content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
############################################################################## # insert.py # https://github.com/DigiLog-N/SynopticDataClient # Copyright 2020 Canvass Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from cassandra.cluster import Cluster cluster = Cluster() session = cluster.connect('digilog_n') ''' rows = session.execute('SELECT * FROM digilog_n.obd') for row in rows: print(row) user_lookup_stmt = session.prepare("SELECT * FROM users WHERE user_id=?") INSERT INTO users = [] for user_id in user_ids_to_query: user = session.execute(user_lookup_stmt, [user_id]) users.append(user) session.execute( """ INSERT INTO users (name, credits, user_id) VALUES (%s, %s, %s) """, ("John O'Reilly", 42, uuid.uuid1()) ) '''
[ 29113, 29113, 7804, 4242, 2235, 198, 2, 7550, 13, 9078, 198, 2, 3740, 1378, 12567, 13, 785, 14, 19511, 72, 11187, 12, 45, 14, 29934, 8738, 291, 6601, 11792, 198, 2, 15069, 12131, 1680, 85, 562, 23500, 11, 3457, 13, 198, 2, 220, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 220, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 220, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 29113, 29113, 7804, 4242, 2235, 198, 6738, 30606, 15918, 13, 565, 5819, 1330, 38279, 198, 198, 565, 5819, 796, 38279, 3419, 198, 29891, 796, 13946, 13, 8443, 10786, 12894, 346, 519, 62, 77, 11537, 198, 198, 7061, 6, 198, 8516, 796, 6246, 13, 41049, 10786, 46506, 1635, 16034, 3100, 346, 519, 62, 77, 13, 672, 67, 11537, 198, 1640, 5752, 287, 15274, 25, 198, 220, 220, 220, 3601, 7, 808, 8, 198, 198, 7220, 62, 5460, 929, 62, 301, 16762, 796, 6246, 13, 46012, 533, 7203, 46506, 1635, 16034, 2985, 33411, 2836, 62, 312, 28, 1701, 8, 198, 198, 20913, 17395, 39319, 220, 198, 198, 18417, 796, 17635, 198, 1640, 2836, 62, 312, 287, 2836, 62, 2340, 62, 1462, 62, 22766, 25, 198, 220, 220, 220, 2836, 796, 6246, 13, 41049, 7, 7220, 62, 5460, 929, 62, 301, 16762, 11, 685, 7220, 62, 312, 12962, 198, 220, 220, 220, 2985, 13, 33295, 7, 7220, 8, 628, 198, 29891, 13, 41049, 7, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29194, 17395, 39319, 2985, 357, 3672, 11, 10824, 11, 2836, 62, 312, 8, 198, 220, 220, 220, 26173, 35409, 37633, 82, 11, 4064, 82, 11, 4064, 82, 8, 198, 220, 220, 220, 13538, 1600, 198, 220, 220, 220, 5855, 7554, 440, 6, 25819, 1600, 5433, 11, 334, 27112, 13, 12303, 312, 16, 28955, 198, 8, 198, 7061, 6, 628 ]
3.304136
411
import pytest from btreelab.disk import Disk, DiskController @pytest.fixture() def dc(): '''disk controller ''' return DiskController(block_size=124, block_num=8)
[ 198, 11748, 12972, 9288, 220, 198, 6738, 275, 33945, 417, 397, 13, 39531, 1330, 31664, 11, 31664, 22130, 220, 198, 198, 31, 9078, 9288, 13, 69, 9602, 3419, 220, 198, 4299, 30736, 33529, 220, 198, 220, 220, 220, 705, 7061, 39531, 10444, 198, 220, 220, 220, 705, 7061, 220, 198, 220, 220, 220, 1441, 31664, 22130, 7, 9967, 62, 7857, 28, 17464, 11, 2512, 62, 22510, 28, 23, 8, 220, 628 ]
2.591549
71
# Copyright 2017 Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gapit_test_framework import gapit_test, require, require_equal from gapit_test_framework import require_not_equal, little_endian_bytes_to_int from gapit_test_framework import GapitTest, get_read_offset_function from struct_offsets import VulkanStruct, UINT32_T, SIZE_T, POINTER from struct_offsets import HANDLE, FLOAT, CHAR, ARRAY from vulkan_constants import * FRAMEBUFFER_CREATE_INFO = [ ("sType", UINT32_T), ("pNext", POINTER), ("flags", UINT32_T), ("renderPass", HANDLE), ("attachmentCount", UINT32_T), ("pAttachments", POINTER), ("width", UINT32_T), ("height", UINT32_T), ("layers", UINT32_T) ] @gapit_test("vkCreateFramebuffer_test")
[ 2, 15069, 2177, 3012, 3457, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 7625, 270, 62, 9288, 62, 30604, 1330, 7625, 270, 62, 9288, 11, 2421, 11, 2421, 62, 40496, 198, 6738, 7625, 270, 62, 9288, 62, 30604, 1330, 2421, 62, 1662, 62, 40496, 11, 1310, 62, 437, 666, 62, 33661, 62, 1462, 62, 600, 198, 6738, 7625, 270, 62, 9288, 62, 30604, 1330, 33899, 270, 14402, 11, 651, 62, 961, 62, 28968, 62, 8818, 198, 6738, 2878, 62, 8210, 1039, 1330, 35977, 44909, 11, 471, 12394, 2624, 62, 51, 11, 311, 35400, 62, 51, 11, 19922, 41358, 198, 6738, 2878, 62, 8210, 1039, 1330, 367, 6981, 2538, 11, 9977, 46, 1404, 11, 28521, 11, 5923, 30631, 198, 6738, 410, 31263, 62, 9979, 1187, 1330, 1635, 198, 198, 10913, 10067, 19499, 45746, 62, 43387, 6158, 62, 10778, 796, 685, 198, 220, 220, 220, 5855, 82, 6030, 1600, 471, 12394, 2624, 62, 51, 828, 5855, 79, 10019, 1600, 19922, 41358, 828, 5855, 33152, 1600, 471, 12394, 2624, 62, 51, 828, 198, 220, 220, 220, 5855, 13287, 14478, 1600, 367, 6981, 2538, 828, 5855, 1078, 15520, 12332, 1600, 471, 12394, 2624, 62, 51, 828, 198, 220, 220, 220, 5855, 79, 33296, 902, 1600, 19922, 41358, 828, 5855, 10394, 1600, 471, 12394, 2624, 62, 51, 828, 5855, 17015, 1600, 471, 12394, 2624, 62, 51, 828, 198, 220, 220, 220, 5855, 75, 6962, 1600, 471, 12394, 2624, 62, 51, 8, 198, 60, 628, 198, 31, 43554, 270, 62, 9288, 7203, 85, 74, 16447, 19778, 22252, 62, 9288, 4943, 198 ]
3.191214
387
# # Copyright (2021) The Delta Lake Project Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from scripts.utils import * from datetime import datetime import time class BenchmarkSpec: """ Specifications of a benchmark. :param format_name: Spark format name :param maven_artifacts: Maven artifact name in x:y:z format :param spark_confs: list of spark conf strings in key=value format :param benchmark_main_class: Name of main Scala class from the JAR to run :param main_class_args command line args for the main class """ class TPCDSDataLoadSpec(BenchmarkSpec): """ Specifications of TPC-DS data load process. Always mixin in this first before the base benchmark class. """ class TPCDSBenchmarkSpec(BenchmarkSpec): """ Specifications of TPC-DS benchmark """ # ============== Delta benchmark specifications ============== class DeltaBenchmarkSpec(BenchmarkSpec): """ Specification of a benchmark using the Delta format """ @staticmethod # ============== General benchmark execution ============== class Benchmark: """ Represents a benchmark that can be run on a remote Spark cluster :param benchmark_name: A name to be used for uniquely identifying this benchmark. Added to file names generated by this benchmark. :param benchmark_spec: Specification of the benchmark. See BenchmarkSpec. """ @staticmethod @staticmethod @staticmethod @staticmethod @staticmethod
[ 2, 198, 2, 15069, 357, 1238, 2481, 8, 383, 16978, 6233, 4935, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 6738, 14750, 13, 26791, 1330, 1635, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 640, 628, 198, 4871, 25187, 4102, 22882, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 46271, 286, 257, 18335, 13, 628, 220, 220, 220, 1058, 17143, 5794, 62, 3672, 25, 17732, 5794, 1438, 198, 220, 220, 220, 1058, 17143, 285, 4005, 62, 50179, 25, 337, 4005, 24127, 1438, 287, 2124, 25, 88, 25, 89, 5794, 198, 220, 220, 220, 1058, 17143, 9009, 62, 1102, 9501, 25, 1351, 286, 9009, 1013, 13042, 287, 1994, 28, 8367, 5794, 198, 220, 220, 220, 1058, 17143, 18335, 62, 12417, 62, 4871, 25, 6530, 286, 1388, 38334, 1398, 422, 262, 449, 1503, 284, 1057, 198, 220, 220, 220, 1058, 17143, 1388, 62, 4871, 62, 22046, 3141, 1627, 26498, 329, 262, 1388, 1398, 198, 220, 220, 220, 37227, 628, 198, 4871, 309, 5662, 5258, 6601, 8912, 22882, 7, 44199, 4102, 22882, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 46271, 286, 309, 5662, 12, 5258, 1366, 3440, 1429, 13, 198, 220, 220, 220, 16622, 5022, 259, 287, 428, 717, 878, 262, 2779, 18335, 1398, 13, 198, 220, 220, 220, 37227, 628, 198, 4871, 309, 5662, 5258, 44199, 4102, 22882, 7, 44199, 4102, 22882, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 46271, 286, 309, 5662, 12, 5258, 18335, 198, 220, 220, 220, 37227, 198, 198, 2, 796, 25609, 28, 16978, 18335, 20640, 796, 25609, 28, 628, 198, 4871, 16978, 44199, 4102, 22882, 7, 44199, 4102, 22882, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18291, 2649, 286, 257, 18335, 1262, 262, 16978, 5794, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 628, 198, 2, 796, 25609, 28, 3611, 18335, 9706, 796, 25609, 28, 628, 198, 4871, 25187, 4102, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1432, 6629, 257, 18335, 326, 460, 307, 1057, 319, 257, 6569, 17732, 13946, 198, 220, 220, 220, 1058, 17143, 18335, 62, 3672, 25, 317, 1438, 284, 307, 973, 329, 24139, 13720, 428, 18335, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10687, 284, 2393, 3891, 7560, 416, 428, 18335, 13, 198, 220, 220, 220, 1058, 17143, 18335, 62, 16684, 25, 18291, 2649, 286, 262, 18335, 13, 4091, 25187, 4102, 22882, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628 ]
3.397993
598
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/display.ipynb (unless otherwise specified). __all__ = ['encode', 'DiscordEncoder', 'Formatter', 'serialize_content', 'html_content'] # Cell import discord # Cell import json # Cell #TODO change the data model for this to something more standard. # use only strings for the keywords rather than discord objects
[ 2, 47044, 7730, 1677, 1137, 11617, 0, 8410, 5626, 48483, 0, 9220, 284, 4370, 25, 299, 1443, 14, 13812, 13, 541, 2047, 65, 357, 25252, 4306, 7368, 737, 198, 198, 834, 439, 834, 796, 37250, 268, 8189, 3256, 705, 15642, 585, 27195, 12342, 3256, 705, 8479, 1436, 3256, 705, 46911, 1096, 62, 11299, 3256, 705, 6494, 62, 11299, 20520, 198, 198, 2, 12440, 198, 11748, 36446, 628, 198, 2, 12440, 198, 198, 11748, 33918, 628, 628, 198, 2, 12440, 198, 198, 2, 51, 3727, 46, 1487, 262, 1366, 2746, 329, 428, 284, 1223, 517, 3210, 13, 198, 2, 779, 691, 13042, 329, 262, 26286, 2138, 621, 36446, 5563 ]
3.398148
108
import string import base64 from distutils.util import strtobool from marshmallow.exceptions import ValidationError from baselayer.app.access import permissions, auth_or_token from ..base import BaseHandler from ...models import ( DBSession, Source, Comment, Group, Candidate, Filter, Obj, User, UserNotification, )
[ 11748, 4731, 198, 11748, 2779, 2414, 198, 6738, 1233, 26791, 13, 22602, 1330, 965, 83, 672, 970, 198, 6738, 22397, 42725, 13, 1069, 11755, 1330, 3254, 24765, 12331, 198, 6738, 1615, 417, 2794, 13, 1324, 13, 15526, 1330, 21627, 11, 6284, 62, 273, 62, 30001, 198, 6738, 11485, 8692, 1330, 7308, 25060, 198, 6738, 2644, 27530, 1330, 357, 198, 220, 220, 220, 360, 4462, 2521, 11, 198, 220, 220, 220, 8090, 11, 198, 220, 220, 220, 18957, 11, 198, 220, 220, 220, 4912, 11, 198, 220, 220, 220, 40327, 11, 198, 220, 220, 220, 25853, 11, 198, 220, 220, 220, 38764, 11, 198, 220, 220, 220, 11787, 11, 198, 220, 220, 220, 11787, 3673, 2649, 11, 198, 8, 628, 628 ]
2.958333
120
from kafka import KafkaProducer import json producer = KafkaProducer(value_serializer=lambda m: json.dumps(m).encode('ascii'), bootstrap_servers=['localhost:9092']) producer.send('event', {'id': 123, 'email_vendedor': '[email protected]'}) producer.flush()
[ 6738, 479, 1878, 4914, 1330, 46906, 11547, 2189, 198, 11748, 33918, 220, 198, 198, 18230, 2189, 796, 46906, 11547, 2189, 7, 8367, 62, 46911, 7509, 28, 50033, 285, 25, 33918, 13, 67, 8142, 7, 76, 737, 268, 8189, 10786, 292, 979, 72, 33809, 6297, 26418, 62, 2655, 690, 28, 17816, 36750, 25, 44675, 17, 6, 12962, 198, 18230, 2189, 13, 21280, 10786, 15596, 3256, 1391, 6, 312, 10354, 17031, 11, 705, 12888, 62, 85, 1631, 273, 10354, 705, 292, 67, 292, 31, 4529, 13, 785, 6, 30072, 198, 18230, 2189, 13, 25925, 3419 ]
2.741935
93
import os, sys sys.path.insert(1, os.path.join(os.path.abspath('.'), 'flaskstuff')) from flask import Flask app = Flask(__name__) from app import views
[ 11748, 28686, 11, 25064, 198, 17597, 13, 6978, 13, 28463, 7, 16, 11, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 397, 2777, 776, 10786, 2637, 828, 705, 2704, 2093, 41094, 6, 4008, 198, 6738, 42903, 1330, 46947, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 198, 6738, 598, 1330, 5009, 198 ]
2.732143
56
from concurrent.futures import ThreadPoolExecutor from itertools import repeat from pprint import pprint import pexpect import yaml import logging logging.basicConfig( format="%(threadName)s %(name)s %(levelname)s: %(message)s", level=logging.INFO ) if __name__ == "__main__": with open("devices.yaml") as f: devices = yaml.safe_load(f) r = send_show_to_devices(devices, "sh int desc") pprint(r, width=120)
[ 6738, 24580, 13, 69, 315, 942, 1330, 14122, 27201, 23002, 38409, 198, 6738, 340, 861, 10141, 1330, 9585, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 198, 11748, 613, 87, 806, 198, 11748, 331, 43695, 198, 11748, 18931, 628, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 5794, 2625, 4, 7, 16663, 5376, 8, 82, 4064, 7, 3672, 8, 82, 4064, 7, 5715, 3672, 8, 82, 25, 4064, 7, 20500, 8, 82, 1600, 1241, 28, 6404, 2667, 13, 10778, 198, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 351, 1280, 7203, 42034, 13, 88, 43695, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4410, 796, 331, 43695, 13, 21230, 62, 2220, 7, 69, 8, 198, 220, 220, 220, 374, 796, 3758, 62, 12860, 62, 1462, 62, 42034, 7, 42034, 11, 366, 1477, 493, 1715, 4943, 198, 220, 220, 220, 279, 4798, 7, 81, 11, 9647, 28, 10232, 8, 198 ]
2.638554
166
from django.contrib.auth.models import User from django import forms from healthapp.models import UserDoctor, UserPatient, Schedule
[ 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 198, 6738, 42625, 14208, 1330, 5107, 198, 6738, 1535, 1324, 13, 27530, 1330, 11787, 37564, 11, 11787, 12130, 1153, 11, 19281, 628, 628, 198 ]
3.777778
36
from __future__ import absolute_import from . import qbatch from .qbatch import qbatchParser from .qbatch import qbatchDriver
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 198, 6738, 764, 1330, 10662, 43501, 198, 6738, 764, 80, 43501, 1330, 10662, 43501, 46677, 198, 6738, 764, 80, 43501, 1330, 10662, 43501, 32103, 198 ]
3.735294
34
__author__ = 'ThanhNam' # Enter your code for the AdoptionCenter class here # Be sure to include the __init__, get_name, get_species_count, get_number_of_species, and adopt_pet methods. class AdoptionCenter: """ The AdoptionCenter class stores the important information that a client would need to know about, such as the different numbers of species stored, the location, and the name. It also has a method to adopt a pet. """
[ 834, 9800, 834, 796, 705, 817, 272, 71, 45, 321, 6, 198, 2, 6062, 534, 2438, 329, 262, 1215, 18076, 23656, 1398, 994, 198, 2, 1355, 1654, 284, 2291, 262, 11593, 15003, 834, 11, 651, 62, 3672, 11, 651, 62, 35448, 62, 9127, 11, 651, 62, 17618, 62, 1659, 62, 35448, 11, 290, 11206, 62, 6449, 5050, 13, 198, 4871, 1215, 18076, 23656, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 383, 1215, 18076, 23656, 1398, 7000, 262, 1593, 1321, 326, 257, 198, 220, 220, 220, 5456, 561, 761, 284, 760, 546, 11, 884, 355, 262, 1180, 3146, 286, 198, 220, 220, 220, 4693, 8574, 11, 262, 4067, 11, 290, 262, 1438, 13, 632, 635, 468, 257, 2446, 198, 220, 220, 220, 284, 11206, 257, 4273, 13, 198, 220, 220, 220, 37227 ]
3.365672
134
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals from numpy.testing import assert_allclose from ...utils.testing import requires_data from ..core import gammapy_extra from ...datasets import load_poisson_stats_image @requires_data("gammapy-extra") def test_gammapy_extra(): """Try loading a file from gammapy-extra. """ assert gammapy_extra.dir.is_dir() @requires_data("gammapy-extra")
[ 2, 49962, 739, 257, 513, 12, 565, 682, 347, 10305, 3918, 5964, 532, 766, 38559, 24290, 13, 81, 301, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 198, 6738, 299, 32152, 13, 33407, 1330, 6818, 62, 439, 19836, 198, 6738, 2644, 26791, 13, 33407, 1330, 4433, 62, 7890, 198, 6738, 11485, 7295, 1330, 308, 6475, 12826, 62, 26086, 198, 6738, 2644, 19608, 292, 1039, 1330, 3440, 62, 7501, 30927, 62, 34242, 62, 9060, 628, 198, 31, 47911, 62, 7890, 7203, 70, 6475, 12826, 12, 26086, 4943, 198, 4299, 1332, 62, 70, 6475, 12826, 62, 26086, 33529, 198, 220, 220, 220, 37227, 23433, 11046, 257, 2393, 422, 308, 6475, 12826, 12, 26086, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 308, 6475, 12826, 62, 26086, 13, 15908, 13, 271, 62, 15908, 3419, 628, 198, 31, 47911, 62, 7890, 7203, 70, 6475, 12826, 12, 26086, 4943, 198 ]
3.10559
161
import unittest from gpflow.tf_wraps import vec_to_tri import tensorflow as tf import numpy as np from testing.gpflow_testcase import GPflowTestCase from gpflow.tf_wraps import vec_to_tri if __name__ == "__main__": unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 27809, 11125, 13, 27110, 62, 29988, 862, 1330, 43030, 62, 1462, 62, 28461, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 4856, 13, 31197, 11125, 62, 9288, 7442, 1330, 14714, 11125, 14402, 20448, 198, 6738, 27809, 11125, 13, 27110, 62, 29988, 862, 1330, 43030, 62, 1462, 62, 28461, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.8
85
from aiohttp.client import ClientSession from http import HTTPStatus from sanic.exceptions import abort
[ 6738, 257, 952, 4023, 13, 16366, 1330, 20985, 36044, 198, 6738, 2638, 1330, 14626, 19580, 198, 6738, 5336, 291, 13, 1069, 11755, 1330, 15614, 628 ]
4.2
25
from flask import Blueprint, redirect, url_for, request, render_template, flash, g from flask.ext.login import login_user, logout_user, current_user, login_required from GUTG_Vote import utilities from GUTG_Vote.models import User, Game from GUTG_Vote.forms import LoginForm from GUTG_Vote.extensions import db main = Blueprint('main', __name__) @main.before_request @main.route('/') @main.route('/login', methods=['GET', 'POST']) @main.route('/logout') @main.route('/<game_id>/vote', methods=['POST']) @login_required
[ 6738, 42903, 1330, 39932, 11, 18941, 11, 19016, 62, 1640, 11, 2581, 11, 8543, 62, 28243, 11, 7644, 11, 308, 198, 6738, 42903, 13, 2302, 13, 38235, 1330, 17594, 62, 7220, 11, 2604, 448, 62, 7220, 11, 1459, 62, 7220, 11, 17594, 62, 35827, 198, 198, 6738, 402, 3843, 38, 62, 37394, 1330, 20081, 198, 6738, 402, 3843, 38, 62, 37394, 13, 27530, 1330, 11787, 11, 3776, 198, 6738, 402, 3843, 38, 62, 37394, 13, 23914, 1330, 23093, 8479, 198, 6738, 402, 3843, 38, 62, 37394, 13, 2302, 5736, 1330, 20613, 198, 198, 12417, 796, 39932, 10786, 12417, 3256, 11593, 3672, 834, 8, 198, 198, 31, 12417, 13, 19052, 62, 25927, 198, 198, 31, 12417, 13, 38629, 10786, 14, 11537, 198, 198, 31, 12417, 13, 38629, 10786, 14, 38235, 3256, 5050, 28, 17816, 18851, 3256, 705, 32782, 6, 12962, 628, 198, 31, 12417, 13, 38629, 10786, 14, 6404, 448, 11537, 198, 198, 31, 12417, 13, 38629, 10786, 14, 27, 6057, 62, 312, 29, 14, 27257, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 31, 38235, 62, 35827 ]
2.971751
177
import discord, dislash, datetime from dislash import slash_command, SlashInteraction, ContextMenuInteraction from discord.ext import commands from src.extras.views import url_button_generator
[ 11748, 36446, 11, 595, 17055, 11, 4818, 8079, 198, 6738, 595, 17055, 1330, 24632, 62, 21812, 11, 26616, 9492, 2673, 11, 30532, 23381, 9492, 2673, 198, 6738, 36446, 13, 2302, 1330, 9729, 198, 6738, 12351, 13, 2302, 8847, 13, 33571, 1330, 19016, 62, 16539, 62, 8612, 1352, 198 ]
4.020833
48
#!/usr/bin/env python3 # Get annotations with context from database. import sys import os import re from logging import warning, error from standoff import Textbound try: from sqlitedict import SqliteDict except ImportError: error('failed to import sqlitedict, try `pip3 install sqlitedict`') raise def get_annotation(standoff, id_): """Get annotation with given ID from standoff""" for ln, line in enumerate(standoff.splitlines(), start=1): fields = line.split('\t') if fields[0] == id_: if id_[0] == 'T': return Textbound.from_standoff(line) else: raise NotImplementedError() if __name__ == '__main__': sys.exit(main(sys.argv))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 3497, 37647, 351, 4732, 422, 6831, 13, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 302, 198, 198, 6738, 18931, 1330, 6509, 11, 4049, 198, 198, 6738, 33379, 1330, 8255, 7784, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 44161, 863, 713, 1330, 311, 13976, 578, 35, 713, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 4049, 10786, 47904, 284, 1330, 44161, 863, 713, 11, 1949, 4600, 79, 541, 18, 2721, 44161, 863, 713, 63, 11537, 198, 220, 220, 220, 5298, 628, 198, 198, 4299, 651, 62, 1236, 14221, 7, 1481, 2364, 11, 4686, 62, 2599, 198, 220, 220, 220, 37227, 3855, 23025, 351, 1813, 4522, 422, 33379, 37811, 198, 220, 220, 220, 329, 300, 77, 11, 1627, 287, 27056, 378, 7, 1481, 2364, 13, 35312, 6615, 22784, 923, 28, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7032, 796, 1627, 13, 35312, 10786, 59, 83, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7032, 58, 15, 60, 6624, 4686, 62, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4686, 62, 58, 15, 60, 6624, 705, 51, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 8255, 7784, 13, 6738, 62, 1481, 2364, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 3419, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
2.489933
298
"""botform URL Configuration """ from django.conf.urls import url, include from rest_framework import routers from botform import api as form_api router = routers.DefaultRouter() router.register(r'forms', form_api.FormsViewSet) router.register(r'submissions', form_api.SubmissionsViewSet) urlpatterns = [ url(r'^api/v1/', include(router.urls)), url(r'^api/v1/forms/(?P<pk>\d+)/details/?$', form_api.grid_details), url(r'^api/v1/forms/(?P<pk>\d+)/details/submission/?$', form_api.grid_submissions), url(r'^', include('botform.urls')), url(r'^accounts/', include('allauth.urls')), ]
[ 37811, 13645, 687, 10289, 28373, 198, 198, 37811, 198, 6738, 42625, 14208, 13, 10414, 13, 6371, 82, 1330, 19016, 11, 2291, 198, 6738, 1334, 62, 30604, 1330, 41144, 198, 198, 6738, 10214, 687, 1330, 40391, 355, 1296, 62, 15042, 198, 198, 472, 353, 796, 41144, 13, 19463, 49, 39605, 3419, 198, 472, 353, 13, 30238, 7, 81, 6, 23914, 3256, 1296, 62, 15042, 13, 8479, 82, 7680, 7248, 8, 198, 472, 353, 13, 30238, 7, 81, 338, 549, 8481, 3256, 1296, 62, 15042, 13, 7004, 8481, 7680, 7248, 8, 198, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 85, 16, 14, 3256, 2291, 7, 472, 353, 13, 6371, 82, 36911, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 85, 16, 14, 23914, 29006, 30, 47, 27, 79, 74, 29, 59, 67, 10, 20679, 36604, 20924, 3, 3256, 1296, 62, 15042, 13, 25928, 62, 36604, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 15042, 14, 85, 16, 14, 23914, 29006, 30, 47, 27, 79, 74, 29, 59, 67, 10, 20679, 36604, 14, 7266, 3411, 20924, 3, 3256, 1296, 62, 15042, 13, 25928, 62, 7266, 8481, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 3256, 2291, 10786, 13645, 687, 13, 6371, 82, 11537, 828, 198, 220, 220, 220, 19016, 7, 81, 6, 61, 23317, 82, 14, 3256, 2291, 10786, 439, 18439, 13, 6371, 82, 11537, 828, 198, 60, 198 ]
2.489712
243
from pymongo import MongoClient
[ 6738, 279, 4948, 25162, 1330, 42591, 11792, 628, 198 ]
3.777778
9
from operacaoes3 import mais , menos , vezes , divicao , resto , raiz , divicao_f n1 = int(input('a')) n2 = int(input('b')) a = mais(n1,n2) b = menos(n1,n2) c = vezes(n1,n2) d = divicao(n1,n2) e = resto(n1,n2) f = raiz(n1,n2) g = divicao_f(n1,n2) print(f'{a}') print(f'{b}') print(f'{c}') print(f'{d}') print(f'{e}') print(f'{f}') print(f'{g}')
[ 6738, 1515, 22260, 3028, 18, 1330, 285, 15152, 837, 1450, 418, 837, 1569, 12271, 837, 2659, 3970, 78, 837, 1334, 78, 837, 2179, 528, 837, 2659, 3970, 78, 62, 69, 198, 198, 77, 16, 796, 493, 7, 15414, 10786, 64, 6, 4008, 198, 77, 17, 796, 493, 7, 15414, 10786, 65, 6, 4008, 198, 198, 64, 220, 796, 285, 15152, 7, 77, 16, 11, 77, 17, 8, 198, 65, 796, 1450, 418, 7, 77, 16, 11, 77, 17, 8, 198, 66, 796, 1569, 12271, 7, 77, 16, 11, 77, 17, 8, 198, 67, 796, 2659, 3970, 78, 7, 77, 16, 11, 77, 17, 8, 198, 68, 796, 1334, 78, 7, 77, 16, 11, 77, 17, 8, 198, 69, 796, 2179, 528, 7, 77, 16, 11, 77, 17, 8, 198, 70, 796, 2659, 3970, 78, 62, 69, 7, 77, 16, 11, 77, 17, 8, 628, 198, 198, 4798, 7, 69, 6, 90, 64, 92, 11537, 198, 4798, 7, 69, 6, 90, 65, 92, 11537, 198, 4798, 7, 69, 6, 90, 66, 92, 11537, 198, 4798, 7, 69, 6, 90, 67, 92, 11537, 198, 4798, 7, 69, 6, 90, 68, 92, 11537, 198, 4798, 7, 69, 6, 90, 69, 92, 11537, 198, 4798, 7, 69, 6, 90, 70, 92, 11537, 198 ]
1.679426
209
#!/usr/bin/env python import argparse import os import psycopg2 import sys # Why is it so hard to get python imports working? sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from scry import scry if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 25064, 198, 198, 2, 4162, 318, 340, 523, 1327, 284, 651, 21015, 17944, 1762, 30, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 6, 22305, 198, 6738, 629, 563, 1330, 629, 563, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.644231
104
__version__ = '0.1.5' try: import pandas pandas_df_type = pandas.DataFrame except ImportError: pandas_df_type = type(None) try: import msgpack has_msgpack = True except ImportError: has_msgpack = False try: import os login = os.getlogin() except OSError: login = ''
[ 834, 9641, 834, 796, 705, 15, 13, 16, 13, 20, 6, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 19798, 292, 198, 220, 220, 220, 19798, 292, 62, 7568, 62, 4906, 796, 19798, 292, 13, 6601, 19778, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 19798, 292, 62, 7568, 62, 4906, 796, 2099, 7, 14202, 8, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 31456, 8002, 198, 220, 220, 220, 468, 62, 19662, 8002, 796, 6407, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 468, 62, 19662, 8002, 796, 10352, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 28686, 198, 220, 220, 220, 17594, 796, 28686, 13, 1136, 38235, 3419, 198, 16341, 440, 5188, 81, 1472, 25, 198, 220, 220, 220, 17594, 796, 10148, 198 ]
2.346154
130
#!/usr/bin/env python3 import argparse import sys import os from pathlib import Path from Bio import SeqIO import gzip
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 1822, 29572, 198, 11748, 25064, 198, 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 16024, 1330, 1001, 80, 9399, 198, 11748, 308, 13344, 628, 198 ]
3.184211
38
""" Helper to assemble code from a web page. """ import flask import subprocess import tempfile main_html = r""" <!DOCTYPE html> <html><head> <title>Online compiler</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="stylesheet" href="http://www.w3schools.com/lib/w3.css"> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"></script> <script> function do_compile() { source = $("#source").val() $.post("compile", { source: source }, function(data, status) { $("#result").text(data.replace("\\n", "<br>", "g")); }); } </script> </head> <body> <div class="w3-container w3-teal"><h1>Online assembler</h1></div> <div class="w3-container"><textarea id="source">mov rax,rbx</textarea></div> <div class="w3-container"> <button class="w3-btn" onclick="do_compile()">Compile</button> </div> <div class="w3-container"><p id="result"></p></div> <div class="w3-container w3-teal"><p>By Windel Bouwman 2016</p></div> </body></html> """ app = flask.Flask(__name__) @app.route('/') @app.route('/compile', methods=['POST']) if __name__ == '__main__': app.run()
[ 37811, 5053, 525, 284, 25432, 2438, 422, 257, 3992, 2443, 13, 37227, 198, 198, 11748, 42903, 198, 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 198, 12417, 62, 6494, 796, 374, 37811, 198, 27, 0, 18227, 4177, 56, 11401, 27711, 29, 198, 27, 6494, 6927, 2256, 29, 198, 27, 7839, 29, 14439, 17050, 3556, 7839, 29, 198, 27, 28961, 1438, 2625, 1177, 634, 1, 2695, 2625, 10394, 28, 25202, 12, 10394, 11, 4238, 12, 9888, 28, 16, 5320, 198, 27, 8726, 823, 2625, 47720, 25473, 1, 13291, 2625, 4023, 1378, 2503, 13, 86, 18, 14347, 82, 13, 785, 14, 8019, 14, 86, 18, 13, 25471, 5320, 198, 27, 12048, 12351, 2625, 5450, 1378, 1228, 897, 13, 13297, 499, 271, 13, 785, 14, 1228, 897, 14, 8019, 82, 14, 73, 22766, 14, 18, 13, 16, 13, 16, 14, 73, 22766, 13, 1084, 13, 8457, 23984, 12048, 29, 198, 27, 12048, 29, 198, 8818, 466, 62, 5589, 576, 3419, 1391, 198, 2723, 796, 720, 7203, 2, 10459, 11074, 2100, 3419, 198, 720, 13, 7353, 7203, 5589, 576, 1600, 1391, 2723, 25, 2723, 8964, 198, 220, 2163, 7, 7890, 11, 3722, 8, 1391, 198, 220, 220, 720, 7203, 2, 20274, 11074, 5239, 7, 7890, 13, 33491, 7203, 6852, 77, 1600, 33490, 1671, 29, 1600, 366, 70, 4943, 1776, 198, 220, 14980, 198, 92, 198, 3556, 12048, 29, 198, 3556, 2256, 29, 198, 27, 2618, 29, 198, 27, 7146, 1398, 2625, 86, 18, 12, 34924, 266, 18, 12, 660, 282, 22039, 71, 16, 29, 14439, 11156, 1754, 3556, 71, 16, 12240, 7146, 29, 198, 27, 7146, 1398, 2625, 86, 18, 12, 34924, 22039, 5239, 20337, 4686, 2625, 10459, 5320, 76, 709, 374, 897, 11, 26145, 87, 3556, 5239, 20337, 12240, 7146, 29, 198, 27, 7146, 1398, 2625, 86, 18, 12, 34924, 5320, 198, 27, 16539, 1398, 2625, 86, 18, 12, 46118, 1, 319, 12976, 2625, 4598, 62, 5589, 576, 3419, 5320, 7293, 576, 3556, 16539, 29, 198, 3556, 7146, 29, 198, 27, 7146, 1398, 2625, 86, 18, 12, 34924, 22039, 79, 4686, 2625, 20274, 23984, 79, 12240, 7146, 29, 198, 27, 7146, 1398, 2625, 86, 18, 12, 34924, 266, 18, 12, 660, 282, 22039, 79, 29, 3886, 3086, 417, 14551, 86, 805, 1584, 3556, 79, 12240, 7146, 29, 198, 3556, 2618, 12240, 6494, 29, 198, 37811, 198, 198, 1324, 796, 42903, 13, 7414, 2093, 7, 834, 3672, 834, 8, 198, 198, 31, 1324, 13, 38629, 10786, 14, 11537, 628, 198, 31, 1324, 13, 38629, 10786, 14, 5589, 576, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 3419, 198 ]
2.555305
443
if __name__ == "__main__": a = input("first number:") b = input("second number:") print(', '.join(swap(a, b)))
[ 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 257, 796, 5128, 7203, 11085, 1271, 25, 4943, 198, 220, 275, 796, 5128, 7203, 12227, 1271, 25, 4943, 198, 220, 3601, 7, 3256, 45302, 22179, 7, 2032, 499, 7, 64, 11, 275, 22305, 198 ]
2.5
48
import os import sys import time import math import inspect import copy import logging import numpy as np import cv2 import torch from torch.autograd import Variable import torch.nn.functional as F from .DaSiamRPN_net import SiamRPNvot, SiamRPNBIG, SiamRPNotb from .run_SiamRPN import generate_anchor, tracker_eval from .DaSiamRPN_utils import get_subwindow_tracking class DaSiamRPNParams: """ :param int model: 0: SiamRPNvot 1: SiamRPNBIG 2: SiamRPNotb, :param str windowing: to penalize large displacements [cosine/uniform] :param int exemplar_size: input z size :param int instance_size: input x size (search region) :param float context_amount: context amount for the exemplar :param bool adaptive: adaptive change search region :param int score_size: size of score map :param int anchor_num: number of anchors """ class DaSiamRPN: """ :type params: DaSiamRPNParams :type logger: logging.RootLogger :type states: list[dict] """ def __init__(self, params, logger, target_id=0, label='generic', confidence=1.0): """ :type params: DaSiamRPNParams :type logger: logging.RootLogger | None :type target_id: int :rtype: None """ # self.tf_graph = tf.Graph() # avoid printing TF debugging information self._params = params self._logger = logger self.target_id = target_id self.label = label self.confidence = confidence self.cumulative_confidence = confidence if self._logger is None: self._logger = logging.getLogger() self._logger.setLevel(logging.INFO) # self.logger.handlers[0].setFormatter(logging.Formatter( # '%(levelname)s::%(module)s::%(funcName)s::%(lineno)s : %(message)s')) self.anchor = [] # self.params.update(cfg={}) self.associated_frames = 1 self.unassociated_frames = 0 self.associated = 0 # self.is_initialized = 0 self.bbox = None self.gpu_id = self._params.gpu_id self.pretrained_wts_dir = self._params.pretrained_wts_dir if self._params.rel_path: self.pretrained_wts_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), self.pretrained_wts_dir) self.net = None self.score_sz = self._params.score_size self.final_score_sz = self._params.score_size if self._params.update_location == 0: self._logger.info('Location updating is disabled') self.state = None def initialize(self, init_frame, init_bbox): """ :param np.ndarray init_frame: :param np.ndarray | list | tuple init_bbox: :return: """ if self.net is None: if self._params.model == 0: net = SiamRPNvot() net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNVOT.model'))) # self._logger.info('Using SiamRPNVOT model') elif self._params.model == 1: net = SiamRPNBIG() net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNBIG.model'))) # self._logger.info('Using SiamRPNBIG model') elif self._params.model == 2: net = SiamRPNotb() net.load_state_dict(torch.load(os.path.join(self.pretrained_wts_dir, 'SiamRPNOTB.model'))) # self._logger.info('Using SiamRPNOTB model') else: raise IOError('Invalid model_type: {}'.format(self._params.model)) net.eval().cuda(self.gpu_id) self.net = net cx, cy, target_w, target_h = init_bbox target_pos = np.array([cx, cy]) target_sz = np.array([target_w, target_h]) self._params.update(self.net.cfg) state = dict() state['im_h'] = init_frame.shape[0] state['im_w'] = init_frame.shape[1] if self._params.adaptive: if ((target_sz[0] * target_sz[1]) / float(state['im_h'] * state['im_w'])) < 0.004: self._params.instance_size = 287 # small object big search region else: self._params.instance_size = 271 self._params.score_size = ( self._params.instance_size - self._params.exemplar_size) / self._params.total_stride + 1 self.anchor = generate_anchor(self._params.total_stride, self._params.scales, self._params.ratios, int(self._params.score_size)) avg_chans = np.mean(init_frame, axis=(0, 1)) wc_z = target_sz[0] + self._params.context_amount * sum(target_sz) hc_z = target_sz[1] + self._params.context_amount * sum(target_sz) s_z = round(np.sqrt(wc_z * hc_z)) # initialize the exemplar z_crop = get_subwindow_tracking(init_frame, target_pos, self._params.exemplar_size, s_z, avg_chans) z = Variable(z_crop.unsqueeze(0)) self.net.temple(z.cuda(self.gpu_id)) if self._params.windowing == 'cosine': window = np.outer(np.hanning(self.score_sz), np.hanning(self.score_sz)) elif self._params.windowing == 'uniform': window = np.ones((self.score_sz, self.score_sz)) else: raise IOError('Invalid windowing type: {}'.format(self._params.windowing)) window = np.tile(window.flatten(), self._params.anchor_num) # state['p'] = self.params pos_x, pos_y = target_pos target_w, target_h = target_sz xmin, ymin = pos_x - target_w / 2, pos_y - target_h / 2 xmax, ymax = xmin + target_w, ymin + target_h bbox = [xmin, ymin, target_w, target_h] state['net'] = self.net state['avg_chans'] = avg_chans state['window'] = window state['target_pos'] = target_pos state['target_sz'] = target_sz self.bbox = [xmin, ymin, xmax, ymax] self.state = state
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 10688, 198, 11748, 10104, 198, 11748, 4866, 198, 11748, 18931, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 85, 17, 198, 11748, 28034, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 764, 26531, 50, 1789, 49, 13137, 62, 3262, 1330, 311, 1789, 49, 13137, 85, 313, 11, 311, 1789, 49, 13137, 3483, 38, 11, 311, 1789, 20031, 3673, 65, 198, 6738, 764, 5143, 62, 50, 1789, 49, 13137, 1330, 7716, 62, 3702, 273, 11, 30013, 62, 18206, 198, 6738, 764, 26531, 50, 1789, 49, 13137, 62, 26791, 1330, 651, 62, 7266, 17497, 62, 36280, 628, 198, 4871, 9637, 50, 1789, 49, 13137, 10044, 4105, 25, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1058, 17143, 493, 2746, 25, 657, 25, 311, 1789, 49, 13137, 85, 313, 352, 25, 311, 1789, 49, 13137, 3483, 38, 362, 25, 311, 1789, 20031, 3673, 65, 11, 198, 220, 220, 220, 1058, 17143, 965, 4324, 278, 25, 284, 23634, 1096, 1588, 7845, 28613, 685, 6966, 500, 14, 403, 6933, 60, 198, 220, 220, 220, 1058, 17143, 493, 21433, 283, 62, 7857, 25, 5128, 1976, 2546, 198, 220, 220, 220, 1058, 17143, 493, 4554, 62, 7857, 25, 5128, 2124, 2546, 357, 12947, 3814, 8, 198, 220, 220, 220, 1058, 17143, 12178, 4732, 62, 17287, 25, 4732, 2033, 329, 262, 21433, 283, 198, 220, 220, 220, 1058, 17143, 20512, 29605, 25, 29605, 1487, 2989, 3814, 198, 220, 220, 220, 1058, 17143, 493, 4776, 62, 7857, 25, 2546, 286, 4776, 3975, 198, 220, 220, 220, 1058, 17143, 493, 18021, 62, 22510, 25, 1271, 286, 43360, 198, 220, 220, 220, 37227, 628, 198, 4871, 9637, 50, 1789, 49, 13137, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 4906, 42287, 25, 9637, 50, 1789, 49, 13137, 10044, 4105, 198, 220, 220, 220, 1058, 4906, 49706, 25, 18931, 13, 30016, 11187, 1362, 198, 220, 220, 220, 1058, 4906, 2585, 25, 1351, 58, 11600, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 42287, 11, 49706, 11, 2496, 62, 312, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 11639, 41357, 3256, 6628, 28, 16, 13, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 42287, 25, 9637, 50, 1789, 49, 13137, 10044, 4105, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 49706, 25, 18931, 13, 30016, 11187, 1362, 930, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2496, 62, 312, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 27110, 62, 34960, 796, 48700, 13, 37065, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3368, 13570, 24958, 28769, 1321, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 796, 42287, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 796, 49706, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 16793, 62, 312, 796, 2496, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 18242, 796, 6167, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39745, 796, 6628, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36340, 13628, 62, 39745, 796, 6628, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 6404, 1362, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 6404, 1362, 13, 4993, 8116, 58, 15, 4083, 2617, 8479, 1436, 7, 6404, 2667, 13, 8479, 1436, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 705, 4, 7, 5715, 3672, 8, 82, 3712, 4, 7, 21412, 8, 82, 3712, 4, 7, 20786, 5376, 8, 82, 3712, 4, 7, 2815, 23397, 8, 82, 1058, 220, 4064, 7, 20500, 8, 82, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3702, 273, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 37266, 13, 19119, 7, 37581, 34758, 30072, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32852, 62, 37805, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 403, 32852, 62, 37805, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 32852, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 271, 62, 17532, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 3524, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46999, 62, 312, 796, 2116, 13557, 37266, 13, 46999, 62, 312, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5310, 13363, 62, 86, 912, 62, 15908, 796, 2116, 13557, 37266, 13, 5310, 13363, 62, 86, 912, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37266, 13, 2411, 62, 6978, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5310, 13363, 62, 86, 912, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 36911, 2116, 13, 5310, 13363, 62, 86, 912, 62, 15908, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3262, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 26675, 62, 82, 89, 796, 2116, 13557, 37266, 13, 26675, 62, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20311, 62, 26675, 62, 82, 89, 796, 2116, 13557, 37266, 13, 26675, 62, 7857, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37266, 13, 19119, 62, 24886, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 6404, 1362, 13, 10951, 10786, 14749, 19698, 318, 10058, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 6045, 628, 220, 220, 220, 825, 41216, 7, 944, 11, 2315, 62, 14535, 11, 2315, 62, 65, 3524, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 45941, 13, 358, 18747, 2315, 62, 14535, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 45941, 13, 358, 18747, 930, 1351, 930, 46545, 2315, 62, 65, 3524, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3262, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37266, 13, 19849, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 311, 1789, 49, 13137, 85, 313, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 5310, 13363, 62, 86, 912, 62, 15908, 11, 705, 50, 1789, 49, 13137, 53, 2394, 13, 19849, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13557, 6404, 1362, 13, 10951, 10786, 12814, 311, 1789, 49, 13137, 53, 2394, 2746, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 37266, 13, 19849, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 311, 1789, 49, 13137, 3483, 38, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 5310, 13363, 62, 86, 912, 62, 15908, 11, 705, 50, 1789, 49, 13137, 3483, 38, 13, 19849, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13557, 6404, 1362, 13, 10951, 10786, 12814, 311, 1789, 49, 13137, 3483, 38, 2746, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 37266, 13, 19849, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 796, 311, 1789, 20031, 3673, 65, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 5310, 13363, 62, 86, 912, 62, 15908, 11, 705, 50, 1789, 20031, 11929, 33, 13, 19849, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13557, 6404, 1362, 13, 10951, 10786, 12814, 311, 1789, 20031, 11929, 33, 2746, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 10786, 44651, 2746, 62, 4906, 25, 23884, 4458, 18982, 7, 944, 13557, 37266, 13, 19849, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 18206, 22446, 66, 15339, 7, 944, 13, 46999, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3262, 796, 2010, 628, 220, 220, 220, 220, 220, 220, 220, 43213, 11, 3075, 11, 2496, 62, 86, 11, 2496, 62, 71, 796, 2315, 62, 65, 3524, 628, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 1930, 796, 45941, 13, 18747, 26933, 66, 87, 11, 3075, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 82, 89, 796, 45941, 13, 18747, 26933, 16793, 62, 86, 11, 2496, 62, 71, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 13, 19119, 7, 944, 13, 3262, 13, 37581, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1181, 796, 8633, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 320, 62, 71, 20520, 796, 2315, 62, 14535, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 320, 62, 86, 20520, 796, 2315, 62, 14535, 13, 43358, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37266, 13, 42552, 425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 16793, 62, 82, 89, 58, 15, 60, 1635, 2496, 62, 82, 89, 58, 16, 12962, 1220, 12178, 7, 5219, 17816, 320, 62, 71, 20520, 1635, 1181, 17816, 320, 62, 86, 20520, 4008, 1279, 657, 13, 22914, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 13, 39098, 62, 7857, 796, 38721, 220, 1303, 1402, 2134, 1263, 2989, 3814, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 13, 39098, 62, 7857, 796, 33797, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 13, 26675, 62, 7857, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 37266, 13, 39098, 62, 7857, 532, 2116, 13557, 37266, 13, 1069, 18856, 283, 62, 7857, 8, 1220, 2116, 13557, 37266, 13, 23350, 62, 2536, 485, 1343, 352, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3702, 273, 796, 7716, 62, 3702, 273, 7, 944, 13557, 37266, 13, 23350, 62, 2536, 485, 11, 2116, 13557, 37266, 13, 1416, 2040, 11, 2116, 13557, 37266, 13, 10366, 4267, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 944, 13557, 37266, 13, 26675, 62, 7857, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 354, 504, 796, 45941, 13, 32604, 7, 15003, 62, 14535, 11, 16488, 16193, 15, 11, 352, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 266, 66, 62, 89, 796, 2496, 62, 82, 89, 58, 15, 60, 1343, 2116, 13557, 37266, 13, 22866, 62, 17287, 1635, 2160, 7, 16793, 62, 82, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 289, 66, 62, 89, 796, 2496, 62, 82, 89, 58, 16, 60, 1343, 2116, 13557, 37266, 13, 22866, 62, 17287, 1635, 2160, 7, 16793, 62, 82, 89, 8, 198, 220, 220, 220, 220, 220, 220, 220, 264, 62, 89, 796, 2835, 7, 37659, 13, 31166, 17034, 7, 86, 66, 62, 89, 1635, 289, 66, 62, 89, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 41216, 262, 21433, 283, 198, 220, 220, 220, 220, 220, 220, 220, 1976, 62, 31476, 796, 651, 62, 7266, 17497, 62, 36280, 7, 15003, 62, 14535, 11, 2496, 62, 1930, 11, 2116, 13557, 37266, 13, 1069, 18856, 283, 62, 7857, 11, 264, 62, 89, 11, 42781, 62, 354, 504, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1976, 796, 35748, 7, 89, 62, 31476, 13, 13271, 421, 1453, 2736, 7, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3262, 13, 11498, 1154, 7, 89, 13, 66, 15339, 7, 944, 13, 46999, 62, 312, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 37266, 13, 7972, 7855, 6624, 705, 6966, 500, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 796, 45941, 13, 39605, 7, 37659, 13, 7637, 768, 7, 944, 13, 26675, 62, 82, 89, 828, 45941, 13, 7637, 768, 7, 944, 13, 26675, 62, 82, 89, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 37266, 13, 7972, 7855, 6624, 705, 403, 6933, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4324, 796, 45941, 13, 1952, 19510, 944, 13, 26675, 62, 82, 89, 11, 2116, 13, 26675, 62, 82, 89, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 24418, 12331, 10786, 44651, 4324, 278, 2099, 25, 23884, 4458, 18982, 7, 944, 13557, 37266, 13, 7972, 7855, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 796, 45941, 13, 40927, 7, 17497, 13, 2704, 41769, 22784, 2116, 13557, 37266, 13, 3702, 273, 62, 22510, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1181, 17816, 79, 20520, 796, 2116, 13, 37266, 628, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 87, 11, 1426, 62, 88, 796, 2496, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 86, 11, 2496, 62, 71, 796, 2496, 62, 82, 89, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 1084, 11, 331, 1084, 796, 1426, 62, 87, 532, 2496, 62, 86, 1220, 362, 11, 1426, 62, 88, 532, 2496, 62, 71, 1220, 362, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 9806, 11, 331, 9806, 796, 2124, 1084, 1343, 2496, 62, 86, 11, 331, 1084, 1343, 2496, 62, 71, 628, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 685, 87, 1084, 11, 331, 1084, 11, 2496, 62, 86, 11, 2496, 62, 71, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 3262, 20520, 796, 2116, 13, 3262, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 615, 70, 62, 354, 504, 20520, 796, 42781, 62, 354, 504, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 17497, 20520, 796, 4324, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 16793, 62, 1930, 20520, 796, 2496, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 17816, 16793, 62, 82, 89, 20520, 796, 2496, 62, 82, 89, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 65, 3524, 796, 685, 87, 1084, 11, 331, 1084, 11, 2124, 9806, 11, 331, 9806, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5219, 796, 1181, 198 ]
2.128286
2,853
import random from collections import OrderedDict from string import ascii_letters, digits from django import forms from django.contrib.auth.models import User, Group from django.contrib.sites.models import Site from django.core.mail import send_mail from django.template import loader from .models import UserProfile # vim: set ts=4 sw=4 et:
[ 11748, 4738, 201, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 201, 198, 6738, 4731, 1330, 355, 979, 72, 62, 15653, 11, 19561, 201, 198, 201, 198, 6738, 42625, 14208, 1330, 5107, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 1330, 11787, 11, 4912, 201, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 49315, 13, 27530, 1330, 14413, 201, 198, 6738, 42625, 14208, 13, 7295, 13, 4529, 1330, 3758, 62, 4529, 201, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 201, 198, 201, 198, 6738, 764, 27530, 1330, 11787, 37046, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 2, 43907, 25, 900, 40379, 28, 19, 1509, 28, 19, 2123, 25, 201, 198 ]
3.09322
118
import numpy as np # hidden layer activation function # derivate of hidden layer activation function for gradient descent # output layer activation function # cost function # derivative of cost function for gradient descent
[ 11748, 299, 32152, 355, 45941, 201, 198, 201, 198, 2, 7104, 7679, 14916, 2163, 201, 198, 201, 198, 2, 16124, 378, 286, 7104, 7679, 14916, 2163, 329, 31312, 18598, 201, 198, 201, 198, 2, 5072, 7679, 14916, 2163, 201, 198, 201, 198, 2, 1575, 2163, 201, 198, 201, 198, 2, 27255, 286, 1575, 2163, 329, 31312, 18598, 201 ]
4.12069
58
l_in = lasagne.layers.InputLayer((None, 784)) l_out = lasagne.layers.DenseLayer(l_in, num_units=10, nonlinearity=lasagne.nonlinearities.softmax) X_sym = T.matrix() y_sym = T.ivector() output = lasagne.layers.get_output(l_out, X_sym) pred = output.argmax(-1) loss = T.mean(lasagne.objectives.categorical_crossentropy(output, y_sym)) acc = T.mean(T.eq(pred, y_sym)) params = lasagne.layers.get_all_params(l_out) grad = T.grad(loss, params) updates = lasagne.updates.adam(grad, params, learning_rate=0.001) f_train = theano.function([X_sym, y_sym], [loss, acc], updates=updates) f_val = theano.function([X_sym, y_sym], [loss, acc]) f_predict = theano.function([X_sym], pred) BATCH_SIZE = 64 N_BATCHES = len(X_train) // BATCH_SIZE N_VAL_BATCHES = len(X_val) // BATCH_SIZE for epoch in range(10): train_loss = 0 train_acc = 0 for _ in range(N_BATCHES): X, y = next(train_batches) loss, acc = f_train(X, y) train_loss += loss train_acc += acc train_loss /= N_BATCHES train_acc /= N_BATCHES val_loss = 0 val_acc = 0 for _ in range(N_VAL_BATCHES): X, y = next(val_batches) loss, acc = f_val(X, y) val_loss += loss val_acc += acc val_loss /= N_VAL_BATCHES val_acc /= N_VAL_BATCHES print('Epoch {}, Train (val) loss {:.03f} ({:.03f}) ratio {:.03f}'.format( epoch, train_loss, val_loss, val_loss/train_loss)) print('Train (val) accuracy {:.03f} ({:.03f})'.format(train_acc, val_acc)) weights = l_out.W.get_value() plt.figure(figsize=(12,3)) for i in range(10): plt.subplot(1, 10, i+1) plt.imshow(weights[:,i].reshape((28, 28)), cmap='gray', interpolation='nearest') plt.axis('off')
[ 75, 62, 259, 796, 39990, 21080, 13, 75, 6962, 13, 20560, 49925, 19510, 14202, 11, 767, 5705, 4008, 198, 75, 62, 448, 796, 39990, 21080, 13, 75, 6962, 13, 35, 1072, 49925, 7, 75, 62, 259, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 41667, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1729, 29127, 414, 28, 21921, 21080, 13, 13159, 29127, 871, 13, 4215, 9806, 8, 198, 198, 55, 62, 37047, 796, 309, 13, 6759, 8609, 3419, 198, 88, 62, 37047, 796, 309, 13, 425, 2715, 3419, 198, 198, 22915, 796, 39990, 21080, 13, 75, 6962, 13, 1136, 62, 22915, 7, 75, 62, 448, 11, 1395, 62, 37047, 8, 198, 28764, 796, 5072, 13, 853, 9806, 32590, 16, 8, 198, 198, 22462, 796, 309, 13, 32604, 7, 21921, 21080, 13, 15252, 1083, 13, 66, 2397, 12409, 62, 19692, 298, 28338, 7, 22915, 11, 331, 62, 37047, 4008, 198, 198, 4134, 796, 309, 13, 32604, 7, 51, 13, 27363, 7, 28764, 11, 331, 62, 37047, 4008, 198, 198, 37266, 796, 39990, 21080, 13, 75, 6962, 13, 1136, 62, 439, 62, 37266, 7, 75, 62, 448, 8, 198, 9744, 796, 309, 13, 9744, 7, 22462, 11, 42287, 8, 198, 929, 19581, 796, 39990, 21080, 13, 929, 19581, 13, 324, 321, 7, 9744, 11, 42287, 11, 4673, 62, 4873, 28, 15, 13, 8298, 8, 198, 198, 69, 62, 27432, 796, 262, 5733, 13, 8818, 26933, 55, 62, 37047, 11, 331, 62, 37047, 4357, 685, 22462, 11, 697, 4357, 5992, 28, 929, 19581, 8, 198, 69, 62, 2100, 796, 262, 5733, 13, 8818, 26933, 55, 62, 37047, 11, 331, 62, 37047, 4357, 685, 22462, 11, 697, 12962, 198, 69, 62, 79, 17407, 796, 262, 5733, 13, 8818, 26933, 55, 62, 37047, 4357, 2747, 8, 198, 198, 33, 11417, 62, 33489, 796, 5598, 198, 45, 62, 33, 11417, 1546, 796, 18896, 7, 55, 62, 27432, 8, 3373, 347, 11417, 62, 33489, 198, 45, 62, 23428, 62, 33, 11417, 1546, 796, 18896, 7, 55, 62, 2100, 8, 3373, 347, 11417, 62, 33489, 198, 198, 1640, 36835, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 4512, 62, 22462, 796, 657, 198, 220, 220, 220, 4512, 62, 4134, 796, 657, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 45, 62, 33, 11417, 1546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 331, 796, 1306, 7, 27432, 62, 8664, 2052, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 697, 796, 277, 62, 27432, 7, 55, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 22462, 15853, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 4134, 15853, 697, 198, 220, 220, 220, 4512, 62, 22462, 1220, 28, 399, 62, 33, 11417, 1546, 198, 220, 220, 220, 4512, 62, 4134, 1220, 28, 399, 62, 33, 11417, 1546, 628, 220, 220, 220, 1188, 62, 22462, 796, 657, 198, 220, 220, 220, 1188, 62, 4134, 796, 657, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 45, 62, 23428, 62, 33, 11417, 1546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1395, 11, 331, 796, 1306, 7, 2100, 62, 8664, 2052, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 697, 796, 277, 62, 2100, 7, 55, 11, 331, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 22462, 15853, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 4134, 15853, 697, 198, 220, 220, 220, 1188, 62, 22462, 1220, 28, 399, 62, 23428, 62, 33, 11417, 1546, 198, 220, 220, 220, 1188, 62, 4134, 1220, 28, 399, 62, 23428, 62, 33, 11417, 1546, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 10786, 13807, 5374, 1391, 5512, 16835, 357, 2100, 8, 2994, 46110, 13, 3070, 69, 92, 37913, 25, 13, 3070, 69, 30072, 8064, 46110, 13, 3070, 69, 92, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36835, 11, 4512, 62, 22462, 11, 1188, 62, 22462, 11, 1188, 62, 22462, 14, 27432, 62, 22462, 4008, 198, 220, 220, 220, 3601, 10786, 44077, 357, 2100, 8, 9922, 46110, 13, 3070, 69, 92, 37913, 25, 13, 3070, 69, 30072, 4458, 18982, 7, 27432, 62, 4134, 11, 1188, 62, 4134, 4008, 198, 198, 43775, 796, 300, 62, 448, 13, 54, 13, 1136, 62, 8367, 3419, 220, 220, 220, 198, 220, 220, 220, 220, 198, 489, 83, 13, 26875, 7, 5647, 7857, 16193, 1065, 11, 18, 4008, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 458, 83, 13, 7266, 29487, 7, 16, 11, 838, 11, 1312, 10, 16, 8, 198, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 43775, 58, 45299, 72, 4083, 3447, 1758, 19510, 2078, 11, 2579, 36911, 269, 8899, 11639, 44605, 3256, 39555, 341, 11639, 710, 12423, 11537, 198, 220, 220, 220, 458, 83, 13, 22704, 10786, 2364, 11537 ]
2.065517
870
''' Created on Sep 8, 2016 @author: nicolas ''' import re import fnmatch from functools import reduce from lemoncheesecake.reporting import load_report from lemoncheesecake.reporting.reportdir import DEFAULT_REPORT_DIR_NAME from lemoncheesecake.reporting.report import Result, TestResult, Step, Log, Check, Attachment, Url from lemoncheesecake.testtree import BaseTest, BaseSuite from lemoncheesecake.suite import Test from lemoncheesecake.exceptions import UserError _NEGATION_FLAGS = "-^~"
[ 7061, 6, 198, 41972, 319, 8621, 807, 11, 1584, 198, 198, 31, 9800, 25, 9200, 12456, 198, 7061, 6, 198, 198, 11748, 302, 198, 11748, 24714, 15699, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 198, 6738, 18873, 2395, 274, 46557, 13, 49914, 1330, 3440, 62, 13116, 198, 6738, 18873, 2395, 274, 46557, 13, 49914, 13, 13116, 15908, 1330, 5550, 38865, 62, 2200, 15490, 62, 34720, 62, 20608, 198, 6738, 18873, 2395, 274, 46557, 13, 49914, 13, 13116, 1330, 25414, 11, 6208, 23004, 11, 5012, 11, 5972, 11, 6822, 11, 3460, 15520, 11, 8799, 75, 198, 6738, 18873, 2395, 274, 46557, 13, 9288, 21048, 1330, 7308, 14402, 11, 7308, 5606, 578, 198, 6738, 18873, 2395, 274, 46557, 13, 2385, 578, 1330, 6208, 198, 6738, 18873, 2395, 274, 46557, 13, 1069, 11755, 1330, 11787, 12331, 198, 198, 62, 45, 7156, 6234, 62, 38948, 50, 796, 27444, 61, 93, 1, 628, 628, 628, 628, 628, 628, 628, 628, 628, 628 ]
3.259494
158
STATS = [ { "num_node_expansions": 653, "plan_length": 167, "search_time": 0.52, "total_time": 0.52 }, { "num_node_expansions": 978, "plan_length": 167, "search_time": 0.86, "total_time": 0.86 }, { "num_node_expansions": 1087, "plan_length": 194, "search_time": 15.85, "total_time": 15.85 }, { "num_node_expansions": 923, "plan_length": 198, "search_time": 15.21, "total_time": 15.21 }, { "num_node_expansions": 667, "plan_length": 142, "search_time": 13.94, "total_time": 13.94 }, { "num_node_expansions": 581, "plan_length": 156, "search_time": 11.54, "total_time": 11.54 }, { "num_node_expansions": 505, "plan_length": 134, "search_time": 2.79, "total_time": 2.79 }, { "num_node_expansions": 953, "plan_length": 165, "search_time": 6.22, "total_time": 6.22 }, { "num_node_expansions": 792, "plan_length": 163, "search_time": 0.33, "total_time": 0.33 }, { "num_node_expansions": 554, "plan_length": 160, "search_time": 0.27, "total_time": 0.27 }, { "num_node_expansions": 706, "plan_length": 156, "search_time": 2.44, "total_time": 2.44 }, { "num_node_expansions": 620, "plan_length": 138, "search_time": 1.65, "total_time": 1.65 }, { "num_node_expansions": 661, "plan_length": 169, "search_time": 0.28, "total_time": 0.28 }, { "num_node_expansions": 774, "plan_length": 178, "search_time": 0.4, "total_time": 0.4 }, { "num_node_expansions": 615, "plan_length": 171, "search_time": 0.53, "total_time": 0.53 }, { "num_node_expansions": 516, "plan_length": 134, "search_time": 0.71, "total_time": 0.71 }, { "num_node_expansions": 1077, "plan_length": 221, "search_time": 0.58, "total_time": 0.58 }, { "num_node_expansions": 1029, "plan_length": 213, "search_time": 0.62, "total_time": 0.62 }, { "num_node_expansions": 753, "plan_length": 173, "search_time": 0.47, "total_time": 0.47 }, { "num_node_expansions": 814, "plan_length": 210, "search_time": 0.5, "total_time": 0.5 }, { "num_node_expansions": 569, "plan_length": 134, "search_time": 3.06, "total_time": 3.06 }, { "num_node_expansions": 899, "plan_length": 176, "search_time": 5.84, "total_time": 5.84 }, { "num_node_expansions": 531, "plan_length": 144, "search_time": 3.15, "total_time": 3.15 }, { "num_node_expansions": 631, "plan_length": 164, "search_time": 3.74, "total_time": 3.74 }, { "num_node_expansions": 479, "plan_length": 138, "search_time": 0.11, "total_time": 0.11 }, { "num_node_expansions": 941, "plan_length": 148, "search_time": 0.22, "total_time": 0.22 }, { "num_node_expansions": 1023, "plan_length": 197, "search_time": 9.46, "total_time": 9.46 }, { "num_node_expansions": 1152, "plan_length": 196, "search_time": 12.7, "total_time": 12.7 }, { "num_node_expansions": 629, "plan_length": 147, "search_time": 4.14, "total_time": 4.14 }, { "num_node_expansions": 697, "plan_length": 160, "search_time": 2.82, "total_time": 2.82 }, { "num_node_expansions": 646, "plan_length": 158, "search_time": 3.74, "total_time": 3.74 }, { "num_node_expansions": 741, "plan_length": 152, "search_time": 4.56, "total_time": 4.56 }, { "num_node_expansions": 486, "plan_length": 136, "search_time": 1.77, "total_time": 1.77 }, { "num_node_expansions": 602, "plan_length": 146, "search_time": 3.22, "total_time": 3.22 }, { "num_node_expansions": 774, "plan_length": 186, "search_time": 1.56, "total_time": 1.56 }, { "num_node_expansions": 1512, "plan_length": 209, "search_time": 4.48, "total_time": 4.48 }, { "num_node_expansions": 791, "plan_length": 180, "search_time": 14.5, "total_time": 14.5 }, { "num_node_expansions": 1019, "plan_length": 211, "search_time": 18.59, "total_time": 18.59 }, { "num_node_expansions": 450, "plan_length": 133, "search_time": 2.75, "total_time": 2.75 }, { "num_node_expansions": 526, "plan_length": 135, "search_time": 3.02, "total_time": 3.02 }, { "num_node_expansions": 1329, "plan_length": 182, "search_time": 8.07, "total_time": 8.07 }, { "num_node_expansions": 655, "plan_length": 134, "search_time": 3.8, "total_time": 3.8 }, { "num_node_expansions": 636, "plan_length": 159, "search_time": 7.13, "total_time": 7.13 }, { "num_node_expansions": 1403, "plan_length": 196, "search_time": 16.16, "total_time": 16.16 }, { "num_node_expansions": 664, "plan_length": 175, "search_time": 4.18, "total_time": 4.18 }, { "num_node_expansions": 760, "plan_length": 150, "search_time": 6.37, "total_time": 6.37 }, { "num_node_expansions": 593, "plan_length": 163, "search_time": 9.42, "total_time": 9.42 }, { "num_node_expansions": 1043, "plan_length": 179, "search_time": 16.75, "total_time": 16.75 }, { "num_node_expansions": 390, "plan_length": 103, "search_time": 0.46, "total_time": 0.46 }, { "num_node_expansions": 419, "plan_length": 120, "search_time": 0.55, "total_time": 0.55 }, { "num_node_expansions": 606, "plan_length": 160, "search_time": 13.41, "total_time": 13.41 }, { "num_node_expansions": 905, "plan_length": 213, "search_time": 29.84, "total_time": 29.84 }, { "num_node_expansions": 525, "plan_length": 146, "search_time": 0.31, "total_time": 0.31 }, { "num_node_expansions": 522, "plan_length": 147, "search_time": 0.32, "total_time": 0.32 }, { "num_node_expansions": 652, "plan_length": 165, "search_time": 10.19, "total_time": 10.19 }, { "num_node_expansions": 1188, "plan_length": 178, "search_time": 13.24, "total_time": 13.24 }, { "num_node_expansions": 450, "plan_length": 136, "search_time": 1.48, "total_time": 1.48 }, { "num_node_expansions": 1179, "plan_length": 209, "search_time": 3.44, "total_time": 3.44 }, { "num_node_expansions": 834, "plan_length": 204, "search_time": 20.08, "total_time": 20.08 }, { "num_node_expansions": 1133, "plan_length": 187, "search_time": 15.61, "total_time": 15.61 }, { "num_node_expansions": 777, "plan_length": 181, "search_time": 13.35, "total_time": 13.35 }, { "num_node_expansions": 591, "plan_length": 136, "search_time": 2.59, "total_time": 2.59 }, { "num_node_expansions": 580, "plan_length": 143, "search_time": 2.89, "total_time": 2.89 }, { "num_node_expansions": 977, "plan_length": 173, "search_time": 8.97, "total_time": 8.97 }, { "num_node_expansions": 694, "plan_length": 167, "search_time": 8.22, "total_time": 8.22 }, { "num_node_expansions": 861, "plan_length": 188, "search_time": 1.14, "total_time": 1.14 }, { "num_node_expansions": 790, "plan_length": 160, "search_time": 0.93, "total_time": 0.93 }, { "num_node_expansions": 841, "plan_length": 188, "search_time": 5.61, "total_time": 5.61 }, { "num_node_expansions": 436, "plan_length": 128, "search_time": 2.46, "total_time": 2.46 }, { "num_node_expansions": 550, "plan_length": 127, "search_time": 0.03, "total_time": 0.03 }, { "num_node_expansions": 434, "plan_length": 134, "search_time": 0.03, "total_time": 0.03 }, { "num_node_expansions": 958, "plan_length": 195, "search_time": 9.09, "total_time": 9.09 }, { "num_node_expansions": 658, "plan_length": 174, "search_time": 6.01, "total_time": 6.01 }, { "num_node_expansions": 370, "plan_length": 126, "search_time": 0.06, "total_time": 0.06 }, { "num_node_expansions": 440, "plan_length": 119, "search_time": 0.08, "total_time": 0.08 }, { "num_node_expansions": 648, "plan_length": 168, "search_time": 8.1, "total_time": 8.1 }, { "num_node_expansions": 832, "plan_length": 178, "search_time": 10.9, "total_time": 10.9 }, { "num_node_expansions": 355, "plan_length": 116, "search_time": 0.7, "total_time": 0.7 }, { "num_node_expansions": 495, "plan_length": 123, "search_time": 0.86, "total_time": 0.86 }, { "num_node_expansions": 612, "plan_length": 148, "search_time": 4.23, "total_time": 4.23 }, { "num_node_expansions": 1067, "plan_length": 174, "search_time": 6.3, "total_time": 6.3 }, { "num_node_expansions": 821, "plan_length": 185, "search_time": 3.0, "total_time": 3.0 }, { "num_node_expansions": 625, "plan_length": 153, "search_time": 2.98, "total_time": 2.98 }, { "num_node_expansions": 304, "plan_length": 99, "search_time": 0.16, "total_time": 0.16 }, { "num_node_expansions": 477, "plan_length": 133, "search_time": 0.4, "total_time": 0.4 }, { "num_node_expansions": 651, "plan_length": 160, "search_time": 0.18, "total_time": 0.18 }, { "num_node_expansions": 594, "plan_length": 147, "search_time": 0.17, "total_time": 0.17 }, { "num_node_expansions": 524, "plan_length": 134, "search_time": 5.3, "total_time": 5.3 }, { "num_node_expansions": 400, "plan_length": 127, "search_time": 4.95, "total_time": 4.95 }, { "num_node_expansions": 825, "plan_length": 185, "search_time": 6.37, "total_time": 6.37 }, { "num_node_expansions": 613, "plan_length": 156, "search_time": 4.57, "total_time": 4.57 }, { "num_node_expansions": 427, "plan_length": 121, "search_time": 0.09, "total_time": 0.09 }, { "num_node_expansions": 362, "plan_length": 116, "search_time": 0.07, "total_time": 0.07 }, { "num_node_expansions": 459, "plan_length": 119, "search_time": 0.75, "total_time": 0.75 }, { "num_node_expansions": 501, "plan_length": 132, "search_time": 0.86, "total_time": 0.86 }, { "num_node_expansions": 697, "plan_length": 156, "search_time": 4.24, "total_time": 4.24 }, { "num_node_expansions": 1024, "plan_length": 162, "search_time": 7.13, "total_time": 7.13 }, { "num_node_expansions": 501, "plan_length": 122, "search_time": 4.67, "total_time": 4.67 }, { "num_node_expansions": 577, "plan_length": 126, "search_time": 5.56, "total_time": 5.56 }, { "num_node_expansions": 633, "plan_length": 152, "search_time": 17.98, "total_time": 17.98 }, { "num_node_expansions": 833, "plan_length": 186, "search_time": 24.85, "total_time": 24.85 }, { "num_node_expansions": 996, "plan_length": 183, "search_time": 4.05, "total_time": 4.05 }, { "num_node_expansions": 1246, "plan_length": 206, "search_time": 5.39, "total_time": 5.39 }, { "num_node_expansions": 466, "plan_length": 137, "search_time": 2.03, "total_time": 2.03 }, { "num_node_expansions": 530, "plan_length": 142, "search_time": 2.28, "total_time": 2.28 }, { "num_node_expansions": 923, "plan_length": 189, "search_time": 19.77, "total_time": 19.77 }, { "num_node_expansions": 799, "plan_length": 167, "search_time": 16.16, "total_time": 16.16 }, { "num_node_expansions": 651, "plan_length": 173, "search_time": 1.38, "total_time": 1.38 }, { "num_node_expansions": 590, "plan_length": 159, "search_time": 0.94, "total_time": 0.94 }, { "num_node_expansions": 542, "plan_length": 155, "search_time": 0.07, "total_time": 0.07 }, { "num_node_expansions": 418, "plan_length": 130, "search_time": 0.05, "total_time": 0.05 }, { "num_node_expansions": 881, "plan_length": 182, "search_time": 11.01, "total_time": 11.01 }, { "num_node_expansions": 1256, "plan_length": 205, "search_time": 15.58, "total_time": 15.58 }, { "num_node_expansions": 612, "plan_length": 146, "search_time": 2.92, "total_time": 2.92 }, { "num_node_expansions": 567, "plan_length": 145, "search_time": 2.43, "total_time": 2.43 }, { "num_node_expansions": 655, "plan_length": 152, "search_time": 9.25, "total_time": 9.25 }, { "num_node_expansions": 499, "plan_length": 133, "search_time": 7.5, "total_time": 7.5 }, { "num_node_expansions": 500, "plan_length": 137, "search_time": 0.3, "total_time": 0.3 }, { "num_node_expansions": 869, "plan_length": 156, "search_time": 0.47, "total_time": 0.47 }, { "num_node_expansions": 522, "plan_length": 161, "search_time": 0.06, "total_time": 0.06 }, { "num_node_expansions": 712, "plan_length": 181, "search_time": 0.07, "total_time": 0.07 }, { "num_node_expansions": 708, "plan_length": 142, "search_time": 4.46, "total_time": 4.46 }, { "num_node_expansions": 642, "plan_length": 163, "search_time": 5.26, "total_time": 5.26 }, { "num_node_expansions": 426, "plan_length": 134, "search_time": 0.11, "total_time": 0.11 }, { "num_node_expansions": 471, "plan_length": 129, "search_time": 0.14, "total_time": 0.14 }, { "num_node_expansions": 520, "plan_length": 135, "search_time": 1.65, "total_time": 1.65 }, { "num_node_expansions": 666, "plan_length": 144, "search_time": 3.02, "total_time": 3.02 }, { "num_node_expansions": 563, "plan_length": 159, "search_time": 2.27, "total_time": 2.27 }, { "num_node_expansions": 566, "plan_length": 162, "search_time": 2.06, "total_time": 2.06 }, { "num_node_expansions": 836, "plan_length": 203, "search_time": 16.69, "total_time": 16.69 }, { "num_node_expansions": 604, "plan_length": 145, "search_time": 1.25, "total_time": 1.25 }, { "num_node_expansions": 506, "plan_length": 124, "search_time": 0.99, "total_time": 0.99 }, { "num_node_expansions": 851, "plan_length": 203, "search_time": 1.15, "total_time": 1.15 }, { "num_node_expansions": 603, "plan_length": 166, "search_time": 0.76, "total_time": 0.76 }, { "num_node_expansions": 497, "plan_length": 118, "search_time": 0.3, "total_time": 0.3 }, { "num_node_expansions": 590, "plan_length": 117, "search_time": 0.32, "total_time": 0.32 }, { "num_node_expansions": 409, "plan_length": 129, "search_time": 0.08, "total_time": 0.08 }, { "num_node_expansions": 669, "plan_length": 165, "search_time": 0.12, "total_time": 0.12 }, { "num_node_expansions": 786, "plan_length": 161, "search_time": 18.85, "total_time": 18.85 }, { "num_node_expansions": 474, "plan_length": 144, "search_time": 10.09, "total_time": 10.09 }, { "num_node_expansions": 579, "plan_length": 165, "search_time": 1.18, "total_time": 1.18 }, { "num_node_expansions": 620, "plan_length": 160, "search_time": 1.01, "total_time": 1.01 }, { "num_node_expansions": 1523, "plan_length": 221, "search_time": 25.37, "total_time": 25.37 }, { "num_node_expansions": 961, "plan_length": 207, "search_time": 18.62, "total_time": 18.62 }, { "num_node_expansions": 444, "plan_length": 127, "search_time": 3.93, "total_time": 3.93 }, { "num_node_expansions": 464, "plan_length": 127, "search_time": 4.01, "total_time": 4.01 }, { "num_node_expansions": 773, "plan_length": 194, "search_time": 0.78, "total_time": 0.78 }, { "num_node_expansions": 676, "plan_length": 161, "search_time": 0.83, "total_time": 0.83 }, { "num_node_expansions": 414, "plan_length": 127, "search_time": 0.39, "total_time": 0.39 }, { "num_node_expansions": 623, "plan_length": 165, "search_time": 0.66, "total_time": 0.66 }, { "num_node_expansions": 703, "plan_length": 163, "search_time": 1.06, "total_time": 1.06 }, { "num_node_expansions": 785, "plan_length": 176, "search_time": 1.02, "total_time": 1.02 }, { "num_node_expansions": 986, "plan_length": 167, "search_time": 15.72, "total_time": 15.72 }, { "num_node_expansions": 955, "plan_length": 205, "search_time": 12.55, "total_time": 12.55 }, { "num_node_expansions": 417, "plan_length": 118, "search_time": 0.05, "total_time": 0.05 }, { "num_node_expansions": 521, "plan_length": 141, "search_time": 0.06, "total_time": 0.06 }, { "num_node_expansions": 815, "plan_length": 182, "search_time": 26.55, "total_time": 26.55 } ] num_timeouts = 15 num_timeouts = 0 num_problems = 172
[ 2257, 33586, 796, 685, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 4310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26118, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4309, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4309, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 41417, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26118, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4521, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 5774, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 30483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1315, 13, 5332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1315, 13, 5332, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 2757, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1315, 13, 2481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1315, 13, 2481, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25181, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1511, 13, 5824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1511, 13, 5824, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 6659, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1367, 13, 4051, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1367, 13, 4051, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 43367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3720, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 4310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 718, 13, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 718, 13, 1828, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 5892, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2091, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 4051, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1983, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1983, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 2598, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 2598, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45469, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21503, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 2996, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 2996, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 5333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27191, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2078, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 4524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27368, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 19, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28369, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4310, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4869, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4869, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 31566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3365, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3365, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 1959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28658, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 5237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 5237, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 4310, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28174, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2857, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 20, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26937, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 5705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 5705, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3132, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 1314, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3132, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25307, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 4524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 4524, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 3720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21503, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1157, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1157, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 3901, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22613, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1828, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 29903, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 860, 13, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 860, 13, 3510, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 12279, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28817, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1105, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1105, 13, 22, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 1415, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 5607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 6469, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 6469, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24063, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 4524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 4524, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 3901, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 3980, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 3980, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21056, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 3324, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22986, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 1828, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 4524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 3980, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 3980, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1315, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28815, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 2780, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 6420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 11546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1478, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1478, 13, 20, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 8949, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28714, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1248, 13, 3270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1248, 13, 3270, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 18523, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22169, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 2425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 2425, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 2075, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 17501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 2999, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1511, 1959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28581, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 807, 13, 2998, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 807, 13, 2998, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 23, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 2623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26422, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 767, 13, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 767, 13, 1485, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1478, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28817, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1467, 13, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1467, 13, 1433, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19038, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 1507, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48284, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 6640, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 718, 13, 2718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 718, 13, 2718, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 6052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 860, 13, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 860, 13, 3682, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 3559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27228, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1467, 13, 2425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1467, 13, 2425, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 33882, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 15349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3510, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48475, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 7982, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2816, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 3126, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1511, 13, 3901, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1511, 13, 3901, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28658, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 2808, 13, 5705, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 2808, 13, 5705, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45719, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22986, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3132, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3132, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2624, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 4309, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 838, 13, 1129, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 838, 13, 1129, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1367, 3459, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27368, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1511, 13, 1731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1511, 13, 1731, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 18523, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21056, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 2780, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1367, 3720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28815, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 2598, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 2598, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26956, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1160, 13, 2919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1160, 13, 2919, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1367, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27649, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1315, 13, 5333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1315, 13, 5333, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 35534, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 30110, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1511, 13, 2327, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1511, 13, 2327, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 6420, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21056, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3270, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 41234, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24356, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 4531, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 4531, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28174, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 807, 13, 5607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 807, 13, 5607, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 5824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26118, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 807, 13, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 807, 13, 1828, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 5333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 1415, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 3829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 6052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 6052, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 3901, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 5333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 5333, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 50038, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13108, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3510, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 25240, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18112, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3070, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 2682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3070, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 3365, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24793, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 860, 13, 2931, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 860, 13, 2931, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3365, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27621, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 718, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 718, 13, 486, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 28687, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19710, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 33879, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 15136, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2919, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 2780, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23378, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 807, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 807, 13, 16, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27368, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 838, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 838, 13, 24, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 36561, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18693, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 22, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 3865, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 17031, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4521, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22613, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 1954, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 838, 3134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27621, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 718, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 718, 13, 18, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22855, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 15, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48868, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24652, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 4089, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 4089, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 31672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 7388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1433, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22169, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 19, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 4349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1507, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 5824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22909, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1558, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1558, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 1731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 18, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 7337, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18112, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 3865, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 3865, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22855, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 718, 13, 2718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 718, 13, 2718, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 3553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 3553, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20416, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2931, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2931, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 4570, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18693, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2998, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2998, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 3270, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 15136, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2425, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2425, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 24555, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21761, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4521, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 5607, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 1731, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 1731, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 28119, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25090, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 767, 13, 1485, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 767, 13, 1485, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 24555, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 3134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 3134, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19710, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 3980, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 3980, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1596, 13, 4089, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1596, 13, 4089, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2091, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1987, 13, 5332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1987, 13, 5332, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28551, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 2713, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1105, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27253, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 2670, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 2670, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 2791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21643, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3070, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 40585, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25181, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 2078, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 2078, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27230, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 678, 13, 3324, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 678, 13, 3324, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 2079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26118, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1467, 13, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1467, 13, 1433, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 4349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28174, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 2548, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 2548, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26422, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 5824, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 5824, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20708, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2998, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2998, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45959, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 11323, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2713, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 6659, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28581, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1367, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1367, 13, 486, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1105, 3980, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22538, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1315, 13, 3365, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1315, 13, 3365, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22986, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 5892, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 5892, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20299, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3559, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 24848, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 860, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 860, 13, 1495, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48391, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22169, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 767, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 767, 13, 20, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 5323, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21643, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 18, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 3388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 23871, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2857, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 1828, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 30110, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2998, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2998, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 2919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25181, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 3510, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 3510, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 642, 13, 2075, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 642, 13, 2075, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1157, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1157, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 4869, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20248, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1415, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1415, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 36141, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 17501, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 2996, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 2996, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 43364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 2999, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 5066, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26422, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 1983, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 1983, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 2791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25090, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 362, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 362, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 2623, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27408, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1467, 13, 3388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1467, 13, 3388, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3023, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20299, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 1495, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 2026, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19755, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2079, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 4349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27408, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 1314, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26753, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 4304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 4304, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 5125, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19035, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 18, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19048, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2624, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 48132, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20248, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2919, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2919, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 3388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 1065, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1248, 13, 5332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1248, 13, 5332, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 4524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 20224, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 838, 13, 2931, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 838, 13, 2931, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 3720, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 1507, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 1507, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45469, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 13454, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 486, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 1315, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 31566, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1679, 13, 2718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1679, 13, 2718, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 5333, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1248, 13, 5237, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1248, 13, 5237, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45095, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18112, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 513, 13, 6052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 513, 13, 6052, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 604, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18112, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 604, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 604, 13, 486, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 4790, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 30483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3695, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 4304, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 27829, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 5999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 5999, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 45900, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 18112, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2670, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2670, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 718, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 21409, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2791, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2791, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 3070, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26826, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 767, 5332, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26937, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 352, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 352, 13, 2999, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 4521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 26118, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1315, 13, 4761, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1315, 13, 4761, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 860, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 22538, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 1105, 13, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 1105, 13, 2816, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 47580, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 19035, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 2713, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 642, 2481, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 25500, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 657, 13, 3312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 657, 13, 3312, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22510, 62, 17440, 62, 11201, 504, 507, 1298, 807, 1314, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11578, 62, 13664, 1298, 28581, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 12947, 62, 2435, 1298, 2608, 13, 2816, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 23350, 62, 2435, 1298, 2608, 13, 2816, 198, 220, 220, 220, 1782, 198, 60, 198, 22510, 62, 2435, 5269, 796, 1315, 198, 22510, 62, 2435, 5269, 796, 657, 198, 22510, 62, 1676, 22143, 796, 23120, 198 ]
1.715698
12,237
import re import ast import operator def literal_eval(node_or_string): """ Safely evaluate an expression node or a string containing a Python expression. The string or node provided may only consist of the following Python literal structures: strings, numbers, tuples, lists, dicts, booleans, and None. """ _safe_names = { 'None': None, 'True': True, 'False': False, 'dict': dict, 'list': list, 'sorted': sorted } if isinstance(node_or_string, str): node_or_string = parse(node_or_string, mode='eval') if isinstance(node_or_string, ast.Expression): node_or_string = node_or_string.body return _convert(node_or_string) if __name__ == '__main__': signatures = ''' (1, 2, 3) more (key='value') more (**dict(key='value')) more (*[1, 2, 3]) more {:class => "code", :id => "message"} Hello (class_='before %s after' % 'middle') hello (data-crud=dict(id=34, url='/api')) crud goes here (u'unicode!', b'bytes!') (' '.join(['hello', 'there'])) after ([i for i in 'hello']) '''.strip().splitlines() for sig in signatures: print sig args, remaining = parse_args(sig[1:], {'(':')', '{':'}'}[sig[0]]) for key, source, root in args: try: value = literal_eval(root) print '%s: %r' % (key, value) except ValueError as e: print '%s -> %s' % (key, e) print repr(remaining), 'remains' print
[ 11748, 302, 198, 11748, 6468, 198, 11748, 10088, 628, 628, 198, 4299, 18875, 62, 18206, 7, 17440, 62, 273, 62, 8841, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19978, 306, 13446, 281, 5408, 10139, 393, 257, 4731, 7268, 257, 11361, 198, 220, 220, 220, 5408, 13, 220, 383, 4731, 393, 10139, 2810, 743, 691, 3473, 286, 262, 1708, 198, 220, 220, 220, 11361, 18875, 8573, 25, 13042, 11, 3146, 11, 12777, 2374, 11, 8341, 11, 8633, 82, 11, 1489, 2305, 504, 11, 198, 220, 220, 220, 290, 6045, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 21230, 62, 14933, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 14202, 10354, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17821, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 25101, 10354, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 11600, 10354, 8633, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4868, 10354, 1351, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 82, 9741, 10354, 23243, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 318, 39098, 7, 17440, 62, 273, 62, 8841, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 273, 62, 8841, 796, 21136, 7, 17440, 62, 273, 62, 8841, 11, 4235, 11639, 18206, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 318, 39098, 7, 17440, 62, 273, 62, 8841, 11, 6468, 13, 16870, 2234, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 62, 273, 62, 8841, 796, 10139, 62, 273, 62, 8841, 13, 2618, 198, 220, 220, 220, 1441, 4808, 1102, 1851, 7, 17440, 62, 273, 62, 8841, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 198, 220, 220, 220, 17239, 796, 705, 7061, 198, 198, 7, 16, 11, 362, 11, 513, 8, 517, 198, 7, 2539, 11639, 8367, 11537, 517, 198, 7, 1174, 11600, 7, 2539, 11639, 8367, 6, 4008, 517, 198, 46491, 58, 16, 11, 362, 11, 513, 12962, 517, 198, 90, 25, 4871, 5218, 366, 8189, 1600, 1058, 312, 5218, 366, 20500, 20662, 18435, 198, 7, 4871, 62, 11639, 19052, 4064, 82, 706, 6, 4064, 705, 27171, 11537, 23748, 198, 7, 7890, 12, 6098, 463, 28, 11600, 7, 312, 28, 2682, 11, 19016, 11639, 14, 15042, 6, 4008, 1067, 463, 2925, 994, 198, 7, 84, 6, 46903, 1098, 0, 3256, 275, 6, 33661, 0, 11537, 198, 10786, 45302, 22179, 7, 17816, 31373, 3256, 705, 8117, 20520, 4008, 706, 198, 26933, 72, 329, 1312, 287, 705, 31373, 6, 12962, 198, 198, 7061, 4458, 36311, 22446, 35312, 6615, 3419, 198, 220, 220, 220, 329, 43237, 287, 17239, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 43237, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 11, 5637, 796, 21136, 62, 22046, 7, 82, 328, 58, 16, 25, 4357, 1391, 6, 7, 10354, 11537, 3256, 705, 90, 10354, 6, 92, 6, 92, 58, 82, 328, 58, 15, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 2723, 11, 6808, 287, 26498, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 18875, 62, 18206, 7, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 4, 82, 25, 4064, 81, 6, 4064, 357, 2539, 11, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 4, 82, 4613, 4064, 82, 6, 4064, 357, 2539, 11, 304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 41575, 7, 2787, 1397, 828, 705, 2787, 1299, 6, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
2.178771
716
from collections import OrderedDict from sage.all import (operator, flatten, PolynomialRing, SR, QQ, ZZ, RR, sage, oo) from vu_common import (pause, get_logger,is_iterable, is_str, is_empty) is_sage_expr = lambda x: isinstance(x, sage.symbolic.expression.Expression) is_sage_real = lambda x: isinstance(x, sage.rings.real_mpfr.RealLiteral) is_sage_int = lambda x: isinstance(x, sage.rings.integer.Integer) is_sage_num = lambda x: is_sage_real(x) or is_sage_int(x) def is_sage_inf(x): """ Example: sage: is_sage_inf(oo) True sage: is_sage_inf(-oo) True sage: is_sage_inf(oo+3) True sage: is_sage_inf(oo-3) True sage: is_sage_inf(SR(-oo)) True sage: is_sage_inf(x) False sage: is_sage_inf(x+3) False sage: is_sage_inf(8) False """ try: return x.is_infinity() except AttributeError: return x == oo or x == -oo is_sage_int_inf = lambda x: is_sage_int(x) or is_sage_inf(x) to_sage_int = lambda x: x if is_sage_int(x) else ZZ(x) def is_sage_symbol(s): """ sage: assert is_sage_symbol(x) sage: assert not is_sage_symbol(x+1) sage: assert not is_sage_symbol(1) """ try: return s.is_symbol() except AttributeError: return False def is_sage_rel(f, rel=None): """ sage: assert not is_sage_rel(7.2) sage: assert not is_sage_rel(x) sage: assert not is_sage_rel(x+7) sage: assert is_sage_rel(x==3,operator.eq) sage: assert is_sage_rel(x<=3,operator.le) sage: assert not is_sage_rel(x<=3,operator.lt) sage: assert not is_sage_rel(x+3,operator.lt) sage: y = var('y') sage: assert is_sage_rel(x+y<=3) """ try: if not f.is_relational(): return False if rel is None: return True else: return f.operator() == rel except AttributeError: return False is_sage_eq = lambda f: is_sage_rel(f, operator.eq) def get_vars(ps): """ Returns a list of uniq variables from a list of properties Examples: sage: var('a b c x') (a, b, c, x) sage: assert [a, b, c, x] == get_vars([x^(a*b) + a**2+b+2==0, c**2-b==100, b**2 + c**2 + a**3>= 1]) sage: assert get_vars(a**2+b+5*c+2==0) == [a, b, c] sage: assert get_vars(x+x^2) == [x] sage: assert get_vars([3]) == [] sage: assert get_vars((3,'x + c',x+b)) == [b, x] """ ps = ps if is_iterable(ps) else [ps] vs = flatten([p.variables() for p in ps if is_sage_expr(p)]) return sorted(set(vs), key=str) def get_coefs_terms(p, base_ring = QQ, as_dict=False): """ Returns the Coefs and Terms of a given expression Examples: sage: assert get_coefs_terms(x) == ([1], [x]) sage: assert get_coefs_terms(x,as_dict=True) == {x: 1} sage: var('a b c') (a, b, c) sage: assert get_coefs_terms(a**2+b+5*c+2==0) == ([1, 1, 5, 2], [a^2, b, c, 1]) sage: assert get_coefs_terms(a**2+b+5*c+2==0, as_dict=True) == {b: 1, 1: 2, a^2: 1, c: 5} sage: assert get_coefs_terms(10/3*a**2+3*b+5*c+2) == ([10/3, 3, 5, 2], [a^2, b, c, 1]) sage: assert get_coefs_terms(10/3*a**2+3*b+5*c+2, as_dict=True) == {b: 3, 1: 2, a^2: 10/3, c: 5} sage: assert get_coefs_terms(a+b<=3, as_dict=True) == {1: -3, b: 1, a: 1} sage: assert all(is_sage_int(v) for v in get_coefs_terms(a+b<=3, as_dict=True, base_ring=ZZ).values()) #sage 6.2 breaks this #sage: assert get_coefs_terms(a - b <= oo) == ([1, -1, -infinity], [a, b, 1]) sage: assert get_coefs_terms(SR(7), as_dict=True) == {1: 7} sage: assert get_coefs_terms(SR(3))==([3], [1]) sage: assert get_coefs_terms(SR(oo))==([+Infinity], [1]) sage: assert get_coefs_terms(SR(-oo)) == ([-Infinity], [1]) sage: assert get_coefs_terms(a + b <= .9,base_ring=ZZ) == ([1, 1, -0.900000000000000], [a, b, 1]) sage: assert is_sage_int(get_coefs_terms(SR(7),base_ring=ZZ,as_dict=True).values()[0]) """ use_wrong_base_ring = False if is_sage_rel(p): p = mk_rhs_0(p).lhs() if p.is_integer() or p.is_real(): ts = [SR(1)] cs = [p if p.is_infinity() else base_ring(p)] else: ss = get_vars(p) assert not is_empty(ss), (p,ss) mk_pr = lambda b, p: PolynomialRing(b, ss, None if len(ss) >= 2 else 1)(p) try: pr_p = mk_pr(base_ring, p) except TypeError: if base_ring == RR: #if cannot do over RR then return None return None else: #otherwise, try with RR try: pr_p = mk_pr(RR,p) use_wrong_base_ring = True except Exception as msg: return None cs = pr_p.coefficients() ts = map(SR, pr_p.monomials()) if use_wrong_base_ring: ts = [SR(1) if bool(t.is_one()) else t for t in ts] cs_ = [] for c in cs: if c == oo: cs_.append(oo) elif c == -oo: cs_.append(-oo) else: try: cs_.append(base_ring(c)) except ValueError: cs_.append(c) except TypeError: cs_.append(c) cs = cs_ assert all(is_sage_expr(t) for t in ts), ts if as_dict: d = OrderedDict() for t,c in zip(ts,cs): d[t] = c return d else: return cs,ts def mk_rhs_0(p): """ sage: var('x,y') (x, y) sage: mk_rhs_0(x - y >= 3) x - y - 3 >= 0 sage: mk_rhs_0(x - y - 3 >= 0) x - y - 3 >= 0 sage: mk_rhs_0(0 <= x - y - 3) -x + y + 3 <= 0 sage: mk_rhs_0(0 == x) -x == 0 sage: mk_rhs_0(10 == -x) x + 10 == 0 #Sage 5.11 broke all these (i.e., broke lhs.add(..,hold=)) # sage: mk_rhs_0(x <= oo) # x - Infinity <= 0 # sage: mk_rhs_0(x <= -oo) # x + +Infinity <= 0 # sage: mk_rhs_0(x >= oo) # x - Infinity >= 0 # sage: mk_rhs_0(oo >= x) # +Infinity - x >= 0 sage: mk_rhs_0(x - y - 3) Traceback (most recent call last): ... AssertionError: x - y - 3 """ assert is_sage_rel(p), p rhs = p.rhs() lhs = p.lhs() if not rhs.is_zero(): lhs = lhs.add(-rhs, hold=(rhs.is_infinity() or lhs.is_infinity())) rhs = 0 p = p.operator()(lhs, rhs) return p # def myreduce(op, ls): # """ # Apply operator op to list of arguments # Note, it seems the above arguments are *enough*, no need to implement for (-,div) etc because the function that calls this will break x - y to myreduce(op,[x,-y]) or x / y to myreduce(op,[x,1/y]) and 1/y => mul(1,y^{-1}) # sage: assert myreduce(operator.add, [x,x]) == 2*x # sage: assert myreduce(operator.add, [3,x]) == x + 3 # sage: myreduce(operator.le, [3,x]) # 3 <= x # sage: assert myreduce(operator.pow,[3,x]) == 3^x # """ # if __debug__: # assert len(ls) >= 2, ls # assert op in [operator.add,operator.mul, # operator.pow,operator.eq,operator.ne, # operator.le,operator.lt,operator.ge,operator.gt], op # return reduce(lambda a, b: op(a,b), ls[1:], ls[0]) # def mk_expr(expr, d, ring_typ=ZZ): # """ # Make a new expression like expr but with all vars in expr replaced # with those in dictionary d. Used when subs() is not applicable # sage: y = var('y') # sage: lp = MixedIntegerLinearProgram() # sage: s0 = lp['s0'] # sage: s1 = lp['s1'] # sage: d = {x:s0,y:s1} # sage: mk_expr(x+y+3, d) # 3 + x_0 + x_1 # sage: mk_expr(x+y+3<=8,d) # 3 + x_0 + x_1 <= 8 # sage: mk_expr(x==y+5,d) # x_0 == 5 + x_1 # """ # def retval(expr): # if is_sage_symbol(expr): #symbol, e.g. x # return d[expr] # else: #const , e.g. 3 # return ring_typ(expr) # try: # oprs = expr.operands() # except AttributeError: # #e.g. const 3, .5 # return retval(expr) # if is_empty(oprs): #symbol # return retval(expr) # else: # oprs = [mk_expr(o,d) for o in oprs] # print oprs # rs = myreduce(expr.operator(), oprs) # return rs if __name__ == "__main__": import doctest doctest.testmod()
[ 6738, 17268, 1330, 14230, 1068, 35, 713, 198, 6738, 35021, 13, 439, 1330, 357, 46616, 11, 27172, 268, 11, 12280, 26601, 498, 39687, 11, 16808, 11, 1195, 48, 11, 1168, 57, 11, 26067, 11, 35021, 11, 267, 78, 8, 198, 6738, 410, 84, 62, 11321, 1330, 357, 32125, 11, 651, 62, 6404, 1362, 11, 271, 62, 2676, 540, 11, 318, 62, 2536, 11, 318, 62, 28920, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 271, 62, 82, 496, 62, 31937, 796, 37456, 2124, 25, 318, 39098, 7, 87, 11, 35021, 13, 1837, 2022, 4160, 13, 38011, 13, 16870, 2234, 8, 198, 271, 62, 82, 496, 62, 5305, 796, 37456, 2124, 25, 318, 39098, 7, 87, 11, 35021, 13, 33173, 13, 5305, 62, 3149, 8310, 13, 15633, 43, 270, 1691, 8, 198, 271, 62, 82, 496, 62, 600, 796, 37456, 2124, 25, 318, 39098, 7, 87, 11, 35021, 13, 33173, 13, 41433, 13, 46541, 8, 198, 271, 62, 82, 496, 62, 22510, 796, 37456, 2124, 25, 318, 62, 82, 496, 62, 5305, 7, 87, 8, 393, 318, 62, 82, 496, 62, 600, 7, 87, 8, 198, 4299, 318, 62, 82, 496, 62, 10745, 7, 87, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 17934, 25, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 2238, 8, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 32590, 2238, 8, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 2238, 10, 18, 8, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 2238, 12, 18, 8, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 12562, 32590, 2238, 4008, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 87, 8, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 87, 10, 18, 8, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 35021, 25, 318, 62, 82, 496, 62, 10745, 7, 23, 8, 198, 220, 220, 220, 10352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 13, 271, 62, 10745, 6269, 3419, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 6624, 267, 78, 393, 2124, 6624, 532, 2238, 198, 198, 271, 62, 82, 496, 62, 600, 62, 10745, 796, 37456, 2124, 25, 318, 62, 82, 496, 62, 600, 7, 87, 8, 393, 318, 62, 82, 496, 62, 10745, 7, 87, 8, 198, 1462, 62, 82, 496, 62, 600, 796, 37456, 2124, 25, 2124, 611, 318, 62, 82, 496, 62, 600, 7, 87, 8, 2073, 1168, 57, 7, 87, 8, 628, 198, 4299, 318, 62, 82, 496, 62, 1837, 23650, 7, 82, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35021, 25, 6818, 318, 62, 82, 496, 62, 1837, 23650, 7, 87, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 1837, 23650, 7, 87, 10, 16, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 1837, 23650, 7, 16, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 264, 13, 271, 62, 1837, 23650, 3419, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 198, 4299, 318, 62, 82, 496, 62, 2411, 7, 69, 11, 823, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 2411, 7, 22, 13, 17, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 2411, 7, 87, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 2411, 7, 87, 10, 22, 8, 198, 220, 220, 220, 35021, 25, 6818, 318, 62, 82, 496, 62, 2411, 7, 87, 855, 18, 11, 46616, 13, 27363, 8, 628, 220, 220, 220, 35021, 25, 6818, 318, 62, 82, 496, 62, 2411, 7, 87, 27, 28, 18, 11, 46616, 13, 293, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 2411, 7, 87, 27, 28, 18, 11, 46616, 13, 2528, 8, 198, 220, 220, 220, 35021, 25, 6818, 407, 318, 62, 82, 496, 62, 2411, 7, 87, 10, 18, 11, 46616, 13, 2528, 8, 628, 220, 220, 220, 35021, 25, 331, 796, 1401, 10786, 88, 11537, 198, 220, 220, 220, 35021, 25, 6818, 318, 62, 82, 496, 62, 2411, 7, 87, 10, 88, 27, 28, 18, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 277, 13, 271, 62, 2411, 864, 33529, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 823, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 13, 46616, 3419, 6624, 823, 628, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 271, 62, 82, 496, 62, 27363, 796, 37456, 277, 25, 318, 62, 82, 496, 62, 2411, 7, 69, 11, 10088, 13, 27363, 8, 198, 198, 4299, 651, 62, 85, 945, 7, 862, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 1351, 286, 555, 25011, 9633, 422, 257, 1351, 286, 6608, 628, 220, 220, 220, 21066, 25, 628, 220, 220, 220, 35021, 25, 1401, 10786, 64, 275, 269, 2124, 11537, 198, 220, 220, 220, 357, 64, 11, 275, 11, 269, 11, 2124, 8, 628, 220, 220, 220, 35021, 25, 6818, 685, 64, 11, 275, 11, 269, 11, 2124, 60, 6624, 651, 62, 85, 945, 26933, 87, 61, 7, 64, 9, 65, 8, 1343, 257, 1174, 17, 10, 65, 10, 17, 855, 15, 11, 269, 1174, 17, 12, 65, 855, 3064, 11, 275, 1174, 17, 1343, 269, 1174, 17, 1343, 257, 1174, 18, 29, 28, 352, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 85, 945, 7, 64, 1174, 17, 10, 65, 10, 20, 9, 66, 10, 17, 855, 15, 8, 6624, 685, 64, 11, 275, 11, 269, 60, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 85, 945, 7, 87, 10, 87, 61, 17, 8, 6624, 685, 87, 60, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 85, 945, 26933, 18, 12962, 6624, 17635, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 85, 945, 19510, 18, 4032, 87, 1343, 269, 3256, 87, 10, 65, 4008, 6624, 685, 65, 11, 2124, 60, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 26692, 796, 26692, 611, 318, 62, 2676, 540, 7, 862, 8, 2073, 685, 862, 60, 628, 220, 220, 220, 3691, 796, 27172, 268, 26933, 79, 13, 25641, 2977, 3419, 329, 279, 287, 26692, 611, 318, 62, 82, 496, 62, 31937, 7, 79, 8, 12962, 628, 220, 220, 220, 1441, 23243, 7, 2617, 7, 14259, 828, 1994, 28, 2536, 8, 628, 198, 4299, 651, 62, 1073, 891, 82, 62, 38707, 7, 79, 11, 2779, 62, 1806, 796, 1195, 48, 11, 355, 62, 11600, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 1766, 891, 82, 290, 17637, 286, 257, 1813, 5408, 628, 220, 220, 220, 21066, 25, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 87, 8, 6624, 29565, 16, 4357, 685, 87, 12962, 628, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 87, 11, 292, 62, 11600, 28, 17821, 8, 6624, 1391, 87, 25, 352, 92, 628, 220, 220, 220, 35021, 25, 1401, 10786, 64, 275, 269, 11537, 198, 220, 220, 220, 357, 64, 11, 275, 11, 269, 8, 628, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 1174, 17, 10, 65, 10, 20, 9, 66, 10, 17, 855, 15, 8, 6624, 29565, 16, 11, 352, 11, 642, 11, 362, 4357, 685, 64, 61, 17, 11, 275, 11, 269, 11, 352, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 1174, 17, 10, 65, 10, 20, 9, 66, 10, 17, 855, 15, 11, 355, 62, 11600, 28, 17821, 8, 6624, 1391, 65, 25, 352, 11, 352, 25, 362, 11, 257, 61, 17, 25, 352, 11, 269, 25, 642, 92, 628, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 940, 14, 18, 9, 64, 1174, 17, 10, 18, 9, 65, 10, 20, 9, 66, 10, 17, 8, 6624, 29565, 940, 14, 18, 11, 513, 11, 642, 11, 362, 4357, 685, 64, 61, 17, 11, 275, 11, 269, 11, 352, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 940, 14, 18, 9, 64, 1174, 17, 10, 18, 9, 65, 10, 20, 9, 66, 10, 17, 11, 355, 62, 11600, 28, 17821, 8, 6624, 1391, 65, 25, 513, 11, 352, 25, 362, 11, 257, 61, 17, 25, 838, 14, 18, 11, 269, 25, 642, 92, 628, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 10, 65, 27, 28, 18, 11, 355, 62, 11600, 28, 17821, 8, 6624, 1391, 16, 25, 532, 18, 11, 275, 25, 352, 11, 257, 25, 352, 92, 198, 220, 220, 220, 35021, 25, 6818, 477, 7, 271, 62, 82, 496, 62, 600, 7, 85, 8, 329, 410, 287, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 10, 65, 27, 28, 18, 11, 355, 62, 11600, 28, 17821, 11, 2779, 62, 1806, 28, 30148, 737, 27160, 28955, 628, 220, 220, 220, 1303, 82, 496, 718, 13, 17, 9457, 428, 198, 220, 220, 220, 1303, 82, 496, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 532, 275, 19841, 267, 78, 8, 6624, 29565, 16, 11, 532, 16, 11, 532, 10745, 6269, 4357, 685, 64, 11, 275, 11, 352, 12962, 628, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 12562, 7, 22, 828, 355, 62, 11600, 28, 17821, 8, 6624, 1391, 16, 25, 767, 92, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 12562, 7, 18, 4008, 855, 26933, 18, 4357, 685, 16, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 12562, 7, 2238, 4008, 855, 26933, 10, 18943, 6269, 4357, 685, 16, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 12562, 32590, 2238, 4008, 6624, 220, 29565, 12, 18943, 6269, 4357, 685, 16, 12962, 198, 220, 220, 220, 35021, 25, 6818, 651, 62, 1073, 891, 82, 62, 38707, 7, 64, 1343, 275, 19841, 764, 24, 11, 8692, 62, 1806, 28, 30148, 8, 6624, 29565, 16, 11, 352, 11, 532, 15, 13, 24, 8269, 10535, 4357, 685, 64, 11, 275, 11, 352, 12962, 198, 220, 220, 220, 220, 198, 220, 220, 220, 35021, 25, 6818, 318, 62, 82, 496, 62, 600, 7, 1136, 62, 1073, 891, 82, 62, 38707, 7, 12562, 7, 22, 828, 8692, 62, 1806, 28, 30148, 11, 292, 62, 11600, 28, 17821, 737, 27160, 3419, 58, 15, 12962, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 779, 62, 36460, 62, 8692, 62, 1806, 796, 10352, 628, 220, 220, 220, 611, 318, 62, 82, 496, 62, 2411, 7, 79, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 33480, 62, 81, 11994, 62, 15, 7, 79, 737, 75, 11994, 3419, 628, 220, 220, 220, 611, 279, 13, 271, 62, 41433, 3419, 393, 279, 13, 271, 62, 5305, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 685, 12562, 7, 16, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 50115, 796, 685, 79, 611, 279, 13, 271, 62, 10745, 6269, 3419, 2073, 2779, 62, 1806, 7, 79, 15437, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37786, 796, 651, 62, 85, 945, 7, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 318, 62, 28920, 7, 824, 828, 357, 79, 11, 824, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33480, 62, 1050, 796, 37456, 275, 11, 279, 25, 12280, 26601, 498, 39687, 7, 65, 11, 37786, 11, 6045, 611, 18896, 7, 824, 8, 18189, 362, 2073, 352, 5769, 79, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 62, 79, 796, 33480, 62, 1050, 7, 8692, 62, 1806, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2779, 62, 1806, 6624, 26067, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 2314, 466, 625, 26067, 788, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 847, 3083, 11, 1949, 351, 26067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 778, 62, 79, 796, 33480, 62, 1050, 7, 21095, 11, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 36460, 62, 8692, 62, 1806, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 50115, 796, 778, 62, 79, 13, 1073, 41945, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 3975, 7, 12562, 11, 778, 62, 79, 13, 2144, 296, 8231, 28955, 628, 198, 220, 220, 220, 220, 220, 220, 220, 611, 779, 62, 36460, 62, 8692, 62, 1806, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40379, 796, 685, 12562, 7, 16, 8, 611, 20512, 7, 83, 13, 271, 62, 505, 28955, 2073, 256, 329, 256, 287, 40379, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 62, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 50115, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 6624, 267, 78, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 44807, 33295, 7, 2238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 269, 6624, 532, 2238, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 44807, 33295, 32590, 2238, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 44807, 33295, 7, 8692, 62, 1806, 7, 66, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 44807, 33295, 7, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 44807, 33295, 7, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 50115, 796, 50115, 62, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 477, 7, 271, 62, 82, 496, 62, 31937, 7, 83, 8, 329, 256, 287, 40379, 828, 40379, 628, 220, 220, 220, 611, 355, 62, 11600, 25, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 14230, 1068, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 11, 66, 287, 19974, 7, 912, 11, 6359, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 58, 83, 60, 796, 269, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 50115, 11, 912, 628, 198, 4299, 33480, 62, 81, 11994, 62, 15, 7, 79, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 35021, 25, 1401, 10786, 87, 11, 88, 11537, 198, 220, 220, 220, 357, 87, 11, 331, 8, 198, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 532, 331, 220, 18189, 513, 8, 198, 220, 220, 220, 2124, 532, 331, 532, 513, 18189, 657, 628, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 532, 331, 220, 532, 513, 18189, 657, 8, 198, 220, 220, 220, 2124, 532, 331, 532, 513, 18189, 657, 628, 198, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 15, 19841, 2124, 532, 331, 532, 513, 8, 198, 220, 220, 220, 532, 87, 1343, 331, 1343, 513, 19841, 657, 628, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 15, 6624, 2124, 8, 198, 220, 220, 220, 532, 87, 6624, 657, 628, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 940, 6624, 532, 87, 8, 198, 220, 220, 220, 2124, 1343, 838, 6624, 657, 628, 220, 220, 220, 1303, 50, 496, 642, 13, 1157, 6265, 477, 777, 357, 72, 13, 68, 1539, 6265, 300, 11994, 13, 2860, 7, 492, 11, 2946, 28, 4008, 198, 220, 220, 220, 1303, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 19841, 267, 78, 8, 198, 220, 220, 220, 1303, 2124, 532, 22385, 19841, 657, 628, 220, 220, 220, 1303, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 19841, 532, 2238, 8, 198, 220, 220, 220, 1303, 2124, 1343, 1343, 18943, 6269, 19841, 657, 628, 220, 220, 220, 1303, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 18189, 267, 78, 8, 198, 220, 220, 220, 1303, 2124, 532, 22385, 18189, 657, 628, 220, 220, 220, 1303, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 2238, 18189, 2124, 8, 198, 220, 220, 220, 1303, 1343, 18943, 6269, 532, 2124, 18189, 657, 628, 220, 220, 220, 35021, 25, 33480, 62, 81, 11994, 62, 15, 7, 87, 532, 331, 532, 513, 8, 198, 220, 220, 220, 34912, 1891, 357, 1712, 2274, 869, 938, 2599, 198, 220, 220, 220, 2644, 198, 220, 220, 220, 2195, 861, 295, 12331, 25, 2124, 532, 331, 532, 513, 628, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 318, 62, 82, 496, 62, 2411, 7, 79, 828, 279, 628, 220, 220, 220, 9529, 82, 796, 279, 13, 81, 11994, 3419, 198, 220, 220, 220, 300, 11994, 796, 279, 13, 75, 11994, 3419, 198, 220, 220, 220, 611, 407, 9529, 82, 13, 271, 62, 22570, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 300, 11994, 796, 300, 11994, 13, 2860, 32590, 81, 11994, 11, 1745, 16193, 81, 11994, 13, 271, 62, 10745, 6269, 3419, 393, 300, 11994, 13, 271, 62, 10745, 6269, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 9529, 82, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 279, 13, 46616, 3419, 7, 75, 11994, 11, 9529, 82, 8, 628, 220, 220, 220, 1441, 279, 628, 198, 2, 825, 616, 445, 7234, 7, 404, 11, 43979, 2599, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 27967, 10088, 1034, 284, 1351, 286, 7159, 198, 198, 2, 220, 220, 220, 220, 5740, 11, 340, 2331, 262, 2029, 7159, 389, 1635, 48229, 25666, 645, 761, 284, 3494, 329, 13841, 11, 7146, 8, 3503, 780, 262, 2163, 326, 3848, 428, 481, 2270, 220, 2124, 532, 331, 284, 616, 445, 7234, 7, 404, 17414, 87, 12095, 88, 12962, 393, 220, 2124, 1220, 331, 284, 616, 445, 7234, 7, 404, 17414, 87, 11, 16, 14, 88, 12962, 290, 352, 14, 88, 5218, 220, 35971, 7, 16, 11, 88, 36796, 12, 16, 30072, 198, 198, 2, 220, 220, 220, 220, 35021, 25, 6818, 616, 445, 7234, 7, 46616, 13, 2860, 11, 685, 87, 11, 87, 12962, 6624, 362, 9, 87, 198, 2, 220, 220, 220, 220, 35021, 25, 6818, 616, 445, 7234, 7, 46616, 13, 2860, 11, 685, 18, 11, 87, 12962, 6624, 2124, 1343, 513, 198, 2, 220, 220, 220, 220, 35021, 25, 616, 445, 7234, 7, 46616, 13, 293, 11, 685, 18, 11, 87, 12962, 198, 2, 220, 220, 220, 220, 513, 19841, 2124, 198, 2, 220, 220, 220, 220, 35021, 25, 6818, 616, 445, 7234, 7, 46616, 13, 79, 322, 17414, 18, 11, 87, 12962, 6624, 513, 61, 87, 628, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 611, 11593, 24442, 834, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 7278, 8, 18189, 362, 11, 43979, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1034, 287, 685, 46616, 13, 2860, 11, 46616, 13, 76, 377, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10088, 13, 79, 322, 11, 46616, 13, 27363, 11, 46616, 13, 710, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10088, 13, 293, 11, 46616, 13, 2528, 11, 46616, 13, 469, 11, 46616, 13, 13655, 4357, 1034, 198, 2, 220, 220, 220, 220, 1441, 4646, 7, 50033, 257, 11, 275, 25, 1034, 7, 64, 11, 65, 828, 43979, 58, 16, 25, 4357, 43979, 58, 15, 12962, 628, 198, 198, 2, 825, 33480, 62, 31937, 7, 31937, 11, 288, 11, 5858, 62, 28004, 28, 30148, 2599, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 6889, 257, 649, 5408, 588, 44052, 475, 351, 477, 410, 945, 287, 44052, 6928, 198, 2, 220, 220, 220, 220, 351, 883, 287, 22155, 288, 13, 16718, 618, 6352, 3419, 318, 407, 9723, 198, 2, 220, 220, 220, 220, 35021, 25, 331, 796, 1401, 10786, 88, 11537, 198, 198, 2, 220, 220, 220, 220, 35021, 25, 300, 79, 796, 35250, 46541, 14993, 451, 15167, 3419, 198, 2, 220, 220, 220, 220, 35021, 25, 264, 15, 796, 300, 79, 17816, 82, 15, 20520, 198, 2, 220, 220, 220, 220, 35021, 25, 264, 16, 796, 300, 79, 17816, 82, 16, 20520, 198, 2, 220, 220, 220, 220, 35021, 25, 288, 796, 1391, 87, 25, 82, 15, 11, 88, 25, 82, 16, 92, 198, 2, 220, 220, 220, 220, 35021, 25, 33480, 62, 31937, 7, 87, 10, 88, 10, 18, 11, 288, 8, 198, 2, 220, 220, 220, 220, 513, 1343, 2124, 62, 15, 1343, 2124, 62, 16, 198, 2, 220, 220, 220, 220, 35021, 25, 33480, 62, 31937, 7, 87, 10, 88, 10, 18, 27, 28, 23, 11, 67, 8, 198, 2, 220, 220, 220, 220, 513, 1343, 2124, 62, 15, 1343, 2124, 62, 16, 19841, 807, 198, 2, 220, 220, 220, 220, 35021, 25, 33480, 62, 31937, 7, 87, 855, 88, 10, 20, 11, 67, 8, 198, 2, 220, 220, 220, 220, 2124, 62, 15, 6624, 642, 1343, 2124, 62, 16, 198, 2, 220, 220, 220, 220, 37227, 198, 2, 220, 220, 220, 220, 825, 1005, 2100, 7, 31937, 2599, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 82, 496, 62, 1837, 23650, 7, 31937, 2599, 220, 1303, 1837, 23650, 11, 304, 13, 70, 13, 2124, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 58, 31937, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 9979, 837, 304, 13, 70, 13, 513, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5858, 62, 28004, 7, 31937, 8, 198, 2, 220, 220, 220, 220, 1949, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 3808, 796, 44052, 13, 3575, 1746, 3419, 198, 2, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 68, 13, 70, 13, 1500, 513, 11, 764, 20, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 7, 31937, 8, 198, 198, 2, 220, 220, 220, 220, 611, 318, 62, 28920, 7, 404, 3808, 2599, 1303, 1837, 23650, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1005, 2100, 7, 31937, 8, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1034, 3808, 796, 685, 28015, 62, 31937, 7, 78, 11, 67, 8, 329, 267, 287, 1034, 3808, 60, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 1034, 3808, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 44608, 796, 616, 445, 7234, 7, 31937, 13, 46616, 22784, 1034, 3808, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 44608, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 10412, 395, 198, 220, 220, 220, 10412, 395, 13, 9288, 4666, 3419, 198 ]
1.88061
4,523
from .read import read_axivity, read_geneactiv from .gt3x_convert import read_gt3x __all__ = ("read_axivity", "read_geneactiv", "read_gt3x")
[ 6738, 764, 961, 1330, 1100, 62, 897, 3458, 11, 1100, 62, 70, 1734, 15791, 198, 6738, 764, 13655, 18, 87, 62, 1102, 1851, 1330, 1100, 62, 13655, 18, 87, 198, 198, 834, 439, 834, 796, 5855, 961, 62, 897, 3458, 1600, 366, 961, 62, 70, 1734, 15791, 1600, 366, 961, 62, 13655, 18, 87, 4943, 198 ]
2.535714
56
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings import django.contrib.gis.db.models.fields
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 11, 15720, 602, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 70, 271, 13, 9945, 13, 27530, 13, 25747, 628 ]
3
61
import setuptools import json with open("README.rst", "r") as fh: long_description = fh.read() with open('pipeline_description.json', 'r') as fh: pipeline = json.load(fh) name = pipeline['GeneratedBy'][0]['Name'] description = pipeline['Name'] version = pipeline['GeneratedBy'][0]['Version'] url = pipeline['GeneratedBy'][0]['CodeURL'] author = pipeline['GeneratedBy'][0]['Author'] author_email = pipeline['GeneratedBy'][0]['AuthorEmail'] setuptools.setup( name=name, version=version, author=author, author_email=author_email, description=description, long_description=long_description, long_description_content_type="text/x-rst", url=url, packages=setuptools.find_packages(), include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], entry_points={'console_scripts': [ '{{cookiecutter.app_name}}={{cookiecutter.app_name}}.run:main' ]}, install_requires=[ "snakebids>={{cookiecutter.snakebids_version}}", "snakemake" ], python_requires='>=3.7' )
[ 11748, 900, 37623, 10141, 198, 11748, 33918, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 81, 301, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 4480, 1280, 10786, 79, 541, 4470, 62, 11213, 13, 17752, 3256, 705, 81, 11537, 355, 277, 71, 25, 198, 220, 220, 220, 11523, 796, 33918, 13, 2220, 7, 69, 71, 8, 198, 220, 220, 220, 1438, 796, 11523, 17816, 8645, 515, 3886, 6, 7131, 15, 7131, 6, 5376, 20520, 198, 220, 220, 220, 6764, 796, 11523, 17816, 5376, 20520, 198, 220, 220, 220, 2196, 796, 11523, 17816, 8645, 515, 3886, 6, 7131, 15, 7131, 6, 14815, 20520, 198, 220, 220, 220, 19016, 796, 11523, 17816, 8645, 515, 3886, 6, 7131, 15, 7131, 6, 10669, 21886, 20520, 198, 220, 220, 220, 1772, 796, 11523, 17816, 8645, 515, 3886, 6, 7131, 15, 7131, 6, 13838, 20520, 198, 220, 220, 220, 1772, 62, 12888, 796, 11523, 17816, 8645, 515, 3886, 6, 7131, 15, 7131, 6, 13838, 15333, 20520, 198, 220, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 28, 3672, 11, 198, 220, 220, 220, 2196, 28, 9641, 11, 198, 220, 220, 220, 1772, 28, 9800, 11, 198, 220, 220, 220, 1772, 62, 12888, 28, 9800, 62, 12888, 11, 198, 220, 220, 220, 6764, 28, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 87, 12, 81, 301, 1600, 198, 220, 220, 220, 19016, 28, 6371, 11, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 22784, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 5726, 62, 13033, 34758, 6, 41947, 62, 46521, 10354, 685, 198, 220, 220, 220, 220, 220, 220, 220, 705, 27007, 44453, 8968, 353, 13, 1324, 62, 3672, 11709, 28, 27007, 44453, 8968, 353, 13, 1324, 62, 3672, 11709, 13, 5143, 25, 12417, 6, 198, 220, 220, 220, 2361, 5512, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16184, 539, 65, 2340, 29, 28, 27007, 44453, 8968, 353, 13, 16184, 539, 65, 2340, 62, 9641, 11709, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16184, 539, 15883, 1, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 22, 6, 198, 8, 198 ]
2.50104
481
from pymooCFD.setupOpt import checkpointFile, dataDir, nCP, archDir, \ preProcDir, cluster from pymooCFD.util.sysTools import removeDir #, makeDir, emptyDir from pymooCFD.setupCFD import runCase import numpy as np import time import os import tarfile from dask.distributed import Client from sys import exit # def getGen(checkpointFile=checkpointFile): # try: # loadCP(checkpointFile=checkpointFile) # except FileNotFoundError as err: # print(err) # return 0 # def popGen(gen, checkpointFile=checkpointFile): # ''' # Parameters # ---------- # gen : int # generation you wish to get population from # checkpointFile : str, optional # checkpoint file path where Algorithm object was saved using numpy.save(). # The default is checkpointFile (defined in beginning of setupOpt.py). # Returns # ------- # pop : # Contains StaticProblem object with population of individuals from # generation <gen>. # Notes # ----- # - development needed to handle constraints # ''' # alg = loadCP(checkpointFile=checkpointFile) # X = alg.callback.data['var'][gen] # F = alg.callback.data['obj'][gen] # from pymoo.model.evaluator import Evaluator # from pymoo.model.population import Population # from pymoo.model.problem import StaticProblem # # now the population object with all its attributes is created (CV, feasible, ...) # pop = Population.new("X", X) # pop = Evaluator().eval(StaticProblem(problem, F=F), pop) # , G=G), pop) # return pop, alg # def loadTxt(fileX, fileF, fileG=None): # print(f'Loading population from files {fileX} and {fileF}...') # X = np.loadtxt(fileX) # F = np.loadtxt(fileF) # # F = np.loadtxt(f'{dataDir}/{fileF}') # if fileG is not None: # # G = np.loadtxt(f'{dataDir}/{fileG}') # G = np.loadtxt(fileG) # else: # G = None # from pymoo.model.evaluator import Evaluator # from pymoo.model.population import Population # from pymoo.model.problem import StaticProblem # # now the population object with all its attributes is created (CV, feasible, ...) # pop = Population.new("X", X) # pop = Evaluator().eval(StaticProblem(problem, F=F, G=G), pop) # from pymooCFD.setupOpt import pop_size # # from pymoo.algorithms.so_genetic_algorithm import GA # # # the algorithm is now called with the population - biased initialization # # algorithm = GA(pop_size=pop_size, sampling=pop) # from pymoo.algorithms.nsga2 import NSGA2 # algorithm = NSGA2(pop_size=pop_size, sampling=pop) # return algorithm # def restartGen(gen, checkpointFile=checkpointFile): # pop, alg = popGen(gen, checkpointFile=checkpointFile) # alg.sampling() # # from pymoo.algorithms.so_genetic_algorithm import GA # # the algorithm is now called with the population - biased initialization # # algorithm = GA(pop_size=100, sampling=pop) # from pymoo.optimize import minimize # from pymooCFD.setupOpt import problem # res = minimize(problem, # alg, # ('n_gen', 10), # seed=1, # verbose=True) # return res # def loadTxt(): # try: # print('Loading from text files') # X = np.loadtxt('var.txt') # F = np.loadtxt('obj.txt') # except OSError as err: # print(err) # print('Failed to load text files') # print('Data loading failed returning "None, None"...') # return None, None # def archive(dirName, archName = 'archive.tar.gz'): # with tarfile.open(archName, 'a') as tar: # tar.add(dirName) # compressDir('../../dump') # print('creating archive') # out = tarfile.open('example.tar.gz', mode='a') # try: # print('adding README.txt') # out.add('../dump') # finally: # print('closing tar archive') # out.close() # # print('Contents of archived file:') # t = tarfile.open('example.tar.gz', 'r') # for member in t.getmembers(): # print(member.name)
[ 6738, 279, 4948, 2238, 22495, 35, 13, 40406, 27871, 1330, 26954, 8979, 11, 1366, 35277, 11, 299, 8697, 11, 3934, 35277, 11, 3467, 198, 220, 220, 220, 662, 2964, 66, 35277, 11, 13946, 198, 6738, 279, 4948, 2238, 22495, 35, 13, 22602, 13, 17597, 33637, 1330, 4781, 35277, 1303, 11, 787, 35277, 11, 6565, 35277, 198, 6738, 279, 4948, 2238, 22495, 35, 13, 40406, 22495, 35, 1330, 1057, 20448, 628, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 13422, 7753, 198, 6738, 288, 2093, 13, 17080, 6169, 1330, 20985, 198, 198, 6738, 25064, 1330, 8420, 628, 198, 2, 825, 651, 13746, 7, 9122, 4122, 8979, 28, 9122, 4122, 8979, 2599, 198, 2, 220, 220, 220, 220, 1949, 25, 220, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3440, 8697, 7, 9122, 4122, 8979, 28, 9122, 4122, 8979, 8, 198, 2, 220, 220, 220, 220, 2845, 9220, 3673, 21077, 12331, 355, 11454, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8056, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 657, 628, 628, 628, 628, 198, 198, 2, 825, 1461, 13746, 7, 5235, 11, 26954, 8979, 28, 9122, 4122, 8979, 2599, 198, 2, 220, 220, 220, 220, 705, 7061, 198, 198, 2, 220, 220, 220, 220, 40117, 198, 2, 220, 220, 220, 220, 24200, 438, 198, 2, 220, 220, 220, 220, 2429, 1058, 493, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 5270, 345, 4601, 284, 651, 3265, 422, 198, 2, 220, 220, 220, 220, 26954, 8979, 1058, 965, 11, 11902, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 26954, 2393, 3108, 810, 978, 42289, 2134, 373, 7448, 1262, 299, 32152, 13, 21928, 22446, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 318, 26954, 8979, 357, 23211, 287, 3726, 286, 9058, 27871, 13, 9078, 737, 198, 198, 2, 220, 220, 220, 220, 16409, 198, 2, 220, 220, 220, 220, 35656, 198, 2, 220, 220, 220, 220, 1461, 1058, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 49850, 36125, 40781, 2134, 351, 3265, 286, 3925, 422, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 5270, 1279, 5235, 28401, 198, 198, 2, 220, 220, 220, 220, 11822, 198, 2, 220, 220, 220, 220, 37404, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 532, 2478, 2622, 284, 5412, 17778, 198, 2, 220, 220, 220, 220, 705, 7061, 198, 2, 220, 220, 220, 220, 435, 70, 796, 3440, 8697, 7, 9122, 4122, 8979, 28, 9122, 4122, 8979, 8, 198, 2, 220, 220, 220, 220, 1395, 796, 435, 70, 13, 47423, 13, 7890, 17816, 7785, 6, 7131, 5235, 60, 198, 2, 220, 220, 220, 220, 376, 796, 435, 70, 13, 47423, 13, 7890, 17816, 26801, 6, 7131, 5235, 60, 198, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 18206, 84, 1352, 1330, 26439, 84, 1352, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 39748, 1330, 20133, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 45573, 1330, 36125, 40781, 198, 2, 220, 220, 220, 220, 1303, 783, 262, 3265, 2134, 351, 477, 663, 12608, 318, 2727, 357, 33538, 11, 23498, 11, 2644, 8, 198, 2, 220, 220, 220, 220, 1461, 796, 20133, 13, 3605, 7203, 55, 1600, 1395, 8, 198, 2, 220, 220, 220, 220, 1461, 796, 26439, 84, 1352, 22446, 18206, 7, 45442, 40781, 7, 45573, 11, 376, 28, 37, 828, 1461, 8, 220, 1303, 837, 402, 28, 38, 828, 1461, 8, 198, 2, 220, 220, 220, 220, 1441, 1461, 11, 435, 70, 628, 198, 2, 825, 3440, 51, 742, 7, 7753, 55, 11, 2393, 37, 11, 2393, 38, 28, 14202, 2599, 198, 2, 220, 220, 220, 220, 3601, 7, 69, 6, 19031, 3265, 422, 3696, 1391, 7753, 55, 92, 290, 1391, 7753, 37, 92, 986, 11537, 198, 2, 220, 220, 220, 220, 1395, 796, 45941, 13, 2220, 14116, 7, 7753, 55, 8, 198, 2, 220, 220, 220, 220, 376, 796, 45941, 13, 2220, 14116, 7, 7753, 37, 8, 198, 2, 220, 220, 220, 220, 1303, 376, 796, 45941, 13, 2220, 14116, 7, 69, 6, 90, 7890, 35277, 92, 14, 90, 7753, 37, 92, 11537, 198, 2, 220, 220, 220, 220, 611, 2393, 38, 318, 407, 6045, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 402, 796, 45941, 13, 2220, 14116, 7, 69, 6, 90, 7890, 35277, 92, 14, 90, 7753, 38, 92, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 402, 796, 45941, 13, 2220, 14116, 7, 7753, 38, 8, 198, 2, 220, 220, 220, 220, 2073, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 402, 796, 6045, 198, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 18206, 84, 1352, 1330, 26439, 84, 1352, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 39748, 1330, 20133, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 19849, 13, 45573, 1330, 36125, 40781, 198, 2, 220, 220, 220, 220, 1303, 783, 262, 3265, 2134, 351, 477, 663, 12608, 318, 2727, 357, 33538, 11, 23498, 11, 2644, 8, 198, 2, 220, 220, 220, 220, 1461, 796, 20133, 13, 3605, 7203, 55, 1600, 1395, 8, 198, 2, 220, 220, 220, 220, 1461, 796, 26439, 84, 1352, 22446, 18206, 7, 45442, 40781, 7, 45573, 11, 376, 28, 37, 11, 402, 28, 38, 828, 1461, 8, 198, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 22495, 35, 13, 40406, 27871, 1330, 1461, 62, 7857, 198, 2, 220, 220, 220, 220, 1303, 422, 279, 4948, 2238, 13, 282, 7727, 907, 13, 568, 62, 5235, 5139, 62, 282, 42289, 1330, 14545, 198, 2, 220, 220, 220, 220, 1303, 1303, 262, 11862, 318, 783, 1444, 351, 262, 3265, 532, 21925, 37588, 198, 2, 220, 220, 220, 220, 1303, 11862, 796, 14545, 7, 12924, 62, 7857, 28, 12924, 62, 7857, 11, 19232, 28, 12924, 8, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 282, 7727, 907, 13, 5907, 4908, 17, 1330, 10896, 9273, 17, 198, 2, 220, 220, 220, 220, 11862, 796, 10896, 9273, 17, 7, 12924, 62, 7857, 28, 12924, 62, 7857, 11, 19232, 28, 12924, 8, 198, 198, 2, 220, 220, 220, 220, 1441, 11862, 628, 628, 198, 2, 825, 15765, 13746, 7, 5235, 11, 26954, 8979, 28, 9122, 4122, 8979, 2599, 198, 2, 220, 220, 220, 220, 1461, 11, 435, 70, 796, 1461, 13746, 7, 5235, 11, 26954, 8979, 28, 9122, 4122, 8979, 8, 198, 2, 220, 220, 220, 220, 435, 70, 13, 37687, 11347, 3419, 198, 198, 2, 220, 220, 220, 220, 1303, 422, 279, 4948, 2238, 13, 282, 7727, 907, 13, 568, 62, 5235, 5139, 62, 282, 42289, 1330, 14545, 198, 2, 220, 220, 220, 220, 1303, 262, 11862, 318, 783, 1444, 351, 262, 3265, 532, 21925, 37588, 198, 2, 220, 220, 220, 220, 1303, 11862, 796, 14545, 7, 12924, 62, 7857, 28, 3064, 11, 19232, 28, 12924, 8, 198, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 13, 40085, 1096, 1330, 17775, 198, 2, 220, 220, 220, 220, 422, 279, 4948, 2238, 22495, 35, 13, 40406, 27871, 1330, 1917, 198, 2, 220, 220, 220, 220, 581, 796, 17775, 7, 45573, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 435, 70, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 77, 62, 5235, 3256, 838, 828, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 28, 16, 11, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 17821, 8, 198, 2, 220, 220, 220, 220, 1441, 581, 628, 198, 2, 825, 3440, 51, 742, 33529, 198, 2, 220, 220, 220, 220, 1949, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 19031, 422, 2420, 3696, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 796, 45941, 13, 2220, 14116, 10786, 7785, 13, 14116, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 376, 796, 45941, 13, 2220, 14116, 10786, 26801, 13, 14116, 11537, 198, 2, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 11454, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 8056, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 37, 6255, 284, 3440, 2420, 3696, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 6601, 11046, 4054, 8024, 366, 14202, 11, 6045, 26214, 11537, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 11, 6045, 198, 198, 2, 825, 15424, 7, 15908, 5376, 11, 3934, 5376, 796, 705, 17474, 13, 18870, 13, 34586, 6, 2599, 198, 2, 220, 220, 220, 220, 351, 13422, 7753, 13, 9654, 7, 998, 5376, 11, 705, 64, 11537, 355, 13422, 25, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 13422, 13, 2860, 7, 15908, 5376, 8, 198, 198, 2, 27413, 35277, 10786, 40720, 40720, 39455, 11537, 628, 198, 2, 3601, 10786, 20123, 278, 15424, 11537, 198, 2, 503, 796, 13422, 7753, 13, 9654, 10786, 20688, 13, 18870, 13, 34586, 3256, 4235, 11639, 64, 11537, 198, 2, 1949, 25, 198, 2, 220, 220, 220, 220, 3601, 10786, 26872, 20832, 11682, 13, 14116, 11537, 198, 2, 220, 220, 220, 220, 503, 13, 2860, 10786, 40720, 39455, 11537, 198, 2, 3443, 25, 198, 2, 220, 220, 220, 220, 3601, 10786, 565, 2752, 13422, 15424, 11537, 198, 2, 220, 220, 220, 220, 503, 13, 19836, 3419, 198, 2, 198, 2, 3601, 10786, 15842, 286, 33962, 2393, 25, 11537, 198, 2, 256, 796, 13422, 7753, 13, 9654, 10786, 20688, 13, 18870, 13, 34586, 3256, 705, 81, 11537, 198, 2, 329, 2888, 287, 256, 13, 1136, 30814, 33529, 198, 2, 220, 220, 220, 220, 3601, 7, 19522, 13, 3672, 8, 198 ]
2.421517
1,701
from scipy import signal import matplotlib.pyplot as plt import numpy as np t = np.linspace(1, 201, 200, endpoint=False) sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) widths = np.arange(1, 31) cwtmatr = signal.cwt(sig, signal.ricker, widths) plt.imshow(cwtmatr, extent=[1, 201, 31, 1], cmap='PRGn', aspect='auto', vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) plt.show()
[ 6738, 629, 541, 88, 1330, 6737, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 198, 83, 796, 45941, 13, 21602, 10223, 7, 16, 11, 580, 11, 939, 11, 36123, 28, 25101, 8, 198, 82, 328, 220, 796, 45941, 13, 6966, 7, 17, 1635, 45941, 13, 14415, 1635, 767, 1635, 256, 8, 1343, 6737, 13, 4908, 1046, 79, 9615, 7, 83, 532, 657, 13, 19, 11, 277, 66, 28, 17, 8, 198, 10394, 82, 796, 45941, 13, 283, 858, 7, 16, 11, 3261, 8, 198, 66, 46569, 6759, 81, 796, 6737, 13, 66, 46569, 7, 82, 328, 11, 6737, 13, 5557, 263, 11, 9647, 82, 8, 198, 489, 83, 13, 320, 12860, 7, 66, 46569, 6759, 81, 11, 6287, 41888, 16, 11, 580, 11, 3261, 11, 352, 4357, 269, 8899, 11639, 4805, 38, 77, 3256, 4843, 11639, 23736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 8937, 7, 66, 46569, 6759, 81, 737, 9806, 22784, 410, 1084, 10779, 8937, 7, 66, 46569, 6759, 81, 737, 9806, 28955, 198, 489, 83, 13, 12860, 3419, 198 ]
2.164021
189
description = 'minimal NICOS startup setup' group = 'lowlevel' sysconfig = dict( cache = 'tofhw.toftof.frm2:14869', )
[ 11213, 796, 705, 1084, 4402, 45593, 2640, 13693, 9058, 6, 198, 198, 8094, 796, 705, 9319, 5715, 6, 198, 198, 17597, 11250, 796, 8633, 7, 198, 220, 220, 220, 12940, 796, 705, 1462, 69, 36599, 13, 1462, 701, 1659, 13, 8310, 76, 17, 25, 18294, 3388, 3256, 198, 8, 198 ]
2.48
50
from valhalla.extract import DataExtractor from sklearn.pipeline import Pipeline from ._transform import FeatureConcat
[ 6738, 1188, 41911, 13, 2302, 974, 1330, 6060, 11627, 40450, 198, 6738, 1341, 35720, 13, 79, 541, 4470, 1330, 37709, 198, 6738, 47540, 35636, 1330, 27018, 3103, 9246 ]
4.214286
28
"""Guessing Game Visualization You do not need to understand any of the code in this file. """ # This section avoids asking for user input. import lab01 lab01.LOWER = 1 lab01.UPPER = 100 lab01.prompt_for_number = prompt_for_number lab01.is_correct = is_correct lab01.is_too_high = is_too_high # This section runs an algorithm many times. from collections import defaultdict import sys import webbrowser def get_frequency(algorithm_name, runs=1000): """Collect frequencies and plot them.""" if not hasattr(lab01, algorithm_name): raise ValueError('invalid guessing algorithm ({0})'.format(algorithm_name)) algorithm = getattr(lab01, algorithm_name) counts = defaultdict(int) for i in range(runs): num_guesses = algorithm() counts[num_guesses] += 1 most_guesses = max(counts) if most_guesses == 1: raise ValueError('num_guesses was always 1. Make sure your functions ' 'are returning the correct number of guesses!') xs = range(1, most_guesses+1) ys = [sum(counts[i] for i in range(1, x+1)) for x in xs] if algorithm_name == 'guess_binary': x_axis_string = '|'.join(map(str, xs)) y_axis_string = ','.join(map(str, ys)) chxp = ','.join(map(str, range(int(100 / 2 / most_guesses)+1, 100, int(100 / most_guesses)))) data_string = 'chd=t:{0}&chxl=0:|{1}|2:|Max number of guesses|3:|Frequency|&chxp=0,{3}|2,50|3,{2}'.format(y_axis_string, x_axis_string, runs/2, chxp) else: step = max(most_guesses // 10, 1) x_axis_string = '|'.join(map(str, range(0, most_guesses+1, step))) y_axis_string = ','.join(map(str, ys)) data_string = 'chd=t:{0}&chxl=0:|{1}|2:|Max number of guesses|3:|Frequency|&chxp=0,0|2,50|3,{2}'.format(y_axis_string, x_axis_string, runs/2) url = 'http://chart.googleapis.com/chart?cht=bvg&chtt={0}&chxt=x,y,x,y&chs=500x500&{1}&chds=a&chco=3072F3&chbh=a&chm=s,000000,0,-1,5|s,000000,1,-1,5&chdlp=l'.format(algorithm_name, data_string) webbrowser.open_new(url) if __name__ == "__main__": file_name, algorithm_name = sys.argv get_frequency(algorithm_name)
[ 37811, 8205, 27289, 3776, 15612, 1634, 198, 198, 1639, 466, 407, 761, 284, 1833, 597, 286, 262, 2438, 287, 428, 2393, 13, 198, 37811, 198, 198, 2, 770, 2665, 30940, 4737, 329, 2836, 5128, 13, 198, 198, 11748, 2248, 486, 198, 23912, 486, 13, 43, 36048, 796, 352, 198, 23912, 486, 13, 8577, 18973, 796, 1802, 198, 23912, 486, 13, 16963, 457, 62, 1640, 62, 17618, 796, 6152, 62, 1640, 62, 17618, 198, 23912, 486, 13, 271, 62, 30283, 796, 318, 62, 30283, 198, 23912, 486, 13, 271, 62, 18820, 62, 8929, 796, 318, 62, 18820, 62, 8929, 198, 198, 2, 770, 2665, 4539, 281, 11862, 867, 1661, 13, 198, 198, 6738, 17268, 1330, 4277, 11600, 198, 11748, 25064, 198, 11748, 3992, 40259, 198, 198, 4299, 651, 62, 35324, 7, 282, 42289, 62, 3672, 11, 4539, 28, 12825, 2599, 198, 220, 220, 220, 37227, 31337, 19998, 290, 7110, 606, 526, 15931, 198, 220, 220, 220, 611, 407, 468, 35226, 7, 23912, 486, 11, 11862, 62, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 259, 12102, 25260, 11862, 37913, 15, 30072, 4458, 18982, 7, 282, 42289, 62, 3672, 4008, 198, 220, 220, 220, 11862, 796, 651, 35226, 7, 23912, 486, 11, 11862, 62, 3672, 8, 628, 220, 220, 220, 9853, 796, 4277, 11600, 7, 600, 8, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 48381, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 5162, 44667, 796, 11862, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 9853, 58, 22510, 62, 5162, 44667, 60, 15853, 352, 628, 220, 220, 220, 749, 62, 5162, 44667, 796, 3509, 7, 9127, 82, 8, 198, 220, 220, 220, 611, 749, 62, 5162, 44667, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 22510, 62, 5162, 44667, 373, 1464, 352, 13, 6889, 1654, 534, 5499, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 533, 8024, 262, 3376, 1271, 286, 44774, 0, 11537, 198, 220, 220, 220, 2124, 82, 796, 2837, 7, 16, 11, 749, 62, 5162, 44667, 10, 16, 8, 198, 220, 220, 220, 331, 82, 796, 685, 16345, 7, 9127, 82, 58, 72, 60, 329, 1312, 287, 2837, 7, 16, 11, 2124, 10, 16, 4008, 329, 2124, 287, 2124, 82, 60, 628, 220, 220, 220, 611, 11862, 62, 3672, 6624, 705, 5162, 408, 62, 39491, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 22704, 62, 8841, 796, 705, 91, 4458, 22179, 7, 8899, 7, 2536, 11, 2124, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 22704, 62, 8841, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 331, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 442, 42372, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 2837, 7, 600, 7, 3064, 1220, 362, 1220, 749, 62, 5162, 44667, 47762, 16, 11, 1802, 11, 493, 7, 3064, 1220, 749, 62, 5162, 44667, 35514, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 8841, 796, 705, 354, 67, 28, 83, 29164, 15, 92, 5, 354, 87, 75, 28, 15, 25, 91, 90, 16, 92, 91, 17, 25, 91, 11518, 1271, 286, 44774, 91, 18, 25, 91, 37, 28707, 91, 5, 354, 42372, 28, 15, 11, 90, 18, 92, 91, 17, 11, 1120, 91, 18, 11, 90, 17, 92, 4458, 18982, 7, 88, 62, 22704, 62, 8841, 11, 2124, 62, 22704, 62, 8841, 11, 4539, 14, 17, 11, 442, 42372, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 796, 3509, 7, 1712, 62, 5162, 44667, 3373, 838, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 22704, 62, 8841, 796, 705, 91, 4458, 22179, 7, 8899, 7, 2536, 11, 2837, 7, 15, 11, 749, 62, 5162, 44667, 10, 16, 11, 2239, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 22704, 62, 8841, 796, 705, 4032, 13, 22179, 7, 8899, 7, 2536, 11, 331, 82, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 8841, 796, 705, 354, 67, 28, 83, 29164, 15, 92, 5, 354, 87, 75, 28, 15, 25, 91, 90, 16, 92, 91, 17, 25, 91, 11518, 1271, 286, 44774, 91, 18, 25, 91, 37, 28707, 91, 5, 354, 42372, 28, 15, 11, 15, 91, 17, 11, 1120, 91, 18, 11, 90, 17, 92, 4458, 18982, 7, 88, 62, 22704, 62, 8841, 11, 2124, 62, 22704, 62, 8841, 11, 4539, 14, 17, 8, 198, 220, 220, 220, 19016, 796, 705, 4023, 1378, 40926, 13, 13297, 499, 271, 13, 785, 14, 40926, 30, 21474, 28, 65, 45119, 5, 354, 926, 34758, 15, 92, 5, 354, 742, 28, 87, 11, 88, 11, 87, 11, 88, 5, 354, 82, 28, 4059, 87, 4059, 5, 90, 16, 92, 5, 354, 9310, 28, 64, 5, 354, 1073, 28, 1270, 4761, 37, 18, 5, 354, 34369, 28, 64, 5, 354, 76, 28, 82, 11, 10535, 11, 15, 12095, 16, 11, 20, 91, 82, 11, 10535, 11, 16, 12095, 16, 11, 20, 5, 354, 25404, 79, 28, 75, 4458, 18982, 7, 282, 42289, 62, 3672, 11, 1366, 62, 8841, 8, 628, 220, 220, 220, 3992, 40259, 13, 9654, 62, 3605, 7, 6371, 8, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2393, 62, 3672, 11, 11862, 62, 3672, 796, 25064, 13, 853, 85, 198, 220, 220, 220, 651, 62, 35324, 7, 282, 42289, 62, 3672, 8 ]
2.302674
935
import pandas as pd name = 'drop-column' if __name__ == "__main__": data = [['tom', 10], ['nick', 15], ['juli', 15]] df = pd.DataFrame(data, columns = ['Name', 'Age']) args = { '--columns':[ 'Age', 'Name' ] } operator(df, args)
[ 11748, 19798, 292, 355, 279, 67, 198, 198, 3672, 796, 705, 14781, 12, 28665, 6, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 220, 198, 220, 220, 220, 1366, 796, 16410, 6, 39532, 3256, 838, 4357, 37250, 17172, 3256, 1315, 4357, 37250, 73, 32176, 3256, 1315, 11907, 220, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 7890, 11, 15180, 796, 37250, 5376, 3256, 705, 23396, 6, 12962, 220, 628, 220, 220, 220, 26498, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 438, 28665, 82, 10354, 58, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23396, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5376, 6, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1782, 628, 220, 220, 220, 10088, 7, 7568, 11, 26498, 8 ]
1.94702
151
# Generated by Django 2.0.7 on 2018-11-02 22:15 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 13, 22, 319, 2864, 12, 1157, 12, 2999, 2534, 25, 1314, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198 ]
2.8125
32
import torch import torch.nn as nn import torch.nn.functional as F try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url import torchvision.models.resnet as torch_resnet from torchvision.models.resnet import BasicBlock, Bottleneck model_urls = {'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } def resnet152(pretrained=False, progress=True, **kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs) def resnext50_32x4d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-50 32x4d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 4 return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def resnext101_32x8d(pretrained=False, progress=True, **kwargs): r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['groups'] = 32 kwargs['width_per_group'] = 8 return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs) def wide_resnet50_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-50-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs) def wide_resnet101_2(pretrained=False, progress=True, **kwargs): r"""Wide ResNet-101-2 model from `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_ The model is the same as ResNet except for the bottleneck number of channels which is twice larger in every block. The number of channels in outer 1x1 convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 channels, and in Wide ResNet-50-2 has 2048-1024-2048. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ kwargs['width_per_group'] = 64 * 2 return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 28311, 25, 198, 220, 220, 220, 422, 28034, 13, 40140, 1330, 3440, 62, 5219, 62, 11600, 62, 6738, 62, 6371, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 28034, 13, 26791, 13, 19849, 62, 89, 2238, 1330, 3440, 62, 6371, 355, 3440, 62, 5219, 62, 11600, 62, 6738, 62, 6371, 198, 198, 11748, 28034, 10178, 13, 27530, 13, 411, 3262, 355, 28034, 62, 411, 3262, 198, 6738, 28034, 10178, 13, 27530, 13, 411, 3262, 1330, 14392, 12235, 11, 14835, 43163, 198, 198, 19849, 62, 6371, 82, 796, 1391, 6, 411, 3262, 1507, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 3262, 1507, 12, 20, 66, 15801, 66, 2934, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 3262, 2682, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 3262, 2682, 12, 20370, 69, 22, 721, 19, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 3262, 1120, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 3262, 1120, 12, 1129, 66, 23, 68, 27277, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 3262, 8784, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 3262, 8784, 12, 20, 67, 18, 65, 19, 67, 23, 69, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 3262, 17827, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 3262, 17827, 12, 65, 19244, 276, 17, 67, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 19545, 1120, 62, 2624, 87, 19, 67, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 19545, 1120, 62, 2624, 87, 19, 67, 12, 22, 66, 7568, 2231, 5774, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 411, 19545, 8784, 62, 2624, 87, 23, 67, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 411, 19545, 8784, 62, 2624, 87, 23, 67, 12, 23, 7012, 3980, 487, 20, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 4421, 62, 411, 3262, 1120, 62, 17, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 4421, 62, 411, 3262, 1120, 62, 17, 12, 3865, 69, 22260, 19, 67, 13, 79, 400, 3256, 198, 220, 220, 220, 705, 4421, 62, 411, 3262, 8784, 62, 17, 10354, 705, 5450, 1378, 15002, 13, 9078, 13165, 354, 13, 2398, 14, 27530, 14, 4421, 62, 411, 3262, 8784, 62, 17, 12, 2624, 1453, 1157, 3980, 13, 79, 400, 3256, 198, 92, 628, 198, 4299, 581, 3262, 17827, 7, 5310, 13363, 28, 25101, 11, 4371, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 4965, 7934, 12, 17827, 2746, 422, 198, 220, 220, 220, 4600, 1, 29744, 1874, 312, 723, 18252, 329, 7412, 31517, 653, 1, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1314, 1065, 13, 44427, 5332, 13, 12315, 29, 63, 62, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 30388, 2599, 1002, 6407, 11, 5860, 257, 2746, 662, 12, 35311, 319, 7412, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 357, 30388, 2599, 1002, 6407, 11, 11298, 257, 4371, 2318, 286, 262, 4321, 284, 336, 1082, 81, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 411, 3262, 10786, 411, 3262, 17827, 3256, 14835, 43163, 11, 685, 18, 11, 807, 11, 4570, 11, 513, 4357, 2181, 13363, 11, 4371, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 8, 628, 198, 4299, 581, 19545, 1120, 62, 2624, 87, 19, 67, 7, 5310, 13363, 28, 25101, 11, 4371, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 4965, 8199, 55, 83, 12, 1120, 3933, 87, 19, 67, 2746, 422, 198, 220, 220, 220, 4600, 1, 46384, 2301, 515, 1874, 312, 723, 49127, 329, 10766, 47986, 27862, 1, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1433, 1157, 13, 2713, 50080, 13, 12315, 29, 63, 62, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 30388, 2599, 1002, 6407, 11, 5860, 257, 2746, 662, 12, 35311, 319, 7412, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 357, 30388, 2599, 1002, 6407, 11, 11298, 257, 4371, 2318, 286, 262, 4321, 284, 336, 1082, 81, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 86, 22046, 17816, 24432, 20520, 796, 3933, 198, 220, 220, 220, 479, 86, 22046, 17816, 10394, 62, 525, 62, 8094, 20520, 796, 604, 198, 220, 220, 220, 1441, 4808, 411, 3262, 10786, 411, 19545, 1120, 62, 2624, 87, 19, 67, 3256, 14835, 43163, 11, 685, 18, 11, 604, 11, 718, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 11, 4371, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 581, 19545, 8784, 62, 2624, 87, 23, 67, 7, 5310, 13363, 28, 25101, 11, 4371, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 4965, 8199, 55, 83, 12, 8784, 3933, 87, 23, 67, 2746, 422, 198, 220, 220, 220, 4600, 1, 46384, 2301, 515, 1874, 312, 723, 49127, 329, 10766, 47986, 27862, 1, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1433, 1157, 13, 2713, 50080, 13, 12315, 29, 63, 62, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 30388, 2599, 1002, 6407, 11, 5860, 257, 2746, 662, 12, 35311, 319, 7412, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 357, 30388, 2599, 1002, 6407, 11, 11298, 257, 4371, 2318, 286, 262, 4321, 284, 336, 1082, 81, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 86, 22046, 17816, 24432, 20520, 796, 3933, 198, 220, 220, 220, 479, 86, 22046, 17816, 10394, 62, 525, 62, 8094, 20520, 796, 807, 198, 220, 220, 220, 1441, 4808, 411, 3262, 10786, 411, 19545, 8784, 62, 2624, 87, 23, 67, 3256, 14835, 43163, 11, 685, 18, 11, 604, 11, 2242, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 11, 4371, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 3094, 62, 411, 3262, 1120, 62, 17, 7, 5310, 13363, 28, 25101, 11, 4371, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 42559, 1874, 7934, 12, 1120, 12, 17, 2746, 422, 198, 220, 220, 220, 4600, 1, 42559, 1874, 312, 723, 27862, 1, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1433, 2713, 13, 2998, 20964, 13, 12315, 29, 63, 62, 628, 220, 220, 220, 383, 2746, 318, 262, 976, 355, 1874, 7934, 2845, 329, 262, 49936, 1271, 286, 9619, 198, 220, 220, 220, 543, 318, 5403, 4025, 287, 790, 2512, 13, 383, 1271, 286, 9619, 287, 12076, 352, 87, 16, 198, 220, 220, 220, 3063, 14191, 318, 262, 976, 11, 304, 13, 70, 13, 938, 2512, 287, 1874, 7934, 12, 1120, 468, 36117, 12, 25836, 12, 1238, 2780, 198, 220, 220, 220, 9619, 11, 290, 287, 23399, 1874, 7934, 12, 1120, 12, 17, 468, 36117, 12, 35500, 12, 1238, 2780, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 30388, 2599, 1002, 6407, 11, 5860, 257, 2746, 662, 12, 35311, 319, 7412, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 357, 30388, 2599, 1002, 6407, 11, 11298, 257, 4371, 2318, 286, 262, 4321, 284, 336, 1082, 81, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 86, 22046, 17816, 10394, 62, 525, 62, 8094, 20520, 796, 5598, 1635, 362, 198, 220, 220, 220, 1441, 4808, 411, 3262, 10786, 4421, 62, 411, 3262, 1120, 62, 17, 3256, 14835, 43163, 11, 685, 18, 11, 604, 11, 718, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 11, 4371, 11, 12429, 46265, 22046, 8, 628, 198, 4299, 3094, 62, 411, 3262, 8784, 62, 17, 7, 5310, 13363, 28, 25101, 11, 4371, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 374, 37811, 42559, 1874, 7934, 12, 8784, 12, 17, 2746, 422, 198, 220, 220, 220, 4600, 1, 42559, 1874, 312, 723, 27862, 1, 1279, 5450, 1378, 283, 87, 452, 13, 2398, 14, 12315, 14, 1433, 2713, 13, 2998, 20964, 13, 12315, 29, 63, 62, 628, 220, 220, 220, 383, 2746, 318, 262, 976, 355, 1874, 7934, 2845, 329, 262, 49936, 1271, 286, 9619, 198, 220, 220, 220, 543, 318, 5403, 4025, 287, 790, 2512, 13, 383, 1271, 286, 9619, 287, 12076, 352, 87, 16, 198, 220, 220, 220, 3063, 14191, 318, 262, 976, 11, 304, 13, 70, 13, 938, 2512, 287, 1874, 7934, 12, 1120, 468, 36117, 12, 25836, 12, 1238, 2780, 198, 220, 220, 220, 9619, 11, 290, 287, 23399, 1874, 7934, 12, 1120, 12, 17, 468, 36117, 12, 35500, 12, 1238, 2780, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 357, 30388, 2599, 1002, 6407, 11, 5860, 257, 2746, 662, 12, 35311, 319, 7412, 7934, 198, 220, 220, 220, 220, 220, 220, 220, 4371, 357, 30388, 2599, 1002, 6407, 11, 11298, 257, 4371, 2318, 286, 262, 4321, 284, 336, 1082, 81, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 479, 86, 22046, 17816, 10394, 62, 525, 62, 8094, 20520, 796, 5598, 1635, 362, 198, 220, 220, 220, 1441, 4808, 411, 3262, 10786, 4421, 62, 411, 3262, 8784, 62, 17, 3256, 14835, 43163, 11, 685, 18, 11, 604, 11, 2242, 11, 513, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2181, 13363, 11, 4371, 11, 12429, 46265, 22046, 8, 198 ]
2.51841
1,711
import pandas from ..schema.schema_base import * from .datastore_base import DataStore from .odo_datastore import OdoDataStore from ..config import config from functools import lru_cache, partial from sqlalchemy import Table, MetaData, select from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.automap import automap_base from sqlalchemy import create_engine from sqlalchemy.ext.compiler import compiles from sqlalchemy.sql.expression import Select, and_ from sqlalchemy import sql import io import tempfile import time import os import datetime import ciso8601 import odo metadatas = {} ######################################################################## for col_type in [dt, delta, num, bool_]: col_type._storage_target_registry['sqlalchemy'] = col_type._storage_target_registry['pandas'].copy() @cat.register_check('sqlalchemy') @cat.register_transform('sqlalchemy') @id_.register_check('sqlalchemy') @id_.register_transform('sqlalchemy') ######################################################################## @cat.register_metadata('sqlalchemy') @id_.register_metadata('sqlalchemy') @dt.register_metadata('sqlalchemy') @delta.register_metadata('sqlalchemy') @big_dt.register_metadata('sqlalchemy') @num.register_metadata('sqlalchemy') @bool_.register_metadata('sqlalchemy') ######################################################################## @lru_cache() sa_type_2_col_type = { sql.sqltypes.Integer: num, sql.sqltypes.String: cat, sql.sqltypes.Date: dt, sql.sqltypes.DateTime: dt, sql.sqltypes.Interval: delta, sql.sqltypes.Numeric: num, sql.sqltypes.Boolean: bool_ } ########################################################################
[ 11748, 19798, 292, 198, 6738, 11485, 15952, 2611, 13, 15952, 2611, 62, 8692, 1330, 1635, 198, 6738, 764, 19608, 459, 382, 62, 8692, 1330, 6060, 22658, 198, 6738, 764, 24313, 62, 19608, 459, 382, 1330, 440, 4598, 6601, 22658, 198, 6738, 11485, 11250, 1330, 4566, 198, 198, 6738, 1257, 310, 10141, 1330, 300, 622, 62, 23870, 11, 13027, 198, 198, 6738, 44161, 282, 26599, 1330, 8655, 11, 30277, 6601, 11, 2922, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 6246, 10297, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 2306, 296, 499, 1330, 3557, 499, 62, 8692, 198, 198, 6738, 44161, 282, 26599, 1330, 2251, 62, 18392, 198, 6738, 44161, 282, 26599, 13, 2302, 13, 5589, 5329, 1330, 552, 2915, 198, 6738, 44161, 282, 26599, 13, 25410, 13, 38011, 1330, 9683, 11, 290, 62, 198, 6738, 44161, 282, 26599, 1330, 44161, 198, 198, 11748, 33245, 198, 11748, 20218, 7753, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 4818, 8079, 198, 11748, 269, 26786, 4521, 486, 198, 11748, 267, 4598, 198, 198, 4164, 324, 265, 292, 796, 23884, 198, 198, 29113, 29113, 7804, 198, 198, 1640, 951, 62, 4906, 287, 685, 28664, 11, 25979, 11, 997, 11, 20512, 62, 5974, 198, 220, 220, 220, 951, 62, 4906, 13557, 35350, 62, 16793, 62, 2301, 4592, 17816, 25410, 282, 26599, 20520, 796, 951, 62, 4906, 13557, 35350, 62, 16793, 62, 2301, 4592, 17816, 79, 392, 292, 6, 4083, 30073, 3419, 198, 198, 31, 9246, 13, 30238, 62, 9122, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 9246, 13, 30238, 62, 35636, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 312, 44807, 30238, 62, 9122, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 312, 44807, 30238, 62, 35636, 10786, 25410, 282, 26599, 11537, 198, 198, 29113, 29113, 7804, 198, 198, 31, 9246, 13, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 312, 44807, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 28664, 13, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 67, 12514, 13, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 14261, 62, 28664, 13, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 22510, 13, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 31, 30388, 44807, 30238, 62, 38993, 10786, 25410, 282, 26599, 11537, 198, 198, 29113, 29113, 7804, 198, 198, 31, 75, 622, 62, 23870, 3419, 198, 198, 11400, 62, 4906, 62, 17, 62, 4033, 62, 4906, 796, 1391, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 46541, 25, 997, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 10100, 25, 3797, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 10430, 25, 288, 83, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 10430, 7575, 25, 288, 83, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 9492, 2100, 25, 25979, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 45, 39223, 25, 997, 11, 198, 220, 220, 220, 44161, 13, 25410, 19199, 13, 46120, 13087, 25, 20512, 62, 198, 92, 198, 198, 29113, 29113, 7804, 628 ]
3.317919
519
""" Fast R-CNN: data = {'data': [num_images, c, h, w], 'rois': [num_rois, 5]} label = {'label': [num_rois], 'bbox_target': [num_rois, 4 * num_classes], 'bbox_weight': [num_rois, 4 * num_classes]} roidb extended format [image_index] ['image', 'height', 'width', 'flipped', 'boxes', 'gt_classes', 'gt_overlaps', 'max_classes', 'max_overlaps', 'bbox_targets'] """ import numpy as np import numpy.random as npr from bbox.bbox_regression import expand_bbox_regression_targets from bbox.bbox_transform import bbox_overlaps, bbox_transform from utils.image import get_image, tensor_vstack def get_rcnn_testbatch(roidb, cfg): """ return a dict of testbatch :param roidb: ['image', 'flipped'] + ['boxes'] :return: data, label, im_info """ # assert len(roidb) == 1, 'Single batch only' imgs, roidb = get_image(roidb, cfg) im_array = imgs im_info = [np.array([roidb[i]['im_info']], dtype=np.float32) for i in range(len(roidb))] im_rois = [roidb[i]['boxes'] for i in range(len(roidb))] if cfg.network.ROIDispatch: data = [] for i in range(len(im_rois)): w = im_rois[i][:, 2] - im_rois[i][:, 0] + 1 h = im_rois[i][:, 3] - im_rois[i][:, 1] + 1 feat_id = np.clip(np.floor(2 + np.log2(np.sqrt(w * h) / 224)), 0, 3).astype(int) rois_0 = im_rois[i][np.where(feat_id == 0)] if len(rois_0) == 0: rois_0 = np.zeros((1, 4)) rois_1 = im_rois[i][np.where(feat_id == 1)] if len(rois_1) == 0: rois_1 = np.zeros((1, 4)) rois_2 = im_rois[i][np.where(feat_id == 2)] if len(rois_2) == 0: rois_2 = np.zeros((1, 4)) rois_3 = im_rois[i][np.where(feat_id == 3)] if len(rois_3) == 0: rois_3 = np.zeros((1, 4)) # stack batch index data.append({'data': im_array[i], 'rois_0': np.hstack((0 * np.ones((rois_0.shape[0], 1)), rois_0)), 'rois_1': np.hstack((0 * np.ones((rois_1.shape[0], 1)), rois_1)), 'rois_2': np.hstack((0 * np.ones((rois_2.shape[0], 1)), rois_2)), 'rois_3': np.hstack((0 * np.ones((rois_3.shape[0], 1)), rois_3))}) if cfg.TEST.LEARN_NMS: data[-1]['im_info'] = im_info[i] else: rois = im_rois rois_array = [np.hstack((0 * np.ones((rois[i].shape[0], 1)), rois[i])) for i in range(len(rois))] data = [] for i in range(len(roidb)): data.append({'data': im_array[i], 'rois': rois_array[i]}) if cfg.TEST.LEARN_NMS: data[-1]['im_info'] = im_info[i] label = {} return data, label, im_info def get_rcnn_batch(roidb, cfg): """ return a dict of multiple images :param roidb: a list of dict, whose length controls batch size ['images', 'flipped'] + ['gt_boxes', 'boxes', 'gt_overlap'] => ['bbox_targets'] :return: data, label """ num_images = len(roidb) imgs, roidb = get_image(roidb, cfg) im_array = tensor_vstack(imgs) assert cfg.TRAIN.BATCH_ROIS == -1 or cfg.TRAIN.BATCH_ROIS % cfg.TRAIN.BATCH_IMAGES == 0, \ 'BATCHIMAGES {} must divide BATCH_ROIS {}'.format(cfg.TRAIN.BATCH_IMAGES, cfg.TRAIN.BATCH_ROIS) if cfg.TRAIN.BATCH_ROIS == -1: rois_per_image = np.sum([iroidb['boxes'].shape[0] for iroidb in roidb]) fg_rois_per_image = rois_per_image else: rois_per_image = cfg.TRAIN.BATCH_ROIS / cfg.TRAIN.BATCH_IMAGES fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(int) if cfg.network.ROIDispatch: rois_array_0 = list() rois_array_1 = list() rois_array_2 = list() rois_array_3 = list() else: rois_array = list() gt_labels_array = list() labels_array = list() bbox_targets_array = list() bbox_weights_array = list() for im_i in range(num_images): roi_rec = roidb[im_i] # infer num_classes from gt_overlaps num_classes = roi_rec['gt_overlaps'].shape[1] # label = class RoI has max overlap with rois = roi_rec['boxes'] labels = roi_rec['max_classes'] overlaps = roi_rec['max_overlaps'] bbox_targets = roi_rec['bbox_targets'] gt_lables = roi_rec['is_gt'] if cfg.TRAIN.BATCH_ROIS == -1: im_rois, labels_t, bbox_targets, bbox_weights = \ sample_rois_v2(rois, num_classes, cfg, labels=labels, overlaps=overlaps, bbox_targets=bbox_targets, gt_boxes=None) assert np.abs(im_rois - rois).max() < 1e-3 assert np.abs(labels_t - labels).max() < 1e-3 else: im_rois, labels, bbox_targets, bbox_weights, gt_lables = \ sample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg, labels, overlaps, bbox_targets, gt_lables=gt_lables) # project im_rois # do not round roi if cfg.network.ROIDispatch: w = im_rois[:, 2] - im_rois[:, 0] + 1 h = im_rois[:, 3] - im_rois[:, 1] + 1 feat_id = np.clip(np.floor(2 + np.log2(np.sqrt(w * h) / 224)), 0, 3).astype(int) rois_0_idx = np.where(feat_id == 0)[0] rois_0 = im_rois[rois_0_idx] if len(rois_0) == 0: rois_0 = np.zeros((1, 4)) label_0 = -np.ones((1,)) gt_label_0 = -np.ones((1,)) bbox_targets_0 = np.zeros((1, bbox_targets.shape[1])) bbox_weights_0 = np.zeros((1, bbox_weights.shape[1])) else: label_0 = labels[rois_0_idx] gt_label_0 = gt_lables[rois_0_idx] bbox_targets_0 = bbox_targets[rois_0_idx] bbox_weights_0 = bbox_weights[rois_0_idx] rois_1_idx = np.where(feat_id == 1)[0] rois_1 = im_rois[rois_1_idx] if len(rois_1) == 0: rois_1 = np.zeros((1, 4)) label_1 = -np.ones((1,)) gt_label_1 = -np.ones((1,)) bbox_targets_1 = np.zeros((1, bbox_targets.shape[1])) bbox_weights_1 = np.zeros((1, bbox_weights.shape[1])) else: label_1 = labels[rois_1_idx] gt_label_1 = gt_lables[rois_1_idx] bbox_targets_1 = bbox_targets[rois_1_idx] bbox_weights_1 = bbox_weights[rois_1_idx] rois_2_idx = np.where(feat_id == 2) rois_2 = im_rois[rois_2_idx] if len(rois_2) == 0: rois_2 = np.zeros((1, 4)) label_2 = -np.ones((1,)) gt_label_2 = -np.ones((1,)) bbox_targets_2 = np.zeros((1, bbox_targets.shape[1])) bbox_weights_2 = np.zeros((1, bbox_weights.shape[1])) else: label_2 = labels[rois_2_idx] gt_label_2 = gt_lables[rois_2_idx] bbox_targets_2 = bbox_targets[rois_2_idx] bbox_weights_2 = bbox_weights[rois_2_idx] rois_3_idx = np.where(feat_id == 3) rois_3 = im_rois[rois_3_idx] if len(rois_3) == 0: rois_3 = np.zeros((1, 4)) label_3 = -np.ones((1,)) gt_label_3 = -np.ones((1,)) bbox_targets_3 = np.zeros((1, bbox_targets.shape[1])) bbox_weights_3 = np.zeros((1, bbox_weights.shape[1])) else: label_3 = labels[rois_3_idx] gt_label_3 = gt_lables[rois_3_idx] bbox_targets_3 = bbox_targets[rois_3_idx] bbox_weights_3 = bbox_weights[rois_3_idx] # stack batch index rois_array_0.append(np.hstack((im_i * np.ones((rois_0.shape[0], 1)), rois_0))) rois_array_1.append(np.hstack((im_i * np.ones((rois_1.shape[0], 1)), rois_1))) rois_array_2.append(np.hstack((im_i * np.ones((rois_2.shape[0], 1)), rois_2))) rois_array_3.append(np.hstack((im_i * np.ones((rois_3.shape[0], 1)), rois_3))) labels = np.concatenate([label_0, label_1, label_2, label_3], axis=0) gt_lables = np.concatenate([gt_label_0, gt_label_1, gt_label_2, gt_label_3], axis=0) bbox_targets = np.concatenate([bbox_targets_0, bbox_targets_1, bbox_targets_2, bbox_targets_3], axis=0) bbox_weights = np.concatenate([bbox_weights_0, bbox_weights_1, bbox_weights_2, bbox_weights_3], axis=0) else: rois = im_rois batch_index = im_i * np.ones((rois.shape[0], 1)) rois_array_this_image = np.hstack((batch_index, rois)) rois_array.append(rois_array_this_image) # add labels gt_labels_array.append(gt_lables) labels_array.append(labels) bbox_targets_array.append(bbox_targets) bbox_weights_array.append(bbox_weights) gt_labels_array = np.array(gt_labels_array) nongt_index_array = np.where(gt_labels_array == 0)[1] labels_array = np.array(labels_array) bbox_targets_array = np.array(bbox_targets_array) bbox_weights_array = np.array(bbox_weights_array) if cfg.network.USE_NONGT_INDEX: label = {'label': labels_array, 'nongt_index': nongt_index_array, 'bbox_target': bbox_targets_array, 'bbox_weight': bbox_weights_array} else: label = {'label': labels_array, 'bbox_target': bbox_targets_array, 'bbox_weight': bbox_weights_array} if cfg.network.ROIDispatch: rois_array_0 = np.array(rois_array_0) rois_array_1 = np.array(rois_array_1) rois_array_2 = np.array(rois_array_2) rois_array_3 = np.array(rois_array_3) # rois_concate = np.concatenate((rois_array_0, rois_array_1, rois_array_2, rois_array_3), axis=1) # gt_rois_t = rois_concate[:, gt_labels_array[0,:] > 0] data = {'data': im_array, 'rois_0': rois_array_0, 'rois_1': rois_array_1, 'rois_2': rois_array_2, 'rois_3': rois_array_3} else: rois_array = np.array(rois_array) data = {'data': im_array, 'rois': rois_array} if cfg.TRAIN.LEARN_NMS: # im info im_info = np.array([roidb[0]['im_info']], dtype=np.float32) # gt_boxes if roidb[0]['gt_classes'].size > 0: gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] else: gt_boxes = np.empty((0, 5), dtype=np.float32) data['im_info'] = im_info data['gt_boxes'] = gt_boxes return data, label def sample_rois_v2(rois, num_classes, cfg, labels=None, overlaps=None, bbox_targets=None, gt_boxes=None): """ generate random sample of ROIs comprising foreground and background examples :param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index :param fg_rois_per_image: foreground roi number :param rois_per_image: total roi number :param num_classes: number of classes :param labels: maybe precomputed :param overlaps: maybe precomputed (max_overlaps) :param bbox_targets: maybe precomputed :param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls) :return: (labels, rois, bbox_targets, bbox_weights) """ if labels is None: overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float)) gt_assignment = overlaps.argmax(axis=1) overlaps = overlaps.max(axis=1) labels = gt_boxes[gt_assignment, 4] # set labels of bg_rois to be 0 bg_ind = np.where(overlaps < cfg.TRAIN.BG_THRESH_HI)[0] labels[bg_ind] = 0 # load or compute bbox_target if bbox_targets is not None: bbox_target_data = bbox_targets else: targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment, :4]) if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED: targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS)) / np.array(cfg.TRAIN.BBOX_STDS)) bbox_target_data = np.hstack((labels[:, np.newaxis], targets)) bbox_targets, bbox_weights = \ expand_bbox_regression_targets(bbox_target_data, num_classes, cfg) return rois, labels, bbox_targets, bbox_weights def sample_rois(rois, fg_rois_per_image, rois_per_image, num_classes, cfg, labels=None, overlaps=None, bbox_targets=None, gt_boxes=None, gt_lables=None): """ generate random sample of ROIs comprising foreground and background examples :param rois: all_rois [n, 4]; e2e: [n, 5] with batch_index :param fg_rois_per_image: foreground roi number :param rois_per_image: total roi number :param num_classes: number of classes :param labels: maybe precomputed :param overlaps: maybe precomputed (max_overlaps) :param bbox_targets: maybe precomputed :param gt_boxes: optional for e2e [n, 5] (x1, y1, x2, y2, cls) :return: (labels, rois, bbox_targets, bbox_weights) """ if labels is None: overlaps = bbox_overlaps(rois[:, 1:].astype(np.float), gt_boxes[:, :4].astype(np.float)) gt_assignment = overlaps.argmax(axis=1) overlaps = overlaps.max(axis=1) labels = gt_boxes[gt_assignment, 4] # foreground RoI with FG_THRESH overlap fg_indexes = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # guard against the case when an image has fewer than fg_rois_per_image foreground RoIs fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_indexes.size) # Sample foreground regions without replacement if len(fg_indexes) > fg_rois_per_this_image: fg_indexes = npr.choice(fg_indexes, size=fg_rois_per_this_image, replace=False) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_indexes = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # Compute number of background RoIs to take from this image (guarding against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_indexes.size) # Sample foreground regions without replacement if len(bg_indexes) > bg_rois_per_this_image: bg_indexes = npr.choice(bg_indexes, size=bg_rois_per_this_image, replace=False) # indexes selected keep_indexes = np.append(fg_indexes, bg_indexes) # pad more to ensure a fixed minibatch size while keep_indexes.shape[0] < rois_per_image: gap = np.minimum(len(rois), rois_per_image - keep_indexes.shape[0]) gap_indexes = npr.choice(range(len(rois)), size=gap, replace=False) keep_indexes = np.append(keep_indexes, gap_indexes) # select gt_labels gt_lables = gt_lables[keep_indexes] # select labels labels = labels[keep_indexes] # set labels of bg_rois to be 0 bg_ind = np.where(overlaps[keep_indexes] < cfg.TRAIN.BG_THRESH_HI)[0] labels[bg_ind] = 0 rois = rois[keep_indexes] # load or compute bbox_target if bbox_targets is not None: bbox_target_data = bbox_targets[keep_indexes, :] else: targets = bbox_transform(rois[:, 1:], gt_boxes[gt_assignment[keep_indexes], :4]) if cfg.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED: targets = ((targets - np.array(cfg.TRAIN.BBOX_MEANS)) / np.array(cfg.TRAIN.BBOX_STDS)) bbox_target_data = np.hstack((labels[:, np.newaxis], targets)) bbox_targets, bbox_weights = \ expand_bbox_regression_targets(bbox_target_data, num_classes, cfg) return rois, labels, bbox_targets, bbox_weights, gt_lables
[ 37811, 198, 22968, 371, 12, 18474, 25, 198, 7890, 796, 198, 220, 220, 220, 1391, 6, 7890, 10354, 685, 22510, 62, 17566, 11, 269, 11, 289, 11, 266, 4357, 198, 220, 220, 220, 705, 305, 271, 10354, 685, 22510, 62, 305, 271, 11, 642, 48999, 198, 18242, 796, 198, 220, 220, 220, 1391, 6, 18242, 10354, 685, 22510, 62, 305, 271, 4357, 198, 220, 220, 220, 705, 65, 3524, 62, 16793, 10354, 685, 22510, 62, 305, 271, 11, 604, 1635, 997, 62, 37724, 4357, 198, 220, 220, 220, 705, 65, 3524, 62, 6551, 10354, 685, 22510, 62, 305, 271, 11, 604, 1635, 997, 62, 37724, 48999, 198, 3882, 65, 7083, 5794, 685, 9060, 62, 9630, 60, 198, 220, 220, 220, 37250, 9060, 3256, 705, 17015, 3256, 705, 10394, 3256, 705, 2704, 3949, 3256, 198, 220, 220, 220, 220, 705, 29305, 3256, 705, 13655, 62, 37724, 3256, 705, 13655, 62, 2502, 75, 1686, 3256, 705, 9806, 62, 37724, 3256, 705, 9806, 62, 2502, 75, 1686, 3256, 705, 65, 3524, 62, 83, 853, 1039, 20520, 198, 37811, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 299, 32152, 13, 25120, 355, 299, 1050, 198, 6738, 275, 3524, 13, 65, 3524, 62, 2301, 2234, 1330, 4292, 62, 65, 3524, 62, 2301, 2234, 62, 83, 853, 1039, 198, 6738, 275, 3524, 13, 65, 3524, 62, 35636, 1330, 275, 3524, 62, 2502, 75, 1686, 11, 275, 3524, 62, 35636, 198, 6738, 3384, 4487, 13, 9060, 1330, 651, 62, 9060, 11, 11192, 273, 62, 85, 25558, 628, 198, 4299, 651, 62, 6015, 20471, 62, 9288, 43501, 7, 3882, 65, 11, 30218, 70, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 257, 8633, 286, 1332, 43501, 198, 220, 220, 220, 1058, 17143, 686, 312, 65, 25, 37250, 9060, 3256, 705, 2704, 3949, 20520, 1343, 37250, 29305, 20520, 198, 220, 220, 220, 1058, 7783, 25, 1366, 11, 6167, 11, 545, 62, 10951, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6818, 18896, 7, 3882, 65, 8, 6624, 352, 11, 705, 28008, 15458, 691, 6, 198, 220, 220, 220, 545, 14542, 11, 686, 312, 65, 796, 651, 62, 9060, 7, 3882, 65, 11, 30218, 70, 8, 198, 220, 220, 220, 545, 62, 18747, 796, 545, 14542, 198, 220, 220, 220, 545, 62, 10951, 796, 685, 37659, 13, 18747, 26933, 3882, 65, 58, 72, 7131, 6, 320, 62, 10951, 20520, 4357, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 329, 1312, 287, 2837, 7, 11925, 7, 3882, 65, 4008, 60, 628, 220, 220, 220, 545, 62, 305, 271, 796, 685, 3882, 65, 58, 72, 7131, 6, 29305, 20520, 329, 1312, 287, 2837, 7, 11925, 7, 3882, 65, 4008, 60, 628, 220, 220, 220, 611, 30218, 70, 13, 27349, 13, 13252, 2389, 8802, 963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 320, 62, 305, 271, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 545, 62, 305, 271, 58, 72, 7131, 45299, 362, 60, 532, 545, 62, 305, 271, 58, 72, 7131, 45299, 657, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 545, 62, 305, 271, 58, 72, 7131, 45299, 513, 60, 532, 545, 62, 305, 271, 58, 72, 7131, 45299, 352, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2218, 62, 312, 796, 45941, 13, 15036, 7, 37659, 13, 28300, 7, 17, 1343, 45941, 13, 6404, 17, 7, 37659, 13, 31166, 17034, 7, 86, 1635, 289, 8, 1220, 26063, 36911, 657, 11, 513, 737, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 15, 796, 545, 62, 305, 271, 58, 72, 7131, 37659, 13, 3003, 7, 27594, 62, 312, 6624, 657, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 15, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 15, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 16, 796, 545, 62, 305, 271, 58, 72, 7131, 37659, 13, 3003, 7, 27594, 62, 312, 6624, 352, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 16, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 16, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 17, 796, 545, 62, 305, 271, 58, 72, 7131, 37659, 13, 3003, 7, 27594, 62, 312, 6624, 362, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 17, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 17, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18, 796, 545, 62, 305, 271, 58, 72, 7131, 37659, 13, 3003, 7, 27594, 62, 312, 6624, 513, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 18, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8931, 15458, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 15090, 6, 7890, 10354, 545, 62, 18747, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 15, 10354, 45941, 13, 71, 25558, 19510, 15, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 15, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 15, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 16, 10354, 45941, 13, 71, 25558, 19510, 15, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 16, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 16, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 17, 10354, 45941, 13, 71, 25558, 19510, 15, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 17, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 17, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 18, 10354, 45941, 13, 71, 25558, 19510, 15, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 18, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 18, 4008, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 6465, 13, 2538, 1503, 45, 62, 45, 5653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 12, 16, 7131, 6, 320, 62, 10951, 20520, 796, 545, 62, 10951, 58, 72, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 796, 545, 62, 305, 271, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 796, 685, 37659, 13, 71, 25558, 19510, 15, 1635, 45941, 13, 1952, 19510, 305, 271, 58, 72, 4083, 43358, 58, 15, 4357, 352, 36911, 686, 271, 58, 72, 60, 4008, 329, 1312, 287, 2837, 7, 11925, 7, 305, 271, 4008, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 3882, 65, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 15090, 6, 7890, 10354, 545, 62, 18747, 58, 72, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 10354, 686, 271, 62, 18747, 58, 72, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 6465, 13, 2538, 1503, 45, 62, 45, 5653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 58, 12, 16, 7131, 6, 320, 62, 10951, 20520, 796, 545, 62, 10951, 58, 72, 60, 628, 220, 220, 220, 6167, 796, 23884, 628, 220, 220, 220, 1441, 1366, 11, 6167, 11, 545, 62, 10951, 628, 198, 4299, 651, 62, 6015, 20471, 62, 43501, 7, 3882, 65, 11, 30218, 70, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 257, 8633, 286, 3294, 4263, 198, 220, 220, 220, 1058, 17143, 686, 312, 65, 25, 257, 1351, 286, 8633, 11, 3025, 4129, 6973, 15458, 2546, 198, 220, 220, 220, 37250, 17566, 3256, 705, 2704, 3949, 20520, 1343, 37250, 13655, 62, 29305, 3256, 705, 29305, 3256, 705, 13655, 62, 2502, 37796, 20520, 5218, 37250, 65, 3524, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 1058, 7783, 25, 1366, 11, 6167, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 997, 62, 17566, 796, 18896, 7, 3882, 65, 8, 198, 220, 220, 220, 545, 14542, 11, 686, 312, 65, 796, 651, 62, 9060, 7, 3882, 65, 11, 30218, 70, 8, 198, 220, 220, 220, 545, 62, 18747, 796, 11192, 273, 62, 85, 25558, 7, 9600, 82, 8, 628, 220, 220, 220, 6818, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 6624, 532, 16, 393, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 4064, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 3955, 25552, 6624, 657, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33, 11417, 3955, 25552, 23884, 1276, 14083, 347, 11417, 62, 13252, 1797, 23884, 4458, 18982, 7, 37581, 13, 51, 3861, 1268, 13, 33, 11417, 62, 3955, 25552, 11, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 8, 628, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 525, 62, 9060, 796, 45941, 13, 16345, 26933, 72, 3882, 65, 17816, 29305, 6, 4083, 43358, 58, 15, 60, 329, 1312, 3882, 65, 287, 686, 312, 65, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 796, 686, 271, 62, 525, 62, 9060, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 525, 62, 9060, 796, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 1220, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 3955, 25552, 198, 220, 220, 220, 220, 220, 220, 220, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 796, 45941, 13, 744, 7, 37581, 13, 51, 3861, 1268, 13, 30386, 62, 10913, 44710, 1635, 686, 271, 62, 525, 62, 9060, 737, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 611, 30218, 70, 13, 27349, 13, 13252, 2389, 8802, 963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 15, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 16, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 17, 796, 1351, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 18, 796, 1351, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 796, 1351, 3419, 628, 220, 220, 220, 308, 83, 62, 23912, 1424, 62, 18747, 796, 1351, 3419, 198, 220, 220, 220, 14722, 62, 18747, 796, 1351, 3419, 198, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 18747, 796, 1351, 3419, 198, 220, 220, 220, 275, 3524, 62, 43775, 62, 18747, 796, 1351, 3419, 628, 220, 220, 220, 329, 545, 62, 72, 287, 2837, 7, 22510, 62, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 686, 72, 62, 8344, 796, 686, 312, 65, 58, 320, 62, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 13249, 997, 62, 37724, 422, 308, 83, 62, 2502, 75, 1686, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 37724, 796, 686, 72, 62, 8344, 17816, 13655, 62, 2502, 75, 1686, 6, 4083, 43358, 58, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6167, 796, 1398, 5564, 40, 468, 3509, 21721, 351, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 796, 686, 72, 62, 8344, 17816, 29305, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 686, 72, 62, 8344, 17816, 9806, 62, 37724, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 12893, 1686, 796, 686, 72, 62, 8344, 17816, 9806, 62, 2502, 75, 1686, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 796, 686, 72, 62, 8344, 17816, 65, 3524, 62, 83, 853, 1039, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 75, 2977, 796, 686, 72, 62, 8344, 17816, 271, 62, 13655, 20520, 628, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 11417, 62, 13252, 1797, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 62, 305, 271, 11, 14722, 62, 83, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 305, 271, 62, 85, 17, 7, 305, 271, 11, 997, 62, 37724, 11, 30218, 70, 11, 14722, 28, 23912, 1424, 11, 12893, 1686, 28, 2502, 75, 1686, 11, 275, 3524, 62, 83, 853, 1039, 28, 65, 3524, 62, 83, 853, 1039, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29305, 28, 14202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 45941, 13, 8937, 7, 320, 62, 305, 271, 532, 686, 271, 737, 9806, 3419, 1279, 352, 68, 12, 18, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 45941, 13, 8937, 7, 23912, 1424, 62, 83, 532, 14722, 737, 9806, 3419, 1279, 352, 68, 12, 18, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 62, 305, 271, 11, 14722, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 11, 308, 83, 62, 75, 2977, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 305, 271, 7, 305, 271, 11, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 11, 686, 271, 62, 525, 62, 9060, 11, 997, 62, 37724, 11, 30218, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 11, 12893, 1686, 11, 275, 3524, 62, 83, 853, 1039, 11, 308, 83, 62, 75, 2977, 28, 13655, 62, 75, 2977, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1628, 545, 62, 305, 271, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 407, 2835, 686, 72, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 27349, 13, 13252, 2389, 8802, 963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 796, 545, 62, 305, 271, 58, 45299, 362, 60, 532, 545, 62, 305, 271, 58, 45299, 657, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 796, 545, 62, 305, 271, 58, 45299, 513, 60, 532, 545, 62, 305, 271, 58, 45299, 352, 60, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2218, 62, 312, 796, 45941, 13, 15036, 7, 37659, 13, 28300, 7, 17, 1343, 45941, 13, 6404, 17, 7, 37659, 13, 31166, 17034, 7, 86, 1635, 289, 8, 1220, 26063, 36911, 657, 11, 513, 737, 459, 2981, 7, 600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 15, 62, 312, 87, 796, 45941, 13, 3003, 7, 27594, 62, 312, 6624, 657, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 15, 796, 545, 62, 305, 271, 58, 305, 271, 62, 15, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 15, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 15, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 15, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 15, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 15, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 83, 853, 1039, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 15, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 43775, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 15, 796, 14722, 58, 305, 271, 62, 15, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 15, 796, 308, 83, 62, 75, 2977, 58, 305, 271, 62, 15, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 15, 796, 275, 3524, 62, 83, 853, 1039, 58, 305, 271, 62, 15, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 15, 796, 275, 3524, 62, 43775, 58, 305, 271, 62, 15, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 16, 62, 312, 87, 796, 45941, 13, 3003, 7, 27594, 62, 312, 6624, 352, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 16, 796, 545, 62, 305, 271, 58, 305, 271, 62, 16, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 16, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 16, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 16, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 16, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 16, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 83, 853, 1039, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 16, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 43775, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 16, 796, 14722, 58, 305, 271, 62, 16, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 16, 796, 308, 83, 62, 75, 2977, 58, 305, 271, 62, 16, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 16, 796, 275, 3524, 62, 83, 853, 1039, 58, 305, 271, 62, 16, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 16, 796, 275, 3524, 62, 43775, 58, 305, 271, 62, 16, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 17, 62, 312, 87, 796, 45941, 13, 3003, 7, 27594, 62, 312, 6624, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 17, 796, 545, 62, 305, 271, 58, 305, 271, 62, 17, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 17, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 17, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 17, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 17, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 17, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 83, 853, 1039, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 17, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 43775, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 17, 796, 14722, 58, 305, 271, 62, 17, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 17, 796, 308, 83, 62, 75, 2977, 58, 305, 271, 62, 17, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 17, 796, 275, 3524, 62, 83, 853, 1039, 58, 305, 271, 62, 17, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 17, 796, 275, 3524, 62, 43775, 58, 305, 271, 62, 17, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18, 62, 312, 87, 796, 45941, 13, 3003, 7, 27594, 62, 312, 6624, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18, 796, 545, 62, 305, 271, 58, 305, 271, 62, 18, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 305, 271, 62, 18, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18, 796, 45941, 13, 9107, 418, 19510, 16, 11, 604, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 18, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 18, 796, 532, 37659, 13, 1952, 19510, 16, 11, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 18, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 83, 853, 1039, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 18, 796, 45941, 13, 9107, 418, 19510, 16, 11, 275, 3524, 62, 43775, 13, 43358, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 18, 796, 14722, 58, 305, 271, 62, 18, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 18242, 62, 18, 796, 308, 83, 62, 75, 2977, 58, 305, 271, 62, 18, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 18, 796, 275, 3524, 62, 83, 853, 1039, 58, 305, 271, 62, 18, 62, 312, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 18, 796, 275, 3524, 62, 43775, 58, 305, 271, 62, 18, 62, 312, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8931, 15458, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 15, 13, 33295, 7, 37659, 13, 71, 25558, 19510, 320, 62, 72, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 15, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 15, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 16, 13, 33295, 7, 37659, 13, 71, 25558, 19510, 320, 62, 72, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 16, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 16, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 17, 13, 33295, 7, 37659, 13, 71, 25558, 19510, 320, 62, 72, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 17, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 18, 13, 33295, 7, 37659, 13, 71, 25558, 19510, 320, 62, 72, 1635, 45941, 13, 1952, 19510, 305, 271, 62, 18, 13, 43358, 58, 15, 4357, 352, 36911, 686, 271, 62, 18, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 18242, 62, 15, 11, 6167, 62, 16, 11, 6167, 62, 17, 11, 6167, 62, 18, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 75, 2977, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 13655, 62, 18242, 62, 15, 11, 308, 83, 62, 18242, 62, 16, 11, 308, 83, 62, 18242, 62, 17, 11, 308, 83, 62, 18242, 62, 18, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 65, 3524, 62, 83, 853, 1039, 62, 15, 11, 275, 3524, 62, 83, 853, 1039, 62, 16, 11, 275, 3524, 62, 83, 853, 1039, 62, 17, 11, 275, 3524, 62, 83, 853, 1039, 62, 18, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 65, 3524, 62, 43775, 62, 15, 11, 275, 3524, 62, 43775, 62, 16, 11, 275, 3524, 62, 43775, 62, 17, 11, 275, 3524, 62, 43775, 62, 18, 4357, 16488, 28, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 796, 545, 62, 305, 271, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15458, 62, 9630, 796, 545, 62, 72, 1635, 45941, 13, 1952, 19510, 305, 271, 13, 43358, 58, 15, 4357, 352, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 5661, 62, 9060, 796, 45941, 13, 71, 25558, 19510, 43501, 62, 9630, 11, 686, 271, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 13, 33295, 7, 305, 271, 62, 18747, 62, 5661, 62, 9060, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 751, 14722, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 23912, 1424, 62, 18747, 13, 33295, 7, 13655, 62, 75, 2977, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 62, 18747, 13, 33295, 7, 23912, 1424, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 18747, 13, 33295, 7, 65, 3524, 62, 83, 853, 1039, 8, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 43775, 62, 18747, 13, 33295, 7, 65, 3524, 62, 43775, 8, 628, 220, 220, 220, 308, 83, 62, 23912, 1424, 62, 18747, 796, 45941, 13, 18747, 7, 13655, 62, 23912, 1424, 62, 18747, 8, 198, 220, 220, 220, 299, 506, 83, 62, 9630, 62, 18747, 796, 45941, 13, 3003, 7, 13655, 62, 23912, 1424, 62, 18747, 6624, 657, 38381, 16, 60, 198, 220, 220, 220, 14722, 62, 18747, 796, 45941, 13, 18747, 7, 23912, 1424, 62, 18747, 8, 198, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 62, 18747, 796, 45941, 13, 18747, 7, 65, 3524, 62, 83, 853, 1039, 62, 18747, 8, 198, 220, 220, 220, 275, 3524, 62, 43775, 62, 18747, 796, 45941, 13, 18747, 7, 65, 3524, 62, 43775, 62, 18747, 8, 628, 220, 220, 220, 611, 30218, 70, 13, 27349, 13, 19108, 62, 45, 18494, 51, 62, 12115, 6369, 25, 628, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 1391, 6, 18242, 10354, 14722, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 77, 506, 83, 62, 9630, 10354, 299, 506, 83, 62, 9630, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 62, 16793, 10354, 275, 3524, 62, 83, 853, 1039, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 62, 6551, 10354, 275, 3524, 62, 43775, 62, 18747, 92, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 1391, 6, 18242, 10354, 14722, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 62, 16793, 10354, 275, 3524, 62, 83, 853, 1039, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 65, 3524, 62, 6551, 10354, 275, 3524, 62, 43775, 62, 18747, 92, 628, 220, 220, 220, 611, 30218, 70, 13, 27349, 13, 13252, 2389, 8802, 963, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 15, 796, 45941, 13, 18747, 7, 305, 271, 62, 18747, 62, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 16, 796, 45941, 13, 18747, 7, 305, 271, 62, 18747, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 17, 796, 45941, 13, 18747, 7, 305, 271, 62, 18747, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 62, 18, 796, 45941, 13, 18747, 7, 305, 271, 62, 18747, 62, 18, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 686, 271, 62, 1102, 66, 378, 796, 45941, 13, 1102, 9246, 268, 378, 19510, 305, 271, 62, 18747, 62, 15, 11, 686, 271, 62, 18747, 62, 16, 11, 686, 271, 62, 18747, 62, 17, 11, 686, 271, 62, 18747, 62, 18, 828, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 83, 62, 305, 271, 62, 83, 796, 686, 271, 62, 1102, 66, 378, 58, 45299, 308, 83, 62, 23912, 1424, 62, 18747, 58, 15, 11, 47715, 1875, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 7890, 10354, 545, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 15, 10354, 686, 271, 62, 18747, 62, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 16, 10354, 686, 271, 62, 18747, 62, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 17, 10354, 686, 271, 62, 18747, 62, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 62, 18, 10354, 686, 271, 62, 18747, 62, 18, 92, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 686, 271, 62, 18747, 796, 45941, 13, 18747, 7, 305, 271, 62, 18747, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 6, 7890, 10354, 545, 62, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 305, 271, 10354, 686, 271, 62, 18747, 92, 628, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 2538, 1503, 45, 62, 45, 5653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 545, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 545, 62, 10951, 796, 45941, 13, 18747, 26933, 3882, 65, 58, 15, 7131, 6, 320, 62, 10951, 20520, 4357, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 83, 62, 29305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 686, 312, 65, 58, 15, 7131, 6, 13655, 62, 37724, 6, 4083, 7857, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 521, 82, 796, 45941, 13, 3003, 7, 3882, 65, 58, 15, 7131, 6, 13655, 62, 37724, 20520, 14512, 657, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29305, 796, 45941, 13, 28920, 19510, 11925, 7, 13655, 62, 521, 82, 828, 642, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29305, 58, 45299, 657, 25, 19, 60, 796, 686, 312, 65, 58, 15, 7131, 6, 29305, 6, 7131, 13655, 62, 521, 82, 11, 1058, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29305, 58, 45299, 604, 60, 796, 686, 312, 65, 58, 15, 7131, 6, 13655, 62, 37724, 6, 7131, 13655, 62, 521, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 29305, 796, 45941, 13, 28920, 19510, 15, 11, 642, 828, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 320, 62, 10951, 20520, 796, 545, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 17816, 13655, 62, 29305, 20520, 796, 308, 83, 62, 29305, 628, 220, 220, 220, 1441, 1366, 11, 6167, 628, 198, 4299, 6291, 62, 305, 271, 62, 85, 17, 7, 305, 271, 11, 997, 62, 37724, 11, 30218, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 14202, 11, 12893, 1686, 28, 14202, 11, 275, 3524, 62, 83, 853, 1039, 28, 14202, 11, 308, 83, 62, 29305, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7716, 4738, 6291, 286, 15107, 3792, 27918, 36282, 290, 4469, 6096, 198, 220, 220, 220, 1058, 17143, 686, 271, 25, 477, 62, 305, 271, 685, 77, 11, 604, 11208, 304, 17, 68, 25, 685, 77, 11, 642, 60, 351, 15458, 62, 9630, 198, 220, 220, 220, 1058, 17143, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 25, 36282, 686, 72, 1271, 198, 220, 220, 220, 1058, 17143, 686, 271, 62, 525, 62, 9060, 25, 2472, 686, 72, 1271, 198, 220, 220, 220, 1058, 17143, 997, 62, 37724, 25, 1271, 286, 6097, 198, 220, 220, 220, 1058, 17143, 14722, 25, 3863, 662, 785, 17128, 198, 220, 220, 220, 1058, 17143, 12893, 1686, 25, 3863, 662, 785, 17128, 357, 9806, 62, 2502, 75, 1686, 8, 198, 220, 220, 220, 1058, 17143, 275, 3524, 62, 83, 853, 1039, 25, 3863, 662, 785, 17128, 198, 220, 220, 220, 1058, 17143, 308, 83, 62, 29305, 25, 11902, 329, 304, 17, 68, 685, 77, 11, 642, 60, 357, 87, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 11, 537, 82, 8, 198, 220, 220, 220, 1058, 7783, 25, 357, 23912, 1424, 11, 686, 271, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 14722, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12893, 1686, 796, 275, 3524, 62, 2502, 75, 1686, 7, 305, 271, 58, 45299, 352, 25, 4083, 459, 2981, 7, 37659, 13, 22468, 828, 308, 83, 62, 29305, 58, 45299, 1058, 19, 4083, 459, 2981, 7, 37659, 13, 22468, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 562, 16747, 796, 12893, 1686, 13, 853, 9806, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12893, 1686, 796, 12893, 1686, 13, 9806, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 308, 83, 62, 29305, 58, 13655, 62, 562, 16747, 11, 604, 60, 628, 220, 220, 220, 1303, 900, 14722, 286, 275, 70, 62, 305, 271, 284, 307, 657, 198, 220, 220, 220, 275, 70, 62, 521, 796, 45941, 13, 3003, 7, 2502, 75, 1686, 1279, 30218, 70, 13, 51, 3861, 1268, 13, 40469, 62, 4221, 19535, 39, 62, 25374, 38381, 15, 60, 198, 220, 220, 220, 14722, 58, 35904, 62, 521, 60, 796, 657, 628, 220, 220, 220, 1303, 3440, 393, 24061, 275, 3524, 62, 16793, 198, 220, 220, 220, 611, 275, 3524, 62, 83, 853, 1039, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 62, 7890, 796, 275, 3524, 62, 83, 853, 1039, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 275, 3524, 62, 35636, 7, 305, 271, 58, 45299, 352, 25, 4357, 308, 83, 62, 29305, 58, 13655, 62, 562, 16747, 11, 1058, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 39758, 62, 35510, 42126, 14887, 6234, 62, 46437, 9858, 30076, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 14808, 83, 853, 1039, 532, 45941, 13, 18747, 7, 37581, 13, 51, 3861, 1268, 13, 33, 39758, 62, 11682, 15037, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 45941, 13, 18747, 7, 37581, 13, 51, 3861, 1268, 13, 33, 39758, 62, 2257, 5258, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 62, 7890, 796, 45941, 13, 71, 25558, 19510, 23912, 1424, 58, 45299, 45941, 13, 3605, 22704, 4357, 6670, 4008, 628, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 65, 3524, 62, 2301, 2234, 62, 83, 853, 1039, 7, 65, 3524, 62, 16793, 62, 7890, 11, 997, 62, 37724, 11, 30218, 70, 8, 628, 220, 220, 220, 1441, 686, 271, 11, 14722, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 628, 198, 4299, 6291, 62, 305, 271, 7, 305, 271, 11, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 11, 686, 271, 62, 525, 62, 9060, 11, 997, 62, 37724, 11, 30218, 70, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 28, 14202, 11, 12893, 1686, 28, 14202, 11, 275, 3524, 62, 83, 853, 1039, 28, 14202, 11, 308, 83, 62, 29305, 28, 14202, 11, 308, 83, 62, 75, 2977, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7716, 4738, 6291, 286, 15107, 3792, 27918, 36282, 290, 4469, 6096, 198, 220, 220, 220, 1058, 17143, 686, 271, 25, 477, 62, 305, 271, 685, 77, 11, 604, 11208, 304, 17, 68, 25, 685, 77, 11, 642, 60, 351, 15458, 62, 9630, 198, 220, 220, 220, 1058, 17143, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 25, 36282, 686, 72, 1271, 198, 220, 220, 220, 1058, 17143, 686, 271, 62, 525, 62, 9060, 25, 2472, 686, 72, 1271, 198, 220, 220, 220, 1058, 17143, 997, 62, 37724, 25, 1271, 286, 6097, 198, 220, 220, 220, 1058, 17143, 14722, 25, 3863, 662, 785, 17128, 198, 220, 220, 220, 1058, 17143, 12893, 1686, 25, 3863, 662, 785, 17128, 357, 9806, 62, 2502, 75, 1686, 8, 198, 220, 220, 220, 1058, 17143, 275, 3524, 62, 83, 853, 1039, 25, 3863, 662, 785, 17128, 198, 220, 220, 220, 1058, 17143, 308, 83, 62, 29305, 25, 11902, 329, 304, 17, 68, 685, 77, 11, 642, 60, 357, 87, 16, 11, 331, 16, 11, 2124, 17, 11, 331, 17, 11, 537, 82, 8, 198, 220, 220, 220, 1058, 7783, 25, 357, 23912, 1424, 11, 686, 271, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 14722, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12893, 1686, 796, 275, 3524, 62, 2502, 75, 1686, 7, 305, 271, 58, 45299, 352, 25, 4083, 459, 2981, 7, 37659, 13, 22468, 828, 308, 83, 62, 29305, 58, 45299, 1058, 19, 4083, 459, 2981, 7, 37659, 13, 22468, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 308, 83, 62, 562, 16747, 796, 12893, 1686, 13, 853, 9806, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12893, 1686, 796, 12893, 1686, 13, 9806, 7, 22704, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 14722, 796, 308, 83, 62, 29305, 58, 13655, 62, 562, 16747, 11, 604, 60, 628, 220, 220, 220, 1303, 36282, 5564, 40, 351, 25503, 62, 4221, 19535, 39, 21721, 198, 220, 220, 220, 277, 70, 62, 9630, 274, 796, 45941, 13, 3003, 7, 2502, 75, 1686, 18189, 30218, 70, 13, 51, 3861, 1268, 13, 30386, 62, 4221, 19535, 39, 38381, 15, 60, 198, 220, 220, 220, 1303, 4860, 1028, 262, 1339, 618, 281, 2939, 468, 7380, 621, 277, 70, 62, 305, 271, 62, 525, 62, 9060, 36282, 5564, 3792, 198, 220, 220, 220, 277, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 796, 45941, 13, 39504, 7, 40616, 62, 305, 271, 62, 525, 62, 9060, 11, 277, 70, 62, 9630, 274, 13, 7857, 8, 198, 220, 220, 220, 1303, 27565, 36282, 7652, 1231, 9014, 198, 220, 220, 220, 611, 18896, 7, 40616, 62, 9630, 274, 8, 1875, 277, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 70, 62, 9630, 274, 796, 299, 1050, 13, 25541, 7, 40616, 62, 9630, 274, 11, 2546, 28, 40616, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 11, 6330, 28, 25101, 8, 628, 220, 220, 220, 1303, 9683, 4469, 5564, 3792, 355, 883, 1626, 685, 40469, 62, 4221, 19535, 39, 62, 21982, 11, 34839, 62, 4221, 19535, 39, 62, 25374, 8, 198, 220, 220, 220, 275, 70, 62, 9630, 274, 796, 45941, 13, 3003, 19510, 2502, 75, 1686, 1279, 30218, 70, 13, 51, 3861, 1268, 13, 40469, 62, 4221, 19535, 39, 62, 25374, 8, 1222, 357, 2502, 75, 1686, 18189, 30218, 70, 13, 51, 3861, 1268, 13, 40469, 62, 4221, 19535, 39, 62, 21982, 4008, 58, 15, 60, 198, 220, 220, 220, 1303, 3082, 1133, 1271, 286, 4469, 5564, 3792, 284, 1011, 422, 428, 2939, 357, 5162, 13493, 1028, 612, 852, 7380, 621, 10348, 8, 198, 220, 220, 220, 275, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 796, 686, 271, 62, 525, 62, 9060, 532, 277, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 198, 220, 220, 220, 275, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 796, 45941, 13, 39504, 7, 35904, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 11, 275, 70, 62, 9630, 274, 13, 7857, 8, 198, 220, 220, 220, 1303, 27565, 36282, 7652, 1231, 9014, 198, 220, 220, 220, 611, 18896, 7, 35904, 62, 9630, 274, 8, 1875, 275, 70, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 275, 70, 62, 9630, 274, 796, 299, 1050, 13, 25541, 7, 35904, 62, 9630, 274, 11, 2546, 28, 35904, 62, 305, 271, 62, 525, 62, 5661, 62, 9060, 11, 6330, 28, 25101, 8, 628, 220, 220, 220, 1303, 39199, 6163, 198, 220, 220, 220, 1394, 62, 9630, 274, 796, 45941, 13, 33295, 7, 40616, 62, 9630, 274, 11, 275, 70, 62, 9630, 274, 8, 628, 220, 220, 220, 1303, 14841, 517, 284, 4155, 257, 5969, 949, 571, 963, 2546, 198, 220, 220, 220, 981, 1394, 62, 9630, 274, 13, 43358, 58, 15, 60, 1279, 686, 271, 62, 525, 62, 9060, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7625, 796, 45941, 13, 39504, 7, 11925, 7, 305, 271, 828, 686, 271, 62, 525, 62, 9060, 532, 1394, 62, 9630, 274, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 7625, 62, 9630, 274, 796, 299, 1050, 13, 25541, 7, 9521, 7, 11925, 7, 305, 271, 36911, 2546, 28, 43554, 11, 6330, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 9630, 274, 796, 45941, 13, 33295, 7, 14894, 62, 9630, 274, 11, 7625, 62, 9630, 274, 8, 628, 220, 220, 220, 1303, 2922, 308, 83, 62, 23912, 1424, 198, 220, 220, 220, 308, 83, 62, 75, 2977, 796, 308, 83, 62, 75, 2977, 58, 14894, 62, 9630, 274, 60, 198, 220, 220, 220, 1303, 2922, 14722, 198, 220, 220, 220, 14722, 796, 14722, 58, 14894, 62, 9630, 274, 60, 198, 220, 220, 220, 1303, 900, 14722, 286, 275, 70, 62, 305, 271, 284, 307, 657, 198, 220, 220, 220, 275, 70, 62, 521, 796, 45941, 13, 3003, 7, 2502, 75, 1686, 58, 14894, 62, 9630, 274, 60, 1279, 30218, 70, 13, 51, 3861, 1268, 13, 40469, 62, 4221, 19535, 39, 62, 25374, 38381, 15, 60, 198, 220, 220, 220, 14722, 58, 35904, 62, 521, 60, 796, 657, 198, 220, 220, 220, 686, 271, 796, 686, 271, 58, 14894, 62, 9630, 274, 60, 628, 220, 220, 220, 1303, 3440, 393, 24061, 275, 3524, 62, 16793, 198, 220, 220, 220, 611, 275, 3524, 62, 83, 853, 1039, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 62, 7890, 796, 275, 3524, 62, 83, 853, 1039, 58, 14894, 62, 9630, 274, 11, 1058, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 275, 3524, 62, 35636, 7, 305, 271, 58, 45299, 352, 25, 4357, 308, 83, 62, 29305, 58, 13655, 62, 562, 16747, 58, 14894, 62, 9630, 274, 4357, 1058, 19, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 30218, 70, 13, 51, 3861, 1268, 13, 33, 39758, 62, 35510, 42126, 14887, 6234, 62, 46437, 9858, 30076, 1961, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6670, 796, 14808, 83, 853, 1039, 532, 45941, 13, 18747, 7, 37581, 13, 51, 3861, 1268, 13, 33, 39758, 62, 11682, 15037, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 45941, 13, 18747, 7, 37581, 13, 51, 3861, 1268, 13, 33, 39758, 62, 2257, 5258, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 62, 16793, 62, 7890, 796, 45941, 13, 71, 25558, 19510, 23912, 1424, 58, 45299, 45941, 13, 3605, 22704, 4357, 6670, 4008, 628, 220, 220, 220, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 796, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 4292, 62, 65, 3524, 62, 2301, 2234, 62, 83, 853, 1039, 7, 65, 3524, 62, 16793, 62, 7890, 11, 997, 62, 37724, 11, 30218, 70, 8, 628, 220, 220, 220, 1441, 686, 271, 11, 14722, 11, 275, 3524, 62, 83, 853, 1039, 11, 275, 3524, 62, 43775, 11, 308, 83, 62, 75, 2977, 198 ]
1.882739
8,528
#!/usr/bin/env python # encoding: utf-8 import os import sys from mock import MagicMock, patch from splunk_eventgen.__main__ import parse_args from splunk_eventgen.eventgen_core import EventGenerator FILE_DIR = os.path.dirname(os.path.abspath(__file__))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 6738, 15290, 1330, 6139, 44, 735, 11, 8529, 198, 198, 6738, 4328, 2954, 62, 15596, 5235, 13, 834, 12417, 834, 1330, 21136, 62, 22046, 198, 6738, 4328, 2954, 62, 15596, 5235, 13, 15596, 5235, 62, 7295, 1330, 8558, 8645, 1352, 198, 198, 25664, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 628, 628, 198 ]
2.836957
92
""" module to utils methods to file """ import os import shutil import logging from documentstore_migracao import config logger = logging.getLogger(__name__)
[ 37811, 8265, 284, 3384, 4487, 5050, 284, 2393, 37227, 198, 198, 11748, 28686, 198, 11748, 4423, 346, 198, 11748, 18931, 198, 198, 6738, 3188, 8095, 62, 76, 3692, 330, 5488, 1330, 4566, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 628, 628 ]
3.32
50
from sphinx.domains.changeset import versionlabels, VersionChange from sphinx.locale import _ # just to suppress warnings try: from sphinx.domains.changeset import versionlabel_classes except ImportError: # versionlabel_classes doesn't exist in old Sphinx versions. UPDATE_VERIONLABEL_CLASSES = False else: UPDATE_VERIONLABEL_CLASSES = True labels = ('versionadded', 'versionchanged', 'deprecated', 'versionextended')
[ 6738, 599, 20079, 87, 13, 3438, 1299, 13, 36653, 316, 1330, 2196, 23912, 1424, 11, 10628, 19400, 198, 6738, 599, 20079, 87, 13, 17946, 1000, 1330, 4808, 1303, 655, 284, 18175, 14601, 198, 198, 28311, 25, 198, 220, 220, 220, 422, 599, 20079, 87, 13, 3438, 1299, 13, 36653, 316, 1330, 2196, 18242, 62, 37724, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 1303, 2196, 18242, 62, 37724, 1595, 470, 2152, 287, 1468, 45368, 28413, 6300, 13, 198, 220, 220, 220, 35717, 62, 5959, 2849, 48780, 3698, 62, 31631, 1546, 796, 10352, 198, 17772, 25, 198, 220, 220, 220, 35717, 62, 5959, 2849, 48780, 3698, 62, 31631, 1546, 796, 6407, 628, 198, 23912, 1424, 796, 19203, 9641, 29373, 3256, 705, 9641, 40985, 3256, 705, 10378, 31023, 3256, 705, 9641, 2302, 1631, 11537, 628, 198 ]
3.251852
135
''' @author Tian Shi Please contact [email protected] ''' import json import os import random import gensim import numpy as np from tqdm import tqdm def run_word2vec(args): ''' Run word2vec. ''' cluster_dir = '../cluster_results' if not os.path.exists(cluster_dir): os.mkdir(cluster_dir) if not os.path.exists('../nats_results'): os.mkdir('../nats_results') fp = open(os.path.join(args.data_dir, args.file_train_w2v), 'r') sentences = [] for line in tqdm(fp): itm = json.loads(line) sentences.append(itm['text_uae'].split()) fp.close() random.shuffle(sentences) print('-'*50) print('Number of sentences: {}'.format(len(sentences))) print('Begin to train word2vec...') model = gensim.models.Word2Vec( sentences, size=args.emb_size, window=args.window, min_count=args.min_count, workers=args.workers) model.save(os.path.join(cluster_dir, 'w2v_embedding')) print('Taining Done.') print('-'*50) def convert_vectors(args): ''' convert vectors and vocab. ''' cluster_dir = '../cluster_results' file_vocab = 'vocab.txt' file_wordvec = 'vectors_w2v' model = gensim.models.Word2Vec.load( os.path.join(cluster_dir, 'w2v_embedding')) lexicon = {} for word in model.wv.vocab: if word.strip() == '': continue lexicon[word] = model.wv[word] vocab = [] for wd in lexicon: vocab.append(wd) vocab = sorted(vocab) vec = np.zeros([len(lexicon), args.emb_size]) for k, wd in enumerate(vocab): vec[k] = lexicon[wd] print('Vocabulary size: {}'.format(vec.shape[0])) np.save(os.path.join(cluster_dir, file_wordvec), vec) fout = open(os.path.join(cluster_dir, file_vocab), 'w') for k, itm in enumerate(vocab): itm = [itm, str(k)] fout.write(' '.join(itm) + '\n') fout.close()
[ 7061, 6, 198, 31, 9800, 20834, 16380, 198, 5492, 2800, 256, 44019, 31, 36540, 13, 15532, 198, 7061, 6, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 4738, 198, 198, 11748, 308, 641, 320, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 4299, 1057, 62, 4775, 17, 35138, 7, 22046, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 5660, 1573, 17, 35138, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 13946, 62, 15908, 796, 705, 40720, 565, 5819, 62, 43420, 6, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 565, 5819, 62, 15908, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 565, 5819, 62, 15908, 8, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 10786, 40720, 77, 1381, 62, 43420, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 10786, 40720, 77, 1381, 62, 43420, 11537, 628, 220, 220, 220, 277, 79, 796, 1280, 7, 418, 13, 6978, 13, 22179, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 7753, 62, 27432, 62, 86, 17, 85, 828, 705, 81, 11537, 198, 220, 220, 220, 13439, 796, 17635, 198, 220, 220, 220, 329, 1627, 287, 256, 80, 36020, 7, 46428, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 340, 76, 796, 33918, 13, 46030, 7, 1370, 8, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 13, 33295, 7, 270, 76, 17816, 5239, 62, 84, 3609, 6, 4083, 35312, 28955, 198, 220, 220, 220, 277, 79, 13, 19836, 3419, 198, 220, 220, 220, 4738, 13, 1477, 18137, 7, 34086, 3007, 8, 198, 220, 220, 220, 3601, 10786, 19355, 9, 1120, 8, 198, 220, 220, 220, 3601, 10786, 15057, 286, 13439, 25, 23884, 4458, 18982, 7, 11925, 7, 34086, 3007, 22305, 198, 220, 220, 220, 3601, 10786, 44140, 284, 4512, 1573, 17, 35138, 986, 11537, 198, 220, 220, 220, 2746, 796, 308, 641, 320, 13, 27530, 13, 26449, 17, 53, 721, 7, 198, 220, 220, 220, 220, 220, 220, 220, 13439, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2546, 28, 22046, 13, 24419, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4324, 28, 22046, 13, 17497, 11, 198, 220, 220, 220, 220, 220, 220, 220, 949, 62, 9127, 28, 22046, 13, 1084, 62, 9127, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3259, 28, 22046, 13, 22896, 8, 198, 220, 220, 220, 2746, 13, 21928, 7, 418, 13, 6978, 13, 22179, 7, 565, 5819, 62, 15908, 11, 705, 86, 17, 85, 62, 20521, 12083, 6, 4008, 198, 220, 220, 220, 3601, 10786, 51, 1397, 24429, 2637, 8, 198, 220, 220, 220, 3601, 10786, 19355, 9, 1120, 8, 628, 198, 4299, 10385, 62, 303, 5217, 7, 22046, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 10385, 30104, 290, 12776, 397, 13, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 13946, 62, 15908, 796, 705, 40720, 565, 5819, 62, 43420, 6, 198, 220, 220, 220, 2393, 62, 18893, 397, 796, 705, 18893, 397, 13, 14116, 6, 198, 220, 220, 220, 2393, 62, 4775, 35138, 796, 705, 303, 5217, 62, 86, 17, 85, 6, 628, 220, 220, 220, 2746, 796, 308, 641, 320, 13, 27530, 13, 26449, 17, 53, 721, 13, 2220, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 565, 5819, 62, 15908, 11, 705, 86, 17, 85, 62, 20521, 12083, 6, 4008, 628, 220, 220, 220, 31191, 4749, 796, 23884, 198, 220, 220, 220, 329, 1573, 287, 2746, 13, 86, 85, 13, 18893, 397, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1573, 13, 36311, 3419, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 31191, 4749, 58, 4775, 60, 796, 2746, 13, 86, 85, 58, 4775, 60, 198, 220, 220, 220, 12776, 397, 796, 17635, 198, 220, 220, 220, 329, 266, 67, 287, 31191, 4749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12776, 397, 13, 33295, 7, 16993, 8, 198, 220, 220, 220, 12776, 397, 796, 23243, 7, 18893, 397, 8, 628, 220, 220, 220, 43030, 796, 45941, 13, 9107, 418, 26933, 11925, 7, 2588, 4749, 828, 26498, 13, 24419, 62, 7857, 12962, 198, 220, 220, 220, 329, 479, 11, 266, 67, 287, 27056, 378, 7, 18893, 397, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 43030, 58, 74, 60, 796, 31191, 4749, 58, 16993, 60, 628, 220, 220, 220, 3601, 10786, 53, 420, 22528, 2546, 25, 23884, 4458, 18982, 7, 35138, 13, 43358, 58, 15, 60, 4008, 628, 220, 220, 220, 45941, 13, 21928, 7, 418, 13, 6978, 13, 22179, 7, 565, 5819, 62, 15908, 11, 2393, 62, 4775, 35138, 828, 43030, 8, 198, 220, 220, 220, 277, 448, 796, 1280, 7, 418, 13, 6978, 13, 22179, 7, 565, 5819, 62, 15908, 11, 2393, 62, 18893, 397, 828, 705, 86, 11537, 198, 220, 220, 220, 329, 479, 11, 340, 76, 287, 27056, 378, 7, 18893, 397, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 340, 76, 796, 685, 270, 76, 11, 965, 7, 74, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 277, 448, 13, 13564, 10786, 45302, 22179, 7, 270, 76, 8, 1343, 705, 59, 77, 11537, 198, 220, 220, 220, 277, 448, 13, 19836, 3419, 198 ]
2.13034
913
from GenerateFolders import generateFolders from GenerateFiles import generateFiles from AddictionHelperGenerator import addictionHelperGenerator import shutil from Constants import * generateFolders() generateFiles() addictionHelperGenerator() shutil.make_archive('tobacco_awareness', 'zip', rootdir)
[ 6738, 2980, 378, 37, 727, 364, 1330, 7716, 37, 727, 364, 198, 6738, 2980, 378, 25876, 1330, 7716, 25876, 198, 6738, 40187, 47429, 8645, 1352, 1330, 13230, 47429, 8645, 1352, 198, 11748, 4423, 346, 198, 6738, 4757, 1187, 1330, 1635, 198, 198, 8612, 378, 37, 727, 364, 3419, 198, 8612, 378, 25876, 3419, 198, 2860, 2867, 47429, 8645, 1352, 3419, 198, 198, 1477, 22602, 13, 15883, 62, 17474, 10786, 83, 672, 8679, 62, 47812, 3256, 705, 13344, 3256, 6808, 15908, 8 ]
3.740741
81
from final_code.fcts_data_formatting import day_to_month, day_to_quarter, import_datasets, time_interval, add_categories, \ HB_to_areas, extract_data, day_to_quarter, month_to_quarter import numpy as np import matplotlib.pyplot as plt data31, data62, operations, diag, covid = import_datasets(['31DayData', '62DayData', 'cancellations_by_board_november_2021', \ 'diagnostics_by_board_september_2021', 'covid_2022']) print(covid) data31 = time_interval(data31, ['2018Q1', '2020Q1']) data31 = HB_to_areas(data31) groupings = {'new_CT':['Breast', 'Cervical'], 'all_reg':['NCA','SCAN','WOSCAN']} data31 = add_categories(data31, groupings) print(data31.index.names) data31.info() d31 = extract_data(data31, ('all_reg', 'all_reg','new_CT'), ['HB', 'HBT','CancerType'], ['NumberOfEligibleReferrals31DayStandard']) covid = day_to_quarter(covid) print(covid) operations = time_interval(operations, ['201807', '202107']) operations = HB_to_areas(operations) print(operations.index.names) operations.info() op1, op2 = extract_data(operations, 'NCA', 'HBT', ['TotalOperations', 'TotalCancelled']) fig, ax = plt.subplots(1, 1, figsize=(8, 4)) ax.plot(op1[0,:],op1[1,:]) every_nth = 4 for n, label in enumerate(ax.xaxis.get_ticklabels()): if n % every_nth != 0: label.set_visible(False) plt.show()
[ 6738, 2457, 62, 8189, 13, 69, 310, 82, 62, 7890, 62, 18982, 889, 1330, 1110, 62, 1462, 62, 8424, 11, 1110, 62, 1462, 62, 24385, 11, 1330, 62, 19608, 292, 1039, 11, 640, 62, 3849, 2100, 11, 751, 62, 66, 26129, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25997, 62, 1462, 62, 533, 292, 11, 7925, 62, 7890, 11, 1110, 62, 1462, 62, 24385, 11, 1227, 62, 1462, 62, 24385, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 7890, 3132, 11, 1366, 5237, 11, 4560, 11, 2566, 363, 11, 39849, 312, 796, 1330, 62, 19608, 292, 1039, 7, 17816, 3132, 12393, 6601, 3256, 705, 5237, 12393, 6601, 3256, 705, 66, 590, 297, 602, 62, 1525, 62, 3526, 62, 77, 3239, 62, 1238, 2481, 3256, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 47356, 34558, 62, 1525, 62, 3526, 62, 325, 457, 1491, 62, 1238, 2481, 3256, 705, 66, 709, 312, 62, 1238, 1828, 6, 12962, 198, 4798, 7, 66, 709, 312, 8, 198, 7890, 3132, 796, 640, 62, 3849, 2100, 7, 7890, 3132, 11, 37250, 7908, 48, 16, 3256, 705, 42334, 48, 16, 6, 12962, 198, 7890, 3132, 796, 25997, 62, 1462, 62, 533, 292, 7, 7890, 3132, 8, 198, 198, 8094, 654, 796, 1391, 6, 3605, 62, 4177, 10354, 17816, 12679, 459, 3256, 705, 34, 712, 605, 6, 4357, 705, 439, 62, 2301, 10354, 17816, 7792, 32, 41707, 6173, 1565, 41707, 54, 2640, 44565, 20520, 92, 198, 7890, 3132, 796, 751, 62, 66, 26129, 7, 7890, 3132, 11, 1448, 654, 8, 198, 4798, 7, 7890, 3132, 13, 9630, 13, 14933, 8, 198, 7890, 3132, 13, 10951, 3419, 198, 198, 67, 3132, 796, 7925, 62, 7890, 7, 7890, 3132, 11, 19203, 439, 62, 2301, 3256, 705, 439, 62, 2301, 41707, 3605, 62, 4177, 33809, 37250, 32886, 3256, 705, 39, 19313, 41707, 34, 8250, 6030, 6, 4357, 37250, 15057, 5189, 36, 4604, 856, 8134, 8056, 874, 3132, 12393, 23615, 6, 12962, 198, 198, 66, 709, 312, 796, 1110, 62, 1462, 62, 24385, 7, 66, 709, 312, 8, 198, 4798, 7, 66, 709, 312, 8, 198, 198, 3575, 602, 796, 640, 62, 3849, 2100, 7, 3575, 602, 11, 37250, 1264, 36928, 3256, 705, 19004, 15982, 6, 12962, 198, 3575, 602, 796, 25997, 62, 1462, 62, 533, 292, 7, 3575, 602, 8, 198, 4798, 7, 3575, 602, 13, 9630, 13, 14933, 8, 198, 3575, 602, 13, 10951, 3419, 198, 198, 404, 16, 11, 1034, 17, 796, 7925, 62, 7890, 7, 3575, 602, 11, 705, 7792, 32, 3256, 705, 39, 19313, 3256, 37250, 14957, 18843, 602, 3256, 705, 14957, 34, 590, 3353, 6, 12962, 198, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 352, 11, 2336, 7857, 16193, 23, 11, 604, 4008, 198, 897, 13, 29487, 7, 404, 16, 58, 15, 11, 25, 4357, 404, 16, 58, 16, 11, 25, 12962, 198, 16833, 62, 77, 400, 796, 604, 198, 1640, 299, 11, 6167, 287, 27056, 378, 7, 897, 13, 87, 22704, 13, 1136, 62, 42298, 23912, 1424, 3419, 2599, 198, 220, 220, 220, 611, 299, 4064, 790, 62, 77, 400, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 13, 2617, 62, 23504, 7, 25101, 8, 198, 489, 83, 13, 12860, 3419 ]
2.222045
626
import sys
[ 11748, 25064, 198 ]
3.666667
3
from __future__ import absolute_import
[ 171, 119, 123, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198 ]
3.333333
12
""" GraphSense API GraphSense API # noqa: E501 The version of the OpenAPI document: 0.5.1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from graphsense.api_client import ApiClient, Endpoint as _Endpoint from graphsense.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from graphsense.model.address import Address from graphsense.model.address_tags import AddressTags from graphsense.model.address_txs import AddressTxs from graphsense.model.entity import Entity from graphsense.model.links import Links from graphsense.model.neighbors import Neighbors class AddressesApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """
[ 37811, 198, 220, 220, 220, 29681, 41166, 7824, 628, 220, 220, 220, 29681, 41166, 7824, 220, 1303, 645, 20402, 25, 412, 33548, 628, 220, 220, 220, 383, 2196, 286, 262, 4946, 17614, 3188, 25, 657, 13, 20, 13, 16, 198, 220, 220, 220, 2980, 515, 416, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 198, 37811, 628, 198, 11748, 302, 220, 1303, 645, 20402, 25, 376, 21844, 198, 11748, 25064, 220, 1303, 645, 20402, 25, 376, 21844, 198, 198, 6738, 28770, 1072, 13, 15042, 62, 16366, 1330, 5949, 72, 11792, 11, 5268, 4122, 355, 4808, 12915, 4122, 198, 6738, 28770, 1072, 13, 19849, 62, 26791, 1330, 357, 220, 1303, 645, 20402, 25, 376, 21844, 198, 220, 220, 220, 2198, 62, 40845, 62, 27160, 11, 198, 220, 220, 220, 2198, 62, 12102, 602, 11, 198, 220, 220, 220, 3128, 11, 198, 220, 220, 220, 4818, 8079, 11, 198, 220, 220, 220, 2393, 62, 4906, 11, 198, 220, 220, 220, 4844, 62, 4906, 11, 198, 220, 220, 220, 26571, 62, 392, 62, 1102, 1851, 62, 19199, 198, 8, 198, 6738, 28770, 1072, 13, 19849, 13, 21975, 1330, 17917, 198, 6738, 28770, 1072, 13, 19849, 13, 21975, 62, 31499, 1330, 17917, 36142, 198, 6738, 28770, 1072, 13, 19849, 13, 21975, 62, 17602, 82, 1330, 17917, 51, 34223, 198, 6738, 28770, 1072, 13, 19849, 13, 26858, 1330, 20885, 198, 6738, 28770, 1072, 13, 19849, 13, 28751, 1330, 21691, 198, 6738, 28770, 1072, 13, 19849, 13, 710, 394, 32289, 1330, 22505, 32289, 628, 198, 4871, 3060, 16746, 32, 14415, 7, 15252, 2599, 198, 220, 220, 220, 37227, 16580, 25, 770, 1398, 318, 8295, 7560, 416, 4946, 17614, 35986, 198, 220, 220, 220, 6524, 25, 3740, 1378, 9654, 15042, 12, 8612, 1352, 13, 13670, 628, 220, 220, 220, 2141, 407, 4370, 262, 1398, 14500, 13, 198, 220, 220, 220, 37227, 198 ]
3.016287
307
import argparse import collections import json import random import string import sys import types import bftool # Default argument capture for the main function def _get_arguments() -> argparse.Namespace: """Default function to prepare the arguments for the `Runner` during it's execution in a terminal Returns: - bftool.Arguments with all the configurations provided by the user """ argument_parser = argparse.ArgumentParser() argument_parser.add_argument("-mt", "--max-threads", help="Maximum number of threads per process", default=1, type=int) argument_parser.add_argument("-mp", "--max-processes", help="Maximum number of process to have active at the same time", default=1, type=int) argument_parser.add_argument("-w", "--wordlist", help="File wordlist to use" " based on \"{'argument_1': FILE_PATH, ...}\"", default="{}") argument_parser.add_argument("-b", "--bruteforce", help="Generate a virtual wordlist based on \ rules \"{'argument_1': {'elements': [element_1, ...], 'minlength': INT, 'maxlength': " "INT, 'string-join': BOOL}, ...}\"", default="{}") argument_parser.add_argument("-sf", "--success-function", help="Function to pass the success result to (default is custom 'print')", default="lambda output: print(f\"[+] {output}\\n\", end='')") argument_parser.add_argument("-cf", "--check-function", help="Function useful to check the output (default is 'lambda output: output')", default="lambda output: output") argument_parser.add_argument("-sp", "--script_path", help="Python script to import", default=None, type=str) argument_parser.add_argument("expression", help="expression that will result in a callable") return argument_parser.parse_args() if __name__ == "__main__": sys.argv[0] = "bftool" parsed_arguments = _get_arguments() function_ = import_function(parsed_arguments.expression, parsed_arguments.script_path) success_function = import_function(parsed_arguments.success_function, parsed_arguments.script_path) check_function = import_function(parsed_arguments.check_function, parsed_arguments.script_path) function_arguments = bftool.Arguments( function_=function_, files=json.loads(parsed_arguments.wordlist), bruteforce_rules=json.loads(parsed_arguments.bruteforce), ) bftool.Pool( function_, function_arguments=function_arguments, check_function=check_function, success_function=success_function, max_processes=parsed_arguments.max_processes, max_threads=parsed_arguments.max_threads ).run()
[ 11748, 1822, 29572, 198, 11748, 17268, 198, 11748, 33918, 198, 11748, 4738, 198, 11748, 4731, 198, 11748, 25064, 198, 11748, 3858, 198, 198, 11748, 275, 701, 970, 628, 198, 2, 15161, 4578, 8006, 329, 262, 1388, 2163, 198, 4299, 4808, 1136, 62, 853, 2886, 3419, 4613, 1822, 29572, 13, 36690, 10223, 25, 198, 220, 220, 220, 37227, 19463, 2163, 284, 8335, 262, 7159, 329, 262, 4600, 49493, 63, 1141, 340, 338, 9706, 287, 257, 12094, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 275, 701, 970, 13, 28100, 2886, 351, 477, 220, 262, 25412, 2810, 416, 262, 2836, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4578, 62, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 16762, 1600, 366, 438, 9806, 12, 16663, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 40541, 1271, 286, 14390, 583, 1429, 1600, 4277, 28, 16, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 3149, 1600, 366, 438, 9806, 12, 14681, 274, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 40541, 1271, 286, 1429, 284, 423, 4075, 379, 262, 976, 640, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 16, 11, 2099, 28, 600, 8, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 86, 1600, 366, 438, 4775, 4868, 1600, 1037, 2625, 8979, 1573, 4868, 284, 779, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1912, 319, 19990, 90, 6, 49140, 62, 16, 10354, 45811, 62, 34219, 11, 2644, 92, 7879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 90, 92, 4943, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 65, 1600, 366, 438, 1671, 315, 891, 8387, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8645, 378, 257, 7166, 1573, 4868, 1912, 319, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3173, 19990, 90, 6, 49140, 62, 16, 10354, 1391, 6, 68, 3639, 10354, 685, 30854, 62, 16, 11, 2644, 4357, 705, 1084, 13664, 10354, 17828, 11, 705, 9806, 13664, 10354, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12394, 11, 705, 8841, 12, 22179, 10354, 16494, 3535, 5512, 2644, 92, 7879, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 90, 92, 4943, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 28202, 1600, 366, 438, 13138, 12, 8818, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 22203, 284, 1208, 262, 1943, 1255, 284, 357, 12286, 318, 2183, 705, 4798, 11537, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 50033, 5072, 25, 3601, 7, 69, 7879, 58, 10, 60, 1391, 22915, 92, 6852, 77, 34607, 886, 28, 7061, 8, 4943, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 12993, 1600, 366, 438, 9122, 12, 8818, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 22203, 4465, 284, 2198, 262, 5072, 357, 12286, 318, 705, 50033, 5072, 25, 5072, 11537, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 2625, 50033, 5072, 25, 5072, 4943, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 12, 2777, 1600, 366, 438, 12048, 62, 6978, 1600, 1037, 2625, 37906, 4226, 284, 1330, 1600, 4277, 28, 14202, 11, 2099, 28, 2536, 8, 198, 220, 220, 220, 4578, 62, 48610, 13, 2860, 62, 49140, 7203, 38011, 1600, 1037, 2625, 38011, 326, 481, 1255, 287, 257, 869, 540, 4943, 198, 220, 220, 220, 1441, 4578, 62, 48610, 13, 29572, 62, 22046, 3419, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 853, 85, 58, 15, 60, 796, 366, 65, 701, 970, 1, 198, 220, 220, 220, 44267, 62, 853, 2886, 796, 4808, 1136, 62, 853, 2886, 3419, 198, 220, 220, 220, 2163, 62, 796, 1330, 62, 8818, 7, 79, 945, 276, 62, 853, 2886, 13, 38011, 11, 44267, 62, 853, 2886, 13, 12048, 62, 6978, 8, 198, 220, 220, 220, 1943, 62, 8818, 796, 1330, 62, 8818, 7, 79, 945, 276, 62, 853, 2886, 13, 13138, 62, 8818, 11, 44267, 62, 853, 2886, 13, 12048, 62, 6978, 8, 198, 220, 220, 220, 2198, 62, 8818, 796, 1330, 62, 8818, 7, 79, 945, 276, 62, 853, 2886, 13, 9122, 62, 8818, 11, 44267, 62, 853, 2886, 13, 12048, 62, 6978, 8, 198, 220, 220, 220, 2163, 62, 853, 2886, 796, 275, 701, 970, 13, 28100, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 28, 8818, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3696, 28, 17752, 13, 46030, 7, 79, 945, 276, 62, 853, 2886, 13, 4775, 4868, 828, 198, 220, 220, 220, 220, 220, 220, 220, 8938, 891, 8387, 62, 38785, 28, 17752, 13, 46030, 7, 79, 945, 276, 62, 853, 2886, 13, 1671, 315, 891, 8387, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 275, 701, 970, 13, 27201, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 853, 2886, 28, 8818, 62, 853, 2886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 8818, 28, 9122, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 62, 8818, 28, 13138, 62, 8818, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 14681, 274, 28, 79, 945, 276, 62, 853, 2886, 13, 9806, 62, 14681, 274, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 16663, 82, 28, 79, 945, 276, 62, 853, 2886, 13, 9806, 62, 16663, 82, 198, 220, 220, 220, 6739, 5143, 3419, 198 ]
2.287743
1,338
from conans import ConanFile, CMake
[ 6738, 369, 504, 1330, 31634, 8979, 11, 327, 12050, 628 ]
3.7
10
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging from pathlib import Path import sys import click import h5py import yaml import lynx import hoover import pymaster as nmt from scipy.optimize import minimize import emcee import healpy as hp import matplotlib.pyplot as plt from matplotlib.patches import Ellipse import pandas as pd import numpy as np from scipy import stats from lynx import Masking _logger = logging.getLogger(__name__) @click.command() @click.option('-d', '--data_path', 'data_path', required=True, type=click.Path(exists=True), help='path to data configuration') @click.option('-m', '--model_path', 'model_path', required=True, type=click.Path(exists=False), help='path to model configuration') @click.option('-p', '--mask_path', 'mask_path', required=True, type=click.Path(exists=False), help='path to masking configuration') @click.option('--quiet', 'log_level', flag_value=logging.WARNING, default=True) @click.option('-v', '--verbose', 'log_level', flag_value=logging.INFO) @click.option('-vv', '--very-verbose', 'log_level', flag_value=logging.DEBUG) @click.version_option(lynx.__version__) if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 18931, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 25064, 198, 198, 11748, 3904, 198, 198, 11748, 289, 20, 9078, 198, 11748, 331, 43695, 198, 198, 11748, 31432, 87, 198, 11748, 289, 2238, 332, 198, 11748, 279, 4948, 1603, 355, 299, 16762, 198, 198, 6738, 629, 541, 88, 13, 40085, 1096, 1330, 17775, 198, 11748, 795, 344, 68, 198, 11748, 12035, 9078, 355, 27673, 220, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 8071, 2052, 1330, 7122, 541, 325, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 629, 541, 88, 1330, 9756, 198, 198, 6738, 31432, 87, 1330, 18007, 278, 198, 198, 62, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 31, 12976, 13, 21812, 3419, 198, 31, 12976, 13, 18076, 10786, 12, 67, 3256, 705, 438, 7890, 62, 6978, 3256, 705, 7890, 62, 6978, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 17821, 828, 1037, 11639, 6978, 284, 1366, 8398, 11537, 198, 31, 12976, 13, 18076, 10786, 12, 76, 3256, 705, 438, 19849, 62, 6978, 3256, 705, 19849, 62, 6978, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 25101, 828, 1037, 11639, 6978, 284, 2746, 8398, 11537, 198, 31, 12976, 13, 18076, 10786, 12, 79, 3256, 705, 438, 27932, 62, 6978, 3256, 705, 27932, 62, 6978, 3256, 2672, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 12976, 13, 15235, 7, 1069, 1023, 28, 25101, 828, 1037, 11639, 6978, 284, 9335, 278, 8398, 11537, 198, 31, 12976, 13, 18076, 10786, 438, 39624, 3256, 705, 6404, 62, 5715, 3256, 6056, 62, 8367, 28, 6404, 2667, 13, 31502, 11, 4277, 28, 17821, 8, 198, 31, 12976, 13, 18076, 10786, 12, 85, 3256, 705, 438, 19011, 577, 3256, 705, 6404, 62, 5715, 3256, 6056, 62, 8367, 28, 6404, 2667, 13, 10778, 8, 198, 31, 12976, 13, 18076, 10786, 12, 25093, 3256, 705, 438, 548, 12, 19011, 577, 3256, 705, 6404, 62, 5715, 3256, 6056, 62, 8367, 28, 6404, 2667, 13, 30531, 8, 198, 31, 12976, 13, 9641, 62, 18076, 7, 6213, 87, 13, 834, 9641, 834, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
2.678337
457
""" Script for running management commands for the Asteroids Game / AI. Usage: python manage.py [--help] """ from ai.experiment import merge_experiments import click import settings class TransparentGroup(click.Group): """ A Click Group class that passes all provided arguments to its subcommands without processing them. """ @click.group(cls=TransparentGroup) @click.pass_context @manage.command(short_help='Merges experiments into a new experiment', context_settings=dict(ignore_unknown_options=True, allow_extra_args=True,)) @click.argument('parent_dirs', nargs=-1) @click.argument('output_dir') @click.pass_context def merge(ctx, parent_dirs, output_dir): """ Merges the best brains of the parent experment directories into a new directory, and initializes (but does not run) that experiment: \b The settings passed to this command will be used to initialize and perform the initial evaluation of the merged experiment. \b Arguments: parent_dirs - Directories of parent experiments to merge. output_dir - Directory to place the merged experiment into. """ # Remove all options from the directory arguments parent_dirs = [x for x in list(parent_dirs) if not x.startswith("--")] if output_dir.startswith("--"): output_dir = parent_dirs.pop() if len(parent_dirs) > 0 else "" # Configure settings, then actually merge the experiments settings.configure_settings() merge_experiments(parent_dirs, output_dir) @manage.command('settings', short_help='View configurable settings') @click.pass_context def view_settings(ctx): """ View the configurable settings for the other commands. """ click.echo(settings.cli_configure_settings.get_help(ctx)) if __name__ == "__main__": manage()
[ 37811, 198, 7391, 329, 2491, 4542, 9729, 329, 262, 38484, 10994, 3776, 1220, 9552, 13, 198, 198, 28350, 25, 21015, 6687, 13, 9078, 685, 438, 16794, 60, 198, 37811, 198, 198, 6738, 257, 72, 13, 23100, 3681, 1330, 20121, 62, 23100, 6800, 198, 11748, 3904, 198, 11748, 6460, 198, 198, 4871, 3602, 8000, 13247, 7, 12976, 13, 13247, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 6914, 4912, 1398, 326, 8318, 477, 2810, 198, 220, 220, 220, 7159, 284, 663, 850, 9503, 1746, 1231, 7587, 606, 13, 198, 220, 220, 220, 37227, 198, 198, 31, 12976, 13, 8094, 7, 565, 82, 28, 8291, 8000, 13247, 8, 198, 31, 12976, 13, 6603, 62, 22866, 198, 198, 31, 805, 496, 13, 21812, 7, 19509, 62, 16794, 11639, 13102, 3212, 10256, 656, 257, 649, 6306, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4732, 62, 33692, 28, 11600, 7, 46430, 62, 34680, 62, 25811, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 62, 26086, 62, 22046, 28, 17821, 11, 4008, 198, 31, 12976, 13, 49140, 10786, 8000, 62, 15908, 82, 3256, 299, 22046, 10779, 16, 8, 198, 31, 12976, 13, 49140, 10786, 22915, 62, 15908, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 20121, 7, 49464, 11, 2560, 62, 15908, 82, 11, 5072, 62, 15908, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4638, 3212, 262, 1266, 14290, 286, 262, 2560, 1121, 434, 29196, 198, 220, 220, 220, 656, 257, 649, 8619, 11, 290, 4238, 4340, 357, 4360, 857, 407, 1057, 8, 198, 220, 220, 220, 326, 6306, 25, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 383, 6460, 3804, 284, 428, 3141, 481, 307, 973, 284, 41216, 198, 220, 220, 220, 290, 1620, 262, 4238, 12660, 286, 262, 23791, 6306, 13, 628, 220, 220, 220, 3467, 65, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 2560, 62, 15908, 82, 532, 4128, 1749, 286, 2560, 10256, 284, 20121, 13, 198, 220, 220, 220, 220, 220, 5072, 62, 15908, 220, 532, 27387, 284, 1295, 262, 23791, 6306, 656, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 17220, 477, 3689, 422, 262, 8619, 7159, 198, 220, 220, 220, 2560, 62, 15908, 82, 796, 685, 87, 329, 2124, 287, 1351, 7, 8000, 62, 15908, 82, 8, 611, 407, 2124, 13, 9688, 2032, 342, 7203, 438, 4943, 60, 198, 220, 220, 220, 611, 5072, 62, 15908, 13, 9688, 2032, 342, 7203, 438, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 15908, 796, 2560, 62, 15908, 82, 13, 12924, 3419, 611, 18896, 7, 8000, 62, 15908, 82, 8, 1875, 657, 2073, 13538, 198, 220, 220, 220, 1303, 17056, 495, 6460, 11, 788, 1682, 20121, 262, 10256, 198, 220, 220, 220, 6460, 13, 11250, 495, 62, 33692, 3419, 198, 220, 220, 220, 20121, 62, 23100, 6800, 7, 8000, 62, 15908, 82, 11, 5072, 62, 15908, 8, 198, 198, 31, 805, 496, 13, 21812, 10786, 33692, 3256, 1790, 62, 16794, 11639, 7680, 4566, 11970, 6460, 11537, 198, 31, 12976, 13, 6603, 62, 22866, 198, 4299, 1570, 62, 33692, 7, 49464, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3582, 262, 4566, 11970, 6460, 329, 262, 584, 9729, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3904, 13, 30328, 7, 33692, 13, 44506, 62, 11250, 495, 62, 33692, 13, 1136, 62, 16794, 7, 49464, 4008, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6687, 3419, 198 ]
3.046589
601
from operator import or_ import sqlalchemy from fastapi import APIRouter, HTTPException, status from fastapi.param_functions import Depends from fastapi.responses import JSONResponse from fastapi import APIRouter import fastapi as _fastapi import sqlalchemy.orm as _orm from bigfastapi.db.database import get_db from bigfastapi.schemas import plan_schema, tutorial_schema from bigfastapi.models import plan_model, tutorial_model, user_models from uuid import uuid4 from bigfastapi import db, users from typing import List from sqlalchemy.exc import IntegrityError from sqlalchemy import func import datetime as _dt app = APIRouter(tags=["Tutorials"]) # SAVE TUTORIAL ENDPOINT @app.post('/tutorial', response_model=tutorial_schema.TutorialSingleRes) # GET TUTORIALS - Can be filtered by category, title or both @app.get('/tutorials', response_model=tutorial_schema.TutorialListRes) # GET TUTORIALS IN GROUPED OF CATEGORIES- Return result as groups of categories @app.get('/tutorials/group/categories') # GET A LIST OF ALL TUTORIAL CATEGORIES @app.get('/tutorials/categories') # SEARCH TUTORIAL BY MATCHING KEYWORDS @app.get('/tutorials/search/{keyword}', response_model=tutorial_schema.TutorialListRes) # UPDATE TUTORIAL DETAILS @app.put('/tutorials/{itemId}') @app.delete('/tutorials/{itemId}/user/{userId}') # --------------------------------------------------------------------------------------------------# # HELPER FUNCTIONS SECION # --------------------------------------------------------------------------------------------------# # SKIP and OFFSET # SAVE A NEW TUTORIA # PAGINATION LOGIC # RUN QUERY # BUID CATEGORY LIST # GENERIC STRUCTURED RESPONSE BUILDER
[ 6738, 10088, 1330, 393, 62, 198, 11748, 44161, 282, 26599, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 14626, 16922, 11, 3722, 198, 6738, 3049, 15042, 13, 17143, 62, 12543, 2733, 1330, 2129, 2412, 198, 6738, 3049, 15042, 13, 16733, 274, 1330, 19449, 31077, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 198, 11748, 3049, 15042, 355, 4808, 7217, 15042, 198, 11748, 44161, 282, 26599, 13, 579, 355, 4808, 579, 198, 6738, 1263, 7217, 15042, 13, 9945, 13, 48806, 1330, 651, 62, 9945, 198, 6738, 1263, 7217, 15042, 13, 1416, 4411, 292, 1330, 1410, 62, 15952, 2611, 11, 11808, 62, 15952, 2611, 198, 6738, 1263, 7217, 15042, 13, 27530, 1330, 1410, 62, 19849, 11, 11808, 62, 19849, 11, 2836, 62, 27530, 198, 6738, 334, 27112, 1330, 334, 27112, 19, 198, 6738, 1263, 7217, 15042, 1330, 20613, 11, 2985, 198, 6738, 19720, 1330, 7343, 198, 6738, 44161, 282, 26599, 13, 41194, 1330, 39348, 12331, 198, 6738, 44161, 282, 26599, 1330, 25439, 198, 11748, 4818, 8079, 355, 4808, 28664, 628, 198, 1324, 796, 3486, 4663, 39605, 7, 31499, 28, 14692, 51, 44917, 82, 8973, 8, 628, 198, 2, 14719, 6089, 309, 3843, 1581, 12576, 12964, 6322, 46, 12394, 198, 31, 1324, 13, 7353, 10786, 14, 83, 44917, 3256, 2882, 62, 19849, 28, 83, 44917, 62, 15952, 2611, 13, 51, 44917, 28008, 4965, 8, 628, 198, 2, 17151, 309, 3843, 1581, 12576, 50, 532, 1680, 307, 29083, 416, 6536, 11, 3670, 393, 1111, 198, 31, 1324, 13, 1136, 10786, 14, 83, 44917, 82, 3256, 2882, 62, 19849, 28, 83, 44917, 62, 15952, 2611, 13, 51, 44917, 8053, 4965, 8, 628, 198, 2, 17151, 309, 3843, 1581, 12576, 50, 3268, 44441, 1961, 3963, 327, 6158, 38, 1581, 11015, 12, 8229, 1255, 355, 2628, 286, 9376, 198, 31, 1324, 13, 1136, 10786, 14, 83, 44917, 82, 14, 8094, 14, 66, 26129, 11537, 628, 198, 2, 17151, 317, 39498, 3963, 11096, 309, 3843, 1581, 12576, 327, 6158, 38, 1581, 11015, 198, 31, 1324, 13, 1136, 10786, 14, 83, 44917, 82, 14, 66, 26129, 11537, 628, 198, 2, 7946, 31315, 309, 3843, 1581, 12576, 11050, 337, 11417, 2751, 35374, 45359, 5258, 198, 31, 1324, 13, 1136, 10786, 14, 83, 44917, 82, 14, 12947, 14, 90, 2539, 4775, 92, 3256, 2882, 62, 19849, 28, 83, 44917, 62, 15952, 2611, 13, 51, 44917, 8053, 4965, 8, 628, 198, 2, 35717, 309, 3843, 1581, 12576, 360, 20892, 45484, 198, 31, 1324, 13, 1996, 10786, 14, 83, 44917, 82, 14, 90, 9186, 7390, 92, 11537, 628, 198, 31, 1324, 13, 33678, 10786, 14, 83, 44917, 82, 14, 90, 9186, 7390, 92, 14, 7220, 14, 90, 7220, 7390, 92, 11537, 628, 198, 2, 16529, 3880, 438, 2, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36255, 18973, 29397, 4177, 11053, 10729, 2849, 198, 2, 16529, 3880, 438, 2, 628, 198, 2, 14277, 4061, 290, 3963, 10652, 2767, 628, 198, 2, 14719, 6089, 317, 12682, 309, 3843, 1581, 3539, 628, 198, 2, 350, 4760, 1268, 6234, 41605, 2149, 628, 198, 2, 32494, 19604, 19664, 628, 198, 2, 20571, 2389, 327, 6158, 38, 15513, 39498, 628, 198, 2, 24700, 1137, 2149, 19269, 18415, 4261, 1961, 47203, 1340, 5188, 20571, 4146, 14418, 198 ]
3.105735
558
from PIL import Image, ImageDraw w = 7200 h = 3600 i = 1 j = 0 k = 0 c6 = [(255, 153, 204), (255, 255, 153), (153, 255, 153), (153, 204, 255)] black = (0, 0, 0) white = (255, 255, 255) im = Image.new('RGB', (w, h), white) draw = ImageDraw.Draw(im) r = open('index_src.dat', 'r') src = r.read() r.close src = src.replace(' ', '') rows = src.split('\n') for row in rows: d = row.split('|') if len(d) == 6: if len(d[2]) > 0 and len(d[3]) > 0 and len(d[4]) > 0 and len(d[5]) > 0: ra0 = int((360 - float(d[2])) * 20) ra1 = int((360 - float(d[3])) * 20) ra2 = int((ra0 + ra1) / 2) de0 = int((90 - float(d[4])) * 20) de1 = int((90 - float(d[5])) * 20) de2 = int((de0 + de1) / 2) if i > 4662: if de2 < k - 3: j = 0 if j > 2 else (j + 1) else: if de2 > k + 3: j = 0 if j > 2 else (j + 1) draw.rectangle((ra0, de0, ra1, de1), fill=c6[j], outline=black) draw.text((ra2, de2), str(i), fill=black) k = de2 i = i + 1 im.save('tyc_area.png')
[ 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 201, 198, 86, 796, 767, 2167, 201, 198, 71, 796, 4570, 405, 201, 198, 72, 796, 352, 201, 198, 73, 796, 657, 201, 198, 74, 796, 657, 201, 198, 66, 21, 796, 47527, 13381, 11, 24652, 11, 26956, 828, 357, 13381, 11, 14280, 11, 24652, 828, 357, 21395, 11, 14280, 11, 24652, 828, 357, 21395, 11, 26956, 11, 14280, 15437, 201, 198, 13424, 796, 357, 15, 11, 657, 11, 657, 8, 201, 198, 11186, 796, 357, 13381, 11, 14280, 11, 14280, 8, 201, 198, 320, 796, 7412, 13, 3605, 10786, 36982, 3256, 357, 86, 11, 289, 828, 2330, 8, 201, 198, 19334, 796, 7412, 25302, 13, 25302, 7, 320, 8, 201, 198, 81, 796, 1280, 10786, 9630, 62, 10677, 13, 19608, 3256, 705, 81, 11537, 201, 198, 10677, 796, 374, 13, 961, 3419, 201, 198, 81, 13, 19836, 201, 198, 10677, 796, 12351, 13, 33491, 10786, 46083, 10148, 8, 201, 198, 8516, 796, 12351, 13, 35312, 10786, 59, 77, 11537, 201, 198, 1640, 5752, 287, 15274, 25, 201, 198, 220, 220, 220, 288, 796, 5752, 13, 35312, 10786, 91, 11537, 201, 198, 220, 220, 220, 611, 18896, 7, 67, 8, 6624, 718, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 67, 58, 17, 12962, 1875, 657, 290, 18896, 7, 67, 58, 18, 12962, 1875, 657, 290, 18896, 7, 67, 58, 19, 12962, 1875, 657, 290, 18896, 7, 67, 58, 20, 12962, 1875, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2179, 15, 796, 493, 19510, 15277, 532, 12178, 7, 67, 58, 17, 60, 4008, 1635, 1160, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2179, 16, 796, 493, 19510, 15277, 532, 12178, 7, 67, 58, 18, 60, 4008, 1635, 1160, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2179, 17, 796, 493, 19510, 430, 15, 1343, 2179, 16, 8, 1220, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 15, 796, 493, 19510, 3829, 532, 12178, 7, 67, 58, 19, 60, 4008, 1635, 1160, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 16, 796, 493, 19510, 3829, 532, 12178, 7, 67, 58, 20, 60, 4008, 1635, 1160, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 390, 17, 796, 493, 19510, 2934, 15, 1343, 390, 16, 8, 1220, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 1875, 604, 39380, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 390, 17, 1279, 479, 532, 513, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 611, 474, 1875, 362, 2073, 357, 73, 1343, 352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 390, 17, 1875, 479, 1343, 513, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 657, 611, 474, 1875, 362, 2073, 357, 73, 1343, 352, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 13, 2554, 9248, 19510, 430, 15, 11, 390, 15, 11, 2179, 16, 11, 390, 16, 828, 6070, 28, 66, 21, 58, 73, 4357, 19001, 28, 13424, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 13, 5239, 19510, 430, 17, 11, 390, 17, 828, 965, 7, 72, 828, 6070, 28, 13424, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 796, 390, 17, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 1343, 352, 201, 198, 320, 13, 21928, 10786, 774, 66, 62, 20337, 13, 11134, 11537 ]
1.722944
693
from docutils import nodes from docutils.parsers.rst import Directive
[ 198, 6738, 2205, 26791, 1330, 13760, 198, 198, 6738, 2205, 26791, 13, 79, 945, 364, 13, 81, 301, 1330, 34736, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
2.333333
39
import imaplib import email from email.header import decode_header import pandas as pd mails_df = pd.read_csv('mails.csv') csv_values = mails_df.values c = 1 with open('mails_with_coupons.csv', 'w', encoding='utf-8') as f: out_row = 'EMAIL,PASS,COUPONS\n' f.write(out_row) for each in csv_values: user = each[0] password = each[1] # Mailbox interaction M = imaplib.IMAP4_SSL('imap.mail.com') M.login(user, password) M.select('Inbox') typ, data = M.search(None, 'ALL') ids = data[0] id_list = ids.split() # get the most recent email id latest_email_id = int(id_list[-1]) COUPON_AMOUNT = '15' # iterate through 15 messages in descending order starting with latest_email_id # the '-1' dictates reverse looping order for i in range(latest_email_id, latest_email_id - 15, -1): typ, data = M.fetch(str(i), '(RFC822)') for response_part in data: if isinstance(response_part, tuple): mail_bytes = response_part[1].decode('UTF-8') msg = email.message_from_string(mail_bytes) varSubject = msg['subject'] varFrom = msg['from'] varSubject = decode_header(varSubject)[0][0] if f'$coupon' in str(varSubject): print(f'{c} Mail: {user}\n Subject: {varSubject}\n') with open('mails_with_coupons.csv', 'a') as f: row = f'{user},{password},"${COUPON_AMOUNT}"\n' f.write(row) c += 1 data_frame = pd.read_csv('mails_with_coupons.csv', encoding="utf-8").drop_duplicates( subset='EMAIL', keep='first', inplace=False) data_frame.to_csv('mails_with_coupons.csv', index=False, encoding="utf-8")
[ 11748, 545, 64, 489, 571, 201, 198, 11748, 3053, 201, 198, 6738, 3053, 13, 25677, 1330, 36899, 62, 25677, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 201, 198, 201, 198, 26165, 62, 7568, 796, 279, 67, 13, 961, 62, 40664, 10786, 26165, 13, 40664, 11537, 201, 198, 40664, 62, 27160, 796, 285, 1768, 62, 7568, 13, 27160, 201, 198, 201, 198, 66, 796, 352, 201, 198, 201, 198, 4480, 1280, 10786, 26165, 62, 4480, 62, 66, 10486, 684, 13, 40664, 3256, 705, 86, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 503, 62, 808, 796, 705, 27630, 4146, 11, 47924, 11, 34, 27755, 19213, 59, 77, 6, 201, 198, 220, 220, 220, 277, 13, 13564, 7, 448, 62, 808, 8, 201, 198, 201, 198, 1640, 1123, 287, 269, 21370, 62, 27160, 25, 201, 198, 220, 220, 220, 2836, 796, 1123, 58, 15, 60, 201, 198, 220, 220, 220, 9206, 796, 1123, 58, 16, 60, 201, 198, 201, 198, 2, 11099, 3524, 10375, 201, 198, 201, 198, 220, 220, 220, 337, 796, 545, 64, 489, 571, 13, 3955, 2969, 19, 62, 31127, 10786, 320, 499, 13, 4529, 13, 785, 11537, 201, 198, 220, 220, 220, 337, 13, 38235, 7, 7220, 11, 9206, 8, 201, 198, 220, 220, 220, 337, 13, 19738, 10786, 818, 3524, 11537, 201, 198, 220, 220, 220, 2170, 11, 1366, 796, 337, 13, 12947, 7, 14202, 11, 705, 7036, 11537, 201, 198, 220, 220, 220, 220, 2340, 796, 1366, 58, 15, 60, 201, 198, 220, 220, 220, 4686, 62, 4868, 796, 220, 2340, 13, 35312, 3419, 201, 198, 220, 220, 220, 1303, 651, 262, 749, 2274, 3053, 4686, 201, 198, 220, 220, 220, 3452, 62, 12888, 62, 312, 796, 493, 7, 312, 62, 4868, 58, 12, 16, 12962, 201, 198, 201, 198, 220, 220, 220, 327, 27755, 1340, 62, 2390, 28270, 796, 705, 1314, 6, 201, 198, 201, 198, 220, 220, 220, 1303, 11629, 378, 832, 1315, 6218, 287, 31491, 1502, 3599, 351, 3452, 62, 12888, 62, 312, 201, 198, 220, 220, 220, 1303, 262, 705, 12, 16, 6, 35054, 9575, 9052, 278, 1502, 201, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 42861, 62, 12888, 62, 312, 11, 3452, 62, 12888, 62, 312, 532, 1315, 11, 532, 16, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2170, 11, 1366, 796, 337, 13, 69, 7569, 7, 2536, 7, 72, 828, 29513, 41150, 23, 1828, 8, 11537, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2882, 62, 3911, 287, 1366, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 26209, 62, 3911, 11, 46545, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6920, 62, 33661, 796, 2882, 62, 3911, 58, 16, 4083, 12501, 1098, 10786, 48504, 12, 23, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 3053, 13, 20500, 62, 6738, 62, 8841, 7, 4529, 62, 33661, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 19776, 796, 31456, 17816, 32796, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 4863, 796, 31456, 17816, 6738, 20520, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1401, 19776, 796, 36899, 62, 25677, 7, 7785, 19776, 38381, 15, 7131, 15, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 6, 3, 66, 10486, 261, 6, 287, 965, 7, 7785, 19776, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 6, 90, 66, 92, 11099, 25, 1391, 7220, 32239, 77, 220, 15540, 25, 1391, 7785, 19776, 32239, 77, 11537, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 10786, 26165, 62, 4480, 62, 66, 10486, 684, 13, 40664, 3256, 705, 64, 11537, 355, 277, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5752, 796, 277, 6, 90, 7220, 5512, 90, 28712, 9063, 38892, 34, 27755, 1340, 62, 2390, 28270, 36786, 59, 77, 6, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 808, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 15853, 352, 201, 198, 201, 198, 7890, 62, 14535, 796, 279, 67, 13, 961, 62, 40664, 10786, 26165, 62, 4480, 62, 66, 10486, 684, 13, 40664, 3256, 21004, 2625, 40477, 12, 23, 11074, 14781, 62, 646, 489, 16856, 7, 201, 198, 220, 220, 220, 24637, 11639, 27630, 4146, 3256, 1394, 11639, 11085, 3256, 287, 5372, 28, 25101, 8, 201, 198, 7890, 62, 14535, 13, 1462, 62, 40664, 10786, 26165, 62, 4480, 62, 66, 10486, 684, 13, 40664, 3256, 6376, 28, 25101, 11, 21004, 2625, 40477, 12, 23, 4943, 201, 198 ]
2.036545
903
from rest_framework import serializers from django.contrib.auth import authenticate from rest_framework import exceptions from Air_PnP.models import *
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 8323, 5344, 198, 6738, 1334, 62, 30604, 1330, 13269, 220, 198, 6738, 3701, 62, 47, 77, 47, 13, 27530, 1330, 1635 ]
3.973684
38
import datetime import re """ Input is supposed to be in the format yyyy-mm-dd if it is not then return false """
[ 11748, 4818, 8079, 198, 11748, 302, 628, 198, 37811, 198, 220, 220, 220, 23412, 318, 4385, 284, 307, 287, 262, 5794, 331, 22556, 88, 12, 3020, 12, 1860, 198, 220, 220, 220, 611, 340, 318, 407, 788, 1441, 3991, 198, 37811 ]
3
41
#! /usr/bin/env python3 # __author__ = "Praneesh Kataru" # __credits__ = [] # __version__ = "0.1.1" # __maintainer__ = "Praneesh Kataru" # __email__ = "[email protected]" # __status__ = "Prototype" import unittest from pprint import pprint from qs_backend.dal.user_stock_pref_dal import UserStockPrefDAL class UserStockPrefSelectTests(unittest.TestCase): """ Unit Test Case for Validating ``UserStockPrefs`` table Selects """
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 220, 220, 11593, 9800, 834, 220, 220, 220, 796, 366, 6836, 1531, 5069, 8595, 11493, 1, 198, 2, 220, 220, 11593, 66, 20696, 834, 220, 220, 796, 17635, 198, 2, 220, 220, 11593, 9641, 834, 220, 220, 796, 366, 15, 13, 16, 13, 16, 1, 198, 2, 220, 220, 11593, 76, 2913, 10613, 834, 796, 366, 6836, 1531, 5069, 8595, 11493, 1, 198, 2, 220, 220, 11593, 12888, 834, 796, 366, 1050, 272, 14795, 270, 907, 325, 2713, 31, 14816, 13, 785, 1, 198, 2, 220, 220, 11593, 13376, 834, 796, 366, 19703, 8690, 1, 198, 198, 11748, 555, 715, 395, 198, 6738, 279, 4798, 1330, 279, 4798, 198, 6738, 10662, 82, 62, 1891, 437, 13, 31748, 13, 7220, 62, 13578, 62, 3866, 69, 62, 31748, 1330, 11787, 26207, 36698, 35, 1847, 628, 198, 4871, 11787, 26207, 36698, 17563, 51, 3558, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 11801, 6208, 8913, 329, 48951, 803, 7559, 12982, 26207, 36698, 82, 15506, 3084, 9683, 82, 198, 220, 220, 220, 37227 ]
2.415385
195
# coding: utf-8 # # Pipeline processing using serial workflows. # # This is a serial unrolled version of the predict step # In[1]: #get_ipython().run_line_magic('matplotlib', 'inline') import os import sys sys.path.append(os.path.join('..', '..')) from data_models.parameters import arl_path from mpi4py import MPI results_dir = './results/mpi' #from matplotlib import pylab #pylab.rcParams['figure.figsize'] = (12.0, 12.0) #pylab.rcParams['image.cmap'] = 'rainbow' import numpy from astropy.coordinates import SkyCoord from astropy import units as u from astropy.wcs.utils import pixel_to_skycoord #from matplotlib import pyplot as plt from data_models.polarisation import PolarisationFrame from wrappers.serial.calibration.calibration import solve_gaintable from wrappers.serial.calibration.operations import apply_gaintable from wrappers.serial.calibration.calibration_control import create_calibration_controls from wrappers.serial.visibility.base import create_blockvisibility from wrappers.serial.visibility.coalesce import convert_blockvisibility_to_visibility from wrappers.serial.skycomponent.operations import create_skycomponent from wrappers.serial.image.deconvolution import deconvolve_cube #from wrappers.serial.image.operations import show_image, export_image_to_fits, qa_image from wrappers.serial.image.operations import export_image_to_fits, qa_image from wrappers.serial.visibility.iterators import vis_timeslice_iter from wrappers.serial.simulation.testing_support import create_low_test_image_from_gleam from processing_components.simulation.configurations import create_named_configuration from wrappers.serial.imaging.base import predict_2d, create_image_from_visibility, advise_wide_field from workflows.serial.imaging.imaging_serial import invert_list_serial_workflow, predict_list_serial_workflow, deconvolve_list_serial_workflow from workflows.serial.simulation.simulation_serial import simulate_list_serial_workflow, corrupt_list_serial_workflow from workflows.serial.pipelines.pipeline_serial import continuum_imaging_list_serial_workflow, ical_list_serial_workflow from workflows.mpi.pipelines.pipeline_mpi import continuum_imaging_list_mpi_workflow, ical_list_mpi_workflow from workflows.mpi.imaging.imaging_mpi import predict_list_mpi_workflow, invert_list_mpi_workflow, deconvolve_list_mpi_workflow import time import pprint # Uncomment this line if profiling with extrae/paraver toolset #import pyextrae.mpi as pyextrae pp = pprint.PrettyPrinter() import logging import argparse log = init_logging() parser = argparse.ArgumentParser(description='Imaging pipelines in MPI.') parser.add_argument('--nfreqwin', type=int, nargs='?', default=7, help='The number of frequency windows') args = parser.parse_args() # In[2]: # ################### Rationale of data distribution: ################### # # In this version all data resides at rank0 and needs to be distributed # # at every function when needed. # # TODO: Pass on the comm parameter! # vis_list -> rank0 # # vis_slices, npixel, cellsize -> rep # # gleam_model -> rank0 (later rep) # # predicted_vis -> rank0 (later dist) # # model_list ->rank0 (later rep) # disrty_list psf_list -> rank0 (later dist) # continuum_imaging_list -> rank0 # ####################################################################### # #pylab.rcParams['figure.figsize'] = (12.0, 12.0) #pylab.rcParams['image.cmap'] = 'Greys' # Set up MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() # We make the visibility. The parameter rmax determines the distance of the furthest antenna/stations used. All over parameters are determined from this number. # In[3]: #nfreqwin=7 nfreqwin=args.nfreqwin ntimes=5 rmax=300.0 frequency=numpy.linspace(1.0e8,1.2e8,nfreqwin) #ntimes=11 #frequency=numpy.linspace(0.9e8,1.1e8,nfreqwin) channel_bandwidth=numpy.array(nfreqwin*[frequency[1]-frequency[0]]) times = numpy.linspace(-numpy.pi/3.0, numpy.pi/3.0, ntimes) #phasecentre=SkyCoord(ra=+30.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') phasecentre=SkyCoord(ra=+0.0 * u.deg, dec=-40.0 * u.deg, frame='icrs', equinox='J2000') log.info("Starting imaging-pipeline with %d MPI processes nfreqwin %d ntimes %d" %(size,nfreqwin,ntimes)) print("Starting imaging-pipeline with %d MPI processes nfreqwin %d ntimes %d" %(size,nfreqwin,ntimes),flush=True) log.debug('%d: frequency len %d frequency list:'%(rank,len(frequency))) #print(frequency,flush=True) if rank == 0: bvis_list=simulate_list_serial_workflow('LOWBD2', frequency=frequency, channel_bandwidth=channel_bandwidth, times=times, phasecentre=phasecentre, order='frequency', rmax=rmax, format='blockvis') else: bvis_list=list() vis_list = [convert_blockvisibility_to_visibility(bv) for bv in bvis_list] log.debug('%d: %d elements in vis_list' % (rank,len(vis_list))) #log.handlers[0].flush() #print(vis_list # In[4]: if rank == 0: wprojection_planes=1 advice_low=advise_wide_field(vis_list[0], guard_band_image=8.0, delA=0.02, wprojection_planes=wprojection_planes) advice_high=advise_wide_field(vis_list[-1], guard_band_image=8.0, delA=0.02, wprojection_planes=wprojection_planes) vis_slices = advice_low['vis_slices'] npixel=advice_high['npixels2'] cellsize=min(advice_low['cellsize'], advice_high['cellsize']) else: vis_slices = 0 npixel = 0 cellsize = 0 (vis_slices,npixel,cellsize) = comm.bcast((vis_slices,npixel,cellsize),root=0) log.debug('%d: After advice: vis_slices %d npixel %d cellsize %d' % (rank,vis_slices, npixel, cellsize)) # Now make a graph to fill with a model drawn from GLEAM # In[ ]: log.info('%d:About to make GLEAM model' %(rank)) sub_frequency = numpy.array_split(frequency, size) sub_channel_bandwidth = numpy.array_split(channel_bandwidth,size) sub_gleam_model = [create_low_test_image_from_gleam(npixel=npixel, frequency=[sub_frequency[rank][f]], channel_bandwidth=[sub_channel_bandwidth[rank][f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), flux_limit=1.0, applybeam=True) for f, freq in enumerate(sub_frequency[rank])] # NOTE: We could do an allgather here to avoid bcast of # each freqw during predict, it would safe time but use more space gleam_model=comm.gather(sub_gleam_model,root=0) if rank==0: gleam_model=numpy.concatenate(gleam_model) else: gleam_model=list() # In[ ]: original_predict=False if original_predict: if rank==0: log.info('About to run predict to get predicted visibility') predicted_vislist = predict_list_serial_workflow(vis_list, gleam_model, context='wstack', vis_slices=vis_slices) else: log.info('%d: About to run predict to get predicted visibility'%(rank)) print('%d: About to run predict to get predicted visibility'%(rank),flush=True) start=time.time() # All procs call the function but only rank=0 gets the predicted_vislist predicted_vislist = predict_list_mpi_workflow(vis_list, gleam_model, context='wstack', vis_slices=vis_slices) end=time.time() #log.info('About to run corrupt to get corrupted visibility') #corrupted_vislist = corrupt_list_serial_workflow(predicted_vislist, phase_error=1.0) # Get the LSM. This is currently blank. # In[ ]: ### I need to scatter vis_list cause worker don't have it ## frequency and channel_bandwidth are replicated and they have already ## been split log.info('%d: predict finished in %f seconds'%(rank,end-start)) print('%d: predict finished in %f seconds'%(rank,end-start),flush=True) log.info('%d: About create image from visibility'%(rank)) sub_vis_list= numpy.array_split(vis_list, size) sub_vis_list=comm.scatter(sub_vis_list,root=0) sub_model_list = [create_image_from_visibility(sub_vis_list[f], npixel=npixel, frequency=[sub_frequency[rank][f]], channel_bandwidth=[sub_channel_bandwidth[rank][f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI")) for f, freq in enumerate(sub_frequency[rank])] # NOTE: We could do allgather here, if enough memory space model_list=comm.gather(sub_model_list,root=0) if rank==0: #model_list=numpy.concatenate(model_list) model_list=concat_tuples(model_list) # In[ ]: else: model_list=list() log.debug('%d model_list len %d' %(rank,len(model_list))) log.info('%d: About to start invert'%(rank)) print('%d: About to start invert'%(rank),flush=True) start=time.time() original_invert=False if original_invert: if rank==0: dirty_list = invert_list_serial_workflow(predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=False) psf_list = invert_list_serial_workflow(predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=True) else: dirty_list = invert_list_mpi_workflow(predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=False) psf_list = invert_list_mpi_workflow(predicted_vislist, model_list, context='wstack', vis_slices=vis_slices, dopsf=True) # Create and execute graphs to make the dirty image and PSF # In[ ]: end=time.time() log.info('%d: invert finished'%(rank)) print('%d: invert finished in %f seconds'%(rank,end-start),flush=True) if rank==0: #print("sumwts",flush=True) #print(dirty_list[0][1]) log.info('After invert to get dirty image') dirty = dirty_list[0][0] #show_image(dirty, cm='Greys', vmax=1.0, vmin=-0.1) #plt.show() print(qa_image(dirty)) export_image_to_fits(dirty, '%s/imaging-dirty.fits' %(results_dir)) log.info('After invert to get PSF') psf = psf_list[0][0] #show_image(psf, cm='Greys', vmax=0.1, vmin=-0.01) #plt.show() print(qa_image(psf)) export_image_to_fits(psf, '%s/imaging-psf.fits' %(results_dir)) # Now deconvolve using msclean # In[ ]: log.info('%d: About to run deconvolve'%(rank)) print('%d: About to run deconvolve'%(rank),flush=True) start=time.time() original_deconv=False if original_deconv: if rank==0: deconvolved,_ = deconvolve_list_serial_workflow(dirty_list, psf_list, model_imagelist=model_list, deconvolve_facets=8, deconvolve_overlap=16, deconvolve_taper='tukey', scales=[0, 3, 10], algorithm='msclean', niter=1000, fractional_threshold=0.1, threshold=0.1, gain=0.1, psf_support=64) else: print(" types of dirty list",type(dirty_list)," and psf_list",type(psf_list)) deconvolved = deconvolve_list_mpi_workflow(dirty_list, psf_list, model_imagelist=model_list, deconvolve_facets=8, deconvolve_overlap=16, deconvolve_taper='tukey', scales=[0, 3, 10], algorithm='msclean', niter=1000, fractional_threshold=0.1, threshold=0.1, gain=0.1, psf_support=64) #show_image(deconvolved[0], cm='Greys', vmax=0.1, vmin=-0.01) #plt.show() end=time.time() log.info('%d: After deconvolve'%(rank)) print('%d: deconvolve finished in %f sec'%(rank,end-start)) # In[ ]: log.info('%d: About to run continuum imaging'%(rank)) print('%d: About to run continuum imaging'%(rank),flush=True) start=time.time() original_continuumimaging=False if original_continuumimaging: if rank==0: continuum_imaging_list = continuum_imaging_list_serial_workflow(predicted_vislist, model_imagelist=model_list, context='wstack', vis_slices=vis_slices, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', psf_support=64) else: continuum_imaging_list = continuum_imaging_list_mpi_workflow(predicted_vislist, model_imagelist=model_list, context='wstack', vis_slices=vis_slices, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', psf_support=64) # In[ ]: end=time.time() log.info('%d: continuum imaging finished'%(rank)) print('%d: continuum imaging finished in %f sec.'%(rank,end-start),flush=True) if rank==0: deconvolved = continuum_imaging_list[0][0] residual = continuum_imaging_list[1][0] restored = continuum_imaging_list[2][0] #f=show_image(deconvolved, title='Clean image - no selfcal', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(deconvolved, context='Clean image - no selfcal')) #plt.show() #f=show_image(restored, title='Restored clean image - no selfcal', # cm='Greys', vmax=1.0, vmin=-0.1) print(qa_image(restored, context='Restored clean image - no selfcal')) #plt.show() export_image_to_fits(restored, '%s/imaging-dask_continuum_imaging_restored.fits' %(results_dir)) #f=show_image(residual[0], title='Residual clean image - no selfcal', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(residual[0], context='Residual clean image - no selfcal')) #plt.show() export_image_to_fits(residual[0], '%s/imaging-dask_continuum_imaging_residual.fits' %(results_dir)) if rank==0: for chan in range(nfreqwin): residual = continuum_imaging_list[1][chan] #show_image(residual[0], title='Channel %d' % chan, cm='Greys', # vmax=0.1, vmin=-0.01) #plt.show() # In[ ]: controls = create_calibration_controls() controls['T']['first_selfcal'] = 1 controls['G']['first_selfcal'] = 3 controls['B']['first_selfcal'] = 4 controls['T']['timeslice'] = 'auto' controls['G']['timeslice'] = 'auto' controls['B']['timeslice'] = 1e5 pp.pprint(controls) # In[ ]: # TODO I change this to predicted_vislist to make it deterministic, I hope it makes # sense :) #ical_list = ical_list_serial_workflow(corrupted_vislist, log.info('%d: About to run ical'%(rank)) print('%d: About to run ical'%(rank),flush=True) start=time.time() original_ical=False if original_ical: if rank==0: ical_list = ical_list_serial_workflow(predicted_vislist, model_imagelist=model_list, context='wstack', calibration_context = 'TG', controls=controls, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', vis_slices=ntimes, timeslice='auto', global_solution=False, psf_support=64, do_selfcal=True) else: ical_list = ical_list_mpi_workflow(predicted_vislist, model_imagelist=model_list, context='wstack', calibration_context = 'TG', controls=controls, scales=[0, 3, 10], algorithm='mmclean', nmoment=3, niter=1000, fractional_threshold=0.1, threshold=0.1, nmajor=5, gain=0.25, deconvolve_facets = 8, deconvolve_overlap=16, deconvolve_taper='tukey', vis_slices=ntimes, timeslice='auto', global_solution=False, psf_support=64, do_selfcal=True) # In[ ]: end=time.time() log.info('%d: ical finished '%(rank)) print('%d: ical finished in %f sec.'%(rank,end-start),flush=True) if rank==0: log.info('After ical') deconvolved = ical_list[0][0] residual = ical_list[1][0] restored = ical_list[2][0] #f=show_image(deconvolved, title='Clean image', cm='Greys', vmax=1.0, vmin=-0.1) print(qa_image(deconvolved, context='Clean image')) #plt.show() #f=show_image(restored, title='Restored clean image', cm='Greys', vmax=1.0, # vmin=-0.1) print(qa_image(restored, context='Restored clean image')) #plt.show() export_image_to_fits(restored, '%s/imaging-dask_ical_restored.fits' %(results_dir)) #f=show_image(residual[0], title='Residual clean image', cm='Greys', # vmax=0.1, vmin=-0.01) print(qa_image(residual[0], context='Residual clean image')) #plt.show() export_image_to_fits(residual[0], '%s/imaging-dask_ical_residual.fits' %(results_dir))
[ 198, 2, 19617, 25, 3384, 69, 12, 23, 198, 198, 2, 1303, 37709, 7587, 1262, 11389, 670, 44041, 13, 198, 2, 220, 198, 2, 770, 318, 257, 11389, 555, 8375, 2196, 286, 262, 4331, 2239, 198, 198, 2, 554, 58, 16, 5974, 628, 198, 2, 1136, 62, 541, 7535, 22446, 5143, 62, 1370, 62, 32707, 10786, 6759, 29487, 8019, 3256, 705, 45145, 11537, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 492, 6, 4008, 198, 198, 6738, 1366, 62, 27530, 13, 17143, 7307, 1330, 610, 75, 62, 6978, 198, 6738, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 198, 43420, 62, 15908, 796, 705, 19571, 43420, 14, 3149, 72, 6, 198, 198, 2, 6738, 2603, 29487, 8019, 1330, 279, 2645, 397, 198, 198, 2, 79, 2645, 397, 13, 6015, 10044, 4105, 17816, 26875, 13, 5647, 7857, 20520, 796, 357, 1065, 13, 15, 11, 1105, 13, 15, 8, 198, 2, 79, 2645, 397, 13, 6015, 10044, 4105, 17816, 9060, 13, 66, 8899, 20520, 796, 705, 3201, 8176, 6, 198, 198, 11748, 299, 32152, 198, 198, 6738, 6468, 28338, 13, 37652, 17540, 1330, 5274, 7222, 585, 198, 6738, 6468, 28338, 1330, 4991, 355, 334, 198, 6738, 6468, 28338, 13, 12712, 13, 26791, 1330, 17465, 62, 1462, 62, 15688, 37652, 198, 198, 2, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 6738, 1366, 62, 27530, 13, 79, 6192, 5612, 1330, 32909, 5612, 19778, 198, 198, 6738, 7917, 11799, 13, 46911, 13, 9948, 571, 1358, 13, 9948, 571, 1358, 1330, 8494, 62, 70, 2913, 540, 198, 6738, 7917, 11799, 13, 46911, 13, 9948, 571, 1358, 13, 3575, 602, 1330, 4174, 62, 70, 2913, 540, 198, 6738, 7917, 11799, 13, 46911, 13, 9948, 571, 1358, 13, 9948, 571, 1358, 62, 13716, 1330, 2251, 62, 9948, 571, 1358, 62, 13716, 82, 198, 6738, 7917, 11799, 13, 46911, 13, 4703, 2247, 13, 8692, 1330, 2251, 62, 9967, 4703, 2247, 198, 6738, 7917, 11799, 13, 46911, 13, 4703, 2247, 13, 1073, 2040, 344, 1330, 10385, 62, 9967, 4703, 2247, 62, 1462, 62, 4703, 2247, 198, 6738, 7917, 11799, 13, 46911, 13, 15688, 42895, 13, 3575, 602, 1330, 2251, 62, 15688, 42895, 198, 6738, 7917, 11799, 13, 46911, 13, 9060, 13, 12501, 261, 85, 2122, 1330, 37431, 85, 6442, 62, 40296, 198, 2, 6738, 7917, 11799, 13, 46911, 13, 9060, 13, 3575, 602, 1330, 905, 62, 9060, 11, 10784, 62, 9060, 62, 1462, 62, 21013, 11, 10662, 64, 62, 9060, 198, 6738, 7917, 11799, 13, 46911, 13, 9060, 13, 3575, 602, 1330, 10784, 62, 9060, 62, 1462, 62, 21013, 11, 10662, 64, 62, 9060, 198, 6738, 7917, 11799, 13, 46911, 13, 4703, 2247, 13, 2676, 2024, 1330, 1490, 62, 22355, 75, 501, 62, 2676, 198, 6738, 7917, 11799, 13, 46911, 13, 14323, 1741, 13, 33407, 62, 11284, 1330, 2251, 62, 9319, 62, 9288, 62, 9060, 62, 6738, 62, 70, 293, 321, 198, 6738, 7587, 62, 5589, 3906, 13, 14323, 1741, 13, 11250, 20074, 1330, 2251, 62, 13190, 62, 11250, 3924, 198, 6738, 7917, 11799, 13, 46911, 13, 320, 3039, 13, 8692, 1330, 4331, 62, 17, 67, 11, 2251, 62, 9060, 62, 6738, 62, 4703, 2247, 11, 18595, 62, 4421, 62, 3245, 198, 198, 6738, 670, 44041, 13, 46911, 13, 320, 3039, 13, 320, 3039, 62, 46911, 1330, 287, 1851, 62, 4868, 62, 46911, 62, 1818, 11125, 11, 220, 220, 220, 220, 4331, 62, 4868, 62, 46911, 62, 1818, 11125, 11, 37431, 85, 6442, 62, 4868, 62, 46911, 62, 1818, 11125, 198, 6738, 670, 44041, 13, 46911, 13, 14323, 1741, 13, 14323, 1741, 62, 46911, 1330, 29308, 62, 4868, 62, 46911, 62, 1818, 11125, 11, 220, 220, 220, 220, 10622, 62, 4868, 62, 46911, 62, 1818, 11125, 198, 6738, 670, 44041, 13, 46911, 13, 79, 541, 20655, 13, 79, 541, 4470, 62, 46911, 1330, 44422, 62, 320, 3039, 62, 4868, 62, 46911, 62, 1818, 11125, 11, 220, 220, 220, 220, 220, 605, 62, 4868, 62, 46911, 62, 1818, 11125, 198, 198, 6738, 670, 44041, 13, 3149, 72, 13, 79, 541, 20655, 13, 79, 541, 4470, 62, 3149, 72, 1330, 44422, 62, 320, 3039, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 11, 220, 605, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 198, 6738, 670, 44041, 13, 3149, 72, 13, 320, 3039, 13, 320, 3039, 62, 3149, 72, 1330, 4331, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 11, 287, 1851, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 11, 37431, 85, 6442, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 198, 198, 11748, 640, 198, 198, 11748, 279, 4798, 198, 198, 2, 791, 23893, 428, 1627, 611, 31582, 351, 3131, 68, 14, 1845, 8770, 2891, 2617, 198, 2, 11748, 12972, 26086, 68, 13, 3149, 72, 355, 12972, 26086, 68, 198, 198, 381, 796, 279, 4798, 13, 35700, 6836, 3849, 3419, 198, 198, 11748, 18931, 198, 11748, 1822, 29572, 220, 198, 198, 6404, 796, 2315, 62, 6404, 2667, 3419, 628, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 3546, 3039, 31108, 287, 4904, 40, 2637, 8, 198, 48610, 13, 2860, 62, 49140, 10786, 438, 77, 19503, 80, 5404, 3256, 2099, 28, 600, 11, 299, 22046, 11639, 30, 3256, 4277, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 464, 1271, 286, 8373, 9168, 11537, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 198, 2, 554, 58, 17, 5974, 198, 198, 2, 1303, 14468, 2235, 46863, 68, 286, 1366, 6082, 25, 1303, 14468, 2235, 1303, 198, 2, 554, 428, 2196, 477, 1366, 29076, 379, 4279, 15, 290, 2476, 284, 307, 9387, 220, 220, 1303, 198, 2, 379, 790, 2163, 618, 2622, 13, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 16926, 46, 25, 6251, 319, 262, 725, 11507, 0, 198, 2, 1490, 62, 4868, 4613, 4279, 15, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 1490, 62, 82, 677, 274, 11, 299, 32515, 11, 4778, 1096, 4613, 1128, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 26852, 321, 62, 19849, 4613, 4279, 15, 357, 36760, 1128, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 11001, 62, 4703, 4613, 4279, 15, 357, 36760, 1233, 8, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 2, 2746, 62, 4868, 4613, 43027, 15, 357, 36760, 1128, 8, 198, 2, 595, 81, 774, 62, 4868, 26692, 69, 62, 4868, 4613, 4279, 15, 357, 36760, 1233, 8, 198, 2, 44422, 62, 320, 3039, 62, 4868, 4613, 4279, 15, 198, 2, 1303, 29113, 29113, 4242, 2235, 1303, 628, 628, 198, 2, 79, 2645, 397, 13, 6015, 10044, 4105, 17816, 26875, 13, 5647, 7857, 20520, 796, 357, 1065, 13, 15, 11, 1105, 13, 15, 8, 198, 2, 79, 2645, 397, 13, 6015, 10044, 4105, 17816, 9060, 13, 66, 8899, 20520, 796, 705, 43887, 893, 6, 628, 198, 2, 5345, 510, 4904, 40, 198, 9503, 796, 4904, 40, 13, 9858, 44, 62, 45359, 11163, 198, 43027, 796, 725, 13, 3855, 62, 43027, 3419, 198, 7857, 796, 725, 13, 3855, 62, 7857, 3419, 628, 198, 2, 775, 787, 262, 20742, 13, 383, 11507, 374, 9806, 15947, 262, 5253, 286, 262, 46186, 301, 20509, 14, 301, 602, 973, 13, 1439, 625, 10007, 389, 5295, 422, 428, 1271, 13, 198, 198, 2, 554, 58, 18, 5974, 628, 198, 2, 77, 19503, 80, 5404, 28, 22, 198, 77, 19503, 80, 5404, 28, 22046, 13, 77, 19503, 80, 5404, 198, 429, 999, 28, 20, 198, 81, 9806, 28, 6200, 13, 15, 198, 35324, 28, 77, 32152, 13, 21602, 10223, 7, 16, 13, 15, 68, 23, 11, 16, 13, 17, 68, 23, 11, 77, 19503, 80, 5404, 8, 198, 2, 429, 999, 28, 1157, 198, 2, 35324, 28, 77, 32152, 13, 21602, 10223, 7, 15, 13, 24, 68, 23, 11, 16, 13, 16, 68, 23, 11, 77, 19503, 80, 5404, 8, 198, 17620, 62, 3903, 10394, 28, 77, 32152, 13, 18747, 7, 77, 19503, 80, 5404, 9, 58, 35324, 58, 16, 45297, 35324, 58, 15, 11907, 8, 198, 22355, 796, 299, 32152, 13, 21602, 10223, 32590, 77, 32152, 13, 14415, 14, 18, 13, 15, 11, 299, 32152, 13, 14415, 14, 18, 13, 15, 11, 299, 22355, 8, 198, 2, 40715, 1087, 260, 28, 22308, 7222, 585, 7, 430, 28, 10, 1270, 13, 15, 1635, 334, 13, 13500, 11, 875, 10779, 1899, 13, 15, 1635, 334, 13, 13500, 11, 5739, 11639, 291, 3808, 3256, 1602, 259, 1140, 11639, 41, 11024, 11537, 198, 40715, 1087, 260, 28, 22308, 7222, 585, 7, 430, 28, 10, 15, 13, 15, 1635, 334, 13, 13500, 11, 875, 10779, 1821, 13, 15, 1635, 334, 13, 13500, 11, 5739, 11639, 291, 3808, 3256, 1602, 259, 1140, 11639, 41, 11024, 11537, 198, 198, 6404, 13, 10951, 7203, 22851, 19560, 12, 79, 541, 4470, 351, 4064, 67, 4904, 40, 7767, 299, 19503, 80, 5404, 4064, 67, 299, 22355, 4064, 67, 1, 4064, 7, 7857, 11, 77, 19503, 80, 5404, 11, 429, 999, 4008, 198, 4798, 7203, 22851, 19560, 12, 79, 541, 4470, 351, 4064, 67, 4904, 40, 7767, 299, 19503, 80, 5404, 4064, 67, 299, 22355, 4064, 67, 1, 198, 220, 220, 220, 220, 220, 4064, 7, 7857, 11, 77, 19503, 80, 5404, 11, 429, 999, 828, 25925, 28, 17821, 8, 198, 6404, 13, 24442, 10786, 4, 67, 25, 8373, 18896, 4064, 67, 8373, 1351, 32105, 4, 7, 43027, 11, 11925, 7, 35324, 22305, 198, 2, 4798, 7, 35324, 11, 25925, 28, 17821, 8, 628, 198, 361, 4279, 6624, 657, 25, 198, 220, 220, 220, 275, 4703, 62, 4868, 28, 14323, 5039, 62, 4868, 62, 46911, 62, 1818, 11125, 10786, 43, 3913, 14529, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 28, 35324, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 3903, 10394, 28, 17620, 62, 3903, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 28, 22355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 1087, 260, 28, 40715, 1087, 260, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 11639, 35324, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 9806, 28, 81, 9806, 11, 5794, 11639, 9967, 4703, 11537, 198, 17772, 25, 198, 220, 220, 220, 275, 4703, 62, 4868, 28, 4868, 3419, 198, 198, 4703, 62, 4868, 796, 685, 1102, 1851, 62, 9967, 4703, 2247, 62, 1462, 62, 4703, 2247, 7, 65, 85, 8, 329, 275, 85, 287, 275, 4703, 62, 4868, 60, 198, 6404, 13, 24442, 10786, 4, 67, 25, 4064, 67, 4847, 287, 1490, 62, 4868, 6, 4064, 357, 43027, 11, 11925, 7, 4703, 62, 4868, 22305, 198, 2, 6404, 13, 4993, 8116, 58, 15, 4083, 25925, 3419, 198, 2, 4798, 7, 4703, 62, 4868, 198, 198, 2, 554, 58, 19, 5974, 198, 198, 361, 4279, 6624, 657, 25, 198, 220, 220, 220, 266, 16302, 295, 62, 22587, 28, 16, 198, 220, 220, 220, 5608, 62, 9319, 28, 32225, 786, 62, 4421, 62, 3245, 7, 4703, 62, 4868, 58, 15, 4357, 4860, 62, 3903, 62, 9060, 28, 23, 13, 15, 11, 1619, 32, 28, 15, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16302, 295, 62, 22587, 28, 86, 16302, 295, 62, 22587, 8, 628, 220, 220, 220, 5608, 62, 8929, 28, 32225, 786, 62, 4421, 62, 3245, 7, 4703, 62, 4868, 58, 12, 16, 4357, 4860, 62, 3903, 62, 9060, 28, 23, 13, 15, 11, 1619, 32, 28, 15, 13, 2999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 16302, 295, 62, 22587, 28, 86, 16302, 295, 62, 22587, 8, 628, 220, 220, 220, 1490, 62, 82, 677, 274, 796, 5608, 62, 9319, 17816, 4703, 62, 82, 677, 274, 20520, 198, 220, 220, 220, 299, 32515, 28, 324, 28281, 62, 8929, 17816, 37659, 14810, 17, 20520, 198, 220, 220, 220, 4778, 1096, 28, 1084, 7, 324, 28281, 62, 9319, 17816, 3846, 7857, 6, 4357, 5608, 62, 8929, 17816, 3846, 7857, 6, 12962, 198, 198, 17772, 25, 198, 220, 220, 220, 1490, 62, 82, 677, 274, 796, 657, 198, 220, 220, 220, 299, 32515, 796, 657, 198, 220, 220, 220, 4778, 1096, 796, 657, 198, 198, 7, 4703, 62, 82, 677, 274, 11, 77, 32515, 11, 3846, 7857, 8, 796, 725, 13, 65, 2701, 19510, 4703, 62, 82, 677, 274, 11, 77, 32515, 11, 3846, 7857, 828, 15763, 28, 15, 8, 198, 6404, 13, 24442, 10786, 4, 67, 25, 2293, 5608, 25, 1490, 62, 82, 677, 274, 4064, 67, 299, 32515, 4064, 67, 4778, 1096, 4064, 67, 6, 4064, 357, 43027, 11, 4703, 62, 82, 677, 274, 11, 299, 32515, 11, 4778, 1096, 4008, 198, 198, 2, 2735, 787, 257, 4823, 284, 6070, 351, 257, 2746, 7428, 422, 402, 2538, 2390, 220, 198, 198, 2, 554, 58, 2361, 25, 198, 6404, 13, 10951, 10786, 4, 67, 25, 8585, 284, 787, 402, 2538, 2390, 2746, 6, 4064, 7, 43027, 4008, 198, 198, 7266, 62, 35324, 796, 299, 32152, 13, 18747, 62, 35312, 7, 35324, 11, 2546, 8, 198, 7266, 62, 17620, 62, 3903, 10394, 796, 299, 32152, 13, 18747, 62, 35312, 7, 17620, 62, 3903, 10394, 11, 7857, 8, 198, 198, 7266, 62, 70, 293, 321, 62, 19849, 796, 685, 17953, 62, 9319, 62, 9288, 62, 9060, 62, 6738, 62, 70, 293, 321, 7, 77, 32515, 28, 77, 32515, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 41888, 7266, 62, 35324, 58, 43027, 7131, 69, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 3903, 10394, 41888, 7266, 62, 17620, 62, 3903, 10394, 58, 43027, 7131, 69, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4778, 1096, 28, 3846, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 1087, 260, 28, 40715, 1087, 260, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13559, 5612, 62, 14535, 28, 47, 6192, 5612, 19778, 7203, 301, 3369, 40, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28462, 62, 32374, 28, 16, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4174, 40045, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 11, 2030, 80, 287, 27056, 378, 7, 7266, 62, 35324, 58, 43027, 12962, 60, 198, 198, 2, 24550, 25, 775, 714, 466, 281, 477, 70, 1032, 994, 284, 3368, 275, 2701, 286, 198, 2, 1123, 2030, 80, 86, 1141, 4331, 11, 340, 561, 3338, 640, 475, 779, 517, 2272, 198, 198, 70, 293, 321, 62, 19849, 28, 9503, 13, 70, 1032, 7, 7266, 62, 70, 293, 321, 62, 19849, 11, 15763, 28, 15, 8, 198, 361, 4279, 855, 15, 25, 198, 220, 220, 220, 26852, 321, 62, 19849, 28, 77, 32152, 13, 1102, 9246, 268, 378, 7, 70, 293, 321, 62, 19849, 8, 198, 17772, 25, 198, 220, 220, 220, 26852, 321, 62, 19849, 28, 4868, 3419, 198, 198, 2, 554, 58, 2361, 25, 198, 198, 14986, 62, 79, 17407, 28, 25101, 198, 361, 2656, 62, 79, 17407, 25, 198, 220, 220, 220, 611, 4279, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 13, 10951, 10786, 8585, 284, 1057, 4331, 284, 651, 11001, 20742, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 11001, 62, 85, 3044, 396, 796, 4331, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 4703, 62, 4868, 11, 26852, 321, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 8, 198, 17772, 25, 198, 220, 220, 220, 2604, 13, 10951, 10786, 4, 67, 25, 7994, 284, 1057, 4331, 284, 651, 11001, 20742, 6, 4, 7, 43027, 4008, 198, 220, 220, 220, 3601, 10786, 4, 67, 25, 7994, 284, 1057, 4331, 284, 651, 11001, 20742, 6, 4, 7, 43027, 828, 25925, 28, 17821, 8, 198, 220, 220, 220, 923, 28, 2435, 13, 2435, 3419, 198, 220, 220, 220, 1303, 1439, 386, 6359, 869, 262, 2163, 475, 691, 4279, 28, 15, 3011, 262, 11001, 62, 85, 3044, 396, 198, 220, 220, 220, 11001, 62, 85, 3044, 396, 796, 4331, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 4703, 62, 4868, 11, 26852, 321, 62, 19849, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 8, 198, 220, 220, 220, 886, 28, 2435, 13, 2435, 3419, 198, 220, 220, 220, 1303, 6404, 13, 10951, 10786, 8585, 284, 1057, 10622, 284, 651, 26940, 20742, 11537, 198, 220, 220, 220, 1303, 10215, 31590, 62, 85, 3044, 396, 796, 10622, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 7108, 62, 18224, 28, 16, 13, 15, 8, 628, 198, 220, 220, 220, 1303, 3497, 262, 406, 12310, 13, 770, 318, 3058, 9178, 13, 628, 220, 220, 220, 1303, 554, 58, 2361, 25, 198, 220, 220, 220, 44386, 314, 761, 284, 41058, 1490, 62, 4868, 2728, 8383, 836, 470, 423, 340, 198, 220, 220, 220, 22492, 8373, 290, 6518, 62, 3903, 10394, 389, 35108, 290, 484, 423, 1541, 198, 220, 220, 220, 22492, 587, 6626, 628, 220, 220, 220, 2604, 13, 10951, 10786, 4, 67, 25, 4331, 5201, 287, 4064, 69, 4201, 6, 4, 7, 43027, 11, 437, 12, 9688, 4008, 198, 220, 220, 220, 3601, 10786, 4, 67, 25, 4331, 5201, 287, 4064, 69, 4201, 6, 4, 7, 43027, 11, 437, 12, 9688, 828, 25925, 28, 17821, 8, 198, 198, 6404, 13, 10951, 10786, 4, 67, 25, 7994, 2251, 2939, 422, 20742, 6, 4, 7, 43027, 4008, 198, 7266, 62, 4703, 62, 4868, 28, 299, 32152, 13, 18747, 62, 35312, 7, 4703, 62, 4868, 11, 2546, 8, 198, 7266, 62, 4703, 62, 4868, 28, 9503, 13, 1416, 1436, 7, 7266, 62, 4703, 62, 4868, 11, 15763, 28, 15, 8, 198, 198, 7266, 62, 19849, 62, 4868, 796, 685, 17953, 62, 9060, 62, 6738, 62, 4703, 2247, 7, 7266, 62, 4703, 62, 4868, 58, 69, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32515, 28, 77, 32515, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8373, 41888, 7266, 62, 35324, 58, 43027, 7131, 69, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6518, 62, 3903, 10394, 41888, 7266, 62, 17620, 62, 3903, 10394, 58, 43027, 7131, 69, 60, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4778, 1096, 28, 3846, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7108, 1087, 260, 28, 40715, 1087, 260, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13559, 5612, 62, 14535, 28, 47, 6192, 5612, 19778, 7203, 301, 3369, 40, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 11, 2030, 80, 287, 27056, 378, 7, 7266, 62, 35324, 58, 43027, 12962, 60, 628, 198, 2, 24550, 25, 775, 714, 466, 477, 70, 1032, 994, 11, 611, 1576, 4088, 2272, 198, 19849, 62, 4868, 28, 9503, 13, 70, 1032, 7, 7266, 62, 19849, 62, 4868, 11, 15763, 28, 15, 8, 198, 361, 4279, 855, 15, 25, 198, 220, 220, 220, 1303, 19849, 62, 4868, 28, 77, 32152, 13, 1102, 9246, 268, 378, 7, 19849, 62, 4868, 8, 198, 220, 220, 220, 2746, 62, 4868, 28, 1102, 9246, 62, 28047, 2374, 7, 19849, 62, 4868, 8, 198, 220, 220, 220, 1303, 554, 58, 2361, 25, 198, 17772, 25, 198, 220, 220, 220, 2746, 62, 4868, 28, 4868, 3419, 198, 198, 6404, 13, 24442, 10786, 4, 67, 2746, 62, 4868, 18896, 4064, 67, 6, 4064, 7, 43027, 11, 11925, 7, 19849, 62, 4868, 22305, 198, 6404, 13, 10951, 10786, 4, 67, 25, 7994, 284, 923, 287, 1851, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 7994, 284, 923, 287, 1851, 6, 4, 7, 43027, 828, 25925, 28, 17821, 8, 198, 9688, 28, 2435, 13, 2435, 3419, 198, 14986, 62, 259, 1851, 28, 25101, 198, 361, 2656, 62, 259, 1851, 25, 198, 220, 220, 220, 611, 4279, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11841, 62, 4868, 796, 287, 1851, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 2746, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 288, 2840, 69, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 26692, 69, 62, 4868, 796, 287, 1851, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 2746, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 288, 2840, 69, 28, 17821, 8, 198, 17772, 25, 198, 220, 220, 220, 11841, 62, 4868, 796, 287, 1851, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 2746, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 288, 2840, 69, 28, 25101, 8, 198, 220, 220, 220, 26692, 69, 62, 4868, 796, 287, 1851, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 2746, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 288, 2840, 69, 28, 17821, 8, 628, 198, 220, 220, 220, 1303, 13610, 290, 12260, 28770, 284, 787, 262, 11841, 2939, 290, 6599, 37, 628, 220, 220, 220, 1303, 554, 58, 2361, 25, 198, 437, 28, 2435, 13, 2435, 3419, 198, 6404, 13, 10951, 10786, 4, 67, 25, 287, 1851, 5201, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 287, 1851, 5201, 287, 4064, 69, 4201, 6, 4, 7, 43027, 11, 437, 12, 9688, 828, 25925, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 361, 4279, 855, 15, 25, 198, 220, 220, 220, 1303, 4798, 7203, 16345, 86, 912, 1600, 25925, 28, 17821, 8, 198, 220, 220, 220, 1303, 4798, 7, 49075, 62, 4868, 58, 15, 7131, 16, 12962, 628, 220, 220, 220, 2604, 13, 10951, 10786, 3260, 287, 1851, 284, 651, 11841, 2939, 11537, 198, 220, 220, 220, 11841, 796, 11841, 62, 4868, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 1303, 12860, 62, 9060, 7, 49075, 11, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 16, 13, 15, 11, 410, 1084, 10779, 15, 13, 16, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 49075, 4008, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 49075, 11, 705, 4, 82, 14, 320, 3039, 12, 49075, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 628, 220, 220, 220, 2604, 13, 10951, 10786, 3260, 287, 1851, 284, 651, 6599, 37, 11537, 198, 220, 220, 220, 26692, 69, 796, 26692, 69, 62, 4868, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 1303, 12860, 62, 9060, 7, 862, 69, 11, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 862, 69, 4008, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 862, 69, 11, 705, 4, 82, 14, 320, 3039, 12, 862, 69, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 198, 198, 2, 2735, 37431, 85, 6442, 1262, 285, 1416, 13087, 198, 198, 2, 554, 58, 2361, 25, 628, 198, 6404, 13, 10951, 10786, 4, 67, 25, 7994, 284, 1057, 37431, 85, 6442, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 7994, 284, 1057, 37431, 85, 6442, 6, 4, 7, 43027, 828, 25925, 28, 17821, 8, 198, 9688, 28, 2435, 13, 2435, 3419, 198, 14986, 62, 12501, 261, 85, 28, 25101, 198, 361, 2656, 62, 12501, 261, 85, 25, 198, 220, 220, 220, 611, 4279, 855, 15, 25, 628, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 5634, 11, 62, 796, 220, 220, 220, 220, 37431, 85, 6442, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 49075, 62, 4868, 11, 26692, 69, 62, 4868, 11, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 28, 23, 11, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11862, 11639, 907, 27773, 3256, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 4461, 28, 15, 13, 16, 11, 26692, 69, 62, 11284, 28, 2414, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 3858, 286, 11841, 1351, 1600, 4906, 7, 49075, 62, 4868, 27267, 290, 26692, 69, 62, 4868, 1600, 4906, 7, 862, 69, 62, 4868, 4008, 198, 220, 220, 220, 37431, 85, 5634, 796, 220, 220, 220, 220, 37431, 85, 6442, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 49075, 62, 4868, 11, 26692, 69, 62, 4868, 11, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 28, 23, 11, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11862, 11639, 907, 27773, 3256, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 4461, 28, 15, 13, 16, 11, 26692, 69, 62, 11284, 28, 2414, 8, 198, 220, 220, 220, 220, 198, 2, 12860, 62, 9060, 7, 12501, 261, 85, 5634, 58, 15, 4357, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 2, 489, 83, 13, 12860, 3419, 198, 437, 28, 2435, 13, 2435, 3419, 198, 198, 6404, 13, 10951, 10786, 4, 67, 25, 2293, 37431, 85, 6442, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 37431, 85, 6442, 5201, 287, 4064, 69, 792, 6, 4, 7, 43027, 11, 437, 12, 9688, 4008, 198, 198, 2, 554, 58, 2361, 25, 198, 198, 6404, 13, 10951, 10786, 4, 67, 25, 7994, 284, 1057, 44422, 19560, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 7994, 284, 1057, 44422, 19560, 6, 4, 7, 43027, 828, 25925, 28, 17821, 8, 198, 198, 9688, 28, 2435, 13, 2435, 3419, 198, 14986, 62, 18487, 13814, 320, 3039, 28, 25101, 198, 361, 2656, 62, 18487, 13814, 320, 3039, 25, 198, 220, 220, 220, 611, 4279, 855, 15, 25, 198, 220, 220, 220, 220, 220, 220, 220, 44422, 62, 320, 3039, 62, 4868, 796, 220, 220, 220, 220, 44422, 62, 320, 3039, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 11862, 11639, 3020, 27773, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 296, 298, 28, 18, 11, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 299, 22478, 28, 20, 11, 4461, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 796, 807, 11, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 26692, 69, 62, 11284, 28, 2414, 8, 198, 17772, 25, 198, 220, 220, 220, 44422, 62, 320, 3039, 62, 4868, 796, 220, 220, 220, 220, 44422, 62, 320, 3039, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 1490, 62, 82, 677, 274, 28, 4703, 62, 82, 677, 274, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 11862, 11639, 3020, 27773, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 296, 298, 28, 18, 11, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 299, 22478, 28, 20, 11, 4461, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 796, 807, 11, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 26692, 69, 62, 11284, 28, 2414, 8, 628, 628, 198, 2, 554, 58, 2361, 25, 198, 437, 28, 2435, 13, 2435, 3419, 198, 6404, 13, 10951, 10786, 4, 67, 25, 44422, 19560, 5201, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 44422, 19560, 5201, 287, 4064, 69, 792, 2637, 4, 7, 43027, 11, 437, 12, 9688, 828, 25925, 28, 17821, 8, 198, 198, 361, 4279, 855, 15, 25, 628, 220, 220, 220, 37431, 85, 5634, 796, 44422, 62, 320, 3039, 62, 4868, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 29598, 796, 44422, 62, 320, 3039, 62, 4868, 58, 16, 7131, 15, 60, 198, 220, 220, 220, 15032, 796, 44422, 62, 320, 3039, 62, 4868, 58, 17, 7131, 15, 60, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 12501, 261, 85, 5634, 11, 3670, 11639, 32657, 2939, 532, 645, 2116, 9948, 3256, 12067, 11639, 43887, 893, 3256, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 12501, 261, 85, 5634, 11, 4732, 11639, 32657, 2939, 532, 645, 2116, 9948, 6, 4008, 628, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 2118, 1850, 11, 3670, 11639, 19452, 1850, 3424, 2939, 532, 645, 2116, 9948, 3256, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 16, 13, 15, 11, 410, 1084, 10779, 15, 13, 16, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 2118, 1850, 11, 4732, 11639, 19452, 1850, 3424, 2939, 532, 645, 2116, 9948, 6, 4008, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 2118, 1850, 11, 705, 4, 82, 14, 320, 3039, 12, 67, 2093, 62, 18487, 13814, 62, 320, 3039, 62, 2118, 1850, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 411, 312, 723, 58, 15, 4357, 3670, 11639, 4965, 312, 723, 3424, 2939, 532, 645, 2116, 9948, 3256, 12067, 11639, 43887, 893, 3256, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 411, 312, 723, 58, 15, 4357, 4732, 11639, 4965, 312, 723, 3424, 2939, 532, 645, 2116, 9948, 6, 4008, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 411, 312, 723, 58, 15, 4357, 705, 4, 82, 14, 320, 3039, 12, 67, 2093, 62, 18487, 13814, 62, 320, 3039, 62, 411, 312, 723, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 198, 198, 361, 4279, 855, 15, 25, 198, 220, 220, 220, 329, 442, 272, 287, 2837, 7, 77, 19503, 80, 5404, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29598, 796, 44422, 62, 320, 3039, 62, 4868, 58, 16, 7131, 3147, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 12860, 62, 9060, 7, 411, 312, 723, 58, 15, 4357, 3670, 11639, 29239, 4064, 67, 6, 4064, 442, 272, 11, 12067, 11639, 43887, 893, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 628, 198, 2, 554, 58, 2361, 25, 628, 198, 13716, 82, 796, 2251, 62, 9948, 571, 1358, 62, 13716, 82, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 13716, 82, 17816, 51, 6, 7131, 6, 11085, 62, 944, 9948, 20520, 796, 352, 198, 13716, 82, 17816, 38, 6, 7131, 6, 11085, 62, 944, 9948, 20520, 796, 513, 198, 13716, 82, 17816, 33, 6, 7131, 6, 11085, 62, 944, 9948, 20520, 796, 604, 198, 198, 13716, 82, 17816, 51, 6, 7131, 6, 22355, 75, 501, 20520, 796, 705, 23736, 6, 198, 13716, 82, 17816, 38, 6, 7131, 6, 22355, 75, 501, 20520, 796, 705, 23736, 6, 198, 13716, 82, 17816, 33, 6, 7131, 6, 22355, 75, 501, 20520, 796, 352, 68, 20, 198, 198, 381, 13, 381, 22272, 7, 13716, 82, 8, 628, 198, 2, 554, 58, 2361, 25, 198, 198, 2, 16926, 46, 314, 1487, 428, 284, 11001, 62, 85, 3044, 396, 284, 787, 340, 2206, 49228, 11, 314, 2911, 340, 1838, 198, 2, 2565, 14373, 198, 2, 605, 62, 4868, 796, 220, 605, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 10215, 31590, 62, 85, 3044, 396, 11, 220, 198, 6404, 13, 10951, 10786, 4, 67, 25, 7994, 284, 1057, 220, 605, 6, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 7994, 284, 1057, 220, 605, 6, 4, 7, 43027, 828, 25925, 28, 17821, 8, 198, 198, 9688, 28, 2435, 13, 2435, 3419, 198, 14986, 62, 605, 28, 25101, 198, 361, 2656, 62, 605, 25, 198, 220, 220, 220, 611, 4279, 855, 15, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 605, 62, 4868, 796, 220, 605, 62, 4868, 62, 46911, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36537, 62, 22866, 796, 705, 35990, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6973, 28, 13716, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 11862, 11639, 3020, 27773, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 296, 298, 28, 18, 11, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 299, 22478, 28, 20, 11, 4461, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 796, 807, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 429, 999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 75, 501, 11639, 23736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 82, 2122, 28, 25101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26692, 69, 62, 11284, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 466, 62, 944, 9948, 28, 17821, 8, 198, 198, 17772, 25, 628, 220, 220, 220, 220, 605, 62, 4868, 796, 220, 605, 62, 4868, 62, 3149, 72, 62, 1818, 11125, 7, 28764, 5722, 62, 85, 3044, 396, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 48466, 46331, 28, 19849, 62, 4868, 11, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4732, 11639, 86, 25558, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36537, 62, 22866, 796, 705, 35990, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6973, 28, 13716, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16252, 41888, 15, 11, 513, 11, 838, 4357, 11862, 11639, 3020, 27773, 3256, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28642, 296, 298, 28, 18, 11, 299, 2676, 28, 12825, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13390, 282, 62, 400, 10126, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11387, 28, 15, 13, 16, 11, 299, 22478, 28, 20, 11, 4461, 28, 15, 13, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 38942, 1039, 796, 807, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 2502, 37796, 28, 1433, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37431, 85, 6442, 62, 83, 2136, 11639, 28047, 2539, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1490, 62, 82, 677, 274, 28, 429, 999, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1661, 75, 501, 11639, 23736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3298, 62, 82, 2122, 28, 25101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26692, 69, 62, 11284, 28, 2414, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 466, 62, 944, 9948, 28, 17821, 8, 628, 198, 2, 554, 58, 2361, 25, 198, 437, 28, 2435, 13, 2435, 3419, 198, 6404, 13, 10951, 10786, 4, 67, 25, 220, 605, 5201, 705, 4, 7, 43027, 4008, 198, 4798, 10786, 4, 67, 25, 220, 605, 5201, 287, 4064, 69, 792, 2637, 4, 7, 43027, 11, 437, 12, 9688, 828, 25925, 28, 17821, 8, 198, 198, 361, 4279, 855, 15, 25, 198, 220, 220, 220, 2604, 13, 10951, 10786, 3260, 220, 605, 11537, 198, 220, 220, 220, 37431, 85, 5634, 796, 220, 605, 62, 4868, 58, 15, 7131, 15, 60, 198, 220, 220, 220, 29598, 796, 220, 605, 62, 4868, 58, 16, 7131, 15, 60, 198, 220, 220, 220, 15032, 796, 220, 605, 62, 4868, 58, 17, 7131, 15, 60, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 12501, 261, 85, 5634, 11, 3670, 11639, 32657, 2939, 3256, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 16, 13, 15, 11, 410, 1084, 10779, 15, 13, 16, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 12501, 261, 85, 5634, 11, 4732, 11639, 32657, 2939, 6, 4008, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 2118, 1850, 11, 3670, 11639, 19452, 1850, 3424, 2939, 3256, 12067, 11639, 43887, 893, 3256, 410, 9806, 28, 16, 13, 15, 11, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 1084, 10779, 15, 13, 16, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 2118, 1850, 11, 4732, 11639, 19452, 1850, 3424, 2939, 6, 4008, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 2118, 1850, 11, 705, 4, 82, 14, 320, 3039, 12, 67, 2093, 62, 605, 62, 2118, 1850, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 628, 220, 220, 220, 1303, 69, 28, 12860, 62, 9060, 7, 411, 312, 723, 58, 15, 4357, 3670, 11639, 4965, 312, 723, 3424, 2939, 3256, 12067, 11639, 43887, 893, 3256, 220, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 410, 9806, 28, 15, 13, 16, 11, 410, 1084, 10779, 15, 13, 486, 8, 198, 220, 220, 220, 3601, 7, 20402, 62, 9060, 7, 411, 312, 723, 58, 15, 4357, 4732, 11639, 4965, 312, 723, 3424, 2939, 6, 4008, 198, 220, 220, 220, 1303, 489, 83, 13, 12860, 3419, 198, 220, 220, 220, 10784, 62, 9060, 62, 1462, 62, 21013, 7, 411, 312, 723, 58, 15, 4357, 705, 4, 82, 14, 320, 3039, 12, 67, 2093, 62, 605, 62, 411, 312, 723, 13, 21013, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 7, 43420, 62, 15908, 4008, 628 ]
1.926533
10,372
from __future__ import absolute_import import logging # to change log level globally, use eg logconfig.loglevel(logging.WARN) # to change level for an individual module, eg logconfig.loglevel(logging.DEBUG, "framedata")
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 18931, 198, 198, 2, 284, 1487, 2604, 1241, 18309, 11, 779, 29206, 2604, 11250, 13, 75, 2467, 626, 7, 6404, 2667, 13, 37771, 8, 198, 2, 284, 1487, 1241, 329, 281, 1981, 8265, 11, 29206, 2604, 11250, 13, 75, 2467, 626, 7, 6404, 2667, 13, 30531, 11, 366, 19298, 276, 1045, 4943, 198 ]
3.507937
63
expected_output = { 'policy_map': { 'policy-cbwfq-1': {'class': { 'class-gold': {'bandwidth_percent': '40', 'random_detect': ['dscp-based', 'ecn']}, 'class-silver': {'bandwidth_percent': '20', 'random_detect': ['dscp-based', 'ecn']}, 'class-bronze': {'bandwidth_percent': '10', 'random_detect': ['dscp-based', 'ecn']}, 'management-traffic': {'bandwidth_percent': '1', 'random_detect': ['dscp-based', 'ecn'], 'qos_set': {'dscp': 'af21'}}, 'class-default': {'bandwidth_percent': '29', 'random_detect': ['dscp-based', 'ecn'], 'qos_set': {'dscp': 'default'}}}} } }
[ 40319, 62, 22915, 796, 1391, 198, 220, 220, 220, 705, 30586, 62, 8899, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 30586, 12, 21101, 86, 69, 80, 12, 16, 10354, 1391, 6, 4871, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 12, 24267, 10354, 1391, 6, 3903, 10394, 62, 25067, 10354, 705, 1821, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 62, 15255, 478, 10354, 37250, 67, 1416, 79, 12, 3106, 3256, 705, 721, 77, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 12, 40503, 10354, 1391, 6, 3903, 10394, 62, 25067, 10354, 705, 1238, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 62, 15255, 478, 10354, 37250, 67, 1416, 79, 12, 3106, 3256, 705, 721, 77, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 12, 65, 1313, 2736, 10354, 1391, 6, 3903, 10394, 62, 25067, 10354, 705, 940, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 62, 15255, 478, 10354, 37250, 67, 1416, 79, 12, 3106, 3256, 705, 721, 77, 20520, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27604, 12, 9535, 2108, 10354, 1391, 6, 3903, 10394, 62, 25067, 10354, 705, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 62, 15255, 478, 10354, 37250, 67, 1416, 79, 12, 3106, 3256, 705, 721, 77, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 80, 418, 62, 2617, 10354, 1391, 6, 67, 1416, 79, 10354, 705, 1878, 2481, 6, 92, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 12, 12286, 10354, 1391, 6, 3903, 10394, 62, 25067, 10354, 705, 1959, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25120, 62, 15255, 478, 10354, 37250, 67, 1416, 79, 12, 3106, 3256, 705, 721, 77, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 80, 418, 62, 2617, 10354, 1391, 6, 67, 1416, 79, 10354, 705, 12286, 6, 11709, 11709, 198, 220, 220, 220, 1782, 198, 92 ]
1.627151
523
# https://github.com/ArtemNikolaev/gb-hw/issues/26 from functools import reduce print(multiply())
[ 2, 3740, 1378, 12567, 13, 785, 14, 8001, 368, 40979, 5708, 1990, 14, 22296, 12, 36599, 14, 37165, 14, 2075, 198, 6738, 1257, 310, 10141, 1330, 4646, 628, 628, 198, 4798, 7, 16680, 541, 306, 28955, 198 ]
2.756757
37
Link = "https://practice.geeksforgeeks.org/problems/merge-two-sorted-arrays-1587115620/1" Description = "Given two sorted arrays arr1[] and arr2[] of sizes n and m in non-decreasing order." \ "Merge them in sorted order without using any extra space. Modify arr1 so that it" \ "contains the first N elements and modify arr2 so that it contains the last M elements." Examples = "Input: " \ "n = 4, arr1[] = [1 3 5 7] " \ "m = 5, arr2[] = [0 2 6 8 9]" \ "Output: " \ "arr1[] = [0 1 2 3]" \ "arr2[] = [5 6 7 8 9]" \ "Explanation: After merging the two non-decreasing arrays, we get, 0 1 2 3 5 6 7 8 9." arr1 = [1,36,39,105,146,154,168,170,204,206,217,219,225,227,272,282,293,300,312,323,328,328,334,335,359,370,383,392,395,396,403,413,422,437,443,448,462,463,465,479,492,496] arr2 = [7,22,30,36,38,38,39,41,42,48,49,83,85,102,107,116,119,124,127,130,140,142,145,149,159,163,165,174,174,191,205,212,224,230,242,246,254,257,258,265,279,289,306,307,309,317,324,334,341,343,351,360,369,371,377,387,391,394,430,431,432,440,443,445,447,455,467,478] n = 42 m = 68 # Approach 1 print(Solution1().merge(arr1, arr2, n, m))
[ 11280, 796, 366, 5450, 1378, 39541, 13, 469, 2573, 30293, 2573, 13, 2398, 14, 1676, 22143, 14, 647, 469, 12, 11545, 12, 82, 9741, 12, 3258, 592, 12, 1314, 5774, 1157, 3980, 1238, 14, 16, 1, 198, 11828, 796, 366, 15056, 734, 23243, 26515, 5240, 16, 21737, 290, 5240, 17, 21737, 286, 10620, 299, 290, 285, 287, 1729, 12, 12501, 260, 2313, 1502, 526, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13102, 469, 606, 287, 23243, 1502, 1231, 1262, 597, 3131, 2272, 13, 3401, 1958, 5240, 16, 523, 326, 340, 1, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3642, 1299, 262, 717, 399, 4847, 290, 13096, 5240, 17, 523, 326, 340, 4909, 262, 938, 337, 4847, 526, 198, 27730, 796, 366, 20560, 25, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 77, 796, 604, 11, 5240, 16, 21737, 796, 685, 16, 513, 642, 767, 60, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 76, 796, 642, 11, 5240, 17, 21737, 796, 685, 15, 362, 718, 807, 860, 30866, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26410, 25, 366, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3258, 16, 21737, 796, 685, 15, 352, 362, 513, 30866, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3258, 17, 21737, 796, 685, 20, 718, 767, 807, 860, 30866, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3109, 11578, 341, 25, 2293, 35981, 262, 734, 1729, 12, 12501, 260, 2313, 26515, 11, 356, 651, 11, 657, 352, 362, 513, 642, 718, 767, 807, 860, 526, 198, 198, 3258, 16, 796, 685, 16, 11, 2623, 11, 2670, 11, 13348, 11, 20964, 11, 21526, 11, 14656, 11, 17279, 11, 18638, 11, 22136, 11, 24591, 11, 28896, 11, 18182, 11, 24403, 11, 29807, 11, 32568, 11, 31675, 11, 6200, 11, 27970, 11, 32637, 11, 34256, 11, 34256, 11, 31380, 11, 27326, 11, 30743, 11, 20167, 11, 34741, 11, 32321, 11, 31010, 11, 34107, 11, 31552, 11, 44103, 11, 44361, 11, 43284, 11, 34938, 11, 31115, 11, 39997, 11, 38380, 11, 42018, 11, 31714, 11, 40256, 11, 37747, 60, 198, 3258, 17, 796, 685, 22, 11, 1828, 11, 1270, 11, 2623, 11, 2548, 11, 2548, 11, 2670, 11, 3901, 11, 3682, 11, 2780, 11, 2920, 11, 5999, 11, 5332, 11, 15377, 11, 15982, 11, 18298, 11, 16315, 11, 17464, 11, 16799, 11, 12952, 11, 15187, 11, 23726, 11, 18781, 11, 19442, 11, 19707, 11, 24136, 11, 20986, 11, 22985, 11, 22985, 11, 26492, 11, 21261, 11, 21777, 11, 24137, 11, 19214, 11, 27877, 11, 26912, 11, 24970, 11, 28676, 11, 25600, 11, 22980, 11, 26050, 11, 27693, 11, 20548, 11, 22996, 11, 26895, 11, 34125, 11, 33916, 11, 31380, 11, 33660, 11, 32118, 11, 35273, 11, 15277, 11, 30803, 11, 38056, 11, 26514, 11, 32220, 11, 37710, 11, 34626, 11, 31794, 11, 50080, 11, 45331, 11, 25644, 11, 34938, 11, 43489, 11, 34825, 11, 30505, 11, 24669, 11, 29059, 60, 198, 77, 796, 5433, 198, 76, 796, 8257, 198, 2, 38066, 352, 198, 4798, 7, 46344, 16, 22446, 647, 469, 7, 3258, 16, 11, 5240, 17, 11, 299, 11, 285, 4008, 198 ]
2.132743
565
# Copyright 2019 Amazon.com, Inc. or its affiliates. # Licensed under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
[ 2, 15069, 13130, 6186, 13, 785, 11, 3457, 13, 393, 663, 29116, 13, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 628 ]
3.864516
155
#!/usr/bin/env python from setuptools import setup, find_packages import io setup( name='tomago-sdk-py', version='1.5.1', description="Python SDKs for Blockchain.", long_description=io.open('README.md', encoding='utf-8').read(), url='https://github.com/arxanchain/tomago-sdk-py/', download_url='https://github.com/arxanchain/tomago-sdk-py/', packages=find_packages(), platforms='any', install_requires=[ "mock==2.0.0", "requests==2.18.4", "six==1.11.0", "urllib3==1.22", "py-common==v1.5.1" ], dependency_links=[ "git+git://github.com/arxanchain/[email protected]#egg=py-common-v1.5.1" ], include_package_data=True, zip_safe=False, )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 11748, 33245, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 39532, 3839, 12, 21282, 74, 12, 9078, 3256, 198, 220, 220, 220, 2196, 11639, 16, 13, 20, 13, 16, 3256, 198, 220, 220, 220, 6764, 2625, 37906, 26144, 82, 329, 29724, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 952, 13, 9654, 10786, 15675, 11682, 13, 9132, 3256, 21004, 11639, 40477, 12, 23, 27691, 961, 22784, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 283, 87, 3702, 391, 14, 39532, 3839, 12, 21282, 74, 12, 9078, 14, 3256, 198, 220, 220, 220, 4321, 62, 6371, 11639, 5450, 1378, 12567, 13, 785, 14, 283, 87, 3702, 391, 14, 39532, 3839, 12, 21282, 74, 12, 9078, 14, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 22784, 198, 220, 220, 220, 9554, 11639, 1092, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 76, 735, 855, 17, 13, 15, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8897, 3558, 855, 17, 13, 1507, 13, 19, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 19412, 855, 16, 13, 1157, 13, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 333, 297, 571, 18, 855, 16, 13, 1828, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9078, 12, 11321, 855, 85, 16, 13, 20, 13, 16, 1, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 20203, 62, 28751, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18300, 10, 18300, 1378, 12567, 13, 785, 14, 283, 87, 3702, 391, 14, 9078, 12, 11321, 13, 18300, 31, 85, 16, 13, 20, 13, 16, 2, 33856, 28, 9078, 12, 11321, 12, 85, 16, 13, 20, 13, 16, 1, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 8, 198 ]
2.098315
356
#!/usr/bin/env python # Copyright (c) 2017, the R8 project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import create_maven_release import gradle import jdk import optparse import os try: import resource except ImportError: # Not a Unix system. Do what Gandalf tells you not to. pass import shutil import subprocess import sys import toolhelper import utils import zipfile from build_r8lib import build_r8lib ARCHIVE_BUCKET = 'r8-releases' if __name__ == '__main__': sys.exit(Main())
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 15069, 357, 66, 8, 2177, 11, 262, 371, 23, 1628, 7035, 13, 4222, 766, 262, 37195, 20673, 2393, 198, 2, 329, 3307, 13, 1439, 2489, 10395, 13, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 198, 2, 347, 10305, 12, 7635, 5964, 326, 460, 307, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 11748, 2251, 62, 2611, 574, 62, 20979, 198, 11748, 3915, 293, 198, 11748, 474, 34388, 198, 11748, 2172, 29572, 198, 11748, 28686, 198, 28311, 25, 198, 220, 1330, 8271, 198, 16341, 17267, 12331, 25, 198, 220, 1303, 1892, 257, 33501, 1080, 13, 2141, 644, 17727, 1604, 4952, 345, 407, 284, 13, 198, 220, 1208, 198, 11748, 4423, 346, 198, 11748, 850, 14681, 198, 11748, 25064, 198, 11748, 2891, 2978, 525, 198, 11748, 3384, 4487, 198, 11748, 19974, 7753, 198, 6738, 1382, 62, 81, 23, 8019, 1330, 1382, 62, 81, 23, 8019, 198, 198, 31315, 9306, 62, 33, 16696, 2767, 796, 705, 81, 23, 12, 260, 29329, 6, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 25064, 13, 37023, 7, 13383, 28955, 198 ]
3.227979
193
# Copyright 2020 BlueChasm LLC dba OsmosisAI. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from dataclasses import dataclass from typing import List @dataclass @dataclass @dataclass
[ 2, 220, 15069, 12131, 4518, 1925, 8597, 11419, 288, 7012, 440, 5796, 5958, 20185, 13, 198, 2, 198, 2, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 11247, 739, 262, 13789, 13, 198, 198, 6738, 4732, 8019, 1330, 4732, 37153, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 6738, 19720, 1330, 7343, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 628, 198, 31, 19608, 330, 31172, 628 ]
3.570048
207
import numpy as np import math def alpha_help(a,n): """function to compute some approximations Parameters ---------- a : complex number n : int number Returns ln : complex approximation """ if a.real == 0 and a.imag == 0: if n == 0: ln = np.complex(0,0) else: ln = np.complex(-1e200,0) elif n >= 300: ln = n *np.log(a)- (n*np.log(n)-n + np.log(2*np.pi*n)/2)/2 else: ln = n * np.log(a) - math.log(math.factorial(int(n)))/2 return ln def find_norm(z): """find complex norm^2 of a vector of complex numbers""" k = 0 for i in z: k = k + (i * np.conj(i)).real return k def setup_scaled_H(q, c, n, m, nmaxfinal): """function to setup tridigonal Hamiltonian if first, return d,e Parameters ---------- q : float quadratic zeeman shift c : float c_2n, spinor interaction rate n : int number of particles m : int magnetization nmaxfinal : int deprecated Returns ------- e_min : float minimum eigenvalue e_max : float maximum eigenvalue d : np.array(complex) diagonal elements of Hamiltonian e : np.array(complex) off diagonal elements of Hamiltonian first_n0 : int n-|m| % 2 """ first_n0 = np.mod(n-abs(m), 2) n0 = np.mod((n-abs(m)), 2) nmax = int((n-abs(m)-n0)/2 + 1) #create arrays e = np.zeros(int(nmax)-1) d = np.zeros(int(nmax)) c_local = c/n #matrix elements of hamiltonian nm = (n - n0 - m)/2 npp = (n - n0 + m)/2 for j in range(int(nmax)): d[j] = (n-n0)*(q+0.5*c_local*(2*n0-1)) if j < (nmax-1): e[j] = c_local*np.sqrt(nm*npp*(n0+2)*(n0+1)) nm = nm - 1 npp = npp - 1 n0 = n0 + 2 #estimate based on Gershgorin's circle theorem radius = abs(e[0]) e_min = d[0] - radius e_max = d[0] + radius for j in range(2,int(nmax)-1): radius = abs(e[j-2]) + abs(e[j-1]) e_min = min(e_min, d[j-1] - radius) e_max = max(e_max, d[j-1] + radius) radius = abs(e[nmax-2]) e_min = min(e_min, d[nmax-1] - radius) e_max = max(e_max, d[nmax-1] + radius) radius = (e_max + e_min)/2 for i in range(int(nmax)): d[i] = d[i] - radius radius = 2/(e_max-e_min) d = np.multiply(radius,d) e = np.multiply(radius,e) return e_min, e_max ,d ,e, first_n0 def hamiltonian_c(n_max, in_w, e, d): """apply tridiagonal real Hamiltonian matrix to a complex vector Parameters ---------- n_max : int maximum n for cutoff in_w : np.array(complex) state in d : np.array(complex) diagonal elements of Hamiltonian e : np.array(complex) off diagonal elements of Hamiltonian Returns ------- out_w : np.array(complex) application of Hamiltonian to vector """ n_max = int(n_max) out_w = in_w[:n_max]*d[:n_max] out_w[:(n_max-1)] += e[:(n_max-1)]*in_w[1:n_max] out_w[1:n_max] += e[:n_max-1] * in_w[:n_max-1] return out_w def moments(wave, n): """mean and variance of wavefunction Parameters ---------- wave : np.array(complex) wavefunction n : int number of atoms Returns ------- x : float mean of wavefunction x2 : float variance of wavefunction """ nn = np.arange(n, n+2*len(wave), 2) Y = (wave * np.conj(wave)).real x = np.sum(Y * nn) x2 = np.sum(Y * nn * nn) return x, x2
[ 11748, 299, 32152, 355, 45941, 198, 11748, 10688, 198, 198, 4299, 17130, 62, 16794, 7, 64, 11, 77, 2599, 198, 220, 220, 220, 37227, 8818, 284, 24061, 617, 5561, 320, 602, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 257, 1058, 3716, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 198, 220, 220, 220, 299, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 300, 77, 1058, 3716, 198, 220, 220, 220, 220, 220, 220, 220, 40874, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 257, 13, 5305, 6624, 657, 290, 257, 13, 48466, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 77, 796, 45941, 13, 41887, 7, 15, 11, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 77, 796, 45941, 13, 41887, 32590, 16, 68, 2167, 11, 15, 8, 628, 220, 220, 220, 1288, 361, 299, 18189, 5867, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 77, 796, 299, 1635, 37659, 13, 6404, 7, 64, 13219, 357, 77, 9, 37659, 13, 6404, 7, 77, 13219, 77, 1343, 45941, 13, 6404, 7, 17, 9, 37659, 13, 14415, 9, 77, 20679, 17, 20679, 17, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 77, 796, 299, 1635, 45941, 13, 6404, 7, 64, 8, 532, 10688, 13, 6404, 7, 11018, 13, 22584, 5132, 7, 600, 7, 77, 4008, 20679, 17, 198, 220, 220, 220, 1441, 300, 77, 198, 198, 4299, 1064, 62, 27237, 7, 89, 2599, 198, 220, 220, 220, 37227, 19796, 3716, 2593, 61, 17, 286, 257, 15879, 286, 3716, 3146, 37811, 198, 220, 220, 220, 479, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 1976, 25, 198, 220, 220, 220, 220, 220, 220, 220, 479, 796, 479, 1343, 357, 72, 1635, 45941, 13, 1102, 73, 7, 72, 29720, 5305, 198, 220, 220, 220, 1441, 479, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 4299, 9058, 62, 1416, 3021, 62, 39, 7, 80, 11, 269, 11, 299, 11, 285, 11, 299, 9806, 20311, 2599, 198, 220, 220, 220, 37227, 8818, 284, 9058, 491, 312, 328, 20996, 11582, 666, 611, 717, 11, 1441, 288, 11, 68, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 10662, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15094, 81, 1512, 41271, 8463, 6482, 198, 220, 220, 220, 269, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 17, 77, 11, 7906, 273, 10375, 2494, 198, 220, 220, 220, 299, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 13166, 198, 220, 220, 220, 285, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 19972, 1634, 198, 220, 220, 220, 299, 9806, 20311, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 39224, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 304, 62, 1084, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5288, 304, 9324, 8367, 198, 220, 220, 220, 304, 62, 9806, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 304, 9324, 8367, 198, 220, 220, 220, 288, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40039, 4847, 286, 11582, 666, 198, 220, 220, 220, 304, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 572, 40039, 4847, 286, 11582, 666, 198, 220, 220, 220, 717, 62, 77, 15, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 299, 22831, 76, 91, 4064, 362, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 717, 62, 77, 15, 796, 45941, 13, 4666, 7, 77, 12, 8937, 7, 76, 828, 362, 8, 198, 220, 220, 220, 299, 15, 796, 45941, 13, 4666, 19510, 77, 12, 8937, 7, 76, 36911, 362, 8, 198, 220, 220, 220, 299, 9806, 796, 493, 19510, 77, 12, 8937, 7, 76, 13219, 77, 15, 20679, 17, 1343, 352, 8, 198, 220, 198, 220, 220, 220, 1303, 17953, 26515, 198, 220, 220, 220, 304, 796, 45941, 13, 9107, 418, 7, 600, 7, 77, 9806, 13219, 16, 8, 198, 220, 220, 220, 288, 796, 45941, 13, 9107, 418, 7, 600, 7, 77, 9806, 4008, 198, 220, 220, 198, 220, 220, 220, 269, 62, 12001, 796, 269, 14, 77, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6759, 8609, 4847, 286, 8891, 9044, 666, 198, 220, 220, 220, 28642, 796, 357, 77, 532, 299, 15, 532, 285, 20679, 17, 198, 220, 220, 220, 299, 381, 796, 357, 77, 532, 299, 15, 1343, 285, 20679, 17, 198, 220, 220, 220, 329, 474, 287, 2837, 7, 600, 7, 77, 9806, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 73, 60, 796, 357, 77, 12, 77, 15, 27493, 7, 80, 10, 15, 13, 20, 9, 66, 62, 12001, 9, 7, 17, 9, 77, 15, 12, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 474, 1279, 357, 77, 9806, 12, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 58, 73, 60, 796, 269, 62, 12001, 9, 37659, 13, 31166, 17034, 7, 21533, 9, 77, 381, 9, 7, 77, 15, 10, 17, 27493, 7, 77, 15, 10, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 28642, 796, 28642, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 299, 381, 796, 299, 381, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15, 796, 299, 15, 1343, 362, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 395, 1920, 1912, 319, 402, 364, 71, 7053, 259, 338, 9197, 44728, 198, 220, 220, 220, 16874, 796, 2352, 7, 68, 58, 15, 12962, 198, 220, 220, 220, 304, 62, 1084, 796, 288, 58, 15, 60, 532, 16874, 198, 220, 220, 220, 304, 62, 9806, 796, 288, 58, 15, 60, 1343, 16874, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 17, 11, 600, 7, 77, 9806, 13219, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 16874, 796, 2352, 7, 68, 58, 73, 12, 17, 12962, 1343, 2352, 7, 68, 58, 73, 12, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 304, 62, 1084, 796, 949, 7, 68, 62, 1084, 11, 288, 58, 73, 12, 16, 60, 532, 16874, 8, 198, 220, 220, 220, 220, 220, 220, 220, 304, 62, 9806, 796, 3509, 7, 68, 62, 9806, 11, 288, 58, 73, 12, 16, 60, 1343, 16874, 8, 198, 220, 220, 220, 16874, 796, 2352, 7, 68, 58, 77, 9806, 12, 17, 12962, 198, 220, 220, 220, 304, 62, 1084, 796, 949, 7, 68, 62, 1084, 11, 288, 58, 77, 9806, 12, 16, 60, 532, 16874, 8, 198, 220, 220, 220, 304, 62, 9806, 796, 3509, 7, 68, 62, 9806, 11, 288, 58, 77, 9806, 12, 16, 60, 1343, 16874, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16874, 796, 357, 68, 62, 9806, 1343, 304, 62, 1084, 20679, 17, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 600, 7, 77, 9806, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 288, 58, 72, 60, 796, 288, 58, 72, 60, 532, 16874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16874, 796, 362, 29006, 68, 62, 9806, 12, 68, 62, 1084, 8, 198, 220, 220, 220, 288, 796, 45941, 13, 16680, 541, 306, 7, 42172, 11, 67, 8, 198, 220, 220, 220, 304, 796, 45941, 13, 16680, 541, 306, 7, 42172, 11, 68, 8, 198, 220, 220, 220, 1441, 304, 62, 1084, 11, 304, 62, 9806, 837, 67, 837, 68, 11, 717, 62, 77, 15, 198, 220, 198, 198, 4299, 8891, 9044, 666, 62, 66, 7, 77, 62, 9806, 11, 287, 62, 86, 11, 304, 11, 288, 2599, 198, 220, 220, 220, 37227, 39014, 491, 19830, 27923, 1103, 11582, 666, 17593, 284, 257, 3716, 15879, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 62, 9806, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 5415, 299, 329, 45616, 198, 220, 220, 220, 287, 62, 86, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 287, 198, 220, 220, 220, 288, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 40039, 4847, 286, 11582, 666, 198, 220, 220, 220, 304, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 572, 40039, 4847, 286, 11582, 666, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 503, 62, 86, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3586, 286, 11582, 666, 284, 15879, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 62, 9806, 796, 493, 7, 77, 62, 9806, 8, 198, 220, 220, 220, 503, 62, 86, 796, 287, 62, 86, 58, 25, 77, 62, 9806, 60, 9, 67, 58, 25, 77, 62, 9806, 60, 198, 220, 220, 220, 503, 62, 86, 58, 37498, 77, 62, 9806, 12, 16, 15437, 15853, 304, 58, 37498, 77, 62, 9806, 12, 16, 15437, 9, 259, 62, 86, 58, 16, 25, 77, 62, 9806, 60, 198, 220, 220, 220, 503, 62, 86, 58, 16, 25, 77, 62, 9806, 60, 15853, 304, 58, 25, 77, 62, 9806, 12, 16, 60, 1635, 287, 62, 86, 58, 25, 77, 62, 9806, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 503, 62, 86, 198, 198, 4299, 7188, 7, 19204, 11, 299, 2599, 198, 220, 220, 220, 37227, 32604, 290, 24198, 286, 6769, 8818, 198, 220, 220, 220, 220, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 6769, 1058, 45941, 13, 18747, 7, 41887, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6769, 8818, 198, 220, 220, 220, 299, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 23235, 198, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 2124, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 1612, 286, 6769, 8818, 198, 220, 220, 220, 2124, 17, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 24198, 286, 6769, 8818, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 299, 77, 796, 45941, 13, 283, 858, 7, 77, 11, 299, 10, 17, 9, 11925, 7, 19204, 828, 362, 8, 198, 220, 220, 220, 575, 796, 357, 19204, 1635, 45941, 13, 1102, 73, 7, 19204, 29720, 5305, 198, 220, 220, 220, 2124, 796, 45941, 13, 16345, 7, 56, 1635, 299, 77, 8, 198, 220, 220, 220, 2124, 17, 796, 45941, 13, 16345, 7, 56, 1635, 299, 77, 1635, 299, 77, 8, 198, 220, 220, 220, 1441, 2124, 11, 2124, 17 ]
1.92731
1,926
# -*- coding: utf-8 -*- from __future__ import absolute_import import sys from .common import unittest from squint._compatibility.itertools import islice from squint._utils import IterItems from squint.result import Result
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 11748, 25064, 198, 6738, 764, 11321, 1330, 555, 715, 395, 198, 6738, 2809, 600, 13557, 5589, 25901, 13, 270, 861, 10141, 1330, 318, 75, 501, 198, 6738, 2809, 600, 13557, 26791, 1330, 40806, 23022, 198, 6738, 2809, 600, 13, 20274, 1330, 25414, 628, 628, 198 ]
3.338235
68
# multiAgents.py # -------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to # http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # ([email protected]) and Dan Klein ([email protected]). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel ([email protected]). from __future__ import division from util import manhattanDistance from game import Directions import random, util from game import Agent class ReflexAgent(Agent): """ A reflex agent chooses an action at each choice point by examining its alternatives via a state evaluation function. The code below is provided as a guide. You are welcome to change it in any way you see fit, so long as you don't touch our method headers. """ def getAction(self, gameState): """ You do not need to change this method, but you're welcome to. getAction chooses among the best options according to the evaluation function. Just like in the previous project, getAction takes a GameState and returns some Directions.X for some X in the set {North, South, West, East, Stop} """ # Collect legal moves and successor states legalMoves = gameState.getLegalActions() # Choose one of the best actions scores = [self.evaluationFunction(gameState, action) for action in legalMoves] bestScore = max(scores) bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore] chosenIndex = random.choice(bestIndices) # Pick randomly among the best "Add more of your code here if you want to" return legalMoves[chosenIndex] def evaluationFunction(self, currentGameState, action): """ Design a better evaluation function here. The evaluation function takes in the current and proposed successor GameStates (pacman.py) and returns a number, where higher numbers are better. The code below extracts some useful information from the state, like the remaining food (newFood) and Pacman position after moving (newPos). newScaredTimes holds the number of moves that each ghost will remain scared because of Pacman having eaten a power pellet. Print out these variables to see what you're getting, then combine them to create a masterful evaluation function. """ # Useful information you can extract from a GameState (pacman.py) successorGameState = currentGameState.generatePacmanSuccessor(action) newPos = successorGameState.getPacmanPosition() newFood = successorGameState.getFood() newGhostStates = successorGameState.getGhostStates() newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] food_left = sum(int(j) for i in newFood for j in i) if food_left > 0: food_distances = [manhattanDistance(newPos, (x, y)) for x, row in enumerate(newFood) for y, food in enumerate(row) if food] shortest_food = min(food_distances) else: shortest_food = 0 if newGhostStates: ghost_distances = [manhattanDistance(ghost.getPosition(), newPos) for ghost in newGhostStates] shortest_ghost = min(ghost_distances) if shortest_ghost == 0: shortest_ghost = -2000 else: shortest_ghost = -5 / shortest_ghost else: shortest_ghost = 0 return -2 * shortest_food + shortest_ghost - 40 * food_left def scoreEvaluationFunction(currentGameState): """ This default evaluation function just returns the score of the state. The score is the same one displayed in the Pacman GUI. This evaluation function is meant for use with adversarial search agents (not reflex agents). """ return currentGameState.getScore() class MultiAgentSearchAgent(Agent): """ This class provides some common elements to all of your multi-agent searchers. Any methods defined here will be available to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent. You *do not* need to make any changes here, but you can if you want to add functionality to all your adversarial search agents. Please do not remove anything, however. Note: this is an abstract class: one that should not be instantiated. It's only partially specified, and designed to be extended. Agent (game.py) is another abstract class. """ class MinimaxAgent(MultiAgentSearchAgent): """ Your minimax agent (question 2) """ def getAction(self, gameState): """ Returns the minimax action from the current gameState using self.depth and self.evaluationFunction. Here are some method calls that might be useful when implementing minimax. gameState.getLegalActions(agentIndex): Returns a list of legal actions for an agent agentIndex=0 means Pacman, ghosts are >= 1 gameState.generateSuccessor(agentIndex, action): Returns the successor game state after an agent takes an action gameState.getNumAgents(): Returns the total number of agents in the game """ return max( gameState.getLegalActions(0), key = lambda x: search_depth(gameState.generateSuccessor(0, x), 1, 1) ) class AlphaBetaAgent(MultiAgentSearchAgent): """ Your minimax agent with alpha-beta pruning (question 3) """ def getAction(self, gameState): """ Returns the minimax action using self.depth and self.evaluationFunction """ val, alpha, beta, best = None, None, None, None for action in gameState.getLegalActions(0): val = max(val, min_val(gameState.generateSuccessor(0, action), 1, 1, alpha, beta)) # if val >= beta: return action if alpha is None: alpha, best = val, action else: alpha, best = max(val, alpha), action if val > alpha else best return best class ExpectimaxAgent(MultiAgentSearchAgent): """ Your expectimax agent (question 4) """ def getAction(self, gameState): """ Returns the expectimax action using self.depth and self.evaluationFunction All ghosts should be modeled as choosing uniformly at random from their legal moves. """ return max( gameState.getLegalActions(0), key = lambda x: search_depth(gameState.generateSuccessor(0, x), 1, 1) ) def nullHeuristic(state, problem=None): """ A heuristic function estimates the cost from the current state to the nearest goal in the provided SearchProblem. This heuristic is trivial. """ return 0 def aStarSearch(problem, heuristic=nullHeuristic): "Search the node that has the lowest combined cost and heuristic first." visited = set() p_queue = util.PriorityQueue() p_queue.push((problem.getStartState(), []), 0) while not p_queue.isEmpty(): state, actions = p_queue.pop() if state in visited: continue visited.add(state) if problem.isGoalState(state): return actions for successor, action, stepCost in problem.getSuccessors(state): if successor not in visited: p_queue.push( (successor, actions + [action]), stepCost + problem.getCostOfActions(actions) + heuristic(successor, problem = problem)) from game import Actions class PositionSearchProblem: """ A search problem defines the state space, start state, goal test, successor function and cost function. This search problem can be used to find paths to a particular point on the pacman board. The state space consists of (x,y) positions in a pacman game. Note: this search problem is fully specified; you should NOT change it. """ def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True): """ Stores the start and goal. gameState: A GameState object (pacman.py) costFn: A function from a search state (tuple) to a non-negative number goal: A position in the gameState """ self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() if start != None: self.startState = start self.goal = goal self.costFn = costFn self.visualize = visualize if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)): print 'Warning: this does not look like a regular search maze' # For display purposes self._visited, self._visitedlist, self._expanded = {}, [], 0 def getSuccessors(self, state): """ Returns successor states, the actions they require, and a cost of 1. As noted in search.py: For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor """ successors = [] for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: x,y = state dx, dy = Actions.directionToVector(action) nextx, nexty = int(x + dx), int(y + dy) if not self.walls[nextx][nexty]: nextState = (nextx, nexty) cost = self.costFn(nextState) successors.append( ( nextState, action, cost) ) # Bookkeeping for display purposes self._expanded += 1 if state not in self._visited: self._visited[state] = True self._visitedlist.append(state) return successors def getCostOfActions(self, actions): """ Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999 """ if actions == None: return 999999 x,y= self.getStartState() cost = 0 for action in actions: # Check figure out the next state and see whether its' legal dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 cost += self.costFn((x,y)) return cost class AnyFoodSearchProblem(PositionSearchProblem): """ A search problem for finding a path to any food. This search problem is just like the PositionSearchProblem, but has a different goal test, which you need to fill in below. The state space and successor function do not need to be changed. The class definition above, AnyFoodSearchProblem(PositionSearchProblem), inherits the methods of the PositionSearchProblem. You can use this search problem to help you fill in the findPathToClosestDot method. """ def __init__(self, gameState): "Stores information from the gameState. You don't need to change this." # Store the food for later reference self.food = gameState.getFood() # Store info for the PositionSearchProblem (no need to change this) self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() self.costFn = lambda x: 1 self._visited, self._visitedlist, self._expanded = {}, [], 0 def isGoalState(self, state): """ The state is Pacman's position. Fill this in with a goal test that will complete the problem definition. """ x,y = state return self.food[x][y] def manhattanHeuristic(position, problem, info={}): "The Manhattan distance heuristic for a PositionSearchProblem" xy1 = position xy2 = problem.goal return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1]) def betterEvaluationFunction(currentGameState): """ Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: This function evaluates a state based on the sum of six weighted variables: - Distance of path to nearest food pellet - Manhattan distance to closest offensive ghost - Manhattan distance to closest power pellet - Number of power pellets left - Number of food pellets left - Manhattan distance to closest scared ghost For some of the variables, the reciprocal was taken based on the following methodology: - The reciprocal of the distance to closest food pellet - A close food pellet is a good thing, but we want grabbing one to have a limited value on the change in score - The score drop due to the increased distance to the next nearest pellet should be less than the score gain from eating the pellet. - The negative reciprocal of the distance to the closest ghost - A close ghost makes the state less desirable, but variances in ghosts far away should have little impact - The reciprocal of the distance to the closest power pellet - Same reasoning as food pellets """ pos = currentGameState.getPacmanPosition() food = currentGameState.getFood() ghosts = currentGameState.getGhostStates() capsules = currentGameState.getCapsules() food_left = sum(int(j) for i in food for j in i) # Nom them foods problem = AnyFoodSearchProblem(currentGameState) shortest_food = aStarSearch(problem, heuristic = nearest_food_heuristic) if shortest_food: shortest_food = 1 / len(shortest_food) else: shortest_food = 1000 # if food_left > 0: # food_distances = [ # manhattanDistance(pos, (x, y)) # for x, row in enumerate(food) # for y, food_bool in enumerate(row) # if food_bool # ] # shortest_food = 1 / min(food_distances) # else: # shortest_food = -200000 scared = [ghost for ghost in ghosts if ghost.scaredTimer > 0] ghosts = [ghost for ghost in ghosts if ghost.scaredTimer == 0] # Don't let the ghost nom you if ghosts: ghost_distances = [manhattanDistance(ghost.getPosition(), pos) for ghost in ghosts] shortest_ghost = min(ghost_distances) if shortest_ghost == 0: shortest_ghost = 200000 else: shortest_ghost = 1 / shortest_ghost else: shortest_ghost = 0 # Nom them scared ones shortest_scared = 0 if scared: scared_distances = [manhattanDistance(ghost.getPosition(), pos) for ghost in scared] scared_distances = [distance for ghost, distance in zip(scared, scared_distances) if distance <= ghost.scaredTimer] if scared_distances: shortest_scared = min(scared_distances) if shortest_scared == 0: shortest_scared = 10 else: shortest_scared = 1 / shortest_scared # Nom them capsules capsules_left = len(capsules) if capsules: capsule_distances = [manhattanDistance(capsule, pos) for capsule in capsules] shortest_capsule = 1 / min(capsule_distances) else: shortest_capsule = 0 weights = [5, 10, -5, -50, -100, 10] scores = [shortest_food, shortest_capsule, shortest_ghost, food_left, capsules_left, shortest_scared] score = sum(i * j for i, j in zip(scores, weights)) # print "pos\t\t\t", pos # print "shortest food\t\t", shortest_food # print "food_left\t\t", food_left # print "shortest_capsule\t", shortest_capsule # print "score\t\t\t", score # print return score # Abbreviation better = betterEvaluationFunction class ContestAgent(MultiAgentSearchAgent): """ Your agent for the mini-contest """ def getAction(self, gameState): """ Returns an action. You can use any method you want and search to any depth you want. Just remember that the mini-contest is timed, so you have to trade off speed and computation. Ghosts don't behave randomly anymore, but they aren't perfect either -- they'll usually just make a beeline straight towards Pacman (or away from him if they're scared!) """ "*** YOUR CODE HERE ***" util.raiseNotDefined()
[ 2, 5021, 10262, 658, 13, 9078, 198, 2, 220, 26171, 198, 2, 10483, 26426, 6188, 25, 220, 921, 389, 1479, 284, 779, 393, 9117, 777, 4493, 329, 198, 2, 9856, 4959, 2810, 326, 357, 16, 8, 345, 466, 407, 14983, 393, 7715, 198, 2, 8136, 11, 357, 17, 8, 345, 12377, 428, 4003, 11, 290, 357, 18, 8, 345, 2148, 1598, 198, 2, 39629, 284, 14417, 14727, 11, 1390, 257, 2792, 284, 198, 2, 2638, 1378, 8625, 13, 68, 721, 82, 13, 527, 13490, 13, 15532, 14, 93, 6359, 20356, 14, 33587, 805, 14, 33587, 805, 13, 6494, 198, 2, 198, 2, 45336, 6188, 25, 383, 6319, 805, 9552, 4493, 547, 4166, 379, 14417, 14727, 13, 198, 2, 383, 4755, 4493, 290, 1960, 519, 6335, 364, 547, 7525, 2727, 416, 1757, 1024, 45, 3529, 198, 2, 357, 67, 877, 78, 31, 6359, 13, 527, 13490, 13, 15532, 8, 290, 6035, 22864, 357, 74, 33663, 31, 6359, 13, 527, 13490, 13, 15532, 737, 198, 2, 13613, 1735, 1960, 519, 81, 4980, 373, 2087, 416, 8114, 7920, 11, 8047, 9075, 11, 290, 198, 2, 36548, 263, 2275, 1350, 417, 357, 79, 397, 1350, 417, 31, 6359, 13, 527, 13490, 13, 15532, 737, 198, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 7736, 1330, 582, 12904, 45767, 198, 6738, 983, 1330, 47426, 198, 11748, 4738, 11, 7736, 198, 198, 6738, 983, 1330, 15906, 198, 198, 4871, 43214, 36772, 7, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 317, 24133, 5797, 19769, 281, 2223, 379, 1123, 3572, 966, 416, 17247, 198, 220, 220, 220, 220, 220, 663, 14693, 2884, 257, 1181, 12660, 2163, 13, 628, 220, 220, 220, 220, 220, 383, 2438, 2174, 318, 2810, 355, 257, 5698, 13, 220, 921, 389, 7062, 284, 1487, 198, 220, 220, 220, 220, 220, 340, 287, 597, 835, 345, 766, 4197, 11, 523, 890, 355, 345, 836, 470, 3638, 674, 2446, 198, 220, 220, 220, 220, 220, 24697, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 651, 12502, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 921, 466, 407, 761, 284, 1487, 428, 2446, 11, 475, 345, 821, 7062, 284, 13, 628, 220, 220, 220, 220, 220, 220, 220, 651, 12502, 19769, 1871, 262, 1266, 3689, 1864, 284, 262, 12660, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2329, 588, 287, 262, 2180, 1628, 11, 651, 12502, 2753, 257, 3776, 9012, 290, 5860, 198, 220, 220, 220, 220, 220, 220, 220, 617, 47426, 13, 55, 329, 617, 1395, 287, 262, 900, 1391, 14157, 11, 2520, 11, 2688, 11, 3687, 11, 13707, 92, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9745, 2742, 6100, 290, 17270, 2585, 198, 220, 220, 220, 220, 220, 220, 220, 2742, 44, 5241, 796, 983, 9012, 13, 1136, 38263, 32, 2733, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17489, 530, 286, 262, 1266, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 685, 944, 13, 18206, 2288, 22203, 7, 6057, 9012, 11, 2223, 8, 329, 2223, 287, 2742, 44, 5241, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 26595, 796, 3509, 7, 1416, 2850, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 5497, 1063, 796, 685, 9630, 329, 6376, 287, 2837, 7, 11925, 7, 1416, 2850, 4008, 611, 8198, 58, 9630, 60, 6624, 1266, 26595, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7147, 15732, 796, 4738, 13, 25541, 7, 13466, 5497, 1063, 8, 1303, 12346, 15456, 1871, 262, 1266, 628, 220, 220, 220, 220, 220, 220, 220, 366, 4550, 517, 286, 534, 2438, 994, 611, 345, 765, 284, 1, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2742, 44, 5241, 58, 354, 5233, 15732, 60, 628, 220, 220, 220, 825, 12660, 22203, 7, 944, 11, 1459, 8777, 9012, 11, 2223, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 8495, 257, 1365, 12660, 2163, 994, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 12660, 2163, 2753, 287, 262, 1459, 290, 5150, 17270, 198, 220, 220, 220, 220, 220, 220, 220, 3776, 42237, 357, 33587, 805, 13, 9078, 8, 290, 5860, 257, 1271, 11, 810, 2440, 3146, 389, 1365, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2438, 2174, 32139, 617, 4465, 1321, 422, 262, 1181, 11, 588, 262, 198, 220, 220, 220, 220, 220, 220, 220, 5637, 2057, 357, 3605, 24602, 8, 290, 6319, 805, 2292, 706, 3867, 357, 3605, 21604, 737, 198, 220, 220, 220, 220, 220, 220, 220, 649, 3351, 1144, 28595, 6622, 262, 1271, 286, 6100, 326, 1123, 10905, 481, 3520, 198, 220, 220, 220, 220, 220, 220, 220, 12008, 780, 286, 6319, 805, 1719, 17065, 257, 1176, 16176, 1616, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12578, 503, 777, 9633, 284, 766, 644, 345, 821, 1972, 11, 788, 12082, 606, 198, 220, 220, 220, 220, 220, 220, 220, 284, 2251, 257, 4958, 913, 12660, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 49511, 1321, 345, 460, 7925, 422, 257, 3776, 9012, 357, 33587, 805, 13, 9078, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17270, 8777, 9012, 796, 1459, 8777, 9012, 13, 8612, 378, 18844, 805, 33244, 273, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 21604, 796, 17270, 8777, 9012, 13, 1136, 18844, 805, 26545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 24602, 796, 17270, 8777, 9012, 13, 1136, 24602, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 32001, 42237, 796, 17270, 8777, 9012, 13, 1136, 32001, 42237, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 649, 3351, 1144, 28595, 796, 685, 38933, 9012, 13, 1416, 1144, 48801, 329, 10905, 9012, 287, 649, 32001, 42237, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2057, 62, 9464, 796, 2160, 7, 600, 7, 73, 8, 329, 1312, 287, 649, 24602, 329, 474, 287, 1312, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2057, 62, 9464, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2057, 62, 17080, 1817, 796, 685, 805, 12904, 45767, 7, 3605, 21604, 11, 357, 87, 11, 331, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 11, 5752, 287, 27056, 378, 7, 3605, 24602, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 11, 2057, 287, 27056, 378, 7, 808, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2057, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 19425, 796, 949, 7, 19425, 62, 17080, 1817, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 19425, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 611, 649, 32001, 42237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10905, 62, 17080, 1817, 796, 685, 805, 12904, 45767, 7, 38933, 13, 1136, 26545, 22784, 649, 21604, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10905, 287, 649, 32001, 42237, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 949, 7, 38933, 62, 17080, 1817, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 35581, 62, 38933, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 532, 11024, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 532, 20, 1220, 35581, 62, 38933, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 17, 1635, 35581, 62, 19425, 1343, 35581, 62, 38933, 532, 2319, 1635, 2057, 62, 9464, 198, 198, 4299, 4776, 36, 2100, 2288, 22203, 7, 14421, 8777, 9012, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 770, 4277, 12660, 2163, 655, 5860, 262, 4776, 286, 262, 1181, 13, 198, 220, 220, 220, 220, 220, 383, 4776, 318, 262, 976, 530, 9066, 287, 262, 6319, 805, 25757, 13, 628, 220, 220, 220, 220, 220, 770, 12660, 2163, 318, 4001, 329, 779, 351, 16907, 36098, 2989, 6554, 198, 220, 220, 220, 220, 220, 357, 1662, 24133, 6554, 737, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1459, 8777, 9012, 13, 1136, 26595, 3419, 198, 198, 4871, 15237, 36772, 18243, 36772, 7, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 770, 1398, 3769, 617, 2219, 4847, 284, 477, 286, 534, 198, 220, 220, 220, 220, 220, 5021, 12, 25781, 9622, 3533, 13, 220, 4377, 5050, 5447, 994, 481, 307, 1695, 198, 220, 220, 220, 220, 220, 284, 262, 1855, 320, 897, 18844, 805, 36772, 11, 12995, 43303, 18844, 805, 36772, 1222, 23600, 320, 897, 18844, 805, 36772, 13, 628, 220, 220, 220, 220, 220, 921, 1635, 4598, 407, 9, 761, 284, 787, 597, 2458, 994, 11, 475, 345, 460, 611, 345, 765, 284, 198, 220, 220, 220, 220, 220, 751, 11244, 284, 477, 534, 16907, 36098, 2989, 6554, 13, 220, 4222, 466, 407, 198, 220, 220, 220, 220, 220, 4781, 1997, 11, 2158, 13, 628, 220, 220, 220, 220, 220, 5740, 25, 428, 318, 281, 12531, 1398, 25, 530, 326, 815, 407, 307, 9113, 12931, 13, 220, 632, 338, 198, 220, 220, 220, 220, 220, 691, 12387, 7368, 11, 290, 3562, 284, 307, 7083, 13, 220, 15906, 357, 6057, 13, 9078, 8, 198, 220, 220, 220, 220, 220, 318, 1194, 12531, 1398, 13, 198, 220, 220, 220, 37227, 198, 198, 4871, 1855, 320, 897, 36772, 7, 29800, 36772, 18243, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 3406, 10356, 897, 5797, 357, 25652, 362, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 12502, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 10356, 897, 2223, 422, 262, 1459, 983, 9012, 1262, 2116, 13, 18053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 2116, 13, 18206, 2288, 22203, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3423, 389, 617, 2446, 3848, 326, 1244, 307, 4465, 618, 15427, 10356, 897, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 13, 1136, 38263, 32, 2733, 7, 25781, 15732, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 257, 1351, 286, 2742, 4028, 329, 281, 5797, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5797, 15732, 28, 15, 1724, 6319, 805, 11, 25899, 389, 18189, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 13, 8612, 378, 33244, 273, 7, 25781, 15732, 11, 2223, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 17270, 983, 1181, 706, 281, 5797, 2753, 281, 2223, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 13, 1136, 33111, 10262, 658, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2472, 1271, 286, 6554, 287, 262, 983, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 13, 1136, 38263, 32, 2733, 7, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 37456, 2124, 25, 2989, 62, 18053, 7, 6057, 9012, 13, 8612, 378, 33244, 273, 7, 15, 11, 2124, 828, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 4871, 12995, 43303, 36772, 7, 29800, 36772, 18243, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 3406, 10356, 897, 5797, 351, 17130, 12, 31361, 778, 46493, 357, 25652, 513, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 12502, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 10356, 897, 2223, 1262, 2116, 13, 18053, 290, 2116, 13, 18206, 2288, 22203, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1188, 11, 17130, 11, 12159, 11, 1266, 796, 6045, 11, 6045, 11, 6045, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 983, 9012, 13, 1136, 38263, 32, 2733, 7, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1188, 796, 3509, 7, 2100, 11, 949, 62, 2100, 7, 6057, 9012, 13, 8612, 378, 33244, 273, 7, 15, 11, 2223, 828, 352, 11, 352, 11, 17130, 11, 12159, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 1188, 18189, 12159, 25, 1441, 2223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17130, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 1266, 796, 1188, 11, 2223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 1266, 796, 3509, 7, 2100, 11, 17130, 828, 2223, 611, 1188, 1875, 17130, 2073, 1266, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1266, 198, 198, 4871, 23600, 320, 897, 36772, 7, 29800, 36772, 18243, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 3406, 1607, 320, 897, 5797, 357, 25652, 604, 8, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 12502, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1607, 320, 897, 2223, 1262, 2116, 13, 18053, 290, 2116, 13, 18206, 2288, 22203, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1439, 25899, 815, 307, 29563, 355, 11236, 42096, 379, 4738, 422, 511, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2742, 6100, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 13, 1136, 38263, 32, 2733, 7, 15, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 37456, 2124, 25, 2989, 62, 18053, 7, 6057, 9012, 13, 8612, 378, 33244, 273, 7, 15, 11, 2124, 828, 352, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 198, 4299, 9242, 1544, 27915, 7, 5219, 11, 1917, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 339, 27915, 2163, 7746, 262, 1575, 422, 262, 1459, 1181, 284, 262, 16936, 198, 220, 220, 220, 3061, 287, 262, 2810, 11140, 40781, 13, 220, 770, 339, 27915, 318, 20861, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 657, 198, 198, 4299, 257, 8248, 18243, 7, 45573, 11, 339, 27915, 28, 8423, 1544, 27915, 2599, 198, 220, 220, 220, 366, 18243, 262, 10139, 326, 468, 262, 9016, 5929, 1575, 290, 339, 27915, 717, 526, 628, 220, 220, 220, 8672, 796, 900, 3419, 198, 220, 220, 220, 279, 62, 36560, 796, 7736, 13, 22442, 414, 34991, 3419, 198, 220, 220, 220, 279, 62, 36560, 13, 14689, 19510, 45573, 13, 1136, 10434, 9012, 22784, 17635, 828, 657, 8, 628, 220, 220, 220, 981, 407, 279, 62, 36560, 13, 271, 40613, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1181, 11, 4028, 796, 279, 62, 36560, 13, 12924, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1181, 287, 8672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 8672, 13, 2860, 7, 5219, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1917, 13, 271, 49045, 9012, 7, 5219, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 4028, 628, 220, 220, 220, 220, 220, 220, 220, 329, 17270, 11, 2223, 11, 2239, 13729, 287, 1917, 13, 1136, 33244, 669, 7, 5219, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17270, 407, 287, 8672, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 36560, 13, 14689, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 13138, 273, 11, 4028, 1343, 685, 2673, 46570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 13729, 1343, 1917, 13, 1136, 13729, 5189, 32, 2733, 7, 4658, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 339, 27915, 7, 13138, 273, 11, 1917, 796, 1917, 4008, 198, 198, 6738, 983, 1330, 24439, 198, 4871, 23158, 18243, 40781, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2989, 1917, 15738, 262, 1181, 2272, 11, 923, 1181, 11, 3061, 1332, 11, 198, 220, 220, 220, 17270, 2163, 290, 1575, 2163, 13, 220, 770, 2989, 1917, 460, 307, 198, 220, 220, 220, 973, 284, 1064, 13532, 284, 257, 1948, 966, 319, 262, 23503, 805, 3096, 13, 628, 220, 220, 220, 383, 1181, 2272, 10874, 286, 357, 87, 11, 88, 8, 6116, 287, 257, 23503, 805, 983, 13, 628, 220, 220, 220, 5740, 25, 428, 2989, 1917, 318, 3938, 7368, 26, 345, 815, 5626, 1487, 340, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 983, 9012, 11, 1575, 37, 77, 796, 37456, 2124, 25, 352, 11, 3061, 16193, 16, 11, 16, 828, 923, 28, 14202, 11, 9828, 28, 17821, 11, 38350, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 41835, 262, 923, 290, 3061, 13, 628, 220, 220, 220, 220, 220, 220, 220, 983, 9012, 25, 317, 3776, 9012, 2134, 357, 33587, 805, 13, 9078, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 37, 77, 25, 317, 2163, 422, 257, 2989, 1181, 357, 83, 29291, 8, 284, 257, 1729, 12, 31591, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 3061, 25, 317, 2292, 287, 262, 983, 9012, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 86, 5691, 796, 983, 9012, 13, 1136, 54, 5691, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 9012, 796, 983, 9012, 13, 1136, 18844, 805, 26545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 923, 14512, 6045, 25, 2116, 13, 9688, 9012, 796, 923, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35231, 796, 3061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15805, 37, 77, 796, 1575, 37, 77, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 41464, 1096, 796, 38350, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9828, 290, 357, 6057, 9012, 13, 1136, 33111, 24602, 3419, 14512, 352, 393, 407, 983, 9012, 13, 10134, 24602, 46491, 35231, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 705, 20361, 25, 428, 857, 407, 804, 588, 257, 3218, 2989, 31237, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 3359, 4959, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4703, 863, 11, 2116, 13557, 4703, 863, 4868, 11, 2116, 13557, 11201, 12249, 796, 1391, 5512, 685, 4357, 657, 628, 220, 220, 220, 825, 651, 33244, 669, 7, 944, 11, 1181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 17270, 2585, 11, 262, 4028, 484, 2421, 11, 290, 257, 1575, 286, 352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 1081, 4367, 287, 2989, 13, 9078, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 257, 1813, 1181, 11, 428, 815, 1441, 257, 1351, 286, 1333, 2374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 357, 13138, 273, 11, 2223, 11, 2239, 13729, 828, 810, 705, 13138, 273, 6, 318, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 17270, 284, 262, 1459, 1181, 11, 705, 2673, 6, 318, 262, 2223, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2672, 284, 651, 612, 11, 290, 705, 9662, 13729, 6, 318, 262, 29497, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 286, 11581, 284, 326, 17270, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 41491, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 685, 13470, 507, 13, 35510, 4221, 11, 47426, 13, 50, 2606, 4221, 11, 47426, 13, 36, 11262, 11, 47426, 13, 54, 6465, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 24439, 13, 37295, 2514, 38469, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 87, 11, 1306, 88, 796, 493, 7, 87, 1343, 44332, 828, 493, 7, 88, 1343, 20268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 86, 5691, 58, 19545, 87, 7131, 19545, 88, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 9012, 796, 357, 19545, 87, 11, 1306, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 796, 2116, 13, 15805, 37, 77, 7, 19545, 9012, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41491, 13, 33295, 7, 357, 1306, 9012, 11, 2223, 11, 1575, 8, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4897, 19934, 329, 3359, 4959, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 11201, 12249, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1181, 407, 287, 2116, 13557, 4703, 863, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4703, 863, 58, 5219, 60, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4703, 863, 4868, 13, 33295, 7, 5219, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 41491, 628, 220, 220, 220, 825, 651, 13729, 5189, 32, 2733, 7, 944, 11, 4028, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 1575, 286, 257, 1948, 8379, 286, 4028, 13, 220, 1002, 883, 4028, 198, 220, 220, 220, 220, 220, 220, 220, 2291, 281, 5293, 1445, 11, 1441, 36006, 17032, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4028, 6624, 6045, 25, 1441, 36006, 17032, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 28, 2116, 13, 1136, 10434, 9012, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1575, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2223, 287, 4028, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 3785, 503, 262, 1306, 1181, 290, 766, 1771, 663, 6, 2742, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 11, 20268, 796, 24439, 13, 37295, 2514, 38469, 7, 2673, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 331, 796, 493, 7, 87, 1343, 44332, 828, 493, 7, 88, 1343, 20268, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 86, 5691, 58, 87, 7131, 88, 5974, 1441, 36006, 17032, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1575, 15853, 2116, 13, 15805, 37, 77, 19510, 87, 11, 88, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1575, 198, 198, 4871, 4377, 24602, 18243, 40781, 7, 26545, 18243, 40781, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 317, 2989, 1917, 329, 4917, 257, 3108, 284, 597, 2057, 13, 628, 220, 220, 220, 220, 220, 770, 2989, 1917, 318, 655, 588, 262, 23158, 18243, 40781, 11, 475, 198, 220, 220, 220, 220, 220, 468, 257, 1180, 3061, 1332, 11, 543, 345, 761, 284, 6070, 287, 2174, 13, 220, 383, 198, 220, 220, 220, 220, 220, 1181, 2272, 290, 17270, 2163, 466, 407, 761, 284, 307, 3421, 13, 628, 220, 220, 220, 220, 220, 383, 1398, 6770, 2029, 11, 4377, 24602, 18243, 40781, 7, 26545, 18243, 40781, 828, 198, 220, 220, 220, 220, 220, 10639, 896, 262, 5050, 286, 262, 23158, 18243, 40781, 13, 628, 220, 220, 220, 220, 220, 921, 460, 779, 428, 2989, 1917, 284, 1037, 345, 6070, 287, 198, 220, 220, 220, 220, 220, 262, 1064, 15235, 2514, 2601, 418, 395, 35, 313, 2446, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1273, 2850, 1321, 422, 262, 983, 9012, 13, 220, 921, 836, 470, 761, 284, 1487, 428, 526, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9363, 262, 2057, 329, 1568, 4941, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19425, 796, 983, 9012, 13, 1136, 24602, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9363, 7508, 329, 262, 23158, 18243, 40781, 357, 3919, 761, 284, 1487, 428, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 86, 5691, 796, 983, 9012, 13, 1136, 54, 5691, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 9012, 796, 983, 9012, 13, 1136, 18844, 805, 26545, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15805, 37, 77, 796, 37456, 2124, 25, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 4703, 863, 11, 2116, 13557, 4703, 863, 4868, 11, 2116, 13557, 11201, 12249, 796, 1391, 5512, 685, 4357, 657, 628, 220, 220, 220, 825, 318, 49045, 9012, 7, 944, 11, 1181, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1181, 318, 6319, 805, 338, 2292, 13, 27845, 428, 287, 351, 257, 3061, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 326, 481, 1844, 262, 1917, 6770, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11, 88, 796, 1181, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 19425, 58, 87, 7131, 88, 60, 198, 198, 4299, 582, 12904, 1544, 27915, 7, 9150, 11, 1917, 11, 7508, 34758, 92, 2599, 198, 220, 220, 220, 366, 464, 13458, 5253, 339, 27915, 329, 257, 23158, 18243, 40781, 1, 198, 220, 220, 220, 2124, 88, 16, 796, 2292, 198, 220, 220, 220, 2124, 88, 17, 796, 1917, 13, 35231, 198, 220, 220, 220, 1441, 2352, 7, 5431, 16, 58, 15, 60, 532, 2124, 88, 17, 58, 15, 12962, 1343, 2352, 7, 5431, 16, 58, 16, 60, 532, 2124, 88, 17, 58, 16, 12962, 198, 198, 4299, 1365, 36, 2100, 2288, 22203, 7, 14421, 8777, 9012, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 3406, 3257, 10905, 12, 20088, 889, 11, 16176, 1616, 12, 77, 397, 4623, 11, 2057, 12, 44270, 11108, 11, 40181, 198, 220, 220, 220, 220, 220, 12660, 2163, 357, 25652, 642, 737, 628, 220, 220, 220, 220, 220, 22196, 40165, 25, 770, 2163, 47850, 257, 1181, 1912, 319, 262, 2160, 286, 198, 220, 220, 220, 220, 220, 2237, 26356, 9633, 25, 628, 220, 220, 220, 220, 220, 532, 34600, 286, 3108, 284, 16936, 2057, 16176, 1616, 198, 220, 220, 220, 220, 220, 532, 13458, 5253, 284, 11706, 5859, 10905, 198, 220, 220, 220, 220, 220, 532, 13458, 5253, 284, 11706, 1176, 16176, 1616, 198, 220, 220, 220, 220, 220, 532, 7913, 286, 1176, 43677, 1364, 198, 220, 220, 220, 220, 220, 532, 7913, 286, 2057, 43677, 1364, 198, 220, 220, 220, 220, 220, 532, 13458, 5253, 284, 11706, 12008, 10905, 628, 220, 220, 220, 220, 220, 1114, 617, 286, 262, 9633, 11, 262, 48135, 373, 2077, 1912, 319, 262, 198, 220, 220, 220, 220, 220, 1708, 20411, 25, 198, 220, 220, 220, 220, 220, 532, 383, 48135, 286, 262, 5253, 284, 11706, 2057, 16176, 1616, 198, 220, 220, 220, 220, 220, 220, 220, 532, 317, 1969, 2057, 16176, 1616, 318, 257, 922, 1517, 11, 475, 356, 765, 23256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 530, 284, 423, 257, 3614, 1988, 319, 262, 1487, 287, 4776, 198, 220, 220, 220, 220, 220, 220, 220, 532, 383, 4776, 4268, 2233, 284, 262, 3220, 5253, 284, 262, 1306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16936, 16176, 1616, 815, 307, 1342, 621, 262, 4776, 4461, 422, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6600, 262, 16176, 1616, 13, 198, 220, 220, 220, 220, 220, 532, 383, 4633, 48135, 286, 262, 5253, 284, 262, 11706, 10905, 198, 220, 220, 220, 220, 220, 220, 220, 532, 317, 1969, 10905, 1838, 262, 1181, 1342, 18763, 11, 475, 1401, 16097, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 25899, 1290, 1497, 815, 423, 1310, 2928, 198, 220, 220, 220, 220, 220, 532, 383, 48135, 286, 262, 5253, 284, 262, 11706, 1176, 16176, 1616, 198, 220, 220, 220, 220, 220, 220, 220, 532, 16766, 14607, 355, 2057, 43677, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1426, 796, 1459, 8777, 9012, 13, 1136, 18844, 805, 26545, 3419, 198, 220, 220, 220, 2057, 796, 1459, 8777, 9012, 13, 1136, 24602, 3419, 198, 220, 220, 220, 25899, 796, 1459, 8777, 9012, 13, 1136, 32001, 42237, 3419, 198, 220, 220, 220, 43882, 796, 1459, 8777, 9012, 13, 1136, 34, 1686, 5028, 3419, 628, 220, 220, 220, 2057, 62, 9464, 796, 2160, 7, 600, 7, 73, 8, 329, 1312, 287, 2057, 329, 474, 287, 1312, 8, 628, 220, 220, 220, 1303, 21198, 606, 9013, 198, 220, 220, 220, 1917, 796, 4377, 24602, 18243, 40781, 7, 14421, 8777, 9012, 8, 198, 220, 220, 220, 35581, 62, 19425, 796, 257, 8248, 18243, 7, 45573, 11, 339, 27915, 796, 16936, 62, 19425, 62, 258, 27915, 8, 198, 220, 220, 220, 611, 35581, 62, 19425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 19425, 796, 352, 1220, 18896, 7, 19509, 395, 62, 19425, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 19425, 796, 8576, 198, 220, 220, 220, 1303, 611, 2057, 62, 9464, 1875, 657, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2057, 62, 17080, 1817, 796, 685, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 582, 12904, 45767, 7, 1930, 11, 357, 87, 11, 331, 4008, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 11, 5752, 287, 27056, 378, 7, 19425, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 11, 2057, 62, 30388, 287, 27056, 378, 7, 808, 8, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2057, 62, 30388, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 35581, 62, 19425, 796, 352, 1220, 949, 7, 19425, 62, 17080, 1817, 8, 198, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 35581, 62, 19425, 796, 532, 33470, 628, 220, 220, 220, 12008, 796, 685, 38933, 329, 10905, 287, 25899, 611, 10905, 13, 1416, 1144, 48801, 1875, 657, 60, 198, 220, 220, 220, 25899, 796, 685, 38933, 329, 10905, 287, 25899, 611, 10905, 13, 1416, 1144, 48801, 6624, 657, 60, 628, 220, 220, 220, 1303, 2094, 470, 1309, 262, 10905, 4515, 345, 198, 220, 220, 220, 611, 25899, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10905, 62, 17080, 1817, 796, 685, 805, 12904, 45767, 7, 38933, 13, 1136, 26545, 22784, 1426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10905, 287, 25899, 60, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 949, 7, 38933, 62, 17080, 1817, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 35581, 62, 38933, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 939, 830, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 352, 1220, 35581, 62, 38933, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 38933, 796, 657, 628, 220, 220, 220, 1303, 21198, 606, 12008, 3392, 198, 220, 220, 220, 35581, 62, 1416, 1144, 796, 657, 198, 220, 220, 220, 611, 12008, 25, 198, 220, 220, 220, 220, 220, 220, 220, 12008, 62, 17080, 1817, 796, 685, 805, 12904, 45767, 7, 38933, 13, 1136, 26545, 22784, 1426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10905, 287, 12008, 60, 198, 220, 220, 220, 220, 220, 220, 220, 12008, 62, 17080, 1817, 796, 685, 30246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10905, 11, 5253, 287, 19974, 7, 1416, 1144, 11, 12008, 62, 17080, 1817, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5253, 19841, 10905, 13, 1416, 1144, 48801, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 12008, 62, 17080, 1817, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 1416, 1144, 796, 949, 7, 1416, 1144, 62, 17080, 1817, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 35581, 62, 1416, 1144, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 1416, 1144, 796, 838, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 1416, 1144, 796, 352, 1220, 35581, 62, 1416, 1144, 628, 198, 220, 220, 220, 1303, 21198, 606, 43882, 198, 220, 220, 220, 43882, 62, 9464, 796, 18896, 7, 27979, 5028, 8, 198, 220, 220, 220, 611, 43882, 25, 198, 220, 220, 220, 220, 220, 220, 220, 27855, 62, 17080, 1817, 796, 685, 805, 12904, 45767, 7, 27979, 2261, 11, 1426, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 27855, 287, 43882, 60, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 27979, 2261, 796, 352, 1220, 949, 7, 27979, 2261, 62, 17080, 1817, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 35581, 62, 27979, 2261, 796, 657, 628, 220, 220, 220, 19590, 796, 685, 20, 11, 838, 11, 532, 20, 11, 532, 1120, 11, 532, 3064, 11, 838, 60, 198, 220, 220, 220, 8198, 796, 685, 19509, 395, 62, 19425, 11, 35581, 62, 27979, 2261, 11, 35581, 62, 38933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2057, 62, 9464, 11, 43882, 62, 9464, 11, 35581, 62, 1416, 1144, 60, 628, 220, 220, 220, 4776, 796, 2160, 7, 72, 1635, 474, 220, 329, 1312, 11, 474, 287, 19974, 7, 1416, 2850, 11, 19590, 4008, 628, 220, 220, 220, 1303, 3601, 366, 1930, 59, 83, 59, 83, 59, 83, 1600, 1426, 198, 220, 220, 220, 1303, 3601, 366, 19509, 395, 2057, 59, 83, 59, 83, 1600, 35581, 62, 19425, 198, 220, 220, 220, 1303, 3601, 366, 19425, 62, 9464, 59, 83, 59, 83, 1600, 2057, 62, 9464, 198, 220, 220, 220, 1303, 3601, 366, 19509, 395, 62, 27979, 2261, 59, 83, 1600, 35581, 62, 27979, 2261, 198, 220, 220, 220, 1303, 3601, 366, 26675, 59, 83, 59, 83, 59, 83, 1600, 4776, 198, 220, 220, 220, 1303, 3601, 628, 220, 220, 220, 1441, 4776, 198, 198, 2, 2275, 4679, 47625, 198, 27903, 796, 1365, 36, 2100, 2288, 22203, 198, 198, 4871, 27297, 36772, 7, 29800, 36772, 18243, 36772, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 3406, 5797, 329, 262, 9927, 12, 3642, 395, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 651, 12502, 7, 944, 11, 983, 9012, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16409, 281, 2223, 13, 220, 921, 460, 779, 597, 2446, 345, 765, 290, 2989, 284, 597, 6795, 345, 765, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2329, 3505, 326, 262, 9927, 12, 3642, 395, 318, 28805, 11, 523, 345, 423, 284, 3292, 572, 2866, 290, 29964, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 38389, 836, 470, 17438, 15456, 7471, 11, 475, 484, 3588, 470, 2818, 2035, 1377, 484, 1183, 3221, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 655, 787, 257, 307, 4470, 3892, 3371, 6319, 805, 357, 273, 1497, 422, 683, 611, 484, 821, 12008, 8133, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8162, 16592, 42714, 15698, 17202, 1, 198, 220, 220, 220, 220, 220, 220, 220, 7736, 13, 40225, 3673, 7469, 1389, 3419, 198 ]
2.616242
6,637
""" XVM (c) www.modxvm.com 2013-2017 """ ##################################################################### # imports import simplejson import traceback import BigWorld import game from Avatar import PlayerAvatar from BattleReplay import BattleReplay, g_replayCtrl from PlayerEvents import g_playerEvents from gui.shared import g_eventBus, events from xfw import * import xvm_main.python.config as config from xvm_main.python.logger import * import xvm_main.python.minimap_circles as minimap_circles import xvm_main.python.utils as utils from consts import * ##################################################################### # handlers _xvm_record_data = None _xvm_play_data = None @registerEvent(PlayerAvatar, 'onBecomePlayer') # record g_eventBus.addListener(XVM_BATTLE_EVENT.XMQP_MESSAGE, onXmqpMessage) @registerEvent(game, 'fini') @overrideMethod(BattleReplay, 'stop') # play
[ 37811, 1395, 15996, 357, 66, 8, 7324, 13, 4666, 87, 14761, 13, 785, 2211, 12, 5539, 37227, 198, 198, 29113, 29113, 4242, 2, 198, 2, 17944, 198, 198, 11748, 2829, 17752, 198, 11748, 12854, 1891, 198, 198, 11748, 4403, 10603, 198, 11748, 983, 198, 6738, 26703, 1330, 7853, 7355, 9459, 198, 6738, 5838, 3041, 1759, 1330, 5838, 3041, 1759, 11, 308, 62, 260, 1759, 40069, 198, 6738, 7853, 37103, 1330, 308, 62, 7829, 37103, 198, 6738, 11774, 13, 28710, 1330, 308, 62, 15596, 16286, 11, 2995, 198, 198, 6738, 2124, 44482, 1330, 1635, 198, 11748, 2124, 14761, 62, 12417, 13, 29412, 13, 11250, 355, 4566, 198, 6738, 2124, 14761, 62, 12417, 13, 29412, 13, 6404, 1362, 1330, 1635, 198, 11748, 2124, 14761, 62, 12417, 13, 29412, 13, 1084, 320, 499, 62, 66, 343, 5427, 355, 10356, 499, 62, 66, 343, 5427, 198, 11748, 2124, 14761, 62, 12417, 13, 29412, 13, 26791, 355, 3384, 4487, 198, 198, 6738, 1500, 82, 1330, 1635, 628, 198, 29113, 29113, 4242, 2, 198, 2, 32847, 198, 198, 62, 87, 14761, 62, 22105, 62, 7890, 796, 6045, 198, 62, 87, 14761, 62, 1759, 62, 7890, 796, 6045, 198, 198, 31, 30238, 9237, 7, 14140, 7355, 9459, 11, 705, 261, 39649, 462, 14140, 11537, 628, 198, 2, 1700, 198, 198, 70, 62, 15596, 16286, 13, 2860, 33252, 7, 55, 15996, 62, 33, 35455, 62, 20114, 3525, 13, 37643, 48, 47, 62, 44, 1546, 4090, 8264, 11, 319, 55, 76, 80, 79, 12837, 8, 198, 198, 31, 30238, 9237, 7, 6057, 11, 705, 69, 5362, 11537, 198, 198, 31, 2502, 13154, 17410, 7, 24064, 3041, 1759, 11, 705, 11338, 11537, 628, 198, 2, 711, 198 ]
3.263538
277
import logging from torch.optim import SGD, Adam from torch.optim.lr_scheduler import LambdaLR, StepLR, MultiStepLR from torch import nn class PolyLR(LambdaLR): """DeepLab learning rate policy"""
[ 11748, 18931, 198, 198, 6738, 28034, 13, 40085, 1330, 26147, 35, 11, 7244, 198, 6738, 28034, 13, 40085, 13, 14050, 62, 1416, 704, 18173, 1330, 21114, 6814, 35972, 11, 5012, 35972, 11, 15237, 8600, 35972, 198, 6738, 28034, 1330, 299, 77, 628, 198, 198, 4871, 12280, 35972, 7, 43, 4131, 6814, 35972, 2599, 198, 220, 37227, 29744, 17822, 4673, 2494, 2450, 37811, 628, 198 ]
3.1875
64
from collections import Counter from itertools import product import numpy as np import advent if __name__ == '__main__': main()
[ 6738, 17268, 1330, 15034, 198, 6738, 340, 861, 10141, 1330, 1720, 198, 11748, 299, 32152, 355, 45941, 198, 198, 11748, 19980, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
3.27907
43
import pyro import pyro.distributions as dist import torch from scvi import _CONSTANTS from scvi.module.base import PyroBaseModuleClass, auto_move_data from scvi.nn import DecoderSCVI, Encoder class MyPyroModule(PyroBaseModuleClass): """ Skeleton Variational auto-encoder Pyro model. Here we implement a basic version of scVI's underlying VAE [Lopez18]_. This implementation is for instructional purposes only. Parameters ---------- n_input Number of input genes n_latent Dimensionality of the latent space n_hidden Number of nodes per hidden layer n_layers Number of hidden layers used for encoder and decoder NNs """ @staticmethod @torch.no_grad() @auto_move_data
[ 11748, 12972, 305, 198, 11748, 12972, 305, 13, 17080, 2455, 507, 355, 1233, 198, 11748, 28034, 198, 6738, 629, 8903, 1330, 4808, 10943, 2257, 1565, 4694, 198, 6738, 629, 8903, 13, 21412, 13, 8692, 1330, 44954, 14881, 26796, 9487, 11, 8295, 62, 21084, 62, 7890, 198, 6738, 629, 8903, 13, 20471, 1330, 34580, 6173, 12861, 11, 14711, 12342, 628, 198, 4871, 2011, 20519, 305, 26796, 7, 20519, 305, 14881, 26796, 9487, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 19460, 10565, 15965, 864, 8295, 12, 12685, 12342, 44954, 2746, 13, 628, 220, 220, 220, 3423, 356, 3494, 257, 4096, 2196, 286, 629, 12861, 338, 10238, 13753, 36, 685, 43, 20808, 1507, 60, 44807, 198, 220, 220, 220, 770, 7822, 318, 329, 48211, 4959, 691, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 299, 62, 15414, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 5128, 10812, 198, 220, 220, 220, 299, 62, 15460, 298, 198, 220, 220, 220, 220, 220, 220, 220, 34024, 1483, 286, 262, 41270, 2272, 198, 220, 220, 220, 299, 62, 30342, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 13760, 583, 7104, 7679, 198, 220, 220, 220, 299, 62, 75, 6962, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 7104, 11685, 973, 329, 2207, 12342, 290, 875, 12342, 399, 47503, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 13165, 354, 13, 3919, 62, 9744, 3419, 198, 220, 220, 220, 2488, 23736, 62, 21084, 62, 7890, 198 ]
2.878788
264
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import os from azure.mgmt.compute import ComputeManagementClient from azure.mgmt.resource import ResourceManagementClient from azure.common.credentials import ServicePrincipalCredentials #-------------------------------------------------------------------------- # credentials from environment #-------------------------------------------------------------------------- SUBSCRIPTION_ID = os.environ['AZURE_SUBSCRIPTION_ID'] TENANT_ID = os.environ['AZURE_TENANT'] CLIENT_ID = os.environ['AZURE_CLIENT_ID'] CLIENT_SECRET = os.environ['AZURE_SECRET'] #-------------------------------------------------------------------------- # variables #-------------------------------------------------------------------------- AZURE_LOCATION = 'eastus' RESOURCE_GROUP = "myResourceGroup" VM_NAME = "myVm" NETWORK_INTERFACE_NAME = "myNetworkInterface" VIRTUAL_NETWORK_NAME = "myVirtualNetwork" SUBNET_NAME = "mySubnet" #-------------------------------------------------------------------------- # management clients #-------------------------------------------------------------------------- credentials = ServicePrincipalCredentials( client_id=CLIENT_ID, secret=CLIENT_SECRET, tenant=TENANT_ID ) mgmt_client = ComputeManagementClient(credentials, SUBSCRIPTION_ID) resource_client = ResourceManagementClient(credentials, SUBSCRIPTION_ID) from azure.mgmt.network import NetworkManagementClient network_client = NetworkManagementClient(credentials, SUBSCRIPTION_ID) #-------------------------------------------------------------------------- # resource group (prerequisite) #-------------------------------------------------------------------------- print("Creating Resource Group") resource_client.resource_groups.create_or_update(resource_group_name=RESOURCE_GROUP, parameters={ 'location': AZURE_LOCATION }) #-------------------------------------------------------------------------- # virtual network (prerequisite) #-------------------------------------------------------------------------- print("Prerequisite - Creating Virtual Network") azure_operation_poller = network_client.virtual_networks.create_or_update( RESOURCE_GROUP, VIRTUAL_NETWORK_NAME, { 'location': AZURE_LOCATION, 'address_space': { 'address_prefixes': ['10.0.0.0/16'] } }, ) result_create = azure_operation_poller.result() async_subnet_creation = network_client.subnets.create_or_update( RESOURCE_GROUP, VIRTUAL_NETWORK_NAME, SUBNET_NAME, {'address_prefix': '10.0.0.0/24'} ) subnet_info = async_subnet_creation.result() #-------------------------------------------------------------------------- # network interface (prerequisite) #-------------------------------------------------------------------------- print("Prerequisite - Creating Network Interface") async_nic_creation = network_client.network_interfaces.create_or_update( RESOURCE_GROUP, NETWORK_INTERFACE_NAME, { 'location': AZURE_LOCATION, 'ip_configurations': [{ 'name': 'MyIpConfig', 'subnet': { 'id': subnet_info.id } }] } ) nic_info = async_nic_creation.result() #-------------------------------------------------------------------------- # /VirtualMachines/put/Create a vm with password authentication.[put] #-------------------------------------------------------------------------- print("Create a vm with password authentication.") BODY = { "location": AZURE_LOCATION, "hardware_profile": { "vm_size": "Standard_D1_v2" }, "storage_profile": { "image_reference": { "sku": "2016-Datacenter", "publisher": "MicrosoftWindowsServer", "version": "latest", "offer": "WindowsServer" }, "os_disk": { "caching": "ReadWrite", "managed_disk": { "storage_account_type": "Standard_LRS" }, "name": "myVMosdisk", "create_option": "FromImage" } }, "os_profile": { "admin_username": "myuser", "computer_name": "myVM", "admin_password": "Password123!!!" }, "network_profile": { "network_interfaces": [ { "id": "/subscriptions/" + SUBSCRIPTION_ID + "/resourceGroups/" + RESOURCE_GROUP + "/providers/Microsoft.Network/networkInterfaces/" + NETWORK_INTERFACE_NAME, "properties": { "primary": True } } ] } } result = mgmt_client.virtual_machines.create_or_update(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME, parameters=BODY) result = result.result() #-------------------------------------------------------------------------- # /VirtualMachines/get/Get Virtual Machine Instance View.[get] #-------------------------------------------------------------------------- print("Get Virtual Machine Instance View.") result = mgmt_client.virtual_machines.instance_view(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME) #-------------------------------------------------------------------------- # /VirtualMachines/get/Lists all available virtual machine sizes to which the specified virtual machine can be resized[get] #-------------------------------------------------------------------------- print("Lists all available virtual machine sizes to which the specified virtual machine can be resized") result = mgmt_client.virtual_machines.list_available_sizes(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME) #-------------------------------------------------------------------------- # /VirtualMachines/get/Get a Virtual Machine.[get] #-------------------------------------------------------------------------- print("Get a Virtual Machine.") result = mgmt_client.virtual_machines.get(resource_group_name=RESOURCE_GROUP, vm_name=VM_NAME) #-------------------------------------------------------------------------- # /VirtualMachines/get/Lists all the virtual machines under the specified subscription for the specified location.[get] #-------------------------------------------------------------------------- print("Lists all the virtual machines under the specified subscription for the specified location.") result = mgmt_client.virtual_machines.list_by_location(location=AZURE_LOCATION)
[ 2, 10097, 45537, 198, 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 4091, 13789, 13, 14116, 287, 262, 1628, 6808, 329, 198, 2, 5964, 1321, 13, 198, 2, 10097, 35937, 198, 198, 11748, 28686, 198, 6738, 35560, 495, 13, 11296, 16762, 13, 5589, 1133, 1330, 3082, 1133, 48032, 11792, 198, 6738, 35560, 495, 13, 11296, 16762, 13, 31092, 1330, 20857, 48032, 11792, 198, 6738, 35560, 495, 13, 11321, 13, 66, 445, 14817, 1330, 4809, 42904, 8521, 34, 445, 14817, 628, 198, 2, 10097, 35937, 198, 2, 18031, 422, 2858, 198, 2, 10097, 35937, 198, 12564, 4462, 40165, 62, 2389, 796, 28686, 13, 268, 2268, 17816, 22778, 11335, 62, 12564, 4462, 40165, 62, 2389, 20520, 198, 51, 1677, 8643, 62, 2389, 796, 28686, 13, 268, 2268, 17816, 22778, 11335, 62, 51, 1677, 8643, 20520, 198, 5097, 28495, 62, 2389, 796, 28686, 13, 268, 2268, 17816, 22778, 11335, 62, 5097, 28495, 62, 2389, 20520, 198, 5097, 28495, 62, 23683, 26087, 796, 28686, 13, 268, 2268, 17816, 22778, 11335, 62, 23683, 26087, 20520, 628, 198, 2, 10097, 35937, 198, 2, 9633, 198, 2, 10097, 35937, 198, 22778, 11335, 62, 29701, 6234, 796, 705, 23316, 385, 6, 198, 19535, 31033, 62, 46846, 796, 366, 1820, 26198, 13247, 1, 198, 15996, 62, 20608, 796, 366, 1820, 53, 76, 1, 198, 12884, 33249, 62, 41358, 49836, 62, 20608, 796, 366, 1820, 26245, 39317, 1, 198, 53, 48771, 25620, 62, 12884, 33249, 62, 20608, 796, 366, 1820, 37725, 26245, 1, 198, 50, 10526, 12884, 62, 20608, 796, 366, 1820, 7004, 3262, 1, 628, 198, 2, 10097, 35937, 198, 2, 4542, 7534, 198, 2, 10097, 35937, 198, 66, 445, 14817, 796, 4809, 42904, 8521, 34, 445, 14817, 7, 198, 220, 220, 220, 5456, 62, 312, 28, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 3200, 28, 5097, 28495, 62, 23683, 26087, 11, 198, 220, 220, 220, 18285, 28, 51, 1677, 8643, 62, 2389, 198, 8, 198, 11296, 16762, 62, 16366, 796, 3082, 1133, 48032, 11792, 7, 66, 445, 14817, 11, 13558, 4462, 40165, 62, 2389, 8, 198, 31092, 62, 16366, 796, 20857, 48032, 11792, 7, 66, 445, 14817, 11, 13558, 4462, 40165, 62, 2389, 8, 198, 6738, 35560, 495, 13, 11296, 16762, 13, 27349, 1330, 7311, 48032, 11792, 198, 27349, 62, 16366, 796, 7311, 48032, 11792, 7, 66, 445, 14817, 11, 13558, 4462, 40165, 62, 2389, 8, 628, 198, 2, 10097, 35937, 198, 2, 8271, 1448, 357, 3866, 27614, 8, 198, 2, 10097, 35937, 198, 4798, 7203, 32071, 20857, 4912, 4943, 198, 31092, 62, 16366, 13, 31092, 62, 24432, 13, 17953, 62, 273, 62, 19119, 7, 31092, 62, 8094, 62, 3672, 28, 19535, 31033, 62, 46846, 11, 10007, 34758, 705, 24886, 10354, 26253, 11335, 62, 29701, 6234, 32092, 628, 198, 2, 10097, 35937, 198, 2, 7166, 3127, 357, 3866, 27614, 8, 198, 2, 10097, 35937, 198, 4798, 7203, 6719, 27614, 532, 30481, 15595, 7311, 4943, 198, 1031, 495, 62, 27184, 62, 30393, 263, 796, 3127, 62, 16366, 13, 32844, 62, 3262, 5225, 13, 17953, 62, 273, 62, 19119, 7, 198, 220, 220, 220, 15731, 31033, 62, 46846, 11, 198, 220, 220, 220, 569, 48771, 25620, 62, 12884, 33249, 62, 20608, 11, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24886, 10354, 26253, 11335, 62, 29701, 6234, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21975, 62, 13200, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 21975, 62, 40290, 274, 10354, 37250, 940, 13, 15, 13, 15, 13, 15, 14, 1433, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 198, 8, 198, 20274, 62, 17953, 796, 35560, 495, 62, 27184, 62, 30393, 263, 13, 20274, 3419, 198, 198, 292, 13361, 62, 7266, 3262, 62, 38793, 796, 3127, 62, 16366, 13, 7266, 45938, 13, 17953, 62, 273, 62, 19119, 7, 198, 220, 220, 220, 15731, 31033, 62, 46846, 11, 198, 220, 220, 220, 569, 48771, 25620, 62, 12884, 33249, 62, 20608, 11, 198, 220, 220, 220, 28932, 12884, 62, 20608, 11, 198, 220, 220, 220, 1391, 6, 21975, 62, 40290, 10354, 705, 940, 13, 15, 13, 15, 13, 15, 14, 1731, 6, 92, 198, 8, 198, 7266, 3262, 62, 10951, 796, 30351, 62, 7266, 3262, 62, 38793, 13, 20274, 3419, 628, 198, 2, 10097, 35937, 198, 2, 3127, 7071, 357, 3866, 27614, 8, 198, 2, 10097, 35937, 198, 4798, 7203, 6719, 27614, 532, 30481, 7311, 26491, 4943, 198, 292, 13361, 62, 6988, 62, 38793, 796, 3127, 62, 16366, 13, 27349, 62, 3849, 32186, 13, 17953, 62, 273, 62, 19119, 7, 198, 220, 220, 220, 15731, 31033, 62, 46846, 11, 198, 220, 220, 220, 49791, 62, 41358, 49836, 62, 20608, 11, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 24886, 10354, 26253, 11335, 62, 29701, 6234, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 541, 62, 11250, 20074, 10354, 685, 90, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 705, 3666, 40, 79, 16934, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 3262, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 10354, 850, 3262, 62, 10951, 13, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 60, 198, 220, 220, 220, 1782, 198, 8, 198, 6988, 62, 10951, 796, 30351, 62, 6988, 62, 38793, 13, 20274, 3419, 628, 198, 2, 10097, 35937, 198, 2, 1220, 37725, 49999, 1127, 14, 1996, 14, 16447, 257, 45887, 351, 9206, 18239, 3693, 1996, 60, 198, 2, 10097, 35937, 198, 4798, 7203, 16447, 257, 45887, 351, 9206, 18239, 19570, 198, 33, 33076, 796, 1391, 198, 220, 366, 24886, 1298, 26253, 11335, 62, 29701, 6234, 11, 198, 220, 366, 10424, 1574, 62, 13317, 1298, 1391, 198, 220, 220, 220, 366, 14761, 62, 7857, 1298, 366, 23615, 62, 35, 16, 62, 85, 17, 1, 198, 220, 8964, 198, 220, 366, 35350, 62, 13317, 1298, 1391, 198, 220, 220, 220, 366, 9060, 62, 35790, 1298, 1391, 198, 220, 220, 220, 220, 220, 366, 8135, 84, 1298, 366, 5304, 12, 27354, 330, 9255, 1600, 198, 220, 220, 220, 220, 220, 366, 12984, 8191, 1298, 366, 15905, 11209, 10697, 1600, 198, 220, 220, 220, 220, 220, 366, 9641, 1298, 366, 42861, 1600, 198, 220, 220, 220, 220, 220, 366, 47895, 1298, 366, 11209, 10697, 1, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 366, 418, 62, 39531, 1298, 1391, 198, 220, 220, 220, 220, 220, 366, 66, 8103, 1298, 366, 5569, 16594, 1600, 198, 220, 220, 220, 220, 220, 366, 39935, 62, 39531, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 35350, 62, 23317, 62, 4906, 1298, 366, 23615, 62, 43, 6998, 1, 198, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 1820, 15996, 418, 39531, 1600, 198, 220, 220, 220, 220, 220, 366, 17953, 62, 18076, 1298, 366, 4863, 5159, 1, 198, 220, 220, 220, 1782, 198, 220, 8964, 198, 220, 366, 418, 62, 13317, 1298, 1391, 198, 220, 220, 220, 366, 28482, 62, 29460, 1298, 366, 1820, 7220, 1600, 198, 220, 220, 220, 366, 33215, 62, 3672, 1298, 366, 1820, 15996, 1600, 198, 220, 220, 220, 366, 28482, 62, 28712, 1298, 366, 35215, 10163, 3228, 2474, 198, 220, 8964, 198, 220, 366, 27349, 62, 13317, 1298, 1391, 198, 220, 220, 220, 366, 27349, 62, 3849, 32186, 1298, 685, 198, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 312, 1298, 12813, 7266, 12048, 507, 30487, 1343, 13558, 4462, 40165, 62, 2389, 1343, 12813, 31092, 38, 14459, 30487, 1343, 15731, 31033, 62, 46846, 1343, 12813, 15234, 4157, 14, 15905, 13, 26245, 14, 27349, 9492, 32186, 30487, 1343, 49791, 62, 41358, 49836, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 48310, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 39754, 1298, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2361, 198, 220, 1782, 198, 92, 198, 20274, 796, 10527, 16762, 62, 16366, 13, 32844, 62, 76, 620, 1127, 13, 17953, 62, 273, 62, 19119, 7, 31092, 62, 8094, 62, 3672, 28, 19535, 31033, 62, 46846, 11, 45887, 62, 3672, 28, 15996, 62, 20608, 11, 10007, 28, 33, 33076, 8, 198, 20274, 796, 1255, 13, 20274, 3419, 628, 198, 2, 10097, 35937, 198, 2, 1220, 37725, 49999, 1127, 14, 1136, 14, 3855, 15595, 10850, 2262, 590, 3582, 3693, 1136, 60, 198, 2, 10097, 35937, 198, 4798, 7203, 3855, 15595, 10850, 2262, 590, 3582, 19570, 198, 20274, 796, 10527, 16762, 62, 16366, 13, 32844, 62, 76, 620, 1127, 13, 39098, 62, 1177, 7, 31092, 62, 8094, 62, 3672, 28, 19535, 31033, 62, 46846, 11, 45887, 62, 3672, 28, 15996, 62, 20608, 8, 628, 198, 2, 10097, 35937, 198, 2, 1220, 37725, 49999, 1127, 14, 1136, 14, 43, 1023, 477, 1695, 7166, 4572, 10620, 284, 543, 262, 7368, 7166, 4572, 460, 307, 581, 1143, 58, 1136, 60, 198, 2, 10097, 35937, 198, 4798, 7203, 43, 1023, 477, 1695, 7166, 4572, 10620, 284, 543, 262, 7368, 7166, 4572, 460, 307, 581, 1143, 4943, 198, 20274, 796, 10527, 16762, 62, 16366, 13, 32844, 62, 76, 620, 1127, 13, 4868, 62, 15182, 62, 82, 4340, 7, 31092, 62, 8094, 62, 3672, 28, 19535, 31033, 62, 46846, 11, 45887, 62, 3672, 28, 15996, 62, 20608, 8, 628, 198, 2, 10097, 35937, 198, 2, 1220, 37725, 49999, 1127, 14, 1136, 14, 3855, 257, 15595, 10850, 3693, 1136, 60, 198, 2, 10097, 35937, 198, 4798, 7203, 3855, 257, 15595, 10850, 19570, 198, 20274, 796, 10527, 16762, 62, 16366, 13, 32844, 62, 76, 620, 1127, 13, 1136, 7, 31092, 62, 8094, 62, 3672, 28, 19535, 31033, 62, 46846, 11, 45887, 62, 3672, 28, 15996, 62, 20608, 8, 628, 198, 2, 10097, 35937, 198, 2, 1220, 37725, 49999, 1127, 14, 1136, 14, 43, 1023, 477, 262, 7166, 8217, 739, 262, 7368, 14569, 329, 262, 7368, 4067, 3693, 1136, 60, 198, 2, 10097, 35937, 198, 4798, 7203, 43, 1023, 477, 262, 7166, 8217, 739, 262, 7368, 14569, 329, 262, 7368, 4067, 19570, 198, 20274, 796, 10527, 16762, 62, 16366, 13, 32844, 62, 76, 620, 1127, 13, 4868, 62, 1525, 62, 24886, 7, 24886, 28, 22778, 11335, 62, 29701, 6234, 8, 198 ]
3.674617
1,761
# Generated by Django 2.0 on 2019-01-12 16:27 from django.db import migrations, models import showcase.file_size_validator
[ 2, 2980, 515, 416, 37770, 362, 13, 15, 319, 13130, 12, 486, 12, 1065, 1467, 25, 1983, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 21742, 13, 7753, 62, 7857, 62, 12102, 1352, 628 ]
3.125
40
# Generated by Django 2.2.6 on 2019-11-18 11:44 import datetime from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 21, 319, 13130, 12, 1157, 12, 1507, 1367, 25, 2598, 198, 198, 11748, 4818, 8079, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.972222
36
#!/usr/bin/env python # -*- coding: utf-8 -*- import requests import datetime import time import opasConfig import models import logging import localsecrets # import urllib.parse # import json import sys # from opasAPISupportLib import save_opas_session_cookie sys.path.append("..") # Adds higher directory to python modules path. from config.opasConfig import OPASSESSIONID logger = logging.getLogger(__name__) # for this module # logger.setLevel(logging.DEBUG) if 0: # create console handler and set level to debug ch = logging.StreamHandler() # create formatter formatter = logging.Formatter(opasConfig.FORMAT) # add formatter to ch ch.setFormatter(formatter) ch.setLevel(logging.DEBUG) logger.addHandler(ch) from starlette.responses import Response from starlette.requests import Request import starlette.status as httpCodes # import localsecrets from localsecrets import PADS_BASE_URL, PADS_TEST_ID, PADS_TEST_PW, PADS_BASED_CLIENT_IDS base = PADS_BASE_URL # base = "http://development.org:9300" import opasCentralDBLib ocd = opasCentralDBLib.opasCentralDB() def find_client_session_id(request: Request, response: Response, client_session: str=None ): """ ALWAYS returns a session ID or None Dependency for client_session id: gets it from header; if not there, gets it from query param; if not there, gets it from a cookie Otherwise, gets a new one from the auth server """ ret_val = None if client_session is None or client_session == 'None': client_session = request.headers.get(opasConfig.CLIENTSESSIONID, None) if client_session is not None: ret_val = client_session #msg = f"client-session from header: {ret_val} " #logger.debug(msg) else: #Won't work unless they expose cookie to client, so don't waste time #pepweb_session_cookie = request.cookies.get("pepweb_session", None) opas_session_cookie = request.cookies.get(opasConfig.OPASSESSIONID, None) client_session_qparam = request.query_params.get(opasConfig.CLIENTSESSIONID, None) client_session_cookie = request.cookies.get(opasConfig.CLIENTSESSIONID, None) if client_session_qparam is not None: ret_val = client_session_qparam msg = f"client-session from param: {ret_val}. URL: {request.url}" logger.info(msg) elif client_session_cookie is not None: ret_val = client_session_cookie msg = f"client-session from client-session cookie: {ret_val}. URL: {request.url}" logger.info(msg) elif opas_session_cookie is not None and opas_session_cookie != 'None': msg = f"client-session from stored OPASSESSION cookie {opas_session_cookie}. URL: {request.url} " logger.info(msg) ret_val = opas_session_cookie else: msg = f"No dependency client-session ID found. Returning None. URL: {request.url}" logger.info(msg) ret_val = None if ret_val is not None and opas_session_cookie is not None and opas_session_cookie != ret_val: # overwrite any saved cookie, if there is one logger.debug("Saved OpasSessionID Cookie") response.set_cookie( OPASSESSIONID, value=f"{client_session}", domain=localsecrets.COOKIE_DOMAIN ) return ret_val def get_user_ip(request: Request): """ Returns a users IP if passed in the headers. """ ret_val = None if request is not None: ret_val = request.headers.get(opasConfig.X_FORWARDED_FOR, None) if ret_val is not None: try: req_url = request.url msg = f"X-Forwarded-For from header: {ret_val}. URL: {req_url}" logger.debug(msg) except Exception as e: logger.error(f"Error: {e}") return ret_val def get_authserver_session_info(session_id, client_id=opasConfig.NO_CLIENT_ID, pads_session_info=None, request=None): """ Return a filled-in SessionInfo object from several PaDS calls Saves the session information to the SQL database (or updates it) >>> session_info = get_authserver_session_info(None, "4") >>> session_info.username == "NotLoggedIn" True >>> pads_session_info = pads_login() >>> session_id = pads_session_info.SessionId >>> session_info = get_authserver_session_info(session_id, "4", pads_session_info=pads_session_info) >>> session_info.authorized_peparchive == True True >>> session_info = get_authserver_session_info("7F481226-9AF1-47BC-8E26-F07DB8C3E78D", "4") >>> print (session_info) session_id='7F481226-9AF1-47BC-8E26-F07DB8C3E78D' user_id=0 username='NotLoggedIn' ... >>> session_info.username == "NotLoggedIn" True """ ts = time.time() caller_name = "get_authserver_session_info" #make sure it's ok, this is causing problems on production #see if it's an int? client_id = validate_client_id(client_id, caller_name=caller_name) if pads_session_info is None or session_id is None: # not supplied, so fetch try: logger.debug(f"{caller_name}: calling PaDS") pads_session_info = get_pads_session_info(session_id=session_id, client_id=client_id, retry=False, request=request) try: session_info = models.SessionInfo(session_id=pads_session_info.SessionId, api_client_id=client_id) except Exception as e: msg = f"{caller_name}: Error {e}. SessID: {session_id} client_id: {client_id} req: {request}" if opasConfig.LOCAL_TRACE: print (msg) logger.error(msg) session_info = models.SessionInfo(session_id="unknown", api_client_id=client_id) else: session_id = session_info.session_id except Exception as e: logger.error(f"{caller_name}: Error getting pads_session_info {e}") client_id_type = type(client_id) if client_id_type == int: session_info = models.SessionInfo(session_id="unknown", api_client_id=client_id) else: session_info = models.SessionInfo(session_id="unknown", api_client_id=opasConfig.NO_CLIENT_ID) #else: #session_info = models.SessionInfo(session_id=session_id, api_client_id=client_id) # This section is causing errors--I believe it's because PaDS is calling the API without real user info if pads_session_info is not None: if pads_session_info.SessionId is not None: session_info = models.SessionInfo(session_id=pads_session_info.SessionId, api_client_id=client_id) else: session_info = models.SessionInfo(session_id=session_id, api_client_id=client_id) start_time = pads_session_info.session_start_time if pads_session_info.session_start_time is not None else datetime.datetime.now() try: session_info.has_subscription = pads_session_info.HasSubscription except Exception as e: logger.error(f"{caller_name}: HasSubscription not supplied by PaDS") session_info.has_subscription = False try: session_info.is_valid_login = pads_session_info.IsValidLogon session_info.authenticated = pads_session_info.IsValidLogon except Exception as e: logger.error(f"{caller_name}: IsValidLogon not supplied by PaDS") session_info.is_valid_login = False try: session_info.is_valid_username = pads_session_info.IsValidUserName except Exception as e: logger.error(f"{caller_name}: IsValidUsername not supplied by PaDS") session_info.is_valid_username = False # session_info.confirmed_unauthenticated = False session_info.session_start = start_time session_info.session_expires_time = start_time + datetime.timedelta(seconds=pads_session_info.SessionExpires) session_info.pads_session_info = pads_session_info user_logged_in_bool = pads_session_info.IsValidLogon # either continue an existing session, or start a new one if request is not None: if user_logged_in_bool or pads_session_info.IsValidLogon: pads_user_info, status_code = get_authserver_session_userinfo(session_id, client_id, addl_log_info=" (complete session_record)") session_info.pads_user_info = pads_user_info if status_code == 401: # could be just no session_id, but also could have be returned by PaDS if it doesn't recognize it if session_info.pads_session_info.pads_status_response > 500: msg = f"{caller_name}: PaDS error or PaDS unavailable - user cannot be logged in and no session_id assigned" logger.error(msg) if session_id is not None: logger.warning(f"{session_id} call to pads produces 401 error. Setting user_logged_in to False") user_logged_in_bool = False # session is not logged in # session_info.confirmed_unauthenticated = True # these are defaults so commented out # session_info.authenticated = False # session_info.user_id = 0 # session_info.username = opasConfig.USER_NOT_LOGGED_IN_NAME # session_info.user_type = "Unknown" # session_info.admin = False # session_info.authorized_peparchive = False # session_info.authorized_pepcurrent = False else: start_time = pads_session_info.session_start_time if pads_session_info.session_start_time is not None else datetime.datetime.now() if pads_user_info is not None: session_info.user_id = userID=pads_user_info.UserId session_info.username = pads_user_info.UserName session_info.user_type = pads_user_info.UserType session_info.admin = pads_user_info.UserType=="Admin" session_info.authorized_peparchive = pads_user_info.HasArchiveAccess session_info.authorized_pepcurrent = pads_user_info.HasCurrentAccess logger.debug("PaDS returned user info. Saving to DB") unused_val = save_session_info_to_db(session_info) if session_info.user_type is None: session_info.user_type = "Unknown" if session_info.username is None: session_info.username = opasConfig.USER_NOT_LOGGED_IN_NAME # print (f"SessInfo: {session_info}") logger.debug(f"***authent: {session_info.authenticated} - get_full_session_info total time: {time.time() - ts}***") return session_info def get_authserver_session_userinfo(session_id, client_id, addl_log_info=""): """ Send PaDS the session ID and see if that's associated with a user yet. """ ret_val = None caller_name = "get_authserver_session_userinfo" status_code = 401 msg = f"for session {session_id} from client {client_id}" #logger.debug(msg) if session_id is not None: full_URL = base + f"/v1/Users" + f"?SessionID={session_id}" try: response = requests.get(full_URL, headers={"Content-Type":"application/json"}) # Call PaDS ocd.temp_pads_log_call(caller=caller_name, reason=caller_name + addl_log_info, session_id=session_id, pads_call=full_URL, return_status_code=response.status_code) # Log Call PaDS except Exception as e: logger.error(f"{caller_name}: Error from auth server user info call: {e}. Non-logged in user {msg}") else: status_code = response.status_code padsinfo = response.json() if response.ok: padsinfo = fix_userinfo_invalid_nones(padsinfo) ret_val = models.PadsUserInfo(**padsinfo) else: logger.debug(f"Non-logged in user {msg}. Info from PaDS: {padsinfo}") # 2021.08.08 back to debug...seems consistent. return ret_val, status_code # padsinfo, status_code def authserver_login(username=PADS_TEST_ID, password=PADS_TEST_PW, session_id=None, client_id=opasConfig.NO_CLIENT_ID, retry=True): """ Login directly via the auth server (e.g., in this case PaDS) If session_id is included, the idea is that the logged in entity will keep that constant. -- #TODO but that's not implemented in this server itself, if logged in through there, yet! """ msg = "" caller_name = "authserver_login" logger.info(f"Logging in user {username} with session_id {session_id}") if session_id is not None: full_URL = base + f"/v1/Authenticate/?SessionId={session_id}" else: full_URL = base + f"/v1/Authenticate/" try: pads_response = requests.post(full_URL, headers={"Content-Type":"application/json"}, json={"UserName":f"{username}", "Password":f"{password}"}) ocd.temp_pads_log_call(caller=caller_name, reason=caller_name, session_id=session_id, pads_call=full_URL, return_status_code=pads_response.status_code, params=username) # Log Call PaDS except Exception as e: msg = f"{caller_name}: Authorization server not available. {e}" logger.error(msg) if opasConfig.LOCAL_TRACE: print (f"****WATCH_THIS****: {msg}") # set up response with default model pads_session_info = models.PadsSessionInfo() if session_id is not None: pads_session_info.SessionId = session_id #session_info = models.SessionInfo() else: status_code = pads_response.status_code # save it for a bit (we replace pads_session_info below) if pads_response.ok: pads_response = pads_response.json() pads_response = fix_pydantic_invalid_nones(pads_response, caller_name="AuthserverLogin") if isinstance(pads_response, str): pads_session_info = models.PadsSessionInfo() logger.error(f"{caller_name}: returned error string: {pads_response}") else: try: pads_session_info = models.PadsSessionInfo(**pads_response) except Exception as e: logger.error(f"{caller_name}: return assignment error: {e}") pads_session_info = models.PadsSessionInfo() elif status_code > 403: if retry == True: # try once without the session ID msg = f"{caller_name}: Login returned {status_code}. Trying without session id." logger.error(msg) pads_session_info = authserver_login(username=username, password=password, client_id=client_id, retry=False) else: msg = f"{caller_name}: Auth System Issue. Login returned {status_code}. Retry (failed), or Retry not selected." logger.error(msg) pads_session_info = models.PadsSessionInfo() pads_session_info.pads_status_response = status_code pads_session_info.pads_disposition = msg else: try: pads_response = pads_response.json() pads_response = fix_pydantic_invalid_nones(pads_response) if isinstance(pads_response, str): pads_session_info = models.PadsSessionInfo() msg = f"{caller_name}: Returned error string: {pads_response}" logger.error(msg) else: try: pads_session_info = models.PadsSessionInfo(**pads_response) except Exception as e: msg = f"{caller_name}: Return assignment error: {e}" logger.error(msg) pads_session_info = models.PadsSessionInfo() except Exception as e: logger.error(f"{caller_name}: Response processing error {e}") pads_session_info = models.PadsSessionInfo(**pads_session_info) pads_session_info.pads_status_response = status_code pads_session_info.pads_disposition = msg return pads_session_info def get_access_limitations(doc_id, classification, # document classification, e.g., free, current, archive, undefined, offsite, toc session_info, # updated in code below year=None, doi=None, documentListItem: models.DocumentListItem=None, # deprecated, not used fulltext_request:bool=None, request=None): """ Based on the classification of the document (archive, current [embargoed], free, offsite), and the users permissions in session_info, determine whether this user has access to the full-text of the document, and fill out permissions in accessLimitations (ret_val) structure for document doc_id 20210428 - removed documentListItem and update side effects, caller should copy access There are still side effects on session_info """ caller_name = "get_access_limitations" try: open_access = False ret_val = models.AccessLimitations() ret_val.doi = doi ret_val.accessLimitedPubLink = None ret_val.accessLimitedCode = 200 # default (for now) # USE THESE DEFAULTS, only set below if different # default, turned on if classification below is opasConfig.DOCUMENT_ACCESS_EMBARGOED ret_val.accessLimited = True # no access by default, may be changed below. ret_val.accessChecked = False # Same as default, for better clarity here ret_val.accessLimitedClassifiedAsCurrentContent = False if session_info is None: # logger.warning(f"Document permissions for {doc_id} -- no session info") ret_val.accessLimitedCode = 401 # no session session_id = "No Session Info" # not logged in # use all the defaults above, log error below. else: # for debugging display at return try: session_id = session_info.session_id except: session_id = "No Session ID" if ret_val.doi is not None: publisherAccess = opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO + opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO_DOI_LINK % ret_val.doi # TODO: get the link we use to send users to publishers site when we don't have it, and no doi, and implement here. # for now, just doi ret_val.accessLimitedPubLink = opasConfig.ACCESS_SUMMARY_PUBLISHER_INFO_DOI_LINK % ret_val.doi else: publisherAccess = "." if classification in (opasConfig.DOCUMENT_ACCESS_FREE): # free can be for anyone!!!! Change accessLimited open_access = True ret_val.accessLimited = False ret_val.accessChecked = True ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE #"This content is currently free to all users." ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE elif classification in (opasConfig.DOCUMENT_ACCESS_OFFSITE): # we only allow reading abstracts for offsite, accessLimited is True ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION #"This content is currently completely limited to all users." ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_OFFSITE + publisherAccess # limited...get it elsewhere elif classification in (opasConfig.DOCUMENT_ACCESS_EMBARGOED): # PEPCurrent ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION ret_val.accessLimitedClassifiedAsCurrentContent = True ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_DESCRIPTION + opasConfig.ACCESS_SUMMARY_EMBARGOED + publisherAccess # limited...get it elsewhere if session_info is not None: try: # ######################################################################################### # optimization...if authorized for PEPCurrent, don't check again this query, unless it's a full-text request # ######################################################################################### if session_info.authorized_pepcurrent: ret_val.accessLimited = False # you can access it!!! ret_val.accessChecked = True # "This current content is available for you to access" ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_CURRENT_CONTENT_AVAILABLE logger.debug("Optimization - session info used to authorize PEPCurrent document") except Exception as e: logger.error(f"{caller_name}: PEPCurrent document permission: {e}") elif classification in (opasConfig.DOCUMENT_ACCESS_ARCHIVE): ret_val.accessLimitedDescription = opasConfig.ACCESS_SUMMARY_DESCRIPTION # ret_val.accessLimited = True # default is true ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_FORSUBSCRIBERS # ######################################################################################### # optimization...if authorized, don't check again, unless it's a full-text request # ######################################################################################### if session_info is not None: try: if session_info.authorized_peparchive: ret_val.accessLimited = False # you can access it!!! ret_val.accessChecked = True # "This content is available for you to access" ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE logger.debug("Optimization - session info used to authorize PEPArchive document") except Exception as e: logger.error(f"{caller_name}: PEPArchive document permission: {e}") elif classification in (opasConfig.DOCUMENT_ACCESS_TOC): open_access = True ret_val.accessLimited = False # you can access it!!! (All TOCs are open) ret_val.accessChecked = True # just like free for now ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE #"This content is currently free to all users." ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_FREE else: logger.error(f"{caller_name}: Unknown classification: {classification}") # ************************************** # Now check for access, or cached access # - always check for a full-text request so PaDS can track them. # since we don't really always know about authentication, we need to check all requests that are otherwise rejected. # ************************************** try: if not open_access: if (session_info.authenticated == True # Must be authenticated for this check and (ret_val.accessLimited == True # if it's marked limited, then may need to check, it might be first one or fulltext_request == True)): # or whenever full-text is requested. # and session_info.api_client_session and session_info.api_client_id in PADS_BASED_CLIENT_IDS: if fulltext_request: reason_for_check = opasConfig.AUTH_DOCUMENT_VIEW_REQUEST else: reason_for_check = opasConfig.AUTH_ABSTRACT_VIEW_REQUEST try: pads_authorized, resp = authserver_permission_check(session_id=session_info.session_id, doc_id=doc_id, doc_year=year, reason_for_check=reason_for_check, request=request) except Exception as e: # PaDS could be down, local development logger.error(f"{caller_name}: Access Exception: {e}") if localsecrets.BASEURL == "development.org:9100": resp = models.PadsPermitInfo(Permit=True, HasArchiveAccess=True, HasCurrentAccess=True) # so it doesn't have to check this later session_info.authorized_peparchive = True session_info.authorized_pepcurrent = True else: session_info.authorized_peparchive = False session_info.authorized_pepcurrent = False resp = models.PadsPermitInfo(Permit=False, HasArchiveAccess=False, HasCurrentAccess=False) finally: # save PaDS code ret_val.accessLimitedCode = resp.StatusCode if resp.StatusCode == httpCodes.HTTP_401_UNAUTHORIZED: # or resp.ReasonStr == 'Session has not been authenticated': # if this is True, then we can stop asking this time # You would get the same return if # the session was not recognised on pads, # the session had been deleted from the database (should never happen…), or # the session simply never existed. ret_val.accessLimited = True session_info.authenticated = False msg = f"Full text of {doc_id} unavailable. " + opasConfig.ACCESSLIMITED_401_UNAUTHORIZED ret_val.accessLimitedReason = msg else: # set default again based on update from PaDS query ret_val.accessLimited = True if ret_val.accessLimitedClassifiedAsCurrentContent == True: if resp.HasCurrentAccess == True: session_info.authorized_pepcurrent = True ret_val.accessLimited = False ret_val.accessChecked = True else: ret_val.accessLimited = True else: # not current content if resp.HasArchiveAccess == True: session_info.authorized_peparchive = True ret_val.accessLimited = False ret_val.accessChecked = True if fulltext_request and pads_authorized: # let's make sure we know about this user. if session_info.user_id == opasConfig.USER_NOT_LOGGED_IN_NAME: # We got this far, We need to find out who this is pads_user_info, status_code = get_authserver_session_userinfo(session_info.session_id, session_info.api_client_id, addl_log_info=" (user info not yet collected)") if pads_user_info is not None: session_info.user_id = pads_user_info.UserId session_info.username = pads_user_info.UserName session_info.user_type = pads_user_info.UserType # TODO - Add this to session table # session_info.session_expires_time = ? # ocd = opasCentralDBLib.opasCentralDB() ocd.update_session(session_info.session_id, userID=session_info.user_id, username=session_info.username, authenticated=1, authorized_peparchive=1 if session_info.authorized_peparchive == True else 0, authorized_pepcurrent=1 if session_info.authorized_pepcurrent == True else 0, session_end=session_info.session_expires_time, api_client_id=session_info.api_client_id ) if pads_authorized: # "This content is available for you to access" ret_val.accessLimited = False ret_val.accessChecked = True ret_val.accessLimitedDescription = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE ret_val.accessLimitedReason = opasConfig.ACCESSLIMITED_DESCRIPTION_AVAILABLE msg = f"Document {doc_id} available. Pads Reason: {resp.ReasonStr}. Opas Reason: {ret_val.accessLimitedDescription} - {ret_val.accessLimitedReason}" logger.debug(msg) ret_val.accessLimitedDebugMsg = msg else: # changed from warning to info 2021-06-02 to reduce normal logging msg = f"Document {doc_id} unavailable. Pads Reason: {resp.ReasonStr} Opas: {ret_val.accessLimitedDescription} - {ret_val.accessLimitedReason}" logger.info(msg) # limited...get it elsewhere ret_val.accessLimitedDebugMsg = msg ret_val.accessLimited = True if ret_val.accessLimitedClassifiedAsCurrentContent: # embargoed ret_val.accessLimitedReason = opasConfig.ACCESS_SUMMARY_EMBARGOED else: # non embargoed, but no access. ret_val.accessLimitedReason = f"{ret_val.accessLimitedDescription} {ret_val.accessLimitedReason}" else: # not full-text OR (not authenticated or accessLimited==False) msg = f"No PaDS check needed: Document {doc_id} accessLimited: {ret_val.accessLimited}. Authent: {session_info.authenticated}" logger.debug(msg) ret_val.accessLimitedDebugMsg = msg else: # It's open access! msg = f"No PaDS check needed: Document {doc_id} is open access" logger.debug(msg) ret_val.accessLimitedDebugMsg = msg except Exception as e: msg = f"{caller_name}: Issue checking document permission. Possibly not logged in {e}" logger.error(msg) ret_val.accessLimitedDebugMsg = msg pass # can't be checked, will be unauthorized. except Exception as e: msg = f"{caller_name}: General exception {e} trying ascertain access limitations." logger.error(msg) if ret_val is None: ret_val = models.AccessLimitations() # make sure there's defaults! ret_val.accessLimitedDebugMsg = msg if fulltext_request and ret_val.accessLimited: # happens anytime someone views an abstract in Document mode because they don't have an account. Perfectly legal. Changed to info (from error) msg = f"Full-text access for {doc_id} denied ({ret_val.accessLimitedCode}). Sess:{session_id}: Access:{ret_val.accessLimitedReason}" logger.info(msg) ret_val.accessLimitedDebugMsg = msg return ret_val # ################################################################################################################################################## # # LOCAL ROUTUNES # # ################################################################################################################################################## def get_pads_session_info(session_id=None, client_id=opasConfig.NO_CLIENT_ID, retry=True, request=None): """ Get the PaDS session model, and get a new session ID from the auth server if needed """ msg = "" caller_name = "get_pads_session_info" if client_id == opasConfig.NO_CLIENT_ID: logger.warning(f"{caller_name}: Session info call for Session ID: {session_id} Client ID was NO_CLIENT_ID ({opasConfig.NO_CLIENT_ID}).") if session_id is not None: full_URL = base + f"/v1/Authenticate/IP/" + f"?SessionID={session_id}" else: full_URL = base + f"/v1/Authenticate/IP/" req_url = "No request info." if request is not None: try: # just in case this generates an error req_url = request.url # to log caller url except Exception as e: pass user_ip = get_user_ip(request) # returns an IP if X_FORWARDED_FOR address is in header try: logger.debug(f"{caller_name}: calling PaDS") if user_ip is not None and user_ip is not '': headers = { opasConfig.X_FORWARDED_FOR:user_ip } pads_session_info = requests.get(full_URL, headers) # Call PaDS logger.debug(f"{caller_name}: Session ID:{session_id}. X_FORWARDED_FOR from authenticateIP: {user_ip}. URL: {req_url} PaDS Session Info: {pads_session_info}") else: pads_session_info = requests.get(full_URL) # Call PaDS except Exception as e: logger.error(f"{caller_name}: Authorization server not available. {e}") pads_session_info = models.PadsSessionInfo() else: status_code = pads_session_info.status_code # save it for a bit (we replace pads_session_info below) ocd.temp_pads_log_call(caller=caller_name, reason=caller_name, session_id=session_id, pads_call=full_URL, ip_address=user_ip, return_status_code=status_code) # Log Call PaDS if status_code > 403: # e.g., (httpCodes.HTTP_500_INTERNAL_SERVER_ERROR, httpCodes.HTTP_503_SERVICE_UNAVAILABLE): error_text = f"{caller_name}: PaDS session_info status_code is {status_code}" logger.error(error_text) # try once without the session ID if retry == True: pads_session_info = get_pads_session_info(client_id=client_id, retry=False, request=request) pads_session_info.pads_status_response = status_code else: logger.error(error_text) pads_session_info = models.PadsSessionInfo() pads_session_info.pads_status_response = status_code pads_session_info.pads_disposition = error_text else: try: pads_session_info = pads_session_info.json() pads_session_info = fix_pydantic_invalid_nones(pads_session_info, caller_name=caller_name) pads_session_info = models.PadsSessionInfo(**pads_session_info) pads_session_info.pads_status_response = status_code logger.debug(f"PaDS Status Ok, Final IP Session Info: {pads_session_info} URL: {req_url}.") except Exception as e: msg = f"{caller_name}: Response processing error {e}" logger.error(msg) pads_session_info = models.PadsSessionInfo(**pads_session_info) pads_session_info.pads_status_response = status_code pads_session_info.pads_disposition = msg return pads_session_info if __name__ == "__main__": import doctest import sys print (40*"*", "opasDocPermissionsTests", 40*"*") print (f"Running in Python {sys.version_info[0]}.{sys.version_info[1]}") logger = logging.getLogger(__name__) ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s %(name)s %(lineno)d - %(levelname)s %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) doctest.testmod(optionflags=doctest.ELLIPSIS|doctest.NORMALIZE_WHITESPACE) print ("Fini. Tests complete.")
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 7007, 198, 11748, 4818, 8079, 198, 11748, 640, 198, 11748, 1034, 292, 16934, 198, 11748, 4981, 198, 11748, 18931, 198, 11748, 1957, 2363, 8004, 198, 2, 1330, 2956, 297, 571, 13, 29572, 198, 2, 1330, 33918, 198, 11748, 25064, 198, 2, 422, 1034, 292, 2969, 1797, 84, 4926, 25835, 1330, 3613, 62, 404, 292, 62, 29891, 62, 44453, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 1303, 34333, 2440, 8619, 284, 21015, 13103, 3108, 13, 198, 6738, 4566, 13, 404, 292, 16934, 1330, 13349, 10705, 47621, 2389, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 2, 329, 428, 8265, 198, 2, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 198, 361, 657, 25, 198, 220, 220, 220, 1303, 2251, 8624, 21360, 290, 900, 1241, 284, 14257, 198, 220, 220, 220, 442, 796, 18931, 13, 12124, 25060, 3419, 198, 220, 220, 220, 1303, 2251, 1296, 1436, 198, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 7, 404, 292, 16934, 13, 21389, 1404, 8, 198, 220, 220, 220, 1303, 751, 1296, 1436, 284, 442, 198, 220, 220, 220, 442, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 442, 13, 2617, 4971, 7, 6404, 2667, 13, 30531, 8, 198, 220, 220, 220, 49706, 13, 2860, 25060, 7, 354, 8, 198, 198, 6738, 3491, 21348, 13, 16733, 274, 1330, 18261, 198, 6738, 3491, 21348, 13, 8897, 3558, 1330, 19390, 198, 11748, 3491, 21348, 13, 13376, 355, 2638, 34, 4147, 198, 198, 2, 1330, 1957, 2363, 8004, 198, 6738, 1957, 2363, 8004, 1330, 350, 47149, 62, 33, 11159, 62, 21886, 11, 350, 47149, 62, 51, 6465, 62, 2389, 11, 350, 47149, 62, 51, 6465, 62, 47, 54, 11, 350, 47149, 62, 33, 42827, 62, 5097, 28495, 62, 14255, 198, 8692, 796, 350, 47149, 62, 33, 11159, 62, 21886, 198, 2, 2779, 796, 366, 4023, 1378, 31267, 13, 2398, 25, 6052, 405, 1, 198, 11748, 1034, 292, 30645, 35, 9148, 571, 198, 420, 67, 796, 1034, 292, 30645, 35, 9148, 571, 13, 404, 292, 30645, 11012, 3419, 198, 198, 4299, 1064, 62, 16366, 62, 29891, 62, 312, 7, 25927, 25, 19390, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 25, 18261, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 29891, 25, 965, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 49576, 5860, 257, 6246, 4522, 393, 6045, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37947, 1387, 329, 5456, 62, 29891, 4686, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3011, 340, 422, 13639, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 612, 11, 3011, 340, 422, 12405, 5772, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 612, 11, 3011, 340, 422, 257, 19751, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15323, 11, 3011, 257, 649, 530, 422, 262, 6284, 4382, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1005, 62, 2100, 796, 6045, 628, 220, 220, 220, 611, 5456, 62, 29891, 318, 6045, 393, 5456, 62, 29891, 6624, 705, 14202, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 29891, 796, 2581, 13, 50145, 13, 1136, 7, 404, 292, 16934, 13, 5097, 40, 15365, 47621, 2389, 11, 6045, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 5456, 62, 29891, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 5456, 62, 29891, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 19662, 796, 277, 1, 16366, 12, 29891, 422, 13639, 25, 1391, 1186, 62, 2100, 92, 366, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6404, 1362, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 54, 261, 470, 670, 4556, 484, 15651, 19751, 284, 5456, 11, 523, 836, 470, 7030, 640, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 431, 79, 12384, 62, 29891, 62, 44453, 796, 2581, 13, 27916, 444, 13, 1136, 7203, 431, 79, 12384, 62, 29891, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1034, 292, 62, 29891, 62, 44453, 796, 2581, 13, 27916, 444, 13, 1136, 7, 404, 292, 16934, 13, 3185, 10705, 47621, 2389, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 29891, 62, 80, 17143, 796, 2581, 13, 22766, 62, 37266, 13, 1136, 7, 404, 292, 16934, 13, 5097, 40, 15365, 47621, 2389, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 29891, 62, 44453, 796, 2581, 13, 27916, 444, 13, 1136, 7, 404, 292, 16934, 13, 5097, 40, 15365, 47621, 2389, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5456, 62, 29891, 62, 80, 17143, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 5456, 62, 29891, 62, 80, 17143, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 16366, 12, 29891, 422, 5772, 25, 1391, 1186, 62, 2100, 27422, 10289, 25, 1391, 25927, 13, 6371, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5456, 62, 29891, 62, 44453, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 5456, 62, 29891, 62, 44453, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 16366, 12, 29891, 422, 5456, 12, 29891, 19751, 25, 1391, 1186, 62, 2100, 27422, 10289, 25, 1391, 25927, 13, 6371, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1034, 292, 62, 29891, 62, 44453, 318, 407, 6045, 290, 1034, 292, 62, 29891, 62, 44453, 14512, 705, 14202, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 16366, 12, 29891, 422, 8574, 13349, 10705, 47621, 19751, 1391, 404, 292, 62, 29891, 62, 44453, 27422, 10289, 25, 1391, 25927, 13, 6371, 92, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 1034, 292, 62, 29891, 62, 44453, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 2949, 20203, 5456, 12, 29891, 4522, 1043, 13, 42882, 6045, 13, 10289, 25, 1391, 25927, 13, 6371, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 318, 407, 6045, 290, 1034, 292, 62, 29891, 62, 44453, 318, 407, 6045, 290, 1034, 292, 62, 29891, 62, 44453, 14512, 1005, 62, 2100, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 49312, 597, 7448, 19751, 11, 611, 612, 318, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 50, 9586, 8670, 292, 36044, 2389, 39606, 4943, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 13, 2617, 62, 44453, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13349, 10705, 47621, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 69, 1, 90, 16366, 62, 29891, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7386, 28, 12001, 2363, 8004, 13, 34, 15308, 10008, 62, 39170, 29833, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 1005, 62, 2100, 198, 198, 4299, 651, 62, 7220, 62, 541, 7, 25927, 25, 19390, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 2985, 6101, 611, 3804, 287, 262, 24697, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1005, 62, 2100, 796, 6045, 198, 220, 220, 220, 611, 2581, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 2581, 13, 50145, 13, 1136, 7, 404, 292, 16934, 13, 55, 62, 13775, 39743, 1961, 62, 13775, 11, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 6371, 796, 2581, 13, 6371, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 55, 12, 39746, 276, 12, 1890, 422, 13639, 25, 1391, 1186, 62, 2100, 27422, 10289, 25, 1391, 42180, 62, 6371, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 12331, 25, 1391, 68, 92, 4943, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 220, 220, 220, 1441, 1005, 62, 2100, 198, 198, 4299, 651, 62, 18439, 15388, 62, 29891, 62, 10951, 7, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 312, 28, 404, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 257, 5901, 12, 259, 23575, 12360, 2134, 422, 1811, 11243, 5258, 3848, 198, 220, 220, 220, 311, 3080, 262, 6246, 1321, 284, 262, 16363, 6831, 357, 273, 5992, 340, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 6246, 62, 10951, 796, 651, 62, 18439, 15388, 62, 29891, 62, 10951, 7, 14202, 11, 366, 19, 4943, 198, 220, 220, 220, 13163, 6246, 62, 10951, 13, 29460, 6624, 366, 3673, 11187, 2004, 818, 1, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 13163, 21226, 62, 29891, 62, 10951, 796, 21226, 62, 38235, 3419, 198, 220, 220, 220, 13163, 6246, 62, 312, 796, 21226, 62, 29891, 62, 10951, 13, 36044, 7390, 198, 220, 220, 220, 13163, 6246, 62, 10951, 796, 651, 62, 18439, 15388, 62, 29891, 62, 10951, 7, 29891, 62, 312, 11, 366, 19, 1600, 21226, 62, 29891, 62, 10951, 28, 79, 5643, 62, 29891, 62, 10951, 8, 198, 220, 220, 220, 13163, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 6624, 6407, 198, 220, 220, 220, 6407, 628, 220, 220, 220, 13163, 6246, 62, 10951, 796, 651, 62, 18439, 15388, 62, 29891, 62, 10951, 7203, 22, 37, 2780, 1065, 2075, 12, 24, 8579, 16, 12, 2857, 2749, 12, 23, 36, 2075, 12, 37, 2998, 11012, 23, 34, 18, 36, 3695, 35, 1600, 366, 19, 4943, 198, 220, 220, 220, 13163, 3601, 357, 29891, 62, 10951, 8, 198, 220, 220, 220, 6246, 62, 312, 11639, 22, 37, 2780, 1065, 2075, 12, 24, 8579, 16, 12, 2857, 2749, 12, 23, 36, 2075, 12, 37, 2998, 11012, 23, 34, 18, 36, 3695, 35, 6, 2836, 62, 312, 28, 15, 20579, 11639, 3673, 11187, 2004, 818, 6, 2644, 198, 220, 220, 220, 13163, 6246, 62, 10951, 13, 29460, 6624, 366, 3673, 11187, 2004, 818, 1, 198, 220, 220, 220, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 40379, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 24955, 62, 3672, 796, 366, 1136, 62, 18439, 15388, 62, 29891, 62, 10951, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 15883, 1654, 340, 338, 12876, 11, 428, 318, 6666, 2761, 319, 3227, 198, 220, 220, 220, 1303, 3826, 611, 340, 338, 281, 493, 30, 198, 220, 220, 220, 5456, 62, 312, 796, 26571, 62, 16366, 62, 312, 7, 16366, 62, 312, 11, 24955, 62, 3672, 28, 13345, 263, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 21226, 62, 29891, 62, 10951, 318, 6045, 393, 6246, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 14275, 11, 523, 21207, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 4585, 11243, 5258, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 651, 62, 79, 5643, 62, 29891, 62, 10951, 7, 29891, 62, 312, 28, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 312, 28, 16366, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 563, 28, 25101, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 28, 79, 5643, 62, 29891, 62, 10951, 13, 36044, 7390, 11, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 13047, 1391, 68, 27422, 220, 311, 408, 2389, 25, 1391, 29891, 62, 312, 92, 5456, 62, 312, 25, 1391, 16366, 62, 312, 92, 43089, 25, 1391, 25927, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 292, 16934, 13, 29701, 1847, 62, 5446, 11598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 357, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 2625, 34680, 1600, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 312, 796, 6246, 62, 10951, 13, 29891, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 13047, 1972, 21226, 62, 29891, 62, 10951, 1391, 68, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 312, 62, 4906, 796, 2099, 7, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5456, 62, 312, 62, 4906, 6624, 493, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 2625, 34680, 1600, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 2625, 34680, 1600, 40391, 62, 16366, 62, 312, 28, 404, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 17772, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29891, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 28, 29891, 62, 312, 11, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 770, 2665, 318, 6666, 8563, 438, 40, 1975, 340, 338, 780, 11243, 5258, 318, 4585, 262, 7824, 1231, 1103, 2836, 7508, 198, 220, 220, 220, 611, 21226, 62, 29891, 62, 10951, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21226, 62, 29891, 62, 10951, 13, 36044, 7390, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 28, 79, 5643, 62, 29891, 62, 10951, 13, 36044, 7390, 11, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 796, 4981, 13, 36044, 12360, 7, 29891, 62, 312, 28, 29891, 62, 312, 11, 40391, 62, 16366, 62, 312, 28, 16366, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 21226, 62, 29891, 62, 10951, 13, 29891, 62, 9688, 62, 2435, 611, 21226, 62, 29891, 62, 10951, 13, 29891, 62, 9688, 62, 2435, 318, 407, 6045, 2073, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 10134, 62, 7266, 33584, 796, 21226, 62, 29891, 62, 10951, 13, 19242, 7004, 33584, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 7875, 7004, 33584, 407, 14275, 416, 11243, 5258, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 10134, 62, 7266, 33584, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 271, 62, 12102, 62, 38235, 796, 21226, 62, 29891, 62, 10951, 13, 3792, 47139, 11187, 261, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 41299, 3474, 796, 21226, 62, 29891, 62, 10951, 13, 3792, 47139, 11187, 261, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 1148, 47139, 11187, 261, 407, 14275, 416, 11243, 5258, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 271, 62, 12102, 62, 38235, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 271, 62, 12102, 62, 29460, 796, 21226, 62, 29891, 62, 10951, 13, 3792, 47139, 12982, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 1148, 47139, 5842, 13292, 407, 14275, 416, 11243, 5258, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 271, 62, 12102, 62, 29460, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 36349, 62, 403, 41299, 3474, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 29891, 62, 9688, 796, 923, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 29891, 62, 11201, 2387, 62, 2435, 796, 923, 62, 2435, 1343, 4818, 8079, 13, 16514, 276, 12514, 7, 43012, 28, 79, 5643, 62, 29891, 62, 10951, 13, 36044, 16870, 2387, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 79, 5643, 62, 29891, 62, 10951, 796, 21226, 62, 29891, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 6404, 2004, 62, 259, 62, 30388, 796, 21226, 62, 29891, 62, 10951, 13, 3792, 47139, 11187, 261, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2035, 2555, 281, 4683, 6246, 11, 393, 923, 257, 649, 530, 198, 220, 220, 220, 611, 2581, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 6404, 2004, 62, 259, 62, 30388, 393, 21226, 62, 29891, 62, 10951, 13, 3792, 47139, 11187, 261, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 7220, 62, 10951, 11, 3722, 62, 8189, 796, 651, 62, 18439, 15388, 62, 29891, 62, 7220, 10951, 7, 29891, 62, 312, 11, 5456, 62, 312, 11, 751, 75, 62, 6404, 62, 10951, 2625, 357, 20751, 6246, 62, 22105, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 79, 5643, 62, 7220, 62, 10951, 796, 21226, 62, 7220, 62, 10951, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 3722, 62, 8189, 6624, 22219, 25, 1303, 714, 307, 655, 645, 6246, 62, 312, 11, 475, 635, 714, 423, 307, 4504, 416, 11243, 5258, 611, 340, 1595, 470, 7564, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 13, 79, 5643, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 1875, 5323, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 11243, 5258, 4049, 393, 11243, 5258, 23485, 532, 2836, 2314, 307, 18832, 287, 290, 645, 6246, 62, 312, 8686, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 69, 1, 90, 29891, 62, 312, 92, 869, 284, 21226, 11073, 22219, 4049, 13, 25700, 2836, 62, 6404, 2004, 62, 259, 284, 10352, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 6404, 2004, 62, 259, 62, 30388, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 318, 407, 18832, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 36349, 62, 403, 41299, 3474, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 777, 389, 26235, 523, 16476, 503, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 41299, 3474, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 7220, 62, 312, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 29460, 796, 1034, 292, 16934, 13, 29904, 62, 11929, 62, 25294, 38, 1961, 62, 1268, 62, 20608, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 7220, 62, 4906, 796, 366, 20035, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 28482, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 2435, 796, 21226, 62, 29891, 62, 10951, 13, 29891, 62, 9688, 62, 2435, 611, 21226, 62, 29891, 62, 10951, 13, 29891, 62, 9688, 62, 2435, 318, 407, 6045, 2073, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21226, 62, 7220, 62, 10951, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 7220, 62, 312, 796, 2836, 2389, 28, 79, 5643, 62, 7220, 62, 10951, 13, 12982, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 29460, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 7220, 62, 4906, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 28482, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 6030, 855, 1, 46787, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 796, 21226, 62, 7220, 62, 10951, 13, 19242, 19895, 425, 15457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 796, 21226, 62, 7220, 62, 10951, 13, 19242, 11297, 15457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 28875, 5258, 4504, 2836, 7508, 13, 220, 34689, 284, 20137, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21958, 62, 2100, 796, 3613, 62, 29891, 62, 10951, 62, 1462, 62, 9945, 7, 29891, 62, 10951, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 6246, 62, 10951, 13, 7220, 62, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 7220, 62, 4906, 796, 366, 20035, 1, 198, 220, 220, 220, 611, 6246, 62, 10951, 13, 29460, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 29460, 796, 1034, 292, 16934, 13, 29904, 62, 11929, 62, 25294, 38, 1961, 62, 1268, 62, 20608, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3601, 357, 69, 1, 50, 408, 12360, 25, 1391, 29891, 62, 10951, 92, 4943, 198, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 8162, 41299, 25, 1391, 29891, 62, 10951, 13, 41299, 3474, 92, 532, 651, 62, 12853, 62, 29891, 62, 10951, 2472, 640, 25, 1391, 2435, 13, 2435, 3419, 532, 40379, 92, 8162, 4943, 198, 220, 220, 220, 1441, 6246, 62, 10951, 198, 198, 4299, 651, 62, 18439, 15388, 62, 29891, 62, 7220, 10951, 7, 29891, 62, 312, 11, 5456, 62, 312, 11, 751, 75, 62, 6404, 62, 10951, 33151, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16290, 11243, 5258, 262, 6246, 4522, 290, 766, 611, 326, 338, 3917, 351, 257, 2836, 1865, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1005, 62, 2100, 796, 6045, 198, 220, 220, 220, 24955, 62, 3672, 796, 366, 1136, 62, 18439, 15388, 62, 29891, 62, 7220, 10951, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3722, 62, 8189, 796, 22219, 198, 220, 220, 220, 31456, 796, 277, 1, 1640, 6246, 1391, 29891, 62, 312, 92, 422, 5456, 1391, 16366, 62, 312, 36786, 198, 220, 220, 220, 1303, 6404, 1362, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 611, 6246, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 21886, 796, 2779, 1343, 277, 1, 14, 85, 16, 14, 14490, 1, 1343, 277, 13984, 36044, 2389, 34758, 29891, 62, 312, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 7007, 13, 1136, 7, 12853, 62, 21886, 11, 24697, 28, 4895, 19746, 12, 6030, 2404, 31438, 14, 17752, 20662, 8, 1303, 4889, 11243, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 10210, 13, 29510, 62, 79, 5643, 62, 6404, 62, 13345, 7, 13345, 263, 28, 13345, 263, 62, 3672, 11, 1738, 28, 13345, 263, 62, 3672, 1343, 751, 75, 62, 6404, 62, 10951, 11, 6246, 62, 312, 28, 29891, 62, 312, 11, 21226, 62, 13345, 28, 12853, 62, 21886, 11, 1441, 62, 13376, 62, 8189, 28, 26209, 13, 13376, 62, 8189, 8, 1303, 5972, 4889, 11243, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 13047, 422, 6284, 4382, 2836, 7508, 869, 25, 1391, 68, 27422, 8504, 12, 6404, 2004, 287, 2836, 1391, 19662, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 796, 2882, 13, 13376, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 10951, 796, 2882, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2882, 13, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 10951, 796, 4259, 62, 7220, 10951, 62, 259, 12102, 62, 77, 1952, 7, 79, 5643, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 4981, 13, 47, 5643, 12982, 12360, 7, 1174, 79, 5643, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 15419, 12, 6404, 2004, 287, 2836, 1391, 19662, 27422, 14151, 422, 11243, 5258, 25, 1391, 79, 5643, 10951, 92, 4943, 1303, 33448, 13, 2919, 13, 2919, 736, 284, 14257, 986, 325, 5232, 6414, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1005, 62, 2100, 11, 3722, 62, 8189, 1303, 21226, 10951, 11, 3722, 62, 8189, 198, 198, 4299, 6284, 15388, 62, 38235, 7, 29460, 28, 47, 47149, 62, 51, 6465, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 28, 47, 47149, 62, 51, 6465, 62, 47, 54, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 312, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 312, 28, 404, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 563, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 23093, 3264, 2884, 262, 6284, 4382, 357, 68, 13, 70, 1539, 287, 428, 1339, 11243, 5258, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1002, 6246, 62, 312, 318, 3017, 11, 262, 2126, 318, 326, 262, 18832, 287, 9312, 481, 1394, 326, 6937, 13, 198, 220, 220, 220, 220, 220, 1377, 1303, 51, 3727, 46, 475, 326, 338, 407, 9177, 287, 428, 4382, 2346, 11, 611, 18832, 287, 832, 612, 11, 1865, 0, 198, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31456, 796, 13538, 198, 220, 220, 220, 24955, 62, 3672, 796, 366, 18439, 15388, 62, 38235, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 49706, 13, 10951, 7, 69, 1, 11187, 2667, 287, 2836, 1391, 29460, 92, 351, 6246, 62, 312, 1391, 29891, 62, 312, 92, 4943, 198, 220, 220, 220, 611, 6246, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 21886, 796, 2779, 1343, 277, 1, 14, 85, 16, 14, 47649, 5344, 20924, 36044, 7390, 34758, 29891, 62, 312, 36786, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 21886, 796, 2779, 1343, 277, 1, 14, 85, 16, 14, 47649, 5344, 30487, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 26209, 796, 7007, 13, 7353, 7, 12853, 62, 21886, 11, 24697, 28, 4895, 19746, 12, 6030, 2404, 31438, 14, 17752, 25719, 33918, 28, 4895, 12982, 5376, 1298, 69, 1, 90, 29460, 92, 1600, 366, 35215, 1298, 69, 1, 90, 28712, 92, 20662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 267, 10210, 13, 29510, 62, 79, 5643, 62, 6404, 62, 13345, 7, 13345, 263, 28, 13345, 263, 62, 3672, 11, 1738, 28, 13345, 263, 62, 3672, 11, 6246, 62, 312, 28, 29891, 62, 312, 11, 21226, 62, 13345, 28, 12853, 62, 21886, 11, 1441, 62, 13376, 62, 8189, 28, 79, 5643, 62, 26209, 13, 13376, 62, 8189, 11, 42287, 28, 29460, 8, 1303, 5972, 4889, 11243, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 35263, 4382, 407, 1695, 13, 1391, 68, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1034, 292, 16934, 13, 29701, 1847, 62, 5446, 11598, 25, 3601, 357, 69, 1, 2466, 35192, 62, 43559, 2466, 25, 1391, 19662, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 510, 2882, 351, 4277, 2746, 198, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 36044, 7390, 796, 6246, 62, 312, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29891, 62, 10951, 796, 4981, 13, 36044, 12360, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 796, 21226, 62, 26209, 13, 13376, 62, 8189, 1303, 3613, 340, 329, 257, 1643, 357, 732, 6330, 21226, 62, 29891, 62, 10951, 2174, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21226, 62, 26209, 13, 482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 26209, 796, 21226, 62, 26209, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 26209, 796, 4259, 62, 79, 5173, 5109, 62, 259, 12102, 62, 77, 1952, 7, 79, 5643, 62, 26209, 11, 24955, 62, 3672, 2625, 30515, 15388, 47790, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 79, 5643, 62, 26209, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 4504, 4049, 4731, 25, 1391, 79, 5643, 62, 26209, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 7, 1174, 79, 5643, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 1441, 16237, 4049, 25, 1391, 68, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3722, 62, 8189, 1875, 38210, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 563, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 1752, 1231, 262, 6246, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 23093, 4504, 1391, 13376, 62, 8189, 27422, 31165, 1231, 6246, 4686, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 6284, 15388, 62, 38235, 7, 29460, 28, 29460, 11, 9206, 28, 28712, 11, 5456, 62, 312, 28, 16366, 62, 312, 11, 1005, 563, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 26828, 4482, 18232, 13, 23093, 4504, 1391, 13376, 62, 8189, 27422, 4990, 563, 357, 47904, 828, 393, 4990, 563, 407, 6163, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 6381, 9150, 796, 31456, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 26209, 796, 21226, 62, 26209, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 26209, 796, 4259, 62, 79, 5173, 5109, 62, 259, 12102, 62, 77, 1952, 7, 79, 5643, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 79, 5643, 62, 26209, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 8229, 276, 4049, 4731, 25, 1391, 79, 5643, 62, 26209, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 7, 1174, 79, 5643, 62, 26209, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 8229, 16237, 4049, 25, 1391, 68, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 18261, 7587, 4049, 1391, 68, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 7, 1174, 79, 5643, 62, 29891, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 6381, 9150, 796, 31456, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 21226, 62, 29891, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 4299, 651, 62, 15526, 62, 2475, 20597, 7, 15390, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17923, 11, 220, 220, 1303, 3188, 17923, 11, 304, 13, 70, 1539, 1479, 11, 1459, 11, 15424, 11, 28721, 11, 572, 15654, 11, 284, 66, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 11, 220, 220, 220, 220, 1303, 6153, 287, 2438, 2174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 614, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23899, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3188, 8053, 7449, 25, 4981, 13, 24941, 8053, 7449, 28, 14202, 11, 220, 1303, 39224, 11, 407, 973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1336, 5239, 62, 25927, 25, 30388, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13403, 319, 262, 17923, 286, 262, 3188, 357, 17474, 11, 1459, 685, 24419, 9448, 276, 4357, 198, 220, 220, 220, 220, 220, 220, 1479, 11, 572, 15654, 828, 290, 262, 2985, 21627, 287, 6246, 62, 10951, 11, 5004, 1771, 198, 220, 220, 220, 220, 220, 220, 428, 2836, 468, 1895, 284, 262, 1336, 12, 5239, 286, 262, 3188, 11, 290, 6070, 503, 21627, 198, 220, 220, 220, 220, 220, 220, 287, 1895, 19352, 20597, 357, 1186, 62, 2100, 8, 4645, 329, 3188, 2205, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 22131, 13464, 2078, 532, 4615, 3188, 8053, 7449, 290, 4296, 1735, 3048, 11, 24955, 815, 4866, 1895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1318, 389, 991, 1735, 3048, 319, 6246, 62, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 24955, 62, 3672, 796, 366, 1136, 62, 15526, 62, 2475, 20597, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1280, 62, 15526, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 4981, 13, 15457, 19352, 20597, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 34023, 796, 23899, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 14876, 11280, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 10669, 796, 939, 1303, 4277, 357, 1640, 783, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 23210, 48947, 5550, 7708, 35342, 11, 691, 900, 2174, 611, 1180, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4277, 11, 2900, 319, 611, 17923, 2174, 318, 1034, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 3620, 33, 1503, 11230, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 1303, 645, 1895, 416, 4277, 11, 743, 307, 3421, 2174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 10352, 1303, 16766, 355, 4277, 11, 329, 1365, 16287, 994, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 9487, 1431, 1722, 11297, 19746, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 49706, 13, 43917, 7, 69, 1, 24941, 21627, 329, 1391, 15390, 62, 312, 92, 1377, 645, 6246, 7508, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 10669, 796, 22219, 1303, 645, 6246, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 312, 796, 366, 2949, 23575, 14151, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 18832, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 779, 477, 262, 26235, 2029, 11, 2604, 4049, 2174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 329, 28769, 3359, 379, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 312, 796, 6246, 62, 10951, 13, 29891, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 312, 796, 366, 2949, 23575, 4522, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 13, 34023, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9991, 15457, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 5105, 9148, 1797, 16879, 62, 10778, 1343, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 5105, 9148, 1797, 16879, 62, 10778, 62, 18227, 40, 62, 43, 17248, 4064, 1005, 62, 2100, 13, 34023, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 25, 651, 262, 2792, 356, 779, 284, 3758, 2985, 284, 17604, 2524, 618, 356, 836, 470, 423, 340, 11, 290, 645, 23899, 11, 290, 3494, 994, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 329, 783, 11, 655, 23899, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 14876, 11280, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 5105, 9148, 1797, 16879, 62, 10778, 62, 18227, 40, 62, 43, 17248, 4064, 1005, 62, 2100, 13, 34023, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9991, 15457, 796, 366, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 17923, 287, 357, 404, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 39274, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1479, 460, 307, 329, 2687, 13896, 9794, 1895, 37214, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 62, 15526, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 39274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 1212, 2695, 318, 3058, 1479, 284, 477, 2985, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 39274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 17923, 287, 357, 404, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 27977, 50, 12709, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 356, 691, 1249, 3555, 12531, 82, 329, 572, 15654, 11, 1895, 37214, 318, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 30910, 40165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 1212, 2695, 318, 3058, 3190, 3614, 284, 477, 2985, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 27977, 50, 12709, 1343, 9991, 15457, 1303, 3614, 986, 1136, 340, 8057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 17923, 287, 357, 404, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 3620, 33, 1503, 11230, 1961, 2599, 1303, 18468, 5662, 6657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 30910, 40165, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 9487, 1431, 1722, 11297, 19746, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 30910, 40165, 1343, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 3620, 33, 1503, 11230, 1961, 1343, 9991, 15457, 1303, 3614, 986, 1136, 340, 8057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 29113, 29113, 14468, 7804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23989, 986, 361, 10435, 329, 18468, 5662, 6657, 11, 836, 470, 2198, 757, 428, 12405, 11, 4556, 340, 338, 257, 1336, 12, 5239, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 29113, 29113, 14468, 7804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 1303, 345, 460, 1895, 340, 10185, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 1212, 1459, 2695, 318, 1695, 329, 345, 284, 1895, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 34, 39237, 62, 37815, 3525, 62, 10116, 32, 4146, 17534, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 27871, 320, 1634, 532, 6246, 7508, 973, 284, 29145, 18468, 5662, 6657, 3188, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 18468, 5662, 6657, 3188, 7170, 25, 1391, 68, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 17923, 287, 357, 404, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 31315, 9306, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 30910, 40165, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 1303, 4277, 318, 2081, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 13775, 12564, 4462, 34, 7112, 33, 4877, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 29113, 29113, 14468, 7804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23989, 986, 361, 10435, 11, 836, 470, 2198, 757, 11, 4556, 340, 338, 257, 1336, 12, 5239, 2581, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1303, 29113, 29113, 14468, 7804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 1303, 345, 460, 1895, 340, 10185, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 1212, 2695, 318, 1695, 329, 345, 284, 1895, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 10116, 32, 4146, 17534, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7203, 27871, 320, 1634, 532, 6246, 7508, 973, 284, 29145, 350, 8905, 19895, 425, 3188, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 350, 8905, 19895, 425, 3188, 7170, 25, 1391, 68, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 17923, 287, 357, 404, 292, 16934, 13, 38715, 5883, 3525, 62, 26861, 7597, 62, 51, 4503, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1280, 62, 15526, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 1303, 345, 460, 1895, 340, 10185, 357, 3237, 309, 4503, 82, 389, 1280, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 655, 588, 1479, 329, 783, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 39274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1, 1212, 2695, 318, 3058, 1479, 284, 477, 2985, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 39274, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 16185, 17923, 25, 1391, 4871, 2649, 92, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41906, 2466, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2735, 2198, 329, 1895, 11, 393, 39986, 1895, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 532, 1464, 2198, 329, 257, 1336, 12, 5239, 2581, 523, 11243, 5258, 460, 2610, 606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 1201, 356, 836, 470, 1107, 1464, 760, 546, 18239, 11, 356, 761, 284, 2198, 477, 7007, 326, 389, 4306, 8606, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 41906, 2466, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1280, 62, 15526, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 29891, 62, 10951, 13, 41299, 3474, 6624, 6407, 1303, 12039, 307, 44529, 329, 428, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 357, 1186, 62, 2100, 13, 15526, 37214, 6624, 6407, 1303, 611, 340, 338, 7498, 3614, 11, 788, 743, 761, 284, 2198, 11, 340, 1244, 307, 717, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 1336, 5239, 62, 25927, 6624, 6407, 8, 2599, 1303, 393, 8797, 1336, 12, 5239, 318, 9167, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 290, 6246, 62, 10951, 13, 15042, 62, 16366, 62, 29891, 290, 6246, 62, 10951, 13, 15042, 62, 16366, 62, 312, 287, 350, 47149, 62, 33, 42827, 62, 5097, 28495, 62, 14255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1336, 5239, 62, 25927, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 62, 1640, 62, 9122, 796, 1034, 292, 16934, 13, 32, 24318, 62, 38715, 5883, 3525, 62, 28206, 62, 2200, 35780, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 62, 1640, 62, 9122, 796, 1034, 292, 16934, 13, 32, 24318, 62, 6242, 18601, 10659, 62, 28206, 62, 2200, 35780, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 19721, 11, 1217, 796, 6284, 15388, 62, 525, 3411, 62, 9122, 7, 29891, 62, 312, 28, 29891, 62, 10951, 13, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 62, 312, 28, 15390, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2205, 62, 1941, 28, 1941, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1738, 62, 1640, 62, 9122, 28, 41181, 62, 1640, 62, 9122, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11243, 5258, 714, 307, 866, 11, 1957, 2478, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 8798, 35528, 25, 1391, 68, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1957, 2363, 8004, 13, 33, 11159, 21886, 6624, 366, 31267, 13, 2398, 25, 24, 3064, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 4981, 13, 47, 5643, 5990, 2781, 12360, 7, 5990, 2781, 28, 17821, 11, 7875, 19895, 425, 15457, 28, 17821, 11, 7875, 11297, 15457, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 523, 340, 1595, 470, 423, 284, 2198, 428, 1568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1217, 796, 4981, 13, 47, 5643, 5990, 2781, 12360, 7, 5990, 2781, 28, 25101, 11, 7875, 19895, 425, 15457, 28, 25101, 11, 7875, 11297, 15457, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3613, 11243, 5258, 2438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 10669, 796, 1217, 13, 19580, 10669, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 19580, 10669, 6624, 2638, 34, 4147, 13, 40717, 62, 21844, 62, 52, 4535, 24318, 1581, 14887, 1961, 25, 1303, 393, 1217, 13, 45008, 13290, 6624, 705, 36044, 468, 407, 587, 44529, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 428, 318, 6407, 11, 788, 356, 460, 2245, 4737, 428, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 921, 561, 651, 262, 976, 1441, 611, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 262, 6246, 373, 407, 20915, 319, 21226, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 262, 6246, 550, 587, 13140, 422, 262, 6831, 357, 21754, 1239, 1645, 1399, 828, 393, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 262, 6246, 2391, 1239, 11196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 41299, 3474, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 13295, 2420, 286, 1391, 15390, 62, 312, 92, 23485, 13, 366, 1343, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 21844, 62, 52, 4535, 24318, 1581, 14887, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 4277, 757, 1912, 319, 4296, 422, 11243, 5258, 12405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 13, 15526, 37214, 9487, 1431, 1722, 11297, 19746, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 19242, 11297, 15457, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 407, 1459, 2695, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1217, 13, 19242, 19895, 425, 15457, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1336, 5239, 62, 25927, 290, 21226, 62, 19721, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1309, 338, 787, 1654, 356, 760, 546, 428, 2836, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6246, 62, 10951, 13, 7220, 62, 312, 6624, 1034, 292, 16934, 13, 29904, 62, 11929, 62, 25294, 38, 1961, 62, 1268, 62, 20608, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 775, 1392, 428, 1290, 11, 775, 761, 284, 1064, 503, 508, 428, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 7220, 62, 10951, 11, 3722, 62, 8189, 796, 651, 62, 18439, 15388, 62, 29891, 62, 7220, 10951, 7, 29891, 62, 10951, 13, 29891, 62, 312, 11, 6246, 62, 10951, 13, 15042, 62, 16366, 62, 312, 11, 751, 75, 62, 6404, 62, 10951, 2625, 357, 7220, 7508, 407, 1865, 7723, 8, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21226, 62, 7220, 62, 10951, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 7220, 62, 312, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 29460, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 10951, 13, 7220, 62, 4906, 796, 21226, 62, 7220, 62, 10951, 13, 12982, 6030, 1303, 16926, 46, 532, 3060, 428, 284, 6246, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6246, 62, 10951, 13, 29891, 62, 11201, 2387, 62, 2435, 796, 5633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 267, 10210, 796, 1034, 292, 30645, 35, 9148, 571, 13, 404, 292, 30645, 11012, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 267, 10210, 13, 19119, 62, 29891, 7, 29891, 62, 10951, 13, 29891, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 2389, 28, 29891, 62, 10951, 13, 7220, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 28, 29891, 62, 10951, 13, 29460, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44529, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10435, 62, 431, 79, 17474, 28, 16, 611, 6246, 62, 10951, 13, 19721, 62, 431, 79, 17474, 6624, 6407, 2073, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10435, 62, 431, 79, 14421, 28, 16, 611, 6246, 62, 10951, 13, 19721, 62, 431, 79, 14421, 6624, 6407, 2073, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6246, 62, 437, 28, 29891, 62, 10951, 13, 29891, 62, 11201, 2387, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40391, 62, 16366, 62, 312, 28, 29891, 62, 10951, 13, 15042, 62, 16366, 62, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21226, 62, 19721, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 1212, 2695, 318, 1695, 329, 345, 284, 1895, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 9787, 276, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 11828, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 10116, 32, 4146, 17534, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 43, 3955, 22061, 62, 30910, 40165, 62, 10116, 32, 4146, 17534, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 24941, 1391, 15390, 62, 312, 92, 1695, 13, 220, 350, 5643, 23219, 25, 1391, 4363, 13, 45008, 13290, 27422, 8670, 292, 23219, 25, 1391, 1186, 62, 2100, 13, 15526, 37214, 11828, 92, 532, 1391, 1186, 62, 2100, 13, 15526, 37214, 45008, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3421, 422, 6509, 284, 7508, 33448, 12, 3312, 12, 2999, 284, 4646, 3487, 18931, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 24941, 1391, 15390, 62, 312, 92, 23485, 13, 220, 350, 5643, 23219, 25, 1391, 4363, 13, 45008, 13290, 92, 8670, 292, 25, 1391, 1186, 62, 2100, 13, 15526, 37214, 11828, 92, 532, 1391, 1186, 62, 2100, 13, 15526, 37214, 45008, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 1303, 3614, 986, 1136, 340, 8057, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 13, 15526, 37214, 9487, 1431, 1722, 11297, 19746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 38286, 276, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 1034, 292, 16934, 13, 26861, 7597, 62, 50, 5883, 44, 13153, 62, 3620, 33, 1503, 11230, 1961, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1729, 38286, 276, 11, 475, 645, 1895, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 45008, 796, 277, 1, 90, 1186, 62, 2100, 13, 15526, 37214, 11828, 92, 1391, 1186, 62, 2100, 13, 15526, 37214, 45008, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 407, 1336, 12, 5239, 6375, 357, 1662, 44529, 393, 1895, 37214, 855, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 2949, 11243, 5258, 2198, 2622, 25, 16854, 1391, 15390, 62, 312, 92, 1895, 37214, 25, 1391, 1186, 62, 2100, 13, 15526, 37214, 27422, 31885, 25, 1391, 29891, 62, 10951, 13, 41299, 3474, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 1303, 632, 338, 1280, 1895, 0, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 2949, 11243, 5258, 2198, 2622, 25, 16854, 1391, 15390, 62, 312, 92, 318, 1280, 1895, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 18232, 10627, 3188, 7170, 13, 43046, 407, 18832, 287, 1391, 68, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 1303, 460, 470, 307, 10667, 11, 481, 307, 22959, 13, 628, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 3611, 6631, 1391, 68, 92, 2111, 35520, 1895, 11247, 526, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 62, 2100, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 796, 4981, 13, 15457, 19352, 20597, 3419, 1303, 787, 1654, 612, 338, 26235, 0, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 628, 220, 220, 220, 611, 1336, 5239, 62, 25927, 290, 1005, 62, 2100, 13, 15526, 37214, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4325, 17949, 2130, 5009, 281, 12531, 287, 16854, 4235, 780, 484, 836, 470, 423, 281, 1848, 13, 16374, 306, 2742, 13, 32068, 284, 7508, 357, 6738, 4049, 8, 198, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 13295, 12, 5239, 1895, 329, 1391, 15390, 62, 312, 92, 6699, 37913, 1186, 62, 2100, 13, 15526, 37214, 10669, 92, 737, 311, 408, 29164, 29891, 62, 312, 38362, 8798, 29164, 1186, 62, 2100, 13, 15526, 37214, 45008, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 10951, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 62, 2100, 13, 15526, 37214, 27509, 50108, 796, 31456, 628, 220, 220, 220, 1441, 1005, 62, 2100, 198, 198, 2, 1303, 29113, 29113, 29113, 29113, 14468, 2, 198, 2, 198, 2, 220, 37347, 1847, 371, 12425, 4944, 1546, 198, 2, 198, 2, 1303, 29113, 29113, 29113, 29113, 14468, 2, 198, 4299, 651, 62, 79, 5643, 62, 29891, 62, 10951, 7, 29891, 62, 312, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5456, 62, 312, 28, 404, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 563, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2581, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 11243, 5258, 6246, 2746, 11, 290, 651, 257, 649, 6246, 4522, 422, 262, 6284, 4382, 611, 2622, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 31456, 796, 13538, 198, 220, 220, 220, 24955, 62, 3672, 796, 366, 1136, 62, 79, 5643, 62, 29891, 62, 10951, 1, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 5456, 62, 312, 6624, 1034, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 23575, 7508, 869, 329, 23575, 4522, 25, 1391, 29891, 62, 312, 92, 20985, 4522, 373, 8005, 62, 5097, 28495, 62, 2389, 37913, 404, 292, 16934, 13, 15285, 62, 5097, 28495, 62, 2389, 30072, 19570, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 6246, 62, 312, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 21886, 796, 2779, 1343, 277, 1, 14, 85, 16, 14, 47649, 5344, 14, 4061, 30487, 1343, 277, 13984, 36044, 2389, 34758, 29891, 62, 312, 36786, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1336, 62, 21886, 796, 2779, 1343, 277, 1, 14, 85, 16, 14, 47649, 5344, 14, 4061, 30487, 628, 220, 220, 220, 43089, 62, 6371, 796, 366, 2949, 2581, 7508, 526, 198, 220, 220, 220, 611, 2581, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 1303, 655, 287, 1339, 428, 18616, 281, 4049, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43089, 62, 6371, 796, 2581, 13, 6371, 1303, 284, 2604, 24955, 19016, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2836, 62, 541, 796, 651, 62, 7220, 62, 541, 7, 25927, 8, 1303, 5860, 281, 6101, 611, 1395, 62, 13775, 39743, 1961, 62, 13775, 2209, 318, 287, 13639, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 4585, 11243, 5258, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 541, 318, 407, 6045, 290, 2836, 62, 541, 318, 407, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24697, 796, 1391, 1034, 292, 16934, 13, 55, 62, 13775, 39743, 1961, 62, 13775, 25, 7220, 62, 541, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 7007, 13, 1136, 7, 12853, 62, 21886, 11, 24697, 8, 1303, 4889, 11243, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 23575, 4522, 29164, 29891, 62, 312, 27422, 1395, 62, 13775, 39743, 1961, 62, 13775, 422, 8323, 5344, 4061, 25, 1391, 7220, 62, 541, 27422, 10289, 25, 1391, 42180, 62, 6371, 92, 11243, 5258, 23575, 14151, 25, 1391, 79, 5643, 62, 29891, 62, 10951, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 7007, 13, 1136, 7, 12853, 62, 21886, 8, 1303, 4889, 11243, 5258, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 69, 1, 90, 13345, 263, 62, 3672, 38362, 35263, 4382, 407, 1695, 13, 1391, 68, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 62, 8189, 796, 21226, 62, 29891, 62, 10951, 13, 13376, 62, 8189, 1303, 3613, 340, 329, 257, 1643, 357, 732, 6330, 21226, 62, 29891, 62, 10951, 2174, 8, 198, 220, 220, 220, 220, 220, 220, 220, 267, 10210, 13, 29510, 62, 79, 5643, 62, 6404, 62, 13345, 7, 13345, 263, 28, 13345, 263, 62, 3672, 11, 1738, 28, 13345, 263, 62, 3672, 11, 6246, 62, 312, 28, 29891, 62, 312, 11, 21226, 62, 13345, 28, 12853, 62, 21886, 11, 20966, 62, 21975, 28, 7220, 62, 541, 11, 1441, 62, 13376, 62, 8189, 28, 13376, 62, 8189, 8, 1303, 5972, 4889, 11243, 5258, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3722, 62, 8189, 1875, 38210, 25, 1303, 304, 13, 70, 1539, 357, 4023, 34, 4147, 13, 40717, 62, 4059, 62, 1268, 31800, 1847, 62, 35009, 5959, 62, 24908, 11, 2638, 34, 4147, 13, 40717, 62, 31938, 62, 35009, 27389, 62, 52, 4535, 11731, 4146, 17534, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 5239, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 11243, 5258, 6246, 62, 10951, 3722, 62, 8189, 318, 1391, 13376, 62, 8189, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 18224, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1949, 1752, 1231, 262, 6246, 4522, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 563, 6624, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 651, 62, 79, 5643, 62, 29891, 62, 10951, 7, 16366, 62, 312, 28, 16366, 62, 312, 11, 1005, 563, 28, 25101, 11, 2581, 28, 25927, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 18224, 62, 5239, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 6381, 9150, 796, 4049, 62, 5239, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 21226, 62, 29891, 62, 10951, 13, 17752, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4259, 62, 79, 5173, 5109, 62, 259, 12102, 62, 77, 1952, 7, 79, 5643, 62, 29891, 62, 10951, 11, 24955, 62, 3672, 28, 13345, 263, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 7, 1174, 79, 5643, 62, 29891, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 24442, 7, 69, 1, 28875, 5258, 12678, 6762, 11, 8125, 6101, 23575, 14151, 25, 1391, 79, 5643, 62, 29891, 62, 10951, 92, 10289, 25, 1391, 42180, 62, 6371, 92, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 277, 1, 90, 13345, 263, 62, 3672, 38362, 18261, 7587, 4049, 1391, 68, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 796, 4981, 13, 47, 5643, 36044, 12360, 7, 1174, 79, 5643, 62, 29891, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 13376, 62, 26209, 796, 3722, 62, 8189, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21226, 62, 29891, 62, 10951, 13, 79, 5643, 62, 6381, 9150, 796, 31456, 220, 628, 220, 220, 220, 1441, 21226, 62, 29891, 62, 10951, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1330, 10412, 395, 198, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3601, 357, 1821, 9, 1, 9, 1600, 366, 404, 292, 23579, 5990, 8481, 51, 3558, 1600, 2319, 9, 1, 9, 4943, 198, 220, 220, 220, 3601, 357, 69, 1, 28768, 287, 11361, 1391, 17597, 13, 9641, 62, 10951, 58, 15, 60, 27422, 90, 17597, 13, 9641, 62, 10951, 58, 16, 48999, 4943, 198, 220, 220, 220, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 220, 220, 220, 442, 796, 18931, 13, 12124, 25060, 3419, 198, 220, 220, 220, 1296, 1436, 796, 18931, 13, 8479, 1436, 10786, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 3672, 8, 82, 4064, 7, 2815, 23397, 8, 67, 532, 4064, 7, 5715, 3672, 8, 82, 4064, 7, 20500, 8, 82, 11537, 220, 220, 220, 220, 198, 220, 220, 220, 442, 13, 2617, 8479, 1436, 7, 687, 1436, 8, 198, 220, 220, 220, 49706, 13, 2860, 25060, 7, 354, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 10412, 395, 13, 9288, 4666, 7, 18076, 33152, 28, 4598, 310, 395, 13, 23304, 47643, 1797, 91, 4598, 310, 395, 13, 35510, 42126, 35400, 62, 12418, 2043, 1546, 47, 11598, 8, 198, 220, 220, 220, 3601, 5855, 37, 5362, 13, 30307, 1844, 19570 ]
2.070156
18,801
from os.path import dirname, basename, isfile import glob modules = glob.glob(dirname(__file__)+"/*.py") __all__ = [ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith('__init__.py')] from .proximal_join import proximal_join, get_column_types from .interpolate import interpolate from .stitch import stitch from .jump_correct import jump_correct from .derivative import derivative
[ 6738, 28686, 13, 6978, 1330, 26672, 3672, 11, 1615, 12453, 11, 318, 7753, 220, 198, 11748, 15095, 198, 18170, 796, 15095, 13, 4743, 672, 7, 15908, 3672, 7, 834, 7753, 834, 47762, 1, 15211, 13, 9078, 4943, 198, 834, 439, 834, 796, 685, 1615, 12453, 7, 69, 38381, 21912, 18, 60, 329, 277, 287, 13103, 611, 318, 7753, 7, 69, 8, 290, 407, 277, 13, 437, 2032, 342, 10786, 834, 15003, 834, 13, 9078, 11537, 60, 198, 198, 6738, 764, 1676, 87, 4402, 62, 22179, 1330, 14793, 4402, 62, 22179, 11, 651, 62, 28665, 62, 19199, 198, 6738, 764, 3849, 16104, 378, 1330, 39555, 378, 198, 6738, 764, 301, 2007, 1330, 24695, 198, 6738, 764, 43327, 62, 30283, 1330, 4391, 62, 30283, 198, 6738, 764, 1082, 452, 876, 1330, 27255, 628 ]
3.045802
131
#!/usr/bin/env python3 """ Author : Derek Widmayer <[email protected]> Date : 2021-01-10 Purpose: Rock the Casbah """ import argparse # -------------------------------------------------- def get_args(): """Jump the five""" parser = argparse.ArgumentParser( description='Jump the five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('str', metavar='str', help='Input text') return parser.parse_args() # -------------------------------------------------- def main(): """Encode jump the five""" text = get_args().str encoding = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} encoded_text = "" for char in text: encoded_text += encoding.get(char, char) print(f'{encoded_text}') # -------------------------------------------------- if __name__ == '__main__': main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 198, 13838, 1058, 20893, 24801, 76, 2794, 1279, 67, 28029, 11261, 68, 31, 14816, 13, 785, 29, 198, 10430, 220, 220, 1058, 33448, 12, 486, 12, 940, 198, 30026, 3455, 25, 4631, 262, 11294, 47041, 198, 37811, 198, 198, 11748, 1822, 29572, 628, 198, 2, 20368, 1783, 438, 198, 4299, 651, 62, 22046, 33529, 198, 220, 220, 220, 37227, 36046, 262, 1936, 37811, 628, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 11639, 36046, 262, 1936, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1296, 1436, 62, 4871, 28, 853, 29572, 13, 28100, 1713, 7469, 13185, 22087, 8479, 1436, 8, 628, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1138, 615, 283, 11639, 2536, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 11639, 20560, 2420, 11537, 628, 220, 220, 220, 1441, 30751, 13, 29572, 62, 22046, 3419, 628, 198, 2, 20368, 1783, 438, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 4834, 8189, 4391, 262, 1936, 37811, 628, 220, 220, 220, 2420, 796, 651, 62, 22046, 22446, 2536, 198, 220, 220, 220, 21004, 796, 1391, 6, 16, 10354, 705, 24, 3256, 705, 17, 10354, 705, 23, 3256, 705, 18, 10354, 705, 22, 3256, 705, 19, 10354, 705, 21, 3256, 705, 20, 10354, 705, 15, 3256, 705, 21, 10354, 705, 19, 3256, 705, 22, 10354, 705, 18, 3256, 705, 23, 10354, 705, 17, 3256, 705, 24, 10354, 705, 16, 3256, 705, 15, 10354, 705, 20, 6, 92, 628, 220, 220, 220, 30240, 62, 5239, 796, 13538, 198, 220, 220, 220, 329, 1149, 287, 2420, 25, 198, 220, 220, 220, 220, 220, 220, 220, 30240, 62, 5239, 15853, 21004, 13, 1136, 7, 10641, 11, 1149, 8, 628, 220, 220, 220, 3601, 7, 69, 6, 90, 12685, 9043, 62, 5239, 92, 11537, 628, 198, 2, 20368, 1783, 438, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.544271
384
import os import os.path import glob import cv2 import pandas as pd import numpy as np import matplotlib.pyplot as plt IMAGENET_MEAN_BGR = [103.939, 116.779, 123.68] def load_images(data_path, image_height, image_width, plot=False): """ Read an image in BGR, resize to image_height x image_width, subtract mean of ImageNet dataset """ # Get a list of images in the folder os.chdir(data_path) list = glob.glob('*.jpg') N_images = len(list) # Create arrays to store data images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32) if plot: fig = plt.figure(figsize=(15,6)) for i in range(0, N_images): # Load image image_name = list[i] image = cv2.imread(image_name) if plot: # Plot an image fig.add_subplot(1, N_images, i+1) plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() # Resize to image_height x image_width images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width)) # Subtract ImageNet mean images[i, :, :, :] -= IMAGENET_MEAN_BGR return images def load_images_with_labels(data_path, labels_path, image_height, image_width): """ Read an image in BGR, resize to image_height x image_width, subtract mean of ImageNet dataset. Assign a label to an image: 1 if there is a tumour, 0 otherwise """ # Get a list of images in the folder os.chdir(data_path) list = glob.glob('*.jpeg') N_images = len(list) return N_images # Create arrays to store data and labels images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32) labels = -1 * np.ones((N_images, 1), dtype = np.float32) for i in range(0, N_images): # Load image in BGR image_name = list[i] image = cv2.imread(image_name) # Load image in RGB # image = plt.imread(image_name) # Convert RGB to BGR #image = image[:, :, [2, 1, 0]] # Resize to image_height x image_width images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width)) # Subtract ImageNet mean images[i, :, :, :] -= IMAGENET_MEAN_BGR # Assign a label to an image: # 1 if there is a tumour, 0 otherwise file_path = labels_path + image_name[:-5] + ".txt" if os.path.isfile(file_path): labels[i] = 1 else: labels[i] = 0 return images, labels def load_images_with_masks(data_path, mask_path, image_height, image_width, binary=False, plot=False): """ Read an image in BGR, resize to image_height x image_width, subtract mean of ImageNet dataset. Read the corresponding binary mask. """ # Get the list of images os.chdir(data_path) image_list = glob.glob('*.jpg') N_images = len(image_list) # Get the list of masks os.chdir(mask_path) mask_list = glob.glob('*.jpg') # Create arrays to store data images = np.zeros((N_images, image_height, image_width, 3), dtype = np.float32) masks = np.zeros((N_images, image_height, image_width), dtype = np.float32) if plot: fig = plt.figure(figsize=(15,6)) for i in range(0, N_images): # Load image image_name = image_list[i] os.chdir(data_path) image = cv2.imread(image_name) # Resize to image_height x image_width images[i, :, :, :] = cv2.resize(image.astype(np.float32),(image_height, image_width)) # Subtract ImageNet mean images[i, :, :, :] -= IMAGENET_MEAN_BGR # Check if there is a mask mask_name = image_name[:-4] + '_mask.jpg' if mask_name in mask_list: os.chdir(mask_path) mask = cv2.resize(plt.imread(mask_name).astype(np.float32), (image_height, image_width)) if binary: mask = 0 * (mask < 128.0) + 1 * (mask >= 128.0) masks[i, :, :] = mask if plot: # Plot image fig.add_subplot(N_images, 2, 2*i+1) plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) plt.axis('off') # Plot mask fig.add_subplot(N_images, 2, 2*i+2) plt.imshow(mask) plt.axis('off') plt.show() return images, masks def split_train_val(data, labels, train_ratio=0.8): """ Split data on training and validation sets """ # Shuffle indeces n = len(data) indeces = list(range(0, n)) np.random.shuffle(indeces) # Create training set train_indeces = indeces[:round(train_ratio * n)] X_train = data[train_indeces, :, :, :] y_train = labels[train_indeces] # Create validation set val_indeces = indeces[round(train_ratio * n):] X_val = data[val_indeces, :, :, :] y_val = labels[val_indeces] print("Training set:", X_train.shape, y_train.shape) print("Validation set:", X_val.shape, y_val.shape) return X_train, y_train, X_val, y_val def stratified_train_val(data, labels, train_ratio=0.8, balance_classes=False): """ Create stratified training and validation sets for binary data """ # numbers of positive and negative samples in the dataset n_pos = int(sum(labels)) n_neg = data.shape[0] - n_pos print('Number of negative samples: ', n_neg) print('Number of positive samples: ', n_pos) print('Fraction of positive samples: ', n_pos / data.shape[0] * 100, '%') # to fix class imbalance equalize # the numbers of negative and positive samples if balance_classes: if n_neg > n_pos: n_neg = n_pos else: n_pos = n_neg # print the numbers of negative/positive samples # in training and validation sets print('Positive samples:', round(train_ratio * n_pos), "in y_train,", round((1 - train_ratio) * n_pos), "in y_val") print('Negative samples:', round(train_ratio * n_neg), "in y_train,", round((1 - train_ratio) * n_neg), "in y_val") # extract, shuffle and split indeces of positive samples pos_indeces = (np.where(labels == 1))[0] np.random.shuffle(pos_indeces) pos_indeces_train = pos_indeces[:round(train_ratio * n_pos)] pos_indeces_val = pos_indeces[round(train_ratio * n_pos):] # extract, shuffle and split indeces of negative samples neg_indeces = (np.where(labels == 0))[0] np.random.shuffle(neg_indeces) neg_indeces_train = neg_indeces[:round(train_ratio * n_neg)] neg_indeces_val = neg_indeces[round(train_ratio * n_neg):] # create a training set train_indeces = np.append(pos_indeces_train, neg_indeces_train, axis=0) np.random.shuffle(train_indeces) X_train = data[train_indeces, :, :, :] y_train = labels[train_indeces] # create a validation set val_indeces = np.append(pos_indeces_val, neg_indeces_val, axis = 0) np.random.shuffle(val_indeces) X_val = data[val_indeces, :, :, :] y_val = labels[val_indeces] print("Training set:", X_train.shape, y_train.shape) print("Validation set:", X_val.shape, y_val.shape) return X_train, y_train, X_val, y_val
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 15095, 198, 11748, 269, 85, 17, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 3955, 4760, 1677, 2767, 62, 11682, 1565, 62, 33, 10761, 796, 685, 15197, 13, 24, 2670, 11, 18693, 13, 40393, 11, 17031, 13, 3104, 60, 198, 198, 4299, 3440, 62, 17566, 7, 7890, 62, 6978, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 11, 7110, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 281, 2939, 287, 347, 10761, 11, 198, 220, 220, 220, 47558, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 11, 198, 220, 220, 220, 34128, 1612, 286, 7412, 7934, 27039, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3497, 257, 1351, 286, 4263, 287, 262, 9483, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 7890, 62, 6978, 8, 198, 220, 220, 220, 1351, 796, 15095, 13, 4743, 672, 10786, 24620, 9479, 11537, 198, 220, 220, 220, 399, 62, 17566, 796, 18896, 7, 4868, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 26515, 284, 3650, 1366, 198, 220, 220, 220, 4263, 796, 45941, 13, 9107, 418, 19510, 45, 62, 17566, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 11, 513, 828, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1314, 11, 21, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 399, 62, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 3672, 796, 1351, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 320, 961, 7, 9060, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 281, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 7266, 29487, 7, 16, 11, 399, 62, 17566, 11, 1312, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 33967, 17, 13, 33967, 83, 10258, 7, 9060, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 36982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 22704, 10786, 2364, 11537, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 796, 269, 85, 17, 13, 411, 1096, 7, 9060, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 828, 7, 9060, 62, 17015, 11, 2939, 62, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3834, 83, 974, 7412, 7934, 1612, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 48185, 8959, 4760, 1677, 2767, 62, 11682, 1565, 62, 33, 10761, 628, 220, 220, 220, 1441, 4263, 198, 198, 4299, 3440, 62, 17566, 62, 4480, 62, 23912, 1424, 7, 7890, 62, 6978, 11, 14722, 62, 6978, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 281, 2939, 287, 347, 10761, 11, 198, 220, 220, 220, 47558, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 11, 198, 220, 220, 220, 34128, 1612, 286, 7412, 7934, 27039, 13, 198, 220, 220, 220, 2195, 570, 257, 6167, 284, 281, 2939, 25, 198, 220, 220, 220, 352, 611, 612, 318, 257, 11814, 454, 11, 657, 4306, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3497, 257, 1351, 286, 4263, 287, 262, 9483, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 7890, 62, 6978, 8, 198, 220, 220, 220, 1351, 796, 15095, 13, 4743, 672, 10786, 24620, 73, 22071, 11537, 198, 220, 220, 220, 399, 62, 17566, 796, 18896, 7, 4868, 8, 198, 220, 220, 220, 1441, 399, 62, 17566, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 26515, 284, 3650, 1366, 290, 14722, 198, 220, 220, 220, 4263, 796, 45941, 13, 9107, 418, 19510, 45, 62, 17566, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 11, 513, 828, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 14722, 796, 532, 16, 1635, 45941, 13, 1952, 19510, 45, 62, 17566, 11, 352, 828, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 399, 62, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 2939, 287, 347, 10761, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 3672, 796, 1351, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 320, 961, 7, 9060, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 2939, 287, 25228, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2939, 796, 458, 83, 13, 320, 961, 7, 9060, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 25228, 284, 347, 10761, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9060, 796, 2939, 58, 45299, 1058, 11, 685, 17, 11, 352, 11, 657, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 796, 269, 85, 17, 13, 411, 1096, 7, 9060, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 828, 7, 9060, 62, 17015, 11, 2939, 62, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3834, 83, 974, 7412, 7934, 1612, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 48185, 8959, 4760, 1677, 2767, 62, 11682, 1565, 62, 33, 10761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2195, 570, 257, 6167, 284, 281, 2939, 25, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 352, 611, 612, 318, 257, 11814, 454, 11, 657, 4306, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 14722, 62, 6978, 1343, 2939, 62, 3672, 58, 21912, 20, 60, 1343, 27071, 14116, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 7753, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 58, 72, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14722, 58, 72, 60, 796, 657, 198, 220, 198, 220, 220, 220, 1441, 4263, 11, 14722, 198, 198, 4299, 3440, 62, 17566, 62, 4480, 62, 5356, 591, 7, 7890, 62, 6978, 11, 9335, 62, 6978, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 11, 13934, 28, 25101, 11, 7110, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 281, 2939, 287, 347, 10761, 11, 198, 220, 220, 220, 47558, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 11, 198, 220, 220, 220, 34128, 1612, 286, 7412, 7934, 27039, 13, 198, 220, 220, 220, 4149, 262, 11188, 13934, 9335, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3497, 262, 1351, 286, 4263, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 7890, 62, 6978, 8, 198, 220, 220, 220, 2939, 62, 4868, 796, 15095, 13, 4743, 672, 10786, 24620, 9479, 11537, 198, 220, 220, 220, 399, 62, 17566, 796, 18896, 7, 9060, 62, 4868, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3497, 262, 1351, 286, 20680, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 27932, 62, 6978, 8, 198, 220, 220, 220, 9335, 62, 4868, 796, 15095, 13, 4743, 672, 10786, 24620, 9479, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 26515, 284, 3650, 1366, 198, 220, 220, 220, 4263, 796, 45941, 13, 9107, 418, 19510, 45, 62, 17566, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 11, 513, 828, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 20680, 796, 45941, 13, 9107, 418, 19510, 45, 62, 17566, 11, 2939, 62, 17015, 11, 2939, 62, 10394, 828, 288, 4906, 796, 45941, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2336, 796, 458, 83, 13, 26875, 7, 5647, 7857, 16193, 1314, 11, 21, 4008, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 15, 11, 399, 62, 17566, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8778, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 3672, 796, 2939, 62, 4868, 58, 72, 60, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 7890, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 320, 961, 7, 9060, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 284, 2939, 62, 17015, 2124, 2939, 62, 10394, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 796, 269, 85, 17, 13, 411, 1096, 7, 9060, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 828, 7, 9060, 62, 17015, 11, 2939, 62, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3834, 83, 974, 7412, 7934, 1612, 198, 220, 220, 220, 220, 220, 220, 220, 4263, 58, 72, 11, 1058, 11, 1058, 11, 1058, 60, 48185, 8959, 4760, 1677, 2767, 62, 11682, 1565, 62, 33, 10761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 611, 612, 318, 257, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 62, 3672, 796, 2939, 62, 3672, 58, 21912, 19, 60, 1343, 705, 62, 27932, 13, 9479, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9335, 62, 3672, 287, 9335, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 354, 15908, 7, 27932, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 269, 85, 17, 13, 411, 1096, 7, 489, 83, 13, 320, 961, 7, 27932, 62, 3672, 737, 459, 2981, 7, 37659, 13, 22468, 2624, 828, 357, 9060, 62, 17015, 11, 2939, 62, 10394, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 13934, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 657, 1635, 357, 27932, 1279, 13108, 13, 15, 8, 1343, 352, 1635, 357, 27932, 18189, 13108, 13, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20680, 58, 72, 11, 1058, 11, 1058, 60, 796, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7110, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 7266, 29487, 7, 45, 62, 17566, 11, 362, 11, 362, 9, 72, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 33967, 17, 13, 33967, 83, 10258, 7, 9060, 11, 269, 85, 17, 13, 46786, 62, 33, 10761, 17, 36982, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 22704, 10786, 2364, 11537, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28114, 9335, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2336, 13, 2860, 62, 7266, 29487, 7, 45, 62, 17566, 11, 362, 11, 362, 9, 72, 10, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 320, 12860, 7, 27932, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 458, 83, 13, 22704, 10786, 2364, 11537, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 1441, 4263, 11, 20680, 198, 198, 4299, 6626, 62, 27432, 62, 2100, 7, 7890, 11, 14722, 11, 4512, 62, 10366, 952, 28, 15, 13, 23, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 27758, 1366, 319, 3047, 290, 21201, 5621, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 911, 18137, 29077, 274, 198, 220, 220, 220, 299, 796, 18896, 7, 7890, 8, 198, 220, 220, 220, 29077, 274, 796, 1351, 7, 9521, 7, 15, 11, 299, 4008, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 521, 721, 274, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 3047, 900, 198, 220, 220, 220, 4512, 62, 521, 721, 274, 796, 29077, 274, 58, 25, 744, 7, 27432, 62, 10366, 952, 1635, 299, 15437, 198, 220, 220, 220, 1395, 62, 27432, 796, 1366, 58, 27432, 62, 521, 721, 274, 11, 1058, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 331, 62, 27432, 796, 14722, 58, 27432, 62, 521, 721, 274, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 13610, 21201, 900, 198, 220, 220, 220, 1188, 62, 521, 721, 274, 796, 29077, 274, 58, 744, 7, 27432, 62, 10366, 952, 1635, 299, 2599, 60, 198, 220, 220, 220, 1395, 62, 2100, 796, 1366, 58, 2100, 62, 521, 721, 274, 11, 1058, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 331, 62, 2100, 796, 14722, 58, 2100, 62, 521, 721, 274, 60, 628, 220, 220, 220, 3601, 7203, 44357, 900, 25, 1600, 1395, 62, 27432, 13, 43358, 11, 331, 62, 27432, 13, 43358, 8, 198, 220, 220, 220, 3601, 7203, 7762, 24765, 900, 25, 1600, 1395, 62, 2100, 13, 43358, 11, 331, 62, 2100, 13, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1395, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 2100, 11, 331, 62, 2100, 198, 198, 4299, 25369, 1431, 62, 27432, 62, 2100, 7, 7890, 11, 14722, 11, 4512, 62, 10366, 952, 28, 15, 13, 23, 11, 5236, 62, 37724, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 25369, 1431, 3047, 290, 21201, 5621, 329, 13934, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 3146, 286, 3967, 290, 4633, 8405, 287, 262, 27039, 198, 220, 220, 220, 299, 62, 1930, 796, 493, 7, 16345, 7, 23912, 1424, 4008, 198, 220, 220, 220, 299, 62, 12480, 796, 1366, 13, 43358, 58, 15, 60, 532, 299, 62, 1930, 198, 220, 220, 220, 3601, 10786, 15057, 286, 4633, 8405, 25, 46083, 299, 62, 12480, 8, 198, 220, 220, 220, 3601, 10786, 15057, 286, 3967, 8405, 25, 46083, 299, 62, 1930, 8, 198, 220, 220, 220, 3601, 10786, 37, 7861, 286, 3967, 8405, 25, 46083, 299, 62, 1930, 1220, 1366, 13, 43358, 58, 15, 60, 1635, 1802, 11, 705, 4, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 284, 4259, 1398, 32556, 4961, 1096, 198, 220, 220, 220, 1303, 262, 3146, 286, 4633, 290, 3967, 8405, 198, 220, 220, 220, 611, 5236, 62, 37724, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 62, 12480, 1875, 299, 62, 1930, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 12480, 796, 299, 62, 1930, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 1930, 796, 299, 62, 12480, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3601, 262, 3146, 286, 4633, 14, 24561, 8405, 198, 220, 220, 220, 1303, 287, 3047, 290, 21201, 5621, 198, 220, 220, 220, 3601, 10786, 21604, 1800, 8405, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 27432, 62, 10366, 952, 1635, 299, 62, 1930, 828, 366, 259, 331, 62, 27432, 553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 19510, 16, 532, 4512, 62, 10366, 952, 8, 1635, 299, 62, 1930, 828, 366, 259, 331, 62, 2100, 4943, 198, 220, 220, 220, 3601, 10786, 32863, 876, 8405, 25, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 27432, 62, 10366, 952, 1635, 299, 62, 12480, 828, 366, 259, 331, 62, 27432, 553, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 19510, 16, 532, 4512, 62, 10366, 952, 8, 1635, 299, 62, 12480, 828, 366, 259, 331, 62, 2100, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7925, 11, 36273, 290, 6626, 29077, 274, 286, 3967, 8405, 198, 220, 220, 220, 1426, 62, 521, 721, 274, 796, 357, 37659, 13, 3003, 7, 23912, 1424, 6624, 352, 4008, 58, 15, 60, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 1930, 62, 521, 721, 274, 8, 198, 220, 220, 220, 1426, 62, 521, 721, 274, 62, 27432, 796, 1426, 62, 521, 721, 274, 58, 25, 744, 7, 27432, 62, 10366, 952, 1635, 299, 62, 1930, 15437, 198, 220, 220, 220, 1426, 62, 521, 721, 274, 62, 2100, 796, 1426, 62, 521, 721, 274, 58, 744, 7, 27432, 62, 10366, 952, 1635, 299, 62, 1930, 2599, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 7925, 11, 36273, 290, 6626, 29077, 274, 286, 4633, 8405, 198, 220, 220, 220, 2469, 62, 521, 721, 274, 796, 357, 37659, 13, 3003, 7, 23912, 1424, 6624, 657, 4008, 58, 15, 60, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 12480, 62, 521, 721, 274, 8, 198, 220, 220, 220, 2469, 62, 521, 721, 274, 62, 27432, 796, 2469, 62, 521, 721, 274, 58, 25, 744, 7, 27432, 62, 10366, 952, 1635, 299, 62, 12480, 15437, 198, 220, 220, 220, 2469, 62, 521, 721, 274, 62, 2100, 796, 2469, 62, 521, 721, 274, 58, 744, 7, 27432, 62, 10366, 952, 1635, 299, 62, 12480, 2599, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2251, 257, 3047, 900, 198, 220, 220, 220, 4512, 62, 521, 721, 274, 796, 45941, 13, 33295, 7, 1930, 62, 521, 721, 274, 62, 27432, 11, 2469, 62, 521, 721, 274, 62, 27432, 11, 16488, 28, 15, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 27432, 62, 521, 721, 274, 8, 198, 220, 220, 220, 1395, 62, 27432, 796, 1366, 58, 27432, 62, 521, 721, 274, 11, 1058, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 331, 62, 27432, 796, 14722, 58, 27432, 62, 521, 721, 274, 60, 628, 220, 220, 220, 1303, 2251, 257, 21201, 900, 198, 220, 220, 220, 1188, 62, 521, 721, 274, 796, 45941, 13, 33295, 7, 1930, 62, 521, 721, 274, 62, 2100, 11, 2469, 62, 521, 721, 274, 62, 2100, 11, 16488, 796, 657, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 2100, 62, 521, 721, 274, 8, 198, 220, 220, 220, 1395, 62, 2100, 796, 1366, 58, 2100, 62, 521, 721, 274, 11, 1058, 11, 1058, 11, 1058, 60, 198, 220, 220, 220, 331, 62, 2100, 796, 14722, 58, 2100, 62, 521, 721, 274, 60, 628, 220, 220, 220, 3601, 7203, 44357, 900, 25, 1600, 1395, 62, 27432, 13, 43358, 11, 331, 62, 27432, 13, 43358, 8, 198, 220, 220, 220, 3601, 7203, 7762, 24765, 900, 25, 1600, 1395, 62, 2100, 13, 43358, 11, 331, 62, 2100, 13, 43358, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1395, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 2100, 11, 331, 62, 2100, 198 ]
2.132612
3,514
# pylint: disable=wildcard-import, unused-import, unused-wildcard-import """Neural network related operators.""" # Re-export in a specific file name so that autodoc can pick it up from .op.nn import *
[ 2, 279, 2645, 600, 25, 15560, 28, 21992, 9517, 12, 11748, 11, 21958, 12, 11748, 11, 21958, 12, 21992, 9517, 12, 11748, 198, 37811, 8199, 1523, 3127, 3519, 12879, 526, 15931, 198, 2, 797, 12, 39344, 287, 257, 2176, 2393, 1438, 523, 326, 1960, 375, 420, 460, 2298, 340, 510, 198, 6738, 764, 404, 13, 20471, 1330, 1635, 198 ]
3.40678
59
from aiofile import AIOFile from os import remove from re import findall from api import util from os.path import getsize from os import listdir from random import randint
[ 6738, 257, 952, 7753, 1330, 317, 9399, 8979, 198, 6738, 28686, 1330, 4781, 198, 6738, 302, 1330, 1064, 439, 198, 6738, 40391, 1330, 7736, 198, 6738, 28686, 13, 6978, 1330, 3011, 1096, 198, 6738, 28686, 1330, 1351, 15908, 198, 6738, 4738, 1330, 43720, 600, 628, 628, 628, 628 ]
3.729167
48
import os import secrets import tarfile import time import zipfile from collections import defaultdict import httpx import pytest from hatch.config.constants import PublishEnvVars from hatch.utils.ci import running_in_ci PUBLISHER_TOKEN = os.environ.get('HATCH_CI_PUBLISHER_TOKEN') pytestmark = [ pytest.mark.skipif(not PUBLISHER_TOKEN, reason='Publishing tests are only executed within CI environments'), ] @pytest.fixture(autouse=True) @pytest.fixture
[ 11748, 28686, 198, 11748, 13141, 198, 11748, 13422, 7753, 198, 11748, 640, 198, 11748, 19974, 7753, 198, 6738, 17268, 1330, 4277, 11600, 198, 198, 11748, 2638, 87, 198, 11748, 12972, 9288, 198, 198, 6738, 25834, 13, 11250, 13, 9979, 1187, 1330, 8525, 1836, 4834, 85, 53, 945, 198, 6738, 25834, 13, 26791, 13, 979, 1330, 2491, 62, 259, 62, 979, 198, 198, 5105, 9148, 1797, 16879, 62, 10468, 43959, 796, 28686, 13, 268, 2268, 13, 1136, 10786, 39, 11417, 62, 25690, 62, 5105, 9148, 1797, 16879, 62, 10468, 43959, 11537, 198, 198, 9078, 9288, 4102, 796, 685, 198, 220, 220, 220, 12972, 9288, 13, 4102, 13, 48267, 361, 7, 1662, 24676, 9148, 1797, 16879, 62, 10468, 43959, 11, 1738, 11639, 14876, 20020, 5254, 389, 691, 10945, 1626, 14514, 12493, 33809, 198, 60, 628, 198, 31, 9078, 9288, 13, 69, 9602, 7, 2306, 1076, 28, 17821, 8, 628, 198, 31, 9078, 9288, 13, 69, 9602, 628, 628, 628, 628, 628, 628, 628, 628, 198 ]
2.957055
163
from manim import * import numpy as np # creates lists of lists of squares, used for input, kernel, and output # moves kernel around and displays output squares one at a time # creates padding
[ 6738, 582, 320, 1330, 1635, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 220, 220, 220, 220, 201, 198, 220, 220, 220, 1303, 8075, 8341, 286, 8341, 286, 24438, 11, 973, 329, 5128, 11, 9720, 11, 290, 5072, 201, 198, 201, 198, 220, 220, 220, 1303, 6100, 9720, 1088, 290, 11298, 5072, 24438, 530, 379, 257, 640, 201, 198, 201, 198, 220, 220, 220, 1303, 8075, 24511, 220, 201 ]
3.142857
70
from django.urls import path from . import views urlpatterns = [ path('', views.feed, name='feed'), path('post/<int:pk>/', views.PostDetailView.as_view(), name='post-detail'), path('post/<int:pk>/delete/', views.PostDeleteView.as_view(), name='post-delete'), path('post/new/', views.PostCreateView.as_view(), name='post-create'), ]
[ 6738, 42625, 14208, 13, 6371, 82, 1330, 3108, 198, 6738, 764, 1330, 5009, 628, 198, 6371, 33279, 82, 796, 685, 198, 220, 220, 220, 3108, 10786, 3256, 5009, 13, 12363, 11, 1438, 11639, 12363, 33809, 198, 220, 220, 220, 3108, 10786, 7353, 14, 27, 600, 25, 79, 74, 29, 14, 3256, 5009, 13, 6307, 11242, 603, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 7353, 12, 49170, 33809, 198, 220, 220, 220, 3108, 10786, 7353, 14, 27, 600, 25, 79, 74, 29, 14, 33678, 14, 3256, 5009, 13, 6307, 38727, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 7353, 12, 33678, 33809, 198, 220, 220, 220, 3108, 10786, 7353, 14, 3605, 14, 3256, 5009, 13, 6307, 16447, 7680, 13, 292, 62, 1177, 22784, 1438, 11639, 7353, 12, 17953, 33809, 198, 60, 198 ]
2.651515
132
''' demo of reading a button 2017-0808 PePo - added OLED display to demo Adafruit article: https://learn.adafruit.com/micropython-hardware-digital-i-slash-o/digital-inputs ''' import machine, time import ssd1306 __LED_PIN = const(14) #GPIO14 __BUTTON_PIN = const(12) #GPIO12 #define led to be set on / off by button led = machine.Pin(__LED_PIN, machine.Pin.OUT) led.off() # OPTIONAL: status of led: True=on, False=off # led_status = False # create i2c for OLED display i2c = machine.I2C(scl=machine.Pin(5), sda=machine.Pin(4), freq=100000) print('i2c.scan: ', i2c.scan()) #[60] # OLED screen dimensions __WIDTH = const(128) __HEIGHT = const(32) oled = ssd1306.SSD1306_I2C(__WIDTH, __HEIGHT, i2c) # define button on Pin GPIO12 button = machine.Pin(__BUTTON_PIN, machine.Pin.IN, machine.Pin.PULL_UP) # helper to refresh OLED display # demo ... # run demo try: print('Button demo, press button...') refreshOLED('Press button!') run() except: print('Done') refreshOLED('Done!')
[ 7061, 6, 13605, 286, 3555, 257, 4936, 198, 2177, 12, 15, 28362, 2631, 18833, 532, 2087, 47463, 3359, 284, 13605, 198, 1215, 1878, 4872, 2708, 25, 198, 3740, 1378, 35720, 13, 324, 1878, 4872, 13, 785, 14, 9383, 1773, 7535, 12, 10424, 1574, 12, 34725, 12, 72, 12, 6649, 1077, 12, 78, 14, 34725, 12, 15414, 82, 198, 7061, 6, 198, 11748, 4572, 11, 640, 198, 11748, 264, 21282, 12952, 21, 198, 198, 834, 30465, 62, 44032, 796, 1500, 7, 1415, 8, 1303, 16960, 9399, 1415, 198, 834, 47526, 11357, 62, 44032, 796, 1500, 7, 1065, 8, 1303, 16960, 9399, 1065, 198, 198, 2, 13086, 2957, 284, 307, 900, 319, 1220, 572, 416, 4936, 198, 992, 796, 4572, 13, 28348, 7, 834, 30465, 62, 44032, 11, 4572, 13, 28348, 13, 12425, 8, 198, 992, 13, 2364, 3419, 198, 2, 39852, 2849, 1847, 25, 3722, 286, 2957, 25, 6407, 28, 261, 11, 10352, 28, 2364, 198, 2, 2957, 62, 13376, 796, 10352, 198, 198, 2, 2251, 1312, 17, 66, 329, 47463, 3359, 198, 72, 17, 66, 796, 4572, 13, 40, 17, 34, 7, 38528, 28, 30243, 13, 28348, 7, 20, 828, 264, 6814, 28, 30243, 13, 28348, 7, 19, 828, 2030, 80, 28, 3064, 830, 8, 198, 4798, 10786, 72, 17, 66, 13, 35836, 25, 46083, 1312, 17, 66, 13, 35836, 28955, 220, 220, 1303, 58, 1899, 60, 198, 2, 47463, 3159, 15225, 198, 834, 54, 2389, 4221, 796, 1500, 7, 12762, 8, 198, 834, 13909, 9947, 796, 1500, 7, 2624, 8, 198, 45342, 796, 264, 21282, 12952, 21, 13, 5432, 35, 12952, 21, 62, 40, 17, 34, 7, 834, 54, 2389, 4221, 11, 11593, 13909, 9947, 11, 1312, 17, 66, 8, 198, 198, 2, 8160, 4936, 319, 13727, 50143, 1065, 198, 16539, 796, 4572, 13, 28348, 7, 834, 47526, 11357, 62, 44032, 11, 4572, 13, 28348, 13, 1268, 11, 4572, 13, 28348, 13, 5105, 3069, 62, 8577, 8, 198, 198, 2, 31904, 284, 14976, 47463, 3359, 198, 198, 2, 13605, 2644, 198, 198, 2, 1057, 13605, 198, 28311, 25, 198, 220, 220, 220, 3601, 10786, 21864, 13605, 11, 1803, 4936, 986, 11537, 198, 220, 220, 220, 14976, 3535, 1961, 10786, 13800, 4936, 0, 11537, 198, 220, 220, 220, 1057, 3419, 198, 16341, 25, 198, 220, 220, 220, 3601, 10786, 45677, 11537, 198, 220, 220, 220, 14976, 3535, 1961, 10786, 45677, 0, 11537, 198 ]
2.559796
393
from copy import deepcopy from dataclasses import dataclass import itertools import re from typing import Dict from typing import Optional import numpy as np import pandas as pd from pandas.testing import assert_frame_equal import pytest from obp.ope import SlateIndependentIPS from obp.ope import SlateOffPolicyEvaluation from obp.ope import SlateRewardInteractionIPS from obp.ope import SlateStandardIPS from obp.types import BanditFeedback from obp.utils import check_confidence_interval_arguments mock_policy_value = 0.5 mock_confidence_interval = { "mean": 0.5, "95.0% CI (lower)": 0.3, "95.0% CI (upper)": 0.7, } @dataclass class SlateStandardIPSMock(SlateStandardIPS): """Slate Standard Inverse Propensity Scoring (SIPS) Mock.""" estimator_name: str = "sips" eps: float = 0.1 def estimate_policy_value( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore: np.ndarray, evaluation_policy_pscore: np.ndarray, **kwargs, ) -> float: """Estimate the policy value of evaluation policy. Returns ---------- mock_policy_value: float """ return mock_policy_value + self.eps def estimate_interval( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore: np.ndarray, evaluation_policy_pscore: np.ndarray, alpha: float = 0.05, n_bootstrap_samples: int = 10000, random_state: Optional[int] = None, **kwargs, ) -> Dict[str, float]: """Estimate confidence interval of policy value by nonparametric bootstrap procedure. Returns ---------- mock_confidence_interval: Dict[str, float] Dictionary storing the estimated mean and upper-lower confidence bounds. """ check_confidence_interval_arguments( alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) return {k: v + self.eps for k, v in mock_confidence_interval.items()} @dataclass class SlateIndependentIPSMock(SlateIndependentIPS): """Slate Independent Inverse Propensity Scoring (IIPS) Mock.""" estimator_name: str = "iips" def estimate_policy_value( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore_item_position: np.ndarray, evaluation_policy_pscore_item_position: np.ndarray, **kwargs, ) -> float: """Estimate the policy value of evaluation policy. Returns ---------- mock_policy_value: float """ return mock_policy_value def estimate_interval( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore_item_position: np.ndarray, evaluation_policy_pscore_item_position: np.ndarray, alpha: float = 0.05, n_bootstrap_samples: int = 10000, random_state: Optional[int] = None, **kwargs, ) -> Dict[str, float]: """Estimate confidence interval of policy value by nonparametric bootstrap procedure. Returns ---------- mock_confidence_interval: Dict[str, float] Dictionary storing the estimated mean and upper-lower confidence bounds. """ check_confidence_interval_arguments( alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) return {k: v for k, v in mock_confidence_interval.items()} @dataclass class SlateRewardInteractionIPSMock(SlateRewardInteractionIPS): """Slate Recursive Inverse Propensity Scoring (RIPS) Mock.""" estimator_name: str = "rips" def estimate_policy_value( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore_cascade: np.ndarray, evaluation_policy_pscore_cascade: np.ndarray, **kwargs, ) -> float: """Estimate the policy value of evaluation policy. Returns ---------- mock_policy_value: float """ return mock_policy_value def estimate_interval( self, slate_id: np.ndarray, reward: np.ndarray, position: np.ndarray, pscore_cascade: np.ndarray, evaluation_policy_pscore_cascade: np.ndarray, alpha: float = 0.05, n_bootstrap_samples: int = 10000, random_state: Optional[int] = None, **kwargs, ) -> Dict[str, float]: """Estimate confidence interval of policy value by nonparametric bootstrap procedure. Returns ---------- mock_confidence_interval: Dict[str, float] Dictionary storing the estimated mean and upper-lower confidence bounds. """ check_confidence_interval_arguments( alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) return {k: v for k, v in mock_confidence_interval.items()} # define Mock instances sips = SlateStandardIPSMock(len_list=3) sips2 = SlateStandardIPSMock(len_list=3, eps=0.02) sips3 = SlateStandardIPSMock(len_list=3, estimator_name="sips3") iips = SlateIndependentIPSMock(len_list=3) rips = SlateRewardInteractionIPSMock(len_list=3) def test_meta_post_init(synthetic_slate_bandit_feedback: BanditFeedback) -> None: """ Test the __post_init__ function """ # __post_init__ saves the latter estimator when the same estimator name is used ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips2] ) assert ope_.ope_estimators_ == { "sips": sips2 }, "__post_init__ returns a wrong value" # __post_init__ can handle the same estimator if the estimator names are different ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3] ) assert ope_.ope_estimators_ == { "sips": sips, "sips3": sips3, }, "__post_init__ returns a wrong value" # __post__init__ raises RuntimeError when necessary_keys are not included in the bandit_feedback necessary_keys = ["slate_id", "position", "reward"] for i in range(len(necessary_keys)): for deleted_keys in itertools.combinations(necessary_keys, i + 1): invalid_bandit_feedback_dict = {key: "_" for key in necessary_keys} # delete for k in deleted_keys: del invalid_bandit_feedback_dict[k] with pytest.raises(RuntimeError, match=r"Missing key*"): _ = SlateOffPolicyEvaluation( bandit_feedback=invalid_bandit_feedback_dict, ope_estimators=[sips] ) # evaluation_policy_pscore, description invalid_input_of_create_estimator_inputs = [ ( None, "one of evaluation_policy_pscore, evaluation_policy_pscore_item_position, or evaluation_policy_pscore_cascade must be given", ), ] # evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description valid_input_of_create_estimator_inputs = [ ( np.ones(300), np.ones(300), np.ones(300), "deterministic evaluation policy", ), ] @pytest.mark.parametrize( "evaluation_policy_pscore, description", invalid_input_of_create_estimator_inputs, ) def test_meta_create_estimator_inputs_using_invalid_input_data( evaluation_policy_pscore, description: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the _create_estimator_inputs using valid data and a sips estimator """ ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips] ) # raise ValueError when the shape of two arrays are different with pytest.raises(ValueError, match=f"{description}*"): _ = ope_._create_estimator_inputs( evaluation_policy_pscore=evaluation_policy_pscore ) # _create_estimator_inputs function is called in the following functions with pytest.raises(ValueError, match=f"{description}*"): _ = ope_.estimate_policy_values( evaluation_policy_pscore=evaluation_policy_pscore ) with pytest.raises(ValueError, match=f"{description}*"): _ = ope_.estimate_intervals(evaluation_policy_pscore=evaluation_policy_pscore) with pytest.raises(ValueError, match=f"{description}*"): _ = ope_.summarize_off_policy_estimates( evaluation_policy_pscore=evaluation_policy_pscore ) with pytest.raises(ValueError, match=f"{description}*"): _ = ope_.evaluate_performance_of_estimators( ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore, ) with pytest.raises(ValueError, match=f"{description}*"): _ = ope_.summarize_estimators_comparison( ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore, ) @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description", valid_input_of_create_estimator_inputs, ) def test_meta_create_estimator_inputs_using_valid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the _create_estimator_inputs using invalid data """ ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips] ) estimator_inputs = ope_._create_estimator_inputs( evaluation_policy_pscore=evaluation_policy_pscore ) assert set(estimator_inputs.keys()) == set( [ "reward", "pscore", "pscore_item_position", "pscore_cascade", "position", "evaluation_policy_pscore", "evaluation_policy_pscore_item_position", "evaluation_policy_pscore_cascade", "slate_id", ] ), f"Invalid response of _create_estimator_inputs (test case: {description})" # _create_estimator_inputs function is called in the following functions _ = ope_.estimate_policy_values(evaluation_policy_pscore=evaluation_policy_pscore) _ = ope_.estimate_intervals(evaluation_policy_pscore=evaluation_policy_pscore) _ = ope_.summarize_off_policy_estimates( evaluation_policy_pscore=evaluation_policy_pscore ) _ = ope_.evaluate_performance_of_estimators( ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore ) _ = ope_.summarize_estimators_comparison( ground_truth_policy_value=0.1, evaluation_policy_pscore=evaluation_policy_pscore ) @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description", valid_input_of_create_estimator_inputs, ) def test_meta_estimate_policy_values_using_valid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of estimate_policy_values using valid data """ # single ope estimator (iips) ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips] ) assert ope_.estimate_policy_values( evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position ) == { "iips": mock_policy_value }, "SlateOffPolicyEvaluation.estimate_policy_values ([IIPS]) returns a wrong value" # multiple ope estimators ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips, sips, rips], ) assert ope_.estimate_policy_values( evaluation_policy_pscore=evaluation_policy_pscore, evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade=evaluation_policy_pscore_cascade, ) == { "iips": mock_policy_value, "sips": mock_policy_value + sips.eps, "rips": mock_policy_value, }, "SlateOffPolicyEvaluation.estimate_policy_values ([IIPS, SIPS, RIPS]) returns a wrong value" @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description", valid_input_of_create_estimator_inputs, ) # alpha, n_bootstrap_samples, random_state, err, description invalid_input_of_estimate_intervals = [ ( 0.05, 100, "s", ValueError, "'s' cannot be used to seed a numpy.random.RandomState instance", ), (0.05, -1, 1, ValueError, "`n_bootstrap_samples`= -1, must be >= 1"), ( 0.05, "s", 1, TypeError, "`n_bootstrap_samples` must be an instance of <class 'int'>, not <class 'str'>", ), (-1.0, 1, 1, ValueError, "`alpha`= -1.0, must be >= 0.0"), (2.0, 1, 1, ValueError, "`alpha`= 2.0, must be <= 1.0"), ( "0", 1, 1, TypeError, "`alpha` must be an instance of <class 'float'>, not <class 'str'>", ), ] valid_input_of_estimate_intervals = [ (0.05, 100, 1, "random_state is 1"), (0.05, 1, 1, "n_bootstrap_samples is 1"), ] @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1", valid_input_of_create_estimator_inputs, ) @pytest.mark.parametrize( "alpha, n_bootstrap_samples, random_state, err, description_2", invalid_input_of_estimate_intervals, ) def test_meta_estimate_intervals_using_invalid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1: str, alpha, n_bootstrap_samples, random_state, err, description_2: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of estimate_intervals using invalid data """ ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips] ) with pytest.raises(err, match=f"{description_2}*"): _ = ope_.estimate_intervals( evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) # estimate_intervals function is called in summarize_off_policy_estimates with pytest.raises(err, match=f"{description_2}*"): _ = ope_.summarize_off_policy_estimates( evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1", valid_input_of_create_estimator_inputs, ) @pytest.mark.parametrize( "alpha, n_bootstrap_samples, random_state, description_2", valid_input_of_estimate_intervals, ) def test_meta_estimate_intervals_using_valid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1: str, alpha: float, n_bootstrap_samples: int, random_state: int, description_2: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of estimate_intervals using valid data """ # single ope estimator ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips] ) assert ope_.estimate_intervals( evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) == { "iips": mock_confidence_interval }, "SlateOffPolicyEvaluation.estimate_intervals ([IIPS]) returns a wrong value" # multiple ope estimators ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips, sips] ) assert ope_.estimate_intervals( evaluation_policy_pscore=evaluation_policy_pscore, evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) == { "iips": mock_confidence_interval, "sips": {k: v + sips.eps for k, v in mock_confidence_interval.items()}, }, "SlateOffPolicyEvaluation.estimate_intervals ([IIPS, SIPS]) returns a wrong value" @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1", valid_input_of_create_estimator_inputs, ) @pytest.mark.parametrize( "alpha, n_bootstrap_samples, random_state, description_2", valid_input_of_estimate_intervals, ) def test_meta_summarize_off_policy_estimates( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1: str, alpha: float, n_bootstrap_samples: int, random_state: int, description_2: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of summarize_off_policy_estimates using valid data """ ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3] ) value, interval = ope_.summarize_off_policy_estimates( evaluation_policy_pscore=evaluation_policy_pscore, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) expected_value = pd.DataFrame( { "sips": mock_policy_value + sips.eps, "sips3": mock_policy_value + sips3.eps, }, index=["estimated_policy_value"], ).T expected_value["relative_estimated_policy_value"] = expected_value[ "estimated_policy_value" ] / ( synthetic_slate_bandit_feedback["reward"].sum() / np.unique(synthetic_slate_bandit_feedback["slate_id"]).shape[0] ) expected_interval = pd.DataFrame( { "sips": {k: v + sips.eps for k, v in mock_confidence_interval.items()}, "sips3": {k: v + sips3.eps for k, v in mock_confidence_interval.items()}, } ).T assert_frame_equal(value, expected_value), "Invalid summarization (policy value)" assert_frame_equal(interval, expected_interval), "Invalid summarization (interval)" # check relative estimated policy value when the average of bandit_feedback["reward"] is zero zero_reward_bandit_feedback = deepcopy(synthetic_slate_bandit_feedback) zero_reward_bandit_feedback["reward"] = np.zeros( zero_reward_bandit_feedback["reward"].shape[0] ) ope_ = SlateOffPolicyEvaluation( bandit_feedback=zero_reward_bandit_feedback, ope_estimators=[sips, sips3] ) value, _ = ope_.summarize_off_policy_estimates( evaluation_policy_pscore=evaluation_policy_pscore, alpha=alpha, n_bootstrap_samples=n_bootstrap_samples, random_state=random_state, ) expected_value = pd.DataFrame( { "sips": mock_policy_value + sips.eps, "sips3": mock_policy_value + sips3.eps, }, index=["estimated_policy_value"], ).T expected_value["relative_estimated_policy_value"] = np.nan assert_frame_equal(value, expected_value), "Invalid summarization (policy value)" invalid_input_of_evaluation_performance_of_estimators = [ ("foo", 0.3, ValueError, "metric must be either 'relative-ee' or 'se'"), ( "se", 1, TypeError, "`ground_truth_policy_value` must be an instance of <class 'float'>, not <class 'int'>.", ), ( "se", "a", TypeError, "`ground_truth_policy_value` must be an instance of <class 'float'>, not <class 'str'>.", ), ( "relative-ee", 0.0, ValueError, "ground_truth_policy_value must be non-zero when metric is relative-ee", ), ] valid_input_of_evaluation_performance_of_estimators = [ ("se", 0.0, "metric is se and ground_truth_policy_value is 0.0"), ("relative-ee", 1.0, "metric is relative-ee and ground_truth_policy_value is 1.0"), ] @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1", valid_input_of_create_estimator_inputs, ) @pytest.mark.parametrize( "metric, ground_truth_policy_value, err, description_2", invalid_input_of_evaluation_performance_of_estimators, ) def test_meta_evaluate_performance_of_estimators_using_invalid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1: str, metric, ground_truth_policy_value, err, description_2: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of evaluate_performance_of_estimators using invalid data """ ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[iips] ) with pytest.raises(err, match=f"{description_2}*"): _ = ope_.evaluate_performance_of_estimators( ground_truth_policy_value=ground_truth_policy_value, evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, metric=metric, ) # estimate_intervals function is called in summarize_off_policy_estimates with pytest.raises(err, match=f"{description_2}*"): _ = ope_.summarize_estimators_comparison( ground_truth_policy_value=ground_truth_policy_value, evaluation_policy_pscore_item_position=evaluation_policy_pscore_item_position, metric=metric, ) @pytest.mark.parametrize( "evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1", valid_input_of_create_estimator_inputs, ) @pytest.mark.parametrize( "metric, ground_truth_policy_value, description_2", valid_input_of_evaluation_performance_of_estimators, ) def test_meta_evaluate_performance_of_estimators_using_valid_input_data( evaluation_policy_pscore, evaluation_policy_pscore_item_position, evaluation_policy_pscore_cascade, description_1: str, metric, ground_truth_policy_value, description_2: str, synthetic_slate_bandit_feedback: BanditFeedback, ) -> None: """ Test the response of evaluate_performance_of_estimators using valid data """ if metric == "relative-ee": # calculate relative-ee eval_metric_ope_dict = { "sips": np.abs( (mock_policy_value + sips.eps - ground_truth_policy_value) / ground_truth_policy_value ), "sips3": np.abs( (mock_policy_value + sips3.eps - ground_truth_policy_value) / ground_truth_policy_value ), } else: # calculate se eval_metric_ope_dict = { "sips": (mock_policy_value + sips.eps - ground_truth_policy_value) ** 2, "sips3": (mock_policy_value + sips3.eps - ground_truth_policy_value) ** 2, } # check performance estimators ope_ = SlateOffPolicyEvaluation( bandit_feedback=synthetic_slate_bandit_feedback, ope_estimators=[sips, sips3] ) performance = ope_.evaluate_performance_of_estimators( ground_truth_policy_value=ground_truth_policy_value, evaluation_policy_pscore=evaluation_policy_pscore, metric=metric, ) for k, v in performance.items(): assert k in eval_metric_ope_dict, "Invalid key of performance response" assert v == eval_metric_ope_dict[k], "Invalid value of performance response" performance_df = ope_.summarize_estimators_comparison( ground_truth_policy_value=ground_truth_policy_value, evaluation_policy_pscore=evaluation_policy_pscore, metric=metric, ) assert_frame_equal( performance_df, pd.DataFrame(eval_metric_ope_dict, index=[metric]).T ), "Invalid summarization (performance)"
[ 6738, 4866, 1330, 2769, 30073, 198, 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 198, 11748, 340, 861, 10141, 198, 11748, 302, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 19720, 1330, 32233, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 19798, 292, 13, 33407, 1330, 6818, 62, 14535, 62, 40496, 198, 11748, 12972, 9288, 198, 198, 6738, 909, 79, 13, 3008, 1330, 30621, 40566, 47643, 198, 6738, 909, 79, 13, 3008, 1330, 30621, 9362, 36727, 36, 2100, 2288, 198, 6738, 909, 79, 13, 3008, 1330, 30621, 48123, 9492, 2673, 47643, 198, 6738, 909, 79, 13, 3008, 1330, 30621, 23615, 47643, 198, 6738, 909, 79, 13, 19199, 1330, 10243, 270, 18332, 1891, 198, 6738, 909, 79, 13, 26791, 1330, 2198, 62, 39745, 62, 3849, 2100, 62, 853, 2886, 628, 198, 76, 735, 62, 30586, 62, 8367, 796, 657, 13, 20, 198, 76, 735, 62, 39745, 62, 3849, 2100, 796, 1391, 198, 220, 220, 220, 366, 32604, 1298, 657, 13, 20, 11, 198, 220, 220, 220, 366, 3865, 13, 15, 4, 14514, 357, 21037, 8, 1298, 657, 13, 18, 11, 198, 220, 220, 220, 366, 3865, 13, 15, 4, 14514, 357, 45828, 8, 1298, 657, 13, 22, 11, 198, 92, 628, 198, 31, 19608, 330, 31172, 198, 4871, 30621, 23615, 47643, 44, 735, 7, 11122, 378, 23615, 47643, 2599, 198, 220, 220, 220, 37227, 11122, 378, 8997, 554, 4399, 8772, 6377, 1446, 3255, 357, 11584, 3705, 8, 44123, 526, 15931, 628, 220, 220, 220, 3959, 1352, 62, 3672, 25, 965, 796, 366, 82, 2419, 1, 198, 220, 220, 220, 304, 862, 25, 12178, 796, 657, 13, 16, 628, 220, 220, 220, 825, 8636, 62, 30586, 62, 8367, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 262, 2450, 1988, 286, 12660, 2450, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 30586, 62, 8367, 25, 12178, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15290, 62, 30586, 62, 8367, 1343, 2116, 13, 25386, 628, 220, 220, 220, 825, 8636, 62, 3849, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 25, 12178, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 25, 493, 796, 33028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 360, 713, 58, 2536, 11, 12178, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 6628, 16654, 286, 2450, 1988, 416, 1729, 17143, 19482, 6297, 26418, 8771, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 39745, 62, 3849, 2100, 25, 360, 713, 58, 2536, 11, 12178, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 23069, 262, 6108, 1612, 290, 6727, 12, 21037, 6628, 22303, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 39745, 62, 3849, 2100, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 74, 25, 410, 1343, 2116, 13, 25386, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 92, 628, 198, 31, 19608, 330, 31172, 198, 4871, 30621, 40566, 47643, 44, 735, 7, 11122, 378, 40566, 47643, 2599, 198, 220, 220, 220, 37227, 11122, 378, 13362, 554, 4399, 8772, 6377, 1446, 3255, 357, 3978, 3705, 8, 44123, 526, 15931, 628, 220, 220, 220, 3959, 1352, 62, 3672, 25, 965, 796, 366, 72, 2419, 1, 628, 220, 220, 220, 825, 8636, 62, 30586, 62, 8367, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 62, 9186, 62, 9150, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 262, 2450, 1988, 286, 12660, 2450, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 30586, 62, 8367, 25, 12178, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15290, 62, 30586, 62, 8367, 628, 220, 220, 220, 825, 8636, 62, 3849, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 62, 9186, 62, 9150, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 25, 12178, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 25, 493, 796, 33028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 360, 713, 58, 2536, 11, 12178, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 6628, 16654, 286, 2450, 1988, 416, 1729, 17143, 19482, 6297, 26418, 8771, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 39745, 62, 3849, 2100, 25, 360, 713, 58, 2536, 11, 12178, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 23069, 262, 6108, 1612, 290, 6727, 12, 21037, 6628, 22303, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 39745, 62, 3849, 2100, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 92, 628, 198, 31, 19608, 330, 31172, 198, 4871, 30621, 48123, 9492, 2673, 47643, 44, 735, 7, 11122, 378, 48123, 9492, 2673, 47643, 2599, 198, 220, 220, 220, 37227, 11122, 378, 3311, 30753, 554, 4399, 8772, 6377, 1446, 3255, 357, 7112, 3705, 8, 44123, 526, 15931, 628, 220, 220, 220, 3959, 1352, 62, 3672, 25, 965, 796, 366, 380, 862, 1, 628, 220, 220, 220, 825, 8636, 62, 30586, 62, 8367, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 62, 66, 28966, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 12178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 262, 2450, 1988, 286, 12660, 2450, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 30586, 62, 8367, 25, 12178, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15290, 62, 30586, 62, 8367, 628, 220, 220, 220, 825, 8636, 62, 3849, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27589, 62, 312, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6721, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 279, 26675, 62, 66, 28966, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 25, 45941, 13, 358, 18747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 25, 12178, 796, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 25, 493, 796, 33028, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 25, 32233, 58, 600, 60, 796, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 11, 198, 220, 220, 220, 1267, 4613, 360, 713, 58, 2536, 11, 12178, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 22362, 1920, 6628, 16654, 286, 2450, 1988, 416, 1729, 17143, 19482, 6297, 26418, 8771, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 39745, 62, 3849, 2100, 25, 360, 713, 58, 2536, 11, 12178, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 23069, 262, 6108, 1612, 290, 6727, 12, 21037, 6628, 22303, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 39745, 62, 3849, 2100, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 74, 25, 410, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 92, 628, 198, 2, 8160, 44123, 10245, 198, 82, 2419, 796, 30621, 23615, 47643, 44, 735, 7, 11925, 62, 4868, 28, 18, 8, 198, 82, 2419, 17, 796, 30621, 23615, 47643, 44, 735, 7, 11925, 62, 4868, 28, 18, 11, 304, 862, 28, 15, 13, 2999, 8, 198, 82, 2419, 18, 796, 30621, 23615, 47643, 44, 735, 7, 11925, 62, 4868, 28, 18, 11, 3959, 1352, 62, 3672, 2625, 82, 2419, 18, 4943, 198, 72, 2419, 796, 30621, 40566, 47643, 44, 735, 7, 11925, 62, 4868, 28, 18, 8, 198, 380, 862, 796, 30621, 48123, 9492, 2673, 47643, 44, 735, 7, 11925, 62, 4868, 28, 18, 8, 628, 198, 4299, 1332, 62, 28961, 62, 7353, 62, 15003, 7, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 11593, 7353, 62, 15003, 834, 2163, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 11593, 7353, 62, 15003, 834, 16031, 262, 6846, 3959, 1352, 618, 262, 976, 3959, 1352, 1438, 318, 973, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 11, 264, 2419, 17, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 3008, 62, 395, 320, 2024, 62, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 264, 2419, 17, 198, 220, 220, 220, 8964, 366, 834, 7353, 62, 15003, 834, 5860, 257, 2642, 1988, 1, 198, 220, 220, 220, 1303, 11593, 7353, 62, 15003, 834, 460, 5412, 262, 976, 3959, 1352, 611, 262, 3959, 1352, 3891, 389, 1180, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 11, 264, 2419, 18, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 3008, 62, 395, 320, 2024, 62, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 264, 2419, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 264, 2419, 18, 11, 198, 220, 220, 220, 8964, 366, 834, 7353, 62, 15003, 834, 5860, 257, 2642, 1988, 1, 198, 220, 220, 220, 1303, 11593, 7353, 834, 15003, 834, 12073, 43160, 12331, 618, 3306, 62, 13083, 389, 407, 3017, 287, 262, 4097, 270, 62, 12363, 1891, 198, 220, 220, 220, 3306, 62, 13083, 796, 14631, 6649, 378, 62, 312, 1600, 366, 9150, 1600, 366, 260, 904, 8973, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 49986, 62, 13083, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 329, 13140, 62, 13083, 287, 340, 861, 10141, 13, 24011, 7352, 7, 49986, 62, 13083, 11, 1312, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 3903, 270, 62, 12363, 1891, 62, 11600, 796, 1391, 2539, 25, 45434, 1, 329, 1994, 287, 3306, 62, 13083, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12233, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 13140, 62, 13083, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 12515, 62, 3903, 270, 62, 12363, 1891, 62, 11600, 58, 74, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 41006, 12331, 11, 2872, 28, 81, 1, 43730, 1994, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 259, 12102, 62, 3903, 270, 62, 12363, 1891, 62, 11600, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 2, 12660, 62, 30586, 62, 862, 7295, 11, 6764, 198, 259, 12102, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 796, 685, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 505, 286, 12660, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 393, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 1276, 307, 1813, 1600, 198, 220, 220, 220, 10612, 198, 60, 198, 198, 2, 12660, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 198, 12102, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 796, 685, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 1952, 7, 6200, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 1952, 7, 6200, 828, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 1952, 7, 6200, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 67, 2357, 49228, 12660, 2450, 1600, 198, 220, 220, 220, 10612, 198, 60, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 6764, 1600, 198, 220, 220, 220, 12515, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 62, 3500, 62, 259, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 6764, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 4808, 17953, 62, 395, 320, 1352, 62, 15414, 82, 1262, 4938, 1366, 290, 257, 264, 2419, 3959, 1352, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 5298, 11052, 12331, 618, 262, 5485, 286, 734, 26515, 389, 1180, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 62, 13557, 17953, 62, 395, 320, 1352, 62, 15414, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 4808, 17953, 62, 395, 320, 1352, 62, 15414, 82, 2163, 318, 1444, 287, 262, 1708, 5499, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 395, 1920, 62, 30586, 62, 27160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 395, 1920, 62, 3849, 12786, 7, 18206, 2288, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 8, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 11395, 12331, 11, 2872, 28, 69, 1, 90, 11213, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 395, 320, 2024, 62, 785, 1845, 1653, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 62, 3500, 62, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 4808, 17953, 62, 395, 320, 1352, 62, 15414, 82, 1262, 12515, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3959, 1352, 62, 15414, 82, 796, 267, 431, 62, 13557, 17953, 62, 395, 320, 1352, 62, 15414, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 900, 7, 395, 320, 1352, 62, 15414, 82, 13, 13083, 28955, 6624, 900, 7, 198, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 260, 904, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 862, 7295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 862, 7295, 62, 9186, 62, 9150, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 862, 7295, 62, 66, 28966, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9150, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 66, 28966, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 6649, 378, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 10612, 277, 1, 44651, 2882, 286, 4808, 17953, 62, 395, 320, 1352, 62, 15414, 82, 357, 9288, 1339, 25, 1391, 11213, 92, 16725, 198, 220, 220, 220, 1303, 4808, 17953, 62, 395, 320, 1352, 62, 15414, 82, 2163, 318, 1444, 287, 262, 1708, 5499, 198, 220, 220, 220, 4808, 796, 267, 431, 44807, 395, 1920, 62, 30586, 62, 27160, 7, 18206, 2288, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 8, 198, 220, 220, 220, 4808, 796, 267, 431, 44807, 395, 1920, 62, 3849, 12786, 7, 18206, 2288, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 8, 198, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4808, 796, 267, 431, 44807, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 15, 13, 16, 11, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 395, 320, 2024, 62, 785, 1845, 1653, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 15, 13, 16, 11, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 198, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 395, 1920, 62, 30586, 62, 27160, 62, 3500, 62, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 8636, 62, 30586, 62, 27160, 1262, 4938, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2060, 267, 431, 3959, 1352, 357, 72, 2419, 8, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 395, 1920, 62, 30586, 62, 27160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 198, 220, 220, 220, 1267, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 72, 2419, 1298, 15290, 62, 30586, 62, 8367, 198, 220, 220, 220, 8964, 366, 11122, 378, 9362, 36727, 36, 2100, 2288, 13, 395, 1920, 62, 30586, 62, 27160, 29565, 3978, 3705, 12962, 5860, 257, 2642, 1988, 1, 198, 220, 220, 220, 1303, 3294, 267, 431, 3959, 2024, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 198, 220, 220, 220, 220, 220, 220, 220, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 11, 264, 2419, 11, 374, 2419, 4357, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 395, 1920, 62, 30586, 62, 27160, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 1267, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 72, 2419, 1298, 15290, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 15290, 62, 30586, 62, 8367, 1343, 264, 2419, 13, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 380, 862, 1298, 15290, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 8964, 366, 11122, 378, 9362, 36727, 36, 2100, 2288, 13, 395, 1920, 62, 30586, 62, 27160, 29565, 3978, 3705, 11, 25861, 3705, 11, 37271, 3705, 12962, 5860, 257, 2642, 1988, 1, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 628, 198, 2, 17130, 11, 299, 62, 18769, 26418, 62, 82, 12629, 11, 4738, 62, 5219, 11, 11454, 11, 6764, 198, 259, 12102, 62, 15414, 62, 1659, 62, 395, 1920, 62, 3849, 12786, 796, 685, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 24018, 82, 6, 2314, 307, 973, 284, 9403, 257, 299, 32152, 13, 25120, 13, 29531, 9012, 4554, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 15, 13, 2713, 11, 532, 16, 11, 352, 11, 11052, 12331, 11, 366, 63, 77, 62, 18769, 26418, 62, 82, 12629, 63, 28, 532, 16, 11, 1276, 307, 18189, 352, 12340, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 63, 77, 62, 18769, 26418, 62, 82, 12629, 63, 1276, 307, 281, 4554, 286, 1279, 4871, 705, 600, 6, 22330, 407, 1279, 4871, 705, 2536, 44167, 1600, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 13841, 16, 13, 15, 11, 352, 11, 352, 11, 11052, 12331, 11, 366, 63, 26591, 63, 28, 532, 16, 13, 15, 11, 1276, 307, 18189, 657, 13, 15, 12340, 198, 220, 220, 220, 357, 17, 13, 15, 11, 352, 11, 352, 11, 11052, 12331, 11, 366, 63, 26591, 63, 28, 362, 13, 15, 11, 1276, 307, 19841, 352, 13, 15, 12340, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 63, 26591, 63, 1276, 307, 281, 4554, 286, 1279, 4871, 705, 22468, 6, 22330, 407, 1279, 4871, 705, 2536, 44167, 1600, 198, 220, 220, 220, 10612, 198, 60, 198, 198, 12102, 62, 15414, 62, 1659, 62, 395, 1920, 62, 3849, 12786, 796, 685, 198, 220, 220, 220, 357, 15, 13, 2713, 11, 1802, 11, 352, 11, 366, 25120, 62, 5219, 318, 352, 12340, 198, 220, 220, 220, 357, 15, 13, 2713, 11, 352, 11, 352, 11, 366, 77, 62, 18769, 26418, 62, 82, 12629, 318, 352, 12340, 198, 60, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 62, 16, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 26591, 11, 299, 62, 18769, 26418, 62, 82, 12629, 11, 4738, 62, 5219, 11, 11454, 11, 6764, 62, 17, 1600, 198, 220, 220, 220, 12515, 62, 15414, 62, 1659, 62, 395, 1920, 62, 3849, 12786, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 395, 1920, 62, 3849, 12786, 62, 3500, 62, 259, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 62, 16, 25, 965, 11, 198, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 4738, 62, 5219, 11, 198, 220, 220, 220, 11454, 11, 198, 220, 220, 220, 6764, 62, 17, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 8636, 62, 3849, 12786, 1262, 12515, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 8056, 11, 2872, 28, 69, 1, 90, 11213, 62, 17, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 395, 1920, 62, 3849, 12786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 8636, 62, 3849, 12786, 2163, 318, 1444, 287, 35743, 62, 2364, 62, 30586, 62, 395, 26748, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 8056, 11, 2872, 28, 69, 1, 90, 11213, 62, 17, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 62, 16, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 26591, 11, 299, 62, 18769, 26418, 62, 82, 12629, 11, 4738, 62, 5219, 11, 6764, 62, 17, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 395, 1920, 62, 3849, 12786, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 395, 1920, 62, 3849, 12786, 62, 3500, 62, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 62, 16, 25, 965, 11, 198, 220, 220, 220, 17130, 25, 12178, 11, 198, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 25, 493, 11, 198, 220, 220, 220, 4738, 62, 5219, 25, 493, 11, 198, 220, 220, 220, 6764, 62, 17, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 8636, 62, 3849, 12786, 1262, 4938, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2060, 267, 431, 3959, 1352, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 395, 1920, 62, 3849, 12786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 1267, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 72, 2419, 1298, 15290, 62, 39745, 62, 3849, 2100, 198, 220, 220, 220, 8964, 366, 11122, 378, 9362, 36727, 36, 2100, 2288, 13, 395, 1920, 62, 3849, 12786, 29565, 3978, 3705, 12962, 5860, 257, 2642, 1988, 1, 198, 220, 220, 220, 1303, 3294, 267, 431, 3959, 2024, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 11, 264, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 267, 431, 44807, 395, 1920, 62, 3849, 12786, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 1267, 6624, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 72, 2419, 1298, 15290, 62, 39745, 62, 3849, 2100, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 1391, 74, 25, 410, 1343, 264, 2419, 13, 25386, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 5512, 198, 220, 220, 220, 8964, 366, 11122, 378, 9362, 36727, 36, 2100, 2288, 13, 395, 1920, 62, 3849, 12786, 29565, 3978, 3705, 11, 25861, 3705, 12962, 5860, 257, 2642, 1988, 1, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 62, 16, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 26591, 11, 299, 62, 18769, 26418, 62, 82, 12629, 11, 4738, 62, 5219, 11, 6764, 62, 17, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 395, 1920, 62, 3849, 12786, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 62, 16, 25, 965, 11, 198, 220, 220, 220, 17130, 25, 12178, 11, 198, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 25, 493, 11, 198, 220, 220, 220, 4738, 62, 5219, 25, 493, 11, 198, 220, 220, 220, 6764, 62, 17, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 35743, 62, 2364, 62, 30586, 62, 395, 26748, 1262, 4938, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 11, 264, 2419, 18, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1988, 11, 16654, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2938, 62, 8367, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 15290, 62, 30586, 62, 8367, 1343, 264, 2419, 13, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 15290, 62, 30586, 62, 8367, 1343, 264, 2419, 18, 13, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 14692, 395, 15655, 62, 30586, 62, 8367, 33116, 198, 220, 220, 220, 6739, 51, 198, 220, 220, 220, 2938, 62, 8367, 14692, 43762, 62, 395, 15655, 62, 30586, 62, 8367, 8973, 796, 2938, 62, 8367, 58, 198, 220, 220, 220, 220, 220, 220, 220, 366, 395, 15655, 62, 30586, 62, 8367, 1, 198, 220, 220, 220, 2361, 1220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 14692, 260, 904, 1, 4083, 16345, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1220, 45941, 13, 34642, 7, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 14692, 6649, 378, 62, 312, 8973, 737, 43358, 58, 15, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2938, 62, 3849, 2100, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 1391, 74, 25, 410, 1343, 264, 2419, 13, 25386, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 1391, 74, 25, 410, 1343, 264, 2419, 18, 13, 25386, 329, 479, 11, 410, 287, 15290, 62, 39745, 62, 3849, 2100, 13, 23814, 3419, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 6739, 51, 198, 220, 220, 220, 6818, 62, 14535, 62, 40496, 7, 8367, 11, 2938, 62, 8367, 828, 366, 44651, 15676, 1634, 357, 30586, 1988, 16725, 198, 220, 220, 220, 6818, 62, 14535, 62, 40496, 7, 3849, 2100, 11, 2938, 62, 3849, 2100, 828, 366, 44651, 15676, 1634, 357, 3849, 2100, 16725, 198, 220, 220, 220, 1303, 2198, 3585, 6108, 2450, 1988, 618, 262, 2811, 286, 4097, 270, 62, 12363, 1891, 14692, 260, 904, 8973, 318, 6632, 198, 220, 220, 220, 6632, 62, 260, 904, 62, 3903, 270, 62, 12363, 1891, 796, 2769, 30073, 7, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 8, 198, 220, 220, 220, 6632, 62, 260, 904, 62, 3903, 270, 62, 12363, 1891, 14692, 260, 904, 8973, 796, 45941, 13, 9107, 418, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 260, 904, 62, 3903, 270, 62, 12363, 1891, 14692, 260, 904, 1, 4083, 43358, 58, 15, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 22570, 62, 260, 904, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 11, 264, 2419, 18, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 1988, 11, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 2364, 62, 30586, 62, 395, 26748, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 18769, 26418, 62, 82, 12629, 28, 77, 62, 18769, 26418, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 25120, 62, 5219, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2938, 62, 8367, 796, 279, 67, 13, 6601, 19778, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 15290, 62, 30586, 62, 8367, 1343, 264, 2419, 13, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 15290, 62, 30586, 62, 8367, 1343, 264, 2419, 18, 13, 25386, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 14692, 395, 15655, 62, 30586, 62, 8367, 33116, 198, 220, 220, 220, 6739, 51, 198, 220, 220, 220, 2938, 62, 8367, 14692, 43762, 62, 395, 15655, 62, 30586, 62, 8367, 8973, 796, 45941, 13, 12647, 198, 220, 220, 220, 6818, 62, 14535, 62, 40496, 7, 8367, 11, 2938, 62, 8367, 828, 366, 44651, 15676, 1634, 357, 30586, 1988, 16725, 628, 198, 259, 12102, 62, 15414, 62, 1659, 62, 18206, 2288, 62, 26585, 62, 1659, 62, 395, 320, 2024, 796, 685, 198, 220, 220, 220, 5855, 21943, 1600, 657, 13, 18, 11, 11052, 12331, 11, 366, 4164, 1173, 1276, 307, 2035, 705, 43762, 12, 1453, 6, 393, 705, 325, 6, 12340, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 325, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 63, 2833, 62, 35310, 62, 30586, 62, 8367, 63, 1276, 307, 281, 4554, 286, 1279, 4871, 705, 22468, 6, 22330, 407, 1279, 4871, 705, 600, 44167, 33283, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 325, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 5994, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 63, 2833, 62, 35310, 62, 30586, 62, 8367, 63, 1276, 307, 281, 4554, 286, 1279, 4871, 705, 22468, 6, 22330, 407, 1279, 4871, 705, 2536, 44167, 33283, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 366, 43762, 12, 1453, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 11052, 12331, 11, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2833, 62, 35310, 62, 30586, 62, 8367, 1276, 307, 1729, 12, 22570, 618, 18663, 318, 3585, 12, 1453, 1600, 198, 220, 220, 220, 10612, 198, 60, 198, 198, 12102, 62, 15414, 62, 1659, 62, 18206, 2288, 62, 26585, 62, 1659, 62, 395, 320, 2024, 796, 685, 198, 220, 220, 220, 5855, 325, 1600, 657, 13, 15, 11, 366, 4164, 1173, 318, 384, 290, 2323, 62, 35310, 62, 30586, 62, 8367, 318, 657, 13, 15, 12340, 198, 220, 220, 220, 5855, 43762, 12, 1453, 1600, 352, 13, 15, 11, 366, 4164, 1173, 318, 3585, 12, 1453, 290, 2323, 62, 35310, 62, 30586, 62, 8367, 318, 352, 13, 15, 12340, 198, 60, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 62, 16, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 4164, 1173, 11, 2323, 62, 35310, 62, 30586, 62, 8367, 11, 11454, 11, 6764, 62, 17, 1600, 198, 220, 220, 220, 12515, 62, 15414, 62, 1659, 62, 18206, 2288, 62, 26585, 62, 1659, 62, 395, 320, 2024, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 62, 3500, 62, 259, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 62, 16, 25, 965, 11, 198, 220, 220, 220, 18663, 11, 198, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 11454, 11, 198, 220, 220, 220, 6764, 62, 17, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 13446, 62, 26585, 62, 1659, 62, 395, 320, 2024, 1262, 12515, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 72, 2419, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 8056, 11, 2872, 28, 69, 1, 90, 11213, 62, 17, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 2833, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 8636, 62, 3849, 12786, 2163, 318, 1444, 287, 35743, 62, 2364, 62, 30586, 62, 395, 26748, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 8056, 11, 2872, 28, 69, 1, 90, 11213, 62, 17, 92, 9, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 395, 320, 2024, 62, 785, 1845, 1653, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 2833, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 6764, 62, 16, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 17953, 62, 395, 320, 1352, 62, 15414, 82, 11, 198, 8, 198, 31, 9078, 9288, 13, 4102, 13, 17143, 316, 380, 2736, 7, 198, 220, 220, 220, 366, 4164, 1173, 11, 2323, 62, 35310, 62, 30586, 62, 8367, 11, 6764, 62, 17, 1600, 198, 220, 220, 220, 4938, 62, 15414, 62, 1659, 62, 18206, 2288, 62, 26585, 62, 1659, 62, 395, 320, 2024, 11, 198, 8, 198, 4299, 1332, 62, 28961, 62, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 62, 3500, 62, 12102, 62, 15414, 62, 7890, 7, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 9186, 62, 9150, 11, 198, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 62, 66, 28966, 11, 198, 220, 220, 220, 6764, 62, 16, 25, 965, 11, 198, 220, 220, 220, 18663, 11, 198, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 6764, 62, 17, 25, 965, 11, 198, 220, 220, 220, 18512, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 25, 10243, 270, 18332, 1891, 11, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 2882, 286, 13446, 62, 26585, 62, 1659, 62, 395, 320, 2024, 1262, 4938, 1366, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 18663, 6624, 366, 43762, 12, 1453, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 3585, 12, 1453, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 4164, 1173, 62, 3008, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 45941, 13, 8937, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 76, 735, 62, 30586, 62, 8367, 1343, 264, 2419, 13, 25386, 532, 2323, 62, 35310, 62, 30586, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 2323, 62, 35310, 62, 30586, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 45941, 13, 8937, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 76, 735, 62, 30586, 62, 8367, 1343, 264, 2419, 18, 13, 25386, 532, 2323, 62, 35310, 62, 30586, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1220, 2323, 62, 35310, 62, 30586, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 15284, 384, 198, 220, 220, 220, 220, 220, 220, 220, 5418, 62, 4164, 1173, 62, 3008, 62, 11600, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 1298, 357, 76, 735, 62, 30586, 62, 8367, 1343, 264, 2419, 13, 25386, 532, 2323, 62, 35310, 62, 30586, 62, 8367, 8, 12429, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 82, 2419, 18, 1298, 357, 76, 735, 62, 30586, 62, 8367, 1343, 264, 2419, 18, 13, 25386, 532, 2323, 62, 35310, 62, 30586, 62, 8367, 8, 12429, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 1303, 2198, 2854, 3959, 2024, 198, 220, 220, 220, 267, 431, 62, 796, 30621, 9362, 36727, 36, 2100, 2288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 12363, 1891, 28, 1837, 429, 6587, 62, 6649, 378, 62, 3903, 270, 62, 12363, 1891, 11, 267, 431, 62, 395, 320, 2024, 41888, 82, 2419, 11, 264, 2419, 18, 60, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 2854, 796, 267, 431, 44807, 49786, 62, 26585, 62, 1659, 62, 395, 320, 2024, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 2833, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 329, 479, 11, 410, 287, 2854, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 479, 287, 5418, 62, 4164, 1173, 62, 3008, 62, 11600, 11, 366, 44651, 1994, 286, 2854, 2882, 1, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 410, 6624, 5418, 62, 4164, 1173, 62, 3008, 62, 11600, 58, 74, 4357, 366, 44651, 1988, 286, 2854, 2882, 1, 198, 220, 220, 220, 2854, 62, 7568, 796, 267, 431, 44807, 16345, 3876, 1096, 62, 395, 320, 2024, 62, 785, 1845, 1653, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2323, 62, 35310, 62, 30586, 62, 8367, 28, 2833, 62, 35310, 62, 30586, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12660, 62, 30586, 62, 862, 7295, 28, 18206, 2288, 62, 30586, 62, 862, 7295, 11, 198, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 6818, 62, 14535, 62, 40496, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2854, 62, 7568, 11, 279, 67, 13, 6601, 19778, 7, 18206, 62, 4164, 1173, 62, 3008, 62, 11600, 11, 6376, 41888, 4164, 1173, 35944, 51, 198, 220, 220, 220, 10612, 366, 44651, 15676, 1634, 357, 26585, 16725, 198 ]
2.350366
10,666
import os, sys __file__ = os.path.normpath(os.path.abspath(__file__)) __path__ = os.path.dirname(__file__) __popup_path__ = os.path.join(__path__, 'popup') # print(__path__) if __path__ not in sys.path: sys.path.insert(0, __path__) if __popup_path__ not in sys.path: sys.path.insert(0, __popup_path__) from csharp_element import CSharpElement from csharp_reference import CSharpReference import popup.yaml_reference_popup import popup.yaml_gameobject_popup import popup.yaml_transform_popup import popup.csharp_reference_popup import popup.csharp_class_summary_popup import popup.csharp_method_summary_popup import popup.csharp_class_inherits_diagram_popup import popup.git_whatchanged_commit_popup import popup.git_summary_list_popup ## Popups ##
[ 11748, 28686, 11, 25064, 198, 198, 834, 7753, 834, 796, 28686, 13, 6978, 13, 27237, 6978, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 4008, 198, 834, 6978, 834, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 834, 12924, 929, 62, 6978, 834, 796, 28686, 13, 6978, 13, 22179, 7, 834, 6978, 834, 11, 705, 12924, 929, 11537, 198, 198, 2, 3601, 7, 834, 6978, 834, 8, 198, 198, 361, 11593, 6978, 834, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 15, 11, 11593, 6978, 834, 8, 198, 198, 361, 11593, 12924, 929, 62, 6978, 834, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 28463, 7, 15, 11, 11593, 12924, 929, 62, 6978, 834, 8, 198, 198, 6738, 269, 48554, 62, 30854, 1330, 327, 44336, 20180, 198, 6738, 269, 48554, 62, 35790, 1330, 327, 44336, 26687, 198, 198, 11748, 46207, 13, 88, 43695, 62, 35790, 62, 12924, 929, 198, 11748, 46207, 13, 88, 43695, 62, 6057, 15252, 62, 12924, 929, 198, 11748, 46207, 13, 88, 43695, 62, 35636, 62, 12924, 929, 198, 11748, 46207, 13, 66, 48554, 62, 35790, 62, 12924, 929, 198, 11748, 46207, 13, 66, 48554, 62, 4871, 62, 49736, 62, 12924, 929, 198, 11748, 46207, 13, 66, 48554, 62, 24396, 62, 49736, 62, 12924, 929, 198, 11748, 46207, 13, 66, 48554, 62, 4871, 62, 259, 372, 896, 62, 10989, 6713, 62, 12924, 929, 198, 11748, 46207, 13, 18300, 62, 1929, 963, 5102, 62, 41509, 62, 12924, 929, 198, 11748, 46207, 13, 18300, 62, 49736, 62, 4868, 62, 12924, 929, 628, 220, 220, 220, 22492, 8099, 4739, 22492, 198 ]
2.700704
284
# Mock apis needs to be commented before used within SAP Data Intelligence #from diadmin.dimockapi.mock_api import mock_api #api = mock_api(__file__) import os import json import requests import http.client from base64 import b64encode api.add_generator(gen)
[ 2, 44123, 2471, 271, 2476, 284, 307, 16476, 878, 973, 1626, 48323, 6060, 9345, 198, 2, 6738, 2566, 28482, 13, 27740, 735, 15042, 13, 76, 735, 62, 15042, 1330, 15290, 62, 15042, 198, 2, 15042, 796, 15290, 62, 15042, 7, 834, 7753, 834, 8, 198, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 2638, 13, 16366, 198, 6738, 2779, 2414, 1330, 275, 2414, 268, 8189, 628, 198, 15042, 13, 2860, 62, 8612, 1352, 7, 5235, 8 ]
3.303797
79
from tkinter import filedialog from bs4 import * import re from pprint import * import pprint import xlsxwriter from tkinter import * # from tkinter.filedialog import askopenfilename Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing filename = filedialog.askopenfilename() # show an "Open" dialog box and return the path to the selected file filename.replace("/", "\\\\") rawhtml = open(filename, encoding="utf-8").readlines() hhosts =allhosts() haha =foo(hhosts) # print(type(haha)) # print(haha) a, b =reformat(haha) # print(a) reformatforprint(a, b) print("Done! Next!")
[ 6738, 256, 74, 3849, 1330, 5717, 498, 519, 201, 198, 6738, 275, 82, 19, 1330, 1635, 201, 198, 11748, 302, 201, 198, 6738, 279, 4798, 1330, 1635, 201, 198, 11748, 279, 4798, 201, 198, 11748, 2124, 7278, 87, 16002, 201, 198, 6738, 256, 74, 3849, 1330, 1635, 201, 198, 2, 422, 256, 74, 3849, 13, 69, 3902, 498, 519, 1330, 1265, 9654, 34345, 201, 198, 201, 198, 201, 198, 51, 74, 22446, 4480, 19334, 3419, 1303, 356, 836, 470, 765, 257, 1336, 25757, 11, 523, 1394, 262, 6808, 4324, 422, 12655, 201, 198, 34345, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 3419, 1303, 905, 281, 366, 11505, 1, 17310, 3091, 290, 1441, 262, 3108, 284, 262, 6163, 2393, 201, 198, 201, 198, 201, 198, 34345, 13, 33491, 7203, 14, 1600, 366, 13426, 4943, 201, 198, 201, 198, 1831, 6494, 796, 1280, 7, 34345, 11, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21004, 2625, 40477, 12, 23, 11074, 961, 6615, 3419, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 71, 4774, 82, 796, 439, 4774, 82, 3419, 201, 198, 71, 12236, 796, 21943, 7, 71, 4774, 82, 8, 201, 198, 2, 3601, 7, 4906, 7, 71, 12236, 4008, 201, 198, 2, 3601, 7, 71, 12236, 8, 201, 198, 64, 11, 275, 796, 260, 18982, 7, 71, 12236, 8, 201, 198, 2, 3601, 7, 64, 8, 201, 198, 260, 18982, 1640, 4798, 7, 64, 11, 275, 8, 201, 198, 4798, 7203, 45677, 0, 7406, 2474, 8, 201, 198, 201, 198 ]
2.515038
266