[ 6738, 17268, 1330, 4277, 11600, 198, 198, 2, 1438, 1351, 6492, 422, 25, 3740, 1378, 2503, 13, 824, 64, 13, 9567, 14, 78, 529, 14, 65, 397, 2047, 1047, 14, 12501, 2367, 14, 14792, 13, 6494, 198, 2, 17535, 319, 5267, 718, 400, 11, 2864, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 31191, 796, 350, 1313, 977, 45117, 4749, 3419, 198, 220, 220, 220, 477, 62, 10879, 796, 31191, 13, 439, 62, 10879, 3419, 198, 220, 220, 220, 287, 62, 7753, 62, 6978, 796, 366, 7890, 14, 23199, 14402, 14, 7890, 14, 66, 18347, 62, 27432, 13, 14116, 1, 198, 220, 220, 220, 477, 62, 75, 641, 796, 17635, 198, 220, 220, 220, 477, 62, 70, 1686, 796, 17635, 198, 220, 220, 220, 351, 1280, 7, 259, 62, 7753, 62, 6978, 8, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 796, 1627, 13, 36311, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7498, 62, 34086, 594, 796, 685, 16, 611, 266, 287, 477, 62, 10879, 2073, 657, 329, 266, 287, 1627, 13, 35312, 10786, 705, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 75, 641, 13, 33295, 7, 11925, 7, 23505, 62, 34086, 594, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 23505, 62, 34086, 594, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17332, 796, 1064, 62, 70, 1686, 7, 23505, 62, 34086, 594, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 7, 70, 1686, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 70, 1686, 13, 2302, 437, 7, 70, 1686, 8, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 3601, 7, 37659, 13, 32604, 7, 439, 62, 75, 641, 828, 45941, 13, 19282, 7, 439, 62, 75, 641, 4008, 198, 220, 220, 220, 3601, 7, 37659, 13, 32604, 7, 439, 62, 70, 1686, 828, 45941, 13, 19282, 7, 439, 62, 70, 1686, 4008, 628, 220, 220, 220, 1303, 300, 796, 3933, 8698, 9773, 13, 20, 4, 286, 262, 13439, 198, 220, 220, 220, 1303, 300, 796, 5598, 8698, 9661, 13, 19, 4, 286, 262, 13439, 198, 220, 220, 220, 300, 796, 5598, 198, 220, 220, 220, 3601, 7, 11925, 7, 4868, 7, 24455, 7, 50033, 2124, 25, 2124, 19841, 300, 11, 477, 62, 75, 641, 22305, 1220, 12178, 7, 11925, 7, 439, 62, 75, 641, 22305, 628, 220, 220, 220, 1303, 300, 796, 838, 8698, 9415, 13, 22, 4, 286, 262, 17332, 198, 220, 220, 220, 1303, 300, 796, 1160, 8698, 10111, 13, 17, 4, 286, 262, 17332, 198, 220, 220, 220, 1303, 300, 796, 1542, 8698, 7388, 13, 19, 4, 286, 262, 17332, 198, 220, 220, 220, 300, 796, 1160, 198, 220, 220, 220, 3601, 7, 11925, 7, 4868, 7, 24455, 7, 50033, 2124, 25, 2124, 19841, 300, 11, 477, 62, 70, 1686, 22305, 1220, 12178, 7, 11925, 7, 439, 62, 70, 1686, 22305, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.124783
577
# Generated by Django 3.2.2 on 2021-06-29 09:49 import django.core.validators from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 17, 319, 33448, 12, 3312, 12, 1959, 7769, 25, 2920, 198, 198, 11748, 42625, 14208, 13, 7295, 13, 12102, 2024, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.95122
41
# Autogenerated file. from .client import ButtonClient # type: ignore
[ 2, 5231, 519, 877, 515, 2393, 13, 198, 6738, 764, 16366, 1330, 20969, 11792, 1303, 2099, 25, 8856, 198 ]
3.684211
19
import yaml import os from pathlib import Path from django.conf import settings from django.core.management.base import BaseCommand from apps.findings import models
[ 11748, 331, 43695, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 6725, 13, 19796, 654, 1330, 4981, 628 ]
3.952381
42
import sys from django.test import TestCase error_while_importing = None try: from easymode import * from easymode.admin import * from easymode.admin.forms import * from easymode.admin.models import * from easymode.debug import * from easymode.i18n import * from easymode.i18n.admin import * from easymode.management import * from easymode.middleware import * from easymode.management.commands import * from easymode.templatetags import * from easymode.tree import * from easymode.tree.admin import * from easymode.tree.admin.widgets import * from easymode.urls import * from easymode.utils import * from easymode.views import * from easymode.xslt import * except Exception as e: error_while_importing = e __all__ = ('TestImportAll',) class TestImportAll(TestCase): """Check if the import all works for every package in easymode""" def test_import_all(self): """All easymode packages should be importable with * without any errors""" if error_while_importing is not None: self.fail("%s: %s" % (type(e).__name__, error_while_importing))
[ 11748, 25064, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 198, 18224, 62, 4514, 62, 11748, 278, 796, 6045, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 2562, 14171, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 28482, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 28482, 13, 23914, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 28482, 13, 27530, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 24442, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 72, 1507, 77, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 72, 1507, 77, 13, 28482, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 27604, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 27171, 1574, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 27604, 13, 9503, 1746, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 11498, 489, 265, 316, 3775, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 21048, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 21048, 13, 28482, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 21048, 13, 28482, 13, 28029, 11407, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 6371, 82, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 26791, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 33571, 1330, 1635, 198, 220, 220, 220, 422, 2562, 14171, 13, 34223, 2528, 1330, 1635, 198, 16341, 35528, 355, 304, 25, 198, 220, 220, 220, 4049, 62, 4514, 62, 11748, 278, 796, 304, 198, 198, 834, 439, 834, 796, 19203, 14402, 20939, 3237, 3256, 8, 198, 198, 4871, 6208, 20939, 3237, 7, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 9787, 611, 262, 1330, 477, 2499, 329, 790, 5301, 287, 2562, 14171, 37811, 628, 220, 220, 220, 825, 1332, 62, 11748, 62, 439, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3237, 2562, 14171, 10392, 815, 307, 1330, 540, 351, 1635, 1231, 597, 8563, 37811, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4049, 62, 4514, 62, 11748, 278, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32165, 7203, 4, 82, 25, 4064, 82, 1, 4064, 357, 4906, 7, 68, 737, 834, 3672, 834, 11, 4049, 62, 4514, 62, 11748, 278, 4008 ]
2.875312
401
from collections import Counter
[ 6738, 17268, 1330, 15034, 198 ]
6.4
5
from starlette.requests import Request from typing import List, Optional from viewmodels.shared.viewmodel import ViewModelBase from services import episode_service from data.episode import Episode
[ 6738, 3491, 21348, 13, 8897, 3558, 1330, 19390, 198, 6738, 19720, 1330, 7343, 11, 32233, 198, 198, 6738, 1570, 27530, 13, 28710, 13, 1177, 19849, 1330, 3582, 17633, 14881, 198, 198, 6738, 2594, 1330, 4471, 62, 15271, 198, 6738, 1366, 13, 38668, 1330, 7922, 628, 198 ]
4.369565
46
#!/usr/bin/env python3 """ Wal Steam ======================================== oooo oooo . `888 .8P' .o8 888 d8' .ooooo. .o888oo .oooo. 88888[ d88' `88b 888 `P )88b 888`88b. 888 888 888 .oP"888 888 `88b. 888 888 888 . d8( 888 o888o o888o `Y8bod8P' "888" `Y888""8o @nilsu.org === Copyright (C) 2019 Dakota Walsh === """ import shutil # copying files import os # getting paths import urllib.request # downloading the zip files import zipfile # extracting the zip files import sys import argparse # argument parsing import textwrap import time import re from distutils.dir_util import copy_tree # copytree from shutil is broken so use copy_tree from argparse import RawTextHelpFormatter # set some variables for the file locations HOME_DIR = os.getenv("HOME", os.getenv("USERPROFILE")) # should be crossplatform CACHE_DIR = os.path.join(HOME_DIR, ".cache", "wal_steam") CONFIG_DIR = os.path.join(HOME_DIR, ".config", "wal_steam") SKIN_VERSION = "4.4" SKIN_NAME = "Metro %s Wal_Mod" % SKIN_VERSION VERSION = "1.4" CONFIG_FILE = "wal_steam.conf" COLORS_FILE = os.path.join(CACHE_DIR, "custom.styles") CONFIG_URL = "https://raw.githubusercontent.com/kotajacob/wal_steam_config/master/wal_steam.conf" STEAM_DIR_OTHER = os.path.expanduser("~/.steam/steam/skins") STEAM_DIR_OSX = os.path.expanduser("~/Library/Application Support/Steam/Steam.AppBundle/Steam/Contents/MacOS/skins") STEAM_DIR_UBUNTU = os.path.expanduser("~/.steam/skins") STEAM_DIR_WINDOWS = "C:\Program Files (x86)\Steam\skins" WAL_COLORS = os.path.join(HOME_DIR, ".cache", "wal", "colors.css") WPG_COLORS = os.path.join(HOME_DIR, ".config", "wpg", "formats", "colors.css") METRO_URL = "https://github.com/minischetti/metro-for-steam/archive/v%s.zip" % SKIN_VERSION METRO_ZIP = os.path.join(CACHE_DIR, "metroZip.zip") METRO_DIR = os.path.join(CACHE_DIR, "metro-for-steam-%s" % SKIN_VERSION) METRO_COLORS_FILE = os.path.join(METRO_DIR, "custom.styles") METRO_PATCH_URL = "https://github.com/redsigma/UPMetroSkin/archive/9.1.12.zip" # A link to the version we've tested rather than the latest, just in case they break things upstream. METRO_PATCH_ZIP = os.path.join(CACHE_DIR, "metroPatchZip.zip") METRO_PATCH_DIR = os.path.join(CACHE_DIR, "metroPatchZip") METRO_PATCH_COPY = os.path.join(METRO_PATCH_DIR, "UPMetroSkin-9.1.12", "Unofficial 4.x Patch", "Main Files [Install First]") METRO_PATCH_HDPI = os.path.join(METRO_PATCH_DIR, "UPMetroSkin-9.1.12", "Unofficial 4.x Patch", "Extras", "High DPI", "Increased fonts", "Install") MAX_PATCH_DL_ATTEMPTS = 5 # CLI colour and style sequences CLI_RED = "\033[91m" CLI_YELLOW = "\033[93m" CLI_BOLD = "\033[1m" CLI_END = "\033[0m" ################### # color functions # ################### def hexToRgb(hexColors): """Convert hex colors to rgb colors (takes a list).""" return [tuple(bytes.fromhex(color.strip("#"))) for color in hexColors] ########################## # checkInstall functions # ########################## if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 21902, 9094, 198, 198, 10052, 2559, 198, 13321, 220, 220, 220, 267, 34160, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 198, 63, 28011, 220, 220, 764, 23, 47, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 78, 23, 198, 807, 3459, 220, 288, 23, 6, 220, 220, 220, 220, 764, 13321, 78, 13, 220, 764, 78, 28011, 2238, 220, 764, 13321, 13, 198, 807, 3459, 3459, 58, 220, 220, 220, 220, 220, 288, 3459, 6, 4600, 3459, 65, 220, 220, 807, 3459, 220, 220, 4600, 47, 220, 1267, 3459, 65, 198, 807, 3459, 63, 3459, 65, 13, 220, 220, 220, 807, 3459, 220, 220, 807, 3459, 220, 220, 807, 3459, 220, 220, 220, 764, 78, 47, 1, 28011, 198, 807, 3459, 220, 4600, 3459, 65, 13, 220, 807, 3459, 220, 220, 807, 3459, 220, 220, 807, 3459, 764, 288, 23, 7, 220, 807, 3459, 198, 78, 28011, 78, 220, 267, 28011, 78, 4600, 56, 23, 65, 375, 23, 47, 6, 220, 220, 366, 28011, 1, 4600, 56, 28011, 15931, 23, 78, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 45991, 2385, 13, 2398, 198, 18604, 15069, 357, 34, 8, 13130, 220, 13336, 24104, 24844, 198, 37811, 198, 11748, 4423, 346, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23345, 3696, 198, 11748, 28686, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1972, 13532, 198, 11748, 2956, 297, 571, 13, 25927, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 22023, 262, 19974, 3696, 198, 11748, 19974, 7753, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 37895, 262, 19974, 3696, 198, 11748, 25064, 198, 11748, 1822, 29572, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4578, 32096, 198, 11748, 2420, 37150, 198, 11748, 640, 198, 11748, 302, 198, 6738, 1233, 26791, 13, 15908, 62, 22602, 1330, 4866, 62, 21048, 220, 1303, 4866, 21048, 422, 4423, 346, 318, 5445, 523, 779, 4866, 62, 21048, 198, 6738, 1822, 29572, 1330, 16089, 8206, 22087, 8479, 1436, 198, 198, 2, 900, 617, 9633, 329, 262, 2393, 7064, 198, 39069, 62, 34720, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 1136, 24330, 7203, 39069, 1600, 28686, 13, 1136, 24330, 7203, 29904, 31190, 25664, 48774, 1303, 815, 307, 3272, 24254, 198, 34, 2246, 13909, 62, 34720, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 39069, 62, 34720, 11, 27071, 23870, 1600, 366, 16783, 62, 21465, 4943, 198, 10943, 16254, 62, 34720, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 39069, 62, 34720, 11, 27071, 11250, 1600, 366, 16783, 62, 21465, 4943, 198, 18831, 1268, 62, 43717, 220, 220, 220, 220, 220, 796, 366, 19, 13, 19, 1, 198, 18831, 1268, 62, 20608, 220, 220, 220, 220, 220, 220, 220, 220, 796, 366, 45141, 4064, 82, 6445, 62, 5841, 1, 4064, 14277, 1268, 62, 43717, 198, 43717, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 366, 16, 13, 19, 1, 198, 10943, 16254, 62, 25664, 220, 220, 220, 220, 220, 220, 796, 366, 16783, 62, 21465, 13, 10414, 1, 198, 25154, 20673, 62, 25664, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 34, 2246, 13909, 62, 34720, 11, 366, 23144, 13, 47720, 4943, 198, 10943, 16254, 62, 21886, 220, 220, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 1831, 13, 12567, 43667, 13, 785, 14, 74, 313, 1228, 330, 672, 14, 16783, 62, 21465, 62, 11250, 14, 9866, 14, 16783, 62, 21465, 13, 10414, 1, 198, 198, 30516, 2390, 62, 34720, 62, 31858, 220, 220, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 11757, 21465, 14, 21465, 14, 82, 5331, 4943, 198, 30516, 2390, 62, 34720, 62, 2640, 55, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 14, 23377, 14, 23416, 7929, 14, 19109, 14, 19109, 13, 4677, 33, 31249, 14, 19109, 14, 15842, 14, 14155, 2640, 14, 82, 5331, 4943, 198, 30516, 2390, 62, 34720, 62, 10526, 4944, 51, 52, 220, 796, 28686, 13, 6978, 13, 11201, 392, 7220, 7203, 93, 11757, 21465, 14, 82, 5331, 4943, 198, 30516, 2390, 62, 34720, 62, 33207, 796, 366, 34, 7479, 15167, 13283, 357, 87, 4521, 19415, 19109, 59, 82, 5331, 1, 198, 54, 1847, 62, 25154, 20673, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 39069, 62, 34720, 11, 27071, 23870, 1600, 366, 16783, 1600, 366, 4033, 669, 13, 25471, 4943, 198, 54, 6968, 62, 25154, 20673, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 39069, 62, 34720, 11, 27071, 11250, 1600, 366, 86, 6024, 1600, 366, 687, 1381, 1600, 366, 4033, 669, 13, 25471, 4943, 198, 198, 47123, 13252, 62, 21886, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 366, 5450, 1378, 12567, 13, 785, 14, 1084, 2304, 33392, 14, 4164, 305, 12, 1640, 12, 21465, 14, 17474, 14, 85, 4, 82, 13, 13344, 1, 4064, 14277, 1268, 62, 43717, 198, 47123, 13252, 62, 57, 4061, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 34, 2246, 13909, 62, 34720, 11, 366, 4164, 305, 41729, 13, 13344, 4943, 198, 47123, 13252, 62, 34720, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 34, 2246, 13909, 62, 34720, 11, 366, 4164, 305, 12, 1640, 12, 21465, 12, 4, 82, 1, 4064, 14277, 1268, 62, 43717, 8, 198, 47123, 13252, 62, 25154, 20673, 62, 25664, 220, 220, 220, 220, 220, 220, 220, 220, 796, 28686, 13, 6978, 13, 22179, 7, 47123, 13252, 62, 34720, 11, 366, 23144, 13, 47720, 4943, 198, 198, 47123, 13252, 62, 47, 11417, 62, 21886, 220, 796, 366, 5450, 1378, 12567, 13, 785, 14, 445, 82, 13495, 14, 52, 5868, 316, 305, 42455, 14, 17474, 14, 24, 13, 16, 13, 1065, 13, 13344, 1, 1303, 317, 2792, 284, 262, 2196, 356, 1053, 6789, 2138, 621, 262, 3452, 11, 655, 287, 1339, 484, 2270, 1243, 28717, 13, 198, 47123, 13252, 62, 47, 11417, 62, 57, 4061, 220, 796, 28686, 13, 6978, 13, 22179, 7, 34, 2246, 13909, 62, 34720, 11, 366, 4164, 305, 33952, 41729, 13, 13344, 4943, 198, 47123, 13252, 62, 47, 11417, 62, 34720, 220, 796, 28686, 13, 6978, 13, 22179, 7, 34, 2246, 13909, 62, 34720, 11, 366, 4164, 305, 33952, 41729, 4943, 198, 47123, 13252, 62, 47, 11417, 62, 34, 3185, 56, 796, 28686, 13, 6978, 13, 22179, 7, 47123, 13252, 62, 47, 11417, 62, 34720, 11, 366, 52, 5868, 316, 305, 42455, 12, 24, 13, 16, 13, 1065, 1600, 366, 3118, 16841, 604, 13, 87, 17106, 1600, 366, 13383, 13283, 685, 15798, 3274, 60, 4943, 198, 47123, 13252, 62, 47, 11417, 62, 39, 6322, 40, 796, 28686, 13, 6978, 13, 22179, 7, 47123, 13252, 62, 47, 11417, 62, 34720, 11, 366, 52, 5868, 316, 305, 42455, 12, 24, 13, 16, 13, 1065, 1600, 366, 3118, 16841, 604, 13, 87, 17106, 1600, 366, 11627, 8847, 1600, 366, 11922, 360, 11901, 1600, 366, 40281, 26806, 1600, 366, 15798, 4943, 198, 22921, 62, 47, 11417, 62, 19260, 62, 17139, 39494, 4694, 796, 642, 198, 198, 2, 43749, 9568, 290, 3918, 16311, 198, 5097, 40, 62, 22083, 220, 220, 220, 796, 37082, 44427, 58, 6420, 76, 1, 198, 5097, 40, 62, 56, 23304, 3913, 796, 37082, 44427, 58, 6052, 76, 1, 198, 5097, 40, 62, 33, 15173, 220, 220, 796, 37082, 44427, 58, 16, 76, 1, 198, 5097, 40, 62, 10619, 220, 220, 220, 796, 37082, 44427, 58, 15, 76, 1, 628, 198, 14468, 21017, 198, 2, 3124, 5499, 1303, 198, 14468, 21017, 198, 198, 4299, 17910, 2514, 49, 22296, 7, 33095, 5216, 669, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 17910, 7577, 284, 46140, 7577, 357, 83, 1124, 257, 1351, 21387, 15931, 198, 220, 220, 220, 1441, 685, 83, 29291, 7, 33661, 13, 6738, 33095, 7, 8043, 13, 36311, 7203, 2, 1, 22305, 329, 3124, 287, 17910, 5216, 669, 60, 198, 198, 14468, 7804, 2235, 198, 2, 2198, 15798, 5499, 1303, 198, 14468, 7804, 2235, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.213861
1,515
import requests def fetch(*, url, headers): """ Send a GET request and return response as Python object """ response = requests.get(url, headers=headers) return response.json()
[ 11748, 7007, 628, 198, 4299, 21207, 7, 25666, 19016, 11, 24697, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16290, 257, 17151, 2581, 290, 1441, 2882, 355, 11361, 2134, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 6371, 11, 24697, 28, 50145, 8, 198, 220, 220, 220, 1441, 2882, 13, 17752, 3419, 198 ]
3.225806
62
import torch from shapely.geometry import Polygon
[ 11748, 28034, 198, 198, 6738, 5485, 306, 13, 469, 15748, 1330, 12280, 14520, 628, 628, 628, 628 ]
3.411765
17
# SPDX-License-Identifier: Apache-2.0 # Copyright 2019 Blue Cheetah Analog Design Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from bag.core import BagProject from bag.util.misc import register_pdb_hook register_pdb_hook() if __name__ == '__main__': _args = parse_options() local_dict = locals() if 'bprj' not in local_dict: print('creating BAG project') _prj = BagProject() else: print('loading BAG project') _prj = local_dict['bprj'] run_main(_prj, _args)
[ 2, 30628, 55, 12, 34156, 12, 33234, 7483, 25, 24843, 12, 17, 13, 15, 198, 2, 15069, 13130, 4518, 2580, 316, 993, 50088, 8495, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628, 198, 11748, 1822, 29572, 198, 198, 6738, 6131, 13, 7295, 1330, 20127, 16775, 198, 6738, 6131, 13, 22602, 13, 44374, 1330, 7881, 62, 79, 9945, 62, 25480, 198, 198, 30238, 62, 79, 9945, 62, 25480, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4808, 22046, 796, 21136, 62, 25811, 3419, 628, 220, 220, 220, 1957, 62, 11600, 796, 17205, 3419, 198, 220, 220, 220, 611, 705, 65, 1050, 73, 6, 407, 287, 1957, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 20123, 278, 347, 4760, 1628, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1050, 73, 796, 20127, 16775, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 25138, 347, 4760, 1628, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 1050, 73, 796, 1957, 62, 11600, 17816, 65, 1050, 73, 20520, 628, 220, 220, 220, 1057, 62, 12417, 28264, 1050, 73, 11, 4808, 22046, 8, 198 ]
3.046784
342
#!/usr/bin/env python3 import argparse import re import sys import requests
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 1822, 29572, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 7007, 198 ]
3.304348
23
#!/usr/bin/env python3 """ Ensure that every security group tagged with “AllowCloudFlareIngress” has permissions for every public CloudFlare netblock """ import sys import boto3 import requests from botocore.exceptions import ClientError EC2_CLIENT = boto3.client("ec2") CLOUDFLARE_IPV4 = requests.get("https://www.cloudflare.com/ips-v4").text.splitlines() CLOUDFLARE_IPV6 = requests.get("https://www.cloudflare.com/ips-v6").text.splitlines() if __name__ == "__main__": for security_group_id, existing_permissions in get_security_groups(): add_ingess_rules_for_group(security_group_id, existing_permissions)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 4834, 19532, 326, 790, 2324, 1448, 30509, 351, 564, 250, 35265, 18839, 7414, 533, 27682, 601, 447, 251, 468, 198, 525, 8481, 329, 790, 1171, 10130, 7414, 533, 2010, 9967, 198, 37811, 198, 198, 11748, 25064, 198, 198, 11748, 275, 2069, 18, 198, 11748, 7007, 198, 6738, 10214, 420, 382, 13, 1069, 11755, 1330, 20985, 12331, 198, 198, 2943, 17, 62, 5097, 28495, 796, 275, 2069, 18, 13, 16366, 7203, 721, 17, 4943, 198, 198, 5097, 2606, 35, 3697, 12203, 62, 4061, 53, 19, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 17721, 2704, 533, 13, 785, 14, 2419, 12, 85, 19, 11074, 5239, 13, 35312, 6615, 3419, 198, 5097, 2606, 35, 3697, 12203, 62, 4061, 53, 21, 796, 7007, 13, 1136, 7203, 5450, 1378, 2503, 13, 17721, 2704, 533, 13, 785, 14, 2419, 12, 85, 21, 11074, 5239, 13, 35312, 6615, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 329, 2324, 62, 8094, 62, 312, 11, 4683, 62, 525, 8481, 287, 651, 62, 12961, 62, 24432, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 751, 62, 278, 408, 62, 38785, 62, 1640, 62, 8094, 7, 12961, 62, 8094, 62, 312, 11, 4683, 62, 525, 8481, 8, 198 ]
2.828829
222
from piccolo.apps.migrations.auto import MigrationManager from piccolo.columns.base import OnDelete, OnUpdate from piccolo.columns.defaults.timestamp import TimestampNow from piccolo.table import Table ID = "2020-10-04T21:27:16" VERSION = "0.13.4"
[ 6738, 8301, 45745, 13, 18211, 13, 76, 3692, 602, 13, 23736, 1330, 36991, 13511, 198, 6738, 8301, 45745, 13, 28665, 82, 13, 8692, 1330, 1550, 38727, 11, 1550, 10260, 198, 6738, 8301, 45745, 13, 28665, 82, 13, 12286, 82, 13, 16514, 27823, 1330, 5045, 27823, 3844, 198, 6738, 8301, 45745, 13, 11487, 1330, 8655, 628, 628, 198, 2389, 796, 366, 42334, 12, 940, 12, 3023, 51, 2481, 25, 1983, 25, 1433, 1, 198, 43717, 796, 366, 15, 13, 1485, 13, 19, 1, 628 ]
3.048193
83
# -*- coding: utf-8 -*- from math import ceil from .SolarMonth import SolarMonth class SolarSeason: """ 阳历季度 """ MONTH_COUNT = 3 @staticmethod @staticmethod def getIndex(self): """ 获取当月是第几季度 :return: 季度序号,从1开始 """ return int(ceil(self.__month * 1.0 / SolarSeason.MONTH_COUNT)) def getMonths(self): """ 获取本季度的阳历月列表 :return: 阳历月列表 """ l = [] index = self.getIndex() - 1 for i in range(0, SolarSeason.MONTH_COUNT): l.append(SolarMonth.fromYm(self.__year, SolarSeason.MONTH_COUNT * index + i + 1)) return l def next(self, seasons): """ 季度推移 :param seasons: 推移的季度数,负数为倒推 :return: 推移后的季度 """ if 0 == seasons: return SolarSeason.fromYm(self.__year, self.__month) year = self.__year month = self.__month months = SolarSeason.MONTH_COUNT * seasons if months == 0: return SolarSeason.fromYm(year, month) n = abs(months) for i in range(1, n + 1): if months < 0: month -= 1 if month < 1: month = 12 year -= 1 else: month += 1 if month > 12: month = 1 year += 1 return SolarSeason.fromYm(year, month)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 10688, 1330, 2906, 346, 198, 198, 6738, 764, 38825, 31948, 1330, 12347, 31948, 628, 198, 4871, 12347, 18960, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16268, 246, 111, 43889, 228, 27764, 96, 41753, 99, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 25000, 4221, 62, 34, 28270, 796, 513, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 651, 15732, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 37605, 241, 17312, 230, 42468, 163, 105, 105, 49035, 254, 27764, 96, 41753, 99, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10263, 255, 96, 41753, 99, 41753, 237, 20998, 115, 171, 120, 234, 20015, 236, 16, 28156, 222, 34650, 233, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 344, 346, 7, 944, 13, 834, 8424, 1635, 352, 13, 15, 1220, 12347, 18960, 13, 27857, 4221, 62, 34, 28270, 4008, 628, 220, 220, 220, 825, 651, 9069, 9998, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5525, 236, 115, 20998, 244, 17312, 105, 27764, 96, 41753, 99, 21410, 165, 246, 111, 43889, 228, 17312, 230, 26344, 245, 26193, 101, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 16268, 246, 111, 43889, 228, 17312, 230, 26344, 245, 26193, 101, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 2116, 13, 1136, 15732, 3419, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 12347, 18960, 13, 27857, 4221, 62, 34, 28270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 13, 33295, 7, 38825, 31948, 13, 6738, 56, 76, 7, 944, 13, 834, 1941, 11, 12347, 18960, 13, 27857, 4221, 62, 34, 28270, 1635, 6376, 1343, 1312, 1343, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 300, 628, 220, 220, 220, 825, 1306, 7, 944, 11, 7028, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 10263, 255, 96, 41753, 99, 162, 236, 101, 163, 100, 119, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 7028, 25, 10545, 236, 101, 163, 100, 119, 21410, 27764, 96, 41753, 99, 46763, 108, 171, 120, 234, 164, 112, 253, 46763, 108, 10310, 118, 161, 222, 240, 162, 236, 101, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10545, 236, 101, 163, 100, 119, 28938, 236, 21410, 27764, 96, 41753, 99, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 657, 6624, 7028, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12347, 18960, 13, 6738, 56, 76, 7, 944, 13, 834, 1941, 11, 2116, 13, 834, 8424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 614, 796, 2116, 13, 834, 1941, 198, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 2116, 13, 834, 8424, 198, 220, 220, 220, 220, 220, 220, 220, 1933, 796, 12347, 18960, 13, 27857, 4221, 62, 34, 28270, 1635, 7028, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1933, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 12347, 18960, 13, 6738, 56, 76, 7, 1941, 11, 1227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 2352, 7, 41537, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 299, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1933, 1279, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1227, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 1105, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 48185, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1227, 1875, 1105, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1227, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 12347, 18960, 13, 6738, 56, 76, 7, 1941, 11, 1227, 8, 198 ]
1.634615
884
# Generated by Django 2.0.5 on 2018-10-24 19:02 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 20, 319, 2864, 12, 940, 12, 1731, 678, 25, 2999, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
# -*- coding: utf-8 -*- line endings: unix -*- __author__ = 'quixadhal' import os import sys import time import sysutils import log_system import db_system logger = log_system.init_logging() sys.path.append(os.getcwd()) if __name__ == '__main__': logger.boot('System booting.') snapshot = sysutils.ResourceSnapshot() logger.info(snapshot.log_data()) db_system.init_db() snapshot = sysutils.ResourceSnapshot() logger.info(snapshot.log_data()) from db_system import Session from option import Option session = Session() options = session.query(Option).first() logger.boot('Using database version %s, created on %s', options.version, options.date_created) #logger.boot('Port number is %d', options.port) #logger.boot('Wizlock is %s', options.wizlock) time.sleep(1) snapshot = sysutils.ResourceSnapshot() logger.info(snapshot.log_data()) logger.critical('System halted.')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 1627, 38168, 25, 555, 844, 532, 9, 12, 198, 834, 9800, 834, 796, 705, 421, 844, 324, 14201, 6, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 25064, 26791, 198, 11748, 2604, 62, 10057, 198, 11748, 20613, 62, 10057, 628, 198, 6404, 1362, 796, 2604, 62, 10057, 13, 15003, 62, 6404, 2667, 3419, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 1136, 66, 16993, 28955, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 49706, 13, 18769, 10786, 11964, 6297, 278, 2637, 8, 198, 220, 220, 220, 27479, 796, 25064, 26791, 13, 26198, 43826, 9442, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 45380, 9442, 13, 6404, 62, 7890, 28955, 198, 220, 220, 220, 20613, 62, 10057, 13, 15003, 62, 9945, 3419, 198, 220, 220, 220, 27479, 796, 25064, 26791, 13, 26198, 43826, 9442, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 45380, 9442, 13, 6404, 62, 7890, 28955, 628, 220, 220, 220, 422, 20613, 62, 10057, 1330, 23575, 198, 220, 220, 220, 422, 3038, 1330, 16018, 198, 220, 220, 220, 6246, 796, 23575, 3419, 198, 220, 220, 220, 3689, 796, 6246, 13, 22766, 7, 19722, 737, 11085, 3419, 628, 220, 220, 220, 49706, 13, 18769, 10786, 12814, 6831, 2196, 4064, 82, 11, 2727, 319, 4064, 82, 3256, 3689, 13, 9641, 11, 3689, 13, 4475, 62, 25598, 8, 198, 220, 220, 220, 1303, 6404, 1362, 13, 18769, 10786, 13924, 1271, 318, 4064, 67, 3256, 3689, 13, 634, 8, 198, 220, 220, 220, 1303, 6404, 1362, 13, 18769, 10786, 54, 528, 5354, 318, 4064, 82, 3256, 3689, 13, 86, 528, 5354, 8, 628, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 198, 220, 220, 220, 27479, 796, 25064, 26791, 13, 26198, 43826, 9442, 3419, 198, 220, 220, 220, 49706, 13, 10951, 7, 45380, 9442, 13, 6404, 62, 7890, 28955, 198, 220, 220, 220, 49706, 13, 34666, 10786, 11964, 27771, 2637, 8, 198 ]
2.781711
339
import pandas as pa import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import Imputer,LabelEncoder,OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score #%% datset=pa.read_csv("datasets/One.csv") #datset_district=datset.drop_duplicates('District_Name')['District_Name'] datset_crop=datset.drop_duplicates('crop')['crop'] #%% for i in datset_crop: value=(datset.loc[(datset['crop'] == i)]) for j in headers: mean_1=(value[j]).mean()
[ 11748, 19798, 292, 355, 14187, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 220, 220, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 1846, 10549, 11, 33986, 27195, 12342, 11, 3198, 21352, 27195, 12342, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 44800, 8081, 2234, 198, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 3272, 62, 2100, 62, 26675, 198, 2, 16626, 198, 67, 1381, 316, 28, 8957, 13, 961, 62, 40664, 7203, 19608, 292, 1039, 14, 3198, 13, 40664, 4943, 198, 2, 67, 1381, 316, 62, 17080, 2012, 28, 67, 1381, 316, 13, 14781, 62, 646, 489, 16856, 10786, 44857, 62, 5376, 11537, 17816, 44857, 62, 5376, 20520, 198, 67, 1381, 316, 62, 31476, 28, 67, 1381, 316, 13, 14781, 62, 646, 489, 16856, 10786, 31476, 11537, 17816, 31476, 20520, 198, 2, 16626, 198, 1640, 1312, 287, 288, 1381, 316, 62, 31476, 25, 198, 220, 220, 220, 1988, 16193, 67, 1381, 316, 13, 17946, 58, 7, 67, 1381, 316, 17816, 31476, 20520, 6624, 1312, 8, 12962, 198, 220, 220, 220, 329, 474, 287, 24697, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 62, 16, 16193, 8367, 58, 73, 35944, 32604, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220 ]
2.534979
243
#!/usr/bin/env python import numpy as np if __name__ == "__main__": import sys data = load_data(sys.argv[1]) print("data: %s, %s" % (data, str(data.shape)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 11748, 299, 32152, 355, 45941, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 1366, 796, 3440, 62, 7890, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 3601, 7203, 7890, 25, 4064, 82, 11, 4064, 82, 1, 4064, 357, 7890, 11, 965, 7, 7890, 13, 43358, 22305, 198 ]
2.293333
75
# flake8: noqa from catalyst_rl.dl import AlchemyRunner
[ 2, 781, 539, 23, 25, 645, 20402, 198, 6738, 31357, 62, 45895, 13, 25404, 1330, 43987, 49493, 198 ]
3.111111
18
# -*- coding: utf-8 -*- """Python interface to GnuCash documents""" from . import metadata __version__ = metadata.version __author__ = metadata.authors[0] __license__ = metadata.license __copyright__ = metadata.copyright from ._common import ( GncNoActiveSession, GnucashException, GncValidationError, GncImbalanceError, Recurrence ) from .core import ( Book, Account, ACCOUNT_TYPES, AccountType, Transaction, Split, ScheduledTransaction, Lot, Commodity, Price, create_book, open_book, factories, ) from .business import Vendor, Customer, Employee, Address from .business import Invoice, Job from .business import Taxtable, TaxtableEntry from .budget import Budget, BudgetAmount from .kvp import slot from .ledger import ledger
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 37906, 7071, 284, 18509, 84, 35361, 4963, 37811, 198, 6738, 764, 1330, 20150, 198, 198, 834, 9641, 834, 796, 20150, 13, 9641, 198, 834, 9800, 834, 796, 20150, 13, 41617, 58, 15, 60, 198, 834, 43085, 834, 796, 20150, 13, 43085, 198, 834, 22163, 4766, 834, 796, 20150, 13, 22163, 4766, 198, 198, 6738, 47540, 11321, 1330, 357, 198, 220, 220, 220, 402, 10782, 2949, 13739, 36044, 11, 198, 220, 220, 220, 18509, 1229, 1077, 16922, 11, 402, 10782, 7762, 24765, 12331, 11, 402, 10782, 40, 2022, 282, 590, 12331, 11, 198, 220, 220, 220, 3311, 33928, 198, 8, 198, 6738, 764, 7295, 1330, 357, 198, 220, 220, 220, 4897, 11, 198, 220, 220, 220, 10781, 11, 15859, 28270, 62, 9936, 47, 1546, 11, 10781, 6030, 11, 198, 220, 220, 220, 45389, 11, 27758, 11, 27774, 6309, 48720, 11, 15099, 11, 198, 220, 220, 220, 1520, 375, 414, 11, 7886, 11, 198, 220, 220, 220, 2251, 62, 2070, 11, 1280, 62, 2070, 11, 198, 220, 220, 220, 17590, 11, 198, 8, 198, 6738, 764, 22680, 1330, 39896, 11, 22092, 11, 36824, 11, 17917, 198, 6738, 764, 22680, 1330, 10001, 2942, 11, 15768, 198, 6738, 764, 22680, 1330, 11940, 742, 540, 11, 11940, 742, 540, 30150, 198, 6738, 764, 37315, 1330, 15401, 11, 15401, 31264, 198, 6738, 764, 74, 36133, 1330, 10852, 198, 6738, 764, 992, 1362, 1330, 37208, 198 ]
3.139344
244
from datetime import datetime import numpy as np import time from pyrealtime.layer import ThreadLayer, TransformMixin, ProducerMixin, EncoderMixin
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 198, 6738, 12972, 5305, 2435, 13, 29289, 1330, 14122, 49925, 11, 26981, 35608, 259, 11, 30436, 35608, 259, 11, 14711, 12342, 35608, 259, 628, 628 ]
3.619048
42
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Nov 20 12:17:30 2021 @author: jorge """
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 7031, 5267, 1160, 1105, 25, 1558, 25, 1270, 33448, 198, 198, 31, 9800, 25, 474, 3643, 198, 37811, 198 ]
2.276596
47
# -*- coding: utf-8 -*- ########################################################################## # NSAp - Copyright (C) CEA, 2019 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## """ The U-Net is a convolutional encoder-decoder neural network. """ # Imports import ast import collections import torch import torch.nn as nn import numpy as np import torch.nn.functional as func from pynet.utils import tensor2im class UNet(nn.Module): """ UNet. The U-Net is a convolutional encoder-decoder neural network. Contextual spatial information (from the decoding, expansive pathway) about an input tensor is merged with information representing the localization of details (from the encoding, compressive pathway). Modifications to the original paper: - padding is used in 3x3x3 convolutions to prevent loss of border pixels - merging outputs does not require cropping due to (1) - residual connections can be used by specifying UNet(merge_mode='add') - if non-parametric upsampling is used in the decoder pathway (specified by upmode='upsample'), then an additional 1x1x1 3d convolution occurs after upsampling to reduce channel dimensionality by a factor of 2. This channel halving happens with the convolution in the tranpose convolution (specified by upmode='transpose') """ def __init__(self, num_classes, in_channels=1, depth=5, start_filts=16, up_mode="transpose", down_mode="maxpool", merge_mode="concat", batchnorm=False, dim="3d", skip_connections=False, mode="seg", input_size=None, nb_regressors=None, freeze_encoder=False): """ Init class. Parameters ---------- num_classes: int the number of features in the output segmentation map. in_channels: int, default 1 number of channels in the input tensor. depth: int, default 5 number of layers in the U-Net. start_filts: int, default 16 number of convolutional filters for the first conv. up_mode: string, default 'transpose' type of upconvolution. Choices: 'transpose' for transpose convolution, 'upsample' for nearest neighbour upsampling down_mode: string, default 'maxpool' Choices: 'maxpool' for maxpool, 'conv' for convolutions with stride=2 merge_mode: str, default 'concat', can be 'add' or None the skip connections merging strategy. skip_connections: bool, whether we add skip connections between conv layers or not batchnorm: bool, default False normalize the inputs of the activation function. mode: 'str', default 'seg' Whether the network is turned in 'segmentation' mode ("seg") or 'classification' mode ("classif") or both ("seg_classif"). Only the encoder can be also used in mode ("encoder") The input_size is required for classification input_size: tuple (optional) it is required for classification only. It should be a tuple (C, H, W, D) (for 3d) or (C, H, W) (for 2d) dim: str, default '3d' '3d' or '2d' input data. """ # Inheritance super(UNet, self).__init__() # Check inputs if dim in ("2d", "3d"): self.dim = dim else: raise ValueError( "'{}' is not a valid mode for merging up and down paths. Only " "'3d' and '2d' are allowed.".format(dim)) if mode in ("seg", "classif", "seg_classif", "encoder", "simCLR"): self.mode = mode else: raise ValueError("'{}' is not a valid mode. Should be in 'seg' " "or 'classif' mode.".format(mode)) if up_mode in ("transpose", "upsample"): self.up_mode = up_mode else: raise ValueError( "'{}' is not a valid mode for upsampling. Only 'transpose' " "and 'upsample' are allowed.".format(up_mode)) if merge_mode in ("concat", "add", None): self.merge_mode = merge_mode else: raise ValueError( "'{}' is not a valid mode for merging up and down paths. Only " "'concat' and 'add' are allowed.".format(up_mode)) if down_mode in ("maxpool", "conv"): self.down_mode = down_mode else: raise ValueError( "'{}' is not a valid mode for down sampling. Only 'maxpool' " "and 'conv' are allowed".format(down_mode) ) if self.up_mode == "upsample" and self.merge_mode == "add": raise ValueError( "up_mode 'upsample' is incompatible with merge_mode 'add' at " "the moment because it doesn't make sense to use nearest " "neighbour to reduce depth channels (by half).") # Declare class parameters self.num_classes = num_classes self.in_channels = in_channels self.start_filts = start_filts self.input_size = input_size self.nb_regressors = nb_regressors self.depth = depth self.down = [] self.up = [] # Useful in seg mode self.classifier = None # Useful in classif mode self.freeze_encoder = freeze_encoder self.name = "UNet_D%i_%s" % (self.depth, self.mode) # Create the encoder pathway for cnt in range(depth): in_channels = self.in_channels if cnt == 0 else out_channels out_channels = self.start_filts * (2**cnt) down_sampling = False if cnt == 0 else True self.down.append( Down(in_channels, out_channels, self.dim, down_mode=self.down_mode, pooling=down_sampling, batchnorm=batchnorm, skip_connections=skip_connections)) # Freeze all the layers if necessary if self.freeze_encoder: for down_m in self.down: for param in down_m.parameters(): param.requires_grad = False if self.mode == "seg" or self.mode == "seg_classif": # Create the decoder pathway # - careful! decoding only requires depth-1 blocks for cnt in range(depth - 1): in_channels = out_channels out_channels = in_channels // 2 self.up.append( Up(in_channels, out_channels, up_mode=up_mode, dim=self.dim, merge_mode=merge_mode, batchnorm=batchnorm, skip_connections=skip_connections)) if self.mode == "classif" or self.mode == "seg_classif": self.classifier = Classifier(self.nb_regressors, features=self.start_filts * 2**(self.depth-1)) elif self.mode == 'simCLR': self.hidden_representation = nn.Linear(self.start_filts * (2**(self.depth-1)), 512) self.head_projection = nn.Linear(512, 128) # Add the list of modules to current module self.down = nn.ModuleList(self.down) self.up = nn.ModuleList(self.up) # Get ouptut segmentation if self.mode == "seg" or self.mode == "seg_classif": self.conv_final = Conv1x1x1(out_channels, self.num_classes, self.dim) # Kernel initializer # Weight initialization self.weight_initializer() class Down(nn.Module): """ A helper Module that performs 2 convolutions and 1 MaxPool. A ReLU activation and optionally a BatchNorm follows each convolution. """ class Up(nn.Module): """ A helper Module that performs 2 convolutions and 1 UpConvolution. A ReLU activation and optionally a BatchNorm follows each convolution. """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 29113, 29113, 7804, 2235, 198, 2, 10551, 79, 532, 15069, 357, 34, 8, 327, 16412, 11, 13130, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 20101, 34, 8267, 12, 33, 5964, 11, 355, 3199, 416, 198, 2, 262, 327, 16412, 12, 34, 41256, 12, 1268, 49, 3539, 13, 33973, 284, 262, 38559, 24290, 2393, 393, 284, 198, 2, 2638, 1378, 2503, 13, 344, 20346, 13, 10951, 14, 677, 3007, 14, 26656, 594, 62, 34, 68, 34, 8267, 12, 33, 62, 53, 16, 12, 268, 13, 6494, 198, 2, 329, 3307, 13, 198, 29113, 29113, 7804, 2235, 198, 198, 37811, 198, 464, 471, 12, 7934, 318, 257, 3063, 2122, 282, 2207, 12342, 12, 12501, 12342, 17019, 3127, 13, 198, 37811, 198, 198, 2, 1846, 3742, 198, 11748, 6468, 198, 11748, 17268, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 25439, 198, 6738, 279, 2047, 316, 13, 26791, 1330, 11192, 273, 17, 320, 198, 198, 4871, 4725, 316, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 4725, 316, 13, 628, 220, 220, 220, 383, 471, 12, 7934, 318, 257, 3063, 2122, 282, 2207, 12342, 12, 12501, 12342, 17019, 3127, 13, 198, 220, 220, 220, 30532, 723, 21739, 1321, 357, 6738, 262, 39938, 11, 198, 220, 220, 220, 31316, 21182, 8, 546, 281, 5128, 11192, 273, 318, 23791, 351, 198, 220, 220, 220, 1321, 10200, 262, 42842, 286, 3307, 198, 220, 220, 220, 357, 6738, 262, 21004, 11, 552, 3314, 21182, 737, 198, 220, 220, 220, 3401, 6637, 284, 262, 2656, 3348, 25, 628, 220, 220, 220, 532, 24511, 318, 973, 287, 513, 87, 18, 87, 18, 3063, 14191, 284, 2948, 2994, 198, 220, 220, 220, 220, 220, 286, 4865, 17848, 198, 220, 220, 220, 532, 35981, 23862, 857, 407, 2421, 6763, 2105, 2233, 284, 357, 16, 8, 198, 220, 220, 220, 532, 29598, 8787, 460, 307, 973, 416, 31577, 198, 220, 220, 220, 220, 220, 4725, 316, 7, 647, 469, 62, 14171, 11639, 2860, 11537, 198, 220, 220, 220, 532, 611, 1729, 12, 17143, 19482, 19649, 321, 11347, 318, 973, 287, 262, 875, 12342, 198, 220, 220, 220, 220, 220, 21182, 357, 23599, 416, 510, 14171, 11639, 4739, 1403, 33809, 788, 281, 198, 220, 220, 220, 220, 220, 3224, 352, 87, 16, 87, 16, 513, 67, 3063, 2122, 8833, 706, 19649, 321, 11347, 198, 220, 220, 220, 220, 220, 284, 4646, 6518, 15793, 1483, 416, 257, 5766, 286, 362, 13, 198, 220, 220, 220, 220, 220, 770, 6518, 10284, 1075, 4325, 351, 262, 3063, 2122, 287, 198, 220, 220, 220, 220, 220, 262, 491, 272, 3455, 3063, 2122, 357, 23599, 416, 510, 14171, 11639, 7645, 3455, 11537, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 997, 62, 37724, 11, 287, 62, 354, 8961, 28, 16, 11, 6795, 28, 20, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 10379, 912, 28, 1433, 11, 510, 62, 14171, 2625, 7645, 3455, 1600, 866, 62, 14171, 2625, 9806, 7742, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20121, 62, 14171, 2625, 1102, 9246, 1600, 15458, 27237, 28, 25101, 11, 5391, 2625, 18, 67, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 8443, 507, 28, 25101, 11, 4235, 2625, 325, 70, 1600, 5128, 62, 7857, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 65, 62, 2301, 601, 669, 28, 14202, 11, 16611, 62, 12685, 12342, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 44707, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1271, 286, 3033, 287, 262, 5072, 10618, 341, 3975, 13, 198, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 8961, 25, 493, 11, 4277, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 9619, 287, 262, 5128, 11192, 273, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 25, 493, 11, 4277, 642, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 11685, 287, 262, 471, 12, 7934, 13, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 10379, 912, 25, 493, 11, 4277, 1467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 3063, 2122, 282, 16628, 329, 262, 717, 3063, 13, 198, 220, 220, 220, 220, 220, 220, 220, 510, 62, 14171, 25, 4731, 11, 4277, 705, 7645, 3455, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 286, 510, 42946, 2122, 13, 10031, 1063, 25, 705, 7645, 3455, 6, 329, 1007, 3455, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3063, 2122, 11, 705, 4739, 1403, 6, 329, 16936, 12250, 19649, 321, 11347, 198, 220, 220, 220, 220, 220, 220, 220, 866, 62, 14171, 25, 4731, 11, 4277, 705, 9806, 7742, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10031, 1063, 25, 705, 9806, 7742, 6, 329, 3509, 7742, 11, 705, 42946, 6, 329, 3063, 14191, 351, 33769, 28, 17, 198, 220, 220, 220, 220, 220, 220, 220, 20121, 62, 14171, 25, 965, 11, 4277, 705, 1102, 9246, 3256, 460, 307, 705, 2860, 6, 393, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 14267, 8787, 35981, 4811, 13, 198, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 8443, 507, 25, 20512, 11, 1771, 356, 751, 14267, 8787, 1022, 3063, 11685, 393, 407, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 27237, 25, 20512, 11, 4277, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 262, 17311, 286, 262, 14916, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 25, 705, 2536, 3256, 4277, 705, 325, 70, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 3127, 318, 2900, 287, 705, 325, 5154, 341, 6, 4235, 5855, 325, 70, 4943, 393, 705, 4871, 2649, 6, 4235, 5855, 4871, 361, 4943, 393, 1111, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 325, 70, 62, 4871, 361, 11074, 5514, 262, 2207, 12342, 460, 307, 635, 973, 287, 4235, 5855, 12685, 12342, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5128, 62, 7857, 318, 2672, 329, 17923, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7857, 25, 46545, 357, 25968, 8, 340, 318, 2672, 329, 17923, 691, 13, 632, 815, 307, 257, 46545, 357, 34, 11, 367, 11, 370, 11, 360, 8, 357, 1640, 513, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 34, 11, 367, 11, 370, 8, 357, 1640, 362, 67, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5391, 25, 965, 11, 4277, 705, 18, 67, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18, 67, 6, 393, 705, 17, 67, 6, 5128, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47025, 42942, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 4944, 316, 11, 2116, 737, 834, 15003, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 17311, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5391, 287, 5855, 17, 67, 1600, 366, 18, 67, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27740, 796, 5391, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 318, 407, 257, 4938, 4235, 329, 35981, 510, 290, 866, 13532, 13, 5514, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 18, 67, 6, 290, 705, 17, 67, 6, 389, 3142, 526, 13, 18982, 7, 27740, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4235, 287, 5855, 325, 70, 1600, 366, 4871, 361, 1600, 366, 325, 70, 62, 4871, 361, 1600, 366, 12685, 12342, 1600, 366, 14323, 5097, 49, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 14171, 796, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 6, 90, 92, 6, 318, 407, 257, 4938, 4235, 13, 10358, 307, 287, 705, 325, 70, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 273, 705, 4871, 361, 6, 4235, 526, 13, 18982, 7, 14171, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 510, 62, 14171, 287, 5855, 7645, 3455, 1600, 366, 4739, 1403, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 62, 14171, 796, 510, 62, 14171, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 318, 407, 257, 4938, 4235, 329, 19649, 321, 11347, 13, 5514, 705, 7645, 3455, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 392, 705, 4739, 1403, 6, 389, 3142, 526, 13, 18982, 7, 929, 62, 14171, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 20121, 62, 14171, 287, 5855, 1102, 9246, 1600, 366, 2860, 1600, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 647, 469, 62, 14171, 796, 20121, 62, 14171, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 318, 407, 257, 4938, 4235, 329, 35981, 510, 290, 866, 13532, 13, 5514, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 1102, 9246, 6, 290, 705, 2860, 6, 389, 3142, 526, 13, 18982, 7, 929, 62, 14171, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 866, 62, 14171, 287, 5855, 9806, 7742, 1600, 366, 42946, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2902, 62, 14171, 796, 866, 62, 14171, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24018, 90, 92, 6, 318, 407, 257, 4938, 4235, 329, 866, 19232, 13, 5514, 705, 9806, 7742, 6, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 392, 705, 42946, 6, 389, 3142, 1911, 18982, 7, 2902, 62, 14171, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 929, 62, 14171, 6624, 366, 4739, 1403, 1, 290, 2116, 13, 647, 469, 62, 14171, 6624, 366, 2860, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 929, 62, 14171, 705, 4739, 1403, 6, 318, 27294, 351, 20121, 62, 14171, 705, 2860, 6, 379, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1169, 2589, 780, 340, 1595, 470, 787, 2565, 284, 779, 16936, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 710, 394, 6084, 284, 4646, 6795, 9619, 357, 1525, 2063, 8, 19570, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 16691, 533, 1398, 10007, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 37724, 796, 997, 62, 37724, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 62, 354, 8961, 796, 287, 62, 354, 8961, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 10379, 912, 796, 923, 62, 10379, 912, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15414, 62, 7857, 796, 5128, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46803, 62, 2301, 601, 669, 796, 299, 65, 62, 2301, 601, 669, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18053, 796, 6795, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2902, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 796, 17635, 1303, 49511, 287, 384, 70, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4871, 7483, 796, 6045, 1303, 49511, 287, 1398, 361, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5787, 2736, 62, 12685, 12342, 796, 16611, 62, 12685, 12342, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 366, 4944, 316, 62, 35, 4, 72, 62, 4, 82, 1, 4064, 357, 944, 13, 18053, 11, 2116, 13, 14171, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 2207, 12342, 21182, 198, 220, 220, 220, 220, 220, 220, 220, 329, 269, 429, 287, 2837, 7, 18053, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 8961, 796, 2116, 13, 259, 62, 354, 8961, 611, 269, 429, 6624, 657, 2073, 503, 62, 354, 8961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 796, 2116, 13, 9688, 62, 10379, 912, 1635, 357, 17, 1174, 66, 429, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 866, 62, 37687, 11347, 796, 10352, 611, 269, 429, 6624, 657, 2073, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2902, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5588, 7, 259, 62, 354, 8961, 11, 503, 62, 354, 8961, 11, 2116, 13, 27740, 11, 866, 62, 14171, 28, 944, 13, 2902, 62, 14171, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5933, 278, 28, 2902, 62, 37687, 11347, 11, 15458, 27237, 28, 43501, 27237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 8443, 507, 28, 48267, 62, 8443, 507, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 34917, 477, 262, 11685, 611, 3306, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 5787, 2736, 62, 12685, 12342, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 866, 62, 76, 287, 2116, 13, 2902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 5772, 287, 866, 62, 76, 13, 17143, 7307, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 13, 47911, 62, 9744, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14171, 6624, 366, 325, 70, 1, 393, 2116, 13, 14171, 6624, 366, 325, 70, 62, 4871, 361, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13610, 262, 875, 12342, 21182, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 532, 8161, 0, 39938, 691, 4433, 6795, 12, 16, 7021, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 429, 287, 2837, 7, 18053, 532, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 354, 8961, 796, 503, 62, 354, 8961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 62, 354, 8961, 796, 287, 62, 354, 8961, 3373, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 13, 33295, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3205, 7, 259, 62, 354, 8961, 11, 503, 62, 354, 8961, 11, 510, 62, 14171, 28, 929, 62, 14171, 11, 5391, 28, 944, 13, 27740, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20121, 62, 14171, 28, 647, 469, 62, 14171, 11, 15458, 27237, 28, 43501, 27237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14267, 62, 8443, 507, 28, 48267, 62, 8443, 507, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14171, 6624, 366, 4871, 361, 1, 393, 2116, 13, 14171, 6624, 366, 325, 70, 62, 4871, 361, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4871, 7483, 796, 5016, 7483, 7, 944, 13, 46803, 62, 2301, 601, 669, 11, 3033, 28, 944, 13, 9688, 62, 10379, 912, 1635, 362, 1174, 7, 944, 13, 18053, 12, 16, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 14171, 6624, 705, 14323, 5097, 49, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30342, 62, 15603, 341, 796, 299, 77, 13, 14993, 451, 7, 944, 13, 9688, 62, 10379, 912, 1635, 357, 17, 1174, 7, 944, 13, 18053, 12, 16, 36911, 22243, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2256, 62, 16302, 295, 796, 299, 77, 13, 14993, 451, 7, 25836, 11, 13108, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 262, 1351, 286, 13103, 284, 1459, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2902, 796, 299, 77, 13, 26796, 8053, 7, 944, 13, 2902, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 929, 796, 299, 77, 13, 26796, 8053, 7, 944, 13, 929, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 267, 37623, 315, 10618, 341, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 14171, 6624, 366, 325, 70, 1, 393, 2116, 13, 14171, 6624, 366, 325, 70, 62, 4871, 361, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42946, 62, 20311, 796, 34872, 16, 87, 16, 87, 16, 7, 448, 62, 354, 8961, 11, 2116, 13, 22510, 62, 37724, 11, 2116, 13, 27740, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 32169, 4238, 7509, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 14331, 37588, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6551, 62, 36733, 7509, 3419, 628, 628, 198, 198, 4871, 5588, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 31904, 19937, 326, 17706, 362, 3063, 14191, 290, 352, 5436, 27201, 13, 198, 220, 220, 220, 317, 797, 41596, 14916, 290, 42976, 257, 347, 963, 35393, 5679, 1123, 3063, 2122, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 3205, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 31904, 19937, 326, 17706, 362, 3063, 14191, 290, 352, 3205, 3103, 85, 2122, 13, 198, 220, 220, 220, 317, 797, 41596, 14916, 290, 42976, 257, 347, 963, 35393, 5679, 1123, 3063, 2122, 13, 198, 220, 220, 220, 37227, 198 ]
2.327105
3,479
n = int(input()) F = [0]*(n+1) F[0], F[1] = 0, 1 for i in range(2, n+1): F[i] = F[i-1] + F[i-2] print(F[n])
[ 77, 796, 493, 7, 15414, 28955, 198, 37, 796, 685, 15, 60, 9, 7, 77, 10, 16, 8, 198, 37, 58, 15, 4357, 376, 58, 16, 60, 796, 657, 11, 352, 198, 198, 1640, 1312, 287, 2837, 7, 17, 11, 299, 10, 16, 2599, 198, 220, 220, 220, 376, 58, 72, 60, 796, 376, 58, 72, 12, 16, 60, 1343, 376, 58, 72, 12, 17, 60, 198, 4798, 7, 37, 58, 77, 12962, 198 ]
1.527027
74
from typing import List, Optional import numpy as np import torch import torch.nn as nn from gluonts.core.component import validated from gluonts.dataset.field_names import FieldName from gluonts.torch.util import copy_parameters from gluonts.torch.model.predictor import PyTorchPredictor from gluonts.model.predictor import Predictor from gluonts.transform import ( InstanceSplitter, ValidationSplitSampler, TestSplitSampler, Transformation, Chain, ExpectedNumInstanceSampler, AddObservedValuesIndicator, AsNumpyArray, ) from pts.model import PyTorchEstimator from pts import Trainer from pts.model.utils import get_module_forward_input_names from .lstnet_network import LSTNetTrain, LSTNetPredict
[ 6738, 19720, 1330, 7343, 11, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 198, 6738, 1278, 84, 756, 82, 13, 7295, 13, 42895, 1330, 31031, 198, 6738, 1278, 84, 756, 82, 13, 19608, 292, 316, 13, 3245, 62, 14933, 1330, 7663, 5376, 198, 6738, 1278, 84, 756, 82, 13, 13165, 354, 13, 22602, 1330, 4866, 62, 17143, 7307, 198, 6738, 1278, 84, 756, 82, 13, 13165, 354, 13, 19849, 13, 79, 17407, 273, 1330, 9485, 15884, 354, 47, 17407, 273, 198, 6738, 1278, 84, 756, 82, 13, 19849, 13, 79, 17407, 273, 1330, 49461, 273, 198, 6738, 1278, 84, 756, 82, 13, 35636, 1330, 357, 198, 220, 220, 220, 2262, 590, 26568, 1967, 11, 198, 220, 220, 220, 3254, 24765, 41205, 16305, 20053, 11, 198, 220, 220, 220, 6208, 41205, 16305, 20053, 11, 198, 220, 220, 220, 49127, 11, 198, 220, 220, 220, 21853, 11, 198, 220, 220, 220, 1475, 7254, 33111, 33384, 16305, 20053, 11, 198, 220, 220, 220, 3060, 31310, 8520, 40161, 5497, 26407, 11, 198, 220, 220, 220, 1081, 45, 32152, 19182, 11, 198, 8, 198, 198, 6738, 43344, 13, 19849, 1330, 9485, 15884, 354, 22362, 320, 1352, 198, 6738, 43344, 1330, 31924, 198, 6738, 43344, 13, 19849, 13, 26791, 1330, 651, 62, 21412, 62, 11813, 62, 15414, 62, 14933, 198, 198, 6738, 764, 75, 301, 3262, 62, 27349, 1330, 406, 2257, 7934, 44077, 11, 406, 2257, 7934, 47, 17407, 628 ]
2.99187
246
import numpy as np from scipy.io import loadmat import os
[ 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 13, 952, 1330, 3440, 6759, 198, 11748, 28686 ]
3.166667
18
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v4.proto.resources import income_range_view_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_income__range__view__pb2 from google.ads.google_ads.v4.proto.services import income_range_view_service_pb2 as google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_income__range__view__service__pb2 class IncomeRangeViewServiceStub(object): """Proto file describing the Income Range View service. Service to manage income range views. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetIncomeRangeView = channel.unary_unary( '/google.ads.googleads.v4.services.IncomeRangeViewService/GetIncomeRangeView', request_serializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_services_dot_income__range__view__service__pb2.GetIncomeRangeViewRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v4_dot_proto_dot_resources_dot_income__range__view__pb2.IncomeRangeView.FromString, ) class IncomeRangeViewServiceServicer(object): """Proto file describing the Income Range View service. Service to manage income range views. """ def GetIncomeRangeView(self, request, context): """Returns the requested income range view in full detail. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')
[ 2, 2980, 515, 416, 262, 308, 49, 5662, 11361, 8435, 17050, 13877, 13, 8410, 5626, 48483, 0, 198, 11748, 1036, 14751, 198, 198, 6738, 23645, 13, 5643, 13, 13297, 62, 5643, 13, 85, 19, 13, 1676, 1462, 13, 37540, 1330, 3739, 62, 9521, 62, 1177, 62, 40842, 17, 355, 23645, 62, 26518, 62, 5643, 62, 26518, 62, 13297, 5643, 834, 85, 19, 62, 26518, 62, 1676, 1462, 62, 26518, 62, 37540, 62, 26518, 62, 12519, 834, 9521, 834, 1177, 834, 40842, 17, 198, 6738, 23645, 13, 5643, 13, 13297, 62, 5643, 13, 85, 19, 13, 1676, 1462, 13, 30416, 1330, 3739, 62, 9521, 62, 1177, 62, 15271, 62, 40842, 17, 355, 23645, 62, 26518, 62, 5643, 62, 26518, 62, 13297, 5643, 834, 85, 19, 62, 26518, 62, 1676, 1462, 62, 26518, 62, 30416, 62, 26518, 62, 12519, 834, 9521, 834, 1177, 834, 15271, 834, 40842, 17, 628, 198, 4871, 19003, 17257, 7680, 16177, 1273, 549, 7, 15252, 2599, 198, 220, 37227, 2964, 1462, 2393, 12059, 262, 19003, 13667, 3582, 2139, 13, 628, 220, 4809, 284, 6687, 3739, 2837, 5009, 13, 198, 220, 37227, 628, 220, 825, 11593, 15003, 834, 7, 944, 11, 6518, 2599, 198, 220, 220, 220, 37227, 42316, 273, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 6518, 25, 317, 1036, 14751, 13, 29239, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2116, 13, 3855, 818, 2958, 17257, 7680, 796, 6518, 13, 403, 560, 62, 403, 560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 31051, 13297, 13, 5643, 13, 13297, 5643, 13, 85, 19, 13, 30416, 13, 818, 2958, 17257, 7680, 16177, 14, 3855, 818, 2958, 17257, 7680, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 46911, 7509, 28, 13297, 62, 26518, 62, 5643, 62, 26518, 62, 13297, 5643, 834, 85, 19, 62, 26518, 62, 1676, 1462, 62, 26518, 62, 30416, 62, 26518, 62, 12519, 834, 9521, 834, 1177, 834, 15271, 834, 40842, 17, 13, 3855, 818, 2958, 17257, 7680, 18453, 13, 32634, 1096, 2514, 10100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 8906, 48499, 7509, 28, 13297, 62, 26518, 62, 5643, 62, 26518, 62, 13297, 5643, 834, 85, 19, 62, 26518, 62, 1676, 1462, 62, 26518, 62, 37540, 62, 26518, 62, 12519, 834, 9521, 834, 1177, 834, 40842, 17, 13, 818, 2958, 17257, 7680, 13, 4863, 10100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 4871, 19003, 17257, 7680, 16177, 11838, 16647, 7, 15252, 2599, 198, 220, 37227, 2964, 1462, 2393, 12059, 262, 19003, 13667, 3582, 2139, 13, 628, 220, 4809, 284, 6687, 3739, 2837, 5009, 13, 198, 220, 37227, 628, 220, 825, 3497, 818, 2958, 17257, 7680, 7, 944, 11, 2581, 11, 4732, 2599, 198, 220, 220, 220, 37227, 35561, 262, 9167, 3739, 2837, 1570, 287, 1336, 3703, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4732, 13, 2617, 62, 8189, 7, 2164, 14751, 13, 19580, 10669, 13, 4944, 3955, 16437, 10979, 1961, 8, 198, 220, 220, 220, 4732, 13, 2617, 62, 36604, 10786, 17410, 407, 9177, 0, 11537, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 10786, 17410, 407, 9177, 0, 11537, 628 ]
2.947467
533
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import wagtail.images.models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 266, 363, 13199, 13, 17566, 13, 27530, 628 ]
2.956522
46
''' Make two dictionaries: phr2sg_id and sg_id2phr phr2sg_id["nice work']==6152 phr2sg_id["nicely done']==6152 phr2sg_id["nice going']==6152 sg_id2phr[6152]=="Well done." ''' import json, os import operator import pickle from hparams import hp import re from tqdm import tqdm if __name__ == "__main__": print("Determine the most frequent Synonym Groups") data = json.load(open(hp.sg)) sg_id2cnt = dict() for sg_id, sg in tqdm(data.items()): sg_id = int(sg_id) phrs = sg["phrases"] # [['i am mormon', 1], ["i'm a mormon", 1]] sg_cnt = 0 # total cnt for phr, cnt in phrs: if cnt >= hp.min_cnt: sg_cnt += cnt sg_id2cnt[sg_id] = sg_cnt sg_id_cnt = sorted(sg_id2cnt.items(), key=operator.itemgetter(1), reverse=True) sg_ids = [sg_id for sg_id, _ in sg_id_cnt][:hp.n_phrs] print("Determine the group of phrases") sg_id2phr = dict() phr2sg_id, phr2cnt = dict(), dict() for sg_id in tqdm(sg_ids): sg = data[str(sg_id)] phrs = sg["phrases"] # [['i am mormon', 1], ["i'm a mormon", 1]] sg_id2phr[sg_id] = phrs[0][0] for phr, cnt in phrs: if cnt >= hp.min_cnt: phr = refine(phr) if phr in phr2cnt and cnt > phr2cnt[phr]: # overwrite phr2cnt[phr] = cnt phr2sg_id[phr] = sg_id else: phr2cnt[phr] = cnt phr2sg_id[phr] = sg_id print("save") os.makedirs(os.path.dirname(hp.phr2sg_id), exist_ok=True) os.makedirs(os.path.dirname(hp.sg_id2phr), exist_ok=True) pickle.dump(phr2sg_id, open(hp.phr2sg_id, 'wb')) pickle.dump(sg_id2phr, open(hp.sg_id2phr, 'wb'))
[ 7061, 6, 198, 12050, 734, 48589, 3166, 25, 7607, 17, 45213, 62, 312, 290, 264, 70, 62, 312, 17, 746, 81, 198, 198, 746, 81, 17, 45213, 62, 312, 14692, 44460, 670, 20520, 855, 21, 17827, 198, 746, 81, 17, 45213, 62, 312, 14692, 44460, 306, 1760, 20520, 855, 21, 17827, 198, 746, 81, 17, 45213, 62, 312, 14692, 44460, 1016, 20520, 855, 21, 17827, 198, 45213, 62, 312, 17, 746, 81, 58, 21, 17827, 60, 855, 1, 5779, 1760, 526, 198, 198, 7061, 6, 628, 198, 11748, 33918, 11, 28686, 198, 11748, 10088, 198, 11748, 2298, 293, 198, 6738, 289, 37266, 1330, 27673, 198, 11748, 302, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 35, 2357, 3810, 262, 749, 10792, 16065, 5177, 27441, 4943, 198, 220, 220, 220, 1366, 796, 33918, 13, 2220, 7, 9654, 7, 24831, 13, 45213, 4008, 198, 220, 220, 220, 264, 70, 62, 312, 17, 66, 429, 796, 8633, 3419, 198, 220, 220, 220, 329, 264, 70, 62, 312, 11, 264, 70, 287, 256, 80, 36020, 7, 7890, 13, 23814, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 62, 312, 796, 493, 7, 45213, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 872, 3808, 796, 264, 70, 14692, 746, 81, 1386, 8973, 1303, 16410, 6, 72, 716, 285, 10615, 3256, 352, 4357, 14631, 72, 1101, 257, 285, 10615, 1600, 352, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 62, 66, 429, 796, 657, 1303, 2472, 269, 429, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7607, 11, 269, 429, 287, 872, 3808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 429, 18189, 27673, 13, 1084, 62, 66, 429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 70, 62, 66, 429, 15853, 269, 429, 628, 220, 220, 220, 220, 220, 220, 220, 264, 70, 62, 312, 17, 66, 429, 58, 45213, 62, 312, 60, 796, 264, 70, 62, 66, 429, 628, 220, 220, 220, 264, 70, 62, 312, 62, 66, 429, 796, 23243, 7, 45213, 62, 312, 17, 66, 429, 13, 23814, 22784, 1994, 28, 46616, 13, 9186, 1136, 353, 7, 16, 828, 9575, 28, 17821, 8, 198, 220, 220, 220, 264, 70, 62, 2340, 796, 685, 45213, 62, 312, 329, 264, 70, 62, 312, 11, 4808, 287, 264, 70, 62, 312, 62, 66, 429, 7131, 25, 24831, 13, 77, 62, 746, 3808, 60, 628, 220, 220, 220, 3601, 7203, 35, 2357, 3810, 262, 1448, 286, 20144, 4943, 198, 220, 220, 220, 264, 70, 62, 312, 17, 746, 81, 796, 8633, 3419, 198, 220, 220, 220, 7607, 17, 45213, 62, 312, 11, 7607, 17, 66, 429, 796, 8633, 22784, 8633, 3419, 198, 220, 220, 220, 329, 264, 70, 62, 312, 287, 256, 80, 36020, 7, 45213, 62, 2340, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 264, 70, 796, 1366, 58, 2536, 7, 45213, 62, 312, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 872, 3808, 796, 264, 70, 14692, 746, 81, 1386, 8973, 220, 1303, 16410, 6, 72, 716, 285, 10615, 3256, 352, 4357, 14631, 72, 1101, 257, 285, 10615, 1600, 352, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 264, 70, 62, 312, 17, 746, 81, 58, 45213, 62, 312, 60, 796, 872, 3808, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7607, 11, 269, 429, 287, 872, 3808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 429, 18189, 27673, 13, 1084, 62, 66, 429, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7607, 796, 35139, 7, 746, 81, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7607, 287, 7607, 17, 66, 429, 290, 269, 429, 1875, 7607, 17, 66, 429, 58, 746, 81, 5974, 1303, 49312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7607, 17, 66, 429, 58, 746, 81, 60, 796, 269, 429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7607, 17, 45213, 62, 312, 58, 746, 81, 60, 796, 264, 70, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7607, 17, 66, 429, 58, 746, 81, 60, 796, 269, 429, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7607, 17, 45213, 62, 312, 58, 746, 81, 60, 796, 264, 70, 62, 312, 628, 220, 220, 220, 3601, 7203, 21928, 4943, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 24831, 13, 746, 81, 17, 45213, 62, 312, 828, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 418, 13, 6978, 13, 15908, 3672, 7, 24831, 13, 45213, 62, 312, 17, 746, 81, 828, 2152, 62, 482, 28, 17821, 8, 198, 220, 220, 220, 2298, 293, 13, 39455, 7, 746, 81, 17, 45213, 62, 312, 11, 1280, 7, 24831, 13, 746, 81, 17, 45213, 62, 312, 11, 705, 39346, 6, 4008, 198, 220, 220, 220, 2298, 293, 13, 39455, 7, 45213, 62, 312, 17, 746, 81, 11, 1280, 7, 24831, 13, 45213, 62, 312, 17, 746, 81, 11, 705, 39346, 6, 4008 ]
1.809721
967
"""Tareas de Celery.""" # Django from django.conf import settings from django.template.loader import render_to_string from django.utils import timezone from django.core.mail import EmailMultiAlternatives # Utilities import jwt from datetime import timedelta # Celery from celery.decorators import task, periodic_task # Models from cride.users.models import User from cride.rides.models import Ride def gen_verification_token(user): """Crea un token JWT que el usuario pueda usar para verificar su cuenta""" # El self se utiliza para que la funcion pueda usar los atributos de la clase. exp_date = timezone.now()+timedelta(days=3) payload = { 'user': user.username, 'exp': int(exp_date.timestamp()), 'type': 'email_confirmation' # Creamos una variable que especifique de que es el token, se lo usa # cuando tu proyecto genera mas JWT en otras aplicaciones y no queremos que se confundan. } token = jwt.encode(payload, settings.SECRET_KEY, algorithm='HS256') return token.decode() # regresamos el token en cadena @task(name='send_confirmation_email', max_retries=3) # Especificamos que estas son tareas de celery. # Este decorator recibira el nombre de la tarea, y la otra es el maximo numero de veces que intentara # ejecutar la tarea en caso de que ocurra errores def send_confirmation_email(user_pk): # Quitamos self del metodo por que ya no estan dentro de una clase, # Cuando usamos celery en funciones es recomendado no enviar datos complejos como instancias de clases. # Es mejor usar solo datos nativos como enteros, strings,etc. """Envia un enlace de verificación de cuenta a usuario dado Enviando un email al usuario para verificar la cuenta """ user = User.objects.get(pk=user_pk) # Obtenemos el usuario por su pk verification_token = gen_verification_token(user) subject = 'Bienvenido @{}! Verifica tu cuenta para empezar a usar Comparte-Ride'.format(user.username) from_email = 'Comparte Ride <[email protected]>' content = render_to_string( 'emails/users/account_verification.html', {'token': verification_token, 'user': user} ) # Esta variable se usara en caso de que el usario no pueda interpretar el contenido html que se le # envio, # El metodo render_to_string(), ayuda a no tener otra variable en caso de que no funcione el html # html_content = '<p>This is an <strong>important</strong> message.</p>' # Esta variable era del # contenido con html pero con la otra variable matamos 2 pajaros de un tiro. msg = EmailMultiAlternatives( subject, content, from_email, [user.email] # Lista de direcciones de correos a enviar ) # El EmailMultiAlternative se utiliza para enviar emails que contengan un contenido de html, msg.attach_alternative( content, # En esta variable agregas la variable con el html pero enviamos content, que posee los 2. "text/html") msg.send() # Usaremos los JWT para enviar la informacion del usuario sin necesidad de guardarlo en la base de datos. @periodic_task(name='disable_finished_rides', run_every=timedelta(minutes=5)) # Esta tarea sera llamada cada 5 segundos def disable_finished_rides(): """Desactiva viajes terminados. Este metodo servira para desactivar los rides una vez que termine su hora de llegada, esto sera como un soporte para cuando el creador del viaje se olvide desactivar el viaje. """ now = timezone.now() offset = now + timedelta(seconds=5) # Actualiza los paseos que ya han terminado // now <= arrival_date <= offset rides = Ride.objects.filter(arrival_date__gte=now, is_active=True, arrival_date__lte=offset) rides.update(is_active=False)
[ 37811, 51, 533, 292, 390, 15248, 1924, 526, 15931, 198, 2, 37770, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 29800, 23081, 2929, 198, 198, 2, 41086, 198, 11748, 474, 46569, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 198, 2, 15248, 1924, 198, 6738, 18725, 1924, 13, 12501, 273, 2024, 1330, 4876, 11, 27458, 62, 35943, 198, 198, 2, 32329, 198, 6738, 1067, 485, 13, 18417, 13, 27530, 1330, 11787, 198, 6738, 1067, 485, 13, 81, 1460, 13, 27530, 1330, 21640, 628, 198, 4299, 2429, 62, 332, 2649, 62, 30001, 7, 7220, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 12443, 64, 555, 11241, 449, 39386, 8358, 1288, 514, 84, 4982, 279, 1739, 64, 514, 283, 31215, 3326, 811, 283, 424, 18912, 29188, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2574, 2116, 384, 7736, 23638, 31215, 8358, 8591, 25439, 295, 279, 1739, 64, 514, 283, 22346, 379, 2455, 418, 390, 8591, 537, 589, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1033, 62, 4475, 796, 640, 11340, 13, 2197, 3419, 10, 16514, 276, 12514, 7, 12545, 28, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 21437, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 10354, 2836, 13, 29460, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11201, 10354, 493, 7, 11201, 62, 4475, 13, 16514, 27823, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4906, 10354, 705, 12888, 62, 10414, 36241, 6, 220, 1303, 19979, 418, 555, 64, 7885, 8358, 1658, 43106, 361, 2350, 390, 8358, 1658, 1288, 11241, 11, 384, 2376, 514, 64, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 18912, 25440, 12777, 386, 88, 478, 78, 1152, 64, 12422, 449, 39386, 551, 267, 2213, 292, 257, 489, 291, 49443, 274, 331, 645, 627, 567, 16785, 8358, 384, 1013, 917, 272, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 796, 474, 46569, 13, 268, 8189, 7, 15577, 2220, 11, 6460, 13, 23683, 26087, 62, 20373, 11, 11862, 11639, 7998, 11645, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11241, 13, 12501, 1098, 3419, 220, 1303, 842, 411, 321, 418, 1288, 11241, 551, 20603, 8107, 628, 198, 31, 35943, 7, 3672, 11639, 21280, 62, 10414, 36241, 62, 12888, 3256, 3509, 62, 1186, 1678, 28, 18, 8, 220, 1303, 412, 11423, 321, 418, 8358, 1556, 292, 3367, 256, 533, 292, 390, 18725, 1924, 13, 198, 2, 412, 4169, 11705, 1352, 664, 571, 8704, 1288, 299, 2381, 260, 390, 8591, 256, 20337, 11, 331, 8591, 267, 9535, 1658, 1288, 12991, 78, 997, 3529, 390, 1569, 728, 8358, 6824, 3301, 198, 2, 304, 73, 721, 315, 283, 8591, 256, 20337, 551, 6124, 78, 390, 8358, 267, 22019, 430, 1931, 305, 411, 198, 4299, 3758, 62, 10414, 36241, 62, 12888, 7, 7220, 62, 79, 74, 2599, 220, 1303, 48887, 321, 418, 2116, 1619, 1138, 24313, 16964, 8358, 21349, 645, 1556, 272, 18794, 305, 390, 555, 64, 537, 589, 11, 198, 220, 220, 220, 1303, 14496, 25440, 514, 321, 418, 18725, 1924, 551, 25439, 295, 274, 1658, 664, 296, 437, 4533, 645, 551, 8903, 283, 4818, 418, 1224, 73, 418, 401, 78, 916, 272, 979, 292, 390, 537, 1386, 13, 198, 220, 220, 220, 1303, 8678, 502, 73, 273, 514, 283, 12199, 4818, 418, 34664, 452, 418, 401, 78, 3802, 418, 11, 13042, 11, 14784, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4834, 8869, 555, 551, 27077, 390, 3326, 811, 32009, 18840, 390, 18912, 29188, 257, 514, 84, 4982, 288, 4533, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2039, 8903, 25440, 555, 3053, 435, 514, 84, 4982, 31215, 3326, 811, 283, 8591, 18912, 29188, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 796, 11787, 13, 48205, 13, 1136, 7, 79, 74, 28, 7220, 62, 79, 74, 8, 220, 1303, 1835, 1452, 368, 418, 1288, 514, 84, 4982, 16964, 424, 279, 74, 198, 220, 220, 220, 220, 220, 220, 220, 19637, 62, 30001, 796, 2429, 62, 332, 2649, 62, 30001, 7, 7220, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2426, 796, 705, 33, 2013, 574, 17305, 2488, 90, 92, 0, 4643, 811, 64, 12777, 18912, 29188, 31215, 795, 431, 41046, 257, 514, 283, 3082, 32074, 12, 49, 485, 4458, 18982, 7, 7220, 13, 29460, 8, 198, 220, 220, 220, 220, 220, 220, 220, 422, 62, 12888, 796, 705, 7293, 32074, 21640, 1279, 77, 382, 2145, 31, 785, 1845, 353, 485, 13, 785, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 8543, 62, 1462, 62, 8841, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 368, 1768, 14, 18417, 14, 23317, 62, 332, 2649, 13, 6494, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 30001, 10354, 19637, 62, 30001, 11, 705, 7220, 10354, 2836, 92, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 220, 1303, 10062, 64, 7885, 384, 514, 3301, 551, 6124, 78, 390, 8358, 1288, 514, 4982, 645, 279, 1739, 64, 6179, 283, 1288, 542, 268, 17305, 27711, 8358, 384, 443, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 17365, 952, 11, 1303, 2574, 1138, 24313, 8543, 62, 1462, 62, 8841, 22784, 38762, 15339, 257, 645, 256, 877, 267, 9535, 7885, 551, 6124, 78, 390, 8358, 645, 25439, 7935, 1288, 27711, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 27711, 62, 11299, 796, 705, 27, 79, 29, 1212, 318, 281, 1279, 11576, 29, 18049, 3556, 11576, 29, 3275, 25970, 79, 29, 6, 1303, 10062, 64, 7885, 6980, 1619, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 542, 268, 17305, 369, 27711, 583, 78, 369, 8591, 267, 9535, 7885, 2603, 321, 418, 362, 279, 1228, 283, 418, 390, 555, 256, 7058, 13, 628, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 9570, 29800, 23081, 2929, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2426, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 62, 12888, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 7220, 13, 12888, 60, 220, 1303, 7343, 64, 390, 19958, 535, 295, 274, 390, 1162, 260, 418, 257, 551, 8903, 283, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 220, 1303, 2574, 9570, 29800, 49788, 384, 7736, 23638, 31215, 551, 8903, 283, 7237, 8358, 542, 268, 1030, 555, 542, 268, 17305, 390, 27711, 11, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 13, 47348, 62, 33645, 876, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 11, 220, 1303, 2039, 1556, 64, 7885, 556, 2301, 292, 8591, 7885, 369, 1288, 27711, 583, 78, 17365, 1789, 418, 2695, 11, 8358, 12705, 68, 22346, 362, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 5239, 14, 6494, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 13, 21280, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4021, 533, 16785, 22346, 449, 39386, 31215, 551, 8903, 283, 8591, 4175, 49443, 1619, 514, 84, 4982, 7813, 497, 728, 32482, 390, 4860, 283, 5439, 551, 8591, 2779, 390, 4818, 418, 13, 628, 198, 31, 41007, 291, 62, 35943, 7, 3672, 11639, 40223, 62, 43952, 62, 81, 1460, 3256, 1057, 62, 16833, 28, 16514, 276, 12514, 7, 1084, 1769, 28, 20, 4008, 198, 2, 10062, 64, 256, 20337, 1055, 64, 32660, 321, 4763, 269, 4763, 642, 384, 70, 917, 418, 198, 4299, 15560, 62, 43952, 62, 81, 1460, 33529, 198, 220, 220, 220, 37227, 5960, 529, 12151, 2884, 73, 274, 5651, 22484, 13, 628, 220, 220, 220, 412, 4169, 1138, 24313, 1113, 8704, 31215, 748, 15791, 283, 22346, 17445, 555, 64, 1569, 89, 8358, 3381, 500, 198, 220, 220, 220, 424, 3076, 64, 390, 300, 1455, 4763, 11, 1556, 78, 1055, 64, 401, 78, 555, 264, 404, 419, 68, 31215, 18912, 25440, 1288, 269, 961, 273, 198, 220, 220, 220, 1619, 2884, 18015, 384, 267, 6780, 485, 748, 15791, 283, 1288, 2884, 18015, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 783, 796, 640, 11340, 13, 2197, 3419, 198, 220, 220, 220, 11677, 796, 783, 1343, 28805, 12514, 7, 43012, 28, 20, 8, 628, 220, 220, 220, 1303, 33520, 23638, 22346, 279, 589, 418, 8358, 21349, 289, 272, 5651, 4533, 3373, 783, 19841, 10325, 62, 4475, 19841, 11677, 198, 220, 220, 220, 17445, 796, 21640, 13, 48205, 13, 24455, 7, 283, 43171, 62, 4475, 834, 70, 660, 28, 2197, 11, 318, 62, 5275, 28, 17821, 11, 10325, 62, 4475, 834, 75, 660, 28, 28968, 8, 198, 220, 220, 220, 17445, 13, 19119, 7, 271, 62, 5275, 28, 25101, 8, 198 ]
2.545101
1,541
#!/usr/bin/env python # -*- coding: utf-8 -*- # Balanced Brackets # # Write a function that accepts a string consisting entiring of brackets # (`[](){}`) and returns whether it is balanced. Every "opening" bracket must # be followed by a closing bracket of the same type. There can also be nested # brackets, which adhere to the same rule. # # ```js # f('()[]{}(([])){[()][]}') // true # f('())[]{}') // false # f('[(])') // false # ``` pairs = { "(": ")", "[": "]", "{": "}" }
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 220, 38984, 1709, 25180, 198, 2, 198, 2, 220, 19430, 257, 2163, 326, 18178, 257, 4731, 17747, 920, 3428, 286, 28103, 198, 2, 220, 357, 63, 21737, 39893, 92, 63, 8, 290, 5860, 1771, 340, 318, 12974, 13, 3887, 366, 29443, 1, 19096, 1276, 198, 2, 220, 307, 3940, 416, 257, 9605, 19096, 286, 262, 976, 2099, 13, 1318, 460, 635, 307, 28376, 198, 2, 220, 28103, 11, 543, 26325, 284, 262, 976, 3896, 13, 198, 2, 198, 2, 220, 7559, 63, 8457, 198, 2, 220, 277, 10786, 3419, 21737, 90, 92, 19510, 21737, 4008, 90, 58, 3419, 7131, 48999, 11537, 3373, 2081, 198, 2, 220, 277, 10786, 28955, 21737, 90, 92, 11537, 3373, 3991, 198, 2, 220, 277, 10786, 58, 7, 12962, 11537, 3373, 3991, 198, 2, 220, 7559, 63, 198, 198, 79, 3468, 796, 1391, 198, 220, 220, 220, 30629, 1298, 366, 42501, 198, 220, 220, 220, 12878, 1298, 366, 60, 1600, 198, 220, 220, 220, 45144, 1298, 366, 36786, 198, 92, 628 ]
2.647368
190
from django import forms from django.conf import settings from django.core import validators from django.db import models from django.utils import six, timezone from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ import django from .base import aes_pad_key, armor, dearmor, pad, unpad import datetime import decimal if django.VERSION >= (1, 7): from django.db.models.lookups import Lookup for lookup_name in ('exact', 'gt', 'gte', 'lt', 'lte'): class_name = 'EncryptedLookup_%s' % lookup_name lookup_class = type(class_name, (EncryptedLookup,), {'lookup_name': lookup_name}) BaseEncryptedField.register_lookup(lookup_class)
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 1330, 4938, 2024, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 1330, 2237, 11, 640, 11340, 198, 6738, 42625, 14208, 13, 26791, 13, 12685, 7656, 1330, 2700, 62, 5239, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 11748, 42625, 14208, 198, 198, 6738, 764, 8692, 1330, 257, 274, 62, 15636, 62, 2539, 11, 8328, 11, 390, 40456, 11, 14841, 11, 8593, 324, 198, 198, 11748, 4818, 8079, 198, 11748, 32465, 628, 628, 628, 628, 628, 198, 361, 42625, 14208, 13, 43717, 18189, 357, 16, 11, 767, 2599, 628, 220, 220, 220, 422, 42625, 14208, 13, 9945, 13, 27530, 13, 5460, 4739, 1330, 6803, 929, 628, 220, 220, 220, 329, 35847, 62, 3672, 287, 19203, 1069, 529, 3256, 705, 13655, 3256, 705, 70, 660, 3256, 705, 2528, 3256, 705, 75, 660, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 3672, 796, 705, 27195, 15109, 8567, 929, 62, 4, 82, 6, 4064, 35847, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 35847, 62, 4871, 796, 2099, 7, 4871, 62, 3672, 11, 357, 27195, 15109, 8567, 929, 11, 828, 1391, 6, 5460, 929, 62, 3672, 10354, 35847, 62, 3672, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 7308, 27195, 15109, 15878, 13, 30238, 62, 5460, 929, 7, 5460, 929, 62, 4871, 8, 198 ]
2.853175
252
import os import click from .constants import VALID_CONFIG_DIR_FILE_EXTENSIONS from .utils import get_config_dir @click.command( name="ls", short_help="List configured sessions in :meth:`tmuxp.cli.utils.get_config_dir`.", )
[ 11748, 28686, 198, 198, 11748, 3904, 198, 198, 6738, 764, 9979, 1187, 1330, 26173, 2389, 62, 10943, 16254, 62, 34720, 62, 25664, 62, 13918, 16938, 11053, 198, 6738, 764, 26791, 1330, 651, 62, 11250, 62, 15908, 628, 198, 31, 12976, 13, 21812, 7, 198, 220, 220, 220, 1438, 2625, 7278, 1600, 198, 220, 220, 220, 1790, 62, 16794, 2625, 8053, 17839, 10991, 287, 1058, 76, 2788, 25, 63, 17209, 2821, 79, 13, 44506, 13, 26791, 13, 1136, 62, 11250, 62, 15908, 63, 33283, 198, 8, 198 ]
2.744186
86
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.examplePlugin, name='examplePlugin'), ]
[ 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 198, 6738, 764, 1330, 5009, 198, 198, 6371, 33279, 82, 796, 685, 628, 220, 220, 220, 19016, 7, 81, 6, 61, 3, 3256, 5009, 13, 20688, 37233, 11, 1438, 11639, 20688, 37233, 33809, 198, 60 ]
2.911111
45
# -*- coding: utf-8 -*- """ Test resemblance of HM and RS trees Created on Sun Jun 14 00:33:52 2015 @author: hoseung """ # Load HM from astropy.io import fits from astropy.table import Table import tree wdir = '/home/hoseung/Work/data/AGN2/' data = fits.getdata(wdir + "halo/TMtree.fits", 1) hmt = Table(data) #%% idgals = [5232, 5495, 5543, 6061, 5491, 6191] for idgal in idgals: prg_treex, prg_tree = tree.tmtree.get_main_prg(hmt, idgal, nout_ini=122, nout_fi=0) print(prg_treex) #%% # Load RS # 3D plot tree.treeplots(hmt, thisgal, save=save_dir) #%% all_final_halo = tru.final_halo_list(hmt) ## ID list #%% # mass-produce plots of halo properties. quantities=["sam_mvir","mvir","rvir","rs","vrms","vmax" ,"jx","jy","jz","spin","m200b","m200c","m500c","m2500c" ,"xoff","voff","btoc","ctoa","ax","ay","az"] normalizer=np.array([1e-11,1e-11,1,1,1,1,1,1,1e-11 ,1,1e-11,1e-11,1e-11,1e-11,1,1,1,1,1,1,1]) for i, hal in enumerate(all_final_halo[0:10]): print(i, hal) tree = tru.get_main_prg_tree(hmt, hal) fn_save = str(hal) + 'halo_all.pdf' # trp.plot_all(tree, hal, save=True, out_dir=work_dir, fn_save=fn_save, # nrows=4, ncols=math.ceil(len(quantities)/4), # quantities=quantities, normalizer=normalizer) # trp.plot_all_multiPDF(tree, hal, out_dir=work_dir + 'RS_trees/', fn_save=fn_save, # nrows=2, ncols=2, # quantities=quantities, normalizer=normalizer) trp.trajectory3D(tree, hal, save=work_dir + 'RS_trees/')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 14402, 28204, 286, 25904, 290, 19340, 7150, 198, 198, 41972, 319, 3825, 7653, 1478, 3571, 25, 2091, 25, 4309, 1853, 198, 198, 31, 9800, 25, 31489, 2150, 198, 37811, 198, 198, 2, 8778, 25904, 198, 6738, 6468, 28338, 13, 952, 1330, 11414, 198, 6738, 6468, 28338, 13, 11487, 1330, 8655, 198, 11748, 5509, 198, 86, 15908, 796, 31051, 11195, 14, 71, 577, 2150, 14, 12468, 14, 7890, 14, 4760, 45, 17, 14, 6, 198, 7890, 796, 11414, 13, 1136, 7890, 7, 86, 15908, 1343, 366, 71, 7335, 14, 15972, 21048, 13, 21013, 1600, 352, 8, 198, 71, 16762, 796, 8655, 7, 7890, 8, 198, 198, 2, 16626, 198, 198, 312, 70, 874, 796, 685, 20, 24339, 11, 642, 33781, 11, 5996, 3559, 11, 3126, 5333, 11, 642, 41289, 11, 718, 26492, 60, 198, 1640, 4686, 13528, 287, 4686, 70, 874, 25, 198, 220, 220, 220, 778, 70, 62, 21048, 87, 11, 778, 70, 62, 21048, 796, 5509, 13, 83, 16762, 631, 13, 1136, 62, 12417, 62, 1050, 70, 7, 71, 16762, 11, 4686, 13528, 11, 299, 448, 62, 5362, 28, 18376, 11, 299, 448, 62, 12463, 28, 15, 8, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 7, 1050, 70, 62, 21048, 87, 8, 198, 198, 2, 16626, 198, 2, 8778, 19340, 628, 198, 2, 513, 35, 7110, 198, 21048, 13, 21048, 489, 1747, 7, 71, 16762, 11, 428, 13528, 11, 3613, 28, 21928, 62, 15908, 8, 628, 628, 198, 2, 16626, 198, 439, 62, 20311, 62, 71, 7335, 796, 45768, 13, 20311, 62, 71, 7335, 62, 4868, 7, 71, 16762, 8, 198, 2235, 4522, 1351, 198, 198, 2, 16626, 198, 2, 2347, 12, 18230, 344, 21528, 286, 289, 7335, 6608, 13, 198, 40972, 871, 28, 14692, 37687, 62, 76, 37040, 2430, 76, 37040, 2430, 81, 37040, 2430, 3808, 2430, 37020, 907, 2430, 85, 9806, 1, 198, 220, 220, 220, 42911, 73, 87, 2430, 73, 88, 2430, 73, 89, 2430, 39706, 2430, 76, 2167, 65, 2430, 76, 2167, 66, 2430, 76, 4059, 66, 2430, 76, 44688, 66, 1, 198, 220, 220, 220, 42911, 87, 2364, 2430, 85, 2364, 2430, 18347, 420, 2430, 310, 12162, 2430, 897, 2430, 323, 2430, 1031, 8973, 198, 198, 11265, 7509, 28, 37659, 13, 18747, 26933, 16, 68, 12, 1157, 11, 16, 68, 12, 1157, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 68, 12, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 837, 16, 11, 16, 68, 12, 1157, 11, 16, 68, 12, 1157, 11, 16, 68, 12, 1157, 11, 16, 68, 12, 1157, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 11, 16, 12962, 198, 198, 1640, 1312, 11, 10284, 287, 27056, 378, 7, 439, 62, 20311, 62, 71, 7335, 58, 15, 25, 940, 60, 2599, 198, 220, 220, 220, 3601, 7, 72, 11, 10284, 8, 198, 220, 220, 220, 5509, 796, 45768, 13, 1136, 62, 12417, 62, 1050, 70, 62, 21048, 7, 71, 16762, 11, 10284, 8, 628, 220, 220, 220, 24714, 62, 21928, 796, 965, 7, 14201, 8, 1343, 705, 71, 7335, 62, 439, 13, 12315, 6, 198, 2, 220, 220, 220, 491, 79, 13, 29487, 62, 439, 7, 21048, 11, 10284, 11, 3613, 28, 17821, 11, 503, 62, 15908, 28, 1818, 62, 15908, 11, 24714, 62, 21928, 28, 22184, 62, 21928, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 28, 19, 11, 299, 4033, 82, 28, 11018, 13, 344, 346, 7, 11925, 7, 40972, 871, 20679, 19, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 28, 40972, 871, 11, 3487, 7509, 28, 11265, 7509, 8, 198, 2, 220, 220, 220, 491, 79, 13, 29487, 62, 439, 62, 41684, 20456, 7, 21048, 11, 10284, 11, 503, 62, 15908, 28, 1818, 62, 15908, 1343, 705, 6998, 62, 83, 6037, 14, 3256, 24714, 62, 21928, 28, 22184, 62, 21928, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 8516, 28, 17, 11, 299, 4033, 82, 28, 17, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17794, 28, 40972, 871, 11, 3487, 7509, 28, 11265, 7509, 8, 198, 220, 220, 220, 491, 79, 13, 9535, 752, 652, 18, 35, 7, 21048, 11, 10284, 11, 3613, 28, 1818, 62, 15908, 1343, 705, 6998, 62, 83, 6037, 14, 11537 ]
2.013038
767
from builtins import setattr, getattr from fractions import Fraction import math from multiprocessing import Process, Manager from warnings import warn, showwarning try: from sympy import * import numpy as np from scipy.stats import norm, beta, gamma, expon from scipy.linalg import pascal from scipy.integrate import quad from sympy import ( symbols, zeros, integrate, N, factorial, sqrt, simplify, sympify, Abs ) from sympy.core.numbers import NaN from sympy.integrals.integrals import Integral from sympy.parsing.sympy_parser import parse_expr from sympy.solvers import solve from sympy.utilities.lambdify import lambdify from mpi4py import MPI from mpi4py.MPI import ( COMM_WORLD as MPI_COMM_WORLD, DOUBLE as MPI_DOUBLE, MAX as MPI_MAX ) except: warn('Ensure that all required packages are installed.') exit() from PCE_Codes.custom_enums import Distribution, UncertaintyType from PCE_Codes._helpers import _warn, uniform_hypercube from PCE_Codes.variables.variable import Variable from PCE_Codes.error import VariableInputError class ContinuousVariable(Variable): """ Inputs: pdf- the equation that defines the pdf of the variable values interval_low- the low interval of the variable interval_high- the high interval of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Class represents a continuous variable. """ def get_probability_density_func(self): """ Turns the input function into the corresponding probability density function. """ diff_tol = 1e-5 tol = 1e-12 f = lambdify(self.x, self.distribution, ('numpy', 'sympy')) const = quad(f, self.low_approx, self.high_approx, epsabs=tol, epsrel=tol)[0] const_rnd = np.round(const) if np.abs(const_rnd - const) < diff_tol: const = const_rnd self.distribution = self.distribution / const def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals For each variable, it adds a new attribute for the standardized values from the original input values. """ setattr(self, std_vals, getattr(self, orig)) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ return values # general variable must already be standardized def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ return value # general variable must already be standardized def check_distribution(self): """ Checks all values in an array to ensure that they are standardized. """ comm = MPI_COMM_WORLD rank = comm.rank mx = np.max(self.std_vals) mn = np.min(self.std_vals) if rank == 0 and mx > self.high_approx or mn < self.low_approx: warn( f'Large standardized value for variable {self.name} ' 'with user distribution found. Check input and run matrix.' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of points needed to be generated Generates points according to the Latin hypercube; each point is in an interval of equal probability. """ decimals = 30 comm = MPI_COMM_WORLD size = comm.size rank = comm.rank is_manager = (rank == 0) base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.inverse_func = None self.failed = None try: y = symbols('y') if self.failed != None: raise AttributeError # skip if has already gone through and failed # solve for the cumulative density function with 10s timeout if is_manager and not hasattr(self, 'cum_dens_func'): manager = Manager() proc_dict = manager.dict() cdf_proc = Process(target=self._calc_cdf, args=(proc_dict,)) cdf_proc.start() cdf_proc.join(10.0) if cdf_proc.is_alive(): cdf_proc.terminate() try: self.cum_dens_func = proc_dict['cum_dens_func'] # solve for the inverse function with 10s timeout inv_proc = Process(target=self._invert, args=(proc_dict,)) inv_proc.start() inv_proc.join(10.0) if inv_proc.is_alive(): inv_proc.terminate() self.inverse_func = proc_dict['inverse_func'] except KeyError: self.failed = 1 self.failed = comm.bcast(self.failed, root=0) if not self.failed: self.inverse_func = comm.bcast(self.inverse_func, root=0) else: raise ValueError # plug in random uniform 0 -> 1 to solve for x vals all_samples = np.zeros(samp_size) for i in range(len(self.inverse_func)): # multiple solutions inv_func = ( np.vectorize( lambdify(y, str(self.inverse_func[i]), ('numpy', 'sympy')) ) ) samples = N(inv_func(uniform_hypercube(0, 1, count)), decimals) comm.Allgatherv( [samples, count, MPI_DOUBLE], [all_samples, seq_count, seq_disp, MPI_DOUBLE] ) if np.min(all_samples) >= self.low_approx and np.max(all_samples) <= self.high_approx: np.random.shuffle(all_samples) return all_samples if not ( (np.min(samples) >= self.low_approx) and (np.max(samples) <= self.high_approx) ): raise ValueError # if cdf or inverse func can't be found, use rejection-acceptance sampling except (ValueError, NameError, AttributeError): func = lambdify(self.x, self.distribution, ('numpy', 'sympy')) try_total = 5000 tries = try_total // size + (rank < try_total % size) max_all = np.zeros(1) try: max_val = ( np.max(func( np.random.uniform( self.low_approx, self.high_approx, tries ) )) ) except RuntimeError: max_val = np.max( func( np.random.uniform( self.low_approx, self.high_approx, tries ) ) ).astype(float) comm.Allreduce( [max_val, MPI_DOUBLE], [max_all, MPI_DOUBLE], op=MPI_MAX ) samples = np.zeros(count) all_samples = np.zeros(samp_size) i = 0 j = 0 y_vals = np.random.uniform(0, max_all, count) x_vals = np.random.uniform(self.low_approx, self.high_approx, count) func_vals = func(x_vals) # while loop until all 'samp_size' samples have been generated while i < count: if j == count: y_vals = np.random.uniform(0, max_all, count) x_vals = np.random.uniform(self.low_approx, self.high_approx, count) func_vals = func(x_vals) j = 0 if y_vals[j] <= func_vals[j]: samples[i] = x_vals[j] i += 1 j += 1 comm.Allgatherv( [samples, count, MPI_DOUBLE], [all_samples, seq_count, seq_disp, MPI_DOUBLE] ) np.random.shuffle(all_samples) return all_samples def create_norm_sq(self, low, high, func): """ Inputs: low- the low interval bound for the distribution high- the high interval bound for the distribution func- the function corresponding to the distribution Calculates the norm squared values up to the order of polynomial expansion based on the probability density function and its corresponding orthogonal polynomials. """ orthopoly_count = len(self.var_orthopoly_vect) self.norm_sq_vals = np.zeros(orthopoly_count) tries = 2 zero = 0 # is rounded off at 50 decimals, requiring two decimals places norm_sq_thresh = 1e-49 for i in range(orthopoly_count): proc_dict = {} for j in range(tries): self._norm_sq(low, high, func, i, j, proc_dict) try: if (proc_dict['out'] is not None) and (not math.isclose(proc_dict['out'], zero)): self.norm_sq_vals[i] = proc_dict['out'] break # only breaks inner loop except KeyError: pass if (self.norm_sq_vals == zero).any(): warn(f'Finding the norm squared for variable {self.name} failed.') if (self.norm_sq_vals <= norm_sq_thresh).any(): warn( f'At least one norm squared value for variable {self.name} is ' f'very small. This can introduce error into the model.' ) def _norm_sq(self, low, high, func, i, region, proc_dict): """ Inputs: low- the low interval bound for the distribution high- the high interval bound for the distribution func- the function corresponding to the distribution i- the index of the norm squared to calculate region- which sympy calculation to try for the norm squared proc_dict- the dictionary in which the output will be stored An assistant to create_norm_sq; allows the norm squared calculations to have a timeout if an error isn't raised and the solution isn't found reasonably quickly. """ proc_dict['out'] = None # round 0.99999999 to 1 to reduce error; if value is small, don't round thresh = 1e-2 tol = 1e-12 diff_tol = 1e-8 decimals = 30 if high == 'oo': ul = np.inf elif high == 'pi': ul = np.pi elif high == '-pi': ul = -np.pi else: ul = high if low == '-oo': ll = -np.inf elif low == 'pi': ll = np.pi elif low == '-pi': ll = -np.pi else: ll = low if region == 0: try: f = lambdify(self.x, func * self.var_orthopoly_vect[i] ** 2, ('numpy', 'sympy')) ans = quad(f, ll, ul, epsabs=tol, epsrel=tol)[0] if np.abs(int(ans) - ans) < diff_tol: proc_dict['out'] = int(ans) elif ans > thresh: proc_dict['out'] = round(ans, 7) else: proc_dict['out'] = ans except: pass elif region == 1: try: f = lambdify( self.x, N(func * self.var_orthopoly_vect[i] ** 2, decimals), ('numpy', 'sympy') ) ans = quad(f, ll, ul, epsabs=tol, epsrel=tol)[0] if np.abs(int(ans) - ans) < diff_tol: proc_dict['out'] = int(ans) elif ans > thresh: proc_dict['out'] = round(ans, 7) else: proc_dict['out'] = ans except: pass elif region == 2: try: f = lambdify( self.x, sympify(f'{func} * ({self.var_orthopoly_vect[i]}) ** 2'), ('numpy', 'sympy') ) ans = quad(f, ll, ul, epsabs=tol, epsrel=tol)[0] if np.abs(int(ans) - ans) < diff_tol: proc_dict['out'] = int(ans) elif ans > thresh: proc_dict['out'] = round(ans, 7) else: proc_dict['out'] = ans except: pass def recursive_var_basis(self, func, low, high, order): """ Inputs: func- the probability density function of the input equation low- the low bound on the variable high- the high bound on the variable order- the order of polynomial expansion Recursively calculates the variable basis up to the input 'order'. """ tol = 1e-12 if low == '-oo': low = -np.inf if high == 'oo': high = np.inf if order == 0: self.poly_denom = np.zeros(self.order, dtype=object) self.var_orthopoly_vect = np.zeros(self.order + 1, dtype=object) self.var_orthopoly_vect[order] = 1 return else: self.recursive_var_basis(func, low, high, order - 1) curr = self.x ** order for i in range(order): orthopoly = self.var_orthopoly_vect[i] if self.poly_denom[i] == 0: f = lambdify(self.x, orthopoly ** 2 * func, ('numpy', 'sympy')) self.poly_denom[i] = quad(f, low, high, epsabs=tol, epsrel=tol)[0] f = lambdify(self.x, self.x ** order * orthopoly * func, ('numpy', 'sympy')) intergal_eval = ( quad(f, low, high, epsabs=tol, epsrel=tol)[0] / self.poly_denom[i] ) * orthopoly curr -= intergal_eval self.var_orthopoly_vect[order] = curr if order == self.order and (self.var_orthopoly_vect == 0).any(): warn( f'Variable {self.name} has at least one orthogonal polynomial ' f'that is zero. The model may not be accurate' ) return def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Generates samp_size number of samples according to the pdf of the Variable. """ self.resample = self.generate_samples(samp_size) return self.resample def _calc_cdf(self, proc_dict): """ Inputs: proc_dict- the dictionary in which the output will be stored Calculates the cumulative density function of the distribution. """ try: proc_dict['cum_dens_func'] = integrate( self.distribution, (self.x, self.interval_low, self.x) ) except RuntimeError: pass def _invert(self, proc_dict): """ Inputs: proc_dict- the dictionary in which the output will be stored Solves for the inverse function of the cumulative density function. """ y = symbols('y') try: proc_dict['inverse_func'] = solve(f'{self.cum_dens_func}-y', self.x) except (NameError, NotImplementedError, AttributeError, RuntimeError): pass def check_num_string(self): """ Checks for values in the input file that correspond to pi, -oo, or oo. If these values exist, they are converted into values that Python can use to create resampling points. """ decimals = 30 if self.interval_low == '-oo' or self.interval_high == 'oo': x = self.x integrate_tuple = (x, self.interval_low, self.interval_high) self.mean = integrate(x * self.distribution, integrate_tuple) stdev = ( math.sqrt( integrate(x ** 2 * self.distribution, integrate_tuple) -self.mean ** 2 ) ) if isinstance(self.interval_low, str): if 'pi' in self.interval_low: temp_low = float(self.interval_low.replace('pi', str(np.pi))) self.interval_low = temp_low self.low_approx = temp_low elif self.interval_low == '-oo': self.low_approx = N(self.mean - 10 * stdev, decimals) if isinstance(self.interval_high, str): if 'pi' in self.interval_high: temp_high = float(self.interval_high.replace('pi', str(np.pi))) self.interval_high = temp_high self.high_approx = temp_high elif self.interval_high == 'oo': self.high_approx = N(self.mean + 10 * stdev, decimals) def get_mean(self): """ Return the mean of the variable. """ decimals = 30 if not hasattr(self, 'mean'): x = self.x integrate_tuple = (x, self.interval_low, self.interval_high) self.mean = integrate(x * self.distribution, integrate_tuple) return N(self.mean, decimals) class UniformVariable(ContinuousVariable): """ Inputs: interval_low- the low interval of the variable interval_high- the high interval of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Represents a uniform variable. The methods in this class correspond to those of a uniform variable. """ def generate_orthopoly(self): """ Generates the orthogonal polynomials for a uniform variable up to the order of polynomial expansion. """ self.var_orthopoly_vect = np.zeros(self.order + 1, dtype=object) x = self.x for n in range(self.order + 1): if n == 0: self.var_orthopoly_vect[n] = 1 elif n == 1: self.var_orthopoly_vect[n] = x else: self.var_orthopoly_vect[n] = ( ( (2 * n - 1) * x * self.var_orthopoly_vect[n - 1] - (n - 1) * self.var_orthopoly_vect[n - 2] ) / n ) def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals Overrides the Variable class standardize to align with a uniform distribution. """ original = getattr(self, orig) mean = ( (self.interval_high - self.interval_low) / 2 + self.interval_low ) stdev = (self.interval_high - self.interval_low) / 2 standard = (original[:] - mean) / stdev setattr(self, std_vals, standard) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ mean = ( (self.interval_high - self.interval_low) / 2 + self.interval_low ) stdev = (self.interval_high - self.interval_low) / 2 return (values - mean) / stdev def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ mean = ( (self.interval_high - self.interval_low) / 2 + self.interval_low ) stdev = (self.interval_high - self.interval_low) / 2 return (value * stdev) + mean def check_distribution(self): """ Overrides the Variable class check_distribution to align with a uniform distribution. """ if ( (np.max(self.std_vals) > 1 + 1e-5) or (np.min(self.std_vals) < -1 - 1e-5) ): warn( f'Standardized value for variable {self.name} with uniform ' 'distribution outside expected [-1, 1] bounds' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of points needed to be generated Overrides the Variable class generate_samples to align with a uniform distribution. """ vals = ( uniform_hypercube(self.interval_low, self.interval_high, samp_size) ) return vals def get_norm_sq_val(self, matrix_val): """ Inputs: matrix_val- the value in the model matrix to consider Overrides the Variable class get_norm_sq_val to align with a uniform distribution. """ return 1.0 / (2.0 * matrix_val + 1.0) def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class get_resamp_vals to align with a uniform distribution. """ comm = MPI_COMM_WORLD size = comm.size rank = comm.rank base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.resample = np.zeros(samp_size) resample = np.random.uniform(-1, 1, count) comm.Allgatherv( [resample, count, MPI_DOUBLE], [self.resample, seq_count, seq_disp, MPI_DOUBLE] ) # The bound is included to help with ProbabilityBox convergence. self.resample[0] = -1 self.resample[1] = 1 return self.resample def check_num_string(self): """ Searches to replace sring 'pi' with its numpy equivalent in any of the values that might contain it. """ if isinstance(self.interval_low, str) and 'pi' in self.interval_low: self.interval_low = float(self.interval_low.replace('pi', str(np.pi))) if isinstance(self.interval_high, str) and 'pi' in self.interval_high: self.interval_high = float(self.interval_high.replace('pi', str(np.pi))) def get_mean(self): """ Return the mean of the variable. """ return (self.interval_high - self.interval_low) / 2 + self.interval_low class NormalVariable(ContinuousVariable): """ Inputs: mean- the mean of the variable stdev- the standard deviation of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Represents a normal variable. The methods in this class correspond to those of a normal variable. """ __slots__ = ('mean', 'stdev') def generate_orthopoly(self): """ Generates the orthogonal polynomials for a normal variable up to the order of polynomial expansion. """ self.var_orthopoly_vect = zeros(self.order + 1, 1) x = self.x for n in range(self.order + 1): if n == 0: self.var_orthopoly_vect[n] = 1 elif n == 1: self.var_orthopoly_vect[n] = 2 * x else: self.var_orthopoly_vect[n] = ( 2 * x * self.var_orthopoly_vect[n - 1] - 2 * (n - 1) * self.var_orthopoly_vect[n - 2] ) for n in range(self.order + 1): # transform into probabalists Hermite poly self.var_orthopoly_vect[n] = ( 2 ** (-n / 2) * self.var_orthopoly_vect[n].subs({x:x / math.sqrt(2)}) ) self.var_orthopoly_vect = np.array(self.var_orthopoly_vect).astype(object).T[0] def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals Overrides the Variable class standardize to align with a normal distribution. """ original = getattr(self, orig) standard = (original[:] - self.mean) / (self.stdev) setattr(self, std_vals, standard) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ return (values - self.mean) / (self.stdev) def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ return (value * self.stdev) + self.mean def check_distribution(self): """ Overrides the Variable class check_distribution to align with a normal distribution. """ comm = MPI_COMM_WORLD rank = comm.rank if rank == 0 and (np.max(self.std_vals) > 4.5) or (np.min(self.std_vals) < -4.5): warn( f'Large standardized value for variable {self.name} ' 'with normal distribution found. Check input and run matrix.' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of points needed to be generated Overrides the Variable class generate_samples to align with a normal distribution. """ low_percent = 8e-17 high_percent = 1 - low_percent dist = norm(loc=self.mean, scale=self.stdev) rnd_hypercube = uniform_hypercube(low_percent, high_percent, samp_size) vals = dist.ppf(rnd_hypercube) return vals def get_norm_sq_val(self, matrix_value): """ Inputs: matrix_val- the value in the model matrix to consider Overrides the Variable class get_norm_sq_val to align with a normal distribution. """ return math.factorial(matrix_value) def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class get_resamp_vals to align with a normal distribution. """ comm = MPI_COMM_WORLD size = comm.size rank = comm.rank base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.resample = np.zeros(samp_size) resample = np.random.randn(count) comm.Allgatherv( [resample, count, MPI_DOUBLE], [self.resample, seq_count, seq_disp, MPI_DOUBLE] ) return self.resample def check_num_string(self): """ Searches to replace sring 'pi' with its numpy equivalent in any of the values that might contain it. """ if isinstance(self.mean, str) and 'pi' in self.mean: self.mean = float(self.mean.replace('pi', str(np.pi))) if isinstance(self.stdev, str) and 'pi' in self.stdev: self.stdev = float(self.stdev.replace('pi', str(np.pi))) def get_mean(self): """ Return the mean of the variable. """ return self.mean class BetaVariable(ContinuousVariable): """ Inputs: alpha- the alpha parameter of the variable beta- the beta parameter of the variable interval_low- the low interval of the variable interval_high- the high interval of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Represents a beta variable. The methods in this class correspond to those of a beta variable. """ __slots__ = ('alpha', 'beta') equation = '((A+B-1)! * (x)**(A-1) * (1-x)**(B-1)) / ((A-1)! * (B-1)!)' def generate_orthopoly(self): """ Generates the orthogonal polynomials for a beta variable up to the self.self.order of polynomial expansion. """ var_orthopoly_vect = np.zeros(self.order + 1, dtype=object) self.var_orthopoly_vect = np.zeros(self.order + 1, dtype=object) x = self.x a = parse_expr(str(Fraction(self.alpha))) b = parse_expr(str(Fraction(self.beta))) decimals = 30 for n in range(self.order + 1): if n == 0: var_orthopoly_vect[n] = 1 self.var_orthopoly_vect[n] = 1 elif n == 1: var_orthopoly_vect[n] = x - (a / (a + b)) self.var_orthopoly_vect[n] = x - (a / (a + b)) else: var_orthopoly_vect[n] = x ** n pasc = pascal(self.order + 1, kind='lower') for m in range(n): var_orthopoly_vect[n] -= parse_expr( f'{pasc[n, m]} * ((a+n-1)!*(a+b+2*m-1)!)/((a+m-1)!*(a+b+n+m-1)!)*({var_orthopoly_vect[m]})', local_dict={'a':a, 'b':b, 'n':n, 'm':m, 'x':x} ) self.var_orthopoly_vect[n] = N(var_orthopoly_vect[n], decimals) return self.var_orthopoly_vect def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals Overrides the Variable class standardize to align with a beta distribution. """ original = getattr(self, orig) standard = ( (original[:] - self.interval_low) / (self.interval_high - self.interval_low) ) setattr(self, std_vals, standard) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ standard = ( (values - self.interval_low) / (self.interval_high - self.interval_low) ) return standard def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ unscaled_value = value = ( value * (self.interval_high - self.interval_low) +self.interval_low ) return unscaled_value def check_distribution(self): """ Overrides the Variable class check_distribution to align with an beta distribution. """ shift = 8 comm = MPI_COMM_WORLD rank = comm.rank if rank == 0 and (np.max(self.std_vals) > shift) or (np.min(self.std_vals) < -shift): warn( f'Large standardized value for variable {self.name} ' 'with Beta distribution found. Check input and run matrix.' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of points needed to be generated Overrides the Variable class generate_samples to align with an beta distribution. """ low_percent = 0 high_percent = 1 dist = beta(a=self.alpha, b=self.beta) rnd_hypercube = uniform_hypercube(low_percent, high_percent, samp_size) vals = ( (dist.ppf(rnd_hypercube) * (self.interval_high - self.interval_low)) +self.interval_low ) return vals def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class get_resamp_vals to align with an beta distribution. """ comm = MPI_COMM_WORLD size = comm.size rank = comm.rank base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.resample = np.zeros(samp_size) resample = np.random.beta(a=self.alpha, b=self.beta, size=count) comm.Allgatherv( [resample, count, MPI_DOUBLE], [self.resample, seq_count, seq_disp, MPI_DOUBLE] ) # The bound is included to help with ProbabilityBox convergence. self.resample[0] = 0 self.resample[1] = 1 return self.resample def check_num_string(self): """ Searches to replace sring 'pi' with its numpy equivalent in any of the values that might contain it. """ if isinstance(self.alpha, str) and 'pi' in self.alpha: self.alpha = float(self.alpha.replace('pi', str(np.pi))) if isinstance(self.beta, str) and 'pi' in self.beta: self.beta = float(self.beta.replace('pi', str(np.pi))) if isinstance(self.interval_low, str) and 'pi' in self.interval_low: self.interval_low = float(self.interval_low.replace('pi', str(np.pi))) if isinstance(self.interval_high, str) and 'pi' in self.interval_high: self.interval_high = float(self.interval_high.replace('pi', str(np.pi))) def get_mean(self): """ Return the mean of the variable. """ scale = self.interval_high - self.interval_low mean = ( self.interval_low + scale * (self.alpha / (self.alpha + self.beta)) ) return mean class ExponentialVariable(ContinuousVariable): """ Inputs: lambd- the lambda parameter of the variable values interval_low- the low interval of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Represents an exponential variable. The methods in this class correspond to those of an exponential variable. """ __slots__ = ('lambda') equation = 'lambd * exp(-lambd * x)' def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals Overrides the Variable class standardize to align with an exponential distribution. """ original = getattr(self, orig) standard = (original[:] - self.interval_low) setattr(self, std_vals, standard) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ return values - self.interval_low def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ return value + self.interval_low def check_distribution(self): """ Overrides the Variable class check_distribution to align with an exponential distribution. """ shift = 15 comm = MPI_COMM_WORLD rank = comm.rank if rank == 0 and ((np.min(self.std_vals) < 0) or (np.max(self.std_vals) > shift) ): warn( f'Large standardized value for variable {self.name} ' 'with exponential distribution found. Check input and run ' 'matrix.' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class generate_samples to align with an exponential distribution. """ percent_shift = 8e-17 low_percent = 0 high_percent = 1 - percent_shift dist = expon(scale=1 / getattr(self, 'lambda')) rnd_hypercube = uniform_hypercube(low_percent, high_percent, samp_size) vals = dist.ppf(rnd_hypercube) + self.interval_low np.random.shuffle(vals) return vals def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class get_resamp_vals to align with an exponential distribution. """ comm = MPI_COMM_WORLD size = comm.size rank = comm.rank base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.resample = np.zeros(samp_size) resample = np.random.exponential( scale=(1 / getattr(self, 'lambda')), size=count ) comm.Allgatherv( [resample, count, MPI_DOUBLE], [self.resample, seq_count, seq_disp, MPI_DOUBLE] ) # The bound is included to help with ProbabilityBox convergence. self.resample[0] = 0 return self.resample def check_num_string(self): """ Searches to replace sring 'pi' with its numpy equivalent in any of the values that might contain it. """ lambd = getattr(self, 'lambda') if isinstance(lambd, str) and 'pi' in lambd: setattr(self, 'lambda', float(lambd.replace('pi', str(np.pi)))) def get_mean(self): """ Return the mean of the variable. """ return self.interval_low + (1 / getattr(self, 'lambda')) class GammaVariable(ContinuousVariable): """ Inputs: alpha- the alpha parameter of the variable theta- the theta parameter of the variable interval_low- the low interval of the variable order- the order of the model to calculate the orthogonal polynomials and norm squared values type- the type of variable name- the name of the variable number- the number of the variable from the file Represents a gamma variable. The methods in this class correspond to those of a gamma variable. """ __slots__ = ('alpha', 'theta') # This is the standardized form required for the UQPCE variable basis and # norm squared. equation = '(x**(A-1) * exp(-x)) / (A-1)!' def standardize(self, orig, std_vals): """ Inputs: orig- the un-standardized values std_vals- the attribue name for the standardized vals Overrides the Variable class standardize to align with a gamma distribution. """ standard = (getattr(self, orig) - self.interval_low) / self.theta setattr(self, std_vals, standard) return getattr(self, std_vals) def standardize_points(self, values): """ Inputs: values- unstandardized points corresponding to the variable's distribution Standardizes and returns the inputs points. """ return (values - self.interval_low) / self.theta def unstandardize_points(self, value): """ Inputs: value- the standardized value to be unstandardized Calculates and returns the unscaled variable value from the standardized value. """ return (value * self.theta) + self.interval_low def check_distribution(self): """ Overrides the Variable class check_distribution to align with a gamma distribution. """ shift = 15 comm = MPI_COMM_WORLD rank = comm.rank if rank == 0 and ((np.max(self.std_vals) > shift) or (np.min(self.std_vals) < 0) ): warn( f'Large standardized value for variable {self.name} ' 'with gamma distribution found. Check input and run matrix.' ) return -1 def generate_samples(self, samp_size): """ Inputs: samp_size- the number of points needed to be generated Overrides the Variable class generate_samples to align with a gamma distribution. """ percent_shift = 8e-17 low_percent = 0 high_percent = 1 - percent_shift dist = gamma(self.alpha, scale=self.theta) rnd_hypercube = uniform_hypercube(low_percent, high_percent, samp_size) vals = dist.ppf(rnd_hypercube) + self.interval_low return vals def get_resamp_vals(self, samp_size): """ Inputs: samp_size- the number of samples to generate according to the distribution Overrides the Variable class get_resamp_vals to align with a gamma distribution. """ comm = MPI_COMM_WORLD size = comm.size rank = comm.rank base = samp_size // size rem = samp_size % size count = base + (rank < rem) ranks = np.arange(0, size, dtype=int) seq_count = (ranks < rem) + base seq_disp = base * ranks + (ranks >= rem) * rem + (ranks < rem) * ranks self.resample = np.zeros(samp_size) resample = np.random.gamma(shape=self.alpha, scale=1, size=count) comm.Allgatherv( [resample, count, MPI_DOUBLE], [self.resample, seq_count, seq_disp, MPI_DOUBLE] ) # The bound is included to help with ProbabilityBox convergence. self.resample[0] = 0 return self.resample def check_num_string(self): """ Searches to replace sring 'pi' with its numpy equivalent in any of the values that might contain it. """ if isinstance(self.alpha, str) and 'pi' in self.alpha: self.alpha = float(self.alpha.replace('pi', str(np.pi))) if isinstance(self.theta, str) and 'pi' in self.theta: self.theta = float(self.theta.replace('pi', str(np.pi))) def get_mean(self): """ Return the mean of the variable. """ return self.interval_low + (self.alpha * self.theta)
[ 6738, 3170, 1040, 1330, 900, 35226, 11, 651, 35226, 198, 6738, 49876, 1330, 376, 7861, 198, 11748, 10688, 198, 6738, 18540, 305, 919, 278, 1330, 10854, 11, 9142, 198, 6738, 14601, 1330, 9828, 11, 905, 43917, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 10558, 88, 1330, 1635, 198, 220, 220, 220, 1330, 299, 32152, 355, 45941, 198, 220, 220, 220, 422, 629, 541, 88, 13, 34242, 1330, 2593, 11, 12159, 11, 34236, 11, 1033, 261, 198, 220, 220, 220, 422, 629, 541, 88, 13, 75, 1292, 70, 1330, 279, 27747, 198, 220, 220, 220, 422, 629, 541, 88, 13, 18908, 4873, 1330, 15094, 628, 220, 220, 220, 422, 10558, 88, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 14354, 11, 1976, 27498, 11, 19386, 11, 399, 11, 1109, 5132, 11, 19862, 17034, 11, 30276, 11, 10558, 1958, 11, 13051, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 422, 10558, 88, 13, 7295, 13, 77, 17024, 1330, 11013, 45, 198, 220, 220, 220, 422, 10558, 88, 13, 18908, 30691, 13, 18908, 30691, 1330, 15995, 1373, 198, 220, 220, 220, 422, 10558, 88, 13, 79, 945, 278, 13, 1837, 3149, 88, 62, 48610, 1330, 21136, 62, 31937, 198, 220, 220, 220, 422, 10558, 88, 13, 34453, 690, 1330, 8494, 198, 220, 220, 220, 422, 10558, 88, 13, 315, 2410, 13, 2543, 17457, 1958, 1330, 19343, 67, 1958, 628, 220, 220, 220, 422, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 220, 220, 220, 422, 285, 14415, 19, 9078, 13, 7378, 40, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 22240, 62, 45359, 11163, 355, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 11, 360, 2606, 19146, 355, 4904, 40, 62, 35, 2606, 19146, 11, 25882, 355, 4904, 40, 62, 22921, 198, 220, 220, 220, 1267, 198, 198, 16341, 25, 198, 220, 220, 220, 9828, 10786, 4834, 19532, 326, 477, 2672, 10392, 389, 6589, 2637, 8, 198, 220, 220, 220, 8420, 3419, 198, 198, 6738, 4217, 36, 62, 34, 4147, 13, 23144, 62, 268, 5700, 1330, 27484, 11, 28304, 1425, 774, 6030, 198, 6738, 4217, 36, 62, 34, 4147, 13557, 16794, 364, 1330, 4808, 40539, 11, 8187, 62, 49229, 40296, 198, 6738, 4217, 36, 62, 34, 4147, 13, 25641, 2977, 13, 45286, 1330, 35748, 198, 6738, 4217, 36, 62, 34, 4147, 13, 18224, 1330, 35748, 20560, 12331, 628, 198, 4871, 45012, 43015, 7, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 37124, 12, 262, 16022, 326, 15738, 262, 37124, 286, 262, 7885, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 9319, 12, 262, 1877, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 8929, 12, 262, 1029, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 5016, 6870, 257, 12948, 7885, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 62, 1676, 65, 1799, 62, 43337, 62, 20786, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 30875, 262, 5128, 2163, 656, 262, 11188, 12867, 12109, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 83, 349, 796, 352, 68, 12, 20, 198, 220, 220, 220, 220, 220, 220, 220, 284, 75, 796, 352, 68, 12, 1065, 628, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 944, 13, 87, 11, 2116, 13, 17080, 3890, 11, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1500, 796, 15094, 7, 69, 11, 2116, 13, 9319, 62, 1324, 13907, 11, 2116, 13, 8929, 62, 1324, 13907, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1500, 62, 81, 358, 796, 45941, 13, 744, 7, 9979, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 9979, 62, 81, 358, 532, 1500, 8, 1279, 814, 62, 83, 349, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1500, 796, 1500, 62, 81, 358, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17080, 3890, 796, 2116, 13, 17080, 3890, 1220, 1500, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1123, 7885, 11, 340, 6673, 257, 649, 11688, 329, 262, 25713, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 422, 262, 2656, 5128, 3815, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 651, 35226, 7, 944, 11, 1796, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3815, 220, 1303, 2276, 7885, 1276, 1541, 307, 25713, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 220, 1303, 2276, 7885, 1276, 1541, 307, 25713, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 477, 3815, 287, 281, 7177, 284, 4155, 326, 484, 389, 25713, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 285, 87, 796, 45941, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 285, 77, 796, 45941, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 290, 285, 87, 1875, 2116, 13, 8929, 62, 1324, 13907, 393, 285, 77, 1279, 2116, 13, 9319, 62, 1324, 13907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 21968, 25713, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 2836, 6082, 1043, 13, 6822, 5128, 290, 1057, 17593, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 2173, 2622, 284, 307, 7560, 628, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 2173, 1864, 284, 262, 9133, 8718, 40296, 26, 1123, 966, 318, 287, 281, 198, 220, 220, 220, 220, 220, 220, 220, 16654, 286, 4961, 12867, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 874, 796, 1542, 628, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 37153, 796, 357, 43027, 6624, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 4399, 62, 20786, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47904, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 14354, 10786, 88, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 47904, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 3460, 4163, 12331, 220, 1303, 14267, 611, 468, 1541, 3750, 832, 290, 4054, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8494, 329, 262, 23818, 12109, 2163, 351, 838, 82, 26827, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 37153, 290, 407, 468, 35226, 7, 944, 11, 705, 36340, 62, 67, 641, 62, 20786, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4706, 796, 9142, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 796, 4706, 13, 11600, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 7568, 62, 36942, 796, 10854, 7, 16793, 28, 944, 13557, 9948, 66, 62, 66, 7568, 11, 26498, 16193, 36942, 62, 11600, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 7568, 62, 36942, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 7568, 62, 36942, 13, 22179, 7, 940, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 7568, 62, 36942, 13, 271, 62, 282, 425, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 7568, 62, 36942, 13, 23705, 378, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36340, 62, 67, 641, 62, 20786, 796, 13834, 62, 11600, 17816, 36340, 62, 67, 641, 62, 20786, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8494, 329, 262, 34062, 2163, 351, 838, 82, 26827, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 800, 62, 36942, 796, 10854, 7, 16793, 28, 944, 13557, 259, 1851, 11, 26498, 16193, 36942, 62, 11600, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 800, 62, 36942, 13, 9688, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 800, 62, 36942, 13, 22179, 7, 940, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 800, 62, 36942, 13, 271, 62, 282, 425, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 800, 62, 36942, 13, 23705, 378, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 4399, 62, 20786, 796, 13834, 62, 11600, 17816, 259, 4399, 62, 20786, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47904, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47904, 796, 725, 13, 65, 2701, 7, 944, 13, 47904, 11, 6808, 28, 15, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 47904, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 259, 4399, 62, 20786, 796, 725, 13, 65, 2701, 7, 944, 13, 259, 4399, 62, 20786, 11, 6808, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6107, 287, 4738, 8187, 657, 4613, 352, 284, 8494, 329, 2124, 410, 874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 944, 13, 259, 4399, 62, 20786, 8, 2599, 220, 1303, 3294, 8136, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 800, 62, 20786, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 31364, 1096, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19343, 67, 1958, 7, 88, 11, 965, 7, 944, 13, 259, 4399, 62, 20786, 58, 72, 46570, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 399, 7, 16340, 62, 20786, 7, 403, 6933, 62, 49229, 40296, 7, 15, 11, 352, 11, 954, 36911, 875, 320, 874, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 82, 12629, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 439, 62, 82, 12629, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 1084, 7, 439, 62, 82, 12629, 8, 18189, 2116, 13, 9319, 62, 1324, 13907, 290, 45941, 13, 9806, 7, 439, 62, 82, 12629, 8, 19841, 2116, 13, 8929, 62, 1324, 13907, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 439, 62, 82, 12629, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 62, 82, 12629, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 37659, 13, 1084, 7, 82, 12629, 8, 18189, 2116, 13, 9319, 62, 1324, 13907, 8, 290, 357, 37659, 13, 9806, 7, 82, 12629, 8, 19841, 2116, 13, 8929, 62, 1324, 13907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 269, 7568, 393, 34062, 25439, 460, 470, 307, 1043, 11, 779, 17927, 12, 13635, 590, 19232, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 11395, 12331, 11, 6530, 12331, 11, 3460, 4163, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 796, 19343, 67, 1958, 7, 944, 13, 87, 11, 2116, 13, 17080, 3890, 11, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 62, 23350, 796, 23336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8404, 796, 1949, 62, 23350, 3373, 2546, 1343, 357, 43027, 1279, 1949, 62, 23350, 4064, 2546, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 439, 796, 45941, 13, 9107, 418, 7, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2100, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 9806, 7, 20786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 403, 6933, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9319, 62, 1324, 13907, 11, 2116, 13, 8929, 62, 1324, 13907, 11, 8404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 43160, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 2100, 796, 45941, 13, 9806, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 403, 6933, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9319, 62, 1324, 13907, 11, 2116, 13, 8929, 62, 1324, 13907, 11, 8404, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 459, 2981, 7, 22468, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 445, 7234, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 9806, 62, 2100, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 685, 9806, 62, 439, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 1034, 28, 7378, 40, 62, 22921, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 45941, 13, 9107, 418, 7, 9127, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 62, 82, 12629, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 12786, 796, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 3509, 62, 439, 11, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 12786, 796, 45941, 13, 25120, 13, 403, 6933, 7, 944, 13, 9319, 62, 1324, 13907, 11, 2116, 13, 8929, 62, 1324, 13907, 11, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 62, 12786, 796, 25439, 7, 87, 62, 12786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 981, 9052, 1566, 477, 705, 82, 696, 62, 7857, 6, 8405, 423, 587, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 1312, 1279, 954, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 474, 6624, 954, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 12786, 796, 45941, 13, 25120, 13, 403, 6933, 7, 15, 11, 3509, 62, 439, 11, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 12786, 796, 45941, 13, 25120, 13, 403, 6933, 7, 944, 13, 9319, 62, 1324, 13907, 11, 2116, 13, 8929, 62, 1324, 13907, 11, 954, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 62, 12786, 796, 25439, 7, 87, 62, 12786, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 331, 62, 12786, 58, 73, 60, 19841, 25439, 62, 12786, 58, 73, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 58, 72, 60, 796, 2124, 62, 12786, 58, 73, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 82, 12629, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 439, 62, 82, 12629, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 439, 62, 82, 12629, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 477, 62, 82, 12629, 628, 220, 220, 220, 825, 2251, 62, 27237, 62, 31166, 7, 944, 11, 1877, 11, 1029, 11, 25439, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1877, 12, 262, 1877, 16654, 5421, 329, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 12, 262, 1029, 16654, 5421, 329, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 12, 262, 2163, 11188, 284, 262, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 262, 2593, 44345, 3815, 510, 284, 262, 1502, 286, 745, 6213, 49070, 198, 220, 220, 220, 220, 220, 220, 220, 7118, 1912, 319, 262, 12867, 12109, 2163, 290, 663, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 29617, 519, 20996, 745, 6213, 296, 8231, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 29617, 35894, 62, 9127, 796, 18896, 7, 944, 13, 7785, 62, 1506, 35894, 62, 303, 310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27237, 62, 31166, 62, 12786, 796, 45941, 13, 9107, 418, 7, 1506, 35894, 62, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 8404, 796, 362, 198, 220, 220, 220, 220, 220, 220, 220, 6632, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 19273, 572, 379, 2026, 875, 320, 874, 11, 10616, 734, 875, 320, 874, 4113, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 62, 31166, 62, 400, 3447, 796, 352, 68, 12, 2920, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 1506, 35894, 62, 9127, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 474, 287, 2837, 7, 83, 1678, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 27237, 62, 31166, 7, 9319, 11, 1029, 11, 25439, 11, 1312, 11, 474, 11, 13834, 62, 11600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 36942, 62, 11600, 17816, 448, 20520, 318, 407, 6045, 8, 290, 357, 1662, 10688, 13, 271, 19836, 7, 36942, 62, 11600, 17816, 448, 6, 4357, 6632, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27237, 62, 31166, 62, 12786, 58, 72, 60, 796, 13834, 62, 11600, 17816, 448, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 220, 1303, 691, 9457, 8434, 9052, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 7383, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 27237, 62, 31166, 62, 12786, 6624, 6632, 737, 1092, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 69, 6, 36276, 262, 2593, 44345, 329, 7885, 1391, 944, 13, 3672, 92, 4054, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 27237, 62, 31166, 62, 12786, 19841, 2593, 62, 31166, 62, 400, 3447, 737, 1092, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 2953, 1551, 530, 2593, 44345, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 318, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1053, 563, 1402, 13, 770, 460, 10400, 4049, 656, 262, 2746, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 27237, 62, 31166, 7, 944, 11, 1877, 11, 1029, 11, 25439, 11, 1312, 11, 3814, 11, 13834, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1877, 12, 262, 1877, 16654, 5421, 329, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 12, 262, 1029, 16654, 5421, 329, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 12, 262, 2163, 11188, 284, 262, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 12, 262, 6376, 286, 262, 2593, 44345, 284, 15284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3814, 12, 543, 10558, 88, 17952, 284, 1949, 329, 262, 2593, 44345, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 12, 262, 22155, 287, 543, 262, 5072, 481, 307, 8574, 628, 220, 220, 220, 220, 220, 220, 220, 1052, 8796, 284, 2251, 62, 27237, 62, 31166, 26, 3578, 262, 2593, 44345, 16765, 284, 198, 220, 220, 220, 220, 220, 220, 220, 423, 257, 26827, 611, 281, 4049, 2125, 470, 4376, 290, 262, 4610, 2125, 470, 1043, 198, 220, 220, 220, 220, 220, 220, 220, 13025, 2952, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2835, 657, 13, 24214, 24214, 284, 352, 284, 4646, 4049, 26, 611, 1988, 318, 1402, 11, 836, 470, 2835, 198, 220, 220, 220, 220, 220, 220, 220, 294, 3447, 796, 352, 68, 12, 17, 198, 220, 220, 220, 220, 220, 220, 220, 284, 75, 796, 352, 68, 12, 1065, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 83, 349, 796, 352, 68, 12, 23, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 874, 796, 1542, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1029, 6624, 705, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14856, 796, 45941, 13, 10745, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1029, 6624, 705, 14415, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14856, 796, 45941, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1029, 6624, 705, 12, 14415, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14856, 796, 532, 37659, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14856, 796, 1029, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1877, 6624, 705, 12, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 796, 532, 37659, 13, 10745, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1877, 6624, 705, 14415, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 796, 45941, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1877, 6624, 705, 12, 14415, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 796, 532, 37659, 13, 14415, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32660, 796, 1877, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3814, 6624, 657, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 944, 13, 87, 11, 25439, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 72, 60, 12429, 362, 11, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 15094, 7, 69, 11, 32660, 11, 14856, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 600, 7, 504, 8, 532, 9093, 8, 1279, 814, 62, 83, 349, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 493, 7, 504, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 1875, 294, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 2835, 7, 504, 11, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 9093, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3814, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 399, 7, 20786, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 72, 60, 12429, 362, 11, 875, 320, 874, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 15094, 7, 69, 11, 32660, 11, 14856, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 600, 7, 504, 8, 532, 9093, 8, 1279, 814, 62, 83, 349, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 493, 7, 504, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 1875, 294, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 2835, 7, 504, 11, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 9093, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3814, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10558, 1958, 7, 69, 6, 90, 20786, 92, 1635, 37913, 944, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 72, 60, 30072, 12429, 362, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9093, 796, 15094, 7, 69, 11, 32660, 11, 14856, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 45941, 13, 8937, 7, 600, 7, 504, 8, 532, 9093, 8, 1279, 814, 62, 83, 349, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 493, 7, 504, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9093, 1875, 294, 3447, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 2835, 7, 504, 11, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 448, 20520, 796, 9093, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 45115, 62, 7785, 62, 12093, 271, 7, 944, 11, 25439, 11, 1877, 11, 1029, 11, 1502, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 25439, 12, 262, 12867, 12109, 2163, 286, 262, 5128, 16022, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 12, 262, 1877, 5421, 319, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 12, 262, 1029, 5421, 319, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 745, 6213, 49070, 7118, 628, 220, 220, 220, 220, 220, 220, 220, 3311, 1834, 2280, 43707, 262, 7885, 4308, 510, 284, 262, 5128, 705, 2875, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 284, 75, 796, 352, 68, 12, 1065, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1877, 6624, 705, 12, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1877, 796, 532, 37659, 13, 10745, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1029, 6624, 705, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1029, 796, 45941, 13, 10745, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1502, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35428, 62, 6559, 296, 796, 45941, 13, 9107, 418, 7, 944, 13, 2875, 11, 288, 4906, 28, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 796, 45941, 13, 9107, 418, 7, 944, 13, 2875, 1343, 352, 11, 288, 4906, 28, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 2875, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8344, 30753, 62, 7785, 62, 12093, 271, 7, 20786, 11, 1877, 11, 1029, 11, 1502, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 796, 2116, 13, 87, 12429, 1502, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 2875, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29617, 35894, 796, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35428, 62, 6559, 296, 58, 72, 60, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 944, 13, 87, 11, 29617, 35894, 12429, 362, 1635, 25439, 11, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35428, 62, 6559, 296, 58, 72, 60, 796, 15094, 7, 69, 11, 1877, 11, 1029, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 796, 19343, 67, 1958, 7, 944, 13, 87, 11, 2116, 13, 87, 12429, 1502, 1635, 29617, 35894, 1635, 25439, 11, 19203, 77, 32152, 3256, 705, 1837, 3149, 88, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 13528, 62, 18206, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15094, 7, 69, 11, 1877, 11, 1029, 11, 304, 862, 8937, 28, 83, 349, 11, 304, 862, 2411, 28, 83, 349, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 2116, 13, 35428, 62, 6559, 296, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 1635, 29617, 35894, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 48185, 987, 13528, 62, 18206, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 2875, 60, 796, 1090, 81, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1502, 6624, 2116, 13, 2875, 290, 357, 944, 13, 7785, 62, 1506, 35894, 62, 303, 310, 6624, 657, 737, 1092, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 43015, 1391, 944, 13, 3672, 92, 468, 379, 1551, 530, 29617, 519, 20996, 745, 6213, 49070, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 470, 5183, 318, 6632, 13, 383, 2746, 743, 407, 307, 7187, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 264, 696, 62, 7857, 1271, 286, 8405, 1864, 284, 262, 37124, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 35748, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 2116, 13, 8612, 378, 62, 82, 12629, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 4808, 9948, 66, 62, 66, 7568, 7, 944, 11, 13834, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 13834, 62, 11600, 12, 262, 22155, 287, 543, 262, 5072, 481, 307, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 262, 23818, 12109, 2163, 286, 262, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 36340, 62, 67, 641, 62, 20786, 20520, 796, 19386, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17080, 3890, 11, 357, 944, 13, 87, 11, 2116, 13, 3849, 2100, 62, 9319, 11, 2116, 13, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 43160, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 4808, 259, 1851, 7, 944, 11, 13834, 62, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 13834, 62, 11600, 12, 262, 22155, 287, 543, 262, 5072, 481, 307, 8574, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 4294, 1158, 329, 262, 34062, 2163, 286, 262, 23818, 12109, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 331, 796, 14354, 10786, 88, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 62, 11600, 17816, 259, 4399, 62, 20786, 20520, 796, 8494, 7, 69, 6, 90, 944, 13, 36340, 62, 67, 641, 62, 20786, 92, 12, 88, 3256, 2116, 13, 87, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 5376, 12331, 11, 1892, 3546, 1154, 12061, 12331, 11, 3460, 4163, 12331, 11, 43160, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47719, 329, 3815, 287, 262, 5128, 2393, 326, 6053, 284, 31028, 11, 532, 2238, 11, 393, 267, 78, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 777, 3815, 2152, 11, 484, 389, 11513, 656, 3815, 326, 11361, 460, 198, 220, 220, 220, 220, 220, 220, 220, 779, 284, 2251, 581, 321, 11347, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 874, 796, 1542, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3849, 2100, 62, 9319, 6624, 705, 12, 2238, 6, 393, 2116, 13, 3849, 2100, 62, 8929, 6624, 705, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19386, 62, 83, 29291, 796, 357, 87, 11, 2116, 13, 3849, 2100, 62, 9319, 11, 2116, 13, 3849, 2100, 62, 8929, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 796, 19386, 7, 87, 1635, 2116, 13, 17080, 3890, 11, 19386, 62, 83, 29291, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 7959, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10688, 13, 31166, 17034, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19386, 7, 87, 12429, 362, 1635, 2116, 13, 17080, 3890, 11, 19386, 62, 83, 29291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 944, 13, 32604, 12429, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 9319, 11, 965, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 9319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 9319, 796, 12178, 7, 944, 13, 3849, 2100, 62, 9319, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 9319, 796, 20218, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9319, 62, 1324, 13907, 796, 20218, 62, 9319, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 3849, 2100, 62, 9319, 6624, 705, 12, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9319, 62, 1324, 13907, 796, 399, 7, 944, 13, 32604, 532, 838, 1635, 336, 7959, 11, 875, 320, 874, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 8929, 11, 965, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 8929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 8929, 796, 12178, 7, 944, 13, 3849, 2100, 62, 8929, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 8929, 796, 20218, 62, 8929, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8929, 62, 1324, 13907, 796, 20218, 62, 8929, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 3849, 2100, 62, 8929, 6624, 705, 2238, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8929, 62, 1324, 13907, 796, 399, 7, 944, 13, 32604, 1343, 838, 1635, 336, 7959, 11, 875, 320, 874, 8, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 875, 320, 874, 796, 1542, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 35226, 7, 944, 11, 705, 32604, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19386, 62, 83, 29291, 796, 357, 87, 11, 2116, 13, 3849, 2100, 62, 9319, 11, 2116, 13, 3849, 2100, 62, 8929, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 796, 19386, 7, 87, 1635, 2116, 13, 17080, 3890, 11, 19386, 62, 83, 29291, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 399, 7, 944, 13, 32604, 11, 875, 320, 874, 8, 628, 198, 4871, 35712, 43015, 7, 17875, 5623, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 16654, 62, 9319, 12, 262, 1877, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 8929, 12, 262, 1029, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 1432, 6629, 257, 8187, 7885, 13, 383, 5050, 287, 428, 1398, 6053, 284, 198, 220, 220, 220, 883, 286, 257, 8187, 7885, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 7716, 62, 1506, 35894, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 262, 29617, 519, 20996, 745, 6213, 296, 8231, 329, 257, 8187, 7885, 510, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 286, 745, 6213, 49070, 7118, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 796, 45941, 13, 9107, 418, 7, 944, 13, 2875, 1343, 352, 11, 288, 4906, 28, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 944, 13, 2875, 1343, 352, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 299, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 2124, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17, 1635, 299, 532, 352, 8, 1635, 2124, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 532, 352, 60, 532, 357, 77, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 532, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 3210, 1096, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8187, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 796, 651, 35226, 7, 944, 11, 1796, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1612, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 1343, 2116, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 336, 7959, 796, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 14986, 58, 47715, 532, 1612, 8, 1220, 336, 7959, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 3210, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 1343, 2116, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 336, 7959, 796, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 27160, 532, 1612, 8, 1220, 336, 7959, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 1343, 2116, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 336, 7959, 796, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8367, 1635, 336, 7959, 8, 1343, 1612, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 2198, 62, 17080, 3890, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8187, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 37659, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 1875, 352, 1343, 352, 68, 12, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 37659, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 1279, 532, 16, 532, 352, 68, 12, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 23615, 1143, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 351, 8187, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 3890, 2354, 2938, 25915, 16, 11, 352, 60, 22303, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 2173, 2622, 284, 307, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 7716, 62, 82, 12629, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8187, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8187, 62, 49229, 40296, 7, 944, 13, 3849, 2100, 62, 9319, 11, 2116, 13, 3849, 2100, 62, 8929, 11, 264, 696, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 874, 628, 220, 220, 220, 825, 651, 62, 27237, 62, 31166, 62, 2100, 7, 944, 11, 17593, 62, 2100, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 17593, 62, 2100, 12, 262, 1988, 287, 262, 2746, 17593, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 27237, 62, 31166, 62, 2100, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8187, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 13, 15, 1220, 357, 17, 13, 15, 1635, 17593, 62, 2100, 1343, 352, 13, 15, 8, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 411, 696, 62, 12786, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 8187, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 1403, 796, 45941, 13, 25120, 13, 403, 6933, 32590, 16, 11, 352, 11, 954, 8, 628, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 1403, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 411, 1403, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5421, 318, 3017, 284, 1037, 351, 30873, 1799, 14253, 40826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 15, 60, 796, 532, 16, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 16, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42016, 2052, 284, 6330, 264, 1806, 705, 14415, 6, 351, 663, 299, 32152, 7548, 287, 597, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 326, 1244, 3994, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 9319, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 9319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 9319, 796, 12178, 7, 944, 13, 3849, 2100, 62, 9319, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 8929, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 8929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 8929, 796, 12178, 7, 944, 13, 3849, 2100, 62, 8929, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 362, 1343, 2116, 13, 3849, 2100, 62, 9319, 628, 198, 4871, 14435, 43015, 7, 17875, 5623, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 1612, 12, 262, 1612, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 7959, 12, 262, 3210, 28833, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 1432, 6629, 257, 3487, 7885, 13, 383, 5050, 287, 428, 1398, 6053, 284, 198, 220, 220, 220, 883, 286, 257, 3487, 7885, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 32604, 3256, 705, 301, 7959, 11537, 628, 220, 220, 220, 825, 7716, 62, 1506, 35894, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 262, 29617, 519, 20996, 745, 6213, 296, 8231, 329, 257, 3487, 7885, 510, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1502, 286, 745, 6213, 49070, 7118, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 796, 1976, 27498, 7, 944, 13, 2875, 1343, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 87, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 944, 13, 2875, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 299, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 362, 1635, 2124, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 1635, 2124, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 532, 352, 60, 532, 362, 1635, 357, 77, 532, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 532, 362, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 944, 13, 2875, 1343, 352, 2599, 220, 1303, 6121, 656, 1861, 44349, 1023, 18113, 578, 7514, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 12429, 13841, 77, 1220, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 4083, 7266, 82, 15090, 87, 25, 87, 1220, 10688, 13, 31166, 17034, 7, 17, 8, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 796, 45941, 13, 18747, 7, 944, 13, 7785, 62, 1506, 35894, 62, 303, 310, 737, 459, 2981, 7, 15252, 737, 51, 58, 15, 60, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 3210, 1096, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3487, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 796, 651, 35226, 7, 944, 11, 1796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 14986, 58, 47715, 532, 2116, 13, 32604, 8, 1220, 357, 944, 13, 301, 7959, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 3210, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 27160, 532, 2116, 13, 32604, 8, 1220, 357, 944, 13, 301, 7959, 8, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8367, 1635, 2116, 13, 301, 7959, 8, 1343, 2116, 13, 32604, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 2198, 62, 17080, 3890, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3487, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 290, 357, 37659, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 1875, 604, 13, 20, 8, 393, 357, 37659, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 1279, 532, 19, 13, 20, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 21968, 25713, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 3487, 6082, 1043, 13, 6822, 5128, 290, 1057, 17593, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 2173, 2622, 284, 307, 7560, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 7716, 62, 82, 12629, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3487, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 62, 25067, 796, 807, 68, 12, 1558, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 25067, 796, 352, 532, 1877, 62, 25067, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 2593, 7, 17946, 28, 944, 13, 32604, 11, 5046, 28, 944, 13, 301, 7959, 8, 628, 220, 220, 220, 220, 220, 220, 220, 374, 358, 62, 49229, 40296, 796, 8187, 62, 49229, 40296, 7, 9319, 62, 25067, 11, 1029, 62, 25067, 11, 264, 696, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 1233, 13, 381, 69, 7, 81, 358, 62, 49229, 40296, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 874, 628, 220, 220, 220, 825, 651, 62, 27237, 62, 31166, 62, 2100, 7, 944, 11, 17593, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 17593, 62, 2100, 12, 262, 1988, 287, 262, 2746, 17593, 284, 2074, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 27237, 62, 31166, 62, 2100, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3487, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10688, 13, 22584, 5132, 7, 6759, 8609, 62, 8367, 8, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 411, 696, 62, 12786, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 3487, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 1403, 796, 45941, 13, 25120, 13, 25192, 77, 7, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 1403, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 411, 1403, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42016, 2052, 284, 6330, 264, 1806, 705, 14415, 6, 351, 663, 299, 32152, 7548, 287, 597, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 326, 1244, 3994, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 32604, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 32604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32604, 796, 12178, 7, 944, 13, 32604, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 301, 7959, 11, 965, 8, 290, 220, 705, 14415, 6, 287, 2116, 13, 301, 7959, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 7959, 796, 12178, 7, 944, 13, 301, 7959, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 32604, 628, 198, 4871, 17993, 43015, 7, 17875, 5623, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 17130, 12, 262, 17130, 11507, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12159, 12, 262, 12159, 11507, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 9319, 12, 262, 1877, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 8929, 12, 262, 1029, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 1432, 6629, 257, 12159, 7885, 13, 383, 5050, 287, 428, 1398, 6053, 284, 198, 220, 220, 220, 883, 286, 257, 12159, 7885, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 26591, 3256, 705, 31361, 11537, 628, 220, 220, 220, 16022, 796, 705, 19510, 32, 10, 33, 12, 16, 31520, 1635, 357, 87, 8, 1174, 7, 32, 12, 16, 8, 1635, 357, 16, 12, 87, 8, 1174, 7, 33, 12, 16, 4008, 1220, 14808, 32, 12, 16, 31520, 1635, 357, 33, 12, 16, 8, 8133, 6, 628, 220, 220, 220, 825, 7716, 62, 1506, 35894, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2980, 689, 262, 29617, 519, 20996, 745, 6213, 296, 8231, 329, 257, 12159, 7885, 510, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 944, 13, 2875, 286, 745, 6213, 49070, 7118, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1506, 35894, 62, 303, 310, 796, 45941, 13, 9107, 418, 7, 944, 13, 2875, 1343, 352, 11, 288, 4906, 28, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 796, 45941, 13, 9107, 418, 7, 944, 13, 2875, 1343, 352, 11, 288, 4906, 28, 15252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 2116, 13, 87, 198, 220, 220, 220, 220, 220, 220, 220, 257, 796, 21136, 62, 31937, 7, 2536, 7, 37, 7861, 7, 944, 13, 26591, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 275, 796, 21136, 62, 31937, 7, 2536, 7, 37, 7861, 7, 944, 13, 31361, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 875, 320, 874, 796, 1542, 628, 220, 220, 220, 220, 220, 220, 220, 329, 299, 287, 2837, 7, 944, 13, 2875, 1343, 352, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 299, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 2124, 532, 357, 64, 1220, 357, 64, 1343, 275, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 2124, 532, 357, 64, 1220, 357, 64, 1343, 275, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 2124, 12429, 299, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 3372, 796, 279, 27747, 7, 944, 13, 2875, 1343, 352, 11, 1611, 11639, 21037, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 48185, 21136, 62, 31937, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 90, 79, 3372, 58, 77, 11, 285, 48999, 1635, 14808, 64, 10, 77, 12, 16, 31520, 9, 7, 64, 10, 65, 10, 17, 9, 76, 12, 16, 8, 8133, 14, 19510, 64, 10, 76, 12, 16, 31520, 9, 7, 64, 10, 65, 10, 77, 10, 76, 12, 16, 8, 8133, 9, 15090, 7785, 62, 1506, 35894, 62, 303, 310, 58, 76, 60, 30072, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 11600, 34758, 6, 64, 10354, 64, 11, 705, 65, 10354, 65, 11, 705, 77, 10354, 77, 11, 705, 76, 10354, 76, 11, 705, 87, 10354, 87, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 60, 796, 399, 7, 7785, 62, 1506, 35894, 62, 303, 310, 58, 77, 4357, 875, 320, 874, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7785, 62, 1506, 35894, 62, 303, 310, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 3210, 1096, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 12159, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 796, 651, 35226, 7, 944, 11, 1796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 14986, 58, 47715, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 3210, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 27160, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3210, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28594, 3021, 62, 8367, 796, 1988, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 1635, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 944, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 28594, 3021, 62, 8367, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 2198, 62, 17080, 3890, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 12159, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6482, 796, 807, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 290, 357, 37659, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 1875, 6482, 8, 393, 357, 37659, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 1279, 532, 30846, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 21968, 25713, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 17993, 6082, 1043, 13, 6822, 5128, 290, 1057, 17593, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 2173, 2622, 284, 307, 7560, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 7716, 62, 82, 12629, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 12159, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 62, 25067, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 25067, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 12159, 7, 64, 28, 944, 13, 26591, 11, 275, 28, 944, 13, 31361, 8, 628, 220, 220, 220, 220, 220, 220, 220, 374, 358, 62, 49229, 40296, 796, 8187, 62, 49229, 40296, 7, 9319, 62, 25067, 11, 1029, 62, 25067, 11, 264, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17080, 13, 381, 69, 7, 81, 358, 62, 49229, 40296, 8, 1635, 357, 944, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 944, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 874, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 411, 696, 62, 12786, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 12159, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 1403, 796, 45941, 13, 25120, 13, 31361, 7, 64, 28, 944, 13, 26591, 11, 275, 28, 944, 13, 31361, 11, 2546, 28, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 1403, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 411, 1403, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5421, 318, 3017, 284, 1037, 351, 30873, 1799, 14253, 40826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 15, 60, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 16, 60, 796, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42016, 2052, 284, 6330, 264, 1806, 705, 14415, 6, 351, 663, 299, 32152, 7548, 287, 597, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 326, 1244, 3994, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 26591, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 26591, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26591, 796, 12178, 7, 944, 13, 26591, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 31361, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 31361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31361, 796, 12178, 7, 944, 13, 31361, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 9319, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 9319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 9319, 796, 12178, 7, 944, 13, 3849, 2100, 62, 9319, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 3849, 2100, 62, 8929, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 3849, 2100, 62, 8929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 8929, 796, 12178, 7, 944, 13, 3849, 2100, 62, 8929, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 2116, 13, 3849, 2100, 62, 8929, 532, 2116, 13, 3849, 2100, 62, 9319, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3849, 2100, 62, 9319, 1343, 5046, 1635, 357, 944, 13, 26591, 1220, 357, 944, 13, 26591, 1343, 2116, 13, 31361, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1612, 628, 198, 4871, 5518, 35470, 43015, 7, 17875, 5623, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 19343, 67, 12, 262, 37456, 11507, 286, 262, 7885, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 9319, 12, 262, 1877, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 1432, 6629, 281, 39682, 7885, 13, 383, 5050, 287, 428, 1398, 6053, 284, 198, 220, 220, 220, 883, 286, 281, 39682, 7885, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 50033, 11537, 628, 220, 220, 220, 16022, 796, 705, 2543, 17457, 1635, 1033, 32590, 2543, 17457, 1635, 2124, 33047, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 3210, 1096, 284, 10548, 351, 281, 39682, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 796, 651, 35226, 7, 944, 11, 1796, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 14986, 58, 47715, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 3210, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3815, 532, 2116, 13, 3849, 2100, 62, 9319, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 1343, 2116, 13, 3849, 2100, 62, 9319, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 2198, 62, 17080, 3890, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 39682, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6482, 796, 1315, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 290, 14808, 37659, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 1279, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 37659, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 1875, 6482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 21968, 25713, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 39682, 6082, 1043, 13, 6822, 5128, 290, 1057, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6759, 8609, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 7716, 62, 82, 12629, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 39682, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 30846, 796, 807, 68, 12, 1558, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 62, 25067, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 25067, 796, 352, 532, 1411, 62, 30846, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 1033, 261, 7, 9888, 28, 16, 1220, 651, 35226, 7, 944, 11, 705, 50033, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 374, 358, 62, 49229, 40296, 796, 8187, 62, 49229, 40296, 7, 9319, 62, 25067, 11, 1029, 62, 25067, 11, 264, 696, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 1233, 13, 381, 69, 7, 81, 358, 62, 49229, 40296, 8, 1343, 2116, 13, 3849, 2100, 62, 9319, 628, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 12786, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 874, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 411, 696, 62, 12786, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 281, 39682, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 1403, 796, 45941, 13, 25120, 13, 11201, 35470, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 16193, 16, 1220, 651, 35226, 7, 944, 11, 705, 50033, 11537, 828, 2546, 28, 9127, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 1403, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 411, 1403, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5421, 318, 3017, 284, 1037, 351, 30873, 1799, 14253, 40826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42016, 2052, 284, 6330, 264, 1806, 705, 14415, 6, 351, 663, 299, 32152, 7548, 287, 597, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 326, 1244, 3994, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 19343, 67, 796, 651, 35226, 7, 944, 11, 705, 50033, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 2543, 17457, 11, 965, 8, 290, 705, 14415, 6, 287, 19343, 67, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 705, 50033, 3256, 12178, 7, 2543, 17457, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 35514, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 3849, 2100, 62, 9319, 1343, 357, 16, 1220, 651, 35226, 7, 944, 11, 705, 50033, 6, 4008, 628, 198, 4871, 43595, 43015, 7, 17875, 5623, 43015, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23412, 82, 25, 17130, 12, 262, 17130, 11507, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 8326, 12, 262, 262, 8326, 11507, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16654, 62, 9319, 12, 262, 1877, 16654, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 12, 262, 1502, 286, 262, 2746, 284, 15284, 262, 29617, 519, 20996, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 745, 6213, 296, 8231, 290, 2593, 44345, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 12, 262, 2099, 286, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 12, 262, 1438, 286, 262, 7885, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 12, 262, 1271, 286, 262, 7885, 422, 262, 2393, 628, 220, 220, 220, 1432, 6629, 257, 34236, 7885, 13, 383, 5050, 287, 428, 1398, 6053, 284, 198, 220, 220, 220, 883, 286, 257, 34236, 7885, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 11593, 6649, 1747, 834, 796, 19203, 26591, 3256, 705, 1169, 8326, 11537, 628, 220, 220, 220, 1303, 770, 318, 262, 25713, 1296, 2672, 329, 262, 471, 48, 47, 5222, 7885, 4308, 290, 198, 220, 220, 220, 1303, 2593, 44345, 13, 198, 220, 220, 220, 16022, 796, 29513, 87, 1174, 7, 32, 12, 16, 8, 1635, 1033, 32590, 87, 4008, 1220, 357, 32, 12, 16, 8, 13679, 628, 220, 220, 220, 825, 3210, 1096, 7, 944, 11, 1796, 11, 14367, 62, 12786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1796, 12, 262, 555, 12, 20307, 1143, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 62, 12786, 12, 262, 708, 822, 518, 1438, 329, 262, 25713, 410, 874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 3210, 1096, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 34236, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3210, 796, 357, 1136, 35226, 7, 944, 11, 1796, 8, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 2116, 13, 1169, 8326, 198, 220, 220, 220, 220, 220, 220, 220, 900, 35226, 7, 944, 11, 14367, 62, 12786, 11, 3210, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 651, 35226, 7, 944, 11, 14367, 62, 12786, 8, 628, 220, 220, 220, 825, 3210, 1096, 62, 13033, 7, 944, 11, 3815, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 3815, 12, 555, 20307, 1143, 2173, 11188, 284, 262, 7885, 338, 198, 220, 220, 220, 220, 220, 220, 220, 6082, 628, 220, 220, 220, 220, 220, 220, 220, 8997, 4340, 290, 5860, 262, 17311, 2173, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 27160, 532, 2116, 13, 3849, 2100, 62, 9319, 8, 1220, 2116, 13, 1169, 8326, 628, 220, 220, 220, 825, 555, 20307, 1096, 62, 13033, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 1988, 12, 262, 25713, 1988, 284, 307, 555, 20307, 1143, 628, 220, 220, 220, 220, 220, 220, 220, 27131, 689, 290, 5860, 262, 28594, 3021, 7885, 1988, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 25713, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 8367, 1635, 2116, 13, 1169, 8326, 8, 1343, 2116, 13, 3849, 2100, 62, 9319, 628, 220, 220, 220, 825, 2198, 62, 17080, 3890, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 2198, 62, 17080, 3890, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 34236, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6482, 796, 1315, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 611, 4279, 6624, 657, 290, 14808, 37659, 13, 9806, 7, 944, 13, 19282, 62, 12786, 8, 1875, 6482, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 357, 37659, 13, 1084, 7, 944, 13, 19282, 62, 12786, 8, 1279, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9828, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6, 21968, 25713, 1988, 329, 7885, 1391, 944, 13, 3672, 92, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4480, 34236, 6082, 1043, 13, 6822, 5128, 290, 1057, 17593, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 825, 7716, 62, 82, 12629, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 2173, 2622, 284, 307, 7560, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 7716, 62, 82, 12629, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 34236, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1411, 62, 30846, 796, 807, 68, 12, 1558, 198, 220, 220, 220, 220, 220, 220, 220, 1877, 62, 25067, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1029, 62, 25067, 796, 352, 532, 1411, 62, 30846, 628, 220, 220, 220, 220, 220, 220, 220, 1233, 796, 34236, 7, 944, 13, 26591, 11, 5046, 28, 944, 13, 1169, 8326, 8, 628, 220, 220, 220, 220, 220, 220, 220, 374, 358, 62, 49229, 40296, 796, 8187, 62, 49229, 40296, 7, 9319, 62, 25067, 11, 1029, 62, 25067, 11, 264, 696, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 410, 874, 796, 1233, 13, 381, 69, 7, 81, 358, 62, 49229, 40296, 8, 1343, 2116, 13, 3849, 2100, 62, 9319, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 410, 874, 628, 220, 220, 220, 825, 651, 62, 411, 696, 62, 12786, 7, 944, 11, 264, 696, 62, 7857, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 82, 25, 264, 696, 62, 7857, 12, 262, 1271, 286, 8405, 284, 7716, 1864, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6082, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3827, 81, 1460, 262, 35748, 1398, 651, 62, 411, 696, 62, 12786, 284, 10548, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 34236, 6082, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 725, 796, 4904, 40, 62, 9858, 44, 62, 45359, 11163, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 796, 725, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 4279, 796, 725, 13, 43027, 628, 220, 220, 220, 220, 220, 220, 220, 2779, 796, 264, 696, 62, 7857, 3373, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 816, 796, 264, 696, 62, 7857, 4064, 2546, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 2779, 1343, 357, 43027, 1279, 816, 8, 628, 220, 220, 220, 220, 220, 220, 220, 9803, 796, 45941, 13, 283, 858, 7, 15, 11, 2546, 11, 288, 4906, 28, 600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 9127, 796, 357, 81, 2283, 1279, 816, 8, 1343, 2779, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 62, 6381, 79, 796, 2779, 1635, 9803, 1343, 357, 81, 2283, 18189, 816, 8, 1635, 816, 1343, 357, 81, 2283, 1279, 816, 8, 1635, 9803, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 796, 45941, 13, 9107, 418, 7, 82, 696, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 581, 1403, 796, 45941, 13, 25120, 13, 28483, 2611, 7, 43358, 28, 944, 13, 26591, 11, 5046, 28, 16, 11, 2546, 28, 9127, 8, 628, 220, 220, 220, 220, 220, 220, 220, 725, 13, 3237, 70, 1032, 85, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 411, 1403, 11, 954, 11, 4904, 40, 62, 35, 2606, 19146, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 944, 13, 411, 1403, 11, 33756, 62, 9127, 11, 33756, 62, 6381, 79, 11, 4904, 40, 62, 35, 2606, 19146, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 5421, 318, 3017, 284, 1037, 351, 30873, 1799, 14253, 40826, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 411, 1403, 58, 15, 60, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 411, 1403, 628, 220, 220, 220, 825, 2198, 62, 22510, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 42016, 2052, 284, 6330, 264, 1806, 705, 14415, 6, 351, 663, 299, 32152, 7548, 287, 597, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 326, 1244, 3994, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 26591, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 26591, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26591, 796, 12178, 7, 944, 13, 26591, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 944, 13, 1169, 8326, 11, 965, 8, 290, 705, 14415, 6, 287, 2116, 13, 1169, 8326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1169, 8326, 796, 12178, 7, 944, 13, 1169, 8326, 13, 33491, 10786, 14415, 3256, 965, 7, 37659, 13, 14415, 22305, 628, 220, 220, 220, 825, 651, 62, 32604, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 262, 1612, 286, 262, 7885, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 3849, 2100, 62, 9319, 1343, 357, 944, 13, 26591, 1635, 2116, 13, 1169, 8326, 8, 198 ]
2.102615
21,225
import os import numpy as np import cv2 from module.lightCNN_model_in_numpy import LightCNN9_in_numpy def get_net(path): ''' be used to get class net :param para: :return: ''' print('Loading network...') cfg = np.load(path, allow_pickle=True) cfg = cfg.item() net = LightCNN9_in_numpy(cfg) return net if __name__ == '__main__': get_net()
[ 11748, 28686, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 198, 6738, 8265, 13, 2971, 18474, 62, 19849, 62, 259, 62, 77, 32152, 1330, 4401, 18474, 24, 62, 259, 62, 77, 32152, 198, 198, 4299, 651, 62, 3262, 7, 6978, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 307, 973, 284, 651, 1398, 2010, 198, 220, 220, 220, 1058, 17143, 31215, 25, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 3601, 10786, 19031, 3127, 986, 11537, 198, 220, 220, 220, 30218, 70, 796, 45941, 13, 2220, 7, 6978, 11, 1249, 62, 27729, 293, 28, 17821, 8, 198, 220, 220, 220, 30218, 70, 796, 30218, 70, 13, 9186, 3419, 198, 220, 220, 220, 2010, 796, 4401, 18474, 24, 62, 259, 62, 77, 32152, 7, 37581, 8, 198, 220, 220, 220, 1441, 2010, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 651, 62, 3262, 3419 ]
2.299401
167
class ChildNodeIterator: '''Iterates over a Humon node's children.''' def __next__(self): '''Iterate.''' if self.idx < self.node.numChildren: res = self.node.getChild(self.idx) self.idx += 1 return res raise StopIteration
[ 4871, 5932, 19667, 37787, 25, 198, 220, 220, 220, 705, 7061, 29993, 689, 625, 257, 11054, 261, 10139, 338, 1751, 2637, 7061, 628, 628, 220, 220, 220, 825, 11593, 19545, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 29993, 378, 2637, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 312, 87, 1279, 2116, 13, 17440, 13, 22510, 26829, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 581, 796, 2116, 13, 17440, 13, 1136, 16424, 7, 944, 13, 312, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 87, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 581, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 13707, 29993, 341, 198 ]
2.092857
140
''' Code of testing ''' import argparse import logging import os import sys import csv import time import torch import numpy as np import pandas as pd import torch.nn as nn from tqdm import tqdm from pycm import * import matplotlib import matplotlib.pyplot as plt from dataset import BasicDataset_OUT from torch.utils.data import DataLoader from model import Resnet101_fl, InceptionV3_fl, Densenet161_fl, Resnext101_32x8d_fl, MobilenetV2_fl, Vgg16_bn_fl, Efficientnet_fl #torch.distributed.init_process_group(backend="nccl") font = { 'weight' : 'normal', 'size' : 18} plt.rc('font',family='Times New Roman') matplotlib.rc('font', **font) if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') args = get_args() torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) #logging.info(f'Using device {device}') test_dir = args.test_dir dataset=args.dataset img_size= (512,512) if args.model=='inceptionv3': model_fl = InceptionV3_fl(pretrained=True) if args.model=='densenet161': model_fl = Densenet161_fl(pretrained=True) if args.model == 'resnet101': model_fl = Resnet101_fl(pretrained=True) if args.model == 'resnext101': model_fl_1 = Resnext101_32x8d_fl(pretrained=True) model_fl_2 = Resnext101_32x8d_fl(pretrained=True) model_fl_3 = Resnext101_32x8d_fl(pretrained=True) model_fl_4 = Resnext101_32x8d_fl(pretrained=True) model_fl_5 = Resnext101_32x8d_fl(pretrained=True) model_fl_6 = Resnext101_32x8d_fl(pretrained=True) model_fl_7 = Resnext101_32x8d_fl(pretrained=True) model_fl_8 = Resnext101_32x8d_fl(pretrained=True) if args.model == 'efficientnet': model_fl_1 = Efficientnet_fl(pretrained=True) model_fl_2 = Efficientnet_fl(pretrained=True) model_fl_3 = Efficientnet_fl(pretrained=True) model_fl_4 = Efficientnet_fl(pretrained=True) model_fl_5 = Efficientnet_fl(pretrained=True) model_fl_6 = Efficientnet_fl(pretrained=True) model_fl_7 = Efficientnet_fl(pretrained=True) model_fl_8 = Efficientnet_fl(pretrained=True) if args.model == 'mobilenetv2': model_fl = MobilenetV2_fl(pretrained=True) if args.model == 'vgg16bn': model_fl = Vgg16_bn_fl(pretrained=True) checkpoint_path_1 = './{}/{}/{}/7_seed_28/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_2 = './{}/{}/{}/6_seed_30/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_3 = './{}/{}/{}/5_seed_32/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_4 = './{}/{}/{}/4_seed_34/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_5 = './{}/{}/{}/3_seed_36/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_6 = './{}/{}/{}/2_seed_38/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_7 = './{}/{}/{}/1_seed_40/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) checkpoint_path_8 = './{}/{}/{}/0_seed_42/best_loss_checkpoint.pth'.format(args.task, args.load, args.model ) model_fl_1.to(device=device) model_fl_2.to(device=device) model_fl_3.to(device=device) model_fl_4.to(device=device) model_fl_5.to(device=device) model_fl_6.to(device=device) model_fl_7.to(device=device) model_fl_8.to(device=device) map_location = {'cuda:%d' % 0: 'cuda:%d' % args.local_rank} if args.load: model_fl_1.load_state_dict( torch.load(checkpoint_path_1, map_location="cuda:0") ) model_fl_2.load_state_dict( torch.load(checkpoint_path_2, map_location="cuda:0") ) model_fl_3.load_state_dict( torch.load(checkpoint_path_3, map_location="cuda:0") ) model_fl_4.load_state_dict( torch.load(checkpoint_path_4, map_location="cuda:0") ) model_fl_5.load_state_dict( torch.load(checkpoint_path_5, map_location="cuda:0") ) model_fl_6.load_state_dict( torch.load(checkpoint_path_6, map_location="cuda:0") ) model_fl_7.load_state_dict( torch.load(checkpoint_path_7, map_location="cuda:0") ) model_fl_8.load_state_dict( torch.load(checkpoint_path_8, map_location="cuda:0") ) # faster convolutions, but more memory # cudnn.benchmark = True try: test_net(model_fl_1, model_fl_2, model_fl_3, model_fl_4, model_fl_5, model_fl_6, model_fl_7, model_fl_8, test_dir, device=device, epochs=args.epochs, batch_size=args.batchsize, image_size=img_size) except KeyboardInterrupt: torch.save(model_fl.state_dict(), 'INTERRUPTED.pth') logging.info('Saved interrupt') try: sys.exit(0) except SystemExit: os._exit(0)
[ 198, 7061, 6, 198, 10669, 286, 4856, 198, 7061, 6, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 269, 21370, 198, 11748, 640, 198, 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 6738, 12972, 11215, 1330, 1635, 198, 11748, 2603, 29487, 8019, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 27039, 1330, 14392, 27354, 292, 316, 62, 12425, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 6738, 2746, 1330, 1874, 3262, 8784, 62, 2704, 11, 554, 4516, 53, 18, 62, 2704, 11, 360, 18756, 316, 25948, 62, 2704, 11, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 11, 45951, 268, 316, 53, 17, 62, 2704, 11, 569, 1130, 1433, 62, 9374, 62, 2704, 11, 412, 5632, 3262, 62, 2704, 628, 198, 2, 13165, 354, 13, 17080, 6169, 13, 15003, 62, 14681, 62, 8094, 7, 1891, 437, 2625, 77, 535, 75, 4943, 198, 10331, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 6551, 6, 1058, 705, 11265, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7857, 6, 220, 220, 1058, 1248, 92, 198, 489, 83, 13, 6015, 10786, 10331, 3256, 17989, 11639, 28595, 968, 7993, 11537, 220, 198, 6759, 29487, 8019, 13, 6015, 10786, 10331, 3256, 12429, 10331, 8, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 6404, 2667, 13, 10778, 11, 5794, 11639, 4, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 11537, 198, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 28034, 13, 66, 15339, 13, 2617, 62, 25202, 7, 22046, 13, 12001, 62, 43027, 8, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 7203, 66, 15339, 1600, 26498, 13, 12001, 62, 43027, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6404, 2667, 13, 10951, 7, 69, 6, 12814, 3335, 1391, 25202, 92, 11537, 628, 220, 220, 220, 1332, 62, 15908, 796, 26498, 13, 9288, 62, 15908, 198, 220, 220, 220, 27039, 28, 22046, 13, 19608, 292, 316, 198, 220, 220, 220, 33705, 62, 7857, 28, 357, 25836, 11, 25836, 8, 628, 220, 220, 220, 611, 26498, 13, 19849, 855, 6, 924, 1159, 85, 18, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 796, 554, 4516, 53, 18, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 855, 6, 67, 18756, 316, 25948, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 796, 360, 18756, 316, 25948, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 6624, 705, 411, 3262, 8784, 10354, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 796, 1874, 3262, 8784, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 6624, 705, 411, 19545, 8784, 10354, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 16, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 17, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 18, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 19, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 20, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 21, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 22, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 23, 796, 1874, 19545, 8784, 62, 2624, 87, 23, 67, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 6624, 705, 16814, 3262, 10354, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 16, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 17, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 18, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 19, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 20, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 21, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 22, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 23, 796, 412, 5632, 3262, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 6624, 705, 76, 25898, 268, 316, 85, 17, 10354, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 796, 45951, 268, 316, 53, 17, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 198, 220, 220, 220, 611, 26498, 13, 19849, 6624, 705, 85, 1130, 1433, 9374, 10354, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 796, 569, 1130, 1433, 62, 9374, 62, 2704, 7, 5310, 13363, 28, 17821, 8, 628, 220, 220, 220, 26954, 62, 6978, 62, 16, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 22, 62, 28826, 62, 2078, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 17, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 21, 62, 28826, 62, 1270, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 18, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 20, 62, 28826, 62, 2624, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 19, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 19, 62, 28826, 62, 2682, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 20, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 18, 62, 28826, 62, 2623, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 21, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 17, 62, 28826, 62, 2548, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 22, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 16, 62, 28826, 62, 1821, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 26954, 62, 6978, 62, 23, 796, 705, 19571, 90, 92, 14, 90, 92, 14, 90, 92, 14, 15, 62, 28826, 62, 3682, 14, 13466, 62, 22462, 62, 9122, 4122, 13, 79, 400, 4458, 18982, 7, 22046, 13, 35943, 11, 26498, 13, 2220, 11, 26498, 13, 19849, 220, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2746, 62, 2704, 62, 16, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 17, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 18, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 19, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 20, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 21, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 22, 13, 1462, 7, 25202, 28, 25202, 8, 198, 220, 220, 220, 2746, 62, 2704, 62, 23, 13, 1462, 7, 25202, 28, 25202, 8, 628, 220, 220, 220, 3975, 62, 24886, 796, 1391, 6, 66, 15339, 25, 4, 67, 6, 4064, 657, 25, 705, 66, 15339, 25, 4, 67, 6, 4064, 26498, 13, 12001, 62, 43027, 92, 198, 220, 220, 220, 611, 26498, 13, 2220, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 16, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 16, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 17, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 17, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 18, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 18, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 19, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 19, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 20, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 20, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 21, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 21, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 22, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 22, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 23, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 9122, 4122, 62, 6978, 62, 23, 11, 3975, 62, 24886, 2625, 66, 15339, 25, 15, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1303, 5443, 3063, 14191, 11, 475, 517, 4088, 198, 220, 220, 220, 1303, 269, 463, 20471, 13, 26968, 4102, 796, 6407, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 3262, 7, 19849, 62, 2704, 62, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 2704, 62, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3335, 28, 25202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 82, 28, 22046, 13, 538, 5374, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 28, 22046, 13, 43501, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 7857, 28, 9600, 62, 7857, 8, 198, 220, 220, 220, 2845, 31973, 9492, 3622, 25, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 19849, 62, 2704, 13, 5219, 62, 11600, 22784, 705, 41358, 49, 8577, 36493, 13, 79, 400, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 50, 9586, 11313, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 4482, 30337, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13557, 37023, 7, 15, 8, 628, 628, 628, 628 ]
2.032505
2,615
from googlesearch import search query = "fastapi" for i in search(query, tld="co.in", num=10, stop=10, pause=2): print(i)
[ 6738, 467, 519, 829, 3679, 1330, 2989, 220, 198, 198, 22766, 796, 366, 7217, 15042, 1, 198, 198, 1640, 1312, 287, 2989, 7, 22766, 11, 256, 335, 2625, 1073, 13, 259, 1600, 997, 28, 940, 11, 2245, 28, 940, 11, 14985, 28, 17, 2599, 198, 220, 220, 220, 3601, 7, 72, 8 ]
2.461538
52
# Created on 5/21/20 # Author: Ari Liloia and Michael Wehar
[ 2, 15622, 319, 642, 14, 2481, 14, 1238, 198, 2, 6434, 25, 6069, 16342, 78, 544, 290, 3899, 775, 9869, 198 ]
2.857143
21
# -*- coding: utf-8 -*- """ Created on Sun Jan 17 04:01:48 2021 @author: Adham """ from .Model import model import numpy as np import pickle
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 3825, 2365, 1596, 8702, 25, 486, 25, 2780, 33448, 198, 198, 31, 9800, 25, 1215, 2763, 198, 37811, 198, 6738, 764, 17633, 1330, 2746, 220, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293 ]
2.679245
53
import numpy as np
[ 11748, 299, 32152, 355, 45941, 628 ]
3.333333
6
from pulp import * if __name__ == "main": main()
[ 6738, 38341, 1330, 1635, 198, 198, 361, 11593, 3672, 834, 6624, 366, 12417, 1298, 198, 220, 220, 220, 1388, 3419 ]
2.65
20
import unittest import os import tempfile from nose.tools import \ assert_equal from bento import PackageDescription from bento.core.package import file_list, static_representation from bento.core.meta import PackageMetadata from bento.core.pkg_objects import DataFiles from bento.core.node import Node
[ 11748, 555, 715, 395, 198, 11748, 28686, 198, 11748, 20218, 7753, 198, 198, 6738, 9686, 13, 31391, 1330, 3467, 198, 220, 220, 220, 6818, 62, 40496, 198, 198, 6738, 17157, 78, 1330, 15717, 11828, 198, 6738, 17157, 78, 13, 7295, 13, 26495, 1330, 2393, 62, 4868, 11, 9037, 62, 15603, 341, 198, 6738, 17157, 78, 13, 7295, 13, 28961, 1330, 15717, 9171, 14706, 198, 6738, 17157, 78, 13, 7295, 13, 35339, 62, 48205, 1330, 6060, 25876, 198, 6738, 17157, 78, 13, 7295, 13, 17440, 1330, 19081, 198 ]
3.551724
87
import pandas as pd import math from sklearn.ensemble import RandomForestRegressor trainInput = pd.read_excel("FPL_Season_Data_Only_Inputs_Shuffled2.xlsx") trainInput = trainInput.drop(trainInput.columns[0], axis=1) trainOutput = pd.read_excel("FPL_Season_Data_Only_Outputs_Shuffled2.xlsx") trainOutput = trainOutput.pop("Points") position = pd.get_dummies(trainInput["Position"],prefix="Position") trainInput = pd.concat([position,trainInput], axis =1) trainInput.drop(["Position"], axis=1, inplace=True) trainInput.drop(["YC"], axis=1, inplace=True) trainInput.drop(["RC"], axis=1, inplace=True) trainInput.drop(["Bonus Points"], axis=1, inplace=True) df = pd.read_excel("PredictionsData.xlsx") position = pd.get_dummies(df["Position"],prefix="Position") df = pd.concat([position,df], axis =1) df.drop(["Position"], axis=1, inplace=True) df.drop(["YC"], axis=1, inplace=True) df.drop(["RC"], axis=1, inplace=True) df.drop(["Bonus Points"], axis=1, inplace=True) names = df.pop("Name") regressor = RandomForestRegressor(n_estimators = 10000, random_state=30) regressor.fit(trainInput,trainOutput) predictions = regressor.predict(df) predictionsDF = pd.DataFrame(predictions, columns=["Points"]) predictionsDF = pd.concat([names, predictionsDF],axis=1) predictionsDF.sort_values("Points",ascending=False, inplace=True) predictionsDF.to_excel("PredictionsRF10k.xlsx") # import numpy as np # import tensorflow as tf # import pandas as pd # import wandb # from wandb.keras import WandbCallback # #initializing # np.set_printoptions(precision=4, suppress=True) # wandb.init(project="RandomForest", entity="matthewlchen",sync_tensorboard=True) # #pulling data # trainInput = pd.read_excel("FPL_Season_Data_Only_Inputs_Shuffled2.xlsx") # trainInput = trainInput.drop(trainInput.columns[0], axis=1) # trainOutput = pd.read_excel("FPL_Season_Data_Only_Outputs_Shuffled2.xlsx") # trainOutput = trainOutput.pop("Points") # #transforming categorical position data into one hot encoding # position = pd.get_dummies(trainInput["Position"],prefix="Position") # trainInput = pd.concat([position,trainInput], axis =1) # trainInput.drop(["Position"], axis=1, inplace=True) # #converting dataframes to numpy arrays # inputNP = np.asarray(trainInput) # outputNP = np.asarray(trainOutput) # #train/test split # #inpTrain, inpTest, outTrain, outTest = train_test_split(inputNP, outputNP, test_size=0.20) # #define model # ##parameters - tuning still in process # nEpochs = 100 # batch = 32 # model = # model.compile( # optimizer="adam", # loss = "mean_squared_error", # metrics = ["accuracy"] # ) # wandb.config = { # "learning_rate": 0.001, # "epochs": nEpochs, # "batch_size": batch # } # #run # model.fit(inputNP,outputNP,batch_size=batch, validation_split=0.20,verbose=2,epochs=nEpochs, callbacks=[WandbCallback()]) # #model.save_weights("weights") # #print(model.evaluate(inpTest, outTest, verbose=2))
[ 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 10688, 201, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 8081, 44292, 201, 198, 201, 198, 27432, 20560, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 5837, 43, 62, 18960, 62, 6601, 62, 10049, 62, 20560, 82, 62, 2484, 1648, 992, 17, 13, 87, 7278, 87, 4943, 201, 198, 27432, 20560, 796, 4512, 20560, 13, 14781, 7, 27432, 20560, 13, 28665, 82, 58, 15, 4357, 16488, 28, 16, 8, 201, 198, 27432, 26410, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 5837, 43, 62, 18960, 62, 6601, 62, 10049, 62, 26410, 82, 62, 2484, 1648, 992, 17, 13, 87, 7278, 87, 4943, 201, 198, 27432, 26410, 796, 4512, 26410, 13, 12924, 7203, 40710, 4943, 201, 198, 201, 198, 9150, 796, 279, 67, 13, 1136, 62, 67, 39578, 7, 27432, 20560, 14692, 26545, 33116, 40290, 2625, 26545, 4943, 201, 198, 27432, 20560, 796, 279, 67, 13, 1102, 9246, 26933, 9150, 11, 27432, 20560, 4357, 16488, 796, 16, 8, 201, 198, 27432, 20560, 13, 14781, 7, 14692, 26545, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 27432, 20560, 13, 14781, 7, 14692, 44816, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 27432, 20560, 13, 14781, 7, 14692, 7397, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 27432, 20560, 13, 14781, 7, 14692, 29435, 11045, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 201, 198, 7568, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 39156, 9278, 6601, 13, 87, 7278, 87, 4943, 201, 198, 9150, 796, 279, 67, 13, 1136, 62, 67, 39578, 7, 7568, 14692, 26545, 33116, 40290, 2625, 26545, 4943, 201, 198, 7568, 796, 279, 67, 13, 1102, 9246, 26933, 9150, 11, 7568, 4357, 16488, 796, 16, 8, 201, 198, 7568, 13, 14781, 7, 14692, 26545, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 7568, 13, 14781, 7, 14692, 44816, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 7568, 13, 14781, 7, 14692, 7397, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 7568, 13, 14781, 7, 14692, 29435, 11045, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 14933, 796, 47764, 13, 12924, 7203, 5376, 4943, 201, 198, 201, 198, 2301, 44292, 796, 14534, 34605, 8081, 44292, 7, 77, 62, 395, 320, 2024, 796, 33028, 11, 4738, 62, 5219, 28, 1270, 8, 201, 198, 2301, 44292, 13, 11147, 7, 27432, 20560, 11, 27432, 26410, 8, 201, 198, 28764, 9278, 796, 842, 44292, 13, 79, 17407, 7, 7568, 8, 201, 198, 201, 198, 28764, 9278, 8068, 796, 279, 67, 13, 6601, 19778, 7, 28764, 9278, 11, 15180, 28, 14692, 40710, 8973, 8, 201, 198, 28764, 9278, 8068, 796, 279, 67, 13, 1102, 9246, 26933, 14933, 11, 16277, 8068, 4357, 22704, 28, 16, 8, 201, 198, 28764, 9278, 8068, 13, 30619, 62, 27160, 7203, 40710, 1600, 3372, 1571, 28, 25101, 11, 287, 5372, 28, 17821, 8, 201, 198, 28764, 9278, 8068, 13, 1462, 62, 1069, 5276, 7203, 39156, 9278, 32754, 940, 74, 13, 87, 7278, 87, 4943, 201, 198, 2, 1330, 299, 32152, 355, 45941, 201, 198, 2, 1330, 11192, 273, 11125, 355, 48700, 201, 198, 2, 1330, 19798, 292, 355, 279, 67, 201, 198, 2, 1330, 11569, 65, 201, 198, 201, 198, 2, 422, 11569, 65, 13, 6122, 292, 1330, 22420, 65, 47258, 201, 198, 201, 198, 2, 1303, 36733, 2890, 201, 198, 2, 45941, 13, 2617, 62, 4798, 25811, 7, 3866, 16005, 28, 19, 11, 18175, 28, 17821, 8, 201, 198, 2, 11569, 65, 13, 15003, 7, 16302, 2625, 29531, 34605, 1600, 9312, 2625, 76, 1078, 6391, 75, 6607, 1600, 27261, 62, 83, 22854, 3526, 28, 17821, 8, 201, 198, 2, 1303, 31216, 278, 1366, 201, 198, 201, 198, 2, 4512, 20560, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 5837, 43, 62, 18960, 62, 6601, 62, 10049, 62, 20560, 82, 62, 2484, 1648, 992, 17, 13, 87, 7278, 87, 4943, 201, 198, 2, 4512, 20560, 796, 4512, 20560, 13, 14781, 7, 27432, 20560, 13, 28665, 82, 58, 15, 4357, 16488, 28, 16, 8, 201, 198, 2, 4512, 26410, 796, 279, 67, 13, 961, 62, 1069, 5276, 7203, 5837, 43, 62, 18960, 62, 6601, 62, 10049, 62, 26410, 82, 62, 2484, 1648, 992, 17, 13, 87, 7278, 87, 4943, 201, 198, 2, 4512, 26410, 796, 4512, 26410, 13, 12924, 7203, 40710, 4943, 201, 198, 201, 198, 2, 1303, 7645, 15464, 4253, 12409, 2292, 1366, 656, 530, 3024, 21004, 201, 198, 201, 198, 2, 2292, 796, 279, 67, 13, 1136, 62, 67, 39578, 7, 27432, 20560, 14692, 26545, 33116, 40290, 2625, 26545, 4943, 201, 198, 2, 4512, 20560, 796, 279, 67, 13, 1102, 9246, 26933, 9150, 11, 27432, 20560, 4357, 16488, 796, 16, 8, 201, 198, 2, 4512, 20560, 13, 14781, 7, 14692, 26545, 33116, 16488, 28, 16, 11, 287, 5372, 28, 17821, 8, 201, 198, 201, 198, 2, 1303, 1102, 48820, 1366, 37805, 284, 299, 32152, 26515, 201, 198, 201, 198, 2, 5128, 22182, 796, 45941, 13, 292, 18747, 7, 27432, 20560, 8, 201, 198, 2, 5072, 22182, 796, 45941, 13, 292, 18747, 7, 27432, 26410, 8, 201, 198, 201, 198, 2, 1303, 27432, 14, 9288, 6626, 201, 198, 201, 198, 2, 1303, 259, 79, 44077, 11, 287, 79, 14402, 11, 503, 44077, 11, 503, 14402, 796, 4512, 62, 9288, 62, 35312, 7, 15414, 22182, 11, 5072, 22182, 11, 1332, 62, 7857, 28, 15, 13, 1238, 8, 201, 198, 201, 198, 2, 1303, 13086, 2746, 201, 198, 201, 198, 2, 22492, 17143, 7307, 532, 24549, 991, 287, 1429, 201, 198, 2, 299, 13807, 5374, 82, 796, 1802, 201, 198, 2, 15458, 796, 3933, 201, 198, 201, 198, 2, 2746, 796, 220, 201, 198, 201, 198, 2, 2746, 13, 5589, 576, 7, 201, 198, 2, 220, 220, 220, 220, 6436, 7509, 2625, 324, 321, 1600, 201, 198, 2, 220, 220, 220, 220, 2994, 796, 366, 32604, 62, 16485, 1144, 62, 18224, 1600, 201, 198, 2, 220, 220, 220, 220, 20731, 796, 14631, 4134, 23843, 8973, 201, 198, 2, 1267, 201, 198, 201, 198, 2, 11569, 65, 13, 11250, 796, 1391, 201, 198, 2, 220, 220, 366, 40684, 62, 4873, 1298, 657, 13, 8298, 11, 201, 198, 2, 220, 220, 366, 538, 5374, 82, 1298, 299, 13807, 5374, 82, 11, 201, 198, 2, 220, 220, 366, 43501, 62, 7857, 1298, 15458, 201, 198, 2, 1782, 201, 198, 201, 198, 2, 1303, 5143, 201, 198, 201, 198, 2, 2746, 13, 11147, 7, 15414, 22182, 11, 22915, 22182, 11, 43501, 62, 7857, 28, 43501, 11, 21201, 62, 35312, 28, 15, 13, 1238, 11, 19011, 577, 28, 17, 11, 538, 5374, 82, 28, 77, 13807, 5374, 82, 11, 869, 10146, 41888, 54, 392, 65, 47258, 3419, 12962, 201, 198, 201, 198, 2, 1303, 19849, 13, 21928, 62, 43775, 7203, 43775, 4943, 201, 198, 2, 1303, 4798, 7, 19849, 13, 49786, 7, 259, 79, 14402, 11, 503, 14402, 11, 15942, 577, 28, 17, 4008 ]
2.571185
1,173
import re import os from numpy.lib.function_base import insert from utils import * if __name__ =='__main__': pass #load_adfa_Attack_files("./ADFA-LD/Attack_Data_Master/")
[ 11748, 302, 198, 11748, 28686, 198, 198, 6738, 299, 32152, 13, 8019, 13, 8818, 62, 8692, 1330, 7550, 198, 6738, 3384, 4487, 1330, 1635, 198, 220, 220, 220, 220, 198, 361, 11593, 3672, 834, 6624, 6, 834, 12417, 834, 10354, 198, 220, 220, 220, 1208, 220, 198, 220, 220, 220, 1303, 2220, 62, 324, 13331, 62, 27732, 62, 16624, 7, 1911, 14, 2885, 7708, 12, 11163, 14, 27732, 62, 6601, 62, 18254, 14, 4943, 198 ]
2.48
75
import sublime, sublime_plugin import json import os import platform import subprocess if platform.system() == 'Darwin': os_name = 'osx' elif platform.system() == 'Windows': os_name = 'windows' else: os_name = 'linux' # /usr/local/lib/node_modules/lebab/bin/index.js BIN_PATH = os.path.join( sublime.packages_path(), os.path.dirname(os.path.realpath(__file__)), 'lebab-transform.js' )
[ 11748, 41674, 11, 41674, 62, 33803, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 3859, 198, 11748, 850, 14681, 198, 198, 361, 3859, 13, 10057, 3419, 6624, 705, 32708, 5404, 10354, 198, 220, 220, 220, 28686, 62, 3672, 796, 705, 418, 87, 6, 198, 417, 361, 220, 3859, 13, 10057, 3419, 6624, 705, 11209, 10354, 198, 220, 220, 220, 28686, 62, 3672, 796, 705, 28457, 6, 198, 17772, 25, 198, 220, 220, 220, 28686, 62, 3672, 796, 705, 23289, 6, 198, 198, 2, 1220, 14629, 14, 12001, 14, 8019, 14, 17440, 62, 18170, 14, 293, 65, 397, 14, 8800, 14, 9630, 13, 8457, 198, 198, 33, 1268, 62, 34219, 796, 28686, 13, 6978, 13, 22179, 7, 198, 220, 220, 220, 41674, 13, 43789, 62, 6978, 22784, 198, 220, 220, 220, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 198, 220, 220, 220, 705, 293, 65, 397, 12, 35636, 13, 8457, 6, 198, 8, 198 ]
2.518293
164
import io import os from setuptools import find_packages, setup here = os.path.abspath(os.path.dirname(__file__)) # Package meta-data. NAME = 'chantilly' DESCRIPTION = 'Deployment tool for online machine learning models' LONG_DESCRIPTION_CONTENT_TYPE = 'text/markdown' URL = 'https://github.com/creme-ml/chantilly' EMAIL = '[email protected]' AUTHOR = 'Max Halford' REQUIRES_PYTHON = '>=3.7.0' # Import the README and use it as the long-description. with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = '\n' + f.read() # Load the package's __version__.py module as a dictionary. about = {} with open(os.path.join(here, 'chantilly', '__version__.py')) as f: exec(f.read(), about) setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type=LONG_DESCRIPTION_CONTENT_TYPE, author=AUTHOR, author_email=EMAIL, license='BSD-3', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy' ], packages=find_packages(), include_package_data=True, python_requires=REQUIRES_PYTHON, url=URL, zip_safe=False, install_requires=[ 'cerberus>=1.3.2', 'river>=0.9.0', 'dill>=0.3.1.1', 'Flask>=1.1.1' ], extras_require={ 'redis': ['redis>=3.5'], 'dev': [ 'flake8>=3.7.9', 'mypy>=0.770', 'pytest>=5.3.5', 'pytest-cov>=2.8.1' ] }, entry_points={ 'console_scripts': [ 'chantilly=chantilly:cli_hook' ], } )
[ 11748, 33245, 198, 11748, 28686, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 1456, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 198, 2, 15717, 13634, 12, 7890, 13, 198, 20608, 796, 705, 8907, 6548, 6, 198, 30910, 40165, 796, 705, 49322, 434, 2891, 329, 2691, 4572, 4673, 4981, 6, 198, 43, 18494, 62, 30910, 40165, 62, 37815, 3525, 62, 25216, 796, 705, 5239, 14, 4102, 2902, 6, 198, 21886, 796, 705, 5450, 1378, 12567, 13, 785, 14, 66, 2182, 12, 4029, 14, 8907, 6548, 6, 198, 27630, 4146, 796, 705, 9806, 13959, 585, 1495, 31, 14816, 13, 785, 6, 198, 32, 24318, 1581, 796, 705, 11518, 13139, 585, 6, 198, 2200, 10917, 4663, 1546, 62, 47, 56, 4221, 1340, 796, 705, 29, 28, 18, 13, 22, 13, 15, 6, 198, 198, 2, 17267, 262, 20832, 11682, 290, 779, 340, 355, 262, 890, 12, 11213, 13, 198, 4480, 33245, 13, 9654, 7, 418, 13, 6978, 13, 22179, 7, 1456, 11, 705, 15675, 11682, 13, 9132, 33809, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 705, 59, 77, 6, 1343, 277, 13, 961, 3419, 198, 198, 2, 8778, 262, 5301, 338, 11593, 9641, 834, 13, 9078, 8265, 355, 257, 22155, 13, 198, 10755, 796, 23884, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 1456, 11, 705, 8907, 6548, 3256, 705, 834, 9641, 834, 13, 9078, 6, 4008, 355, 277, 25, 198, 220, 220, 220, 2452, 7, 69, 13, 961, 22784, 546, 8, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 28, 20608, 11, 198, 220, 220, 220, 2196, 28, 10755, 17816, 834, 9641, 834, 6, 4357, 198, 220, 220, 220, 6764, 28, 30910, 40165, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 28, 43, 18494, 62, 30910, 40165, 62, 37815, 3525, 62, 25216, 11, 198, 220, 220, 220, 1772, 28, 32, 24318, 1581, 11, 198, 220, 220, 220, 1772, 62, 12888, 28, 27630, 4146, 11, 198, 220, 220, 220, 5964, 11639, 21800, 12, 18, 3256, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8498, 303, 1398, 13350, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6462, 1351, 25, 3740, 1378, 79, 4464, 72, 13, 29412, 13, 2398, 14, 79, 4464, 72, 30, 4, 18, 32, 2673, 28, 4868, 62, 4871, 13350, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 23, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 16932, 7535, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 9485, 20519, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 21015, 62, 47911, 28, 2200, 10917, 4663, 1546, 62, 47, 56, 4221, 1340, 11, 198, 220, 220, 220, 19016, 28, 21886, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2189, 39192, 29, 28, 16, 13, 18, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 38291, 29, 28, 15, 13, 24, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 67, 359, 29, 28, 15, 13, 18, 13, 16, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7414, 2093, 29, 28, 16, 13, 16, 13, 16, 6, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 33849, 62, 46115, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 445, 271, 10354, 37250, 445, 271, 29, 28, 18, 13, 20, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7959, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47597, 23, 29, 28, 18, 13, 22, 13, 24, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1820, 9078, 29, 28, 15, 13, 41820, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 29, 28, 20, 13, 18, 13, 20, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 9288, 12, 66, 709, 29, 28, 17, 13, 23, 13, 16, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8907, 6548, 28, 8907, 6548, 25, 44506, 62, 25480, 6, 198, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1782, 198, 8, 198 ]
2.252183
916
import warnings from marshmallow.warnings import ChangedInMarshmallow3Warning from argschema import ArgSchema from argschema.fields import ( InputDir, InputFile, Float, Int, OutputFile, Str, Boolean) warnings.simplefilter( action='ignore', category=ChangedInMarshmallow3Warning)
[ 11748, 14601, 198, 6738, 22397, 42725, 13, 40539, 654, 1330, 32068, 818, 41984, 42725, 18, 20361, 198, 6738, 1822, 15952, 2611, 1330, 20559, 27054, 2611, 198, 6738, 1822, 15952, 2611, 13, 25747, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 35277, 11, 23412, 8979, 11, 48436, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2558, 11, 25235, 8979, 11, 4285, 11, 41146, 8, 198, 40539, 654, 13, 36439, 24455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2223, 11639, 46430, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 6536, 28, 31813, 818, 41984, 42725, 18, 20361, 8, 628 ]
3
104
import os basedir = os.path.abspath(os.path.dirname(__file__))
[ 11748, 28686, 198, 198, 3106, 343, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 198 ]
2.357143
28
import tensorflow as tf import numpy as np
[ 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198 ]
3.307692
13
from django.shortcuts import render, redirect from django.urls import reverse from django.http import JsonResponse from django.conf import settings from django.contrib import messages from django.core.mail import EmailMessage from django.template.loader import render_to_string from hknweb.events.views.aggregate_displays.calendar import calendar_helper from hknweb.events.views.event_transactions.show_event import show_details_helper from hknweb.utils import allow_public_access from hknweb.studentservices.models import ( CourseGuideNode, CourseGuideAdjacencyList, CourseGuideGroup, CourseGuideParam, ) from hknweb.studentservices.forms import DocumentForm, TourRequest @allow_public_access @allow_public_access @allow_public_access @allow_public_access @allow_public_access @allow_public_access
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 11, 18941, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 198, 6738, 42625, 14208, 13, 4023, 1330, 449, 1559, 31077, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 9570, 12837, 198, 6738, 42625, 14208, 13, 28243, 13, 29356, 1330, 8543, 62, 1462, 62, 8841, 198, 198, 6738, 289, 15418, 12384, 13, 31534, 13, 33571, 13, 9460, 49373, 62, 6381, 26024, 13, 9948, 9239, 1330, 11845, 62, 2978, 525, 198, 6738, 289, 15418, 12384, 13, 31534, 13, 33571, 13, 15596, 62, 7645, 4658, 13, 12860, 62, 15596, 1330, 905, 62, 36604, 62, 2978, 525, 198, 6738, 289, 15418, 12384, 13, 26791, 1330, 1249, 62, 11377, 62, 15526, 198, 198, 6738, 289, 15418, 12384, 13, 19149, 658, 712, 1063, 13, 27530, 1330, 357, 198, 220, 220, 220, 20537, 47889, 19667, 11, 198, 220, 220, 220, 20537, 47889, 2782, 30482, 1387, 8053, 11, 198, 220, 220, 220, 20537, 47889, 13247, 11, 198, 220, 220, 220, 20537, 47889, 22973, 11, 198, 8, 198, 6738, 289, 15418, 12384, 13, 19149, 658, 712, 1063, 13, 23914, 1330, 16854, 8479, 11, 9852, 18453, 628, 198, 31, 12154, 62, 11377, 62, 15526, 628, 198, 31, 12154, 62, 11377, 62, 15526, 628, 198, 31, 12154, 62, 11377, 62, 15526, 628, 198, 31, 12154, 62, 11377, 62, 15526, 628, 198, 31, 12154, 62, 11377, 62, 15526, 628, 198, 31, 12154, 62, 11377, 62, 15526, 198 ]
3.289683
252
# -*- coding: utf-8 -*- __author__ = 'Marcin Usielski' __copyright__ = 'Copyright (C) 2020, Nokia' __email__ = '[email protected]' import time from moler.events.unix.ping_no_response import PingNoResponse from moler.util.moler_test import MolerTest import datetime
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 705, 22697, 259, 4021, 72, 1424, 4106, 6, 198, 834, 22163, 4766, 834, 796, 705, 15269, 357, 34, 8, 12131, 11, 26182, 6, 198, 834, 12888, 834, 796, 705, 3876, 17879, 13, 385, 72, 1424, 4106, 31, 77, 22903, 13, 785, 6, 628, 198, 11748, 640, 198, 6738, 285, 13625, 13, 31534, 13, 403, 844, 13, 13886, 62, 3919, 62, 26209, 1330, 34263, 2949, 31077, 198, 6738, 285, 13625, 13, 22602, 13, 76, 13625, 62, 9288, 1330, 337, 13625, 14402, 198, 11748, 4818, 8079, 628, 198 ]
2.647619
105
""" Test that the 'gui' displays long lines/names correctly without overruns. """ import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test.lldbpexpect import PExpectTest
[ 37811, 198, 14402, 326, 262, 705, 48317, 6, 11298, 890, 3951, 14, 14933, 9380, 1231, 33713, 82, 13, 198, 37811, 198, 198, 11748, 32660, 9945, 198, 6738, 32660, 67, 1443, 84, 578, 13, 9288, 13, 12501, 273, 2024, 1330, 1635, 198, 6738, 32660, 67, 1443, 84, 578, 13, 9288, 13, 297, 9945, 9288, 1330, 1635, 198, 6738, 32660, 67, 1443, 84, 578, 13, 9288, 13, 297, 9945, 24900, 806, 1330, 350, 3109, 806, 14402, 198 ]
2.986667
75
import torch from torch.utils.data.sampler import Sampler from collections import defaultdict import numpy as np class MPerClassSampler(Sampler): """ Give m samples per class. Args: labels (np.ndarray): Ground truth of datasets m (int): M samples per class batch_size (int): Batch size must be an interger multiple of m """
[ 11748, 28034, 198, 6738, 28034, 13, 26791, 13, 7890, 13, 37687, 20053, 1330, 3409, 20053, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 299, 32152, 355, 45941, 220, 198, 198, 4871, 4904, 263, 9487, 16305, 20053, 7, 16305, 20053, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13786, 285, 8405, 583, 1398, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 357, 37659, 13, 358, 18747, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13706, 3872, 286, 40522, 198, 220, 220, 220, 220, 220, 220, 220, 285, 357, 600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 337, 8405, 583, 1398, 198, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 7857, 357, 600, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 963, 2546, 1276, 307, 281, 987, 1362, 3294, 286, 285, 198, 220, 220, 220, 37227, 198 ]
2.448485
165
class Request(object): """ create a instance of Request """
[ 4871, 19390, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2251, 257, 4554, 286, 19390, 198, 220, 220, 220, 37227 ]
2.958333
24
from django import forms from django.contrib.auth import authenticate from django.contrib.auth.models import User
[ 6738, 42625, 14208, 1330, 5107, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 628, 198 ]
3.625
32
""" A collection of common mathematical functions written for high performance with the help of numpy and numba. """ import numpy as np from math import sin as msin from math import cos as mcos from numba import jit @jit def dist(p, q): """ Compute distance between two 3D vectors p: array Cartesian coordinates for one of the vectors q: array Cartesian coordinates for one of the vectors """ return ((p[0] - q[0])**2 + (p[1] - q[1])**2 + (p[2] - q[2])**2)**0.5 @jit def dot(p, q): """ Compute dot product between two 3D vectors p: array Cartesian coordinates for one of the vectors q: array Cartesian coordinates for one of the vectors """ return p[0] * q[0] + p[1] * q[1] + p[2] * q[2] @jit def cross(p, q): """ Compute cross product between two 3D vectors p: array Cartesian coordinates for one of the vectors q: array Cartesian coordinates for one of the vectors """ xyz = np.zeros(3) xyz[0] = p[1] * q[2] - p[2] * q[1] xyz[1] = p[2] * q[0] - p[0] * q[2] xyz[2] = p[0] * q[1] - p[1] * q[0] return xyz @jit def mod(p): """ Compute modulus of 3D vector p: array Cartesian coordinates """ return (p[0]**2 + p[1]**2 + p[2]**2)**0.5 @jit def normalize(p): """ Compute a normalized 3D vector p: array Cartesian coordinates """ return p / mod(p) @jit def perp_vector(p, q, r): """ Compute perpendicular vector to (p-q) and (r-q) centered in q. """ v = cross(q - r, q - p) return v / mod(v) + q def get_angle(a, b, c): """ Compute the angle given 3 points xyz: array Cartesian coordinates a-c: int atom index for the three points defining the angle """ ba = a - b cb = c - b ba_mod = mod(ba) cb_mod = mod(cb) val = dot(ba, cb) / (ba_mod * cb_mod) # better fix? if val > 1: val = 1 elif val < -1: val = -1 return np.arccos(val) # this function is the same as get_torsional_array, except that the last one need an xyz-array and # this one do not. def get_torsional(a, b, c, d): """ Compute the torsional angle given four points a-d: int atom index for the four points defining the torsional """ # Compute 3 vectors connecting the four points ba = b - a cb = c - b dc = d - c # Compute the normal vector to each plane u_A = cross(ba, cb) u_B = cross(cb, dc) #Measure the angle between the two normal vectors u_A_mod = mod(u_A) u_B_mod = mod(u_B) val = dot(u_A, u_B) / (u_A_mod * u_B_mod) # better fix? if val > 1: val = 1 elif val < -1: val = -1 tor_rad = np.arccos(val) # compute the sign sign = dot(u_A, dc) if sign > 0: return tor_rad else: return -tor_rad def get_torsional_array(xyz, a, b, c, d): """ Compute the torsional angle given four points xyz: array Cartesian coordinates a-d: int atom index for the four points defining the torsional """ # Compute 3 vectors connecting the four points ba = xyz[b] - xyz[a] cb = xyz[c] - xyz[b] dc = xyz[d] - xyz[c] # Compute the normal vector to each plane u_A = cross(ba, cb) u_B = cross(cb, dc) # Measure the angle between the two normal vectors u_A_mod = mod(u_A) u_B_mod = mod(u_B) val = dot(u_A, u_B) / (u_A_mod * u_B_mod) # better fix? if val > 1: val = 1 elif val < -1: val = -1 tor_rad = np.arccos(val) # compute the sign sign = dot(u_A, dc) if sign > 0: return tor_rad else: return -tor_rad @jit def rotation_matrix_3d(u, theta): """Return the rotation matrix due to a right hand rotation of theta radians around an arbitrary axis/vector u. u: array arbitrary axis/vector u theta: float rotation angle in radians """ x, y, z = normalize(u) st = msin(theta) ct = mcos(theta) mct = 1 - ct # filling the matrix by indexing each element is faster (with jit) # than writting np.array([[, , ], [, , ], [, , ]]) R = np.zeros((3, 3)) R[0, 0] = ct + x * x * mct R[0, 1] = y * x * mct - z * st R[0, 2] = x * z * mct + y * st R[1, 0] = y * x * mct + z * st R[1, 1] = ct + y * y * mct R[1, 2] = y * z * mct - x * st R[2, 0] = x * z * mct - y * st R[2, 1] = y * z * mct + x * st R[2, 2] = ct + z * z * mct return R @jit def set_torsional(xyz, i, j, idx_rot, theta_rad): """ rotate a set of coordinates around the i-j axis by theta_rad xyz: array Cartesian coordinates i: int atom i j: int atom j idx_to_rot: array indices of the atoms that will be rotated theta_rad: float rotation angle in radians """ xyz_s = xyz - xyz[i] R = rotation_matrix_3d((xyz_s[j]), theta_rad) xyz[:] = xyz_s[:] xyz[idx_rot] = xyz_s[idx_rot] @ R # TODO return to original position????
[ 37811, 198, 32, 4947, 286, 2219, 18069, 5499, 3194, 329, 1029, 2854, 351, 198, 1169, 1037, 286, 299, 32152, 290, 997, 7012, 13, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 10688, 1330, 7813, 355, 13845, 259, 198, 6738, 10688, 1330, 8615, 355, 285, 6966, 198, 6738, 997, 7012, 1330, 474, 270, 628, 198, 198, 31, 45051, 198, 4299, 1233, 7, 79, 11, 10662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 5253, 1022, 734, 513, 35, 30104, 198, 220, 220, 220, 279, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 10662, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 14808, 79, 58, 15, 60, 532, 10662, 58, 15, 12962, 1174, 17, 1343, 357, 79, 58, 16, 60, 532, 10662, 58, 16, 12962, 1174, 17, 1343, 357, 79, 58, 17, 60, 532, 10662, 58, 17, 12962, 1174, 17, 8, 1174, 15, 13, 20, 628, 198, 31, 45051, 198, 4299, 16605, 7, 79, 11, 10662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 16605, 1720, 1022, 734, 513, 35, 30104, 198, 220, 220, 220, 279, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 10662, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 279, 58, 15, 60, 1635, 10662, 58, 15, 60, 1343, 279, 58, 16, 60, 1635, 10662, 58, 16, 60, 1343, 279, 58, 17, 60, 1635, 10662, 58, 17, 60, 628, 198, 31, 45051, 198, 4299, 3272, 7, 79, 11, 10662, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 3272, 1720, 1022, 734, 513, 35, 30104, 198, 220, 220, 220, 279, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 10662, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 329, 530, 286, 262, 30104, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 45579, 796, 45941, 13, 9107, 418, 7, 18, 8, 198, 220, 220, 220, 2124, 45579, 58, 15, 60, 796, 279, 58, 16, 60, 1635, 10662, 58, 17, 60, 532, 279, 58, 17, 60, 1635, 10662, 58, 16, 60, 198, 220, 220, 220, 2124, 45579, 58, 16, 60, 796, 279, 58, 17, 60, 1635, 10662, 58, 15, 60, 532, 279, 58, 15, 60, 1635, 10662, 58, 17, 60, 198, 220, 220, 220, 2124, 45579, 58, 17, 60, 796, 279, 58, 15, 60, 1635, 10662, 58, 16, 60, 532, 279, 58, 16, 60, 1635, 10662, 58, 15, 60, 198, 220, 220, 220, 1441, 2124, 45579, 628, 198, 31, 45051, 198, 4299, 953, 7, 79, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 953, 23515, 286, 513, 35, 15879, 198, 220, 220, 220, 279, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 357, 79, 58, 15, 60, 1174, 17, 1343, 279, 58, 16, 60, 1174, 17, 1343, 279, 58, 17, 60, 1174, 17, 8, 1174, 15, 13, 20, 628, 198, 31, 45051, 198, 4299, 3487, 1096, 7, 79, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 257, 39279, 513, 35, 15879, 198, 220, 220, 220, 279, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 279, 1220, 953, 7, 79, 8, 628, 198, 31, 45051, 198, 4299, 583, 79, 62, 31364, 7, 79, 11, 10662, 11, 374, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 47190, 15879, 284, 357, 79, 12, 80, 8, 290, 357, 81, 12, 80, 8, 19254, 287, 10662, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 410, 796, 3272, 7, 80, 532, 374, 11, 10662, 532, 279, 8, 198, 220, 220, 220, 1441, 410, 1220, 953, 7, 85, 8, 1343, 10662, 628, 198, 4299, 651, 62, 9248, 7, 64, 11, 275, 11, 269, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 262, 9848, 1813, 513, 2173, 198, 220, 220, 220, 2124, 45579, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 198, 220, 220, 220, 257, 12, 66, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 6376, 329, 262, 1115, 2173, 16215, 262, 9848, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26605, 796, 257, 532, 275, 198, 220, 220, 220, 269, 65, 796, 269, 532, 275, 628, 220, 220, 220, 26605, 62, 4666, 796, 953, 7, 7012, 8, 198, 220, 220, 220, 269, 65, 62, 4666, 796, 953, 7, 21101, 8, 198, 220, 220, 220, 1188, 796, 16605, 7, 7012, 11, 269, 65, 8, 1220, 357, 7012, 62, 4666, 1635, 269, 65, 62, 4666, 8, 198, 220, 220, 220, 1303, 1365, 4259, 30, 198, 220, 220, 220, 611, 1188, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 352, 198, 220, 220, 220, 1288, 361, 1188, 1279, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 532, 16, 628, 220, 220, 220, 1441, 45941, 13, 283, 535, 418, 7, 2100, 8, 198, 198, 2, 428, 2163, 318, 262, 976, 355, 651, 62, 83, 669, 1538, 62, 18747, 11, 2845, 326, 262, 938, 530, 761, 281, 2124, 45579, 12, 18747, 290, 198, 2, 428, 530, 466, 407, 13, 198, 4299, 651, 62, 83, 669, 1538, 7, 64, 11, 275, 11, 269, 11, 288, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 262, 256, 669, 1538, 9848, 1813, 1440, 2173, 198, 220, 220, 220, 257, 12, 67, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 6376, 329, 262, 1440, 2173, 16215, 262, 256, 669, 1538, 198, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3082, 1133, 513, 30104, 14320, 262, 1440, 2173, 198, 220, 220, 220, 26605, 796, 275, 532, 257, 198, 220, 220, 220, 269, 65, 796, 269, 532, 275, 198, 220, 220, 220, 30736, 796, 288, 532, 269, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3082, 1133, 262, 3487, 15879, 284, 1123, 6614, 198, 220, 220, 220, 334, 62, 32, 796, 3272, 7, 7012, 11, 269, 65, 8, 198, 220, 220, 220, 334, 62, 33, 796, 3272, 7, 21101, 11, 30736, 8, 628, 220, 220, 220, 1303, 47384, 262, 9848, 1022, 262, 734, 3487, 30104, 198, 220, 220, 220, 334, 62, 32, 62, 4666, 796, 953, 7, 84, 62, 32, 8, 198, 220, 220, 220, 334, 62, 33, 62, 4666, 796, 953, 7, 84, 62, 33, 8, 198, 220, 220, 220, 1188, 796, 16605, 7, 84, 62, 32, 11, 334, 62, 33, 8, 1220, 357, 84, 62, 32, 62, 4666, 1635, 334, 62, 33, 62, 4666, 8, 198, 220, 220, 220, 1303, 1365, 4259, 30, 198, 220, 220, 220, 611, 1188, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 352, 198, 220, 220, 220, 1288, 361, 1188, 1279, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 532, 16, 198, 220, 220, 220, 7332, 62, 6335, 796, 45941, 13, 283, 535, 418, 7, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 24061, 262, 1051, 198, 220, 220, 220, 1051, 796, 16605, 7, 84, 62, 32, 11, 30736, 8, 198, 220, 220, 220, 611, 1051, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7332, 62, 6335, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 13165, 62, 6335, 628, 198, 4299, 651, 62, 83, 669, 1538, 62, 18747, 7, 5431, 89, 11, 257, 11, 275, 11, 269, 11, 288, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3082, 1133, 262, 256, 669, 1538, 9848, 1813, 1440, 2173, 198, 220, 220, 220, 2124, 45579, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 198, 220, 220, 220, 257, 12, 67, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 6376, 329, 262, 1440, 2173, 16215, 262, 256, 669, 1538, 198, 220, 220, 37227, 628, 220, 220, 220, 1303, 3082, 1133, 513, 30104, 14320, 262, 1440, 2173, 198, 220, 220, 220, 26605, 796, 2124, 45579, 58, 65, 60, 532, 2124, 45579, 58, 64, 60, 198, 220, 220, 220, 269, 65, 796, 2124, 45579, 58, 66, 60, 532, 2124, 45579, 58, 65, 60, 198, 220, 220, 220, 30736, 796, 2124, 45579, 58, 67, 60, 532, 2124, 45579, 58, 66, 60, 628, 220, 220, 220, 1303, 3082, 1133, 262, 3487, 15879, 284, 1123, 6614, 198, 220, 220, 220, 334, 62, 32, 796, 3272, 7, 7012, 11, 269, 65, 8, 198, 220, 220, 220, 334, 62, 33, 796, 3272, 7, 21101, 11, 30736, 8, 628, 220, 220, 220, 1303, 24291, 262, 9848, 1022, 262, 734, 3487, 30104, 198, 220, 220, 220, 334, 62, 32, 62, 4666, 796, 953, 7, 84, 62, 32, 8, 198, 220, 220, 220, 334, 62, 33, 62, 4666, 796, 953, 7, 84, 62, 33, 8, 198, 220, 220, 220, 1188, 796, 16605, 7, 84, 62, 32, 11, 334, 62, 33, 8, 1220, 357, 84, 62, 32, 62, 4666, 1635, 334, 62, 33, 62, 4666, 8, 198, 220, 220, 220, 1303, 1365, 4259, 30, 198, 220, 220, 220, 611, 1188, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 352, 198, 220, 220, 220, 1288, 361, 1188, 1279, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 532, 16, 198, 220, 220, 220, 7332, 62, 6335, 796, 45941, 13, 283, 535, 418, 7, 2100, 8, 628, 220, 220, 220, 1303, 24061, 262, 1051, 198, 220, 220, 220, 1051, 796, 16605, 7, 84, 62, 32, 11, 30736, 8, 198, 220, 220, 220, 611, 1051, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 7332, 62, 6335, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 13165, 62, 6335, 628, 198, 31, 45051, 198, 4299, 13179, 62, 6759, 8609, 62, 18, 67, 7, 84, 11, 262, 8326, 2599, 198, 220, 220, 220, 37227, 13615, 262, 13179, 17593, 2233, 284, 257, 826, 1021, 13179, 286, 262, 8326, 2511, 1547, 198, 220, 220, 220, 1088, 281, 14977, 16488, 14, 31364, 334, 13, 198, 220, 220, 220, 334, 25, 7177, 220, 198, 220, 220, 220, 220, 220, 220, 220, 14977, 16488, 14, 31364, 334, 198, 220, 220, 220, 262, 8326, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 9848, 287, 2511, 1547, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 11, 331, 11, 1976, 796, 3487, 1096, 7, 84, 8, 198, 220, 220, 220, 336, 796, 13845, 259, 7, 1169, 8326, 8, 198, 220, 220, 220, 269, 83, 796, 285, 6966, 7, 1169, 8326, 8, 198, 220, 220, 220, 285, 310, 796, 352, 532, 269, 83, 628, 220, 220, 220, 1303, 12591, 262, 17593, 416, 6376, 278, 1123, 5002, 318, 5443, 357, 4480, 474, 270, 8, 198, 220, 220, 220, 1303, 621, 1319, 2535, 45941, 13, 18747, 26933, 58, 11, 837, 16589, 685, 11, 837, 16589, 685, 11, 837, 2361, 12962, 198, 220, 220, 220, 371, 796, 45941, 13, 9107, 418, 19510, 18, 11, 513, 4008, 198, 220, 220, 220, 371, 58, 15, 11, 657, 60, 796, 269, 83, 1343, 2124, 1635, 2124, 1635, 285, 310, 198, 220, 220, 220, 371, 58, 15, 11, 352, 60, 796, 331, 1635, 2124, 1635, 285, 310, 532, 1976, 1635, 336, 198, 220, 220, 220, 371, 58, 15, 11, 362, 60, 796, 2124, 1635, 1976, 1635, 285, 310, 1343, 331, 1635, 336, 198, 220, 220, 220, 371, 58, 16, 11, 657, 60, 796, 331, 1635, 2124, 1635, 285, 310, 1343, 1976, 1635, 336, 198, 220, 220, 220, 371, 58, 16, 11, 352, 60, 796, 269, 83, 1343, 331, 1635, 331, 1635, 285, 310, 198, 220, 220, 220, 371, 58, 16, 11, 362, 60, 796, 331, 1635, 1976, 1635, 285, 310, 532, 2124, 1635, 336, 198, 220, 220, 220, 371, 58, 17, 11, 657, 60, 796, 2124, 1635, 1976, 1635, 285, 310, 532, 331, 1635, 336, 198, 220, 220, 220, 371, 58, 17, 11, 352, 60, 796, 331, 1635, 1976, 1635, 285, 310, 1343, 2124, 1635, 336, 198, 220, 220, 220, 371, 58, 17, 11, 362, 60, 796, 269, 83, 1343, 1976, 1635, 1976, 1635, 285, 310, 628, 220, 220, 220, 1441, 371, 628, 198, 31, 45051, 198, 4299, 900, 62, 83, 669, 1538, 7, 5431, 89, 11, 1312, 11, 474, 11, 4686, 87, 62, 10599, 11, 262, 8326, 62, 6335, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23064, 257, 900, 286, 22715, 1088, 262, 1312, 12, 73, 16488, 416, 262, 8326, 62, 6335, 198, 220, 220, 220, 2124, 45579, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 13690, 35610, 22715, 198, 220, 220, 220, 1312, 25, 493, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 1312, 198, 220, 220, 220, 474, 25, 493, 220, 198, 220, 220, 220, 220, 220, 220, 220, 22037, 474, 198, 220, 220, 220, 4686, 87, 62, 1462, 62, 10599, 25, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 36525, 286, 262, 23235, 326, 481, 307, 38375, 198, 220, 220, 220, 262, 8326, 62, 6335, 25, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 13179, 9848, 287, 2511, 1547, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2124, 45579, 62, 82, 796, 2124, 45579, 532, 2124, 45579, 58, 72, 60, 198, 220, 220, 220, 371, 796, 13179, 62, 6759, 8609, 62, 18, 67, 19510, 5431, 89, 62, 82, 58, 73, 46570, 262, 8326, 62, 6335, 8, 198, 220, 220, 220, 2124, 45579, 58, 47715, 796, 2124, 45579, 62, 82, 58, 47715, 198, 220, 220, 220, 2124, 45579, 58, 312, 87, 62, 10599, 60, 796, 2124, 45579, 62, 82, 58, 312, 87, 62, 10599, 60, 2488, 371, 198, 220, 220, 220, 1303, 16926, 46, 1441, 284, 2656, 2292, 9805, 198, 220, 220, 220, 220, 198 ]
2.136724
2,399
from pymc import deterministic, stochastic, MvNormal, Normal, Lognormal, Uniform, \ MCMC import pymc import numpy as np from pysb.examples.robertson import model from pysb.integrate import odesolve, Solver from matplotlib import pyplot as plt # Generate the synthetic data seed = 2 random = np.random.RandomState(seed) sigma = 0.1; ntimes = 20; tspan = np.linspace(0, 40, ntimes); ysim = odesolve(model, tspan) ysim_array = ysim.view(float).reshape(len(ysim), -1) yspecies = ysim_array[:, :len(model.species)] ydata = yspecies * (random.randn(*yspecies.shape) * sigma + 1); ysim_max = yspecies.max(0) ydata_norm = ydata / ysim_max solver = Solver(model, tspan) # Set up the parameter vector for the solver nominal_rates = [model.parameters[n].value for n in ('A_0', 'B_0', 'C_0')] # Stochastic variables for the rate parameters. # Given lognormal priors with their correct order-of-mag mean but with a # variance of 10 base 10 log units k1 = Lognormal('k1', mu=np.log(1e-2), tau=1/(np.log(10)*np.log(1e10)), value=1e-2, plot=True) k2 = Lognormal('k2', mu=np.log(1e7), tau=1/(np.log(10)*np.log(1e10)), value=1e7, plot=True) k3 = Lognormal('k3', mu=np.log(1e4), tau=1/(np.log(10)*np.log(1e10)), value=1e4, plot=True) # The model is set up as a deterministic variable @deterministic(plot=False) # The precision (1/variance) matrix tau = np.eye(len(tspan)*3) * 10 output = MvNormal('output', mu=robertson_model, tau=tau, observed=True, value=ydata_norm.flatten()) if __name__ == '__main__': # Create the MCMC object and start sampling pymc_model = pymc.Model([k1, k2, k3, robertson_model, output]) mcmc = MCMC(pymc_model) mcmc.sample(iter=10000, burn=5000, thin=5) # Show the pymc histograms and autocorrelation plots plt.ion() pymc.Matplot.plot(mcmc) plt.show() # Plot the original data along with the sampled trajectories plt.figure() plt.plot(tspan, ydata_norm[:,0], 'r') plt.plot(tspan, ydata_norm[:,1], 'g') plt.plot(tspan, ydata_norm[:,2], 'b') num_timecourses = 1000 num_iterations_sampled = mcmc.trace('robertson_model')[:].shape[0] plt.plot(tspan, mcmc.trace('robertson_model')[num_iterations_sampled - num_timecourses:,0::3].T, alpha=0.05, color='r') plt.plot(tspan, mcmc.trace('robertson_model')[num_iterations_sampled - num_timecourses:,1::3].T, alpha=0.05, color='g') plt.plot(tspan, mcmc.trace('robertson_model')[num_iterations_sampled - num_timecourses:,2::3].T, alpha=0.05, color='b') # Show k1/k3 scatter plot plt.figure() plt.scatter(mcmc.trace('k1')[:], mcmc.trace('k3')[:])
[ 6738, 279, 4948, 66, 1330, 2206, 49228, 11, 3995, 354, 3477, 11, 337, 85, 26447, 11, 14435, 11, 406, 2360, 6636, 11, 35712, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13122, 9655, 198, 11748, 279, 4948, 66, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 279, 893, 65, 13, 1069, 12629, 13, 305, 527, 912, 261, 1330, 2746, 198, 6738, 279, 893, 65, 13, 18908, 4873, 1330, 267, 8906, 6442, 11, 4294, 332, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 2, 2980, 378, 262, 18512, 1366, 198, 28826, 796, 362, 198, 25120, 796, 45941, 13, 25120, 13, 29531, 9012, 7, 28826, 8, 198, 82, 13495, 796, 657, 13, 16, 26, 198, 429, 999, 796, 1160, 26, 198, 912, 6839, 796, 45941, 13, 21602, 10223, 7, 15, 11, 2319, 11, 299, 22355, 1776, 198, 893, 320, 796, 267, 8906, 6442, 7, 19849, 11, 256, 12626, 8, 198, 893, 320, 62, 18747, 796, 331, 14323, 13, 1177, 7, 22468, 737, 3447, 1758, 7, 11925, 7, 893, 320, 828, 532, 16, 8, 198, 893, 431, 3171, 796, 331, 14323, 62, 18747, 58, 45299, 1058, 11925, 7, 19849, 13, 35448, 15437, 198, 5173, 1045, 796, 331, 35448, 1635, 357, 25120, 13, 25192, 77, 46491, 893, 431, 3171, 13, 43358, 8, 1635, 264, 13495, 1343, 352, 1776, 198, 893, 320, 62, 9806, 796, 331, 35448, 13, 9806, 7, 15, 8, 198, 5173, 1045, 62, 27237, 796, 331, 7890, 1220, 331, 14323, 62, 9806, 198, 198, 82, 14375, 796, 4294, 332, 7, 19849, 11, 256, 12626, 8, 198, 198, 2, 5345, 510, 262, 11507, 15879, 329, 262, 1540, 332, 198, 26601, 1292, 62, 9700, 796, 685, 19849, 13, 17143, 7307, 58, 77, 4083, 8367, 329, 299, 287, 19203, 32, 62, 15, 3256, 705, 33, 62, 15, 3256, 705, 34, 62, 15, 11537, 60, 198, 198, 2, 520, 5374, 3477, 9633, 329, 262, 2494, 10007, 13, 198, 2, 11259, 300, 2360, 6636, 1293, 669, 351, 511, 3376, 1502, 12, 1659, 12, 19726, 1612, 475, 351, 257, 198, 2, 24198, 286, 838, 2779, 838, 2604, 4991, 198, 74, 16, 796, 406, 2360, 6636, 10786, 74, 16, 3256, 38779, 28, 37659, 13, 6404, 7, 16, 68, 12, 17, 828, 256, 559, 28, 16, 29006, 37659, 13, 6404, 7, 940, 27493, 37659, 13, 6404, 7, 16, 68, 940, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 16, 68, 12, 17, 11, 7110, 28, 17821, 8, 198, 74, 17, 796, 406, 2360, 6636, 10786, 74, 17, 3256, 38779, 28, 37659, 13, 6404, 7, 16, 68, 22, 828, 256, 559, 28, 16, 29006, 37659, 13, 6404, 7, 940, 27493, 37659, 13, 6404, 7, 16, 68, 940, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 16, 68, 22, 11, 7110, 28, 17821, 8, 198, 74, 18, 796, 406, 2360, 6636, 10786, 74, 18, 3256, 38779, 28, 37659, 13, 6404, 7, 16, 68, 19, 828, 256, 559, 28, 16, 29006, 37659, 13, 6404, 7, 940, 27493, 37659, 13, 6404, 7, 16, 68, 940, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 16, 68, 19, 11, 7110, 28, 17821, 8, 198, 198, 2, 383, 2746, 318, 900, 510, 355, 257, 2206, 49228, 7885, 198, 31, 67, 2357, 49228, 7, 29487, 28, 25101, 8, 198, 220, 220, 220, 220, 198, 2, 383, 15440, 357, 16, 14, 25641, 590, 8, 17593, 198, 83, 559, 796, 45941, 13, 25379, 7, 11925, 7, 912, 6839, 27493, 18, 8, 1635, 838, 198, 198, 22915, 796, 337, 85, 26447, 10786, 22915, 3256, 38779, 28, 305, 527, 912, 261, 62, 19849, 11, 256, 559, 28, 83, 559, 11, 6515, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 5173, 1045, 62, 27237, 13, 2704, 41769, 28955, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 13610, 262, 13122, 9655, 2134, 290, 923, 19232, 198, 220, 220, 220, 279, 4948, 66, 62, 19849, 796, 279, 4948, 66, 13, 17633, 26933, 74, 16, 11, 479, 17, 11, 479, 18, 11, 686, 527, 912, 261, 62, 19849, 11, 5072, 12962, 198, 220, 220, 220, 285, 11215, 66, 796, 13122, 9655, 7, 79, 4948, 66, 62, 19849, 8, 198, 220, 220, 220, 285, 11215, 66, 13, 39873, 7, 2676, 28, 49388, 11, 4245, 28, 27641, 11, 7888, 28, 20, 8, 628, 220, 220, 220, 1303, 5438, 262, 279, 4948, 66, 1554, 26836, 290, 1960, 420, 273, 49501, 21528, 198, 220, 220, 220, 458, 83, 13, 295, 3419, 198, 220, 220, 220, 279, 4948, 66, 13, 19044, 29487, 13, 29487, 7, 76, 11215, 66, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 1303, 28114, 262, 2656, 1366, 1863, 351, 262, 35846, 20134, 1749, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 331, 7890, 62, 27237, 58, 45299, 15, 4357, 705, 81, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 331, 7890, 62, 27237, 58, 45299, 16, 4357, 705, 70, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 331, 7890, 62, 27237, 58, 45299, 17, 4357, 705, 65, 11537, 628, 220, 220, 220, 997, 62, 2435, 66, 39975, 796, 8576, 198, 220, 220, 220, 997, 62, 2676, 602, 62, 37687, 10137, 796, 285, 11215, 66, 13, 40546, 10786, 305, 527, 912, 261, 62, 19849, 11537, 58, 25, 4083, 43358, 58, 15, 60, 628, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 285, 11215, 66, 13, 40546, 10786, 305, 527, 912, 261, 62, 19849, 11537, 58, 22510, 62, 2676, 602, 62, 37687, 10137, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 2435, 66, 39975, 45299, 15, 3712, 18, 4083, 51, 11, 17130, 28, 15, 13, 2713, 11, 3124, 11639, 81, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 285, 11215, 66, 13, 40546, 10786, 305, 527, 912, 261, 62, 19849, 11537, 58, 22510, 62, 2676, 602, 62, 37687, 10137, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 2435, 66, 39975, 45299, 16, 3712, 18, 4083, 51, 11, 17130, 28, 15, 13, 2713, 11, 3124, 11639, 70, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 912, 6839, 11, 285, 11215, 66, 13, 40546, 10786, 305, 527, 912, 261, 62, 19849, 11537, 58, 22510, 62, 2676, 602, 62, 37687, 10137, 532, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 2435, 66, 39975, 45299, 17, 3712, 18, 4083, 51, 11, 17130, 28, 15, 13, 2713, 11, 3124, 11639, 65, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5438, 479, 16, 14, 74, 18, 41058, 7110, 198, 220, 220, 220, 458, 83, 13, 26875, 3419, 198, 220, 220, 220, 458, 83, 13, 1416, 1436, 7, 76, 11215, 66, 13, 40546, 10786, 74, 16, 11537, 58, 25, 4357, 285, 11215, 66, 13, 40546, 10786, 74, 18, 11537, 58, 25, 12962, 198 ]
2.213995
1,229
from .PBXResolver import * from .PBX_Base_Phase import * from .PBX_Constants import * from ...Helpers import logging_helper from ...Helpers import xcrun_helper from ...Helpers import path_helper
[ 6738, 764, 49079, 55, 4965, 14375, 1330, 1635, 198, 6738, 764, 49079, 55, 62, 14881, 62, 35645, 1330, 1635, 198, 6738, 764, 49079, 55, 62, 34184, 1187, 1330, 1635, 198, 6738, 2644, 12621, 19276, 1330, 18931, 62, 2978, 525, 198, 6738, 2644, 12621, 19276, 1330, 2124, 66, 5143, 62, 2978, 525, 198, 6738, 2644, 12621, 19276, 1330, 3108, 62, 2978, 525 ]
3.180328
61
''' 3. Faça um Programa que peça dois números e imprima a soma. ''' num1 = int(input('Insira o primeiro número: ')) num2 = int(input('Insira o segundo número: ')) print(num1+num2)
[ 7061, 6, 198, 18, 13, 18350, 50041, 23781, 6118, 64, 8358, 613, 50041, 466, 271, 299, 21356, 647, 418, 304, 848, 3036, 64, 257, 3870, 64, 13, 198, 7061, 6, 198, 22510, 16, 796, 493, 7, 15414, 10786, 20376, 8704, 267, 6994, 7058, 299, 21356, 647, 78, 25, 705, 4008, 198, 22510, 17, 796, 493, 7, 15414, 10786, 20376, 8704, 267, 384, 70, 41204, 299, 21356, 647, 78, 25, 705, 4008, 198, 198, 4798, 7, 22510, 16, 10, 22510, 17, 8, 198 ]
2.207317
82
#!/usr/bin/python # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Util functions for representation learning. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import re import numpy as np import tensorflow as tf INPUT_DATA_STR = "input_data" IS_TRAINING_STR = "is_training" REPR_PREFIX_STR = "representation_" TAGS_IS_TRAINING = ["is_training"] def adaptive_pool(inp, num_target_dimensions=9000, mode="adaptive_max"): """Adaptive pooling layer. This layer performs adaptive pooling, such that the total dimensionality of output is not bigger than num_target_dimension Args: inp: input tensor num_target_dimensions: maximum number of output dimensions mode: one of {"adaptive_max", "adaptive_avg", "max", "avg"} Returns: Result of the pooling operation Raises: ValueError: mode is unexpected. """ size, _, k = inp.get_shape().as_list()[1:] if mode in ["adaptive_max", "adaptive_avg"]: if mode == "adaptive_max": pool_fn = tf.nn.fractional_max_pool else: pool_fn = tf.nn.fractional_avg_pool # Find the optimal target output tensor size target_size = (num_target_dimensions / float(k)) ** 0.5 if (abs(num_target_dimensions - k * np.floor(target_size) ** 2) < abs(num_target_dimensions - k * np.ceil(target_size) ** 2)): target_size = max(np.floor(target_size), 1.0) else: target_size = max(np.ceil(target_size), 1.0) # Get optimal stride. Subtract epsilon to ensure correct rounding in # pool_fn. stride = size / target_size - 1.0e-5 # Make sure that the stride is valid stride = max(stride, 1) stride = min(stride, size) result = pool_fn(inp, [1, stride, stride, 1])[0] elif mode in ["max", "avg"]: if mode == "max": pool_fn = tf.contrib.layers.max_pool2d else: pool_fn = tf.contrib.layers.avg_pool2d total_size = float(np.prod(inp.get_shape()[1:].as_list())) stride = int(np.ceil(np.sqrt(total_size / num_target_dimensions))) stride = min(max(1, stride), size) result = pool_fn(inp, kernel_size=stride, stride=stride) else: raise ValueError("Not supported %s pool." % mode) return result def append_multiple_rows_to_csv(dictionaries, csv_path): """Writes multiples rows to csv file from a list of dictionaries. Args: dictionaries: a list of dictionaries, mapping from csv header to value. csv_path: path to the result csv file. """ keys = set([]) for d in dictionaries: keys.update(d.keys()) if not tf.gfile.Exists(csv_path): with tf.gfile.Open(csv_path, "w") as f: writer = csv.DictWriter(f, sorted(keys)) writer.writeheader() f.flush() with tf.gfile.Open(csv_path, "a") as f: writer = csv.DictWriter(f, sorted(keys)) writer.writerows(dictionaries) f.flush() def concat_dicts(dict_list): """Given a list of dicts merges them into a single dict. This function takes a list of dictionaries as an input and then merges all these dictionaries into a single dictionary by concatenating the values (along the first axis) that correspond to the same key. Args: dict_list: list of dictionaries Returns: d: merged dictionary """ d = collections.defaultdict(list) for e in dict_list: for k, v in e.items(): d[k].append(v) for k in d: d[k] = tf.concat(d[k], axis=0) return d def str2intlist(s, repeats_if_single=None): """Parse a config's "1,2,3"-style string into a list of ints. Args: s: The string to be parsed, or possibly already an int. repeats_if_single: If s is already an int or is a single element list, repeat it this many times to create the list. Returns: A list of integers based on `s`. """ if isinstance(s, int): result = [s] else: result = [int(i.strip()) if i != "None" else None for i in s.split(",")] if repeats_if_single is not None and len(result) == 1: result *= repeats_if_single return result def tf_apply_to_image_or_images(fn, image_or_images): """Applies a function to a single image or each image in a batch of them. Args: fn: the function to apply, receives an image, returns an image. image_or_images: Either a single image, or a batch of images. Returns: The result of applying the function to the image or batch of images. Raises: ValueError: if the input is not of rank 3 or 4. """ static_rank = len(image_or_images.get_shape().as_list()) if static_rank == 3: # A single image: HWC return fn(image_or_images) elif static_rank == 4: # A batch of images: BHWC return tf.map_fn(fn, image_or_images) elif static_rank > 4: # A batch of images: ...HWC input_shape = tf.shape(image_or_images) h, w, c = image_or_images.get_shape().as_list()[-3:] image_or_images = tf.reshape(image_or_images, [-1, h, w, c]) image_or_images = tf.map_fn(fn, image_or_images) return tf.reshape(image_or_images, input_shape) else: raise ValueError("Unsupported image rank: %d" % static_rank) def tf_apply_with_probability(p, fn, x): """Apply function `fn` to input `x` randomly `p` percent of the time.""" return tf.cond( tf.less(tf.random_uniform([], minval=0, maxval=1, dtype=tf.float32), p), lambda: fn(x), lambda: x) def get_latest_hub_per_task(hub_module_paths): """Get latest hub module for each task. The hub module path should match format ".*/hub/[0-9]*/module/.*". Example usage: get_latest_hub_per_task(expand_glob(["/cns/el-d/home/dune/representation/" "xzhai/1899361/*/export/hub/*/module/"])) returns 4 latest hub module from 4 tasks respectivley. Args: hub_module_paths: a list of hub module paths. Returns: A list of latest hub modules for each task. """ task_to_path = {} for path in hub_module_paths: task_name, module_name = path.split("/hub/") timestamp = int(re.findall(r"([0-9]*)/module", module_name)[0]) current_path = task_to_path.get(task_name, "0/module") current_timestamp = int(re.findall(r"([0-9]*)/module", current_path)[0]) if current_timestamp < timestamp: task_to_path[task_name] = path return sorted(task_to_path.values()) def get_classification_metrics(tensor_names): """Gets classification eval metric on input logits and labels. Args: tensor_names: a list of tensor names for _metrics input tensors. Returns: A function computes the metric result, from input logits and labels. """ def _metrics(labels, *tensors): """Computes the metric from logits and labels. Args: labels: ground truth labels. *tensors: tensors to be evaluated. Returns: Result dict mapping from the metric name to the list of result tensor and update_op used by tf.metrics. """ metrics = {} assert len(tensor_names) == len(tensors), "Names must match tensors." for i in range(len(tensors)): tensor = tensors[i] name = tensor_names[i] for k in (1, 5): metrics["top%d_accuracy_%s" % (k, name)] = _top_k_accuracy( k, labels, tensor) return metrics return _metrics
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 198, 2, 15069, 13130, 3012, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 18274, 346, 5499, 329, 10552, 4673, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 17268, 198, 11748, 269, 21370, 198, 11748, 302, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 628, 198, 1268, 30076, 62, 26947, 62, 18601, 796, 366, 15414, 62, 7890, 1, 198, 1797, 62, 51, 3861, 1268, 2751, 62, 18601, 796, 366, 271, 62, 34409, 1, 198, 2200, 4805, 62, 47, 31688, 10426, 62, 18601, 796, 366, 15603, 341, 62, 1, 198, 42197, 50, 62, 1797, 62, 51, 3861, 1268, 2751, 796, 14631, 271, 62, 34409, 8973, 628, 198, 4299, 29605, 62, 7742, 7, 259, 79, 11, 997, 62, 16793, 62, 27740, 5736, 28, 24, 830, 11, 4235, 2625, 42552, 425, 62, 9806, 1, 2599, 198, 220, 37227, 48003, 425, 5933, 278, 7679, 13, 628, 220, 220, 220, 220, 770, 7679, 17706, 29605, 5933, 278, 11, 884, 326, 262, 2472, 198, 220, 220, 220, 220, 15793, 1483, 286, 5072, 318, 407, 5749, 621, 997, 62, 16793, 62, 46156, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 287, 79, 25, 5128, 11192, 273, 198, 220, 220, 220, 220, 997, 62, 16793, 62, 27740, 5736, 25, 5415, 1271, 286, 5072, 15225, 198, 220, 220, 220, 220, 4235, 25, 530, 286, 19779, 42552, 425, 62, 9806, 1600, 366, 42552, 425, 62, 615, 70, 1600, 366, 9806, 1600, 366, 615, 70, 20662, 628, 220, 16409, 25, 198, 220, 220, 220, 25414, 286, 262, 5933, 278, 4905, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 11052, 12331, 25, 4235, 318, 10059, 13, 198, 220, 37227, 628, 220, 2546, 11, 4808, 11, 479, 796, 287, 79, 13, 1136, 62, 43358, 22446, 292, 62, 4868, 3419, 58, 16, 47715, 198, 220, 611, 4235, 287, 14631, 42552, 425, 62, 9806, 1600, 366, 42552, 425, 62, 615, 70, 1, 5974, 198, 220, 220, 220, 611, 4235, 6624, 366, 42552, 425, 62, 9806, 1298, 198, 220, 220, 220, 220, 220, 5933, 62, 22184, 796, 48700, 13, 20471, 13, 69, 7861, 282, 62, 9806, 62, 7742, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 5933, 62, 22184, 796, 48700, 13, 20471, 13, 69, 7861, 282, 62, 615, 70, 62, 7742, 628, 220, 220, 220, 1303, 9938, 262, 16586, 2496, 5072, 11192, 273, 2546, 198, 220, 220, 220, 2496, 62, 7857, 796, 357, 22510, 62, 16793, 62, 27740, 5736, 1220, 12178, 7, 74, 4008, 12429, 657, 13, 20, 198, 220, 220, 220, 611, 357, 8937, 7, 22510, 62, 16793, 62, 27740, 5736, 532, 479, 1635, 45941, 13, 28300, 7, 16793, 62, 7857, 8, 12429, 362, 8, 1279, 198, 220, 220, 220, 220, 220, 220, 220, 2352, 7, 22510, 62, 16793, 62, 27740, 5736, 532, 479, 1635, 45941, 13, 344, 346, 7, 16793, 62, 7857, 8, 12429, 362, 8, 2599, 198, 220, 220, 220, 220, 220, 2496, 62, 7857, 796, 3509, 7, 37659, 13, 28300, 7, 16793, 62, 7857, 828, 352, 13, 15, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 2496, 62, 7857, 796, 3509, 7, 37659, 13, 344, 346, 7, 16793, 62, 7857, 828, 352, 13, 15, 8, 628, 220, 220, 220, 1303, 3497, 16586, 33769, 13, 3834, 83, 974, 304, 862, 33576, 284, 4155, 3376, 38185, 287, 198, 220, 220, 220, 1303, 5933, 62, 22184, 13, 198, 220, 220, 220, 33769, 796, 2546, 1220, 2496, 62, 7857, 532, 352, 13, 15, 68, 12, 20, 628, 220, 220, 220, 1303, 6889, 1654, 326, 262, 33769, 318, 4938, 198, 220, 220, 220, 33769, 796, 3509, 7, 2536, 485, 11, 352, 8, 198, 220, 220, 220, 33769, 796, 949, 7, 2536, 485, 11, 2546, 8, 628, 220, 220, 220, 1255, 796, 5933, 62, 22184, 7, 259, 79, 11, 685, 16, 11, 33769, 11, 33769, 11, 352, 12962, 58, 15, 60, 198, 220, 1288, 361, 4235, 287, 14631, 9806, 1600, 366, 615, 70, 1, 5974, 198, 220, 220, 220, 611, 4235, 6624, 366, 9806, 1298, 198, 220, 220, 220, 220, 220, 5933, 62, 22184, 796, 48700, 13, 3642, 822, 13, 75, 6962, 13, 9806, 62, 7742, 17, 67, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 5933, 62, 22184, 796, 48700, 13, 3642, 822, 13, 75, 6962, 13, 615, 70, 62, 7742, 17, 67, 198, 220, 220, 220, 2472, 62, 7857, 796, 12178, 7, 37659, 13, 1676, 67, 7, 259, 79, 13, 1136, 62, 43358, 3419, 58, 16, 25, 4083, 292, 62, 4868, 3419, 4008, 198, 220, 220, 220, 33769, 796, 493, 7, 37659, 13, 344, 346, 7, 37659, 13, 31166, 17034, 7, 23350, 62, 7857, 1220, 997, 62, 16793, 62, 27740, 5736, 22305, 198, 220, 220, 220, 33769, 796, 949, 7, 9806, 7, 16, 11, 33769, 828, 2546, 8, 628, 220, 220, 220, 1255, 796, 5933, 62, 22184, 7, 259, 79, 11, 9720, 62, 7857, 28, 2536, 485, 11, 33769, 28, 2536, 485, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 3673, 4855, 4064, 82, 5933, 526, 4064, 4235, 8, 628, 220, 1441, 1255, 628, 198, 4299, 24443, 62, 48101, 62, 8516, 62, 1462, 62, 40664, 7, 67, 2867, 3166, 11, 269, 21370, 62, 6978, 2599, 198, 220, 37227, 20257, 274, 5021, 2374, 15274, 284, 269, 21370, 2393, 422, 257, 1351, 286, 48589, 3166, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 48589, 3166, 25, 257, 1351, 286, 48589, 3166, 11, 16855, 422, 269, 21370, 13639, 284, 1988, 13, 198, 220, 220, 220, 269, 21370, 62, 6978, 25, 3108, 284, 262, 1255, 269, 21370, 2393, 13, 198, 220, 37227, 628, 220, 8251, 796, 900, 26933, 12962, 198, 220, 329, 288, 287, 48589, 3166, 25, 198, 220, 220, 220, 8251, 13, 19119, 7, 67, 13, 13083, 28955, 628, 220, 611, 407, 48700, 13, 70, 7753, 13, 3109, 1023, 7, 40664, 62, 6978, 2599, 198, 220, 220, 220, 351, 48700, 13, 70, 7753, 13, 11505, 7, 40664, 62, 6978, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 69, 11, 23243, 7, 13083, 4008, 198, 220, 220, 220, 220, 220, 6260, 13, 13564, 25677, 3419, 198, 220, 220, 220, 220, 220, 277, 13, 25925, 3419, 628, 220, 351, 48700, 13, 70, 7753, 13, 11505, 7, 40664, 62, 6978, 11, 366, 64, 4943, 355, 277, 25, 198, 220, 220, 220, 6260, 796, 269, 21370, 13, 35, 713, 34379, 7, 69, 11, 23243, 7, 13083, 4008, 198, 220, 220, 220, 6260, 13, 16002, 1666, 7, 67, 2867, 3166, 8, 198, 220, 220, 220, 277, 13, 25925, 3419, 628, 198, 4299, 1673, 265, 62, 11600, 82, 7, 11600, 62, 4868, 2599, 198, 220, 37227, 15056, 257, 1351, 286, 8633, 82, 4017, 3212, 606, 656, 257, 2060, 8633, 13, 628, 220, 770, 2163, 2753, 257, 1351, 286, 48589, 3166, 355, 281, 5128, 290, 788, 4017, 3212, 477, 198, 220, 777, 48589, 3166, 656, 257, 2060, 22155, 416, 1673, 36686, 803, 262, 3815, 198, 220, 357, 24176, 262, 717, 16488, 8, 326, 6053, 284, 262, 976, 1994, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 8633, 62, 4868, 25, 1351, 286, 48589, 3166, 628, 220, 16409, 25, 198, 220, 220, 220, 288, 25, 23791, 22155, 198, 220, 37227, 198, 220, 288, 796, 17268, 13, 12286, 11600, 7, 4868, 8, 198, 220, 329, 304, 287, 8633, 62, 4868, 25, 198, 220, 220, 220, 329, 479, 11, 410, 287, 304, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 288, 58, 74, 4083, 33295, 7, 85, 8, 198, 220, 329, 479, 287, 288, 25, 198, 220, 220, 220, 288, 58, 74, 60, 796, 48700, 13, 1102, 9246, 7, 67, 58, 74, 4357, 16488, 28, 15, 8, 198, 220, 1441, 288, 628, 198, 4299, 965, 17, 600, 4868, 7, 82, 11, 29819, 62, 361, 62, 29762, 28, 14202, 2599, 198, 220, 37227, 10044, 325, 257, 4566, 338, 366, 16, 11, 17, 11, 18, 26793, 7635, 4731, 656, 257, 1351, 286, 493, 82, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 264, 25, 383, 4731, 284, 307, 44267, 11, 393, 5457, 1541, 281, 493, 13, 198, 220, 220, 220, 29819, 62, 361, 62, 29762, 25, 1002, 264, 318, 1541, 281, 493, 393, 318, 257, 2060, 5002, 1351, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9585, 340, 428, 867, 1661, 284, 2251, 262, 1351, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 1351, 286, 37014, 1912, 319, 4600, 82, 44646, 198, 220, 37227, 198, 220, 611, 318, 39098, 7, 82, 11, 493, 2599, 198, 220, 220, 220, 1255, 796, 685, 82, 60, 198, 220, 2073, 25, 198, 220, 220, 220, 1255, 796, 685, 600, 7, 72, 13, 36311, 28955, 611, 1312, 14512, 366, 14202, 1, 2073, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 264, 13, 35312, 7, 2430, 15437, 198, 220, 611, 29819, 62, 361, 62, 29762, 318, 407, 6045, 290, 18896, 7, 20274, 8, 6624, 352, 25, 198, 220, 220, 220, 1255, 1635, 28, 29819, 62, 361, 62, 29762, 198, 220, 1441, 1255, 628, 198, 4299, 48700, 62, 39014, 62, 1462, 62, 9060, 62, 273, 62, 17566, 7, 22184, 11, 2939, 62, 273, 62, 17566, 2599, 198, 220, 37227, 4677, 13508, 257, 2163, 284, 257, 2060, 2939, 393, 1123, 2939, 287, 257, 15458, 286, 606, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 24714, 25, 262, 2163, 284, 4174, 11, 11583, 281, 2939, 11, 5860, 281, 2939, 13, 198, 220, 220, 220, 2939, 62, 273, 62, 17566, 25, 15467, 257, 2060, 2939, 11, 393, 257, 15458, 286, 4263, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 383, 1255, 286, 11524, 262, 2163, 284, 262, 2939, 393, 15458, 286, 4263, 13, 628, 220, 7567, 2696, 25, 198, 220, 220, 220, 11052, 12331, 25, 611, 262, 5128, 318, 407, 286, 4279, 513, 393, 604, 13, 198, 220, 37227, 198, 220, 9037, 62, 43027, 796, 18896, 7, 9060, 62, 273, 62, 17566, 13, 1136, 62, 43358, 22446, 292, 62, 4868, 28955, 198, 220, 611, 9037, 62, 43027, 6624, 513, 25, 220, 1303, 317, 2060, 2939, 25, 367, 27353, 198, 220, 220, 220, 1441, 24714, 7, 9060, 62, 273, 62, 17566, 8, 198, 220, 1288, 361, 9037, 62, 43027, 6624, 604, 25, 220, 1303, 317, 15458, 286, 4263, 25, 347, 39, 27353, 198, 220, 220, 220, 1441, 48700, 13, 8899, 62, 22184, 7, 22184, 11, 2939, 62, 273, 62, 17566, 8, 198, 220, 1288, 361, 9037, 62, 43027, 1875, 604, 25, 220, 1303, 317, 15458, 286, 4263, 25, 2644, 39, 27353, 198, 220, 220, 220, 5128, 62, 43358, 796, 48700, 13, 43358, 7, 9060, 62, 273, 62, 17566, 8, 198, 220, 220, 220, 289, 11, 266, 11, 269, 796, 2939, 62, 273, 62, 17566, 13, 1136, 62, 43358, 22446, 292, 62, 4868, 3419, 58, 12, 18, 47715, 198, 220, 220, 220, 2939, 62, 273, 62, 17566, 796, 48700, 13, 3447, 1758, 7, 9060, 62, 273, 62, 17566, 11, 25915, 16, 11, 289, 11, 266, 11, 269, 12962, 198, 220, 220, 220, 2939, 62, 273, 62, 17566, 796, 48700, 13, 8899, 62, 22184, 7, 22184, 11, 2939, 62, 273, 62, 17566, 8, 198, 220, 220, 220, 1441, 48700, 13, 3447, 1758, 7, 9060, 62, 273, 62, 17566, 11, 5128, 62, 43358, 8, 198, 220, 2073, 25, 198, 220, 220, 220, 5298, 11052, 12331, 7203, 3118, 15999, 2939, 4279, 25, 4064, 67, 1, 4064, 9037, 62, 43027, 8, 628, 198, 4299, 48700, 62, 39014, 62, 4480, 62, 1676, 65, 1799, 7, 79, 11, 24714, 11, 2124, 2599, 198, 220, 37227, 44836, 2163, 4600, 22184, 63, 284, 5128, 4600, 87, 63, 15456, 4600, 79, 63, 1411, 286, 262, 640, 526, 15931, 198, 220, 1441, 48700, 13, 17561, 7, 198, 220, 220, 220, 220, 220, 48700, 13, 1203, 7, 27110, 13, 25120, 62, 403, 6933, 26933, 4357, 949, 2100, 28, 15, 11, 3509, 2100, 28, 16, 11, 288, 4906, 28, 27110, 13, 22468, 2624, 828, 279, 828, 198, 220, 220, 220, 220, 220, 37456, 25, 24714, 7, 87, 828, 198, 220, 220, 220, 220, 220, 37456, 25, 2124, 8, 628, 198, 198, 4299, 651, 62, 42861, 62, 40140, 62, 525, 62, 35943, 7, 40140, 62, 21412, 62, 6978, 82, 2599, 198, 220, 37227, 3855, 3452, 12575, 8265, 329, 1123, 4876, 13, 628, 220, 383, 12575, 8265, 3108, 815, 2872, 5794, 366, 15885, 14, 40140, 14, 58, 15, 12, 24, 60, 16208, 21412, 11757, 9, 1911, 198, 220, 17934, 8748, 25, 198, 220, 651, 62, 42861, 62, 40140, 62, 525, 62, 35943, 7, 11201, 392, 62, 4743, 672, 7, 14692, 14, 66, 5907, 14, 417, 12, 67, 14, 11195, 14, 67, 1726, 14, 15603, 341, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 87, 23548, 1872, 14, 1507, 2079, 35195, 15211, 14, 39344, 14, 40140, 15211, 14, 21412, 14, 8973, 4008, 198, 220, 5860, 604, 3452, 12575, 8265, 422, 604, 8861, 2461, 452, 1636, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 12575, 62, 21412, 62, 6978, 82, 25, 257, 1351, 286, 12575, 8265, 13532, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 1351, 286, 3452, 12575, 13103, 329, 1123, 4876, 13, 628, 220, 37227, 198, 220, 4876, 62, 1462, 62, 6978, 796, 23884, 198, 220, 329, 3108, 287, 12575, 62, 21412, 62, 6978, 82, 25, 198, 220, 220, 220, 4876, 62, 3672, 11, 8265, 62, 3672, 796, 3108, 13, 35312, 7203, 14, 40140, 14, 4943, 198, 220, 220, 220, 41033, 796, 493, 7, 260, 13, 19796, 439, 7, 81, 18109, 58, 15, 12, 24, 60, 9, 20679, 21412, 1600, 8265, 62, 3672, 38381, 15, 12962, 198, 220, 220, 220, 1459, 62, 6978, 796, 4876, 62, 1462, 62, 6978, 13, 1136, 7, 35943, 62, 3672, 11, 366, 15, 14, 21412, 4943, 198, 220, 220, 220, 1459, 62, 16514, 27823, 796, 493, 7, 260, 13, 19796, 439, 7, 81, 18109, 58, 15, 12, 24, 60, 9, 20679, 21412, 1600, 1459, 62, 6978, 38381, 15, 12962, 198, 220, 220, 220, 611, 1459, 62, 16514, 27823, 1279, 41033, 25, 198, 220, 220, 220, 220, 220, 4876, 62, 1462, 62, 6978, 58, 35943, 62, 3672, 60, 796, 3108, 198, 220, 1441, 23243, 7, 35943, 62, 1462, 62, 6978, 13, 27160, 28955, 628, 198, 4299, 651, 62, 4871, 2649, 62, 4164, 10466, 7, 83, 22854, 62, 14933, 2599, 198, 220, 37227, 38, 1039, 17923, 5418, 18663, 319, 5128, 2604, 896, 290, 14722, 13, 628, 220, 943, 14542, 25, 198, 220, 220, 220, 11192, 273, 62, 14933, 25, 257, 1351, 286, 11192, 273, 3891, 329, 4808, 4164, 10466, 5128, 11192, 669, 13, 628, 220, 16409, 25, 198, 220, 220, 220, 317, 2163, 552, 1769, 262, 18663, 1255, 11, 422, 5128, 2604, 896, 290, 14722, 13, 198, 220, 37227, 628, 220, 825, 4808, 4164, 10466, 7, 23912, 1424, 11, 1635, 83, 641, 669, 2599, 198, 220, 220, 220, 37227, 7293, 1769, 262, 18663, 422, 2604, 896, 290, 14722, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 14722, 25, 2323, 3872, 14722, 13, 198, 220, 220, 220, 220, 220, 1635, 83, 641, 669, 25, 11192, 669, 284, 307, 16726, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 25414, 8633, 16855, 422, 262, 18663, 1438, 284, 262, 1351, 286, 1255, 11192, 273, 290, 198, 220, 220, 220, 220, 220, 4296, 62, 404, 973, 416, 48700, 13, 4164, 10466, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20731, 796, 23884, 198, 220, 220, 220, 6818, 18896, 7, 83, 22854, 62, 14933, 8, 6624, 18896, 7, 83, 641, 669, 828, 366, 36690, 1276, 2872, 11192, 669, 526, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 83, 641, 669, 8, 2599, 198, 220, 220, 220, 220, 220, 11192, 273, 796, 11192, 669, 58, 72, 60, 198, 220, 220, 220, 220, 220, 1438, 796, 11192, 273, 62, 14933, 58, 72, 60, 198, 220, 220, 220, 220, 220, 329, 479, 287, 357, 16, 11, 642, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20731, 14692, 4852, 4, 67, 62, 4134, 23843, 62, 4, 82, 1, 4064, 357, 74, 11, 1438, 15437, 796, 4808, 4852, 62, 74, 62, 4134, 23843, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 11, 14722, 11, 11192, 273, 8, 628, 220, 220, 220, 1441, 20731, 628, 220, 1441, 4808, 4164, 10466, 198 ]
2.650034
2,946
""" Datos de entrada edad del paciente = edad = int sexo del paciente = sexo_paciente = int Datos de salida Resultado positivo o negativo acerca de si el paciente tiene anemia = resultado = str """ # Entradas edad_paciente=int(input("Inserte la edad del paciente en su equivalente de años a meses ")) sexo_paciente=str(input("Inserte su sexo de la siguiente manera , femenino (F) o masculino (M) ")) nivel_hemoglobina=float(input("Inserte cual fue el resultado del nivel de hemoglobina en la sangre ")) sexo= sexo_paciente[0] # Es la posicion del caracter que quiero que tome # Caja Negra resultado='' if (nivel_hemoglobina>=13 and nivel_hemoglobina<=26) and(edad_paciente>=0 and edad_paciente<=1): resultado=(" El resultado es Negativo") elif(nivel_hemoglobina>=10 and nivel_hemoglobina<=18)and(edad_paciente>1 and edad_paciente<=6): resultado=(" El resultado es Negativo") elif(nivel_hemoglobina>=11 and nivel_hemoglobina<=15)and(edad_paciente>6 and edad_paciente<=12): resultado=(" El resultado es Negativo") elif (nivel_hemoglobina>=11.5 and nivel_hemoglobina<=15) and (edad_paciente>12 and edad_paciente<=60): # Equivalencia entre 1 año y 5 años en meses resultado=(" El resultado es Negativo") elif (nivel_hemoglobina>=12.6 and nivel_hemoglobina<=15.5) and (edad_paciente>60 and edad_paciente<=120): # Equivalencia entre 5 años y 10 años en meses resultado=(" El resultado es Negativo") elif (nivel_hemoglobina>=13 and nivel_hemoglobina<=15.5) and(edad_paciente>120 and edad_paciente<=180): # Equivalencia entre 10 año y 15 años en meses resultado=(" El resultado es Negativo") elif (nivel_hemoglobina>=12 and nivel_hemoglobina<=16 ) and (edad_paciente>180 and sexo=="F"): # Equivalencia de 15 a meses resultado=(" El resultado es Negativo") elif (nivel_hemoglobina>=14 and nivel_hemoglobina<=18) and (edad_paciente>180 and sexo=="M"): # Equivalencia de 15 resultado=(" El resultado es Negativo") else: resultado= "El resultado es positivo" #Salidas print(resultado)
[ 37811, 198, 27354, 418, 390, 24481, 4763, 198, 276, 324, 1619, 23503, 1153, 68, 220, 796, 1225, 324, 796, 493, 198, 8044, 78, 1619, 23503, 1153, 68, 796, 1714, 78, 62, 33587, 1153, 68, 796, 493, 628, 198, 27354, 418, 390, 3664, 3755, 198, 23004, 4533, 46436, 23593, 267, 2469, 265, 23593, 936, 2798, 64, 390, 33721, 1288, 23503, 1153, 68, 46668, 1734, 281, 22859, 796, 1255, 4533, 796, 965, 198, 198, 37811, 198, 2, 7232, 6335, 292, 198, 276, 324, 62, 33587, 1153, 68, 28, 600, 7, 15414, 7203, 818, 2655, 660, 8591, 1225, 324, 1619, 23503, 1153, 68, 551, 424, 7548, 68, 390, 257, 12654, 418, 257, 18842, 274, 366, 4008, 198, 8044, 78, 62, 33587, 1153, 68, 28, 2536, 7, 15414, 7203, 818, 2655, 660, 424, 1714, 78, 390, 8591, 43237, 84, 1153, 68, 582, 8607, 837, 2796, 268, 2879, 357, 37, 8, 267, 18498, 2879, 357, 44, 8, 366, 4008, 198, 77, 425, 75, 62, 4411, 28678, 672, 1437, 28, 22468, 7, 15414, 7203, 818, 2655, 660, 269, 723, 37911, 1288, 1255, 4533, 1619, 299, 425, 75, 390, 16869, 28678, 672, 1437, 551, 8591, 25889, 260, 366, 4008, 198, 8044, 78, 28, 1714, 78, 62, 33587, 1153, 68, 58, 15, 60, 1303, 8678, 8591, 1426, 47430, 1619, 1097, 7321, 8358, 627, 959, 78, 8358, 284, 1326, 198, 198, 2, 327, 27792, 13496, 430, 628, 198, 20274, 4533, 28, 7061, 198, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1485, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 2075, 8, 290, 7, 276, 324, 62, 33587, 1153, 68, 29, 28, 15, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 16, 2599, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 198, 417, 361, 7, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 940, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1507, 8, 392, 7, 276, 324, 62, 33587, 1153, 68, 29, 16, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 21, 2599, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 198, 417, 361, 7, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1157, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1314, 8, 392, 7, 276, 324, 62, 33587, 1153, 68, 29, 21, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 1065, 2599, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 220, 198, 417, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1157, 13, 20, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1314, 8, 290, 357, 276, 324, 62, 33587, 1153, 68, 29, 1065, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 1899, 2599, 1303, 7889, 2473, 29634, 920, 260, 352, 257, 31329, 331, 642, 257, 12654, 418, 551, 18842, 274, 220, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 198, 417, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1065, 13, 21, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1314, 13, 20, 8, 290, 357, 276, 324, 62, 33587, 1153, 68, 29, 1899, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 10232, 2599, 1303, 7889, 2473, 29634, 920, 260, 642, 257, 12654, 418, 331, 838, 257, 12654, 418, 551, 18842, 274, 220, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 198, 417, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1485, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1314, 13, 20, 8, 290, 7, 276, 324, 62, 33587, 1153, 68, 29, 10232, 290, 1225, 324, 62, 33587, 1153, 68, 27, 28, 15259, 2599, 1303, 7889, 2473, 29634, 920, 260, 838, 257, 31329, 331, 1315, 257, 12654, 418, 551, 18842, 274, 220, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 220, 220, 198, 417, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1065, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1433, 1267, 290, 357, 276, 324, 62, 33587, 1153, 68, 29, 15259, 290, 1714, 78, 855, 1, 37, 1, 2599, 1303, 7889, 2473, 29634, 390, 1315, 257, 18842, 274, 220, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 220, 220, 220, 220, 220, 220, 220, 198, 417, 361, 357, 77, 425, 75, 62, 4411, 28678, 672, 1437, 29, 28, 1415, 290, 299, 425, 75, 62, 4411, 28678, 672, 1437, 27, 28, 1507, 8, 290, 357, 276, 324, 62, 33587, 1153, 68, 29, 15259, 290, 1714, 78, 855, 1, 44, 1, 2599, 1303, 7889, 2473, 29634, 390, 1315, 220, 198, 220, 220, 220, 1255, 4533, 28, 7203, 2574, 1255, 4533, 1658, 13496, 265, 23593, 4943, 198, 17772, 25, 198, 220, 220, 220, 1255, 4533, 28, 366, 9527, 1255, 4533, 1658, 46436, 23593, 1, 628, 628, 198, 2, 50, 10751, 292, 198, 198, 4798, 7, 20274, 4533, 8, 628, 220, 220, 220, 220, 628, 628, 198 ]
2.332953
877
from collections import namedtuple from repositories.lines import LineORM import cv2 import logging from function_factory import FunctionFactory from api import models import time logger = logging.getLogger(__name__) _Line=namedtuple('_Line', 'name last_change nodes') lines: list[_Line] = [_Line(name='asd', last_change=1413534, nodes=[])]
[ 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 38072, 13, 6615, 1330, 6910, 1581, 44, 198, 11748, 269, 85, 17, 198, 11748, 18931, 198, 6738, 2163, 62, 69, 9548, 1330, 15553, 22810, 198, 6738, 40391, 1330, 4981, 198, 11748, 640, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 62, 13949, 28, 13190, 83, 29291, 10786, 62, 13949, 3256, 705, 3672, 938, 62, 3803, 13760, 11537, 198, 6615, 25, 1351, 29795, 13949, 60, 796, 685, 62, 13949, 7, 3672, 11639, 292, 67, 3256, 938, 62, 3803, 28, 1415, 17059, 2682, 11, 13760, 41888, 12962, 60, 198 ]
3.298077
104
import taichi as ti import numpy as np m_fluid_color = ti.Vector(list(np.random.rand(3) * 0.7 + 0.3)) m_dye_decay = 0.99 m_f_gravity = ti.Vector([0.0, -9.8])
[ 11748, 20486, 16590, 355, 46668, 198, 11748, 299, 32152, 355, 45941, 198, 198, 76, 62, 35522, 312, 62, 8043, 796, 46668, 13, 38469, 7, 4868, 7, 37659, 13, 25120, 13, 25192, 7, 18, 8, 1635, 657, 13, 22, 1343, 657, 13, 18, 4008, 198, 76, 62, 67, 5948, 62, 12501, 323, 796, 657, 13, 2079, 198, 198, 76, 62, 69, 62, 46453, 796, 46668, 13, 38469, 26933, 15, 13, 15, 11, 532, 24, 13, 23, 12962 ]
2.092105
76
import os import math import torch from torch import optim from models import BaseVAE from models.types_ import * from utils import data_loader import pytorch_lightning as pl from torchvision import transforms import torchvision.utils as vutils from torchvision.datasets import CelebA from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np # def sample_images(self): # # Get sample reconstruction image # test_input, test_label = next(iter(self.trainer.datamodule.test_dataloader())) # test_input = test_input.to(self.curr_device) # test_label = test_label.to(self.curr_device) # # test_input, test_label = batch # recons = self.model.generate(test_input, labels = test_label) # vutils.save_image(recons.data, # os.path.join(self.logger.log_dir , # "Reconstructions", # f"recons_{self.logger.name}_Epoch_{self.current_epoch}.png"), # normalize=True, # nrow=12) # try: # samples = self.model.sample(144, # self.curr_device, # labels = test_label) # vutils.save_image(samples.cpu().data, # os.path.join(self.logger.log_dir , # "Samples", # f"{self.logger.name}_Epoch_{self.current_epoch}.png"), # normalize=True, # nrow=12) # except Warning: # pass
[ 11748, 28686, 198, 11748, 10688, 198, 11748, 28034, 198, 6738, 28034, 1330, 6436, 198, 6738, 4981, 1330, 7308, 11731, 36, 198, 6738, 4981, 13, 19199, 62, 1330, 1635, 198, 6738, 3384, 4487, 1330, 1366, 62, 29356, 198, 11748, 12972, 13165, 354, 62, 2971, 768, 355, 458, 198, 6738, 28034, 10178, 1330, 31408, 198, 11748, 28034, 10178, 13, 26791, 355, 410, 26791, 198, 6738, 28034, 10178, 13, 19608, 292, 1039, 1330, 35688, 32, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 6060, 17401, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 825, 6291, 62, 17566, 7, 944, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 6291, 25056, 2939, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 15414, 11, 1332, 62, 18242, 796, 1306, 7, 2676, 7, 944, 13, 2213, 10613, 13, 19608, 321, 375, 2261, 13, 9288, 62, 67, 10254, 1170, 263, 3419, 4008, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 15414, 796, 1332, 62, 15414, 13, 1462, 7, 944, 13, 22019, 81, 62, 25202, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 18242, 796, 1332, 62, 18242, 13, 1462, 7, 944, 13, 22019, 81, 62, 25202, 8, 628, 220, 220, 220, 1303, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 15414, 11, 1332, 62, 18242, 796, 15458, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 23898, 796, 2116, 13, 19849, 13, 8612, 378, 7, 9288, 62, 15414, 11, 14722, 796, 1332, 62, 18242, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 410, 26791, 13, 21928, 62, 9060, 7, 260, 5936, 13, 7890, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6404, 1362, 13, 6404, 62, 15908, 837, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6690, 261, 7249, 507, 1600, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 260, 5936, 23330, 944, 13, 6404, 1362, 13, 3672, 92, 62, 13807, 5374, 23330, 944, 13, 14421, 62, 538, 5374, 27422, 11134, 12340, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 17821, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 808, 28, 1065, 8, 628, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 796, 2116, 13, 19849, 13, 39873, 7, 18444, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22019, 81, 62, 25202, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 1332, 62, 18242, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 26791, 13, 21928, 62, 9060, 7, 82, 12629, 13, 36166, 22446, 7890, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6404, 1362, 13, 6404, 62, 15908, 837, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 50, 12629, 1600, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 944, 13, 6404, 1362, 13, 3672, 92, 62, 13807, 5374, 23330, 944, 13, 14421, 62, 538, 5374, 27422, 11134, 12340, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3487, 1096, 28, 17821, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 808, 28, 1065, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 15932, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
1.778978
1,018
# coding=utf-8 """A district is the voter population of a constituency or geographical area.""" import itertools as itls import math as m import random as rd from .utils import generate_voter_groups, sort_dict_desc, make_table from .candidate import Candidate from .party import Party from .voter_group import VoterGroup from .result import ElectionResult
[ 2, 19617, 28, 40477, 12, 23, 198, 37811, 32, 4783, 318, 262, 10765, 3265, 286, 257, 28280, 393, 27465, 1989, 526, 15931, 628, 198, 11748, 340, 861, 10141, 355, 340, 7278, 198, 11748, 10688, 355, 285, 198, 11748, 4738, 355, 374, 67, 198, 6738, 764, 26791, 1330, 7716, 62, 85, 19543, 62, 24432, 11, 3297, 62, 11600, 62, 20147, 11, 787, 62, 11487, 198, 6738, 764, 46188, 20540, 1330, 40327, 198, 6738, 764, 10608, 1330, 3615, 198, 6738, 764, 85, 19543, 62, 8094, 1330, 46226, 13247, 198, 6738, 764, 20274, 1330, 14219, 23004, 628, 198 ]
3.789474
95
from queue import Queue from urllib.parse import urlparse from threading import Thread import requests import threading import re import os from requests import get from requests import post from requests.packages.urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) lock = threading.Lock() if __name__ == '__main__': main()
[ 6738, 16834, 1330, 4670, 518, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 198, 6738, 4704, 278, 1330, 14122, 198, 11748, 7007, 198, 11748, 4704, 278, 198, 11748, 302, 198, 11748, 28686, 198, 6738, 7007, 1330, 651, 198, 6738, 7007, 1330, 1281, 198, 6738, 7007, 13, 43789, 13, 333, 297, 571, 18, 13, 1069, 11755, 1330, 554, 22390, 18453, 20361, 198, 8897, 3558, 13, 43789, 13, 333, 297, 571, 18, 13, 40223, 62, 40539, 654, 7, 818, 22390, 18453, 20361, 8, 198, 198, 5354, 796, 4704, 278, 13, 25392, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.544643
112
from typing import Dict from .contributions import Contributions class ScheduledContributions(Contributions): # pylint: disable=too-few-public-methods """Contributions which occur at specific years in the life of the portfolio. :param scheduled_contributions: contributions by year relative to inception of portfolio """
[ 6738, 19720, 1330, 360, 713, 198, 198, 6738, 764, 3642, 2455, 507, 1330, 49152, 628, 198, 4871, 27774, 6309, 37146, 507, 7, 37146, 507, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 18820, 12, 32146, 12, 11377, 12, 24396, 82, 198, 220, 220, 220, 37227, 37146, 507, 543, 3051, 379, 2176, 812, 287, 262, 1204, 286, 262, 15320, 13, 628, 220, 220, 220, 1058, 17143, 7530, 62, 3642, 2455, 507, 25, 9284, 416, 614, 3585, 284, 30839, 286, 15320, 198, 220, 220, 220, 37227, 198 ]
3.930233
86
from __future__ import absolute_import import os from tenant_schemas_celery.app import CeleryApp from django.conf import settings from celery.schedules import crontab # set the default Django settings module for the 'celery' program. if os.path.isfile(os.path.join(os.path.abspath('.'), 'sgk', 'settings', 'local.py')): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sgk.settings.local') else: os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'sgk.settings.production') app = CeleryApp('sgk') # Using a string here means the worker will not have to # pickle the object when using Windows. app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) # schedule for all environment app.conf.beat_schedule = { # 'send_sms_notifications': { # 'task': 'send_sms_notifications', # 'schedule': crontab(minute='0', hour='08') # Execute every day at 8:00 am # }, }
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 11748, 28686, 198, 6738, 18285, 62, 1416, 4411, 292, 62, 7015, 88, 13, 1324, 1330, 15248, 1924, 4677, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 18725, 1924, 13, 1416, 704, 5028, 1330, 1067, 756, 397, 198, 198, 2, 900, 262, 4277, 37770, 6460, 8265, 329, 262, 705, 7015, 88, 6, 1430, 13, 198, 361, 28686, 13, 6978, 13, 4468, 576, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 397, 2777, 776, 10786, 2637, 828, 705, 45213, 74, 3256, 705, 33692, 3256, 705, 12001, 13, 9078, 11537, 2599, 198, 220, 220, 220, 28686, 13, 268, 2268, 13, 2617, 12286, 10786, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 3256, 705, 45213, 74, 13, 33692, 13, 12001, 11537, 198, 17772, 25, 198, 220, 220, 220, 28686, 13, 268, 2268, 13, 2617, 12286, 10786, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 3256, 705, 45213, 74, 13, 33692, 13, 25493, 11537, 198, 198, 1324, 796, 15248, 1924, 4677, 10786, 45213, 74, 11537, 198, 198, 2, 8554, 257, 4731, 994, 1724, 262, 8383, 481, 407, 423, 284, 198, 2, 2298, 293, 262, 2134, 618, 1262, 3964, 13, 198, 1324, 13, 11250, 62, 6738, 62, 15252, 10786, 28241, 14208, 13, 10414, 25, 33692, 11537, 198, 1324, 13, 2306, 375, 29392, 62, 83, 6791, 7, 50033, 25, 6460, 13, 38604, 7036, 1961, 62, 2969, 3705, 8, 628, 198, 2, 7269, 329, 477, 2858, 198, 1324, 13, 10414, 13, 12945, 62, 15952, 5950, 796, 1391, 198, 220, 220, 220, 1303, 705, 21280, 62, 82, 907, 62, 1662, 6637, 10354, 1391, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 705, 35943, 10354, 705, 21280, 62, 82, 907, 62, 1662, 6637, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 705, 15952, 5950, 10354, 1067, 756, 397, 7, 11374, 11639, 15, 3256, 1711, 11639, 2919, 11537, 220, 1303, 8393, 1133, 790, 1110, 379, 807, 25, 405, 716, 198, 220, 220, 220, 1303, 8964, 198, 92, 198 ]
2.769912
339
# Copyright 2021 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= r'''NCCL based collective commmunication. ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import tf_logging as logging from hybridbackend.tensorflow.distribute.communicator import CollectiveOps from hybridbackend.tensorflow.distribute.communicator import Communicator from hybridbackend.tensorflow.distribute.pubsub import PubSub from hybridbackend.tensorflow.pywrap import _ops ops.NotDifferentiable('GetNcclId') ops.NotDifferentiable('NcclComm') ops.NotDifferentiable('CreateNcclComm') ops.NotDifferentiable('IsNcclCommInitialized') @ops.RegisterGradient('ReduceWithNcclComm') def _reduce_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL reduce op. ''' comm = op.inputs[0] grad_in = args[0] reduce_op = op.get_attr('reduce_op') root_rank = op.get_attr('root_rank') if reduce_op != CollectiveOps.SUM: raise NotImplementedError( 'Only reduce_op=SUM is supported for gradients computation.') with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.broadcast_with_nccl_comm( comm, grad_in, root_rank=root_rank) return None, grad_out @ops.RegisterGradient('ReduceScatterWithNcclComm') def _reduce_scatter_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL reduce scatter op. ''' comm = op.inputs[0] grad_in = args[0] reduce_op = op.get_attr('reduce_op') if reduce_op != CollectiveOps.SUM: raise NotImplementedError( 'Only reduce_op=SUM is supported for gradients computation.') with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.allgather_with_nccl_comm(comm, grad_in) return None, grad_out @ops.RegisterGradient('AllreduceWithNcclComm') def _allreduce_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL allreduce op. ''' comm = op.inputs[0] grad_in = args[0] reduce_op = op.get_attr('reduce_op') if reduce_op != CollectiveOps.SUM: raise NotImplementedError( 'Only reduce_op=SUM is supported for gradients computation.') with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.allreduce_with_nccl_comm( comm, grad_in, reduce_op=reduce_op) return None, grad_out ops.NotDifferentiable('BroadcastWithNcclComm') ops.NotDifferentiable('ScatterWithNcclComm') ops.NotDifferentiable('GatherWithNcclComm') ops.NotDifferentiable('GathervWithNcclComm') @ops.RegisterGradient('AllgatherWithNcclComm') def _allgather_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL allgather op. ''' comm = op.inputs[0] grad_in = args[0] with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.reduce_scatter_with_nccl_comm( comm, grad_in, reduce_op=CollectiveOps.SUM) return None, grad_out ops.NotDifferentiable('AllgathervWithNcclComm') @ops.RegisterGradient('AlltoallWithNcclComm') def _alltoall_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL alltoall op. ''' comm = op.inputs[0] grad_in = args[0] wire_dtype = op.get_attr('wire_dtype') with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.alltoall_with_nccl_comm( comm, grad_in, wire_dtype=wire_dtype) return None, grad_out @ops.RegisterGradient('AlltoallvWithNcclComm') def _nccl_alltoallv_grad(op, *args): r'''Gradient for NCCL alltoallv op. ''' comm = op.inputs[0] grad_in = list(args)[0] grad_sizes_in = op.outputs[1] common_shape = op.get_attr('common_shape') wire_dtype = op.get_attr('wire_dtype') with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out, grad_sizes_out = _ops.alltoallv_with_nccl_comm( comm, grad_in, grad_sizes_in, wire_dtype=wire_dtype, common_shape=common_shape) return None, grad_out, grad_sizes_out @ops.RegisterGradient('GroupAlltoallvWithNcclComm') def _group_alltoallv_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL group_alltoallv op. ''' comm = op.inputs[0] num_columns = op.get_attr('num_columns') wire_dtype = op.get_attr('wire_dtype') common_shapes = op.get_attr('common_shapes') grad_in = args[:num_columns] grad_sizes_in = op.outputs[num_columns:] with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out, _ = _ops.group_alltoallv_with_nccl_comm( comm, grad_in, grad_sizes_in, wire_dtype=wire_dtype, common_shapes=common_shapes) return (None, *grad_out, *[None for _ in range(num_columns)]) @ops.RegisterGradient('AlltoallwWithNcclComm') def _alltoallw_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL alltoallw op. ''' comm = op.inputs[0] common_shape = op.get_attr('common_shape') wire_dtype = op.get_attr('wire_dtype') grad_in = list(args) with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.alltoallw_with_nccl_comm( comm, grad_in, wire_dtype=wire_dtype, common_shape=common_shape) return [None] + grad_out @ops.RegisterGradient('GroupAlltoallwWithNcclComm') def _group_alltoallw_with_nccl_comm_grad(op, *args): r'''Gradient for NCCL group_alltoallw op. ''' comm = op.inputs[0] num_columns = op.get_attr('num_columns') wire_dtype = op.get_attr('wire_dtype') common_shapes = op.get_attr('common_shapes') grad_in = list(args) with ops.device(op.device): with ops.control_dependencies(op.outputs): grad_out = _ops.group_alltoallw_with_nccl_comm( comm, grad_in, num_columns=num_columns, wire_dtype=wire_dtype, common_shapes=common_shapes) return [None] + grad_out class NcclCommunicator(Communicator): r'''A communicator using NCCL. ''' NAME = 'NCCL' @classmethod Communicator.register(NcclCommunicator)
[ 2, 15069, 33448, 41992, 4912, 31703, 15302, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 25609, 198, 198, 81, 7061, 6, 45, 4093, 43, 1912, 10098, 725, 6199, 3299, 13, 198, 7061, 6, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 288, 19199, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 39628, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 30604, 1330, 11192, 273, 62, 43358, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 24254, 1330, 48700, 62, 6404, 2667, 355, 18931, 198, 198, 6738, 14554, 1891, 437, 13, 83, 22854, 11125, 13, 17080, 4163, 13, 10709, 26407, 1330, 29128, 41472, 198, 6738, 14554, 1891, 437, 13, 83, 22854, 11125, 13, 17080, 4163, 13, 10709, 26407, 1330, 4440, 26407, 198, 6738, 14554, 1891, 437, 13, 83, 22854, 11125, 13, 17080, 4163, 13, 12984, 7266, 1330, 8525, 7004, 198, 6738, 14554, 1891, 437, 13, 83, 22854, 11125, 13, 9078, 37150, 1330, 4808, 2840, 628, 198, 2840, 13, 3673, 40341, 3379, 10786, 3855, 45, 535, 75, 7390, 11537, 198, 198, 2840, 13, 3673, 40341, 3379, 10786, 45, 535, 75, 6935, 11537, 198, 2840, 13, 3673, 40341, 3379, 10786, 16447, 45, 535, 75, 6935, 11537, 198, 2840, 13, 3673, 40341, 3379, 10786, 3792, 45, 535, 75, 6935, 28500, 11537, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 7738, 7234, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 445, 7234, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 4646, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 26498, 58, 15, 60, 198, 220, 4646, 62, 404, 796, 1034, 13, 1136, 62, 35226, 10786, 445, 7234, 62, 404, 11537, 198, 220, 6808, 62, 43027, 796, 1034, 13, 1136, 62, 35226, 10786, 15763, 62, 43027, 11537, 198, 220, 611, 4646, 62, 404, 14512, 29128, 41472, 13, 50, 5883, 25, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 705, 10049, 4646, 62, 404, 28, 50, 5883, 318, 4855, 329, 3915, 2334, 29964, 2637, 8, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 36654, 2701, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 6808, 62, 43027, 28, 15763, 62, 43027, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 7738, 7234, 3351, 1436, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 445, 7234, 62, 1416, 1436, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 4646, 41058, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 26498, 58, 15, 60, 198, 220, 4646, 62, 404, 796, 1034, 13, 1136, 62, 35226, 10786, 445, 7234, 62, 404, 11537, 198, 220, 611, 4646, 62, 404, 14512, 29128, 41472, 13, 50, 5883, 25, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 705, 10049, 4646, 62, 404, 28, 50, 5883, 318, 4855, 329, 3915, 2334, 29964, 2637, 8, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 439, 70, 1032, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 9503, 11, 3915, 62, 259, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 3237, 445, 7234, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 439, 445, 7234, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 477, 445, 7234, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 26498, 58, 15, 60, 198, 220, 4646, 62, 404, 796, 1034, 13, 1136, 62, 35226, 10786, 445, 7234, 62, 404, 11537, 198, 220, 611, 4646, 62, 404, 14512, 29128, 41472, 13, 50, 5883, 25, 198, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7, 198, 220, 220, 220, 220, 220, 705, 10049, 4646, 62, 404, 28, 50, 5883, 318, 4855, 329, 3915, 2334, 29964, 2637, 8, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 439, 445, 7234, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 4646, 62, 404, 28, 445, 7234, 62, 404, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 628, 198, 2840, 13, 3673, 40341, 3379, 10786, 30507, 2701, 3152, 45, 535, 75, 6935, 11537, 198, 2840, 13, 3673, 40341, 3379, 10786, 3351, 1436, 3152, 45, 535, 75, 6935, 11537, 198, 2840, 13, 3673, 40341, 3379, 10786, 38, 1032, 3152, 45, 535, 75, 6935, 11537, 198, 2840, 13, 3673, 40341, 3379, 10786, 38, 1032, 85, 3152, 45, 535, 75, 6935, 11537, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 3237, 70, 1032, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 439, 70, 1032, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 477, 70, 1032, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 26498, 58, 15, 60, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 445, 7234, 62, 1416, 1436, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 4646, 62, 404, 28, 31337, 425, 41472, 13, 50, 5883, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 628, 198, 2840, 13, 3673, 40341, 3379, 10786, 3237, 70, 1032, 85, 3152, 45, 535, 75, 6935, 11537, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 3237, 1462, 439, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 439, 1462, 439, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 477, 1462, 439, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 26498, 58, 15, 60, 198, 220, 6503, 62, 67, 4906, 796, 1034, 13, 1136, 62, 35226, 10786, 21809, 62, 67, 4906, 11537, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 439, 1462, 439, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6503, 62, 67, 4906, 28, 21809, 62, 67, 4906, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 3237, 1462, 439, 85, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 77, 535, 75, 62, 439, 1462, 439, 85, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 477, 1462, 439, 85, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 3915, 62, 259, 796, 1351, 7, 22046, 38381, 15, 60, 198, 220, 3915, 62, 82, 4340, 62, 259, 796, 1034, 13, 22915, 82, 58, 16, 60, 198, 220, 2219, 62, 43358, 796, 1034, 13, 1136, 62, 35226, 10786, 11321, 62, 43358, 11537, 198, 220, 6503, 62, 67, 4906, 796, 1034, 13, 1136, 62, 35226, 10786, 21809, 62, 67, 4906, 11537, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 11, 3915, 62, 82, 4340, 62, 448, 796, 4808, 2840, 13, 439, 1462, 439, 85, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 3915, 62, 82, 4340, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6503, 62, 67, 4906, 28, 21809, 62, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2219, 62, 43358, 28, 11321, 62, 43358, 8, 198, 220, 1441, 6045, 11, 3915, 62, 448, 11, 3915, 62, 82, 4340, 62, 448, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 13247, 3237, 1462, 439, 85, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 8094, 62, 439, 1462, 439, 85, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 1448, 62, 439, 1462, 439, 85, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 997, 62, 28665, 82, 796, 1034, 13, 1136, 62, 35226, 10786, 22510, 62, 28665, 82, 11537, 198, 220, 6503, 62, 67, 4906, 796, 1034, 13, 1136, 62, 35226, 10786, 21809, 62, 67, 4906, 11537, 198, 220, 2219, 62, 1477, 7916, 796, 1034, 13, 1136, 62, 35226, 10786, 11321, 62, 1477, 7916, 11537, 198, 220, 3915, 62, 259, 796, 26498, 58, 25, 22510, 62, 28665, 82, 60, 198, 220, 3915, 62, 82, 4340, 62, 259, 796, 1034, 13, 22915, 82, 58, 22510, 62, 28665, 82, 47715, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 11, 4808, 796, 4808, 2840, 13, 8094, 62, 439, 1462, 439, 85, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 3915, 62, 82, 4340, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6503, 62, 67, 4906, 28, 21809, 62, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2219, 62, 1477, 7916, 28, 11321, 62, 1477, 7916, 8, 198, 220, 1441, 357, 14202, 11, 1635, 9744, 62, 448, 11, 1635, 58, 14202, 329, 4808, 287, 2837, 7, 22510, 62, 28665, 82, 8, 12962, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 3237, 1462, 439, 86, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 439, 1462, 439, 86, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 477, 1462, 439, 86, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 2219, 62, 43358, 796, 1034, 13, 1136, 62, 35226, 10786, 11321, 62, 43358, 11537, 198, 220, 6503, 62, 67, 4906, 796, 1034, 13, 1136, 62, 35226, 10786, 21809, 62, 67, 4906, 11537, 198, 220, 3915, 62, 259, 796, 1351, 7, 22046, 8, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 439, 1462, 439, 86, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6503, 62, 67, 4906, 28, 21809, 62, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2219, 62, 43358, 28, 11321, 62, 43358, 8, 198, 220, 1441, 685, 14202, 60, 1343, 3915, 62, 448, 628, 198, 31, 2840, 13, 38804, 42731, 1153, 10786, 13247, 3237, 1462, 439, 86, 3152, 45, 535, 75, 6935, 11537, 198, 4299, 4808, 8094, 62, 439, 1462, 439, 86, 62, 4480, 62, 77, 535, 75, 62, 9503, 62, 9744, 7, 404, 11, 1635, 22046, 2599, 198, 220, 374, 7061, 6, 42731, 1153, 329, 399, 4093, 43, 1448, 62, 439, 1462, 439, 86, 1034, 13, 198, 220, 705, 7061, 198, 220, 725, 796, 1034, 13, 15414, 82, 58, 15, 60, 198, 220, 997, 62, 28665, 82, 796, 1034, 13, 1136, 62, 35226, 10786, 22510, 62, 28665, 82, 11537, 198, 220, 6503, 62, 67, 4906, 796, 1034, 13, 1136, 62, 35226, 10786, 21809, 62, 67, 4906, 11537, 198, 220, 2219, 62, 1477, 7916, 796, 1034, 13, 1136, 62, 35226, 10786, 11321, 62, 1477, 7916, 11537, 198, 220, 3915, 62, 259, 796, 1351, 7, 22046, 8, 198, 220, 351, 39628, 13, 25202, 7, 404, 13, 25202, 2599, 198, 220, 220, 220, 351, 39628, 13, 13716, 62, 45841, 3976, 7, 404, 13, 22915, 82, 2599, 198, 220, 220, 220, 220, 220, 3915, 62, 448, 796, 4808, 2840, 13, 8094, 62, 439, 1462, 439, 86, 62, 4480, 62, 77, 535, 75, 62, 9503, 7, 198, 220, 220, 220, 220, 220, 220, 220, 725, 11, 3915, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 28665, 82, 28, 22510, 62, 28665, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6503, 62, 67, 4906, 28, 21809, 62, 67, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2219, 62, 1477, 7916, 28, 11321, 62, 1477, 7916, 8, 198, 220, 1441, 685, 14202, 60, 1343, 3915, 62, 448, 628, 198, 4871, 399, 535, 75, 30813, 26407, 7, 30813, 26407, 2599, 198, 220, 374, 7061, 6, 32, 1316, 26407, 1262, 399, 4093, 43, 13, 198, 220, 705, 7061, 198, 220, 36751, 796, 705, 45, 4093, 43, 6, 628, 220, 2488, 4871, 24396, 628, 198, 30813, 26407, 13, 30238, 7, 45, 535, 75, 30813, 26407, 8, 198 ]
2.558511
2,632
from django.db import models BANDEIRA_CHOICES = ( ('Visa', 'Visa'), ('Master', 'Master'), ('Hipercard', 'Hipercard'), ('Hiper', 'Hiper'), ('American Express', 'American Express'), ('Elo', 'Elo'), ('Diners Club', 'Diners Club'), ('American Express', 'American Express'), ('Discover', 'Discover'), ('JCB', 'JCB'), ('Aura', 'Aura'), )
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 33, 6981, 36, 40, 3861, 62, 44899, 34444, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 53, 9160, 3256, 705, 53, 9160, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 18254, 3256, 705, 18254, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 9346, 9517, 3256, 705, 39, 9346, 9517, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 39, 9346, 3256, 705, 39, 9346, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7437, 10604, 3256, 705, 7437, 10604, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 36, 5439, 3256, 705, 36, 5439, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 35, 21257, 6289, 3256, 705, 35, 21257, 6289, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 7437, 10604, 3256, 705, 7437, 10604, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 44596, 3256, 705, 44596, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 41, 23199, 3256, 705, 41, 23199, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 19203, 32, 5330, 3256, 705, 32, 5330, 33809, 198, 220, 220, 220, 1267, 628 ]
2.119403
201