content
stringlengths 1
1.04M
| input_ids
sequencelengths 1
774k
| ratio_char_token
float64 0.38
22.9
| token_count
int64 1
774k
|
---|---|---|---|
##############################################################################
# insert.py
# https://github.com/DigiLog-N/SynopticDataClient
# Copyright 2020 Canvass Labs, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from cassandra.cluster import Cluster
cluster = Cluster()
session = cluster.connect('digilog_n')
'''
rows = session.execute('SELECT * FROM digilog_n.obd')
for row in rows:
print(row)
user_lookup_stmt = session.prepare("SELECT * FROM users WHERE user_id=?")
INSERT INTO
users = []
for user_id in user_ids_to_query:
user = session.execute(user_lookup_stmt, [user_id])
users.append(user)
session.execute(
"""
INSERT INTO users (name, credits, user_id)
VALUES (%s, %s, %s)
""",
("John O'Reilly", 42, uuid.uuid1())
)
'''
| [
29113,
29113,
7804,
4242,
2235,
198,
2,
7550,
13,
9078,
198,
2,
3740,
1378,
12567,
13,
785,
14,
19511,
72,
11187,
12,
45,
14,
29934,
8738,
291,
6601,
11792,
198,
2,
15069,
12131,
1680,
85,
562,
23500,
11,
3457,
13,
198,
2,
220,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
220,
198,
2,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
220,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
29113,
29113,
7804,
4242,
2235,
198,
6738,
30606,
15918,
13,
565,
5819,
1330,
38279,
198,
198,
565,
5819,
796,
38279,
3419,
198,
29891,
796,
13946,
13,
8443,
10786,
12894,
346,
519,
62,
77,
11537,
198,
198,
7061,
6,
198,
8516,
796,
6246,
13,
41049,
10786,
46506,
1635,
16034,
3100,
346,
519,
62,
77,
13,
672,
67,
11537,
198,
1640,
5752,
287,
15274,
25,
198,
220,
220,
220,
3601,
7,
808,
8,
198,
198,
7220,
62,
5460,
929,
62,
301,
16762,
796,
6246,
13,
46012,
533,
7203,
46506,
1635,
16034,
2985,
33411,
2836,
62,
312,
28,
1701,
8,
198,
198,
20913,
17395,
39319,
220,
198,
198,
18417,
796,
17635,
198,
1640,
2836,
62,
312,
287,
2836,
62,
2340,
62,
1462,
62,
22766,
25,
198,
220,
220,
220,
2836,
796,
6246,
13,
41049,
7,
7220,
62,
5460,
929,
62,
301,
16762,
11,
685,
7220,
62,
312,
12962,
198,
220,
220,
220,
2985,
13,
33295,
7,
7220,
8,
628,
198,
29891,
13,
41049,
7,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
29194,
17395,
39319,
2985,
357,
3672,
11,
10824,
11,
2836,
62,
312,
8,
198,
220,
220,
220,
26173,
35409,
37633,
82,
11,
4064,
82,
11,
4064,
82,
8,
198,
220,
220,
220,
13538,
1600,
198,
220,
220,
220,
5855,
7554,
440,
6,
25819,
1600,
5433,
11,
334,
27112,
13,
12303,
312,
16,
28955,
198,
8,
198,
7061,
6,
628
] | 3.304136 | 411 |
import pytest
from btreelab.disk import Disk, DiskController
@pytest.fixture()
def dc():
'''disk controller
'''
return DiskController(block_size=124, block_num=8)
| [
198,
11748,
12972,
9288,
220,
198,
6738,
275,
33945,
417,
397,
13,
39531,
1330,
31664,
11,
31664,
22130,
220,
198,
198,
31,
9078,
9288,
13,
69,
9602,
3419,
220,
198,
4299,
30736,
33529,
220,
198,
220,
220,
220,
705,
7061,
39531,
10444,
198,
220,
220,
220,
705,
7061,
220,
198,
220,
220,
220,
1441,
31664,
22130,
7,
9967,
62,
7857,
28,
17464,
11,
2512,
62,
22510,
28,
23,
8,
220,
628
] | 2.591549 | 71 |
# Copyright 2017 Google Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from gapit_test_framework import gapit_test, require, require_equal
from gapit_test_framework import require_not_equal, little_endian_bytes_to_int
from gapit_test_framework import GapitTest, get_read_offset_function
from struct_offsets import VulkanStruct, UINT32_T, SIZE_T, POINTER
from struct_offsets import HANDLE, FLOAT, CHAR, ARRAY
from vulkan_constants import *
FRAMEBUFFER_CREATE_INFO = [
("sType", UINT32_T), ("pNext", POINTER), ("flags", UINT32_T),
("renderPass", HANDLE), ("attachmentCount", UINT32_T),
("pAttachments", POINTER), ("width", UINT32_T), ("height", UINT32_T),
("layers", UINT32_T)
]
@gapit_test("vkCreateFramebuffer_test")
| [
2,
15069,
2177,
3012,
3457,
13,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
198,
6738,
7625,
270,
62,
9288,
62,
30604,
1330,
7625,
270,
62,
9288,
11,
2421,
11,
2421,
62,
40496,
198,
6738,
7625,
270,
62,
9288,
62,
30604,
1330,
2421,
62,
1662,
62,
40496,
11,
1310,
62,
437,
666,
62,
33661,
62,
1462,
62,
600,
198,
6738,
7625,
270,
62,
9288,
62,
30604,
1330,
33899,
270,
14402,
11,
651,
62,
961,
62,
28968,
62,
8818,
198,
6738,
2878,
62,
8210,
1039,
1330,
35977,
44909,
11,
471,
12394,
2624,
62,
51,
11,
311,
35400,
62,
51,
11,
19922,
41358,
198,
6738,
2878,
62,
8210,
1039,
1330,
367,
6981,
2538,
11,
9977,
46,
1404,
11,
28521,
11,
5923,
30631,
198,
6738,
410,
31263,
62,
9979,
1187,
1330,
1635,
198,
198,
10913,
10067,
19499,
45746,
62,
43387,
6158,
62,
10778,
796,
685,
198,
220,
220,
220,
5855,
82,
6030,
1600,
471,
12394,
2624,
62,
51,
828,
5855,
79,
10019,
1600,
19922,
41358,
828,
5855,
33152,
1600,
471,
12394,
2624,
62,
51,
828,
198,
220,
220,
220,
5855,
13287,
14478,
1600,
367,
6981,
2538,
828,
5855,
1078,
15520,
12332,
1600,
471,
12394,
2624,
62,
51,
828,
198,
220,
220,
220,
5855,
79,
33296,
902,
1600,
19922,
41358,
828,
5855,
10394,
1600,
471,
12394,
2624,
62,
51,
828,
5855,
17015,
1600,
471,
12394,
2624,
62,
51,
828,
198,
220,
220,
220,
5855,
75,
6962,
1600,
471,
12394,
2624,
62,
51,
8,
198,
60,
628,
198,
31,
43554,
270,
62,
9288,
7203,
85,
74,
16447,
19778,
22252,
62,
9288,
4943,
198
] | 3.191214 | 387 |
#
# Copyright (2021) The Delta Lake Project Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from scripts.utils import *
from datetime import datetime
import time
class BenchmarkSpec:
"""
Specifications of a benchmark.
:param format_name: Spark format name
:param maven_artifacts: Maven artifact name in x:y:z format
:param spark_confs: list of spark conf strings in key=value format
:param benchmark_main_class: Name of main Scala class from the JAR to run
:param main_class_args command line args for the main class
"""
class TPCDSDataLoadSpec(BenchmarkSpec):
"""
Specifications of TPC-DS data load process.
Always mixin in this first before the base benchmark class.
"""
class TPCDSBenchmarkSpec(BenchmarkSpec):
"""
Specifications of TPC-DS benchmark
"""
# ============== Delta benchmark specifications ==============
class DeltaBenchmarkSpec(BenchmarkSpec):
"""
Specification of a benchmark using the Delta format
"""
@staticmethod
# ============== General benchmark execution ==============
class Benchmark:
"""
Represents a benchmark that can be run on a remote Spark cluster
:param benchmark_name: A name to be used for uniquely identifying this benchmark.
Added to file names generated by this benchmark.
:param benchmark_spec: Specification of the benchmark. See BenchmarkSpec.
"""
@staticmethod
@staticmethod
@staticmethod
@staticmethod
@staticmethod
| [
2,
198,
2,
15069,
357,
1238,
2481,
8,
383,
16978,
6233,
4935,
46665,
13,
198,
2,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
198,
2,
198,
198,
6738,
14750,
13,
26791,
1330,
1635,
198,
6738,
4818,
8079,
1330,
4818,
8079,
198,
11748,
640,
628,
198,
4871,
25187,
4102,
22882,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
46271,
286,
257,
18335,
13,
628,
220,
220,
220,
1058,
17143,
5794,
62,
3672,
25,
17732,
5794,
1438,
198,
220,
220,
220,
1058,
17143,
285,
4005,
62,
50179,
25,
337,
4005,
24127,
1438,
287,
2124,
25,
88,
25,
89,
5794,
198,
220,
220,
220,
1058,
17143,
9009,
62,
1102,
9501,
25,
1351,
286,
9009,
1013,
13042,
287,
1994,
28,
8367,
5794,
198,
220,
220,
220,
1058,
17143,
18335,
62,
12417,
62,
4871,
25,
6530,
286,
1388,
38334,
1398,
422,
262,
449,
1503,
284,
1057,
198,
220,
220,
220,
1058,
17143,
1388,
62,
4871,
62,
22046,
3141,
1627,
26498,
329,
262,
1388,
1398,
198,
220,
220,
220,
37227,
628,
198,
4871,
309,
5662,
5258,
6601,
8912,
22882,
7,
44199,
4102,
22882,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
46271,
286,
309,
5662,
12,
5258,
1366,
3440,
1429,
13,
198,
220,
220,
220,
16622,
5022,
259,
287,
428,
717,
878,
262,
2779,
18335,
1398,
13,
198,
220,
220,
220,
37227,
628,
198,
4871,
309,
5662,
5258,
44199,
4102,
22882,
7,
44199,
4102,
22882,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
46271,
286,
309,
5662,
12,
5258,
18335,
198,
220,
220,
220,
37227,
198,
198,
2,
796,
25609,
28,
16978,
18335,
20640,
796,
25609,
28,
628,
198,
4871,
16978,
44199,
4102,
22882,
7,
44199,
4102,
22882,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
18291,
2649,
286,
257,
18335,
1262,
262,
16978,
5794,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
12708,
24396,
628,
628,
198,
2,
796,
25609,
28,
3611,
18335,
9706,
796,
25609,
28,
628,
198,
4871,
25187,
4102,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1432,
6629,
257,
18335,
326,
460,
307,
1057,
319,
257,
6569,
17732,
13946,
198,
220,
220,
220,
1058,
17143,
18335,
62,
3672,
25,
317,
1438,
284,
307,
973,
329,
24139,
13720,
428,
18335,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10687,
284,
2393,
3891,
7560,
416,
428,
18335,
13,
198,
220,
220,
220,
1058,
17143,
18335,
62,
16684,
25,
18291,
2649,
286,
262,
18335,
13,
4091,
25187,
4102,
22882,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
12708,
24396,
628
] | 3.397993 | 598 |
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/display.ipynb (unless otherwise specified).
__all__ = ['encode', 'DiscordEncoder', 'Formatter', 'serialize_content', 'html_content']
# Cell
import discord
# Cell
import json
# Cell
#TODO change the data model for this to something more standard.
# use only strings for the keywords rather than discord objects | [
2,
47044,
7730,
1677,
1137,
11617,
0,
8410,
5626,
48483,
0,
9220,
284,
4370,
25,
299,
1443,
14,
13812,
13,
541,
2047,
65,
357,
25252,
4306,
7368,
737,
198,
198,
834,
439,
834,
796,
37250,
268,
8189,
3256,
705,
15642,
585,
27195,
12342,
3256,
705,
8479,
1436,
3256,
705,
46911,
1096,
62,
11299,
3256,
705,
6494,
62,
11299,
20520,
198,
198,
2,
12440,
198,
11748,
36446,
628,
198,
2,
12440,
198,
198,
11748,
33918,
628,
628,
198,
2,
12440,
198,
198,
2,
51,
3727,
46,
1487,
262,
1366,
2746,
329,
428,
284,
1223,
517,
3210,
13,
198,
2,
779,
691,
13042,
329,
262,
26286,
2138,
621,
36446,
5563
] | 3.398148 | 108 |
import string
import base64
from distutils.util import strtobool
from marshmallow.exceptions import ValidationError
from baselayer.app.access import permissions, auth_or_token
from ..base import BaseHandler
from ...models import (
DBSession,
Source,
Comment,
Group,
Candidate,
Filter,
Obj,
User,
UserNotification,
)
| [
11748,
4731,
198,
11748,
2779,
2414,
198,
6738,
1233,
26791,
13,
22602,
1330,
965,
83,
672,
970,
198,
6738,
22397,
42725,
13,
1069,
11755,
1330,
3254,
24765,
12331,
198,
6738,
1615,
417,
2794,
13,
1324,
13,
15526,
1330,
21627,
11,
6284,
62,
273,
62,
30001,
198,
6738,
11485,
8692,
1330,
7308,
25060,
198,
6738,
2644,
27530,
1330,
357,
198,
220,
220,
220,
360,
4462,
2521,
11,
198,
220,
220,
220,
8090,
11,
198,
220,
220,
220,
18957,
11,
198,
220,
220,
220,
4912,
11,
198,
220,
220,
220,
40327,
11,
198,
220,
220,
220,
25853,
11,
198,
220,
220,
220,
38764,
11,
198,
220,
220,
220,
11787,
11,
198,
220,
220,
220,
11787,
3673,
2649,
11,
198,
8,
628,
628
] | 2.958333 | 120 |
from kafka import KafkaProducer
import json
producer = KafkaProducer(value_serializer=lambda m: json.dumps(m).encode('ascii'), bootstrap_servers=['localhost:9092'])
producer.send('event', {'id': 123, 'email_vendedor': '[email protected]'})
producer.flush() | [
6738,
479,
1878,
4914,
1330,
46906,
11547,
2189,
198,
11748,
33918,
220,
198,
198,
18230,
2189,
796,
46906,
11547,
2189,
7,
8367,
62,
46911,
7509,
28,
50033,
285,
25,
33918,
13,
67,
8142,
7,
76,
737,
268,
8189,
10786,
292,
979,
72,
33809,
6297,
26418,
62,
2655,
690,
28,
17816,
36750,
25,
44675,
17,
6,
12962,
198,
18230,
2189,
13,
21280,
10786,
15596,
3256,
1391,
6,
312,
10354,
17031,
11,
705,
12888,
62,
85,
1631,
273,
10354,
705,
292,
67,
292,
31,
4529,
13,
785,
6,
30072,
198,
18230,
2189,
13,
25925,
3419
] | 2.741935 | 93 |
import os, sys
sys.path.insert(1, os.path.join(os.path.abspath('.'), 'flaskstuff'))
from flask import Flask
app = Flask(__name__)
from app import views
| [
11748,
28686,
11,
25064,
198,
17597,
13,
6978,
13,
28463,
7,
16,
11,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
397,
2777,
776,
10786,
2637,
828,
705,
2704,
2093,
41094,
6,
4008,
198,
6738,
42903,
1330,
46947,
198,
198,
1324,
796,
46947,
7,
834,
3672,
834,
8,
198,
6738,
598,
1330,
5009,
198
] | 2.732143 | 56 |
from concurrent.futures import ThreadPoolExecutor
from itertools import repeat
from pprint import pprint
import pexpect
import yaml
import logging
logging.basicConfig(
format="%(threadName)s %(name)s %(levelname)s: %(message)s", level=logging.INFO
)
if __name__ == "__main__":
with open("devices.yaml") as f:
devices = yaml.safe_load(f)
r = send_show_to_devices(devices, "sh int desc")
pprint(r, width=120)
| [
6738,
24580,
13,
69,
315,
942,
1330,
14122,
27201,
23002,
38409,
198,
6738,
340,
861,
10141,
1330,
9585,
198,
6738,
279,
4798,
1330,
279,
4798,
198,
198,
11748,
613,
87,
806,
198,
11748,
331,
43695,
198,
11748,
18931,
628,
198,
6404,
2667,
13,
35487,
16934,
7,
198,
220,
220,
220,
5794,
2625,
4,
7,
16663,
5376,
8,
82,
4064,
7,
3672,
8,
82,
4064,
7,
5715,
3672,
8,
82,
25,
4064,
7,
20500,
8,
82,
1600,
1241,
28,
6404,
2667,
13,
10778,
198,
8,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
351,
1280,
7203,
42034,
13,
88,
43695,
4943,
355,
277,
25,
198,
220,
220,
220,
220,
220,
220,
220,
4410,
796,
331,
43695,
13,
21230,
62,
2220,
7,
69,
8,
198,
220,
220,
220,
374,
796,
3758,
62,
12860,
62,
1462,
62,
42034,
7,
42034,
11,
366,
1477,
493,
1715,
4943,
198,
220,
220,
220,
279,
4798,
7,
81,
11,
9647,
28,
10232,
8,
198
] | 2.638554 | 166 |
from django.contrib.auth.models import User
from django import forms
from healthapp.models import UserDoctor, UserPatient, Schedule
| [
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
198,
6738,
42625,
14208,
1330,
5107,
198,
6738,
1535,
1324,
13,
27530,
1330,
11787,
37564,
11,
11787,
12130,
1153,
11,
19281,
628,
628,
198
] | 3.777778 | 36 |
from __future__ import absolute_import
from . import qbatch
from .qbatch import qbatchParser
from .qbatch import qbatchDriver
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
198,
6738,
764,
1330,
10662,
43501,
198,
6738,
764,
80,
43501,
1330,
10662,
43501,
46677,
198,
6738,
764,
80,
43501,
1330,
10662,
43501,
32103,
198
] | 3.735294 | 34 |
__author__ = 'ThanhNam'
# Enter your code for the AdoptionCenter class here
# Be sure to include the __init__, get_name, get_species_count, get_number_of_species, and adopt_pet methods.
class AdoptionCenter:
"""
The AdoptionCenter class stores the important information that a
client would need to know about, such as the different numbers of
species stored, the location, and the name. It also has a method
to adopt a pet.
""" | [
834,
9800,
834,
796,
705,
817,
272,
71,
45,
321,
6,
198,
2,
6062,
534,
2438,
329,
262,
1215,
18076,
23656,
1398,
994,
198,
2,
1355,
1654,
284,
2291,
262,
11593,
15003,
834,
11,
651,
62,
3672,
11,
651,
62,
35448,
62,
9127,
11,
651,
62,
17618,
62,
1659,
62,
35448,
11,
290,
11206,
62,
6449,
5050,
13,
198,
4871,
1215,
18076,
23656,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
383,
1215,
18076,
23656,
1398,
7000,
262,
1593,
1321,
326,
257,
198,
220,
220,
220,
5456,
561,
761,
284,
760,
546,
11,
884,
355,
262,
1180,
3146,
286,
198,
220,
220,
220,
4693,
8574,
11,
262,
4067,
11,
290,
262,
1438,
13,
632,
635,
468,
257,
2446,
198,
220,
220,
220,
284,
11206,
257,
4273,
13,
198,
220,
220,
220,
37227
] | 3.365672 | 134 |
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
from numpy.testing import assert_allclose
from ...utils.testing import requires_data
from ..core import gammapy_extra
from ...datasets import load_poisson_stats_image
@requires_data("gammapy-extra")
def test_gammapy_extra():
"""Try loading a file from gammapy-extra.
"""
assert gammapy_extra.dir.is_dir()
@requires_data("gammapy-extra")
| [
2,
49962,
739,
257,
513,
12,
565,
682,
347,
10305,
3918,
5964,
532,
766,
38559,
24290,
13,
81,
301,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
11,
7297,
11,
3601,
62,
8818,
11,
28000,
1098,
62,
17201,
874,
198,
6738,
299,
32152,
13,
33407,
1330,
6818,
62,
439,
19836,
198,
6738,
2644,
26791,
13,
33407,
1330,
4433,
62,
7890,
198,
6738,
11485,
7295,
1330,
308,
6475,
12826,
62,
26086,
198,
6738,
2644,
19608,
292,
1039,
1330,
3440,
62,
7501,
30927,
62,
34242,
62,
9060,
628,
198,
31,
47911,
62,
7890,
7203,
70,
6475,
12826,
12,
26086,
4943,
198,
4299,
1332,
62,
70,
6475,
12826,
62,
26086,
33529,
198,
220,
220,
220,
37227,
23433,
11046,
257,
2393,
422,
308,
6475,
12826,
12,
26086,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
308,
6475,
12826,
62,
26086,
13,
15908,
13,
271,
62,
15908,
3419,
628,
198,
31,
47911,
62,
7890,
7203,
70,
6475,
12826,
12,
26086,
4943,
198
] | 3.10559 | 161 |
import unittest
from gpflow.tf_wraps import vec_to_tri
import tensorflow as tf
import numpy as np
from testing.gpflow_testcase import GPflowTestCase
from gpflow.tf_wraps import vec_to_tri
if __name__ == "__main__":
unittest.main()
| [
11748,
555,
715,
395,
198,
6738,
27809,
11125,
13,
27110,
62,
29988,
862,
1330,
43030,
62,
1462,
62,
28461,
198,
11748,
11192,
273,
11125,
355,
48700,
198,
11748,
299,
32152,
355,
45941,
198,
198,
6738,
4856,
13,
31197,
11125,
62,
9288,
7442,
1330,
14714,
11125,
14402,
20448,
198,
6738,
27809,
11125,
13,
27110,
62,
29988,
862,
1330,
43030,
62,
1462,
62,
28461,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
555,
715,
395,
13,
12417,
3419,
198
] | 2.8 | 85 |
from aiohttp.client import ClientSession
from http import HTTPStatus
from sanic.exceptions import abort
| [
6738,
257,
952,
4023,
13,
16366,
1330,
20985,
36044,
198,
6738,
2638,
1330,
14626,
19580,
198,
6738,
5336,
291,
13,
1069,
11755,
1330,
15614,
628
] | 4.2 | 25 |
from flask import Blueprint, redirect, url_for, request, render_template, flash, g
from flask.ext.login import login_user, logout_user, current_user, login_required
from GUTG_Vote import utilities
from GUTG_Vote.models import User, Game
from GUTG_Vote.forms import LoginForm
from GUTG_Vote.extensions import db
main = Blueprint('main', __name__)
@main.before_request
@main.route('/')
@main.route('/login', methods=['GET', 'POST'])
@main.route('/logout')
@main.route('/<game_id>/vote', methods=['POST'])
@login_required | [
6738,
42903,
1330,
39932,
11,
18941,
11,
19016,
62,
1640,
11,
2581,
11,
8543,
62,
28243,
11,
7644,
11,
308,
198,
6738,
42903,
13,
2302,
13,
38235,
1330,
17594,
62,
7220,
11,
2604,
448,
62,
7220,
11,
1459,
62,
7220,
11,
17594,
62,
35827,
198,
198,
6738,
402,
3843,
38,
62,
37394,
1330,
20081,
198,
6738,
402,
3843,
38,
62,
37394,
13,
27530,
1330,
11787,
11,
3776,
198,
6738,
402,
3843,
38,
62,
37394,
13,
23914,
1330,
23093,
8479,
198,
6738,
402,
3843,
38,
62,
37394,
13,
2302,
5736,
1330,
20613,
198,
198,
12417,
796,
39932,
10786,
12417,
3256,
11593,
3672,
834,
8,
198,
198,
31,
12417,
13,
19052,
62,
25927,
198,
198,
31,
12417,
13,
38629,
10786,
14,
11537,
198,
198,
31,
12417,
13,
38629,
10786,
14,
38235,
3256,
5050,
28,
17816,
18851,
3256,
705,
32782,
6,
12962,
628,
198,
31,
12417,
13,
38629,
10786,
14,
6404,
448,
11537,
198,
198,
31,
12417,
13,
38629,
10786,
14,
27,
6057,
62,
312,
29,
14,
27257,
3256,
5050,
28,
17816,
32782,
6,
12962,
198,
31,
38235,
62,
35827
] | 2.971751 | 177 |
import discord, dislash, datetime
from dislash import slash_command, SlashInteraction, ContextMenuInteraction
from discord.ext import commands
from src.extras.views import url_button_generator
| [
11748,
36446,
11,
595,
17055,
11,
4818,
8079,
198,
6738,
595,
17055,
1330,
24632,
62,
21812,
11,
26616,
9492,
2673,
11,
30532,
23381,
9492,
2673,
198,
6738,
36446,
13,
2302,
1330,
9729,
198,
6738,
12351,
13,
2302,
8847,
13,
33571,
1330,
19016,
62,
16539,
62,
8612,
1352,
198
] | 4.020833 | 48 |
#!/usr/bin/env python3
# Get annotations with context from database.
import sys
import os
import re
from logging import warning, error
from standoff import Textbound
try:
from sqlitedict import SqliteDict
except ImportError:
error('failed to import sqlitedict, try `pip3 install sqlitedict`')
raise
def get_annotation(standoff, id_):
"""Get annotation with given ID from standoff"""
for ln, line in enumerate(standoff.splitlines(), start=1):
fields = line.split('\t')
if fields[0] == id_:
if id_[0] == 'T':
return Textbound.from_standoff(line)
else:
raise NotImplementedError()
if __name__ == '__main__':
sys.exit(main(sys.argv))
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
2,
3497,
37647,
351,
4732,
422,
6831,
13,
198,
198,
11748,
25064,
198,
11748,
28686,
198,
11748,
302,
198,
198,
6738,
18931,
1330,
6509,
11,
4049,
198,
198,
6738,
33379,
1330,
8255,
7784,
198,
198,
28311,
25,
198,
220,
220,
220,
422,
44161,
863,
713,
1330,
311,
13976,
578,
35,
713,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
4049,
10786,
47904,
284,
1330,
44161,
863,
713,
11,
1949,
4600,
79,
541,
18,
2721,
44161,
863,
713,
63,
11537,
198,
220,
220,
220,
5298,
628,
198,
198,
4299,
651,
62,
1236,
14221,
7,
1481,
2364,
11,
4686,
62,
2599,
198,
220,
220,
220,
37227,
3855,
23025,
351,
1813,
4522,
422,
33379,
37811,
198,
220,
220,
220,
329,
300,
77,
11,
1627,
287,
27056,
378,
7,
1481,
2364,
13,
35312,
6615,
22784,
923,
28,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
7032,
796,
1627,
13,
35312,
10786,
59,
83,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7032,
58,
15,
60,
6624,
4686,
62,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
4686,
62,
58,
15,
60,
6624,
705,
51,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
8255,
7784,
13,
6738,
62,
1481,
2364,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
1892,
3546,
1154,
12061,
12331,
3419,
628,
628,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
25064,
13,
37023,
7,
12417,
7,
17597,
13,
853,
85,
4008,
198
] | 2.489933 | 298 |
"""botform URL Configuration
"""
from django.conf.urls import url, include
from rest_framework import routers
from botform import api as form_api
router = routers.DefaultRouter()
router.register(r'forms', form_api.FormsViewSet)
router.register(r'submissions', form_api.SubmissionsViewSet)
urlpatterns = [
url(r'^api/v1/', include(router.urls)),
url(r'^api/v1/forms/(?P<pk>\d+)/details/?$', form_api.grid_details),
url(r'^api/v1/forms/(?P<pk>\d+)/details/submission/?$', form_api.grid_submissions),
url(r'^', include('botform.urls')),
url(r'^accounts/', include('allauth.urls')),
]
| [
37811,
13645,
687,
10289,
28373,
198,
198,
37811,
198,
6738,
42625,
14208,
13,
10414,
13,
6371,
82,
1330,
19016,
11,
2291,
198,
6738,
1334,
62,
30604,
1330,
41144,
198,
198,
6738,
10214,
687,
1330,
40391,
355,
1296,
62,
15042,
198,
198,
472,
353,
796,
41144,
13,
19463,
49,
39605,
3419,
198,
472,
353,
13,
30238,
7,
81,
6,
23914,
3256,
1296,
62,
15042,
13,
8479,
82,
7680,
7248,
8,
198,
472,
353,
13,
30238,
7,
81,
338,
549,
8481,
3256,
1296,
62,
15042,
13,
7004,
8481,
7680,
7248,
8,
198,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
15042,
14,
85,
16,
14,
3256,
2291,
7,
472,
353,
13,
6371,
82,
36911,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
15042,
14,
85,
16,
14,
23914,
29006,
30,
47,
27,
79,
74,
29,
59,
67,
10,
20679,
36604,
20924,
3,
3256,
1296,
62,
15042,
13,
25928,
62,
36604,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
15042,
14,
85,
16,
14,
23914,
29006,
30,
47,
27,
79,
74,
29,
59,
67,
10,
20679,
36604,
14,
7266,
3411,
20924,
3,
3256,
1296,
62,
15042,
13,
25928,
62,
7266,
8481,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
3256,
2291,
10786,
13645,
687,
13,
6371,
82,
11537,
828,
198,
220,
220,
220,
19016,
7,
81,
6,
61,
23317,
82,
14,
3256,
2291,
10786,
439,
18439,
13,
6371,
82,
11537,
828,
198,
60,
198
] | 2.489712 | 243 |
from pymongo import MongoClient
| [
6738,
279,
4948,
25162,
1330,
42591,
11792,
628,
198
] | 3.777778 | 9 |
from operacaoes3 import mais , menos , vezes , divicao , resto , raiz , divicao_f
n1 = int(input('a'))
n2 = int(input('b'))
a = mais(n1,n2)
b = menos(n1,n2)
c = vezes(n1,n2)
d = divicao(n1,n2)
e = resto(n1,n2)
f = raiz(n1,n2)
g = divicao_f(n1,n2)
print(f'{a}')
print(f'{b}')
print(f'{c}')
print(f'{d}')
print(f'{e}')
print(f'{f}')
print(f'{g}')
| [
6738,
1515,
22260,
3028,
18,
1330,
285,
15152,
837,
1450,
418,
837,
1569,
12271,
837,
2659,
3970,
78,
837,
1334,
78,
837,
2179,
528,
837,
2659,
3970,
78,
62,
69,
198,
198,
77,
16,
796,
493,
7,
15414,
10786,
64,
6,
4008,
198,
77,
17,
796,
493,
7,
15414,
10786,
65,
6,
4008,
198,
198,
64,
220,
796,
285,
15152,
7,
77,
16,
11,
77,
17,
8,
198,
65,
796,
1450,
418,
7,
77,
16,
11,
77,
17,
8,
198,
66,
796,
1569,
12271,
7,
77,
16,
11,
77,
17,
8,
198,
67,
796,
2659,
3970,
78,
7,
77,
16,
11,
77,
17,
8,
198,
68,
796,
1334,
78,
7,
77,
16,
11,
77,
17,
8,
198,
69,
796,
2179,
528,
7,
77,
16,
11,
77,
17,
8,
198,
70,
796,
2659,
3970,
78,
62,
69,
7,
77,
16,
11,
77,
17,
8,
628,
198,
198,
4798,
7,
69,
6,
90,
64,
92,
11537,
198,
4798,
7,
69,
6,
90,
65,
92,
11537,
198,
4798,
7,
69,
6,
90,
66,
92,
11537,
198,
4798,
7,
69,
6,
90,
67,
92,
11537,
198,
4798,
7,
69,
6,
90,
68,
92,
11537,
198,
4798,
7,
69,
6,
90,
69,
92,
11537,
198,
4798,
7,
69,
6,
90,
70,
92,
11537,
198
] | 1.679426 | 209 |
#!/usr/bin/env python
import argparse
import os
import psycopg2
import sys
# Why is it so hard to get python imports working?
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from scry import scry
if __name__ == "__main__":
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
11748,
1822,
29572,
198,
11748,
28686,
198,
11748,
17331,
22163,
70,
17,
198,
11748,
25064,
198,
198,
2,
4162,
318,
340,
523,
1327,
284,
651,
21015,
17944,
1762,
30,
198,
17597,
13,
6978,
13,
28463,
7,
15,
11,
28686,
13,
6978,
13,
397,
2777,
776,
7,
418,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
828,
705,
492,
6,
22305,
198,
6738,
629,
563,
1330,
629,
563,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1388,
3419,
198
] | 2.644231 | 104 |
__version__ = '0.1.5'
try:
import pandas
pandas_df_type = pandas.DataFrame
except ImportError:
pandas_df_type = type(None)
try:
import msgpack
has_msgpack = True
except ImportError:
has_msgpack = False
try:
import os
login = os.getlogin()
except OSError:
login = ''
| [
834,
9641,
834,
796,
705,
15,
13,
16,
13,
20,
6,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
19798,
292,
198,
220,
220,
220,
19798,
292,
62,
7568,
62,
4906,
796,
19798,
292,
13,
6601,
19778,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
19798,
292,
62,
7568,
62,
4906,
796,
2099,
7,
14202,
8,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
31456,
8002,
198,
220,
220,
220,
468,
62,
19662,
8002,
796,
6407,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
468,
62,
19662,
8002,
796,
10352,
198,
198,
28311,
25,
198,
220,
220,
220,
1330,
28686,
198,
220,
220,
220,
17594,
796,
28686,
13,
1136,
38235,
3419,
198,
16341,
440,
5188,
81,
1472,
25,
198,
220,
220,
220,
17594,
796,
10148,
198
] | 2.346154 | 130 |
#!/usr/bin/env python3
import argparse
import sys
import os
from pathlib import Path
from Bio import SeqIO
import gzip
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
11748,
1822,
29572,
198,
11748,
25064,
198,
11748,
28686,
198,
6738,
3108,
8019,
1330,
10644,
198,
6738,
16024,
1330,
1001,
80,
9399,
198,
11748,
308,
13344,
628,
198
] | 3.184211 | 38 |
""" Helper to assemble code from a web page. """
import flask
import subprocess
import tempfile
main_html = r"""
<!DOCTYPE html>
<html><head>
<title>Online compiler</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://www.w3schools.com/lib/w3.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script>
<script>
function do_compile() {
source = $("#source").val()
$.post("compile", { source: source },
function(data, status) {
$("#result").text(data.replace("\\n", "<br>", "g"));
});
}
</script>
</head>
<body>
<div class="w3-container w3-teal"><h1>Online assembler</h1></div>
<div class="w3-container"><textarea id="source">mov rax,rbx</textarea></div>
<div class="w3-container">
<button class="w3-btn" onclick="do_compile()">Compile</button>
</div>
<div class="w3-container"><p id="result"></p></div>
<div class="w3-container w3-teal"><p>By Windel Bouwman 2016</p></div>
</body></html>
"""
app = flask.Flask(__name__)
@app.route('/')
@app.route('/compile', methods=['POST'])
if __name__ == '__main__':
app.run()
| [
37811,
5053,
525,
284,
25432,
2438,
422,
257,
3992,
2443,
13,
37227,
198,
198,
11748,
42903,
198,
11748,
850,
14681,
198,
11748,
20218,
7753,
198,
198,
12417,
62,
6494,
796,
374,
37811,
198,
27,
0,
18227,
4177,
56,
11401,
27711,
29,
198,
27,
6494,
6927,
2256,
29,
198,
27,
7839,
29,
14439,
17050,
3556,
7839,
29,
198,
27,
28961,
1438,
2625,
1177,
634,
1,
2695,
2625,
10394,
28,
25202,
12,
10394,
11,
4238,
12,
9888,
28,
16,
5320,
198,
27,
8726,
823,
2625,
47720,
25473,
1,
13291,
2625,
4023,
1378,
2503,
13,
86,
18,
14347,
82,
13,
785,
14,
8019,
14,
86,
18,
13,
25471,
5320,
198,
27,
12048,
12351,
2625,
5450,
1378,
1228,
897,
13,
13297,
499,
271,
13,
785,
14,
1228,
897,
14,
8019,
82,
14,
73,
22766,
14,
18,
13,
16,
13,
16,
14,
73,
22766,
13,
1084,
13,
8457,
23984,
12048,
29,
198,
27,
12048,
29,
198,
8818,
466,
62,
5589,
576,
3419,
1391,
198,
2723,
796,
720,
7203,
2,
10459,
11074,
2100,
3419,
198,
720,
13,
7353,
7203,
5589,
576,
1600,
1391,
2723,
25,
2723,
8964,
198,
220,
2163,
7,
7890,
11,
3722,
8,
1391,
198,
220,
220,
720,
7203,
2,
20274,
11074,
5239,
7,
7890,
13,
33491,
7203,
6852,
77,
1600,
33490,
1671,
29,
1600,
366,
70,
4943,
1776,
198,
220,
14980,
198,
92,
198,
3556,
12048,
29,
198,
3556,
2256,
29,
198,
27,
2618,
29,
198,
27,
7146,
1398,
2625,
86,
18,
12,
34924,
266,
18,
12,
660,
282,
22039,
71,
16,
29,
14439,
11156,
1754,
3556,
71,
16,
12240,
7146,
29,
198,
27,
7146,
1398,
2625,
86,
18,
12,
34924,
22039,
5239,
20337,
4686,
2625,
10459,
5320,
76,
709,
374,
897,
11,
26145,
87,
3556,
5239,
20337,
12240,
7146,
29,
198,
27,
7146,
1398,
2625,
86,
18,
12,
34924,
5320,
198,
27,
16539,
1398,
2625,
86,
18,
12,
46118,
1,
319,
12976,
2625,
4598,
62,
5589,
576,
3419,
5320,
7293,
576,
3556,
16539,
29,
198,
3556,
7146,
29,
198,
27,
7146,
1398,
2625,
86,
18,
12,
34924,
22039,
79,
4686,
2625,
20274,
23984,
79,
12240,
7146,
29,
198,
27,
7146,
1398,
2625,
86,
18,
12,
34924,
266,
18,
12,
660,
282,
22039,
79,
29,
3886,
3086,
417,
14551,
86,
805,
1584,
3556,
79,
12240,
7146,
29,
198,
3556,
2618,
12240,
6494,
29,
198,
37811,
198,
198,
1324,
796,
42903,
13,
7414,
2093,
7,
834,
3672,
834,
8,
198,
198,
31,
1324,
13,
38629,
10786,
14,
11537,
628,
198,
31,
1324,
13,
38629,
10786,
14,
5589,
576,
3256,
5050,
28,
17816,
32782,
6,
12962,
628,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
598,
13,
5143,
3419,
198
] | 2.555305 | 443 |
if __name__ == "__main__":
a = input("first number:")
b = input("second number:")
print(', '.join(swap(a, b)))
| [
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
257,
796,
5128,
7203,
11085,
1271,
25,
4943,
198,
220,
275,
796,
5128,
7203,
12227,
1271,
25,
4943,
198,
220,
3601,
7,
3256,
45302,
22179,
7,
2032,
499,
7,
64,
11,
275,
22305,
198
] | 2.5 | 48 |
import os
import sys
import time
import math
import inspect
import copy
import logging
import numpy as np
import cv2
import torch
from torch.autograd import Variable
import torch.nn.functional as F
from .DaSiamRPN_net import SiamRPNvot, SiamRPNBIG, SiamRPNotb
from .run_SiamRPN import generate_anchor, tracker_eval
from .DaSiamRPN_utils import get_subwindow_tracking
class DaSiamRPNParams:
"""
:param int model: 0: SiamRPNvot 1: SiamRPNBIG 2: SiamRPNotb,
:param str windowing: to penalize large displacements [cosine/uniform]
:param int exemplar_size: input z size
:param int instance_size: input x size (search region)
:param float context_amount: context amount for the exemplar
:param bool adaptive: adaptive change search region
:param int score_size: size of score map
:param int anchor_num: number of anchors
"""
class DaSiamRPN:
"""
:type params: DaSiamRPNParams
:type logger: logging.RootLogger
:type states: list[dict]
"""
def __init__(self, params, logger, target_id=0,
label='generic', confidence=1.0):
"""
:type params: DaSiamRPNParams
:type logger: logging.RootLogger | None
:type target_id: int
:rtype: None
"""
# self.tf_graph = tf.Graph()
# avoid printing TF debugging information
self._params = params
self._logger = logger
self.target_id = target_id
self.label = label
self.confidence = confidence
self.cumulative_confidence = confidence
if self._logger is None:
self._logger = logging.getLogger()
self._logger.setLevel(logging.INFO)
# self.logger.handlers[0].setFormatter(logging.Formatter(
# '%(levelname)s::%(module)s::%(funcName)s::%(lineno)s : %(message)s'))
self.anchor = []
# self.params.update(cfg={})
self.associated_frames = 1
self.unassociated_frames = 0
self.associated = 0
# self.is_initialized = 0
self.bbox = None
self.gpu_id = self._params.gpu_id
self.pretrained_wts_dir = self._params.pretrained_wts_dir
if self._params.rel_path:
self.pretrained_wts_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), self.pretrained_wts_dir)
self.net = None
self.score_sz = self._params.score_size
self.final_score_sz = self._params.score_size
if self._params.update_location == 0:
self._logger.info('Location updating is disabled')
self.state = None
def initialize(self, init_frame, init_bbox):
"""
:param np.ndarray init_frame:
:param np.ndarray | list | tuple init_bbox:
:return:
"""
if self.net is None:
if self._params.model == 0:
net = SiamRPNvot()
net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNVOT.model')))
# self._logger.info('Using SiamRPNVOT model')
elif self._params.model == 1:
net = SiamRPNBIG()
net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNBIG.model')))
# self._logger.info('Using SiamRPNBIG model')
elif self._params.model == 2:
net = SiamRPNotb()
net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNOTB.model')))
# self._logger.info('Using SiamRPNOTB model')
else:
raise IOError('Invalid model_type: {}'.format(self._params.model))
net.eval().cuda(self.gpu_id)
self.net = net
cx, cy, target_w, target_h = init_bbox
target_pos = np.array([cx, cy])
target_sz = np.array([target_w, target_h])
self._params.update(self.net.cfg)
state = dict()
state['im_h'] = init_frame.shape[0]
state['im_w'] = init_frame.shape[1]
if self._params.adaptive:
if ((target_sz[0] * target_sz[1]) / float(state['im_h'] * state['im_w'])) < 0.004:
self._params.instance_size = 287 # small object big search region
else:
self._params.instance_size = 271
self._params.score_size = (
self._params.instance_size - self._params.exemplar_size) / self._params.total_stride + 1
self.anchor = generate_anchor(self._params.total_stride, self._params.scales, self._params.ratios,
int(self._params.score_size))
avg_chans = np.mean(init_frame, axis=(0, 1))
wc_z = target_sz[0] + self._params.context_amount * sum(target_sz)
hc_z = target_sz[1] + self._params.context_amount * sum(target_sz)
s_z = round(np.sqrt(wc_z * hc_z))
# initialize the exemplar
z_crop = get_subwindow_tracking(init_frame, target_pos, self._params.exemplar_size, s_z, avg_chans)
z = Variable(z_crop.unsqueeze(0))
self.net.temple(z.cuda(self.gpu_id))
if self._params.windowing == 'cosine':
window = np.outer(np.hanning(self.score_sz), np.hanning(self.score_sz))
elif self._params.windowing == 'uniform':
window = np.ones((self.score_sz, self.score_sz))
else:
raise IOError('Invalid windowing type: {}'.format(self._params.windowing))
window = np.tile(window.flatten(), self._params.anchor_num)
# state['p'] = self.params
pos_x, pos_y = target_pos
target_w, target_h = target_sz
xmin, ymin = pos_x - target_w / 2, pos_y - target_h / 2
xmax, ymax = xmin + target_w, ymin + target_h
bbox = [xmin, ymin, target_w, target_h]
state['net'] = self.net
state['avg_chans'] = avg_chans
state['window'] = window
state['target_pos'] = target_pos
state['target_sz'] = target_sz
self.bbox = [xmin, ymin, xmax, ymax]
self.state = state
| [
11748,
28686,
198,
11748,
25064,
198,
11748,
640,
198,
11748,
10688,
198,
11748,
10104,
198,
11748,
4866,
198,
11748,
18931,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
269,
85,
17,
198,
11748,
28034,
198,
6738,
28034,
13,
2306,
519,
6335,
1330,
35748,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
198,
6738,
764,
26531,
50,
1789,
49,
13137,
62,
3262,
1330,
311,
1789,
49,
13137,
85,
313,
11,
311,
1789,
49,
13137,
3483,
38,
11,
311,
1789,
20031,
3673,
65,
198,
6738,
764,
5143,
62,
50,
1789,
49,
13137,
1330,
7716,
62,
3702,
273,
11,
30013,
62,
18206,
198,
6738,
764,
26531,
50,
1789,
49,
13137,
62,
26791,
1330,
651,
62,
7266,
17497,
62,
36280,
628,
198,
4871,
9637,
50,
1789,
49,
13137,
10044,
4105,
25,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1058,
17143,
493,
2746,
25,
657,
25,
311,
1789,
49,
13137,
85,
313,
352,
25,
311,
1789,
49,
13137,
3483,
38,
362,
25,
311,
1789,
20031,
3673,
65,
11,
198,
220,
220,
220,
1058,
17143,
965,
4324,
278,
25,
284,
23634,
1096,
1588,
7845,
28613,
685,
6966,
500,
14,
403,
6933,
60,
198,
220,
220,
220,
1058,
17143,
493,
21433,
283,
62,
7857,
25,
5128,
1976,
2546,
198,
220,
220,
220,
1058,
17143,
493,
4554,
62,
7857,
25,
5128,
2124,
2546,
357,
12947,
3814,
8,
198,
220,
220,
220,
1058,
17143,
12178,
4732,
62,
17287,
25,
4732,
2033,
329,
262,
21433,
283,
198,
220,
220,
220,
1058,
17143,
20512,
29605,
25,
29605,
1487,
2989,
3814,
198,
220,
220,
220,
1058,
17143,
493,
4776,
62,
7857,
25,
2546,
286,
4776,
3975,
198,
220,
220,
220,
1058,
17143,
493,
18021,
62,
22510,
25,
1271,
286,
43360,
198,
220,
220,
220,
37227,
628,
198,
4871,
9637,
50,
1789,
49,
13137,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1058,
4906,
42287,
25,
9637,
50,
1789,
49,
13137,
10044,
4105,
198,
220,
220,
220,
1058,
4906,
49706,
25,
18931,
13,
30016,
11187,
1362,
198,
220,
220,
220,
1058,
4906,
2585,
25,
1351,
58,
11600,
60,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
42287,
11,
49706,
11,
2496,
62,
312,
28,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
11639,
41357,
3256,
6628,
28,
16,
13,
15,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
42287,
25,
9637,
50,
1789,
49,
13137,
10044,
4105,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
49706,
25,
18931,
13,
30016,
11187,
1362,
930,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
4906,
2496,
62,
312,
25,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
81,
4906,
25,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
27110,
62,
34960,
796,
48700,
13,
37065,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3368,
13570,
24958,
28769,
1321,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
796,
42287,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
1362,
796,
49706,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
16793,
62,
312,
796,
2496,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
18242,
796,
6167,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
39745,
796,
6628,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
36340,
13628,
62,
39745,
796,
6628,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
6404,
1362,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
1362,
13,
2617,
4971,
7,
6404,
2667,
13,
10778,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
6404,
1362,
13,
4993,
8116,
58,
15,
4083,
2617,
8479,
1436,
7,
6404,
2667,
13,
8479,
1436,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
705,
4,
7,
5715,
3672,
8,
82,
3712,
4,
7,
21412,
8,
82,
3712,
4,
7,
20786,
5376,
8,
82,
3712,
4,
7,
2815,
23397,
8,
82,
1058,
220,
4064,
7,
20500,
8,
82,
6,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3702,
273,
796,
17635,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
37266,
13,
19119,
7,
37581,
34758,
30072,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
32852,
62,
37805,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
403,
32852,
62,
37805,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
32852,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13,
271,
62,
17532,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
65,
3524,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
46999,
62,
312,
796,
2116,
13557,
37266,
13,
46999,
62,
312,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5310,
13363,
62,
86,
912,
62,
15908,
796,
2116,
13557,
37266,
13,
5310,
13363,
62,
86,
912,
62,
15908,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
37266,
13,
2411,
62,
6978,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5310,
13363,
62,
86,
912,
62,
15908,
796,
28686,
13,
6978,
13,
22179,
7,
418,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
5305,
6978,
7,
834,
7753,
834,
36911,
2116,
13,
5310,
13363,
62,
86,
912,
62,
15908,
8,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3262,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
26675,
62,
82,
89,
796,
2116,
13557,
37266,
13,
26675,
62,
7857,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
20311,
62,
26675,
62,
82,
89,
796,
2116,
13557,
37266,
13,
26675,
62,
7857,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
37266,
13,
19119,
62,
24886,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
6404,
1362,
13,
10951,
10786,
14749,
19698,
318,
10058,
11537,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5219,
796,
6045,
628,
220,
220,
220,
825,
41216,
7,
944,
11,
2315,
62,
14535,
11,
2315,
62,
65,
3524,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
45941,
13,
358,
18747,
2315,
62,
14535,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
17143,
45941,
13,
358,
18747,
930,
1351,
930,
46545,
2315,
62,
65,
3524,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1058,
7783,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
3262,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
37266,
13,
19849,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
311,
1789,
49,
13137,
85,
313,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
13,
2220,
62,
5219,
62,
11600,
7,
13165,
354,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
944,
13,
5310,
13363,
62,
86,
912,
62,
15908,
11,
705,
50,
1789,
49,
13137,
53,
2394,
13,
19849,
6,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13557,
6404,
1362,
13,
10951,
10786,
12814,
311,
1789,
49,
13137,
53,
2394,
2746,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13557,
37266,
13,
19849,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
311,
1789,
49,
13137,
3483,
38,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
13,
2220,
62,
5219,
62,
11600,
7,
13165,
354,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
944,
13,
5310,
13363,
62,
86,
912,
62,
15908,
11,
705,
50,
1789,
49,
13137,
3483,
38,
13,
19849,
6,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13557,
6404,
1362,
13,
10951,
10786,
12814,
311,
1789,
49,
13137,
3483,
38,
2746,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13557,
37266,
13,
19849,
6624,
362,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
796,
311,
1789,
20031,
3673,
65,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
13,
2220,
62,
5219,
62,
11600,
7,
13165,
354,
13,
2220,
7,
418,
13,
6978,
13,
22179,
7,
944,
13,
5310,
13363,
62,
86,
912,
62,
15908,
11,
705,
50,
1789,
20031,
11929,
33,
13,
19849,
6,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2116,
13557,
6404,
1362,
13,
10951,
10786,
12814,
311,
1789,
20031,
11929,
33,
2746,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
24418,
12331,
10786,
44651,
2746,
62,
4906,
25,
23884,
4458,
18982,
7,
944,
13557,
37266,
13,
19849,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2010,
13,
18206,
22446,
66,
15339,
7,
944,
13,
46999,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3262,
796,
2010,
628,
220,
220,
220,
220,
220,
220,
220,
43213,
11,
3075,
11,
2496,
62,
86,
11,
2496,
62,
71,
796,
2315,
62,
65,
3524,
628,
220,
220,
220,
220,
220,
220,
220,
2496,
62,
1930,
796,
45941,
13,
18747,
26933,
66,
87,
11,
3075,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
2496,
62,
82,
89,
796,
45941,
13,
18747,
26933,
16793,
62,
86,
11,
2496,
62,
71,
12962,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
13,
19119,
7,
944,
13,
3262,
13,
37581,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1181,
796,
8633,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
320,
62,
71,
20520,
796,
2315,
62,
14535,
13,
43358,
58,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
320,
62,
86,
20520,
796,
2315,
62,
14535,
13,
43358,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
37266,
13,
42552,
425,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
14808,
16793,
62,
82,
89,
58,
15,
60,
1635,
2496,
62,
82,
89,
58,
16,
12962,
1220,
12178,
7,
5219,
17816,
320,
62,
71,
20520,
1635,
1181,
17816,
320,
62,
86,
20520,
4008,
1279,
657,
13,
22914,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
13,
39098,
62,
7857,
796,
38721,
220,
1303,
1402,
2134,
1263,
2989,
3814,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
13,
39098,
62,
7857,
796,
33797,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
13,
26675,
62,
7857,
796,
357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
37266,
13,
39098,
62,
7857,
532,
2116,
13557,
37266,
13,
1069,
18856,
283,
62,
7857,
8,
1220,
2116,
13557,
37266,
13,
23350,
62,
2536,
485,
1343,
352,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3702,
273,
796,
7716,
62,
3702,
273,
7,
944,
13557,
37266,
13,
23350,
62,
2536,
485,
11,
2116,
13557,
37266,
13,
1416,
2040,
11,
2116,
13557,
37266,
13,
10366,
4267,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
493,
7,
944,
13557,
37266,
13,
26675,
62,
7857,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
42781,
62,
354,
504,
796,
45941,
13,
32604,
7,
15003,
62,
14535,
11,
16488,
16193,
15,
11,
352,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
266,
66,
62,
89,
796,
2496,
62,
82,
89,
58,
15,
60,
1343,
2116,
13557,
37266,
13,
22866,
62,
17287,
1635,
2160,
7,
16793,
62,
82,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
289,
66,
62,
89,
796,
2496,
62,
82,
89,
58,
16,
60,
1343,
2116,
13557,
37266,
13,
22866,
62,
17287,
1635,
2160,
7,
16793,
62,
82,
89,
8,
198,
220,
220,
220,
220,
220,
220,
220,
264,
62,
89,
796,
2835,
7,
37659,
13,
31166,
17034,
7,
86,
66,
62,
89,
1635,
289,
66,
62,
89,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
41216,
262,
21433,
283,
198,
220,
220,
220,
220,
220,
220,
220,
1976,
62,
31476,
796,
651,
62,
7266,
17497,
62,
36280,
7,
15003,
62,
14535,
11,
2496,
62,
1930,
11,
2116,
13557,
37266,
13,
1069,
18856,
283,
62,
7857,
11,
264,
62,
89,
11,
42781,
62,
354,
504,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1976,
796,
35748,
7,
89,
62,
31476,
13,
13271,
421,
1453,
2736,
7,
15,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
3262,
13,
11498,
1154,
7,
89,
13,
66,
15339,
7,
944,
13,
46999,
62,
312,
4008,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13557,
37266,
13,
7972,
7855,
6624,
705,
6966,
500,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4324,
796,
45941,
13,
39605,
7,
37659,
13,
7637,
768,
7,
944,
13,
26675,
62,
82,
89,
828,
45941,
13,
7637,
768,
7,
944,
13,
26675,
62,
82,
89,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
2116,
13557,
37266,
13,
7972,
7855,
6624,
705,
403,
6933,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4324,
796,
45941,
13,
1952,
19510,
944,
13,
26675,
62,
82,
89,
11,
2116,
13,
26675,
62,
82,
89,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5298,
24418,
12331,
10786,
44651,
4324,
278,
2099,
25,
23884,
4458,
18982,
7,
944,
13557,
37266,
13,
7972,
7855,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
796,
45941,
13,
40927,
7,
17497,
13,
2704,
41769,
22784,
2116,
13557,
37266,
13,
3702,
273,
62,
22510,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1181,
17816,
79,
20520,
796,
2116,
13,
37266,
628,
220,
220,
220,
220,
220,
220,
220,
1426,
62,
87,
11,
1426,
62,
88,
796,
2496,
62,
1930,
198,
220,
220,
220,
220,
220,
220,
220,
2496,
62,
86,
11,
2496,
62,
71,
796,
2496,
62,
82,
89,
628,
220,
220,
220,
220,
220,
220,
220,
2124,
1084,
11,
331,
1084,
796,
1426,
62,
87,
532,
2496,
62,
86,
1220,
362,
11,
1426,
62,
88,
532,
2496,
62,
71,
1220,
362,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
9806,
11,
331,
9806,
796,
2124,
1084,
1343,
2496,
62,
86,
11,
331,
1084,
1343,
2496,
62,
71,
628,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
796,
685,
87,
1084,
11,
331,
1084,
11,
2496,
62,
86,
11,
2496,
62,
71,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
3262,
20520,
796,
2116,
13,
3262,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
615,
70,
62,
354,
504,
20520,
796,
42781,
62,
354,
504,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
17497,
20520,
796,
4324,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
16793,
62,
1930,
20520,
796,
2496,
62,
1930,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
17816,
16793,
62,
82,
89,
20520,
796,
2496,
62,
82,
89,
628,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
65,
3524,
796,
685,
87,
1084,
11,
331,
1084,
11,
2124,
9806,
11,
331,
9806,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
5219,
796,
1181,
198
] | 2.128286 | 2,853 |
import random
from collections import OrderedDict
from string import ascii_letters, digits
from django import forms
from django.contrib.auth.models import User, Group
from django.contrib.sites.models import Site
from django.core.mail import send_mail
from django.template import loader
from .models import UserProfile
# vim: set ts=4 sw=4 et:
| [
11748,
4738,
201,
198,
6738,
17268,
1330,
14230,
1068,
35,
713,
201,
198,
6738,
4731,
1330,
355,
979,
72,
62,
15653,
11,
19561,
201,
198,
201,
198,
6738,
42625,
14208,
1330,
5107,
201,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
13,
27530,
1330,
11787,
11,
4912,
201,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
49315,
13,
27530,
1330,
14413,
201,
198,
6738,
42625,
14208,
13,
7295,
13,
4529,
1330,
3758,
62,
4529,
201,
198,
6738,
42625,
14208,
13,
28243,
1330,
40213,
201,
198,
201,
198,
6738,
764,
27530,
1330,
11787,
37046,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
2,
43907,
25,
900,
40379,
28,
19,
1509,
28,
19,
2123,
25,
201,
198
] | 3.09322 | 118 |
import numpy as np
# hidden layer activation function
# derivate of hidden layer activation function for gradient descent
# output layer activation function
# cost function
# derivative of cost function for gradient descent
| [
11748,
299,
32152,
355,
45941,
201,
198,
201,
198,
2,
7104,
7679,
14916,
2163,
201,
198,
201,
198,
2,
16124,
378,
286,
7104,
7679,
14916,
2163,
329,
31312,
18598,
201,
198,
201,
198,
2,
5072,
7679,
14916,
2163,
201,
198,
201,
198,
2,
1575,
2163,
201,
198,
201,
198,
2,
27255,
286,
1575,
2163,
329,
31312,
18598,
201
] | 4.12069 | 58 |
l_in = lasagne.layers.InputLayer((None, 784))
l_out = lasagne.layers.DenseLayer(l_in,
num_units=10,
nonlinearity=lasagne.nonlinearities.softmax)
X_sym = T.matrix()
y_sym = T.ivector()
output = lasagne.layers.get_output(l_out, X_sym)
pred = output.argmax(-1)
loss = T.mean(lasagne.objectives.categorical_crossentropy(output, y_sym))
acc = T.mean(T.eq(pred, y_sym))
params = lasagne.layers.get_all_params(l_out)
grad = T.grad(loss, params)
updates = lasagne.updates.adam(grad, params, learning_rate=0.001)
f_train = theano.function([X_sym, y_sym], [loss, acc], updates=updates)
f_val = theano.function([X_sym, y_sym], [loss, acc])
f_predict = theano.function([X_sym], pred)
BATCH_SIZE = 64
N_BATCHES = len(X_train) // BATCH_SIZE
N_VAL_BATCHES = len(X_val) // BATCH_SIZE
for epoch in range(10):
train_loss = 0
train_acc = 0
for _ in range(N_BATCHES):
X, y = next(train_batches)
loss, acc = f_train(X, y)
train_loss += loss
train_acc += acc
train_loss /= N_BATCHES
train_acc /= N_BATCHES
val_loss = 0
val_acc = 0
for _ in range(N_VAL_BATCHES):
X, y = next(val_batches)
loss, acc = f_val(X, y)
val_loss += loss
val_acc += acc
val_loss /= N_VAL_BATCHES
val_acc /= N_VAL_BATCHES
print('Epoch {}, Train (val) loss {:.03f} ({:.03f}) ratio {:.03f}'.format(
epoch, train_loss, val_loss, val_loss/train_loss))
print('Train (val) accuracy {:.03f} ({:.03f})'.format(train_acc, val_acc))
weights = l_out.W.get_value()
plt.figure(figsize=(12,3))
for i in range(10):
plt.subplot(1, 10, i+1)
plt.imshow(weights[:,i].reshape((28, 28)), cmap='gray', interpolation='nearest')
plt.axis('off') | [
75,
62,
259,
796,
39990,
21080,
13,
75,
6962,
13,
20560,
49925,
19510,
14202,
11,
767,
5705,
4008,
198,
75,
62,
448,
796,
39990,
21080,
13,
75,
6962,
13,
35,
1072,
49925,
7,
75,
62,
259,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
997,
62,
41667,
28,
940,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1729,
29127,
414,
28,
21921,
21080,
13,
13159,
29127,
871,
13,
4215,
9806,
8,
198,
198,
55,
62,
37047,
796,
309,
13,
6759,
8609,
3419,
198,
88,
62,
37047,
796,
309,
13,
425,
2715,
3419,
198,
198,
22915,
796,
39990,
21080,
13,
75,
6962,
13,
1136,
62,
22915,
7,
75,
62,
448,
11,
1395,
62,
37047,
8,
198,
28764,
796,
5072,
13,
853,
9806,
32590,
16,
8,
198,
198,
22462,
796,
309,
13,
32604,
7,
21921,
21080,
13,
15252,
1083,
13,
66,
2397,
12409,
62,
19692,
298,
28338,
7,
22915,
11,
331,
62,
37047,
4008,
198,
198,
4134,
796,
309,
13,
32604,
7,
51,
13,
27363,
7,
28764,
11,
331,
62,
37047,
4008,
198,
198,
37266,
796,
39990,
21080,
13,
75,
6962,
13,
1136,
62,
439,
62,
37266,
7,
75,
62,
448,
8,
198,
9744,
796,
309,
13,
9744,
7,
22462,
11,
42287,
8,
198,
929,
19581,
796,
39990,
21080,
13,
929,
19581,
13,
324,
321,
7,
9744,
11,
42287,
11,
4673,
62,
4873,
28,
15,
13,
8298,
8,
198,
198,
69,
62,
27432,
796,
262,
5733,
13,
8818,
26933,
55,
62,
37047,
11,
331,
62,
37047,
4357,
685,
22462,
11,
697,
4357,
5992,
28,
929,
19581,
8,
198,
69,
62,
2100,
796,
262,
5733,
13,
8818,
26933,
55,
62,
37047,
11,
331,
62,
37047,
4357,
685,
22462,
11,
697,
12962,
198,
69,
62,
79,
17407,
796,
262,
5733,
13,
8818,
26933,
55,
62,
37047,
4357,
2747,
8,
198,
198,
33,
11417,
62,
33489,
796,
5598,
198,
45,
62,
33,
11417,
1546,
796,
18896,
7,
55,
62,
27432,
8,
3373,
347,
11417,
62,
33489,
198,
45,
62,
23428,
62,
33,
11417,
1546,
796,
18896,
7,
55,
62,
2100,
8,
3373,
347,
11417,
62,
33489,
198,
198,
1640,
36835,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
4512,
62,
22462,
796,
657,
198,
220,
220,
220,
4512,
62,
4134,
796,
657,
198,
220,
220,
220,
329,
4808,
287,
2837,
7,
45,
62,
33,
11417,
1546,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
11,
331,
796,
1306,
7,
27432,
62,
8664,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
11,
697,
796,
277,
62,
27432,
7,
55,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
22462,
15853,
2994,
198,
220,
220,
220,
220,
220,
220,
220,
4512,
62,
4134,
15853,
697,
198,
220,
220,
220,
4512,
62,
22462,
1220,
28,
399,
62,
33,
11417,
1546,
198,
220,
220,
220,
4512,
62,
4134,
1220,
28,
399,
62,
33,
11417,
1546,
628,
220,
220,
220,
1188,
62,
22462,
796,
657,
198,
220,
220,
220,
1188,
62,
4134,
796,
657,
198,
220,
220,
220,
329,
4808,
287,
2837,
7,
45,
62,
23428,
62,
33,
11417,
1546,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1395,
11,
331,
796,
1306,
7,
2100,
62,
8664,
2052,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2994,
11,
697,
796,
277,
62,
2100,
7,
55,
11,
331,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
62,
22462,
15853,
2994,
198,
220,
220,
220,
220,
220,
220,
220,
1188,
62,
4134,
15853,
697,
198,
220,
220,
220,
1188,
62,
22462,
1220,
28,
399,
62,
23428,
62,
33,
11417,
1546,
198,
220,
220,
220,
1188,
62,
4134,
1220,
28,
399,
62,
23428,
62,
33,
11417,
1546,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
10786,
13807,
5374,
1391,
5512,
16835,
357,
2100,
8,
2994,
46110,
13,
3070,
69,
92,
37913,
25,
13,
3070,
69,
30072,
8064,
46110,
13,
3070,
69,
92,
4458,
18982,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36835,
11,
4512,
62,
22462,
11,
1188,
62,
22462,
11,
1188,
62,
22462,
14,
27432,
62,
22462,
4008,
198,
220,
220,
220,
3601,
10786,
44077,
357,
2100,
8,
9922,
46110,
13,
3070,
69,
92,
37913,
25,
13,
3070,
69,
30072,
4458,
18982,
7,
27432,
62,
4134,
11,
1188,
62,
4134,
4008,
198,
198,
43775,
796,
300,
62,
448,
13,
54,
13,
1136,
62,
8367,
3419,
220,
220,
220,
198,
220,
220,
220,
220,
198,
489,
83,
13,
26875,
7,
5647,
7857,
16193,
1065,
11,
18,
4008,
198,
1640,
1312,
287,
2837,
7,
940,
2599,
198,
220,
220,
220,
458,
83,
13,
7266,
29487,
7,
16,
11,
838,
11,
1312,
10,
16,
8,
198,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
43775,
58,
45299,
72,
4083,
3447,
1758,
19510,
2078,
11,
2579,
36911,
269,
8899,
11639,
44605,
3256,
39555,
341,
11639,
710,
12423,
11537,
198,
220,
220,
220,
458,
83,
13,
22704,
10786,
2364,
11537
] | 2.065517 | 870 |
'''
Created on Sep 8, 2016
@author: nicolas
'''
import re
import fnmatch
from functools import reduce
from lemoncheesecake.reporting import load_report
from lemoncheesecake.reporting.reportdir import DEFAULT_REPORT_DIR_NAME
from lemoncheesecake.reporting.report import Result, TestResult, Step, Log, Check, Attachment, Url
from lemoncheesecake.testtree import BaseTest, BaseSuite
from lemoncheesecake.suite import Test
from lemoncheesecake.exceptions import UserError
_NEGATION_FLAGS = "-^~"
| [
7061,
6,
198,
41972,
319,
8621,
807,
11,
1584,
198,
198,
31,
9800,
25,
9200,
12456,
198,
7061,
6,
198,
198,
11748,
302,
198,
11748,
24714,
15699,
198,
6738,
1257,
310,
10141,
1330,
4646,
198,
198,
6738,
18873,
2395,
274,
46557,
13,
49914,
1330,
3440,
62,
13116,
198,
6738,
18873,
2395,
274,
46557,
13,
49914,
13,
13116,
15908,
1330,
5550,
38865,
62,
2200,
15490,
62,
34720,
62,
20608,
198,
6738,
18873,
2395,
274,
46557,
13,
49914,
13,
13116,
1330,
25414,
11,
6208,
23004,
11,
5012,
11,
5972,
11,
6822,
11,
3460,
15520,
11,
8799,
75,
198,
6738,
18873,
2395,
274,
46557,
13,
9288,
21048,
1330,
7308,
14402,
11,
7308,
5606,
578,
198,
6738,
18873,
2395,
274,
46557,
13,
2385,
578,
1330,
6208,
198,
6738,
18873,
2395,
274,
46557,
13,
1069,
11755,
1330,
11787,
12331,
198,
198,
62,
45,
7156,
6234,
62,
38948,
50,
796,
27444,
61,
93,
1,
628,
628,
628,
628,
628,
628,
628,
628,
628,
628
] | 3.259494 | 158 |
STATS = [
{
"num_node_expansions": 653,
"plan_length": 167,
"search_time": 0.52,
"total_time": 0.52
},
{
"num_node_expansions": 978,
"plan_length": 167,
"search_time": 0.86,
"total_time": 0.86
},
{
"num_node_expansions": 1087,
"plan_length": 194,
"search_time": 15.85,
"total_time": 15.85
},
{
"num_node_expansions": 923,
"plan_length": 198,
"search_time": 15.21,
"total_time": 15.21
},
{
"num_node_expansions": 667,
"plan_length": 142,
"search_time": 13.94,
"total_time": 13.94
},
{
"num_node_expansions": 581,
"plan_length": 156,
"search_time": 11.54,
"total_time": 11.54
},
{
"num_node_expansions": 505,
"plan_length": 134,
"search_time": 2.79,
"total_time": 2.79
},
{
"num_node_expansions": 953,
"plan_length": 165,
"search_time": 6.22,
"total_time": 6.22
},
{
"num_node_expansions": 792,
"plan_length": 163,
"search_time": 0.33,
"total_time": 0.33
},
{
"num_node_expansions": 554,
"plan_length": 160,
"search_time": 0.27,
"total_time": 0.27
},
{
"num_node_expansions": 706,
"plan_length": 156,
"search_time": 2.44,
"total_time": 2.44
},
{
"num_node_expansions": 620,
"plan_length": 138,
"search_time": 1.65,
"total_time": 1.65
},
{
"num_node_expansions": 661,
"plan_length": 169,
"search_time": 0.28,
"total_time": 0.28
},
{
"num_node_expansions": 774,
"plan_length": 178,
"search_time": 0.4,
"total_time": 0.4
},
{
"num_node_expansions": 615,
"plan_length": 171,
"search_time": 0.53,
"total_time": 0.53
},
{
"num_node_expansions": 516,
"plan_length": 134,
"search_time": 0.71,
"total_time": 0.71
},
{
"num_node_expansions": 1077,
"plan_length": 221,
"search_time": 0.58,
"total_time": 0.58
},
{
"num_node_expansions": 1029,
"plan_length": 213,
"search_time": 0.62,
"total_time": 0.62
},
{
"num_node_expansions": 753,
"plan_length": 173,
"search_time": 0.47,
"total_time": 0.47
},
{
"num_node_expansions": 814,
"plan_length": 210,
"search_time": 0.5,
"total_time": 0.5
},
{
"num_node_expansions": 569,
"plan_length": 134,
"search_time": 3.06,
"total_time": 3.06
},
{
"num_node_expansions": 899,
"plan_length": 176,
"search_time": 5.84,
"total_time": 5.84
},
{
"num_node_expansions": 531,
"plan_length": 144,
"search_time": 3.15,
"total_time": 3.15
},
{
"num_node_expansions": 631,
"plan_length": 164,
"search_time": 3.74,
"total_time": 3.74
},
{
"num_node_expansions": 479,
"plan_length": 138,
"search_time": 0.11,
"total_time": 0.11
},
{
"num_node_expansions": 941,
"plan_length": 148,
"search_time": 0.22,
"total_time": 0.22
},
{
"num_node_expansions": 1023,
"plan_length": 197,
"search_time": 9.46,
"total_time": 9.46
},
{
"num_node_expansions": 1152,
"plan_length": 196,
"search_time": 12.7,
"total_time": 12.7
},
{
"num_node_expansions": 629,
"plan_length": 147,
"search_time": 4.14,
"total_time": 4.14
},
{
"num_node_expansions": 697,
"plan_length": 160,
"search_time": 2.82,
"total_time": 2.82
},
{
"num_node_expansions": 646,
"plan_length": 158,
"search_time": 3.74,
"total_time": 3.74
},
{
"num_node_expansions": 741,
"plan_length": 152,
"search_time": 4.56,
"total_time": 4.56
},
{
"num_node_expansions": 486,
"plan_length": 136,
"search_time": 1.77,
"total_time": 1.77
},
{
"num_node_expansions": 602,
"plan_length": 146,
"search_time": 3.22,
"total_time": 3.22
},
{
"num_node_expansions": 774,
"plan_length": 186,
"search_time": 1.56,
"total_time": 1.56
},
{
"num_node_expansions": 1512,
"plan_length": 209,
"search_time": 4.48,
"total_time": 4.48
},
{
"num_node_expansions": 791,
"plan_length": 180,
"search_time": 14.5,
"total_time": 14.5
},
{
"num_node_expansions": 1019,
"plan_length": 211,
"search_time": 18.59,
"total_time": 18.59
},
{
"num_node_expansions": 450,
"plan_length": 133,
"search_time": 2.75,
"total_time": 2.75
},
{
"num_node_expansions": 526,
"plan_length": 135,
"search_time": 3.02,
"total_time": 3.02
},
{
"num_node_expansions": 1329,
"plan_length": 182,
"search_time": 8.07,
"total_time": 8.07
},
{
"num_node_expansions": 655,
"plan_length": 134,
"search_time": 3.8,
"total_time": 3.8
},
{
"num_node_expansions": 636,
"plan_length": 159,
"search_time": 7.13,
"total_time": 7.13
},
{
"num_node_expansions": 1403,
"plan_length": 196,
"search_time": 16.16,
"total_time": 16.16
},
{
"num_node_expansions": 664,
"plan_length": 175,
"search_time": 4.18,
"total_time": 4.18
},
{
"num_node_expansions": 760,
"plan_length": 150,
"search_time": 6.37,
"total_time": 6.37
},
{
"num_node_expansions": 593,
"plan_length": 163,
"search_time": 9.42,
"total_time": 9.42
},
{
"num_node_expansions": 1043,
"plan_length": 179,
"search_time": 16.75,
"total_time": 16.75
},
{
"num_node_expansions": 390,
"plan_length": 103,
"search_time": 0.46,
"total_time": 0.46
},
{
"num_node_expansions": 419,
"plan_length": 120,
"search_time": 0.55,
"total_time": 0.55
},
{
"num_node_expansions": 606,
"plan_length": 160,
"search_time": 13.41,
"total_time": 13.41
},
{
"num_node_expansions": 905,
"plan_length": 213,
"search_time": 29.84,
"total_time": 29.84
},
{
"num_node_expansions": 525,
"plan_length": 146,
"search_time": 0.31,
"total_time": 0.31
},
{
"num_node_expansions": 522,
"plan_length": 147,
"search_time": 0.32,
"total_time": 0.32
},
{
"num_node_expansions": 652,
"plan_length": 165,
"search_time": 10.19,
"total_time": 10.19
},
{
"num_node_expansions": 1188,
"plan_length": 178,
"search_time": 13.24,
"total_time": 13.24
},
{
"num_node_expansions": 450,
"plan_length": 136,
"search_time": 1.48,
"total_time": 1.48
},
{
"num_node_expansions": 1179,
"plan_length": 209,
"search_time": 3.44,
"total_time": 3.44
},
{
"num_node_expansions": 834,
"plan_length": 204,
"search_time": 20.08,
"total_time": 20.08
},
{
"num_node_expansions": 1133,
"plan_length": 187,
"search_time": 15.61,
"total_time": 15.61
},
{
"num_node_expansions": 777,
"plan_length": 181,
"search_time": 13.35,
"total_time": 13.35
},
{
"num_node_expansions": 591,
"plan_length": 136,
"search_time": 2.59,
"total_time": 2.59
},
{
"num_node_expansions": 580,
"plan_length": 143,
"search_time": 2.89,
"total_time": 2.89
},
{
"num_node_expansions": 977,
"plan_length": 173,
"search_time": 8.97,
"total_time": 8.97
},
{
"num_node_expansions": 694,
"plan_length": 167,
"search_time": 8.22,
"total_time": 8.22
},
{
"num_node_expansions": 861,
"plan_length": 188,
"search_time": 1.14,
"total_time": 1.14
},
{
"num_node_expansions": 790,
"plan_length": 160,
"search_time": 0.93,
"total_time": 0.93
},
{
"num_node_expansions": 841,
"plan_length": 188,
"search_time": 5.61,
"total_time": 5.61
},
{
"num_node_expansions": 436,
"plan_length": 128,
"search_time": 2.46,
"total_time": 2.46
},
{
"num_node_expansions": 550,
"plan_length": 127,
"search_time": 0.03,
"total_time": 0.03
},
{
"num_node_expansions": 434,
"plan_length": 134,
"search_time": 0.03,
"total_time": 0.03
},
{
"num_node_expansions": 958,
"plan_length": 195,
"search_time": 9.09,
"total_time": 9.09
},
{
"num_node_expansions": 658,
"plan_length": 174,
"search_time": 6.01,
"total_time": 6.01
},
{
"num_node_expansions": 370,
"plan_length": 126,
"search_time": 0.06,
"total_time": 0.06
},
{
"num_node_expansions": 440,
"plan_length": 119,
"search_time": 0.08,
"total_time": 0.08
},
{
"num_node_expansions": 648,
"plan_length": 168,
"search_time": 8.1,
"total_time": 8.1
},
{
"num_node_expansions": 832,
"plan_length": 178,
"search_time": 10.9,
"total_time": 10.9
},
{
"num_node_expansions": 355,
"plan_length": 116,
"search_time": 0.7,
"total_time": 0.7
},
{
"num_node_expansions": 495,
"plan_length": 123,
"search_time": 0.86,
"total_time": 0.86
},
{
"num_node_expansions": 612,
"plan_length": 148,
"search_time": 4.23,
"total_time": 4.23
},
{
"num_node_expansions": 1067,
"plan_length": 174,
"search_time": 6.3,
"total_time": 6.3
},
{
"num_node_expansions": 821,
"plan_length": 185,
"search_time": 3.0,
"total_time": 3.0
},
{
"num_node_expansions": 625,
"plan_length": 153,
"search_time": 2.98,
"total_time": 2.98
},
{
"num_node_expansions": 304,
"plan_length": 99,
"search_time": 0.16,
"total_time": 0.16
},
{
"num_node_expansions": 477,
"plan_length": 133,
"search_time": 0.4,
"total_time": 0.4
},
{
"num_node_expansions": 651,
"plan_length": 160,
"search_time": 0.18,
"total_time": 0.18
},
{
"num_node_expansions": 594,
"plan_length": 147,
"search_time": 0.17,
"total_time": 0.17
},
{
"num_node_expansions": 524,
"plan_length": 134,
"search_time": 5.3,
"total_time": 5.3
},
{
"num_node_expansions": 400,
"plan_length": 127,
"search_time": 4.95,
"total_time": 4.95
},
{
"num_node_expansions": 825,
"plan_length": 185,
"search_time": 6.37,
"total_time": 6.37
},
{
"num_node_expansions": 613,
"plan_length": 156,
"search_time": 4.57,
"total_time": 4.57
},
{
"num_node_expansions": 427,
"plan_length": 121,
"search_time": 0.09,
"total_time": 0.09
},
{
"num_node_expansions": 362,
"plan_length": 116,
"search_time": 0.07,
"total_time": 0.07
},
{
"num_node_expansions": 459,
"plan_length": 119,
"search_time": 0.75,
"total_time": 0.75
},
{
"num_node_expansions": 501,
"plan_length": 132,
"search_time": 0.86,
"total_time": 0.86
},
{
"num_node_expansions": 697,
"plan_length": 156,
"search_time": 4.24,
"total_time": 4.24
},
{
"num_node_expansions": 1024,
"plan_length": 162,
"search_time": 7.13,
"total_time": 7.13
},
{
"num_node_expansions": 501,
"plan_length": 122,
"search_time": 4.67,
"total_time": 4.67
},
{
"num_node_expansions": 577,
"plan_length": 126,
"search_time": 5.56,
"total_time": 5.56
},
{
"num_node_expansions": 633,
"plan_length": 152,
"search_time": 17.98,
"total_time": 17.98
},
{
"num_node_expansions": 833,
"plan_length": 186,
"search_time": 24.85,
"total_time": 24.85
},
{
"num_node_expansions": 996,
"plan_length": 183,
"search_time": 4.05,
"total_time": 4.05
},
{
"num_node_expansions": 1246,
"plan_length": 206,
"search_time": 5.39,
"total_time": 5.39
},
{
"num_node_expansions": 466,
"plan_length": 137,
"search_time": 2.03,
"total_time": 2.03
},
{
"num_node_expansions": 530,
"plan_length": 142,
"search_time": 2.28,
"total_time": 2.28
},
{
"num_node_expansions": 923,
"plan_length": 189,
"search_time": 19.77,
"total_time": 19.77
},
{
"num_node_expansions": 799,
"plan_length": 167,
"search_time": 16.16,
"total_time": 16.16
},
{
"num_node_expansions": 651,
"plan_length": 173,
"search_time": 1.38,
"total_time": 1.38
},
{
"num_node_expansions": 590,
"plan_length": 159,
"search_time": 0.94,
"total_time": 0.94
},
{
"num_node_expansions": 542,
"plan_length": 155,
"search_time": 0.07,
"total_time": 0.07
},
{
"num_node_expansions": 418,
"plan_length": 130,
"search_time": 0.05,
"total_time": 0.05
},
{
"num_node_expansions": 881,
"plan_length": 182,
"search_time": 11.01,
"total_time": 11.01
},
{
"num_node_expansions": 1256,
"plan_length": 205,
"search_time": 15.58,
"total_time": 15.58
},
{
"num_node_expansions": 612,
"plan_length": 146,
"search_time": 2.92,
"total_time": 2.92
},
{
"num_node_expansions": 567,
"plan_length": 145,
"search_time": 2.43,
"total_time": 2.43
},
{
"num_node_expansions": 655,
"plan_length": 152,
"search_time": 9.25,
"total_time": 9.25
},
{
"num_node_expansions": 499,
"plan_length": 133,
"search_time": 7.5,
"total_time": 7.5
},
{
"num_node_expansions": 500,
"plan_length": 137,
"search_time": 0.3,
"total_time": 0.3
},
{
"num_node_expansions": 869,
"plan_length": 156,
"search_time": 0.47,
"total_time": 0.47
},
{
"num_node_expansions": 522,
"plan_length": 161,
"search_time": 0.06,
"total_time": 0.06
},
{
"num_node_expansions": 712,
"plan_length": 181,
"search_time": 0.07,
"total_time": 0.07
},
{
"num_node_expansions": 708,
"plan_length": 142,
"search_time": 4.46,
"total_time": 4.46
},
{
"num_node_expansions": 642,
"plan_length": 163,
"search_time": 5.26,
"total_time": 5.26
},
{
"num_node_expansions": 426,
"plan_length": 134,
"search_time": 0.11,
"total_time": 0.11
},
{
"num_node_expansions": 471,
"plan_length": 129,
"search_time": 0.14,
"total_time": 0.14
},
{
"num_node_expansions": 520,
"plan_length": 135,
"search_time": 1.65,
"total_time": 1.65
},
{
"num_node_expansions": 666,
"plan_length": 144,
"search_time": 3.02,
"total_time": 3.02
},
{
"num_node_expansions": 563,
"plan_length": 159,
"search_time": 2.27,
"total_time": 2.27
},
{
"num_node_expansions": 566,
"plan_length": 162,
"search_time": 2.06,
"total_time": 2.06
},
{
"num_node_expansions": 836,
"plan_length": 203,
"search_time": 16.69,
"total_time": 16.69
},
{
"num_node_expansions": 604,
"plan_length": 145,
"search_time": 1.25,
"total_time": 1.25
},
{
"num_node_expansions": 506,
"plan_length": 124,
"search_time": 0.99,
"total_time": 0.99
},
{
"num_node_expansions": 851,
"plan_length": 203,
"search_time": 1.15,
"total_time": 1.15
},
{
"num_node_expansions": 603,
"plan_length": 166,
"search_time": 0.76,
"total_time": 0.76
},
{
"num_node_expansions": 497,
"plan_length": 118,
"search_time": 0.3,
"total_time": 0.3
},
{
"num_node_expansions": 590,
"plan_length": 117,
"search_time": 0.32,
"total_time": 0.32
},
{
"num_node_expansions": 409,
"plan_length": 129,
"search_time": 0.08,
"total_time": 0.08
},
{
"num_node_expansions": 669,
"plan_length": 165,
"search_time": 0.12,
"total_time": 0.12
},
{
"num_node_expansions": 786,
"plan_length": 161,
"search_time": 18.85,
"total_time": 18.85
},
{
"num_node_expansions": 474,
"plan_length": 144,
"search_time": 10.09,
"total_time": 10.09
},
{
"num_node_expansions": 579,
"plan_length": 165,
"search_time": 1.18,
"total_time": 1.18
},
{
"num_node_expansions": 620,
"plan_length": 160,
"search_time": 1.01,
"total_time": 1.01
},
{
"num_node_expansions": 1523,
"plan_length": 221,
"search_time": 25.37,
"total_time": 25.37
},
{
"num_node_expansions": 961,
"plan_length": 207,
"search_time": 18.62,
"total_time": 18.62
},
{
"num_node_expansions": 444,
"plan_length": 127,
"search_time": 3.93,
"total_time": 3.93
},
{
"num_node_expansions": 464,
"plan_length": 127,
"search_time": 4.01,
"total_time": 4.01
},
{
"num_node_expansions": 773,
"plan_length": 194,
"search_time": 0.78,
"total_time": 0.78
},
{
"num_node_expansions": 676,
"plan_length": 161,
"search_time": 0.83,
"total_time": 0.83
},
{
"num_node_expansions": 414,
"plan_length": 127,
"search_time": 0.39,
"total_time": 0.39
},
{
"num_node_expansions": 623,
"plan_length": 165,
"search_time": 0.66,
"total_time": 0.66
},
{
"num_node_expansions": 703,
"plan_length": 163,
"search_time": 1.06,
"total_time": 1.06
},
{
"num_node_expansions": 785,
"plan_length": 176,
"search_time": 1.02,
"total_time": 1.02
},
{
"num_node_expansions": 986,
"plan_length": 167,
"search_time": 15.72,
"total_time": 15.72
},
{
"num_node_expansions": 955,
"plan_length": 205,
"search_time": 12.55,
"total_time": 12.55
},
{
"num_node_expansions": 417,
"plan_length": 118,
"search_time": 0.05,
"total_time": 0.05
},
{
"num_node_expansions": 521,
"plan_length": 141,
"search_time": 0.06,
"total_time": 0.06
},
{
"num_node_expansions": 815,
"plan_length": 182,
"search_time": 26.55,
"total_time": 26.55
}
]
num_timeouts = 15
num_timeouts = 0
num_problems = 172
| [
2257,
33586,
796,
685,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
4310,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4309,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4309,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
41417,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4521,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
5774,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
30483,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1315,
13,
5332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1315,
13,
5332,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
2757,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1315,
13,
2481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1315,
13,
2481,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3134,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1511,
13,
5824,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1511,
13,
5824,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
6659,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23871,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1367,
13,
4051,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1367,
13,
4051,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
43367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3720,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
4310,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
718,
13,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
718,
13,
1828,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
5892,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26826,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2091,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2091,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
4051,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1983,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1983,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23871,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
2598,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
2598,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45469,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21503,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
2996,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
2996,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
5333,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27191,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2078,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2078,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
4524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27368,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
19,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1314,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28369,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4310,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4310,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4869,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4869,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
31566,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3365,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
1959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28658,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
5237,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
5237,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
4310,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28174,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2857,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
1415,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20064,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
20,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2079,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26937,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
5705,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
5705,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3132,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20224,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
1314,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
1314,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3132,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25307,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
4524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
4524,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21503,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1157,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1157,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
3901,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22613,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1828,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
29903,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
860,
13,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
860,
13,
3510,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
12279,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28817,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1105,
13,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1105,
13,
22,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22909,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
1415,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
1415,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
5607,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
6469,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
6469,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24063,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
4524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
4524,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
3901,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24848,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
3980,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
3980,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21056,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
3324,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22986,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
1828,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
4524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
3980,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
3980,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1315,
1065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28815,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
2780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
2780,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
6420,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
11546,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1478,
13,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1478,
13,
20,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
8949,
24,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28714,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1248,
13,
3270,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1248,
13,
3270,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
18523,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22169,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
2425,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
2425,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
2075,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
17501,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
2999,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1511,
1959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
807,
13,
2998,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
807,
13,
2998,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45021,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
23,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
23,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
2623,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26422,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
767,
13,
1485,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
767,
13,
1485,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1478,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28817,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1467,
13,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1467,
13,
1433,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19038,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
1507,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
1507,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48284,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
6640,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
718,
13,
2718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
718,
13,
2718,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
6052,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26826,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
860,
13,
3682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
860,
13,
3682,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
3559,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27228,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1467,
13,
2425,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1467,
13,
2425,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
33882,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
15349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3510,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48475,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
7982,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2816,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2816,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
3126,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1511,
13,
3901,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1511,
13,
3901,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28658,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
2808,
13,
5705,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
2808,
13,
5705,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45719,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22986,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3132,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3132,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22909,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2624,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
4309,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
838,
13,
1129,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
838,
13,
1129,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1367,
3459,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27368,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1511,
13,
1731,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1511,
13,
1731,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
18523,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21056,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
2780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
2780,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1367,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28815,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
2598,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
2598,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26956,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1160,
13,
2919,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1160,
13,
2919,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1367,
2091,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27649,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1315,
13,
5333,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1315,
13,
5333,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
35534,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
30110,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1511,
13,
2327,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1511,
13,
2327,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
6420,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21056,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3270,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3270,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
41234,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24356,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
4531,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
4531,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28174,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
807,
13,
5607,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
807,
13,
5607,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
5824,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
807,
13,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
807,
13,
1828,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
5333,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27778,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
1415,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
1415,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
3829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
6052,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
6052,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
3901,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27778,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
5333,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
5333,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
50038,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13108,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3510,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
25240,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18112,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3070,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
2682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3070,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24793,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
860,
13,
2931,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
860,
13,
2931,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27621,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
718,
13,
486,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
718,
13,
486,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
28687,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19710,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
33879,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
15136,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2919,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2919,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
2780,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23378,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
807,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
807,
13,
16,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27368,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
838,
13,
24,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
838,
13,
24,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
36561,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18693,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
22,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
3865,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
17031,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4521,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22613,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
1954,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
838,
3134,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27621,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
718,
13,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
718,
13,
18,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22855,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
15,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48868,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24652,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
4089,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
4089,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
31672,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
7388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1433,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22169,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
19,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
19,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
4349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1507,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1507,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
5824,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22909,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1558,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1558,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
1731,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
18,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
7337,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18112,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
3865,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
3865,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22855,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
718,
13,
2718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
718,
13,
2718,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1485,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23871,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
3553,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
3553,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45345,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20416,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2931,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2931,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
4570,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18693,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2998,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2998,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
3270,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
15136,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2425,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2425,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
24555,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21761,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4521,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
5607,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23871,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
1731,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
1731,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
28119,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25090,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
767,
13,
1485,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
767,
13,
1485,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
24555,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
3134,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
3134,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19710,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
3980,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
3980,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
2091,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24848,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1596,
13,
4089,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1596,
13,
4089,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2091,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1987,
13,
5332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1987,
13,
5332,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
4846,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28551,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
2713,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1105,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27253,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
2670,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
2670,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21643,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3070,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
40585,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
2078,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
2078,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27230,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
678,
13,
3324,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
678,
13,
3324,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
2079,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1467,
13,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1467,
13,
1433,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
4349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28174,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
2548,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
2548,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26422,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
5824,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
5824,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20708,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2998,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2998,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45959,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
11323,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2713,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
6659,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1367,
13,
486,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1367,
13,
486,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1105,
3980,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22538,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1315,
13,
3365,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1315,
13,
3365,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22986,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
5892,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
5892,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3134,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20299,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3559,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3559,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45021,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
24848,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
860,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
860,
13,
1495,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48391,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22169,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
767,
13,
20,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
767,
13,
20,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
5323,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21643,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
18,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
3388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
23871,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2857,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
1828,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
1065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
30110,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2998,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2998,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
2919,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25181,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
3510,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
3510,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3682,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26826,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
642,
13,
2075,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
642,
13,
2075,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1157,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1157,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
4869,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20248,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1415,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1415,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
36141,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
17501,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
2996,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
2996,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
43364,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20224,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
2999,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
5066,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26422,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
1983,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
1983,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25090,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
362,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
362,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
2623,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27408,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1467,
13,
3388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1467,
13,
3388,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3023,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20299,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
1495,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
2026,
21,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19755,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2079,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2079,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
4349,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27408,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
1314,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
1314,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26753,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
4304,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
4304,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
5125,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19035,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
18,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
18,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19048,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2624,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2624,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
48132,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20248,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2919,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2919,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
3388,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
1065,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
1065,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1248,
13,
5332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1248,
13,
5332,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
4524,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
20224,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
838,
13,
2931,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
838,
13,
2931,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
3720,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
1507,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
1507,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45469,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
13454,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
486,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
486,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
1315,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
31566,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1679,
13,
2718,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1679,
13,
2718,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
5333,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1248,
13,
5237,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1248,
13,
5237,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45095,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18112,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
513,
13,
6052,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
513,
13,
6052,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
604,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18112,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
604,
13,
486,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
604,
13,
486,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
4790,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
30483,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3695,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3695,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
4304,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
27829,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
5999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
5999,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
45900,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
18112,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2670,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2670,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
718,
1954,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
21409,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2791,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2791,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
3070,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26826,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
767,
5332,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26937,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
352,
13,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
352,
13,
2999,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
4521,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
26118,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1315,
13,
4761,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1315,
13,
4761,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
860,
2816,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
22538,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
1105,
13,
2816,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
1105,
13,
2816,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
47580,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
19035,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
2713,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
642,
2481,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
25500,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
657,
13,
3312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
657,
13,
3312,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
22510,
62,
17440,
62,
11201,
504,
507,
1298,
807,
1314,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
11578,
62,
13664,
1298,
28581,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
12947,
62,
2435,
1298,
2608,
13,
2816,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
23350,
62,
2435,
1298,
2608,
13,
2816,
198,
220,
220,
220,
1782,
198,
60,
198,
22510,
62,
2435,
5269,
796,
1315,
198,
22510,
62,
2435,
5269,
796,
657,
198,
22510,
62,
1676,
22143,
796,
23120,
198
] | 1.715698 | 12,237 |
import re
import ast
import operator
def literal_eval(node_or_string):
"""
Safely evaluate an expression node or a string containing a Python
expression. The string or node provided may only consist of the following
Python literal structures: strings, numbers, tuples, lists, dicts, booleans,
and None.
"""
_safe_names = {
'None': None,
'True': True,
'False': False,
'dict': dict,
'list': list,
'sorted': sorted
}
if isinstance(node_or_string, str):
node_or_string = parse(node_or_string, mode='eval')
if isinstance(node_or_string, ast.Expression):
node_or_string = node_or_string.body
return _convert(node_or_string)
if __name__ == '__main__':
signatures = '''
(1, 2, 3) more
(key='value') more
(**dict(key='value')) more
(*[1, 2, 3]) more
{:class => "code", :id => "message"} Hello
(class_='before %s after' % 'middle') hello
(data-crud=dict(id=34, url='/api')) crud goes here
(u'unicode!', b'bytes!')
(' '.join(['hello', 'there'])) after
([i for i in 'hello'])
'''.strip().splitlines()
for sig in signatures:
print sig
args, remaining = parse_args(sig[1:], {'(':')', '{':'}'}[sig[0]])
for key, source, root in args:
try:
value = literal_eval(root)
print '%s: %r' % (key, value)
except ValueError as e:
print '%s -> %s' % (key, e)
print repr(remaining), 'remains'
print
| [
11748,
302,
198,
11748,
6468,
198,
11748,
10088,
628,
628,
198,
4299,
18875,
62,
18206,
7,
17440,
62,
273,
62,
8841,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
19978,
306,
13446,
281,
5408,
10139,
393,
257,
4731,
7268,
257,
11361,
198,
220,
220,
220,
5408,
13,
220,
383,
4731,
393,
10139,
2810,
743,
691,
3473,
286,
262,
1708,
198,
220,
220,
220,
11361,
18875,
8573,
25,
13042,
11,
3146,
11,
12777,
2374,
11,
8341,
11,
8633,
82,
11,
1489,
2305,
504,
11,
198,
220,
220,
220,
290,
6045,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4808,
21230,
62,
14933,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
14202,
10354,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
17821,
10354,
6407,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
25101,
10354,
10352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
11600,
10354,
8633,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
4868,
10354,
1351,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
82,
9741,
10354,
23243,
198,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
318,
39098,
7,
17440,
62,
273,
62,
8841,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
273,
62,
8841,
796,
21136,
7,
17440,
62,
273,
62,
8841,
11,
4235,
11639,
18206,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
611,
318,
39098,
7,
17440,
62,
273,
62,
8841,
11,
6468,
13,
16870,
2234,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
10139,
62,
273,
62,
8841,
796,
10139,
62,
273,
62,
8841,
13,
2618,
198,
220,
220,
220,
1441,
4808,
1102,
1851,
7,
17440,
62,
273,
62,
8841,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
220,
198,
220,
220,
220,
17239,
796,
705,
7061,
198,
198,
7,
16,
11,
362,
11,
513,
8,
517,
198,
7,
2539,
11639,
8367,
11537,
517,
198,
7,
1174,
11600,
7,
2539,
11639,
8367,
6,
4008,
517,
198,
46491,
58,
16,
11,
362,
11,
513,
12962,
517,
198,
90,
25,
4871,
5218,
366,
8189,
1600,
1058,
312,
5218,
366,
20500,
20662,
18435,
198,
7,
4871,
62,
11639,
19052,
4064,
82,
706,
6,
4064,
705,
27171,
11537,
23748,
198,
7,
7890,
12,
6098,
463,
28,
11600,
7,
312,
28,
2682,
11,
19016,
11639,
14,
15042,
6,
4008,
1067,
463,
2925,
994,
198,
7,
84,
6,
46903,
1098,
0,
3256,
275,
6,
33661,
0,
11537,
198,
10786,
45302,
22179,
7,
17816,
31373,
3256,
705,
8117,
20520,
4008,
706,
198,
26933,
72,
329,
1312,
287,
705,
31373,
6,
12962,
198,
198,
7061,
4458,
36311,
22446,
35312,
6615,
3419,
198,
220,
220,
220,
329,
43237,
287,
17239,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
43237,
198,
220,
220,
220,
220,
220,
220,
220,
26498,
11,
5637,
796,
21136,
62,
22046,
7,
82,
328,
58,
16,
25,
4357,
1391,
6,
7,
10354,
11537,
3256,
705,
90,
10354,
6,
92,
6,
92,
58,
82,
328,
58,
15,
11907,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1994,
11,
2723,
11,
6808,
287,
26498,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
796,
18875,
62,
18206,
7,
15763,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
4,
82,
25,
4064,
81,
6,
4064,
357,
2539,
11,
1988,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
11052,
12331,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
4,
82,
4613,
4064,
82,
6,
4064,
357,
2539,
11,
304,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
41575,
7,
2787,
1397,
828,
705,
2787,
1299,
6,
198,
220,
220,
220,
220,
220,
220,
220,
3601,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198
] | 2.178771 | 716 |
from collections import OrderedDict
from sage.all import (operator, flatten, PolynomialRing, SR, QQ, ZZ, RR, sage, oo)
from vu_common import (pause, get_logger,is_iterable, is_str, is_empty)
is_sage_expr = lambda x: isinstance(x, sage.symbolic.expression.Expression)
is_sage_real = lambda x: isinstance(x, sage.rings.real_mpfr.RealLiteral)
is_sage_int = lambda x: isinstance(x, sage.rings.integer.Integer)
is_sage_num = lambda x: is_sage_real(x) or is_sage_int(x)
def is_sage_inf(x):
"""
Example:
sage: is_sage_inf(oo)
True
sage: is_sage_inf(-oo)
True
sage: is_sage_inf(oo+3)
True
sage: is_sage_inf(oo-3)
True
sage: is_sage_inf(SR(-oo))
True
sage: is_sage_inf(x)
False
sage: is_sage_inf(x+3)
False
sage: is_sage_inf(8)
False
"""
try:
return x.is_infinity()
except AttributeError:
return x == oo or x == -oo
is_sage_int_inf = lambda x: is_sage_int(x) or is_sage_inf(x)
to_sage_int = lambda x: x if is_sage_int(x) else ZZ(x)
def is_sage_symbol(s):
"""
sage: assert is_sage_symbol(x)
sage: assert not is_sage_symbol(x+1)
sage: assert not is_sage_symbol(1)
"""
try:
return s.is_symbol()
except AttributeError:
return False
def is_sage_rel(f, rel=None):
"""
sage: assert not is_sage_rel(7.2)
sage: assert not is_sage_rel(x)
sage: assert not is_sage_rel(x+7)
sage: assert is_sage_rel(x==3,operator.eq)
sage: assert is_sage_rel(x<=3,operator.le)
sage: assert not is_sage_rel(x<=3,operator.lt)
sage: assert not is_sage_rel(x+3,operator.lt)
sage: y = var('y')
sage: assert is_sage_rel(x+y<=3)
"""
try:
if not f.is_relational():
return False
if rel is None:
return True
else:
return f.operator() == rel
except AttributeError:
return False
is_sage_eq = lambda f: is_sage_rel(f, operator.eq)
def get_vars(ps):
"""
Returns a list of uniq variables from a list of properties
Examples:
sage: var('a b c x')
(a, b, c, x)
sage: assert [a, b, c, x] == get_vars([x^(a*b) + a**2+b+2==0, c**2-b==100, b**2 + c**2 + a**3>= 1])
sage: assert get_vars(a**2+b+5*c+2==0) == [a, b, c]
sage: assert get_vars(x+x^2) == [x]
sage: assert get_vars([3]) == []
sage: assert get_vars((3,'x + c',x+b)) == [b, x]
"""
ps = ps if is_iterable(ps) else [ps]
vs = flatten([p.variables() for p in ps if is_sage_expr(p)])
return sorted(set(vs), key=str)
def get_coefs_terms(p, base_ring = QQ, as_dict=False):
"""
Returns the Coefs and Terms of a given expression
Examples:
sage: assert get_coefs_terms(x) == ([1], [x])
sage: assert get_coefs_terms(x,as_dict=True) == {x: 1}
sage: var('a b c')
(a, b, c)
sage: assert get_coefs_terms(a**2+b+5*c+2==0) == ([1, 1, 5, 2], [a^2, b, c, 1])
sage: assert get_coefs_terms(a**2+b+5*c+2==0, as_dict=True) == {b: 1, 1: 2, a^2: 1, c: 5}
sage: assert get_coefs_terms(10/3*a**2+3*b+5*c+2) == ([10/3, 3, 5, 2], [a^2, b, c, 1])
sage: assert get_coefs_terms(10/3*a**2+3*b+5*c+2, as_dict=True) == {b: 3, 1: 2, a^2: 10/3, c: 5}
sage: assert get_coefs_terms(a+b<=3, as_dict=True) == {1: -3, b: 1, a: 1}
sage: assert all(is_sage_int(v) for v in get_coefs_terms(a+b<=3, as_dict=True, base_ring=ZZ).values())
#sage 6.2 breaks this
#sage: assert get_coefs_terms(a - b <= oo) == ([1, -1, -infinity], [a, b, 1])
sage: assert get_coefs_terms(SR(7), as_dict=True) == {1: 7}
sage: assert get_coefs_terms(SR(3))==([3], [1])
sage: assert get_coefs_terms(SR(oo))==([+Infinity], [1])
sage: assert get_coefs_terms(SR(-oo)) == ([-Infinity], [1])
sage: assert get_coefs_terms(a + b <= .9,base_ring=ZZ) == ([1, 1, -0.900000000000000], [a, b, 1])
sage: assert is_sage_int(get_coefs_terms(SR(7),base_ring=ZZ,as_dict=True).values()[0])
"""
use_wrong_base_ring = False
if is_sage_rel(p):
p = mk_rhs_0(p).lhs()
if p.is_integer() or p.is_real():
ts = [SR(1)]
cs = [p if p.is_infinity() else base_ring(p)]
else:
ss = get_vars(p)
assert not is_empty(ss), (p,ss)
mk_pr = lambda b, p: PolynomialRing(b, ss, None if len(ss) >= 2 else 1)(p)
try:
pr_p = mk_pr(base_ring, p)
except TypeError:
if base_ring == RR:
#if cannot do over RR then return None
return None
else:
#otherwise, try with RR
try:
pr_p = mk_pr(RR,p)
use_wrong_base_ring = True
except Exception as msg:
return None
cs = pr_p.coefficients()
ts = map(SR, pr_p.monomials())
if use_wrong_base_ring:
ts = [SR(1) if bool(t.is_one()) else t for t in ts]
cs_ = []
for c in cs:
if c == oo:
cs_.append(oo)
elif c == -oo:
cs_.append(-oo)
else:
try:
cs_.append(base_ring(c))
except ValueError:
cs_.append(c)
except TypeError:
cs_.append(c)
cs = cs_
assert all(is_sage_expr(t) for t in ts), ts
if as_dict:
d = OrderedDict()
for t,c in zip(ts,cs):
d[t] = c
return d
else:
return cs,ts
def mk_rhs_0(p):
"""
sage: var('x,y')
(x, y)
sage: mk_rhs_0(x - y >= 3)
x - y - 3 >= 0
sage: mk_rhs_0(x - y - 3 >= 0)
x - y - 3 >= 0
sage: mk_rhs_0(0 <= x - y - 3)
-x + y + 3 <= 0
sage: mk_rhs_0(0 == x)
-x == 0
sage: mk_rhs_0(10 == -x)
x + 10 == 0
#Sage 5.11 broke all these (i.e., broke lhs.add(..,hold=))
# sage: mk_rhs_0(x <= oo)
# x - Infinity <= 0
# sage: mk_rhs_0(x <= -oo)
# x + +Infinity <= 0
# sage: mk_rhs_0(x >= oo)
# x - Infinity >= 0
# sage: mk_rhs_0(oo >= x)
# +Infinity - x >= 0
sage: mk_rhs_0(x - y - 3)
Traceback (most recent call last):
...
AssertionError: x - y - 3
"""
assert is_sage_rel(p), p
rhs = p.rhs()
lhs = p.lhs()
if not rhs.is_zero():
lhs = lhs.add(-rhs, hold=(rhs.is_infinity() or lhs.is_infinity()))
rhs = 0
p = p.operator()(lhs, rhs)
return p
# def myreduce(op, ls):
# """
# Apply operator op to list of arguments
# Note, it seems the above arguments are *enough*, no need to implement for (-,div) etc because the function that calls this will break x - y to myreduce(op,[x,-y]) or x / y to myreduce(op,[x,1/y]) and 1/y => mul(1,y^{-1})
# sage: assert myreduce(operator.add, [x,x]) == 2*x
# sage: assert myreduce(operator.add, [3,x]) == x + 3
# sage: myreduce(operator.le, [3,x])
# 3 <= x
# sage: assert myreduce(operator.pow,[3,x]) == 3^x
# """
# if __debug__:
# assert len(ls) >= 2, ls
# assert op in [operator.add,operator.mul,
# operator.pow,operator.eq,operator.ne,
# operator.le,operator.lt,operator.ge,operator.gt], op
# return reduce(lambda a, b: op(a,b), ls[1:], ls[0])
# def mk_expr(expr, d, ring_typ=ZZ):
# """
# Make a new expression like expr but with all vars in expr replaced
# with those in dictionary d. Used when subs() is not applicable
# sage: y = var('y')
# sage: lp = MixedIntegerLinearProgram()
# sage: s0 = lp['s0']
# sage: s1 = lp['s1']
# sage: d = {x:s0,y:s1}
# sage: mk_expr(x+y+3, d)
# 3 + x_0 + x_1
# sage: mk_expr(x+y+3<=8,d)
# 3 + x_0 + x_1 <= 8
# sage: mk_expr(x==y+5,d)
# x_0 == 5 + x_1
# """
# def retval(expr):
# if is_sage_symbol(expr): #symbol, e.g. x
# return d[expr]
# else: #const , e.g. 3
# return ring_typ(expr)
# try:
# oprs = expr.operands()
# except AttributeError:
# #e.g. const 3, .5
# return retval(expr)
# if is_empty(oprs): #symbol
# return retval(expr)
# else:
# oprs = [mk_expr(o,d) for o in oprs]
# print oprs
# rs = myreduce(expr.operator(), oprs)
# return rs
if __name__ == "__main__":
import doctest
doctest.testmod()
| [
6738,
17268,
1330,
14230,
1068,
35,
713,
198,
6738,
35021,
13,
439,
1330,
357,
46616,
11,
27172,
268,
11,
12280,
26601,
498,
39687,
11,
16808,
11,
1195,
48,
11,
1168,
57,
11,
26067,
11,
35021,
11,
267,
78,
8,
198,
6738,
410,
84,
62,
11321,
1330,
357,
32125,
11,
651,
62,
6404,
1362,
11,
271,
62,
2676,
540,
11,
318,
62,
2536,
11,
318,
62,
28920,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
271,
62,
82,
496,
62,
31937,
796,
37456,
2124,
25,
318,
39098,
7,
87,
11,
35021,
13,
1837,
2022,
4160,
13,
38011,
13,
16870,
2234,
8,
198,
271,
62,
82,
496,
62,
5305,
796,
37456,
2124,
25,
318,
39098,
7,
87,
11,
35021,
13,
33173,
13,
5305,
62,
3149,
8310,
13,
15633,
43,
270,
1691,
8,
198,
271,
62,
82,
496,
62,
600,
796,
37456,
2124,
25,
318,
39098,
7,
87,
11,
35021,
13,
33173,
13,
41433,
13,
46541,
8,
198,
271,
62,
82,
496,
62,
22510,
796,
37456,
2124,
25,
318,
62,
82,
496,
62,
5305,
7,
87,
8,
393,
318,
62,
82,
496,
62,
600,
7,
87,
8,
198,
4299,
318,
62,
82,
496,
62,
10745,
7,
87,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
17934,
25,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
2238,
8,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
32590,
2238,
8,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
2238,
10,
18,
8,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
2238,
12,
18,
8,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
12562,
32590,
2238,
4008,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
87,
8,
198,
220,
220,
220,
10352,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
87,
10,
18,
8,
198,
220,
220,
220,
10352,
198,
220,
220,
220,
35021,
25,
318,
62,
82,
496,
62,
10745,
7,
23,
8,
198,
220,
220,
220,
10352,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2124,
13,
271,
62,
10745,
6269,
3419,
198,
220,
220,
220,
2845,
3460,
4163,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2124,
6624,
267,
78,
393,
2124,
6624,
532,
2238,
198,
198,
271,
62,
82,
496,
62,
600,
62,
10745,
796,
37456,
2124,
25,
318,
62,
82,
496,
62,
600,
7,
87,
8,
393,
318,
62,
82,
496,
62,
10745,
7,
87,
8,
198,
1462,
62,
82,
496,
62,
600,
796,
37456,
2124,
25,
2124,
611,
318,
62,
82,
496,
62,
600,
7,
87,
8,
2073,
1168,
57,
7,
87,
8,
628,
198,
4299,
318,
62,
82,
496,
62,
1837,
23650,
7,
82,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
35021,
25,
6818,
318,
62,
82,
496,
62,
1837,
23650,
7,
87,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
1837,
23650,
7,
87,
10,
16,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
1837,
23650,
7,
16,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
264,
13,
271,
62,
1837,
23650,
3419,
198,
220,
220,
220,
2845,
3460,
4163,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
198,
4299,
318,
62,
82,
496,
62,
2411,
7,
69,
11,
823,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
2411,
7,
22,
13,
17,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
2411,
7,
87,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
2411,
7,
87,
10,
22,
8,
198,
220,
220,
220,
35021,
25,
6818,
318,
62,
82,
496,
62,
2411,
7,
87,
855,
18,
11,
46616,
13,
27363,
8,
628,
220,
220,
220,
35021,
25,
6818,
318,
62,
82,
496,
62,
2411,
7,
87,
27,
28,
18,
11,
46616,
13,
293,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
2411,
7,
87,
27,
28,
18,
11,
46616,
13,
2528,
8,
198,
220,
220,
220,
35021,
25,
6818,
407,
318,
62,
82,
496,
62,
2411,
7,
87,
10,
18,
11,
46616,
13,
2528,
8,
628,
220,
220,
220,
35021,
25,
331,
796,
1401,
10786,
88,
11537,
198,
220,
220,
220,
35021,
25,
6818,
318,
62,
82,
496,
62,
2411,
7,
87,
10,
88,
27,
28,
18,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
407,
277,
13,
271,
62,
2411,
864,
33529,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
611,
823,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
277,
13,
46616,
3419,
6624,
823,
628,
220,
220,
220,
2845,
3460,
4163,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
271,
62,
82,
496,
62,
27363,
796,
37456,
277,
25,
318,
62,
82,
496,
62,
2411,
7,
69,
11,
10088,
13,
27363,
8,
198,
198,
4299,
651,
62,
85,
945,
7,
862,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
257,
1351,
286,
555,
25011,
9633,
422,
257,
1351,
286,
6608,
628,
220,
220,
220,
21066,
25,
628,
220,
220,
220,
35021,
25,
1401,
10786,
64,
275,
269,
2124,
11537,
198,
220,
220,
220,
357,
64,
11,
275,
11,
269,
11,
2124,
8,
628,
220,
220,
220,
35021,
25,
6818,
685,
64,
11,
275,
11,
269,
11,
2124,
60,
6624,
651,
62,
85,
945,
26933,
87,
61,
7,
64,
9,
65,
8,
1343,
257,
1174,
17,
10,
65,
10,
17,
855,
15,
11,
269,
1174,
17,
12,
65,
855,
3064,
11,
275,
1174,
17,
1343,
269,
1174,
17,
1343,
257,
1174,
18,
29,
28,
352,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
85,
945,
7,
64,
1174,
17,
10,
65,
10,
20,
9,
66,
10,
17,
855,
15,
8,
6624,
685,
64,
11,
275,
11,
269,
60,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
85,
945,
7,
87,
10,
87,
61,
17,
8,
6624,
685,
87,
60,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
85,
945,
26933,
18,
12962,
6624,
17635,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
85,
945,
19510,
18,
4032,
87,
1343,
269,
3256,
87,
10,
65,
4008,
6624,
685,
65,
11,
2124,
60,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
26692,
796,
26692,
611,
318,
62,
2676,
540,
7,
862,
8,
2073,
685,
862,
60,
628,
220,
220,
220,
3691,
796,
27172,
268,
26933,
79,
13,
25641,
2977,
3419,
329,
279,
287,
26692,
611,
318,
62,
82,
496,
62,
31937,
7,
79,
8,
12962,
628,
220,
220,
220,
1441,
23243,
7,
2617,
7,
14259,
828,
1994,
28,
2536,
8,
628,
198,
4299,
651,
62,
1073,
891,
82,
62,
38707,
7,
79,
11,
2779,
62,
1806,
796,
1195,
48,
11,
355,
62,
11600,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
262,
1766,
891,
82,
290,
17637,
286,
257,
1813,
5408,
628,
220,
220,
220,
21066,
25,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
87,
8,
6624,
29565,
16,
4357,
685,
87,
12962,
628,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
87,
11,
292,
62,
11600,
28,
17821,
8,
6624,
1391,
87,
25,
352,
92,
628,
220,
220,
220,
35021,
25,
1401,
10786,
64,
275,
269,
11537,
198,
220,
220,
220,
357,
64,
11,
275,
11,
269,
8,
628,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
1174,
17,
10,
65,
10,
20,
9,
66,
10,
17,
855,
15,
8,
6624,
29565,
16,
11,
352,
11,
642,
11,
362,
4357,
685,
64,
61,
17,
11,
275,
11,
269,
11,
352,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
1174,
17,
10,
65,
10,
20,
9,
66,
10,
17,
855,
15,
11,
355,
62,
11600,
28,
17821,
8,
6624,
1391,
65,
25,
352,
11,
352,
25,
362,
11,
257,
61,
17,
25,
352,
11,
269,
25,
642,
92,
628,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
940,
14,
18,
9,
64,
1174,
17,
10,
18,
9,
65,
10,
20,
9,
66,
10,
17,
8,
6624,
29565,
940,
14,
18,
11,
513,
11,
642,
11,
362,
4357,
685,
64,
61,
17,
11,
275,
11,
269,
11,
352,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
940,
14,
18,
9,
64,
1174,
17,
10,
18,
9,
65,
10,
20,
9,
66,
10,
17,
11,
355,
62,
11600,
28,
17821,
8,
6624,
1391,
65,
25,
513,
11,
352,
25,
362,
11,
257,
61,
17,
25,
838,
14,
18,
11,
269,
25,
642,
92,
628,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
10,
65,
27,
28,
18,
11,
355,
62,
11600,
28,
17821,
8,
6624,
1391,
16,
25,
532,
18,
11,
275,
25,
352,
11,
257,
25,
352,
92,
198,
220,
220,
220,
35021,
25,
6818,
477,
7,
271,
62,
82,
496,
62,
600,
7,
85,
8,
329,
410,
287,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
10,
65,
27,
28,
18,
11,
355,
62,
11600,
28,
17821,
11,
2779,
62,
1806,
28,
30148,
737,
27160,
28955,
628,
220,
220,
220,
1303,
82,
496,
718,
13,
17,
9457,
428,
198,
220,
220,
220,
1303,
82,
496,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
532,
275,
19841,
267,
78,
8,
6624,
29565,
16,
11,
532,
16,
11,
532,
10745,
6269,
4357,
685,
64,
11,
275,
11,
352,
12962,
628,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
12562,
7,
22,
828,
355,
62,
11600,
28,
17821,
8,
6624,
1391,
16,
25,
767,
92,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
12562,
7,
18,
4008,
855,
26933,
18,
4357,
685,
16,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
12562,
7,
2238,
4008,
855,
26933,
10,
18943,
6269,
4357,
685,
16,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
12562,
32590,
2238,
4008,
6624,
220,
29565,
12,
18943,
6269,
4357,
685,
16,
12962,
198,
220,
220,
220,
35021,
25,
6818,
651,
62,
1073,
891,
82,
62,
38707,
7,
64,
1343,
275,
19841,
764,
24,
11,
8692,
62,
1806,
28,
30148,
8,
6624,
29565,
16,
11,
352,
11,
532,
15,
13,
24,
8269,
10535,
4357,
685,
64,
11,
275,
11,
352,
12962,
198,
220,
220,
220,
220,
198,
220,
220,
220,
35021,
25,
6818,
318,
62,
82,
496,
62,
600,
7,
1136,
62,
1073,
891,
82,
62,
38707,
7,
12562,
7,
22,
828,
8692,
62,
1806,
28,
30148,
11,
292,
62,
11600,
28,
17821,
737,
27160,
3419,
58,
15,
12962,
628,
220,
220,
220,
37227,
628,
220,
220,
220,
779,
62,
36460,
62,
8692,
62,
1806,
796,
10352,
628,
220,
220,
220,
611,
318,
62,
82,
496,
62,
2411,
7,
79,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
33480,
62,
81,
11994,
62,
15,
7,
79,
737,
75,
11994,
3419,
628,
220,
220,
220,
611,
279,
13,
271,
62,
41433,
3419,
393,
279,
13,
271,
62,
5305,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
40379,
796,
685,
12562,
7,
16,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
50115,
796,
685,
79,
611,
279,
13,
271,
62,
10745,
6269,
3419,
2073,
2779,
62,
1806,
7,
79,
15437,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37786,
796,
651,
62,
85,
945,
7,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
407,
318,
62,
28920,
7,
824,
828,
357,
79,
11,
824,
8,
628,
220,
220,
220,
220,
220,
220,
220,
33480,
62,
1050,
796,
37456,
275,
11,
279,
25,
12280,
26601,
498,
39687,
7,
65,
11,
37786,
11,
6045,
611,
18896,
7,
824,
8,
18189,
362,
2073,
352,
5769,
79,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
778,
62,
79,
796,
33480,
62,
1050,
7,
8692,
62,
1806,
11,
279,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
5994,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2779,
62,
1806,
6624,
26067,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
361,
2314,
466,
625,
26067,
788,
1441,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
847,
3083,
11,
1949,
351,
26067,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
778,
62,
79,
796,
33480,
62,
1050,
7,
21095,
11,
79,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
779,
62,
36460,
62,
8692,
62,
1806,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
31456,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
50115,
796,
778,
62,
79,
13,
1073,
41945,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
40379,
796,
3975,
7,
12562,
11,
778,
62,
79,
13,
2144,
296,
8231,
28955,
628,
198,
220,
220,
220,
220,
220,
220,
220,
611,
779,
62,
36460,
62,
8692,
62,
1806,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40379,
796,
685,
12562,
7,
16,
8,
611,
20512,
7,
83,
13,
271,
62,
505,
28955,
2073,
256,
329,
256,
287,
40379,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
62,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
269,
287,
50115,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
269,
6624,
267,
78,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
44807,
33295,
7,
2238,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
269,
6624,
532,
2238,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
44807,
33295,
32590,
2238,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
44807,
33295,
7,
8692,
62,
1806,
7,
66,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
11052,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
44807,
33295,
7,
66,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
5994,
12331,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
44807,
33295,
7,
66,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
50115,
796,
50115,
62,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
477,
7,
271,
62,
82,
496,
62,
31937,
7,
83,
8,
329,
256,
287,
40379,
828,
40379,
628,
220,
220,
220,
611,
355,
62,
11600,
25,
198,
220,
220,
220,
220,
220,
220,
220,
288,
796,
14230,
1068,
35,
713,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
329,
256,
11,
66,
287,
19974,
7,
912,
11,
6359,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
288,
58,
83,
60,
796,
269,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
288,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
50115,
11,
912,
628,
198,
4299,
33480,
62,
81,
11994,
62,
15,
7,
79,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
35021,
25,
1401,
10786,
87,
11,
88,
11537,
198,
220,
220,
220,
357,
87,
11,
331,
8,
198,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
532,
331,
220,
18189,
513,
8,
198,
220,
220,
220,
2124,
532,
331,
532,
513,
18189,
657,
628,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
532,
331,
220,
532,
513,
18189,
657,
8,
198,
220,
220,
220,
2124,
532,
331,
532,
513,
18189,
657,
628,
198,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
15,
19841,
2124,
532,
331,
532,
513,
8,
198,
220,
220,
220,
532,
87,
1343,
331,
1343,
513,
19841,
657,
628,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
15,
6624,
2124,
8,
198,
220,
220,
220,
532,
87,
6624,
657,
628,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
940,
6624,
532,
87,
8,
198,
220,
220,
220,
2124,
1343,
838,
6624,
657,
628,
220,
220,
220,
1303,
50,
496,
642,
13,
1157,
6265,
477,
777,
357,
72,
13,
68,
1539,
6265,
300,
11994,
13,
2860,
7,
492,
11,
2946,
28,
4008,
198,
220,
220,
220,
1303,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
19841,
267,
78,
8,
198,
220,
220,
220,
1303,
2124,
532,
22385,
19841,
657,
628,
220,
220,
220,
1303,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
19841,
532,
2238,
8,
198,
220,
220,
220,
1303,
2124,
1343,
1343,
18943,
6269,
19841,
657,
628,
220,
220,
220,
1303,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
18189,
267,
78,
8,
198,
220,
220,
220,
1303,
2124,
532,
22385,
18189,
657,
628,
220,
220,
220,
1303,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
2238,
18189,
2124,
8,
198,
220,
220,
220,
1303,
1343,
18943,
6269,
532,
2124,
18189,
657,
628,
220,
220,
220,
35021,
25,
33480,
62,
81,
11994,
62,
15,
7,
87,
532,
331,
532,
513,
8,
198,
220,
220,
220,
34912,
1891,
357,
1712,
2274,
869,
938,
2599,
198,
220,
220,
220,
2644,
198,
220,
220,
220,
2195,
861,
295,
12331,
25,
2124,
532,
331,
532,
513,
628,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6818,
318,
62,
82,
496,
62,
2411,
7,
79,
828,
279,
628,
220,
220,
220,
9529,
82,
796,
279,
13,
81,
11994,
3419,
198,
220,
220,
220,
300,
11994,
796,
279,
13,
75,
11994,
3419,
198,
220,
220,
220,
611,
407,
9529,
82,
13,
271,
62,
22570,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
300,
11994,
796,
300,
11994,
13,
2860,
32590,
81,
11994,
11,
1745,
16193,
81,
11994,
13,
271,
62,
10745,
6269,
3419,
393,
300,
11994,
13,
271,
62,
10745,
6269,
3419,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
9529,
82,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
279,
796,
279,
13,
46616,
3419,
7,
75,
11994,
11,
9529,
82,
8,
628,
220,
220,
220,
1441,
279,
628,
198,
2,
825,
616,
445,
7234,
7,
404,
11,
43979,
2599,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
27967,
10088,
1034,
284,
1351,
286,
7159,
198,
198,
2,
220,
220,
220,
220,
5740,
11,
340,
2331,
262,
2029,
7159,
389,
1635,
48229,
25666,
645,
761,
284,
3494,
329,
13841,
11,
7146,
8,
3503,
780,
262,
2163,
326,
3848,
428,
481,
2270,
220,
2124,
532,
331,
284,
616,
445,
7234,
7,
404,
17414,
87,
12095,
88,
12962,
393,
220,
2124,
1220,
331,
284,
616,
445,
7234,
7,
404,
17414,
87,
11,
16,
14,
88,
12962,
290,
352,
14,
88,
5218,
220,
35971,
7,
16,
11,
88,
36796,
12,
16,
30072,
198,
198,
2,
220,
220,
220,
220,
35021,
25,
6818,
616,
445,
7234,
7,
46616,
13,
2860,
11,
685,
87,
11,
87,
12962,
6624,
362,
9,
87,
198,
2,
220,
220,
220,
220,
35021,
25,
6818,
616,
445,
7234,
7,
46616,
13,
2860,
11,
685,
18,
11,
87,
12962,
6624,
2124,
1343,
513,
198,
2,
220,
220,
220,
220,
35021,
25,
616,
445,
7234,
7,
46616,
13,
293,
11,
685,
18,
11,
87,
12962,
198,
2,
220,
220,
220,
220,
513,
19841,
2124,
198,
2,
220,
220,
220,
220,
35021,
25,
6818,
616,
445,
7234,
7,
46616,
13,
79,
322,
17414,
18,
11,
87,
12962,
6624,
513,
61,
87,
628,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
611,
11593,
24442,
834,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
18896,
7,
7278,
8,
18189,
362,
11,
43979,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
1034,
287,
685,
46616,
13,
2860,
11,
46616,
13,
76,
377,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10088,
13,
79,
322,
11,
46616,
13,
27363,
11,
46616,
13,
710,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10088,
13,
293,
11,
46616,
13,
2528,
11,
46616,
13,
469,
11,
46616,
13,
13655,
4357,
1034,
198,
2,
220,
220,
220,
220,
1441,
4646,
7,
50033,
257,
11,
275,
25,
1034,
7,
64,
11,
65,
828,
43979,
58,
16,
25,
4357,
43979,
58,
15,
12962,
628,
198,
198,
2,
825,
33480,
62,
31937,
7,
31937,
11,
288,
11,
5858,
62,
28004,
28,
30148,
2599,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
6889,
257,
649,
5408,
588,
44052,
475,
351,
477,
410,
945,
287,
44052,
6928,
198,
2,
220,
220,
220,
220,
351,
883,
287,
22155,
288,
13,
16718,
618,
6352,
3419,
318,
407,
9723,
198,
2,
220,
220,
220,
220,
35021,
25,
331,
796,
1401,
10786,
88,
11537,
198,
198,
2,
220,
220,
220,
220,
35021,
25,
300,
79,
796,
35250,
46541,
14993,
451,
15167,
3419,
198,
2,
220,
220,
220,
220,
35021,
25,
264,
15,
796,
300,
79,
17816,
82,
15,
20520,
198,
2,
220,
220,
220,
220,
35021,
25,
264,
16,
796,
300,
79,
17816,
82,
16,
20520,
198,
2,
220,
220,
220,
220,
35021,
25,
288,
796,
1391,
87,
25,
82,
15,
11,
88,
25,
82,
16,
92,
198,
2,
220,
220,
220,
220,
35021,
25,
33480,
62,
31937,
7,
87,
10,
88,
10,
18,
11,
288,
8,
198,
2,
220,
220,
220,
220,
513,
1343,
2124,
62,
15,
1343,
2124,
62,
16,
198,
2,
220,
220,
220,
220,
35021,
25,
33480,
62,
31937,
7,
87,
10,
88,
10,
18,
27,
28,
23,
11,
67,
8,
198,
2,
220,
220,
220,
220,
513,
1343,
2124,
62,
15,
1343,
2124,
62,
16,
19841,
807,
198,
2,
220,
220,
220,
220,
35021,
25,
33480,
62,
31937,
7,
87,
855,
88,
10,
20,
11,
67,
8,
198,
2,
220,
220,
220,
220,
2124,
62,
15,
6624,
642,
1343,
2124,
62,
16,
198,
2,
220,
220,
220,
220,
37227,
198,
2,
220,
220,
220,
220,
825,
1005,
2100,
7,
31937,
2599,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
62,
82,
496,
62,
1837,
23650,
7,
31937,
2599,
220,
1303,
1837,
23650,
11,
304,
13,
70,
13,
2124,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
288,
58,
31937,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
1303,
9979,
837,
304,
13,
70,
13,
513,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
5858,
62,
28004,
7,
31937,
8,
198,
2,
220,
220,
220,
220,
1949,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
3808,
796,
44052,
13,
3575,
1746,
3419,
198,
2,
220,
220,
220,
220,
2845,
3460,
4163,
12331,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
68,
13,
70,
13,
1500,
513,
11,
764,
20,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1005,
2100,
7,
31937,
8,
198,
198,
2,
220,
220,
220,
220,
611,
318,
62,
28920,
7,
404,
3808,
2599,
1303,
1837,
23650,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
1005,
2100,
7,
31937,
8,
198,
2,
220,
220,
220,
220,
2073,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1034,
3808,
796,
685,
28015,
62,
31937,
7,
78,
11,
67,
8,
329,
267,
287,
1034,
3808,
60,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
1034,
3808,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
44608,
796,
616,
445,
7234,
7,
31937,
13,
46616,
22784,
1034,
3808,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
44608,
628,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1330,
10412,
395,
198,
220,
220,
220,
10412,
395,
13,
9288,
4666,
3419,
198
] | 1.88061 | 4,523 |
from .read import read_axivity, read_geneactiv
from .gt3x_convert import read_gt3x
__all__ = ("read_axivity", "read_geneactiv", "read_gt3x")
| [
6738,
764,
961,
1330,
1100,
62,
897,
3458,
11,
1100,
62,
70,
1734,
15791,
198,
6738,
764,
13655,
18,
87,
62,
1102,
1851,
1330,
1100,
62,
13655,
18,
87,
198,
198,
834,
439,
834,
796,
5855,
961,
62,
897,
3458,
1600,
366,
961,
62,
70,
1734,
15791,
1600,
366,
961,
62,
13655,
18,
87,
4943,
198
] | 2.535714 | 56 |
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import models, migrations
from django.conf import settings
import django.contrib.gis.db.models.fields
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
11593,
37443,
834,
1330,
28000,
1098,
62,
17201,
874,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
4981,
11,
15720,
602,
198,
6738,
42625,
14208,
13,
10414,
1330,
6460,
198,
11748,
42625,
14208,
13,
3642,
822,
13,
70,
271,
13,
9945,
13,
27530,
13,
25747,
628
] | 3 | 61 |
import setuptools
import json
with open("README.rst", "r") as fh:
long_description = fh.read()
with open('pipeline_description.json', 'r') as fh:
pipeline = json.load(fh)
name = pipeline['GeneratedBy'][0]['Name']
description = pipeline['Name']
version = pipeline['GeneratedBy'][0]['Version']
url = pipeline['GeneratedBy'][0]['CodeURL']
author = pipeline['GeneratedBy'][0]['Author']
author_email = pipeline['GeneratedBy'][0]['AuthorEmail']
setuptools.setup(
name=name,
version=version,
author=author,
author_email=author_email,
description=description,
long_description=long_description,
long_description_content_type="text/x-rst",
url=url,
packages=setuptools.find_packages(),
include_package_data=True,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
entry_points={'console_scripts': [
'{{cookiecutter.app_name}}={{cookiecutter.app_name}}.run:main'
]},
install_requires=[
"snakebids>={{cookiecutter.snakebids_version}}",
"snakemake"
],
python_requires='>=3.7'
)
| [
11748,
900,
37623,
10141,
198,
11748,
33918,
198,
198,
4480,
1280,
7203,
15675,
11682,
13,
81,
301,
1600,
366,
81,
4943,
355,
277,
71,
25,
198,
220,
220,
220,
890,
62,
11213,
796,
277,
71,
13,
961,
3419,
198,
198,
4480,
1280,
10786,
79,
541,
4470,
62,
11213,
13,
17752,
3256,
705,
81,
11537,
355,
277,
71,
25,
198,
220,
220,
220,
11523,
796,
33918,
13,
2220,
7,
69,
71,
8,
198,
220,
220,
220,
1438,
796,
11523,
17816,
8645,
515,
3886,
6,
7131,
15,
7131,
6,
5376,
20520,
198,
220,
220,
220,
6764,
796,
11523,
17816,
5376,
20520,
198,
220,
220,
220,
2196,
796,
11523,
17816,
8645,
515,
3886,
6,
7131,
15,
7131,
6,
14815,
20520,
198,
220,
220,
220,
19016,
796,
11523,
17816,
8645,
515,
3886,
6,
7131,
15,
7131,
6,
10669,
21886,
20520,
198,
220,
220,
220,
1772,
796,
11523,
17816,
8645,
515,
3886,
6,
7131,
15,
7131,
6,
13838,
20520,
198,
220,
220,
220,
1772,
62,
12888,
796,
11523,
17816,
8645,
515,
3886,
6,
7131,
15,
7131,
6,
13838,
15333,
20520,
198,
220,
198,
2617,
37623,
10141,
13,
40406,
7,
198,
220,
220,
220,
1438,
28,
3672,
11,
198,
220,
220,
220,
2196,
28,
9641,
11,
198,
220,
220,
220,
1772,
28,
9800,
11,
198,
220,
220,
220,
1772,
62,
12888,
28,
9800,
62,
12888,
11,
198,
220,
220,
220,
6764,
28,
11213,
11,
198,
220,
220,
220,
890,
62,
11213,
28,
6511,
62,
11213,
11,
198,
220,
220,
220,
890,
62,
11213,
62,
11299,
62,
4906,
2625,
5239,
14,
87,
12,
81,
301,
1600,
198,
220,
220,
220,
19016,
28,
6371,
11,
198,
220,
220,
220,
10392,
28,
2617,
37623,
10141,
13,
19796,
62,
43789,
22784,
198,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
1398,
13350,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15167,
2229,
15417,
7904,
11361,
7904,
513,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
34156,
7904,
7294,
40,
20010,
1079,
7904,
17168,
13789,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18843,
803,
4482,
7904,
7294,
13362,
1600,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
5726,
62,
13033,
34758,
6,
41947,
62,
46521,
10354,
685,
198,
220,
220,
220,
220,
220,
220,
220,
705,
27007,
44453,
8968,
353,
13,
1324,
62,
3672,
11709,
28,
27007,
44453,
8968,
353,
13,
1324,
62,
3672,
11709,
13,
5143,
25,
12417,
6,
198,
220,
220,
220,
2361,
5512,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
16184,
539,
65,
2340,
29,
28,
27007,
44453,
8968,
353,
13,
16184,
539,
65,
2340,
62,
9641,
11709,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
16184,
539,
15883,
1,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
21015,
62,
47911,
11639,
29,
28,
18,
13,
22,
6,
198,
8,
198
] | 2.50104 | 481 |
from pymooCFD.setupOpt import checkpointFile, dataDir, nCP, archDir, \
preProcDir, cluster
from pymooCFD.util.sysTools import removeDir #, makeDir, emptyDir
from pymooCFD.setupCFD import runCase
import numpy as np
import time
import os
import tarfile
from dask.distributed import Client
from sys import exit
# def getGen(checkpointFile=checkpointFile):
# try:
# loadCP(checkpointFile=checkpointFile)
# except FileNotFoundError as err:
# print(err)
# return 0
# def popGen(gen, checkpointFile=checkpointFile):
# '''
# Parameters
# ----------
# gen : int
# generation you wish to get population from
# checkpointFile : str, optional
# checkpoint file path where Algorithm object was saved using numpy.save().
# The default is checkpointFile (defined in beginning of setupOpt.py).
# Returns
# -------
# pop :
# Contains StaticProblem object with population of individuals from
# generation <gen>.
# Notes
# -----
# - development needed to handle constraints
# '''
# alg = loadCP(checkpointFile=checkpointFile)
# X = alg.callback.data['var'][gen]
# F = alg.callback.data['obj'][gen]
# from pymoo.model.evaluator import Evaluator
# from pymoo.model.population import Population
# from pymoo.model.problem import StaticProblem
# # now the population object with all its attributes is created (CV, feasible, ...)
# pop = Population.new("X", X)
# pop = Evaluator().eval(StaticProblem(problem, F=F), pop) # , G=G), pop)
# return pop, alg
# def loadTxt(fileX, fileF, fileG=None):
# print(f'Loading population from files {fileX} and {fileF}...')
# X = np.loadtxt(fileX)
# F = np.loadtxt(fileF)
# # F = np.loadtxt(f'{dataDir}/{fileF}')
# if fileG is not None:
# # G = np.loadtxt(f'{dataDir}/{fileG}')
# G = np.loadtxt(fileG)
# else:
# G = None
# from pymoo.model.evaluator import Evaluator
# from pymoo.model.population import Population
# from pymoo.model.problem import StaticProblem
# # now the population object with all its attributes is created (CV, feasible, ...)
# pop = Population.new("X", X)
# pop = Evaluator().eval(StaticProblem(problem, F=F, G=G), pop)
# from pymooCFD.setupOpt import pop_size
# # from pymoo.algorithms.so_genetic_algorithm import GA
# # # the algorithm is now called with the population - biased initialization
# # algorithm = GA(pop_size=pop_size, sampling=pop)
# from pymoo.algorithms.nsga2 import NSGA2
# algorithm = NSGA2(pop_size=pop_size, sampling=pop)
# return algorithm
# def restartGen(gen, checkpointFile=checkpointFile):
# pop, alg = popGen(gen, checkpointFile=checkpointFile)
# alg.sampling()
# # from pymoo.algorithms.so_genetic_algorithm import GA
# # the algorithm is now called with the population - biased initialization
# # algorithm = GA(pop_size=100, sampling=pop)
# from pymoo.optimize import minimize
# from pymooCFD.setupOpt import problem
# res = minimize(problem,
# alg,
# ('n_gen', 10),
# seed=1,
# verbose=True)
# return res
# def loadTxt():
# try:
# print('Loading from text files')
# X = np.loadtxt('var.txt')
# F = np.loadtxt('obj.txt')
# except OSError as err:
# print(err)
# print('Failed to load text files')
# print('Data loading failed returning "None, None"...')
# return None, None
# def archive(dirName, archName = 'archive.tar.gz'):
# with tarfile.open(archName, 'a') as tar:
# tar.add(dirName)
# compressDir('../../dump')
# print('creating archive')
# out = tarfile.open('example.tar.gz', mode='a')
# try:
# print('adding README.txt')
# out.add('../dump')
# finally:
# print('closing tar archive')
# out.close()
#
# print('Contents of archived file:')
# t = tarfile.open('example.tar.gz', 'r')
# for member in t.getmembers():
# print(member.name)
| [
6738,
279,
4948,
2238,
22495,
35,
13,
40406,
27871,
1330,
26954,
8979,
11,
1366,
35277,
11,
299,
8697,
11,
3934,
35277,
11,
3467,
198,
220,
220,
220,
662,
2964,
66,
35277,
11,
13946,
198,
6738,
279,
4948,
2238,
22495,
35,
13,
22602,
13,
17597,
33637,
1330,
4781,
35277,
1303,
11,
787,
35277,
11,
6565,
35277,
198,
6738,
279,
4948,
2238,
22495,
35,
13,
40406,
22495,
35,
1330,
1057,
20448,
628,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
640,
198,
11748,
28686,
198,
11748,
13422,
7753,
198,
6738,
288,
2093,
13,
17080,
6169,
1330,
20985,
198,
198,
6738,
25064,
1330,
8420,
628,
198,
2,
825,
651,
13746,
7,
9122,
4122,
8979,
28,
9122,
4122,
8979,
2599,
198,
2,
220,
220,
220,
220,
1949,
25,
220,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3440,
8697,
7,
9122,
4122,
8979,
28,
9122,
4122,
8979,
8,
198,
2,
220,
220,
220,
220,
2845,
9220,
3673,
21077,
12331,
355,
11454,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
8056,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
657,
628,
628,
628,
628,
198,
198,
2,
825,
1461,
13746,
7,
5235,
11,
26954,
8979,
28,
9122,
4122,
8979,
2599,
198,
2,
220,
220,
220,
220,
705,
7061,
198,
198,
2,
220,
220,
220,
220,
40117,
198,
2,
220,
220,
220,
220,
24200,
438,
198,
2,
220,
220,
220,
220,
2429,
1058,
493,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
5270,
345,
4601,
284,
651,
3265,
422,
198,
2,
220,
220,
220,
220,
26954,
8979,
1058,
965,
11,
11902,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
26954,
2393,
3108,
810,
978,
42289,
2134,
373,
7448,
1262,
299,
32152,
13,
21928,
22446,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
383,
4277,
318,
26954,
8979,
357,
23211,
287,
3726,
286,
9058,
27871,
13,
9078,
737,
198,
198,
2,
220,
220,
220,
220,
16409,
198,
2,
220,
220,
220,
220,
35656,
198,
2,
220,
220,
220,
220,
1461,
1058,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
49850,
36125,
40781,
2134,
351,
3265,
286,
3925,
422,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
5270,
1279,
5235,
28401,
198,
198,
2,
220,
220,
220,
220,
11822,
198,
2,
220,
220,
220,
220,
37404,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
532,
2478,
2622,
284,
5412,
17778,
198,
2,
220,
220,
220,
220,
705,
7061,
198,
2,
220,
220,
220,
220,
435,
70,
796,
3440,
8697,
7,
9122,
4122,
8979,
28,
9122,
4122,
8979,
8,
198,
2,
220,
220,
220,
220,
1395,
796,
435,
70,
13,
47423,
13,
7890,
17816,
7785,
6,
7131,
5235,
60,
198,
2,
220,
220,
220,
220,
376,
796,
435,
70,
13,
47423,
13,
7890,
17816,
26801,
6,
7131,
5235,
60,
198,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
18206,
84,
1352,
1330,
26439,
84,
1352,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
39748,
1330,
20133,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
45573,
1330,
36125,
40781,
198,
2,
220,
220,
220,
220,
1303,
783,
262,
3265,
2134,
351,
477,
663,
12608,
318,
2727,
357,
33538,
11,
23498,
11,
2644,
8,
198,
2,
220,
220,
220,
220,
1461,
796,
20133,
13,
3605,
7203,
55,
1600,
1395,
8,
198,
2,
220,
220,
220,
220,
1461,
796,
26439,
84,
1352,
22446,
18206,
7,
45442,
40781,
7,
45573,
11,
376,
28,
37,
828,
1461,
8,
220,
1303,
837,
402,
28,
38,
828,
1461,
8,
198,
2,
220,
220,
220,
220,
1441,
1461,
11,
435,
70,
628,
198,
2,
825,
3440,
51,
742,
7,
7753,
55,
11,
2393,
37,
11,
2393,
38,
28,
14202,
2599,
198,
2,
220,
220,
220,
220,
3601,
7,
69,
6,
19031,
3265,
422,
3696,
1391,
7753,
55,
92,
290,
1391,
7753,
37,
92,
986,
11537,
198,
2,
220,
220,
220,
220,
1395,
796,
45941,
13,
2220,
14116,
7,
7753,
55,
8,
198,
2,
220,
220,
220,
220,
376,
796,
45941,
13,
2220,
14116,
7,
7753,
37,
8,
198,
2,
220,
220,
220,
220,
1303,
376,
796,
45941,
13,
2220,
14116,
7,
69,
6,
90,
7890,
35277,
92,
14,
90,
7753,
37,
92,
11537,
198,
2,
220,
220,
220,
220,
611,
2393,
38,
318,
407,
6045,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
402,
796,
45941,
13,
2220,
14116,
7,
69,
6,
90,
7890,
35277,
92,
14,
90,
7753,
38,
92,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
402,
796,
45941,
13,
2220,
14116,
7,
7753,
38,
8,
198,
2,
220,
220,
220,
220,
2073,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
402,
796,
6045,
198,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
18206,
84,
1352,
1330,
26439,
84,
1352,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
39748,
1330,
20133,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
19849,
13,
45573,
1330,
36125,
40781,
198,
2,
220,
220,
220,
220,
1303,
783,
262,
3265,
2134,
351,
477,
663,
12608,
318,
2727,
357,
33538,
11,
23498,
11,
2644,
8,
198,
2,
220,
220,
220,
220,
1461,
796,
20133,
13,
3605,
7203,
55,
1600,
1395,
8,
198,
2,
220,
220,
220,
220,
1461,
796,
26439,
84,
1352,
22446,
18206,
7,
45442,
40781,
7,
45573,
11,
376,
28,
37,
11,
402,
28,
38,
828,
1461,
8,
198,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
22495,
35,
13,
40406,
27871,
1330,
1461,
62,
7857,
198,
2,
220,
220,
220,
220,
1303,
422,
279,
4948,
2238,
13,
282,
7727,
907,
13,
568,
62,
5235,
5139,
62,
282,
42289,
1330,
14545,
198,
2,
220,
220,
220,
220,
1303,
1303,
262,
11862,
318,
783,
1444,
351,
262,
3265,
532,
21925,
37588,
198,
2,
220,
220,
220,
220,
1303,
11862,
796,
14545,
7,
12924,
62,
7857,
28,
12924,
62,
7857,
11,
19232,
28,
12924,
8,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
282,
7727,
907,
13,
5907,
4908,
17,
1330,
10896,
9273,
17,
198,
2,
220,
220,
220,
220,
11862,
796,
10896,
9273,
17,
7,
12924,
62,
7857,
28,
12924,
62,
7857,
11,
19232,
28,
12924,
8,
198,
198,
2,
220,
220,
220,
220,
1441,
11862,
628,
628,
198,
2,
825,
15765,
13746,
7,
5235,
11,
26954,
8979,
28,
9122,
4122,
8979,
2599,
198,
2,
220,
220,
220,
220,
1461,
11,
435,
70,
796,
1461,
13746,
7,
5235,
11,
26954,
8979,
28,
9122,
4122,
8979,
8,
198,
2,
220,
220,
220,
220,
435,
70,
13,
37687,
11347,
3419,
198,
198,
2,
220,
220,
220,
220,
1303,
422,
279,
4948,
2238,
13,
282,
7727,
907,
13,
568,
62,
5235,
5139,
62,
282,
42289,
1330,
14545,
198,
2,
220,
220,
220,
220,
1303,
262,
11862,
318,
783,
1444,
351,
262,
3265,
532,
21925,
37588,
198,
2,
220,
220,
220,
220,
1303,
11862,
796,
14545,
7,
12924,
62,
7857,
28,
3064,
11,
19232,
28,
12924,
8,
198,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
13,
40085,
1096,
1330,
17775,
198,
2,
220,
220,
220,
220,
422,
279,
4948,
2238,
22495,
35,
13,
40406,
27871,
1330,
1917,
198,
2,
220,
220,
220,
220,
581,
796,
17775,
7,
45573,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
435,
70,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
19203,
77,
62,
5235,
3256,
838,
828,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9403,
28,
16,
11,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15942,
577,
28,
17821,
8,
198,
2,
220,
220,
220,
220,
1441,
581,
628,
198,
2,
825,
3440,
51,
742,
33529,
198,
2,
220,
220,
220,
220,
1949,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
19031,
422,
2420,
3696,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1395,
796,
45941,
13,
2220,
14116,
10786,
7785,
13,
14116,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
376,
796,
45941,
13,
2220,
14116,
10786,
26801,
13,
14116,
11537,
198,
2,
220,
220,
220,
220,
2845,
440,
5188,
81,
1472,
355,
11454,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
8056,
8,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
37,
6255,
284,
3440,
2420,
3696,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
10786,
6601,
11046,
4054,
8024,
366,
14202,
11,
6045,
26214,
11537,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
6045,
11,
6045,
198,
198,
2,
825,
15424,
7,
15908,
5376,
11,
3934,
5376,
796,
705,
17474,
13,
18870,
13,
34586,
6,
2599,
198,
2,
220,
220,
220,
220,
351,
13422,
7753,
13,
9654,
7,
998,
5376,
11,
705,
64,
11537,
355,
13422,
25,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
13422,
13,
2860,
7,
15908,
5376,
8,
198,
198,
2,
27413,
35277,
10786,
40720,
40720,
39455,
11537,
628,
198,
2,
3601,
10786,
20123,
278,
15424,
11537,
198,
2,
503,
796,
13422,
7753,
13,
9654,
10786,
20688,
13,
18870,
13,
34586,
3256,
4235,
11639,
64,
11537,
198,
2,
1949,
25,
198,
2,
220,
220,
220,
220,
3601,
10786,
26872,
20832,
11682,
13,
14116,
11537,
198,
2,
220,
220,
220,
220,
503,
13,
2860,
10786,
40720,
39455,
11537,
198,
2,
3443,
25,
198,
2,
220,
220,
220,
220,
3601,
10786,
565,
2752,
13422,
15424,
11537,
198,
2,
220,
220,
220,
220,
503,
13,
19836,
3419,
198,
2,
198,
2,
3601,
10786,
15842,
286,
33962,
2393,
25,
11537,
198,
2,
256,
796,
13422,
7753,
13,
9654,
10786,
20688,
13,
18870,
13,
34586,
3256,
705,
81,
11537,
198,
2,
329,
2888,
287,
256,
13,
1136,
30814,
33529,
198,
2,
220,
220,
220,
220,
3601,
7,
19522,
13,
3672,
8,
198
] | 2.421517 | 1,701 |
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
t = np.linspace(1, 201, 200, endpoint=False)
sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
widths = np.arange(1, 31)
cwtmatr = signal.cwt(sig, signal.ricker, widths)
plt.imshow(cwtmatr, extent=[1, 201, 31, 1], cmap='PRGn', aspect='auto',
vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
plt.show()
| [
6738,
629,
541,
88,
1330,
6737,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
11748,
299,
32152,
355,
45941,
198,
198,
83,
796,
45941,
13,
21602,
10223,
7,
16,
11,
580,
11,
939,
11,
36123,
28,
25101,
8,
198,
82,
328,
220,
796,
45941,
13,
6966,
7,
17,
1635,
45941,
13,
14415,
1635,
767,
1635,
256,
8,
1343,
6737,
13,
4908,
1046,
79,
9615,
7,
83,
532,
657,
13,
19,
11,
277,
66,
28,
17,
8,
198,
10394,
82,
796,
45941,
13,
283,
858,
7,
16,
11,
3261,
8,
198,
66,
46569,
6759,
81,
796,
6737,
13,
66,
46569,
7,
82,
328,
11,
6737,
13,
5557,
263,
11,
9647,
82,
8,
198,
489,
83,
13,
320,
12860,
7,
66,
46569,
6759,
81,
11,
6287,
41888,
16,
11,
580,
11,
3261,
11,
352,
4357,
269,
8899,
11639,
4805,
38,
77,
3256,
4843,
11639,
23736,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
9806,
28,
8937,
7,
66,
46569,
6759,
81,
737,
9806,
22784,
410,
1084,
10779,
8937,
7,
66,
46569,
6759,
81,
737,
9806,
28955,
198,
489,
83,
13,
12860,
3419,
198
] | 2.164021 | 189 |
description = 'minimal NICOS startup setup'
group = 'lowlevel'
sysconfig = dict(
cache = 'tofhw.toftof.frm2:14869',
)
| [
11213,
796,
705,
1084,
4402,
45593,
2640,
13693,
9058,
6,
198,
198,
8094,
796,
705,
9319,
5715,
6,
198,
198,
17597,
11250,
796,
8633,
7,
198,
220,
220,
220,
12940,
796,
705,
1462,
69,
36599,
13,
1462,
701,
1659,
13,
8310,
76,
17,
25,
18294,
3388,
3256,
198,
8,
198
] | 2.48 | 50 |
from valhalla.extract import DataExtractor
from sklearn.pipeline import Pipeline
from ._transform import FeatureConcat | [
6738,
1188,
41911,
13,
2302,
974,
1330,
6060,
11627,
40450,
198,
6738,
1341,
35720,
13,
79,
541,
4470,
1330,
37709,
198,
6738,
47540,
35636,
1330,
27018,
3103,
9246
] | 4.214286 | 28 |
"""Guessing Game Visualization
You do not need to understand any of the code in this file.
"""
# This section avoids asking for user input.
import lab01
lab01.LOWER = 1
lab01.UPPER = 100
lab01.prompt_for_number = prompt_for_number
lab01.is_correct = is_correct
lab01.is_too_high = is_too_high
# This section runs an algorithm many times.
from collections import defaultdict
import sys
import webbrowser
def get_frequency(algorithm_name, runs=1000):
"""Collect frequencies and plot them."""
if not hasattr(lab01, algorithm_name):
raise ValueError('invalid guessing algorithm ({0})'.format(algorithm_name))
algorithm = getattr(lab01, algorithm_name)
counts = defaultdict(int)
for i in range(runs):
num_guesses = algorithm()
counts[num_guesses] += 1
most_guesses = max(counts)
if most_guesses == 1:
raise ValueError('num_guesses was always 1. Make sure your functions '
'are returning the correct number of guesses!')
xs = range(1, most_guesses+1)
ys = [sum(counts[i] for i in range(1, x+1)) for x in xs]
if algorithm_name == 'guess_binary':
x_axis_string = '|'.join(map(str, xs))
y_axis_string = ','.join(map(str, ys))
chxp = ','.join(map(str, range(int(100 / 2 / most_guesses)+1, 100, int(100 / most_guesses))))
data_string = 'chd=t:{0}&chxl=0:|{1}|2:|Max number of guesses|3:|Frequency|&chxp=0,{3}|2,50|3,{2}'.format(y_axis_string, x_axis_string, runs/2, chxp)
else:
step = max(most_guesses // 10, 1)
x_axis_string = '|'.join(map(str, range(0, most_guesses+1, step)))
y_axis_string = ','.join(map(str, ys))
data_string = 'chd=t:{0}&chxl=0:|{1}|2:|Max number of guesses|3:|Frequency|&chxp=0,0|2,50|3,{2}'.format(y_axis_string, x_axis_string, runs/2)
url = 'http://chart.googleapis.com/chart?cht=bvg&chtt={0}&chxt=x,y,x,y&chs=500x500&{1}&chds=a&chco=3072F3&chbh=a&chm=s,000000,0,-1,5|s,000000,1,-1,5&chdlp=l'.format(algorithm_name, data_string)
webbrowser.open_new(url)
if __name__ == "__main__":
file_name, algorithm_name = sys.argv
get_frequency(algorithm_name) | [
37811,
8205,
27289,
3776,
15612,
1634,
198,
198,
1639,
466,
407,
761,
284,
1833,
597,
286,
262,
2438,
287,
428,
2393,
13,
198,
37811,
198,
198,
2,
770,
2665,
30940,
4737,
329,
2836,
5128,
13,
198,
198,
11748,
2248,
486,
198,
23912,
486,
13,
43,
36048,
796,
352,
198,
23912,
486,
13,
8577,
18973,
796,
1802,
198,
23912,
486,
13,
16963,
457,
62,
1640,
62,
17618,
796,
6152,
62,
1640,
62,
17618,
198,
23912,
486,
13,
271,
62,
30283,
796,
318,
62,
30283,
198,
23912,
486,
13,
271,
62,
18820,
62,
8929,
796,
318,
62,
18820,
62,
8929,
198,
198,
2,
770,
2665,
4539,
281,
11862,
867,
1661,
13,
198,
198,
6738,
17268,
1330,
4277,
11600,
198,
11748,
25064,
198,
11748,
3992,
40259,
198,
198,
4299,
651,
62,
35324,
7,
282,
42289,
62,
3672,
11,
4539,
28,
12825,
2599,
198,
220,
220,
220,
37227,
31337,
19998,
290,
7110,
606,
526,
15931,
198,
220,
220,
220,
611,
407,
468,
35226,
7,
23912,
486,
11,
11862,
62,
3672,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
259,
12102,
25260,
11862,
37913,
15,
30072,
4458,
18982,
7,
282,
42289,
62,
3672,
4008,
198,
220,
220,
220,
11862,
796,
651,
35226,
7,
23912,
486,
11,
11862,
62,
3672,
8,
628,
220,
220,
220,
9853,
796,
4277,
11600,
7,
600,
8,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
48381,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
5162,
44667,
796,
11862,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
9853,
58,
22510,
62,
5162,
44667,
60,
15853,
352,
628,
220,
220,
220,
749,
62,
5162,
44667,
796,
3509,
7,
9127,
82,
8,
198,
220,
220,
220,
611,
749,
62,
5162,
44667,
6624,
352,
25,
198,
220,
220,
220,
220,
220,
220,
220,
5298,
11052,
12331,
10786,
22510,
62,
5162,
44667,
373,
1464,
352,
13,
6889,
1654,
534,
5499,
705,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
533,
8024,
262,
3376,
1271,
286,
44774,
0,
11537,
198,
220,
220,
220,
2124,
82,
796,
2837,
7,
16,
11,
749,
62,
5162,
44667,
10,
16,
8,
198,
220,
220,
220,
331,
82,
796,
685,
16345,
7,
9127,
82,
58,
72,
60,
329,
1312,
287,
2837,
7,
16,
11,
2124,
10,
16,
4008,
329,
2124,
287,
2124,
82,
60,
628,
220,
220,
220,
611,
11862,
62,
3672,
6624,
705,
5162,
408,
62,
39491,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
22704,
62,
8841,
796,
705,
91,
4458,
22179,
7,
8899,
7,
2536,
11,
2124,
82,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
22704,
62,
8841,
796,
705,
4032,
13,
22179,
7,
8899,
7,
2536,
11,
331,
82,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
442,
42372,
796,
705,
4032,
13,
22179,
7,
8899,
7,
2536,
11,
2837,
7,
600,
7,
3064,
1220,
362,
1220,
749,
62,
5162,
44667,
47762,
16,
11,
1802,
11,
493,
7,
3064,
1220,
749,
62,
5162,
44667,
35514,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
8841,
796,
705,
354,
67,
28,
83,
29164,
15,
92,
5,
354,
87,
75,
28,
15,
25,
91,
90,
16,
92,
91,
17,
25,
91,
11518,
1271,
286,
44774,
91,
18,
25,
91,
37,
28707,
91,
5,
354,
42372,
28,
15,
11,
90,
18,
92,
91,
17,
11,
1120,
91,
18,
11,
90,
17,
92,
4458,
18982,
7,
88,
62,
22704,
62,
8841,
11,
2124,
62,
22704,
62,
8841,
11,
4539,
14,
17,
11,
442,
42372,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2239,
796,
3509,
7,
1712,
62,
5162,
44667,
3373,
838,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
62,
22704,
62,
8841,
796,
705,
91,
4458,
22179,
7,
8899,
7,
2536,
11,
2837,
7,
15,
11,
749,
62,
5162,
44667,
10,
16,
11,
2239,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
331,
62,
22704,
62,
8841,
796,
705,
4032,
13,
22179,
7,
8899,
7,
2536,
11,
331,
82,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
62,
8841,
796,
705,
354,
67,
28,
83,
29164,
15,
92,
5,
354,
87,
75,
28,
15,
25,
91,
90,
16,
92,
91,
17,
25,
91,
11518,
1271,
286,
44774,
91,
18,
25,
91,
37,
28707,
91,
5,
354,
42372,
28,
15,
11,
15,
91,
17,
11,
1120,
91,
18,
11,
90,
17,
92,
4458,
18982,
7,
88,
62,
22704,
62,
8841,
11,
2124,
62,
22704,
62,
8841,
11,
4539,
14,
17,
8,
198,
220,
220,
220,
19016,
796,
705,
4023,
1378,
40926,
13,
13297,
499,
271,
13,
785,
14,
40926,
30,
21474,
28,
65,
45119,
5,
354,
926,
34758,
15,
92,
5,
354,
742,
28,
87,
11,
88,
11,
87,
11,
88,
5,
354,
82,
28,
4059,
87,
4059,
5,
90,
16,
92,
5,
354,
9310,
28,
64,
5,
354,
1073,
28,
1270,
4761,
37,
18,
5,
354,
34369,
28,
64,
5,
354,
76,
28,
82,
11,
10535,
11,
15,
12095,
16,
11,
20,
91,
82,
11,
10535,
11,
16,
12095,
16,
11,
20,
5,
354,
25404,
79,
28,
75,
4458,
18982,
7,
282,
42289,
62,
3672,
11,
1366,
62,
8841,
8,
628,
220,
220,
220,
3992,
40259,
13,
9654,
62,
3605,
7,
6371,
8,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
2393,
62,
3672,
11,
11862,
62,
3672,
796,
25064,
13,
853,
85,
198,
220,
220,
220,
651,
62,
35324,
7,
282,
42289,
62,
3672,
8
] | 2.302674 | 935 |
import pandas as pd
name = 'drop-column'
if __name__ == "__main__":
data = [['tom', 10], ['nick', 15], ['juli', 15]]
df = pd.DataFrame(data, columns = ['Name', 'Age'])
args = {
'--columns':[
'Age',
'Name'
]
}
operator(df, args) | [
11748,
19798,
292,
355,
279,
67,
198,
198,
3672,
796,
705,
14781,
12,
28665,
6,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
220,
198,
220,
220,
220,
1366,
796,
16410,
6,
39532,
3256,
838,
4357,
37250,
17172,
3256,
1315,
4357,
37250,
73,
32176,
3256,
1315,
11907,
220,
198,
220,
220,
220,
47764,
796,
279,
67,
13,
6601,
19778,
7,
7890,
11,
15180,
796,
37250,
5376,
3256,
705,
23396,
6,
12962,
220,
628,
220,
220,
220,
26498,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
438,
28665,
82,
10354,
58,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
23396,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
5376,
6,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
1782,
628,
220,
220,
220,
10088,
7,
7568,
11,
26498,
8
] | 1.94702 | 151 |
# Generated by Django 2.0.7 on 2018-11-02 22:15
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
362,
13,
15,
13,
22,
319,
2864,
12,
1157,
12,
2999,
2534,
25,
1314,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
198
] | 2.8125 | 32 |
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import torchvision.models.resnet as torch_resnet
from torchvision.models.resnet import BasicBlock, Bottleneck
model_urls = {'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def resnet152(pretrained=False, progress=True, **kwargs):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
| [
11748,
28034,
198,
11748,
28034,
13,
20471,
355,
299,
77,
198,
11748,
28034,
13,
20471,
13,
45124,
355,
376,
198,
28311,
25,
198,
220,
220,
220,
422,
28034,
13,
40140,
1330,
3440,
62,
5219,
62,
11600,
62,
6738,
62,
6371,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
422,
28034,
13,
26791,
13,
19849,
62,
89,
2238,
1330,
3440,
62,
6371,
355,
3440,
62,
5219,
62,
11600,
62,
6738,
62,
6371,
198,
198,
11748,
28034,
10178,
13,
27530,
13,
411,
3262,
355,
28034,
62,
411,
3262,
198,
6738,
28034,
10178,
13,
27530,
13,
411,
3262,
1330,
14392,
12235,
11,
14835,
43163,
198,
198,
19849,
62,
6371,
82,
796,
1391,
6,
411,
3262,
1507,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
3262,
1507,
12,
20,
66,
15801,
66,
2934,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
3262,
2682,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
3262,
2682,
12,
20370,
69,
22,
721,
19,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
3262,
1120,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
3262,
1120,
12,
1129,
66,
23,
68,
27277,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
3262,
8784,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
3262,
8784,
12,
20,
67,
18,
65,
19,
67,
23,
69,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
3262,
17827,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
3262,
17827,
12,
65,
19244,
276,
17,
67,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
19545,
1120,
62,
2624,
87,
19,
67,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
19545,
1120,
62,
2624,
87,
19,
67,
12,
22,
66,
7568,
2231,
5774,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
411,
19545,
8784,
62,
2624,
87,
23,
67,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
411,
19545,
8784,
62,
2624,
87,
23,
67,
12,
23,
7012,
3980,
487,
20,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
4421,
62,
411,
3262,
1120,
62,
17,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
4421,
62,
411,
3262,
1120,
62,
17,
12,
3865,
69,
22260,
19,
67,
13,
79,
400,
3256,
198,
220,
220,
220,
705,
4421,
62,
411,
3262,
8784,
62,
17,
10354,
705,
5450,
1378,
15002,
13,
9078,
13165,
354,
13,
2398,
14,
27530,
14,
4421,
62,
411,
3262,
8784,
62,
17,
12,
2624,
1453,
1157,
3980,
13,
79,
400,
3256,
198,
92,
628,
198,
4299,
581,
3262,
17827,
7,
5310,
13363,
28,
25101,
11,
4371,
28,
17821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
374,
37811,
4965,
7934,
12,
17827,
2746,
422,
198,
220,
220,
220,
4600,
1,
29744,
1874,
312,
723,
18252,
329,
7412,
31517,
653,
1,
1279,
5450,
1378,
283,
87,
452,
13,
2398,
14,
12315,
14,
1314,
1065,
13,
44427,
5332,
13,
12315,
29,
63,
62,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
30388,
2599,
1002,
6407,
11,
5860,
257,
2746,
662,
12,
35311,
319,
7412,
7934,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
357,
30388,
2599,
1002,
6407,
11,
11298,
257,
4371,
2318,
286,
262,
4321,
284,
336,
1082,
81,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
4808,
411,
3262,
10786,
411,
3262,
17827,
3256,
14835,
43163,
11,
685,
18,
11,
807,
11,
4570,
11,
513,
4357,
2181,
13363,
11,
4371,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
8,
628,
198,
4299,
581,
19545,
1120,
62,
2624,
87,
19,
67,
7,
5310,
13363,
28,
25101,
11,
4371,
28,
17821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
374,
37811,
4965,
8199,
55,
83,
12,
1120,
3933,
87,
19,
67,
2746,
422,
198,
220,
220,
220,
4600,
1,
46384,
2301,
515,
1874,
312,
723,
49127,
329,
10766,
47986,
27862,
1,
1279,
5450,
1378,
283,
87,
452,
13,
2398,
14,
12315,
14,
1433,
1157,
13,
2713,
50080,
13,
12315,
29,
63,
62,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
30388,
2599,
1002,
6407,
11,
5860,
257,
2746,
662,
12,
35311,
319,
7412,
7934,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
357,
30388,
2599,
1002,
6407,
11,
11298,
257,
4371,
2318,
286,
262,
4321,
284,
336,
1082,
81,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
86,
22046,
17816,
24432,
20520,
796,
3933,
198,
220,
220,
220,
479,
86,
22046,
17816,
10394,
62,
525,
62,
8094,
20520,
796,
604,
198,
220,
220,
220,
1441,
4808,
411,
3262,
10786,
411,
19545,
1120,
62,
2624,
87,
19,
67,
3256,
14835,
43163,
11,
685,
18,
11,
604,
11,
718,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
11,
4371,
11,
12429,
46265,
22046,
8,
628,
198,
4299,
581,
19545,
8784,
62,
2624,
87,
23,
67,
7,
5310,
13363,
28,
25101,
11,
4371,
28,
17821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
374,
37811,
4965,
8199,
55,
83,
12,
8784,
3933,
87,
23,
67,
2746,
422,
198,
220,
220,
220,
4600,
1,
46384,
2301,
515,
1874,
312,
723,
49127,
329,
10766,
47986,
27862,
1,
1279,
5450,
1378,
283,
87,
452,
13,
2398,
14,
12315,
14,
1433,
1157,
13,
2713,
50080,
13,
12315,
29,
63,
62,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
30388,
2599,
1002,
6407,
11,
5860,
257,
2746,
662,
12,
35311,
319,
7412,
7934,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
357,
30388,
2599,
1002,
6407,
11,
11298,
257,
4371,
2318,
286,
262,
4321,
284,
336,
1082,
81,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
86,
22046,
17816,
24432,
20520,
796,
3933,
198,
220,
220,
220,
479,
86,
22046,
17816,
10394,
62,
525,
62,
8094,
20520,
796,
807,
198,
220,
220,
220,
1441,
4808,
411,
3262,
10786,
411,
19545,
8784,
62,
2624,
87,
23,
67,
3256,
14835,
43163,
11,
685,
18,
11,
604,
11,
2242,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
11,
4371,
11,
12429,
46265,
22046,
8,
628,
198,
4299,
3094,
62,
411,
3262,
1120,
62,
17,
7,
5310,
13363,
28,
25101,
11,
4371,
28,
17821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
374,
37811,
42559,
1874,
7934,
12,
1120,
12,
17,
2746,
422,
198,
220,
220,
220,
4600,
1,
42559,
1874,
312,
723,
27862,
1,
1279,
5450,
1378,
283,
87,
452,
13,
2398,
14,
12315,
14,
1433,
2713,
13,
2998,
20964,
13,
12315,
29,
63,
62,
628,
220,
220,
220,
383,
2746,
318,
262,
976,
355,
1874,
7934,
2845,
329,
262,
49936,
1271,
286,
9619,
198,
220,
220,
220,
543,
318,
5403,
4025,
287,
790,
2512,
13,
383,
1271,
286,
9619,
287,
12076,
352,
87,
16,
198,
220,
220,
220,
3063,
14191,
318,
262,
976,
11,
304,
13,
70,
13,
938,
2512,
287,
1874,
7934,
12,
1120,
468,
36117,
12,
25836,
12,
1238,
2780,
198,
220,
220,
220,
9619,
11,
290,
287,
23399,
1874,
7934,
12,
1120,
12,
17,
468,
36117,
12,
35500,
12,
1238,
2780,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
30388,
2599,
1002,
6407,
11,
5860,
257,
2746,
662,
12,
35311,
319,
7412,
7934,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
357,
30388,
2599,
1002,
6407,
11,
11298,
257,
4371,
2318,
286,
262,
4321,
284,
336,
1082,
81,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
86,
22046,
17816,
10394,
62,
525,
62,
8094,
20520,
796,
5598,
1635,
362,
198,
220,
220,
220,
1441,
4808,
411,
3262,
10786,
4421,
62,
411,
3262,
1120,
62,
17,
3256,
14835,
43163,
11,
685,
18,
11,
604,
11,
718,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
11,
4371,
11,
12429,
46265,
22046,
8,
628,
198,
4299,
3094,
62,
411,
3262,
8784,
62,
17,
7,
5310,
13363,
28,
25101,
11,
4371,
28,
17821,
11,
12429,
46265,
22046,
2599,
198,
220,
220,
220,
374,
37811,
42559,
1874,
7934,
12,
8784,
12,
17,
2746,
422,
198,
220,
220,
220,
4600,
1,
42559,
1874,
312,
723,
27862,
1,
1279,
5450,
1378,
283,
87,
452,
13,
2398,
14,
12315,
14,
1433,
2713,
13,
2998,
20964,
13,
12315,
29,
63,
62,
628,
220,
220,
220,
383,
2746,
318,
262,
976,
355,
1874,
7934,
2845,
329,
262,
49936,
1271,
286,
9619,
198,
220,
220,
220,
543,
318,
5403,
4025,
287,
790,
2512,
13,
383,
1271,
286,
9619,
287,
12076,
352,
87,
16,
198,
220,
220,
220,
3063,
14191,
318,
262,
976,
11,
304,
13,
70,
13,
938,
2512,
287,
1874,
7934,
12,
1120,
468,
36117,
12,
25836,
12,
1238,
2780,
198,
220,
220,
220,
9619,
11,
290,
287,
23399,
1874,
7934,
12,
1120,
12,
17,
468,
36117,
12,
35500,
12,
1238,
2780,
13,
628,
220,
220,
220,
943,
14542,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
357,
30388,
2599,
1002,
6407,
11,
5860,
257,
2746,
662,
12,
35311,
319,
7412,
7934,
198,
220,
220,
220,
220,
220,
220,
220,
4371,
357,
30388,
2599,
1002,
6407,
11,
11298,
257,
4371,
2318,
286,
262,
4321,
284,
336,
1082,
81,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
479,
86,
22046,
17816,
10394,
62,
525,
62,
8094,
20520,
796,
5598,
1635,
362,
198,
220,
220,
220,
1441,
4808,
411,
3262,
10786,
4421,
62,
411,
3262,
8784,
62,
17,
3256,
14835,
43163,
11,
685,
18,
11,
604,
11,
2242,
11,
513,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2181,
13363,
11,
4371,
11,
12429,
46265,
22046,
8,
198
] | 2.51841 | 1,711 |
import pandas
from ..schema.schema_base import *
from .datastore_base import DataStore
from .odo_datastore import OdoDataStore
from ..config import config
from functools import lru_cache, partial
from sqlalchemy import Table, MetaData, select
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.automap import automap_base
from sqlalchemy import create_engine
from sqlalchemy.ext.compiler import compiles
from sqlalchemy.sql.expression import Select, and_
from sqlalchemy import sql
import io
import tempfile
import time
import os
import datetime
import ciso8601
import odo
metadatas = {}
########################################################################
for col_type in [dt, delta, num, bool_]:
col_type._storage_target_registry['sqlalchemy'] = col_type._storage_target_registry['pandas'].copy()
@cat.register_check('sqlalchemy')
@cat.register_transform('sqlalchemy')
@id_.register_check('sqlalchemy')
@id_.register_transform('sqlalchemy')
########################################################################
@cat.register_metadata('sqlalchemy')
@id_.register_metadata('sqlalchemy')
@dt.register_metadata('sqlalchemy')
@delta.register_metadata('sqlalchemy')
@big_dt.register_metadata('sqlalchemy')
@num.register_metadata('sqlalchemy')
@bool_.register_metadata('sqlalchemy')
########################################################################
@lru_cache()
sa_type_2_col_type = {
sql.sqltypes.Integer: num,
sql.sqltypes.String: cat,
sql.sqltypes.Date: dt,
sql.sqltypes.DateTime: dt,
sql.sqltypes.Interval: delta,
sql.sqltypes.Numeric: num,
sql.sqltypes.Boolean: bool_
}
########################################################################
| [
11748,
19798,
292,
198,
6738,
11485,
15952,
2611,
13,
15952,
2611,
62,
8692,
1330,
1635,
198,
6738,
764,
19608,
459,
382,
62,
8692,
1330,
6060,
22658,
198,
6738,
764,
24313,
62,
19608,
459,
382,
1330,
440,
4598,
6601,
22658,
198,
6738,
11485,
11250,
1330,
4566,
198,
198,
6738,
1257,
310,
10141,
1330,
300,
622,
62,
23870,
11,
13027,
198,
198,
6738,
44161,
282,
26599,
1330,
8655,
11,
30277,
6601,
11,
2922,
198,
6738,
44161,
282,
26599,
13,
579,
1330,
6246,
10297,
198,
6738,
44161,
282,
26599,
13,
2302,
13,
2306,
296,
499,
1330,
3557,
499,
62,
8692,
198,
198,
6738,
44161,
282,
26599,
1330,
2251,
62,
18392,
198,
6738,
44161,
282,
26599,
13,
2302,
13,
5589,
5329,
1330,
552,
2915,
198,
6738,
44161,
282,
26599,
13,
25410,
13,
38011,
1330,
9683,
11,
290,
62,
198,
6738,
44161,
282,
26599,
1330,
44161,
198,
198,
11748,
33245,
198,
11748,
20218,
7753,
198,
11748,
640,
198,
11748,
28686,
198,
11748,
4818,
8079,
198,
11748,
269,
26786,
4521,
486,
198,
11748,
267,
4598,
198,
198,
4164,
324,
265,
292,
796,
23884,
198,
198,
29113,
29113,
7804,
198,
198,
1640,
951,
62,
4906,
287,
685,
28664,
11,
25979,
11,
997,
11,
20512,
62,
5974,
198,
220,
220,
220,
951,
62,
4906,
13557,
35350,
62,
16793,
62,
2301,
4592,
17816,
25410,
282,
26599,
20520,
796,
951,
62,
4906,
13557,
35350,
62,
16793,
62,
2301,
4592,
17816,
79,
392,
292,
6,
4083,
30073,
3419,
198,
198,
31,
9246,
13,
30238,
62,
9122,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
9246,
13,
30238,
62,
35636,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
312,
44807,
30238,
62,
9122,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
312,
44807,
30238,
62,
35636,
10786,
25410,
282,
26599,
11537,
198,
198,
29113,
29113,
7804,
198,
198,
31,
9246,
13,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
312,
44807,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
28664,
13,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
67,
12514,
13,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
14261,
62,
28664,
13,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
22510,
13,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
31,
30388,
44807,
30238,
62,
38993,
10786,
25410,
282,
26599,
11537,
198,
198,
29113,
29113,
7804,
198,
198,
31,
75,
622,
62,
23870,
3419,
198,
198,
11400,
62,
4906,
62,
17,
62,
4033,
62,
4906,
796,
1391,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
46541,
25,
997,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
10100,
25,
3797,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
10430,
25,
288,
83,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
10430,
7575,
25,
288,
83,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
9492,
2100,
25,
25979,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
45,
39223,
25,
997,
11,
198,
220,
220,
220,
44161,
13,
25410,
19199,
13,
46120,
13087,
25,
20512,
62,
198,
92,
198,
198,
29113,
29113,
7804,
628
] | 3.317919 | 519 |
"""
Fast R-CNN:
data =
{'data': [num_images, c, h, w],
'rois': [num_rois, 5]}
label =
{'label': [num_rois],
'bbox_target': [num_rois, 4 * num_classes],
'bbox_weight': [num_rois, 4 * num_classes]}
roidb extended format [image_index]
['image', 'height', 'width', 'flipped',
'boxes', 'gt_classes', 'gt_overlaps', 'max_classes', 'max_overlaps', 'bbox_targets']
"""
import numpy as np
import numpy.random as npr
from bbox.bbox_regression import expand_bbox_regression_targets
from bbox.bbox_transform import bbox_overlaps, bbox_transform
from utils.image import get_image, tensor_vstack
def get_rcnn_testbatch(roidb, cfg):
"""
return a dict of testbatch
:param roidb: ['image', 'flipped'] + ['boxes']
:return: data, label, im_info
"""
# assert len(roidb) == 1, 'Single batch only'
imgs, roidb = get_image(roidb, cfg)
im_array = imgs
im_info = [np.array([roidb[i]['im_info']], dtype=np.float32) for i in range(len(roidb))]
im_rois = [roidb[i]['boxes'] for i in range(len(roidb))]
if cfg.network.ROIDispatch:
data = []
for i in range(len(im_rois)):
w = im_rois[i][:, 2] - im_rois[i][:, 0] + 1
h = im_rois[i][:, 3] - im_rois[i][:, 1] + 1
feat_id = np.clip(np.floor(2 + np.log2(np.sqrt(w * h) / 224)), 0, 3).astype(int)
rois_0 = im_rois[i][np.where(feat_id == 0)]
if len(rois_0) == 0:
rois_0 = np.zeros((1, 4))
rois_1 = im_rois[i][np.where(feat_id == 1)]
if len(rois_1) == 0:
rois_1 = np.zeros((1, 4))
rois_2 = im_rois[i][np.where(feat_id == 2)]
if len(rois_2) == 0:
rois_2 = np.zeros((1, 4))
rois_3 = im_rois[i][np.where(feat_id == 3)]
if len(rois_3) == 0:
rois_3 = np.zeros((1, 4))
# stack batch index
data.append({'data': im_array[i],
'rois_0': np.hstack((0 * np.ones((rois_0.shape[0], 1)), rois_0)),
'rois_1': np.hstack((0 * np.ones((rois_1.shape[0], 1)), rois_1)),
'rois_2': np.hstack((0 * np.ones((rois_2.shape[0], 1)), rois_2)),
'rois_3': np.hstack((0 * np.ones((rois_3.shape[0], 1)), rois_3))})
if cfg.TEST.LEARN_NMS:
data[-1]['im_info'] = im_info[i]
else:
rois = im_rois
rois_array = [np.hstack((0 * np.ones((rois[i].shape[0], 1)), rois[i])) for i in range(len(rois))]
data = []
for i in range(len(roidb)):
data.append({'data': im_array[i],
'rois': rois_array[i]})
if cfg.TEST.LEARN_NMS:
data[-1]['im_info'] = im_info[i]
label = {}
return data, label, im_info
def get_rcnn_batch(roidb, cfg):
"""
return a dict of multiple images
:param roidb: a list of dict, whose length controls batch size
['images', 'flipped'] + ['gt_boxes', 'boxes', 'gt_overlap'] => ['bbox_targets']
:return: data, label
"""
num_images = len(roidb)
imgs, roidb = get_image(roidb, cfg)
im_array = tensor_vstack(imgs)
assert cfg.TRAIN.BATCH_ROIS == -1 or cfg.TRAIN.BATCH_ROIS % cfg.TRAIN.BATCH_IMAGES == 0, \
'BATCHIMAGES {} must divide BATCH_ROIS {}'.format(cfg.TRAIN.BATCH_IMAGES, cfg.TRAIN.BATCH_ROIS)
if cfg.TRAIN.BATCH_ROIS == -1:
rois_per_image = np.sum([iroidb['boxes'].shape[0] for iroidb in roidb])
fg_rois_per_image = rois_per_image
else:
rois_per_image = cfg.TRAIN.BATCH_ROIS / cfg.TRAIN.BATCH_IMAGES
fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(int)
if cfg.network.ROIDispatch:
rois_array_0 = list()
rois_array_1 = list()
rois_array_2 = list()
rois_array_3 = list()
else:
rois_array = list()
gt_labels_array = list()
labels_array = list()
bbox_targets_array = list()
bbox_weights_array = list()
for im_i in range(num_images):
roi_rec = roidb[im_i]
# infer num_classes from gt_overlaps
num_classes = roi_rec['gt_overlaps'].shape[1]
# label = class RoI has max overlap with
rois = roi_rec['boxes']
labels = roi_rec['max_classes']
overlaps = roi_rec['max_overlaps']
bbox_targets = roi_rec['bbox_targets']
gt_lables = roi_rec['is_gt']
if cfg.TRAIN.BATCH_ROIS == -1:
im_rois, labels_t, bbox_targets, bbox_weights = \
sample_rois_v2(rois, num_classes, cfg, labels=labels, overlaps=overlaps, bbox_targets=bbox_targets,
gt_boxes=None)
assert np.abs(im_rois - rois).max() < 1e-3
assert np.abs(labels_t - labels).max() < 1e-3
else:
im_rois, labels, bbox_targets, bbox_weights, gt_lables = \
sample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg,
labels, overlaps, bbox_targets, gt_lables=gt_lables)
# project im_rois
# do not round roi
if cfg.network.ROIDispatch:
w = im_rois[:, 2] - im_rois[:, 0] + 1
h = im_rois[:, 3] - im_rois[:, 1] + 1
feat_id = np.clip(np.floor(2 + np.log2(np.sqrt(w * h) / 224)), 0, 3).astype(int)
rois_0_idx = np.where(feat_id == 0)[0]
rois_0 = im_rois[rois_0_idx]
if len(rois_0) == 0:
rois_0 = np.zeros((1, 4))
label_0 = -np.ones((1,))
gt_label_0 = -np.ones((1,))
bbox_targets_0 = np.zeros((1, bbox_targets.shape[1]))
bbox_weights_0 = np.zeros((1, bbox_weights.shape[1]))
else:
label_0 = labels[rois_0_idx]
gt_label_0 = gt_lables[rois_0_idx]
bbox_targets_0 = bbox_targets[rois_0_idx]
bbox_weights_0 = bbox_weights[rois_0_idx]
rois_1_idx = np.where(feat_id == 1)[0]
rois_1 = im_rois[rois_1_idx]
if len(rois_1) == 0:
rois_1 = np.zeros((1, 4))
label_1 = -np.ones((1,))
gt_label_1 = -np.ones((1,))
bbox_targets_1 = np.zeros((1, bbox_targets.shape[1]))
bbox_weights_1 = np.zeros((1, bbox_weights.shape[1]))
else:
label_1 = labels[rois_1_idx]
gt_label_1 = gt_lables[rois_1_idx]
bbox_targets_1 = bbox_targets[rois_1_idx]
bbox_weights_1 = bbox_weights[rois_1_idx]
rois_2_idx = np.where(feat_id == 2)
rois_2 = im_rois[rois_2_idx]
if len(rois_2) == 0:
rois_2 = np.zeros((1, 4))
label_2 = -np.ones((1,))
gt_label_2 = -np.ones((1,))
bbox_targets_2 = np.zeros((1, bbox_targets.shape[1]))
bbox_weights_2 = np.zeros((1, bbox_weights.shape[1]))
else:
label_2 = labels[rois_2_idx]
gt_label_2 = gt_lables[rois_2_idx]
bbox_targets_2 = bbox_targets[rois_2_idx]
bbox_weights_2 = bbox_weights[rois_2_idx]
rois_3_idx = np.where(feat_id == 3)
rois_3 = im_rois[rois_3_idx]
if len(rois_3) == 0:
rois_3 = np.zeros((1, 4))
label_3 = -np.ones((1,))
gt_label_3 = -np.ones((1,))
bbox_targets_3 = np.zeros((1, bbox_targets.shape[1]))
bbox_weights_3 = np.zeros((1, bbox_weights.shape[1]))
else:
label_3 = labels[rois_3_idx]
gt_label_3 = gt_lables[rois_3_idx]
bbox_targets_3 = bbox_targets[rois_3_idx]
bbox_weights_3 = bbox_weights[rois_3_idx]
# stack batch index
rois_array_0.append(np.hstack((im_i * np.ones((rois_0.shape[0], 1)), rois_0)))
rois_array_1.append(np.hstack((im_i * np.ones((rois_1.shape[0], 1)), rois_1)))
rois_array_2.append(np.hstack((im_i * np.ones((rois_2.shape[0], 1)), rois_2)))
rois_array_3.append(np.hstack((im_i * np.ones((rois_3.shape[0], 1)), rois_3)))
labels = np.concatenate([label_0, label_1, label_2, label_3], axis=0)
gt_lables = np.concatenate([gt_label_0, gt_label_1, gt_label_2, gt_label_3], axis=0)
bbox_targets = np.concatenate([bbox_targets_0, bbox_targets_1, bbox_targets_2, bbox_targets_3], axis=0)
bbox_weights = np.concatenate([bbox_weights_0, bbox_weights_1, bbox_weights_2, bbox_weights_3], axis=0)
else:
rois = im_rois
batch_index = im_i * np.ones((rois.shape[0], 1))
rois_array_this_image = np.hstack((batch_index, rois))
rois_array.append(rois_array_this_image)
# add labels
gt_labels_array.append(gt_lables)
labels_array.append(labels)
bbox_targets_array.append(bbox_targets)
bbox_weights_array.append(bbox_weights)
gt_labels_array = np.array(gt_labels_array)
nongt_index_array = np.where(gt_labels_array == 0)[1]
labels_array = np.array(labels_array)
bbox_targets_array = np.array(bbox_targets_array)
bbox_weights_array = np.array(bbox_weights_array)
if cfg.network.USE_NONGT_INDEX:
label = {'label': labels_array,
'nongt_index': nongt_index_array,
'bbox_target': bbox_targets_array,
'bbox_weight': bbox_weights_array}
else:
label = {'label': labels_array,
'bbox_target': bbox_targets_array,
'bbox_weight': bbox_weights_array}
if cfg.network.ROIDispatch:
rois_array_0 = np.array(rois_array_0)
rois_array_1 = np.array(rois_array_1)
rois_array_2 = np.array(rois_array_2)
rois_array_3 = np.array(rois_array_3)
# rois_concate = np.concatenate((rois_array_0, rois_array_1, rois_array_2, rois_array_3), axis=1)
# gt_rois_t = rois_concate[:, gt_labels_array[0,:] > 0]
data = {'data': im_array,
'rois_0': rois_array_0,
'rois_1': rois_array_1,
'rois_2': rois_array_2,
'rois_3': rois_array_3}
else:
rois_array = np.array(rois_array)
data = {'data': im_array,
'rois': rois_array}
if cfg.TRAIN.LEARN_NMS:
# im info
im_info = np.array([roidb[0]['im_info']], dtype=np.float32)
# gt_boxes
if roidb[0]['gt_classes'].size > 0:
gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0]
gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :]
gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds]
else:
gt_boxes = np.empty((0, 5), dtype=np.float32)
data['im_info'] = im_info
data['gt_boxes'] = gt_boxes
return data, label
def sample_rois_v2(rois, num_classes, cfg,
labels=None, overlaps=None, bbox_targets=None, gt_boxes=None):
"""
generate random sample of ROIs comprising foreground and background examples
:param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
:param fg_rois_per_image: foreground roi number
:param rois_per_image: total roi number
:param num_classes: number of classes
:param labels: maybe precomputed
:param overlaps: maybe precomputed (max_overlaps)
:param bbox_targets: maybe precomputed
:param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
:return: (labels, rois, bbox_targets, bbox_weights)
"""
if labels is None:
overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
gt_assignment = overlaps.argmax(axis=1)
overlaps = overlaps.max(axis=1)
labels = gt_boxes[gt_assignment, 4]
# set labels of bg_rois to be 0
bg_ind = np.where(overlaps < cfg.TRAIN.BG_THRESH_HI)[0]
labels[bg_ind] = 0
# load or compute bbox_target
if bbox_targets is not None:
bbox_target_data = bbox_targets
else:
targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment, :4])
if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS))
/ np.array(cfg.TRAIN.BBOX_STDS))
bbox_target_data = np.hstack((labels[:, np.newaxis], targets))
bbox_targets, bbox_weights = \
expand_bbox_regression_targets(bbox_target_data, num_classes, cfg)
return rois, labels, bbox_targets, bbox_weights
def sample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg,
labels=None, overlaps=None, bbox_targets=None, gt_boxes=None, gt_lables=None):
"""
generate random sample of ROIs comprising foreground and background examples
:param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index
:param fg_rois_per_image: foreground roi number
:param rois_per_image: total roi number
:param num_classes: number of classes
:param labels: maybe precomputed
:param overlaps: maybe precomputed (max_overlaps)
:param bbox_targets: maybe precomputed
:param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls)
:return: (labels, rois, bbox_targets, bbox_weights)
"""
if labels is None:
overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float))
gt_assignment = overlaps.argmax(axis=1)
overlaps = overlaps.max(axis=1)
labels = gt_boxes[gt_assignment, 4]
# foreground RoI with FG_THRESH overlap
fg_indexes = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
# guard against the case when an image has fewer than fg_rois_per_image foreground RoIs
fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_indexes.size)
# Sample foreground regions without replacement
if len(fg_indexes) > fg_rois_per_this_image:
fg_indexes = npr.choice(fg_indexes, size=fg_rois_per_this_image, replace=False)
# Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
bg_indexes = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
# Compute number of background RoIs to take from this image (guarding against there being fewer than desired)
bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_indexes.size)
# Sample foreground regions without replacement
if len(bg_indexes) > bg_rois_per_this_image:
bg_indexes = npr.choice(bg_indexes, size=bg_rois_per_this_image, replace=False)
# indexes selected
keep_indexes = np.append(fg_indexes, bg_indexes)
# pad more to ensure a fixed minibatch size
while keep_indexes.shape[0] < rois_per_image:
gap = np.minimum(len(rois), rois_per_image - keep_indexes.shape[0])
gap_indexes = npr.choice(range(len(rois)), size=gap, replace=False)
keep_indexes = np.append(keep_indexes, gap_indexes)
# select gt_labels
gt_lables = gt_lables[keep_indexes]
# select labels
labels = labels[keep_indexes]
# set labels of bg_rois to be 0
bg_ind = np.where(overlaps[keep_indexes] < cfg.TRAIN.BG_THRESH_HI)[0]
labels[bg_ind] = 0
rois = rois[keep_indexes]
# load or compute bbox_target
if bbox_targets is not None:
bbox_target_data = bbox_targets[keep_indexes, :]
else:
targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment[keep_indexes], :4])
if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED:
targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS))
/ np.array(cfg.TRAIN.BBOX_STDS))
bbox_target_data = np.hstack((labels[:, np.newaxis], targets))
bbox_targets, bbox_weights = \
expand_bbox_regression_targets(bbox_target_data, num_classes, cfg)
return rois, labels, bbox_targets, bbox_weights, gt_lables
| [
37811,
198,
22968,
371,
12,
18474,
25,
198,
7890,
796,
198,
220,
220,
220,
1391,
6,
7890,
10354,
685,
22510,
62,
17566,
11,
269,
11,
289,
11,
266,
4357,
198,
220,
220,
220,
705,
305,
271,
10354,
685,
22510,
62,
305,
271,
11,
642,
48999,
198,
18242,
796,
198,
220,
220,
220,
1391,
6,
18242,
10354,
685,
22510,
62,
305,
271,
4357,
198,
220,
220,
220,
705,
65,
3524,
62,
16793,
10354,
685,
22510,
62,
305,
271,
11,
604,
1635,
997,
62,
37724,
4357,
198,
220,
220,
220,
705,
65,
3524,
62,
6551,
10354,
685,
22510,
62,
305,
271,
11,
604,
1635,
997,
62,
37724,
48999,
198,
3882,
65,
7083,
5794,
685,
9060,
62,
9630,
60,
198,
220,
220,
220,
37250,
9060,
3256,
705,
17015,
3256,
705,
10394,
3256,
705,
2704,
3949,
3256,
198,
220,
220,
220,
220,
705,
29305,
3256,
705,
13655,
62,
37724,
3256,
705,
13655,
62,
2502,
75,
1686,
3256,
705,
9806,
62,
37724,
3256,
705,
9806,
62,
2502,
75,
1686,
3256,
705,
65,
3524,
62,
83,
853,
1039,
20520,
198,
37811,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
299,
32152,
13,
25120,
355,
299,
1050,
198,
6738,
275,
3524,
13,
65,
3524,
62,
2301,
2234,
1330,
4292,
62,
65,
3524,
62,
2301,
2234,
62,
83,
853,
1039,
198,
6738,
275,
3524,
13,
65,
3524,
62,
35636,
1330,
275,
3524,
62,
2502,
75,
1686,
11,
275,
3524,
62,
35636,
198,
6738,
3384,
4487,
13,
9060,
1330,
651,
62,
9060,
11,
11192,
273,
62,
85,
25558,
628,
198,
4299,
651,
62,
6015,
20471,
62,
9288,
43501,
7,
3882,
65,
11,
30218,
70,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
257,
8633,
286,
1332,
43501,
198,
220,
220,
220,
1058,
17143,
686,
312,
65,
25,
37250,
9060,
3256,
705,
2704,
3949,
20520,
1343,
37250,
29305,
20520,
198,
220,
220,
220,
1058,
7783,
25,
1366,
11,
6167,
11,
545,
62,
10951,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
6818,
18896,
7,
3882,
65,
8,
6624,
352,
11,
705,
28008,
15458,
691,
6,
198,
220,
220,
220,
545,
14542,
11,
686,
312,
65,
796,
651,
62,
9060,
7,
3882,
65,
11,
30218,
70,
8,
198,
220,
220,
220,
545,
62,
18747,
796,
545,
14542,
198,
220,
220,
220,
545,
62,
10951,
796,
685,
37659,
13,
18747,
26933,
3882,
65,
58,
72,
7131,
6,
320,
62,
10951,
20520,
4357,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
329,
1312,
287,
2837,
7,
11925,
7,
3882,
65,
4008,
60,
628,
220,
220,
220,
545,
62,
305,
271,
796,
685,
3882,
65,
58,
72,
7131,
6,
29305,
20520,
329,
1312,
287,
2837,
7,
11925,
7,
3882,
65,
4008,
60,
628,
220,
220,
220,
611,
30218,
70,
13,
27349,
13,
13252,
2389,
8802,
963,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
320,
62,
305,
271,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
796,
545,
62,
305,
271,
58,
72,
7131,
45299,
362,
60,
532,
545,
62,
305,
271,
58,
72,
7131,
45299,
657,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
289,
796,
545,
62,
305,
271,
58,
72,
7131,
45299,
513,
60,
532,
545,
62,
305,
271,
58,
72,
7131,
45299,
352,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2218,
62,
312,
796,
45941,
13,
15036,
7,
37659,
13,
28300,
7,
17,
1343,
45941,
13,
6404,
17,
7,
37659,
13,
31166,
17034,
7,
86,
1635,
289,
8,
1220,
26063,
36911,
657,
11,
513,
737,
459,
2981,
7,
600,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
15,
796,
545,
62,
305,
271,
58,
72,
7131,
37659,
13,
3003,
7,
27594,
62,
312,
6624,
657,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
15,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
15,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
16,
796,
545,
62,
305,
271,
58,
72,
7131,
37659,
13,
3003,
7,
27594,
62,
312,
6624,
352,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
16,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
16,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
17,
796,
545,
62,
305,
271,
58,
72,
7131,
37659,
13,
3003,
7,
27594,
62,
312,
6624,
362,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
17,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
17,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18,
796,
545,
62,
305,
271,
58,
72,
7131,
37659,
13,
3003,
7,
27594,
62,
312,
6624,
513,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
18,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8931,
15458,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
15090,
6,
7890,
10354,
545,
62,
18747,
58,
72,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
15,
10354,
45941,
13,
71,
25558,
19510,
15,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
15,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
15,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
16,
10354,
45941,
13,
71,
25558,
19510,
15,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
16,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
16,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
17,
10354,
45941,
13,
71,
25558,
19510,
15,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
17,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
17,
36911,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
18,
10354,
45941,
13,
71,
25558,
19510,
15,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
18,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
18,
4008,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
51,
6465,
13,
2538,
1503,
45,
62,
45,
5653,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
12,
16,
7131,
6,
320,
62,
10951,
20520,
796,
545,
62,
10951,
58,
72,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
796,
545,
62,
305,
271,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
796,
685,
37659,
13,
71,
25558,
19510,
15,
1635,
45941,
13,
1952,
19510,
305,
271,
58,
72,
4083,
43358,
58,
15,
4357,
352,
36911,
686,
271,
58,
72,
60,
4008,
329,
1312,
287,
2837,
7,
11925,
7,
305,
271,
4008,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
3882,
65,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
13,
33295,
15090,
6,
7890,
10354,
545,
62,
18747,
58,
72,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
10354,
686,
271,
62,
18747,
58,
72,
60,
30072,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
51,
6465,
13,
2538,
1503,
45,
62,
45,
5653,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1366,
58,
12,
16,
7131,
6,
320,
62,
10951,
20520,
796,
545,
62,
10951,
58,
72,
60,
628,
220,
220,
220,
6167,
796,
23884,
628,
220,
220,
220,
1441,
1366,
11,
6167,
11,
545,
62,
10951,
628,
198,
4299,
651,
62,
6015,
20471,
62,
43501,
7,
3882,
65,
11,
30218,
70,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
257,
8633,
286,
3294,
4263,
198,
220,
220,
220,
1058,
17143,
686,
312,
65,
25,
257,
1351,
286,
8633,
11,
3025,
4129,
6973,
15458,
2546,
198,
220,
220,
220,
37250,
17566,
3256,
705,
2704,
3949,
20520,
1343,
37250,
13655,
62,
29305,
3256,
705,
29305,
3256,
705,
13655,
62,
2502,
37796,
20520,
5218,
37250,
65,
3524,
62,
83,
853,
1039,
20520,
198,
220,
220,
220,
1058,
7783,
25,
1366,
11,
6167,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
997,
62,
17566,
796,
18896,
7,
3882,
65,
8,
198,
220,
220,
220,
545,
14542,
11,
686,
312,
65,
796,
651,
62,
9060,
7,
3882,
65,
11,
30218,
70,
8,
198,
220,
220,
220,
545,
62,
18747,
796,
11192,
273,
62,
85,
25558,
7,
9600,
82,
8,
628,
220,
220,
220,
6818,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
6624,
532,
16,
393,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
4064,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
3955,
25552,
6624,
657,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
705,
33,
11417,
3955,
25552,
23884,
1276,
14083,
347,
11417,
62,
13252,
1797,
23884,
4458,
18982,
7,
37581,
13,
51,
3861,
1268,
13,
33,
11417,
62,
3955,
25552,
11,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
8,
628,
220,
220,
220,
611,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
6624,
532,
16,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
525,
62,
9060,
796,
45941,
13,
16345,
26933,
72,
3882,
65,
17816,
29305,
6,
4083,
43358,
58,
15,
60,
329,
1312,
3882,
65,
287,
686,
312,
65,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
796,
686,
271,
62,
525,
62,
9060,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
525,
62,
9060,
796,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
1220,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
3955,
25552,
198,
220,
220,
220,
220,
220,
220,
220,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
796,
45941,
13,
744,
7,
37581,
13,
51,
3861,
1268,
13,
30386,
62,
10913,
44710,
1635,
686,
271,
62,
525,
62,
9060,
737,
459,
2981,
7,
600,
8,
628,
220,
220,
220,
611,
30218,
70,
13,
27349,
13,
13252,
2389,
8802,
963,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
15,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
16,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
17,
796,
1351,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
18,
796,
1351,
3419,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
796,
1351,
3419,
628,
220,
220,
220,
308,
83,
62,
23912,
1424,
62,
18747,
796,
1351,
3419,
198,
220,
220,
220,
14722,
62,
18747,
796,
1351,
3419,
198,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
18747,
796,
1351,
3419,
198,
220,
220,
220,
275,
3524,
62,
43775,
62,
18747,
796,
1351,
3419,
628,
220,
220,
220,
329,
545,
62,
72,
287,
2837,
7,
22510,
62,
17566,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
686,
72,
62,
8344,
796,
686,
312,
65,
58,
320,
62,
72,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
13249,
997,
62,
37724,
422,
308,
83,
62,
2502,
75,
1686,
198,
220,
220,
220,
220,
220,
220,
220,
997,
62,
37724,
796,
686,
72,
62,
8344,
17816,
13655,
62,
2502,
75,
1686,
6,
4083,
43358,
58,
16,
60,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
6167,
796,
1398,
5564,
40,
468,
3509,
21721,
351,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
796,
686,
72,
62,
8344,
17816,
29305,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
686,
72,
62,
8344,
17816,
9806,
62,
37724,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
12893,
1686,
796,
686,
72,
62,
8344,
17816,
9806,
62,
2502,
75,
1686,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
796,
686,
72,
62,
8344,
17816,
65,
3524,
62,
83,
853,
1039,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
75,
2977,
796,
686,
72,
62,
8344,
17816,
271,
62,
13655,
20520,
628,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
51,
3861,
1268,
13,
33,
11417,
62,
13252,
1797,
6624,
532,
16,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
62,
305,
271,
11,
14722,
62,
83,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6291,
62,
305,
271,
62,
85,
17,
7,
305,
271,
11,
997,
62,
37724,
11,
30218,
70,
11,
14722,
28,
23912,
1424,
11,
12893,
1686,
28,
2502,
75,
1686,
11,
275,
3524,
62,
83,
853,
1039,
28,
65,
3524,
62,
83,
853,
1039,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
29305,
28,
14202,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
45941,
13,
8937,
7,
320,
62,
305,
271,
532,
686,
271,
737,
9806,
3419,
1279,
352,
68,
12,
18,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6818,
45941,
13,
8937,
7,
23912,
1424,
62,
83,
532,
14722,
737,
9806,
3419,
1279,
352,
68,
12,
18,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
545,
62,
305,
271,
11,
14722,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
11,
308,
83,
62,
75,
2977,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6291,
62,
305,
271,
7,
305,
271,
11,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
11,
686,
271,
62,
525,
62,
9060,
11,
997,
62,
37724,
11,
30218,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
11,
12893,
1686,
11,
275,
3524,
62,
83,
853,
1039,
11,
308,
83,
62,
75,
2977,
28,
13655,
62,
75,
2977,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1628,
545,
62,
305,
271,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
466,
407,
2835,
686,
72,
198,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
27349,
13,
13252,
2389,
8802,
963,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
796,
545,
62,
305,
271,
58,
45299,
362,
60,
532,
545,
62,
305,
271,
58,
45299,
657,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
289,
796,
545,
62,
305,
271,
58,
45299,
513,
60,
532,
545,
62,
305,
271,
58,
45299,
352,
60,
1343,
352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2218,
62,
312,
796,
45941,
13,
15036,
7,
37659,
13,
28300,
7,
17,
1343,
45941,
13,
6404,
17,
7,
37659,
13,
31166,
17034,
7,
86,
1635,
289,
8,
1220,
26063,
36911,
657,
11,
513,
737,
459,
2981,
7,
600,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
15,
62,
312,
87,
796,
45941,
13,
3003,
7,
27594,
62,
312,
6624,
657,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
15,
796,
545,
62,
305,
271,
58,
305,
271,
62,
15,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
15,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
15,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
15,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
15,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
15,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
83,
853,
1039,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
15,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
43775,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
15,
796,
14722,
58,
305,
271,
62,
15,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
15,
796,
308,
83,
62,
75,
2977,
58,
305,
271,
62,
15,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
15,
796,
275,
3524,
62,
83,
853,
1039,
58,
305,
271,
62,
15,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
15,
796,
275,
3524,
62,
43775,
58,
305,
271,
62,
15,
62,
312,
87,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
16,
62,
312,
87,
796,
45941,
13,
3003,
7,
27594,
62,
312,
6624,
352,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
16,
796,
545,
62,
305,
271,
58,
305,
271,
62,
16,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
16,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
16,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
16,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
16,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
16,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
83,
853,
1039,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
16,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
43775,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
16,
796,
14722,
58,
305,
271,
62,
16,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
16,
796,
308,
83,
62,
75,
2977,
58,
305,
271,
62,
16,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
16,
796,
275,
3524,
62,
83,
853,
1039,
58,
305,
271,
62,
16,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
16,
796,
275,
3524,
62,
43775,
58,
305,
271,
62,
16,
62,
312,
87,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
17,
62,
312,
87,
796,
45941,
13,
3003,
7,
27594,
62,
312,
6624,
362,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
17,
796,
545,
62,
305,
271,
58,
305,
271,
62,
17,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
17,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
17,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
17,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
17,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
17,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
83,
853,
1039,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
17,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
43775,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
17,
796,
14722,
58,
305,
271,
62,
17,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
17,
796,
308,
83,
62,
75,
2977,
58,
305,
271,
62,
17,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
17,
796,
275,
3524,
62,
83,
853,
1039,
58,
305,
271,
62,
17,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
17,
796,
275,
3524,
62,
43775,
58,
305,
271,
62,
17,
62,
312,
87,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18,
62,
312,
87,
796,
45941,
13,
3003,
7,
27594,
62,
312,
6624,
513,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18,
796,
545,
62,
305,
271,
58,
305,
271,
62,
18,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
305,
271,
62,
18,
8,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18,
796,
45941,
13,
9107,
418,
19510,
16,
11,
604,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
18,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
18,
796,
532,
37659,
13,
1952,
19510,
16,
11,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
18,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
83,
853,
1039,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
18,
796,
45941,
13,
9107,
418,
19510,
16,
11,
275,
3524,
62,
43775,
13,
43358,
58,
16,
60,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6167,
62,
18,
796,
14722,
58,
305,
271,
62,
18,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
18242,
62,
18,
796,
308,
83,
62,
75,
2977,
58,
305,
271,
62,
18,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
18,
796,
275,
3524,
62,
83,
853,
1039,
58,
305,
271,
62,
18,
62,
312,
87,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
18,
796,
275,
3524,
62,
43775,
58,
305,
271,
62,
18,
62,
312,
87,
60,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
8931,
15458,
6376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
15,
13,
33295,
7,
37659,
13,
71,
25558,
19510,
320,
62,
72,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
15,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
15,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
16,
13,
33295,
7,
37659,
13,
71,
25558,
19510,
320,
62,
72,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
16,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
16,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
17,
13,
33295,
7,
37659,
13,
71,
25558,
19510,
320,
62,
72,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
17,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
17,
22305,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
18,
13,
33295,
7,
37659,
13,
71,
25558,
19510,
320,
62,
72,
1635,
45941,
13,
1952,
19510,
305,
271,
62,
18,
13,
43358,
58,
15,
4357,
352,
36911,
686,
271,
62,
18,
22305,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
45941,
13,
1102,
9246,
268,
378,
26933,
18242,
62,
15,
11,
6167,
62,
16,
11,
6167,
62,
17,
11,
6167,
62,
18,
4357,
16488,
28,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
75,
2977,
796,
45941,
13,
1102,
9246,
268,
378,
26933,
13655,
62,
18242,
62,
15,
11,
308,
83,
62,
18242,
62,
16,
11,
308,
83,
62,
18242,
62,
17,
11,
308,
83,
62,
18242,
62,
18,
4357,
16488,
28,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
796,
45941,
13,
1102,
9246,
268,
378,
26933,
65,
3524,
62,
83,
853,
1039,
62,
15,
11,
275,
3524,
62,
83,
853,
1039,
62,
16,
11,
275,
3524,
62,
83,
853,
1039,
62,
17,
11,
275,
3524,
62,
83,
853,
1039,
62,
18,
4357,
16488,
28,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
796,
45941,
13,
1102,
9246,
268,
378,
26933,
65,
3524,
62,
43775,
62,
15,
11,
275,
3524,
62,
43775,
62,
16,
11,
275,
3524,
62,
43775,
62,
17,
11,
275,
3524,
62,
43775,
62,
18,
4357,
16488,
28,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
796,
545,
62,
305,
271,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15458,
62,
9630,
796,
545,
62,
72,
1635,
45941,
13,
1952,
19510,
305,
271,
13,
43358,
58,
15,
4357,
352,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
5661,
62,
9060,
796,
45941,
13,
71,
25558,
19510,
43501,
62,
9630,
11,
686,
271,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
13,
33295,
7,
305,
271,
62,
18747,
62,
5661,
62,
9060,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
751,
14722,
198,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
23912,
1424,
62,
18747,
13,
33295,
7,
13655,
62,
75,
2977,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
62,
18747,
13,
33295,
7,
23912,
1424,
8,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
18747,
13,
33295,
7,
65,
3524,
62,
83,
853,
1039,
8,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
43775,
62,
18747,
13,
33295,
7,
65,
3524,
62,
43775,
8,
628,
220,
220,
220,
308,
83,
62,
23912,
1424,
62,
18747,
796,
45941,
13,
18747,
7,
13655,
62,
23912,
1424,
62,
18747,
8,
198,
220,
220,
220,
299,
506,
83,
62,
9630,
62,
18747,
796,
45941,
13,
3003,
7,
13655,
62,
23912,
1424,
62,
18747,
6624,
657,
38381,
16,
60,
198,
220,
220,
220,
14722,
62,
18747,
796,
45941,
13,
18747,
7,
23912,
1424,
62,
18747,
8,
198,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
62,
18747,
796,
45941,
13,
18747,
7,
65,
3524,
62,
83,
853,
1039,
62,
18747,
8,
198,
220,
220,
220,
275,
3524,
62,
43775,
62,
18747,
796,
45941,
13,
18747,
7,
65,
3524,
62,
43775,
62,
18747,
8,
628,
220,
220,
220,
611,
30218,
70,
13,
27349,
13,
19108,
62,
45,
18494,
51,
62,
12115,
6369,
25,
628,
220,
220,
220,
220,
220,
220,
220,
6167,
796,
1391,
6,
18242,
10354,
14722,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
77,
506,
83,
62,
9630,
10354,
299,
506,
83,
62,
9630,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
62,
16793,
10354,
275,
3524,
62,
83,
853,
1039,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
62,
6551,
10354,
275,
3524,
62,
43775,
62,
18747,
92,
628,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6167,
796,
1391,
6,
18242,
10354,
14722,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
62,
16793,
10354,
275,
3524,
62,
83,
853,
1039,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
65,
3524,
62,
6551,
10354,
275,
3524,
62,
43775,
62,
18747,
92,
628,
220,
220,
220,
611,
30218,
70,
13,
27349,
13,
13252,
2389,
8802,
963,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
15,
796,
45941,
13,
18747,
7,
305,
271,
62,
18747,
62,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
16,
796,
45941,
13,
18747,
7,
305,
271,
62,
18747,
62,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
17,
796,
45941,
13,
18747,
7,
305,
271,
62,
18747,
62,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
62,
18,
796,
45941,
13,
18747,
7,
305,
271,
62,
18747,
62,
18,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
686,
271,
62,
1102,
66,
378,
796,
45941,
13,
1102,
9246,
268,
378,
19510,
305,
271,
62,
18747,
62,
15,
11,
686,
271,
62,
18747,
62,
16,
11,
686,
271,
62,
18747,
62,
17,
11,
686,
271,
62,
18747,
62,
18,
828,
16488,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
308,
83,
62,
305,
271,
62,
83,
796,
686,
271,
62,
1102,
66,
378,
58,
45299,
308,
83,
62,
23912,
1424,
62,
18747,
58,
15,
11,
47715,
1875,
657,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1391,
6,
7890,
10354,
545,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
15,
10354,
686,
271,
62,
18747,
62,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
16,
10354,
686,
271,
62,
18747,
62,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
17,
10354,
686,
271,
62,
18747,
62,
17,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
62,
18,
10354,
686,
271,
62,
18747,
62,
18,
92,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
686,
271,
62,
18747,
796,
45941,
13,
18747,
7,
305,
271,
62,
18747,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
796,
1391,
6,
7890,
10354,
545,
62,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
305,
271,
10354,
686,
271,
62,
18747,
92,
628,
220,
220,
220,
611,
30218,
70,
13,
51,
3861,
1268,
13,
2538,
1503,
45,
62,
45,
5653,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
545,
7508,
198,
220,
220,
220,
220,
220,
220,
220,
545,
62,
10951,
796,
45941,
13,
18747,
26933,
3882,
65,
58,
15,
7131,
6,
320,
62,
10951,
20520,
4357,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
308,
83,
62,
29305,
198,
220,
220,
220,
220,
220,
220,
220,
611,
686,
312,
65,
58,
15,
7131,
6,
13655,
62,
37724,
6,
4083,
7857,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
521,
82,
796,
45941,
13,
3003,
7,
3882,
65,
58,
15,
7131,
6,
13655,
62,
37724,
20520,
14512,
657,
38381,
15,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
29305,
796,
45941,
13,
28920,
19510,
11925,
7,
13655,
62,
521,
82,
828,
642,
828,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
29305,
58,
45299,
657,
25,
19,
60,
796,
686,
312,
65,
58,
15,
7131,
6,
29305,
6,
7131,
13655,
62,
521,
82,
11,
1058,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
29305,
58,
45299,
604,
60,
796,
686,
312,
65,
58,
15,
7131,
6,
13655,
62,
37724,
6,
7131,
13655,
62,
521,
82,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
29305,
796,
45941,
13,
28920,
19510,
15,
11,
642,
828,
288,
4906,
28,
37659,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
17816,
320,
62,
10951,
20520,
796,
545,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
1366,
17816,
13655,
62,
29305,
20520,
796,
308,
83,
62,
29305,
628,
220,
220,
220,
1441,
1366,
11,
6167,
628,
198,
4299,
6291,
62,
305,
271,
62,
85,
17,
7,
305,
271,
11,
997,
62,
37724,
11,
30218,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
28,
14202,
11,
12893,
1686,
28,
14202,
11,
275,
3524,
62,
83,
853,
1039,
28,
14202,
11,
308,
83,
62,
29305,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7716,
4738,
6291,
286,
15107,
3792,
27918,
36282,
290,
4469,
6096,
198,
220,
220,
220,
1058,
17143,
686,
271,
25,
477,
62,
305,
271,
685,
77,
11,
604,
11208,
304,
17,
68,
25,
685,
77,
11,
642,
60,
351,
15458,
62,
9630,
198,
220,
220,
220,
1058,
17143,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
25,
36282,
686,
72,
1271,
198,
220,
220,
220,
1058,
17143,
686,
271,
62,
525,
62,
9060,
25,
2472,
686,
72,
1271,
198,
220,
220,
220,
1058,
17143,
997,
62,
37724,
25,
1271,
286,
6097,
198,
220,
220,
220,
1058,
17143,
14722,
25,
3863,
662,
785,
17128,
198,
220,
220,
220,
1058,
17143,
12893,
1686,
25,
3863,
662,
785,
17128,
357,
9806,
62,
2502,
75,
1686,
8,
198,
220,
220,
220,
1058,
17143,
275,
3524,
62,
83,
853,
1039,
25,
3863,
662,
785,
17128,
198,
220,
220,
220,
1058,
17143,
308,
83,
62,
29305,
25,
11902,
329,
304,
17,
68,
685,
77,
11,
642,
60,
357,
87,
16,
11,
331,
16,
11,
2124,
17,
11,
331,
17,
11,
537,
82,
8,
198,
220,
220,
220,
1058,
7783,
25,
357,
23912,
1424,
11,
686,
271,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
14722,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12893,
1686,
796,
275,
3524,
62,
2502,
75,
1686,
7,
305,
271,
58,
45299,
352,
25,
4083,
459,
2981,
7,
37659,
13,
22468,
828,
308,
83,
62,
29305,
58,
45299,
1058,
19,
4083,
459,
2981,
7,
37659,
13,
22468,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
562,
16747,
796,
12893,
1686,
13,
853,
9806,
7,
22704,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12893,
1686,
796,
12893,
1686,
13,
9806,
7,
22704,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
308,
83,
62,
29305,
58,
13655,
62,
562,
16747,
11,
604,
60,
628,
220,
220,
220,
1303,
900,
14722,
286,
275,
70,
62,
305,
271,
284,
307,
657,
198,
220,
220,
220,
275,
70,
62,
521,
796,
45941,
13,
3003,
7,
2502,
75,
1686,
1279,
30218,
70,
13,
51,
3861,
1268,
13,
40469,
62,
4221,
19535,
39,
62,
25374,
38381,
15,
60,
198,
220,
220,
220,
14722,
58,
35904,
62,
521,
60,
796,
657,
628,
220,
220,
220,
1303,
3440,
393,
24061,
275,
3524,
62,
16793,
198,
220,
220,
220,
611,
275,
3524,
62,
83,
853,
1039,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
62,
7890,
796,
275,
3524,
62,
83,
853,
1039,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
275,
3524,
62,
35636,
7,
305,
271,
58,
45299,
352,
25,
4357,
308,
83,
62,
29305,
58,
13655,
62,
562,
16747,
11,
1058,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
51,
3861,
1268,
13,
33,
39758,
62,
35510,
42126,
14887,
6234,
62,
46437,
9858,
30076,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
14808,
83,
853,
1039,
532,
45941,
13,
18747,
7,
37581,
13,
51,
3861,
1268,
13,
33,
39758,
62,
11682,
15037,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
45941,
13,
18747,
7,
37581,
13,
51,
3861,
1268,
13,
33,
39758,
62,
2257,
5258,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
62,
7890,
796,
45941,
13,
71,
25558,
19510,
23912,
1424,
58,
45299,
45941,
13,
3605,
22704,
4357,
6670,
4008,
628,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
4292,
62,
65,
3524,
62,
2301,
2234,
62,
83,
853,
1039,
7,
65,
3524,
62,
16793,
62,
7890,
11,
997,
62,
37724,
11,
30218,
70,
8,
628,
220,
220,
220,
1441,
686,
271,
11,
14722,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
628,
198,
4299,
6291,
62,
305,
271,
7,
305,
271,
11,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
11,
686,
271,
62,
525,
62,
9060,
11,
997,
62,
37724,
11,
30218,
70,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
28,
14202,
11,
12893,
1686,
28,
14202,
11,
275,
3524,
62,
83,
853,
1039,
28,
14202,
11,
308,
83,
62,
29305,
28,
14202,
11,
308,
83,
62,
75,
2977,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
7716,
4738,
6291,
286,
15107,
3792,
27918,
36282,
290,
4469,
6096,
198,
220,
220,
220,
1058,
17143,
686,
271,
25,
477,
62,
305,
271,
685,
77,
11,
604,
11208,
304,
17,
68,
25,
685,
77,
11,
642,
60,
351,
15458,
62,
9630,
198,
220,
220,
220,
1058,
17143,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
25,
36282,
686,
72,
1271,
198,
220,
220,
220,
1058,
17143,
686,
271,
62,
525,
62,
9060,
25,
2472,
686,
72,
1271,
198,
220,
220,
220,
1058,
17143,
997,
62,
37724,
25,
1271,
286,
6097,
198,
220,
220,
220,
1058,
17143,
14722,
25,
3863,
662,
785,
17128,
198,
220,
220,
220,
1058,
17143,
12893,
1686,
25,
3863,
662,
785,
17128,
357,
9806,
62,
2502,
75,
1686,
8,
198,
220,
220,
220,
1058,
17143,
275,
3524,
62,
83,
853,
1039,
25,
3863,
662,
785,
17128,
198,
220,
220,
220,
1058,
17143,
308,
83,
62,
29305,
25,
11902,
329,
304,
17,
68,
685,
77,
11,
642,
60,
357,
87,
16,
11,
331,
16,
11,
2124,
17,
11,
331,
17,
11,
537,
82,
8,
198,
220,
220,
220,
1058,
7783,
25,
357,
23912,
1424,
11,
686,
271,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
8,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
14722,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12893,
1686,
796,
275,
3524,
62,
2502,
75,
1686,
7,
305,
271,
58,
45299,
352,
25,
4083,
459,
2981,
7,
37659,
13,
22468,
828,
308,
83,
62,
29305,
58,
45299,
1058,
19,
4083,
459,
2981,
7,
37659,
13,
22468,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
308,
83,
62,
562,
16747,
796,
12893,
1686,
13,
853,
9806,
7,
22704,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
12893,
1686,
796,
12893,
1686,
13,
9806,
7,
22704,
28,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
14722,
796,
308,
83,
62,
29305,
58,
13655,
62,
562,
16747,
11,
604,
60,
628,
220,
220,
220,
1303,
36282,
5564,
40,
351,
25503,
62,
4221,
19535,
39,
21721,
198,
220,
220,
220,
277,
70,
62,
9630,
274,
796,
45941,
13,
3003,
7,
2502,
75,
1686,
18189,
30218,
70,
13,
51,
3861,
1268,
13,
30386,
62,
4221,
19535,
39,
38381,
15,
60,
198,
220,
220,
220,
1303,
4860,
1028,
262,
1339,
618,
281,
2939,
468,
7380,
621,
277,
70,
62,
305,
271,
62,
525,
62,
9060,
36282,
5564,
3792,
198,
220,
220,
220,
277,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
796,
45941,
13,
39504,
7,
40616,
62,
305,
271,
62,
525,
62,
9060,
11,
277,
70,
62,
9630,
274,
13,
7857,
8,
198,
220,
220,
220,
1303,
27565,
36282,
7652,
1231,
9014,
198,
220,
220,
220,
611,
18896,
7,
40616,
62,
9630,
274,
8,
1875,
277,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
25,
198,
220,
220,
220,
220,
220,
220,
220,
277,
70,
62,
9630,
274,
796,
299,
1050,
13,
25541,
7,
40616,
62,
9630,
274,
11,
2546,
28,
40616,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
11,
6330,
28,
25101,
8,
628,
220,
220,
220,
1303,
9683,
4469,
5564,
3792,
355,
883,
1626,
685,
40469,
62,
4221,
19535,
39,
62,
21982,
11,
34839,
62,
4221,
19535,
39,
62,
25374,
8,
198,
220,
220,
220,
275,
70,
62,
9630,
274,
796,
45941,
13,
3003,
19510,
2502,
75,
1686,
1279,
30218,
70,
13,
51,
3861,
1268,
13,
40469,
62,
4221,
19535,
39,
62,
25374,
8,
1222,
357,
2502,
75,
1686,
18189,
30218,
70,
13,
51,
3861,
1268,
13,
40469,
62,
4221,
19535,
39,
62,
21982,
4008,
58,
15,
60,
198,
220,
220,
220,
1303,
3082,
1133,
1271,
286,
4469,
5564,
3792,
284,
1011,
422,
428,
2939,
357,
5162,
13493,
1028,
612,
852,
7380,
621,
10348,
8,
198,
220,
220,
220,
275,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
796,
686,
271,
62,
525,
62,
9060,
532,
277,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
198,
220,
220,
220,
275,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
796,
45941,
13,
39504,
7,
35904,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
11,
275,
70,
62,
9630,
274,
13,
7857,
8,
198,
220,
220,
220,
1303,
27565,
36282,
7652,
1231,
9014,
198,
220,
220,
220,
611,
18896,
7,
35904,
62,
9630,
274,
8,
1875,
275,
70,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
25,
198,
220,
220,
220,
220,
220,
220,
220,
275,
70,
62,
9630,
274,
796,
299,
1050,
13,
25541,
7,
35904,
62,
9630,
274,
11,
2546,
28,
35904,
62,
305,
271,
62,
525,
62,
5661,
62,
9060,
11,
6330,
28,
25101,
8,
628,
220,
220,
220,
1303,
39199,
6163,
198,
220,
220,
220,
1394,
62,
9630,
274,
796,
45941,
13,
33295,
7,
40616,
62,
9630,
274,
11,
275,
70,
62,
9630,
274,
8,
628,
220,
220,
220,
1303,
14841,
517,
284,
4155,
257,
5969,
949,
571,
963,
2546,
198,
220,
220,
220,
981,
1394,
62,
9630,
274,
13,
43358,
58,
15,
60,
1279,
686,
271,
62,
525,
62,
9060,
25,
198,
220,
220,
220,
220,
220,
220,
220,
7625,
796,
45941,
13,
39504,
7,
11925,
7,
305,
271,
828,
686,
271,
62,
525,
62,
9060,
532,
1394,
62,
9630,
274,
13,
43358,
58,
15,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
7625,
62,
9630,
274,
796,
299,
1050,
13,
25541,
7,
9521,
7,
11925,
7,
305,
271,
36911,
2546,
28,
43554,
11,
6330,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1394,
62,
9630,
274,
796,
45941,
13,
33295,
7,
14894,
62,
9630,
274,
11,
7625,
62,
9630,
274,
8,
628,
220,
220,
220,
1303,
2922,
308,
83,
62,
23912,
1424,
198,
220,
220,
220,
308,
83,
62,
75,
2977,
796,
308,
83,
62,
75,
2977,
58,
14894,
62,
9630,
274,
60,
198,
220,
220,
220,
1303,
2922,
14722,
198,
220,
220,
220,
14722,
796,
14722,
58,
14894,
62,
9630,
274,
60,
198,
220,
220,
220,
1303,
900,
14722,
286,
275,
70,
62,
305,
271,
284,
307,
657,
198,
220,
220,
220,
275,
70,
62,
521,
796,
45941,
13,
3003,
7,
2502,
75,
1686,
58,
14894,
62,
9630,
274,
60,
1279,
30218,
70,
13,
51,
3861,
1268,
13,
40469,
62,
4221,
19535,
39,
62,
25374,
38381,
15,
60,
198,
220,
220,
220,
14722,
58,
35904,
62,
521,
60,
796,
657,
198,
220,
220,
220,
686,
271,
796,
686,
271,
58,
14894,
62,
9630,
274,
60,
628,
220,
220,
220,
1303,
3440,
393,
24061,
275,
3524,
62,
16793,
198,
220,
220,
220,
611,
275,
3524,
62,
83,
853,
1039,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
62,
7890,
796,
275,
3524,
62,
83,
853,
1039,
58,
14894,
62,
9630,
274,
11,
1058,
60,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
275,
3524,
62,
35636,
7,
305,
271,
58,
45299,
352,
25,
4357,
308,
83,
62,
29305,
58,
13655,
62,
562,
16747,
58,
14894,
62,
9630,
274,
4357,
1058,
19,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
611,
30218,
70,
13,
51,
3861,
1268,
13,
33,
39758,
62,
35510,
42126,
14887,
6234,
62,
46437,
9858,
30076,
1961,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6670,
796,
14808,
83,
853,
1039,
532,
45941,
13,
18747,
7,
37581,
13,
51,
3861,
1268,
13,
33,
39758,
62,
11682,
15037,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
45941,
13,
18747,
7,
37581,
13,
51,
3861,
1268,
13,
33,
39758,
62,
2257,
5258,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
275,
3524,
62,
16793,
62,
7890,
796,
45941,
13,
71,
25558,
19510,
23912,
1424,
58,
45299,
45941,
13,
3605,
22704,
4357,
6670,
4008,
628,
220,
220,
220,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
796,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
4292,
62,
65,
3524,
62,
2301,
2234,
62,
83,
853,
1039,
7,
65,
3524,
62,
16793,
62,
7890,
11,
997,
62,
37724,
11,
30218,
70,
8,
628,
220,
220,
220,
1441,
686,
271,
11,
14722,
11,
275,
3524,
62,
83,
853,
1039,
11,
275,
3524,
62,
43775,
11,
308,
83,
62,
75,
2977,
198
] | 1.882739 | 8,528 |
#!/usr/bin/env python
# encoding: utf-8
import os
import sys
from mock import MagicMock, patch
from splunk_eventgen.__main__ import parse_args
from splunk_eventgen.eventgen_core import EventGenerator
FILE_DIR = os.path.dirname(os.path.abspath(__file__))
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
21004,
25,
3384,
69,
12,
23,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
6738,
15290,
1330,
6139,
44,
735,
11,
8529,
198,
198,
6738,
4328,
2954,
62,
15596,
5235,
13,
834,
12417,
834,
1330,
21136,
62,
22046,
198,
6738,
4328,
2954,
62,
15596,
5235,
13,
15596,
5235,
62,
7295,
1330,
8558,
8645,
1352,
198,
198,
25664,
62,
34720,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
628,
628,
198
] | 2.836957 | 92 |
""" module to utils methods to file """
import os
import shutil
import logging
from documentstore_migracao import config
logger = logging.getLogger(__name__)
| [
37811,
8265,
284,
3384,
4487,
5050,
284,
2393,
37227,
198,
198,
11748,
28686,
198,
11748,
4423,
346,
198,
11748,
18931,
198,
198,
6738,
3188,
8095,
62,
76,
3692,
330,
5488,
1330,
4566,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
628,
628
] | 3.32 | 50 |
from sphinx.domains.changeset import versionlabels, VersionChange
from sphinx.locale import _ # just to suppress warnings
try:
from sphinx.domains.changeset import versionlabel_classes
except ImportError:
# versionlabel_classes doesn't exist in old Sphinx versions.
UPDATE_VERIONLABEL_CLASSES = False
else:
UPDATE_VERIONLABEL_CLASSES = True
labels = ('versionadded', 'versionchanged', 'deprecated', 'versionextended')
| [
6738,
599,
20079,
87,
13,
3438,
1299,
13,
36653,
316,
1330,
2196,
23912,
1424,
11,
10628,
19400,
198,
6738,
599,
20079,
87,
13,
17946,
1000,
1330,
4808,
1303,
655,
284,
18175,
14601,
198,
198,
28311,
25,
198,
220,
220,
220,
422,
599,
20079,
87,
13,
3438,
1299,
13,
36653,
316,
1330,
2196,
18242,
62,
37724,
198,
16341,
17267,
12331,
25,
198,
220,
220,
220,
1303,
2196,
18242,
62,
37724,
1595,
470,
2152,
287,
1468,
45368,
28413,
6300,
13,
198,
220,
220,
220,
35717,
62,
5959,
2849,
48780,
3698,
62,
31631,
1546,
796,
10352,
198,
17772,
25,
198,
220,
220,
220,
35717,
62,
5959,
2849,
48780,
3698,
62,
31631,
1546,
796,
6407,
628,
198,
23912,
1424,
796,
19203,
9641,
29373,
3256,
705,
9641,
40985,
3256,
705,
10378,
31023,
3256,
705,
9641,
2302,
1631,
11537,
628,
198
] | 3.251852 | 135 |
'''
@author Tian Shi
Please contact [email protected]
'''
import json
import os
import random
import gensim
import numpy as np
from tqdm import tqdm
def run_word2vec(args):
'''
Run word2vec.
'''
cluster_dir = '../cluster_results'
if not os.path.exists(cluster_dir):
os.mkdir(cluster_dir)
if not os.path.exists('../nats_results'):
os.mkdir('../nats_results')
fp = open(os.path.join(args.data_dir, args.file_train_w2v), 'r')
sentences = []
for line in tqdm(fp):
itm = json.loads(line)
sentences.append(itm['text_uae'].split())
fp.close()
random.shuffle(sentences)
print('-'*50)
print('Number of sentences: {}'.format(len(sentences)))
print('Begin to train word2vec...')
model = gensim.models.Word2Vec(
sentences,
size=args.emb_size,
window=args.window,
min_count=args.min_count,
workers=args.workers)
model.save(os.path.join(cluster_dir, 'w2v_embedding'))
print('Taining Done.')
print('-'*50)
def convert_vectors(args):
'''
convert vectors and vocab.
'''
cluster_dir = '../cluster_results'
file_vocab = 'vocab.txt'
file_wordvec = 'vectors_w2v'
model = gensim.models.Word2Vec.load(
os.path.join(cluster_dir, 'w2v_embedding'))
lexicon = {}
for word in model.wv.vocab:
if word.strip() == '':
continue
lexicon[word] = model.wv[word]
vocab = []
for wd in lexicon:
vocab.append(wd)
vocab = sorted(vocab)
vec = np.zeros([len(lexicon), args.emb_size])
for k, wd in enumerate(vocab):
vec[k] = lexicon[wd]
print('Vocabulary size: {}'.format(vec.shape[0]))
np.save(os.path.join(cluster_dir, file_wordvec), vec)
fout = open(os.path.join(cluster_dir, file_vocab), 'w')
for k, itm in enumerate(vocab):
itm = [itm, str(k)]
fout.write(' '.join(itm) + '\n')
fout.close()
| [
7061,
6,
198,
31,
9800,
20834,
16380,
198,
5492,
2800,
256,
44019,
31,
36540,
13,
15532,
198,
7061,
6,
198,
11748,
33918,
198,
11748,
28686,
198,
11748,
4738,
198,
198,
11748,
308,
641,
320,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
256,
80,
36020,
1330,
256,
80,
36020,
628,
198,
4299,
1057,
62,
4775,
17,
35138,
7,
22046,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
5660,
1573,
17,
35138,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
13946,
62,
15908,
796,
705,
40720,
565,
5819,
62,
43420,
6,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
7,
565,
5819,
62,
15908,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28015,
15908,
7,
565,
5819,
62,
15908,
8,
198,
220,
220,
220,
611,
407,
28686,
13,
6978,
13,
1069,
1023,
10786,
40720,
77,
1381,
62,
43420,
6,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
28015,
15908,
10786,
40720,
77,
1381,
62,
43420,
11537,
628,
220,
220,
220,
277,
79,
796,
1280,
7,
418,
13,
6978,
13,
22179,
7,
22046,
13,
7890,
62,
15908,
11,
26498,
13,
7753,
62,
27432,
62,
86,
17,
85,
828,
705,
81,
11537,
198,
220,
220,
220,
13439,
796,
17635,
198,
220,
220,
220,
329,
1627,
287,
256,
80,
36020,
7,
46428,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
340,
76,
796,
33918,
13,
46030,
7,
1370,
8,
198,
220,
220,
220,
220,
220,
220,
220,
13439,
13,
33295,
7,
270,
76,
17816,
5239,
62,
84,
3609,
6,
4083,
35312,
28955,
198,
220,
220,
220,
277,
79,
13,
19836,
3419,
198,
220,
220,
220,
4738,
13,
1477,
18137,
7,
34086,
3007,
8,
198,
220,
220,
220,
3601,
10786,
19355,
9,
1120,
8,
198,
220,
220,
220,
3601,
10786,
15057,
286,
13439,
25,
23884,
4458,
18982,
7,
11925,
7,
34086,
3007,
22305,
198,
220,
220,
220,
3601,
10786,
44140,
284,
4512,
1573,
17,
35138,
986,
11537,
198,
220,
220,
220,
2746,
796,
308,
641,
320,
13,
27530,
13,
26449,
17,
53,
721,
7,
198,
220,
220,
220,
220,
220,
220,
220,
13439,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2546,
28,
22046,
13,
24419,
62,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4324,
28,
22046,
13,
17497,
11,
198,
220,
220,
220,
220,
220,
220,
220,
949,
62,
9127,
28,
22046,
13,
1084,
62,
9127,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3259,
28,
22046,
13,
22896,
8,
198,
220,
220,
220,
2746,
13,
21928,
7,
418,
13,
6978,
13,
22179,
7,
565,
5819,
62,
15908,
11,
705,
86,
17,
85,
62,
20521,
12083,
6,
4008,
198,
220,
220,
220,
3601,
10786,
51,
1397,
24429,
2637,
8,
198,
220,
220,
220,
3601,
10786,
19355,
9,
1120,
8,
628,
198,
4299,
10385,
62,
303,
5217,
7,
22046,
2599,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
10385,
30104,
290,
12776,
397,
13,
198,
220,
220,
220,
705,
7061,
198,
220,
220,
220,
13946,
62,
15908,
796,
705,
40720,
565,
5819,
62,
43420,
6,
198,
220,
220,
220,
2393,
62,
18893,
397,
796,
705,
18893,
397,
13,
14116,
6,
198,
220,
220,
220,
2393,
62,
4775,
35138,
796,
705,
303,
5217,
62,
86,
17,
85,
6,
628,
220,
220,
220,
2746,
796,
308,
641,
320,
13,
27530,
13,
26449,
17,
53,
721,
13,
2220,
7,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
6978,
13,
22179,
7,
565,
5819,
62,
15908,
11,
705,
86,
17,
85,
62,
20521,
12083,
6,
4008,
628,
220,
220,
220,
31191,
4749,
796,
23884,
198,
220,
220,
220,
329,
1573,
287,
2746,
13,
86,
85,
13,
18893,
397,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1573,
13,
36311,
3419,
6624,
10148,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
198,
220,
220,
220,
220,
220,
220,
220,
31191,
4749,
58,
4775,
60,
796,
2746,
13,
86,
85,
58,
4775,
60,
198,
220,
220,
220,
12776,
397,
796,
17635,
198,
220,
220,
220,
329,
266,
67,
287,
31191,
4749,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12776,
397,
13,
33295,
7,
16993,
8,
198,
220,
220,
220,
12776,
397,
796,
23243,
7,
18893,
397,
8,
628,
220,
220,
220,
43030,
796,
45941,
13,
9107,
418,
26933,
11925,
7,
2588,
4749,
828,
26498,
13,
24419,
62,
7857,
12962,
198,
220,
220,
220,
329,
479,
11,
266,
67,
287,
27056,
378,
7,
18893,
397,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
43030,
58,
74,
60,
796,
31191,
4749,
58,
16993,
60,
628,
220,
220,
220,
3601,
10786,
53,
420,
22528,
2546,
25,
23884,
4458,
18982,
7,
35138,
13,
43358,
58,
15,
60,
4008,
628,
220,
220,
220,
45941,
13,
21928,
7,
418,
13,
6978,
13,
22179,
7,
565,
5819,
62,
15908,
11,
2393,
62,
4775,
35138,
828,
43030,
8,
198,
220,
220,
220,
277,
448,
796,
1280,
7,
418,
13,
6978,
13,
22179,
7,
565,
5819,
62,
15908,
11,
2393,
62,
18893,
397,
828,
705,
86,
11537,
198,
220,
220,
220,
329,
479,
11,
340,
76,
287,
27056,
378,
7,
18893,
397,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
340,
76,
796,
685,
270,
76,
11,
965,
7,
74,
15437,
198,
220,
220,
220,
220,
220,
220,
220,
277,
448,
13,
13564,
10786,
45302,
22179,
7,
270,
76,
8,
1343,
705,
59,
77,
11537,
198,
220,
220,
220,
277,
448,
13,
19836,
3419,
198
] | 2.13034 | 913 |
from GenerateFolders import generateFolders
from GenerateFiles import generateFiles
from AddictionHelperGenerator import addictionHelperGenerator
import shutil
from Constants import *
generateFolders()
generateFiles()
addictionHelperGenerator()
shutil.make_archive('tobacco_awareness', 'zip', rootdir) | [
6738,
2980,
378,
37,
727,
364,
1330,
7716,
37,
727,
364,
198,
6738,
2980,
378,
25876,
1330,
7716,
25876,
198,
6738,
40187,
47429,
8645,
1352,
1330,
13230,
47429,
8645,
1352,
198,
11748,
4423,
346,
198,
6738,
4757,
1187,
1330,
1635,
198,
198,
8612,
378,
37,
727,
364,
3419,
198,
8612,
378,
25876,
3419,
198,
2860,
2867,
47429,
8645,
1352,
3419,
198,
198,
1477,
22602,
13,
15883,
62,
17474,
10786,
83,
672,
8679,
62,
47812,
3256,
705,
13344,
3256,
6808,
15908,
8
] | 3.740741 | 81 |
from final_code.fcts_data_formatting import day_to_month, day_to_quarter, import_datasets, time_interval, add_categories, \
HB_to_areas, extract_data, day_to_quarter, month_to_quarter
import numpy as np
import matplotlib.pyplot as plt
data31, data62, operations, diag, covid = import_datasets(['31DayData', '62DayData', 'cancellations_by_board_november_2021', \
'diagnostics_by_board_september_2021', 'covid_2022'])
print(covid)
data31 = time_interval(data31, ['2018Q1', '2020Q1'])
data31 = HB_to_areas(data31)
groupings = {'new_CT':['Breast', 'Cervical'], 'all_reg':['NCA','SCAN','WOSCAN']}
data31 = add_categories(data31, groupings)
print(data31.index.names)
data31.info()
d31 = extract_data(data31, ('all_reg', 'all_reg','new_CT'), ['HB', 'HBT','CancerType'], ['NumberOfEligibleReferrals31DayStandard'])
covid = day_to_quarter(covid)
print(covid)
operations = time_interval(operations, ['201807', '202107'])
operations = HB_to_areas(operations)
print(operations.index.names)
operations.info()
op1, op2 = extract_data(operations, 'NCA', 'HBT', ['TotalOperations', 'TotalCancelled'])
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.plot(op1[0,:],op1[1,:])
every_nth = 4
for n, label in enumerate(ax.xaxis.get_ticklabels()):
if n % every_nth != 0:
label.set_visible(False)
plt.show() | [
6738,
2457,
62,
8189,
13,
69,
310,
82,
62,
7890,
62,
18982,
889,
1330,
1110,
62,
1462,
62,
8424,
11,
1110,
62,
1462,
62,
24385,
11,
1330,
62,
19608,
292,
1039,
11,
640,
62,
3849,
2100,
11,
751,
62,
66,
26129,
11,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
25997,
62,
1462,
62,
533,
292,
11,
7925,
62,
7890,
11,
1110,
62,
1462,
62,
24385,
11,
1227,
62,
1462,
62,
24385,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
198,
7890,
3132,
11,
1366,
5237,
11,
4560,
11,
2566,
363,
11,
39849,
312,
796,
1330,
62,
19608,
292,
1039,
7,
17816,
3132,
12393,
6601,
3256,
705,
5237,
12393,
6601,
3256,
705,
66,
590,
297,
602,
62,
1525,
62,
3526,
62,
77,
3239,
62,
1238,
2481,
3256,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
47356,
34558,
62,
1525,
62,
3526,
62,
325,
457,
1491,
62,
1238,
2481,
3256,
705,
66,
709,
312,
62,
1238,
1828,
6,
12962,
198,
4798,
7,
66,
709,
312,
8,
198,
7890,
3132,
796,
640,
62,
3849,
2100,
7,
7890,
3132,
11,
37250,
7908,
48,
16,
3256,
705,
42334,
48,
16,
6,
12962,
198,
7890,
3132,
796,
25997,
62,
1462,
62,
533,
292,
7,
7890,
3132,
8,
198,
198,
8094,
654,
796,
1391,
6,
3605,
62,
4177,
10354,
17816,
12679,
459,
3256,
705,
34,
712,
605,
6,
4357,
705,
439,
62,
2301,
10354,
17816,
7792,
32,
41707,
6173,
1565,
41707,
54,
2640,
44565,
20520,
92,
198,
7890,
3132,
796,
751,
62,
66,
26129,
7,
7890,
3132,
11,
1448,
654,
8,
198,
4798,
7,
7890,
3132,
13,
9630,
13,
14933,
8,
198,
7890,
3132,
13,
10951,
3419,
198,
198,
67,
3132,
796,
7925,
62,
7890,
7,
7890,
3132,
11,
19203,
439,
62,
2301,
3256,
705,
439,
62,
2301,
41707,
3605,
62,
4177,
33809,
37250,
32886,
3256,
705,
39,
19313,
41707,
34,
8250,
6030,
6,
4357,
37250,
15057,
5189,
36,
4604,
856,
8134,
8056,
874,
3132,
12393,
23615,
6,
12962,
198,
198,
66,
709,
312,
796,
1110,
62,
1462,
62,
24385,
7,
66,
709,
312,
8,
198,
4798,
7,
66,
709,
312,
8,
198,
198,
3575,
602,
796,
640,
62,
3849,
2100,
7,
3575,
602,
11,
37250,
1264,
36928,
3256,
705,
19004,
15982,
6,
12962,
198,
3575,
602,
796,
25997,
62,
1462,
62,
533,
292,
7,
3575,
602,
8,
198,
4798,
7,
3575,
602,
13,
9630,
13,
14933,
8,
198,
3575,
602,
13,
10951,
3419,
198,
198,
404,
16,
11,
1034,
17,
796,
7925,
62,
7890,
7,
3575,
602,
11,
705,
7792,
32,
3256,
705,
39,
19313,
3256,
37250,
14957,
18843,
602,
3256,
705,
14957,
34,
590,
3353,
6,
12962,
198,
198,
5647,
11,
7877,
796,
458,
83,
13,
7266,
489,
1747,
7,
16,
11,
352,
11,
2336,
7857,
16193,
23,
11,
604,
4008,
198,
897,
13,
29487,
7,
404,
16,
58,
15,
11,
25,
4357,
404,
16,
58,
16,
11,
25,
12962,
198,
16833,
62,
77,
400,
796,
604,
198,
1640,
299,
11,
6167,
287,
27056,
378,
7,
897,
13,
87,
22704,
13,
1136,
62,
42298,
23912,
1424,
3419,
2599,
198,
220,
220,
220,
611,
299,
4064,
790,
62,
77,
400,
14512,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6167,
13,
2617,
62,
23504,
7,
25101,
8,
198,
489,
83,
13,
12860,
3419
] | 2.222045 | 626 |
import sys
| [
11748,
25064,
198
] | 3.666667 | 3 |
from __future__ import absolute_import
| [
171,
119,
123,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198
] | 3.333333 | 12 |
"""
GraphSense API
GraphSense API # noqa: E501
The version of the OpenAPI document: 0.5.1
Generated by: https://openapi-generator.tech
"""
import re # noqa: F401
import sys # noqa: F401
from graphsense.api_client import ApiClient, Endpoint as _Endpoint
from graphsense.model_utils import ( # noqa: F401
check_allowed_values,
check_validations,
date,
datetime,
file_type,
none_type,
validate_and_convert_types
)
from graphsense.model.address import Address
from graphsense.model.address_tags import AddressTags
from graphsense.model.address_txs import AddressTxs
from graphsense.model.entity import Entity
from graphsense.model.links import Links
from graphsense.model.neighbors import Neighbors
class AddressesApi(object):
"""NOTE: This class is auto generated by OpenAPI Generator
Ref: https://openapi-generator.tech
Do not edit the class manually.
"""
| [
37811,
198,
220,
220,
220,
29681,
41166,
7824,
628,
220,
220,
220,
29681,
41166,
7824,
220,
1303,
645,
20402,
25,
412,
33548,
628,
220,
220,
220,
383,
2196,
286,
262,
4946,
17614,
3188,
25,
657,
13,
20,
13,
16,
198,
220,
220,
220,
2980,
515,
416,
25,
3740,
1378,
9654,
15042,
12,
8612,
1352,
13,
13670,
198,
37811,
628,
198,
11748,
302,
220,
1303,
645,
20402,
25,
376,
21844,
198,
11748,
25064,
220,
1303,
645,
20402,
25,
376,
21844,
198,
198,
6738,
28770,
1072,
13,
15042,
62,
16366,
1330,
5949,
72,
11792,
11,
5268,
4122,
355,
4808,
12915,
4122,
198,
6738,
28770,
1072,
13,
19849,
62,
26791,
1330,
357,
220,
1303,
645,
20402,
25,
376,
21844,
198,
220,
220,
220,
2198,
62,
40845,
62,
27160,
11,
198,
220,
220,
220,
2198,
62,
12102,
602,
11,
198,
220,
220,
220,
3128,
11,
198,
220,
220,
220,
4818,
8079,
11,
198,
220,
220,
220,
2393,
62,
4906,
11,
198,
220,
220,
220,
4844,
62,
4906,
11,
198,
220,
220,
220,
26571,
62,
392,
62,
1102,
1851,
62,
19199,
198,
8,
198,
6738,
28770,
1072,
13,
19849,
13,
21975,
1330,
17917,
198,
6738,
28770,
1072,
13,
19849,
13,
21975,
62,
31499,
1330,
17917,
36142,
198,
6738,
28770,
1072,
13,
19849,
13,
21975,
62,
17602,
82,
1330,
17917,
51,
34223,
198,
6738,
28770,
1072,
13,
19849,
13,
26858,
1330,
20885,
198,
6738,
28770,
1072,
13,
19849,
13,
28751,
1330,
21691,
198,
6738,
28770,
1072,
13,
19849,
13,
710,
394,
32289,
1330,
22505,
32289,
628,
198,
4871,
3060,
16746,
32,
14415,
7,
15252,
2599,
198,
220,
220,
220,
37227,
16580,
25,
770,
1398,
318,
8295,
7560,
416,
4946,
17614,
35986,
198,
220,
220,
220,
6524,
25,
3740,
1378,
9654,
15042,
12,
8612,
1352,
13,
13670,
628,
220,
220,
220,
2141,
407,
4370,
262,
1398,
14500,
13,
198,
220,
220,
220,
37227,
198
] | 3.016287 | 307 |
import argparse
import collections
import json
import random
import string
import sys
import types
import bftool
# Default argument capture for the main function
def _get_arguments() -> argparse.Namespace:
"""Default function to prepare the arguments for the `Runner` during it's execution in a terminal
Returns:
- bftool.Arguments with all the configurations provided by the user
"""
argument_parser = argparse.ArgumentParser()
argument_parser.add_argument("-mt", "--max-threads",
help="Maximum number of threads per process", default=1, type=int)
argument_parser.add_argument("-mp", "--max-processes",
help="Maximum number of process to have active at the same time",
default=1, type=int)
argument_parser.add_argument("-w", "--wordlist", help="File wordlist to use"
" based on \"{'argument_1': FILE_PATH, ...}\"",
default="{}")
argument_parser.add_argument("-b", "--bruteforce",
help="Generate a virtual wordlist based on \
rules \"{'argument_1': {'elements': [element_1, ...], 'minlength': INT, 'maxlength': "
"INT, 'string-join': BOOL}, ...}\"",
default="{}")
argument_parser.add_argument("-sf", "--success-function",
help="Function to pass the success result to (default is custom 'print')",
default="lambda output: print(f\"[+] {output}\\n\", end='')")
argument_parser.add_argument("-cf", "--check-function",
help="Function useful to check the output (default is 'lambda output: output')",
default="lambda output: output")
argument_parser.add_argument("-sp", "--script_path", help="Python script to import", default=None, type=str)
argument_parser.add_argument("expression", help="expression that will result in a callable")
return argument_parser.parse_args()
if __name__ == "__main__":
sys.argv[0] = "bftool"
parsed_arguments = _get_arguments()
function_ = import_function(parsed_arguments.expression, parsed_arguments.script_path)
success_function = import_function(parsed_arguments.success_function, parsed_arguments.script_path)
check_function = import_function(parsed_arguments.check_function, parsed_arguments.script_path)
function_arguments = bftool.Arguments(
function_=function_,
files=json.loads(parsed_arguments.wordlist),
bruteforce_rules=json.loads(parsed_arguments.bruteforce),
)
bftool.Pool(
function_,
function_arguments=function_arguments,
check_function=check_function,
success_function=success_function,
max_processes=parsed_arguments.max_processes,
max_threads=parsed_arguments.max_threads
).run()
| [
11748,
1822,
29572,
198,
11748,
17268,
198,
11748,
33918,
198,
11748,
4738,
198,
11748,
4731,
198,
11748,
25064,
198,
11748,
3858,
198,
198,
11748,
275,
701,
970,
628,
198,
2,
15161,
4578,
8006,
329,
262,
1388,
2163,
198,
4299,
4808,
1136,
62,
853,
2886,
3419,
4613,
1822,
29572,
13,
36690,
10223,
25,
198,
220,
220,
220,
37227,
19463,
2163,
284,
8335,
262,
7159,
329,
262,
4600,
49493,
63,
1141,
340,
338,
9706,
287,
257,
12094,
628,
220,
220,
220,
16409,
25,
198,
220,
220,
220,
220,
220,
220,
220,
532,
275,
701,
970,
13,
28100,
2886,
351,
477,
220,
262,
25412,
2810,
416,
262,
2836,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4578,
62,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
3419,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
16762,
1600,
366,
438,
9806,
12,
16663,
82,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
40541,
1271,
286,
14390,
583,
1429,
1600,
4277,
28,
16,
11,
2099,
28,
600,
8,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
3149,
1600,
366,
438,
9806,
12,
14681,
274,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
40541,
1271,
286,
1429,
284,
423,
4075,
379,
262,
976,
640,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
28,
16,
11,
2099,
28,
600,
8,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
86,
1600,
366,
438,
4775,
4868,
1600,
1037,
2625,
8979,
1573,
4868,
284,
779,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
1912,
319,
19990,
90,
6,
49140,
62,
16,
10354,
45811,
62,
34219,
11,
2644,
92,
7879,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
90,
92,
4943,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
65,
1600,
366,
438,
1671,
315,
891,
8387,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
8645,
378,
257,
7166,
1573,
4868,
1912,
319,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3173,
19990,
90,
6,
49140,
62,
16,
10354,
1391,
6,
68,
3639,
10354,
685,
30854,
62,
16,
11,
2644,
4357,
705,
1084,
13664,
10354,
17828,
11,
705,
9806,
13664,
10354,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
12394,
11,
705,
8841,
12,
22179,
10354,
16494,
3535,
5512,
2644,
92,
7879,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
90,
92,
4943,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
28202,
1600,
366,
438,
13138,
12,
8818,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
22203,
284,
1208,
262,
1943,
1255,
284,
357,
12286,
318,
2183,
705,
4798,
11537,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
50033,
5072,
25,
3601,
7,
69,
7879,
58,
10,
60,
1391,
22915,
92,
6852,
77,
34607,
886,
28,
7061,
8,
4943,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
12993,
1600,
366,
438,
9122,
12,
8818,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
2625,
22203,
4465,
284,
2198,
262,
5072,
357,
12286,
318,
705,
50033,
5072,
25,
5072,
11537,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4277,
2625,
50033,
5072,
25,
5072,
4943,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
12,
2777,
1600,
366,
438,
12048,
62,
6978,
1600,
1037,
2625,
37906,
4226,
284,
1330,
1600,
4277,
28,
14202,
11,
2099,
28,
2536,
8,
198,
220,
220,
220,
4578,
62,
48610,
13,
2860,
62,
49140,
7203,
38011,
1600,
1037,
2625,
38011,
326,
481,
1255,
287,
257,
869,
540,
4943,
198,
220,
220,
220,
1441,
4578,
62,
48610,
13,
29572,
62,
22046,
3419,
628,
628,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
25064,
13,
853,
85,
58,
15,
60,
796,
366,
65,
701,
970,
1,
198,
220,
220,
220,
44267,
62,
853,
2886,
796,
4808,
1136,
62,
853,
2886,
3419,
198,
220,
220,
220,
2163,
62,
796,
1330,
62,
8818,
7,
79,
945,
276,
62,
853,
2886,
13,
38011,
11,
44267,
62,
853,
2886,
13,
12048,
62,
6978,
8,
198,
220,
220,
220,
1943,
62,
8818,
796,
1330,
62,
8818,
7,
79,
945,
276,
62,
853,
2886,
13,
13138,
62,
8818,
11,
44267,
62,
853,
2886,
13,
12048,
62,
6978,
8,
198,
220,
220,
220,
2198,
62,
8818,
796,
1330,
62,
8818,
7,
79,
945,
276,
62,
853,
2886,
13,
9122,
62,
8818,
11,
44267,
62,
853,
2886,
13,
12048,
62,
6978,
8,
198,
220,
220,
220,
2163,
62,
853,
2886,
796,
275,
701,
970,
13,
28100,
2886,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2163,
62,
28,
8818,
62,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3696,
28,
17752,
13,
46030,
7,
79,
945,
276,
62,
853,
2886,
13,
4775,
4868,
828,
198,
220,
220,
220,
220,
220,
220,
220,
8938,
891,
8387,
62,
38785,
28,
17752,
13,
46030,
7,
79,
945,
276,
62,
853,
2886,
13,
1671,
315,
891,
8387,
828,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
275,
701,
970,
13,
27201,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2163,
62,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2163,
62,
853,
2886,
28,
8818,
62,
853,
2886,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
8818,
28,
9122,
62,
8818,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1943,
62,
8818,
28,
13138,
62,
8818,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
14681,
274,
28,
79,
945,
276,
62,
853,
2886,
13,
9806,
62,
14681,
274,
11,
198,
220,
220,
220,
220,
220,
220,
220,
3509,
62,
16663,
82,
28,
79,
945,
276,
62,
853,
2886,
13,
9806,
62,
16663,
82,
198,
220,
220,
220,
6739,
5143,
3419,
198
] | 2.287743 | 1,338 |
from conans import ConanFile, CMake
| [
6738,
369,
504,
1330,
31634,
8979,
11,
327,
12050,
628
] | 3.7 | 10 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import logging
from pathlib import Path
import sys
import click
import h5py
import yaml
import lynx
import hoover
import pymaster as nmt
from scipy.optimize import minimize
import emcee
import healpy as hp
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import pandas as pd
import numpy as np
from scipy import stats
from lynx import Masking
_logger = logging.getLogger(__name__)
@click.command()
@click.option('-d', '--data_path', 'data_path', required=True,
type=click.Path(exists=True), help='path to data configuration')
@click.option('-m', '--model_path', 'model_path', required=True,
type=click.Path(exists=False), help='path to model configuration')
@click.option('-p', '--mask_path', 'mask_path', required=True,
type=click.Path(exists=False), help='path to masking configuration')
@click.option('--quiet', 'log_level', flag_value=logging.WARNING, default=True)
@click.option('-v', '--verbose', 'log_level', flag_value=logging.INFO)
@click.option('-vv', '--very-verbose', 'log_level', flag_value=logging.DEBUG)
@click.version_option(lynx.__version__)
if __name__ == '__main__':
main() | [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
11748,
18931,
198,
6738,
3108,
8019,
1330,
10644,
198,
11748,
25064,
198,
198,
11748,
3904,
198,
198,
11748,
289,
20,
9078,
198,
11748,
331,
43695,
198,
198,
11748,
31432,
87,
198,
11748,
289,
2238,
332,
198,
11748,
279,
4948,
1603,
355,
299,
16762,
198,
198,
6738,
629,
541,
88,
13,
40085,
1096,
1330,
17775,
198,
11748,
795,
344,
68,
198,
11748,
12035,
9078,
355,
27673,
220,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
6738,
2603,
29487,
8019,
13,
8071,
2052,
1330,
7122,
541,
325,
198,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
6738,
629,
541,
88,
1330,
9756,
198,
198,
6738,
31432,
87,
1330,
18007,
278,
198,
198,
62,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
628,
198,
31,
12976,
13,
21812,
3419,
198,
31,
12976,
13,
18076,
10786,
12,
67,
3256,
705,
438,
7890,
62,
6978,
3256,
705,
7890,
62,
6978,
3256,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
12976,
13,
15235,
7,
1069,
1023,
28,
17821,
828,
1037,
11639,
6978,
284,
1366,
8398,
11537,
198,
31,
12976,
13,
18076,
10786,
12,
76,
3256,
705,
438,
19849,
62,
6978,
3256,
705,
19849,
62,
6978,
3256,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
12976,
13,
15235,
7,
1069,
1023,
28,
25101,
828,
1037,
11639,
6978,
284,
2746,
8398,
11537,
198,
31,
12976,
13,
18076,
10786,
12,
79,
3256,
705,
438,
27932,
62,
6978,
3256,
705,
27932,
62,
6978,
3256,
2672,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2099,
28,
12976,
13,
15235,
7,
1069,
1023,
28,
25101,
828,
1037,
11639,
6978,
284,
9335,
278,
8398,
11537,
198,
31,
12976,
13,
18076,
10786,
438,
39624,
3256,
705,
6404,
62,
5715,
3256,
6056,
62,
8367,
28,
6404,
2667,
13,
31502,
11,
4277,
28,
17821,
8,
198,
31,
12976,
13,
18076,
10786,
12,
85,
3256,
705,
438,
19011,
577,
3256,
705,
6404,
62,
5715,
3256,
6056,
62,
8367,
28,
6404,
2667,
13,
10778,
8,
198,
31,
12976,
13,
18076,
10786,
12,
25093,
3256,
705,
438,
548,
12,
19011,
577,
3256,
705,
6404,
62,
5715,
3256,
6056,
62,
8367,
28,
6404,
2667,
13,
30531,
8,
198,
31,
12976,
13,
9641,
62,
18076,
7,
6213,
87,
13,
834,
9641,
834,
8,
628,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419
] | 2.678337 | 457 |
"""
Script for running management commands for the Asteroids Game / AI.
Usage: python manage.py [--help]
"""
from ai.experiment import merge_experiments
import click
import settings
class TransparentGroup(click.Group):
"""
A Click Group class that passes all provided
arguments to its subcommands without processing them.
"""
@click.group(cls=TransparentGroup)
@click.pass_context
@manage.command(short_help='Merges experiments into a new experiment',
context_settings=dict(ignore_unknown_options=True,
allow_extra_args=True,))
@click.argument('parent_dirs', nargs=-1)
@click.argument('output_dir')
@click.pass_context
def merge(ctx, parent_dirs, output_dir):
"""
Merges the best brains of the parent experment directories
into a new directory, and initializes (but does not run)
that experiment:
\b
The settings passed to this command will be used to initialize
and perform the initial evaluation of the merged experiment.
\b
Arguments:
parent_dirs - Directories of parent experiments to merge.
output_dir - Directory to place the merged experiment into.
"""
# Remove all options from the directory arguments
parent_dirs = [x for x in list(parent_dirs) if not x.startswith("--")]
if output_dir.startswith("--"):
output_dir = parent_dirs.pop() if len(parent_dirs) > 0 else ""
# Configure settings, then actually merge the experiments
settings.configure_settings()
merge_experiments(parent_dirs, output_dir)
@manage.command('settings', short_help='View configurable settings')
@click.pass_context
def view_settings(ctx):
"""
View the configurable settings for the other commands.
"""
click.echo(settings.cli_configure_settings.get_help(ctx))
if __name__ == "__main__":
manage()
| [
37811,
198,
7391,
329,
2491,
4542,
9729,
329,
262,
38484,
10994,
3776,
1220,
9552,
13,
198,
198,
28350,
25,
21015,
6687,
13,
9078,
685,
438,
16794,
60,
198,
37811,
198,
198,
6738,
257,
72,
13,
23100,
3681,
1330,
20121,
62,
23100,
6800,
198,
11748,
3904,
198,
11748,
6460,
198,
198,
4871,
3602,
8000,
13247,
7,
12976,
13,
13247,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
6914,
4912,
1398,
326,
8318,
477,
2810,
198,
220,
220,
220,
7159,
284,
663,
850,
9503,
1746,
1231,
7587,
606,
13,
198,
220,
220,
220,
37227,
198,
198,
31,
12976,
13,
8094,
7,
565,
82,
28,
8291,
8000,
13247,
8,
198,
31,
12976,
13,
6603,
62,
22866,
198,
198,
31,
805,
496,
13,
21812,
7,
19509,
62,
16794,
11639,
13102,
3212,
10256,
656,
257,
649,
6306,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
4732,
62,
33692,
28,
11600,
7,
46430,
62,
34680,
62,
25811,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1249,
62,
26086,
62,
22046,
28,
17821,
11,
4008,
198,
31,
12976,
13,
49140,
10786,
8000,
62,
15908,
82,
3256,
299,
22046,
10779,
16,
8,
198,
31,
12976,
13,
49140,
10786,
22915,
62,
15908,
11537,
198,
31,
12976,
13,
6603,
62,
22866,
198,
4299,
20121,
7,
49464,
11,
2560,
62,
15908,
82,
11,
5072,
62,
15908,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4638,
3212,
262,
1266,
14290,
286,
262,
2560,
1121,
434,
29196,
198,
220,
220,
220,
656,
257,
649,
8619,
11,
290,
4238,
4340,
357,
4360,
857,
407,
1057,
8,
198,
220,
220,
220,
326,
6306,
25,
628,
220,
220,
220,
3467,
65,
198,
220,
220,
220,
383,
6460,
3804,
284,
428,
3141,
481,
307,
973,
284,
41216,
198,
220,
220,
220,
290,
1620,
262,
4238,
12660,
286,
262,
23791,
6306,
13,
628,
220,
220,
220,
3467,
65,
198,
220,
220,
220,
20559,
2886,
25,
198,
220,
220,
220,
220,
220,
2560,
62,
15908,
82,
532,
4128,
1749,
286,
2560,
10256,
284,
20121,
13,
198,
220,
220,
220,
220,
220,
5072,
62,
15908,
220,
532,
27387,
284,
1295,
262,
23791,
6306,
656,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
17220,
477,
3689,
422,
262,
8619,
7159,
198,
220,
220,
220,
2560,
62,
15908,
82,
796,
685,
87,
329,
2124,
287,
1351,
7,
8000,
62,
15908,
82,
8,
611,
407,
2124,
13,
9688,
2032,
342,
7203,
438,
4943,
60,
198,
220,
220,
220,
611,
5072,
62,
15908,
13,
9688,
2032,
342,
7203,
438,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
5072,
62,
15908,
796,
2560,
62,
15908,
82,
13,
12924,
3419,
611,
18896,
7,
8000,
62,
15908,
82,
8,
1875,
657,
2073,
13538,
198,
220,
220,
220,
1303,
17056,
495,
6460,
11,
788,
1682,
20121,
262,
10256,
198,
220,
220,
220,
6460,
13,
11250,
495,
62,
33692,
3419,
198,
220,
220,
220,
20121,
62,
23100,
6800,
7,
8000,
62,
15908,
82,
11,
5072,
62,
15908,
8,
198,
198,
31,
805,
496,
13,
21812,
10786,
33692,
3256,
1790,
62,
16794,
11639,
7680,
4566,
11970,
6460,
11537,
198,
31,
12976,
13,
6603,
62,
22866,
198,
4299,
1570,
62,
33692,
7,
49464,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3582,
262,
4566,
11970,
6460,
329,
262,
584,
9729,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3904,
13,
30328,
7,
33692,
13,
44506,
62,
11250,
495,
62,
33692,
13,
1136,
62,
16794,
7,
49464,
4008,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
6687,
3419,
198
] | 3.046589 | 601 |
from operator import or_
import sqlalchemy
from fastapi import APIRouter, HTTPException, status
from fastapi.param_functions import Depends
from fastapi.responses import JSONResponse
from fastapi import APIRouter
import fastapi as _fastapi
import sqlalchemy.orm as _orm
from bigfastapi.db.database import get_db
from bigfastapi.schemas import plan_schema, tutorial_schema
from bigfastapi.models import plan_model, tutorial_model, user_models
from uuid import uuid4
from bigfastapi import db, users
from typing import List
from sqlalchemy.exc import IntegrityError
from sqlalchemy import func
import datetime as _dt
app = APIRouter(tags=["Tutorials"])
# SAVE TUTORIAL ENDPOINT
@app.post('/tutorial', response_model=tutorial_schema.TutorialSingleRes)
# GET TUTORIALS - Can be filtered by category, title or both
@app.get('/tutorials', response_model=tutorial_schema.TutorialListRes)
# GET TUTORIALS IN GROUPED OF CATEGORIES- Return result as groups of categories
@app.get('/tutorials/group/categories')
# GET A LIST OF ALL TUTORIAL CATEGORIES
@app.get('/tutorials/categories')
# SEARCH TUTORIAL BY MATCHING KEYWORDS
@app.get('/tutorials/search/{keyword}', response_model=tutorial_schema.TutorialListRes)
# UPDATE TUTORIAL DETAILS
@app.put('/tutorials/{itemId}')
@app.delete('/tutorials/{itemId}/user/{userId}')
# --------------------------------------------------------------------------------------------------#
# HELPER FUNCTIONS SECION
# --------------------------------------------------------------------------------------------------#
# SKIP and OFFSET
# SAVE A NEW TUTORIA
# PAGINATION LOGIC
# RUN QUERY
# BUID CATEGORY LIST
# GENERIC STRUCTURED RESPONSE BUILDER
| [
6738,
10088,
1330,
393,
62,
198,
11748,
44161,
282,
26599,
198,
6738,
3049,
15042,
1330,
3486,
4663,
39605,
11,
14626,
16922,
11,
3722,
198,
6738,
3049,
15042,
13,
17143,
62,
12543,
2733,
1330,
2129,
2412,
198,
6738,
3049,
15042,
13,
16733,
274,
1330,
19449,
31077,
198,
6738,
3049,
15042,
1330,
3486,
4663,
39605,
198,
11748,
3049,
15042,
355,
4808,
7217,
15042,
198,
11748,
44161,
282,
26599,
13,
579,
355,
4808,
579,
198,
6738,
1263,
7217,
15042,
13,
9945,
13,
48806,
1330,
651,
62,
9945,
198,
6738,
1263,
7217,
15042,
13,
1416,
4411,
292,
1330,
1410,
62,
15952,
2611,
11,
11808,
62,
15952,
2611,
198,
6738,
1263,
7217,
15042,
13,
27530,
1330,
1410,
62,
19849,
11,
11808,
62,
19849,
11,
2836,
62,
27530,
198,
6738,
334,
27112,
1330,
334,
27112,
19,
198,
6738,
1263,
7217,
15042,
1330,
20613,
11,
2985,
198,
6738,
19720,
1330,
7343,
198,
6738,
44161,
282,
26599,
13,
41194,
1330,
39348,
12331,
198,
6738,
44161,
282,
26599,
1330,
25439,
198,
11748,
4818,
8079,
355,
4808,
28664,
628,
198,
1324,
796,
3486,
4663,
39605,
7,
31499,
28,
14692,
51,
44917,
82,
8973,
8,
628,
198,
2,
14719,
6089,
309,
3843,
1581,
12576,
12964,
6322,
46,
12394,
198,
31,
1324,
13,
7353,
10786,
14,
83,
44917,
3256,
2882,
62,
19849,
28,
83,
44917,
62,
15952,
2611,
13,
51,
44917,
28008,
4965,
8,
628,
198,
2,
17151,
309,
3843,
1581,
12576,
50,
532,
1680,
307,
29083,
416,
6536,
11,
3670,
393,
1111,
198,
31,
1324,
13,
1136,
10786,
14,
83,
44917,
82,
3256,
2882,
62,
19849,
28,
83,
44917,
62,
15952,
2611,
13,
51,
44917,
8053,
4965,
8,
628,
198,
2,
17151,
309,
3843,
1581,
12576,
50,
3268,
44441,
1961,
3963,
327,
6158,
38,
1581,
11015,
12,
8229,
1255,
355,
2628,
286,
9376,
198,
31,
1324,
13,
1136,
10786,
14,
83,
44917,
82,
14,
8094,
14,
66,
26129,
11537,
628,
198,
2,
17151,
317,
39498,
3963,
11096,
309,
3843,
1581,
12576,
327,
6158,
38,
1581,
11015,
198,
31,
1324,
13,
1136,
10786,
14,
83,
44917,
82,
14,
66,
26129,
11537,
628,
198,
2,
7946,
31315,
309,
3843,
1581,
12576,
11050,
337,
11417,
2751,
35374,
45359,
5258,
198,
31,
1324,
13,
1136,
10786,
14,
83,
44917,
82,
14,
12947,
14,
90,
2539,
4775,
92,
3256,
2882,
62,
19849,
28,
83,
44917,
62,
15952,
2611,
13,
51,
44917,
8053,
4965,
8,
628,
198,
2,
35717,
309,
3843,
1581,
12576,
360,
20892,
45484,
198,
31,
1324,
13,
1996,
10786,
14,
83,
44917,
82,
14,
90,
9186,
7390,
92,
11537,
628,
198,
31,
1324,
13,
33678,
10786,
14,
83,
44917,
82,
14,
90,
9186,
7390,
92,
14,
7220,
14,
90,
7220,
7390,
92,
11537,
628,
198,
2,
16529,
3880,
438,
2,
198,
2,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36255,
18973,
29397,
4177,
11053,
10729,
2849,
198,
2,
16529,
3880,
438,
2,
628,
198,
2,
14277,
4061,
290,
3963,
10652,
2767,
628,
198,
2,
14719,
6089,
317,
12682,
309,
3843,
1581,
3539,
628,
198,
2,
350,
4760,
1268,
6234,
41605,
2149,
628,
198,
2,
32494,
19604,
19664,
628,
198,
2,
20571,
2389,
327,
6158,
38,
15513,
39498,
628,
198,
2,
24700,
1137,
2149,
19269,
18415,
4261,
1961,
47203,
1340,
5188,
20571,
4146,
14418,
198
] | 3.105735 | 558 |
from PIL import Image, ImageDraw
w = 7200
h = 3600
i = 1
j = 0
k = 0
c6 = [(255, 153, 204), (255, 255, 153), (153, 255, 153), (153, 204, 255)]
black = (0, 0, 0)
white = (255, 255, 255)
im = Image.new('RGB', (w, h), white)
draw = ImageDraw.Draw(im)
r = open('index_src.dat', 'r')
src = r.read()
r.close
src = src.replace(' ', '')
rows = src.split('\n')
for row in rows:
d = row.split('|')
if len(d) == 6:
if len(d[2]) > 0 and len(d[3]) > 0 and len(d[4]) > 0 and len(d[5]) > 0:
ra0 = int((360 - float(d[2])) * 20)
ra1 = int((360 - float(d[3])) * 20)
ra2 = int((ra0 + ra1) / 2)
de0 = int((90 - float(d[4])) * 20)
de1 = int((90 - float(d[5])) * 20)
de2 = int((de0 + de1) / 2)
if i > 4662:
if de2 < k - 3:
j = 0 if j > 2 else (j + 1)
else:
if de2 > k + 3:
j = 0 if j > 2 else (j + 1)
draw.rectangle((ra0, de0, ra1, de1), fill=c6[j], outline=black)
draw.text((ra2, de2), str(i), fill=black)
k = de2
i = i + 1
im.save('tyc_area.png') | [
6738,
350,
4146,
1330,
7412,
11,
7412,
25302,
201,
198,
86,
796,
767,
2167,
201,
198,
71,
796,
4570,
405,
201,
198,
72,
796,
352,
201,
198,
73,
796,
657,
201,
198,
74,
796,
657,
201,
198,
66,
21,
796,
47527,
13381,
11,
24652,
11,
26956,
828,
357,
13381,
11,
14280,
11,
24652,
828,
357,
21395,
11,
14280,
11,
24652,
828,
357,
21395,
11,
26956,
11,
14280,
15437,
201,
198,
13424,
796,
357,
15,
11,
657,
11,
657,
8,
201,
198,
11186,
796,
357,
13381,
11,
14280,
11,
14280,
8,
201,
198,
320,
796,
7412,
13,
3605,
10786,
36982,
3256,
357,
86,
11,
289,
828,
2330,
8,
201,
198,
19334,
796,
7412,
25302,
13,
25302,
7,
320,
8,
201,
198,
81,
796,
1280,
10786,
9630,
62,
10677,
13,
19608,
3256,
705,
81,
11537,
201,
198,
10677,
796,
374,
13,
961,
3419,
201,
198,
81,
13,
19836,
201,
198,
10677,
796,
12351,
13,
33491,
10786,
46083,
10148,
8,
201,
198,
8516,
796,
12351,
13,
35312,
10786,
59,
77,
11537,
201,
198,
1640,
5752,
287,
15274,
25,
201,
198,
220,
220,
220,
288,
796,
5752,
13,
35312,
10786,
91,
11537,
201,
198,
220,
220,
220,
611,
18896,
7,
67,
8,
6624,
718,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
611,
18896,
7,
67,
58,
17,
12962,
1875,
657,
290,
18896,
7,
67,
58,
18,
12962,
1875,
657,
290,
18896,
7,
67,
58,
19,
12962,
1875,
657,
290,
18896,
7,
67,
58,
20,
12962,
1875,
657,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2179,
15,
796,
493,
19510,
15277,
532,
12178,
7,
67,
58,
17,
60,
4008,
1635,
1160,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2179,
16,
796,
493,
19510,
15277,
532,
12178,
7,
67,
58,
18,
60,
4008,
1635,
1160,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2179,
17,
796,
493,
19510,
430,
15,
1343,
2179,
16,
8,
1220,
362,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
390,
15,
796,
493,
19510,
3829,
532,
12178,
7,
67,
58,
19,
60,
4008,
1635,
1160,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
390,
16,
796,
493,
19510,
3829,
532,
12178,
7,
67,
58,
20,
60,
4008,
1635,
1160,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
390,
17,
796,
493,
19510,
2934,
15,
1343,
390,
16,
8,
1220,
362,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1312,
1875,
604,
39380,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
390,
17,
1279,
479,
532,
513,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
474,
796,
657,
611,
474,
1875,
362,
2073,
357,
73,
1343,
352,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
390,
17,
1875,
479,
1343,
513,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
474,
796,
657,
611,
474,
1875,
362,
2073,
357,
73,
1343,
352,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3197,
13,
2554,
9248,
19510,
430,
15,
11,
390,
15,
11,
2179,
16,
11,
390,
16,
828,
6070,
28,
66,
21,
58,
73,
4357,
19001,
28,
13424,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3197,
13,
5239,
19510,
430,
17,
11,
390,
17,
828,
965,
7,
72,
828,
6070,
28,
13424,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
479,
796,
390,
17,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1312,
796,
1312,
1343,
352,
201,
198,
320,
13,
21928,
10786,
774,
66,
62,
20337,
13,
11134,
11537
] | 1.722944 | 693 |
from docutils import nodes
from docutils.parsers.rst import Directive
| [
198,
6738,
2205,
26791,
1330,
13760,
198,
198,
6738,
2205,
26791,
13,
79,
945,
364,
13,
81,
301,
1330,
34736,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
628
] | 2.333333 | 39 |
import imaplib
import email
from email.header import decode_header
import pandas as pd
mails_df = pd.read_csv('mails.csv')
csv_values = mails_df.values
c = 1
with open('mails_with_coupons.csv', 'w', encoding='utf-8') as f:
out_row = 'EMAIL,PASS,COUPONS\n'
f.write(out_row)
for each in csv_values:
user = each[0]
password = each[1]
# Mailbox interaction
M = imaplib.IMAP4_SSL('imap.mail.com')
M.login(user, password)
M.select('Inbox')
typ, data = M.search(None, 'ALL')
ids = data[0]
id_list = ids.split()
# get the most recent email id
latest_email_id = int(id_list[-1])
COUPON_AMOUNT = '15'
# iterate through 15 messages in descending order starting with latest_email_id
# the '-1' dictates reverse looping order
for i in range(latest_email_id, latest_email_id - 15, -1):
typ, data = M.fetch(str(i), '(RFC822)')
for response_part in data:
if isinstance(response_part, tuple):
mail_bytes = response_part[1].decode('UTF-8')
msg = email.message_from_string(mail_bytes)
varSubject = msg['subject']
varFrom = msg['from']
varSubject = decode_header(varSubject)[0][0]
if f'$coupon' in str(varSubject):
print(f'{c} Mail: {user}\n Subject: {varSubject}\n')
with open('mails_with_coupons.csv', 'a') as f:
row = f'{user},{password},"${COUPON_AMOUNT}"\n'
f.write(row)
c += 1
data_frame = pd.read_csv('mails_with_coupons.csv', encoding="utf-8").drop_duplicates(
subset='EMAIL', keep='first', inplace=False)
data_frame.to_csv('mails_with_coupons.csv', index=False, encoding="utf-8")
| [
11748,
545,
64,
489,
571,
201,
198,
11748,
3053,
201,
198,
6738,
3053,
13,
25677,
1330,
36899,
62,
25677,
201,
198,
11748,
19798,
292,
355,
279,
67,
201,
198,
201,
198,
201,
198,
26165,
62,
7568,
796,
279,
67,
13,
961,
62,
40664,
10786,
26165,
13,
40664,
11537,
201,
198,
40664,
62,
27160,
796,
285,
1768,
62,
7568,
13,
27160,
201,
198,
201,
198,
66,
796,
352,
201,
198,
201,
198,
4480,
1280,
10786,
26165,
62,
4480,
62,
66,
10486,
684,
13,
40664,
3256,
705,
86,
3256,
21004,
11639,
40477,
12,
23,
11537,
355,
277,
25,
201,
198,
220,
220,
220,
503,
62,
808,
796,
705,
27630,
4146,
11,
47924,
11,
34,
27755,
19213,
59,
77,
6,
201,
198,
220,
220,
220,
277,
13,
13564,
7,
448,
62,
808,
8,
201,
198,
201,
198,
1640,
1123,
287,
269,
21370,
62,
27160,
25,
201,
198,
220,
220,
220,
2836,
796,
1123,
58,
15,
60,
201,
198,
220,
220,
220,
9206,
796,
1123,
58,
16,
60,
201,
198,
201,
198,
2,
11099,
3524,
10375,
201,
198,
201,
198,
220,
220,
220,
337,
796,
545,
64,
489,
571,
13,
3955,
2969,
19,
62,
31127,
10786,
320,
499,
13,
4529,
13,
785,
11537,
201,
198,
220,
220,
220,
337,
13,
38235,
7,
7220,
11,
9206,
8,
201,
198,
220,
220,
220,
337,
13,
19738,
10786,
818,
3524,
11537,
201,
198,
220,
220,
220,
2170,
11,
1366,
796,
337,
13,
12947,
7,
14202,
11,
705,
7036,
11537,
201,
198,
220,
220,
220,
220,
2340,
796,
1366,
58,
15,
60,
201,
198,
220,
220,
220,
4686,
62,
4868,
796,
220,
2340,
13,
35312,
3419,
201,
198,
220,
220,
220,
1303,
651,
262,
749,
2274,
3053,
4686,
201,
198,
220,
220,
220,
3452,
62,
12888,
62,
312,
796,
493,
7,
312,
62,
4868,
58,
12,
16,
12962,
201,
198,
201,
198,
220,
220,
220,
327,
27755,
1340,
62,
2390,
28270,
796,
705,
1314,
6,
201,
198,
201,
198,
220,
220,
220,
1303,
11629,
378,
832,
1315,
6218,
287,
31491,
1502,
3599,
351,
3452,
62,
12888,
62,
312,
201,
198,
220,
220,
220,
1303,
262,
705,
12,
16,
6,
35054,
9575,
9052,
278,
1502,
201,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
42861,
62,
12888,
62,
312,
11,
3452,
62,
12888,
62,
312,
532,
1315,
11,
532,
16,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
2170,
11,
1366,
796,
337,
13,
69,
7569,
7,
2536,
7,
72,
828,
29513,
41150,
23,
1828,
8,
11537,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2882,
62,
3911,
287,
1366,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
26209,
62,
3911,
11,
46545,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6920,
62,
33661,
796,
2882,
62,
3911,
58,
16,
4083,
12501,
1098,
10786,
48504,
12,
23,
11537,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
3053,
13,
20500,
62,
6738,
62,
8841,
7,
4529,
62,
33661,
8,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1401,
19776,
796,
31456,
17816,
32796,
20520,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1401,
4863,
796,
31456,
17816,
6738,
20520,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1401,
19776,
796,
36899,
62,
25677,
7,
7785,
19776,
38381,
15,
7131,
15,
60,
201,
198,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
277,
6,
3,
66,
10486,
261,
6,
287,
965,
7,
7785,
19776,
2599,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
7,
69,
6,
90,
66,
92,
11099,
25,
1391,
7220,
32239,
77,
220,
15540,
25,
1391,
7785,
19776,
32239,
77,
11537,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
1280,
10786,
26165,
62,
4480,
62,
66,
10486,
684,
13,
40664,
3256,
705,
64,
11537,
355,
277,
25,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5752,
796,
277,
6,
90,
7220,
5512,
90,
28712,
9063,
38892,
34,
27755,
1340,
62,
2390,
28270,
36786,
59,
77,
6,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
277,
13,
13564,
7,
808,
8,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
269,
15853,
352,
201,
198,
201,
198,
7890,
62,
14535,
796,
279,
67,
13,
961,
62,
40664,
10786,
26165,
62,
4480,
62,
66,
10486,
684,
13,
40664,
3256,
21004,
2625,
40477,
12,
23,
11074,
14781,
62,
646,
489,
16856,
7,
201,
198,
220,
220,
220,
24637,
11639,
27630,
4146,
3256,
1394,
11639,
11085,
3256,
287,
5372,
28,
25101,
8,
201,
198,
7890,
62,
14535,
13,
1462,
62,
40664,
10786,
26165,
62,
4480,
62,
66,
10486,
684,
13,
40664,
3256,
6376,
28,
25101,
11,
21004,
2625,
40477,
12,
23,
4943,
201,
198
] | 2.036545 | 903 |
from rest_framework import serializers
from django.contrib.auth import authenticate
from rest_framework import exceptions
from Air_PnP.models import * | [
6738,
1334,
62,
30604,
1330,
11389,
11341,
198,
6738,
42625,
14208,
13,
3642,
822,
13,
18439,
1330,
8323,
5344,
198,
6738,
1334,
62,
30604,
1330,
13269,
220,
198,
6738,
3701,
62,
47,
77,
47,
13,
27530,
1330,
1635
] | 3.973684 | 38 |
import datetime
import re
"""
Input is supposed to be in the format yyyy-mm-dd
if it is not then return false
""" | [
11748,
4818,
8079,
198,
11748,
302,
628,
198,
37811,
198,
220,
220,
220,
23412,
318,
4385,
284,
307,
287,
262,
5794,
331,
22556,
88,
12,
3020,
12,
1860,
198,
220,
220,
220,
611,
340,
318,
407,
788,
1441,
3991,
198,
37811
] | 3 | 41 |
#! /usr/bin/env python3
# __author__ = "Praneesh Kataru"
# __credits__ = []
# __version__ = "0.1.1"
# __maintainer__ = "Praneesh Kataru"
# __email__ = "[email protected]"
# __status__ = "Prototype"
import unittest
from pprint import pprint
from qs_backend.dal.user_stock_pref_dal import UserStockPrefDAL
class UserStockPrefSelectTests(unittest.TestCase):
"""
Unit Test Case for Validating ``UserStockPrefs`` table Selects
""" | [
2,
0,
1220,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
198,
2,
220,
220,
11593,
9800,
834,
220,
220,
220,
796,
366,
6836,
1531,
5069,
8595,
11493,
1,
198,
2,
220,
220,
11593,
66,
20696,
834,
220,
220,
796,
17635,
198,
2,
220,
220,
11593,
9641,
834,
220,
220,
796,
366,
15,
13,
16,
13,
16,
1,
198,
2,
220,
220,
11593,
76,
2913,
10613,
834,
796,
366,
6836,
1531,
5069,
8595,
11493,
1,
198,
2,
220,
220,
11593,
12888,
834,
796,
366,
1050,
272,
14795,
270,
907,
325,
2713,
31,
14816,
13,
785,
1,
198,
2,
220,
220,
11593,
13376,
834,
796,
366,
19703,
8690,
1,
198,
198,
11748,
555,
715,
395,
198,
6738,
279,
4798,
1330,
279,
4798,
198,
6738,
10662,
82,
62,
1891,
437,
13,
31748,
13,
7220,
62,
13578,
62,
3866,
69,
62,
31748,
1330,
11787,
26207,
36698,
35,
1847,
628,
198,
4871,
11787,
26207,
36698,
17563,
51,
3558,
7,
403,
715,
395,
13,
14402,
20448,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
11801,
6208,
8913,
329,
48951,
803,
7559,
12982,
26207,
36698,
82,
15506,
3084,
9683,
82,
198,
220,
220,
220,
37227
] | 2.415385 | 195 |
# coding: utf-8
# # Pipeline processing using serial workflows.
#
# This is a serial unrolled version of the predict step
# In[1]:
#get_ipython().run_line_magic('matplotlib', 'inline')
import os
import sys
sys.path.append(os.path.join('..', '..'))
from data_models.parameters import arl_path
from mpi4py import MPI
results_dir = './results/mpi'
#from matplotlib import pylab
#pylab.rcParams['figure.figsize'] = (12.0, 12.0)
#pylab.rcParams['image.cmap'] = 'rainbow'
import numpy
from astropy.coordinates import SkyCoord
from astropy import units as u
from astropy.wcs.utils import pixel_to_skycoord
#from matplotlib import pyplot as plt
from data_models.polarisation import PolarisationFrame
from wrappers.serial.calibration.calibration import solve_gaintable
from wrappers.serial.calibration.operations import apply_gaintable
from wrappers.serial.calibration.calibration_control import create_calibration_controls
from wrappers.serial.visibility.base import create_blockvisibility
from wrappers.serial.visibility.coalesce import convert_blockvisibility_to_visibility
from wrappers.serial.skycomponent.operations import create_skycomponent
from wrappers.serial.image.deconvolution import deconvolve_cube
#from wrappers.serial.image.operations import show_image, export_image_to_fits, qa_image
from wrappers.serial.image.operations import export_image_to_fits, qa_image
from wrappers.serial.visibility.iterators import vis_timeslice_iter
from wrappers.serial.simulation.testing_support import create_low_test_image_from_gleam
from processing_components.simulation.configurations import create_named_configuration
from wrappers.serial.imaging.base import predict_2d, create_image_from_visibility, advise_wide_field
from workflows.serial.imaging.imaging_serial import invert_list_serial_workflow, predict_list_serial_workflow, deconvolve_list_serial_workflow
from workflows.serial.simulation.simulation_serial import simulate_list_serial_workflow, corrupt_list_serial_workflow
from workflows.serial.pipelines.pipeline_serial import continuum_imaging_list_serial_workflow, ical_list_serial_workflow
from workflows.mpi.pipelines.pipeline_mpi import continuum_imaging_list_mpi_workflow, ical_list_mpi_workflow
from workflows.mpi.imaging.imaging_mpi import predict_list_mpi_workflow, invert_list_mpi_workflow, deconvolve_list_mpi_workflow
import time
import pprint
# Uncomment this line if profiling with extrae/paraver toolset
#import pyextrae.mpi as pyextrae
pp = pprint.PrettyPrinter()
import logging
import argparse
log = init_logging()
parser = argparse.ArgumentParser(description='Imaging pipelines in MPI.')
parser.add_argument('--nfreqwin', type=int, nargs='?', default=7,
help='The number of frequency windows')
args = parser.parse_args()
# In[2]:
# ################### Rationale of data distribution: ################### #
# In this version all data resides at rank0 and needs to be distributed #
# at every function when needed. #
# TODO: Pass on the comm parameter!
# vis_list -> rank0 #
# vis_slices, npixel, cellsize -> rep #
# gleam_model -> rank0 (later rep) #
# predicted_vis -> rank0 (later dist) #
# model_list ->rank0 (later rep)
# disrty_list psf_list -> rank0 (later dist)
# continuum_imaging_list -> rank0
# ####################################################################### #
#pylab.rcParams['figure.figsize'] = (12.0, 12.0)
#pylab.rcParams['image.cmap'] = 'Greys'
# Set up MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# We make the visibility. The parameter rmax determines the distance of the furthest antenna/stations used. All over parameters are determined from this number.
# In[3]:
#nfreqwin=7
nfreqwin=args.nfreqwin
ntimes=5
rmax=300.0
frequency=numpy.linspace(1.0e8,1.2e8,nfreqwin)
#ntimes=11
#frequency=numpy.linspace(0.9e8,1.1e8,nfreqwin)
channel_bandwidth=numpy.array(nfreqwin*[frequency[1]-frequency[0]])
times = numpy.linspace(-numpy.pi/3.0, numpy.pi/3.0, ntimes)
#phasecentre=SkyCoord(ra=+30.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000')
phasecentre=SkyCoord(ra=+0.0 * u.deg, dec=-40.0 * u.deg, frame='icrs', equinox='J2000')
log.info("Starting imaging-pipeline with %d MPI processes nfreqwin %d ntimes %d" %(size,nfreqwin,ntimes))
print("Starting imaging-pipeline with %d MPI processes nfreqwin %d ntimes %d"
%(size,nfreqwin,ntimes),flush=True)
log.debug('%d: frequency len %d frequency list:'%(rank,len(frequency)))
#print(frequency,flush=True)
if rank == 0:
bvis_list=simulate_list_serial_workflow('LOWBD2',
frequency=frequency,
channel_bandwidth=channel_bandwidth,
times=times,
phasecentre=phasecentre,
order='frequency',
rmax=rmax, format='blockvis')
else:
bvis_list=list()
vis_list = [convert_blockvisibility_to_visibility(bv) for bv in bvis_list]
log.debug('%d: %d elements in vis_list' % (rank,len(vis_list)))
#log.handlers[0].flush()
#print(vis_list
# In[4]:
if rank == 0:
wprojection_planes=1
advice_low=advise_wide_field(vis_list[0], guard_band_image=8.0, delA=0.02,
wprojection_planes=wprojection_planes)
advice_high=advise_wide_field(vis_list[-1], guard_band_image=8.0, delA=0.02,
wprojection_planes=wprojection_planes)
vis_slices = advice_low['vis_slices']
npixel=advice_high['npixels2']
cellsize=min(advice_low['cellsize'], advice_high['cellsize'])
else:
vis_slices = 0
npixel = 0
cellsize = 0
(vis_slices,npixel,cellsize) = comm.bcast((vis_slices,npixel,cellsize),root=0)
log.debug('%d: After advice: vis_slices %d npixel %d cellsize %d' % (rank,vis_slices, npixel, cellsize))
# Now make a graph to fill with a model drawn from GLEAM
# In[ ]:
log.info('%d:About to make GLEAM model' %(rank))
sub_frequency = numpy.array_split(frequency, size)
sub_channel_bandwidth = numpy.array_split(channel_bandwidth,size)
sub_gleam_model = [create_low_test_image_from_gleam(npixel=npixel,
frequency=[sub_frequency[rank][f]],
channel_bandwidth=[sub_channel_bandwidth[rank][f]],
cellsize=cellsize,
phasecentre=phasecentre,
polarisation_frame=PolarisationFrame("stokesI"),
flux_limit=1.0,
applybeam=True)
for f, freq in enumerate(sub_frequency[rank])]
# NOTE: We could do an allgather here to avoid bcast of
# each freqw during predict, it would safe time but use more space
gleam_model=comm.gather(sub_gleam_model,root=0)
if rank==0:
gleam_model=numpy.concatenate(gleam_model)
else:
gleam_model=list()
# In[ ]:
original_predict=False
if original_predict:
if rank==0:
log.info('About to run predict to get predicted visibility')
predicted_vislist = predict_list_serial_workflow(vis_list, gleam_model,
context='wstack', vis_slices=vis_slices)
else:
log.info('%d: About to run predict to get predicted visibility'%(rank))
print('%d: About to run predict to get predicted visibility'%(rank),flush=True)
start=time.time()
# All procs call the function but only rank=0 gets the predicted_vislist
predicted_vislist = predict_list_mpi_workflow(vis_list, gleam_model,
context='wstack',
vis_slices=vis_slices)
end=time.time()
#log.info('About to run corrupt to get corrupted visibility')
#corrupted_vislist = corrupt_list_serial_workflow(predicted_vislist, phase_error=1.0)
# Get the LSM. This is currently blank.
# In[ ]:
### I need to scatter vis_list cause worker don't have it
## frequency and channel_bandwidth are replicated and they have already
## been split
log.info('%d: predict finished in %f seconds'%(rank,end-start))
print('%d: predict finished in %f seconds'%(rank,end-start),flush=True)
log.info('%d: About create image from visibility'%(rank))
sub_vis_list= numpy.array_split(vis_list, size)
sub_vis_list=comm.scatter(sub_vis_list,root=0)
sub_model_list = [create_image_from_visibility(sub_vis_list[f],
npixel=npixel,
frequency=[sub_frequency[rank][f]],
channel_bandwidth=[sub_channel_bandwidth[rank][f]],
cellsize=cellsize,
phasecentre=phasecentre,
polarisation_frame=PolarisationFrame("stokesI"))
for f, freq in enumerate(sub_frequency[rank])]
# NOTE: We could do allgather here, if enough memory space
model_list=comm.gather(sub_model_list,root=0)
if rank==0:
#model_list=numpy.concatenate(model_list)
model_list=concat_tuples(model_list)
# In[ ]:
else:
model_list=list()
log.debug('%d model_list len %d' %(rank,len(model_list)))
log.info('%d: About to start invert'%(rank))
print('%d: About to start invert'%(rank),flush=True)
start=time.time()
original_invert=False
if original_invert:
if rank==0:
dirty_list = invert_list_serial_workflow(predicted_vislist, model_list,
context='wstack',
vis_slices=vis_slices, dopsf=False)
psf_list = invert_list_serial_workflow(predicted_vislist, model_list,
context='wstack',
vis_slices=vis_slices, dopsf=True)
else:
dirty_list = invert_list_mpi_workflow(predicted_vislist, model_list,
context='wstack',
vis_slices=vis_slices, dopsf=False)
psf_list = invert_list_mpi_workflow(predicted_vislist, model_list,
context='wstack',
vis_slices=vis_slices, dopsf=True)
# Create and execute graphs to make the dirty image and PSF
# In[ ]:
end=time.time()
log.info('%d: invert finished'%(rank))
print('%d: invert finished in %f seconds'%(rank,end-start),flush=True)
if rank==0:
#print("sumwts",flush=True)
#print(dirty_list[0][1])
log.info('After invert to get dirty image')
dirty = dirty_list[0][0]
#show_image(dirty, cm='Greys', vmax=1.0, vmin=-0.1)
#plt.show()
print(qa_image(dirty))
export_image_to_fits(dirty, '%s/imaging-dirty.fits'
%(results_dir))
log.info('After invert to get PSF')
psf = psf_list[0][0]
#show_image(psf, cm='Greys', vmax=0.1, vmin=-0.01)
#plt.show()
print(qa_image(psf))
export_image_to_fits(psf, '%s/imaging-psf.fits'
%(results_dir))
# Now deconvolve using msclean
# In[ ]:
log.info('%d: About to run deconvolve'%(rank))
print('%d: About to run deconvolve'%(rank),flush=True)
start=time.time()
original_deconv=False
if original_deconv:
if rank==0:
deconvolved,_ = deconvolve_list_serial_workflow(dirty_list, psf_list, model_imagelist=model_list,
deconvolve_facets=8, deconvolve_overlap=16, deconvolve_taper='tukey',
scales=[0, 3, 10],
algorithm='msclean', niter=1000,
fractional_threshold=0.1,
threshold=0.1, gain=0.1, psf_support=64)
else:
print(" types of dirty list",type(dirty_list)," and psf_list",type(psf_list))
deconvolved = deconvolve_list_mpi_workflow(dirty_list, psf_list, model_imagelist=model_list,
deconvolve_facets=8, deconvolve_overlap=16, deconvolve_taper='tukey',
scales=[0, 3, 10],
algorithm='msclean', niter=1000,
fractional_threshold=0.1,
threshold=0.1, gain=0.1, psf_support=64)
#show_image(deconvolved[0], cm='Greys', vmax=0.1, vmin=-0.01)
#plt.show()
end=time.time()
log.info('%d: After deconvolve'%(rank))
print('%d: deconvolve finished in %f sec'%(rank,end-start))
# In[ ]:
log.info('%d: About to run continuum imaging'%(rank))
print('%d: About to run continuum imaging'%(rank),flush=True)
start=time.time()
original_continuumimaging=False
if original_continuumimaging:
if rank==0:
continuum_imaging_list = continuum_imaging_list_serial_workflow(predicted_vislist,
model_imagelist=model_list,
context='wstack', vis_slices=vis_slices,
scales=[0, 3, 10], algorithm='mmclean',
nmoment=3, niter=1000,
fractional_threshold=0.1,
threshold=0.1, nmajor=5, gain=0.25,
deconvolve_facets = 8, deconvolve_overlap=16,
deconvolve_taper='tukey', psf_support=64)
else:
continuum_imaging_list = continuum_imaging_list_mpi_workflow(predicted_vislist,
model_imagelist=model_list,
context='wstack', vis_slices=vis_slices,
scales=[0, 3, 10], algorithm='mmclean',
nmoment=3, niter=1000,
fractional_threshold=0.1,
threshold=0.1, nmajor=5, gain=0.25,
deconvolve_facets = 8, deconvolve_overlap=16,
deconvolve_taper='tukey', psf_support=64)
# In[ ]:
end=time.time()
log.info('%d: continuum imaging finished'%(rank))
print('%d: continuum imaging finished in %f sec.'%(rank,end-start),flush=True)
if rank==0:
deconvolved = continuum_imaging_list[0][0]
residual = continuum_imaging_list[1][0]
restored = continuum_imaging_list[2][0]
#f=show_image(deconvolved, title='Clean image - no selfcal', cm='Greys',
# vmax=0.1, vmin=-0.01)
print(qa_image(deconvolved, context='Clean image - no selfcal'))
#plt.show()
#f=show_image(restored, title='Restored clean image - no selfcal',
# cm='Greys', vmax=1.0, vmin=-0.1)
print(qa_image(restored, context='Restored clean image - no selfcal'))
#plt.show()
export_image_to_fits(restored, '%s/imaging-dask_continuum_imaging_restored.fits'
%(results_dir))
#f=show_image(residual[0], title='Residual clean image - no selfcal', cm='Greys',
# vmax=0.1, vmin=-0.01)
print(qa_image(residual[0], context='Residual clean image - no selfcal'))
#plt.show()
export_image_to_fits(residual[0], '%s/imaging-dask_continuum_imaging_residual.fits'
%(results_dir))
if rank==0:
for chan in range(nfreqwin):
residual = continuum_imaging_list[1][chan]
#show_image(residual[0], title='Channel %d' % chan, cm='Greys',
# vmax=0.1, vmin=-0.01)
#plt.show()
# In[ ]:
controls = create_calibration_controls()
controls['T']['first_selfcal'] = 1
controls['G']['first_selfcal'] = 3
controls['B']['first_selfcal'] = 4
controls['T']['timeslice'] = 'auto'
controls['G']['timeslice'] = 'auto'
controls['B']['timeslice'] = 1e5
pp.pprint(controls)
# In[ ]:
# TODO I change this to predicted_vislist to make it deterministic, I hope it makes
# sense :)
#ical_list = ical_list_serial_workflow(corrupted_vislist,
log.info('%d: About to run ical'%(rank))
print('%d: About to run ical'%(rank),flush=True)
start=time.time()
original_ical=False
if original_ical:
if rank==0:
ical_list = ical_list_serial_workflow(predicted_vislist,
model_imagelist=model_list,
context='wstack',
calibration_context = 'TG',
controls=controls,
scales=[0, 3, 10], algorithm='mmclean',
nmoment=3, niter=1000,
fractional_threshold=0.1,
threshold=0.1, nmajor=5, gain=0.25,
deconvolve_facets = 8,
deconvolve_overlap=16,
deconvolve_taper='tukey',
vis_slices=ntimes,
timeslice='auto',
global_solution=False,
psf_support=64,
do_selfcal=True)
else:
ical_list = ical_list_mpi_workflow(predicted_vislist,
model_imagelist=model_list,
context='wstack',
calibration_context = 'TG',
controls=controls,
scales=[0, 3, 10], algorithm='mmclean',
nmoment=3, niter=1000,
fractional_threshold=0.1,
threshold=0.1, nmajor=5, gain=0.25,
deconvolve_facets = 8,
deconvolve_overlap=16,
deconvolve_taper='tukey',
vis_slices=ntimes,
timeslice='auto',
global_solution=False,
psf_support=64,
do_selfcal=True)
# In[ ]:
end=time.time()
log.info('%d: ical finished '%(rank))
print('%d: ical finished in %f sec.'%(rank,end-start),flush=True)
if rank==0:
log.info('After ical')
deconvolved = ical_list[0][0]
residual = ical_list[1][0]
restored = ical_list[2][0]
#f=show_image(deconvolved, title='Clean image', cm='Greys', vmax=1.0, vmin=-0.1)
print(qa_image(deconvolved, context='Clean image'))
#plt.show()
#f=show_image(restored, title='Restored clean image', cm='Greys', vmax=1.0,
# vmin=-0.1)
print(qa_image(restored, context='Restored clean image'))
#plt.show()
export_image_to_fits(restored, '%s/imaging-dask_ical_restored.fits'
%(results_dir))
#f=show_image(residual[0], title='Residual clean image', cm='Greys',
# vmax=0.1, vmin=-0.01)
print(qa_image(residual[0], context='Residual clean image'))
#plt.show()
export_image_to_fits(residual[0], '%s/imaging-dask_ical_residual.fits'
%(results_dir))
| [
198,
2,
19617,
25,
3384,
69,
12,
23,
198,
198,
2,
1303,
37709,
7587,
1262,
11389,
670,
44041,
13,
198,
2,
220,
198,
2,
770,
318,
257,
11389,
555,
8375,
2196,
286,
262,
4331,
2239,
198,
198,
2,
554,
58,
16,
5974,
628,
198,
2,
1136,
62,
541,
7535,
22446,
5143,
62,
1370,
62,
32707,
10786,
6759,
29487,
8019,
3256,
705,
45145,
11537,
198,
198,
11748,
28686,
198,
11748,
25064,
198,
198,
17597,
13,
6978,
13,
33295,
7,
418,
13,
6978,
13,
22179,
10786,
492,
3256,
705,
492,
6,
4008,
198,
198,
6738,
1366,
62,
27530,
13,
17143,
7307,
1330,
610,
75,
62,
6978,
198,
6738,
285,
14415,
19,
9078,
1330,
4904,
40,
198,
198,
43420,
62,
15908,
796,
705,
19571,
43420,
14,
3149,
72,
6,
198,
198,
2,
6738,
2603,
29487,
8019,
1330,
279,
2645,
397,
198,
198,
2,
79,
2645,
397,
13,
6015,
10044,
4105,
17816,
26875,
13,
5647,
7857,
20520,
796,
357,
1065,
13,
15,
11,
1105,
13,
15,
8,
198,
2,
79,
2645,
397,
13,
6015,
10044,
4105,
17816,
9060,
13,
66,
8899,
20520,
796,
705,
3201,
8176,
6,
198,
198,
11748,
299,
32152,
198,
198,
6738,
6468,
28338,
13,
37652,
17540,
1330,
5274,
7222,
585,
198,
6738,
6468,
28338,
1330,
4991,
355,
334,
198,
6738,
6468,
28338,
13,
12712,
13,
26791,
1330,
17465,
62,
1462,
62,
15688,
37652,
198,
198,
2,
6738,
2603,
29487,
8019,
1330,
12972,
29487,
355,
458,
83,
198,
198,
6738,
1366,
62,
27530,
13,
79,
6192,
5612,
1330,
32909,
5612,
19778,
198,
198,
6738,
7917,
11799,
13,
46911,
13,
9948,
571,
1358,
13,
9948,
571,
1358,
1330,
8494,
62,
70,
2913,
540,
198,
6738,
7917,
11799,
13,
46911,
13,
9948,
571,
1358,
13,
3575,
602,
1330,
4174,
62,
70,
2913,
540,
198,
6738,
7917,
11799,
13,
46911,
13,
9948,
571,
1358,
13,
9948,
571,
1358,
62,
13716,
1330,
2251,
62,
9948,
571,
1358,
62,
13716,
82,
198,
6738,
7917,
11799,
13,
46911,
13,
4703,
2247,
13,
8692,
1330,
2251,
62,
9967,
4703,
2247,
198,
6738,
7917,
11799,
13,
46911,
13,
4703,
2247,
13,
1073,
2040,
344,
1330,
10385,
62,
9967,
4703,
2247,
62,
1462,
62,
4703,
2247,
198,
6738,
7917,
11799,
13,
46911,
13,
15688,
42895,
13,
3575,
602,
1330,
2251,
62,
15688,
42895,
198,
6738,
7917,
11799,
13,
46911,
13,
9060,
13,
12501,
261,
85,
2122,
1330,
37431,
85,
6442,
62,
40296,
198,
2,
6738,
7917,
11799,
13,
46911,
13,
9060,
13,
3575,
602,
1330,
905,
62,
9060,
11,
10784,
62,
9060,
62,
1462,
62,
21013,
11,
10662,
64,
62,
9060,
198,
6738,
7917,
11799,
13,
46911,
13,
9060,
13,
3575,
602,
1330,
10784,
62,
9060,
62,
1462,
62,
21013,
11,
10662,
64,
62,
9060,
198,
6738,
7917,
11799,
13,
46911,
13,
4703,
2247,
13,
2676,
2024,
1330,
1490,
62,
22355,
75,
501,
62,
2676,
198,
6738,
7917,
11799,
13,
46911,
13,
14323,
1741,
13,
33407,
62,
11284,
1330,
2251,
62,
9319,
62,
9288,
62,
9060,
62,
6738,
62,
70,
293,
321,
198,
6738,
7587,
62,
5589,
3906,
13,
14323,
1741,
13,
11250,
20074,
1330,
2251,
62,
13190,
62,
11250,
3924,
198,
6738,
7917,
11799,
13,
46911,
13,
320,
3039,
13,
8692,
1330,
4331,
62,
17,
67,
11,
2251,
62,
9060,
62,
6738,
62,
4703,
2247,
11,
18595,
62,
4421,
62,
3245,
198,
198,
6738,
670,
44041,
13,
46911,
13,
320,
3039,
13,
320,
3039,
62,
46911,
1330,
287,
1851,
62,
4868,
62,
46911,
62,
1818,
11125,
11,
220,
220,
220,
220,
4331,
62,
4868,
62,
46911,
62,
1818,
11125,
11,
37431,
85,
6442,
62,
4868,
62,
46911,
62,
1818,
11125,
198,
6738,
670,
44041,
13,
46911,
13,
14323,
1741,
13,
14323,
1741,
62,
46911,
1330,
29308,
62,
4868,
62,
46911,
62,
1818,
11125,
11,
220,
220,
220,
220,
10622,
62,
4868,
62,
46911,
62,
1818,
11125,
198,
6738,
670,
44041,
13,
46911,
13,
79,
541,
20655,
13,
79,
541,
4470,
62,
46911,
1330,
44422,
62,
320,
3039,
62,
4868,
62,
46911,
62,
1818,
11125,
11,
220,
220,
220,
220,
220,
605,
62,
4868,
62,
46911,
62,
1818,
11125,
198,
198,
6738,
670,
44041,
13,
3149,
72,
13,
79,
541,
20655,
13,
79,
541,
4470,
62,
3149,
72,
1330,
44422,
62,
320,
3039,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
11,
220,
605,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
198,
6738,
670,
44041,
13,
3149,
72,
13,
320,
3039,
13,
320,
3039,
62,
3149,
72,
1330,
4331,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
11,
287,
1851,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
11,
37431,
85,
6442,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
198,
198,
11748,
640,
198,
198,
11748,
279,
4798,
198,
198,
2,
791,
23893,
428,
1627,
611,
31582,
351,
3131,
68,
14,
1845,
8770,
2891,
2617,
198,
2,
11748,
12972,
26086,
68,
13,
3149,
72,
355,
12972,
26086,
68,
198,
198,
381,
796,
279,
4798,
13,
35700,
6836,
3849,
3419,
198,
198,
11748,
18931,
198,
11748,
1822,
29572,
220,
198,
198,
6404,
796,
2315,
62,
6404,
2667,
3419,
628,
198,
48610,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
11213,
11639,
3546,
3039,
31108,
287,
4904,
40,
2637,
8,
198,
48610,
13,
2860,
62,
49140,
10786,
438,
77,
19503,
80,
5404,
3256,
2099,
28,
600,
11,
299,
22046,
11639,
30,
3256,
4277,
28,
22,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
464,
1271,
286,
8373,
9168,
11537,
198,
198,
22046,
796,
30751,
13,
29572,
62,
22046,
3419,
628,
198,
2,
554,
58,
17,
5974,
198,
198,
2,
1303,
14468,
2235,
46863,
68,
286,
1366,
6082,
25,
1303,
14468,
2235,
1303,
198,
2,
554,
428,
2196,
477,
1366,
29076,
379,
4279,
15,
290,
2476,
284,
307,
9387,
220,
220,
1303,
198,
2,
379,
790,
2163,
618,
2622,
13,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
16926,
46,
25,
6251,
319,
262,
725,
11507,
0,
198,
2,
1490,
62,
4868,
4613,
4279,
15,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
1490,
62,
82,
677,
274,
11,
299,
32515,
11,
4778,
1096,
4613,
1128,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
26852,
321,
62,
19849,
4613,
4279,
15,
357,
36760,
1128,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
11001,
62,
4703,
4613,
4279,
15,
357,
36760,
1233,
8,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
198,
2,
2746,
62,
4868,
4613,
43027,
15,
357,
36760,
1128,
8,
198,
2,
595,
81,
774,
62,
4868,
26692,
69,
62,
4868,
4613,
4279,
15,
357,
36760,
1233,
8,
198,
2,
44422,
62,
320,
3039,
62,
4868,
4613,
4279,
15,
198,
2,
1303,
29113,
29113,
4242,
2235,
1303,
628,
628,
198,
2,
79,
2645,
397,
13,
6015,
10044,
4105,
17816,
26875,
13,
5647,
7857,
20520,
796,
357,
1065,
13,
15,
11,
1105,
13,
15,
8,
198,
2,
79,
2645,
397,
13,
6015,
10044,
4105,
17816,
9060,
13,
66,
8899,
20520,
796,
705,
43887,
893,
6,
628,
198,
2,
5345,
510,
4904,
40,
198,
9503,
796,
4904,
40,
13,
9858,
44,
62,
45359,
11163,
198,
43027,
796,
725,
13,
3855,
62,
43027,
3419,
198,
7857,
796,
725,
13,
3855,
62,
7857,
3419,
628,
198,
2,
775,
787,
262,
20742,
13,
383,
11507,
374,
9806,
15947,
262,
5253,
286,
262,
46186,
301,
20509,
14,
301,
602,
973,
13,
1439,
625,
10007,
389,
5295,
422,
428,
1271,
13,
198,
198,
2,
554,
58,
18,
5974,
628,
198,
2,
77,
19503,
80,
5404,
28,
22,
198,
77,
19503,
80,
5404,
28,
22046,
13,
77,
19503,
80,
5404,
198,
429,
999,
28,
20,
198,
81,
9806,
28,
6200,
13,
15,
198,
35324,
28,
77,
32152,
13,
21602,
10223,
7,
16,
13,
15,
68,
23,
11,
16,
13,
17,
68,
23,
11,
77,
19503,
80,
5404,
8,
198,
2,
429,
999,
28,
1157,
198,
2,
35324,
28,
77,
32152,
13,
21602,
10223,
7,
15,
13,
24,
68,
23,
11,
16,
13,
16,
68,
23,
11,
77,
19503,
80,
5404,
8,
198,
17620,
62,
3903,
10394,
28,
77,
32152,
13,
18747,
7,
77,
19503,
80,
5404,
9,
58,
35324,
58,
16,
45297,
35324,
58,
15,
11907,
8,
198,
22355,
796,
299,
32152,
13,
21602,
10223,
32590,
77,
32152,
13,
14415,
14,
18,
13,
15,
11,
299,
32152,
13,
14415,
14,
18,
13,
15,
11,
299,
22355,
8,
198,
2,
40715,
1087,
260,
28,
22308,
7222,
585,
7,
430,
28,
10,
1270,
13,
15,
1635,
334,
13,
13500,
11,
875,
10779,
1899,
13,
15,
1635,
334,
13,
13500,
11,
5739,
11639,
291,
3808,
3256,
1602,
259,
1140,
11639,
41,
11024,
11537,
198,
40715,
1087,
260,
28,
22308,
7222,
585,
7,
430,
28,
10,
15,
13,
15,
1635,
334,
13,
13500,
11,
875,
10779,
1821,
13,
15,
1635,
334,
13,
13500,
11,
5739,
11639,
291,
3808,
3256,
1602,
259,
1140,
11639,
41,
11024,
11537,
198,
198,
6404,
13,
10951,
7203,
22851,
19560,
12,
79,
541,
4470,
351,
4064,
67,
4904,
40,
7767,
299,
19503,
80,
5404,
4064,
67,
299,
22355,
4064,
67,
1,
4064,
7,
7857,
11,
77,
19503,
80,
5404,
11,
429,
999,
4008,
198,
4798,
7203,
22851,
19560,
12,
79,
541,
4470,
351,
4064,
67,
4904,
40,
7767,
299,
19503,
80,
5404,
4064,
67,
299,
22355,
4064,
67,
1,
198,
220,
220,
220,
220,
220,
4064,
7,
7857,
11,
77,
19503,
80,
5404,
11,
429,
999,
828,
25925,
28,
17821,
8,
198,
6404,
13,
24442,
10786,
4,
67,
25,
8373,
18896,
4064,
67,
8373,
1351,
32105,
4,
7,
43027,
11,
11925,
7,
35324,
22305,
198,
2,
4798,
7,
35324,
11,
25925,
28,
17821,
8,
628,
198,
361,
4279,
6624,
657,
25,
198,
220,
220,
220,
275,
4703,
62,
4868,
28,
14323,
5039,
62,
4868,
62,
46911,
62,
1818,
11125,
10786,
43,
3913,
14529,
17,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8373,
28,
35324,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6518,
62,
3903,
10394,
28,
17620,
62,
3903,
10394,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1661,
28,
22355,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7108,
1087,
260,
28,
40715,
1087,
260,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1502,
11639,
35324,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
374,
9806,
28,
81,
9806,
11,
5794,
11639,
9967,
4703,
11537,
198,
17772,
25,
198,
220,
220,
220,
275,
4703,
62,
4868,
28,
4868,
3419,
198,
198,
4703,
62,
4868,
796,
685,
1102,
1851,
62,
9967,
4703,
2247,
62,
1462,
62,
4703,
2247,
7,
65,
85,
8,
329,
275,
85,
287,
275,
4703,
62,
4868,
60,
198,
6404,
13,
24442,
10786,
4,
67,
25,
4064,
67,
4847,
287,
1490,
62,
4868,
6,
4064,
357,
43027,
11,
11925,
7,
4703,
62,
4868,
22305,
198,
2,
6404,
13,
4993,
8116,
58,
15,
4083,
25925,
3419,
198,
2,
4798,
7,
4703,
62,
4868,
198,
198,
2,
554,
58,
19,
5974,
198,
198,
361,
4279,
6624,
657,
25,
198,
220,
220,
220,
266,
16302,
295,
62,
22587,
28,
16,
198,
220,
220,
220,
5608,
62,
9319,
28,
32225,
786,
62,
4421,
62,
3245,
7,
4703,
62,
4868,
58,
15,
4357,
4860,
62,
3903,
62,
9060,
28,
23,
13,
15,
11,
1619,
32,
28,
15,
13,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
16302,
295,
62,
22587,
28,
86,
16302,
295,
62,
22587,
8,
628,
220,
220,
220,
5608,
62,
8929,
28,
32225,
786,
62,
4421,
62,
3245,
7,
4703,
62,
4868,
58,
12,
16,
4357,
4860,
62,
3903,
62,
9060,
28,
23,
13,
15,
11,
1619,
32,
28,
15,
13,
2999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
266,
16302,
295,
62,
22587,
28,
86,
16302,
295,
62,
22587,
8,
628,
220,
220,
220,
1490,
62,
82,
677,
274,
796,
5608,
62,
9319,
17816,
4703,
62,
82,
677,
274,
20520,
198,
220,
220,
220,
299,
32515,
28,
324,
28281,
62,
8929,
17816,
37659,
14810,
17,
20520,
198,
220,
220,
220,
4778,
1096,
28,
1084,
7,
324,
28281,
62,
9319,
17816,
3846,
7857,
6,
4357,
5608,
62,
8929,
17816,
3846,
7857,
6,
12962,
198,
198,
17772,
25,
198,
220,
220,
220,
1490,
62,
82,
677,
274,
796,
657,
198,
220,
220,
220,
299,
32515,
796,
657,
198,
220,
220,
220,
4778,
1096,
796,
657,
198,
198,
7,
4703,
62,
82,
677,
274,
11,
77,
32515,
11,
3846,
7857,
8,
796,
725,
13,
65,
2701,
19510,
4703,
62,
82,
677,
274,
11,
77,
32515,
11,
3846,
7857,
828,
15763,
28,
15,
8,
198,
6404,
13,
24442,
10786,
4,
67,
25,
2293,
5608,
25,
1490,
62,
82,
677,
274,
4064,
67,
299,
32515,
4064,
67,
4778,
1096,
4064,
67,
6,
4064,
357,
43027,
11,
4703,
62,
82,
677,
274,
11,
299,
32515,
11,
4778,
1096,
4008,
198,
198,
2,
2735,
787,
257,
4823,
284,
6070,
351,
257,
2746,
7428,
422,
402,
2538,
2390,
220,
198,
198,
2,
554,
58,
2361,
25,
198,
6404,
13,
10951,
10786,
4,
67,
25,
8585,
284,
787,
402,
2538,
2390,
2746,
6,
4064,
7,
43027,
4008,
198,
198,
7266,
62,
35324,
796,
299,
32152,
13,
18747,
62,
35312,
7,
35324,
11,
2546,
8,
198,
7266,
62,
17620,
62,
3903,
10394,
796,
299,
32152,
13,
18747,
62,
35312,
7,
17620,
62,
3903,
10394,
11,
7857,
8,
198,
198,
7266,
62,
70,
293,
321,
62,
19849,
796,
685,
17953,
62,
9319,
62,
9288,
62,
9060,
62,
6738,
62,
70,
293,
321,
7,
77,
32515,
28,
77,
32515,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8373,
41888,
7266,
62,
35324,
58,
43027,
7131,
69,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6518,
62,
3903,
10394,
41888,
7266,
62,
17620,
62,
3903,
10394,
58,
43027,
7131,
69,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4778,
1096,
28,
3846,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7108,
1087,
260,
28,
40715,
1087,
260,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13559,
5612,
62,
14535,
28,
47,
6192,
5612,
19778,
7203,
301,
3369,
40,
12340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28462,
62,
32374,
28,
16,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4174,
40045,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
277,
11,
2030,
80,
287,
27056,
378,
7,
7266,
62,
35324,
58,
43027,
12962,
60,
198,
198,
2,
24550,
25,
775,
714,
466,
281,
477,
70,
1032,
994,
284,
3368,
275,
2701,
286,
198,
2,
1123,
2030,
80,
86,
1141,
4331,
11,
340,
561,
3338,
640,
475,
779,
517,
2272,
198,
198,
70,
293,
321,
62,
19849,
28,
9503,
13,
70,
1032,
7,
7266,
62,
70,
293,
321,
62,
19849,
11,
15763,
28,
15,
8,
198,
361,
4279,
855,
15,
25,
198,
220,
220,
220,
26852,
321,
62,
19849,
28,
77,
32152,
13,
1102,
9246,
268,
378,
7,
70,
293,
321,
62,
19849,
8,
198,
17772,
25,
198,
220,
220,
220,
26852,
321,
62,
19849,
28,
4868,
3419,
198,
198,
2,
554,
58,
2361,
25,
198,
198,
14986,
62,
79,
17407,
28,
25101,
198,
361,
2656,
62,
79,
17407,
25,
198,
220,
220,
220,
611,
4279,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2604,
13,
10951,
10786,
8585,
284,
1057,
4331,
284,
651,
11001,
20742,
11537,
198,
220,
220,
220,
220,
220,
220,
220,
11001,
62,
85,
3044,
396,
796,
4331,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
4703,
62,
4868,
11,
26852,
321,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
8,
198,
17772,
25,
198,
220,
220,
220,
2604,
13,
10951,
10786,
4,
67,
25,
7994,
284,
1057,
4331,
284,
651,
11001,
20742,
6,
4,
7,
43027,
4008,
198,
220,
220,
220,
3601,
10786,
4,
67,
25,
7994,
284,
1057,
4331,
284,
651,
11001,
20742,
6,
4,
7,
43027,
828,
25925,
28,
17821,
8,
198,
220,
220,
220,
923,
28,
2435,
13,
2435,
3419,
198,
220,
220,
220,
1303,
1439,
386,
6359,
869,
262,
2163,
475,
691,
4279,
28,
15,
3011,
262,
11001,
62,
85,
3044,
396,
198,
220,
220,
220,
11001,
62,
85,
3044,
396,
796,
4331,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
4703,
62,
4868,
11,
26852,
321,
62,
19849,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
8,
198,
220,
220,
220,
886,
28,
2435,
13,
2435,
3419,
198,
220,
220,
220,
1303,
6404,
13,
10951,
10786,
8585,
284,
1057,
10622,
284,
651,
26940,
20742,
11537,
198,
220,
220,
220,
1303,
10215,
31590,
62,
85,
3044,
396,
796,
10622,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
7108,
62,
18224,
28,
16,
13,
15,
8,
628,
198,
220,
220,
220,
1303,
3497,
262,
406,
12310,
13,
770,
318,
3058,
9178,
13,
628,
220,
220,
220,
1303,
554,
58,
2361,
25,
198,
220,
220,
220,
44386,
314,
761,
284,
41058,
1490,
62,
4868,
2728,
8383,
836,
470,
423,
340,
198,
220,
220,
220,
22492,
8373,
290,
6518,
62,
3903,
10394,
389,
35108,
290,
484,
423,
1541,
198,
220,
220,
220,
22492,
587,
6626,
628,
220,
220,
220,
2604,
13,
10951,
10786,
4,
67,
25,
4331,
5201,
287,
4064,
69,
4201,
6,
4,
7,
43027,
11,
437,
12,
9688,
4008,
198,
220,
220,
220,
3601,
10786,
4,
67,
25,
4331,
5201,
287,
4064,
69,
4201,
6,
4,
7,
43027,
11,
437,
12,
9688,
828,
25925,
28,
17821,
8,
198,
198,
6404,
13,
10951,
10786,
4,
67,
25,
7994,
2251,
2939,
422,
20742,
6,
4,
7,
43027,
4008,
198,
7266,
62,
4703,
62,
4868,
28,
299,
32152,
13,
18747,
62,
35312,
7,
4703,
62,
4868,
11,
2546,
8,
198,
7266,
62,
4703,
62,
4868,
28,
9503,
13,
1416,
1436,
7,
7266,
62,
4703,
62,
4868,
11,
15763,
28,
15,
8,
198,
198,
7266,
62,
19849,
62,
4868,
796,
685,
17953,
62,
9060,
62,
6738,
62,
4703,
2247,
7,
7266,
62,
4703,
62,
4868,
58,
69,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
32515,
28,
77,
32515,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
8373,
41888,
7266,
62,
35324,
58,
43027,
7131,
69,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6518,
62,
3903,
10394,
41888,
7266,
62,
17620,
62,
3903,
10394,
58,
43027,
7131,
69,
60,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4778,
1096,
28,
3846,
7857,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7108,
1087,
260,
28,
40715,
1087,
260,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13559,
5612,
62,
14535,
28,
47,
6192,
5612,
19778,
7203,
301,
3369,
40,
48774,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
277,
11,
2030,
80,
287,
27056,
378,
7,
7266,
62,
35324,
58,
43027,
12962,
60,
628,
198,
2,
24550,
25,
775,
714,
466,
477,
70,
1032,
994,
11,
611,
1576,
4088,
2272,
198,
19849,
62,
4868,
28,
9503,
13,
70,
1032,
7,
7266,
62,
19849,
62,
4868,
11,
15763,
28,
15,
8,
198,
361,
4279,
855,
15,
25,
198,
220,
220,
220,
1303,
19849,
62,
4868,
28,
77,
32152,
13,
1102,
9246,
268,
378,
7,
19849,
62,
4868,
8,
198,
220,
220,
220,
2746,
62,
4868,
28,
1102,
9246,
62,
28047,
2374,
7,
19849,
62,
4868,
8,
198,
220,
220,
220,
1303,
554,
58,
2361,
25,
198,
17772,
25,
198,
220,
220,
220,
2746,
62,
4868,
28,
4868,
3419,
198,
198,
6404,
13,
24442,
10786,
4,
67,
2746,
62,
4868,
18896,
4064,
67,
6,
4064,
7,
43027,
11,
11925,
7,
19849,
62,
4868,
22305,
198,
6404,
13,
10951,
10786,
4,
67,
25,
7994,
284,
923,
287,
1851,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
7994,
284,
923,
287,
1851,
6,
4,
7,
43027,
828,
25925,
28,
17821,
8,
198,
9688,
28,
2435,
13,
2435,
3419,
198,
14986,
62,
259,
1851,
28,
25101,
198,
361,
2656,
62,
259,
1851,
25,
198,
220,
220,
220,
611,
4279,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
11841,
62,
4868,
796,
287,
1851,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
2746,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
288,
2840,
69,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
26692,
69,
62,
4868,
796,
287,
1851,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
2746,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
288,
2840,
69,
28,
17821,
8,
198,
17772,
25,
198,
220,
220,
220,
11841,
62,
4868,
796,
287,
1851,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
2746,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
288,
2840,
69,
28,
25101,
8,
198,
220,
220,
220,
26692,
69,
62,
4868,
796,
287,
1851,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
2746,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
288,
2840,
69,
28,
17821,
8,
628,
198,
220,
220,
220,
1303,
13610,
290,
12260,
28770,
284,
787,
262,
11841,
2939,
290,
6599,
37,
628,
220,
220,
220,
1303,
554,
58,
2361,
25,
198,
437,
28,
2435,
13,
2435,
3419,
198,
6404,
13,
10951,
10786,
4,
67,
25,
287,
1851,
5201,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
287,
1851,
5201,
287,
4064,
69,
4201,
6,
4,
7,
43027,
11,
437,
12,
9688,
828,
25925,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
361,
4279,
855,
15,
25,
198,
220,
220,
220,
1303,
4798,
7203,
16345,
86,
912,
1600,
25925,
28,
17821,
8,
198,
220,
220,
220,
1303,
4798,
7,
49075,
62,
4868,
58,
15,
7131,
16,
12962,
628,
220,
220,
220,
2604,
13,
10951,
10786,
3260,
287,
1851,
284,
651,
11841,
2939,
11537,
198,
220,
220,
220,
11841,
796,
11841,
62,
4868,
58,
15,
7131,
15,
60,
198,
220,
220,
220,
1303,
12860,
62,
9060,
7,
49075,
11,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
16,
13,
15,
11,
410,
1084,
10779,
15,
13,
16,
8,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
49075,
4008,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
49075,
11,
705,
4,
82,
14,
320,
3039,
12,
49075,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
628,
220,
220,
220,
2604,
13,
10951,
10786,
3260,
287,
1851,
284,
651,
6599,
37,
11537,
198,
220,
220,
220,
26692,
69,
796,
26692,
69,
62,
4868,
58,
15,
7131,
15,
60,
198,
220,
220,
220,
1303,
12860,
62,
9060,
7,
862,
69,
11,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
862,
69,
4008,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
862,
69,
11,
705,
4,
82,
14,
320,
3039,
12,
862,
69,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
198,
198,
2,
2735,
37431,
85,
6442,
1262,
285,
1416,
13087,
198,
198,
2,
554,
58,
2361,
25,
628,
198,
6404,
13,
10951,
10786,
4,
67,
25,
7994,
284,
1057,
37431,
85,
6442,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
7994,
284,
1057,
37431,
85,
6442,
6,
4,
7,
43027,
828,
25925,
28,
17821,
8,
198,
9688,
28,
2435,
13,
2435,
3419,
198,
14986,
62,
12501,
261,
85,
28,
25101,
198,
361,
2656,
62,
12501,
261,
85,
25,
198,
220,
220,
220,
611,
4279,
855,
15,
25,
628,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
5634,
11,
62,
796,
220,
220,
220,
220,
37431,
85,
6442,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
49075,
62,
4868,
11,
26692,
69,
62,
4868,
11,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
28,
23,
11,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11862,
11639,
907,
27773,
3256,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
4461,
28,
15,
13,
16,
11,
26692,
69,
62,
11284,
28,
2414,
8,
198,
17772,
25,
198,
220,
220,
220,
3601,
7203,
3858,
286,
11841,
1351,
1600,
4906,
7,
49075,
62,
4868,
27267,
290,
26692,
69,
62,
4868,
1600,
4906,
7,
862,
69,
62,
4868,
4008,
198,
220,
220,
220,
37431,
85,
5634,
796,
220,
220,
220,
220,
37431,
85,
6442,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
49075,
62,
4868,
11,
26692,
69,
62,
4868,
11,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
28,
23,
11,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11862,
11639,
907,
27773,
3256,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
4461,
28,
15,
13,
16,
11,
26692,
69,
62,
11284,
28,
2414,
8,
198,
220,
220,
220,
220,
198,
2,
12860,
62,
9060,
7,
12501,
261,
85,
5634,
58,
15,
4357,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
2,
489,
83,
13,
12860,
3419,
198,
437,
28,
2435,
13,
2435,
3419,
198,
198,
6404,
13,
10951,
10786,
4,
67,
25,
2293,
37431,
85,
6442,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
37431,
85,
6442,
5201,
287,
4064,
69,
792,
6,
4,
7,
43027,
11,
437,
12,
9688,
4008,
198,
198,
2,
554,
58,
2361,
25,
198,
198,
6404,
13,
10951,
10786,
4,
67,
25,
7994,
284,
1057,
44422,
19560,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
7994,
284,
1057,
44422,
19560,
6,
4,
7,
43027,
828,
25925,
28,
17821,
8,
198,
198,
9688,
28,
2435,
13,
2435,
3419,
198,
14986,
62,
18487,
13814,
320,
3039,
28,
25101,
198,
361,
2656,
62,
18487,
13814,
320,
3039,
25,
198,
220,
220,
220,
611,
4279,
855,
15,
25,
198,
220,
220,
220,
220,
220,
220,
220,
44422,
62,
320,
3039,
62,
4868,
796,
220,
220,
220,
220,
44422,
62,
320,
3039,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
11862,
11639,
3020,
27773,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
296,
298,
28,
18,
11,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
299,
22478,
28,
20,
11,
4461,
28,
15,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
796,
807,
11,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
26692,
69,
62,
11284,
28,
2414,
8,
198,
17772,
25,
198,
220,
220,
220,
44422,
62,
320,
3039,
62,
4868,
796,
220,
220,
220,
220,
44422,
62,
320,
3039,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
1490,
62,
82,
677,
274,
28,
4703,
62,
82,
677,
274,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
11862,
11639,
3020,
27773,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
296,
298,
28,
18,
11,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
299,
22478,
28,
20,
11,
4461,
28,
15,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
796,
807,
11,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
26692,
69,
62,
11284,
28,
2414,
8,
628,
628,
198,
2,
554,
58,
2361,
25,
198,
437,
28,
2435,
13,
2435,
3419,
198,
6404,
13,
10951,
10786,
4,
67,
25,
44422,
19560,
5201,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
44422,
19560,
5201,
287,
4064,
69,
792,
2637,
4,
7,
43027,
11,
437,
12,
9688,
828,
25925,
28,
17821,
8,
198,
198,
361,
4279,
855,
15,
25,
628,
220,
220,
220,
37431,
85,
5634,
796,
44422,
62,
320,
3039,
62,
4868,
58,
15,
7131,
15,
60,
198,
220,
220,
220,
29598,
796,
44422,
62,
320,
3039,
62,
4868,
58,
16,
7131,
15,
60,
198,
220,
220,
220,
15032,
796,
44422,
62,
320,
3039,
62,
4868,
58,
17,
7131,
15,
60,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
12501,
261,
85,
5634,
11,
3670,
11639,
32657,
2939,
532,
645,
2116,
9948,
3256,
12067,
11639,
43887,
893,
3256,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
12501,
261,
85,
5634,
11,
4732,
11639,
32657,
2939,
532,
645,
2116,
9948,
6,
4008,
628,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
2118,
1850,
11,
3670,
11639,
19452,
1850,
3424,
2939,
532,
645,
2116,
9948,
3256,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
16,
13,
15,
11,
410,
1084,
10779,
15,
13,
16,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
2118,
1850,
11,
4732,
11639,
19452,
1850,
3424,
2939,
532,
645,
2116,
9948,
6,
4008,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
2118,
1850,
11,
705,
4,
82,
14,
320,
3039,
12,
67,
2093,
62,
18487,
13814,
62,
320,
3039,
62,
2118,
1850,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
411,
312,
723,
58,
15,
4357,
3670,
11639,
4965,
312,
723,
3424,
2939,
532,
645,
2116,
9948,
3256,
12067,
11639,
43887,
893,
3256,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
411,
312,
723,
58,
15,
4357,
4732,
11639,
4965,
312,
723,
3424,
2939,
532,
645,
2116,
9948,
6,
4008,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
411,
312,
723,
58,
15,
4357,
705,
4,
82,
14,
320,
3039,
12,
67,
2093,
62,
18487,
13814,
62,
320,
3039,
62,
411,
312,
723,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
198,
198,
361,
4279,
855,
15,
25,
198,
220,
220,
220,
329,
442,
272,
287,
2837,
7,
77,
19503,
80,
5404,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
29598,
796,
44422,
62,
320,
3039,
62,
4868,
58,
16,
7131,
3147,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
12860,
62,
9060,
7,
411,
312,
723,
58,
15,
4357,
3670,
11639,
29239,
4064,
67,
6,
4064,
442,
272,
11,
12067,
11639,
43887,
893,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
628,
198,
2,
554,
58,
2361,
25,
628,
198,
13716,
82,
796,
2251,
62,
9948,
571,
1358,
62,
13716,
82,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
13716,
82,
17816,
51,
6,
7131,
6,
11085,
62,
944,
9948,
20520,
796,
352,
198,
13716,
82,
17816,
38,
6,
7131,
6,
11085,
62,
944,
9948,
20520,
796,
513,
198,
13716,
82,
17816,
33,
6,
7131,
6,
11085,
62,
944,
9948,
20520,
796,
604,
198,
198,
13716,
82,
17816,
51,
6,
7131,
6,
22355,
75,
501,
20520,
796,
705,
23736,
6,
198,
13716,
82,
17816,
38,
6,
7131,
6,
22355,
75,
501,
20520,
796,
705,
23736,
6,
198,
13716,
82,
17816,
33,
6,
7131,
6,
22355,
75,
501,
20520,
796,
352,
68,
20,
198,
198,
381,
13,
381,
22272,
7,
13716,
82,
8,
628,
198,
2,
554,
58,
2361,
25,
198,
198,
2,
16926,
46,
314,
1487,
428,
284,
11001,
62,
85,
3044,
396,
284,
787,
340,
2206,
49228,
11,
314,
2911,
340,
1838,
198,
2,
2565,
14373,
198,
2,
605,
62,
4868,
796,
220,
605,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
10215,
31590,
62,
85,
3044,
396,
11,
220,
198,
6404,
13,
10951,
10786,
4,
67,
25,
7994,
284,
1057,
220,
605,
6,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
7994,
284,
1057,
220,
605,
6,
4,
7,
43027,
828,
25925,
28,
17821,
8,
198,
198,
9688,
28,
2435,
13,
2435,
3419,
198,
14986,
62,
605,
28,
25101,
198,
361,
2656,
62,
605,
25,
198,
220,
220,
220,
611,
4279,
855,
15,
25,
628,
220,
220,
220,
220,
220,
220,
220,
220,
605,
62,
4868,
796,
220,
605,
62,
4868,
62,
46911,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36537,
62,
22866,
796,
705,
35990,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6973,
28,
13716,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
11862,
11639,
3020,
27773,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
296,
298,
28,
18,
11,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
299,
22478,
28,
20,
11,
4461,
28,
15,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
796,
807,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
429,
999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1661,
75,
501,
11639,
23736,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3298,
62,
82,
2122,
28,
25101,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26692,
69,
62,
11284,
28,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
466,
62,
944,
9948,
28,
17821,
8,
198,
198,
17772,
25,
628,
220,
220,
220,
220,
605,
62,
4868,
796,
220,
605,
62,
4868,
62,
3149,
72,
62,
1818,
11125,
7,
28764,
5722,
62,
85,
3044,
396,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2746,
62,
48466,
46331,
28,
19849,
62,
4868,
11,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4732,
11639,
86,
25558,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
36537,
62,
22866,
796,
705,
35990,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6973,
28,
13716,
82,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16252,
41888,
15,
11,
513,
11,
838,
4357,
11862,
11639,
3020,
27773,
3256,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28642,
296,
298,
28,
18,
11,
299,
2676,
28,
12825,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13390,
282,
62,
400,
10126,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
11387,
28,
15,
13,
16,
11,
299,
22478,
28,
20,
11,
4461,
28,
15,
13,
1495,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
38942,
1039,
796,
807,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
2502,
37796,
28,
1433,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
37431,
85,
6442,
62,
83,
2136,
11639,
28047,
2539,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1490,
62,
82,
677,
274,
28,
429,
999,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1661,
75,
501,
11639,
23736,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3298,
62,
82,
2122,
28,
25101,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
26692,
69,
62,
11284,
28,
2414,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
466,
62,
944,
9948,
28,
17821,
8,
628,
198,
2,
554,
58,
2361,
25,
198,
437,
28,
2435,
13,
2435,
3419,
198,
6404,
13,
10951,
10786,
4,
67,
25,
220,
605,
5201,
705,
4,
7,
43027,
4008,
198,
4798,
10786,
4,
67,
25,
220,
605,
5201,
287,
4064,
69,
792,
2637,
4,
7,
43027,
11,
437,
12,
9688,
828,
25925,
28,
17821,
8,
198,
198,
361,
4279,
855,
15,
25,
198,
220,
220,
220,
2604,
13,
10951,
10786,
3260,
220,
605,
11537,
198,
220,
220,
220,
37431,
85,
5634,
796,
220,
605,
62,
4868,
58,
15,
7131,
15,
60,
198,
220,
220,
220,
29598,
796,
220,
605,
62,
4868,
58,
16,
7131,
15,
60,
198,
220,
220,
220,
15032,
796,
220,
605,
62,
4868,
58,
17,
7131,
15,
60,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
12501,
261,
85,
5634,
11,
3670,
11639,
32657,
2939,
3256,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
16,
13,
15,
11,
410,
1084,
10779,
15,
13,
16,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
12501,
261,
85,
5634,
11,
4732,
11639,
32657,
2939,
6,
4008,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
2118,
1850,
11,
3670,
11639,
19452,
1850,
3424,
2939,
3256,
12067,
11639,
43887,
893,
3256,
410,
9806,
28,
16,
13,
15,
11,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
1084,
10779,
15,
13,
16,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
2118,
1850,
11,
4732,
11639,
19452,
1850,
3424,
2939,
6,
4008,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
2118,
1850,
11,
705,
4,
82,
14,
320,
3039,
12,
67,
2093,
62,
605,
62,
2118,
1850,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
628,
220,
220,
220,
1303,
69,
28,
12860,
62,
9060,
7,
411,
312,
723,
58,
15,
4357,
3670,
11639,
4965,
312,
723,
3424,
2939,
3256,
12067,
11639,
43887,
893,
3256,
220,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
410,
9806,
28,
15,
13,
16,
11,
410,
1084,
10779,
15,
13,
486,
8,
198,
220,
220,
220,
3601,
7,
20402,
62,
9060,
7,
411,
312,
723,
58,
15,
4357,
4732,
11639,
4965,
312,
723,
3424,
2939,
6,
4008,
198,
220,
220,
220,
1303,
489,
83,
13,
12860,
3419,
198,
220,
220,
220,
10784,
62,
9060,
62,
1462,
62,
21013,
7,
411,
312,
723,
58,
15,
4357,
705,
4,
82,
14,
320,
3039,
12,
67,
2093,
62,
605,
62,
411,
312,
723,
13,
21013,
6,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4064,
7,
43420,
62,
15908,
4008,
628
] | 1.926533 | 10,372 |
from __future__ import absolute_import
import logging
# to change log level globally, use eg logconfig.loglevel(logging.WARN)
# to change level for an individual module, eg logconfig.loglevel(logging.DEBUG, "framedata")
| [
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
11748,
18931,
198,
198,
2,
284,
1487,
2604,
1241,
18309,
11,
779,
29206,
2604,
11250,
13,
75,
2467,
626,
7,
6404,
2667,
13,
37771,
8,
198,
2,
284,
1487,
1241,
329,
281,
1981,
8265,
11,
29206,
2604,
11250,
13,
75,
2467,
626,
7,
6404,
2667,
13,
30531,
11,
366,
19298,
276,
1045,
4943,
198
] | 3.507937 | 63 |
expected_output = {
'policy_map': {
'policy-cbwfq-1': {'class': {
'class-gold': {'bandwidth_percent': '40',
'random_detect': ['dscp-based', 'ecn']},
'class-silver': {'bandwidth_percent': '20',
'random_detect': ['dscp-based', 'ecn']},
'class-bronze': {'bandwidth_percent': '10',
'random_detect': ['dscp-based', 'ecn']},
'management-traffic': {'bandwidth_percent': '1',
'random_detect': ['dscp-based', 'ecn'],
'qos_set': {'dscp': 'af21'}},
'class-default': {'bandwidth_percent': '29',
'random_detect': ['dscp-based', 'ecn'],
'qos_set': {'dscp': 'default'}}}}
}
} | [
40319,
62,
22915,
796,
1391,
198,
220,
220,
220,
705,
30586,
62,
8899,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
30586,
12,
21101,
86,
69,
80,
12,
16,
10354,
1391,
6,
4871,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
12,
24267,
10354,
1391,
6,
3903,
10394,
62,
25067,
10354,
705,
1821,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25120,
62,
15255,
478,
10354,
37250,
67,
1416,
79,
12,
3106,
3256,
705,
721,
77,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
12,
40503,
10354,
1391,
6,
3903,
10394,
62,
25067,
10354,
705,
1238,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25120,
62,
15255,
478,
10354,
37250,
67,
1416,
79,
12,
3106,
3256,
705,
721,
77,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
12,
65,
1313,
2736,
10354,
1391,
6,
3903,
10394,
62,
25067,
10354,
705,
940,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25120,
62,
15255,
478,
10354,
37250,
67,
1416,
79,
12,
3106,
3256,
705,
721,
77,
20520,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
27604,
12,
9535,
2108,
10354,
1391,
6,
3903,
10394,
62,
25067,
10354,
705,
16,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25120,
62,
15255,
478,
10354,
37250,
67,
1416,
79,
12,
3106,
3256,
705,
721,
77,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
80,
418,
62,
2617,
10354,
1391,
6,
67,
1416,
79,
10354,
705,
1878,
2481,
6,
92,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
4871,
12,
12286,
10354,
1391,
6,
3903,
10394,
62,
25067,
10354,
705,
1959,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
25120,
62,
15255,
478,
10354,
37250,
67,
1416,
79,
12,
3106,
3256,
705,
721,
77,
6,
4357,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
80,
418,
62,
2617,
10354,
1391,
6,
67,
1416,
79,
10354,
705,
12286,
6,
11709,
11709,
198,
220,
220,
220,
1782,
198,
92
] | 1.627151 | 523 |
# https://github.com/ArtemNikolaev/gb-hw/issues/26
from functools import reduce
print(multiply())
| [
2,
3740,
1378,
12567,
13,
785,
14,
8001,
368,
40979,
5708,
1990,
14,
22296,
12,
36599,
14,
37165,
14,
2075,
198,
6738,
1257,
310,
10141,
1330,
4646,
628,
628,
198,
4798,
7,
16680,
541,
306,
28955,
198
] | 2.756757 | 37 |
Link = "https://practice.geeksforgeeks.org/problems/merge-two-sorted-arrays-1587115620/1"
Description = "Given two sorted arrays arr1[] and arr2[] of sizes n and m in non-decreasing order." \
"Merge them in sorted order without using any extra space. Modify arr1 so that it" \
"contains the first N elements and modify arr2 so that it contains the last M elements."
Examples = "Input: " \
"n = 4, arr1[] = [1 3 5 7] " \
"m = 5, arr2[] = [0 2 6 8 9]" \
"Output: " \
"arr1[] = [0 1 2 3]" \
"arr2[] = [5 6 7 8 9]" \
"Explanation: After merging the two non-decreasing arrays, we get, 0 1 2 3 5 6 7 8 9."
arr1 = [1,36,39,105,146,154,168,170,204,206,217,219,225,227,272,282,293,300,312,323,328,328,334,335,359,370,383,392,395,396,403,413,422,437,443,448,462,463,465,479,492,496]
arr2 = [7,22,30,36,38,38,39,41,42,48,49,83,85,102,107,116,119,124,127,130,140,142,145,149,159,163,165,174,174,191,205,212,224,230,242,246,254,257,258,265,279,289,306,307,309,317,324,334,341,343,351,360,369,371,377,387,391,394,430,431,432,440,443,445,447,455,467,478]
n = 42
m = 68
# Approach 1
print(Solution1().merge(arr1, arr2, n, m))
| [
11280,
796,
366,
5450,
1378,
39541,
13,
469,
2573,
30293,
2573,
13,
2398,
14,
1676,
22143,
14,
647,
469,
12,
11545,
12,
82,
9741,
12,
3258,
592,
12,
1314,
5774,
1157,
3980,
1238,
14,
16,
1,
198,
11828,
796,
366,
15056,
734,
23243,
26515,
5240,
16,
21737,
290,
5240,
17,
21737,
286,
10620,
299,
290,
285,
287,
1729,
12,
12501,
260,
2313,
1502,
526,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
13102,
469,
606,
287,
23243,
1502,
1231,
1262,
597,
3131,
2272,
13,
3401,
1958,
5240,
16,
523,
326,
340,
1,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3642,
1299,
262,
717,
399,
4847,
290,
13096,
5240,
17,
523,
326,
340,
4909,
262,
938,
337,
4847,
526,
198,
27730,
796,
366,
20560,
25,
366,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
77,
796,
604,
11,
5240,
16,
21737,
796,
685,
16,
513,
642,
767,
60,
366,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
76,
796,
642,
11,
5240,
17,
21737,
796,
685,
15,
362,
718,
807,
860,
30866,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
26410,
25,
366,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3258,
16,
21737,
796,
685,
15,
352,
362,
513,
30866,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3258,
17,
21737,
796,
685,
20,
718,
767,
807,
860,
30866,
3467,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
3109,
11578,
341,
25,
2293,
35981,
262,
734,
1729,
12,
12501,
260,
2313,
26515,
11,
356,
651,
11,
657,
352,
362,
513,
642,
718,
767,
807,
860,
526,
198,
198,
3258,
16,
796,
685,
16,
11,
2623,
11,
2670,
11,
13348,
11,
20964,
11,
21526,
11,
14656,
11,
17279,
11,
18638,
11,
22136,
11,
24591,
11,
28896,
11,
18182,
11,
24403,
11,
29807,
11,
32568,
11,
31675,
11,
6200,
11,
27970,
11,
32637,
11,
34256,
11,
34256,
11,
31380,
11,
27326,
11,
30743,
11,
20167,
11,
34741,
11,
32321,
11,
31010,
11,
34107,
11,
31552,
11,
44103,
11,
44361,
11,
43284,
11,
34938,
11,
31115,
11,
39997,
11,
38380,
11,
42018,
11,
31714,
11,
40256,
11,
37747,
60,
198,
3258,
17,
796,
685,
22,
11,
1828,
11,
1270,
11,
2623,
11,
2548,
11,
2548,
11,
2670,
11,
3901,
11,
3682,
11,
2780,
11,
2920,
11,
5999,
11,
5332,
11,
15377,
11,
15982,
11,
18298,
11,
16315,
11,
17464,
11,
16799,
11,
12952,
11,
15187,
11,
23726,
11,
18781,
11,
19442,
11,
19707,
11,
24136,
11,
20986,
11,
22985,
11,
22985,
11,
26492,
11,
21261,
11,
21777,
11,
24137,
11,
19214,
11,
27877,
11,
26912,
11,
24970,
11,
28676,
11,
25600,
11,
22980,
11,
26050,
11,
27693,
11,
20548,
11,
22996,
11,
26895,
11,
34125,
11,
33916,
11,
31380,
11,
33660,
11,
32118,
11,
35273,
11,
15277,
11,
30803,
11,
38056,
11,
26514,
11,
32220,
11,
37710,
11,
34626,
11,
31794,
11,
50080,
11,
45331,
11,
25644,
11,
34938,
11,
43489,
11,
34825,
11,
30505,
11,
24669,
11,
29059,
60,
198,
77,
796,
5433,
198,
76,
796,
8257,
198,
2,
38066,
352,
198,
4798,
7,
46344,
16,
22446,
647,
469,
7,
3258,
16,
11,
5240,
17,
11,
299,
11,
285,
4008,
198
] | 2.132743 | 565 |
# Copyright 2019 Amazon.com, Inc. or its affiliates.
# Licensed under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
| [
2,
15069,
13130,
6186,
13,
785,
11,
3457,
13,
393,
663,
29116,
13,
198,
2,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
198,
2,
366,
34156,
15341,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
198,
2,
351,
262,
13789,
13,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
11247,
739,
262,
13789,
13,
628
] | 3.864516 | 155 |
#!/usr/bin/env python
from setuptools import setup, find_packages
import io
setup(
name='tomago-sdk-py',
version='1.5.1',
description="Python SDKs for Blockchain.",
long_description=io.open('README.md', encoding='utf-8').read(),
url='https://github.com/arxanchain/tomago-sdk-py/',
download_url='https://github.com/arxanchain/tomago-sdk-py/',
packages=find_packages(),
platforms='any',
install_requires=[
"mock==2.0.0",
"requests==2.18.4",
"six==1.11.0",
"urllib3==1.22",
"py-common==v1.5.1"
],
dependency_links=[
"git+git://github.com/arxanchain/[email protected]#egg=py-common-v1.5.1"
],
include_package_data=True,
zip_safe=False,
)
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
198,
6738,
900,
37623,
10141,
1330,
9058,
11,
1064,
62,
43789,
198,
11748,
33245,
198,
198,
40406,
7,
198,
220,
220,
220,
1438,
11639,
39532,
3839,
12,
21282,
74,
12,
9078,
3256,
198,
220,
220,
220,
2196,
11639,
16,
13,
20,
13,
16,
3256,
198,
220,
220,
220,
6764,
2625,
37906,
26144,
82,
329,
29724,
33283,
198,
220,
220,
220,
890,
62,
11213,
28,
952,
13,
9654,
10786,
15675,
11682,
13,
9132,
3256,
21004,
11639,
40477,
12,
23,
27691,
961,
22784,
198,
220,
220,
220,
19016,
11639,
5450,
1378,
12567,
13,
785,
14,
283,
87,
3702,
391,
14,
39532,
3839,
12,
21282,
74,
12,
9078,
14,
3256,
198,
220,
220,
220,
4321,
62,
6371,
11639,
5450,
1378,
12567,
13,
785,
14,
283,
87,
3702,
391,
14,
39532,
3839,
12,
21282,
74,
12,
9078,
14,
3256,
198,
220,
220,
220,
10392,
28,
19796,
62,
43789,
22784,
198,
220,
220,
220,
9554,
11639,
1092,
3256,
198,
220,
220,
220,
2721,
62,
47911,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
76,
735,
855,
17,
13,
15,
13,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
8897,
3558,
855,
17,
13,
1507,
13,
19,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
19412,
855,
16,
13,
1157,
13,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
333,
297,
571,
18,
855,
16,
13,
1828,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
9078,
12,
11321,
855,
85,
16,
13,
20,
13,
16,
1,
198,
220,
220,
220,
220,
220,
220,
220,
16589,
198,
220,
220,
220,
20203,
62,
28751,
41888,
198,
220,
220,
220,
220,
220,
220,
220,
366,
18300,
10,
18300,
1378,
12567,
13,
785,
14,
283,
87,
3702,
391,
14,
9078,
12,
11321,
13,
18300,
31,
85,
16,
13,
20,
13,
16,
2,
33856,
28,
9078,
12,
11321,
12,
85,
16,
13,
20,
13,
16,
1,
198,
220,
220,
220,
16589,
198,
220,
220,
220,
2291,
62,
26495,
62,
7890,
28,
17821,
11,
198,
220,
220,
220,
19974,
62,
21230,
28,
25101,
11,
198,
8,
198
] | 2.098315 | 356 |
#!/usr/bin/env python
# Copyright (c) 2017, the R8 project authors. Please see the AUTHORS file
# for details. All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
import create_maven_release
import gradle
import jdk
import optparse
import os
try:
import resource
except ImportError:
# Not a Unix system. Do what Gandalf tells you not to.
pass
import shutil
import subprocess
import sys
import toolhelper
import utils
import zipfile
from build_r8lib import build_r8lib
ARCHIVE_BUCKET = 'r8-releases'
if __name__ == '__main__':
sys.exit(Main())
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
15069,
357,
66,
8,
2177,
11,
262,
371,
23,
1628,
7035,
13,
4222,
766,
262,
37195,
20673,
2393,
198,
2,
329,
3307,
13,
1439,
2489,
10395,
13,
5765,
286,
428,
2723,
2438,
318,
21825,
416,
257,
198,
2,
347,
10305,
12,
7635,
5964,
326,
460,
307,
1043,
287,
262,
38559,
24290,
2393,
13,
198,
198,
11748,
2251,
62,
2611,
574,
62,
20979,
198,
11748,
3915,
293,
198,
11748,
474,
34388,
198,
11748,
2172,
29572,
198,
11748,
28686,
198,
28311,
25,
198,
220,
1330,
8271,
198,
16341,
17267,
12331,
25,
198,
220,
1303,
1892,
257,
33501,
1080,
13,
2141,
644,
17727,
1604,
4952,
345,
407,
284,
13,
198,
220,
1208,
198,
11748,
4423,
346,
198,
11748,
850,
14681,
198,
11748,
25064,
198,
11748,
2891,
2978,
525,
198,
11748,
3384,
4487,
198,
11748,
19974,
7753,
198,
6738,
1382,
62,
81,
23,
8019,
1330,
1382,
62,
81,
23,
8019,
198,
198,
31315,
9306,
62,
33,
16696,
2767,
796,
705,
81,
23,
12,
260,
29329,
6,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
25064,
13,
37023,
7,
13383,
28955,
198
] | 3.227979 | 193 |
# Copyright 2020 BlueChasm LLC dba OsmosisAI.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
from dataclasses import dataclass
from typing import List
@dataclass
@dataclass
@dataclass
| [
2,
220,
15069,
12131,
4518,
1925,
8597,
11419,
288,
7012,
440,
5796,
5958,
20185,
13,
198,
2,
198,
2,
220,
49962,
739,
262,
24843,
13789,
11,
10628,
362,
13,
15,
357,
1169,
366,
34156,
15341,
198,
2,
220,
345,
743,
407,
779,
428,
2393,
2845,
287,
11846,
351,
262,
13789,
13,
198,
2,
220,
921,
743,
7330,
257,
4866,
286,
262,
13789,
379,
198,
2,
198,
2,
220,
220,
220,
220,
220,
2638,
1378,
2503,
13,
43073,
13,
2398,
14,
677,
4541,
14,
43,
2149,
24290,
12,
17,
13,
15,
198,
2,
198,
2,
220,
17486,
2672,
416,
9723,
1099,
393,
4987,
284,
287,
3597,
11,
3788,
198,
2,
220,
9387,
739,
262,
13789,
318,
9387,
319,
281,
366,
1921,
3180,
1,
29809,
1797,
11,
198,
2,
220,
42881,
34764,
11015,
6375,
7102,
49828,
11053,
3963,
15529,
509,
12115,
11,
2035,
4911,
393,
17142,
13,
198,
2,
220,
4091,
262,
13789,
329,
262,
2176,
3303,
15030,
21627,
290,
198,
2,
220,
11247,
739,
262,
13789,
13,
198,
198,
6738,
4732,
8019,
1330,
4732,
37153,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
6738,
19720,
1330,
7343,
628,
198,
31,
19608,
330,
31172,
628,
198,
31,
19608,
330,
31172,
628,
198,
31,
19608,
330,
31172,
628
] | 3.570048 | 207 |
import numpy as np
import math
def alpha_help(a,n):
"""function to compute some approximations
Parameters
----------
a : complex
number
n : int
number
Returns
ln : complex
approximation
"""
if a.real == 0 and a.imag == 0:
if n == 0:
ln = np.complex(0,0)
else:
ln = np.complex(-1e200,0)
elif n >= 300:
ln = n *np.log(a)- (n*np.log(n)-n + np.log(2*np.pi*n)/2)/2
else:
ln = n * np.log(a) - math.log(math.factorial(int(n)))/2
return ln
def find_norm(z):
"""find complex norm^2 of a vector of complex numbers"""
k = 0
for i in z:
k = k + (i * np.conj(i)).real
return k
def setup_scaled_H(q, c, n, m, nmaxfinal):
"""function to setup tridigonal Hamiltonian if first, return d,e
Parameters
----------
q : float
quadratic zeeman shift
c : float
c_2n, spinor interaction rate
n : int
number of particles
m : int
magnetization
nmaxfinal : int
deprecated
Returns
-------
e_min : float
minimum eigenvalue
e_max : float
maximum eigenvalue
d : np.array(complex)
diagonal elements of Hamiltonian
e : np.array(complex)
off diagonal elements of Hamiltonian
first_n0 : int
n-|m| % 2
"""
first_n0 = np.mod(n-abs(m), 2)
n0 = np.mod((n-abs(m)), 2)
nmax = int((n-abs(m)-n0)/2 + 1)
#create arrays
e = np.zeros(int(nmax)-1)
d = np.zeros(int(nmax))
c_local = c/n
#matrix elements of hamiltonian
nm = (n - n0 - m)/2
npp = (n - n0 + m)/2
for j in range(int(nmax)):
d[j] = (n-n0)*(q+0.5*c_local*(2*n0-1))
if j < (nmax-1):
e[j] = c_local*np.sqrt(nm*npp*(n0+2)*(n0+1))
nm = nm - 1
npp = npp - 1
n0 = n0 + 2
#estimate based on Gershgorin's circle theorem
radius = abs(e[0])
e_min = d[0] - radius
e_max = d[0] + radius
for j in range(2,int(nmax)-1):
radius = abs(e[j-2]) + abs(e[j-1])
e_min = min(e_min, d[j-1] - radius)
e_max = max(e_max, d[j-1] + radius)
radius = abs(e[nmax-2])
e_min = min(e_min, d[nmax-1] - radius)
e_max = max(e_max, d[nmax-1] + radius)
radius = (e_max + e_min)/2
for i in range(int(nmax)):
d[i] = d[i] - radius
radius = 2/(e_max-e_min)
d = np.multiply(radius,d)
e = np.multiply(radius,e)
return e_min, e_max ,d ,e, first_n0
def hamiltonian_c(n_max, in_w, e, d):
"""apply tridiagonal real Hamiltonian matrix to a complex vector
Parameters
----------
n_max : int
maximum n for cutoff
in_w : np.array(complex)
state in
d : np.array(complex)
diagonal elements of Hamiltonian
e : np.array(complex)
off diagonal elements of Hamiltonian
Returns
-------
out_w : np.array(complex)
application of Hamiltonian to vector
"""
n_max = int(n_max)
out_w = in_w[:n_max]*d[:n_max]
out_w[:(n_max-1)] += e[:(n_max-1)]*in_w[1:n_max]
out_w[1:n_max] += e[:n_max-1] * in_w[:n_max-1]
return out_w
def moments(wave, n):
"""mean and variance of wavefunction
Parameters
----------
wave : np.array(complex)
wavefunction
n : int
number of atoms
Returns
-------
x : float
mean of wavefunction
x2 : float
variance of wavefunction
"""
nn = np.arange(n, n+2*len(wave), 2)
Y = (wave * np.conj(wave)).real
x = np.sum(Y * nn)
x2 = np.sum(Y * nn * nn)
return x, x2 | [
11748,
299,
32152,
355,
45941,
198,
11748,
10688,
198,
198,
4299,
17130,
62,
16794,
7,
64,
11,
77,
2599,
198,
220,
220,
220,
37227,
8818,
284,
24061,
617,
5561,
320,
602,
198,
220,
220,
220,
220,
198,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
257,
1058,
3716,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
198,
220,
220,
220,
299,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
198,
220,
220,
220,
220,
198,
220,
220,
220,
16409,
198,
220,
220,
220,
300,
77,
1058,
3716,
198,
220,
220,
220,
220,
220,
220,
220,
40874,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
257,
13,
5305,
6624,
657,
290,
257,
13,
48466,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
300,
77,
796,
45941,
13,
41887,
7,
15,
11,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
300,
77,
796,
45941,
13,
41887,
32590,
16,
68,
2167,
11,
15,
8,
628,
220,
220,
220,
1288,
361,
299,
18189,
5867,
25,
198,
220,
220,
220,
220,
220,
220,
220,
300,
77,
796,
299,
1635,
37659,
13,
6404,
7,
64,
13219,
357,
77,
9,
37659,
13,
6404,
7,
77,
13219,
77,
1343,
45941,
13,
6404,
7,
17,
9,
37659,
13,
14415,
9,
77,
20679,
17,
20679,
17,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
300,
77,
796,
299,
1635,
45941,
13,
6404,
7,
64,
8,
532,
10688,
13,
6404,
7,
11018,
13,
22584,
5132,
7,
600,
7,
77,
4008,
20679,
17,
198,
220,
220,
220,
1441,
300,
77,
198,
198,
4299,
1064,
62,
27237,
7,
89,
2599,
198,
220,
220,
220,
37227,
19796,
3716,
2593,
61,
17,
286,
257,
15879,
286,
3716,
3146,
37811,
198,
220,
220,
220,
479,
796,
657,
198,
220,
220,
220,
329,
1312,
287,
1976,
25,
198,
220,
220,
220,
220,
220,
220,
220,
479,
796,
479,
1343,
357,
72,
1635,
45941,
13,
1102,
73,
7,
72,
29720,
5305,
198,
220,
220,
220,
1441,
479,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
4299,
9058,
62,
1416,
3021,
62,
39,
7,
80,
11,
269,
11,
299,
11,
285,
11,
299,
9806,
20311,
2599,
198,
220,
220,
220,
37227,
8818,
284,
9058,
491,
312,
328,
20996,
11582,
666,
611,
717,
11,
1441,
288,
11,
68,
198,
220,
220,
220,
220,
198,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
10662,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
15094,
81,
1512,
41271,
8463,
6482,
198,
220,
220,
220,
269,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
269,
62,
17,
77,
11,
7906,
273,
10375,
2494,
198,
220,
220,
220,
299,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
13166,
198,
220,
220,
220,
285,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
19972,
1634,
198,
220,
220,
220,
299,
9806,
20311,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
39224,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
304,
62,
1084,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5288,
304,
9324,
8367,
198,
220,
220,
220,
304,
62,
9806,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
5415,
304,
9324,
8367,
198,
220,
220,
220,
288,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
40039,
4847,
286,
11582,
666,
198,
220,
220,
220,
304,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
572,
40039,
4847,
286,
11582,
666,
198,
220,
220,
220,
717,
62,
77,
15,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
299,
22831,
76,
91,
4064,
362,
198,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
717,
62,
77,
15,
796,
45941,
13,
4666,
7,
77,
12,
8937,
7,
76,
828,
362,
8,
198,
220,
220,
220,
299,
15,
796,
45941,
13,
4666,
19510,
77,
12,
8937,
7,
76,
36911,
362,
8,
198,
220,
220,
220,
299,
9806,
796,
493,
19510,
77,
12,
8937,
7,
76,
13219,
77,
15,
20679,
17,
1343,
352,
8,
198,
220,
198,
220,
220,
220,
1303,
17953,
26515,
198,
220,
220,
220,
304,
796,
45941,
13,
9107,
418,
7,
600,
7,
77,
9806,
13219,
16,
8,
198,
220,
220,
220,
288,
796,
45941,
13,
9107,
418,
7,
600,
7,
77,
9806,
4008,
198,
220,
220,
198,
220,
220,
220,
269,
62,
12001,
796,
269,
14,
77,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
6759,
8609,
4847,
286,
8891,
9044,
666,
198,
220,
220,
220,
28642,
796,
357,
77,
532,
299,
15,
532,
285,
20679,
17,
198,
220,
220,
220,
299,
381,
796,
357,
77,
532,
299,
15,
1343,
285,
20679,
17,
198,
220,
220,
220,
329,
474,
287,
2837,
7,
600,
7,
77,
9806,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
288,
58,
73,
60,
796,
357,
77,
12,
77,
15,
27493,
7,
80,
10,
15,
13,
20,
9,
66,
62,
12001,
9,
7,
17,
9,
77,
15,
12,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
611,
474,
1279,
357,
77,
9806,
12,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
304,
58,
73,
60,
796,
269,
62,
12001,
9,
37659,
13,
31166,
17034,
7,
21533,
9,
77,
381,
9,
7,
77,
15,
10,
17,
27493,
7,
77,
15,
10,
16,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
28642,
796,
28642,
532,
352,
198,
220,
220,
220,
220,
220,
220,
220,
299,
381,
796,
299,
381,
532,
352,
198,
220,
220,
220,
220,
220,
220,
220,
299,
15,
796,
299,
15,
1343,
362,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
395,
1920,
1912,
319,
402,
364,
71,
7053,
259,
338,
9197,
44728,
198,
220,
220,
220,
16874,
796,
2352,
7,
68,
58,
15,
12962,
198,
220,
220,
220,
304,
62,
1084,
796,
288,
58,
15,
60,
532,
16874,
198,
220,
220,
220,
304,
62,
9806,
796,
288,
58,
15,
60,
1343,
16874,
628,
220,
220,
220,
329,
474,
287,
2837,
7,
17,
11,
600,
7,
77,
9806,
13219,
16,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
16874,
796,
2352,
7,
68,
58,
73,
12,
17,
12962,
1343,
2352,
7,
68,
58,
73,
12,
16,
12962,
198,
220,
220,
220,
220,
220,
220,
220,
304,
62,
1084,
796,
949,
7,
68,
62,
1084,
11,
288,
58,
73,
12,
16,
60,
532,
16874,
8,
198,
220,
220,
220,
220,
220,
220,
220,
304,
62,
9806,
796,
3509,
7,
68,
62,
9806,
11,
288,
58,
73,
12,
16,
60,
1343,
16874,
8,
198,
220,
220,
220,
16874,
796,
2352,
7,
68,
58,
77,
9806,
12,
17,
12962,
198,
220,
220,
220,
304,
62,
1084,
796,
949,
7,
68,
62,
1084,
11,
288,
58,
77,
9806,
12,
16,
60,
532,
16874,
8,
198,
220,
220,
220,
304,
62,
9806,
796,
3509,
7,
68,
62,
9806,
11,
288,
58,
77,
9806,
12,
16,
60,
1343,
16874,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
16874,
796,
357,
68,
62,
9806,
1343,
304,
62,
1084,
20679,
17,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
600,
7,
77,
9806,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
288,
58,
72,
60,
796,
288,
58,
72,
60,
532,
16874,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
16874,
796,
362,
29006,
68,
62,
9806,
12,
68,
62,
1084,
8,
198,
220,
220,
220,
288,
796,
45941,
13,
16680,
541,
306,
7,
42172,
11,
67,
8,
198,
220,
220,
220,
304,
796,
45941,
13,
16680,
541,
306,
7,
42172,
11,
68,
8,
198,
220,
220,
220,
1441,
304,
62,
1084,
11,
304,
62,
9806,
837,
67,
837,
68,
11,
717,
62,
77,
15,
198,
220,
198,
198,
4299,
8891,
9044,
666,
62,
66,
7,
77,
62,
9806,
11,
287,
62,
86,
11,
304,
11,
288,
2599,
198,
220,
220,
220,
37227,
39014,
491,
19830,
27923,
1103,
11582,
666,
17593,
284,
257,
3716,
15879,
198,
220,
220,
220,
220,
198,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
299,
62,
9806,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
5415,
299,
329,
45616,
198,
220,
220,
220,
287,
62,
86,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
287,
198,
220,
220,
220,
288,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
40039,
4847,
286,
11582,
666,
198,
220,
220,
220,
304,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
572,
40039,
4847,
286,
11582,
666,
198,
220,
220,
220,
220,
198,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
503,
62,
86,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
3586,
286,
11582,
666,
284,
15879,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
299,
62,
9806,
796,
493,
7,
77,
62,
9806,
8,
198,
220,
220,
220,
503,
62,
86,
796,
287,
62,
86,
58,
25,
77,
62,
9806,
60,
9,
67,
58,
25,
77,
62,
9806,
60,
198,
220,
220,
220,
503,
62,
86,
58,
37498,
77,
62,
9806,
12,
16,
15437,
15853,
304,
58,
37498,
77,
62,
9806,
12,
16,
15437,
9,
259,
62,
86,
58,
16,
25,
77,
62,
9806,
60,
198,
220,
220,
220,
503,
62,
86,
58,
16,
25,
77,
62,
9806,
60,
15853,
304,
58,
25,
77,
62,
9806,
12,
16,
60,
1635,
287,
62,
86,
58,
25,
77,
62,
9806,
12,
16,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
503,
62,
86,
198,
198,
4299,
7188,
7,
19204,
11,
299,
2599,
198,
220,
220,
220,
37227,
32604,
290,
24198,
286,
6769,
8818,
198,
220,
220,
220,
220,
198,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
6769,
1058,
45941,
13,
18747,
7,
41887,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6769,
8818,
198,
220,
220,
220,
299,
1058,
493,
198,
220,
220,
220,
220,
220,
220,
220,
1271,
286,
23235,
198,
220,
220,
220,
220,
198,
220,
220,
220,
16409,
198,
220,
220,
220,
35656,
198,
220,
220,
220,
2124,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
1612,
286,
6769,
8818,
198,
220,
220,
220,
2124,
17,
1058,
12178,
198,
220,
220,
220,
220,
220,
220,
220,
24198,
286,
6769,
8818,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
299,
77,
796,
45941,
13,
283,
858,
7,
77,
11,
299,
10,
17,
9,
11925,
7,
19204,
828,
362,
8,
198,
220,
220,
220,
575,
796,
357,
19204,
1635,
45941,
13,
1102,
73,
7,
19204,
29720,
5305,
198,
220,
220,
220,
2124,
796,
45941,
13,
16345,
7,
56,
1635,
299,
77,
8,
198,
220,
220,
220,
2124,
17,
796,
45941,
13,
16345,
7,
56,
1635,
299,
77,
1635,
299,
77,
8,
198,
220,
220,
220,
1441,
2124,
11,
2124,
17
] | 1.92731 | 1,926 |
# -*- coding: utf-8 -*-
from __future__ import absolute_import
import sys
from .common import unittest
from squint._compatibility.itertools import islice
from squint._utils import IterItems
from squint.result import Result
| [
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
6738,
11593,
37443,
834,
1330,
4112,
62,
11748,
198,
11748,
25064,
198,
6738,
764,
11321,
1330,
555,
715,
395,
198,
6738,
2809,
600,
13557,
5589,
25901,
13,
270,
861,
10141,
1330,
318,
75,
501,
198,
6738,
2809,
600,
13557,
26791,
1330,
40806,
23022,
198,
6738,
2809,
600,
13,
20274,
1330,
25414,
628,
628,
198
] | 3.338235 | 68 |
# multiAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to
# http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from __future__ import division
from util import manhattanDistance
from game import Directions
import random, util
from game import Agent
class ReflexAgent(Agent):
"""
A reflex agent chooses an action at each choice point by examining
its alternatives via a state evaluation function.
The code below is provided as a guide. You are welcome to change
it in any way you see fit, so long as you don't touch our method
headers.
"""
def getAction(self, gameState):
"""
You do not need to change this method, but you're welcome to.
getAction chooses among the best options according to the evaluation function.
Just like in the previous project, getAction takes a GameState and returns
some Directions.X for some X in the set {North, South, West, East, Stop}
"""
# Collect legal moves and successor states
legalMoves = gameState.getLegalActions()
# Choose one of the best actions
scores = [self.evaluationFunction(gameState, action) for action in legalMoves]
bestScore = max(scores)
bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore]
chosenIndex = random.choice(bestIndices) # Pick randomly among the best
"Add more of your code here if you want to"
return legalMoves[chosenIndex]
def evaluationFunction(self, currentGameState, action):
"""
Design a better evaluation function here.
The evaluation function takes in the current and proposed successor
GameStates (pacman.py) and returns a number, where higher numbers are better.
The code below extracts some useful information from the state, like the
remaining food (newFood) and Pacman position after moving (newPos).
newScaredTimes holds the number of moves that each ghost will remain
scared because of Pacman having eaten a power pellet.
Print out these variables to see what you're getting, then combine them
to create a masterful evaluation function.
"""
# Useful information you can extract from a GameState (pacman.py)
successorGameState = currentGameState.generatePacmanSuccessor(action)
newPos = successorGameState.getPacmanPosition()
newFood = successorGameState.getFood()
newGhostStates = successorGameState.getGhostStates()
newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
food_left = sum(int(j) for i in newFood for j in i)
if food_left > 0:
food_distances = [manhattanDistance(newPos, (x, y))
for x, row in enumerate(newFood)
for y, food in enumerate(row)
if food]
shortest_food = min(food_distances)
else:
shortest_food = 0
if newGhostStates:
ghost_distances = [manhattanDistance(ghost.getPosition(), newPos)
for ghost in newGhostStates]
shortest_ghost = min(ghost_distances)
if shortest_ghost == 0:
shortest_ghost = -2000
else:
shortest_ghost = -5 / shortest_ghost
else:
shortest_ghost = 0
return -2 * shortest_food + shortest_ghost - 40 * food_left
def scoreEvaluationFunction(currentGameState):
"""
This default evaluation function just returns the score of the state.
The score is the same one displayed in the Pacman GUI.
This evaluation function is meant for use with adversarial search agents
(not reflex agents).
"""
return currentGameState.getScore()
class MultiAgentSearchAgent(Agent):
"""
This class provides some common elements to all of your
multi-agent searchers. Any methods defined here will be available
to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent.
You *do not* need to make any changes here, but you can if you want to
add functionality to all your adversarial search agents. Please do not
remove anything, however.
Note: this is an abstract class: one that should not be instantiated. It's
only partially specified, and designed to be extended. Agent (game.py)
is another abstract class.
"""
class MinimaxAgent(MultiAgentSearchAgent):
"""
Your minimax agent (question 2)
"""
def getAction(self, gameState):
"""
Returns the minimax action from the current gameState using self.depth
and self.evaluationFunction.
Here are some method calls that might be useful when implementing minimax.
gameState.getLegalActions(agentIndex):
Returns a list of legal actions for an agent
agentIndex=0 means Pacman, ghosts are >= 1
gameState.generateSuccessor(agentIndex, action):
Returns the successor game state after an agent takes an action
gameState.getNumAgents():
Returns the total number of agents in the game
"""
return max(
gameState.getLegalActions(0),
key = lambda x: search_depth(gameState.generateSuccessor(0, x), 1, 1)
)
class AlphaBetaAgent(MultiAgentSearchAgent):
"""
Your minimax agent with alpha-beta pruning (question 3)
"""
def getAction(self, gameState):
"""
Returns the minimax action using self.depth and self.evaluationFunction
"""
val, alpha, beta, best = None, None, None, None
for action in gameState.getLegalActions(0):
val = max(val, min_val(gameState.generateSuccessor(0, action), 1, 1, alpha, beta))
# if val >= beta: return action
if alpha is None:
alpha, best = val, action
else:
alpha, best = max(val, alpha), action if val > alpha else best
return best
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 4)
"""
def getAction(self, gameState):
"""
Returns the expectimax action using self.depth and self.evaluationFunction
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
return max(
gameState.getLegalActions(0),
key = lambda x: search_depth(gameState.generateSuccessor(0, x), 1, 1)
)
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"Search the node that has the lowest combined cost and heuristic first."
visited = set()
p_queue = util.PriorityQueue()
p_queue.push((problem.getStartState(), []), 0)
while not p_queue.isEmpty():
state, actions = p_queue.pop()
if state in visited:
continue
visited.add(state)
if problem.isGoalState(state):
return actions
for successor, action, stepCost in problem.getSuccessors(state):
if successor not in visited:
p_queue.push(
(successor, actions + [action]),
stepCost + problem.getCostOfActions(actions) +
heuristic(successor, problem = problem))
from game import Actions
class PositionSearchProblem:
"""
A search problem defines the state space, start state, goal test,
successor function and cost function. This search problem can be
used to find paths to a particular point on the pacman board.
The state space consists of (x,y) positions in a pacman game.
Note: this search problem is fully specified; you should NOT change it.
"""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
"""
Stores the start and goal.
gameState: A GameState object (pacman.py)
costFn: A function from a search state (tuple) to a non-negative number
goal: A position in the gameState
"""
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self.goal = goal
self.costFn = costFn
self.visualize = visualize
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
print 'Warning: this does not look like a regular search maze'
# For display purposes
self._visited, self._visitedlist, self._expanded = {}, [], 0
def getSuccessors(self, state):
"""
Returns successor states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples,
(successor, action, stepCost), where 'successor' is a
successor to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that successor
"""
successors = []
for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]:
x,y = state
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
nextState = (nextx, nexty)
cost = self.costFn(nextState)
successors.append( ( nextState, action, cost) )
# Bookkeeping for display purposes
self._expanded += 1
if state not in self._visited:
self._visited[state] = True
self._visitedlist.append(state)
return successors
def getCostOfActions(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999
"""
if actions == None: return 999999
x,y= self.getStartState()
cost = 0
for action in actions:
# Check figure out the next state and see whether its' legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
cost += self.costFn((x,y))
return cost
class AnyFoodSearchProblem(PositionSearchProblem):
"""
A search problem for finding a path to any food.
This search problem is just like the PositionSearchProblem, but
has a different goal test, which you need to fill in below. The
state space and successor function do not need to be changed.
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
inherits the methods of the PositionSearchProblem.
You can use this search problem to help you fill in
the findPathToClosestDot method.
"""
def __init__(self, gameState):
"Stores information from the gameState. You don't need to change this."
# Store the food for later reference
self.food = gameState.getFood()
# Store info for the PositionSearchProblem (no need to change this)
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
self.costFn = lambda x: 1
self._visited, self._visitedlist, self._expanded = {}, [], 0
def isGoalState(self, state):
"""
The state is Pacman's position. Fill this in with a goal test
that will complete the problem definition.
"""
x,y = state
return self.food[x][y]
def manhattanHeuristic(position, problem, info={}):
"The Manhattan distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
def betterEvaluationFunction(currentGameState):
"""
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function (question 5).
DESCRIPTION: This function evaluates a state based on the sum of
six weighted variables:
- Distance of path to nearest food pellet
- Manhattan distance to closest offensive ghost
- Manhattan distance to closest power pellet
- Number of power pellets left
- Number of food pellets left
- Manhattan distance to closest scared ghost
For some of the variables, the reciprocal was taken based on the
following methodology:
- The reciprocal of the distance to closest food pellet
- A close food pellet is a good thing, but we want grabbing
one to have a limited value on the change in score
- The score drop due to the increased distance to the next
nearest pellet should be less than the score gain from
eating the pellet.
- The negative reciprocal of the distance to the closest ghost
- A close ghost makes the state less desirable, but variances
in ghosts far away should have little impact
- The reciprocal of the distance to the closest power pellet
- Same reasoning as food pellets
"""
pos = currentGameState.getPacmanPosition()
food = currentGameState.getFood()
ghosts = currentGameState.getGhostStates()
capsules = currentGameState.getCapsules()
food_left = sum(int(j) for i in food for j in i)
# Nom them foods
problem = AnyFoodSearchProblem(currentGameState)
shortest_food = aStarSearch(problem, heuristic = nearest_food_heuristic)
if shortest_food:
shortest_food = 1 / len(shortest_food)
else:
shortest_food = 1000
# if food_left > 0:
# food_distances = [
# manhattanDistance(pos, (x, y))
# for x, row in enumerate(food)
# for y, food_bool in enumerate(row)
# if food_bool
# ]
# shortest_food = 1 / min(food_distances)
# else:
# shortest_food = -200000
scared = [ghost for ghost in ghosts if ghost.scaredTimer > 0]
ghosts = [ghost for ghost in ghosts if ghost.scaredTimer == 0]
# Don't let the ghost nom you
if ghosts:
ghost_distances = [manhattanDistance(ghost.getPosition(), pos)
for ghost in ghosts]
shortest_ghost = min(ghost_distances)
if shortest_ghost == 0:
shortest_ghost = 200000
else:
shortest_ghost = 1 / shortest_ghost
else:
shortest_ghost = 0
# Nom them scared ones
shortest_scared = 0
if scared:
scared_distances = [manhattanDistance(ghost.getPosition(), pos)
for ghost in scared]
scared_distances = [distance
for ghost, distance in zip(scared, scared_distances)
if distance <= ghost.scaredTimer]
if scared_distances:
shortest_scared = min(scared_distances)
if shortest_scared == 0:
shortest_scared = 10
else:
shortest_scared = 1 / shortest_scared
# Nom them capsules
capsules_left = len(capsules)
if capsules:
capsule_distances = [manhattanDistance(capsule, pos)
for capsule in capsules]
shortest_capsule = 1 / min(capsule_distances)
else:
shortest_capsule = 0
weights = [5, 10, -5, -50, -100, 10]
scores = [shortest_food, shortest_capsule, shortest_ghost,
food_left, capsules_left, shortest_scared]
score = sum(i * j for i, j in zip(scores, weights))
# print "pos\t\t\t", pos
# print "shortest food\t\t", shortest_food
# print "food_left\t\t", food_left
# print "shortest_capsule\t", shortest_capsule
# print "score\t\t\t", score
# print
return score
# Abbreviation
better = betterEvaluationFunction
class ContestAgent(MultiAgentSearchAgent):
"""
Your agent for the mini-contest
"""
def getAction(self, gameState):
"""
Returns an action. You can use any method you want and search to any depth you want.
Just remember that the mini-contest is timed, so you have to trade off speed and computation.
Ghosts don't behave randomly anymore, but they aren't perfect either -- they'll usually
just make a beeline straight towards Pacman (or away from him if they're scared!)
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
| [
2,
5021,
10262,
658,
13,
9078,
198,
2,
220,
26171,
198,
2,
10483,
26426,
6188,
25,
220,
921,
389,
1479,
284,
779,
393,
9117,
777,
4493,
329,
198,
2,
9856,
4959,
2810,
326,
357,
16,
8,
345,
466,
407,
14983,
393,
7715,
198,
2,
8136,
11,
357,
17,
8,
345,
12377,
428,
4003,
11,
290,
357,
18,
8,
345,
2148,
1598,
198,
2,
39629,
284,
14417,
14727,
11,
1390,
257,
2792,
284,
198,
2,
2638,
1378,
8625,
13,
68,
721,
82,
13,
527,
13490,
13,
15532,
14,
93,
6359,
20356,
14,
33587,
805,
14,
33587,
805,
13,
6494,
198,
2,
198,
2,
45336,
6188,
25,
383,
6319,
805,
9552,
4493,
547,
4166,
379,
14417,
14727,
13,
198,
2,
383,
4755,
4493,
290,
1960,
519,
6335,
364,
547,
7525,
2727,
416,
1757,
1024,
45,
3529,
198,
2,
357,
67,
877,
78,
31,
6359,
13,
527,
13490,
13,
15532,
8,
290,
6035,
22864,
357,
74,
33663,
31,
6359,
13,
527,
13490,
13,
15532,
737,
198,
2,
13613,
1735,
1960,
519,
81,
4980,
373,
2087,
416,
8114,
7920,
11,
8047,
9075,
11,
290,
198,
2,
36548,
263,
2275,
1350,
417,
357,
79,
397,
1350,
417,
31,
6359,
13,
527,
13490,
13,
15532,
737,
198,
198,
6738,
11593,
37443,
834,
1330,
7297,
198,
6738,
7736,
1330,
582,
12904,
45767,
198,
6738,
983,
1330,
47426,
198,
11748,
4738,
11,
7736,
198,
198,
6738,
983,
1330,
15906,
198,
198,
4871,
43214,
36772,
7,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
317,
24133,
5797,
19769,
281,
2223,
379,
1123,
3572,
966,
416,
17247,
198,
220,
220,
220,
220,
220,
663,
14693,
2884,
257,
1181,
12660,
2163,
13,
628,
220,
220,
220,
220,
220,
383,
2438,
2174,
318,
2810,
355,
257,
5698,
13,
220,
921,
389,
7062,
284,
1487,
198,
220,
220,
220,
220,
220,
340,
287,
597,
835,
345,
766,
4197,
11,
523,
890,
355,
345,
836,
470,
3638,
674,
2446,
198,
220,
220,
220,
220,
220,
24697,
13,
198,
220,
220,
220,
37227,
628,
198,
220,
220,
220,
825,
651,
12502,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
921,
466,
407,
761,
284,
1487,
428,
2446,
11,
475,
345,
821,
7062,
284,
13,
628,
220,
220,
220,
220,
220,
220,
220,
651,
12502,
19769,
1871,
262,
1266,
3689,
1864,
284,
262,
12660,
2163,
13,
628,
220,
220,
220,
220,
220,
220,
220,
2329,
588,
287,
262,
2180,
1628,
11,
651,
12502,
2753,
257,
3776,
9012,
290,
5860,
198,
220,
220,
220,
220,
220,
220,
220,
617,
47426,
13,
55,
329,
617,
1395,
287,
262,
900,
1391,
14157,
11,
2520,
11,
2688,
11,
3687,
11,
13707,
92,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9745,
2742,
6100,
290,
17270,
2585,
198,
220,
220,
220,
220,
220,
220,
220,
2742,
44,
5241,
796,
983,
9012,
13,
1136,
38263,
32,
2733,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
17489,
530,
286,
262,
1266,
4028,
198,
220,
220,
220,
220,
220,
220,
220,
8198,
796,
685,
944,
13,
18206,
2288,
22203,
7,
6057,
9012,
11,
2223,
8,
329,
2223,
287,
2742,
44,
5241,
60,
198,
220,
220,
220,
220,
220,
220,
220,
1266,
26595,
796,
3509,
7,
1416,
2850,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1266,
5497,
1063,
796,
685,
9630,
329,
6376,
287,
2837,
7,
11925,
7,
1416,
2850,
4008,
611,
8198,
58,
9630,
60,
6624,
1266,
26595,
60,
198,
220,
220,
220,
220,
220,
220,
220,
7147,
15732,
796,
4738,
13,
25541,
7,
13466,
5497,
1063,
8,
1303,
12346,
15456,
1871,
262,
1266,
628,
220,
220,
220,
220,
220,
220,
220,
366,
4550,
517,
286,
534,
2438,
994,
611,
345,
765,
284,
1,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
2742,
44,
5241,
58,
354,
5233,
15732,
60,
628,
220,
220,
220,
825,
12660,
22203,
7,
944,
11,
1459,
8777,
9012,
11,
2223,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
8495,
257,
1365,
12660,
2163,
994,
13,
628,
220,
220,
220,
220,
220,
220,
220,
383,
12660,
2163,
2753,
287,
262,
1459,
290,
5150,
17270,
198,
220,
220,
220,
220,
220,
220,
220,
3776,
42237,
357,
33587,
805,
13,
9078,
8,
290,
5860,
257,
1271,
11,
810,
2440,
3146,
389,
1365,
13,
628,
220,
220,
220,
220,
220,
220,
220,
383,
2438,
2174,
32139,
617,
4465,
1321,
422,
262,
1181,
11,
588,
262,
198,
220,
220,
220,
220,
220,
220,
220,
5637,
2057,
357,
3605,
24602,
8,
290,
6319,
805,
2292,
706,
3867,
357,
3605,
21604,
737,
198,
220,
220,
220,
220,
220,
220,
220,
649,
3351,
1144,
28595,
6622,
262,
1271,
286,
6100,
326,
1123,
10905,
481,
3520,
198,
220,
220,
220,
220,
220,
220,
220,
12008,
780,
286,
6319,
805,
1719,
17065,
257,
1176,
16176,
1616,
13,
628,
220,
220,
220,
220,
220,
220,
220,
12578,
503,
777,
9633,
284,
766,
644,
345,
821,
1972,
11,
788,
12082,
606,
198,
220,
220,
220,
220,
220,
220,
220,
284,
2251,
257,
4958,
913,
12660,
2163,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
49511,
1321,
345,
460,
7925,
422,
257,
3776,
9012,
357,
33587,
805,
13,
9078,
8,
198,
220,
220,
220,
220,
220,
220,
220,
17270,
8777,
9012,
796,
1459,
8777,
9012,
13,
8612,
378,
18844,
805,
33244,
273,
7,
2673,
8,
198,
220,
220,
220,
220,
220,
220,
220,
649,
21604,
796,
17270,
8777,
9012,
13,
1136,
18844,
805,
26545,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
649,
24602,
796,
17270,
8777,
9012,
13,
1136,
24602,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
649,
32001,
42237,
796,
17270,
8777,
9012,
13,
1136,
32001,
42237,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
649,
3351,
1144,
28595,
796,
685,
38933,
9012,
13,
1416,
1144,
48801,
329,
10905,
9012,
287,
649,
32001,
42237,
60,
628,
220,
220,
220,
220,
220,
220,
220,
2057,
62,
9464,
796,
2160,
7,
600,
7,
73,
8,
329,
1312,
287,
649,
24602,
329,
474,
287,
1312,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
2057,
62,
9464,
1875,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2057,
62,
17080,
1817,
796,
685,
805,
12904,
45767,
7,
3605,
21604,
11,
357,
87,
11,
331,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
11,
5752,
287,
27056,
378,
7,
3605,
24602,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
331,
11,
2057,
287,
27056,
378,
7,
808,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2057,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
19425,
796,
949,
7,
19425,
62,
17080,
1817,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
19425,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
611,
649,
32001,
42237,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10905,
62,
17080,
1817,
796,
685,
805,
12904,
45767,
7,
38933,
13,
1136,
26545,
22784,
649,
21604,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10905,
287,
649,
32001,
42237,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
949,
7,
38933,
62,
17080,
1817,
8,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
35581,
62,
38933,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
532,
11024,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
532,
20,
1220,
35581,
62,
38933,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
657,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
532,
17,
1635,
35581,
62,
19425,
1343,
35581,
62,
38933,
532,
2319,
1635,
2057,
62,
9464,
198,
198,
4299,
4776,
36,
2100,
2288,
22203,
7,
14421,
8777,
9012,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
770,
4277,
12660,
2163,
655,
5860,
262,
4776,
286,
262,
1181,
13,
198,
220,
220,
220,
220,
220,
383,
4776,
318,
262,
976,
530,
9066,
287,
262,
6319,
805,
25757,
13,
628,
220,
220,
220,
220,
220,
770,
12660,
2163,
318,
4001,
329,
779,
351,
16907,
36098,
2989,
6554,
198,
220,
220,
220,
220,
220,
357,
1662,
24133,
6554,
737,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
1459,
8777,
9012,
13,
1136,
26595,
3419,
198,
198,
4871,
15237,
36772,
18243,
36772,
7,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
770,
1398,
3769,
617,
2219,
4847,
284,
477,
286,
534,
198,
220,
220,
220,
220,
220,
5021,
12,
25781,
9622,
3533,
13,
220,
4377,
5050,
5447,
994,
481,
307,
1695,
198,
220,
220,
220,
220,
220,
284,
262,
1855,
320,
897,
18844,
805,
36772,
11,
12995,
43303,
18844,
805,
36772,
1222,
23600,
320,
897,
18844,
805,
36772,
13,
628,
220,
220,
220,
220,
220,
921,
1635,
4598,
407,
9,
761,
284,
787,
597,
2458,
994,
11,
475,
345,
460,
611,
345,
765,
284,
198,
220,
220,
220,
220,
220,
751,
11244,
284,
477,
534,
16907,
36098,
2989,
6554,
13,
220,
4222,
466,
407,
198,
220,
220,
220,
220,
220,
4781,
1997,
11,
2158,
13,
628,
220,
220,
220,
220,
220,
5740,
25,
428,
318,
281,
12531,
1398,
25,
530,
326,
815,
407,
307,
9113,
12931,
13,
220,
632,
338,
198,
220,
220,
220,
220,
220,
691,
12387,
7368,
11,
290,
3562,
284,
307,
7083,
13,
220,
15906,
357,
6057,
13,
9078,
8,
198,
220,
220,
220,
220,
220,
318,
1194,
12531,
1398,
13,
198,
220,
220,
220,
37227,
198,
198,
4871,
1855,
320,
897,
36772,
7,
29800,
36772,
18243,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
3406,
10356,
897,
5797,
357,
25652,
362,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
651,
12502,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
10356,
897,
2223,
422,
262,
1459,
983,
9012,
1262,
2116,
13,
18053,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
2116,
13,
18206,
2288,
22203,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3423,
389,
617,
2446,
3848,
326,
1244,
307,
4465,
618,
15427,
10356,
897,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
13,
1136,
38263,
32,
2733,
7,
25781,
15732,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
257,
1351,
286,
2742,
4028,
329,
281,
5797,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5797,
15732,
28,
15,
1724,
6319,
805,
11,
25899,
389,
18189,
352,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
13,
8612,
378,
33244,
273,
7,
25781,
15732,
11,
2223,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
17270,
983,
1181,
706,
281,
5797,
2753,
281,
2223,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
13,
1136,
33111,
10262,
658,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
2472,
1271,
286,
6554,
287,
262,
983,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
3509,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
13,
1136,
38263,
32,
2733,
7,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
796,
37456,
2124,
25,
2989,
62,
18053,
7,
6057,
9012,
13,
8612,
378,
33244,
273,
7,
15,
11,
2124,
828,
352,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
4871,
12995,
43303,
36772,
7,
29800,
36772,
18243,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
3406,
10356,
897,
5797,
351,
17130,
12,
31361,
778,
46493,
357,
25652,
513,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
651,
12502,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
10356,
897,
2223,
1262,
2116,
13,
18053,
290,
2116,
13,
18206,
2288,
22203,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1188,
11,
17130,
11,
12159,
11,
1266,
796,
6045,
11,
6045,
11,
6045,
11,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2223,
287,
983,
9012,
13,
1136,
38263,
32,
2733,
7,
15,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1188,
796,
3509,
7,
2100,
11,
949,
62,
2100,
7,
6057,
9012,
13,
8612,
378,
33244,
273,
7,
15,
11,
2223,
828,
352,
11,
352,
11,
17130,
11,
12159,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
1188,
18189,
12159,
25,
1441,
2223,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
17130,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
11,
1266,
796,
1188,
11,
2223,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
11,
1266,
796,
3509,
7,
2100,
11,
17130,
828,
2223,
611,
1188,
1875,
17130,
2073,
1266,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
1266,
198,
198,
4871,
23600,
320,
897,
36772,
7,
29800,
36772,
18243,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
3406,
1607,
320,
897,
5797,
357,
25652,
604,
8,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
651,
12502,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
1607,
320,
897,
2223,
1262,
2116,
13,
18053,
290,
2116,
13,
18206,
2288,
22203,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1439,
25899,
815,
307,
29563,
355,
11236,
42096,
379,
4738,
422,
511,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2742,
6100,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
3509,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
13,
1136,
38263,
32,
2733,
7,
15,
828,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1994,
796,
37456,
2124,
25,
2989,
62,
18053,
7,
6057,
9012,
13,
8612,
378,
33244,
273,
7,
15,
11,
2124,
828,
352,
11,
352,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
198,
4299,
9242,
1544,
27915,
7,
5219,
11,
1917,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
339,
27915,
2163,
7746,
262,
1575,
422,
262,
1459,
1181,
284,
262,
16936,
198,
220,
220,
220,
3061,
287,
262,
2810,
11140,
40781,
13,
220,
770,
339,
27915,
318,
20861,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1441,
657,
198,
198,
4299,
257,
8248,
18243,
7,
45573,
11,
339,
27915,
28,
8423,
1544,
27915,
2599,
198,
220,
220,
220,
366,
18243,
262,
10139,
326,
468,
262,
9016,
5929,
1575,
290,
339,
27915,
717,
526,
628,
220,
220,
220,
8672,
796,
900,
3419,
198,
220,
220,
220,
279,
62,
36560,
796,
7736,
13,
22442,
414,
34991,
3419,
198,
220,
220,
220,
279,
62,
36560,
13,
14689,
19510,
45573,
13,
1136,
10434,
9012,
22784,
17635,
828,
657,
8,
628,
220,
220,
220,
981,
407,
279,
62,
36560,
13,
271,
40613,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
1181,
11,
4028,
796,
279,
62,
36560,
13,
12924,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1181,
287,
8672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2555,
628,
220,
220,
220,
220,
220,
220,
220,
8672,
13,
2860,
7,
5219,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1917,
13,
271,
49045,
9012,
7,
5219,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1441,
4028,
628,
220,
220,
220,
220,
220,
220,
220,
329,
17270,
11,
2223,
11,
2239,
13729,
287,
1917,
13,
1136,
33244,
669,
7,
5219,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
17270,
407,
287,
8672,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
279,
62,
36560,
13,
14689,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
13138,
273,
11,
4028,
1343,
685,
2673,
46570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2239,
13729,
1343,
1917,
13,
1136,
13729,
5189,
32,
2733,
7,
4658,
8,
1343,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
339,
27915,
7,
13138,
273,
11,
1917,
796,
1917,
4008,
198,
198,
6738,
983,
1330,
24439,
198,
4871,
23158,
18243,
40781,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
317,
2989,
1917,
15738,
262,
1181,
2272,
11,
923,
1181,
11,
3061,
1332,
11,
198,
220,
220,
220,
17270,
2163,
290,
1575,
2163,
13,
220,
770,
2989,
1917,
460,
307,
198,
220,
220,
220,
973,
284,
1064,
13532,
284,
257,
1948,
966,
319,
262,
23503,
805,
3096,
13,
628,
220,
220,
220,
383,
1181,
2272,
10874,
286,
357,
87,
11,
88,
8,
6116,
287,
257,
23503,
805,
983,
13,
628,
220,
220,
220,
5740,
25,
428,
2989,
1917,
318,
3938,
7368,
26,
345,
815,
5626,
1487,
340,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
983,
9012,
11,
1575,
37,
77,
796,
37456,
2124,
25,
352,
11,
3061,
16193,
16,
11,
16,
828,
923,
28,
14202,
11,
9828,
28,
17821,
11,
38350,
28,
17821,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
41835,
262,
923,
290,
3061,
13,
628,
220,
220,
220,
220,
220,
220,
220,
983,
9012,
25,
317,
3776,
9012,
2134,
357,
33587,
805,
13,
9078,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1575,
37,
77,
25,
317,
2163,
422,
257,
2989,
1181,
357,
83,
29291,
8,
284,
257,
1729,
12,
31591,
1271,
198,
220,
220,
220,
220,
220,
220,
220,
3061,
25,
317,
2292,
287,
262,
983,
9012,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
86,
5691,
796,
983,
9012,
13,
1136,
54,
5691,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9688,
9012,
796,
983,
9012,
13,
1136,
18844,
805,
26545,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
923,
14512,
6045,
25,
2116,
13,
9688,
9012,
796,
923,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
35231,
796,
3061,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15805,
37,
77,
796,
1575,
37,
77,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
41464,
1096,
796,
38350,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9828,
290,
357,
6057,
9012,
13,
1136,
33111,
24602,
3419,
14512,
352,
393,
407,
983,
9012,
13,
10134,
24602,
46491,
35231,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
705,
20361,
25,
428,
857,
407,
804,
588,
257,
3218,
2989,
31237,
6,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1114,
3359,
4959,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4703,
863,
11,
2116,
13557,
4703,
863,
4868,
11,
2116,
13557,
11201,
12249,
796,
1391,
5512,
685,
4357,
657,
628,
220,
220,
220,
825,
651,
33244,
669,
7,
944,
11,
1181,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
17270,
2585,
11,
262,
4028,
484,
2421,
11,
290,
257,
1575,
286,
352,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
1081,
4367,
287,
2989,
13,
9078,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1114,
257,
1813,
1181,
11,
428,
815,
1441,
257,
1351,
286,
1333,
2374,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
357,
13138,
273,
11,
2223,
11,
2239,
13729,
828,
810,
705,
13138,
273,
6,
318,
257,
198,
220,
220,
220,
220,
220,
220,
220,
220,
17270,
284,
262,
1459,
1181,
11,
705,
2673,
6,
318,
262,
2223,
198,
220,
220,
220,
220,
220,
220,
220,
220,
2672,
284,
651,
612,
11,
290,
705,
9662,
13729,
6,
318,
262,
29497,
198,
220,
220,
220,
220,
220,
220,
220,
220,
1575,
286,
11581,
284,
326,
17270,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
628,
220,
220,
220,
220,
220,
220,
220,
41491,
796,
17635,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2223,
287,
685,
13470,
507,
13,
35510,
4221,
11,
47426,
13,
50,
2606,
4221,
11,
47426,
13,
36,
11262,
11,
47426,
13,
54,
6465,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
88,
796,
1181,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44332,
11,
20268,
796,
24439,
13,
37295,
2514,
38469,
7,
2673,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1306,
87,
11,
1306,
88,
796,
493,
7,
87,
1343,
44332,
828,
493,
7,
88,
1343,
20268,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
2116,
13,
86,
5691,
58,
19545,
87,
7131,
19545,
88,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1306,
9012,
796,
357,
19545,
87,
11,
1306,
88,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1575,
796,
2116,
13,
15805,
37,
77,
7,
19545,
9012,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
41491,
13,
33295,
7,
357,
1306,
9012,
11,
2223,
11,
1575,
8,
1267,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
4897,
19934,
329,
3359,
4959,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
11201,
12249,
15853,
352,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1181,
407,
287,
2116,
13557,
4703,
863,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4703,
863,
58,
5219,
60,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4703,
863,
4868,
13,
33295,
7,
5219,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1441,
41491,
628,
220,
220,
220,
825,
651,
13729,
5189,
32,
2733,
7,
944,
11,
4028,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
16409,
262,
1575,
286,
257,
1948,
8379,
286,
4028,
13,
220,
1002,
883,
4028,
198,
220,
220,
220,
220,
220,
220,
220,
2291,
281,
5293,
1445,
11,
1441,
36006,
17032,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
611,
4028,
6624,
6045,
25,
1441,
36006,
17032,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
88,
28,
2116,
13,
1136,
10434,
9012,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1575,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
329,
2223,
287,
4028,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
3785,
503,
262,
1306,
1181,
290,
766,
1771,
663,
6,
2742,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44332,
11,
20268,
796,
24439,
13,
37295,
2514,
38469,
7,
2673,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
331,
796,
493,
7,
87,
1343,
44332,
828,
493,
7,
88,
1343,
20268,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2116,
13,
86,
5691,
58,
87,
7131,
88,
5974,
1441,
36006,
17032,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1575,
15853,
2116,
13,
15805,
37,
77,
19510,
87,
11,
88,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1575,
198,
198,
4871,
4377,
24602,
18243,
40781,
7,
26545,
18243,
40781,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
317,
2989,
1917,
329,
4917,
257,
3108,
284,
597,
2057,
13,
628,
220,
220,
220,
220,
220,
770,
2989,
1917,
318,
655,
588,
262,
23158,
18243,
40781,
11,
475,
198,
220,
220,
220,
220,
220,
468,
257,
1180,
3061,
1332,
11,
543,
345,
761,
284,
6070,
287,
2174,
13,
220,
383,
198,
220,
220,
220,
220,
220,
1181,
2272,
290,
17270,
2163,
466,
407,
761,
284,
307,
3421,
13,
628,
220,
220,
220,
220,
220,
383,
1398,
6770,
2029,
11,
4377,
24602,
18243,
40781,
7,
26545,
18243,
40781,
828,
198,
220,
220,
220,
220,
220,
10639,
896,
262,
5050,
286,
262,
23158,
18243,
40781,
13,
628,
220,
220,
220,
220,
220,
921,
460,
779,
428,
2989,
1917,
284,
1037,
345,
6070,
287,
198,
220,
220,
220,
220,
220,
262,
1064,
15235,
2514,
2601,
418,
395,
35,
313,
2446,
13,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
11593,
15003,
834,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
366,
1273,
2850,
1321,
422,
262,
983,
9012,
13,
220,
921,
836,
470,
761,
284,
1487,
428,
526,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9363,
262,
2057,
329,
1568,
4941,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
19425,
796,
983,
9012,
13,
1136,
24602,
3419,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
9363,
7508,
329,
262,
23158,
18243,
40781,
357,
3919,
761,
284,
1487,
428,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
86,
5691,
796,
983,
9012,
13,
1136,
54,
5691,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
9688,
9012,
796,
983,
9012,
13,
1136,
18844,
805,
26545,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13,
15805,
37,
77,
796,
37456,
2124,
25,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
13557,
4703,
863,
11,
2116,
13557,
4703,
863,
4868,
11,
2116,
13557,
11201,
12249,
796,
1391,
5512,
685,
4357,
657,
628,
220,
220,
220,
825,
318,
49045,
9012,
7,
944,
11,
1181,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
383,
1181,
318,
6319,
805,
338,
2292,
13,
27845,
428,
287,
351,
257,
3061,
1332,
198,
220,
220,
220,
220,
220,
220,
220,
326,
481,
1844,
262,
1917,
6770,
13,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2124,
11,
88,
796,
1181,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
2116,
13,
19425,
58,
87,
7131,
88,
60,
198,
198,
4299,
582,
12904,
1544,
27915,
7,
9150,
11,
1917,
11,
7508,
34758,
92,
2599,
198,
220,
220,
220,
366,
464,
13458,
5253,
339,
27915,
329,
257,
23158,
18243,
40781,
1,
198,
220,
220,
220,
2124,
88,
16,
796,
2292,
198,
220,
220,
220,
2124,
88,
17,
796,
1917,
13,
35231,
198,
220,
220,
220,
1441,
2352,
7,
5431,
16,
58,
15,
60,
532,
2124,
88,
17,
58,
15,
12962,
1343,
2352,
7,
5431,
16,
58,
16,
60,
532,
2124,
88,
17,
58,
16,
12962,
198,
198,
4299,
1365,
36,
2100,
2288,
22203,
7,
14421,
8777,
9012,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
3406,
3257,
10905,
12,
20088,
889,
11,
16176,
1616,
12,
77,
397,
4623,
11,
2057,
12,
44270,
11108,
11,
40181,
198,
220,
220,
220,
220,
220,
12660,
2163,
357,
25652,
642,
737,
628,
220,
220,
220,
220,
220,
22196,
40165,
25,
770,
2163,
47850,
257,
1181,
1912,
319,
262,
2160,
286,
198,
220,
220,
220,
220,
220,
2237,
26356,
9633,
25,
628,
220,
220,
220,
220,
220,
532,
34600,
286,
3108,
284,
16936,
2057,
16176,
1616,
198,
220,
220,
220,
220,
220,
532,
13458,
5253,
284,
11706,
5859,
10905,
198,
220,
220,
220,
220,
220,
532,
13458,
5253,
284,
11706,
1176,
16176,
1616,
198,
220,
220,
220,
220,
220,
532,
7913,
286,
1176,
43677,
1364,
198,
220,
220,
220,
220,
220,
532,
7913,
286,
2057,
43677,
1364,
198,
220,
220,
220,
220,
220,
532,
13458,
5253,
284,
11706,
12008,
10905,
628,
220,
220,
220,
220,
220,
1114,
617,
286,
262,
9633,
11,
262,
48135,
373,
2077,
1912,
319,
262,
198,
220,
220,
220,
220,
220,
1708,
20411,
25,
198,
220,
220,
220,
220,
220,
532,
383,
48135,
286,
262,
5253,
284,
11706,
2057,
16176,
1616,
198,
220,
220,
220,
220,
220,
220,
220,
532,
317,
1969,
2057,
16176,
1616,
318,
257,
922,
1517,
11,
475,
356,
765,
23256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
530,
284,
423,
257,
3614,
1988,
319,
262,
1487,
287,
4776,
198,
220,
220,
220,
220,
220,
220,
220,
532,
383,
4776,
4268,
2233,
284,
262,
3220,
5253,
284,
262,
1306,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16936,
16176,
1616,
815,
307,
1342,
621,
262,
4776,
4461,
422,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6600,
262,
16176,
1616,
13,
198,
220,
220,
220,
220,
220,
532,
383,
4633,
48135,
286,
262,
5253,
284,
262,
11706,
10905,
198,
220,
220,
220,
220,
220,
220,
220,
532,
317,
1969,
10905,
1838,
262,
1181,
1342,
18763,
11,
475,
1401,
16097,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
287,
25899,
1290,
1497,
815,
423,
1310,
2928,
198,
220,
220,
220,
220,
220,
532,
383,
48135,
286,
262,
5253,
284,
262,
11706,
1176,
16176,
1616,
198,
220,
220,
220,
220,
220,
220,
220,
532,
16766,
14607,
355,
2057,
43677,
628,
220,
220,
220,
37227,
198,
220,
220,
220,
1426,
796,
1459,
8777,
9012,
13,
1136,
18844,
805,
26545,
3419,
198,
220,
220,
220,
2057,
796,
1459,
8777,
9012,
13,
1136,
24602,
3419,
198,
220,
220,
220,
25899,
796,
1459,
8777,
9012,
13,
1136,
32001,
42237,
3419,
198,
220,
220,
220,
43882,
796,
1459,
8777,
9012,
13,
1136,
34,
1686,
5028,
3419,
628,
220,
220,
220,
2057,
62,
9464,
796,
2160,
7,
600,
7,
73,
8,
329,
1312,
287,
2057,
329,
474,
287,
1312,
8,
628,
220,
220,
220,
1303,
21198,
606,
9013,
198,
220,
220,
220,
1917,
796,
4377,
24602,
18243,
40781,
7,
14421,
8777,
9012,
8,
198,
220,
220,
220,
35581,
62,
19425,
796,
257,
8248,
18243,
7,
45573,
11,
339,
27915,
796,
16936,
62,
19425,
62,
258,
27915,
8,
198,
220,
220,
220,
611,
35581,
62,
19425,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
19425,
796,
352,
1220,
18896,
7,
19509,
395,
62,
19425,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
19425,
796,
8576,
198,
220,
220,
220,
1303,
611,
2057,
62,
9464,
1875,
657,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2057,
62,
17080,
1817,
796,
685,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
582,
12904,
45767,
7,
1930,
11,
357,
87,
11,
331,
4008,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
329,
2124,
11,
5752,
287,
27056,
378,
7,
19425,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
329,
331,
11,
2057,
62,
30388,
287,
27056,
378,
7,
808,
8,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2057,
62,
30388,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
35581,
62,
19425,
796,
352,
1220,
949,
7,
19425,
62,
17080,
1817,
8,
198,
220,
220,
220,
1303,
2073,
25,
198,
220,
220,
220,
1303,
220,
220,
220,
220,
35581,
62,
19425,
796,
532,
33470,
628,
220,
220,
220,
12008,
796,
685,
38933,
329,
10905,
287,
25899,
611,
10905,
13,
1416,
1144,
48801,
1875,
657,
60,
198,
220,
220,
220,
25899,
796,
685,
38933,
329,
10905,
287,
25899,
611,
10905,
13,
1416,
1144,
48801,
6624,
657,
60,
628,
220,
220,
220,
1303,
2094,
470,
1309,
262,
10905,
4515,
345,
198,
220,
220,
220,
611,
25899,
25,
198,
220,
220,
220,
220,
220,
220,
220,
10905,
62,
17080,
1817,
796,
685,
805,
12904,
45767,
7,
38933,
13,
1136,
26545,
22784,
1426,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10905,
287,
25899,
60,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
949,
7,
38933,
62,
17080,
1817,
8,
628,
220,
220,
220,
220,
220,
220,
220,
611,
35581,
62,
38933,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
939,
830,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
352,
1220,
35581,
62,
38933,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
38933,
796,
657,
628,
220,
220,
220,
1303,
21198,
606,
12008,
3392,
198,
220,
220,
220,
35581,
62,
1416,
1144,
796,
657,
198,
220,
220,
220,
611,
12008,
25,
198,
220,
220,
220,
220,
220,
220,
220,
12008,
62,
17080,
1817,
796,
685,
805,
12904,
45767,
7,
38933,
13,
1136,
26545,
22784,
1426,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10905,
287,
12008,
60,
198,
220,
220,
220,
220,
220,
220,
220,
12008,
62,
17080,
1817,
796,
685,
30246,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
10905,
11,
5253,
287,
19974,
7,
1416,
1144,
11,
12008,
62,
17080,
1817,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5253,
19841,
10905,
13,
1416,
1144,
48801,
60,
628,
220,
220,
220,
220,
220,
220,
220,
611,
12008,
62,
17080,
1817,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
1416,
1144,
796,
949,
7,
1416,
1144,
62,
17080,
1817,
8,
628,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
35581,
62,
1416,
1144,
6624,
657,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
1416,
1144,
796,
838,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
1416,
1144,
796,
352,
1220,
35581,
62,
1416,
1144,
628,
198,
220,
220,
220,
1303,
21198,
606,
43882,
198,
220,
220,
220,
43882,
62,
9464,
796,
18896,
7,
27979,
5028,
8,
198,
220,
220,
220,
611,
43882,
25,
198,
220,
220,
220,
220,
220,
220,
220,
27855,
62,
17080,
1817,
796,
685,
805,
12904,
45767,
7,
27979,
2261,
11,
1426,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
27855,
287,
43882,
60,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
27979,
2261,
796,
352,
1220,
949,
7,
27979,
2261,
62,
17080,
1817,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
35581,
62,
27979,
2261,
796,
657,
628,
220,
220,
220,
19590,
796,
685,
20,
11,
838,
11,
532,
20,
11,
532,
1120,
11,
532,
3064,
11,
838,
60,
198,
220,
220,
220,
8198,
796,
685,
19509,
395,
62,
19425,
11,
35581,
62,
27979,
2261,
11,
35581,
62,
38933,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2057,
62,
9464,
11,
43882,
62,
9464,
11,
35581,
62,
1416,
1144,
60,
628,
220,
220,
220,
4776,
796,
2160,
7,
72,
1635,
474,
220,
329,
1312,
11,
474,
287,
19974,
7,
1416,
2850,
11,
19590,
4008,
628,
220,
220,
220,
1303,
3601,
366,
1930,
59,
83,
59,
83,
59,
83,
1600,
1426,
198,
220,
220,
220,
1303,
3601,
366,
19509,
395,
2057,
59,
83,
59,
83,
1600,
35581,
62,
19425,
198,
220,
220,
220,
1303,
3601,
366,
19425,
62,
9464,
59,
83,
59,
83,
1600,
2057,
62,
9464,
198,
220,
220,
220,
1303,
3601,
366,
19509,
395,
62,
27979,
2261,
59,
83,
1600,
35581,
62,
27979,
2261,
198,
220,
220,
220,
1303,
3601,
366,
26675,
59,
83,
59,
83,
59,
83,
1600,
4776,
198,
220,
220,
220,
1303,
3601,
628,
220,
220,
220,
1441,
4776,
198,
198,
2,
2275,
4679,
47625,
198,
27903,
796,
1365,
36,
2100,
2288,
22203,
198,
198,
4871,
27297,
36772,
7,
29800,
36772,
18243,
36772,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
3406,
5797,
329,
262,
9927,
12,
3642,
395,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
825,
651,
12502,
7,
944,
11,
983,
9012,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
16409,
281,
2223,
13,
220,
921,
460,
779,
597,
2446,
345,
765,
290,
2989,
284,
597,
6795,
345,
765,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2329,
3505,
326,
262,
9927,
12,
3642,
395,
318,
28805,
11,
523,
345,
423,
284,
3292,
572,
2866,
290,
29964,
13,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
38389,
836,
470,
17438,
15456,
7471,
11,
475,
484,
3588,
470,
2818,
2035,
1377,
484,
1183,
3221,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
655,
787,
257,
307,
4470,
3892,
3371,
6319,
805,
357,
273,
1497,
422,
683,
611,
484,
821,
12008,
8133,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
366,
8162,
16592,
42714,
15698,
17202,
1,
198,
220,
220,
220,
220,
220,
220,
220,
7736,
13,
40225,
3673,
7469,
1389,
3419,
198
] | 2.616242 | 6,637 |
""" XVM (c) www.modxvm.com 2013-2017 """
#####################################################################
# imports
import simplejson
import traceback
import BigWorld
import game
from Avatar import PlayerAvatar
from BattleReplay import BattleReplay, g_replayCtrl
from PlayerEvents import g_playerEvents
from gui.shared import g_eventBus, events
from xfw import *
import xvm_main.python.config as config
from xvm_main.python.logger import *
import xvm_main.python.minimap_circles as minimap_circles
import xvm_main.python.utils as utils
from consts import *
#####################################################################
# handlers
_xvm_record_data = None
_xvm_play_data = None
@registerEvent(PlayerAvatar, 'onBecomePlayer')
# record
g_eventBus.addListener(XVM_BATTLE_EVENT.XMQP_MESSAGE, onXmqpMessage)
@registerEvent(game, 'fini')
@overrideMethod(BattleReplay, 'stop')
# play
| [
37811,
1395,
15996,
357,
66,
8,
7324,
13,
4666,
87,
14761,
13,
785,
2211,
12,
5539,
37227,
198,
198,
29113,
29113,
4242,
2,
198,
2,
17944,
198,
198,
11748,
2829,
17752,
198,
11748,
12854,
1891,
198,
198,
11748,
4403,
10603,
198,
11748,
983,
198,
6738,
26703,
1330,
7853,
7355,
9459,
198,
6738,
5838,
3041,
1759,
1330,
5838,
3041,
1759,
11,
308,
62,
260,
1759,
40069,
198,
6738,
7853,
37103,
1330,
308,
62,
7829,
37103,
198,
6738,
11774,
13,
28710,
1330,
308,
62,
15596,
16286,
11,
2995,
198,
198,
6738,
2124,
44482,
1330,
1635,
198,
11748,
2124,
14761,
62,
12417,
13,
29412,
13,
11250,
355,
4566,
198,
6738,
2124,
14761,
62,
12417,
13,
29412,
13,
6404,
1362,
1330,
1635,
198,
11748,
2124,
14761,
62,
12417,
13,
29412,
13,
1084,
320,
499,
62,
66,
343,
5427,
355,
10356,
499,
62,
66,
343,
5427,
198,
11748,
2124,
14761,
62,
12417,
13,
29412,
13,
26791,
355,
3384,
4487,
198,
198,
6738,
1500,
82,
1330,
1635,
628,
198,
29113,
29113,
4242,
2,
198,
2,
32847,
198,
198,
62,
87,
14761,
62,
22105,
62,
7890,
796,
6045,
198,
62,
87,
14761,
62,
1759,
62,
7890,
796,
6045,
198,
198,
31,
30238,
9237,
7,
14140,
7355,
9459,
11,
705,
261,
39649,
462,
14140,
11537,
628,
198,
2,
1700,
198,
198,
70,
62,
15596,
16286,
13,
2860,
33252,
7,
55,
15996,
62,
33,
35455,
62,
20114,
3525,
13,
37643,
48,
47,
62,
44,
1546,
4090,
8264,
11,
319,
55,
76,
80,
79,
12837,
8,
198,
198,
31,
30238,
9237,
7,
6057,
11,
705,
69,
5362,
11537,
198,
198,
31,
2502,
13154,
17410,
7,
24064,
3041,
1759,
11,
705,
11338,
11537,
628,
198,
2,
711,
198
] | 3.263538 | 277 |
import logging
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR
from torch import nn
class PolyLR(LambdaLR):
"""DeepLab learning rate policy"""
| [
11748,
18931,
198,
198,
6738,
28034,
13,
40085,
1330,
26147,
35,
11,
7244,
198,
6738,
28034,
13,
40085,
13,
14050,
62,
1416,
704,
18173,
1330,
21114,
6814,
35972,
11,
5012,
35972,
11,
15237,
8600,
35972,
198,
6738,
28034,
1330,
299,
77,
628,
198,
198,
4871,
12280,
35972,
7,
43,
4131,
6814,
35972,
2599,
198,
220,
37227,
29744,
17822,
4673,
2494,
2450,
37811,
628,
198
] | 3.1875 | 64 |
from collections import Counter
from itertools import product
import numpy as np
import advent
if __name__ == '__main__':
main()
| [
6738,
17268,
1330,
15034,
198,
6738,
340,
861,
10141,
1330,
1720,
198,
11748,
299,
32152,
355,
45941,
198,
198,
11748,
19980,
628,
628,
628,
198,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 3.27907 | 43 |
import pyro
import pyro.distributions as dist
import torch
from scvi import _CONSTANTS
from scvi.module.base import PyroBaseModuleClass, auto_move_data
from scvi.nn import DecoderSCVI, Encoder
class MyPyroModule(PyroBaseModuleClass):
"""
Skeleton Variational auto-encoder Pyro model.
Here we implement a basic version of scVI's underlying VAE [Lopez18]_.
This implementation is for instructional purposes only.
Parameters
----------
n_input
Number of input genes
n_latent
Dimensionality of the latent space
n_hidden
Number of nodes per hidden layer
n_layers
Number of hidden layers used for encoder and decoder NNs
"""
@staticmethod
@torch.no_grad()
@auto_move_data
| [
11748,
12972,
305,
198,
11748,
12972,
305,
13,
17080,
2455,
507,
355,
1233,
198,
11748,
28034,
198,
6738,
629,
8903,
1330,
4808,
10943,
2257,
1565,
4694,
198,
6738,
629,
8903,
13,
21412,
13,
8692,
1330,
44954,
14881,
26796,
9487,
11,
8295,
62,
21084,
62,
7890,
198,
6738,
629,
8903,
13,
20471,
1330,
34580,
6173,
12861,
11,
14711,
12342,
628,
198,
4871,
2011,
20519,
305,
26796,
7,
20519,
305,
14881,
26796,
9487,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
19460,
10565,
15965,
864,
8295,
12,
12685,
12342,
44954,
2746,
13,
628,
220,
220,
220,
3423,
356,
3494,
257,
4096,
2196,
286,
629,
12861,
338,
10238,
13753,
36,
685,
43,
20808,
1507,
60,
44807,
198,
220,
220,
220,
770,
7822,
318,
329,
48211,
4959,
691,
13,
628,
220,
220,
220,
40117,
198,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
299,
62,
15414,
198,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
5128,
10812,
198,
220,
220,
220,
299,
62,
15460,
298,
198,
220,
220,
220,
220,
220,
220,
220,
34024,
1483,
286,
262,
41270,
2272,
198,
220,
220,
220,
299,
62,
30342,
198,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
13760,
583,
7104,
7679,
198,
220,
220,
220,
299,
62,
75,
6962,
198,
220,
220,
220,
220,
220,
220,
220,
7913,
286,
7104,
11685,
973,
329,
2207,
12342,
290,
875,
12342,
399,
47503,
198,
220,
220,
220,
37227,
628,
220,
220,
220,
2488,
12708,
24396,
628,
220,
220,
220,
2488,
13165,
354,
13,
3919,
62,
9744,
3419,
198,
220,
220,
220,
2488,
23736,
62,
21084,
62,
7890,
198
] | 2.878788 | 264 |
#-------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
#--------------------------------------------------------------------------
import os
from azure.mgmt.compute import ComputeManagementClient
from azure.mgmt.resource import ResourceManagementClient
from azure.common.credentials import ServicePrincipalCredentials
#--------------------------------------------------------------------------
# credentials from environment
#--------------------------------------------------------------------------
SUBSCRIPTION_ID = os.environ['AZURE_SUBSCRIPTION_ID']
TENANT_ID = os.environ['AZURE_TENANT']
CLIENT_ID = os.environ['AZURE_CLIENT_ID']
CLIENT_SECRET = os.environ['AZURE_SECRET']
#--------------------------------------------------------------------------
# variables
#--------------------------------------------------------------------------
AZURE_LOCATION = 'eastus'
RESOURCE_GROUP = "myResourceGroup"
VM_NAME = "myVm"
NETWORK_INTERFACE_NAME = "myNetworkInterface"
VIRTUAL_NETWORK_NAME = "myVirtualNetwork"
SUBNET_NAME = "mySubnet"
#--------------------------------------------------------------------------
# management clients
#--------------------------------------------------------------------------
credentials = ServicePrincipalCredentials(
client_id=CLIENT_ID,
secret=CLIENT_SECRET,
tenant=TENANT_ID
)
mgmt_client = ComputeManagementClient(credentials, SUBSCRIPTION_ID)
resource_client = ResourceManagementClient(credentials, SUBSCRIPTION_ID)
from azure.mgmt.network import NetworkManagementClient
network_client = NetworkManagementClient(credentials, SUBSCRIPTION_ID)
#--------------------------------------------------------------------------
# resource group (prerequisite)
#--------------------------------------------------------------------------
print("Creating Resource Group")
resource_client.resource_groups.create_or_update(resource_group_name=RESOURCE_GROUP, parameters={ 'location': AZURE_LOCATION })
#--------------------------------------------------------------------------
# virtual network (prerequisite)
#--------------------------------------------------------------------------
print("Prerequisite - Creating Virtual Network")
azure_operation_poller = network_client.virtual_networks.create_or_update(
RESOURCE_GROUP,
VIRTUAL_NETWORK_NAME,
{
'location': AZURE_LOCATION,
'address_space': {
'address_prefixes': ['10.0.0.0/16']
}
},
)
result_create = azure_operation_poller.result()
async_subnet_creation = network_client.subnets.create_or_update(
RESOURCE_GROUP,
VIRTUAL_NETWORK_NAME,
SUBNET_NAME,
{'address_prefix': '10.0.0.0/24'}
)
subnet_info = async_subnet_creation.result()
#--------------------------------------------------------------------------
# network interface (prerequisite)
#--------------------------------------------------------------------------
print("Prerequisite - Creating Network Interface")
async_nic_creation = network_client.network_interfaces.create_or_update(
RESOURCE_GROUP,
NETWORK_INTERFACE_NAME,
{
'location': AZURE_LOCATION,
'ip_configurations': [{
'name': 'MyIpConfig',
'subnet': {
'id': subnet_info.id
}
}]
}
)
nic_info = async_nic_creation.result()
#--------------------------------------------------------------------------
# /VirtualMachines/put/Create a vm with password authentication.[put]
#--------------------------------------------------------------------------
print("Create a vm with password authentication.")
BODY = {
"location": AZURE_LOCATION,
"hardware_profile": {
"vm_size": "Standard_D1_v2"
},
"storage_profile": {
"image_reference": {
"sku": "2016-Datacenter",
"publisher": "MicrosoftWindowsServer",
"version": "latest",
"offer": "WindowsServer"
},
"os_disk": {
"caching": "ReadWrite",
"managed_disk": {
"storage_account_type": "Standard_LRS"
},
"name": "myVMosdisk",
"create_option": "FromImage"
}
},
"os_profile": {
"admin_username": "myuser",
"computer_name": "myVM",
"admin_password": "Password123!!!"
},
"network_profile": {
"network_interfaces": [
{
"id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.Network/networkInterfaces/" + NETWORK_INTERFACE_NAME,
"properties": {
"primary": True
}
}
]
}
}
result = mgmt_client.virtual_machines.create_or_update(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME, parameters=BODY)
result = result.result()
#--------------------------------------------------------------------------
# /VirtualMachines/get/Get Virtual Machine Instance View.[get]
#--------------------------------------------------------------------------
print("Get Virtual Machine Instance View.")
result = mgmt_client.virtual_machines.instance_view(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME)
#--------------------------------------------------------------------------
# /VirtualMachines/get/Lists all available virtual machine sizes to which the specified virtual machine can be resized[get]
#--------------------------------------------------------------------------
print("Lists all available virtual machine sizes to which the specified virtual machine can be resized")
result = mgmt_client.virtual_machines.list_available_sizes(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME)
#--------------------------------------------------------------------------
# /VirtualMachines/get/Get a Virtual Machine.[get]
#--------------------------------------------------------------------------
print("Get a Virtual Machine.")
result = mgmt_client.virtual_machines.get(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME)
#--------------------------------------------------------------------------
# /VirtualMachines/get/Lists all the virtual machines under the specified subscription for the specified location.[get]
#--------------------------------------------------------------------------
print("Lists all the virtual machines under the specified subscription for the specified location.")
result = mgmt_client.virtual_machines.list_by_location(location=AZURE_LOCATION)
| [
2,
10097,
45537,
198,
2,
15069,
357,
66,
8,
5413,
10501,
13,
1439,
2489,
10395,
13,
198,
2,
49962,
739,
262,
17168,
13789,
13,
4091,
13789,
13,
14116,
287,
262,
1628,
6808,
329,
198,
2,
5964,
1321,
13,
198,
2,
10097,
35937,
198,
198,
11748,
28686,
198,
6738,
35560,
495,
13,
11296,
16762,
13,
5589,
1133,
1330,
3082,
1133,
48032,
11792,
198,
6738,
35560,
495,
13,
11296,
16762,
13,
31092,
1330,
20857,
48032,
11792,
198,
6738,
35560,
495,
13,
11321,
13,
66,
445,
14817,
1330,
4809,
42904,
8521,
34,
445,
14817,
628,
198,
2,
10097,
35937,
198,
2,
18031,
422,
2858,
198,
2,
10097,
35937,
198,
12564,
4462,
40165,
62,
2389,
796,
28686,
13,
268,
2268,
17816,
22778,
11335,
62,
12564,
4462,
40165,
62,
2389,
20520,
198,
51,
1677,
8643,
62,
2389,
796,
28686,
13,
268,
2268,
17816,
22778,
11335,
62,
51,
1677,
8643,
20520,
198,
5097,
28495,
62,
2389,
796,
28686,
13,
268,
2268,
17816,
22778,
11335,
62,
5097,
28495,
62,
2389,
20520,
198,
5097,
28495,
62,
23683,
26087,
796,
28686,
13,
268,
2268,
17816,
22778,
11335,
62,
23683,
26087,
20520,
628,
198,
2,
10097,
35937,
198,
2,
9633,
198,
2,
10097,
35937,
198,
22778,
11335,
62,
29701,
6234,
796,
705,
23316,
385,
6,
198,
19535,
31033,
62,
46846,
796,
366,
1820,
26198,
13247,
1,
198,
15996,
62,
20608,
796,
366,
1820,
53,
76,
1,
198,
12884,
33249,
62,
41358,
49836,
62,
20608,
796,
366,
1820,
26245,
39317,
1,
198,
53,
48771,
25620,
62,
12884,
33249,
62,
20608,
796,
366,
1820,
37725,
26245,
1,
198,
50,
10526,
12884,
62,
20608,
796,
366,
1820,
7004,
3262,
1,
628,
198,
2,
10097,
35937,
198,
2,
4542,
7534,
198,
2,
10097,
35937,
198,
66,
445,
14817,
796,
4809,
42904,
8521,
34,
445,
14817,
7,
198,
220,
220,
220,
5456,
62,
312,
28,
5097,
28495,
62,
2389,
11,
198,
220,
220,
220,
3200,
28,
5097,
28495,
62,
23683,
26087,
11,
198,
220,
220,
220,
18285,
28,
51,
1677,
8643,
62,
2389,
198,
8,
198,
11296,
16762,
62,
16366,
796,
3082,
1133,
48032,
11792,
7,
66,
445,
14817,
11,
13558,
4462,
40165,
62,
2389,
8,
198,
31092,
62,
16366,
796,
20857,
48032,
11792,
7,
66,
445,
14817,
11,
13558,
4462,
40165,
62,
2389,
8,
198,
6738,
35560,
495,
13,
11296,
16762,
13,
27349,
1330,
7311,
48032,
11792,
198,
27349,
62,
16366,
796,
7311,
48032,
11792,
7,
66,
445,
14817,
11,
13558,
4462,
40165,
62,
2389,
8,
628,
198,
2,
10097,
35937,
198,
2,
8271,
1448,
357,
3866,
27614,
8,
198,
2,
10097,
35937,
198,
4798,
7203,
32071,
20857,
4912,
4943,
198,
31092,
62,
16366,
13,
31092,
62,
24432,
13,
17953,
62,
273,
62,
19119,
7,
31092,
62,
8094,
62,
3672,
28,
19535,
31033,
62,
46846,
11,
10007,
34758,
705,
24886,
10354,
26253,
11335,
62,
29701,
6234,
32092,
628,
198,
2,
10097,
35937,
198,
2,
7166,
3127,
357,
3866,
27614,
8,
198,
2,
10097,
35937,
198,
4798,
7203,
6719,
27614,
532,
30481,
15595,
7311,
4943,
198,
1031,
495,
62,
27184,
62,
30393,
263,
796,
3127,
62,
16366,
13,
32844,
62,
3262,
5225,
13,
17953,
62,
273,
62,
19119,
7,
198,
220,
220,
220,
15731,
31033,
62,
46846,
11,
198,
220,
220,
220,
569,
48771,
25620,
62,
12884,
33249,
62,
20608,
11,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
24886,
10354,
26253,
11335,
62,
29701,
6234,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
21975,
62,
13200,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
21975,
62,
40290,
274,
10354,
37250,
940,
13,
15,
13,
15,
13,
15,
14,
1433,
20520,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
8964,
198,
8,
198,
20274,
62,
17953,
796,
35560,
495,
62,
27184,
62,
30393,
263,
13,
20274,
3419,
198,
198,
292,
13361,
62,
7266,
3262,
62,
38793,
796,
3127,
62,
16366,
13,
7266,
45938,
13,
17953,
62,
273,
62,
19119,
7,
198,
220,
220,
220,
15731,
31033,
62,
46846,
11,
198,
220,
220,
220,
569,
48771,
25620,
62,
12884,
33249,
62,
20608,
11,
198,
220,
220,
220,
28932,
12884,
62,
20608,
11,
198,
220,
220,
220,
1391,
6,
21975,
62,
40290,
10354,
705,
940,
13,
15,
13,
15,
13,
15,
14,
1731,
6,
92,
198,
8,
198,
7266,
3262,
62,
10951,
796,
30351,
62,
7266,
3262,
62,
38793,
13,
20274,
3419,
628,
198,
2,
10097,
35937,
198,
2,
3127,
7071,
357,
3866,
27614,
8,
198,
2,
10097,
35937,
198,
4798,
7203,
6719,
27614,
532,
30481,
7311,
26491,
4943,
198,
292,
13361,
62,
6988,
62,
38793,
796,
3127,
62,
16366,
13,
27349,
62,
3849,
32186,
13,
17953,
62,
273,
62,
19119,
7,
198,
220,
220,
220,
15731,
31033,
62,
46846,
11,
198,
220,
220,
220,
49791,
62,
41358,
49836,
62,
20608,
11,
198,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
705,
24886,
10354,
26253,
11335,
62,
29701,
6234,
11,
198,
220,
220,
220,
220,
220,
220,
220,
705,
541,
62,
11250,
20074,
10354,
685,
90,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
3672,
10354,
705,
3666,
40,
79,
16934,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
7266,
3262,
10354,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
705,
312,
10354,
850,
3262,
62,
10951,
13,
312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
60,
198,
220,
220,
220,
1782,
198,
8,
198,
6988,
62,
10951,
796,
30351,
62,
6988,
62,
38793,
13,
20274,
3419,
628,
198,
2,
10097,
35937,
198,
2,
1220,
37725,
49999,
1127,
14,
1996,
14,
16447,
257,
45887,
351,
9206,
18239,
3693,
1996,
60,
198,
2,
10097,
35937,
198,
4798,
7203,
16447,
257,
45887,
351,
9206,
18239,
19570,
198,
33,
33076,
796,
1391,
198,
220,
366,
24886,
1298,
26253,
11335,
62,
29701,
6234,
11,
198,
220,
366,
10424,
1574,
62,
13317,
1298,
1391,
198,
220,
220,
220,
366,
14761,
62,
7857,
1298,
366,
23615,
62,
35,
16,
62,
85,
17,
1,
198,
220,
8964,
198,
220,
366,
35350,
62,
13317,
1298,
1391,
198,
220,
220,
220,
366,
9060,
62,
35790,
1298,
1391,
198,
220,
220,
220,
220,
220,
366,
8135,
84,
1298,
366,
5304,
12,
27354,
330,
9255,
1600,
198,
220,
220,
220,
220,
220,
366,
12984,
8191,
1298,
366,
15905,
11209,
10697,
1600,
198,
220,
220,
220,
220,
220,
366,
9641,
1298,
366,
42861,
1600,
198,
220,
220,
220,
220,
220,
366,
47895,
1298,
366,
11209,
10697,
1,
198,
220,
220,
220,
8964,
198,
220,
220,
220,
366,
418,
62,
39531,
1298,
1391,
198,
220,
220,
220,
220,
220,
366,
66,
8103,
1298,
366,
5569,
16594,
1600,
198,
220,
220,
220,
220,
220,
366,
39935,
62,
39531,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
35350,
62,
23317,
62,
4906,
1298,
366,
23615,
62,
43,
6998,
1,
198,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
366,
3672,
1298,
366,
1820,
15996,
418,
39531,
1600,
198,
220,
220,
220,
220,
220,
366,
17953,
62,
18076,
1298,
366,
4863,
5159,
1,
198,
220,
220,
220,
1782,
198,
220,
8964,
198,
220,
366,
418,
62,
13317,
1298,
1391,
198,
220,
220,
220,
366,
28482,
62,
29460,
1298,
366,
1820,
7220,
1600,
198,
220,
220,
220,
366,
33215,
62,
3672,
1298,
366,
1820,
15996,
1600,
198,
220,
220,
220,
366,
28482,
62,
28712,
1298,
366,
35215,
10163,
3228,
2474,
198,
220,
8964,
198,
220,
366,
27349,
62,
13317,
1298,
1391,
198,
220,
220,
220,
366,
27349,
62,
3849,
32186,
1298,
685,
198,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
312,
1298,
12813,
7266,
12048,
507,
30487,
1343,
13558,
4462,
40165,
62,
2389,
1343,
12813,
31092,
38,
14459,
30487,
1343,
15731,
31033,
62,
46846,
1343,
12813,
15234,
4157,
14,
15905,
13,
26245,
14,
27349,
9492,
32186,
30487,
1343,
49791,
62,
41358,
49836,
62,
20608,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
48310,
1298,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
39754,
1298,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
2361,
198,
220,
1782,
198,
92,
198,
20274,
796,
10527,
16762,
62,
16366,
13,
32844,
62,
76,
620,
1127,
13,
17953,
62,
273,
62,
19119,
7,
31092,
62,
8094,
62,
3672,
28,
19535,
31033,
62,
46846,
11,
45887,
62,
3672,
28,
15996,
62,
20608,
11,
10007,
28,
33,
33076,
8,
198,
20274,
796,
1255,
13,
20274,
3419,
628,
198,
2,
10097,
35937,
198,
2,
1220,
37725,
49999,
1127,
14,
1136,
14,
3855,
15595,
10850,
2262,
590,
3582,
3693,
1136,
60,
198,
2,
10097,
35937,
198,
4798,
7203,
3855,
15595,
10850,
2262,
590,
3582,
19570,
198,
20274,
796,
10527,
16762,
62,
16366,
13,
32844,
62,
76,
620,
1127,
13,
39098,
62,
1177,
7,
31092,
62,
8094,
62,
3672,
28,
19535,
31033,
62,
46846,
11,
45887,
62,
3672,
28,
15996,
62,
20608,
8,
628,
198,
2,
10097,
35937,
198,
2,
1220,
37725,
49999,
1127,
14,
1136,
14,
43,
1023,
477,
1695,
7166,
4572,
10620,
284,
543,
262,
7368,
7166,
4572,
460,
307,
581,
1143,
58,
1136,
60,
198,
2,
10097,
35937,
198,
4798,
7203,
43,
1023,
477,
1695,
7166,
4572,
10620,
284,
543,
262,
7368,
7166,
4572,
460,
307,
581,
1143,
4943,
198,
20274,
796,
10527,
16762,
62,
16366,
13,
32844,
62,
76,
620,
1127,
13,
4868,
62,
15182,
62,
82,
4340,
7,
31092,
62,
8094,
62,
3672,
28,
19535,
31033,
62,
46846,
11,
45887,
62,
3672,
28,
15996,
62,
20608,
8,
628,
198,
2,
10097,
35937,
198,
2,
1220,
37725,
49999,
1127,
14,
1136,
14,
3855,
257,
15595,
10850,
3693,
1136,
60,
198,
2,
10097,
35937,
198,
4798,
7203,
3855,
257,
15595,
10850,
19570,
198,
20274,
796,
10527,
16762,
62,
16366,
13,
32844,
62,
76,
620,
1127,
13,
1136,
7,
31092,
62,
8094,
62,
3672,
28,
19535,
31033,
62,
46846,
11,
45887,
62,
3672,
28,
15996,
62,
20608,
8,
628,
198,
2,
10097,
35937,
198,
2,
1220,
37725,
49999,
1127,
14,
1136,
14,
43,
1023,
477,
262,
7166,
8217,
739,
262,
7368,
14569,
329,
262,
7368,
4067,
3693,
1136,
60,
198,
2,
10097,
35937,
198,
4798,
7203,
43,
1023,
477,
262,
7166,
8217,
739,
262,
7368,
14569,
329,
262,
7368,
4067,
19570,
198,
20274,
796,
10527,
16762,
62,
16366,
13,
32844,
62,
76,
620,
1127,
13,
4868,
62,
1525,
62,
24886,
7,
24886,
28,
22778,
11335,
62,
29701,
6234,
8,
198
] | 3.674617 | 1,761 |
# Generated by Django 2.0 on 2019-01-12 16:27
from django.db import migrations, models
import showcase.file_size_validator
| [
2,
2980,
515,
416,
37770,
362,
13,
15,
319,
13130,
12,
486,
12,
1065,
1467,
25,
1983,
198,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
198,
11748,
21742,
13,
7753,
62,
7857,
62,
12102,
1352,
628
] | 3.125 | 40 |
# Generated by Django 2.2.6 on 2019-11-18 11:44
import datetime
from django.db import migrations, models
| [
2,
2980,
515,
416,
37770,
362,
13,
17,
13,
21,
319,
13130,
12,
1157,
12,
1507,
1367,
25,
2598,
198,
198,
11748,
4818,
8079,
198,
6738,
42625,
14208,
13,
9945,
1330,
15720,
602,
11,
4981,
628
] | 2.972222 | 36 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import requests
import datetime
import time
import opasConfig
import models
import logging
import localsecrets
# import urllib.parse
# import json
import sys
# from opasAPISupportLib import save_opas_session_cookie
sys.path.append("..") # Adds higher directory to python modules path.
from config.opasConfig import OPASSESSIONID
logger = logging.getLogger(__name__)
# for this module
# logger.setLevel(logging.DEBUG)
if 0:
# create console handler and set level to debug
ch = logging.StreamHandler()
# create formatter
formatter = logging.Formatter(opasConfig.FORMAT)
# add formatter to ch
ch.setFormatter(formatter)
ch.setLevel(logging.DEBUG)
logger.addHandler(ch)
from starlette.responses import Response
from starlette.requests import Request
import starlette.status as httpCodes
# import localsecrets
from localsecrets import PADS_BASE_URL, PADS_TEST_ID, PADS_TEST_PW, PADS_BASED_CLIENT_IDS
base = PADS_BASE_URL
# base = "http://development.org:9300"
import opasCentralDBLib
ocd = opasCentralDBLib.opasCentralDB()
def find_client_session_id(request: Request,
response: Response,
client_session: str=None
):
"""
ALWAYS returns a session ID or None
Dependency for client_session id:
gets it from header;
if not there, gets it from query param;
if not there, gets it from a cookie
Otherwise, gets a new one from the auth server
"""
ret_val = None
if client_session is None or client_session == 'None':
client_session = request.headers.get(opasConfig.CLIENTSESSIONID, None)
if client_session is not None:
ret_val = client_session
#msg = f"client-session from header: {ret_val} "
#logger.debug(msg)
else:
#Won't work unless they expose cookie to client, so don't waste time
#pepweb_session_cookie = request.cookies.get("pepweb_session", None)
opas_session_cookie = request.cookies.get(opasConfig.OPASSESSIONID, None)
client_session_qparam = request.query_params.get(opasConfig.CLIENTSESSIONID, None)
client_session_cookie = request.cookies.get(opasConfig.CLIENTSESSIONID, None)
if client_session_qparam is not None:
ret_val = client_session_qparam
msg = f"client-session from param: {ret_val}. URL: {request.url}"
logger.info(msg)
elif client_session_cookie is not None:
ret_val = client_session_cookie
msg = f"client-session from client-session cookie: {ret_val}. URL: {request.url}"
logger.info(msg)
elif opas_session_cookie is not None and opas_session_cookie != 'None':
msg = f"client-session from stored OPASSESSION cookie {opas_session_cookie}. URL: {request.url} "
logger.info(msg)
ret_val = opas_session_cookie
else:
msg = f"No dependency client-session ID found. Returning None. URL: {request.url}"
logger.info(msg)
ret_val = None
if ret_val is not None and opas_session_cookie is not None and opas_session_cookie != ret_val:
# overwrite any saved cookie, if there is one
logger.debug("Saved OpasSessionID Cookie")
response.set_cookie(
OPASSESSIONID,
value=f"{client_session}",
domain=localsecrets.COOKIE_DOMAIN
)
return ret_val
def get_user_ip(request: Request):
"""
Returns a users IP if passed in the headers.
"""
ret_val = None
if request is not None:
ret_val = request.headers.get(opasConfig.X_FORWARDED_FOR, None)
if ret_val is not None:
try:
req_url = request.url
msg = f"X-Forwarded-For from header: {ret_val}. URL: {req_url}"
logger.debug(msg)
except Exception as e:
logger.error(f"Error: {e}")
return ret_val
def get_authserver_session_info(session_id,
client_id=opasConfig.NO_CLIENT_ID,
pads_session_info=None,
request=None):
"""
Return a filled-in SessionInfo object from several PaDS calls
Saves the session information to the SQL database (or updates it)
>>> session_info = get_authserver_session_info(None, "4")
>>> session_info.username == "NotLoggedIn"
True
>>> pads_session_info = pads_login()
>>> session_id = pads_session_info.SessionId
>>> session_info = get_authserver_session_info(session_id, "4", pads_session_info=pads_session_info)
>>> session_info.authorized_peparchive == True
True
>>> session_info = get_authserver_session_info("7F481226-9AF1-47BC-8E26-F07DB8C3E78D", "4")
>>> print (session_info)
session_id='7F481226-9AF1-47BC-8E26-F07DB8C3E78D' user_id=0 username='NotLoggedIn' ...
>>> session_info.username == "NotLoggedIn"
True
"""
ts = time.time()
caller_name = "get_authserver_session_info"
#make sure it's ok, this is causing problems on production
#see if it's an int?
client_id = validate_client_id(client_id, caller_name=caller_name)
if pads_session_info is None or session_id is None:
# not supplied, so fetch
try:
logger.debug(f"{caller_name}: calling PaDS")
pads_session_info = get_pads_session_info(session_id=session_id,
client_id=client_id,
retry=False,
request=request)
try:
session_info = models.SessionInfo(session_id=pads_session_info.SessionId, api_client_id=client_id)
except Exception as e:
msg = f"{caller_name}: Error {e}. SessID: {session_id} client_id: {client_id} req: {request}"
if opasConfig.LOCAL_TRACE:
print (msg)
logger.error(msg)
session_info = models.SessionInfo(session_id="unknown", api_client_id=client_id)
else:
session_id = session_info.session_id
except Exception as e:
logger.error(f"{caller_name}: Error getting pads_session_info {e}")
client_id_type = type(client_id)
if client_id_type == int:
session_info = models.SessionInfo(session_id="unknown", api_client_id=client_id)
else:
session_info = models.SessionInfo(session_id="unknown", api_client_id=opasConfig.NO_CLIENT_ID)
#else:
#session_info = models.SessionInfo(session_id=session_id, api_client_id=client_id)
# This section is causing errors--I believe it's because PaDS is calling the API without real user info
if pads_session_info is not None:
if pads_session_info.SessionId is not None:
session_info = models.SessionInfo(session_id=pads_session_info.SessionId, api_client_id=client_id)
else:
session_info = models.SessionInfo(session_id=session_id, api_client_id=client_id)
start_time = pads_session_info.session_start_time if pads_session_info.session_start_time is not None else datetime.datetime.now()
try:
session_info.has_subscription = pads_session_info.HasSubscription
except Exception as e:
logger.error(f"{caller_name}: HasSubscription not supplied by PaDS")
session_info.has_subscription = False
try:
session_info.is_valid_login = pads_session_info.IsValidLogon
session_info.authenticated = pads_session_info.IsValidLogon
except Exception as e:
logger.error(f"{caller_name}: IsValidLogon not supplied by PaDS")
session_info.is_valid_login = False
try:
session_info.is_valid_username = pads_session_info.IsValidUserName
except Exception as e:
logger.error(f"{caller_name}: IsValidUsername not supplied by PaDS")
session_info.is_valid_username = False
# session_info.confirmed_unauthenticated = False
session_info.session_start = start_time
session_info.session_expires_time = start_time + datetime.timedelta(seconds=pads_session_info.SessionExpires)
session_info.pads_session_info = pads_session_info
user_logged_in_bool = pads_session_info.IsValidLogon
# either continue an existing session, or start a new one
if request is not None:
if user_logged_in_bool or pads_session_info.IsValidLogon:
pads_user_info, status_code = get_authserver_session_userinfo(session_id, client_id, addl_log_info=" (complete session_record)")
session_info.pads_user_info = pads_user_info
if status_code == 401: # could be just no session_id, but also could have be returned by PaDS if it doesn't recognize it
if session_info.pads_session_info.pads_status_response > 500:
msg = f"{caller_name}: PaDS error or PaDS unavailable - user cannot be logged in and no session_id assigned"
logger.error(msg)
if session_id is not None:
logger.warning(f"{session_id} call to pads produces 401 error. Setting user_logged_in to False")
user_logged_in_bool = False
# session is not logged in
# session_info.confirmed_unauthenticated = True
# these are defaults so commented out
# session_info.authenticated = False
# session_info.user_id = 0
# session_info.username = opasConfig.USER_NOT_LOGGED_IN_NAME
# session_info.user_type = "Unknown"
# session_info.admin = False
# session_info.authorized_peparchive = False
# session_info.authorized_pepcurrent = False
else:
start_time = pads_session_info.session_start_time if pads_session_info.session_start_time is not None else datetime.datetime.now()
if pads_user_info is not None:
session_info.user_id = userID=pads_user_info.UserId
session_info.username = pads_user_info.UserName
session_info.user_type = pads_user_info.UserType
session_info.admin = pads_user_info.UserType=="Admin"
session_info.authorized_peparchive = pads_user_info.HasArchiveAccess
session_info.authorized_pepcurrent = pads_user_info.HasCurrentAccess
logger.debug("PaDS returned user info. Saving to DB")
unused_val = save_session_info_to_db(session_info)
if session_info.user_type is None:
session_info.user_type = "Unknown"
if session_info.username is None:
session_info.username = opasConfig.USER_NOT_LOGGED_IN_NAME
# print (f"SessInfo: {session_info}")
logger.debug(f"***authent: {session_info.authenticated} - get_full_session_info total time: {time.time() - ts}***")
return session_info
def get_authserver_session_userinfo(session_id, client_id, addl_log_info=""):
"""
Send PaDS the session ID and see if that's associated with a user yet.
"""
ret_val = None
caller_name = "get_authserver_session_userinfo"
status_code = 401
msg = f"for session {session_id} from client {client_id}"
#logger.debug(msg)
if session_id is not None:
full_URL = base + f"/v1/Users" + f"?SessionID={session_id}"
try:
response = requests.get(full_URL, headers={"Content-Type":"application/json"}) # Call PaDS
ocd.temp_pads_log_call(caller=caller_name, reason=caller_name + addl_log_info, session_id=session_id, pads_call=full_URL, return_status_code=response.status_code) # Log Call PaDS
except Exception as e:
logger.error(f"{caller_name}: Error from auth server user info call: {e}. Non-logged in user {msg}")
else:
status_code = response.status_code
padsinfo = response.json()
if response.ok:
padsinfo = fix_userinfo_invalid_nones(padsinfo)
ret_val = models.PadsUserInfo(**padsinfo)
else:
logger.debug(f"Non-logged in user {msg}. Info from PaDS: {padsinfo}") # 2021.08.08 back to debug...seems consistent.
return ret_val, status_code # padsinfo, status_code
def authserver_login(username=PADS_TEST_ID,
password=PADS_TEST_PW,
session_id=None,
client_id=opasConfig.NO_CLIENT_ID,
retry=True):
"""
Login directly via the auth server (e.g., in this case PaDS)
If session_id is included, the idea is that the logged in entity will keep that constant.
-- #TODO but that's not implemented in this server itself, if logged in through there, yet!
"""
msg = ""
caller_name = "authserver_login"
logger.info(f"Logging in user {username} with session_id {session_id}")
if session_id is not None:
full_URL = base + f"/v1/Authenticate/?SessionId={session_id}"
else:
full_URL = base + f"/v1/Authenticate/"
try:
pads_response = requests.post(full_URL, headers={"Content-Type":"application/json"}, json={"UserName":f"{username}", "Password":f"{password}"})
ocd.temp_pads_log_call(caller=caller_name, reason=caller_name, session_id=session_id, pads_call=full_URL, return_status_code=pads_response.status_code, params=username) # Log Call PaDS
except Exception as e:
msg = f"{caller_name}: Authorization server not available. {e}"
logger.error(msg)
if opasConfig.LOCAL_TRACE: print (f"****WATCH_THIS****: {msg}")
# set up response with default model
pads_session_info = models.PadsSessionInfo()
if session_id is not None:
pads_session_info.SessionId = session_id
#session_info = models.SessionInfo()
else:
status_code = pads_response.status_code # save it for a bit (we replace pads_session_info below)
if pads_response.ok:
pads_response = pads_response.json()
pads_response = fix_pydantic_invalid_nones(pads_response, caller_name="AuthserverLogin")
if isinstance(pads_response, str):
pads_session_info = models.PadsSessionInfo()
logger.error(f"{caller_name}: returned error string: {pads_response}")
else:
try:
pads_session_info = models.PadsSessionInfo(**pads_response)
except Exception as e:
logger.error(f"{caller_name}: return assignment error: {e}")
pads_session_info = models.PadsSessionInfo()
elif status_code > 403:
if retry == True:
# try once without the session ID
msg = f"{caller_name}: Login returned {status_code}. Trying without session id."
logger.error(msg)
pads_session_info = authserver_login(username=username, password=password, client_id=client_id, retry=False)
else:
msg = f"{caller_name}: Auth System Issue. Login returned {status_code}. Retry (failed), or Retry not selected."
logger.error(msg)
pads_session_info = models.PadsSessionInfo()
pads_session_info.pads_status_response = status_code
pads_session_info.pads_disposition = msg
else:
try:
pads_response = pads_response.json()
pads_response = fix_pydantic_invalid_nones(pads_response)
if isinstance(pads_response, str):
pads_session_info = models.PadsSessionInfo()
msg = f"{caller_name}: Returned error string: {pads_response}"
logger.error(msg)
else:
try:
pads_session_info = models.PadsSessionInfo(**pads_response)
except Exception as e:
msg = f"{caller_name}: Return assignment error: {e}"
logger.error(msg)
pads_session_info = models.PadsSessionInfo()
except Exception as e:
logger.error(f"{caller_name}: Response processing error {e}")
pads_session_info = models.PadsSessionInfo(**pads_session_info)
pads_session_info.pads_status_response = status_code
pads_session_info.pads_disposition = msg
return pads_session_info
def get_access_limitations(doc_id,
classification, # document classification, e.g., free, current, archive, undefined, offsite, toc
session_info, # updated in code below
year=None,
doi=None,
documentListItem: models.DocumentListItem=None, # deprecated, not used
fulltext_request:bool=None,
request=None):
"""
Based on the classification of the document (archive, current [embargoed],
free, offsite), and the users permissions in session_info, determine whether
this user has access to the full-text of the document, and fill out permissions
in accessLimitations (ret_val) structure for document doc_id
20210428 - removed documentListItem and update side effects, caller should copy access
There are still side effects on session_info
"""
caller_name = "get_access_limitations"
try:
open_access = False
ret_val = models.AccessLimitations()
ret_val.doi = doi
ret_val.accessLimitedPubLink = None
ret_val.accessLimitedCode = 200 # default (for now)
# USE THESE DEFAULTS, only set below if different
# default, turned on if classification below is opasConfig.DOCUMENT_ACCESS_EMBARGOED
ret_val.accessLimited = True # no access by default, may be changed below.
ret_val.accessChecked = False # Same as default, for better clarity here
ret_val.accessLimitedClassifiedAsCurrentContent = False
if session_info is None:
# logger.warning(f"Document permissions for {doc_id} -- no session info")
ret_val.accessLimitedCode = 401 # no session
session_id = "No Session Info"
# not logged in
# use all the defaults above, log error below.
else:
# for debugging display at return
try:
session_id = session_info.session_id
except:
session_id = "No Session ID"
if ret_val.doi is not None:
publisherAccess = opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO + opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO_DOI_LINK % ret_val.doi
# TODO: get the link we use to send users to publishers site when we don't have it, and no doi, and implement here.
# for now, just doi
ret_val.accessLimitedPubLink = opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO_DOI_LINK % ret_val.doi
else:
publisherAccess = "."
if classification in (opasConfig.DOCUMENT_ACCESS_FREE):
# free can be for anyone!!!! Change accessLimited
open_access = True
ret_val.accessLimited = False
ret_val.accessChecked = True
ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE
#"This content is currently free to all users."
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE
elif classification in (opasConfig.DOCUMENT_ACCESS_OFFSITE):
# we only allow reading abstracts for offsite, accessLimited is True
ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION
#"This content is currently completely limited to all users."
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_OFFSITE + publisherAccess # limited...get it elsewhere
elif classification in (opasConfig.DOCUMENT_ACCESS_EMBARGOED): # PEPCurrent
ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION
ret_val.accessLimitedClassifiedAsCurrentContent = True
ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_DESCRIPTION + opasConfig.ACCESS_SUMMARY_EMBARGOED + publisherAccess # limited...get it elsewhere
if session_info is not None:
try:
# #########################################################################################
# optimization...if authorized for PEPCurrent, don't check again this query, unless it's a full-text request
# #########################################################################################
if session_info.authorized_pepcurrent:
ret_val.accessLimited = False # you can access it!!!
ret_val.accessChecked = True
# "This current content is available for you to access"
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_CURRENT_CONTENT_AVAILABLE
logger.debug("Optimization - session info used to authorize PEPCurrent document")
except Exception as e:
logger.error(f"{caller_name}: PEPCurrent document permission: {e}")
elif classification in (opasConfig.DOCUMENT_ACCESS_ARCHIVE):
ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION
# ret_val.accessLimited = True # default is true
ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_FORSUBSCRIBERS
# #########################################################################################
# optimization...if authorized, don't check again, unless it's a full-text request
# #########################################################################################
if session_info is not None:
try:
if session_info.authorized_peparchive:
ret_val.accessLimited = False # you can access it!!!
ret_val.accessChecked = True
# "This content is available for you to access"
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE
logger.debug("Optimization - session info used to authorize PEPArchive document")
except Exception as e:
logger.error(f"{caller_name}: PEPArchive document permission: {e}")
elif classification in (opasConfig.DOCUMENT_ACCESS_TOC):
open_access = True
ret_val.accessLimited = False # you can access it!!! (All TOCs are open)
ret_val.accessChecked = True
# just like free for now
ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE
#"This content is currently free to all users."
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE
else:
logger.error(f"{caller_name}: Unknown classification: {classification}")
# **************************************
# Now check for access, or cached access
# - always check for a full-text request so PaDS can track them.
# since we don't really always know about authentication, we need to check all requests that are otherwise rejected.
# **************************************
try:
if not open_access:
if (session_info.authenticated == True # Must be authenticated for this check
and (ret_val.accessLimited == True # if it's marked limited, then may need to check, it might be first one
or fulltext_request == True)): # or whenever full-text is requested.
# and session_info.api_client_session and session_info.api_client_id in PADS_BASED_CLIENT_IDS:
if fulltext_request:
reason_for_check = opasConfig.AUTH_DOCUMENT_VIEW_REQUEST
else:
reason_for_check = opasConfig.AUTH_ABSTRACT_VIEW_REQUEST
try:
pads_authorized, resp = authserver_permission_check(session_id=session_info.session_id,
doc_id=doc_id,
doc_year=year,
reason_for_check=reason_for_check,
request=request)
except Exception as e:
# PaDS could be down, local development
logger.error(f"{caller_name}: Access Exception: {e}")
if localsecrets.BASEURL == "development.org:9100":
resp = models.PadsPermitInfo(Permit=True, HasArchiveAccess=True, HasCurrentAccess=True)
# so it doesn't have to check this later
session_info.authorized_peparchive = True
session_info.authorized_pepcurrent = True
else:
session_info.authorized_peparchive = False
session_info.authorized_pepcurrent = False
resp = models.PadsPermitInfo(Permit=False, HasArchiveAccess=False, HasCurrentAccess=False)
finally:
# save PaDS code
ret_val.accessLimitedCode = resp.StatusCode
if resp.StatusCode == httpCodes.HTTP_401_UNAUTHORIZED: # or resp.ReasonStr == 'Session has not been authenticated':
# if this is True, then we can stop asking this time
# You would get the same return if
# the session was not recognised on pads,
# the session had been deleted from the database (should never happen…), or
# the session simply never existed.
ret_val.accessLimited = True
session_info.authenticated = False
msg = f"Full text of {doc_id} unavailable. " + opasConfig.ACCESSLIMITED_401_UNAUTHORIZED
ret_val.accessLimitedReason = msg
else:
# set default again based on update from PaDS query
ret_val.accessLimited = True
if ret_val.accessLimitedClassifiedAsCurrentContent == True:
if resp.HasCurrentAccess == True:
session_info.authorized_pepcurrent = True
ret_val.accessLimited = False
ret_val.accessChecked = True
else:
ret_val.accessLimited = True
else: # not current content
if resp.HasArchiveAccess == True:
session_info.authorized_peparchive = True
ret_val.accessLimited = False
ret_val.accessChecked = True
if fulltext_request and pads_authorized:
# let's make sure we know about this user.
if session_info.user_id == opasConfig.USER_NOT_LOGGED_IN_NAME:
# We got this far, We need to find out who this is
pads_user_info, status_code = get_authserver_session_userinfo(session_info.session_id, session_info.api_client_id, addl_log_info=" (user info not yet collected)")
if pads_user_info is not None:
session_info.user_id = pads_user_info.UserId
session_info.username = pads_user_info.UserName
session_info.user_type = pads_user_info.UserType # TODO - Add this to session table
# session_info.session_expires_time = ?
# ocd = opasCentralDBLib.opasCentralDB()
ocd.update_session(session_info.session_id,
userID=session_info.user_id,
username=session_info.username,
authenticated=1,
authorized_peparchive=1 if session_info.authorized_peparchive == True else 0,
authorized_pepcurrent=1 if session_info.authorized_pepcurrent == True else 0,
session_end=session_info.session_expires_time,
api_client_id=session_info.api_client_id
)
if pads_authorized:
# "This content is available for you to access"
ret_val.accessLimited = False
ret_val.accessChecked = True
ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE
ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE
msg = f"Document {doc_id} available. Pads Reason: {resp.ReasonStr}. Opas Reason: {ret_val.accessLimitedDescription} - {ret_val.accessLimitedReason}"
logger.debug(msg)
ret_val.accessLimitedDebugMsg = msg
else:
# changed from warning to info 2021-06-02 to reduce normal logging
msg = f"Document {doc_id} unavailable. Pads Reason: {resp.ReasonStr} Opas: {ret_val.accessLimitedDescription} - {ret_val.accessLimitedReason}"
logger.info(msg) # limited...get it elsewhere
ret_val.accessLimitedDebugMsg = msg
ret_val.accessLimited = True
if ret_val.accessLimitedClassifiedAsCurrentContent:
# embargoed
ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_EMBARGOED
else:
# non embargoed, but no access.
ret_val.accessLimitedReason = f"{ret_val.accessLimitedDescription} {ret_val.accessLimitedReason}"
else:
# not full-text OR (not authenticated or accessLimited==False)
msg = f"No PaDS check needed: Document {doc_id} accessLimited: {ret_val.accessLimited}. Authent: {session_info.authenticated}"
logger.debug(msg)
ret_val.accessLimitedDebugMsg = msg
else: # It's open access!
msg = f"No PaDS check needed: Document {doc_id} is open access"
logger.debug(msg)
ret_val.accessLimitedDebugMsg = msg
except Exception as e:
msg = f"{caller_name}: Issue checking document permission. Possibly not logged in {e}"
logger.error(msg)
ret_val.accessLimitedDebugMsg = msg
pass # can't be checked, will be unauthorized.
except Exception as e:
msg = f"{caller_name}: General exception {e} trying ascertain access limitations."
logger.error(msg)
if ret_val is None:
ret_val = models.AccessLimitations() # make sure there's defaults!
ret_val.accessLimitedDebugMsg = msg
if fulltext_request and ret_val.accessLimited:
# happens anytime someone views an abstract in Document mode because they don't have an account. Perfectly legal. Changed to info (from error)
msg = f"Full-text access for {doc_id} denied ({ret_val.accessLimitedCode}). Sess:{session_id}: Access:{ret_val.accessLimitedReason}"
logger.info(msg)
ret_val.accessLimitedDebugMsg = msg
return ret_val
# ##################################################################################################################################################
#
# LOCAL ROUTUNES
#
# ##################################################################################################################################################
def get_pads_session_info(session_id=None,
client_id=opasConfig.NO_CLIENT_ID,
retry=True,
request=None):
"""
Get the PaDS session model, and get a new session ID from the auth server if needed
"""
msg = ""
caller_name = "get_pads_session_info"
if client_id == opasConfig.NO_CLIENT_ID:
logger.warning(f"{caller_name}: Session info call for Session ID: {session_id} Client ID was NO_CLIENT_ID ({opasConfig.NO_CLIENT_ID}).")
if session_id is not None:
full_URL = base + f"/v1/Authenticate/IP/" + f"?SessionID={session_id}"
else:
full_URL = base + f"/v1/Authenticate/IP/"
req_url = "No request info."
if request is not None:
try: # just in case this generates an error
req_url = request.url # to log caller url
except Exception as e:
pass
user_ip = get_user_ip(request) # returns an IP if X_FORWARDED_FOR address is in header
try:
logger.debug(f"{caller_name}: calling PaDS")
if user_ip is not None and user_ip is not '':
headers = { opasConfig.X_FORWARDED_FOR:user_ip }
pads_session_info = requests.get(full_URL, headers) # Call PaDS
logger.debug(f"{caller_name}: Session ID:{session_id}. X_FORWARDED_FOR from authenticateIP: {user_ip}. URL: {req_url} PaDS Session Info: {pads_session_info}")
else:
pads_session_info = requests.get(full_URL) # Call PaDS
except Exception as e:
logger.error(f"{caller_name}: Authorization server not available. {e}")
pads_session_info = models.PadsSessionInfo()
else:
status_code = pads_session_info.status_code # save it for a bit (we replace pads_session_info below)
ocd.temp_pads_log_call(caller=caller_name, reason=caller_name, session_id=session_id, pads_call=full_URL, ip_address=user_ip, return_status_code=status_code) # Log Call PaDS
if status_code > 403: # e.g., (httpCodes.HTTP_500_INTERNAL_SERVER_ERROR, httpCodes.HTTP_503_SERVICE_UNAVAILABLE):
error_text = f"{caller_name}: PaDS session_info status_code is {status_code}"
logger.error(error_text)
# try once without the session ID
if retry == True:
pads_session_info = get_pads_session_info(client_id=client_id, retry=False, request=request)
pads_session_info.pads_status_response = status_code
else:
logger.error(error_text)
pads_session_info = models.PadsSessionInfo()
pads_session_info.pads_status_response = status_code
pads_session_info.pads_disposition = error_text
else:
try:
pads_session_info = pads_session_info.json()
pads_session_info = fix_pydantic_invalid_nones(pads_session_info, caller_name=caller_name)
pads_session_info = models.PadsSessionInfo(**pads_session_info)
pads_session_info.pads_status_response = status_code
logger.debug(f"PaDS Status Ok, Final IP Session Info: {pads_session_info} URL: {req_url}.")
except Exception as e:
msg = f"{caller_name}: Response processing error {e}"
logger.error(msg)
pads_session_info = models.PadsSessionInfo(**pads_session_info)
pads_session_info.pads_status_response = status_code
pads_session_info.pads_disposition = msg
return pads_session_info
if __name__ == "__main__":
import doctest
import sys
print (40*"*", "opasDocPermissionsTests", 40*"*")
print (f"Running in Python {sys.version_info[0]}.{sys.version_info[1]}")
logger = logging.getLogger(__name__)
ch = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s %(name)s %(lineno)d - %(levelname)s %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
doctest.testmod(optionflags=doctest.ELLIPSIS|doctest.NORMALIZE_WHITESPACE)
print ("Fini. Tests complete.") | [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
198,
2,
532,
9,
12,
19617,
25,
3384,
69,
12,
23,
532,
9,
12,
198,
198,
11748,
7007,
198,
11748,
4818,
8079,
198,
11748,
640,
198,
11748,
1034,
292,
16934,
198,
11748,
4981,
198,
11748,
18931,
198,
11748,
1957,
2363,
8004,
198,
2,
1330,
2956,
297,
571,
13,
29572,
198,
2,
1330,
33918,
198,
11748,
25064,
198,
2,
422,
1034,
292,
2969,
1797,
84,
4926,
25835,
1330,
3613,
62,
404,
292,
62,
29891,
62,
44453,
198,
17597,
13,
6978,
13,
33295,
7203,
492,
4943,
1303,
34333,
2440,
8619,
284,
21015,
13103,
3108,
13,
198,
6738,
4566,
13,
404,
292,
16934,
1330,
13349,
10705,
47621,
2389,
198,
198,
6404,
1362,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
2,
329,
428,
8265,
198,
2,
49706,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
198,
361,
657,
25,
198,
220,
220,
220,
1303,
2251,
8624,
21360,
290,
900,
1241,
284,
14257,
198,
220,
220,
220,
442,
796,
18931,
13,
12124,
25060,
3419,
198,
220,
220,
220,
1303,
2251,
1296,
1436,
198,
220,
220,
220,
1296,
1436,
796,
18931,
13,
8479,
1436,
7,
404,
292,
16934,
13,
21389,
1404,
8,
198,
220,
220,
220,
1303,
751,
1296,
1436,
284,
442,
198,
220,
220,
220,
442,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
442,
13,
2617,
4971,
7,
6404,
2667,
13,
30531,
8,
198,
220,
220,
220,
49706,
13,
2860,
25060,
7,
354,
8,
198,
198,
6738,
3491,
21348,
13,
16733,
274,
1330,
18261,
198,
6738,
3491,
21348,
13,
8897,
3558,
1330,
19390,
198,
11748,
3491,
21348,
13,
13376,
355,
2638,
34,
4147,
198,
198,
2,
1330,
1957,
2363,
8004,
198,
6738,
1957,
2363,
8004,
1330,
350,
47149,
62,
33,
11159,
62,
21886,
11,
350,
47149,
62,
51,
6465,
62,
2389,
11,
350,
47149,
62,
51,
6465,
62,
47,
54,
11,
350,
47149,
62,
33,
42827,
62,
5097,
28495,
62,
14255,
198,
8692,
796,
350,
47149,
62,
33,
11159,
62,
21886,
198,
2,
2779,
796,
366,
4023,
1378,
31267,
13,
2398,
25,
6052,
405,
1,
198,
11748,
1034,
292,
30645,
35,
9148,
571,
198,
420,
67,
796,
1034,
292,
30645,
35,
9148,
571,
13,
404,
292,
30645,
11012,
3419,
198,
198,
4299,
1064,
62,
16366,
62,
29891,
62,
312,
7,
25927,
25,
19390,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
25,
18261,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
29891,
25,
965,
28,
14202,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15179,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
49576,
5860,
257,
6246,
4522,
393,
6045,
198,
220,
220,
220,
220,
198,
220,
220,
220,
37947,
1387,
329,
5456,
62,
29891,
4686,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3011,
340,
422,
13639,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
612,
11,
3011,
340,
422,
12405,
5772,
26,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
612,
11,
3011,
340,
422,
257,
19751,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
15323,
11,
3011,
257,
649,
530,
422,
262,
6284,
4382,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1005,
62,
2100,
796,
6045,
628,
220,
220,
220,
611,
5456,
62,
29891,
318,
6045,
393,
5456,
62,
29891,
6624,
705,
14202,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
29891,
796,
2581,
13,
50145,
13,
1136,
7,
404,
292,
16934,
13,
5097,
40,
15365,
47621,
2389,
11,
6045,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
5456,
62,
29891,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
5456,
62,
29891,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
19662,
796,
277,
1,
16366,
12,
29891,
422,
13639,
25,
1391,
1186,
62,
2100,
92,
366,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6404,
1362,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
54,
261,
470,
670,
4556,
484,
15651,
19751,
284,
5456,
11,
523,
836,
470,
7030,
640,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
431,
79,
12384,
62,
29891,
62,
44453,
796,
2581,
13,
27916,
444,
13,
1136,
7203,
431,
79,
12384,
62,
29891,
1600,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1034,
292,
62,
29891,
62,
44453,
796,
2581,
13,
27916,
444,
13,
1136,
7,
404,
292,
16934,
13,
3185,
10705,
47621,
2389,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
29891,
62,
80,
17143,
796,
2581,
13,
22766,
62,
37266,
13,
1136,
7,
404,
292,
16934,
13,
5097,
40,
15365,
47621,
2389,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
29891,
62,
44453,
796,
2581,
13,
27916,
444,
13,
1136,
7,
404,
292,
16934,
13,
5097,
40,
15365,
47621,
2389,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
5456,
62,
29891,
62,
80,
17143,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
5456,
62,
29891,
62,
80,
17143,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
16366,
12,
29891,
422,
5772,
25,
1391,
1186,
62,
2100,
27422,
10289,
25,
1391,
25927,
13,
6371,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
5456,
62,
29891,
62,
44453,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
5456,
62,
29891,
62,
44453,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
16366,
12,
29891,
422,
5456,
12,
29891,
19751,
25,
1391,
1186,
62,
2100,
27422,
10289,
25,
1391,
25927,
13,
6371,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
1034,
292,
62,
29891,
62,
44453,
318,
407,
6045,
290,
1034,
292,
62,
29891,
62,
44453,
14512,
705,
14202,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
16366,
12,
29891,
422,
8574,
13349,
10705,
47621,
19751,
1391,
404,
292,
62,
29891,
62,
44453,
27422,
10289,
25,
1391,
25927,
13,
6371,
92,
366,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
1034,
292,
62,
29891,
62,
44453,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
2949,
20203,
5456,
12,
29891,
4522,
1043,
13,
42882,
6045,
13,
10289,
25,
1391,
25927,
13,
6371,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
6045,
628,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
318,
407,
6045,
290,
1034,
292,
62,
29891,
62,
44453,
318,
407,
6045,
290,
1034,
292,
62,
29891,
62,
44453,
14512,
1005,
62,
2100,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
49312,
597,
7448,
19751,
11,
611,
612,
318,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7203,
50,
9586,
8670,
292,
36044,
2389,
39606,
4943,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
13,
2617,
62,
44453,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
13349,
10705,
47621,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1988,
28,
69,
1,
90,
16366,
62,
29891,
92,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
7386,
28,
12001,
2363,
8004,
13,
34,
15308,
10008,
62,
39170,
29833,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
220,
220,
220,
1441,
1005,
62,
2100,
198,
198,
4299,
651,
62,
7220,
62,
541,
7,
25927,
25,
19390,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16409,
257,
2985,
6101,
611,
3804,
287,
262,
24697,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1005,
62,
2100,
796,
6045,
198,
220,
220,
220,
611,
2581,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
2581,
13,
50145,
13,
1136,
7,
404,
292,
16934,
13,
55,
62,
13775,
39743,
1961,
62,
13775,
11,
6045,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43089,
62,
6371,
796,
2581,
13,
6371,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
55,
12,
39746,
276,
12,
1890,
422,
13639,
25,
1391,
1186,
62,
2100,
27422,
10289,
25,
1391,
42180,
62,
6371,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
12331,
25,
1391,
68,
92,
4943,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
628,
220,
220,
220,
1441,
1005,
62,
2100,
198,
198,
4299,
651,
62,
18439,
15388,
62,
29891,
62,
10951,
7,
29891,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
312,
28,
404,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
8229,
257,
5901,
12,
259,
23575,
12360,
2134,
422,
1811,
11243,
5258,
3848,
198,
220,
220,
220,
311,
3080,
262,
6246,
1321,
284,
262,
16363,
6831,
357,
273,
5992,
340,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
13163,
6246,
62,
10951,
796,
651,
62,
18439,
15388,
62,
29891,
62,
10951,
7,
14202,
11,
366,
19,
4943,
198,
220,
220,
220,
13163,
6246,
62,
10951,
13,
29460,
6624,
366,
3673,
11187,
2004,
818,
1,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
220,
198,
220,
220,
220,
13163,
21226,
62,
29891,
62,
10951,
796,
21226,
62,
38235,
3419,
198,
220,
220,
220,
13163,
6246,
62,
312,
796,
21226,
62,
29891,
62,
10951,
13,
36044,
7390,
198,
220,
220,
220,
13163,
6246,
62,
10951,
796,
651,
62,
18439,
15388,
62,
29891,
62,
10951,
7,
29891,
62,
312,
11,
366,
19,
1600,
21226,
62,
29891,
62,
10951,
28,
79,
5643,
62,
29891,
62,
10951,
8,
198,
220,
220,
220,
13163,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
6624,
6407,
198,
220,
220,
220,
6407,
628,
220,
220,
220,
13163,
6246,
62,
10951,
796,
651,
62,
18439,
15388,
62,
29891,
62,
10951,
7203,
22,
37,
2780,
1065,
2075,
12,
24,
8579,
16,
12,
2857,
2749,
12,
23,
36,
2075,
12,
37,
2998,
11012,
23,
34,
18,
36,
3695,
35,
1600,
366,
19,
4943,
198,
220,
220,
220,
13163,
3601,
357,
29891,
62,
10951,
8,
198,
220,
220,
220,
6246,
62,
312,
11639,
22,
37,
2780,
1065,
2075,
12,
24,
8579,
16,
12,
2857,
2749,
12,
23,
36,
2075,
12,
37,
2998,
11012,
23,
34,
18,
36,
3695,
35,
6,
2836,
62,
312,
28,
15,
20579,
11639,
3673,
11187,
2004,
818,
6,
2644,
198,
220,
220,
220,
13163,
6246,
62,
10951,
13,
29460,
6624,
366,
3673,
11187,
2004,
818,
1,
198,
220,
220,
220,
6407,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
40379,
796,
640,
13,
2435,
3419,
198,
220,
220,
220,
24955,
62,
3672,
796,
366,
1136,
62,
18439,
15388,
62,
29891,
62,
10951,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
15883,
1654,
340,
338,
12876,
11,
428,
318,
6666,
2761,
319,
3227,
198,
220,
220,
220,
1303,
3826,
611,
340,
338,
281,
493,
30,
198,
220,
220,
220,
5456,
62,
312,
796,
26571,
62,
16366,
62,
312,
7,
16366,
62,
312,
11,
24955,
62,
3672,
28,
13345,
263,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
611,
21226,
62,
29891,
62,
10951,
318,
6045,
393,
6246,
62,
312,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
407,
14275,
11,
523,
21207,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
4585,
11243,
5258,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
651,
62,
79,
5643,
62,
29891,
62,
10951,
7,
29891,
62,
312,
28,
29891,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
312,
28,
16366,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
563,
28,
25101,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
25927,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
28,
79,
5643,
62,
29891,
62,
10951,
13,
36044,
7390,
11,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
13047,
1391,
68,
27422,
220,
311,
408,
2389,
25,
1391,
29891,
62,
312,
92,
5456,
62,
312,
25,
1391,
16366,
62,
312,
92,
43089,
25,
1391,
25927,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1034,
292,
16934,
13,
29701,
1847,
62,
5446,
11598,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3601,
357,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
2625,
34680,
1600,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
312,
796,
6246,
62,
10951,
13,
29891,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
13047,
1972,
21226,
62,
29891,
62,
10951,
1391,
68,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
312,
62,
4906,
796,
2099,
7,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
5456,
62,
312,
62,
4906,
6624,
493,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
2625,
34680,
1600,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
2625,
34680,
1600,
40391,
62,
16366,
62,
312,
28,
404,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
17772,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
29891,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
28,
29891,
62,
312,
11,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
770,
2665,
318,
6666,
8563,
438,
40,
1975,
340,
338,
780,
11243,
5258,
318,
4585,
262,
7824,
1231,
1103,
2836,
7508,
198,
220,
220,
220,
611,
21226,
62,
29891,
62,
10951,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
21226,
62,
29891,
62,
10951,
13,
36044,
7390,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
28,
79,
5643,
62,
29891,
62,
10951,
13,
36044,
7390,
11,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
796,
4981,
13,
36044,
12360,
7,
29891,
62,
312,
28,
29891,
62,
312,
11,
40391,
62,
16366,
62,
312,
28,
16366,
62,
312,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
21226,
62,
29891,
62,
10951,
13,
29891,
62,
9688,
62,
2435,
611,
21226,
62,
29891,
62,
10951,
13,
29891,
62,
9688,
62,
2435,
318,
407,
6045,
2073,
4818,
8079,
13,
19608,
8079,
13,
2197,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
10134,
62,
7266,
33584,
796,
21226,
62,
29891,
62,
10951,
13,
19242,
7004,
33584,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
7875,
7004,
33584,
407,
14275,
416,
11243,
5258,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
10134,
62,
7266,
33584,
796,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
271,
62,
12102,
62,
38235,
796,
21226,
62,
29891,
62,
10951,
13,
3792,
47139,
11187,
261,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
41299,
3474,
796,
21226,
62,
29891,
62,
10951,
13,
3792,
47139,
11187,
261,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
1148,
47139,
11187,
261,
407,
14275,
416,
11243,
5258,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
271,
62,
12102,
62,
38235,
796,
10352,
628,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
271,
62,
12102,
62,
29460,
796,
21226,
62,
29891,
62,
10951,
13,
3792,
47139,
12982,
5376,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
1148,
47139,
5842,
13292,
407,
14275,
416,
11243,
5258,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
271,
62,
12102,
62,
29460,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
36349,
62,
403,
41299,
3474,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
29891,
62,
9688,
796,
923,
62,
2435,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
29891,
62,
11201,
2387,
62,
2435,
796,
923,
62,
2435,
1343,
4818,
8079,
13,
16514,
276,
12514,
7,
43012,
28,
79,
5643,
62,
29891,
62,
10951,
13,
36044,
16870,
2387,
8,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
79,
5643,
62,
29891,
62,
10951,
796,
21226,
62,
29891,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
6404,
2004,
62,
259,
62,
30388,
796,
21226,
62,
29891,
62,
10951,
13,
3792,
47139,
11187,
261,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2035,
2555,
281,
4683,
6246,
11,
393,
923,
257,
649,
530,
198,
220,
220,
220,
611,
2581,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2836,
62,
6404,
2004,
62,
259,
62,
30388,
393,
21226,
62,
29891,
62,
10951,
13,
3792,
47139,
11187,
261,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
7220,
62,
10951,
11,
3722,
62,
8189,
796,
651,
62,
18439,
15388,
62,
29891,
62,
7220,
10951,
7,
29891,
62,
312,
11,
5456,
62,
312,
11,
751,
75,
62,
6404,
62,
10951,
2625,
357,
20751,
6246,
62,
22105,
8,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
79,
5643,
62,
7220,
62,
10951,
796,
21226,
62,
7220,
62,
10951,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
3722,
62,
8189,
6624,
22219,
25,
1303,
714,
307,
655,
645,
6246,
62,
312,
11,
475,
635,
714,
423,
307,
4504,
416,
11243,
5258,
611,
340,
1595,
470,
7564,
340,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
13,
79,
5643,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
1875,
5323,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
11243,
5258,
4049,
393,
11243,
5258,
23485,
532,
2836,
2314,
307,
18832,
287,
290,
645,
6246,
62,
312,
8686,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
312,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7,
69,
1,
90,
29891,
62,
312,
92,
869,
284,
21226,
11073,
22219,
4049,
13,
25700,
2836,
62,
6404,
2004,
62,
259,
284,
10352,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2836,
62,
6404,
2004,
62,
259,
62,
30388,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
318,
407,
18832,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
36349,
62,
403,
41299,
3474,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
777,
389,
26235,
523,
16476,
503,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
41299,
3474,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
7220,
62,
312,
796,
657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
29460,
796,
1034,
292,
16934,
13,
29904,
62,
11929,
62,
25294,
38,
1961,
62,
1268,
62,
20608,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
7220,
62,
4906,
796,
366,
20035,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
28482,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
923,
62,
2435,
796,
21226,
62,
29891,
62,
10951,
13,
29891,
62,
9688,
62,
2435,
611,
21226,
62,
29891,
62,
10951,
13,
29891,
62,
9688,
62,
2435,
318,
407,
6045,
2073,
4818,
8079,
13,
19608,
8079,
13,
2197,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21226,
62,
7220,
62,
10951,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
7220,
62,
312,
796,
2836,
2389,
28,
79,
5643,
62,
7220,
62,
10951,
13,
12982,
7390,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
29460,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
5376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
7220,
62,
4906,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
6030,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
28482,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
6030,
855,
1,
46787,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
796,
21226,
62,
7220,
62,
10951,
13,
19242,
19895,
425,
15457,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
796,
21226,
62,
7220,
62,
10951,
13,
19242,
11297,
15457,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7203,
28875,
5258,
4504,
2836,
7508,
13,
220,
34689,
284,
20137,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21958,
62,
2100,
796,
3613,
62,
29891,
62,
10951,
62,
1462,
62,
9945,
7,
29891,
62,
10951,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
6246,
62,
10951,
13,
7220,
62,
4906,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
7220,
62,
4906,
796,
366,
20035,
1,
198,
220,
220,
220,
611,
6246,
62,
10951,
13,
29460,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
29460,
796,
1034,
292,
16934,
13,
29904,
62,
11929,
62,
25294,
38,
1961,
62,
1268,
62,
20608,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
3601,
357,
69,
1,
50,
408,
12360,
25,
1391,
29891,
62,
10951,
92,
4943,
198,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
8162,
41299,
25,
1391,
29891,
62,
10951,
13,
41299,
3474,
92,
532,
651,
62,
12853,
62,
29891,
62,
10951,
2472,
640,
25,
1391,
2435,
13,
2435,
3419,
532,
40379,
92,
8162,
4943,
198,
220,
220,
220,
1441,
6246,
62,
10951,
198,
198,
4299,
651,
62,
18439,
15388,
62,
29891,
62,
7220,
10951,
7,
29891,
62,
312,
11,
5456,
62,
312,
11,
751,
75,
62,
6404,
62,
10951,
33151,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
16290,
11243,
5258,
262,
6246,
4522,
290,
766,
611,
326,
338,
3917,
351,
257,
2836,
1865,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1005,
62,
2100,
796,
6045,
198,
220,
220,
220,
24955,
62,
3672,
796,
366,
1136,
62,
18439,
15388,
62,
29891,
62,
7220,
10951,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3722,
62,
8189,
796,
22219,
198,
220,
220,
220,
31456,
796,
277,
1,
1640,
6246,
1391,
29891,
62,
312,
92,
422,
5456,
1391,
16366,
62,
312,
36786,
198,
220,
220,
220,
1303,
6404,
1362,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
611,
6246,
62,
312,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
62,
21886,
796,
2779,
1343,
277,
1,
14,
85,
16,
14,
14490,
1,
1343,
277,
13984,
36044,
2389,
34758,
29891,
62,
312,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2882,
796,
7007,
13,
1136,
7,
12853,
62,
21886,
11,
24697,
28,
4895,
19746,
12,
6030,
2404,
31438,
14,
17752,
20662,
8,
1303,
4889,
11243,
5258,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
10210,
13,
29510,
62,
79,
5643,
62,
6404,
62,
13345,
7,
13345,
263,
28,
13345,
263,
62,
3672,
11,
1738,
28,
13345,
263,
62,
3672,
1343,
751,
75,
62,
6404,
62,
10951,
11,
6246,
62,
312,
28,
29891,
62,
312,
11,
21226,
62,
13345,
28,
12853,
62,
21886,
11,
1441,
62,
13376,
62,
8189,
28,
26209,
13,
13376,
62,
8189,
8,
1303,
5972,
4889,
11243,
5258,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
13047,
422,
6284,
4382,
2836,
7508,
869,
25,
1391,
68,
27422,
8504,
12,
6404,
2004,
287,
2836,
1391,
19662,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
8189,
796,
2882,
13,
13376,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
10951,
796,
2882,
13,
17752,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
2882,
13,
482,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
10951,
796,
4259,
62,
7220,
10951,
62,
259,
12102,
62,
77,
1952,
7,
79,
5643,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
4981,
13,
47,
5643,
12982,
12360,
7,
1174,
79,
5643,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
15419,
12,
6404,
2004,
287,
2836,
1391,
19662,
27422,
14151,
422,
11243,
5258,
25,
1391,
79,
5643,
10951,
92,
4943,
1303,
33448,
13,
2919,
13,
2919,
736,
284,
14257,
986,
325,
5232,
6414,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
1005,
62,
2100,
11,
3722,
62,
8189,
1303,
21226,
10951,
11,
3722,
62,
8189,
198,
198,
4299,
6284,
15388,
62,
38235,
7,
29460,
28,
47,
47149,
62,
51,
6465,
62,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9206,
28,
47,
47149,
62,
51,
6465,
62,
47,
54,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
312,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
312,
28,
404,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
563,
28,
17821,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
23093,
3264,
2884,
262,
6284,
4382,
357,
68,
13,
70,
1539,
287,
428,
1339,
11243,
5258,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1002,
6246,
62,
312,
318,
3017,
11,
262,
2126,
318,
326,
262,
18832,
287,
9312,
481,
1394,
326,
6937,
13,
198,
220,
220,
220,
220,
220,
1377,
1303,
51,
3727,
46,
475,
326,
338,
407,
9177,
287,
428,
4382,
2346,
11,
611,
18832,
287,
832,
612,
11,
1865,
0,
198,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
31456,
796,
13538,
198,
220,
220,
220,
24955,
62,
3672,
796,
366,
18439,
15388,
62,
38235,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
49706,
13,
10951,
7,
69,
1,
11187,
2667,
287,
2836,
1391,
29460,
92,
351,
6246,
62,
312,
1391,
29891,
62,
312,
92,
4943,
198,
220,
220,
220,
611,
6246,
62,
312,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
62,
21886,
796,
2779,
1343,
277,
1,
14,
85,
16,
14,
47649,
5344,
20924,
36044,
7390,
34758,
29891,
62,
312,
36786,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
62,
21886,
796,
2779,
1343,
277,
1,
14,
85,
16,
14,
47649,
5344,
30487,
628,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
26209,
796,
7007,
13,
7353,
7,
12853,
62,
21886,
11,
24697,
28,
4895,
19746,
12,
6030,
2404,
31438,
14,
17752,
25719,
33918,
28,
4895,
12982,
5376,
1298,
69,
1,
90,
29460,
92,
1600,
366,
35215,
1298,
69,
1,
90,
28712,
92,
20662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
267,
10210,
13,
29510,
62,
79,
5643,
62,
6404,
62,
13345,
7,
13345,
263,
28,
13345,
263,
62,
3672,
11,
1738,
28,
13345,
263,
62,
3672,
11,
6246,
62,
312,
28,
29891,
62,
312,
11,
21226,
62,
13345,
28,
12853,
62,
21886,
11,
1441,
62,
13376,
62,
8189,
28,
79,
5643,
62,
26209,
13,
13376,
62,
8189,
11,
42287,
28,
29460,
8,
1303,
5972,
4889,
11243,
5258,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
35263,
4382,
407,
1695,
13,
1391,
68,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1034,
292,
16934,
13,
29701,
1847,
62,
5446,
11598,
25,
3601,
357,
69,
1,
2466,
35192,
62,
43559,
2466,
25,
1391,
19662,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
900,
510,
2882,
351,
4277,
2746,
198,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
312,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
36044,
7390,
796,
6246,
62,
312,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
29891,
62,
10951,
796,
4981,
13,
36044,
12360,
3419,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
8189,
796,
21226,
62,
26209,
13,
13376,
62,
8189,
1303,
3613,
340,
329,
257,
1643,
357,
732,
6330,
21226,
62,
29891,
62,
10951,
2174,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
21226,
62,
26209,
13,
482,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
26209,
796,
21226,
62,
26209,
13,
17752,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
26209,
796,
4259,
62,
79,
5173,
5109,
62,
259,
12102,
62,
77,
1952,
7,
79,
5643,
62,
26209,
11,
24955,
62,
3672,
2625,
30515,
15388,
47790,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
79,
5643,
62,
26209,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
4504,
4049,
4731,
25,
1391,
79,
5643,
62,
26209,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
7,
1174,
79,
5643,
62,
26209,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
1441,
16237,
4049,
25,
1391,
68,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
3722,
62,
8189,
1875,
38210,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
563,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1949,
1752,
1231,
262,
6246,
4522,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
23093,
4504,
1391,
13376,
62,
8189,
27422,
31165,
1231,
6246,
4686,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
6284,
15388,
62,
38235,
7,
29460,
28,
29460,
11,
9206,
28,
28712,
11,
5456,
62,
312,
28,
16366,
62,
312,
11,
1005,
563,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
26828,
4482,
18232,
13,
23093,
4504,
1391,
13376,
62,
8189,
27422,
4990,
563,
357,
47904,
828,
393,
4990,
563,
407,
6163,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
6381,
9150,
796,
31456,
220,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
26209,
796,
21226,
62,
26209,
13,
17752,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
26209,
796,
4259,
62,
79,
5173,
5109,
62,
259,
12102,
62,
77,
1952,
7,
79,
5643,
62,
26209,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
318,
39098,
7,
79,
5643,
62,
26209,
11,
965,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
8229,
276,
4049,
4731,
25,
1391,
79,
5643,
62,
26209,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
7,
1174,
79,
5643,
62,
26209,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
8229,
16237,
4049,
25,
1391,
68,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
18261,
7587,
4049,
1391,
68,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
7,
1174,
79,
5643,
62,
29891,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
6381,
9150,
796,
31456,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
21226,
62,
29891,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
4299,
651,
62,
15526,
62,
2475,
20597,
7,
15390,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17923,
11,
220,
220,
1303,
3188,
17923,
11,
304,
13,
70,
1539,
1479,
11,
1459,
11,
15424,
11,
28721,
11,
572,
15654,
11,
284,
66,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
11,
220,
220,
220,
220,
1303,
6153,
287,
2438,
2174,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
614,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
23899,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3188,
8053,
7449,
25,
4981,
13,
24941,
8053,
7449,
28,
14202,
11,
220,
1303,
39224,
11,
407,
973,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1336,
5239,
62,
25927,
25,
30388,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13403,
319,
262,
17923,
286,
262,
3188,
357,
17474,
11,
1459,
685,
24419,
9448,
276,
4357,
198,
220,
220,
220,
220,
220,
220,
1479,
11,
572,
15654,
828,
290,
262,
2985,
21627,
287,
6246,
62,
10951,
11,
5004,
1771,
198,
220,
220,
220,
220,
220,
220,
428,
2836,
468,
1895,
284,
262,
1336,
12,
5239,
286,
262,
3188,
11,
290,
6070,
503,
21627,
198,
220,
220,
220,
220,
220,
220,
287,
1895,
19352,
20597,
357,
1186,
62,
2100,
8,
4645,
329,
3188,
2205,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
22131,
13464,
2078,
532,
4615,
3188,
8053,
7449,
290,
4296,
1735,
3048,
11,
24955,
815,
4866,
1895,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1318,
389,
991,
1735,
3048,
319,
6246,
62,
10951,
198,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
24955,
62,
3672,
796,
366,
1136,
62,
15526,
62,
2475,
20597,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1280,
62,
15526,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
4981,
13,
15457,
19352,
20597,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
34023,
796,
23899,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
14876,
11280,
796,
6045,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
10669,
796,
939,
1303,
4277,
357,
1640,
783,
8,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
23210,
48947,
5550,
7708,
35342,
11,
691,
900,
2174,
611,
1180,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4277,
11,
2900,
319,
611,
17923,
2174,
318,
1034,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
3620,
33,
1503,
11230,
1961,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
1303,
645,
1895,
416,
4277,
11,
743,
307,
3421,
2174,
13,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
10352,
1303,
16766,
355,
4277,
11,
329,
1365,
16287,
994,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
9487,
1431,
1722,
11297,
19746,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
49706,
13,
43917,
7,
69,
1,
24941,
21627,
329,
1391,
15390,
62,
312,
92,
1377,
645,
6246,
7508,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
10669,
796,
22219,
1303,
645,
6246,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
312,
796,
366,
2949,
23575,
14151,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
407,
18832,
287,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
779,
477,
262,
26235,
2029,
11,
2604,
4049,
2174,
13,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
329,
28769,
3359,
379,
1441,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
312,
796,
6246,
62,
10951,
13,
29891,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
312,
796,
366,
2949,
23575,
4522,
1,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
13,
34023,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9991,
15457,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
5105,
9148,
1797,
16879,
62,
10778,
1343,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
5105,
9148,
1797,
16879,
62,
10778,
62,
18227,
40,
62,
43,
17248,
4064,
1005,
62,
2100,
13,
34023,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
16926,
46,
25,
651,
262,
2792,
356,
779,
284,
3758,
2985,
284,
17604,
2524,
618,
356,
836,
470,
423,
340,
11,
290,
645,
23899,
11,
290,
3494,
994,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
220,
220,
329,
783,
11,
655,
23899,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
14876,
11280,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
5105,
9148,
1797,
16879,
62,
10778,
62,
18227,
40,
62,
43,
17248,
4064,
1005,
62,
2100,
13,
34023,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9991,
15457,
796,
366,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
17923,
287,
357,
404,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
39274,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1479,
460,
307,
329,
2687,
13896,
9794,
1895,
37214,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1280,
62,
15526,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
39274,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1,
1212,
2695,
318,
3058,
1479,
284,
477,
2985,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
39274,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
17923,
287,
357,
404,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
27977,
50,
12709,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
356,
691,
1249,
3555,
12531,
82,
329,
572,
15654,
11,
1895,
37214,
318,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
30910,
40165,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1,
1212,
2695,
318,
3058,
3190,
3614,
284,
477,
2985,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
27977,
50,
12709,
1343,
9991,
15457,
1303,
3614,
986,
1136,
340,
8057,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
17923,
287,
357,
404,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
3620,
33,
1503,
11230,
1961,
2599,
1303,
18468,
5662,
6657,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
30910,
40165,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
9487,
1431,
1722,
11297,
19746,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
30910,
40165,
1343,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
3620,
33,
1503,
11230,
1961,
1343,
9991,
15457,
1303,
3614,
986,
1136,
340,
8057,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
29113,
29113,
14468,
7804,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
23989,
986,
361,
10435,
329,
18468,
5662,
6657,
11,
836,
470,
2198,
757,
428,
12405,
11,
4556,
340,
338,
257,
1336,
12,
5239,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
29113,
29113,
14468,
7804,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
1303,
345,
460,
1895,
340,
10185,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
366,
1212,
1459,
2695,
318,
1695,
329,
345,
284,
1895,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
34,
39237,
62,
37815,
3525,
62,
10116,
32,
4146,
17534,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7203,
27871,
320,
1634,
532,
6246,
7508,
973,
284,
29145,
18468,
5662,
6657,
3188,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
18468,
5662,
6657,
3188,
7170,
25,
1391,
68,
92,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
17923,
287,
357,
404,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
31315,
9306,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
30910,
40165,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
1303,
4277,
318,
2081,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
13775,
12564,
4462,
34,
7112,
33,
4877,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
29113,
29113,
14468,
7804,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
23989,
986,
361,
10435,
11,
836,
470,
2198,
757,
11,
4556,
340,
338,
257,
1336,
12,
5239,
2581,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1303,
29113,
29113,
14468,
7804,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
1303,
345,
460,
1895,
340,
10185,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
366,
1212,
2695,
318,
1695,
329,
345,
284,
1895,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
10116,
32,
4146,
17534,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7203,
27871,
320,
1634,
532,
6246,
7508,
973,
284,
29145,
350,
8905,
19895,
425,
3188,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
350,
8905,
19895,
425,
3188,
7170,
25,
1391,
68,
92,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1288,
361,
17923,
287,
357,
404,
292,
16934,
13,
38715,
5883,
3525,
62,
26861,
7597,
62,
51,
4503,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1280,
62,
15526,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
1303,
345,
460,
1895,
340,
10185,
357,
3237,
309,
4503,
82,
389,
1280,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
655,
588,
1479,
329,
783,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
39274,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1,
1212,
2695,
318,
3058,
1479,
284,
477,
2985,
526,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
39274,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
16185,
17923,
25,
1391,
4871,
2649,
92,
4943,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
41906,
2466,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
2735,
2198,
329,
1895,
11,
393,
39986,
1895,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
532,
1464,
2198,
329,
257,
1336,
12,
5239,
2581,
523,
11243,
5258,
460,
2610,
606,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
220,
1201,
356,
836,
470,
1107,
1464,
760,
546,
18239,
11,
356,
761,
284,
2198,
477,
7007,
326,
389,
4306,
8606,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
41906,
2466,
1174,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
407,
1280,
62,
15526,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
357,
29891,
62,
10951,
13,
41299,
3474,
6624,
6407,
1303,
12039,
307,
44529,
329,
428,
2198,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
290,
357,
1186,
62,
2100,
13,
15526,
37214,
6624,
6407,
1303,
611,
340,
338,
7498,
3614,
11,
788,
743,
761,
284,
2198,
11,
340,
1244,
307,
717,
530,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
393,
1336,
5239,
62,
25927,
6624,
6407,
8,
2599,
1303,
393,
8797,
1336,
12,
5239,
318,
9167,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
290,
6246,
62,
10951,
13,
15042,
62,
16366,
62,
29891,
290,
6246,
62,
10951,
13,
15042,
62,
16366,
62,
312,
287,
350,
47149,
62,
33,
42827,
62,
5097,
28495,
62,
14255,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1336,
5239,
62,
25927,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1738,
62,
1640,
62,
9122,
796,
1034,
292,
16934,
13,
32,
24318,
62,
38715,
5883,
3525,
62,
28206,
62,
2200,
35780,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1738,
62,
1640,
62,
9122,
796,
1034,
292,
16934,
13,
32,
24318,
62,
6242,
18601,
10659,
62,
28206,
62,
2200,
35780,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
19721,
11,
1217,
796,
6284,
15388,
62,
525,
3411,
62,
9122,
7,
29891,
62,
312,
28,
29891,
62,
10951,
13,
29891,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
62,
312,
28,
15390,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2205,
62,
1941,
28,
1941,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1738,
62,
1640,
62,
9122,
28,
41181,
62,
1640,
62,
9122,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
25927,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
11243,
5258,
714,
307,
866,
11,
1957,
2478,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
8798,
35528,
25,
1391,
68,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1957,
2363,
8004,
13,
33,
11159,
21886,
6624,
366,
31267,
13,
2398,
25,
24,
3064,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1217,
796,
4981,
13,
47,
5643,
5990,
2781,
12360,
7,
5990,
2781,
28,
17821,
11,
7875,
19895,
425,
15457,
28,
17821,
11,
7875,
11297,
15457,
28,
17821,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
523,
340,
1595,
470,
423,
284,
2198,
428,
1568,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1217,
796,
4981,
13,
47,
5643,
5990,
2781,
12360,
7,
5990,
2781,
28,
25101,
11,
7875,
19895,
425,
15457,
28,
25101,
11,
7875,
11297,
15457,
28,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
3443,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3613,
11243,
5258,
2438,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
10669,
796,
1217,
13,
19580,
10669,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1217,
13,
19580,
10669,
6624,
2638,
34,
4147,
13,
40717,
62,
21844,
62,
52,
4535,
24318,
1581,
14887,
1961,
25,
1303,
393,
1217,
13,
45008,
13290,
6624,
705,
36044,
468,
407,
587,
44529,
10354,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
611,
428,
318,
6407,
11,
788,
356,
460,
2245,
4737,
428,
640,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
921,
561,
651,
262,
976,
1441,
611,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
262,
6246,
373,
407,
20915,
319,
21226,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
262,
6246,
550,
587,
13140,
422,
262,
6831,
357,
21754,
1239,
1645,
1399,
828,
393,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
220,
220,
220,
262,
6246,
2391,
1239,
11196,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
41299,
3474,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
13295,
2420,
286,
1391,
15390,
62,
312,
92,
23485,
13,
366,
1343,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
21844,
62,
52,
4535,
24318,
1581,
14887,
1961,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
900,
4277,
757,
1912,
319,
4296,
422,
11243,
5258,
12405,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
13,
15526,
37214,
9487,
1431,
1722,
11297,
19746,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1217,
13,
19242,
11297,
15457,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
1303,
407,
1459,
2695,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1217,
13,
19242,
19895,
425,
15457,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1336,
5239,
62,
25927,
290,
21226,
62,
19721,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1309,
338,
787,
1654,
356,
760,
546,
428,
2836,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
6246,
62,
10951,
13,
7220,
62,
312,
6624,
1034,
292,
16934,
13,
29904,
62,
11929,
62,
25294,
38,
1961,
62,
1268,
62,
20608,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
775,
1392,
428,
1290,
11,
775,
761,
284,
1064,
503,
508,
428,
318,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
7220,
62,
10951,
11,
3722,
62,
8189,
796,
651,
62,
18439,
15388,
62,
29891,
62,
7220,
10951,
7,
29891,
62,
10951,
13,
29891,
62,
312,
11,
6246,
62,
10951,
13,
15042,
62,
16366,
62,
312,
11,
751,
75,
62,
6404,
62,
10951,
2625,
357,
7220,
7508,
407,
1865,
7723,
8,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21226,
62,
7220,
62,
10951,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
7220,
62,
312,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
7390,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
29460,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
5376,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
10951,
13,
7220,
62,
4906,
796,
21226,
62,
7220,
62,
10951,
13,
12982,
6030,
1303,
16926,
46,
532,
3060,
428,
284,
6246,
3084,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
6246,
62,
10951,
13,
29891,
62,
11201,
2387,
62,
2435,
796,
5633,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
267,
10210,
796,
1034,
292,
30645,
35,
9148,
571,
13,
404,
292,
30645,
11012,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
267,
10210,
13,
19119,
62,
29891,
7,
29891,
62,
10951,
13,
29891,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2836,
2389,
28,
29891,
62,
10951,
13,
7220,
62,
312,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20579,
28,
29891,
62,
10951,
13,
29460,
11,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
44529,
28,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10435,
62,
431,
79,
17474,
28,
16,
611,
6246,
62,
10951,
13,
19721,
62,
431,
79,
17474,
6624,
6407,
2073,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10435,
62,
431,
79,
14421,
28,
16,
611,
6246,
62,
10951,
13,
19721,
62,
431,
79,
14421,
6624,
6407,
2073,
657,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
6246,
62,
437,
28,
29891,
62,
10951,
13,
29891,
62,
11201,
2387,
62,
2435,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
40391,
62,
16366,
62,
312,
28,
29891,
62,
10951,
13,
15042,
62,
16366,
62,
312,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
21226,
62,
19721,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
366,
1212,
2695,
318,
1695,
329,
345,
284,
1895,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
10352,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
9787,
276,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
11828,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
10116,
32,
4146,
17534,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
43,
3955,
22061,
62,
30910,
40165,
62,
10116,
32,
4146,
17534,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
24941,
1391,
15390,
62,
312,
92,
1695,
13,
220,
350,
5643,
23219,
25,
1391,
4363,
13,
45008,
13290,
27422,
8670,
292,
23219,
25,
1391,
1186,
62,
2100,
13,
15526,
37214,
11828,
92,
532,
1391,
1186,
62,
2100,
13,
15526,
37214,
45008,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
3421,
422,
6509,
284,
7508,
33448,
12,
3312,
12,
2999,
284,
4646,
3487,
18931,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
24941,
1391,
15390,
62,
312,
92,
23485,
13,
220,
350,
5643,
23219,
25,
1391,
4363,
13,
45008,
13290,
92,
8670,
292,
25,
1391,
1186,
62,
2100,
13,
15526,
37214,
11828,
92,
532,
1391,
1186,
62,
2100,
13,
15526,
37214,
45008,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
1303,
3614,
986,
1136,
340,
8057,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
796,
6407,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
13,
15526,
37214,
9487,
1431,
1722,
11297,
19746,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
38286,
276,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
1034,
292,
16934,
13,
26861,
7597,
62,
50,
5883,
44,
13153,
62,
3620,
33,
1503,
11230,
1961,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1729,
38286,
276,
11,
475,
645,
1895,
13,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
45008,
796,
277,
1,
90,
1186,
62,
2100,
13,
15526,
37214,
11828,
92,
1391,
1186,
62,
2100,
13,
15526,
37214,
45008,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
407,
1336,
12,
5239,
6375,
357,
1662,
44529,
393,
1895,
37214,
855,
25101,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
2949,
11243,
5258,
2198,
2622,
25,
16854,
1391,
15390,
62,
312,
92,
1895,
37214,
25,
1391,
1186,
62,
2100,
13,
15526,
37214,
27422,
31885,
25,
1391,
29891,
62,
10951,
13,
41299,
3474,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
628,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
1303,
632,
338,
1280,
1895,
0,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
2949,
11243,
5258,
2198,
2622,
25,
16854,
1391,
15390,
62,
312,
92,
318,
1280,
1895,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
18232,
10627,
3188,
7170,
13,
43046,
407,
18832,
287,
1391,
68,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
1303,
460,
470,
307,
10667,
11,
481,
307,
22959,
13,
628,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
3611,
6631,
1391,
68,
92,
2111,
35520,
1895,
11247,
526,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
62,
2100,
318,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
796,
4981,
13,
15457,
19352,
20597,
3419,
1303,
787,
1654,
612,
338,
26235,
0,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
628,
220,
220,
220,
611,
1336,
5239,
62,
25927,
290,
1005,
62,
2100,
13,
15526,
37214,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
4325,
17949,
2130,
5009,
281,
12531,
287,
16854,
4235,
780,
484,
836,
470,
423,
281,
1848,
13,
16374,
306,
2742,
13,
32068,
284,
7508,
357,
6738,
4049,
8,
198,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
13295,
12,
5239,
1895,
329,
1391,
15390,
62,
312,
92,
6699,
37913,
1186,
62,
2100,
13,
15526,
37214,
10669,
92,
737,
311,
408,
29164,
29891,
62,
312,
38362,
8798,
29164,
1186,
62,
2100,
13,
15526,
37214,
45008,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
10951,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1005,
62,
2100,
13,
15526,
37214,
27509,
50108,
796,
31456,
628,
220,
220,
220,
1441,
1005,
62,
2100,
198,
198,
2,
1303,
29113,
29113,
29113,
29113,
14468,
2,
198,
2,
198,
2,
220,
37347,
1847,
371,
12425,
4944,
1546,
198,
2,
198,
2,
1303,
29113,
29113,
29113,
29113,
14468,
2,
198,
4299,
651,
62,
79,
5643,
62,
29891,
62,
10951,
7,
29891,
62,
312,
28,
14202,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
5456,
62,
312,
28,
404,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1005,
563,
28,
17821,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2581,
28,
14202,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
3497,
262,
11243,
5258,
6246,
2746,
11,
290,
651,
257,
649,
6246,
4522,
422,
262,
6284,
4382,
611,
2622,
220,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
31456,
796,
13538,
198,
220,
220,
220,
24955,
62,
3672,
796,
366,
1136,
62,
79,
5643,
62,
29891,
62,
10951,
1,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
5456,
62,
312,
6624,
1034,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
25,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
43917,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
23575,
7508,
869,
329,
23575,
4522,
25,
1391,
29891,
62,
312,
92,
20985,
4522,
373,
8005,
62,
5097,
28495,
62,
2389,
37913,
404,
292,
16934,
13,
15285,
62,
5097,
28495,
62,
2389,
30072,
19570,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
6246,
62,
312,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
62,
21886,
796,
2779,
1343,
277,
1,
14,
85,
16,
14,
47649,
5344,
14,
4061,
30487,
1343,
277,
13984,
36044,
2389,
34758,
29891,
62,
312,
36786,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1336,
62,
21886,
796,
2779,
1343,
277,
1,
14,
85,
16,
14,
47649,
5344,
14,
4061,
30487,
628,
220,
220,
220,
43089,
62,
6371,
796,
366,
2949,
2581,
7508,
526,
198,
220,
220,
220,
611,
2581,
318,
407,
6045,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
1303,
655,
287,
1339,
428,
18616,
281,
4049,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
43089,
62,
6371,
796,
2581,
13,
6371,
1303,
284,
2604,
24955,
19016,
198,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1208,
198,
220,
220,
220,
220,
198,
220,
220,
220,
2836,
62,
541,
796,
651,
62,
7220,
62,
541,
7,
25927,
8,
1303,
5860,
281,
6101,
611,
1395,
62,
13775,
39743,
1961,
62,
13775,
2209,
318,
287,
13639,
198,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
4585,
11243,
5258,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
611,
2836,
62,
541,
318,
407,
6045,
290,
2836,
62,
541,
318,
407,
10148,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
24697,
796,
1391,
1034,
292,
16934,
13,
55,
62,
13775,
39743,
1961,
62,
13775,
25,
7220,
62,
541,
1782,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
7007,
13,
1136,
7,
12853,
62,
21886,
11,
24697,
8,
1303,
4889,
11243,
5258,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
23575,
4522,
29164,
29891,
62,
312,
27422,
1395,
62,
13775,
39743,
1961,
62,
13775,
422,
8323,
5344,
4061,
25,
1391,
7220,
62,
541,
27422,
10289,
25,
1391,
42180,
62,
6371,
92,
11243,
5258,
23575,
14151,
25,
1391,
79,
5643,
62,
29891,
62,
10951,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
7007,
13,
1136,
7,
12853,
62,
21886,
8,
1303,
4889,
11243,
5258,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
69,
1,
90,
13345,
263,
62,
3672,
38362,
35263,
4382,
407,
1695,
13,
1391,
68,
92,
4943,
198,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
3722,
62,
8189,
796,
21226,
62,
29891,
62,
10951,
13,
13376,
62,
8189,
1303,
3613,
340,
329,
257,
1643,
357,
732,
6330,
21226,
62,
29891,
62,
10951,
2174,
8,
198,
220,
220,
220,
220,
220,
220,
220,
267,
10210,
13,
29510,
62,
79,
5643,
62,
6404,
62,
13345,
7,
13345,
263,
28,
13345,
263,
62,
3672,
11,
1738,
28,
13345,
263,
62,
3672,
11,
6246,
62,
312,
28,
29891,
62,
312,
11,
21226,
62,
13345,
28,
12853,
62,
21886,
11,
20966,
62,
21975,
28,
7220,
62,
541,
11,
1441,
62,
13376,
62,
8189,
28,
13376,
62,
8189,
8,
1303,
5972,
4889,
11243,
5258,
628,
220,
220,
220,
220,
220,
220,
220,
611,
3722,
62,
8189,
1875,
38210,
25,
1303,
304,
13,
70,
1539,
357,
4023,
34,
4147,
13,
40717,
62,
4059,
62,
1268,
31800,
1847,
62,
35009,
5959,
62,
24908,
11,
2638,
34,
4147,
13,
40717,
62,
31938,
62,
35009,
27389,
62,
52,
4535,
11731,
4146,
17534,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4049,
62,
5239,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
11243,
5258,
6246,
62,
10951,
3722,
62,
8189,
318,
1391,
13376,
62,
8189,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
18224,
62,
5239,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
1949,
1752,
1231,
262,
6246,
4522,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
1005,
563,
6624,
6407,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
651,
62,
79,
5643,
62,
29891,
62,
10951,
7,
16366,
62,
312,
28,
16366,
62,
312,
11,
1005,
563,
28,
25101,
11,
2581,
28,
25927,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
18224,
62,
5239,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
6381,
9150,
796,
4049,
62,
5239,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1949,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
21226,
62,
29891,
62,
10951,
13,
17752,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4259,
62,
79,
5173,
5109,
62,
259,
12102,
62,
77,
1952,
7,
79,
5643,
62,
29891,
62,
10951,
11,
24955,
62,
3672,
28,
13345,
263,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
7,
1174,
79,
5643,
62,
29891,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
24442,
7,
69,
1,
28875,
5258,
12678,
6762,
11,
8125,
6101,
23575,
14151,
25,
1391,
79,
5643,
62,
29891,
62,
10951,
92,
10289,
25,
1391,
42180,
62,
6371,
92,
19570,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2845,
35528,
355,
304,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
31456,
796,
277,
1,
90,
13345,
263,
62,
3672,
38362,
18261,
7587,
4049,
1391,
68,
36786,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
49706,
13,
18224,
7,
19662,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
796,
4981,
13,
47,
5643,
36044,
12360,
7,
1174,
79,
5643,
62,
29891,
62,
10951,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
13376,
62,
26209,
796,
3722,
62,
8189,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21226,
62,
29891,
62,
10951,
13,
79,
5643,
62,
6381,
9150,
796,
31456,
220,
628,
220,
220,
220,
1441,
21226,
62,
29891,
62,
10951,
198,
198,
361,
11593,
3672,
834,
6624,
366,
834,
12417,
834,
1298,
198,
220,
220,
220,
1330,
10412,
395,
198,
220,
220,
220,
1330,
25064,
198,
220,
220,
220,
220,
198,
220,
220,
220,
3601,
357,
1821,
9,
1,
9,
1600,
366,
404,
292,
23579,
5990,
8481,
51,
3558,
1600,
2319,
9,
1,
9,
4943,
198,
220,
220,
220,
3601,
357,
69,
1,
28768,
287,
11361,
1391,
17597,
13,
9641,
62,
10951,
58,
15,
60,
27422,
90,
17597,
13,
9641,
62,
10951,
58,
16,
48999,
4943,
198,
220,
220,
220,
198,
220,
220,
220,
49706,
796,
18931,
13,
1136,
11187,
1362,
7,
834,
3672,
834,
8,
198,
220,
220,
220,
442,
796,
18931,
13,
12124,
25060,
3419,
198,
220,
220,
220,
1296,
1436,
796,
18931,
13,
8479,
1436,
10786,
4,
7,
292,
310,
524,
8,
82,
4064,
7,
3672,
8,
82,
4064,
7,
2815,
23397,
8,
67,
532,
4064,
7,
5715,
3672,
8,
82,
4064,
7,
20500,
8,
82,
11537,
220,
220,
220,
220,
198,
220,
220,
220,
442,
13,
2617,
8479,
1436,
7,
687,
1436,
8,
198,
220,
220,
220,
49706,
13,
2860,
25060,
7,
354,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
10412,
395,
13,
9288,
4666,
7,
18076,
33152,
28,
4598,
310,
395,
13,
23304,
47643,
1797,
91,
4598,
310,
395,
13,
35510,
42126,
35400,
62,
12418,
2043,
1546,
47,
11598,
8,
198,
220,
220,
220,
3601,
5855,
37,
5362,
13,
30307,
1844,
19570
] | 2.070156 | 18,801 |
from os.path import dirname, basename, isfile
import glob
modules = glob.glob(dirname(__file__)+"/*.py")
__all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')]
from .proximal_join import proximal_join, get_column_types
from .interpolate import interpolate
from .stitch import stitch
from .jump_correct import jump_correct
from .derivative import derivative
| [
6738,
28686,
13,
6978,
1330,
26672,
3672,
11,
1615,
12453,
11,
318,
7753,
220,
198,
11748,
15095,
198,
18170,
796,
15095,
13,
4743,
672,
7,
15908,
3672,
7,
834,
7753,
834,
47762,
1,
15211,
13,
9078,
4943,
198,
834,
439,
834,
796,
685,
1615,
12453,
7,
69,
38381,
21912,
18,
60,
329,
277,
287,
13103,
611,
318,
7753,
7,
69,
8,
290,
407,
277,
13,
437,
2032,
342,
10786,
834,
15003,
834,
13,
9078,
11537,
60,
198,
198,
6738,
764,
1676,
87,
4402,
62,
22179,
1330,
14793,
4402,
62,
22179,
11,
651,
62,
28665,
62,
19199,
198,
6738,
764,
3849,
16104,
378,
1330,
39555,
378,
198,
6738,
764,
301,
2007,
1330,
24695,
198,
6738,
764,
43327,
62,
30283,
1330,
4391,
62,
30283,
198,
6738,
764,
1082,
452,
876,
1330,
27255,
628
] | 3.045802 | 131 |
#!/usr/bin/env python3
"""
Author : Derek Widmayer <[email protected]>
Date : 2021-01-10
Purpose: Rock the Casbah
"""
import argparse
# --------------------------------------------------
def get_args():
"""Jump the five"""
parser = argparse.ArgumentParser(
description='Jump the five',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('str',
metavar='str',
help='Input text')
return parser.parse_args()
# --------------------------------------------------
def main():
"""Encode jump the five"""
text = get_args().str
encoding = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'}
encoded_text = ""
for char in text:
encoded_text += encoding.get(char, char)
print(f'{encoded_text}')
# --------------------------------------------------
if __name__ == '__main__':
main()
| [
2,
48443,
14629,
14,
8800,
14,
24330,
21015,
18,
198,
37811,
198,
13838,
1058,
20893,
24801,
76,
2794,
1279,
67,
28029,
11261,
68,
31,
14816,
13,
785,
29,
198,
10430,
220,
220,
1058,
33448,
12,
486,
12,
940,
198,
30026,
3455,
25,
4631,
262,
11294,
47041,
198,
37811,
198,
198,
11748,
1822,
29572,
628,
198,
2,
20368,
1783,
438,
198,
4299,
651,
62,
22046,
33529,
198,
220,
220,
220,
37227,
36046,
262,
1936,
37811,
628,
220,
220,
220,
30751,
796,
1822,
29572,
13,
28100,
1713,
46677,
7,
198,
220,
220,
220,
220,
220,
220,
220,
6764,
11639,
36046,
262,
1936,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
1296,
1436,
62,
4871,
28,
853,
29572,
13,
28100,
1713,
7469,
13185,
22087,
8479,
1436,
8,
628,
220,
220,
220,
30751,
13,
2860,
62,
49140,
10786,
2536,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1138,
615,
283,
11639,
2536,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1037,
11639,
20560,
2420,
11537,
628,
220,
220,
220,
1441,
30751,
13,
29572,
62,
22046,
3419,
628,
198,
2,
20368,
1783,
438,
198,
4299,
1388,
33529,
198,
220,
220,
220,
37227,
4834,
8189,
4391,
262,
1936,
37811,
628,
220,
220,
220,
2420,
796,
651,
62,
22046,
22446,
2536,
198,
220,
220,
220,
21004,
796,
1391,
6,
16,
10354,
705,
24,
3256,
705,
17,
10354,
705,
23,
3256,
705,
18,
10354,
705,
22,
3256,
705,
19,
10354,
705,
21,
3256,
705,
20,
10354,
705,
15,
3256,
705,
21,
10354,
705,
19,
3256,
705,
22,
10354,
705,
18,
3256,
705,
23,
10354,
705,
17,
3256,
705,
24,
10354,
705,
16,
3256,
705,
15,
10354,
705,
20,
6,
92,
628,
220,
220,
220,
30240,
62,
5239,
796,
13538,
198,
220,
220,
220,
329,
1149,
287,
2420,
25,
198,
220,
220,
220,
220,
220,
220,
220,
30240,
62,
5239,
15853,
21004,
13,
1136,
7,
10641,
11,
1149,
8,
628,
220,
220,
220,
3601,
7,
69,
6,
90,
12685,
9043,
62,
5239,
92,
11537,
628,
198,
2,
20368,
1783,
438,
198,
361,
11593,
3672,
834,
6624,
705,
834,
12417,
834,
10354,
198,
220,
220,
220,
1388,
3419,
198
] | 2.544271 | 384 |
import os
import os.path
import glob
import cv2
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
IMAGENET_MEAN_BGR = [103.939, 116.779, 123.68]
def load_images(data_path, image_height, image_width, plot=False):
"""
Read an image in BGR,
resize to image_height x image_width,
subtract mean of ImageNet dataset
"""
# Get a list of images in the folder
os.chdir(data_path)
list = glob.glob('*.jpg')
N_images = len(list)
# Create arrays to store data
images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32)
if plot:
fig = plt.figure(figsize=(15,6))
for i in range(0, N_images):
# Load image
image_name = list[i]
image = cv2.imread(image_name)
if plot:
# Plot an image
fig.add_subplot(1, N_images, i+1)
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()
# Resize to image_height x image_width
images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width))
# Subtract ImageNet mean
images[i, :, :, :] -= IMAGENET_MEAN_BGR
return images
def load_images_with_labels(data_path, labels_path, image_height, image_width):
"""
Read an image in BGR,
resize to image_height x image_width,
subtract mean of ImageNet dataset.
Assign a label to an image:
1 if there is a tumour, 0 otherwise
"""
# Get a list of images in the folder
os.chdir(data_path)
list = glob.glob('*.jpeg')
N_images = len(list)
return N_images
# Create arrays to store data and labels
images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32)
labels = -1 * np.ones((N_images, 1), dtype = np.float32)
for i in range(0, N_images):
# Load image in BGR
image_name = list[i]
image = cv2.imread(image_name)
# Load image in RGB
# image = plt.imread(image_name)
# Convert RGB to BGR
#image = image[:, :, [2, 1, 0]]
# Resize to image_height x image_width
images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width))
# Subtract ImageNet mean
images[i, :, :, :] -= IMAGENET_MEAN_BGR
# Assign a label to an image:
# 1 if there is a tumour, 0 otherwise
file_path = labels_path + image_name[:-5] + ".txt"
if os.path.isfile(file_path):
labels[i] = 1
else:
labels[i] = 0
return images, labels
def load_images_with_masks(data_path, mask_path, image_height, image_width, binary=False, plot=False):
"""
Read an image in BGR,
resize to image_height x image_width,
subtract mean of ImageNet dataset.
Read the corresponding binary mask.
"""
# Get the list of images
os.chdir(data_path)
image_list = glob.glob('*.jpg')
N_images = len(image_list)
# Get the list of masks
os.chdir(mask_path)
mask_list = glob.glob('*.jpg')
# Create arrays to store data
images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32)
masks = np.zeros((N_images, image_height, image_width), dtype = np.float32)
if plot:
fig = plt.figure(figsize=(15,6))
for i in range(0, N_images):
# Load image
image_name = image_list[i]
os.chdir(data_path)
image = cv2.imread(image_name)
# Resize to image_height x image_width
images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width))
# Subtract ImageNet mean
images[i, :, :, :] -= IMAGENET_MEAN_BGR
# Check if there is a mask
mask_name = image_name[:-4] + '_mask.jpg'
if mask_name in mask_list:
os.chdir(mask_path)
mask = cv2.resize(plt.imread(mask_name).astype(np.float32), (image_height, image_width))
if binary:
mask = 0 * (mask < 128.0) + 1 * (mask >= 128.0)
masks[i, :, :] = mask
if plot:
# Plot image
fig.add_subplot(N_images, 2, 2*i+1)
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
# Plot mask
fig.add_subplot(N_images, 2, 2*i+2)
plt.imshow(mask)
plt.axis('off')
plt.show()
return images, masks
def split_train_val(data, labels, train_ratio=0.8):
"""
Split data on training and validation sets
"""
# Shuffle indeces
n = len(data)
indeces = list(range(0, n))
np.random.shuffle(indeces)
# Create training set
train_indeces = indeces[:round(train_ratio * n)]
X_train = data[train_indeces, :, :, :]
y_train = labels[train_indeces]
# Create validation set
val_indeces = indeces[round(train_ratio * n):]
X_val = data[val_indeces, :, :, :]
y_val = labels[val_indeces]
print("Training set:", X_train.shape, y_train.shape)
print("Validation set:", X_val.shape, y_val.shape)
return X_train, y_train, X_val, y_val
def stratified_train_val(data, labels, train_ratio=0.8, balance_classes=False):
"""
Create stratified training and validation sets for binary data
"""
# numbers of positive and negative samples in the dataset
n_pos = int(sum(labels))
n_neg = data.shape[0] - n_pos
print('Number of negative samples: ', n_neg)
print('Number of positive samples: ', n_pos)
print('Fraction of positive samples: ', n_pos / data.shape[0] * 100, '%')
# to fix class imbalance equalize
# the numbers of negative and positive samples
if balance_classes:
if n_neg > n_pos:
n_neg = n_pos
else:
n_pos = n_neg
# print the numbers of negative/positive samples
# in training and validation sets
print('Positive samples:',
round(train_ratio * n_pos), "in y_train,",
round((1 - train_ratio) * n_pos), "in y_val")
print('Negative samples:',
round(train_ratio * n_neg), "in y_train,",
round((1 - train_ratio) * n_neg), "in y_val")
# extract, shuffle and split indeces of positive samples
pos_indeces = (np.where(labels == 1))[0]
np.random.shuffle(pos_indeces)
pos_indeces_train = pos_indeces[:round(train_ratio * n_pos)]
pos_indeces_val = pos_indeces[round(train_ratio * n_pos):]
# extract, shuffle and split indeces of negative samples
neg_indeces = (np.where(labels == 0))[0]
np.random.shuffle(neg_indeces)
neg_indeces_train = neg_indeces[:round(train_ratio * n_neg)]
neg_indeces_val = neg_indeces[round(train_ratio * n_neg):]
# create a training set
train_indeces = np.append(pos_indeces_train, neg_indeces_train, axis=0)
np.random.shuffle(train_indeces)
X_train = data[train_indeces, :, :, :]
y_train = labels[train_indeces]
# create a validation set
val_indeces = np.append(pos_indeces_val, neg_indeces_val, axis = 0)
np.random.shuffle(val_indeces)
X_val = data[val_indeces, :, :, :]
y_val = labels[val_indeces]
print("Training set:", X_train.shape, y_train.shape)
print("Validation set:", X_val.shape, y_val.shape)
return X_train, y_train, X_val, y_val
| [
11748,
28686,
198,
11748,
28686,
13,
6978,
198,
11748,
15095,
198,
11748,
269,
85,
17,
198,
11748,
19798,
292,
355,
279,
67,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
2603,
29487,
8019,
13,
9078,
29487,
355,
458,
83,
198,
198,
3955,
4760,
1677,
2767,
62,
11682,
1565,
62,
33,
10761,
796,
685,
15197,
13,
24,
2670,
11,
18693,
13,
40393,
11,
17031,
13,
3104,
60,
198,
198,
4299,
3440,
62,
17566,
7,
7890,
62,
6978,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
11,
7110,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4149,
281,
2939,
287,
347,
10761,
11,
198,
220,
220,
220,
47558,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
11,
198,
220,
220,
220,
34128,
1612,
286,
7412,
7934,
27039,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
3497,
257,
1351,
286,
4263,
287,
262,
9483,
198,
220,
220,
220,
28686,
13,
354,
15908,
7,
7890,
62,
6978,
8,
198,
220,
220,
220,
1351,
796,
15095,
13,
4743,
672,
10786,
24620,
9479,
11537,
198,
220,
220,
220,
399,
62,
17566,
796,
18896,
7,
4868,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
26515,
284,
3650,
1366,
198,
220,
220,
220,
4263,
796,
45941,
13,
9107,
418,
19510,
45,
62,
17566,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
11,
513,
828,
288,
4906,
796,
45941,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
7110,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2336,
796,
458,
83,
13,
26875,
7,
5647,
7857,
16193,
1314,
11,
21,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
399,
62,
17566,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8778,
2939,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
62,
3672,
796,
1351,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
796,
269,
85,
17,
13,
320,
961,
7,
9060,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7110,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
28114,
281,
2939,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
13,
2860,
62,
7266,
29487,
7,
16,
11,
399,
62,
17566,
11,
1312,
10,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
33967,
17,
13,
33967,
83,
10258,
7,
9060,
11,
269,
85,
17,
13,
46786,
62,
33,
10761,
17,
36982,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
22704,
10786,
2364,
11537,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
12860,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1874,
1096,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
796,
269,
85,
17,
13,
411,
1096,
7,
9060,
13,
459,
2981,
7,
37659,
13,
22468,
2624,
828,
7,
9060,
62,
17015,
11,
2939,
62,
10394,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3834,
83,
974,
7412,
7934,
1612,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
48185,
8959,
4760,
1677,
2767,
62,
11682,
1565,
62,
33,
10761,
628,
220,
220,
220,
1441,
4263,
198,
198,
4299,
3440,
62,
17566,
62,
4480,
62,
23912,
1424,
7,
7890,
62,
6978,
11,
14722,
62,
6978,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4149,
281,
2939,
287,
347,
10761,
11,
198,
220,
220,
220,
47558,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
11,
198,
220,
220,
220,
34128,
1612,
286,
7412,
7934,
27039,
13,
198,
220,
220,
220,
2195,
570,
257,
6167,
284,
281,
2939,
25,
198,
220,
220,
220,
352,
611,
612,
318,
257,
11814,
454,
11,
657,
4306,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
3497,
257,
1351,
286,
4263,
287,
262,
9483,
198,
220,
220,
220,
28686,
13,
354,
15908,
7,
7890,
62,
6978,
8,
198,
220,
220,
220,
1351,
796,
15095,
13,
4743,
672,
10786,
24620,
73,
22071,
11537,
198,
220,
220,
220,
399,
62,
17566,
796,
18896,
7,
4868,
8,
198,
220,
220,
220,
1441,
399,
62,
17566,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
26515,
284,
3650,
1366,
290,
14722,
198,
220,
220,
220,
4263,
796,
45941,
13,
9107,
418,
19510,
45,
62,
17566,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
11,
513,
828,
288,
4906,
796,
45941,
13,
22468,
2624,
8,
198,
220,
220,
220,
14722,
796,
532,
16,
1635,
45941,
13,
1952,
19510,
45,
62,
17566,
11,
352,
828,
288,
4906,
796,
45941,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
399,
62,
17566,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8778,
2939,
287,
347,
10761,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
62,
3672,
796,
1351,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
796,
269,
85,
17,
13,
320,
961,
7,
9060,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8778,
2939,
287,
25228,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2939,
796,
458,
83,
13,
320,
961,
7,
9060,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
38240,
25228,
284,
347,
10761,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
9060,
796,
2939,
58,
45299,
1058,
11,
685,
17,
11,
352,
11,
657,
11907,
628,
220,
220,
220,
220,
220,
220,
220,
1303,
1874,
1096,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
796,
269,
85,
17,
13,
411,
1096,
7,
9060,
13,
459,
2981,
7,
37659,
13,
22468,
2624,
828,
7,
9060,
62,
17015,
11,
2939,
62,
10394,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3834,
83,
974,
7412,
7934,
1612,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
48185,
8959,
4760,
1677,
2767,
62,
11682,
1565,
62,
33,
10761,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
2195,
570,
257,
6167,
284,
281,
2939,
25,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
352,
611,
612,
318,
257,
11814,
454,
11,
657,
4306,
198,
220,
220,
220,
220,
220,
220,
220,
2393,
62,
6978,
796,
14722,
62,
6978,
1343,
2939,
62,
3672,
58,
21912,
20,
60,
1343,
27071,
14116,
1,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
28686,
13,
6978,
13,
4468,
576,
7,
7753,
62,
6978,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
58,
72,
60,
796,
352,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
14722,
58,
72,
60,
796,
657,
198,
220,
198,
220,
220,
220,
1441,
4263,
11,
14722,
198,
198,
4299,
3440,
62,
17566,
62,
4480,
62,
5356,
591,
7,
7890,
62,
6978,
11,
9335,
62,
6978,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
11,
13934,
28,
25101,
11,
7110,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
4149,
281,
2939,
287,
347,
10761,
11,
198,
220,
220,
220,
47558,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
11,
198,
220,
220,
220,
34128,
1612,
286,
7412,
7934,
27039,
13,
198,
220,
220,
220,
4149,
262,
11188,
13934,
9335,
13,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
3497,
262,
1351,
286,
4263,
198,
220,
220,
220,
28686,
13,
354,
15908,
7,
7890,
62,
6978,
8,
198,
220,
220,
220,
2939,
62,
4868,
796,
15095,
13,
4743,
672,
10786,
24620,
9479,
11537,
198,
220,
220,
220,
399,
62,
17566,
796,
18896,
7,
9060,
62,
4868,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
3497,
262,
1351,
286,
20680,
198,
220,
220,
220,
28686,
13,
354,
15908,
7,
27932,
62,
6978,
8,
198,
220,
220,
220,
9335,
62,
4868,
796,
15095,
13,
4743,
672,
10786,
24620,
9479,
11537,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
26515,
284,
3650,
1366,
198,
220,
220,
220,
4263,
796,
45941,
13,
9107,
418,
19510,
45,
62,
17566,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
11,
513,
828,
288,
4906,
796,
45941,
13,
22468,
2624,
8,
198,
220,
220,
220,
20680,
796,
45941,
13,
9107,
418,
19510,
45,
62,
17566,
11,
2939,
62,
17015,
11,
2939,
62,
10394,
828,
288,
4906,
796,
45941,
13,
22468,
2624,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
611,
7110,
25,
198,
220,
220,
220,
220,
220,
220,
220,
2336,
796,
458,
83,
13,
26875,
7,
5647,
7857,
16193,
1314,
11,
21,
4008,
198,
220,
220,
220,
220,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
15,
11,
399,
62,
17566,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
8778,
2939,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
62,
3672,
796,
2939,
62,
4868,
58,
72,
60,
198,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
354,
15908,
7,
7890,
62,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
2939,
796,
269,
85,
17,
13,
320,
961,
7,
9060,
62,
3672,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
1874,
1096,
284,
2939,
62,
17015,
2124,
2939,
62,
10394,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
796,
269,
85,
17,
13,
411,
1096,
7,
9060,
13,
459,
2981,
7,
37659,
13,
22468,
2624,
828,
7,
9060,
62,
17015,
11,
2939,
62,
10394,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
3834,
83,
974,
7412,
7934,
1612,
198,
220,
220,
220,
220,
220,
220,
220,
4263,
58,
72,
11,
1058,
11,
1058,
11,
1058,
60,
48185,
8959,
4760,
1677,
2767,
62,
11682,
1565,
62,
33,
10761,
198,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
6822,
611,
612,
318,
257,
9335,
198,
220,
220,
220,
220,
220,
220,
220,
9335,
62,
3672,
796,
2939,
62,
3672,
58,
21912,
19,
60,
1343,
705,
62,
27932,
13,
9479,
6,
198,
220,
220,
220,
220,
220,
220,
220,
611,
9335,
62,
3672,
287,
9335,
62,
4868,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28686,
13,
354,
15908,
7,
27932,
62,
6978,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9335,
796,
269,
85,
17,
13,
411,
1096,
7,
489,
83,
13,
320,
961,
7,
27932,
62,
3672,
737,
459,
2981,
7,
37659,
13,
22468,
2624,
828,
357,
9060,
62,
17015,
11,
2939,
62,
10394,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
611,
13934,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
9335,
796,
657,
1635,
357,
27932,
1279,
13108,
13,
15,
8,
1343,
352,
1635,
357,
27932,
18189,
13108,
13,
15,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
20680,
58,
72,
11,
1058,
11,
1058,
60,
796,
9335,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
611,
7110,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
28114,
2939,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
13,
2860,
62,
7266,
29487,
7,
45,
62,
17566,
11,
362,
11,
362,
9,
72,
10,
16,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
33967,
17,
13,
33967,
83,
10258,
7,
9060,
11,
269,
85,
17,
13,
46786,
62,
33,
10761,
17,
36982,
4008,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
22704,
10786,
2364,
11537,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
28114,
9335,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2336,
13,
2860,
62,
7266,
29487,
7,
45,
62,
17566,
11,
362,
11,
362,
9,
72,
10,
17,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
320,
12860,
7,
27932,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
458,
83,
13,
22704,
10786,
2364,
11537,
220,
220,
198,
220,
220,
220,
220,
198,
220,
220,
220,
458,
83,
13,
12860,
3419,
198,
220,
220,
220,
1441,
4263,
11,
20680,
198,
198,
4299,
6626,
62,
27432,
62,
2100,
7,
7890,
11,
14722,
11,
4512,
62,
10366,
952,
28,
15,
13,
23,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
27758,
1366,
319,
3047,
290,
21201,
5621,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
911,
18137,
29077,
274,
198,
220,
220,
220,
299,
796,
18896,
7,
7890,
8,
198,
220,
220,
220,
29077,
274,
796,
1351,
7,
9521,
7,
15,
11,
299,
4008,
198,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
521,
721,
274,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
3047,
900,
198,
220,
220,
220,
4512,
62,
521,
721,
274,
796,
29077,
274,
58,
25,
744,
7,
27432,
62,
10366,
952,
1635,
299,
15437,
198,
220,
220,
220,
1395,
62,
27432,
796,
1366,
58,
27432,
62,
521,
721,
274,
11,
1058,
11,
1058,
11,
1058,
60,
198,
220,
220,
220,
331,
62,
27432,
796,
14722,
58,
27432,
62,
521,
721,
274,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
13610,
21201,
900,
198,
220,
220,
220,
1188,
62,
521,
721,
274,
796,
29077,
274,
58,
744,
7,
27432,
62,
10366,
952,
1635,
299,
2599,
60,
198,
220,
220,
220,
1395,
62,
2100,
796,
1366,
58,
2100,
62,
521,
721,
274,
11,
1058,
11,
1058,
11,
1058,
60,
198,
220,
220,
220,
331,
62,
2100,
796,
14722,
58,
2100,
62,
521,
721,
274,
60,
628,
220,
220,
220,
3601,
7203,
44357,
900,
25,
1600,
1395,
62,
27432,
13,
43358,
11,
331,
62,
27432,
13,
43358,
8,
198,
220,
220,
220,
3601,
7203,
7762,
24765,
900,
25,
1600,
1395,
62,
2100,
13,
43358,
11,
331,
62,
2100,
13,
43358,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
1395,
62,
27432,
11,
331,
62,
27432,
11,
1395,
62,
2100,
11,
331,
62,
2100,
198,
198,
4299,
25369,
1431,
62,
27432,
62,
2100,
7,
7890,
11,
14722,
11,
4512,
62,
10366,
952,
28,
15,
13,
23,
11,
5236,
62,
37724,
28,
25101,
2599,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
13610,
25369,
1431,
3047,
290,
21201,
5621,
329,
13934,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
3146,
286,
3967,
290,
4633,
8405,
287,
262,
27039,
198,
220,
220,
220,
299,
62,
1930,
796,
493,
7,
16345,
7,
23912,
1424,
4008,
198,
220,
220,
220,
299,
62,
12480,
796,
1366,
13,
43358,
58,
15,
60,
532,
299,
62,
1930,
198,
220,
220,
220,
3601,
10786,
15057,
286,
4633,
8405,
25,
46083,
299,
62,
12480,
8,
198,
220,
220,
220,
3601,
10786,
15057,
286,
3967,
8405,
25,
46083,
299,
62,
1930,
8,
198,
220,
220,
220,
3601,
10786,
37,
7861,
286,
3967,
8405,
25,
46083,
299,
62,
1930,
1220,
1366,
13,
43358,
58,
15,
60,
1635,
1802,
11,
705,
4,
11537,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
284,
4259,
1398,
32556,
4961,
1096,
198,
220,
220,
220,
1303,
262,
3146,
286,
4633,
290,
3967,
8405,
198,
220,
220,
220,
611,
5236,
62,
37724,
25,
198,
220,
220,
220,
220,
220,
220,
220,
611,
299,
62,
12480,
1875,
299,
62,
1930,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
12480,
796,
299,
62,
1930,
198,
220,
220,
220,
220,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
1930,
796,
299,
62,
12480,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
3601,
262,
3146,
286,
4633,
14,
24561,
8405,
198,
220,
220,
220,
1303,
287,
3047,
290,
21201,
5621,
198,
220,
220,
220,
3601,
10786,
21604,
1800,
8405,
25,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2835,
7,
27432,
62,
10366,
952,
1635,
299,
62,
1930,
828,
366,
259,
331,
62,
27432,
553,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2835,
19510,
16,
532,
4512,
62,
10366,
952,
8,
1635,
299,
62,
1930,
828,
366,
259,
331,
62,
2100,
4943,
198,
220,
220,
220,
3601,
10786,
32863,
876,
8405,
25,
3256,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2835,
7,
27432,
62,
10366,
952,
1635,
299,
62,
12480,
828,
366,
259,
331,
62,
27432,
553,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2835,
19510,
16,
532,
4512,
62,
10366,
952,
8,
1635,
299,
62,
12480,
828,
366,
259,
331,
62,
2100,
4943,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
7925,
11,
36273,
290,
6626,
29077,
274,
286,
3967,
8405,
198,
220,
220,
220,
1426,
62,
521,
721,
274,
796,
357,
37659,
13,
3003,
7,
23912,
1424,
6624,
352,
4008,
58,
15,
60,
198,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
1930,
62,
521,
721,
274,
8,
198,
220,
220,
220,
1426,
62,
521,
721,
274,
62,
27432,
796,
1426,
62,
521,
721,
274,
58,
25,
744,
7,
27432,
62,
10366,
952,
1635,
299,
62,
1930,
15437,
198,
220,
220,
220,
1426,
62,
521,
721,
274,
62,
2100,
796,
1426,
62,
521,
721,
274,
58,
744,
7,
27432,
62,
10366,
952,
1635,
299,
62,
1930,
2599,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
7925,
11,
36273,
290,
6626,
29077,
274,
286,
4633,
8405,
198,
220,
220,
220,
2469,
62,
521,
721,
274,
796,
357,
37659,
13,
3003,
7,
23912,
1424,
6624,
657,
4008,
58,
15,
60,
198,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
12480,
62,
521,
721,
274,
8,
198,
220,
220,
220,
2469,
62,
521,
721,
274,
62,
27432,
796,
2469,
62,
521,
721,
274,
58,
25,
744,
7,
27432,
62,
10366,
952,
1635,
299,
62,
12480,
15437,
198,
220,
220,
220,
2469,
62,
521,
721,
274,
62,
2100,
796,
2469,
62,
521,
721,
274,
58,
744,
7,
27432,
62,
10366,
952,
1635,
299,
62,
12480,
2599,
60,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1303,
2251,
257,
3047,
900,
198,
220,
220,
220,
4512,
62,
521,
721,
274,
796,
45941,
13,
33295,
7,
1930,
62,
521,
721,
274,
62,
27432,
11,
2469,
62,
521,
721,
274,
62,
27432,
11,
16488,
28,
15,
8,
198,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
27432,
62,
521,
721,
274,
8,
198,
220,
220,
220,
1395,
62,
27432,
796,
1366,
58,
27432,
62,
521,
721,
274,
11,
1058,
11,
1058,
11,
1058,
60,
198,
220,
220,
220,
331,
62,
27432,
796,
14722,
58,
27432,
62,
521,
721,
274,
60,
628,
220,
220,
220,
1303,
2251,
257,
21201,
900,
198,
220,
220,
220,
1188,
62,
521,
721,
274,
796,
45941,
13,
33295,
7,
1930,
62,
521,
721,
274,
62,
2100,
11,
2469,
62,
521,
721,
274,
62,
2100,
11,
16488,
796,
657,
8,
198,
220,
220,
220,
45941,
13,
25120,
13,
1477,
18137,
7,
2100,
62,
521,
721,
274,
8,
198,
220,
220,
220,
1395,
62,
2100,
796,
1366,
58,
2100,
62,
521,
721,
274,
11,
1058,
11,
1058,
11,
1058,
60,
198,
220,
220,
220,
331,
62,
2100,
796,
14722,
58,
2100,
62,
521,
721,
274,
60,
628,
220,
220,
220,
3601,
7203,
44357,
900,
25,
1600,
1395,
62,
27432,
13,
43358,
11,
331,
62,
27432,
13,
43358,
8,
198,
220,
220,
220,
3601,
7203,
7762,
24765,
900,
25,
1600,
1395,
62,
2100,
13,
43358,
11,
331,
62,
2100,
13,
43358,
8,
198,
220,
220,
220,
220,
198,
220,
220,
220,
1441,
1395,
62,
27432,
11,
331,
62,
27432,
11,
1395,
62,
2100,
11,
331,
62,
2100,
198
] | 2.132612 | 3,514 |
# pylint: disable=wildcard-import, unused-import, unused-wildcard-import
"""Neural network related operators."""
# Re-export in a specific file name so that autodoc can pick it up
from .op.nn import *
| [
2,
279,
2645,
600,
25,
15560,
28,
21992,
9517,
12,
11748,
11,
21958,
12,
11748,
11,
21958,
12,
21992,
9517,
12,
11748,
198,
37811,
8199,
1523,
3127,
3519,
12879,
526,
15931,
198,
2,
797,
12,
39344,
287,
257,
2176,
2393,
1438,
523,
326,
1960,
375,
420,
460,
2298,
340,
510,
198,
6738,
764,
404,
13,
20471,
1330,
1635,
198
] | 3.40678 | 59 |
from aiofile import AIOFile
from os import remove
from re import findall
from api import util
from os.path import getsize
from os import listdir
from random import randint
| [
6738,
257,
952,
7753,
1330,
317,
9399,
8979,
198,
6738,
28686,
1330,
4781,
198,
6738,
302,
1330,
1064,
439,
198,
6738,
40391,
1330,
7736,
198,
6738,
28686,
13,
6978,
1330,
3011,
1096,
198,
6738,
28686,
1330,
1351,
15908,
198,
6738,
4738,
1330,
43720,
600,
628,
628,
628,
628
] | 3.729167 | 48 |
import os
import secrets
import tarfile
import time
import zipfile
from collections import defaultdict
import httpx
import pytest
from hatch.config.constants import PublishEnvVars
from hatch.utils.ci import running_in_ci
PUBLISHER_TOKEN = os.environ.get('HATCH_CI_PUBLISHER_TOKEN')
pytestmark = [
pytest.mark.skipif(not PUBLISHER_TOKEN, reason='Publishing tests are only executed within CI environments'),
]
@pytest.fixture(autouse=True)
@pytest.fixture
| [
11748,
28686,
198,
11748,
13141,
198,
11748,
13422,
7753,
198,
11748,
640,
198,
11748,
19974,
7753,
198,
6738,
17268,
1330,
4277,
11600,
198,
198,
11748,
2638,
87,
198,
11748,
12972,
9288,
198,
198,
6738,
25834,
13,
11250,
13,
9979,
1187,
1330,
8525,
1836,
4834,
85,
53,
945,
198,
6738,
25834,
13,
26791,
13,
979,
1330,
2491,
62,
259,
62,
979,
198,
198,
5105,
9148,
1797,
16879,
62,
10468,
43959,
796,
28686,
13,
268,
2268,
13,
1136,
10786,
39,
11417,
62,
25690,
62,
5105,
9148,
1797,
16879,
62,
10468,
43959,
11537,
198,
198,
9078,
9288,
4102,
796,
685,
198,
220,
220,
220,
12972,
9288,
13,
4102,
13,
48267,
361,
7,
1662,
24676,
9148,
1797,
16879,
62,
10468,
43959,
11,
1738,
11639,
14876,
20020,
5254,
389,
691,
10945,
1626,
14514,
12493,
33809,
198,
60,
628,
198,
31,
9078,
9288,
13,
69,
9602,
7,
2306,
1076,
28,
17821,
8,
628,
198,
31,
9078,
9288,
13,
69,
9602,
628,
628,
628,
628,
628,
628,
628,
628,
198
] | 2.957055 | 163 |
from manim import *
import numpy as np
# creates lists of lists of squares, used for input, kernel, and output
# moves kernel around and displays output squares one at a time
# creates padding
| [
6738,
582,
320,
1330,
1635,
201,
198,
11748,
299,
32152,
355,
45941,
201,
198,
220,
220,
220,
220,
201,
198,
220,
220,
220,
1303,
8075,
8341,
286,
8341,
286,
24438,
11,
973,
329,
5128,
11,
9720,
11,
290,
5072,
201,
198,
201,
198,
220,
220,
220,
1303,
6100,
9720,
1088,
290,
11298,
5072,
24438,
530,
379,
257,
640,
201,
198,
201,
198,
220,
220,
220,
1303,
8075,
24511,
220,
201
] | 3.142857 | 70 |
from django.urls import path
from . import views
urlpatterns = [
path('', views.feed, name='feed'),
path('post/<int:pk>/', views.PostDetailView.as_view(), name='post-detail'),
path('post/<int:pk>/delete/', views.PostDeleteView.as_view(), name='post-delete'),
path('post/new/', views.PostCreateView.as_view(), name='post-create'),
]
| [
6738,
42625,
14208,
13,
6371,
82,
1330,
3108,
198,
6738,
764,
1330,
5009,
628,
198,
6371,
33279,
82,
796,
685,
198,
220,
220,
220,
3108,
10786,
3256,
5009,
13,
12363,
11,
1438,
11639,
12363,
33809,
198,
220,
220,
220,
3108,
10786,
7353,
14,
27,
600,
25,
79,
74,
29,
14,
3256,
5009,
13,
6307,
11242,
603,
7680,
13,
292,
62,
1177,
22784,
1438,
11639,
7353,
12,
49170,
33809,
198,
220,
220,
220,
3108,
10786,
7353,
14,
27,
600,
25,
79,
74,
29,
14,
33678,
14,
3256,
5009,
13,
6307,
38727,
7680,
13,
292,
62,
1177,
22784,
1438,
11639,
7353,
12,
33678,
33809,
198,
220,
220,
220,
3108,
10786,
7353,
14,
3605,
14,
3256,
5009,
13,
6307,
16447,
7680,
13,
292,
62,
1177,
22784,
1438,
11639,
7353,
12,
17953,
33809,
198,
60,
198
] | 2.651515 | 132 |
''' demo of reading a button
2017-0808 PePo - added OLED display to demo
Adafruit article:
https://learn.adafruit.com/micropython-hardware-digital-i-slash-o/digital-inputs
'''
import machine, time
import ssd1306
__LED_PIN = const(14) #GPIO14
__BUTTON_PIN = const(12) #GPIO12
#define led to be set on / off by button
led = machine.Pin(__LED_PIN, machine.Pin.OUT)
led.off()
# OPTIONAL: status of led: True=on, False=off
# led_status = False
# create i2c for OLED display
i2c = machine.I2C(scl=machine.Pin(5), sda=machine.Pin(4), freq=100000)
print('i2c.scan: ', i2c.scan()) #[60]
# OLED screen dimensions
__WIDTH = const(128)
__HEIGHT = const(32)
oled = ssd1306.SSD1306_I2C(__WIDTH, __HEIGHT, i2c)
# define button on Pin GPIO12
button = machine.Pin(__BUTTON_PIN, machine.Pin.IN, machine.Pin.PULL_UP)
# helper to refresh OLED display
# demo ...
# run demo
try:
print('Button demo, press button...')
refreshOLED('Press button!')
run()
except:
print('Done')
refreshOLED('Done!')
| [
7061,
6,
13605,
286,
3555,
257,
4936,
198,
2177,
12,
15,
28362,
2631,
18833,
532,
2087,
47463,
3359,
284,
13605,
198,
1215,
1878,
4872,
2708,
25,
198,
3740,
1378,
35720,
13,
324,
1878,
4872,
13,
785,
14,
9383,
1773,
7535,
12,
10424,
1574,
12,
34725,
12,
72,
12,
6649,
1077,
12,
78,
14,
34725,
12,
15414,
82,
198,
7061,
6,
198,
11748,
4572,
11,
640,
198,
11748,
264,
21282,
12952,
21,
198,
198,
834,
30465,
62,
44032,
796,
1500,
7,
1415,
8,
1303,
16960,
9399,
1415,
198,
834,
47526,
11357,
62,
44032,
796,
1500,
7,
1065,
8,
1303,
16960,
9399,
1065,
198,
198,
2,
13086,
2957,
284,
307,
900,
319,
1220,
572,
416,
4936,
198,
992,
796,
4572,
13,
28348,
7,
834,
30465,
62,
44032,
11,
4572,
13,
28348,
13,
12425,
8,
198,
992,
13,
2364,
3419,
198,
2,
39852,
2849,
1847,
25,
3722,
286,
2957,
25,
6407,
28,
261,
11,
10352,
28,
2364,
198,
2,
2957,
62,
13376,
796,
10352,
198,
198,
2,
2251,
1312,
17,
66,
329,
47463,
3359,
198,
72,
17,
66,
796,
4572,
13,
40,
17,
34,
7,
38528,
28,
30243,
13,
28348,
7,
20,
828,
264,
6814,
28,
30243,
13,
28348,
7,
19,
828,
2030,
80,
28,
3064,
830,
8,
198,
4798,
10786,
72,
17,
66,
13,
35836,
25,
46083,
1312,
17,
66,
13,
35836,
28955,
220,
220,
1303,
58,
1899,
60,
198,
2,
47463,
3159,
15225,
198,
834,
54,
2389,
4221,
796,
1500,
7,
12762,
8,
198,
834,
13909,
9947,
796,
1500,
7,
2624,
8,
198,
45342,
796,
264,
21282,
12952,
21,
13,
5432,
35,
12952,
21,
62,
40,
17,
34,
7,
834,
54,
2389,
4221,
11,
11593,
13909,
9947,
11,
1312,
17,
66,
8,
198,
198,
2,
8160,
4936,
319,
13727,
50143,
1065,
198,
16539,
796,
4572,
13,
28348,
7,
834,
47526,
11357,
62,
44032,
11,
4572,
13,
28348,
13,
1268,
11,
4572,
13,
28348,
13,
5105,
3069,
62,
8577,
8,
198,
198,
2,
31904,
284,
14976,
47463,
3359,
198,
198,
2,
13605,
2644,
198,
198,
2,
1057,
13605,
198,
28311,
25,
198,
220,
220,
220,
3601,
10786,
21864,
13605,
11,
1803,
4936,
986,
11537,
198,
220,
220,
220,
14976,
3535,
1961,
10786,
13800,
4936,
0,
11537,
198,
220,
220,
220,
1057,
3419,
198,
16341,
25,
198,
220,
220,
220,
3601,
10786,
45677,
11537,
198,
220,
220,
220,
14976,
3535,
1961,
10786,
45677,
0,
11537,
198
] | 2.559796 | 393 |
from copy import deepcopy
from dataclasses import dataclass
import itertools
import re
from typing import Dict
from typing import Optional
import numpy as np
import pandas as pd
from pandas.testing import assert_frame_equal
import pytest
from obp.ope import SlateIndependentIPS
from obp.ope import SlateOffPolicyEvaluation
from obp.ope import SlateRewardInteractionIPS
from obp.ope import SlateStandardIPS
from obp.types import BanditFeedback
from obp.utils import check_confidence_interval_arguments
mock_policy_value = 0.5
mock_confidence_interval = {
"mean": 0.5,
"95.0% CI (lower)": 0.3,
"95.0% CI (upper)": 0.7,
}
@dataclass
class SlateStandardIPSMock(SlateStandardIPS):
"""Slate Standard Inverse Propensity Scoring (SIPS) Mock."""
estimator_name: str = "sips"
eps: float = 0.1
def estimate_policy_value(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore: np.ndarray,
evaluation_policy_pscore: np.ndarray,
**kwargs,
) -> float:
"""Estimate the policy value of evaluation policy.
Returns
----------
mock_policy_value: float
"""
return mock_policy_value + self.eps
def estimate_interval(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore: np.ndarray,
evaluation_policy_pscore: np.ndarray,
alpha: float = 0.05,
n_bootstrap_samples: int = 10000,
random_state: Optional[int] = None,
**kwargs,
) -> Dict[str, float]:
"""Estimate confidence interval of policy value by nonparametric bootstrap procedure.
Returns
----------
mock_confidence_interval: Dict[str, float]
Dictionary storing the estimated mean and upper-lower confidence bounds.
"""
check_confidence_interval_arguments(
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
return {k: v + self.eps for k, v in mock_confidence_interval.items()}
@dataclass
class SlateIndependentIPSMock(SlateIndependentIPS):
"""Slate Independent Inverse Propensity Scoring (IIPS) Mock."""
estimator_name: str = "iips"
def estimate_policy_value(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore_item_position: np.ndarray,
evaluation_policy_pscore_item_position: np.ndarray,
**kwargs,
) -> float:
"""Estimate the policy value of evaluation policy.
Returns
----------
mock_policy_value: float
"""
return mock_policy_value
def estimate_interval(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore_item_position: np.ndarray,
evaluation_policy_pscore_item_position: np.ndarray,
alpha: float = 0.05,
n_bootstrap_samples: int = 10000,
random_state: Optional[int] = None,
**kwargs,
) -> Dict[str, float]:
"""Estimate confidence interval of policy value by nonparametric bootstrap procedure.
Returns
----------
mock_confidence_interval: Dict[str, float]
Dictionary storing the estimated mean and upper-lower confidence bounds.
"""
check_confidence_interval_arguments(
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
return {k: v for k, v in mock_confidence_interval.items()}
@dataclass
class SlateRewardInteractionIPSMock(SlateRewardInteractionIPS):
"""Slate Recursive Inverse Propensity Scoring (RIPS) Mock."""
estimator_name: str = "rips"
def estimate_policy_value(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore_cascade: np.ndarray,
evaluation_policy_pscore_cascade: np.ndarray,
**kwargs,
) -> float:
"""Estimate the policy value of evaluation policy.
Returns
----------
mock_policy_value: float
"""
return mock_policy_value
def estimate_interval(
self,
slate_id: np.ndarray,
reward: np.ndarray,
position: np.ndarray,
pscore_cascade: np.ndarray,
evaluation_policy_pscore_cascade: np.ndarray,
alpha: float = 0.05,
n_bootstrap_samples: int = 10000,
random_state: Optional[int] = None,
**kwargs,
) -> Dict[str, float]:
"""Estimate confidence interval of policy value by nonparametric bootstrap procedure.
Returns
----------
mock_confidence_interval: Dict[str, float]
Dictionary storing the estimated mean and upper-lower confidence bounds.
"""
check_confidence_interval_arguments(
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
return {k: v for k, v in mock_confidence_interval.items()}
# define Mock instances
sips = SlateStandardIPSMock(len_list=3)
sips2 = SlateStandardIPSMock(len_list=3, eps=0.02)
sips3 = SlateStandardIPSMock(len_list=3, estimator_name="sips3")
iips = SlateIndependentIPSMock(len_list=3)
rips = SlateRewardInteractionIPSMock(len_list=3)
def test_meta_post_init(synthetic_slate_bandit_feedback: BanditFeedback) -> None:
"""
Test the __post_init__ function
"""
# __post_init__ saves the latter estimator when the same estimator name is used
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips2]
)
assert ope_.ope_estimators_ == {
"sips": sips2
}, "__post_init__ returns a wrong value"
# __post_init__ can handle the same estimator if the estimator names are different
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3]
)
assert ope_.ope_estimators_ == {
"sips": sips,
"sips3": sips3,
}, "__post_init__ returns a wrong value"
# __post__init__ raises RuntimeError when necessary_keys are not included in the bandit_feedback
necessary_keys = ["slate_id", "position", "reward"]
for i in range(len(necessary_keys)):
for deleted_keys in itertools.combinations(necessary_keys, i + 1):
invalid_bandit_feedback_dict = {key: "_" for key in necessary_keys}
# delete
for k in deleted_keys:
del invalid_bandit_feedback_dict[k]
with pytest.raises(RuntimeError, match=r"Missing key*"):
_ = SlateOffPolicyEvaluation(
bandit_feedback=invalid_bandit_feedback_dict, ope_estimators=[sips]
)
# evaluation_policy_pscore, description
invalid_input_of_create_estimator_inputs = [
(
None,
"one of evaluation_policy_pscore, evaluation_policy_pscore_item_position, or evaluation_policy_pscore_cascade must be given",
),
]
# evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description
valid_input_of_create_estimator_inputs = [
(
np.ones(300),
np.ones(300),
np.ones(300),
"deterministic evaluation policy",
),
]
@pytest.mark.parametrize(
"evaluation_policy_pscore, description",
invalid_input_of_create_estimator_inputs,
)
def test_meta_create_estimator_inputs_using_invalid_input_data(
evaluation_policy_pscore,
description: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the _create_estimator_inputs using valid data and a sips estimator
"""
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips]
)
# raise ValueError when the shape of two arrays are different
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_._create_estimator_inputs(
evaluation_policy_pscore=evaluation_policy_pscore
)
# _create_estimator_inputs function is called in the following functions
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_.estimate_policy_values(
evaluation_policy_pscore=evaluation_policy_pscore
)
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_.estimate_intervals(evaluation_policy_pscore=evaluation_policy_pscore)
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_.summarize_off_policy_estimates(
evaluation_policy_pscore=evaluation_policy_pscore
)
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_.evaluate_performance_of_estimators(
ground_truth_policy_value=0.1,
evaluation_policy_pscore=evaluation_policy_pscore,
)
with pytest.raises(ValueError, match=f"{description}*"):
_ = ope_.summarize_estimators_comparison(
ground_truth_policy_value=0.1,
evaluation_policy_pscore=evaluation_policy_pscore,
)
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description",
valid_input_of_create_estimator_inputs,
)
def test_meta_create_estimator_inputs_using_valid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the _create_estimator_inputs using invalid data
"""
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips]
)
estimator_inputs = ope_._create_estimator_inputs(
evaluation_policy_pscore=evaluation_policy_pscore
)
assert set(estimator_inputs.keys()) == set(
[
"reward",
"pscore",
"pscore_item_position",
"pscore_cascade",
"position",
"evaluation_policy_pscore",
"evaluation_policy_pscore_item_position",
"evaluation_policy_pscore_cascade",
"slate_id",
]
), f"Invalid response of _create_estimator_inputs (test case: {description})"
# _create_estimator_inputs function is called in the following functions
_ = ope_.estimate_policy_values(evaluation_policy_pscore=evaluation_policy_pscore)
_ = ope_.estimate_intervals(evaluation_policy_pscore=evaluation_policy_pscore)
_ = ope_.summarize_off_policy_estimates(
evaluation_policy_pscore=evaluation_policy_pscore
)
_ = ope_.evaluate_performance_of_estimators(
ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore
)
_ = ope_.summarize_estimators_comparison(
ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore
)
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description",
valid_input_of_create_estimator_inputs,
)
def test_meta_estimate_policy_values_using_valid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of estimate_policy_values using valid data
"""
# single ope estimator (iips)
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips]
)
assert ope_.estimate_policy_values(
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position
) == {
"iips": mock_policy_value
}, "SlateOffPolicyEvaluation.estimate_policy_values ([IIPS]) returns a wrong value"
# multiple ope estimators
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback,
ope_estimators=[iips, sips, rips],
)
assert ope_.estimate_policy_values(
evaluation_policy_pscore=evaluation_policy_pscore,
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade=evaluation_policy_pscore_cascade,
) == {
"iips": mock_policy_value,
"sips": mock_policy_value + sips.eps,
"rips": mock_policy_value,
}, "SlateOffPolicyEvaluation.estimate_policy_values ([IIPS, SIPS, RIPS]) returns a wrong value"
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description",
valid_input_of_create_estimator_inputs,
)
# alpha, n_bootstrap_samples, random_state, err, description
invalid_input_of_estimate_intervals = [
(
0.05,
100,
"s",
ValueError,
"'s' cannot be used to seed a numpy.random.RandomState instance",
),
(0.05, -1, 1, ValueError, "`n_bootstrap_samples`= -1, must be >= 1"),
(
0.05,
"s",
1,
TypeError,
"`n_bootstrap_samples` must be an instance of <class 'int'>, not <class 'str'>",
),
(-1.0, 1, 1, ValueError, "`alpha`= -1.0, must be >= 0.0"),
(2.0, 1, 1, ValueError, "`alpha`= 2.0, must be <= 1.0"),
(
"0",
1,
1,
TypeError,
"`alpha` must be an instance of <class 'float'>, not <class 'str'>",
),
]
valid_input_of_estimate_intervals = [
(0.05, 100, 1, "random_state is 1"),
(0.05, 1, 1, "n_bootstrap_samples is 1"),
]
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1",
valid_input_of_create_estimator_inputs,
)
@pytest.mark.parametrize(
"alpha, n_bootstrap_samples, random_state, err, description_2",
invalid_input_of_estimate_intervals,
)
def test_meta_estimate_intervals_using_invalid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description_1: str,
alpha,
n_bootstrap_samples,
random_state,
err,
description_2: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of estimate_intervals using invalid data
"""
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips]
)
with pytest.raises(err, match=f"{description_2}*"):
_ = ope_.estimate_intervals(
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
# estimate_intervals function is called in summarize_off_policy_estimates
with pytest.raises(err, match=f"{description_2}*"):
_ = ope_.summarize_off_policy_estimates(
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1",
valid_input_of_create_estimator_inputs,
)
@pytest.mark.parametrize(
"alpha, n_bootstrap_samples, random_state, description_2",
valid_input_of_estimate_intervals,
)
def test_meta_estimate_intervals_using_valid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description_1: str,
alpha: float,
n_bootstrap_samples: int,
random_state: int,
description_2: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of estimate_intervals using valid data
"""
# single ope estimator
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips]
)
assert ope_.estimate_intervals(
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
) == {
"iips": mock_confidence_interval
}, "SlateOffPolicyEvaluation.estimate_intervals ([IIPS]) returns a wrong value"
# multiple ope estimators
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips, sips]
)
assert ope_.estimate_intervals(
evaluation_policy_pscore=evaluation_policy_pscore,
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
) == {
"iips": mock_confidence_interval,
"sips": {k: v + sips.eps for k, v in mock_confidence_interval.items()},
}, "SlateOffPolicyEvaluation.estimate_intervals ([IIPS, SIPS]) returns a wrong value"
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1",
valid_input_of_create_estimator_inputs,
)
@pytest.mark.parametrize(
"alpha, n_bootstrap_samples, random_state, description_2",
valid_input_of_estimate_intervals,
)
def test_meta_summarize_off_policy_estimates(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description_1: str,
alpha: float,
n_bootstrap_samples: int,
random_state: int,
description_2: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of summarize_off_policy_estimates using valid data
"""
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3]
)
value, interval = ope_.summarize_off_policy_estimates(
evaluation_policy_pscore=evaluation_policy_pscore,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
expected_value = pd.DataFrame(
{
"sips": mock_policy_value + sips.eps,
"sips3": mock_policy_value + sips3.eps,
},
index=["estimated_policy_value"],
).T
expected_value["relative_estimated_policy_value"] = expected_value[
"estimated_policy_value"
] / (
synthetic_slate_bandit_feedback["reward"].sum()
/ np.unique(synthetic_slate_bandit_feedback["slate_id"]).shape[0]
)
expected_interval = pd.DataFrame(
{
"sips": {k: v + sips.eps for k, v in mock_confidence_interval.items()},
"sips3": {k: v + sips3.eps for k, v in mock_confidence_interval.items()},
}
).T
assert_frame_equal(value, expected_value), "Invalid summarization (policy value)"
assert_frame_equal(interval, expected_interval), "Invalid summarization (interval)"
# check relative estimated policy value when the average of bandit_feedback["reward"] is zero
zero_reward_bandit_feedback = deepcopy(synthetic_slate_bandit_feedback)
zero_reward_bandit_feedback["reward"] = np.zeros(
zero_reward_bandit_feedback["reward"].shape[0]
)
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=zero_reward_bandit_feedback, ope_estimators=[sips, sips3]
)
value, _ = ope_.summarize_off_policy_estimates(
evaluation_policy_pscore=evaluation_policy_pscore,
alpha=alpha,
n_bootstrap_samples=n_bootstrap_samples,
random_state=random_state,
)
expected_value = pd.DataFrame(
{
"sips": mock_policy_value + sips.eps,
"sips3": mock_policy_value + sips3.eps,
},
index=["estimated_policy_value"],
).T
expected_value["relative_estimated_policy_value"] = np.nan
assert_frame_equal(value, expected_value), "Invalid summarization (policy value)"
invalid_input_of_evaluation_performance_of_estimators = [
("foo", 0.3, ValueError, "metric must be either 'relative-ee' or 'se'"),
(
"se",
1,
TypeError,
"`ground_truth_policy_value` must be an instance of <class 'float'>, not <class 'int'>.",
),
(
"se",
"a",
TypeError,
"`ground_truth_policy_value` must be an instance of <class 'float'>, not <class 'str'>.",
),
(
"relative-ee",
0.0,
ValueError,
"ground_truth_policy_value must be non-zero when metric is relative-ee",
),
]
valid_input_of_evaluation_performance_of_estimators = [
("se", 0.0, "metric is se and ground_truth_policy_value is 0.0"),
("relative-ee", 1.0, "metric is relative-ee and ground_truth_policy_value is 1.0"),
]
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1",
valid_input_of_create_estimator_inputs,
)
@pytest.mark.parametrize(
"metric, ground_truth_policy_value, err, description_2",
invalid_input_of_evaluation_performance_of_estimators,
)
def test_meta_evaluate_performance_of_estimators_using_invalid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description_1: str,
metric,
ground_truth_policy_value,
err,
description_2: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of evaluate_performance_of_estimators using invalid data
"""
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips]
)
with pytest.raises(err, match=f"{description_2}*"):
_ = ope_.evaluate_performance_of_estimators(
ground_truth_policy_value=ground_truth_policy_value,
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
metric=metric,
)
# estimate_intervals function is called in summarize_off_policy_estimates
with pytest.raises(err, match=f"{description_2}*"):
_ = ope_.summarize_estimators_comparison(
ground_truth_policy_value=ground_truth_policy_value,
evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position,
metric=metric,
)
@pytest.mark.parametrize(
"evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1",
valid_input_of_create_estimator_inputs,
)
@pytest.mark.parametrize(
"metric, ground_truth_policy_value, description_2",
valid_input_of_evaluation_performance_of_estimators,
)
def test_meta_evaluate_performance_of_estimators_using_valid_input_data(
evaluation_policy_pscore,
evaluation_policy_pscore_item_position,
evaluation_policy_pscore_cascade,
description_1: str,
metric,
ground_truth_policy_value,
description_2: str,
synthetic_slate_bandit_feedback: BanditFeedback,
) -> None:
"""
Test the response of evaluate_performance_of_estimators using valid data
"""
if metric == "relative-ee":
# calculate relative-ee
eval_metric_ope_dict = {
"sips": np.abs(
(mock_policy_value + sips.eps - ground_truth_policy_value)
/ ground_truth_policy_value
),
"sips3": np.abs(
(mock_policy_value + sips3.eps - ground_truth_policy_value)
/ ground_truth_policy_value
),
}
else:
# calculate se
eval_metric_ope_dict = {
"sips": (mock_policy_value + sips.eps - ground_truth_policy_value) ** 2,
"sips3": (mock_policy_value + sips3.eps - ground_truth_policy_value) ** 2,
}
# check performance estimators
ope_ = SlateOffPolicyEvaluation(
bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3]
)
performance = ope_.evaluate_performance_of_estimators(
ground_truth_policy_value=ground_truth_policy_value,
evaluation_policy_pscore=evaluation_policy_pscore,
metric=metric,
)
for k, v in performance.items():
assert k in eval_metric_ope_dict, "Invalid key of performance response"
assert v == eval_metric_ope_dict[k], "Invalid value of performance response"
performance_df = ope_.summarize_estimators_comparison(
ground_truth_policy_value=ground_truth_policy_value,
evaluation_policy_pscore=evaluation_policy_pscore,
metric=metric,
)
assert_frame_equal(
performance_df, pd.DataFrame(eval_metric_ope_dict, index=[metric]).T
), "Invalid summarization (performance)"
| [
6738,
4866,
1330,
2769,
30073,
198,
6738,
4818,
330,
28958,
1330,
4818,
330,
31172,
198,
11748,
340,
861,
10141,
198,
11748,
302,
198,
6738,
19720,
1330,
360,
713,
198,
6738,
19720,
1330,
32233,
198,
198,
11748,
299,
32152,
355,
45941,
198,
11748,
19798,
292,
355,
279,
67,
198,
6738,
19798,
292,
13,
33407,
1330,
6818,
62,
14535,
62,
40496,
198,
11748,
12972,
9288,
198,
198,
6738,
909,
79,
13,
3008,
1330,
30621,
40566,
47643,
198,
6738,
909,
79,
13,
3008,
1330,
30621,
9362,
36727,
36,
2100,
2288,
198,
6738,
909,
79,
13,
3008,
1330,
30621,
48123,
9492,
2673,
47643,
198,
6738,
909,
79,
13,
3008,
1330,
30621,
23615,
47643,
198,
6738,
909,
79,
13,
19199,
1330,
10243,
270,
18332,
1891,
198,
6738,
909,
79,
13,
26791,
1330,
2198,
62,
39745,
62,
3849,
2100,
62,
853,
2886,
628,
198,
76,
735,
62,
30586,
62,
8367,
796,
657,
13,
20,
198,
76,
735,
62,
39745,
62,
3849,
2100,
796,
1391,
198,
220,
220,
220,
366,
32604,
1298,
657,
13,
20,
11,
198,
220,
220,
220,
366,
3865,
13,
15,
4,
14514,
357,
21037,
8,
1298,
657,
13,
18,
11,
198,
220,
220,
220,
366,
3865,
13,
15,
4,
14514,
357,
45828,
8,
1298,
657,
13,
22,
11,
198,
92,
628,
198,
31,
19608,
330,
31172,
198,
4871,
30621,
23615,
47643,
44,
735,
7,
11122,
378,
23615,
47643,
2599,
198,
220,
220,
220,
37227,
11122,
378,
8997,
554,
4399,
8772,
6377,
1446,
3255,
357,
11584,
3705,
8,
44123,
526,
15931,
628,
220,
220,
220,
3959,
1352,
62,
3672,
25,
965,
796,
366,
82,
2419,
1,
198,
220,
220,
220,
304,
862,
25,
12178,
796,
657,
13,
16,
628,
220,
220,
220,
825,
8636,
62,
30586,
62,
8367,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
12178,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
262,
2450,
1988,
286,
12660,
2450,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
30586,
62,
8367,
25,
12178,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
15290,
62,
30586,
62,
8367,
1343,
2116,
13,
25386,
628,
220,
220,
220,
825,
8636,
62,
3849,
2100,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
25,
12178,
796,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
25,
493,
796,
33028,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
25,
32233,
58,
600,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
360,
713,
58,
2536,
11,
12178,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
6628,
16654,
286,
2450,
1988,
416,
1729,
17143,
19482,
6297,
26418,
8771,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
39745,
62,
3849,
2100,
25,
360,
713,
58,
2536,
11,
12178,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28261,
23069,
262,
6108,
1612,
290,
6727,
12,
21037,
6628,
22303,
13,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
39745,
62,
3849,
2100,
62,
853,
2886,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
74,
25,
410,
1343,
2116,
13,
25386,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
92,
628,
198,
31,
19608,
330,
31172,
198,
4871,
30621,
40566,
47643,
44,
735,
7,
11122,
378,
40566,
47643,
2599,
198,
220,
220,
220,
37227,
11122,
378,
13362,
554,
4399,
8772,
6377,
1446,
3255,
357,
3978,
3705,
8,
44123,
526,
15931,
628,
220,
220,
220,
3959,
1352,
62,
3672,
25,
965,
796,
366,
72,
2419,
1,
628,
220,
220,
220,
825,
8636,
62,
30586,
62,
8367,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
62,
9186,
62,
9150,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
12178,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
262,
2450,
1988,
286,
12660,
2450,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
30586,
62,
8367,
25,
12178,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
15290,
62,
30586,
62,
8367,
628,
220,
220,
220,
825,
8636,
62,
3849,
2100,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
62,
9186,
62,
9150,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
25,
12178,
796,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
25,
493,
796,
33028,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
25,
32233,
58,
600,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
360,
713,
58,
2536,
11,
12178,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
6628,
16654,
286,
2450,
1988,
416,
1729,
17143,
19482,
6297,
26418,
8771,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
39745,
62,
3849,
2100,
25,
360,
713,
58,
2536,
11,
12178,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28261,
23069,
262,
6108,
1612,
290,
6727,
12,
21037,
6628,
22303,
13,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
39745,
62,
3849,
2100,
62,
853,
2886,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
74,
25,
410,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
92,
628,
198,
31,
19608,
330,
31172,
198,
4871,
30621,
48123,
9492,
2673,
47643,
44,
735,
7,
11122,
378,
48123,
9492,
2673,
47643,
2599,
198,
220,
220,
220,
37227,
11122,
378,
3311,
30753,
554,
4399,
8772,
6377,
1446,
3255,
357,
7112,
3705,
8,
44123,
526,
15931,
628,
220,
220,
220,
3959,
1352,
62,
3672,
25,
965,
796,
366,
380,
862,
1,
628,
220,
220,
220,
825,
8636,
62,
30586,
62,
8367,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
62,
66,
28966,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
12178,
25,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
262,
2450,
1988,
286,
12660,
2450,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
30586,
62,
8367,
25,
12178,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
15290,
62,
30586,
62,
8367,
628,
220,
220,
220,
825,
8636,
62,
3849,
2100,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2116,
11,
198,
220,
220,
220,
220,
220,
220,
220,
27589,
62,
312,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
6721,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
2292,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
279,
26675,
62,
66,
28966,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
25,
45941,
13,
358,
18747,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
25,
12178,
796,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
25,
493,
796,
33028,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
25,
32233,
58,
600,
60,
796,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12429,
46265,
22046,
11,
198,
220,
220,
220,
1267,
4613,
360,
713,
58,
2536,
11,
12178,
5974,
198,
220,
220,
220,
220,
220,
220,
220,
37227,
22362,
1920,
6628,
16654,
286,
2450,
1988,
416,
1729,
17143,
19482,
6297,
26418,
8771,
13,
628,
220,
220,
220,
220,
220,
220,
220,
16409,
198,
220,
220,
220,
220,
220,
220,
220,
24200,
438,
198,
220,
220,
220,
220,
220,
220,
220,
15290,
62,
39745,
62,
3849,
2100,
25,
360,
713,
58,
2536,
11,
12178,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
28261,
23069,
262,
6108,
1612,
290,
6727,
12,
21037,
6628,
22303,
13,
628,
220,
220,
220,
220,
220,
220,
220,
37227,
198,
220,
220,
220,
220,
220,
220,
220,
2198,
62,
39745,
62,
3849,
2100,
62,
853,
2886,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
220,
220,
220,
220,
1441,
1391,
74,
25,
410,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
92,
628,
198,
2,
8160,
44123,
10245,
198,
82,
2419,
796,
30621,
23615,
47643,
44,
735,
7,
11925,
62,
4868,
28,
18,
8,
198,
82,
2419,
17,
796,
30621,
23615,
47643,
44,
735,
7,
11925,
62,
4868,
28,
18,
11,
304,
862,
28,
15,
13,
2999,
8,
198,
82,
2419,
18,
796,
30621,
23615,
47643,
44,
735,
7,
11925,
62,
4868,
28,
18,
11,
3959,
1352,
62,
3672,
2625,
82,
2419,
18,
4943,
198,
72,
2419,
796,
30621,
40566,
47643,
44,
735,
7,
11925,
62,
4868,
28,
18,
8,
198,
380,
862,
796,
30621,
48123,
9492,
2673,
47643,
44,
735,
7,
11925,
62,
4868,
28,
18,
8,
628,
198,
4299,
1332,
62,
28961,
62,
7353,
62,
15003,
7,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
11593,
7353,
62,
15003,
834,
2163,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
11593,
7353,
62,
15003,
834,
16031,
262,
6846,
3959,
1352,
618,
262,
976,
3959,
1352,
1438,
318,
973,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
11,
264,
2419,
17,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
3008,
62,
395,
320,
2024,
62,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
264,
2419,
17,
198,
220,
220,
220,
8964,
366,
834,
7353,
62,
15003,
834,
5860,
257,
2642,
1988,
1,
198,
220,
220,
220,
1303,
11593,
7353,
62,
15003,
834,
460,
5412,
262,
976,
3959,
1352,
611,
262,
3959,
1352,
3891,
389,
1180,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
11,
264,
2419,
18,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
3008,
62,
395,
320,
2024,
62,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
264,
2419,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
264,
2419,
18,
11,
198,
220,
220,
220,
8964,
366,
834,
7353,
62,
15003,
834,
5860,
257,
2642,
1988,
1,
198,
220,
220,
220,
1303,
11593,
7353,
834,
15003,
834,
12073,
43160,
12331,
618,
3306,
62,
13083,
389,
407,
3017,
287,
262,
4097,
270,
62,
12363,
1891,
198,
220,
220,
220,
3306,
62,
13083,
796,
14631,
6649,
378,
62,
312,
1600,
366,
9150,
1600,
366,
260,
904,
8973,
198,
220,
220,
220,
329,
1312,
287,
2837,
7,
11925,
7,
49986,
62,
13083,
8,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
329,
13140,
62,
13083,
287,
340,
861,
10141,
13,
24011,
7352,
7,
49986,
62,
13083,
11,
1312,
1343,
352,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12515,
62,
3903,
270,
62,
12363,
1891,
62,
11600,
796,
1391,
2539,
25,
45434,
1,
329,
1994,
287,
3306,
62,
13083,
92,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1303,
12233,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
329,
479,
287,
13140,
62,
13083,
25,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1619,
12515,
62,
3903,
270,
62,
12363,
1891,
62,
11600,
58,
74,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
41006,
12331,
11,
2872,
28,
81,
1,
43730,
1994,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
259,
12102,
62,
3903,
270,
62,
12363,
1891,
62,
11600,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
60,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
2,
12660,
62,
30586,
62,
862,
7295,
11,
6764,
198,
259,
12102,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
796,
685,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
6045,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
505,
286,
12660,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
393,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
1276,
307,
1813,
1600,
198,
220,
220,
220,
10612,
198,
60,
198,
198,
2,
12660,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
198,
12102,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
796,
685,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
1952,
7,
6200,
828,
198,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
1952,
7,
6200,
828,
198,
220,
220,
220,
220,
220,
220,
220,
45941,
13,
1952,
7,
6200,
828,
198,
220,
220,
220,
220,
220,
220,
220,
366,
67,
2357,
49228,
12660,
2450,
1600,
198,
220,
220,
220,
10612,
198,
60,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
6764,
1600,
198,
220,
220,
220,
12515,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
62,
3500,
62,
259,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
6764,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
4808,
17953,
62,
395,
320,
1352,
62,
15414,
82,
1262,
4938,
1366,
290,
257,
264,
2419,
3959,
1352,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
5298,
11052,
12331,
618,
262,
5485,
286,
734,
26515,
389,
1180,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
62,
13557,
17953,
62,
395,
320,
1352,
62,
15414,
82,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
4808,
17953,
62,
395,
320,
1352,
62,
15414,
82,
2163,
318,
1444,
287,
262,
1708,
5499,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
395,
1920,
62,
30586,
62,
27160,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
395,
1920,
62,
3849,
12786,
7,
18206,
2288,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
8,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
11395,
12331,
11,
2872,
28,
69,
1,
90,
11213,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
395,
320,
2024,
62,
785,
1845,
1653,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
15,
13,
16,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
62,
3500,
62,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
4808,
17953,
62,
395,
320,
1352,
62,
15414,
82,
1262,
12515,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
3959,
1352,
62,
15414,
82,
796,
267,
431,
62,
13557,
17953,
62,
395,
320,
1352,
62,
15414,
82,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
900,
7,
395,
320,
1352,
62,
15414,
82,
13,
13083,
28955,
6624,
900,
7,
198,
220,
220,
220,
220,
220,
220,
220,
685,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
260,
904,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
862,
7295,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
862,
7295,
62,
9186,
62,
9150,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
862,
7295,
62,
66,
28966,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
9150,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
66,
28966,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
6649,
378,
62,
312,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
2361,
198,
220,
220,
220,
10612,
277,
1,
44651,
2882,
286,
4808,
17953,
62,
395,
320,
1352,
62,
15414,
82,
357,
9288,
1339,
25,
1391,
11213,
92,
16725,
198,
220,
220,
220,
1303,
4808,
17953,
62,
395,
320,
1352,
62,
15414,
82,
2163,
318,
1444,
287,
262,
1708,
5499,
198,
220,
220,
220,
4808,
796,
267,
431,
44807,
395,
1920,
62,
30586,
62,
27160,
7,
18206,
2288,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
8,
198,
220,
220,
220,
4808,
796,
267,
431,
44807,
395,
1920,
62,
3849,
12786,
7,
18206,
2288,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
8,
198,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
4808,
796,
267,
431,
44807,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
15,
13,
16,
11,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
395,
320,
2024,
62,
785,
1845,
1653,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
15,
13,
16,
11,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
198,
220,
220,
220,
1267,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
395,
1920,
62,
30586,
62,
27160,
62,
3500,
62,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
8636,
62,
30586,
62,
27160,
1262,
4938,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
2060,
267,
431,
3959,
1352,
357,
72,
2419,
8,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
395,
1920,
62,
30586,
62,
27160,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
198,
220,
220,
220,
1267,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
72,
2419,
1298,
15290,
62,
30586,
62,
8367,
198,
220,
220,
220,
8964,
366,
11122,
378,
9362,
36727,
36,
2100,
2288,
13,
395,
1920,
62,
30586,
62,
27160,
29565,
3978,
3705,
12962,
5860,
257,
2642,
1988,
1,
198,
220,
220,
220,
1303,
3294,
267,
431,
3959,
2024,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
198,
220,
220,
220,
220,
220,
220,
220,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
11,
264,
2419,
11,
374,
2419,
4357,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
395,
1920,
62,
30586,
62,
27160,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
1267,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
72,
2419,
1298,
15290,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
15290,
62,
30586,
62,
8367,
1343,
264,
2419,
13,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
380,
862,
1298,
15290,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
8964,
366,
11122,
378,
9362,
36727,
36,
2100,
2288,
13,
395,
1920,
62,
30586,
62,
27160,
29565,
3978,
3705,
11,
25861,
3705,
11,
37271,
3705,
12962,
5860,
257,
2642,
1988,
1,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
628,
198,
2,
17130,
11,
299,
62,
18769,
26418,
62,
82,
12629,
11,
4738,
62,
5219,
11,
11454,
11,
6764,
198,
259,
12102,
62,
15414,
62,
1659,
62,
395,
1920,
62,
3849,
12786,
796,
685,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1802,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
11052,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
24018,
82,
6,
2314,
307,
973,
284,
9403,
257,
299,
32152,
13,
25120,
13,
29531,
9012,
4554,
1600,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
357,
15,
13,
2713,
11,
532,
16,
11,
352,
11,
11052,
12331,
11,
366,
63,
77,
62,
18769,
26418,
62,
82,
12629,
63,
28,
532,
16,
11,
1276,
307,
18189,
352,
12340,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
657,
13,
2713,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
5994,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
63,
77,
62,
18769,
26418,
62,
82,
12629,
63,
1276,
307,
281,
4554,
286,
1279,
4871,
705,
600,
6,
22330,
407,
1279,
4871,
705,
2536,
44167,
1600,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
13841,
16,
13,
15,
11,
352,
11,
352,
11,
11052,
12331,
11,
366,
63,
26591,
63,
28,
532,
16,
13,
15,
11,
1276,
307,
18189,
657,
13,
15,
12340,
198,
220,
220,
220,
357,
17,
13,
15,
11,
352,
11,
352,
11,
11052,
12331,
11,
366,
63,
26591,
63,
28,
362,
13,
15,
11,
1276,
307,
19841,
352,
13,
15,
12340,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
15,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
5994,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
63,
26591,
63,
1276,
307,
281,
4554,
286,
1279,
4871,
705,
22468,
6,
22330,
407,
1279,
4871,
705,
2536,
44167,
1600,
198,
220,
220,
220,
10612,
198,
60,
198,
198,
12102,
62,
15414,
62,
1659,
62,
395,
1920,
62,
3849,
12786,
796,
685,
198,
220,
220,
220,
357,
15,
13,
2713,
11,
1802,
11,
352,
11,
366,
25120,
62,
5219,
318,
352,
12340,
198,
220,
220,
220,
357,
15,
13,
2713,
11,
352,
11,
352,
11,
366,
77,
62,
18769,
26418,
62,
82,
12629,
318,
352,
12340,
198,
60,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
62,
16,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
26591,
11,
299,
62,
18769,
26418,
62,
82,
12629,
11,
4738,
62,
5219,
11,
11454,
11,
6764,
62,
17,
1600,
198,
220,
220,
220,
12515,
62,
15414,
62,
1659,
62,
395,
1920,
62,
3849,
12786,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
395,
1920,
62,
3849,
12786,
62,
3500,
62,
259,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
62,
16,
25,
965,
11,
198,
220,
220,
220,
17130,
11,
198,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
4738,
62,
5219,
11,
198,
220,
220,
220,
11454,
11,
198,
220,
220,
220,
6764,
62,
17,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
8636,
62,
3849,
12786,
1262,
12515,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
8056,
11,
2872,
28,
69,
1,
90,
11213,
62,
17,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
395,
1920,
62,
3849,
12786,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
8636,
62,
3849,
12786,
2163,
318,
1444,
287,
35743,
62,
2364,
62,
30586,
62,
395,
26748,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
8056,
11,
2872,
28,
69,
1,
90,
11213,
62,
17,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
62,
16,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
26591,
11,
299,
62,
18769,
26418,
62,
82,
12629,
11,
4738,
62,
5219,
11,
6764,
62,
17,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
395,
1920,
62,
3849,
12786,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
395,
1920,
62,
3849,
12786,
62,
3500,
62,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
62,
16,
25,
965,
11,
198,
220,
220,
220,
17130,
25,
12178,
11,
198,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
25,
493,
11,
198,
220,
220,
220,
4738,
62,
5219,
25,
493,
11,
198,
220,
220,
220,
6764,
62,
17,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
8636,
62,
3849,
12786,
1262,
4938,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
1303,
2060,
267,
431,
3959,
1352,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
395,
1920,
62,
3849,
12786,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
1267,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
72,
2419,
1298,
15290,
62,
39745,
62,
3849,
2100,
198,
220,
220,
220,
8964,
366,
11122,
378,
9362,
36727,
36,
2100,
2288,
13,
395,
1920,
62,
3849,
12786,
29565,
3978,
3705,
12962,
5860,
257,
2642,
1988,
1,
198,
220,
220,
220,
1303,
3294,
267,
431,
3959,
2024,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
11,
264,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
267,
431,
44807,
395,
1920,
62,
3849,
12786,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
1267,
6624,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
366,
72,
2419,
1298,
15290,
62,
39745,
62,
3849,
2100,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
1391,
74,
25,
410,
1343,
264,
2419,
13,
25386,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
5512,
198,
220,
220,
220,
8964,
366,
11122,
378,
9362,
36727,
36,
2100,
2288,
13,
395,
1920,
62,
3849,
12786,
29565,
3978,
3705,
11,
25861,
3705,
12962,
5860,
257,
2642,
1988,
1,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
62,
16,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
26591,
11,
299,
62,
18769,
26418,
62,
82,
12629,
11,
4738,
62,
5219,
11,
6764,
62,
17,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
395,
1920,
62,
3849,
12786,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
62,
16,
25,
965,
11,
198,
220,
220,
220,
17130,
25,
12178,
11,
198,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
25,
493,
11,
198,
220,
220,
220,
4738,
62,
5219,
25,
493,
11,
198,
220,
220,
220,
6764,
62,
17,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
35743,
62,
2364,
62,
30586,
62,
395,
26748,
1262,
4938,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
11,
264,
2419,
18,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1988,
11,
16654,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2938,
62,
8367,
796,
279,
67,
13,
6601,
19778,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
15290,
62,
30586,
62,
8367,
1343,
264,
2419,
13,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
15290,
62,
30586,
62,
8367,
1343,
264,
2419,
18,
13,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
14692,
395,
15655,
62,
30586,
62,
8367,
33116,
198,
220,
220,
220,
6739,
51,
198,
220,
220,
220,
2938,
62,
8367,
14692,
43762,
62,
395,
15655,
62,
30586,
62,
8367,
8973,
796,
2938,
62,
8367,
58,
198,
220,
220,
220,
220,
220,
220,
220,
366,
395,
15655,
62,
30586,
62,
8367,
1,
198,
220,
220,
220,
2361,
1220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
14692,
260,
904,
1,
4083,
16345,
3419,
198,
220,
220,
220,
220,
220,
220,
220,
1220,
45941,
13,
34642,
7,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
14692,
6649,
378,
62,
312,
8973,
737,
43358,
58,
15,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2938,
62,
3849,
2100,
796,
279,
67,
13,
6601,
19778,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
1391,
74,
25,
410,
1343,
264,
2419,
13,
25386,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
1391,
74,
25,
410,
1343,
264,
2419,
18,
13,
25386,
329,
479,
11,
410,
287,
15290,
62,
39745,
62,
3849,
2100,
13,
23814,
3419,
5512,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
6739,
51,
198,
220,
220,
220,
6818,
62,
14535,
62,
40496,
7,
8367,
11,
2938,
62,
8367,
828,
366,
44651,
15676,
1634,
357,
30586,
1988,
16725,
198,
220,
220,
220,
6818,
62,
14535,
62,
40496,
7,
3849,
2100,
11,
2938,
62,
3849,
2100,
828,
366,
44651,
15676,
1634,
357,
3849,
2100,
16725,
198,
220,
220,
220,
1303,
2198,
3585,
6108,
2450,
1988,
618,
262,
2811,
286,
4097,
270,
62,
12363,
1891,
14692,
260,
904,
8973,
318,
6632,
198,
220,
220,
220,
6632,
62,
260,
904,
62,
3903,
270,
62,
12363,
1891,
796,
2769,
30073,
7,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
8,
198,
220,
220,
220,
6632,
62,
260,
904,
62,
3903,
270,
62,
12363,
1891,
14692,
260,
904,
8973,
796,
45941,
13,
9107,
418,
7,
198,
220,
220,
220,
220,
220,
220,
220,
6632,
62,
260,
904,
62,
3903,
270,
62,
12363,
1891,
14692,
260,
904,
1,
4083,
43358,
58,
15,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
22570,
62,
260,
904,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
11,
264,
2419,
18,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
1988,
11,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
2364,
62,
30586,
62,
395,
26748,
7,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
17130,
28,
26591,
11,
198,
220,
220,
220,
220,
220,
220,
220,
299,
62,
18769,
26418,
62,
82,
12629,
28,
77,
62,
18769,
26418,
62,
82,
12629,
11,
198,
220,
220,
220,
220,
220,
220,
220,
4738,
62,
5219,
28,
25120,
62,
5219,
11,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2938,
62,
8367,
796,
279,
67,
13,
6601,
19778,
7,
198,
220,
220,
220,
220,
220,
220,
220,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
15290,
62,
30586,
62,
8367,
1343,
264,
2419,
13,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
15290,
62,
30586,
62,
8367,
1343,
264,
2419,
18,
13,
25386,
11,
198,
220,
220,
220,
220,
220,
220,
220,
8964,
198,
220,
220,
220,
220,
220,
220,
220,
6376,
28,
14692,
395,
15655,
62,
30586,
62,
8367,
33116,
198,
220,
220,
220,
6739,
51,
198,
220,
220,
220,
2938,
62,
8367,
14692,
43762,
62,
395,
15655,
62,
30586,
62,
8367,
8973,
796,
45941,
13,
12647,
198,
220,
220,
220,
6818,
62,
14535,
62,
40496,
7,
8367,
11,
2938,
62,
8367,
828,
366,
44651,
15676,
1634,
357,
30586,
1988,
16725,
628,
198,
259,
12102,
62,
15414,
62,
1659,
62,
18206,
2288,
62,
26585,
62,
1659,
62,
395,
320,
2024,
796,
685,
198,
220,
220,
220,
5855,
21943,
1600,
657,
13,
18,
11,
11052,
12331,
11,
366,
4164,
1173,
1276,
307,
2035,
705,
43762,
12,
1453,
6,
393,
705,
325,
6,
12340,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
325,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
352,
11,
198,
220,
220,
220,
220,
220,
220,
220,
5994,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
63,
2833,
62,
35310,
62,
30586,
62,
8367,
63,
1276,
307,
281,
4554,
286,
1279,
4871,
705,
22468,
6,
22330,
407,
1279,
4871,
705,
600,
44167,
33283,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
325,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
366,
64,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
5994,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
63,
2833,
62,
35310,
62,
30586,
62,
8367,
63,
1276,
307,
281,
4554,
286,
1279,
4871,
705,
22468,
6,
22330,
407,
1279,
4871,
705,
2536,
44167,
33283,
198,
220,
220,
220,
10612,
198,
220,
220,
220,
357,
198,
220,
220,
220,
220,
220,
220,
220,
366,
43762,
12,
1453,
1600,
198,
220,
220,
220,
220,
220,
220,
220,
657,
13,
15,
11,
198,
220,
220,
220,
220,
220,
220,
220,
11052,
12331,
11,
198,
220,
220,
220,
220,
220,
220,
220,
366,
2833,
62,
35310,
62,
30586,
62,
8367,
1276,
307,
1729,
12,
22570,
618,
18663,
318,
3585,
12,
1453,
1600,
198,
220,
220,
220,
10612,
198,
60,
198,
198,
12102,
62,
15414,
62,
1659,
62,
18206,
2288,
62,
26585,
62,
1659,
62,
395,
320,
2024,
796,
685,
198,
220,
220,
220,
5855,
325,
1600,
657,
13,
15,
11,
366,
4164,
1173,
318,
384,
290,
2323,
62,
35310,
62,
30586,
62,
8367,
318,
657,
13,
15,
12340,
198,
220,
220,
220,
5855,
43762,
12,
1453,
1600,
352,
13,
15,
11,
366,
4164,
1173,
318,
3585,
12,
1453,
290,
2323,
62,
35310,
62,
30586,
62,
8367,
318,
352,
13,
15,
12340,
198,
60,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
62,
16,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
4164,
1173,
11,
2323,
62,
35310,
62,
30586,
62,
8367,
11,
11454,
11,
6764,
62,
17,
1600,
198,
220,
220,
220,
12515,
62,
15414,
62,
1659,
62,
18206,
2288,
62,
26585,
62,
1659,
62,
395,
320,
2024,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
62,
3500,
62,
259,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
62,
16,
25,
965,
11,
198,
220,
220,
220,
18663,
11,
198,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
11454,
11,
198,
220,
220,
220,
6764,
62,
17,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
13446,
62,
26585,
62,
1659,
62,
395,
320,
2024,
1262,
12515,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
72,
2419,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
8056,
11,
2872,
28,
69,
1,
90,
11213,
62,
17,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
2833,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18663,
28,
4164,
1173,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
198,
220,
220,
220,
1303,
8636,
62,
3849,
12786,
2163,
318,
1444,
287,
35743,
62,
2364,
62,
30586,
62,
395,
26748,
198,
220,
220,
220,
351,
12972,
9288,
13,
430,
2696,
7,
8056,
11,
2872,
28,
69,
1,
90,
11213,
62,
17,
92,
9,
1,
2599,
198,
220,
220,
220,
220,
220,
220,
220,
4808,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
395,
320,
2024,
62,
785,
1845,
1653,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
2833,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
18663,
28,
4164,
1173,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1267,
628,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
6764,
62,
16,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
17953,
62,
395,
320,
1352,
62,
15414,
82,
11,
198,
8,
198,
31,
9078,
9288,
13,
4102,
13,
17143,
316,
380,
2736,
7,
198,
220,
220,
220,
366,
4164,
1173,
11,
2323,
62,
35310,
62,
30586,
62,
8367,
11,
6764,
62,
17,
1600,
198,
220,
220,
220,
4938,
62,
15414,
62,
1659,
62,
18206,
2288,
62,
26585,
62,
1659,
62,
395,
320,
2024,
11,
198,
8,
198,
4299,
1332,
62,
28961,
62,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
62,
3500,
62,
12102,
62,
15414,
62,
7890,
7,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
9186,
62,
9150,
11,
198,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
62,
66,
28966,
11,
198,
220,
220,
220,
6764,
62,
16,
25,
965,
11,
198,
220,
220,
220,
18663,
11,
198,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
6764,
62,
17,
25,
965,
11,
198,
220,
220,
220,
18512,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
25,
10243,
270,
18332,
1891,
11,
198,
8,
4613,
6045,
25,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
6208,
262,
2882,
286,
13446,
62,
26585,
62,
1659,
62,
395,
320,
2024,
1262,
4938,
1366,
198,
220,
220,
220,
37227,
198,
220,
220,
220,
611,
18663,
6624,
366,
43762,
12,
1453,
1298,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
15284,
3585,
12,
1453,
198,
220,
220,
220,
220,
220,
220,
220,
5418,
62,
4164,
1173,
62,
3008,
62,
11600,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
45941,
13,
8937,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
76,
735,
62,
30586,
62,
8367,
1343,
264,
2419,
13,
25386,
532,
2323,
62,
35310,
62,
30586,
62,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
2323,
62,
35310,
62,
30586,
62,
8367,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
45941,
13,
8937,
7,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
357,
76,
735,
62,
30586,
62,
8367,
1343,
264,
2419,
18,
13,
25386,
532,
2323,
62,
35310,
62,
30586,
62,
8367,
8,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
1220,
2323,
62,
35310,
62,
30586,
62,
8367,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
10612,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
2073,
25,
198,
220,
220,
220,
220,
220,
220,
220,
1303,
15284,
384,
198,
220,
220,
220,
220,
220,
220,
220,
5418,
62,
4164,
1173,
62,
3008,
62,
11600,
796,
1391,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
1298,
357,
76,
735,
62,
30586,
62,
8367,
1343,
264,
2419,
13,
25386,
532,
2323,
62,
35310,
62,
30586,
62,
8367,
8,
12429,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
366,
82,
2419,
18,
1298,
357,
76,
735,
62,
30586,
62,
8367,
1343,
264,
2419,
18,
13,
25386,
532,
2323,
62,
35310,
62,
30586,
62,
8367,
8,
12429,
362,
11,
198,
220,
220,
220,
220,
220,
220,
220,
1782,
198,
220,
220,
220,
1303,
2198,
2854,
3959,
2024,
198,
220,
220,
220,
267,
431,
62,
796,
30621,
9362,
36727,
36,
2100,
2288,
7,
198,
220,
220,
220,
220,
220,
220,
220,
4097,
270,
62,
12363,
1891,
28,
1837,
429,
6587,
62,
6649,
378,
62,
3903,
270,
62,
12363,
1891,
11,
267,
431,
62,
395,
320,
2024,
41888,
82,
2419,
11,
264,
2419,
18,
60,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
2854,
796,
267,
431,
44807,
49786,
62,
26585,
62,
1659,
62,
395,
320,
2024,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
2833,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
18663,
28,
4164,
1173,
11,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
329,
479,
11,
410,
287,
2854,
13,
23814,
33529,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
479,
287,
5418,
62,
4164,
1173,
62,
3008,
62,
11600,
11,
366,
44651,
1994,
286,
2854,
2882,
1,
198,
220,
220,
220,
220,
220,
220,
220,
6818,
410,
6624,
5418,
62,
4164,
1173,
62,
3008,
62,
11600,
58,
74,
4357,
366,
44651,
1988,
286,
2854,
2882,
1,
198,
220,
220,
220,
2854,
62,
7568,
796,
267,
431,
44807,
16345,
3876,
1096,
62,
395,
320,
2024,
62,
785,
1845,
1653,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2323,
62,
35310,
62,
30586,
62,
8367,
28,
2833,
62,
35310,
62,
30586,
62,
8367,
11,
198,
220,
220,
220,
220,
220,
220,
220,
12660,
62,
30586,
62,
862,
7295,
28,
18206,
2288,
62,
30586,
62,
862,
7295,
11,
198,
220,
220,
220,
220,
220,
220,
220,
18663,
28,
4164,
1173,
11,
198,
220,
220,
220,
1267,
198,
220,
220,
220,
6818,
62,
14535,
62,
40496,
7,
198,
220,
220,
220,
220,
220,
220,
220,
2854,
62,
7568,
11,
279,
67,
13,
6601,
19778,
7,
18206,
62,
4164,
1173,
62,
3008,
62,
11600,
11,
6376,
41888,
4164,
1173,
35944,
51,
198,
220,
220,
220,
10612,
366,
44651,
15676,
1634,
357,
26585,
16725,
198
] | 2.350366 | 10,666 |
import os, sys
__file__ = os.path.normpath(os.path.abspath(__file__))
__path__ = os.path.dirname(__file__)
__popup_path__ = os.path.join(__path__, 'popup')
# print(__path__)
if __path__ not in sys.path:
sys.path.insert(0, __path__)
if __popup_path__ not in sys.path:
sys.path.insert(0, __popup_path__)
from csharp_element import CSharpElement
from csharp_reference import CSharpReference
import popup.yaml_reference_popup
import popup.yaml_gameobject_popup
import popup.yaml_transform_popup
import popup.csharp_reference_popup
import popup.csharp_class_summary_popup
import popup.csharp_method_summary_popup
import popup.csharp_class_inherits_diagram_popup
import popup.git_whatchanged_commit_popup
import popup.git_summary_list_popup
## Popups ##
| [
11748,
28686,
11,
25064,
198,
198,
834,
7753,
834,
796,
28686,
13,
6978,
13,
27237,
6978,
7,
418,
13,
6978,
13,
397,
2777,
776,
7,
834,
7753,
834,
4008,
198,
834,
6978,
834,
796,
28686,
13,
6978,
13,
15908,
3672,
7,
834,
7753,
834,
8,
198,
834,
12924,
929,
62,
6978,
834,
796,
28686,
13,
6978,
13,
22179,
7,
834,
6978,
834,
11,
705,
12924,
929,
11537,
198,
198,
2,
3601,
7,
834,
6978,
834,
8,
198,
198,
361,
11593,
6978,
834,
407,
287,
25064,
13,
6978,
25,
198,
220,
220,
220,
25064,
13,
6978,
13,
28463,
7,
15,
11,
11593,
6978,
834,
8,
198,
198,
361,
11593,
12924,
929,
62,
6978,
834,
407,
287,
25064,
13,
6978,
25,
198,
220,
220,
220,
25064,
13,
6978,
13,
28463,
7,
15,
11,
11593,
12924,
929,
62,
6978,
834,
8,
198,
198,
6738,
269,
48554,
62,
30854,
1330,
327,
44336,
20180,
198,
6738,
269,
48554,
62,
35790,
1330,
327,
44336,
26687,
198,
198,
11748,
46207,
13,
88,
43695,
62,
35790,
62,
12924,
929,
198,
11748,
46207,
13,
88,
43695,
62,
6057,
15252,
62,
12924,
929,
198,
11748,
46207,
13,
88,
43695,
62,
35636,
62,
12924,
929,
198,
11748,
46207,
13,
66,
48554,
62,
35790,
62,
12924,
929,
198,
11748,
46207,
13,
66,
48554,
62,
4871,
62,
49736,
62,
12924,
929,
198,
11748,
46207,
13,
66,
48554,
62,
24396,
62,
49736,
62,
12924,
929,
198,
11748,
46207,
13,
66,
48554,
62,
4871,
62,
259,
372,
896,
62,
10989,
6713,
62,
12924,
929,
198,
11748,
46207,
13,
18300,
62,
1929,
963,
5102,
62,
41509,
62,
12924,
929,
198,
11748,
46207,
13,
18300,
62,
49736,
62,
4868,
62,
12924,
929,
628,
220,
220,
220,
22492,
8099,
4739,
22492,
198
] | 2.700704 | 284 |
# Mock apis needs to be commented before used within SAP Data Intelligence
#from diadmin.dimockapi.mock_api import mock_api
#api = mock_api(__file__)
import os
import json
import requests
import http.client
from base64 import b64encode
api.add_generator(gen) | [
2,
44123,
2471,
271,
2476,
284,
307,
16476,
878,
973,
1626,
48323,
6060,
9345,
198,
2,
6738,
2566,
28482,
13,
27740,
735,
15042,
13,
76,
735,
62,
15042,
1330,
15290,
62,
15042,
198,
2,
15042,
796,
15290,
62,
15042,
7,
834,
7753,
834,
8,
198,
198,
11748,
28686,
198,
11748,
33918,
198,
11748,
7007,
198,
11748,
2638,
13,
16366,
198,
6738,
2779,
2414,
1330,
275,
2414,
268,
8189,
628,
198,
15042,
13,
2860,
62,
8612,
1352,
7,
5235,
8
] | 3.303797 | 79 |
from tkinter import filedialog
from bs4 import *
import re
from pprint import *
import pprint
import xlsxwriter
from tkinter import *
# from tkinter.filedialog import askopenfilename
Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
filename = filedialog.askopenfilename() # show an "Open" dialog box and return the path to the selected file
filename.replace("/", "\\\\")
rawhtml = open(filename,
encoding="utf-8").readlines()
hhosts =allhosts()
haha =foo(hhosts)
# print(type(haha))
# print(haha)
a, b =reformat(haha)
# print(a)
reformatforprint(a, b)
print("Done! Next!")
| [
6738,
256,
74,
3849,
1330,
5717,
498,
519,
201,
198,
6738,
275,
82,
19,
1330,
1635,
201,
198,
11748,
302,
201,
198,
6738,
279,
4798,
1330,
1635,
201,
198,
11748,
279,
4798,
201,
198,
11748,
2124,
7278,
87,
16002,
201,
198,
6738,
256,
74,
3849,
1330,
1635,
201,
198,
2,
422,
256,
74,
3849,
13,
69,
3902,
498,
519,
1330,
1265,
9654,
34345,
201,
198,
201,
198,
201,
198,
51,
74,
22446,
4480,
19334,
3419,
1303,
356,
836,
470,
765,
257,
1336,
25757,
11,
523,
1394,
262,
6808,
4324,
422,
12655,
201,
198,
34345,
796,
5717,
498,
519,
13,
2093,
9654,
34345,
3419,
1303,
905,
281,
366,
11505,
1,
17310,
3091,
290,
1441,
262,
3108,
284,
262,
6163,
2393,
201,
198,
201,
198,
201,
198,
34345,
13,
33491,
7203,
14,
1600,
366,
13426,
4943,
201,
198,
201,
198,
1831,
6494,
796,
1280,
7,
34345,
11,
201,
198,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
220,
21004,
2625,
40477,
12,
23,
11074,
961,
6615,
3419,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
201,
198,
71,
4774,
82,
796,
439,
4774,
82,
3419,
201,
198,
71,
12236,
796,
21943,
7,
71,
4774,
82,
8,
201,
198,
2,
3601,
7,
4906,
7,
71,
12236,
4008,
201,
198,
2,
3601,
7,
71,
12236,
8,
201,
198,
64,
11,
275,
796,
260,
18982,
7,
71,
12236,
8,
201,
198,
2,
3601,
7,
64,
8,
201,
198,
260,
18982,
1640,
4798,
7,
64,
11,
275,
8,
201,
198,
4798,
7203,
45677,
0,
7406,
2474,
8,
201,
198,
201,
198
] | 2.515038 | 266 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.