content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import graphlab as gl from models import * path = "s3://gl-demo-usw2/predictive_service/demolab/ps-1.6" ps = gl.deploy.predictive_service.load(path) # Define dependencies state = {'details_filename': '../data/talks.json', 'speakers_filename': '../data/speakers.json', 'details_sf': '../data/talks.gl', 'speakers_sf': '../data/speakers.gl'} # Data carpentry details = parse_details(state['details_sf']) speakers_dict, speakers = parse_speakers(state['speakers_sf']) details = clean_timing(details) details, talks_per_speaker = join_speaker_data_into_details(details, speakers) details_dict, trimmed = create_details_dict(details) # Create nearest neighbor model and get nearest items nn_model, nearest = build_nn_model(details) # Deploy models as a predictive service upload_list_page(ps, trimmed) upload_speaker(ps, talks_per_speaker) upload_item_sim(ps, details, nn_model, nearest) ######################################################### # Ad hoc testing # Via Python client print ps.query('stratanow_item_sim', input={'item_ids': ['43169'], 'how_many':5}) # Via Curl # !curl -X POST -d '{"api_key": "b9b8dd75-a6d3-4903-b6a7-2dc691d060d8", "data":{"input": {"item_ids":["43750"], "how_many": 5}}}' stratanow-175425062.us-west-2.elb.amazonaws.com/data/item_sim
[ 11748, 4823, 23912, 355, 1278, 198, 6738, 4981, 220, 1330, 1635, 628, 198, 6978, 796, 366, 82, 18, 1378, 4743, 12, 9536, 78, 12, 385, 86, 17, 14, 79, 17407, 425, 62, 15271, 14, 9536, 349, 397, 14, 862, 12, 16, 13, 21, 1, 198, 862, 796, 1278, 13, 2934, 1420, 13, 79, 17407, 425, 62, 15271, 13, 2220, 7, 6978, 8, 198, 198, 2, 2896, 500, 20086, 198, 5219, 796, 1391, 6, 36604, 62, 34345, 10354, 705, 40720, 7890, 14, 83, 23833, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4125, 3979, 62, 34345, 10354, 705, 40720, 7890, 14, 4125, 3979, 13, 17752, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 36604, 62, 28202, 10354, 705, 40720, 7890, 14, 83, 23833, 13, 4743, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4125, 3979, 62, 28202, 10354, 705, 40720, 7890, 14, 4125, 3979, 13, 4743, 6, 92, 198, 198, 2, 6060, 39465, 13000, 198, 36604, 796, 21136, 62, 36604, 7, 5219, 17816, 36604, 62, 28202, 6, 12962, 198, 4125, 3979, 62, 11600, 11, 11636, 796, 21136, 62, 4125, 3979, 7, 5219, 17816, 4125, 3979, 62, 28202, 6, 12962, 198, 36604, 796, 3424, 62, 16514, 278, 7, 36604, 8, 198, 36604, 11, 6130, 62, 525, 62, 4125, 3110, 796, 4654, 62, 4125, 3110, 62, 7890, 62, 20424, 62, 36604, 7, 36604, 11, 11636, 8, 198, 36604, 62, 11600, 11, 40325, 796, 2251, 62, 36604, 62, 11600, 7, 36604, 8, 198, 198, 2, 13610, 16936, 4780, 2746, 290, 651, 16936, 3709, 198, 20471, 62, 19849, 11, 16936, 796, 1382, 62, 20471, 62, 19849, 7, 36604, 8, 198, 198, 2, 34706, 4981, 355, 257, 33344, 2139, 198, 25850, 62, 4868, 62, 7700, 7, 862, 11, 40325, 8, 198, 25850, 62, 4125, 3110, 7, 862, 11, 6130, 62, 525, 62, 4125, 3110, 8, 198, 25850, 62, 9186, 62, 14323, 7, 862, 11, 3307, 11, 299, 77, 62, 19849, 11, 16936, 8, 198, 198, 29113, 14468, 7804, 2, 198, 2, 1215, 39158, 4856, 198, 198, 2, 33356, 11361, 5456, 198, 4798, 26692, 13, 22766, 10786, 2536, 39036, 322, 62, 9186, 62, 14323, 3256, 5128, 34758, 6, 9186, 62, 2340, 10354, 37250, 3559, 22172, 6, 4357, 705, 4919, 62, 21834, 10354, 20, 30072, 198, 198, 2, 33356, 4424, 75, 198, 2, 5145, 66, 6371, 532, 55, 24582, 532, 67, 705, 4895, 15042, 62, 2539, 1298, 366, 65, 24, 65, 23, 1860, 2425, 12, 64, 21, 67, 18, 12, 2920, 3070, 12, 65, 21, 64, 22, 12, 17, 17896, 49541, 67, 41322, 67, 23, 1600, 366, 7890, 8351, 15414, 1298, 19779, 9186, 62, 2340, 26358, 43284, 1120, 33116, 366, 4919, 62, 21834, 1298, 642, 42535, 6, 25369, 272, 322, 12, 17430, 3682, 1120, 5237, 13, 385, 12, 7038, 12, 17, 13, 417, 65, 13, 33103, 8356, 13, 785, 14, 7890, 14, 9186, 62, 14323, 628, 198 ]
2.7125
480
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt import xlwt #!gdown --id 1bb2irg5nFZhoFkpjWPQHJPBBr8FiK8l7 dataRestoran = pd.read_excel('restoran.xlsx') print(dataRestoran) # akan menghasilkan nilai kelayakan yang lebih bervariasi titikPelayanan = [25, 37, 58, 65, 78, 89, 101] titikMakanan = [3, 5, 8, 11] grafikPelayanan() grafikMakanan() # print(fuzzificationPelayanan(dataRestoran)) # print(fuzzificationMakanan(dataRestoran)) dataFuzzyPelayanan = fuzzificationPelayanan(dataRestoran) dataFuzzyMakanan = fuzzificationMakanan(dataRestoran) # print(inference(dataFuzzyPelayanan, dataFuzzyMakanan)) arrx = [0, 30, 60, 99] arry = [0, 1, 1, 1] fig, ax = plt.subplots(nrows=1, figsize=(10, 4)) plt.xticks([30, 60, 99]) plt.yticks([0, 1]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xlabel("Nilai Kelayakan skala [0,100]") plt.ylabel("u") plt.margins(y=0.17) plt.title("FK singleton untuk Nilai Kelayakan") plt.bar(arrx, arry, color=['red', 'red', 'orange', 'green'], width=[ 0.4, 0.4, 0.4, 0.4], label="Runtime CycleSort") rects = ax.patches labels = ["", "rendah", "sedang", "tinggi"] for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2, height+0.0088, label, ha='center', va='bottom') plt.show() dataFuzzyRules = inference(dataFuzzyPelayanan, dataFuzzyMakanan) hasilDefuzz = defuzzyfication(dataFuzzyRules) dataRestoran["Result"] = hasilDefuzz hasilAkhir = dataRestoran.sort_values(by="Result", ascending=False)[:10] hasilAkhir print("\nHasil Akhir:\n", hasilAkhir) # Write Peringkat ke file xls. # peringkat = xlwt.Workbook() # ws = peringkat.add_sheet('Output') # ws.write(0, 0, 'Record id') # i = 1 # for j in hasilAkhir["id"]: # ws.write(i, 0, j) # i += 1 # peringkat.save('peringkat.xls')
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2124, 75, 46569, 198, 198, 2, 0, 70, 2902, 1377, 312, 352, 11848, 17, 343, 70, 20, 77, 37, 57, 8873, 37, 74, 79, 73, 25527, 48, 39, 12889, 33, 9414, 23, 10547, 42, 23, 75, 22, 198, 198, 7890, 19452, 31884, 796, 279, 67, 13, 961, 62, 1069, 5276, 10786, 2118, 31884, 13, 87, 7278, 87, 11537, 198, 4798, 7, 7890, 19452, 31884, 8, 198, 2, 257, 27541, 1450, 456, 292, 346, 27541, 18038, 1872, 885, 10724, 461, 272, 331, 648, 443, 65, 4449, 275, 712, 2743, 17053, 198, 83, 270, 1134, 47, 417, 22931, 272, 796, 685, 1495, 11, 5214, 11, 7618, 11, 6135, 11, 8699, 11, 9919, 11, 8949, 60, 198, 83, 270, 1134, 44, 461, 27870, 796, 685, 18, 11, 642, 11, 807, 11, 1367, 60, 628, 628, 628, 628, 198, 70, 32188, 1134, 47, 417, 22931, 272, 3419, 198, 70, 32188, 1134, 44, 461, 27870, 3419, 628, 628, 198, 2, 3601, 7, 69, 4715, 2649, 47, 417, 22931, 272, 7, 7890, 19452, 31884, 4008, 198, 2, 3601, 7, 69, 4715, 2649, 44, 461, 27870, 7, 7890, 19452, 31884, 4008, 628, 198, 198, 7890, 37, 4715, 88, 47, 417, 22931, 272, 796, 26080, 2649, 47, 417, 22931, 272, 7, 7890, 19452, 31884, 8, 198, 7890, 37, 4715, 88, 44, 461, 27870, 796, 26080, 2649, 44, 461, 27870, 7, 7890, 19452, 31884, 8, 198, 2, 3601, 7, 259, 4288, 7, 7890, 37, 4715, 88, 47, 417, 22931, 272, 11, 1366, 37, 4715, 88, 44, 461, 27870, 4008, 628, 198, 198, 3258, 87, 796, 685, 15, 11, 1542, 11, 3126, 11, 7388, 60, 198, 6532, 796, 685, 15, 11, 352, 11, 352, 11, 352, 60, 198, 5647, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 77, 8516, 28, 16, 11, 2336, 7857, 16193, 940, 11, 604, 4008, 198, 489, 83, 13, 742, 3378, 26933, 1270, 11, 3126, 11, 7388, 12962, 198, 489, 83, 13, 20760, 3378, 26933, 15, 11, 352, 12962, 198, 897, 13, 2777, 1127, 17816, 4852, 6, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 897, 13, 2777, 1127, 17816, 3506, 6, 4083, 2617, 62, 23504, 7, 25101, 8, 198, 489, 83, 13, 87, 18242, 7203, 45, 346, 1872, 15150, 323, 461, 272, 1341, 6081, 685, 15, 11, 3064, 60, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 84, 4943, 198, 489, 83, 13, 30887, 1040, 7, 88, 28, 15, 13, 1558, 8, 198, 198, 489, 83, 13, 7839, 7203, 26236, 2060, 1122, 1418, 2724, 29213, 1872, 15150, 323, 461, 272, 4943, 198, 489, 83, 13, 5657, 7, 3258, 87, 11, 610, 563, 11, 3124, 28, 17816, 445, 3256, 705, 445, 3256, 705, 43745, 3256, 705, 14809, 6, 4357, 9647, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 657, 13, 19, 11, 657, 13, 19, 11, 657, 13, 19, 11, 657, 13, 19, 4357, 6167, 2625, 41006, 26993, 42758, 4943, 198, 198, 2554, 82, 796, 7877, 13, 8071, 2052, 198, 23912, 1424, 796, 14631, 1600, 366, 10920, 993, 1600, 366, 36622, 648, 1600, 366, 889, 12397, 8973, 198, 1640, 13621, 11, 6167, 287, 19974, 7, 2554, 82, 11, 14722, 2599, 198, 220, 220, 220, 6001, 796, 13621, 13, 1136, 62, 17015, 3419, 198, 220, 220, 220, 7877, 13, 5239, 7, 2554, 13, 1136, 62, 87, 3419, 1343, 13621, 13, 1136, 62, 10394, 3419, 1220, 362, 11, 6001, 10, 15, 13, 405, 3459, 11, 6167, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 387, 11639, 16159, 3256, 46935, 11639, 22487, 11537, 198, 489, 83, 13, 12860, 3419, 198, 198, 7890, 37, 4715, 88, 37766, 796, 32278, 7, 7890, 37, 4715, 88, 47, 417, 22931, 272, 11, 1366, 37, 4715, 88, 44, 461, 27870, 8, 198, 10134, 346, 7469, 4715, 796, 825, 4715, 88, 69, 3299, 7, 7890, 37, 4715, 88, 37766, 8, 198, 7890, 19452, 31884, 14692, 23004, 8973, 796, 468, 346, 7469, 4715, 198, 198, 10134, 346, 32, 14636, 343, 796, 1366, 19452, 31884, 13, 30619, 62, 27160, 7, 1525, 2625, 23004, 1600, 41988, 28, 25101, 38381, 25, 940, 60, 198, 10134, 346, 32, 14636, 343, 198, 198, 4798, 7203, 59, 77, 19242, 346, 9084, 71, 343, 7479, 77, 1600, 468, 346, 32, 14636, 343, 8, 198, 198, 2, 19430, 350, 1586, 41826, 885, 2393, 2124, 7278, 13, 198, 198, 2, 583, 278, 41826, 796, 2124, 75, 46569, 13, 12468, 2070, 3419, 198, 2, 266, 82, 796, 583, 278, 41826, 13, 2860, 62, 21760, 10786, 26410, 11537, 198, 2, 266, 82, 13, 13564, 7, 15, 11, 657, 11, 705, 23739, 4686, 11537, 198, 2, 1312, 796, 352, 198, 2, 329, 474, 287, 468, 346, 32, 14636, 343, 14692, 312, 1, 5974, 198, 2, 220, 220, 220, 220, 266, 82, 13, 13564, 7, 72, 11, 657, 11, 474, 8, 198, 2, 220, 220, 220, 220, 1312, 15853, 352, 198, 2, 583, 278, 41826, 13, 21928, 10786, 21255, 41826, 13, 87, 7278, 11537, 198 ]
2.221311
854
# The MIT License (MIT) - Copyright (c) 2021 xesscorp """ Categorized collections of circuits. """ import sys import pint # Create a shortcut name for "circuitsascode". sys.modules["casc"] = sys.modules["circuitsascode"] # For electrical units like ohms, volts, etc. units = pint.UnitRegistry() if sys.version_info[:2] >= (3, 8): # TODO: Import directly (no need for conditional) when `python_requires = >= 3.8` from importlib.metadata import PackageNotFoundError, version # pragma: no cover else: from importlib_metadata import PackageNotFoundError, version # pragma: no cover try: # Change here if project is renamed and does not equal the package name dist_name = __name__ __version__ = version(dist_name) except PackageNotFoundError: # pragma: no cover __version__ = "unknown" finally: del version, PackageNotFoundError
[ 2, 383, 17168, 13789, 357, 36393, 8, 532, 15069, 357, 66, 8, 33448, 2124, 408, 10215, 79, 198, 198, 37811, 198, 34, 47467, 1143, 17268, 286, 24907, 13, 198, 37811, 198, 198, 11748, 25064, 198, 198, 11748, 35245, 198, 198, 2, 13610, 257, 29401, 1438, 329, 366, 21170, 15379, 3372, 1098, 1911, 198, 17597, 13, 18170, 14692, 66, 3372, 8973, 796, 25064, 13, 18170, 14692, 21170, 15379, 3372, 1098, 8973, 198, 198, 2, 1114, 12278, 4991, 588, 11752, 907, 11, 46297, 11, 3503, 13, 198, 41667, 796, 35245, 13, 26453, 8081, 4592, 3419, 198, 198, 361, 25064, 13, 9641, 62, 10951, 58, 25, 17, 60, 18189, 357, 18, 11, 807, 2599, 198, 220, 220, 220, 1303, 16926, 46, 25, 17267, 3264, 357, 3919, 761, 329, 26340, 8, 618, 4600, 29412, 62, 47911, 796, 18189, 513, 13, 23, 63, 198, 220, 220, 220, 422, 1330, 8019, 13, 38993, 1330, 15717, 3673, 21077, 12331, 11, 2196, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 17772, 25, 198, 220, 220, 220, 422, 1330, 8019, 62, 38993, 1330, 15717, 3673, 21077, 12331, 11, 2196, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 198, 28311, 25, 198, 220, 220, 220, 1303, 9794, 994, 611, 1628, 318, 25121, 290, 857, 407, 4961, 262, 5301, 1438, 198, 220, 220, 220, 1233, 62, 3672, 796, 11593, 3672, 834, 198, 220, 220, 220, 11593, 9641, 834, 796, 2196, 7, 17080, 62, 3672, 8, 198, 16341, 15717, 3673, 21077, 12331, 25, 220, 1303, 23864, 2611, 25, 645, 3002, 198, 220, 220, 220, 11593, 9641, 834, 796, 366, 34680, 1, 198, 69, 3289, 25, 198, 220, 220, 220, 1619, 2196, 11, 15717, 3673, 21077, 12331, 198 ]
3.149091
275
import pandas as pd import numpy as np import json import datetime import miasole_module_two as ps import pvlib.pvsystem as pvsyst #import shaded_miasole as ps import interconnection as connect import matplotlib.pyplot as plt def align_yaxis(ax1, v1, ax2, v2): """adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1""" _, y1 = ax1.transData.transform((0, v1)) _, y2 = ax2.transData.transform((0, v2)) inv = ax2.transData.inverted() _, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2)) miny, maxy = ax2.get_ylim() ax2.set_ylim(miny+dy, maxy+dy) #This function finds the MPP for the measured data using the lists of I and V of the object if __name__ == "__main__": module_lookup_table_path = 'C:\Users\walkerl\Documents\MA_Local\Electrical_simulation\lookup\MIA_lookup.pkl' lookup_table = pd.read_pickle(module_lookup_table_path) lookup_table = lookup_table.astype('object') number_of_subcells = 5 shading_string = 'completely shaded' #This variable does not change calculations but will app irradiation_path = 'C:\Users\walkerl\Documents\MA_Local\Versuche\Messungen_17_08_15\meas_irrad.xlsx' time = datetime.datetime(2017,8,15,11,40,16) temp_sensor_name = 'RTD3' ambient_temperature = get_temperature(irradiation_path, time, temp_sensor_name) if time.minute < 10: measurement_path = r'C:\Users\walkerl\Documents\MA_Local\Versuche\Messungen_17_08_15\15-08-2017 ' + \ str(time.hour)+ '_0' + str(time.minute) + '_' + str(time.second) measurement_data_path = measurement_path + '.XLS' shading_pattern_path = measurement_path + "_shading.json" elif time.second < 10: measurement_path = r'C:\Users\walkerl\Documents\MA_Local\Versuche\Messungen_17_08_15\15-08-2017 ' + \ str(time.hour) + '_' + str(time.minute) + '_0' + str(time.second) measurement_data_path = measurement_path + '.XLS' shading_pattern_path = measurement_path + "_shading.json" elif time.second < 10 and time.minute < 10: measurement_path = r'C:\Users\walkerl\Documents\MA_Local\Versuche\Messungen_17_08_15\15-08-2017 ' + \ str(time.hour) + '_0' + str(time.minute) + '_0' + str(time.second) measurement_data_path = measurement_path + '.XLS' shading_pattern_path = measurement_path + "_shading.json" else: measurement_path = r'C:\Users\walkerl\Documents\MA_Local\Versuche\Messungen_17_08_15\15-08-2017 ' + \ str(time.hour)+ '_' + str(time.minute) + '_' + str(time.second) measurement_data_path = measurement_path + '.XLS' shading_pattern_path = measurement_path + "_shading.json" shading_pattern1 = get_shading_pattern(shading_pattern_path) sensor_name1 = "Pyranometer 2 (W/m2)" # sensor_name1 = "DNI (W/m2)" database_path = r'C:\Users\walkerl\Documents\BIPV-planning-tool\BIPV-planning-tool\electrical_simulation\data\sam-library-cec-modules-2015-6-30.csv' module_df = pvsyst.retrieve_sam(path=database_path) irrad_value1 = get_irradiation_value(irradiation_path, time, sensor_name1) irrad1 = create_irradiation_list(irrad_value1, shading_pattern1, partially_shaded_irrad=None) irrad_on_sub_cells_ordered1 = rearrange_shading_pattern(irrad1,number_of_subcells) i_module_sim1, v_module_sim1, lookup_table = ps.partial_shading(irrad_on_sub_cells_ordered1, temperature=ambient_temperature, irrad_temp_lookup_df=lookup_table, module_df=module_df) i_module_meas, v_module_meas = get_measured_iv_curves_from_excel(measurement_data_path) mpp_measured = max(i_module_meas * v_module_meas) mpp_simulated = max(i_module_sim1 * v_module_sim1) print mpp_measured print mpp_simulated plt.plot(v_module_sim1, i_module_sim1, color='blue', linestyle='--') plt.plot(v_module_meas, i_module_meas, color='blue' ) ax = plt.gca() handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels=['simulated IV ' , 'measured IV'],loc='upper left') ax.set_title('Irradiation: ' + str(int(irrad_value1)) + ", T = " + str(ambient_temperature)+ u"\u00b0" + "C" + '\n Shaded cells: ' + shading_string) ax.set_ylabel('Current I [A]') ax.set_xlabel('Voltage V [V]') ax.set_ylim(0,4) ax.set_xlim(0,105) ax2 = ax.twinx() ax2.set_ylim(0, 50) ax2.set_xlim(0,40) ax2.set_ylabel("Power P [W]") ax2.plot(v_module_sim1, v_module_sim1 * i_module_sim1, color='green', label='PV simulated', linestyle='--') ax2.plot(v_module_meas, i_module_meas*v_module_meas, color='green', label='PV measured' ) handles, labels = ax2.get_legend_handles_labels() ax2.legend(handles, labels=['simulated PV ', 'measured PV']) align_yaxis(ax, 0, ax2, 0) # plt.savefig("F:\Validation_final\Plots_MIA\single_module/" + shading_string + str(int(irrad_value1)) + '.png') plt.show()
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 4818, 8079, 198, 11748, 285, 4448, 2305, 62, 21412, 62, 11545, 355, 26692, 198, 11748, 279, 85, 8019, 13, 79, 85, 10057, 355, 279, 85, 1837, 301, 198, 2, 11748, 427, 5286, 62, 76, 4448, 2305, 355, 26692, 198, 11748, 987, 38659, 355, 2018, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 198, 4299, 10548, 62, 88, 22704, 7, 897, 16, 11, 410, 16, 11, 7877, 17, 11, 410, 17, 2599, 198, 220, 220, 220, 37227, 23032, 7877, 17, 331, 32374, 523, 326, 410, 17, 287, 7877, 17, 318, 19874, 284, 410, 16, 287, 7877, 16, 37811, 198, 220, 220, 220, 4808, 11, 331, 16, 796, 7877, 16, 13, 7645, 6601, 13, 35636, 19510, 15, 11, 410, 16, 4008, 198, 220, 220, 220, 4808, 11, 331, 17, 796, 7877, 17, 13, 7645, 6601, 13, 35636, 19510, 15, 11, 410, 17, 4008, 198, 220, 220, 220, 800, 796, 7877, 17, 13, 7645, 6601, 13, 259, 13658, 3419, 198, 220, 220, 220, 4808, 11, 20268, 796, 800, 13, 35636, 19510, 15, 11, 657, 4008, 532, 800, 13, 35636, 19510, 15, 11, 331, 16, 12, 88, 17, 4008, 198, 220, 220, 220, 949, 88, 11, 3509, 88, 796, 7877, 17, 13, 1136, 62, 88, 2475, 3419, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 88, 2475, 7, 1084, 88, 10, 9892, 11, 3509, 88, 10, 9892, 8, 628, 628, 198, 198, 2, 1212, 2163, 7228, 262, 4904, 47, 329, 262, 8630, 1366, 1262, 262, 8341, 286, 314, 290, 569, 286, 262, 2134, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 628, 628, 220, 220, 220, 8265, 62, 5460, 929, 62, 11487, 62, 6978, 796, 705, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 19453, 8143, 62, 14323, 1741, 59, 5460, 929, 59, 44, 3539, 62, 5460, 929, 13, 79, 41582, 6, 198, 220, 220, 220, 35847, 62, 11487, 796, 279, 67, 13, 961, 62, 27729, 293, 7, 21412, 62, 5460, 929, 62, 11487, 62, 6978, 8, 198, 220, 220, 220, 35847, 62, 11487, 796, 35847, 62, 11487, 13, 459, 2981, 10786, 15252, 11537, 198, 220, 220, 220, 1271, 62, 1659, 62, 7266, 46342, 796, 642, 628, 220, 220, 220, 49065, 62, 8841, 796, 705, 46699, 427, 5286, 6, 220, 1303, 1212, 7885, 857, 407, 1487, 16765, 475, 481, 598, 198, 220, 220, 220, 47537, 3920, 62, 6978, 796, 705, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 34947, 1229, 258, 59, 36479, 2150, 268, 62, 1558, 62, 2919, 62, 1314, 59, 1326, 292, 62, 343, 6335, 13, 87, 7278, 87, 6, 198, 220, 220, 220, 640, 796, 4818, 8079, 13, 19608, 8079, 7, 5539, 11, 23, 11, 1314, 11, 1157, 11, 1821, 11, 1433, 8, 198, 220, 220, 220, 20218, 62, 82, 22854, 62, 3672, 796, 705, 14181, 35, 18, 6, 628, 220, 220, 220, 25237, 62, 11498, 21069, 796, 651, 62, 11498, 21069, 7, 343, 6335, 3920, 62, 6978, 11, 640, 11, 20218, 62, 82, 22854, 62, 3672, 8, 628, 198, 220, 220, 220, 611, 640, 13, 11374, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 6978, 796, 374, 6, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 34947, 1229, 258, 59, 36479, 2150, 268, 62, 1558, 62, 2919, 62, 1314, 59, 1314, 12, 2919, 12, 5539, 220, 705, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 2435, 13, 9769, 47762, 705, 62, 15, 6, 1343, 965, 7, 2435, 13, 11374, 8, 1343, 705, 62, 6, 1343, 965, 7, 2435, 13, 12227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 7890, 62, 6978, 796, 15558, 62, 6978, 1343, 45302, 55, 6561, 6, 198, 220, 220, 220, 220, 220, 220, 220, 49065, 62, 33279, 62, 6978, 796, 15558, 62, 6978, 1343, 45434, 1477, 4980, 13, 17752, 1, 198, 220, 220, 220, 1288, 361, 640, 13, 12227, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 6978, 796, 374, 6, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 34947, 1229, 258, 59, 36479, 2150, 268, 62, 1558, 62, 2919, 62, 1314, 59, 1314, 12, 2919, 12, 5539, 220, 705, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 2435, 13, 9769, 8, 1343, 705, 62, 6, 1343, 965, 7, 2435, 13, 11374, 8, 1343, 705, 62, 15, 6, 1343, 965, 7, 2435, 13, 12227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 7890, 62, 6978, 796, 15558, 62, 6978, 1343, 45302, 55, 6561, 6, 198, 220, 220, 220, 220, 220, 220, 220, 49065, 62, 33279, 62, 6978, 796, 15558, 62, 6978, 1343, 45434, 1477, 4980, 13, 17752, 1, 628, 220, 220, 220, 1288, 361, 640, 13, 12227, 1279, 838, 290, 640, 13, 11374, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 6978, 796, 374, 6, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 34947, 1229, 258, 59, 36479, 2150, 268, 62, 1558, 62, 2919, 62, 1314, 59, 1314, 12, 2919, 12, 5539, 220, 705, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 2435, 13, 9769, 8, 1343, 705, 62, 15, 6, 1343, 965, 7, 2435, 13, 11374, 8, 1343, 705, 62, 15, 6, 1343, 965, 7, 2435, 13, 12227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 7890, 62, 6978, 796, 15558, 62, 6978, 1343, 45302, 55, 6561, 6, 198, 220, 220, 220, 220, 220, 220, 220, 49065, 62, 33279, 62, 6978, 796, 15558, 62, 6978, 1343, 45434, 1477, 4980, 13, 17752, 1, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 6978, 796, 374, 6, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 5673, 62, 14565, 59, 34947, 1229, 258, 59, 36479, 2150, 268, 62, 1558, 62, 2919, 62, 1314, 59, 1314, 12, 2919, 12, 5539, 220, 705, 1343, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 7, 2435, 13, 9769, 47762, 705, 62, 6, 1343, 965, 7, 2435, 13, 11374, 8, 1343, 705, 62, 6, 1343, 965, 7, 2435, 13, 12227, 8, 198, 220, 220, 220, 220, 220, 220, 220, 15558, 62, 7890, 62, 6978, 796, 15558, 62, 6978, 1343, 45302, 55, 6561, 6, 198, 220, 220, 220, 220, 220, 220, 220, 49065, 62, 33279, 62, 6978, 796, 15558, 62, 6978, 1343, 45434, 1477, 4980, 13, 17752, 1, 628, 198, 220, 220, 220, 49065, 62, 33279, 16, 796, 651, 62, 1477, 4980, 62, 33279, 7, 1477, 4980, 62, 33279, 62, 6978, 8, 628, 220, 220, 220, 12694, 62, 3672, 16, 796, 366, 47, 2417, 272, 15635, 362, 357, 54, 14, 76, 17, 16725, 198, 220, 220, 220, 1303, 12694, 62, 3672, 16, 796, 366, 35, 22125, 357, 54, 14, 76, 17, 16725, 198, 220, 220, 220, 6831, 62, 6978, 796, 374, 6, 34, 7479, 14490, 59, 20783, 75, 59, 38354, 59, 47772, 53, 12, 11578, 768, 12, 25981, 59, 47772, 53, 12, 11578, 768, 12, 25981, 59, 9509, 8143, 62, 14323, 1741, 59, 7890, 59, 37687, 12, 32016, 12, 344, 66, 12, 18170, 12, 4626, 12, 21, 12, 1270, 13, 40664, 6, 198, 220, 220, 220, 8265, 62, 7568, 796, 279, 85, 1837, 301, 13, 1186, 30227, 62, 37687, 7, 6978, 28, 48806, 62, 6978, 8, 628, 220, 220, 220, 47537, 62, 8367, 16, 796, 651, 62, 343, 6335, 3920, 62, 8367, 7, 343, 6335, 3920, 62, 6978, 11, 640, 11, 12694, 62, 3672, 16, 8, 198, 220, 220, 220, 47537, 16, 796, 2251, 62, 343, 6335, 3920, 62, 4868, 7, 343, 6335, 62, 8367, 16, 11, 49065, 62, 33279, 16, 11, 12387, 62, 1477, 5286, 62, 343, 6335, 28, 14202, 8, 198, 220, 220, 220, 47537, 62, 261, 62, 7266, 62, 46342, 62, 24071, 16, 796, 220, 37825, 858, 62, 1477, 4980, 62, 33279, 7, 343, 6335, 16, 11, 17618, 62, 1659, 62, 7266, 46342, 8, 198, 220, 220, 220, 1312, 62, 21412, 62, 14323, 16, 11, 410, 62, 21412, 62, 14323, 16, 11, 35847, 62, 11487, 796, 26692, 13, 47172, 62, 1477, 4980, 7, 343, 6335, 62, 261, 62, 7266, 62, 46342, 62, 24071, 16, 11, 5951, 28, 4131, 1153, 62, 11498, 21069, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47537, 62, 29510, 62, 5460, 929, 62, 7568, 28, 5460, 929, 62, 11487, 11, 8265, 62, 7568, 28, 21412, 62, 7568, 8, 628, 198, 220, 220, 220, 1312, 62, 21412, 62, 1326, 292, 11, 410, 62, 21412, 62, 1326, 292, 796, 651, 62, 1326, 34006, 62, 452, 62, 22019, 1158, 62, 6738, 62, 1069, 5276, 7, 1326, 5015, 434, 62, 7890, 62, 6978, 8, 628, 220, 220, 220, 285, 381, 62, 1326, 34006, 796, 3509, 7, 72, 62, 21412, 62, 1326, 292, 1635, 410, 62, 21412, 62, 1326, 292, 8, 198, 220, 220, 220, 285, 381, 62, 14323, 4817, 796, 3509, 7, 72, 62, 21412, 62, 14323, 16, 1635, 410, 62, 21412, 62, 14323, 16, 8, 628, 220, 220, 220, 3601, 285, 381, 62, 1326, 34006, 198, 220, 220, 220, 3601, 285, 381, 62, 14323, 4817, 628, 220, 220, 220, 458, 83, 13, 29487, 7, 85, 62, 21412, 62, 14323, 16, 11, 1312, 62, 21412, 62, 14323, 16, 11, 3124, 11639, 17585, 3256, 9493, 10992, 11639, 438, 11537, 198, 220, 220, 220, 458, 83, 13, 29487, 7, 85, 62, 21412, 62, 1326, 292, 11, 1312, 62, 21412, 62, 1326, 292, 11, 3124, 11639, 17585, 6, 1267, 198, 220, 220, 220, 7877, 796, 458, 83, 13, 70, 6888, 3419, 198, 220, 220, 220, 17105, 11, 14722, 796, 7877, 13, 1136, 62, 1455, 437, 62, 4993, 829, 62, 23912, 1424, 3419, 198, 220, 220, 220, 7877, 13, 1455, 437, 7, 4993, 829, 11, 14722, 28, 17816, 14323, 4817, 8363, 705, 837, 705, 1326, 34006, 8363, 6, 4357, 17946, 11639, 45828, 1364, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 7839, 10786, 23820, 6335, 3920, 25, 705, 1343, 965, 7, 600, 7, 343, 6335, 62, 8367, 16, 4008, 1343, 33172, 309, 796, 366, 1343, 965, 7, 4131, 1153, 62, 11498, 21069, 47762, 334, 1, 59, 84, 405, 65, 15, 1, 1343, 366, 34, 1, 1343, 705, 59, 77, 911, 5286, 4778, 25, 705, 1343, 49065, 62, 8841, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 10786, 11297, 314, 685, 32, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 10786, 53, 5978, 496, 569, 685, 53, 60, 11537, 198, 220, 220, 220, 7877, 13, 2617, 62, 88, 2475, 7, 15, 11, 19, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 2475, 7, 15, 11, 13348, 8, 198, 220, 220, 220, 7877, 17, 796, 7877, 13, 4246, 28413, 3419, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 88, 2475, 7, 15, 11, 2026, 8, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 87, 2475, 7, 15, 11, 1821, 8, 198, 220, 220, 220, 7877, 17, 13, 2617, 62, 2645, 9608, 7203, 13434, 350, 685, 54, 60, 4943, 198, 220, 220, 220, 7877, 17, 13, 29487, 7, 85, 62, 21412, 62, 14323, 16, 11, 410, 62, 21412, 62, 14323, 16, 1635, 1312, 62, 21412, 62, 14323, 16, 11, 3124, 11639, 14809, 3256, 6167, 11639, 47, 53, 28590, 3256, 9493, 10992, 11639, 438, 11537, 198, 220, 220, 220, 7877, 17, 13, 29487, 7, 85, 62, 21412, 62, 1326, 292, 11, 1312, 62, 21412, 62, 1326, 292, 9, 85, 62, 21412, 62, 1326, 292, 11, 3124, 11639, 14809, 3256, 6167, 11639, 47, 53, 8630, 6, 1267, 198, 220, 220, 220, 17105, 11, 14722, 796, 7877, 17, 13, 1136, 62, 1455, 437, 62, 4993, 829, 62, 23912, 1424, 3419, 198, 220, 220, 220, 7877, 17, 13, 1455, 437, 7, 4993, 829, 11, 14722, 28, 17816, 14323, 4817, 31392, 46083, 705, 1326, 34006, 31392, 6, 12962, 198, 220, 220, 220, 10548, 62, 88, 22704, 7, 897, 11, 657, 11, 7877, 17, 11, 657, 8, 628, 220, 220, 220, 1303, 458, 83, 13, 21928, 5647, 7203, 37, 7479, 7762, 24765, 62, 20311, 59, 3646, 1747, 62, 44, 3539, 59, 29762, 62, 21412, 30487, 1343, 49065, 62, 8841, 1343, 965, 7, 600, 7, 343, 6335, 62, 8367, 16, 4008, 1343, 45302, 11134, 11537, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 628, 628 ]
2.278859
2,209
"""PyZMQ and 0MQ version functions.""" # Copyright (C) PyZMQ Developers # Distributed under the terms of the Modified BSD License. from zmq.backend import zmq_version_info VERSION_MAJOR = 16 VERSION_MINOR = 0 VERSION_PATCH = 4 VERSION_EXTRA = "" __version__ = '%i.%i.%i' % (VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH) if VERSION_EXTRA: __version__ = "%s.%s" % (__version__, VERSION_EXTRA) version_info = (VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, float('inf')) else: version_info = (VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH) __revision__ = '' def pyzmq_version(): """return the version of pyzmq as a string""" if __revision__: return '@'.join([__version__,__revision__[:6]]) else: return __version__ def pyzmq_version_info(): """return the pyzmq version as a tuple of at least three numbers If pyzmq is a development version, `inf` will be appended after the third integer. """ return version_info def zmq_version(): """return the version of libzmq as a string""" return "%i.%i.%i" % zmq_version_info() __all__ = ['zmq_version', 'zmq_version_info', 'pyzmq_version','pyzmq_version_info', '__version__', '__revision__' ]
[ 37811, 20519, 57, 49215, 290, 657, 49215, 2196, 5499, 526, 15931, 198, 198, 2, 15069, 357, 34, 8, 9485, 57, 49215, 34152, 198, 2, 4307, 6169, 739, 262, 2846, 286, 262, 40499, 347, 10305, 13789, 13, 628, 198, 6738, 1976, 76, 80, 13, 1891, 437, 1330, 1976, 76, 80, 62, 9641, 62, 10951, 628, 198, 43717, 62, 5673, 41, 1581, 796, 1467, 198, 43717, 62, 23678, 1581, 796, 657, 198, 43717, 62, 47, 11417, 796, 604, 198, 43717, 62, 13918, 3861, 796, 13538, 198, 834, 9641, 834, 796, 705, 4, 72, 13, 4, 72, 13, 4, 72, 6, 4064, 357, 43717, 62, 5673, 41, 1581, 11, 44156, 2849, 62, 23678, 1581, 11, 44156, 2849, 62, 47, 11417, 8, 198, 198, 361, 44156, 2849, 62, 13918, 3861, 25, 198, 220, 220, 220, 11593, 9641, 834, 796, 36521, 82, 13, 4, 82, 1, 4064, 357, 834, 9641, 834, 11, 44156, 2849, 62, 13918, 3861, 8, 198, 220, 220, 220, 2196, 62, 10951, 796, 357, 43717, 62, 5673, 41, 1581, 11, 44156, 2849, 62, 23678, 1581, 11, 44156, 2849, 62, 47, 11417, 11, 12178, 10786, 10745, 6, 4008, 198, 17772, 25, 198, 220, 220, 220, 2196, 62, 10951, 796, 357, 43717, 62, 5673, 41, 1581, 11, 44156, 2849, 62, 23678, 1581, 11, 44156, 2849, 62, 47, 11417, 8, 198, 198, 834, 260, 10178, 834, 796, 10148, 198, 198, 4299, 12972, 89, 76, 80, 62, 9641, 33529, 198, 220, 220, 220, 37227, 7783, 262, 2196, 286, 12972, 89, 76, 80, 355, 257, 4731, 37811, 198, 220, 220, 220, 611, 11593, 260, 10178, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 31, 4458, 22179, 26933, 834, 9641, 834, 11, 834, 260, 10178, 834, 58, 25, 21, 11907, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11593, 9641, 834, 198, 198, 4299, 12972, 89, 76, 80, 62, 9641, 62, 10951, 33529, 198, 220, 220, 220, 37227, 7783, 262, 12972, 89, 76, 80, 2196, 355, 257, 46545, 286, 379, 1551, 1115, 3146, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1002, 12972, 89, 76, 80, 318, 257, 2478, 2196, 11, 4600, 10745, 63, 481, 307, 598, 1631, 706, 262, 2368, 18253, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 2196, 62, 10951, 628, 198, 4299, 1976, 76, 80, 62, 9641, 33529, 198, 220, 220, 220, 37227, 7783, 262, 2196, 286, 9195, 89, 76, 80, 355, 257, 4731, 37811, 198, 220, 220, 220, 1441, 36521, 72, 13, 4, 72, 13, 4, 72, 1, 4064, 1976, 76, 80, 62, 9641, 62, 10951, 3419, 628, 198, 834, 439, 834, 796, 37250, 89, 76, 80, 62, 9641, 3256, 705, 89, 76, 80, 62, 9641, 62, 10951, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9078, 89, 76, 80, 62, 9641, 41707, 9078, 89, 76, 80, 62, 9641, 62, 10951, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 834, 9641, 834, 3256, 705, 834, 260, 10178, 834, 6, 198, 60, 628 ]
2.437624
505
import json import os from tqdm import tqdm def parse_book(book_data: dict) -> dict: """Parse book core data.""" info = {} for param in ['isbn', 'title', 'onsale', 'price', 'language', 'pages', 'publisher']: info[param] = book_data.get(param) info['cover'] = f'https://images.randomhouse.com/cover/{info["isbn"]}' info['format_family'] = book_data.get('formatFamily') info['projected_minutes'] = book_data.get('projectedMinutes') info['series_number'] = book_data.get('seriesNumber') return info def parse_authors(authors_data: list) -> list: """Extract information about contributors.""" authors = [] for author in authors_data: authors.append({ 'author_id': author.get('authorId'), 'first_name': author.get('first'), 'last_name': author.get('last'), 'company': author.get('company'), 'client_source_id': author.get('clientSourceId'), 'role': author.get('contribRoleCode') }) return authors def parse_categories(category_data: list) -> list: """Extract information about categories. Since we downloaded data about categories separately, keep here only category_id and the sequence. """ categories = [] for cat in category_data: # Read PRH docs about sequencing if cat.get('seq', 0) > 0: categories.append({ 'category_id': cat.get('catId'), 'seq': cat.get('seq') }) return categories def parse_series(series_data: list) -> list: """Extract information about series.""" series = [] for item in series_data: series.append({ 'series_id': item.get('seriesCode'), 'name': item.get('seriesName'), 'description': item.get('description'), 'series_count': item.get('seriesCount'), 'is_numbered': item.get('isNumbered'), 'is_kids': item.get('isKids') }) return series def parse_works(works_data: list) -> list: """Extract information about works.""" works = [] for work in works_data: works.append({ 'work_id': work.get('workId'), 'title': work.get('title'), 'author': work.get('author'), 'onsale': work.get('onsale'), 'language': work.get('language'), 'series_number': work.get('seriesNumber') }) return works def parse_content(content_data: dict) -> dict: """Extract long text data.""" content = {} for param in ['flapcopy', 'excerpt']: content[param] = content_data.get(param) return content if __name__ == '__main__': # Paths path_raw_books = os.path.join('..', 'data_raw', 'books.txt') path_parsed_books = os.path.join('..', 'data_interm', 'books.txt') # Parse the file line by line with open(path_raw_books, 'r') as books_raw: with open(path_parsed_books, 'w') as books_parsed: for book in tqdm(books_raw): book_data = json.loads(book) # Get core book data info = parse_book(book_data['titles'][0]) # Parse relative info embeds = {} for embed in book_data['_embeds']: embeds.update(embed) info['authors'] = parse_authors(embeds['authors']) info['categories'] = parse_categories(embeds['categories']) info['series'] = parse_series(embeds['series']) info['works'] = parse_works(embeds['works']) info.update(parse_content(embeds['content'])) # Save data_string = json.dumps(info) books_parsed.write(data_string) books_parsed.write('\n')
[ 11748, 33918, 198, 11748, 28686, 198, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 628, 198, 4299, 21136, 62, 2070, 7, 2070, 62, 7890, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 10044, 325, 1492, 4755, 1366, 526, 15931, 198, 220, 220, 220, 7508, 796, 23884, 198, 220, 220, 220, 329, 5772, 287, 37250, 271, 9374, 3256, 705, 7839, 3256, 705, 684, 1000, 3256, 705, 20888, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16129, 3256, 705, 31126, 3256, 705, 12984, 8191, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 58, 17143, 60, 796, 1492, 62, 7890, 13, 1136, 7, 17143, 8, 198, 220, 220, 220, 7508, 17816, 9631, 20520, 796, 277, 6, 5450, 1378, 17566, 13, 25120, 4803, 13, 785, 14, 9631, 14, 90, 10951, 14692, 271, 9374, 8973, 92, 6, 198, 220, 220, 220, 7508, 17816, 18982, 62, 17989, 20520, 796, 1492, 62, 7890, 13, 1136, 10786, 18982, 24094, 11537, 198, 220, 220, 220, 7508, 17816, 16302, 276, 62, 1084, 1769, 20520, 796, 1492, 62, 7890, 13, 1136, 10786, 16302, 276, 9452, 1769, 11537, 198, 220, 220, 220, 7508, 17816, 25076, 62, 17618, 20520, 796, 1492, 62, 7890, 13, 1136, 10786, 25076, 15057, 11537, 198, 220, 220, 220, 1441, 7508, 628, 198, 4299, 21136, 62, 41617, 7, 41617, 62, 7890, 25, 1351, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 11627, 974, 1321, 546, 20420, 526, 15931, 198, 220, 220, 220, 7035, 796, 17635, 198, 220, 220, 220, 329, 1772, 287, 7035, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7035, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9800, 62, 312, 10354, 1772, 13, 1136, 10786, 9800, 7390, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11085, 62, 3672, 10354, 1772, 13, 1136, 10786, 11085, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12957, 62, 3672, 10354, 1772, 13, 1136, 10786, 12957, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39722, 10354, 1772, 13, 1136, 10786, 39722, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16366, 62, 10459, 62, 312, 10354, 1772, 13, 1136, 10786, 16366, 7416, 7390, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18090, 10354, 1772, 13, 1136, 10786, 3642, 822, 47445, 10669, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 7035, 628, 198, 4299, 21136, 62, 66, 26129, 7, 22872, 62, 7890, 25, 1351, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 11627, 974, 1321, 546, 9376, 13, 628, 220, 220, 220, 4619, 356, 15680, 1366, 546, 9376, 13869, 11, 198, 220, 220, 220, 1394, 994, 691, 6536, 62, 312, 290, 262, 8379, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9376, 796, 17635, 198, 220, 220, 220, 329, 3797, 287, 6536, 62, 7890, 25, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4149, 4810, 39, 34165, 546, 32841, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3797, 13, 1136, 10786, 41068, 3256, 657, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9376, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22872, 62, 312, 10354, 3797, 13, 1136, 10786, 9246, 7390, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41068, 10354, 3797, 13, 1136, 10786, 41068, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 9376, 628, 198, 4299, 21136, 62, 25076, 7, 25076, 62, 7890, 25, 1351, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 11627, 974, 1321, 546, 2168, 526, 15931, 198, 220, 220, 220, 2168, 796, 17635, 198, 220, 220, 220, 329, 2378, 287, 2168, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 312, 10354, 2378, 13, 1136, 10786, 25076, 10669, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 10354, 2378, 13, 1136, 10786, 25076, 5376, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11213, 10354, 2378, 13, 1136, 10786, 11213, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 9127, 10354, 2378, 13, 1136, 10786, 25076, 12332, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 35565, 10354, 2378, 13, 1136, 10786, 271, 45, 26584, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 271, 62, 45235, 10354, 2378, 13, 1136, 10786, 271, 40229, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 2168, 628, 198, 4299, 21136, 62, 5225, 7, 5225, 62, 7890, 25, 1351, 8, 4613, 1351, 25, 198, 220, 220, 220, 37227, 11627, 974, 1321, 546, 2499, 526, 15931, 198, 220, 220, 220, 2499, 796, 17635, 198, 220, 220, 220, 329, 670, 287, 2499, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2499, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1818, 62, 312, 10354, 670, 13, 1136, 10786, 1818, 7390, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 670, 13, 1136, 10786, 7839, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9800, 10354, 670, 13, 1136, 10786, 9800, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 684, 1000, 10354, 670, 13, 1136, 10786, 684, 1000, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 16129, 10354, 670, 13, 1136, 10786, 16129, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25076, 62, 17618, 10354, 670, 13, 1136, 10786, 25076, 15057, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 2499, 628, 198, 4299, 21136, 62, 11299, 7, 11299, 62, 7890, 25, 8633, 8, 4613, 8633, 25, 198, 220, 220, 220, 37227, 11627, 974, 890, 2420, 1366, 526, 15931, 198, 220, 220, 220, 2695, 796, 23884, 198, 220, 220, 220, 329, 5772, 287, 37250, 2704, 499, 30073, 3256, 705, 1069, 17040, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 58, 17143, 60, 796, 2695, 62, 7890, 13, 1136, 7, 17143, 8, 198, 220, 220, 220, 1441, 2695, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 628, 220, 220, 220, 1303, 10644, 82, 198, 220, 220, 220, 3108, 62, 1831, 62, 12106, 796, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 7890, 62, 1831, 3256, 705, 12106, 13, 14116, 11537, 198, 220, 220, 220, 3108, 62, 79, 945, 276, 62, 12106, 796, 28686, 13, 6978, 13, 22179, 10786, 492, 3256, 705, 7890, 62, 3849, 76, 3256, 705, 12106, 13, 14116, 11537, 628, 220, 220, 220, 1303, 2547, 325, 262, 2393, 1627, 416, 1627, 198, 220, 220, 220, 351, 1280, 7, 6978, 62, 1831, 62, 12106, 11, 705, 81, 11537, 355, 3835, 62, 1831, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 6978, 62, 79, 945, 276, 62, 12106, 11, 705, 86, 11537, 355, 3835, 62, 79, 945, 276, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1492, 287, 256, 80, 36020, 7, 12106, 62, 1831, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1492, 62, 7890, 796, 33918, 13, 46030, 7, 2070, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 4755, 1492, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 21136, 62, 2070, 7, 2070, 62, 7890, 17816, 83, 30540, 6, 7131, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2547, 325, 3585, 7508, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 82, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11525, 287, 1492, 62, 7890, 17816, 62, 20521, 82, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11525, 82, 13, 19119, 7, 20521, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 17816, 41617, 20520, 796, 21136, 62, 41617, 7, 20521, 82, 17816, 41617, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 17816, 66, 26129, 20520, 796, 21136, 62, 66, 26129, 7, 20521, 82, 17816, 66, 26129, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 17816, 25076, 20520, 796, 21136, 62, 25076, 7, 20521, 82, 17816, 25076, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 17816, 5225, 20520, 796, 21136, 62, 5225, 7, 20521, 82, 17816, 5225, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 13, 19119, 7, 29572, 62, 11299, 7, 20521, 82, 17816, 11299, 20520, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12793, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 8841, 796, 33918, 13, 67, 8142, 7, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3835, 62, 79, 945, 276, 13, 13564, 7, 7890, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3835, 62, 79, 945, 276, 13, 13564, 10786, 59, 77, 11537, 198 ]
2.221837
1,731
#!/usr/bin/python3 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parses metadata from a .proto file Parses metadata from a .proto file including various options and a list of top level messages and enums declared within the proto file. """ import itertools import re import string class ProtoMetadata: """Parses a proto file to extract options and other metadata.""" multiple_files = False package = '' java_package = '' java_api_version = 2 java_alt_api_package = '' outer_class = '' optimize_for = 'SPEED'
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 47, 945, 274, 20150, 422, 257, 764, 1676, 1462, 2393, 198, 198, 47, 945, 274, 20150, 422, 257, 764, 1676, 1462, 2393, 1390, 2972, 3689, 290, 257, 1351, 286, 1353, 198, 5715, 6218, 290, 551, 5700, 6875, 1626, 262, 44876, 2393, 13, 198, 37811, 628, 198, 11748, 340, 861, 10141, 198, 11748, 302, 198, 11748, 4731, 628, 198, 198, 4871, 45783, 9171, 14706, 25, 198, 220, 37227, 47, 945, 274, 257, 44876, 2393, 284, 7925, 3689, 290, 584, 20150, 526, 15931, 628, 220, 3294, 62, 16624, 796, 10352, 198, 220, 5301, 796, 10148, 198, 220, 20129, 62, 26495, 796, 10148, 198, 220, 20129, 62, 15042, 62, 9641, 796, 362, 198, 220, 20129, 62, 2501, 62, 15042, 62, 26495, 796, 10148, 198, 220, 12076, 62, 4871, 796, 10148, 198, 220, 27183, 62, 1640, 796, 705, 4303, 41841, 6, 628, 628, 628 ]
3.584775
289
import operator import pytest from nettlesome.terms import ContextRegister, DuplicateTermError from nettlesome.terms import Explanation, TermSequence, means from nettlesome.entities import Entity from nettlesome.groups import FactorGroup from nettlesome.predicates import Predicate from nettlesome.quantities import Comparison, Q_ from authorityspoke.facts import Fact, build_fact
[ 11748, 10088, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 2010, 83, 829, 462, 13, 38707, 1330, 30532, 38804, 11, 49821, 5344, 40596, 12331, 198, 6738, 2010, 83, 829, 462, 13, 38707, 1330, 50125, 341, 11, 35118, 44015, 594, 11, 1724, 198, 6738, 2010, 83, 829, 462, 13, 298, 871, 1330, 20885, 198, 6738, 2010, 83, 829, 462, 13, 24432, 1330, 27929, 13247, 198, 6738, 2010, 83, 829, 462, 13, 28764, 16856, 1330, 14322, 5344, 198, 6738, 2010, 83, 829, 462, 13, 40972, 871, 1330, 34420, 11, 1195, 62, 198, 198, 6738, 4934, 2777, 2088, 13, 37473, 1330, 19020, 11, 1382, 62, 22584, 628, 628, 628, 198 ]
3.64486
107
import _ast import inspect import re import sys import traceback from . import closure_analyzer from .code_emitter import CodeEmitter DEBUG_CHECKS = True BINOP_MAP = { _ast.Add:"__add__", _ast.Sub:"__sub__", _ast.Mult:"__mul__", _ast.BitOr:"__or__", _ast.BitXor:"__xor__", _ast.BitAnd:'__and__', _ast.LShift:'__lshift__', _ast.RShift:'__rshift__', _ast.Mod:'__mod__', _ast.Div:'__div__', _ast.Pow:'__pow__', } COMPARE_MAP = { _ast.Lt:"__lt__", _ast.Gt:"__gt__", _ast.LtE:"__le__", _ast.GtE:"__ge__", _ast.Eq:"__eq__", _ast.NotEq:"__ne__", _ast.In:"__contains__", } COMPARE_REFLECTIONS = { _ast.Lt:_ast.Gt, _ast.Gt:_ast.Lt, _ast.LtE:_ast.GtE, _ast.GtE:_ast.LtE, _ast.Eq:_ast.Eq, _ast.NotEq:_ast.NotEq, } # The same thing as an AttributeError, but for the compiled code rather than the compiler code # The same thing as an TypeError, but for the compiled code rather than the compiler code # AN error that you tried to instantiate an object that has no first-class representation (such as a polymorphic function, or module) class AttributeAccessType(object): """ An enum of the possible ways that an object attribute will be generated. """ # A member variable of the object, that has a persistent memory location FIELD = "field" # A field that the object has implicitly, and is generated on access (such as __class__) IMPLICIT_FIELD = "implicit_field" # A class-level method of the object that doesn't change, which is instantiated into an instancemethod on access CONST_METHOD = "attr_const_method" # convert everything to IEEE754 format to make sure we don't lose any precision in serialization _cached_templates = {} _cached_ctemplates = {} Variable._ok_code = list(func.func_code for name, func in inspect.getmembers(Variable, inspect.ismethod)) # All types default to raised types Slice = singleton(SliceMT) Slice.initialized = ("attrs", "write") StrConstant = singleton(StrConstantMT) StrConstant.initialized = ("attrs", "write") None_ = singleton(NoneMT) None_.initialized = ("attrs", "write") Len = singleton(LenMT) StrFunc = singleton(StrFuncMT) ReprFunc = singleton(ReprFuncMT) Nref = singleton(NrefMT) TypeFunc = singleton(TypeFuncMT) BoolFunc = singleton(BoolFuncMT) Isinstance = singleton(IsinstanceMT) Cast = singleton(CastMT) StrFormat = singleton(StrFormatMT) MapFunc = singleton(MapFuncMT) ReduceFunc = singleton(ReduceFuncMT) Enumerate = singleton(EnumerateMT) MinFunc = MinFuncMT("min") MaxFunc = MinFuncMT("max") ListFunc = Parametric1ArgCtorFuncMT(ListMT.make_list, "append") SetFunc = Parametric1ArgCtorFuncMT(SetMT.make_set, "add") DequeFunc = Parametric1ArgCtorFuncMT(DequeMT.make_deque, "append") DictFunc = singleton(DictFuncMT) ObjectClass = ClassMT(None, "object", "object") Object = ObjectClass._instance IntClass = ClassMT(ObjectClass, "int", "int", llvm_type="i64") Int = IntClass._instance FloatClass = ClassMT(ObjectClass, "float", "float", llvm_type="double") Float = FloatClass._instance StrClass = ClassMT(ObjectClass, "str", "str", llvm_type="%string*") Str = StrClass._instance BoolClass = ClassMT(ObjectClass, "bool", "bool", "i1") Bool = BoolClass._instance TypeClass = ClassMT(ObjectClass, "type", "type") Type = TypeClass._instance FileClass = ClassMT(ObjectClass, "file", "file") File = FileClass._instance # TODO there is a lot of duplication between this and stuff like closures class PtrMT(MT): """ An MT to represent the type of a stored pointer to an object. They should only exist as a compiler implementation detail. """ Underlying = singleton(_UnderlyingMT) _made_supertypes = {} # Some type classes for stdlib stuff: STDLIB_TYPES = [] _IntIterator, _IntIterable = _make_iterable(Int) _FloatIterator, _FloatIterable = _make_iterable(Float) _Boolable = BoxedMT([_FakeMT({ "__class__": (Type, AttributeAccessType.IMPLICIT_FIELD), "__incref__": (CallableMT.make_callable([], 0, None_), AttributeAccessType.CONST_METHOD), "__decref__": (CallableMT.make_callable([], 0, None_), AttributeAccessType.CONST_METHOD), "__nonzero__": (CallableMT.make_callable([], 0, Bool), AttributeAccessType.CONST_METHOD), })]) STDLIB_TYPES.append(_Boolable) _BoolableIterator, _BoolableIterable = _make_iterable(_Boolable) BUILTINS = { "True":Variable(Bool, 1, 1, False), "False":Variable(Bool, 0, 1, False), "len":Variable(Len, (), 1, False), "str":Variable(StrClass, (), 1, False), "repr":Variable(ReprFunc, (), 1, False), "type":Variable(TypeClass, (), 1, False), "map":Variable(MapFunc, (), 1, False), "reduce":Variable(ReduceFunc, (), 1, False), "nrefs":Variable(Nref, (), 1, False), "bool":Variable(BoolClass, (), 1, False), "list":Variable(ListFunc, (), 1, False), "dict":Variable(DictFunc, (), 1, False), "set":Variable(SetFunc, (), 1, False), "isinstance":Variable(Isinstance, (), 1, False), "__cast__":Variable(Cast, (), 1, False), "enumerate":Variable(Enumerate, (), 1, False), "chr":Variable(UnboxedFunctionMT(None, None, [Int], Str), ("@chr", [], None), 1, False), "ord":Variable(UnboxedFunctionMT(None, None, [Str], Int), ("@ord", [], None), 1, False), # "open":Variable(UnboxedFunctionMT(None, None, [Str], File), ("@file_open", [], None), 1, True), "open":Variable(UnboxedFunctionMT(None, None, [Str, Str], File, ndefaults=1), ("@file_open2", [Variable(Str, "@.str_r", 1, True)], None), 1, False), "int":Variable(IntClass, (), 1, False), "min":PolymorphicFunctionMT.make([ Variable(UnboxedFunctionMT(None, None, [Int, Int], Int), ("@int_min", [], None), 1, False), Variable(UnboxedFunctionMT(None, None, [Float, Float], Float), ("@float_min", [], None), 1, False), Variable(MinFunc, (), 1, False), ]), "max":PolymorphicFunctionMT.make([ Variable(UnboxedFunctionMT(None, None, [Int, Int], Int), ("@int_max", [], None), 1, False), Variable(UnboxedFunctionMT(None, None, [Float, Float], Float), ("@float_max", [], None), 1, False), Variable(MaxFunc, (), 1, False), ]), "float":Variable(FloatClass, (), 1, False), "file":Variable(FileClass, (), 1, False), "abs":PolymorphicFunctionMT.make([ Variable(UnboxedFunctionMT(None, None, [Int], Int), ("@int_abs", [], None), 1, False), Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@float_abs", [], None), 1, False)]), "None":Variable(None_, "null", 1, False), "object":Variable(ObjectClass, (), 1, False), "sum":PolymorphicFunctionMT.make([ Variable(UnboxedFunctionMT(None, None, [_IntIterable], Int), ("@sum_int", [], None), 1, False), Variable(UnboxedFunctionMT(None, None, [_FloatIterable], Float), ("@sum_float", [], None), 1, False), ]), "any":Variable(UnboxedFunctionMT(None, None, [_BoolableIterable], Bool), ("@any", [], None), 1, False), } BUILTIN_MODULES = { "time":Variable(ModuleMT({ 'time':Variable(UnboxedFunctionMT(None, None, [], Float), ("@time_time", [], None), 1, False), 'clock':Variable(UnboxedFunctionMT(None, None, [], Float), ("@time_clock", [], None), 1, False), 'sleep':Variable(UnboxedFunctionMT(None, None, [Float], None_), ("@time_sleep", [], None), 1, False), }), 1, 1, False), "sys":Variable(ModuleMT({ 'stdin':Variable(File, "@sys_stdin", 1, False), 'stdout':Variable(File, "@sys_stdout", 1, False), 'stderr':Variable(File, "@sys_stderr", 1, False), }), 1, 1, False), "math":Variable(ModuleMT({ 'sqrt':Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@sqrt", [], None), 1, False), 'tan':Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@tan", [], None), 1, False), 'sin':Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@sin", [], None), 1, False), 'cos':Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@cos", [], None), 1, False), 'ceil':Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@ceil", [], None), 1, False), 'pi':Variable(Float, format_float(3.141592653589793), 1, False), }), 1, 1, False), "collections":Variable(ModuleMT({ 'deque':Variable(DequeFunc, (), 1, False), }), 1, 1, False), # Interopability library: "hax":Variable(ModuleMT({ "ftoi":Variable(UnboxedFunctionMT(None, None, [Float], Int), ("@hax_ftoi", [], None), 1, False), "itof":Variable(UnboxedFunctionMT(None, None, [Int], Float), ("@hax_itof", [], None), 1, False), "min":Variable(UnboxedFunctionMT(None, None, [Int, Int], Int), ("@int_min", [], None), 1, False), "max":Variable(UnboxedFunctionMT(None, None, [Int, Int], Int), ("@int_max", [], None), 1, False), "fmin":Variable(UnboxedFunctionMT(None, None, [Float, Float], Float), ("@float_min", [], None), 1, False), "abs":Variable(UnboxedFunctionMT(None, None, [Float], Float), ("@float_abs", [], None), 1, False), "initvideo":Variable(UnboxedFunctionMT(None, None, [Int, Int], None_), ("@hax_initvideo", [], None), 1, False), "plot":Variable(UnboxedFunctionMT(None, None, [Int, Int, Int, Int, Int], None_), ("@hax_plot", [], None), 1, False), }), 1, 1, False), } SliceMT.setup_class_methods() NoneMT.setup_class_methods() setup_int() setup_float() setup_string() setup_bool() setup_type() setup_file()
[ 11748, 4808, 459, 198, 11748, 10104, 198, 11748, 302, 198, 11748, 25064, 198, 11748, 12854, 1891, 198, 198, 6738, 764, 1330, 16512, 62, 38200, 9107, 198, 6738, 764, 8189, 62, 368, 1967, 1330, 6127, 10161, 1967, 198, 198, 30531, 62, 50084, 50, 796, 6407, 198, 198, 33, 1268, 3185, 62, 33767, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 4550, 11097, 834, 2860, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 7004, 11097, 834, 7266, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 15205, 11097, 834, 76, 377, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 13128, 5574, 11097, 834, 273, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 13128, 55, 273, 11097, 834, 87, 273, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 13128, 1870, 32105, 834, 392, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 43, 33377, 32105, 834, 75, 30846, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 49, 33377, 32105, 834, 81, 30846, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 5841, 32105, 834, 4666, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 24095, 32105, 834, 7146, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 47, 322, 32105, 834, 79, 322, 834, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 9858, 47, 12203, 62, 33767, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 49578, 11097, 834, 2528, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 38, 83, 11097, 834, 13655, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 49578, 36, 11097, 834, 293, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 38, 83, 36, 11097, 834, 469, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 36, 80, 11097, 834, 27363, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 3673, 36, 80, 11097, 834, 710, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 818, 11097, 834, 3642, 1299, 834, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 9858, 47, 12203, 62, 31688, 16779, 11053, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 49578, 25, 62, 459, 13, 38, 83, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 38, 83, 25, 62, 459, 13, 49578, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 49578, 36, 25, 62, 459, 13, 38, 83, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 38, 83, 36, 25, 62, 459, 13, 49578, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 36, 80, 25, 62, 459, 13, 36, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 459, 13, 3673, 36, 80, 25, 62, 459, 13, 3673, 36, 80, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 2, 383, 976, 1517, 355, 281, 3460, 4163, 12331, 11, 475, 329, 262, 14102, 2438, 2138, 621, 262, 17050, 2438, 198, 198, 2, 383, 976, 1517, 355, 281, 5994, 12331, 11, 475, 329, 262, 14102, 2438, 2138, 621, 262, 17050, 2438, 198, 198, 2, 3537, 4049, 326, 345, 3088, 284, 9113, 9386, 281, 2134, 326, 468, 645, 717, 12, 4871, 10552, 357, 10508, 355, 257, 34196, 291, 2163, 11, 393, 8265, 8, 198, 198, 4871, 3460, 4163, 15457, 6030, 7, 15252, 2599, 198, 220, 220, 220, 37227, 1052, 33829, 286, 262, 1744, 2842, 326, 281, 2134, 11688, 481, 198, 220, 220, 220, 307, 7560, 13, 37227, 628, 220, 220, 220, 1303, 317, 2888, 7885, 286, 262, 2134, 11, 326, 468, 257, 16218, 4088, 4067, 198, 220, 220, 220, 18930, 24639, 796, 366, 3245, 1, 628, 220, 220, 220, 1303, 317, 2214, 326, 262, 2134, 468, 31821, 11, 290, 318, 7560, 319, 1895, 357, 10508, 355, 11593, 4871, 834, 8, 198, 220, 220, 220, 8959, 31484, 2043, 62, 44603, 796, 366, 23928, 3628, 62, 3245, 1, 628, 220, 220, 220, 1303, 317, 1398, 12, 5715, 2446, 286, 262, 2134, 326, 1595, 470, 1487, 11, 543, 318, 9113, 12931, 656, 281, 4554, 24396, 319, 1895, 198, 220, 220, 220, 7102, 2257, 62, 49273, 796, 366, 35226, 62, 9979, 62, 24396, 1, 198, 198, 2, 10385, 2279, 284, 40552, 41874, 5794, 284, 787, 1654, 356, 836, 470, 4425, 597, 15440, 287, 11389, 1634, 198, 198, 62, 66, 2317, 62, 11498, 17041, 796, 23884, 198, 198, 62, 66, 2317, 62, 310, 368, 17041, 796, 23884, 198, 198, 43015, 13557, 482, 62, 8189, 796, 1351, 7, 20786, 13, 20786, 62, 8189, 329, 1438, 11, 25439, 287, 10104, 13, 1136, 30814, 7, 43015, 11, 10104, 13, 1042, 316, 2065, 4008, 628, 220, 220, 220, 1303, 1439, 3858, 4277, 284, 4376, 3858, 198, 11122, 501, 796, 2060, 1122, 7, 11122, 501, 13752, 8, 198, 11122, 501, 13, 17532, 796, 5855, 1078, 3808, 1600, 366, 13564, 4943, 198, 13290, 3103, 18797, 796, 2060, 1122, 7, 13290, 3103, 18797, 13752, 8, 198, 13290, 3103, 18797, 13, 17532, 796, 5855, 1078, 3808, 1600, 366, 13564, 4943, 198, 14202, 62, 796, 2060, 1122, 7, 14202, 13752, 8, 198, 14202, 44807, 17532, 796, 5855, 1078, 3808, 1600, 366, 13564, 4943, 198, 30659, 796, 2060, 1122, 7, 30659, 13752, 8, 198, 13290, 37, 19524, 796, 2060, 1122, 7, 13290, 37, 19524, 13752, 8, 198, 6207, 81, 37, 19524, 796, 2060, 1122, 7, 6207, 81, 37, 19524, 13752, 8, 198, 45, 5420, 796, 2060, 1122, 7, 45, 5420, 13752, 8, 198, 6030, 37, 19524, 796, 2060, 1122, 7, 6030, 37, 19524, 13752, 8, 198, 33, 970, 37, 19524, 796, 2060, 1122, 7, 33, 970, 37, 19524, 13752, 8, 198, 3792, 39098, 796, 2060, 1122, 7, 3792, 39098, 13752, 8, 198, 19248, 796, 2060, 1122, 7, 19248, 13752, 8, 198, 198, 13290, 26227, 796, 2060, 1122, 7, 13290, 26227, 13752, 8, 198, 198, 13912, 37, 19524, 796, 2060, 1122, 7, 13912, 37, 19524, 13752, 8, 198, 198, 7738, 7234, 37, 19524, 796, 2060, 1122, 7, 7738, 7234, 37, 19524, 13752, 8, 198, 4834, 6975, 378, 796, 2060, 1122, 7, 4834, 6975, 378, 13752, 8, 198, 9452, 37, 19524, 796, 1855, 37, 19524, 13752, 7203, 1084, 4943, 198, 11518, 37, 19524, 796, 1855, 37, 19524, 13752, 7203, 9806, 4943, 198, 198, 8053, 37, 19524, 796, 25139, 19482, 16, 28100, 34, 13165, 37, 19524, 13752, 7, 8053, 13752, 13, 15883, 62, 4868, 11, 366, 33295, 4943, 198, 7248, 37, 19524, 796, 25139, 19482, 16, 28100, 34, 13165, 37, 19524, 13752, 7, 7248, 13752, 13, 15883, 62, 2617, 11, 366, 2860, 4943, 198, 5005, 4188, 37, 19524, 796, 25139, 19482, 16, 28100, 34, 13165, 37, 19524, 13752, 7, 5005, 4188, 13752, 13, 15883, 62, 2934, 4188, 11, 366, 33295, 4943, 198, 35, 713, 37, 19524, 796, 2060, 1122, 7, 35, 713, 37, 19524, 13752, 8, 198, 198, 10267, 9487, 796, 5016, 13752, 7, 14202, 11, 366, 15252, 1600, 366, 15252, 4943, 198, 10267, 796, 9515, 9487, 13557, 39098, 198, 5317, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 600, 1600, 366, 600, 1600, 32660, 14761, 62, 4906, 2625, 72, 2414, 4943, 198, 5317, 796, 2558, 9487, 13557, 39098, 198, 43879, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 22468, 1600, 366, 22468, 1600, 32660, 14761, 62, 4906, 2625, 23352, 4943, 198, 43879, 796, 48436, 9487, 13557, 39098, 198, 13290, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 2536, 1600, 366, 2536, 1600, 32660, 14761, 62, 4906, 2625, 4, 8841, 9, 4943, 198, 13290, 796, 4285, 9487, 13557, 39098, 198, 33, 970, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 30388, 1600, 366, 30388, 1600, 366, 72, 16, 4943, 198, 33, 970, 796, 347, 970, 9487, 13557, 39098, 198, 6030, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 4906, 1600, 366, 4906, 4943, 198, 6030, 796, 5994, 9487, 13557, 39098, 198, 8979, 9487, 796, 5016, 13752, 7, 10267, 9487, 11, 366, 7753, 1600, 366, 7753, 4943, 198, 8979, 796, 9220, 9487, 13557, 39098, 198, 198, 2, 16926, 46, 612, 318, 257, 1256, 286, 50124, 1022, 428, 290, 3404, 588, 32149, 198, 198, 4871, 350, 2213, 13752, 7, 13752, 2599, 198, 220, 220, 220, 37227, 1052, 19308, 284, 2380, 262, 2099, 286, 257, 8574, 17562, 284, 281, 2134, 13, 220, 1119, 815, 691, 2152, 355, 257, 17050, 7822, 3703, 13, 37227, 198, 9203, 3157, 796, 2060, 1122, 28264, 9203, 3157, 13752, 8, 198, 198, 62, 9727, 62, 2385, 9287, 12272, 796, 23884, 198, 198, 2, 2773, 2099, 6097, 329, 14367, 8019, 3404, 25, 198, 2257, 19260, 9865, 62, 9936, 47, 1546, 796, 17635, 198, 198, 62, 5317, 37787, 11, 4808, 5317, 29993, 540, 796, 4808, 15883, 62, 2676, 540, 7, 5317, 8, 198, 62, 43879, 37787, 11, 4808, 43879, 29993, 540, 796, 4808, 15883, 62, 2676, 540, 7, 43879, 8, 198, 198, 62, 33, 970, 540, 796, 8315, 276, 13752, 26933, 62, 49233, 13752, 15090, 198, 220, 220, 220, 366, 834, 4871, 834, 1298, 357, 6030, 11, 3460, 4163, 15457, 6030, 13, 3955, 31484, 2043, 62, 44603, 828, 198, 220, 220, 220, 366, 834, 1939, 5420, 834, 1298, 357, 14134, 540, 13752, 13, 15883, 62, 13345, 540, 26933, 4357, 657, 11, 6045, 62, 828, 3460, 4163, 15457, 6030, 13, 10943, 2257, 62, 49273, 828, 198, 220, 220, 220, 366, 834, 12501, 5420, 834, 1298, 357, 14134, 540, 13752, 13, 15883, 62, 13345, 540, 26933, 4357, 657, 11, 6045, 62, 828, 3460, 4163, 15457, 6030, 13, 10943, 2257, 62, 49273, 828, 198, 220, 220, 220, 366, 834, 13159, 22570, 834, 1298, 357, 14134, 540, 13752, 13, 15883, 62, 13345, 540, 26933, 4357, 657, 11, 347, 970, 828, 3460, 4163, 15457, 6030, 13, 10943, 2257, 62, 49273, 828, 198, 220, 220, 220, 32092, 12962, 198, 2257, 19260, 9865, 62, 9936, 47, 1546, 13, 33295, 28264, 33, 970, 540, 8, 198, 62, 33, 970, 540, 37787, 11, 4808, 33, 970, 540, 29993, 540, 796, 4808, 15883, 62, 2676, 540, 28264, 33, 970, 540, 8, 628, 198, 19499, 4146, 51, 20913, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17821, 1298, 43015, 7, 33, 970, 11, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 25101, 1298, 43015, 7, 33, 970, 11, 657, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11925, 1298, 43015, 7, 30659, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2536, 1298, 43015, 7, 13290, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 260, 1050, 1298, 43015, 7, 6207, 81, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4906, 1298, 43015, 7, 6030, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8899, 1298, 43015, 7, 13912, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 445, 7234, 1298, 43015, 7, 7738, 7234, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 77, 5420, 82, 1298, 43015, 7, 45, 5420, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 30388, 1298, 43015, 7, 33, 970, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4868, 1298, 43015, 7, 8053, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11600, 1298, 43015, 7, 35, 713, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2617, 1298, 43015, 7, 7248, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 271, 39098, 1298, 43015, 7, 3792, 39098, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 834, 2701, 834, 1298, 43015, 7, 19248, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 268, 6975, 378, 1298, 43015, 7, 4834, 6975, 378, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 354, 81, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 4357, 4285, 828, 5855, 31, 354, 81, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 585, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 13290, 4357, 2558, 828, 5855, 31, 585, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 366, 9654, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 13290, 4357, 9220, 828, 5855, 31, 7753, 62, 9654, 1600, 685, 4357, 6045, 828, 352, 11, 6407, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9654, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 13290, 11, 4285, 4357, 9220, 11, 299, 12286, 82, 28, 16, 828, 5855, 31, 7753, 62, 9654, 17, 1600, 685, 43015, 7, 13290, 11, 44212, 13, 2536, 62, 81, 1600, 352, 11, 6407, 8, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 600, 1298, 43015, 7, 5317, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 1298, 34220, 24503, 291, 22203, 13752, 13, 15883, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 4357, 2558, 828, 5855, 31, 600, 62, 1084, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 11, 48436, 4357, 48436, 828, 5855, 31, 22468, 62, 1084, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 9452, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 1298, 34220, 24503, 291, 22203, 13752, 13, 15883, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 4357, 2558, 828, 5855, 31, 600, 62, 9806, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 11, 48436, 4357, 48436, 828, 5855, 31, 22468, 62, 9806, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 11518, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 22468, 1298, 43015, 7, 43879, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7753, 1298, 43015, 7, 8979, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8937, 1298, 34220, 24503, 291, 22203, 13752, 13, 15883, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 4357, 2558, 828, 5855, 31, 600, 62, 8937, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 22468, 62, 8937, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 15437, 828, 628, 220, 220, 220, 220, 220, 220, 220, 366, 14202, 1298, 43015, 7, 14202, 62, 11, 366, 8423, 1600, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15252, 1298, 43015, 7, 10267, 9487, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 16345, 1298, 34220, 24503, 291, 22203, 13752, 13, 15883, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 62, 5317, 29993, 540, 4357, 2558, 828, 5855, 31, 16345, 62, 600, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 35748, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 62, 43879, 29993, 540, 4357, 48436, 828, 5855, 31, 16345, 62, 22468, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1092, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 62, 33, 970, 540, 29993, 540, 4357, 347, 970, 828, 5855, 31, 1092, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 19499, 4146, 51, 1268, 62, 33365, 6239, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 1298, 43015, 7, 26796, 13752, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2435, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 4357, 48436, 828, 5855, 31, 2435, 62, 2435, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15750, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 4357, 48436, 828, 5855, 31, 2435, 62, 15750, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 42832, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 6045, 62, 828, 5855, 31, 2435, 62, 42832, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 828, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 17597, 1298, 43015, 7, 26796, 13752, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19282, 259, 10354, 43015, 7, 8979, 11, 44212, 17597, 62, 19282, 259, 1600, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 19282, 448, 10354, 43015, 7, 8979, 11, 44212, 17597, 62, 19282, 448, 1600, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 301, 1082, 81, 10354, 43015, 7, 8979, 11, 44212, 17597, 62, 301, 1082, 81, 1600, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 828, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11018, 1298, 43015, 7, 26796, 13752, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31166, 17034, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 31166, 17034, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 38006, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 38006, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31369, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 31369, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6966, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 6966, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 344, 346, 10354, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 344, 346, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14415, 10354, 43015, 7, 43879, 11, 5794, 62, 22468, 7, 18, 13, 1415, 19707, 22980, 2327, 4531, 44750, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 828, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 366, 4033, 26448, 1298, 43015, 7, 26796, 13752, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2934, 4188, 10354, 43015, 7, 5005, 4188, 37, 19524, 11, 29994, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 828, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4225, 404, 1799, 5888, 25, 198, 220, 220, 220, 220, 220, 220, 220, 366, 71, 897, 1298, 43015, 7, 26796, 13752, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 701, 23013, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 2558, 828, 5855, 31, 71, 897, 62, 701, 23013, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 270, 1659, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 4357, 48436, 828, 5855, 31, 71, 897, 62, 270, 1659, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1084, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 4357, 2558, 828, 5855, 31, 600, 62, 1084, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9806, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 4357, 2558, 828, 5855, 31, 600, 62, 9806, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 69, 1084, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 11, 48436, 4357, 48436, 828, 5855, 31, 22468, 62, 1084, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8937, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 43879, 4357, 48436, 828, 5855, 31, 22468, 62, 8937, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15003, 15588, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 4357, 6045, 62, 828, 5855, 31, 71, 897, 62, 15003, 15588, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29487, 1298, 43015, 7, 3118, 3524, 276, 22203, 13752, 7, 14202, 11, 6045, 11, 685, 5317, 11, 2558, 11, 2558, 11, 2558, 11, 2558, 4357, 6045, 62, 828, 5855, 31, 71, 897, 62, 29487, 1600, 685, 4357, 6045, 828, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 828, 352, 11, 352, 11, 10352, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 198, 11122, 501, 13752, 13, 40406, 62, 4871, 62, 24396, 82, 3419, 198, 14202, 13752, 13, 40406, 62, 4871, 62, 24396, 82, 3419, 198, 40406, 62, 600, 3419, 198, 40406, 62, 22468, 3419, 198, 40406, 62, 8841, 3419, 198, 40406, 62, 30388, 3419, 198, 40406, 62, 4906, 3419, 198, 40406, 62, 7753, 3419, 198 ]
2.386863
4,141
import uuid from sqlalchemy import Column, ForeignKey, String from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import relationship from .base import Base from .mixins import DateFieldsMixins
[ 11748, 334, 27112, 198, 198, 6738, 44161, 282, 26599, 1330, 29201, 11, 8708, 9218, 11, 10903, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 13, 7353, 34239, 13976, 1330, 471, 27586, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 2776, 198, 198, 6738, 764, 8692, 1330, 7308, 198, 6738, 764, 19816, 1040, 1330, 7536, 15878, 82, 35608, 1040, 628 ]
3.55
60
# Copyright (c) 2017 The Khronos Group Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Imports # import os from ...io.com.gltf2_io_debug import * # # Globals # # # Functions # def get_material_requires_texcoords(glTF, index): """ Query function, if a material "needs" texture coordinates. This is the case, if a texture is present and used. """ if glTF.get('materials') is None: return False materials = glTF['materials'] if index < 0 or index >= len(materials): return False material = materials[index] # General if material.get('emissiveTexture') is not None: return True if material.get('normalTexture') is not None: return True if material.get('occlusionTexture') is not None: return True # Metallic roughness if material.get('baseColorTexture') is not None: return True if material.get('metallicRoughnessTexture') is not None: return True # Specular glossiness if material.get('diffuseTexture') is not None: return True if material.get('specularGlossinessTexture') is not None: return True # Unlit Material if material.get('baseColorTexture') is not None: return True if material.get('diffuseTexture') is not None: return True # Displacement if material.get('displacementTexture') is not None: return True return False def get_material_requires_normals(glTF, index): """ Query function, if a material "needs" normals. This is the case, if a texture is present and used. At point of writing, same function as for texture coordinates. """ return get_material_requires_texcoords(glTF, index) def get_material_index(glTF, name): """ Return the material index in the glTF array. """ if name is None: return -1 if glTF.get('materials') is None: return -1 index = 0 for material in glTF['materials']: if material['name'] == name: return index index += 1 return -1 def get_mesh_index(glTF, name): """ Return the mesh index in the glTF array. """ if glTF.get('meshes') is None: return -1 index = 0 for mesh in glTF['meshes']: if mesh['name'] == name: return index index += 1 return -1 def get_skin_index(glTF, name, index_offset): """ Return the skin index in the glTF array. """ if glTF.get('skins') is None: return -1 skeleton = get_node_index(glTF, name) index = 0 for skin in glTF['skins']: if skin['skeleton'] == skeleton: return index + index_offset index += 1 return -1 def get_camera_index(glTF, name): """ Return the camera index in the glTF array. """ if glTF.get('cameras') is None: return -1 index = 0 for camera in glTF['cameras']: if camera['name'] == name: return index index += 1 return -1 def get_light_index(glTF, name): """ Return the light index in the glTF array. """ if glTF.get('extensions') is None: return -1 extensions = glTF['extensions'] if extensions.get('KHR_lights_punctual') is None: return -1 khr_lights_punctual = extensions['KHR_lights_punctual'] if khr_lights_punctual.get('lights') is None: return -1 lights = khr_lights_punctual['lights'] index = 0 for light in lights: if light['name'] == name: return index index += 1 return -1 def get_node_index(glTF, name): """ Return the node index in the glTF array. """ if glTF.get('nodes') is None: return -1 index = 0 for node in glTF['nodes']: if node['name'] == name: return index index += 1 return -1 def get_scene_index(glTF, name): """ Return the scene index in the glTF array. """ if glTF.get('scenes') is None: return -1 index = 0 for scene in glTF['scenes']: if scene['name'] == name: return index index += 1 return -1 def get_texture_index(glTF, filename): """ Return the texture index in the glTF array by a given filepath. """ if glTF.get('textures') is None: return -1 image_index = get_image_index(glTF, filename) if image_index == -1: return -1 for texture_index, texture in enumerate(glTF['textures']): if image_index == texture['source']: return texture_index return -1 def get_image_index(glTF, filename): """ Return the image index in the glTF array. """ if glTF.get('images') is None: return -1 image_name = get_image_name(filename) for index, current_image in enumerate(glTF['images']): if image_name == current_image['name']: return index return -1 def get_image_name(filename): """ Return user-facing, extension-agnostic name for image. """ return os.path.splitext(filename)[0] def get_scalar(default_value, init_value = 0.0): """ Return scalar with a given default/fallback value. """ return_value = init_value if default_value is None: return return_value return_value = default_value return return_value def get_vec2(default_value, init_value = [0.0, 0.0]): """ Return vec2 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 2: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 2: return return_value return return_value def get_vec3(default_value, init_value = [0.0, 0.0, 0.0]): """ Return vec3 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 3: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 3: return return_value return return_value def get_vec4(default_value, init_value = [0.0, 0.0, 0.0, 1.0]): """ Return vec4 with a given default/fallback value. """ return_value = init_value if default_value is None or len(default_value) < 4: return return_value index = 0 for number in default_value: return_value[index] = number index += 1 if index == 4: return return_value return return_value def get_index(elements, name): """ Return index of a glTF element by a given name. """ if elements is None or name is None: return -1 index = 0 for element in elements: if element.get('name') is None: return -1 if element['name'] == name: return index index += 1 return -1
[ 2, 15069, 357, 66, 8, 2177, 383, 5311, 1313, 418, 4912, 3457, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 2, 198, 2, 1846, 3742, 198, 2, 198, 198, 11748, 28686, 198, 198, 6738, 2644, 952, 13, 785, 13, 70, 2528, 69, 17, 62, 952, 62, 24442, 1330, 1635, 198, 198, 2, 198, 2, 40713, 874, 198, 2, 198, 198, 2, 198, 2, 40480, 198, 2, 628, 198, 4299, 651, 62, 33665, 62, 47911, 62, 16886, 1073, 3669, 7, 4743, 10234, 11, 6376, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43301, 2163, 11, 611, 257, 2587, 366, 50032, 1, 11743, 22715, 13, 770, 318, 262, 1339, 11, 611, 257, 11743, 318, 1944, 290, 973, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 33665, 82, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5696, 796, 1278, 10234, 17816, 33665, 82, 20520, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 6376, 1279, 657, 393, 6376, 18189, 18896, 7, 33665, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 2587, 796, 5696, 58, 9630, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3611, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 368, 747, 425, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 11265, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 420, 4717, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 38037, 5210, 1108, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 8692, 10258, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 4164, 18196, 49, 619, 1108, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 2531, 10440, 21194, 1272, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 2587, 13, 1136, 10786, 26069, 1904, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 611, 2587, 13, 1136, 10786, 4125, 10440, 9861, 793, 1272, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 791, 18250, 14633, 628, 220, 220, 220, 611, 2587, 13, 1136, 10786, 8692, 10258, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 611, 2587, 13, 1136, 10786, 26069, 1904, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1303, 3167, 489, 5592, 628, 220, 220, 220, 611, 2587, 13, 1136, 10786, 6381, 489, 5592, 32742, 11537, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 1441, 10352, 628, 198, 4299, 651, 62, 33665, 62, 47911, 62, 27237, 874, 7, 4743, 10234, 11, 6376, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 43301, 2163, 11, 611, 257, 2587, 366, 50032, 1, 2593, 874, 13, 770, 318, 262, 1339, 11, 611, 257, 11743, 318, 1944, 290, 973, 13, 198, 220, 220, 220, 1629, 966, 286, 3597, 11, 976, 2163, 355, 329, 11743, 22715, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 651, 62, 33665, 62, 47911, 62, 16886, 1073, 3669, 7, 4743, 10234, 11, 6376, 8, 628, 198, 4299, 651, 62, 33665, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 2587, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1438, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 33665, 82, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 2587, 287, 1278, 10234, 17816, 33665, 82, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2587, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 76, 5069, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 19609, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 6880, 956, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 19609, 287, 1278, 10234, 17816, 6880, 956, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 19609, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 20407, 62, 9630, 7, 4743, 10234, 11, 1438, 11, 6376, 62, 28968, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 4168, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 82, 5331, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 18328, 796, 651, 62, 17440, 62, 9630, 7, 4743, 10234, 11, 1438, 8, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 4168, 287, 1278, 10234, 17816, 82, 5331, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4168, 17816, 82, 38800, 20520, 6624, 18328, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 1343, 6376, 62, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 25695, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 4676, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 66, 2382, 292, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 4676, 287, 1278, 10234, 17816, 66, 2382, 292, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4676, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 2971, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 1657, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 2302, 5736, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 18366, 796, 1278, 10234, 17816, 2302, 5736, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 611, 18366, 13, 1136, 10786, 42, 17184, 62, 8091, 62, 79, 16260, 723, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 479, 11840, 62, 8091, 62, 79, 16260, 723, 796, 18366, 17816, 42, 17184, 62, 8091, 62, 79, 16260, 723, 20520, 628, 220, 220, 220, 611, 479, 11840, 62, 8091, 62, 79, 16260, 723, 13, 1136, 10786, 8091, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 7588, 796, 479, 11840, 62, 8091, 62, 79, 16260, 723, 17816, 8091, 20520, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 1657, 287, 7588, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1657, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 17440, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 10139, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 77, 4147, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 10139, 287, 1278, 10234, 17816, 77, 4147, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 10139, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 29734, 62, 9630, 7, 4743, 10234, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 3715, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 28123, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 3715, 287, 1278, 10234, 17816, 28123, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3715, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 41293, 62, 9630, 7, 4743, 10234, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 11743, 6376, 287, 262, 1278, 10234, 7177, 416, 257, 1813, 2393, 6978, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 5239, 942, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 2939, 62, 9630, 796, 651, 62, 9060, 62, 9630, 7, 4743, 10234, 11, 29472, 8, 628, 220, 220, 220, 611, 2939, 62, 9630, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 329, 11743, 62, 9630, 11, 11743, 287, 27056, 378, 7, 4743, 10234, 17816, 5239, 942, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 62, 9630, 6624, 11743, 17816, 10459, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 11743, 62, 9630, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 9060, 62, 9630, 7, 4743, 10234, 11, 29472, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 2939, 6376, 287, 262, 1278, 10234, 7177, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 1278, 10234, 13, 1136, 10786, 17566, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 628, 220, 220, 220, 2939, 62, 3672, 796, 651, 62, 9060, 62, 3672, 7, 34345, 8, 628, 220, 220, 220, 329, 6376, 11, 1459, 62, 9060, 287, 27056, 378, 7, 4743, 10234, 17816, 17566, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 62, 3672, 6624, 1459, 62, 9060, 17816, 3672, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 628, 220, 220, 220, 1441, 532, 16, 628, 198, 4299, 651, 62, 9060, 62, 3672, 7, 34345, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 2836, 12, 29532, 11, 7552, 12, 4660, 15132, 1438, 329, 2939, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22018, 578, 742, 7, 34345, 38381, 15, 60, 628, 198, 4299, 651, 62, 1416, 282, 283, 7, 12286, 62, 8367, 11, 2315, 62, 8367, 796, 657, 13, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 16578, 283, 351, 257, 1813, 4277, 14, 7207, 1891, 1988, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 62, 8367, 796, 2315, 62, 8367, 628, 220, 220, 220, 611, 4277, 62, 8367, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 1441, 62, 8367, 796, 4277, 62, 8367, 220, 628, 220, 220, 220, 1441, 1441, 62, 8367, 628, 198, 4299, 651, 62, 35138, 17, 7, 12286, 62, 8367, 11, 2315, 62, 8367, 796, 685, 15, 13, 15, 11, 657, 13, 15, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 43030, 17, 351, 257, 1813, 4277, 14, 7207, 1891, 1988, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 62, 8367, 796, 2315, 62, 8367, 628, 220, 220, 220, 611, 4277, 62, 8367, 318, 6045, 393, 18896, 7, 12286, 62, 8367, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 1271, 287, 4277, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 8367, 58, 9630, 60, 796, 1271, 220, 628, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 1441, 1441, 62, 8367, 628, 198, 4299, 651, 62, 35138, 18, 7, 12286, 62, 8367, 11, 2315, 62, 8367, 796, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 43030, 18, 351, 257, 1813, 4277, 14, 7207, 1891, 1988, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 62, 8367, 796, 2315, 62, 8367, 628, 220, 220, 220, 611, 4277, 62, 8367, 318, 6045, 393, 18896, 7, 12286, 62, 8367, 8, 1279, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 1271, 287, 4277, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 8367, 58, 9630, 60, 796, 1271, 220, 628, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 1441, 1441, 62, 8367, 628, 198, 4299, 651, 62, 35138, 19, 7, 12286, 62, 8367, 11, 2315, 62, 8367, 796, 685, 15, 13, 15, 11, 657, 13, 15, 11, 657, 13, 15, 11, 352, 13, 15, 60, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 43030, 19, 351, 257, 1813, 4277, 14, 7207, 1891, 1988, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1441, 62, 8367, 796, 2315, 62, 8367, 628, 220, 220, 220, 611, 4277, 62, 8367, 318, 6045, 393, 18896, 7, 12286, 62, 8367, 8, 1279, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 1271, 287, 4277, 62, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 8367, 58, 9630, 60, 796, 1271, 220, 628, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 6376, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1441, 62, 8367, 628, 220, 220, 220, 1441, 1441, 62, 8367, 628, 198, 4299, 651, 62, 9630, 7, 68, 3639, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 6376, 286, 257, 1278, 10234, 5002, 416, 257, 1813, 1438, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 4847, 318, 6045, 393, 1438, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 329, 5002, 287, 4847, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 13, 1136, 10786, 3672, 11537, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 532, 16, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5002, 17816, 3672, 20520, 6624, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 15853, 352, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 532, 16, 628 ]
2.405675
3,207
# Create dummy secrey key so we can use sessions SECRET_KEY = '1234567890' # Flask-Security config SECURITY_URL_PREFIX = "/admin" SECURITY_PASSWORD_HASH = "pbkdf2_sha256" SECURITY_PASSWORD_SALT = "ATGUOHAELKiubahiughaerGOJAEGj" SECURITY_USER_IDENTITY_ATTRIBUTES = ["name"] # Flask-Security URLs, overridden because they don't put a / at the end SECURITY_LOGIN_URL = "/login/" SECURITY_LOGOUT_URL = "/logout/" SECURITY_REGISTER_URL = "/register/" SECURITY_POST_LOGIN_VIEW = "/admin/" SECURITY_POST_LOGOUT_VIEW = "/admin/" SECURITY_POST_REGISTER_VIEW = "/admin/" # Flask-Security features SECURITY_REGISTERABLE = True SECURITY_SEND_REGISTER_EMAIL = False SQLALCHEMY_TRACK_MODIFICATIONS = False
[ 2, 13610, 31548, 792, 4364, 1994, 523, 356, 460, 779, 10991, 198, 23683, 26087, 62, 20373, 796, 705, 10163, 2231, 30924, 3829, 6, 198, 198, 2, 46947, 12, 24074, 4566, 198, 23683, 4261, 9050, 62, 21886, 62, 47, 31688, 10426, 796, 12813, 28482, 1, 198, 23683, 4261, 9050, 62, 47924, 54, 12532, 62, 39, 11211, 796, 366, 40842, 74, 7568, 17, 62, 26270, 11645, 1, 198, 23683, 4261, 9050, 62, 47924, 54, 12532, 62, 50, 31429, 796, 366, 1404, 38022, 46, 47452, 42, 72, 549, 32810, 6724, 25534, 11230, 37048, 7156, 73, 1, 198, 198, 23683, 4261, 9050, 62, 29904, 62, 25256, 9050, 62, 1404, 5446, 9865, 3843, 1546, 796, 14631, 3672, 8973, 198, 198, 2, 46947, 12, 24074, 32336, 11, 23170, 4651, 780, 484, 836, 470, 1234, 257, 1220, 379, 262, 886, 198, 23683, 4261, 9050, 62, 25294, 1268, 62, 21886, 796, 12813, 38235, 30487, 198, 23683, 4261, 9050, 62, 25294, 12425, 62, 21886, 796, 12813, 6404, 448, 30487, 198, 23683, 4261, 9050, 62, 31553, 41517, 62, 21886, 796, 12813, 30238, 30487, 198, 198, 23683, 4261, 9050, 62, 32782, 62, 25294, 1268, 62, 28206, 796, 12813, 28482, 30487, 198, 23683, 4261, 9050, 62, 32782, 62, 25294, 12425, 62, 28206, 796, 12813, 28482, 30487, 198, 23683, 4261, 9050, 62, 32782, 62, 31553, 41517, 62, 28206, 796, 12813, 28482, 30487, 198, 198, 2, 46947, 12, 24074, 3033, 198, 23683, 4261, 9050, 62, 31553, 41517, 17534, 796, 6407, 198, 23683, 4261, 9050, 62, 50, 10619, 62, 31553, 41517, 62, 27630, 4146, 796, 10352, 198, 17861, 1847, 3398, 3620, 56, 62, 5446, 8120, 62, 33365, 30643, 18421, 796, 10352 ]
2.616541
266
"""Websocket API for mobile_app.""" import voluptuous as vol from homeassistant.components.cloud import async_delete_cloudhook from homeassistant.components.websocket_api import ( ActiveConnection, async_register_command, async_response, error_message, result_message, websocket_command, ws_require_user, ) from homeassistant.components.websocket_api.const import ( ERR_INVALID_FORMAT, ERR_NOT_FOUND, ERR_UNAUTHORIZED, ) from homeassistant.const import CONF_WEBHOOK_ID from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import config_validation as cv from homeassistant.helpers.typing import HomeAssistantType from .const import ( CONF_CLOUDHOOK_URL, CONF_USER_ID, DATA_CONFIG_ENTRIES, DATA_DELETED_IDS, DATA_STORE, DOMAIN, ) from .helpers import safe_registration, savable_state def register_websocket_handlers(hass: HomeAssistantType) -> bool: """Register the websocket handlers.""" async_register_command(hass, websocket_get_user_registrations) async_register_command(hass, websocket_delete_registration) return True @ws_require_user() @async_response @websocket_command( { vol.Required("type"): "mobile_app/get_user_registrations", vol.Optional(CONF_USER_ID): cv.string, } ) async def websocket_get_user_registrations( hass: HomeAssistantType, connection: ActiveConnection, msg: dict ) -> None: """Return all registrations or just registrations for given user ID.""" user_id = msg.get(CONF_USER_ID, connection.user.id) if user_id != connection.user.id and not connection.user.is_admin: # If user ID is provided and is not current user ID and current user # isn't an admin user connection.send_error(msg["id"], ERR_UNAUTHORIZED, "Unauthorized") return user_registrations = [] for config_entry in hass.config_entries.async_entries(domain=DOMAIN): registration = config_entry.data if connection.user.is_admin or registration[CONF_USER_ID] is user_id: user_registrations.append(safe_registration(registration)) connection.send_message(result_message(msg["id"], user_registrations)) @ws_require_user() @async_response @websocket_command( { vol.Required("type"): "mobile_app/delete_registration", vol.Required(CONF_WEBHOOK_ID): cv.string, } ) async def websocket_delete_registration( hass: HomeAssistantType, connection: ActiveConnection, msg: dict ) -> None: """Delete the registration for the given webhook_id.""" user = connection.user webhook_id = msg.get(CONF_WEBHOOK_ID) if webhook_id is None: connection.send_error(msg["id"], ERR_INVALID_FORMAT, "Webhook ID not provided") return config_entry = hass.data[DOMAIN][DATA_CONFIG_ENTRIES][webhook_id] registration = config_entry.data if registration is None: connection.send_error( msg["id"], ERR_NOT_FOUND, "Webhook ID not found in storage" ) return if registration[CONF_USER_ID] != user.id and not user.is_admin: return error_message( msg["id"], ERR_UNAUTHORIZED, "User is not registration owner" ) await hass.config_entries.async_remove(config_entry.entry_id) hass.data[DOMAIN][DATA_DELETED_IDS].append(webhook_id) store = hass.data[DOMAIN][DATA_STORE] try: await store.async_save(savable_state(hass)) except HomeAssistantError: return error_message(msg["id"], "internal_error", "Error deleting registration") if CONF_CLOUDHOOK_URL in registration and "cloud" in hass.config.components: await async_delete_cloudhook(hass, webhook_id) connection.send_message(result_message(msg["id"], "ok"))
[ 37811, 1135, 1443, 5459, 7824, 329, 5175, 62, 1324, 526, 15931, 198, 11748, 2322, 37623, 5623, 355, 2322, 198, 198, 6738, 1363, 562, 10167, 13, 5589, 3906, 13, 17721, 1330, 30351, 62, 33678, 62, 17721, 25480, 198, 6738, 1363, 562, 10167, 13, 5589, 3906, 13, 732, 1443, 5459, 62, 15042, 1330, 357, 198, 220, 220, 220, 14199, 32048, 11, 198, 220, 220, 220, 30351, 62, 30238, 62, 21812, 11, 198, 220, 220, 220, 30351, 62, 26209, 11, 198, 220, 220, 220, 4049, 62, 20500, 11, 198, 220, 220, 220, 1255, 62, 20500, 11, 198, 220, 220, 220, 2639, 5459, 62, 21812, 11, 198, 220, 220, 220, 266, 82, 62, 46115, 62, 7220, 11, 198, 8, 198, 6738, 1363, 562, 10167, 13, 5589, 3906, 13, 732, 1443, 5459, 62, 15042, 13, 9979, 1330, 357, 198, 220, 220, 220, 13793, 49, 62, 1268, 23428, 2389, 62, 21389, 1404, 11, 198, 220, 220, 220, 13793, 49, 62, 11929, 62, 37, 15919, 11, 198, 220, 220, 220, 13793, 49, 62, 52, 4535, 24318, 1581, 14887, 1961, 11, 198, 8, 198, 6738, 1363, 562, 10167, 13, 9979, 1330, 7102, 37, 62, 8845, 33, 39, 15308, 62, 2389, 198, 6738, 1363, 562, 10167, 13, 1069, 11755, 1330, 5995, 48902, 12331, 198, 6738, 1363, 562, 10167, 13, 16794, 364, 1330, 4566, 62, 12102, 341, 355, 269, 85, 198, 6738, 1363, 562, 10167, 13, 16794, 364, 13, 774, 13886, 1330, 5995, 48902, 6030, 198, 198, 6738, 764, 9979, 1330, 357, 198, 220, 220, 220, 7102, 37, 62, 5097, 2606, 41473, 15308, 62, 21886, 11, 198, 220, 220, 220, 7102, 37, 62, 29904, 62, 2389, 11, 198, 220, 220, 220, 42865, 62, 10943, 16254, 62, 3525, 7112, 1546, 11, 198, 220, 220, 220, 42865, 62, 7206, 28882, 1961, 62, 14255, 11, 198, 220, 220, 220, 42865, 62, 2257, 6965, 11, 198, 220, 220, 220, 24121, 29833, 11, 198, 8, 198, 6738, 764, 16794, 364, 1330, 3338, 62, 2301, 33397, 11, 6799, 540, 62, 5219, 628, 198, 4299, 7881, 62, 732, 1443, 5459, 62, 4993, 8116, 7, 71, 562, 25, 5995, 48902, 6030, 8, 4613, 20512, 25, 198, 220, 220, 220, 37227, 38804, 262, 2639, 5459, 32847, 526, 15931, 198, 220, 220, 220, 30351, 62, 30238, 62, 21812, 7, 71, 562, 11, 2639, 5459, 62, 1136, 62, 7220, 62, 2301, 396, 9143, 8, 628, 220, 220, 220, 30351, 62, 30238, 62, 21812, 7, 71, 562, 11, 2639, 5459, 62, 33678, 62, 2301, 33397, 8, 628, 220, 220, 220, 1441, 6407, 628, 198, 31, 18504, 62, 46115, 62, 7220, 3419, 198, 31, 292, 13361, 62, 26209, 198, 31, 732, 1443, 5459, 62, 21812, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 13, 37374, 7203, 4906, 1, 2599, 366, 24896, 62, 1324, 14, 1136, 62, 7220, 62, 2301, 396, 9143, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 13, 30719, 7, 10943, 37, 62, 29904, 62, 2389, 2599, 269, 85, 13, 8841, 11, 198, 220, 220, 220, 1782, 198, 8, 198, 292, 13361, 825, 2639, 5459, 62, 1136, 62, 7220, 62, 2301, 396, 9143, 7, 198, 220, 220, 220, 468, 82, 25, 5995, 48902, 6030, 11, 4637, 25, 14199, 32048, 11, 31456, 25, 8633, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 13615, 477, 47997, 393, 655, 47997, 329, 1813, 2836, 4522, 526, 15931, 198, 220, 220, 220, 2836, 62, 312, 796, 31456, 13, 1136, 7, 10943, 37, 62, 29904, 62, 2389, 11, 4637, 13, 7220, 13, 312, 8, 628, 220, 220, 220, 611, 2836, 62, 312, 14512, 4637, 13, 7220, 13, 312, 290, 407, 4637, 13, 7220, 13, 271, 62, 28482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 2836, 4522, 318, 2810, 290, 318, 407, 1459, 2836, 4522, 290, 1459, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2125, 470, 281, 13169, 2836, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 21280, 62, 18224, 7, 19662, 14692, 312, 33116, 13793, 49, 62, 52, 4535, 24318, 1581, 14887, 1961, 11, 366, 52, 2616, 1457, 1143, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 2836, 62, 2301, 396, 9143, 796, 17635, 628, 220, 220, 220, 329, 4566, 62, 13000, 287, 468, 82, 13, 11250, 62, 298, 1678, 13, 292, 13361, 62, 298, 1678, 7, 27830, 28, 39170, 29833, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9352, 796, 4566, 62, 13000, 13, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4637, 13, 7220, 13, 271, 62, 28482, 393, 9352, 58, 10943, 37, 62, 29904, 62, 2389, 60, 318, 2836, 62, 312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 2301, 396, 9143, 13, 33295, 7, 21230, 62, 2301, 33397, 7, 2301, 33397, 4008, 628, 220, 220, 220, 4637, 13, 21280, 62, 20500, 7, 20274, 62, 20500, 7, 19662, 14692, 312, 33116, 2836, 62, 2301, 396, 9143, 4008, 628, 198, 31, 18504, 62, 46115, 62, 7220, 3419, 198, 31, 292, 13361, 62, 26209, 198, 31, 732, 1443, 5459, 62, 21812, 7, 198, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 13, 37374, 7203, 4906, 1, 2599, 366, 24896, 62, 1324, 14, 33678, 62, 2301, 33397, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2322, 13, 37374, 7, 10943, 37, 62, 8845, 33, 39, 15308, 62, 2389, 2599, 269, 85, 13, 8841, 11, 198, 220, 220, 220, 1782, 198, 8, 198, 292, 13361, 825, 2639, 5459, 62, 33678, 62, 2301, 33397, 7, 198, 220, 220, 220, 468, 82, 25, 5995, 48902, 6030, 11, 4637, 25, 14199, 32048, 11, 31456, 25, 8633, 198, 8, 4613, 6045, 25, 198, 220, 220, 220, 37227, 38727, 262, 9352, 329, 262, 1813, 3992, 25480, 62, 312, 526, 15931, 198, 220, 220, 220, 2836, 796, 4637, 13, 7220, 628, 220, 220, 220, 3992, 25480, 62, 312, 796, 31456, 13, 1136, 7, 10943, 37, 62, 8845, 33, 39, 15308, 62, 2389, 8, 198, 220, 220, 220, 611, 3992, 25480, 62, 312, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 21280, 62, 18224, 7, 19662, 14692, 312, 33116, 13793, 49, 62, 1268, 23428, 2389, 62, 21389, 1404, 11, 366, 13908, 25480, 4522, 407, 2810, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 4566, 62, 13000, 796, 468, 82, 13, 7890, 58, 39170, 29833, 7131, 26947, 62, 10943, 16254, 62, 3525, 7112, 1546, 7131, 12384, 25480, 62, 312, 60, 628, 220, 220, 220, 9352, 796, 4566, 62, 13000, 13, 7890, 628, 220, 220, 220, 611, 9352, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 21280, 62, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 14692, 312, 33116, 13793, 49, 62, 11929, 62, 37, 15919, 11, 366, 13908, 25480, 4522, 407, 1043, 287, 6143, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 611, 9352, 58, 10943, 37, 62, 29904, 62, 2389, 60, 14512, 2836, 13, 312, 290, 407, 2836, 13, 271, 62, 28482, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4049, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 14692, 312, 33116, 13793, 49, 62, 52, 4535, 24318, 1581, 14887, 1961, 11, 366, 12982, 318, 407, 9352, 4870, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 25507, 468, 82, 13, 11250, 62, 298, 1678, 13, 292, 13361, 62, 28956, 7, 11250, 62, 13000, 13, 13000, 62, 312, 8, 628, 220, 220, 220, 468, 82, 13, 7890, 58, 39170, 29833, 7131, 26947, 62, 7206, 28882, 1961, 62, 14255, 4083, 33295, 7, 12384, 25480, 62, 312, 8, 628, 220, 220, 220, 3650, 796, 468, 82, 13, 7890, 58, 39170, 29833, 7131, 26947, 62, 2257, 6965, 60, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 3650, 13, 292, 13361, 62, 21928, 7, 39308, 540, 62, 5219, 7, 71, 562, 4008, 198, 220, 220, 220, 2845, 5995, 48902, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4049, 62, 20500, 7, 19662, 14692, 312, 33116, 366, 32538, 62, 18224, 1600, 366, 12331, 34817, 9352, 4943, 628, 220, 220, 220, 611, 7102, 37, 62, 5097, 2606, 41473, 15308, 62, 21886, 287, 9352, 290, 366, 17721, 1, 287, 468, 82, 13, 11250, 13, 5589, 3906, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 62, 33678, 62, 17721, 25480, 7, 71, 562, 11, 3992, 25480, 62, 312, 8, 628, 220, 220, 220, 4637, 13, 21280, 62, 20500, 7, 20274, 62, 20500, 7, 19662, 14692, 312, 33116, 366, 482, 48774, 198 ]
2.599588
1,456
#!/usr/bin/env python3 import pika import time import sys import argparse sys.path.append("lib") from rabbitlock.mutex import Mutex from rabbitlock.semaphore import Semaphore # http://www.huyng.com/posts/python-performance-analysis/ parse_and_dispatch(sys.argv[1:])
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 279, 9232, 198, 11748, 640, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 8019, 4943, 198, 6738, 22746, 5354, 13, 21973, 1069, 1330, 13859, 1069, 198, 6738, 22746, 5354, 13, 43616, 6570, 382, 1330, 12449, 6570, 382, 628, 198, 198, 2, 2638, 1378, 2503, 13, 71, 4669, 782, 13, 785, 14, 24875, 14, 29412, 12, 26585, 12, 20930, 14, 628, 628, 628, 198, 198, 29572, 62, 392, 62, 6381, 17147, 7, 17597, 13, 853, 85, 58, 16, 25, 12962, 198 ]
2.808081
99
# Generated by Django 3.0.1 on 2020-01-02 02:40 import datetime from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 15, 13, 16, 319, 12131, 12, 486, 12, 2999, 7816, 25, 1821, 198, 198, 11748, 4818, 8079, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.972222
36
# -------------------------------------------------------- # TAFSSL # Copyright (c) 2019 IBM Corp # Licensed under The Apache-2.0 License [see LICENSE for details] # -------------------------------------------------------- import numpy as np from utils.proto_msp import ProtoMSP import time import pickle from utils.misc import print_params from utils.misc import load_features from utils.misc import print_msg from utils.misc import avg, ci_95, parse_args from utils.misc import create_episode, calc_acc from utils.misc import get_color from utils.misc import get_features if __name__ == '__main__': get_features() n_query_exp() n_query_exp_fig()
[ 2, 20368, 22369, 198, 2, 309, 8579, 31127, 198, 2, 15069, 357, 66, 8, 13130, 19764, 11421, 198, 2, 49962, 739, 383, 24843, 12, 17, 13, 15, 13789, 685, 3826, 38559, 24290, 329, 3307, 60, 198, 2, 20368, 22369, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 3384, 4487, 13, 1676, 1462, 62, 907, 79, 1330, 45783, 44, 4303, 198, 11748, 640, 198, 11748, 2298, 293, 198, 6738, 3384, 4487, 13, 44374, 1330, 3601, 62, 37266, 198, 6738, 3384, 4487, 13, 44374, 1330, 3440, 62, 40890, 198, 6738, 3384, 4487, 13, 44374, 1330, 3601, 62, 19662, 198, 6738, 3384, 4487, 13, 44374, 1330, 42781, 11, 269, 72, 62, 3865, 11, 21136, 62, 22046, 198, 6738, 3384, 4487, 13, 44374, 1330, 2251, 62, 38668, 11, 42302, 62, 4134, 198, 6738, 3384, 4487, 13, 44374, 1330, 651, 62, 8043, 198, 6738, 3384, 4487, 13, 44374, 1330, 651, 62, 40890, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 651, 62, 40890, 3419, 198, 220, 220, 220, 299, 62, 22766, 62, 11201, 3419, 198, 220, 220, 220, 299, 62, 22766, 62, 11201, 62, 5647, 3419, 198 ]
3.455959
193
from .preprocess import *
[ 6738, 764, 3866, 14681, 1330, 1635 ]
4.166667
6
#!/usr/bin/env python # Returns obj_val function to be used in an optimizer # A better and updated version of qaoa_obj.py import networkx as nx import numpy as np # import matplotlib.pyplot as plt from networkx.generators.classic import barbell_graph import copy import sys import warnings import qcommunity.modularity.graphs as gm from qcommunity.utils.import_graph import generate_graph from ibmqxbackend.ansatz import IBMQXVarForm def get_obj(n_nodes, B, C=None, obj_params='ndarray', sign=1, backend='IBMQX', backend_params={'depth': 3}, return_x=False): """ :param obj_params: defines the signature of obj_val function. 'beta gamma' or 'ndarray' (added to support arbitrary number of steps and scipy.optimize.minimize.) :return: obj_val function, number of variational parameters :rtype: tuple """ if return_x: all_x = [] all_vals = [] # TODO refactor, remove code duplication if backend == 'IBMQX': var_form = IBMQXVarForm( num_qubits=n_nodes, depth=backend_params['depth']) num_parameters = var_form.num_parameters if obj_params == 'ndarray': else: raise ValueError( "obj_params '{}' not compatible with backend '{}'".format( obj_params, backend)) else: raise ValueError("Unsupported backend: {}".format(backend)) if return_x: return obj_val, num_parameters, all_x, all_vals else: return obj_val, num_parameters if __name__ == "__main__": x = np.array([2.1578616206475347, 0.1903995547630178]) obj_val, _ = get_obj_val("get_barbell_graph", 3, 3) print(obj_val(x[0], x[1])) obj_val, num_parameters = get_obj_val( "get_barbell_graph", 3, 3, obj_params='ndarray', backend='IBMQX') y = np.random.uniform(-np.pi, np.pi, num_parameters) print(obj_val(y)) obj_val, num_parameters = get_obj_val( "get_barbell_graph", 3, 3, obj_params='ndarray') z = np.random.uniform(-np.pi, np.pi, num_parameters) print(obj_val(z))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 16409, 26181, 62, 2100, 2163, 284, 307, 973, 287, 281, 6436, 7509, 198, 2, 317, 1365, 290, 6153, 2196, 286, 10662, 5488, 64, 62, 26801, 13, 9078, 198, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 299, 32152, 355, 45941, 198, 2, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 3127, 87, 13, 8612, 2024, 13, 49421, 1330, 2318, 7923, 62, 34960, 198, 11748, 4866, 198, 11748, 25064, 198, 11748, 14601, 198, 198, 11748, 10662, 28158, 13, 4666, 33737, 13, 34960, 82, 355, 308, 76, 198, 6738, 10662, 28158, 13, 26791, 13, 11748, 62, 34960, 1330, 7716, 62, 34960, 198, 6738, 24283, 76, 80, 87, 1891, 437, 13, 504, 27906, 1330, 19764, 48, 55, 19852, 8479, 628, 198, 4299, 651, 62, 26801, 7, 77, 62, 77, 4147, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 347, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 37266, 11639, 358, 18747, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1051, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30203, 11639, 9865, 49215, 55, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30203, 62, 37266, 34758, 6, 18053, 10354, 513, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 87, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1058, 17143, 26181, 62, 37266, 25, 15738, 262, 9877, 286, 26181, 62, 2100, 2163, 13, 705, 31361, 34236, 6, 393, 705, 358, 18747, 6, 357, 29373, 284, 1104, 14977, 1271, 286, 4831, 290, 629, 541, 88, 13, 40085, 1096, 13, 1084, 48439, 2014, 220, 628, 220, 220, 220, 1058, 7783, 25, 26181, 62, 2100, 2163, 11, 1271, 286, 5553, 864, 10007, 198, 220, 220, 220, 1058, 81, 4906, 25, 46545, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 1441, 62, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 87, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 12786, 796, 17635, 198, 220, 220, 220, 1303, 16926, 46, 1006, 11218, 11, 4781, 2438, 50124, 198, 220, 220, 220, 611, 30203, 6624, 705, 9865, 49215, 55, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1401, 62, 687, 796, 19764, 48, 55, 19852, 8479, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 421, 9895, 28, 77, 62, 77, 4147, 11, 6795, 28, 1891, 437, 62, 37266, 17816, 18053, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 17143, 7307, 796, 1401, 62, 687, 13, 22510, 62, 17143, 7307, 198, 220, 220, 220, 220, 220, 220, 220, 611, 26181, 62, 37266, 6624, 705, 358, 18747, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 26801, 62, 37266, 705, 90, 92, 6, 407, 11670, 351, 30203, 705, 90, 92, 6, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26181, 62, 37266, 11, 30203, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 3118, 15999, 30203, 25, 23884, 1911, 18982, 7, 1891, 437, 4008, 628, 220, 220, 220, 611, 1441, 62, 87, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26181, 62, 2100, 11, 997, 62, 17143, 7307, 11, 477, 62, 87, 11, 477, 62, 12786, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26181, 62, 2100, 11, 997, 62, 17143, 7307, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2124, 796, 45941, 13, 18747, 26933, 17, 13, 1314, 3695, 44214, 1238, 2414, 2425, 30995, 11, 657, 13, 1129, 3070, 2079, 2816, 2857, 5066, 486, 3695, 12962, 198, 220, 220, 220, 26181, 62, 2100, 11, 4808, 796, 651, 62, 26801, 62, 2100, 7203, 1136, 62, 5657, 7923, 62, 34960, 1600, 513, 11, 513, 8, 198, 220, 220, 220, 3601, 7, 26801, 62, 2100, 7, 87, 58, 15, 4357, 2124, 58, 16, 60, 4008, 198, 220, 220, 220, 26181, 62, 2100, 11, 997, 62, 17143, 7307, 796, 651, 62, 26801, 62, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 5657, 7923, 62, 34960, 1600, 513, 11, 513, 11, 26181, 62, 37266, 11639, 358, 18747, 3256, 30203, 11639, 9865, 49215, 55, 11537, 198, 220, 220, 220, 331, 796, 45941, 13, 25120, 13, 403, 6933, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 11, 997, 62, 17143, 7307, 8, 198, 220, 220, 220, 3601, 7, 26801, 62, 2100, 7, 88, 4008, 198, 220, 220, 220, 26181, 62, 2100, 11, 997, 62, 17143, 7307, 796, 651, 62, 26801, 62, 2100, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 1136, 62, 5657, 7923, 62, 34960, 1600, 513, 11, 513, 11, 26181, 62, 37266, 11639, 358, 18747, 11537, 198, 220, 220, 220, 1976, 796, 45941, 13, 25120, 13, 403, 6933, 32590, 37659, 13, 14415, 11, 45941, 13, 14415, 11, 997, 62, 17143, 7307, 8, 198, 220, 220, 220, 3601, 7, 26801, 62, 2100, 7, 89, 4008, 198 ]
2.284188
936
import cv2 from PIL import Image import numpy as np import random import pytest from ggb import GGB, CVLib from ggb.testing import ggb_test from ggb.testing import get_random_image, get_filled_image @ggb_test @ggb_test if __name__ == '__main__': pytest.main([__file__])
[ 11748, 269, 85, 17, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 4738, 198, 11748, 12972, 9288, 198, 198, 6738, 308, 22296, 1330, 402, 4579, 11, 26196, 25835, 198, 6738, 308, 22296, 13, 33407, 1330, 308, 22296, 62, 9288, 198, 6738, 308, 22296, 13, 33407, 1330, 651, 62, 25120, 62, 9060, 11, 651, 62, 20286, 62, 9060, 628, 198, 31, 1130, 65, 62, 9288, 628, 198, 31, 1130, 65, 62, 9288, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 12972, 9288, 13, 12417, 26933, 834, 7753, 834, 12962, 198 ]
2.728155
103
# -*- coding: utf-8 -*- """ Tests `marc.marc_writer.py` module """ from contextlib import nullcontext as does_not_raise import logging import os import pickle from pymarc import Field, MARCReader, Record import pytest from nightshift import __title__, __version__ from nightshift.datastore import Resource from nightshift.marc.marc_writer import BibEnhancer
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 51, 3558, 4600, 3876, 66, 13, 3876, 66, 62, 16002, 13, 9078, 63, 8265, 198, 37811, 198, 6738, 4732, 8019, 1330, 9242, 22866, 355, 857, 62, 1662, 62, 40225, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 198, 6738, 12972, 3876, 66, 1330, 7663, 11, 18805, 34, 33634, 11, 13266, 198, 11748, 12972, 9288, 198, 198, 6738, 1755, 30846, 1330, 11593, 7839, 834, 11, 11593, 9641, 834, 198, 6738, 1755, 30846, 13, 19608, 459, 382, 1330, 20857, 198, 6738, 1755, 30846, 13, 3876, 66, 13, 3876, 66, 62, 16002, 1330, 43278, 35476, 8250, 628 ]
3.175439
114
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-06-02 18:17 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1485, 319, 2864, 12, 3312, 12, 2999, 1248, 25, 1558, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.754386
57
#!/usr/bin/env python3 # coding = utf-8 import os import unittest as ut from mykit.wien2k.utils import get_casename, find_complex_file, get_default_r0, get_default_rmt, get_z if __name__ == '__main__': ut.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 19617, 796, 3384, 69, 12, 23, 198, 198, 11748, 28686, 198, 11748, 555, 715, 395, 355, 3384, 198, 198, 6738, 616, 15813, 13, 86, 2013, 17, 74, 13, 26791, 1330, 651, 62, 34004, 12453, 11, 1064, 62, 41887, 62, 7753, 11, 651, 62, 12286, 62, 81, 15, 11, 651, 62, 12286, 62, 81, 16762, 11, 651, 62, 89, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3384, 13, 12417, 3419 ]
2.444444
90
from unittest import TestCase from degiro_pit.config import Currency from degiro_pit.nbp_api import NbpApi
[ 6738, 555, 715, 395, 1330, 6208, 20448, 198, 198, 6738, 3396, 7058, 62, 15544, 13, 11250, 1330, 20113, 198, 6738, 3396, 7058, 62, 15544, 13, 77, 46583, 62, 15042, 1330, 399, 46583, 32, 14415, 628 ]
3.114286
35
import copy import json import logging import os import time from .rename import rename as rename_function from django.apps import apps from django.conf import settings from django_rq import job from mixmasta import mixmasta as mix from utils.cache_helper import cache_get # Load GADM3 from gadm app if settings.CACHE_GADM: gadm3 = apps.get_app_config("gadm").gadm3() gadm2 = apps.get_app_config("gadm").gadm2() else: gadm3 = None gadm2 = None def dupe(annotations, rename_list, new_names): """annotations is a list of dictionaries, if entry["name"] is in rename_list copy over an entry for every name in new_names and rename the entry["name"] to the new name""" added = [] new_list = [] rename_count = 0 for entry in annotations: # if entry["name"] in primary_geo_renames: # RTK if entry["name"] in rename_list: # if not primary_geo_renamed: # RTK if rename_count < len(rename_list): rename_count += 1 for new_name in new_names: # Don't add again, although duplicates are removed below. if new_name in added: continue e = entry.copy() e["name"] = new_name e["display_name"] = new_name e["type"] = new_name new_list.append(e) added.append(e["name"]) else: if entry["name"] not in added: new_list.append(entry) added.append(entry["name"]) return new_list def build_mapper(uuid): """ Description ----------- Performs two functions: (1) Build and return the mixmasta mapper.json from annotations.json. (2) Return geo_select if "Geo_Select_Form" is annotated. Returns ------- ret: dictionary geo, date, and feature keys for mixmasta process. geo_select: string, default None admin_level if set during annotation: country, admin1, admin2, admin3 """ # Set default return value (None) for geo_select. geo_select = None fp = f"data/{uuid}/annotations.json" with open(fp, "r") as f: annotations = json.load(f) conversion_names = { "name": "display_name", "geo": "geo_type", "time": "date_type", "format": "time_format", "data_type": "feature_type", "unit_description": "units_description", "coord_pair_form": "is_geo_pair", "qualifycolumn": "qualifies", "string": "str", } ret = {"geo": [], "date": [], "feature": []} for orig_name in annotations: entry = {} entry["name"] = orig_name for x in annotations[orig_name].keys(): if x in ["redir_col"]: continue # Set geo_select if annotated. if str(x).lower() == "geo_select_form": geo_select = annotations[orig_name][x] # Mixmasta expects "admin0" not "country". if geo_select.lower() == "country": geo_select = "admin0" if x.lower() in conversion_names.keys(): new_col_name = conversion_names[x.lower()] else: new_col_name = x.lower() if new_col_name != "display_name": if new_col_name == "qualifies": if type(annotations[orig_name][x]) == str: annotations[orig_name][x] = [annotations[orig_name][x]] if type(annotations[orig_name][x]) == str and new_col_name not in [ "is_geo_pair", "qualifies", "dateformat", "time_format", "description", ]: entry[new_col_name] = annotations[orig_name][x].lower() else: entry[new_col_name] = annotations[orig_name][x] else: entry[new_col_name] = annotations[orig_name][x] for x in ["dateassociate", "isgeopair", "qualify"]: if x in entry.keys(): del entry[x] ret[entry["type"]].append(entry) for x in range(len(ret["date"])): if "dateformat" in ret["date"][x]: ret["date"][x]["time_format"] = ret["date"][x]["dateformat"] del ret["date"][x]["dateformat"] if ret["date"][x].get("primary_time", False): ret["date"][x]["primary_date"] = True del ret["date"][x]["primary_time"] return ret, geo_select @job("default", timeout=-1) def post_mixmasta_annotation_processing(rename, context): """change annotations to reflect mixmasta's output""" uuid = context["uuid"] with open(context["mapper_fp"], "r") as f: mixmasta_ready_annotations = json.load(f) to_rename = {} for k, x in rename.items(): for y in x: to_rename[y] = k mixmasta_ready_annotations = rename_function(mixmasta_ready_annotations, to_rename) primary_date_renames = [ x["name"] for x in mixmasta_ready_annotations["date"] if x.get("primary_geo", False) ] primary_geo_renames = [ x["name"] for x in mixmasta_ready_annotations["geo"] if x.get("primary_geo", False) ] primary_geo_rename_count = 0 # RTK mixmasta_ready_annotations["geo"] = dupe( mixmasta_ready_annotations["geo"], primary_geo_renames, ["admin1", "admin2", "admin3", "country", "lat", "lng"], ) mixmasta_ready_annotations["date"] = dupe( mixmasta_ready_annotations["date"], primary_date_renames, ["timestamp"] ) json.dump( mixmasta_ready_annotations, open(f"data/{uuid}/mixmasta_ready_annotations.json", "w"), )
[ 11748, 4866, 198, 11748, 33918, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 640, 198, 6738, 764, 918, 480, 1330, 36265, 355, 36265, 62, 8818, 198, 6738, 42625, 14208, 13, 18211, 1330, 6725, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 62, 81, 80, 1330, 1693, 198, 198, 6738, 5022, 76, 40197, 1330, 5022, 76, 40197, 355, 5022, 198, 6738, 3384, 4487, 13, 23870, 62, 2978, 525, 1330, 12940, 62, 1136, 628, 198, 2, 8778, 402, 2885, 44, 18, 422, 23793, 76, 598, 198, 361, 6460, 13, 34, 2246, 13909, 62, 38, 2885, 44, 25, 198, 220, 220, 220, 23793, 76, 18, 796, 6725, 13, 1136, 62, 1324, 62, 11250, 7203, 70, 324, 76, 11074, 70, 324, 76, 18, 3419, 198, 220, 220, 220, 23793, 76, 17, 796, 6725, 13, 1136, 62, 1324, 62, 11250, 7203, 70, 324, 76, 11074, 70, 324, 76, 17, 3419, 198, 17772, 25, 198, 220, 220, 220, 23793, 76, 18, 796, 6045, 198, 220, 220, 220, 23793, 76, 17, 796, 6045, 628, 198, 4299, 7043, 431, 7, 34574, 602, 11, 36265, 62, 4868, 11, 649, 62, 14933, 2599, 198, 220, 220, 220, 37227, 34574, 602, 318, 257, 1351, 286, 48589, 3166, 11, 611, 5726, 14692, 3672, 8973, 318, 287, 36265, 62, 4868, 4866, 625, 281, 5726, 329, 790, 1438, 287, 649, 62, 14933, 290, 36265, 262, 5726, 14692, 3672, 8973, 284, 262, 649, 1438, 37811, 198, 220, 220, 220, 2087, 796, 17635, 198, 220, 220, 220, 649, 62, 4868, 796, 17635, 198, 220, 220, 220, 36265, 62, 9127, 796, 657, 198, 220, 220, 220, 329, 5726, 287, 37647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 5726, 14692, 3672, 8973, 287, 4165, 62, 469, 78, 62, 918, 1047, 25, 1303, 11923, 42, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 14692, 3672, 8973, 287, 36265, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 407, 4165, 62, 469, 78, 62, 918, 2434, 25, 1303, 11923, 42, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 36265, 62, 9127, 1279, 18896, 7, 918, 480, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36265, 62, 9127, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 649, 62, 3672, 287, 649, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2094, 470, 751, 757, 11, 3584, 14184, 16856, 389, 4615, 2174, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 3672, 287, 2087, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 796, 5726, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 14692, 3672, 8973, 796, 649, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 14692, 13812, 62, 3672, 8973, 796, 649, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 14692, 4906, 8973, 796, 649, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4868, 13, 33295, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 13, 33295, 7, 68, 14692, 3672, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5726, 14692, 3672, 8973, 407, 287, 2087, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4868, 13, 33295, 7, 13000, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2087, 13, 33295, 7, 13000, 14692, 3672, 8973, 8, 198, 220, 220, 220, 1441, 649, 62, 4868, 628, 198, 4299, 1382, 62, 76, 11463, 7, 12303, 312, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12489, 198, 220, 220, 220, 24200, 6329, 198, 220, 220, 220, 2448, 23914, 734, 5499, 25, 198, 220, 220, 220, 357, 16, 8, 10934, 290, 1441, 262, 5022, 76, 40197, 285, 11463, 13, 17752, 422, 37647, 13, 17752, 13, 198, 220, 220, 220, 357, 17, 8, 8229, 40087, 62, 19738, 611, 366, 10082, 78, 62, 17563, 62, 8479, 1, 318, 24708, 515, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 25, 22155, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40087, 11, 3128, 11, 290, 3895, 8251, 329, 5022, 76, 40197, 1429, 13, 198, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 19738, 25, 4731, 11, 4277, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13169, 62, 5715, 611, 900, 1141, 23025, 25, 1499, 11, 13169, 16, 11, 13169, 17, 11, 13169, 18, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 5345, 4277, 1441, 1988, 357, 14202, 8, 329, 40087, 62, 19738, 13, 198, 220, 220, 220, 40087, 62, 19738, 796, 6045, 628, 220, 220, 220, 277, 79, 796, 277, 1, 7890, 14, 90, 12303, 312, 92, 14, 34574, 602, 13, 17752, 1, 198, 220, 220, 220, 351, 1280, 7, 46428, 11, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37647, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 11315, 62, 14933, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 3672, 1298, 366, 13812, 62, 3672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 469, 78, 1298, 366, 469, 78, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 1298, 366, 4475, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18982, 1298, 366, 2435, 62, 18982, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 62, 4906, 1298, 366, 30053, 62, 4906, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 20850, 62, 11213, 1298, 366, 41667, 62, 11213, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37652, 62, 24874, 62, 687, 1298, 366, 271, 62, 469, 78, 62, 24874, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 13255, 1958, 28665, 1298, 366, 13255, 6945, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8841, 1298, 366, 2536, 1600, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 1005, 796, 19779, 469, 78, 1298, 685, 4357, 366, 4475, 1298, 685, 4357, 366, 30053, 1298, 17635, 92, 628, 220, 220, 220, 329, 1796, 62, 3672, 287, 37647, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 5726, 14692, 3672, 8973, 796, 1796, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 37647, 58, 11612, 62, 3672, 4083, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 287, 14631, 445, 343, 62, 4033, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 40087, 62, 19738, 611, 24708, 515, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 965, 7, 87, 737, 21037, 3419, 6624, 366, 469, 78, 62, 19738, 62, 687, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 19738, 796, 37647, 58, 11612, 62, 3672, 7131, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15561, 76, 40197, 13423, 366, 28482, 15, 1, 407, 366, 19315, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 40087, 62, 19738, 13, 21037, 3419, 6624, 366, 19315, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40087, 62, 19738, 796, 366, 28482, 15, 1, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 21037, 3419, 287, 11315, 62, 14933, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4033, 62, 3672, 796, 11315, 62, 14933, 58, 87, 13, 21037, 3419, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 4033, 62, 3672, 796, 2124, 13, 21037, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 4033, 62, 3672, 14512, 366, 13812, 62, 3672, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 649, 62, 4033, 62, 3672, 6624, 366, 13255, 6945, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 34574, 602, 58, 11612, 62, 3672, 7131, 87, 12962, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37647, 58, 11612, 62, 3672, 7131, 87, 60, 796, 685, 34574, 602, 58, 11612, 62, 3672, 7131, 87, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 34574, 602, 58, 11612, 62, 3672, 7131, 87, 12962, 6624, 965, 290, 649, 62, 4033, 62, 3672, 407, 287, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 271, 62, 469, 78, 62, 24874, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13255, 6945, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 4475, 18982, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2435, 62, 18982, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11213, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 3605, 62, 4033, 62, 3672, 60, 796, 37647, 58, 11612, 62, 3672, 7131, 87, 4083, 21037, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 3605, 62, 4033, 62, 3672, 60, 796, 37647, 58, 11612, 62, 3672, 7131, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5726, 58, 3605, 62, 4033, 62, 3672, 60, 796, 37647, 58, 11612, 62, 3672, 7131, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 14631, 4475, 562, 47615, 1600, 366, 271, 469, 404, 958, 1600, 366, 13255, 1958, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 287, 5726, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 5726, 58, 87, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1005, 58, 13000, 14692, 4906, 8973, 4083, 33295, 7, 13000, 8, 628, 220, 220, 220, 329, 2124, 287, 2837, 7, 11925, 7, 1186, 14692, 4475, 8973, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 366, 4475, 18982, 1, 287, 1005, 14692, 4475, 1, 7131, 87, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 4475, 1, 7131, 87, 7131, 1, 2435, 62, 18982, 8973, 796, 1005, 14692, 4475, 1, 7131, 87, 7131, 1, 4475, 18982, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1005, 14692, 4475, 1, 7131, 87, 7131, 1, 4475, 18982, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1005, 14692, 4475, 1, 7131, 87, 4083, 1136, 7203, 39754, 62, 2435, 1600, 10352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 14692, 4475, 1, 7131, 87, 7131, 1, 39754, 62, 4475, 8973, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1619, 1005, 14692, 4475, 1, 7131, 87, 7131, 1, 39754, 62, 2435, 8973, 628, 220, 220, 220, 1441, 1005, 11, 40087, 62, 19738, 628, 628, 628, 198, 31, 21858, 7203, 12286, 1600, 26827, 10779, 16, 8, 628, 198, 4299, 1281, 62, 19816, 76, 40197, 62, 1236, 14221, 62, 36948, 7, 918, 480, 11, 4732, 2599, 198, 220, 220, 220, 37227, 3803, 37647, 284, 4079, 5022, 76, 40197, 338, 5072, 37811, 198, 220, 220, 220, 334, 27112, 796, 4732, 14692, 12303, 312, 8973, 198, 220, 220, 220, 351, 1280, 7, 22866, 14692, 76, 11463, 62, 46428, 33116, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 284, 62, 918, 480, 796, 23884, 198, 220, 220, 220, 329, 479, 11, 2124, 287, 36265, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 331, 287, 2124, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 918, 480, 58, 88, 60, 796, 479, 628, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 796, 36265, 62, 8818, 7, 19816, 76, 40197, 62, 1493, 62, 34574, 602, 11, 284, 62, 918, 480, 8, 628, 220, 220, 220, 4165, 62, 4475, 62, 918, 1047, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 4475, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 1136, 7203, 39754, 62, 469, 78, 1600, 10352, 8, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 4165, 62, 469, 78, 62, 918, 1047, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 14692, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 287, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 469, 78, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 13, 1136, 7203, 39754, 62, 469, 78, 1600, 10352, 8, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 4165, 62, 469, 78, 62, 918, 480, 62, 9127, 796, 657, 220, 1303, 11923, 42, 198, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 469, 78, 8973, 796, 7043, 431, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 469, 78, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 4165, 62, 469, 78, 62, 918, 1047, 11, 198, 220, 220, 220, 220, 220, 220, 220, 14631, 28482, 16, 1600, 366, 28482, 17, 1600, 366, 28482, 18, 1600, 366, 19315, 1600, 366, 15460, 1600, 366, 75, 782, 33116, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 4475, 8973, 796, 7043, 431, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 14692, 4475, 33116, 4165, 62, 4475, 62, 918, 1047, 11, 14631, 16514, 27823, 8973, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 33918, 13, 39455, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5022, 76, 40197, 62, 1493, 62, 34574, 602, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1280, 7, 69, 1, 7890, 14, 90, 12303, 312, 92, 14, 19816, 76, 40197, 62, 1493, 62, 34574, 602, 13, 17752, 1600, 366, 86, 12340, 198, 220, 220, 220, 1267, 198 ]
2.072336
2,834
from .sensation import Sensation from .train import Train
[ 6738, 764, 82, 25742, 1330, 14173, 341, 198, 6738, 764, 27432, 1330, 220, 16835, 198 ]
3.933333
15
import marisa_trie import os import gzip from collections import defaultdict from nltk.tokenize import RegexpTokenizer from cuttsum.srilm import Client from itertools import izip import string from ..geo import GeoQuery import numpy as np import pandas as pd from nltk.corpus import wordnet as wn import re
[ 11748, 1667, 9160, 62, 83, 5034, 198, 11748, 28686, 198, 11748, 308, 13344, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 797, 25636, 79, 30642, 7509, 198, 6738, 2005, 912, 388, 13, 82, 22379, 76, 1330, 20985, 198, 6738, 340, 861, 10141, 1330, 220, 528, 541, 198, 11748, 4731, 198, 6738, 11485, 469, 78, 1330, 32960, 20746, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 1573, 3262, 355, 266, 77, 198, 11748, 302, 628, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 628 ]
2.911504
113
import json import os, errno from typing import Dict import numpy as np import os from sklearn.preprocessing import scale, minmax_scale import logging LOGGER = logging.getLogger(__name__) def scale_features(input_folder: str, output_folder: str, op_conf: str, **kwargs): """ input_folder: folder which contains input audio files output_folder: folder to store output numpy files """ optional_params = eval(op_conf) LOGGER.info("kwargs ", optional_params) for genre in list(os.listdir(input_folder)): if os.path.isdir(f"{input_folder}/{genre}"): genre_input_folder = f"{input_folder}/{genre}/" genre_output_folder = f"{output_folder}/{genre}/" try: os.makedirs(genre_output_folder) except OSError as e: if e.errno != errno.EEXIST: raise for file_name in list(os.listdir(genre_input_folder)): input_file_abs_path = f"{genre_input_folder}/{file_name}" if os.path.isfile(f"{input_file_abs_path}") and file_name.endswith( ".npy" ): LOGGER.info( f"scale_features.task >>> INFO current file: {file_name}" ) file_name_wo_ex = file_name[:-4] # load np array y = np.load(f"{input_file_abs_path}") y_std_scaled = scale(y) np.save( f"{genre_output_folder}/{file_name_wo_ex}_standardcaler.npy", y_std_scaled, ) y_mm_scaled = minmax_scale(y) np.save( f"{genre_output_folder}/{file_name_wo_ex}_minmaxnormalizer.npy", y_mm_scaled, )
[ 11748, 33918, 198, 11748, 28686, 11, 11454, 3919, 198, 6738, 19720, 1330, 360, 713, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 5046, 11, 949, 9806, 62, 9888, 198, 11748, 18931, 198, 198, 25294, 30373, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 5046, 62, 40890, 7, 15414, 62, 43551, 25, 965, 11, 5072, 62, 43551, 25, 965, 11, 1034, 62, 10414, 25, 965, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 43551, 25, 9483, 543, 4909, 5128, 6597, 3696, 198, 220, 220, 220, 5072, 62, 43551, 25, 9483, 284, 3650, 5072, 299, 32152, 3696, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11902, 62, 37266, 796, 5418, 7, 404, 62, 10414, 8, 628, 220, 220, 220, 41605, 30373, 13, 10951, 7203, 46265, 22046, 33172, 11902, 62, 37266, 8, 628, 220, 220, 220, 329, 12121, 287, 1351, 7, 418, 13, 4868, 15908, 7, 15414, 62, 43551, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 69, 1, 90, 15414, 62, 43551, 92, 14, 90, 35850, 36786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12121, 62, 15414, 62, 43551, 796, 277, 1, 90, 15414, 62, 43551, 92, 14, 90, 35850, 92, 30487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12121, 62, 22915, 62, 43551, 796, 277, 1, 90, 22915, 62, 43551, 92, 14, 90, 35850, 92, 30487, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 35850, 62, 22915, 62, 43551, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 440, 5188, 81, 1472, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 304, 13, 8056, 3919, 14512, 11454, 3919, 13, 36, 6369, 8808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 3672, 287, 1351, 7, 418, 13, 4868, 15908, 7, 35850, 62, 15414, 62, 43551, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7753, 62, 8937, 62, 6978, 796, 277, 1, 90, 35850, 62, 15414, 62, 43551, 92, 14, 90, 7753, 62, 3672, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 4468, 576, 7, 69, 1, 90, 15414, 62, 7753, 62, 8937, 62, 6978, 92, 4943, 290, 2393, 62, 3672, 13, 437, 2032, 342, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27071, 77, 9078, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41605, 30373, 13, 10951, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 9888, 62, 40890, 13, 35943, 13163, 24890, 1459, 2393, 25, 1391, 7753, 62, 3672, 36786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 62, 21638, 62, 1069, 796, 2393, 62, 3672, 58, 21912, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3440, 45941, 7177, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 796, 45941, 13, 2220, 7, 69, 1, 90, 15414, 62, 7753, 62, 8937, 62, 6978, 92, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 19282, 62, 1416, 3021, 796, 5046, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 35850, 62, 22915, 62, 43551, 92, 14, 90, 7753, 62, 3672, 62, 21638, 62, 1069, 92, 62, 20307, 9948, 263, 13, 77, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 19282, 62, 1416, 3021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 3020, 62, 1416, 3021, 796, 949, 9806, 62, 9888, 7, 88, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 90, 35850, 62, 22915, 62, 43551, 92, 14, 90, 7753, 62, 3672, 62, 21638, 62, 1069, 92, 62, 1084, 9806, 11265, 7509, 13, 77, 9078, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 3020, 62, 1416, 3021, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
1.819942
1,033
import time from functools import reduce import distogram import utils if __name__ == '__main__': bench_merge()
[ 11748, 640, 198, 6738, 1257, 310, 10141, 1330, 4646, 198, 198, 11748, 1233, 21857, 198, 11748, 3384, 4487, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7624, 62, 647, 469, 3419, 198 ]
2.926829
41
# -*- coding: utf-8 -*- # /!\/!\/!\/!\/!\/!\/!\/!\ # Note that this is just a sample code # You need to add this file in __init__.py # /!\/!\/!\/!\/!\/!\/!\/!\ from odoo import exceptions, models from odoo.http import request
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 2, 1220, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 59, 198, 2, 5740, 326, 428, 318, 655, 257, 6291, 2438, 198, 2, 921, 761, 284, 751, 428, 2393, 287, 11593, 15003, 834, 13, 9078, 198, 2, 1220, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 11139, 0, 59, 628, 198, 6738, 16298, 2238, 1330, 13269, 11, 4981, 198, 6738, 16298, 2238, 13, 4023, 1330, 2581, 198 ]
2.43617
94
F = fib(10) # 运行到这里没有任何反映 # print(next(F)) for i in F: print(i) """ yield: 1. 保存运行状态-断点, 暂停执行将生成器挂起 2. 将yield后面表达式的值, 作为返回值返回 """ # 使用yield实现协程 import time if __name__ == '__main__': main()
[ 201, 198, 201, 198, 37, 796, 12900, 7, 940, 8, 220, 1303, 5525, 123, 238, 26193, 234, 26344, 108, 32573, 247, 34932, 234, 162, 110, 94, 17312, 231, 20015, 119, 19526, 243, 20998, 235, 23626, 254, 201, 198, 2, 3601, 7, 19545, 7, 37, 4008, 201, 198, 1640, 1312, 287, 376, 25, 201, 198, 220, 220, 220, 3601, 7, 72, 8, 201, 198, 201, 198, 37811, 201, 198, 88, 1164, 25, 201, 198, 16, 13, 220, 46479, 251, 27764, 246, 32573, 238, 26193, 234, 163, 232, 35050, 222, 223, 12, 23877, 255, 163, 224, 117, 11, 10545, 248, 224, 161, 223, 250, 33699, 100, 26193, 234, 49546, 37955, 22755, 238, 161, 247, 101, 162, 234, 224, 164, 113, 115, 201, 198, 17, 13, 10263, 108, 228, 88, 1164, 28938, 236, 165, 251, 95, 26193, 101, 164, 122, 122, 28156, 237, 21410, 161, 222, 120, 11, 220, 43291, 10310, 118, 32573, 242, 32368, 252, 161, 222, 120, 32573, 242, 32368, 252, 201, 198, 37811, 201, 198, 201, 198, 2, 220, 45635, 18796, 101, 88, 1164, 22522, 252, 163, 236, 108, 39355, 237, 163, 101, 233, 201, 198, 11748, 640, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 201, 198, 220, 220, 220, 1388, 3419, 201, 198 ]
1.050228
219
import os import json import cv2 import numpy as np import matplotlib.pyplot as plt import torch if __name__ == "__main__": # json file contains the test images test_json_path = './test.json' # the folder to output density map and flow maps output_folder = './plot' with open(test_json_path, 'r') as outfile: img_paths = json.load(outfile) for i in range(2): img_path = img_paths[i] img_folder = os.path.dirname(img_path) img_name = os.path.basename(img_path) index = int(img_name.split('.')[0]) prev_index = int(max(1,index-5)) prev_img_path = os.path.join(img_folder,'%03d.jpg'%(prev_index)) c_img = cv2.imread(img_path) c_img = cv2.resize(c_img, (640, 360)) c_prev_img = cv2.imread(prev_img_path) c_prev_img = cv2.resize(c_prev_img, (640, 360)) hsv = OptFlow(c_prev_img, c_img) rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) save_img = np.concatenate([c_prev_img, rgb], 0) cv2.imwrite('opticalflow/opticalflow_{}.png'.format(i), save_img)
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 28034, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 33918, 2393, 4909, 262, 1332, 4263, 198, 220, 220, 220, 1332, 62, 17752, 62, 6978, 796, 705, 19571, 9288, 13, 17752, 6, 628, 220, 220, 220, 1303, 262, 9483, 284, 5072, 12109, 3975, 290, 5202, 8739, 198, 220, 220, 220, 5072, 62, 43551, 796, 705, 19571, 29487, 6, 628, 220, 220, 220, 351, 1280, 7, 9288, 62, 17752, 62, 6978, 11, 705, 81, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 6978, 82, 796, 33918, 13, 2220, 7, 448, 7753, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 6978, 796, 33705, 62, 6978, 82, 58, 72, 60, 628, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 43551, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 9600, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 62, 3672, 796, 28686, 13, 6978, 13, 12093, 12453, 7, 9600, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 493, 7, 9600, 62, 3672, 13, 35312, 10786, 2637, 38381, 15, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 9630, 796, 493, 7, 9806, 7, 16, 11, 9630, 12, 20, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 9600, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 9600, 62, 43551, 4032, 4, 3070, 67, 13, 9479, 6, 4, 7, 47050, 62, 9630, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 269, 62, 9600, 796, 269, 85, 17, 13, 320, 961, 7, 9600, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 9600, 796, 269, 85, 17, 13, 411, 1096, 7, 66, 62, 9600, 11, 357, 31102, 11, 11470, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 269, 62, 47050, 62, 9600, 796, 269, 85, 17, 13, 320, 961, 7, 47050, 62, 9600, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 269, 62, 47050, 62, 9600, 796, 269, 85, 17, 13, 411, 1096, 7, 66, 62, 47050, 62, 9600, 11, 357, 31102, 11, 11470, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 289, 21370, 796, 13123, 37535, 7, 66, 62, 47050, 62, 9600, 11, 269, 62, 9600, 8, 628, 220, 220, 220, 220, 220, 220, 220, 46140, 796, 269, 85, 17, 13, 33967, 83, 10258, 7, 11994, 85, 11, 269, 85, 17, 13, 46786, 62, 7998, 53, 17, 33, 10761, 8, 628, 220, 220, 220, 220, 220, 220, 220, 3613, 62, 9600, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 66, 62, 47050, 62, 9600, 11, 46140, 4357, 657, 8, 628, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 13564, 10786, 8738, 605, 11125, 14, 8738, 605, 11125, 23330, 27422, 11134, 4458, 18982, 7, 72, 828, 3613, 62, 9600, 8, 198 ]
2.097701
522
from torch import nn from fairseq.modules import TransformerEncoderLayer, TransformerDecoderLayer class Perceptron(nn.Module): """ 1. 是否激活 通过是否有激活层来控制,最后一层都没有激活层 """ class LogisticModel(nn.Module): """ 两层感知机 """ def __init__(self, args, activation=None, dropout=0.1, contain_normalize=False, **unused): """ 如果Logistic是模型的最后一层,contain_normalize=True; 否则,设置为False""" super().__init__() self.layers = nn.Sequential( Perceptron(args.encoder_embed_dim, int(args.encoder_embed_dim / 2), drouput=dropout, activation=activation), Perceptron(int(args.encoder_embed_dim / 2), 1, drouput=dropout, activation=None) ) self.activation = None if contain_normalize: self.activation = nn.Sigmoid() """ TODO: AT Decoder """
[ 6738, 28034, 1330, 299, 77, 198, 198, 6738, 3148, 41068, 13, 18170, 1330, 3602, 16354, 27195, 12342, 49925, 11, 3602, 16354, 10707, 12342, 49925, 628, 198, 198, 4871, 2448, 984, 1313, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 352, 13, 10545, 246, 107, 28938, 99, 162, 123, 222, 162, 112, 119, 16268, 222, 248, 32573, 229, 42468, 28938, 99, 17312, 231, 162, 123, 222, 162, 112, 119, 161, 109, 224, 30266, 98, 162, 236, 100, 26344, 114, 171, 120, 234, 17312, 222, 28938, 236, 31660, 161, 109, 224, 32849, 121, 162, 110, 94, 17312, 231, 162, 123, 222, 162, 112, 119, 161, 109, 224, 198, 220, 220, 220, 37227, 628, 198, 4871, 5972, 2569, 17633, 7, 20471, 13, 26796, 2599, 198, 220, 220, 220, 37227, 220, 10310, 97, 161, 109, 224, 35707, 253, 163, 253, 98, 17312, 118, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 26498, 11, 14916, 28, 14202, 11, 4268, 448, 28, 15, 13, 16, 11, 3994, 62, 11265, 1096, 28, 25101, 11, 12429, 403, 1484, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10263, 99, 224, 162, 252, 250, 11187, 2569, 42468, 162, 101, 94, 161, 252, 233, 21410, 17312, 222, 28938, 236, 31660, 161, 109, 224, 171, 120, 234, 3642, 391, 62, 11265, 1096, 28, 17821, 26, 10263, 238, 99, 26344, 247, 171, 120, 234, 164, 106, 122, 163, 121, 106, 10310, 118, 25101, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 834, 15003, 834, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 75, 6962, 796, 299, 77, 13, 44015, 1843, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2448, 984, 1313, 7, 22046, 13, 12685, 12342, 62, 20521, 62, 27740, 11, 493, 7, 22046, 13, 12685, 12342, 62, 20521, 62, 27740, 1220, 362, 828, 288, 472, 1996, 28, 14781, 448, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 28, 48545, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2448, 984, 1313, 7, 600, 7, 22046, 13, 12685, 12342, 62, 20521, 62, 27740, 1220, 362, 828, 352, 11, 288, 472, 1996, 28, 14781, 448, 11, 14916, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48545, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3994, 62, 11265, 1096, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 48545, 796, 299, 77, 13, 50, 17225, 1868, 3419, 628, 198, 37811, 198, 51, 3727, 46, 25, 5161, 34580, 198, 37811, 628, 628, 628 ]
1.829741
464
# -*- coding: utf-8 -*- """ flatten a 2 dimensional list into a 1 dimension list by joining column items in a row into one item as single comma-separated string This is useful for preparing data for a CSV writer function which requires a 1-dimensional list of rows with no columns Alternatively, the join functional can be moved into the CSV writer so that the function can accept 2 dimensional lists """ list = [("A", "B", "C"), ("34", "32647", "43"), ("4556", "35235", "23623")] str = map(lambda x: ",".join(x), list) print str """ #output ['A,B,C', '34,32647,43', '4556,35235,23623'] """
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 27172, 268, 257, 362, 38517, 1351, 656, 257, 352, 15793, 1351, 198, 1525, 9679, 5721, 3709, 287, 257, 5752, 656, 530, 2378, 355, 2060, 39650, 12, 25512, 515, 4731, 198, 198, 1212, 318, 4465, 329, 10629, 1366, 329, 257, 44189, 6260, 2163, 543, 4433, 257, 352, 12, 19577, 1351, 286, 15274, 351, 645, 15180, 198, 44163, 11, 262, 4654, 10345, 460, 307, 3888, 656, 262, 44189, 6260, 523, 326, 262, 2163, 460, 2453, 362, 38517, 8341, 198, 198, 37811, 198, 198, 4868, 796, 685, 7203, 32, 1600, 366, 33, 1600, 366, 34, 12340, 5855, 2682, 1600, 366, 39195, 2857, 1600, 366, 3559, 12340, 5855, 2231, 3980, 1600, 366, 2327, 22370, 1600, 366, 24940, 1954, 4943, 60, 628, 198, 2536, 796, 3975, 7, 50033, 2124, 25, 366, 553, 13, 22179, 7, 87, 828, 1351, 8, 198, 198, 4798, 965, 198, 37811, 198, 2, 22915, 198, 17816, 32, 11, 33, 11, 34, 3256, 198, 6, 2682, 11, 39195, 2857, 11, 3559, 3256, 220, 198, 6, 2231, 3980, 11, 2327, 22370, 11, 24940, 1954, 20520, 198, 37811, 198 ]
3.147368
190
from __future__ import print_function, division from collections import OrderedDict as OD import itertools import os import unittest from astropy.io import fits # FITS file I/O from astropy.table import Table # Used in converting to pandas DataFrame import numpy as np import pandas as pd import NebulaBayes from NebulaBayes import NB_Model, __version__ from NebulaBayes.NB1_Process_grids import RegularGridResampler from NebulaBayes.NB3_Bayes import NB_nd_pdf """ Test suite to test NebulaBayes. Mostly functional and regression tests, with some unit tests as well. Works with Python 2 and Python 3. To run only a particular test, type (e.g.): python3 test_NB.py Test_real_data_with_dereddening This test suite can be run in-place in NebulaBayes/tests under the NebulaBayes installation directory (but use the correct python version for the installation location). Adam D. Thomas 2017 """ clean_up = True # Delete test output files after running? # Save test outputs in NebulaBayes/tests/test_outputs THIS_FILE_DIR = os.path.dirname(os.path.realpath(__file__)) TEST_DIR = os.path.join(THIS_FILE_DIR, "test_outputs") ############################################################################### # Helper functions def build_grid(param_range_dict, line_peaks_dict, n_gridpts_list, std_frac=0.25): """ Initialise a grid - create a pandas DataFrame table. Fluxes for each emission line form a Gaussian ball around a specified point. param_range_dict: Ordered dict mapping parameter names to a tuple giving the parameter minimum and maximum line_peaks_dict: Ordered dict mapping line names to the location (as a tuple) of the peak of the line flux in the grid, in gridpoint index coordinates (from zero) std_frac: Fraction of the range in each dimension used for the std n_gridpts_list is a list of the number of gridpoints in each dimension. """ param_names = list(param_range_dict.keys()) param_val_arrs = [np.linspace(r[0], r[1], n) for r,n in zip( param_range_dict.values(), n_gridpts_list)] line_names = list(line_peaks_dict.keys()) std = np.array([(r[1] - r[0]) * std_frac for r in param_range_dict.values()]) line_peak_vals = {} for line, peak_inds in line_peaks_dict.items(): line_peak = [] for p, peak_ind, val_arr in zip(param_names, peak_inds, param_val_arrs): p_min, dp = val_arr[0], np.diff(val_arr)[0] line_peak.append(p_min + peak_ind*dp) line_peak_vals[line] = line_peak # An ND list corresponding to peak_inds flux_fns = {} for l,peak_tuple in line_peaks_dict.items(): peak = np.array(line_peak_vals[l]) # ND vector flux_fns[l] = gaussian # Make DataFrame table: columns = param_names + line_names n_gridpts = np.product(n_gridpts_list) OD_for_DF = OD([(c, np.full(n_gridpts, np.nan)) for c in columns]) DF_grid = pd.DataFrame(OD_for_DF) # Iterate over rows, filling in the table for i, p_tuple in enumerate(itertools.product(*param_val_arrs)): # Add parameter values into their columns: for p,n in zip(p_tuple, param_names): DF_grid.loc[i,n] = p # Add "model" line fluxes into their columns: for l in line_names: DF_grid.loc[i,l] = flux_fns[l](np.array(p_tuple)) return DF_grid def extract_grid_fluxes_i(DF, p_name_ind_map, line_names): """ Extract emission line fluxes from a grid (represented as a DataFrame) by inputting gridpoint indices and taking the fluxes at the nearest gridpoint """ val_arrs = {p:np.unique(DF[p].values) for p in p_name_ind_map} assert len(DF) == np.product([len(v) for v in val_arrs.values()]) where = np.full(len(DF), 1, dtype=bool) for p,ind in p_name_ind_map.items(): where &= (DF.loc[:,p] == val_arrs[p][ind]) assert np.sum(where) == 1 return [DF[line].values[where][0] for line in line_names] ############################################################################### # Helper class class Base_2D_Grid_2_Lines(unittest.TestCase): """ Base class holding setup and cleanup methods to make a 2D grid with only 2 emission lines, and using a 2D Gaussian to make the grid. There are only two lines, but one has fluxes set to all 1 and is just for normalisation. """ params = ["p1", "p2"] param_range_dict = OD( [("p1", (-5, 3)), ("p2", (1.2e6, 15e6))] ) n_gridpts_list = (11, 9) # Number of gridpoints in each dimension interpd_shape = (50, 45) lines = ["L1", "L2"] # Line names line_peaks = [8, 5] # Gridpoint indices from zero @classmethod def setUpClass(cls): """ Make grid and run NebulaBayes to obtain the result object """ line_peaks_dict = OD([(l,cls.line_peaks) for l in cls.lines]) cls.DF = build_grid(cls.param_range_dict, line_peaks_dict, cls.n_gridpts_list) cls.val_arrs = OD([(p,np.unique(cls.DF[p].values)) for p in cls.params]) cls.DF.loc[:,"L1"] = 1. # We'll normalise by this line cls.grid_file = os.path.join(TEST_DIR, cls.__name__ + "_grid.csv") cls.DF.to_csv(cls.grid_file, index=False) cls.NB_Model_1 = NB_Model(cls.grid_file, cls.params, cls.lines, interpd_grid_shape=cls.interpd_shape) @classmethod def tearDownClass(cls): """ Remove the output when tests in this class have finished """ if clean_up: os.remove(cls.grid_file) if hasattr(cls, "posterior_plot"): os.remove(cls.posterior_plot) ############################################################################### class Test_Obs_from_Peak_Gridpoint_2D_Grid_2_Lines(Base_2D_Grid_2_Lines): """ Test for a grid from Base_2D_Grid_2_Lines: Take a gridpoint that is at the peak of the Gaussian ball of emission line fluxes, and check that treating these fluxes as observations leads to correct estimates from NebulaBayes. """ test_gridpoint = [8, 5] # From zero. [11, 9] total gridpoints in each dim @classmethod def test_parameter_estimates(self): """ Ensure the parameter estimates are as expected """ DF_est = self.Result.Posterior.DF_estimates self.assertTrue(all(p in DF_est.index for p in self.params)) # Tolerance for distance between gridpoint we chose and the estimate: grid_sep_frac = 0.1 # Allowed fraction of distance between gridpoints for p, test_ind in zip(self.params, self.test_gridpoint): tol = np.diff(self.val_arrs[p])[0] * grid_sep_frac value = self.val_arrs[p][test_ind] # Expected parameter value est = DF_est.loc[p, "Estimate"] # NebulaBayes estimate self.assertTrue(np.isclose(est, value, atol=tol)) def test_raw_Grid_spec(self): """ Ensure the raw grid spec is as expected """ RGrid_spec = self.NB_Model_1.Raw_grids self.assertEqual(RGrid_spec.param_names, self.params) self.assertEqual(RGrid_spec.ndim, len(self.params)) self.assertEqual(RGrid_spec.shape, self.n_gridpts_list) self.assertEqual(RGrid_spec.n_gridpoints, np.product(self.n_gridpts_list)) for a1, a2 in zip(RGrid_spec.param_values_arrs, self.val_arrs.values()): self.assertTrue(np.allclose(np.asarray(a1), np.asarray(a2))) def test_interpolated_Grid_spec(self): """ Ensure the interpolated grid spec is as expected """ IGrid_spec = self.Result.Grid_spec self.assertEqual(IGrid_spec.param_names, self.params) self.assertEqual(IGrid_spec.param_display_names, self.params) self.assertEqual(IGrid_spec.shape, tuple(self.interpd_shape)) self.assertEqual(IGrid_spec.n_gridpoints, np.product(self.interpd_shape)) @classmethod def tearDownClass(cls): """ Remove the output files when tests in this class have finished """ super(Test_Obs_from_Peak_Gridpoint_2D_Grid_2_Lines,cls).tearDownClass() if clean_up: files = [os.path.join(TEST_DIR, l + "_PDF_contributes_to_likelihood.pdf") for l in ["L1", "L2"]] for file_i in files: os.remove(file_i) ############################################################################### class Test_Obs_from_nonPeak_Gridpoint_2D_Grid_2_Lines(Base_2D_Grid_2_Lines): """ Test for a grid from Base_2D_Grid_2_Lines: Take a gridpoint that is NOT at the peak of the Gaussian ball of emission line fluxes. Note that we don't check the values in the posterior or parameter estimates - there isn't an obvious way to do this here. We also test that a numpy array prior is accepted. """ longMessage = True # Append messages to existing message test_gridpoint = [6, 4] # From zero. [11, 9] total gridpoints in each dim, # the line peak is at line_peaks = [8, 5] @classmethod def test_parameters_in_output(self): """ Check all parameters are found in output """ DF_est = self.Result.Posterior.DF_estimates self.assertTrue(all(p in DF_est.index for p in self.params)) # Posterior is shaped like a donut. Check for a single local min? ############################################################################### # Test the NebulaBayes ND linear interpolation ############################################################################### class Test_1D_grid_and_public_attributes(unittest.TestCase): """ Test that a 1D grid works and gives expected results. We use a gaussian 1D "grid", and input a point at the peak into NB to ensure NB finds the correct point. We also test that a DataFrame grid table is accepted. """ longMessage = True # Append messages to existing message @classmethod def test_parameter_estimate(self): """ Ensure the single parameter estimate is as expected """ DF_est = self.Result.Posterior.DF_estimates self.assertTrue("P0" in DF_est.index) lower = self.p_vals[self.test_gridpoint - 1] upper = self.p_vals[self.test_gridpoint + 1] est = DF_est.loc["P0", "Estimate"] self.assertTrue(lower < est < upper, msg="{0}, {1}, {2}".format( lower, est, upper)) def test_NB_Model_attributes(self): """ Check that the list of public attributes is what is documented """ public_attrs = sorted([a for a in dir(self.NB_Model_1) if not a.startswith("_")]) expected_attrs = ["Interpd_grids", "Raw_grids"] self.assertTrue(public_attrs == expected_attrs, msg=str(public_attrs)) def test_NB_Result_attributes(self): """ Check that the list of public attributes is what is documented """ public_attrs = sorted([a for a in dir(self.Result) if not a.startswith("_")]) expected_attrs = [ "DF_obs", "Grid_spec", "Likelihood", "Plot_Config", "Plotter", "Posterior", "Prior", "deredden", "obs_flux_arrs", "obs_flux_err_arrs", "propagate_dered_errors"] self.assertTrue(public_attrs == expected_attrs, msg=str(public_attrs)) def test_NB_nd_pdf_attributes(self): """ Check that the list of public attributes is what is documented """ public_attrs = sorted([a for a in dir(self.Result.Posterior) if not a.startswith("_")]) expected_attrs = sorted(["DF_estimates", "Grid_spec", "best_model", "marginalised_1D", "marginalised_2D", "name", "nd_pdf", "show"]) self.assertTrue(public_attrs == expected_attrs, msg=str(public_attrs)) def test_best_model_dict_keys(self): """ Check that the list of best model keys is what is documented """ expected_keys = sorted(["table", "chi2", "extinction_Av_mag", "grid_location"]) key_list = sorted(list(self.Result.Posterior.best_model.keys())) self.assertEqual(key_list, expected_keys) @classmethod def tearDownClass(cls): """ Remove the output when tests in this class have finished """ if clean_up: if hasattr(cls, "posterior_plot"): os.remove(cls.posterior_plot) if hasattr(cls, "best_model_table"): os.remove(cls.best_model_table) ############################################################################### class Test_default_initialisation(unittest.TestCase): """ Test that we can initialise fully default HII and NLR NB models """ ############################################################################### class Test_real_data_with_dereddening(unittest.TestCase): """ Test some real data, from the S7 nuclear spectrum for NGC4691, a star- forming galaxy. Include a line ratio prior and dereddening in NebulaBayes. Test saving plots for all 3 Bayes Theorem PDFs. """ longMessage = True # Append messages to existing message lines = ["OII3726_29", "Hgamma", "OIII4363", "Hbeta", "OIII5007", "NI5200", "OI6300", "Halpha", "NII6583", "SII6716", "SII6731"] obs_fluxes = [1.22496, 0.3991, 0.00298, 1.0, 0.44942, 0.00766, 0.02923, 4.25103, 1.65312, 0.45598, 0.41482] obs_errs = [0.00303, 0.00142, 0.00078, 0.0017, 0.0012, 0.00059, 0.00052, 0.00268, 0.00173, 0.00102, 0.00099] obs_wavelengths = [3727.3, 4340.5, 4363.2, 4861.3, 5006.8, 5200.3, 6300.3, 6562.8, 6583.2, 6716.4, 6730.8] @classmethod def test_parameter_estimates(self): """ Regression check on parameter estimates. """ ests = self.Result.Posterior.DF_estimates["Estimate"] # pandas Series self.assertTrue(np.isclose(ests["12 + log O/H"], 8.73615, atol=0.0001), msg=str(ests["12 + log O/H"])) self.assertTrue(np.isclose(ests["log P/k"], 6.82636, atol=0.0001), msg=str(ests["log P/k"])) self.assertTrue(np.isclose(ests["log U"], -2.84848, atol=0.0001), msg=str(ests["log U"])) def test_estimate_bounds_checks(self): """ Ensure that the "checking columns" in the estimate table are all showing that the estimates are good. """ DF = self.Result.Posterior.DF_estimates # Parameter estimate table for p in ["12 + log O/H", "log P/k", "log U"]: for col in ["Est_in_CI68?", "Est_in_CI95?"]: self.assertTrue(DF.loc[p,col] == "Y") for col in ["Est_at_lower?", "Est_at_upper?", "P(lower)>50%?", "P(upper)>50%?"]: self.assertTrue(DF.loc[p,col] == "N") self.assertTrue(DF.loc[p,"n_local_maxima"] == 1) def test_chi2(self): """ Regression check that chi2 doesn't change """ chi2 = self.Result.Posterior.best_model["chi2"] self.assertTrue(np.isclose(chi2, 2568.7, atol=0.2), msg=str(chi2)) def test_interp_order(self): """ Ensure the correct interpolation order (linear) is preserved """ self.assertTrue(self.NB_Model_1.Interpd_grids.interp_order == 1) def test_all_zero_prior(self): """ We permit an all-zero prior - check that it works (a warning should be printed). """ shape = self.NB_Model_1.Interpd_grids.shape self.Result1 = self.NB_Model_1(self.obs_fluxes, self.obs_errs, self.lines, prior=np.zeros(shape)) @classmethod def tearDownClass(cls): """ Remove the output files when tests in this class have finished """ if clean_up: files = [cls.prior_plot, cls.likelihood_plot, cls.posterior_plot, cls.estimate_table] for file_i in files: os.remove(file_i) ############################################################################### class Test_real_data_with_cubic_interpolation(unittest.TestCase): """ Very similar to the previous test class, but we use cubic interpolation instead of linear interpolation when interpolating model flux grids. We also test resetting the logging level after using the "verbosity" kwarg. """ longMessage = True # Append messages to existing message lines = ["OII3726_29", "Hgamma", "OIII4363", "Hbeta", "OIII5007", "NI5200", "OI6300", "Halpha", "NII6583", "SII6716", "SII6731"] obs_fluxes = [1.22496, 0.3991, 0.00298, 1.0, 0.44942, 0.00766, 0.02923, 4.25103, 1.65312, 0.45598, 0.41482] obs_errs = [0.00303, 0.00142, 0.00078, 0.0017, 0.0012, 0.00059, 0.00052, 0.00268, 0.00173, 0.00102, 0.00099] obs_wavelengths = [3727.3, 4340.5, 4363.2, 4861.3, 5006.8, 5200.3, 6300.3, 6562.8, 6583.2, 6716.4, 6730.8] @classmethod def test_parameter_estimates(self): """ Regression check on parameter estimates. Estimates for P and U are slightly different with the cubic interpolation. """ ests = self.Result.Posterior.DF_estimates["Estimate"] # pandas Series self.assertTrue(np.isclose(ests["12 + log O/H"], 8.73615, atol=0.0001), msg=str(ests["12 + log O/H"])) self.assertTrue(np.isclose(ests["log P/k"], 6.86047, atol=0.0001), msg=str(ests["log P/k"])) self.assertTrue(np.isclose(ests["log U"], -2.82828, atol=0.0001), msg=str(ests["log U"])) def test_chi2(self): """ Regression check that chi2 doesn't change """ chi2 = self.Result.Posterior.best_model["chi2"] self.assertTrue(np.isclose(chi2, 2522.7, atol=0.2), msg=str(chi2)) def test_interp_order(self): """ Ensure the correct interpolation order (cubic) is preserved """ self.assertTrue(self.NB_Model_1.Interpd_grids.interp_order == 3) def test_resetting_log_level(self): """ Ensure that after using the verbosity keyword, the NB_logger level is unchanged (i.e. was reset to its previous value) """ self.assertEqual(NebulaBayes.NB_logger.level, self.test_log_level) def test_dereddening_result_attributes(self): """Ensure dereddening attributes added to Result object.""" self.assertTrue(self.Result.deredden) self.assertTrue(self.Result.propagate_dered_errors) @classmethod def tearDownClass(cls): """ Remove output files when tests in this class have finished, and undo change to logging level. """ NebulaBayes.NB_logger.setLevel(cls.old_log_level) if clean_up: files = [cls.prior_plot, cls.likelihood_plot, cls.posterior_plot, cls.estimate_table] for file_i in files: os.remove(file_i) ############################################################################### class Test_upper_bounds_1D(unittest.TestCase): """ Test the treatment of upper bounds. We use a 1D grid. """ longMessage = True # Append messages to existing message lines = ["line1", "line2", "line3", "line4", "line5", "line6"] obs_fluxes = [ 1.0, 8.0, 10.2, -np.inf, -np.inf, -np.inf] obs_errs = [ 0.05, 0.3, 3.1, 0.3, 0.4, 0.2] pred_fluxes = [ 1.0, 5.0, 10.2, 0.1, 0.4, 0.4] # The pred_fluxes are at the "peak" of the grid, that we'll input to NB. @classmethod def test_parameter_estimates(self): """ Regression test - check the parameter estimate is as expected. """ DF_est = self.Result.Posterior.DF_estimates # DataFrame p0_est = DF_est.loc["p0", "Estimate"] self.assertTrue(np.isclose(p0_est, self.expected_p0, atol=1)) @classmethod def tearDownClass(cls): """ Remove the output files when tests in this class have finished """ if clean_up: files = [os.path.join(TEST_DIR, l + "_PDF_contributes_to_likelihood.pdf") for l in cls.lines] for file_i in files: os.remove(file_i) ############################################################################### class Test_all_zero_likelihood(unittest.TestCase): """ Test forcing a log_likelihood of all -inf, so the likelihood is all zero. """ longMessage = True # Append messages to existing message lines = ["Halpha", "Hbeta", "OIII4363", "OIII5007", "NII6583"] obs_fluxes = [ 1e250, 1, 1.2e250, 1.2e250, 1e250] obs_errs = [ 0.004, 1, 0.005, 0.003, 0.002] @classmethod def test_likelihood_all_zero(self): """ Regression test - check likelihood is all zero. """ likelihood = self.Result.Likelihood.nd_pdf self.assertTrue(np.all(likelihood == 0)) def test_posterior_all_zero(self): """ Regression test - check posterior is all zero. """ posterior = self.Result.Posterior.nd_pdf self.assertTrue(np.all(posterior == 0)) ############################################################################### class Test_data_that_matches_models_poorly(unittest.TestCase): """ Test inputting fluxes and errors that are very poorly fit by the entire model grid. In this case most of the likelihood is zero, and using a reasonable-ish prior gives a posterior that is zero everywhere. """ longMessage = True # Append messages to existing message lines = ["Halpha", "Hbeta", "OIII4363", "OIII5007", "NII6583"] obs_fluxes = [ 3.1, 1, 1.8, 5.1, 1.2] obs_errs = [ 0.01, 1, 0.01, 0.01, 0.01] # Note the very small errors @classmethod def test_likelihood_mostly_zero(self): """ Regression test - check likelihood is mostly zero. """ likelihood = self.Result.Likelihood.nd_pdf self.assertTrue(np.sum(likelihood != 0) < 65) def test_posterior_all_zero(self): """ Regression test - check posterior is all zero. """ posterior = self.Result.Posterior.nd_pdf self.assertTrue(np.all(posterior == 0)) ############################################################################### class Test_NB_nd_pdf(unittest.TestCase): """ Test the methods in the NB_nd_pdf class """ @classmethod # We want to test NB_nd_pdf attributes; some of "DF_estimates", "Grid_spec", # "best_model", marginalised_1D", "marginalised_2D", "name", "nd_pdf" # "best_model" keys: "table", "chi2", "extinction_Av_mag", "grid_location" def test_best_model_table(self): """ Check that a single table value matches the desired gridpoint. This test would fail on NebulaBayes 0.9.7 and earlier """ best_coords = (self.peak_ind_y, self.peak_ind_x) normed_grids = self.NB_Model_1.Interpd_grids.grids["Hbeta_norm"] model_OIII = normed_grids["OIII5007"][best_coords] DF_best = self.NB_nd_pdf_1.best_model["table"] table_model_OIII = DF_best.loc["OIII5007", "Model"] self.assertEqual(table_model_OIII, model_OIII) def test_marginalised_1D_pdf(self): """ Check that the marginalised 1D pdfs are as expected """ m_1D = self.NB_nd_pdf_1.marginalised_1D self.assertEqual(len(m_1D), 2) # Scale the pdfs to compare despite the m_1D PDFs being normalised m_1D["log U"] /= m_1D["log U"].max() m_1D["12 + log O/H"] /= m_1D["12 + log O/H"].max() expected_x_pdf = self.marginalised_x / self.marginalised_x.max() expected_y_pdf = self.marginalised_y / self.marginalised_y.max() self.assertTrue(np.allclose(m_1D["log U"], expected_x_pdf, atol=1e-12, rtol=0)) self.assertTrue(np.allclose(m_1D["12 + log O/H"], expected_y_pdf, atol=1e-12, rtol=0)) # May have swapped x and y, but it's all symmetric anyway... def test_nd_pdf(self): """ Check that the normalised nd_pdf matches the input raw nd_pdf. We avoid doing a proper normalisation by comparing with a simple scaling. """ pdf = self.NB_nd_pdf_1.nd_pdf scaled_raw_nd_pdf = self.raw_pdf / self.raw_pdf.max() self.assertTrue(np.array_equal(pdf / pdf.max(), scaled_raw_nd_pdf)) ############################################################################### class Test_dereddening_changes_results(unittest.TestCase): """ Test that using dereddening changes all three PDFs (when obs data are used in the prior). There previously was a bug where the obs data in the line ratio priors weren't dereddened. Also test that PDFs change when errors from the Balmer decrement are propagated into the dereddened line fluxes. """ @classmethod def test_priors_differ(self): """ Check that dereddened data was used in line ratio prior, when requested. This test fails on NebulaBayes 0.9.7 """ pdf_dered1 = self.Result_dered1.Prior.nd_pdf pdf_nodered = self.Result_nodered.Prior.nd_pdf max_diff1 = np.max(np.abs(pdf_dered1 - pdf_nodered)) self.assertTrue(max_diff1 > 0.01, str(max_diff1)) # Test uncertainty propagation has an effect pdf_dered2 = self.Result_dered2.Prior.nd_pdf max_diff_u = np.max(np.abs(pdf_dered1 - pdf_dered2)) self.assertTrue(max_diff_u > 0.01, str(max_diff_u)) def test_propagate_dered_errors(self): """Check propagate_dered_errors values on Result object""" # Checks default value of False self.assertFalse(self.Result_dered1.propagate_dered_errors) self.assertTrue(self.Result_dered2.propagate_dered_errors) ############################################################################### class Test_likelihood_lines_keyword(unittest.TestCase): """ Test inputting fluxes and errors that aren't used in the likelihood, and test that these lines may be used in a prior. """ longMessage = True # Append messages to existing message lines = ["Halpha", "Hbeta", "OIII4363", "OIII5007", "NII6583"] obs_fluxes = [ 3.1, 1, 1.8, 5.1, 1.2] obs_errs = [ 0.01, 1, 0.01, 0.01, 0.01] exclude_lines = ["Halpha", "OIII5007"] @classmethod def test_non_likelihood_lines_in_best_model_table(self): """ Regression test - lines not included in likelihood calculation should still appear in the "best model" table. """ self.assertTrue(all(l in self.DF_best.index for l in self.exclude_lines)) def test_best_model_table_fields(self): """ Regression test - check fields of best model table (we test for the case of no dereddening; field names are different with dereddening). """ correct_fields = ["In_lhood?", "Obs", "Model", "Resid_Stds", "Obs_S/N"] t_fields = self.DF_best.columns.tolist() self.assertTrue(t_fields == correct_fields, t_fields) def test_In_lhood_field_in_best_model_table(self): """ Regression test - the "In_lhood?" field in the best model table should correctly identify if a line was used in the likelihood. """ correct = [("N" if l in self.exclude_lines else "Y") for l in self.lines] self.assertTrue(self.DF_best["In_lhood?"].values.tolist() == correct) def test_permuting_input_line_order(self): """ Regression test - the order of the input lines should not affect the results. There was a real bug introduced with the "likelihood_lines" feature - this test fails on NB version 0.9.6 and 0.9.7! """ n = len(self.lines) for i, ind_tuple in enumerate(itertools.permutations(range(n))): # There are 5! = 120 permutations, so only check one in five: if i % 5 != 2: continue obs_fluxes = [self.obs_fluxes[j] for j in ind_tuple] obs_errs = [self.obs_errs[j] for j in ind_tuple] lines = [self.lines[j] for j in ind_tuple] Result_i = self.NB_Model_1(obs_fluxes, obs_errs, lines, likelihood_lines=self.likelihood_lines, **self.kwargs) P_i = Result_i.Posterior estimate_Z_i = P_i.DF_estimates.loc["12 + log O/H", "Estimate"] self.assertEqual(estimate_Z_i, self.estimate_Z) ############################################################################### class Test_raising_errors(unittest.TestCase): """ Test raising errors on bad inputs """ @classmethod def test_bad_grid_parameter_with_too_few_unique_values(self): """ Test correct error is raised if there are too few unique values for a grid parameter. """ DF = pd.DataFrame({"p1": [4, 4, 4, 4], "p2": [1, 2, 3, 4], "l2": [5, 6, 7, 8]}) self.assertRaisesRE(ValueError, "3 unique values are required", NB_Model, DF, ["p1", "p2"]) ############################################################################### def interactive_plot_tests(): """ This function needs to be called manually to test the interactive plotting. from test_NB import interactive_plot_tests interactive_plot_tests() """ lines = ["OII3726_29", "Hgamma", "OIII4363", "Hbeta", "OIII5007", "NI5200", "OI6300", "Halpha", "NII6583", "SII6716", "SII6731"] obs_fluxes = [1.22496, 0.3991, 0.00298, 1.0, 0.44942, 0.00766, 0.02923, 4.25103, 1.65312, 0.45598, 0.41482] obs_errs = [0.00303, 0.00142, 0.00078, 0.0017, 0.0012, 0.00059, 0.00052, 0.00268, 0.00173, 0.00102, 0.00099] obs_wavelengths = [3727.3, 4340.5, 4363.2, 4861.3, 5006.8, 5200.3, 6300.3, 6562.8, 6583.2, 6716.4, 6730.8] NB_Model_1 = NB_Model("HII", grid_params=None, line_list=lines, interpd_grid_shape=[50, 70, 50], grid_error=0.35) kwargs = {"deredden": True, "propagate_dered_errors": True, "obs_wavelengths": obs_wavelengths, "prior":[("SII6716","SII6731")], "plot_configs": [{"table_on_plot": True, "legend_fontsize": 5}]*4, } Result = NB_Model_1(obs_fluxes, obs_errs, lines, **kwargs) # Test both ways to make an interactive plot Result.Plotter.interactive(Result.Posterior) Result.Prior.show(Result.Plotter) ############################################################################### # Ideas for more tests: # Check that parameter estimates are inside the CIs, and check the flags for this # Test normalising to different lines repeatedly, and checking that the # unnecessary interpolated grids are deleted. # Check coverage of the code, to see what isn't being run? if __name__ == "__main__": print("\nTesting NebulaBayes version {0} ...\n".format(__version__)) unittest.main(verbosity=2)
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 355, 31245, 198, 11748, 340, 861, 10141, 198, 11748, 28686, 198, 11748, 555, 715, 395, 198, 198, 6738, 6468, 28338, 13, 952, 1330, 11414, 220, 1303, 376, 29722, 2393, 314, 14, 46, 198, 6738, 6468, 28338, 13, 11487, 1330, 8655, 220, 1303, 16718, 287, 23202, 284, 19798, 292, 6060, 19778, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 11748, 46915, 15262, 274, 198, 6738, 46915, 15262, 274, 1330, 41354, 62, 17633, 11, 11593, 9641, 834, 198, 6738, 46915, 15262, 274, 13, 32819, 16, 62, 18709, 62, 2164, 2340, 1330, 23603, 41339, 4965, 321, 20053, 198, 6738, 46915, 15262, 274, 13, 32819, 18, 62, 15262, 274, 1330, 41354, 62, 358, 62, 12315, 628, 198, 198, 37811, 198, 14402, 18389, 284, 1332, 46915, 15262, 274, 13, 220, 33495, 10345, 290, 20683, 5254, 11, 351, 198, 11246, 4326, 5254, 355, 880, 13, 198, 198, 23044, 351, 11361, 362, 290, 11361, 513, 13, 198, 198, 2514, 1057, 691, 257, 1948, 1332, 11, 2099, 357, 68, 13, 70, 47308, 198, 29412, 18, 1332, 62, 32819, 13, 9078, 6208, 62, 5305, 62, 7890, 62, 4480, 62, 67, 1068, 67, 3101, 198, 198, 1212, 1332, 18389, 460, 307, 1057, 287, 12, 5372, 287, 46915, 15262, 274, 14, 41989, 739, 262, 46915, 15262, 274, 198, 17350, 341, 8619, 357, 4360, 779, 262, 3376, 21015, 2196, 329, 262, 198, 17350, 341, 4067, 737, 198, 198, 23159, 360, 13, 5658, 2177, 198, 37811, 198, 198, 27773, 62, 929, 796, 6407, 220, 1303, 23520, 1332, 5072, 3696, 706, 2491, 30, 198, 198, 2, 12793, 1332, 23862, 287, 46915, 15262, 274, 14, 41989, 14, 9288, 62, 22915, 82, 198, 43559, 62, 25664, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 51, 6465, 62, 34720, 796, 28686, 13, 6978, 13, 22179, 7, 43559, 62, 25664, 62, 34720, 11, 366, 9288, 62, 22915, 82, 4943, 628, 628, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 5053, 525, 5499, 198, 4299, 1382, 62, 25928, 7, 17143, 62, 9521, 62, 11600, 11, 1627, 62, 431, 4730, 62, 11600, 11, 299, 62, 25928, 457, 82, 62, 4868, 11, 14367, 62, 31944, 28, 15, 13, 1495, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20768, 786, 257, 10706, 532, 2251, 257, 19798, 292, 6060, 19778, 3084, 13, 220, 1610, 2821, 274, 329, 1123, 198, 220, 220, 220, 25592, 1627, 1296, 257, 12822, 31562, 2613, 1088, 257, 7368, 966, 13, 198, 220, 220, 220, 5772, 62, 9521, 62, 11600, 25, 14230, 1068, 8633, 16855, 11507, 3891, 284, 257, 46545, 3501, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 11507, 5288, 290, 5415, 198, 220, 220, 220, 1627, 62, 431, 4730, 62, 11600, 25, 14230, 1068, 8633, 16855, 1627, 3891, 284, 262, 4067, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 292, 257, 46545, 8, 286, 262, 9103, 286, 262, 1627, 28462, 287, 262, 10706, 11, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 4122, 6376, 22715, 357, 6738, 6632, 8, 198, 220, 220, 220, 14367, 62, 31944, 25, 220, 376, 7861, 286, 262, 2837, 287, 1123, 15793, 973, 329, 262, 14367, 198, 220, 220, 220, 299, 62, 25928, 457, 82, 62, 4868, 318, 257, 1351, 286, 262, 1271, 286, 10706, 13033, 287, 1123, 15793, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5772, 62, 14933, 796, 1351, 7, 17143, 62, 9521, 62, 11600, 13, 13083, 28955, 198, 220, 220, 220, 5772, 62, 2100, 62, 3258, 82, 796, 685, 37659, 13, 21602, 10223, 7, 81, 58, 15, 4357, 374, 58, 16, 4357, 299, 8, 329, 374, 11, 77, 287, 19974, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5772, 62, 9521, 62, 11600, 13, 27160, 22784, 299, 62, 25928, 457, 82, 62, 4868, 15437, 198, 220, 220, 220, 1627, 62, 14933, 796, 1351, 7, 1370, 62, 431, 4730, 62, 11600, 13, 13083, 28955, 198, 220, 220, 220, 14367, 796, 45941, 13, 18747, 26933, 7, 81, 58, 16, 60, 532, 374, 58, 15, 12962, 1635, 14367, 62, 31944, 329, 374, 287, 5772, 62, 9521, 62, 11600, 13, 27160, 3419, 12962, 628, 220, 220, 220, 1627, 62, 36729, 62, 12786, 796, 23884, 198, 220, 220, 220, 329, 1627, 11, 9103, 62, 521, 82, 287, 1627, 62, 431, 4730, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 36729, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 11, 9103, 62, 521, 11, 1188, 62, 3258, 287, 19974, 7, 17143, 62, 14933, 11, 9103, 62, 521, 82, 11, 5772, 62, 2100, 62, 3258, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 62, 1084, 11, 288, 79, 796, 1188, 62, 3258, 58, 15, 4357, 45941, 13, 26069, 7, 2100, 62, 3258, 38381, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 36729, 13, 33295, 7, 79, 62, 1084, 1343, 9103, 62, 521, 9, 26059, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 36729, 62, 12786, 58, 1370, 60, 796, 1627, 62, 36729, 220, 1303, 1052, 25524, 1351, 11188, 284, 9103, 62, 521, 82, 628, 220, 220, 220, 28462, 62, 69, 5907, 796, 23884, 198, 220, 220, 220, 329, 300, 11, 36729, 62, 83, 29291, 287, 1627, 62, 431, 4730, 62, 11600, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 9103, 796, 45941, 13, 18747, 7, 1370, 62, 36729, 62, 12786, 58, 75, 12962, 220, 1303, 25524, 15879, 198, 220, 220, 220, 220, 220, 220, 220, 28462, 62, 69, 5907, 58, 75, 60, 796, 31986, 31562, 628, 220, 220, 220, 1303, 6889, 6060, 19778, 3084, 25, 198, 220, 220, 220, 15180, 796, 5772, 62, 14933, 1343, 1627, 62, 14933, 198, 220, 220, 220, 299, 62, 25928, 457, 82, 796, 45941, 13, 11167, 7, 77, 62, 25928, 457, 82, 62, 4868, 8, 198, 220, 220, 220, 31245, 62, 1640, 62, 8068, 796, 31245, 26933, 7, 66, 11, 45941, 13, 12853, 7, 77, 62, 25928, 457, 82, 11, 45941, 13, 12647, 4008, 329, 269, 287, 15180, 12962, 198, 220, 220, 220, 36323, 62, 25928, 796, 279, 67, 13, 6601, 19778, 7, 3727, 62, 1640, 62, 8068, 8, 628, 220, 220, 220, 1303, 40806, 378, 625, 15274, 11, 12591, 287, 262, 3084, 198, 220, 220, 220, 329, 1312, 11, 279, 62, 83, 29291, 287, 27056, 378, 7, 270, 861, 10141, 13, 11167, 46491, 17143, 62, 2100, 62, 3258, 82, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 11507, 3815, 656, 511, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 11, 77, 287, 19974, 7, 79, 62, 83, 29291, 11, 5772, 62, 14933, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 25928, 13, 17946, 58, 72, 11, 77, 60, 796, 279, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 366, 19849, 1, 1627, 28462, 274, 656, 511, 15180, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 300, 287, 1627, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 25928, 13, 17946, 58, 72, 11, 75, 60, 796, 28462, 62, 69, 5907, 58, 75, 16151, 37659, 13, 18747, 7, 79, 62, 83, 29291, 4008, 628, 220, 220, 220, 1441, 36323, 62, 25928, 628, 198, 198, 4299, 7925, 62, 25928, 62, 69, 22564, 274, 62, 72, 7, 8068, 11, 279, 62, 3672, 62, 521, 62, 8899, 11, 1627, 62, 14933, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 29677, 25592, 1627, 28462, 274, 422, 257, 10706, 357, 33469, 355, 257, 6060, 19778, 8, 416, 198, 220, 220, 220, 5128, 889, 10706, 4122, 36525, 290, 2263, 262, 28462, 274, 379, 262, 16936, 10706, 4122, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1188, 62, 3258, 82, 796, 1391, 79, 25, 37659, 13, 34642, 7, 8068, 58, 79, 4083, 27160, 8, 329, 279, 287, 279, 62, 3672, 62, 521, 62, 8899, 92, 198, 220, 220, 220, 6818, 18896, 7, 8068, 8, 6624, 45941, 13, 11167, 26933, 11925, 7, 85, 8, 329, 410, 287, 1188, 62, 3258, 82, 13, 27160, 3419, 12962, 198, 220, 220, 220, 810, 796, 45941, 13, 12853, 7, 11925, 7, 8068, 828, 352, 11, 288, 4906, 28, 30388, 8, 198, 220, 220, 220, 329, 279, 11, 521, 287, 279, 62, 3672, 62, 521, 62, 8899, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 810, 1222, 28, 357, 8068, 13, 17946, 58, 45299, 79, 60, 6624, 1188, 62, 3258, 82, 58, 79, 7131, 521, 12962, 198, 220, 220, 220, 6818, 45941, 13, 16345, 7, 3003, 8, 6624, 352, 628, 220, 220, 220, 1441, 685, 8068, 58, 1370, 4083, 27160, 58, 3003, 7131, 15, 60, 329, 1627, 287, 1627, 62, 14933, 60, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 2, 5053, 525, 1398, 198, 4871, 7308, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7308, 1398, 4769, 9058, 290, 27425, 5050, 284, 787, 257, 362, 35, 10706, 351, 691, 362, 198, 220, 220, 220, 25592, 3951, 11, 290, 1262, 257, 362, 35, 12822, 31562, 284, 787, 262, 10706, 13, 220, 1318, 389, 691, 198, 220, 220, 220, 734, 3951, 11, 475, 530, 468, 28462, 274, 900, 284, 477, 352, 290, 318, 655, 329, 3487, 5612, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42287, 796, 14631, 79, 16, 1600, 366, 79, 17, 8973, 198, 220, 220, 220, 5772, 62, 9521, 62, 11600, 796, 31245, 7, 685, 7203, 79, 16, 1600, 13841, 20, 11, 513, 36911, 5855, 79, 17, 1600, 357, 16, 13, 17, 68, 21, 11, 1315, 68, 21, 4008, 60, 1267, 198, 220, 220, 220, 299, 62, 25928, 457, 82, 62, 4868, 796, 357, 1157, 11, 860, 8, 1303, 7913, 286, 10706, 13033, 287, 1123, 15793, 198, 220, 220, 220, 987, 30094, 62, 43358, 796, 357, 1120, 11, 4153, 8, 198, 220, 220, 220, 3951, 796, 14631, 43, 16, 1600, 366, 43, 17, 8973, 1303, 6910, 3891, 198, 220, 220, 220, 1627, 62, 431, 4730, 796, 685, 23, 11, 642, 60, 220, 1303, 24846, 4122, 36525, 422, 6632, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 900, 4933, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6889, 10706, 290, 1057, 46915, 15262, 274, 284, 7330, 262, 1255, 2134, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 431, 4730, 62, 11600, 796, 31245, 26933, 7, 75, 11, 565, 82, 13, 1370, 62, 431, 4730, 8, 329, 300, 287, 537, 82, 13, 6615, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 8068, 796, 1382, 62, 25928, 7, 565, 82, 13, 17143, 62, 9521, 62, 11600, 11, 1627, 62, 431, 4730, 62, 11600, 11, 537, 82, 13, 77, 62, 25928, 457, 82, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 2100, 62, 3258, 82, 796, 31245, 26933, 7, 79, 11, 37659, 13, 34642, 7, 565, 82, 13, 8068, 58, 79, 4083, 27160, 4008, 329, 279, 287, 537, 82, 13, 37266, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 8068, 13, 17946, 58, 25, 553, 43, 16, 8973, 796, 352, 13, 220, 1303, 775, 1183, 3487, 786, 416, 428, 1627, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 25928, 62, 7753, 796, 28686, 13, 6978, 13, 22179, 7, 51, 6465, 62, 34720, 11, 537, 82, 13, 834, 3672, 834, 1343, 45434, 25928, 13, 40664, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 8068, 13, 1462, 62, 40664, 7, 565, 82, 13, 25928, 62, 7753, 11, 6376, 28, 25101, 8, 628, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 32819, 62, 17633, 62, 16, 796, 41354, 62, 17633, 7, 565, 82, 13, 25928, 62, 7753, 11, 537, 82, 13, 37266, 11, 537, 82, 13, 6615, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 30094, 62, 25928, 62, 43358, 28, 565, 82, 13, 3849, 30094, 62, 43358, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 5072, 618, 5254, 287, 428, 1398, 423, 5201, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 565, 82, 13, 25928, 62, 7753, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 565, 82, 11, 366, 79, 6197, 1504, 62, 29487, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 565, 82, 13, 79, 6197, 1504, 62, 29487, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 31310, 62, 6738, 62, 6435, 461, 62, 41339, 4122, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 7, 14881, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 329, 257, 10706, 422, 7308, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 25, 220, 7214, 257, 10706, 4122, 326, 318, 379, 198, 220, 220, 220, 262, 9103, 286, 262, 12822, 31562, 2613, 286, 25592, 1627, 28462, 274, 11, 290, 2198, 326, 198, 220, 220, 220, 13622, 777, 28462, 274, 355, 13050, 5983, 284, 3376, 7746, 422, 198, 220, 220, 220, 46915, 15262, 274, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1332, 62, 25928, 4122, 796, 685, 23, 11, 642, 60, 220, 1303, 3574, 6632, 13, 220, 685, 1157, 11, 860, 60, 2472, 10706, 13033, 287, 1123, 5391, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 2357, 62, 395, 26748, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 262, 11507, 7746, 389, 355, 2938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 395, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 439, 7, 79, 287, 36323, 62, 395, 13, 9630, 329, 279, 287, 2116, 13, 37266, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 309, 37668, 329, 5253, 1022, 10706, 4122, 356, 7690, 290, 262, 8636, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 325, 79, 62, 31944, 796, 657, 13, 16, 220, 1303, 1439, 6972, 13390, 286, 5253, 1022, 10706, 13033, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 11, 1332, 62, 521, 287, 19974, 7, 944, 13, 37266, 11, 2116, 13, 9288, 62, 25928, 4122, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 75, 796, 45941, 13, 26069, 7, 944, 13, 2100, 62, 3258, 82, 58, 79, 12962, 58, 15, 60, 1635, 10706, 62, 325, 79, 62, 31944, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 2100, 62, 3258, 82, 58, 79, 7131, 9288, 62, 521, 60, 220, 1303, 1475, 7254, 11507, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1556, 796, 36323, 62, 395, 13, 17946, 58, 79, 11, 366, 22362, 1920, 8973, 220, 1303, 46915, 15262, 274, 8636, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 395, 11, 1988, 11, 379, 349, 28, 83, 349, 4008, 628, 220, 220, 220, 825, 1332, 62, 1831, 62, 41339, 62, 16684, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 262, 8246, 10706, 1020, 318, 355, 2938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34359, 6058, 62, 16684, 796, 2116, 13, 32819, 62, 17633, 62, 16, 13, 27369, 62, 2164, 2340, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 49, 41339, 62, 16684, 13, 17143, 62, 14933, 11, 2116, 13, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 49, 41339, 62, 16684, 13, 358, 320, 11, 18896, 7, 944, 13, 37266, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 49, 41339, 62, 16684, 13, 43358, 11, 2116, 13, 77, 62, 25928, 457, 82, 62, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 49, 41339, 62, 16684, 13, 77, 62, 25928, 13033, 11, 45941, 13, 11167, 7, 944, 13, 77, 62, 25928, 457, 82, 62, 4868, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 329, 257, 16, 11, 257, 17, 287, 19974, 7, 49, 41339, 62, 16684, 13, 17143, 62, 27160, 62, 3258, 82, 11, 2116, 13, 2100, 62, 3258, 82, 13, 27160, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 19836, 7, 37659, 13, 292, 18747, 7, 64, 16, 828, 45941, 13, 292, 18747, 7, 64, 17, 22305, 628, 220, 220, 220, 825, 1332, 62, 3849, 16104, 515, 62, 41339, 62, 16684, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 262, 39555, 515, 10706, 1020, 318, 355, 2938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 35336, 6058, 62, 16684, 796, 2116, 13, 23004, 13, 41339, 62, 16684, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3528, 6058, 62, 16684, 13, 17143, 62, 14933, 11, 2116, 13, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3528, 6058, 62, 16684, 13, 17143, 62, 13812, 62, 14933, 11, 2116, 13, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3528, 6058, 62, 16684, 13, 43358, 11, 46545, 7, 944, 13, 3849, 30094, 62, 43358, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3528, 6058, 62, 16684, 13, 77, 62, 25928, 13033, 11, 45941, 13, 11167, 7, 944, 13, 3849, 30094, 62, 43358, 4008, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 5072, 3696, 618, 5254, 287, 428, 1398, 423, 5201, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 7, 14402, 62, 31310, 62, 6738, 62, 6435, 461, 62, 41339, 4122, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 11, 565, 82, 737, 83, 451, 8048, 9487, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 685, 418, 13, 6978, 13, 22179, 7, 51, 6465, 62, 34720, 11, 300, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 20456, 62, 3642, 7657, 62, 1462, 62, 2339, 11935, 13, 12315, 4943, 329, 300, 287, 14631, 43, 16, 1600, 366, 43, 17, 8973, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 72, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 7753, 62, 72, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 31310, 62, 6738, 62, 13159, 6435, 461, 62, 41339, 4122, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 7, 14881, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 329, 257, 10706, 422, 7308, 62, 17, 35, 62, 41339, 62, 17, 62, 43, 1127, 25, 220, 7214, 257, 10706, 4122, 326, 318, 5626, 379, 198, 220, 220, 220, 262, 9103, 286, 262, 12822, 31562, 2613, 286, 25592, 1627, 28462, 274, 13, 198, 220, 220, 220, 5740, 326, 356, 836, 470, 2198, 262, 3815, 287, 262, 34319, 393, 11507, 198, 220, 220, 220, 7746, 532, 612, 2125, 470, 281, 3489, 835, 284, 466, 428, 994, 13, 198, 220, 220, 220, 775, 635, 1332, 326, 257, 299, 32152, 7177, 3161, 318, 6292, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 198, 220, 220, 220, 1332, 62, 25928, 4122, 796, 685, 21, 11, 604, 60, 220, 1303, 3574, 6632, 13, 220, 685, 1157, 11, 860, 60, 2472, 10706, 13033, 287, 1123, 5391, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1627, 9103, 318, 379, 1627, 62, 431, 4730, 796, 685, 23, 11, 642, 60, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 7307, 62, 259, 62, 22915, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 477, 10007, 389, 1043, 287, 5072, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 395, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 439, 7, 79, 287, 36323, 62, 395, 13, 9630, 329, 279, 287, 2116, 13, 37266, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44996, 1504, 318, 14292, 588, 257, 836, 315, 13, 220, 6822, 329, 257, 2060, 1957, 949, 30, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 2, 6208, 262, 46915, 15262, 274, 25524, 14174, 39555, 341, 628, 628, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 16, 35, 62, 25928, 62, 392, 62, 11377, 62, 1078, 7657, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 326, 257, 352, 35, 10706, 2499, 290, 3607, 2938, 2482, 13, 198, 220, 220, 220, 775, 779, 257, 31986, 31562, 352, 35, 366, 25928, 1600, 290, 5128, 257, 966, 379, 262, 9103, 656, 41354, 284, 198, 220, 220, 220, 4155, 41354, 7228, 262, 3376, 966, 13, 198, 220, 220, 220, 775, 635, 1332, 326, 257, 6060, 19778, 10706, 3084, 318, 6292, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 2357, 62, 395, 1920, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 48987, 262, 2060, 11507, 8636, 318, 355, 2938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 395, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7203, 47, 15, 1, 287, 36323, 62, 395, 13, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2793, 796, 2116, 13, 79, 62, 12786, 58, 944, 13, 9288, 62, 25928, 4122, 532, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 6727, 796, 2116, 13, 79, 62, 12786, 58, 944, 13, 9288, 62, 25928, 4122, 1343, 352, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1556, 796, 36323, 62, 395, 13, 17946, 14692, 47, 15, 1600, 366, 22362, 1920, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 21037, 1279, 1556, 1279, 6727, 11, 31456, 2625, 90, 15, 5512, 1391, 16, 5512, 1391, 17, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2793, 11, 1556, 11, 6727, 4008, 628, 220, 220, 220, 825, 1332, 62, 32819, 62, 17633, 62, 1078, 7657, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 1351, 286, 1171, 12608, 318, 644, 318, 12395, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 1078, 3808, 796, 23243, 26933, 64, 329, 257, 287, 26672, 7, 944, 13, 32819, 62, 17633, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 257, 13, 9688, 2032, 342, 7203, 62, 4943, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 1078, 3808, 796, 14631, 9492, 30094, 62, 2164, 2340, 1600, 366, 27369, 62, 2164, 2340, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 11377, 62, 1078, 3808, 6624, 2938, 62, 1078, 3808, 11, 31456, 28, 2536, 7, 11377, 62, 1078, 3808, 4008, 628, 220, 220, 220, 825, 1332, 62, 32819, 62, 23004, 62, 1078, 7657, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 1351, 286, 1171, 12608, 318, 644, 318, 12395, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 1078, 3808, 796, 23243, 26933, 64, 329, 257, 287, 26672, 7, 944, 13, 23004, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 257, 13, 9688, 2032, 342, 7203, 62, 4943, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 1078, 3808, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8068, 62, 8158, 1600, 366, 41339, 62, 16684, 1600, 366, 7594, 11935, 1600, 366, 43328, 62, 16934, 1600, 366, 43328, 353, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 6197, 1504, 1600, 366, 22442, 1600, 366, 67, 1068, 6559, 1600, 366, 8158, 62, 69, 22564, 62, 3258, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8158, 62, 69, 22564, 62, 8056, 62, 3258, 82, 1600, 366, 22930, 37861, 62, 67, 1068, 62, 48277, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 11377, 62, 1078, 3808, 6624, 2938, 62, 1078, 3808, 11, 31456, 28, 2536, 7, 11377, 62, 1078, 3808, 4008, 628, 220, 220, 220, 825, 1332, 62, 32819, 62, 358, 62, 12315, 62, 1078, 7657, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 1351, 286, 1171, 12608, 318, 644, 318, 12395, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1171, 62, 1078, 3808, 796, 23243, 26933, 64, 329, 257, 287, 26672, 7, 944, 13, 23004, 13, 47, 6197, 1504, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 257, 13, 9688, 2032, 342, 7203, 62, 4943, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 1078, 3808, 796, 23243, 7, 14692, 8068, 62, 395, 26748, 1600, 366, 41339, 62, 16684, 1600, 366, 13466, 62, 19849, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30887, 1292, 1417, 62, 16, 35, 1600, 366, 30887, 1292, 1417, 62, 17, 35, 1600, 366, 3672, 1600, 366, 358, 62, 12315, 1600, 366, 12860, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 11377, 62, 1078, 3808, 6624, 2938, 62, 1078, 3808, 11, 31456, 28, 2536, 7, 11377, 62, 1078, 3808, 4008, 628, 220, 220, 220, 825, 1332, 62, 13466, 62, 19849, 62, 11600, 62, 13083, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 1351, 286, 1266, 2746, 8251, 318, 644, 318, 12395, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 13083, 796, 23243, 7, 14692, 11487, 1600, 366, 11072, 17, 1600, 366, 2302, 9438, 62, 7355, 62, 19726, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 25928, 62, 24886, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1994, 62, 4868, 796, 23243, 7, 4868, 7, 944, 13, 23004, 13, 47, 6197, 1504, 13, 13466, 62, 19849, 13, 13083, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 2539, 62, 4868, 11, 2938, 62, 13083, 8, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 5072, 618, 5254, 287, 428, 1398, 423, 5201, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 565, 82, 11, 366, 79, 6197, 1504, 62, 29487, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 565, 82, 13, 79, 6197, 1504, 62, 29487, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 565, 82, 11, 366, 13466, 62, 19849, 62, 11487, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 565, 82, 13, 13466, 62, 19849, 62, 11487, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 12286, 62, 36733, 5612, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 326, 356, 460, 4238, 786, 3938, 4277, 367, 3978, 290, 22879, 49, 41354, 4981, 198, 220, 220, 220, 37227, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 5305, 62, 7890, 62, 4480, 62, 67, 1068, 67, 3101, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 617, 1103, 1366, 11, 422, 262, 311, 22, 4523, 10958, 329, 399, 15916, 42947, 16, 11, 257, 3491, 12, 198, 220, 220, 220, 14583, 16161, 13, 220, 40348, 257, 1627, 8064, 3161, 290, 390, 26504, 3101, 287, 46915, 15262, 274, 13, 198, 220, 220, 220, 6208, 8914, 21528, 329, 477, 513, 4696, 274, 383, 29625, 12960, 82, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 796, 14631, 46, 3978, 2718, 2075, 62, 1959, 1600, 366, 39, 28483, 2611, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 4059, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22125, 20, 2167, 1600, 366, 46, 40, 5066, 405, 1600, 366, 39, 26591, 1600, 366, 45, 3978, 2996, 5999, 1600, 366, 50, 3978, 3134, 1433, 1600, 366, 50, 3978, 3134, 3132, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 796, 685, 16, 13, 24137, 4846, 11, 657, 13, 28771, 16, 11, 657, 13, 405, 27728, 11, 352, 13, 15, 11, 657, 13, 31911, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 25816, 2791, 11, 657, 13, 48891, 1954, 11, 604, 13, 1495, 15197, 11, 352, 13, 2996, 27970, 11, 657, 13, 2231, 41292, 11, 657, 13, 37309, 6469, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 796, 685, 15, 13, 405, 22572, 11, 657, 13, 405, 23726, 11, 657, 13, 830, 3695, 11, 657, 13, 405, 1558, 11, 657, 13, 405, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 830, 3270, 11, 657, 13, 830, 4309, 11, 657, 13, 405, 25022, 11, 657, 13, 405, 25399, 11, 657, 13, 405, 15377, 11, 657, 13, 830, 2079, 60, 198, 220, 220, 220, 10201, 62, 10247, 26623, 82, 796, 685, 2718, 1983, 13, 18, 11, 5946, 1821, 13, 20, 11, 604, 35447, 13, 17, 11, 604, 4521, 16, 13, 18, 11, 5323, 21, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 2167, 13, 18, 11, 718, 6200, 13, 18, 11, 718, 43918, 13, 23, 11, 718, 46239, 13, 17, 11, 8275, 1433, 13, 19, 11, 8275, 1270, 13, 23, 60, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 2357, 62, 395, 26748, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 2198, 319, 11507, 7746, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1556, 82, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 14692, 22362, 1920, 8973, 220, 1303, 19798, 292, 7171, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 1065, 1343, 2604, 440, 14, 39, 33116, 807, 13, 49150, 1314, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 1065, 1343, 2604, 440, 14, 39, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 6404, 350, 14, 74, 33116, 718, 13, 23, 2075, 2623, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 6404, 350, 14, 74, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 6404, 471, 33116, 532, 17, 13, 23, 2780, 2780, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 6404, 471, 8973, 4008, 628, 220, 220, 220, 825, 1332, 62, 395, 1920, 62, 65, 3733, 62, 42116, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 326, 262, 366, 41004, 15180, 1, 287, 262, 8636, 3084, 389, 477, 198, 220, 220, 220, 220, 220, 220, 220, 4478, 326, 262, 7746, 389, 922, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 220, 1303, 25139, 2357, 8636, 3084, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 14631, 1065, 1343, 2604, 440, 14, 39, 1600, 366, 6404, 350, 14, 74, 1600, 366, 6404, 471, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 951, 287, 14631, 22362, 62, 259, 62, 25690, 3104, 35379, 366, 22362, 62, 259, 62, 25690, 3865, 1701, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 8068, 13, 17946, 58, 79, 11, 4033, 60, 6624, 366, 56, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 951, 287, 14631, 22362, 62, 265, 62, 21037, 35379, 366, 22362, 62, 265, 62, 45828, 35379, 366, 47, 7, 21037, 8, 29, 1120, 4, 35379, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 47, 7, 45828, 8, 29, 1120, 4, 1701, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 8068, 13, 17946, 58, 79, 11, 4033, 60, 6624, 366, 45, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 8068, 13, 17946, 58, 79, 553, 77, 62, 12001, 62, 9806, 8083, 8973, 6624, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 11072, 17, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 2198, 326, 33166, 17, 1595, 470, 1487, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33166, 17, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 13466, 62, 19849, 14692, 11072, 17, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 11072, 17, 11, 1679, 3104, 13, 22, 11, 379, 349, 28, 15, 13, 17, 828, 31456, 28, 2536, 7, 11072, 17, 4008, 628, 220, 220, 220, 825, 1332, 62, 3849, 79, 62, 2875, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 262, 3376, 39555, 341, 1502, 357, 29127, 8, 318, 17232, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 32819, 62, 17633, 62, 16, 13, 9492, 30094, 62, 2164, 2340, 13, 3849, 79, 62, 2875, 6624, 352, 8, 628, 220, 220, 220, 825, 1332, 62, 439, 62, 22570, 62, 3448, 273, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 775, 8749, 281, 477, 12, 22570, 3161, 532, 2198, 326, 340, 2499, 357, 64, 6509, 815, 198, 220, 220, 220, 220, 220, 220, 220, 307, 10398, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 2116, 13, 32819, 62, 17633, 62, 16, 13, 9492, 30094, 62, 2164, 2340, 13, 43358, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 23004, 16, 796, 2116, 13, 32819, 62, 17633, 62, 16, 7, 944, 13, 8158, 62, 69, 22564, 274, 11, 2116, 13, 8158, 62, 263, 3808, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6615, 11, 3161, 28, 37659, 13, 9107, 418, 7, 43358, 4008, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 5072, 3696, 618, 5254, 287, 428, 1398, 423, 5201, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 685, 565, 82, 13, 3448, 273, 62, 29487, 11, 537, 82, 13, 2339, 11935, 62, 29487, 11, 537, 82, 13, 79, 6197, 1504, 62, 29487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 395, 1920, 62, 11487, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 72, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 7753, 62, 72, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 5305, 62, 7890, 62, 4480, 62, 66, 549, 291, 62, 3849, 16104, 341, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9576, 2092, 284, 262, 2180, 1332, 1398, 11, 475, 356, 779, 27216, 39555, 341, 198, 220, 220, 220, 2427, 286, 14174, 39555, 341, 618, 39555, 803, 2746, 28462, 50000, 13, 198, 220, 220, 220, 775, 635, 1332, 13259, 889, 262, 18931, 1241, 706, 1262, 262, 366, 19011, 16579, 1, 479, 86, 853, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 796, 14631, 46, 3978, 2718, 2075, 62, 1959, 1600, 366, 39, 28483, 2611, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 4059, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22125, 20, 2167, 1600, 366, 46, 40, 5066, 405, 1600, 366, 39, 26591, 1600, 366, 45, 3978, 2996, 5999, 1600, 366, 50, 3978, 3134, 1433, 1600, 366, 50, 3978, 3134, 3132, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 796, 685, 16, 13, 24137, 4846, 11, 657, 13, 28771, 16, 11, 657, 13, 405, 27728, 11, 352, 13, 15, 11, 657, 13, 31911, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 25816, 2791, 11, 657, 13, 48891, 1954, 11, 604, 13, 1495, 15197, 11, 352, 13, 2996, 27970, 11, 657, 13, 2231, 41292, 11, 657, 13, 37309, 6469, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 796, 685, 15, 13, 405, 22572, 11, 657, 13, 405, 23726, 11, 657, 13, 830, 3695, 11, 657, 13, 405, 1558, 11, 657, 13, 405, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 830, 3270, 11, 657, 13, 830, 4309, 11, 657, 13, 405, 25022, 11, 657, 13, 405, 25399, 11, 657, 13, 405, 15377, 11, 657, 13, 830, 2079, 60, 198, 220, 220, 220, 10201, 62, 10247, 26623, 82, 796, 685, 2718, 1983, 13, 18, 11, 5946, 1821, 13, 20, 11, 604, 35447, 13, 17, 11, 604, 4521, 16, 13, 18, 11, 5323, 21, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 2167, 13, 18, 11, 718, 6200, 13, 18, 11, 718, 43918, 13, 23, 11, 718, 46239, 13, 17, 11, 8275, 1433, 13, 19, 11, 8275, 1270, 13, 23, 60, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 2357, 62, 395, 26748, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 2198, 319, 11507, 7746, 13, 220, 47052, 329, 350, 290, 471, 389, 198, 220, 220, 220, 220, 220, 220, 220, 4622, 1180, 351, 262, 27216, 39555, 341, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1556, 82, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 14692, 22362, 1920, 8973, 220, 1303, 19798, 292, 7171, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 1065, 1343, 2604, 440, 14, 39, 33116, 807, 13, 49150, 1314, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 1065, 1343, 2604, 440, 14, 39, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 6404, 350, 14, 74, 33116, 718, 13, 45039, 2857, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 6404, 350, 14, 74, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 3558, 14692, 6404, 471, 33116, 532, 17, 13, 23, 2078, 2078, 11, 379, 349, 28, 15, 13, 18005, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 28, 2536, 7, 3558, 14692, 6404, 471, 8973, 4008, 628, 220, 220, 220, 825, 1332, 62, 11072, 17, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 2198, 326, 33166, 17, 1595, 470, 1487, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 33166, 17, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 13466, 62, 19849, 14692, 11072, 17, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 11072, 17, 11, 1679, 1828, 13, 22, 11, 379, 349, 28, 15, 13, 17, 828, 31456, 28, 2536, 7, 11072, 17, 4008, 628, 220, 220, 220, 825, 1332, 62, 3849, 79, 62, 2875, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 262, 3376, 39555, 341, 1502, 357, 66, 549, 291, 8, 318, 17232, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 32819, 62, 17633, 62, 16, 13, 9492, 30094, 62, 2164, 2340, 13, 3849, 79, 62, 2875, 6624, 513, 8, 628, 220, 220, 220, 825, 1332, 62, 411, 35463, 62, 6404, 62, 5715, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 48987, 326, 706, 1262, 262, 15942, 16579, 21179, 11, 262, 41354, 62, 6404, 1362, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 318, 21588, 357, 72, 13, 68, 13, 373, 13259, 284, 663, 2180, 1988, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 45, 1765, 4712, 15262, 274, 13, 32819, 62, 6404, 1362, 13, 5715, 11, 2116, 13, 9288, 62, 6404, 62, 5715, 8, 628, 220, 220, 220, 825, 1332, 62, 67, 1068, 67, 3101, 62, 20274, 62, 1078, 7657, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4834, 19532, 390, 26504, 3101, 12608, 2087, 284, 25414, 2134, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 23004, 13, 67, 1068, 6559, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 23004, 13, 22930, 37861, 62, 67, 1068, 62, 48277, 8, 628, 198, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 5072, 3696, 618, 5254, 287, 428, 1398, 423, 5201, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 23981, 1487, 284, 18931, 1241, 13, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 46915, 15262, 274, 13, 32819, 62, 6404, 1362, 13, 2617, 4971, 7, 565, 82, 13, 727, 62, 6404, 62, 5715, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 685, 565, 82, 13, 3448, 273, 62, 29487, 11, 537, 82, 13, 2339, 11935, 62, 29487, 11, 537, 82, 13, 79, 6197, 1504, 62, 29487, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 395, 1920, 62, 11487, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 72, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 7753, 62, 72, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 45828, 62, 65, 3733, 62, 16, 35, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 3513, 286, 6727, 22303, 13, 220, 775, 779, 257, 352, 35, 10706, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 220, 220, 220, 220, 220, 220, 796, 14631, 1370, 16, 1600, 366, 1370, 17, 1600, 366, 1370, 18, 1600, 366, 1370, 19, 1600, 366, 1370, 20, 1600, 366, 1370, 21, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 220, 796, 685, 220, 220, 220, 352, 13, 15, 11, 220, 220, 220, 220, 807, 13, 15, 11, 220, 220, 220, 838, 13, 17, 11, 532, 37659, 13, 10745, 11, 532, 37659, 13, 10745, 11, 532, 37659, 13, 10745, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 220, 220, 220, 796, 685, 220, 220, 657, 13, 2713, 11, 220, 220, 220, 220, 657, 13, 18, 11, 220, 220, 220, 220, 513, 13, 16, 11, 220, 220, 220, 220, 657, 13, 18, 11, 220, 220, 220, 220, 657, 13, 19, 11, 220, 220, 220, 220, 657, 13, 17, 60, 198, 220, 220, 220, 2747, 62, 69, 22564, 274, 796, 685, 220, 220, 220, 352, 13, 15, 11, 220, 220, 220, 220, 642, 13, 15, 11, 220, 220, 220, 838, 13, 17, 11, 220, 220, 220, 220, 657, 13, 16, 11, 220, 220, 220, 220, 657, 13, 19, 11, 220, 220, 220, 220, 657, 13, 19, 60, 198, 220, 220, 220, 1303, 383, 2747, 62, 69, 22564, 274, 389, 379, 262, 366, 36729, 1, 286, 262, 10706, 11, 326, 356, 1183, 5128, 284, 41354, 13, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 17143, 2357, 62, 395, 26748, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 262, 11507, 8636, 318, 355, 2938, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 395, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 8068, 62, 395, 26748, 220, 1303, 6060, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 279, 15, 62, 395, 796, 36323, 62, 395, 13, 17946, 14692, 79, 15, 1600, 366, 22362, 1920, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 271, 19836, 7, 79, 15, 62, 395, 11, 2116, 13, 40319, 62, 79, 15, 11, 379, 349, 28, 16, 4008, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 11626, 8048, 9487, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 17220, 262, 5072, 3696, 618, 5254, 287, 428, 1398, 423, 5201, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3424, 62, 929, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3696, 796, 685, 418, 13, 6978, 13, 22179, 7, 51, 6465, 62, 34720, 11, 300, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45434, 20456, 62, 3642, 7657, 62, 1462, 62, 2339, 11935, 13, 12315, 4943, 329, 300, 287, 537, 82, 13, 6615, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 62, 72, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28956, 7, 7753, 62, 72, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 439, 62, 22570, 62, 2339, 11935, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 10833, 257, 2604, 62, 2339, 11935, 286, 477, 532, 10745, 11, 523, 262, 14955, 318, 477, 6632, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 220, 220, 220, 220, 220, 220, 796, 14631, 39, 26591, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 46, 10855, 4059, 22, 1600, 366, 45, 3978, 2996, 5999, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 220, 796, 685, 220, 220, 352, 68, 9031, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 352, 13, 17, 68, 9031, 11, 220, 220, 220, 352, 13, 17, 68, 9031, 11, 220, 220, 220, 220, 352, 68, 9031, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 220, 220, 220, 796, 685, 220, 220, 657, 13, 22914, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 220, 220, 657, 13, 22544, 11, 220, 220, 220, 220, 220, 657, 13, 11245, 11, 220, 220, 220, 220, 657, 13, 21601, 60, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 2339, 11935, 62, 439, 62, 22570, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 14955, 318, 477, 6632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14955, 796, 2116, 13, 23004, 13, 7594, 11935, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 7, 2339, 11935, 6624, 657, 4008, 628, 220, 220, 220, 825, 1332, 62, 79, 6197, 1504, 62, 439, 62, 22570, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 34319, 318, 477, 6632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34319, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 7, 79, 6197, 1504, 6624, 657, 4008, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 7890, 62, 5562, 62, 6759, 2052, 62, 27530, 62, 36672, 306, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 5128, 889, 28462, 274, 290, 8563, 326, 389, 845, 13455, 4197, 416, 262, 2104, 198, 220, 220, 220, 2746, 10706, 13, 220, 554, 428, 1339, 749, 286, 262, 14955, 318, 6632, 11, 290, 1262, 257, 198, 220, 220, 220, 6397, 12, 680, 3161, 3607, 257, 34319, 326, 318, 6632, 8347, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 220, 220, 220, 220, 220, 220, 796, 14631, 39, 26591, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 46, 10855, 4059, 22, 1600, 366, 45, 3978, 2996, 5999, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 220, 796, 685, 220, 220, 220, 220, 513, 13, 16, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 220, 220, 220, 220, 352, 13, 23, 11, 220, 220, 220, 220, 220, 220, 220, 642, 13, 16, 11, 220, 220, 220, 220, 220, 220, 352, 13, 17, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 220, 220, 220, 796, 685, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 657, 13, 486, 60, 198, 220, 220, 220, 1303, 5740, 262, 845, 1402, 8563, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 2339, 11935, 62, 29471, 62, 22570, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 14955, 318, 4632, 6632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 14955, 796, 2116, 13, 23004, 13, 7594, 11935, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 16345, 7, 2339, 11935, 14512, 657, 8, 1279, 6135, 8, 628, 220, 220, 220, 825, 1332, 62, 79, 6197, 1504, 62, 439, 62, 22570, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 34319, 318, 477, 6632, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 34319, 796, 2116, 13, 23004, 13, 47, 6197, 1504, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 7, 79, 6197, 1504, 6624, 657, 4008, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 32819, 62, 358, 62, 12315, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 262, 5050, 287, 262, 41354, 62, 358, 62, 12315, 1398, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 1303, 775, 765, 284, 1332, 41354, 62, 358, 62, 12315, 12608, 26, 617, 286, 366, 8068, 62, 395, 26748, 1600, 366, 41339, 62, 16684, 1600, 198, 220, 220, 220, 1303, 366, 13466, 62, 19849, 1600, 14461, 1417, 62, 16, 35, 1600, 366, 30887, 1292, 1417, 62, 17, 35, 1600, 366, 3672, 1600, 366, 358, 62, 12315, 1, 628, 220, 220, 220, 1303, 366, 13466, 62, 19849, 1, 8251, 25, 366, 11487, 1600, 366, 11072, 17, 1600, 366, 2302, 9438, 62, 7355, 62, 19726, 1600, 366, 25928, 62, 24886, 1, 628, 220, 220, 220, 825, 1332, 62, 13466, 62, 19849, 62, 11487, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 257, 2060, 3084, 1988, 7466, 262, 10348, 10706, 4122, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 770, 1332, 561, 2038, 319, 46915, 15262, 274, 657, 13, 24, 13, 22, 290, 2961, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1266, 62, 1073, 3669, 796, 357, 944, 13, 36729, 62, 521, 62, 88, 11, 2116, 13, 36729, 62, 521, 62, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 276, 62, 2164, 2340, 796, 2116, 13, 32819, 62, 17633, 62, 16, 13, 9492, 30094, 62, 2164, 2340, 13, 2164, 2340, 14692, 39, 31361, 62, 27237, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 46, 10855, 796, 2593, 276, 62, 2164, 2340, 14692, 46, 10855, 4059, 22, 1, 7131, 13466, 62, 1073, 3669, 60, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 62, 13466, 796, 2116, 13, 32819, 62, 358, 62, 12315, 62, 16, 13, 13466, 62, 19849, 14692, 11487, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 62, 19849, 62, 46, 10855, 796, 36323, 62, 13466, 13, 17946, 14692, 46, 10855, 4059, 22, 1600, 366, 17633, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11487, 62, 19849, 62, 46, 10855, 11, 2746, 62, 46, 10855, 8, 628, 220, 220, 220, 825, 1332, 62, 30887, 1292, 1417, 62, 16, 35, 62, 12315, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 262, 14461, 1417, 352, 35, 37124, 82, 389, 355, 2938, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 16, 35, 796, 2116, 13, 32819, 62, 358, 62, 12315, 62, 16, 13, 30887, 1292, 1417, 62, 16, 35, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 11925, 7, 76, 62, 16, 35, 828, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21589, 262, 37124, 82, 284, 8996, 3805, 262, 285, 62, 16, 35, 12960, 82, 852, 3487, 1417, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 16, 35, 14692, 6404, 471, 8973, 1220, 28, 285, 62, 16, 35, 14692, 6404, 471, 1, 4083, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 285, 62, 16, 35, 14692, 1065, 1343, 2604, 440, 14, 39, 8973, 1220, 28, 285, 62, 16, 35, 14692, 1065, 1343, 2604, 440, 14, 39, 1, 4083, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 87, 62, 12315, 796, 2116, 13, 30887, 1292, 1417, 62, 87, 1220, 2116, 13, 30887, 1292, 1417, 62, 87, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2938, 62, 88, 62, 12315, 796, 2116, 13, 30887, 1292, 1417, 62, 88, 1220, 2116, 13, 30887, 1292, 1417, 62, 88, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 19836, 7, 76, 62, 16, 35, 14692, 6404, 471, 33116, 2938, 62, 87, 62, 12315, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 349, 28, 16, 68, 12, 1065, 11, 374, 83, 349, 28, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 439, 19836, 7, 76, 62, 16, 35, 14692, 1065, 1343, 2604, 440, 14, 39, 33116, 2938, 62, 88, 62, 12315, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 349, 28, 16, 68, 12, 1065, 11, 374, 83, 349, 28, 15, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1737, 423, 37245, 2124, 290, 331, 11, 475, 340, 338, 477, 23606, 19482, 6949, 986, 628, 220, 220, 220, 825, 1332, 62, 358, 62, 12315, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 326, 262, 3487, 1417, 299, 67, 62, 12315, 7466, 262, 5128, 8246, 299, 67, 62, 12315, 13, 220, 775, 198, 220, 220, 220, 220, 220, 220, 220, 3368, 1804, 257, 1774, 3487, 5612, 416, 14176, 351, 257, 2829, 20796, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 796, 2116, 13, 32819, 62, 358, 62, 12315, 62, 16, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 27464, 62, 1831, 62, 358, 62, 12315, 796, 2116, 13, 1831, 62, 12315, 1220, 2116, 13, 1831, 62, 12315, 13, 9806, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 37659, 13, 18747, 62, 40496, 7, 12315, 1220, 37124, 13, 9806, 22784, 27464, 62, 1831, 62, 358, 62, 12315, 4008, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 67, 1068, 67, 3101, 62, 36653, 62, 43420, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 326, 1262, 390, 26504, 3101, 2458, 477, 1115, 12960, 82, 357, 12518, 10201, 1366, 389, 973, 198, 220, 220, 220, 287, 262, 3161, 737, 220, 1318, 4271, 373, 257, 5434, 810, 262, 10201, 1366, 287, 262, 1627, 198, 220, 220, 220, 8064, 1293, 669, 6304, 470, 390, 26504, 2945, 13, 198, 220, 220, 220, 4418, 1332, 326, 12960, 82, 1487, 618, 8563, 422, 262, 8528, 647, 5255, 434, 389, 198, 220, 220, 220, 8928, 515, 656, 262, 390, 26504, 2945, 1627, 28462, 274, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 3448, 669, 62, 26069, 263, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6822, 326, 390, 26504, 2945, 1366, 373, 973, 287, 1627, 8064, 3161, 11, 618, 198, 220, 220, 220, 220, 220, 220, 220, 9167, 13, 220, 770, 1332, 10143, 319, 46915, 15262, 274, 657, 13, 24, 13, 22, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 62, 67, 1068, 16, 220, 796, 2116, 13, 23004, 62, 67, 1068, 16, 13, 22442, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 62, 77, 375, 1068, 796, 2116, 13, 23004, 62, 77, 375, 1068, 13, 22442, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 26069, 16, 796, 45941, 13, 9806, 7, 37659, 13, 8937, 7, 12315, 62, 67, 1068, 16, 532, 37124, 62, 77, 375, 1068, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 9806, 62, 26069, 16, 1875, 657, 13, 486, 11, 965, 7, 9806, 62, 26069, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6208, 13479, 43594, 468, 281, 1245, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 62, 67, 1068, 17, 796, 2116, 13, 23004, 62, 67, 1068, 17, 13, 22442, 13, 358, 62, 12315, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 26069, 62, 84, 796, 45941, 13, 9806, 7, 37659, 13, 8937, 7, 12315, 62, 67, 1068, 16, 532, 37124, 62, 67, 1068, 17, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 9806, 62, 26069, 62, 84, 1875, 657, 13, 486, 11, 965, 7, 9806, 62, 26069, 62, 84, 4008, 628, 220, 220, 220, 825, 1332, 62, 22930, 37861, 62, 67, 1068, 62, 48277, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9787, 47933, 62, 67, 1068, 62, 48277, 3815, 319, 25414, 2134, 37811, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 47719, 4277, 1988, 286, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 25101, 7, 944, 13, 23004, 62, 67, 1068, 16, 13, 22930, 37861, 62, 67, 1068, 62, 48277, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 23004, 62, 67, 1068, 17, 13, 22930, 37861, 62, 67, 1068, 62, 48277, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 2339, 11935, 62, 6615, 62, 2539, 4775, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 5128, 889, 28462, 274, 290, 8563, 326, 3588, 470, 973, 287, 262, 14955, 11, 290, 198, 220, 220, 220, 1332, 326, 777, 3951, 743, 307, 973, 287, 257, 3161, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 890, 12837, 796, 6407, 220, 1303, 2034, 437, 6218, 284, 4683, 3275, 628, 220, 220, 220, 3951, 220, 220, 220, 220, 220, 220, 796, 14631, 39, 26591, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 46, 10855, 4059, 22, 1600, 366, 45, 3978, 2996, 5999, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 220, 796, 685, 220, 220, 220, 220, 513, 13, 16, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 220, 220, 220, 220, 352, 13, 23, 11, 220, 220, 220, 220, 220, 220, 220, 642, 13, 16, 11, 220, 220, 220, 220, 220, 220, 352, 13, 17, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 220, 220, 220, 796, 685, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 220, 352, 11, 220, 220, 220, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 220, 657, 13, 486, 11, 220, 220, 220, 220, 220, 657, 13, 486, 60, 198, 220, 220, 220, 19607, 62, 6615, 796, 14631, 39, 26591, 1600, 366, 46, 10855, 4059, 22, 8973, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 13159, 62, 2339, 11935, 62, 6615, 62, 259, 62, 13466, 62, 19849, 62, 11487, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 3951, 407, 3017, 287, 14955, 17952, 815, 198, 220, 220, 220, 220, 220, 220, 220, 991, 1656, 287, 262, 366, 13466, 2746, 1, 3084, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 439, 7, 75, 287, 2116, 13, 8068, 62, 13466, 13, 9630, 329, 300, 287, 2116, 13, 1069, 9152, 62, 6615, 4008, 628, 220, 220, 220, 825, 1332, 62, 13466, 62, 19849, 62, 11487, 62, 25747, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 2198, 7032, 286, 1266, 2746, 3084, 357, 732, 1332, 329, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1339, 286, 645, 390, 26504, 3101, 26, 2214, 3891, 389, 1180, 351, 390, 26504, 3101, 737, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3376, 62, 25747, 796, 14631, 818, 62, 75, 2894, 35379, 366, 31310, 1600, 366, 17633, 1600, 366, 4965, 312, 62, 1273, 9310, 1600, 366, 31310, 62, 50, 14, 45, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 256, 62, 25747, 796, 2116, 13, 8068, 62, 13466, 13, 28665, 82, 13, 83, 349, 396, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 83, 62, 25747, 6624, 3376, 62, 25747, 11, 256, 62, 25747, 8, 628, 220, 220, 220, 825, 1332, 62, 818, 62, 75, 2894, 62, 3245, 62, 259, 62, 13466, 62, 19849, 62, 11487, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 262, 366, 818, 62, 75, 2894, 1701, 2214, 287, 262, 1266, 2746, 3084, 815, 198, 220, 220, 220, 220, 220, 220, 220, 9380, 5911, 611, 257, 1627, 373, 973, 287, 262, 14955, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3376, 796, 685, 7203, 45, 1, 611, 300, 287, 2116, 13, 1069, 9152, 62, 6615, 2073, 366, 56, 4943, 329, 300, 287, 2116, 13, 6615, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 17821, 7, 944, 13, 8068, 62, 13466, 14692, 818, 62, 75, 2894, 1701, 4083, 27160, 13, 83, 349, 396, 3419, 6624, 3376, 8, 628, 220, 220, 220, 825, 1332, 62, 16321, 15129, 62, 15414, 62, 1370, 62, 2875, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3310, 2234, 1332, 532, 262, 1502, 286, 262, 5128, 3951, 815, 407, 2689, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 13, 220, 1318, 373, 257, 1103, 5434, 5495, 351, 262, 366, 2339, 11935, 62, 6615, 1, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 532, 428, 1332, 10143, 319, 41354, 2196, 657, 13, 24, 13, 21, 290, 657, 13, 24, 13, 22, 0, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 18896, 7, 944, 13, 6615, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 773, 62, 83, 29291, 287, 27056, 378, 7, 270, 861, 10141, 13, 16321, 32855, 7, 9521, 7, 77, 4008, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1318, 389, 642, 0, 796, 7982, 9943, 32855, 11, 523, 691, 2198, 530, 287, 1936, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 4064, 642, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 62, 69, 22564, 274, 796, 685, 944, 13, 8158, 62, 69, 22564, 274, 58, 73, 60, 329, 474, 287, 773, 62, 83, 29291, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10201, 62, 263, 3808, 796, 685, 944, 13, 8158, 62, 263, 3808, 58, 73, 60, 329, 474, 287, 773, 62, 83, 29291, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3951, 796, 685, 944, 13, 6615, 58, 73, 60, 329, 474, 287, 773, 62, 83, 29291, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25414, 62, 72, 796, 2116, 13, 32819, 62, 17633, 62, 16, 7, 8158, 62, 69, 22564, 274, 11, 10201, 62, 263, 3808, 11, 3951, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14955, 62, 6615, 28, 944, 13, 2339, 11935, 62, 6615, 11, 12429, 944, 13, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 350, 62, 72, 796, 25414, 62, 72, 13, 47, 6197, 1504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8636, 62, 57, 62, 72, 796, 350, 62, 72, 13, 8068, 62, 395, 26748, 13, 17946, 14692, 1065, 1343, 2604, 440, 14, 39, 1600, 366, 22362, 1920, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 395, 1920, 62, 57, 62, 72, 11, 2116, 13, 395, 1920, 62, 57, 8, 628, 628, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4871, 6208, 62, 32741, 62, 48277, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 8620, 8563, 319, 2089, 17311, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 4871, 24396, 628, 220, 220, 220, 825, 1332, 62, 14774, 62, 25928, 62, 17143, 2357, 62, 4480, 62, 18820, 62, 32146, 62, 34642, 62, 27160, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 3376, 4049, 318, 4376, 611, 612, 389, 1165, 1178, 3748, 3815, 329, 198, 220, 220, 220, 220, 220, 220, 220, 257, 10706, 11507, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 36323, 796, 279, 67, 13, 6601, 19778, 7, 4895, 79, 16, 1298, 685, 19, 11, 604, 11, 604, 11, 604, 4357, 366, 79, 17, 1298, 685, 16, 11, 362, 11, 513, 11, 604, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 75, 17, 1298, 685, 20, 11, 718, 11, 767, 11, 807, 60, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 21762, 2696, 2200, 7, 11395, 12331, 11, 366, 18, 3748, 3815, 389, 2672, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41354, 62, 17633, 11, 36323, 11, 14631, 79, 16, 1600, 366, 79, 17, 8973, 8, 628, 198, 198, 29113, 29113, 7804, 4242, 21017, 198, 198, 4299, 14333, 62, 29487, 62, 41989, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 2476, 284, 307, 1444, 14500, 284, 1332, 262, 14333, 29353, 13, 198, 220, 220, 220, 220, 220, 220, 220, 422, 1332, 62, 32819, 1330, 14333, 62, 29487, 62, 41989, 198, 220, 220, 220, 220, 220, 220, 220, 14333, 62, 29487, 62, 41989, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3951, 796, 14631, 46, 3978, 2718, 2075, 62, 1959, 1600, 366, 39, 28483, 2611, 1600, 366, 46, 10855, 19, 35447, 1600, 366, 39, 31361, 1600, 366, 46, 10855, 4059, 22, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22125, 20, 2167, 1600, 366, 46, 40, 5066, 405, 1600, 366, 39, 26591, 1600, 366, 45, 3978, 2996, 5999, 1600, 366, 50, 3978, 3134, 1433, 1600, 366, 50, 3978, 3134, 3132, 8973, 198, 220, 220, 220, 10201, 62, 69, 22564, 274, 796, 685, 16, 13, 24137, 4846, 11, 657, 13, 28771, 16, 11, 657, 13, 405, 27728, 11, 352, 13, 15, 11, 657, 13, 31911, 3682, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 25816, 2791, 11, 657, 13, 48891, 1954, 11, 604, 13, 1495, 15197, 11, 352, 13, 2996, 27970, 11, 657, 13, 2231, 41292, 11, 657, 13, 37309, 6469, 60, 198, 220, 220, 220, 10201, 62, 263, 3808, 796, 685, 15, 13, 405, 22572, 11, 657, 13, 405, 23726, 11, 657, 13, 830, 3695, 11, 657, 13, 405, 1558, 11, 657, 13, 405, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 657, 13, 830, 3270, 11, 657, 13, 830, 4309, 11, 657, 13, 405, 25022, 11, 657, 13, 405, 25399, 11, 657, 13, 405, 15377, 11, 657, 13, 830, 2079, 60, 198, 220, 220, 220, 10201, 62, 10247, 26623, 82, 796, 685, 2718, 1983, 13, 18, 11, 5946, 1821, 13, 20, 11, 604, 35447, 13, 17, 11, 604, 4521, 16, 13, 18, 11, 5323, 21, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 642, 2167, 13, 18, 11, 718, 6200, 13, 18, 11, 718, 43918, 13, 23, 11, 718, 46239, 13, 17, 11, 8275, 1433, 13, 19, 11, 8275, 1270, 13, 23, 60, 198, 220, 220, 220, 41354, 62, 17633, 62, 16, 796, 41354, 62, 17633, 7203, 39, 3978, 1600, 10706, 62, 37266, 28, 14202, 11, 1627, 62, 4868, 28, 6615, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 987, 30094, 62, 25928, 62, 43358, 41888, 1120, 11, 4317, 11, 2026, 4357, 10706, 62, 18224, 28, 15, 13, 2327, 8, 198, 220, 220, 220, 479, 86, 22046, 796, 19779, 67, 1068, 6559, 1298, 6407, 11, 366, 22930, 37861, 62, 67, 1068, 62, 48277, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8158, 62, 10247, 26623, 82, 1298, 10201, 62, 10247, 26623, 82, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3448, 273, 20598, 7203, 50, 3978, 3134, 1433, 2430, 50, 3978, 3134, 3132, 4943, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 29487, 62, 11250, 82, 1298, 685, 4895, 11487, 62, 261, 62, 29487, 1298, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1455, 437, 62, 10331, 7857, 1298, 642, 92, 60, 9, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 25414, 796, 41354, 62, 17633, 62, 16, 7, 8158, 62, 69, 22564, 274, 11, 10201, 62, 263, 3808, 11, 3951, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 1303, 6208, 1111, 2842, 284, 787, 281, 14333, 7110, 198, 220, 220, 220, 25414, 13, 43328, 353, 13, 3849, 5275, 7, 23004, 13, 47, 6197, 1504, 8, 198, 220, 220, 220, 25414, 13, 22442, 13, 12860, 7, 23004, 13, 43328, 353, 8, 198, 198, 29113, 29113, 7804, 4242, 21017, 628, 198, 2, 35365, 329, 517, 5254, 25, 198, 198, 2, 6822, 326, 11507, 7746, 389, 2641, 262, 327, 3792, 11, 290, 2198, 262, 9701, 329, 428, 198, 198, 2, 6208, 3487, 1710, 284, 1180, 3951, 7830, 11, 290, 10627, 326, 262, 198, 2, 13114, 39555, 515, 50000, 389, 13140, 13, 198, 198, 2, 6822, 5197, 286, 262, 2438, 11, 284, 766, 644, 2125, 470, 852, 1057, 30, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 3601, 7203, 59, 77, 44154, 46915, 15262, 274, 2196, 1391, 15, 92, 2644, 59, 77, 1911, 18982, 7, 834, 9641, 834, 4008, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 7, 19011, 16579, 28, 17, 8, 628 ]
2.308802
13,724
""" spider.distance.metricl.rfd sub-package __init.py__ @author: david johnson Primitive that learns and applies random-forest-based distance metric. defines the module index """ from .rfd import RFD
[ 37811, 198, 220, 220, 220, 19230, 13, 30246, 13, 4164, 1173, 75, 13, 81, 16344, 850, 12, 26495, 198, 220, 220, 220, 11593, 15003, 13, 9078, 834, 628, 220, 220, 220, 2488, 9800, 25, 21970, 45610, 1559, 628, 220, 220, 220, 11460, 1800, 326, 22974, 290, 8991, 4738, 12, 29623, 12, 3106, 5253, 18663, 13, 628, 220, 220, 220, 15738, 262, 8265, 6376, 198, 37811, 198, 198, 6738, 764, 81, 16344, 1330, 20445, 35, 198 ]
2.986667
75
import pygame, sys from pygame.locals import * # Aclaraciones # Requiere "pygame" para las graficas # # Se grafican las figuras para una mejor comprencion pero como son coordenadas tan pequenas no se muestran bien # (aumentando las proporciones pude verse mejo) # pero la orden del problema no lo permite. # # La solucion trate de buscarla matematicamente # 1- para saber si es ciudadano o prisionero : # comprobamos si el punto esta fuera o dentro de un poligono o en uno de sus vertices # # definiendo colores NEGRO = (0, 0, 0) ROJO = (255, 0, 0) CAFE = (90, 50, 15) BLANCO = (255, 255, 255) AZUL = (0, 0, 255) # Abriendo Fichero infile = open('texto.txt', 'r') for line in infile: lista = line pygame.init() # Asignando dimenciones a la ventana dimensiones = (500, 500) pantalla = pygame.display.set_mode(dimensiones) # asignando nombre de la ventana pantalla.fill(BLANCO) # rellenando ventana terminar = False reloj = pygame.time.Clock() while not terminar: for Evento in pygame.event.get(): if Evento.type == pygame.QUIT: terminar = True # limpiando lista y declarando variables lista = lista.replace(" ", ",").replace("|", ",") lista_limpa = lista.split(",") lista_x = [] lista_y = [] longitud = len(lista_limpa) poligono = [] #separando las cordenadas X,Y y conformando el Poligono i = 0 while i < longitud - 2: cordenada_x = int(lista_limpa[i]) if (cordenada_x >= 0 and cordenada_x <= 10): temp_x = int(lista_limpa[i]) # aca se puede aumentar las proporciones lista_x.append(temp_x) j = i + 1 cordenada_y = int(lista_limpa[j]) if (cordenada_y >= 0 and cordenada_y <= 10): temp_y = int(lista_limpa[j]) # aca se puede aumentar las proporciones lista_y.append(temp_y) poligono.append((temp_x, temp_y)) i = i + 2 # Preparando las cordenadas para dibujar P (puntos de rectas ) D para las diagonales # o rectas de cierre de la figura i = 0 while i < len(lista_x): px = int(lista_x[i]) py = int(lista_y[i]) pxx = int(lista_x[i + 1]) pyy = int(lista_y[i + 1]) if i == 0: dx = int(lista_x[i]) dy = int(lista_y[i]) dxx = int(lista_x[i + 3]) dyy = int(lista_y[i + 3]) if i == 2: dx = int(lista_x[i - 1]) dy = int(lista_y[i - 1]) dxx = int(lista_x[i]) dyy = int(lista_y[i]) #dibujando la figura pygame.draw.line(pantalla, ROJO, [px, py], [pxx, pyy], 2) pygame.draw.aaline(pantalla, ROJO, [dx, dy], [dxx, dyy], True) i = i + 2 #campturando los puntos del usuario punto_x = int(lista_limpa[len(lista_limpa) - 2]) punto_y = int(lista_limpa[len(lista_limpa) - 1]) #aplicando restricciones if punto_y >= 3 and punto_y <= 12 and punto_x >= 3 and punto_x <= 12: punto_x = punto_x punto_y = punto_y pygame.draw.circle(pantalla, CAFE, [punto_x, punto_y], 1) #dibujando el . #metodo para definir si el punto esta dentro o fuera del poligono if punto_en_poligono(punto_x, punto_y, poligono) == 2: pygame.display.set_caption("Prisionero Estas en unode los vertice") elif punto_en_poligono(punto_x, punto_y, poligono) == 1: pygame.display.set_caption("Prisionero") else: pygame.display.set_caption("Ciudadano") pygame.display.flip() reloj.tick(20) # Cerramos el fichero. infile.close() pygame.quit()
[ 11748, 12972, 6057, 11, 25064, 201, 198, 6738, 12972, 6057, 13, 17946, 874, 1330, 1635, 201, 198, 201, 198, 2, 317, 565, 283, 49443, 274, 201, 198, 2, 9394, 13235, 366, 9078, 6057, 1, 31215, 39990, 7933, 69, 44645, 201, 198, 2, 201, 198, 2, 220, 1001, 7933, 69, 7490, 39990, 2336, 17786, 31215, 555, 64, 502, 73, 273, 552, 918, 66, 295, 583, 78, 401, 78, 3367, 6349, 268, 38768, 25706, 613, 421, 268, 292, 645, 384, 38779, 395, 2596, 275, 2013, 201, 198, 2, 357, 64, 1713, 25440, 39990, 386, 1819, 66, 295, 274, 279, 2507, 18527, 502, 7639, 8, 201, 198, 2, 583, 78, 8591, 2760, 268, 1619, 1917, 64, 645, 2376, 9943, 578, 13, 201, 198, 2, 201, 198, 2, 4689, 1540, 1229, 295, 491, 378, 390, 1323, 7718, 5031, 2603, 368, 1512, 3263, 68, 201, 198, 2, 220, 220, 352, 12, 31215, 17463, 263, 33721, 1658, 269, 72, 463, 324, 5733, 267, 778, 1166, 3529, 1058, 201, 198, 2, 220, 220, 220, 220, 220, 220, 552, 22609, 321, 418, 33721, 1288, 4000, 1462, 1556, 64, 14035, 8607, 267, 18794, 305, 390, 555, 755, 328, 29941, 267, 551, 555, 78, 390, 2341, 9421, 1063, 201, 198, 2, 201, 198, 201, 198, 2, 2730, 72, 31110, 951, 2850, 201, 198, 45, 7156, 13252, 796, 357, 15, 11, 657, 11, 657, 8, 201, 198, 13252, 45006, 796, 357, 13381, 11, 657, 11, 657, 8, 201, 198, 8141, 15112, 796, 357, 3829, 11, 2026, 11, 1315, 8, 201, 198, 9148, 1565, 8220, 796, 357, 13381, 11, 14280, 11, 14280, 8, 201, 198, 22778, 6239, 796, 357, 15, 11, 657, 11, 14280, 8, 201, 198, 201, 198, 2, 2275, 1289, 78, 376, 291, 11718, 201, 198, 259, 7753, 796, 1280, 10786, 5239, 78, 13, 14116, 3256, 705, 81, 11537, 201, 198, 1640, 1627, 287, 1167, 576, 25, 201, 198, 220, 220, 220, 1351, 64, 796, 1627, 201, 198, 220, 220, 220, 12972, 6057, 13, 15003, 3419, 201, 198, 220, 220, 220, 1303, 1081, 570, 25440, 5391, 12685, 295, 274, 257, 8591, 7435, 2271, 201, 198, 220, 220, 220, 15793, 274, 796, 357, 4059, 11, 5323, 8, 201, 198, 220, 220, 220, 15857, 30315, 796, 12972, 6057, 13, 13812, 13, 2617, 62, 14171, 7, 46156, 274, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 355, 570, 25440, 299, 2381, 260, 390, 8591, 7435, 2271, 201, 198, 220, 220, 220, 15857, 30315, 13, 20797, 7, 9148, 1565, 8220, 8, 220, 1303, 302, 297, 268, 25440, 7435, 2271, 201, 198, 220, 220, 220, 5651, 283, 796, 10352, 201, 198, 201, 198, 220, 220, 220, 823, 13210, 796, 12972, 6057, 13, 2435, 13, 44758, 3419, 201, 198, 201, 198, 220, 220, 220, 981, 407, 5651, 283, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 329, 8558, 78, 287, 12972, 6057, 13, 15596, 13, 1136, 33529, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8558, 78, 13, 4906, 6624, 12972, 6057, 13, 10917, 2043, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5651, 283, 796, 6407, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1761, 14415, 25440, 1351, 64, 331, 2377, 283, 25440, 9633, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 796, 1351, 64, 13, 33491, 7203, 33172, 366, 553, 737, 33491, 7203, 91, 1600, 366, 553, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 62, 2475, 8957, 796, 1351, 64, 13, 35312, 7, 2430, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 62, 87, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 62, 88, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 890, 26331, 796, 18896, 7, 4868, 64, 62, 2475, 8957, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 755, 328, 29941, 796, 17635, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25512, 25440, 39990, 15050, 268, 38768, 1395, 11, 56, 331, 17216, 25440, 1288, 2165, 328, 29941, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1312, 1279, 890, 26331, 532, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15050, 268, 4763, 62, 87, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 585, 268, 4763, 62, 87, 18189, 657, 290, 15050, 268, 4763, 62, 87, 19841, 838, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 87, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 72, 12962, 220, 220, 220, 1303, 936, 64, 384, 279, 1739, 68, 257, 1713, 283, 39990, 386, 1819, 66, 295, 274, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 62, 87, 13, 33295, 7, 29510, 62, 87, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 474, 796, 1312, 1343, 352, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15050, 268, 4763, 62, 88, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 73, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 66, 585, 268, 4763, 62, 88, 18189, 657, 290, 15050, 268, 4763, 62, 88, 19841, 838, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 88, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 73, 12962, 220, 220, 220, 1303, 936, 64, 384, 279, 1739, 68, 257, 1713, 283, 39990, 386, 1819, 66, 295, 274, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 64, 62, 88, 13, 33295, 7, 29510, 62, 88, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 755, 328, 29941, 13, 33295, 19510, 29510, 62, 87, 11, 20218, 62, 88, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 1343, 362, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 38397, 25440, 39990, 15050, 268, 38768, 31215, 288, 33828, 9491, 350, 357, 79, 2797, 418, 390, 13621, 292, 1267, 360, 31215, 39990, 2566, 1840, 2040, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 267, 13621, 292, 390, 269, 31058, 390, 8591, 2336, 5330, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 657, 201, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1312, 1279, 18896, 7, 4868, 64, 62, 87, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 87, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 5324, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 1343, 352, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 88, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 1343, 352, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 5324, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 1343, 513, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 88, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 1343, 513, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44332, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 532, 352, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 532, 352, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 5324, 796, 493, 7, 4868, 64, 62, 87, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20268, 88, 796, 493, 7, 4868, 64, 62, 88, 58, 72, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 67, 571, 23577, 25440, 8591, 2336, 5330, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 1370, 7, 79, 415, 30315, 11, 15107, 45006, 11, 685, 8416, 11, 12972, 4357, 685, 79, 5324, 11, 12972, 88, 4357, 362, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 64, 20663, 7, 79, 415, 30315, 11, 15107, 45006, 11, 685, 34350, 11, 20268, 4357, 685, 67, 5324, 11, 20268, 88, 4357, 6407, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 1312, 1343, 362, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 20991, 457, 333, 25440, 22346, 35363, 418, 1619, 514, 84, 4982, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4000, 1462, 62, 87, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 11925, 7, 4868, 64, 62, 2475, 8957, 8, 532, 362, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4000, 1462, 62, 88, 796, 493, 7, 4868, 64, 62, 2475, 8957, 58, 11925, 7, 4868, 64, 62, 2475, 8957, 8, 532, 352, 12962, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 64, 489, 291, 25440, 1334, 1173, 66, 295, 274, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4000, 1462, 62, 88, 18189, 513, 290, 4000, 1462, 62, 88, 19841, 1105, 290, 4000, 1462, 62, 87, 18189, 513, 290, 4000, 1462, 62, 87, 19841, 1105, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4000, 1462, 62, 87, 796, 4000, 1462, 62, 87, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4000, 1462, 62, 88, 796, 4000, 1462, 62, 88, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 19334, 13, 45597, 7, 79, 415, 30315, 11, 7257, 15112, 11, 685, 35512, 1462, 62, 87, 11, 4000, 1462, 62, 88, 4357, 352, 8, 1303, 67, 571, 23577, 25440, 1288, 764, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4164, 24313, 31215, 2730, 343, 33721, 1288, 4000, 1462, 1556, 64, 18794, 305, 267, 14035, 8607, 1619, 755, 328, 29941, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4000, 1462, 62, 268, 62, 16104, 328, 29941, 7, 35512, 1462, 62, 87, 11, 4000, 1462, 62, 88, 11, 755, 328, 29941, 8, 6624, 362, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 13812, 13, 2617, 62, 6888, 1159, 7203, 6836, 1166, 3529, 10062, 292, 551, 555, 1098, 22346, 9421, 501, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 4000, 1462, 62, 268, 62, 16104, 328, 29941, 7, 35512, 1462, 62, 87, 11, 4000, 1462, 62, 88, 11, 755, 328, 29941, 8, 6624, 352, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 13812, 13, 2617, 62, 6888, 1159, 7203, 6836, 1166, 3529, 4943, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 13812, 13, 2617, 62, 6888, 1159, 7203, 34, 72, 463, 324, 5733, 4943, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 12972, 6057, 13, 13812, 13, 2704, 541, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 823, 13210, 13, 42298, 7, 1238, 8, 201, 198, 201, 198, 2, 17419, 859, 418, 1288, 277, 291, 11718, 13, 201, 198, 259, 7753, 13, 19836, 3419, 201, 198, 201, 198, 9078, 6057, 13, 47391, 3419, 201, 198 ]
1.823529
2,210
#!/usr/bin/env python import os import sys import json from argparse import ArgumentParser from mglib import obj_from_url, tab_to_matrix, AUTH_LIST, API_URL, biom_to_matrix, VERSION prehelp = """ NAME mg-compare-heatmap VERSION %s SYNOPSIS mg-compare-heatmap [ --help, --input <input file or stdin>, --output <output file or stdout>, --format <cv: 'text' or 'biom'>, --cluster <cv: ward, single, complete, mcquitty, median, centroid>, --distance <cv: bray-curtis, euclidean, maximum, manhattan, canberra, minkowski, difference>, --name <boolean>, --normalize <boolean> ] DESCRIPTION Retrieve Dendogram Heatmap from abundance profiles for multiple metagenomes. """ posthelp = """ Input Tab-delimited table of abundance profiles, metagenomes in columns and annotation in rows. OR BIOM format of abundance profiles. Output JSON struct containing ordered distances for metagenomes and annotations, along with dendogram data. EXAMPLES mg-compare-taxa --ids "mgm4441679.3,mgm4441680.3,mgm4441681.3,mgm4441682.3" --level class --source RefSeq --format text | mg-compare-heatmap --input - --format text --cluster median --distance manhattan SEE ALSO - AUTHORS %s """ if __name__ == "__main__": sys.exit(main(sys.argv))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 33918, 198, 6738, 1822, 29572, 1330, 45751, 46677, 198, 6738, 285, 4743, 571, 1330, 26181, 62, 6738, 62, 6371, 11, 7400, 62, 1462, 62, 6759, 8609, 11, 37195, 62, 45849, 11, 7824, 62, 21886, 11, 27488, 62, 1462, 62, 6759, 8609, 11, 44156, 2849, 198, 198, 3866, 16794, 796, 37227, 198, 20608, 198, 220, 220, 220, 10527, 12, 5589, 533, 12, 25080, 8899, 198, 198, 43717, 198, 220, 220, 220, 4064, 82, 198, 198, 23060, 45, 30737, 1797, 198, 220, 220, 220, 10527, 12, 5589, 533, 12, 25080, 8899, 685, 1377, 16794, 11, 1377, 15414, 1279, 15414, 2393, 393, 14367, 259, 22330, 1377, 22915, 1279, 22915, 2393, 393, 14367, 448, 22330, 1377, 18982, 1279, 33967, 25, 705, 5239, 6, 393, 705, 8482, 296, 6, 22330, 1377, 565, 5819, 1279, 33967, 25, 15305, 11, 2060, 11, 1844, 11, 36650, 421, 9760, 11, 14288, 11, 1247, 3882, 22330, 1377, 30246, 1279, 33967, 25, 865, 323, 12, 66, 3325, 271, 11, 304, 36616, 485, 272, 11, 5415, 11, 582, 12904, 11, 460, 31358, 11, 285, 676, 12079, 11, 3580, 22330, 1377, 3672, 1279, 2127, 21052, 22330, 1377, 11265, 1096, 1279, 2127, 21052, 29, 2361, 198, 198, 30910, 40165, 198, 220, 220, 220, 4990, 30227, 360, 437, 21857, 12308, 8899, 422, 20038, 16545, 329, 3294, 1138, 11286, 2586, 13, 198, 37811, 198, 198, 7353, 16794, 796, 37227, 198, 20560, 198, 220, 220, 220, 16904, 12, 12381, 320, 863, 3084, 286, 20038, 16545, 11, 1138, 11286, 2586, 287, 15180, 290, 23025, 287, 15274, 13, 198, 220, 220, 220, 6375, 198, 220, 220, 220, 20068, 2662, 5794, 286, 20038, 16545, 13, 198, 198, 26410, 198, 220, 220, 220, 19449, 2878, 7268, 6149, 18868, 329, 1138, 11286, 2586, 290, 37647, 11, 1863, 351, 288, 437, 21857, 1366, 13, 198, 198, 6369, 2390, 6489, 1546, 198, 220, 220, 220, 10527, 12, 5589, 533, 12, 19290, 64, 1377, 2340, 366, 11296, 76, 30272, 1433, 3720, 13, 18, 11, 11296, 76, 30272, 1433, 1795, 13, 18, 11, 11296, 76, 30272, 1433, 6659, 13, 18, 11, 11296, 76, 30272, 1433, 6469, 13, 18, 1, 1377, 5715, 1398, 1377, 10459, 6524, 4653, 80, 1377, 18982, 2420, 930, 10527, 12, 5589, 533, 12, 25080, 8899, 1377, 15414, 532, 1377, 18982, 2420, 1377, 565, 5819, 14288, 1377, 30246, 582, 12904, 198, 198, 36078, 35912, 198, 220, 220, 220, 532, 198, 198, 32, 24318, 20673, 198, 220, 220, 220, 4064, 82, 198, 37811, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 25064, 13, 37023, 7, 12417, 7, 17597, 13, 853, 85, 4008, 198 ]
2.866817
443
import settings import cv2 from VideoTypes import imageframe, standardredditformat import generatemovie import generatorclient import datetime import os import shutil import videouploader import random import pickle from time import sleep videoscripts = []
[ 11748, 6460, 201, 198, 11748, 269, 85, 17, 201, 198, 6738, 7623, 31431, 1330, 2939, 14535, 11, 3210, 10748, 18982, 201, 198, 11748, 1152, 23900, 10739, 201, 198, 11748, 17301, 16366, 201, 198, 11748, 4818, 8079, 201, 198, 11748, 28686, 201, 198, 11748, 4423, 346, 201, 198, 11748, 18784, 280, 7304, 263, 201, 198, 11748, 4738, 201, 198, 11748, 2298, 293, 201, 198, 6738, 640, 1330, 3993, 201, 198, 201, 198, 201, 198, 32861, 6519, 82, 796, 17635, 201, 198, 201, 198, 201, 198 ]
3.309524
84
from tkinter import * from main_window import MainWindow if __name__ == "__main__": root = Tk() root.columnconfigure(0, weight=1) root.columnconfigure(2, weight=1) root.rowconfigure(0, weight=1) m = MainWindow(root) root.mainloop()
[ 6738, 256, 74, 3849, 1330, 1635, 198, 6738, 1388, 62, 17497, 1330, 8774, 27703, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 6808, 796, 309, 74, 3419, 198, 220, 220, 220, 6808, 13, 28665, 11250, 495, 7, 15, 11, 3463, 28, 16, 8, 198, 220, 220, 220, 6808, 13, 28665, 11250, 495, 7, 17, 11, 3463, 28, 16, 8, 198, 220, 220, 220, 6808, 13, 808, 11250, 495, 7, 15, 11, 3463, 28, 16, 8, 198, 220, 220, 220, 285, 796, 8774, 27703, 7, 15763, 8, 198, 220, 220, 220, 6808, 13, 12417, 26268, 3419, 198 ]
2.480769
104
# -*- coding: utf-8 -*- """Read and write parameters, results and metadata to the 'sim_db' database.""" # Copyright (C) 2017-2019 Håkon Austlid Taskén <[email protected]> # Licenced under the MIT License. import sim_db.src_command_line_tool.commands.helpers as helpers import sqlite3 import argparse import subprocess import time import hashlib import threading import os import sys class SimDB: """To interact with the **sim_db** database. For an actuall simulation it should be initialised at the very start of the simulation (with 'store_metadata' set to True) and closed with :func:`~SimDB.close` at the very end of the simulation. This must be done to add the corrrect metadata. For multithreading/multiprocessing each thread/process MUST have its own connection (instance of this class) and MUST provide it with its rank. """ def __init__(self, store_metadata=True, db_id=None, rank=None, only_write_on_rank=0): """Connect to the **sim_db** database. :param store_metadata: If False, no metadata is added to the database. Typically used when postprocessing (visualizing) data from a simulation. :type store_metadata: bool :param db_id: ID number of the simulation parameters in the **sim_db** database. If it is 'None', then it is read from the argument passed to the program after option '--id'. :type db_id: int :param rank: Number identifing the calling process and/or thread. (Typically the MPI or OpenMP rank.) If provided, only the 'rank' matching 'only_write_on_rank' will write to the database to avoid too much concurrent writing to the database. Single process and threaded programs may ignore this, while multithreading/multiprocessing programs need to provide it. :type rank: int :param only_write_on_rank: Number identifing the only process/thread that will write to the database. Only used if 'rank' is provided. :type only_write_on_rank: int """ self.rank = rank self.only_write_on_rank = only_write_on_rank self.start_time = time.time() self.store_metadata = store_metadata self.id, self.path_proj_root = self.__read_from_command_line_arguments( db_id) self.db = helpers.connect_sim_db() self.db_cursor = self.db.cursor() self.column_names = [] self.column_types = [] if (self.store_metadata and (self.rank == None or self.rank == self.only_write_on_rank)): self.write('status', 'running') self.write('time_started', self.__get_date_and_time_as_string()) if (self.store_metadata and self.__is_a_git_project() and (self.rank == None or self.rank == self.only_write_on_rank)): proc = subprocess.Popen( [ 'cd "{0}"; git rev-parse HEAD'.format( self.path_proj_root) ], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w'), shell=True) (out, err) = proc.communicate() self.write( column="git_hash", value=out.decode('ascii', 'replace')) proc = subprocess.Popen( [ 'cd "{0}"; git log -n 1 --format=%B HEAD'.format( self.path_proj_root) ], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w'), shell=True) (out, err) = proc.communicate() self.write( column="commit_message", value=out.decode('ascii', 'replace')) proc = subprocess.Popen( [ 'cd "{0}"; git diff HEAD --stat'.format( self.path_proj_root) ], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w'), shell=True) (out, err) = proc.communicate() self.write( column="git_diff_stat", value=out.decode('ascii', 'replace')) proc = subprocess.Popen( ['cd "{0}"; git diff HEAD'.format(self.path_proj_root)], stdout=subprocess.PIPE, stderr=open(os.devnull, 'w'), shell=True) (out, err) = proc.communicate() out = out.decode('ascii', 'replace') if len(out) > 3000: warning = "WARNING: Diff limited to first 3000 characters.\n" out = warning + '\n' + out[0:3000] + '\n\n' + warning self.write(column="git_diff", value=out) def read(self, column, check_type_is=''): """Read parameter in 'column' from the database. Return None if parameter is empty. :param column: Name of the column the parameter is read from. :type column: str :param check_type_is: Throws ValueError if type does not match 'check_type_is'.The valid types the strings 'int', 'float', 'bool', 'string' and 'int/float/bool/string array' or the types int, float, bool, str and list. :raises ColumnError: If column do not exists. :raises ValueError: If return type does not match 'check_type_is'. :raises sqlite3.OperationalError: Waited more than 5 seconds to read from the database, because other threads/processes are busy writing to it. Way too much concurrent writing is done and it indicates an design error in the user program. """ if column not in self.column_names: self.column_names, self.column_types = ( helpers.get_db_column_names_and_types(self.db_cursor)) if column not in self.column_names: raise ColumnError("Column, {0}, is NOT a column in the " "database.".format(column)) self.db_cursor.execute("SELECT {0} FROM runs WHERE id={1}".format( column, self.id)) value = self.db_cursor.fetchone() if value != None: value = value[0] value = self.__check_type(check_type_is, column, self.column_names, self.column_types, value) return value def write(self, column, value, type_of_value='', only_if_empty=False): """Write value to 'column' in the database. If 'column' does not exists, a new is added. If value is None and type_of_value is not set, the entry under 'column' is set to empty. For multithreaded and multiprocess programs only a single will process/thread write to the database to avoid too much concurrent writing to the database. This is as long as the 'rank' was passed to SimDB under initialisation. :param column: Name of the column the parameter is read from. :type column: str :param value: New value of the specified entry in the database. :param type_of_value: Needed if column does note exists or if value is empty list. The valid types the strings 'int', 'float', 'bool', 'string' and 'int/float/bool/string array' or the types int, float, bool and str. :type type_of_value: str or type :param only_if_empty: If True, it will only write to the database if the simulation's entry under 'column' is empty. :type only_if_empty: bool :raises ValueError: If column exists, but type does not match, or empty list is passed without type_of_value given. """ # For multithreaded/multiprocess programs only a single process/thread # does any writing. if self.rank != None and self.rank != self.only_write_on_rank: return self.__add_column_if_not_exists_and_check_type(column, type_of_value, value) value_string = self.__convert_to_value_string(value, type_of_value) value_string = self.__escape_quote_with_two_quotes(value_string) type_dict = dict(zip(self.column_names, self.column_types)) # 'and type(value != None) != bool' allow numpy arrays to be check # without importing numpy and thereby relying on it being availble. if (type_dict[column] == 'TEXT' and (type(value != None) != bool or value != None)): value_string = "'{0}'".format(value_string) if only_if_empty and self.is_empty(column): self.db_cursor.execute("UPDATE runs SET \"{0}\" = {1} WHERE \"id\" " "= {2} AND {0} IS NULL".format(column, value_string, self.id)) self.db.commit() else: self.db_cursor.execute( "UPDATE runs SET \"{0}\" = {1} WHERE id = {2}".format( column, value_string, self.id)) self.db.commit() def unique_results_dir(self, path_directory): """Get path to subdirectory in 'path_directory' unique to simulation. The subdirectory will be named 'date_time_name_id' and is intended to store results in. If 'results_dir' in the database is empty, a new and unique directory is created and the path stored in 'results_dir'. Otherwise the path in 'results_dir' is just returned. :param path_directory: Path to directory of which to make a subdirectory. If 'path_directory' starts with 'root/', that part will be replaced by the full path of the root directory of the project. :type path_directory: str :returns: Full path to new subdirectory. :rtype: str """ results_dir = self.read("results_dir") if results_dir == None: if self.rank == None or self.rank == self.only_write_on_rank: if (len(path_directory) >= 5 and path_directory[0:5] == 'root/'): path_directory = os.path.join(self.path_proj_root, path_directory[5:]) results_dir = os.path.join(path_directory, self.__get_date_and_time_as_string()) results_dir += '_' + str(self.read('name')) + '_' + str(self.id) results_dir = os.path.abspath(os.path.realpath(results_dir)) os.mkdir(results_dir) self.write(column="results_dir", value=results_dir, only_if_empty=False) else: while results_dir == None: results_dir = self.read("results_dir") return results_dir def column_exists(self, column): """Return True if column is a column in the database. :raises sqlite3.OperationalError: Waited more than 5 seconds to read from the database, because other threads/processes are busy writing to it. Way too much concurrent writing is done and it indicates an design error in the user program. """ if column in self.column_names: return True else: self.column_names, self.column_types = ( helpers.get_db_column_names_and_types(self.db_cursor)) if column in self.column_names: return True else: return False def is_empty(self, column): """Return True if entry in the database under 'column' is empty. :raises sqlite3.OperationalError: Waited more than 5 seconds to read from the database, because other threads/processes are busy writing to it. Way too much concurrent writing is done and it indicates an design error in the user program. """ value = self.read(column) if value == None: return True else: return False def set_empty(self, column): """Set entry under 'column' in the database to empty.""" self.write(column, None) def get_id(self): """Return 'ID' of the connected simulation.""" return self.id def get_path_proj_root(self): """Return the path to the root directory of the project. The project's root directory is assumed to be where the '.sim_db/' directory is located. """ return self.path_proj_root def update_sha1_executables(self, paths_executables): """Update the 'sha1_executable' column in the database. Sets the entry to the sha1 of all the executables. The order will affect the value. :param paths_executables: List of full paths to executables. :type paths_executables: [str] :raises sqlite3.OperationalError: Waited more than 5 seconds to write to the database, because other threads/processes are busy writing to it. Way too much concurrent writing is done and it indicates an design error in the user program. """ sha1 = hashlib.sha1() for executable in executables: with open(executable, 'r') as executable_file: sha1.update(executable_file.read()) self.write('sha1_executables', sha1) def delete_from_database(self): """Delete simulation from database. :raises sqlite3.OperationalError: Waited more than 5 seconds to write to the database, because other threads/processes are busy writing to it. Way too much concurrent writing is done and it indicates an design error in the user program. """ self.db_cursor.execute("DELETE FROM runs WHERE id = {0}".format( self.id)) self.db.commit() self.store_metadata = False def close(self): """Closes connection to **sim_db** database and add metadata.""" if (self.store_metadata and (self.rank == None or self.rank == self.only_write_on_rank)): used_time = time.time() - self.start_time used_walltime = "{0}h {1}m {2}s".format( int(used_time / 3600), int(used_time / 60), used_time % 60) self.write('used_walltime', used_walltime) self.write('status', 'finished') self.db_cursor.close() self.db.close() def __get_date_and_time_as_string(self): """Return data and time as 'Year-Month-Date_Hours-Minutes-Seconds'.""" return time.strftime("%Y-%b-%d_%H-%M-%S") def add_empty_sim(store_metadata=False): """Add an empty entry into the database and SimDB connected to it. :param store_metadata: If False, no metadata is added to the database. Typically used when postprocessing (visualizing) data from a simulation. :type store_metadata: bool """ db = helpers.connect_sim_db() db_cursor = db.cursor() default_db_columns = "" for key in helpers.default_db_columns: default_db_columns += key + " " + str( helpers.default_db_columns[key]) + ", " default_db_columns = default_db_columns[:-2] db_cursor.execute("CREATE TABLE IF NOT EXISTS runs ({0});".format( default_db_columns)) db_cursor.execute("INSERT INTO runs DEFAULT VALUES") db_id = db_cursor.lastrowid db.commit() db_cursor.close() db.close() return SimDB(db_id=db_id, store_metadata=store_metadata)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 5569, 290, 3551, 10007, 11, 2482, 290, 20150, 284, 262, 705, 14323, 62, 9945, 6, 6831, 526, 15931, 198, 2, 15069, 357, 34, 8, 2177, 12, 23344, 367, 29090, 74, 261, 2517, 75, 312, 15941, 35942, 1279, 43573, 261, 13, 35943, 268, 31, 14816, 13, 785, 29, 198, 2, 10483, 5864, 739, 262, 17168, 13789, 13, 198, 198, 11748, 985, 62, 9945, 13, 10677, 62, 21812, 62, 1370, 62, 25981, 13, 9503, 1746, 13, 16794, 364, 355, 49385, 198, 11748, 44161, 578, 18, 198, 11748, 1822, 29572, 198, 11748, 850, 14681, 198, 11748, 640, 198, 11748, 12234, 8019, 198, 11748, 4704, 278, 198, 11748, 28686, 198, 11748, 25064, 628, 198, 4871, 3184, 11012, 25, 198, 220, 220, 220, 37227, 2514, 9427, 351, 262, 12429, 14323, 62, 9945, 1174, 6831, 13, 628, 220, 220, 220, 1114, 281, 43840, 439, 18640, 340, 815, 307, 4238, 1417, 379, 262, 845, 923, 286, 262, 220, 198, 220, 220, 220, 18640, 357, 4480, 705, 8095, 62, 38993, 6, 900, 284, 6407, 8, 290, 4838, 351, 220, 198, 220, 220, 220, 1058, 20786, 25, 63, 93, 8890, 11012, 13, 19836, 63, 379, 262, 845, 886, 286, 262, 18640, 13, 770, 1276, 307, 1760, 220, 198, 220, 220, 220, 284, 751, 262, 1162, 81, 2554, 20150, 13, 628, 220, 220, 220, 1114, 1963, 342, 25782, 14, 16680, 541, 305, 919, 278, 1123, 4704, 14, 14681, 17191, 423, 663, 198, 220, 220, 220, 898, 4637, 357, 39098, 286, 428, 1398, 8, 290, 17191, 2148, 340, 351, 663, 4279, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 3650, 62, 38993, 28, 17821, 11, 20613, 62, 312, 28, 14202, 11, 4279, 28, 14202, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 691, 62, 13564, 62, 261, 62, 43027, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13313, 284, 262, 12429, 14323, 62, 9945, 1174, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3650, 62, 38993, 25, 1002, 10352, 11, 645, 20150, 318, 2087, 284, 262, 6831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27095, 973, 618, 1281, 36948, 357, 41464, 2890, 8, 1366, 422, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18640, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3650, 62, 38993, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 20613, 62, 312, 25, 4522, 1271, 286, 262, 18640, 10007, 287, 262, 12429, 14323, 62, 9945, 1174, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6831, 13, 1002, 340, 318, 705, 14202, 3256, 788, 340, 318, 1100, 422, 262, 4578, 3804, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 1430, 706, 3038, 705, 438, 312, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 20613, 62, 312, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4279, 25, 7913, 1852, 361, 278, 262, 4585, 1429, 290, 14, 273, 4704, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 49321, 262, 4904, 40, 393, 4946, 7378, 4279, 2014, 1002, 2810, 11, 691, 262, 705, 43027, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12336, 705, 8807, 62, 13564, 62, 261, 62, 43027, 6, 481, 3551, 284, 262, 6831, 284, 3368, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1165, 881, 24580, 3597, 284, 262, 6831, 13, 14206, 1429, 290, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40945, 4056, 743, 8856, 428, 11, 981, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1963, 342, 25782, 14, 16680, 541, 305, 919, 278, 4056, 761, 284, 2148, 340, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 4279, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 691, 62, 13564, 62, 261, 62, 43027, 25, 7913, 1852, 361, 278, 262, 691, 1429, 14, 16663, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 326, 481, 3551, 284, 262, 6831, 13, 5514, 973, 611, 705, 43027, 6, 318, 2810, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 691, 62, 13564, 62, 261, 62, 43027, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 43027, 796, 4279, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 796, 691, 62, 13564, 62, 261, 62, 43027, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9688, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8095, 62, 38993, 796, 3650, 62, 38993, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 11, 2116, 13, 6978, 62, 1676, 73, 62, 15763, 796, 2116, 13, 834, 961, 62, 6738, 62, 21812, 62, 1370, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 796, 49385, 13, 8443, 62, 14323, 62, 9945, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 796, 2116, 13, 9945, 13, 66, 21471, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28665, 62, 14933, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28665, 62, 19199, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 8095, 62, 38993, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 357, 944, 13, 43027, 6624, 6045, 393, 2116, 13, 43027, 6624, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 10786, 13376, 3256, 705, 20270, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 10786, 2435, 62, 46981, 3256, 2116, 13, 834, 1136, 62, 4475, 62, 392, 62, 2435, 62, 292, 62, 8841, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 8095, 62, 38993, 290, 2116, 13, 834, 271, 62, 64, 62, 18300, 62, 16302, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 357, 944, 13, 43027, 6624, 6045, 393, 2116, 13, 43027, 6624, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 850, 14681, 13, 47, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10210, 45144, 15, 92, 8172, 17606, 2710, 12, 29572, 39837, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 62, 1676, 73, 62, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 9654, 7, 418, 13, 7959, 8423, 11, 705, 86, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 11, 11454, 8, 796, 13834, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 2625, 18300, 62, 17831, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 448, 13, 12501, 1098, 10786, 292, 979, 72, 3256, 705, 33491, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 850, 14681, 13, 47, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10210, 45144, 15, 92, 8172, 17606, 2604, 532, 77, 352, 1377, 18982, 28, 4, 33, 39837, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 62, 1676, 73, 62, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 9654, 7, 418, 13, 7959, 8423, 11, 705, 86, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 11, 11454, 8, 796, 13834, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 2625, 41509, 62, 20500, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 448, 13, 12501, 1098, 10786, 292, 979, 72, 3256, 705, 33491, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 850, 14681, 13, 47, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10210, 45144, 15, 92, 8172, 17606, 814, 39837, 1377, 14269, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6978, 62, 1676, 73, 62, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 9654, 7, 418, 13, 7959, 8423, 11, 705, 86, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 11, 11454, 8, 796, 13834, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 2625, 18300, 62, 26069, 62, 14269, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 448, 13, 12501, 1098, 10786, 292, 979, 72, 3256, 705, 33491, 6, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13834, 796, 850, 14681, 13, 47, 9654, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37250, 10210, 45144, 15, 92, 8172, 17606, 814, 39837, 4458, 18982, 7, 944, 13, 6978, 62, 1676, 73, 62, 15763, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 448, 28, 7266, 14681, 13, 47, 4061, 36, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 1082, 81, 28, 9654, 7, 418, 13, 7959, 8423, 11, 705, 86, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7582, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 448, 11, 11454, 8, 796, 13834, 13, 10709, 5344, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 503, 13, 12501, 1098, 10786, 292, 979, 72, 3256, 705, 33491, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 448, 8, 1875, 20343, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6509, 796, 366, 31502, 25, 10631, 3614, 284, 717, 20343, 3435, 13, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 6509, 1343, 705, 59, 77, 6, 1343, 503, 58, 15, 25, 23924, 60, 1343, 705, 59, 77, 59, 77, 6, 1343, 6509, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 28665, 2625, 18300, 62, 26069, 1600, 1988, 28, 448, 8, 628, 220, 220, 220, 825, 1100, 7, 944, 11, 5721, 11, 2198, 62, 4906, 62, 271, 28, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5569, 11507, 287, 705, 28665, 6, 422, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 8229, 6045, 611, 11507, 318, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5721, 25, 6530, 286, 262, 5721, 262, 11507, 318, 1100, 422, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 5721, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2198, 62, 4906, 62, 271, 25, 536, 8516, 11052, 12331, 611, 2099, 857, 407, 2872, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9122, 62, 4906, 62, 271, 4458, 464, 4938, 3858, 262, 13042, 705, 600, 3256, 705, 22468, 3256, 705, 30388, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8841, 6, 290, 705, 600, 14, 22468, 14, 30388, 14, 8841, 7177, 6, 393, 262, 3858, 493, 11, 12178, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20512, 11, 965, 290, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 29201, 12331, 25, 1002, 5721, 466, 407, 7160, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 11052, 12331, 25, 1002, 1441, 2099, 857, 407, 2872, 705, 9122, 62, 4906, 62, 271, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 44161, 578, 18, 13, 18843, 864, 12331, 25, 15329, 863, 517, 621, 642, 4201, 284, 1100, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 262, 6831, 11, 780, 584, 14390, 14, 14681, 274, 389, 8179, 3597, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 340, 13, 6378, 1165, 881, 24580, 3597, 318, 1760, 290, 340, 9217, 281, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 4049, 287, 262, 2836, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5721, 407, 287, 2116, 13, 28665, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28665, 62, 14933, 11, 2116, 13, 28665, 62, 19199, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49385, 13, 1136, 62, 9945, 62, 28665, 62, 14933, 62, 392, 62, 19199, 7, 944, 13, 9945, 62, 66, 21471, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5721, 407, 287, 2116, 13, 28665, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 29201, 12331, 7203, 39470, 11, 1391, 15, 5512, 318, 5626, 257, 5721, 287, 262, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 48806, 526, 13, 18982, 7, 28665, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 13, 41049, 7203, 46506, 1391, 15, 92, 16034, 4539, 33411, 4686, 34758, 16, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 11, 2116, 13, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 9945, 62, 66, 21471, 13, 69, 7569, 505, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 1988, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 834, 9122, 62, 4906, 7, 9122, 62, 4906, 62, 271, 11, 5721, 11, 2116, 13, 28665, 62, 14933, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28665, 62, 19199, 11, 1988, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628, 220, 220, 220, 825, 3551, 7, 944, 11, 5721, 11, 1988, 11, 2099, 62, 1659, 62, 8367, 11639, 3256, 691, 62, 361, 62, 28920, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16594, 1988, 284, 705, 28665, 6, 287, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 705, 28665, 6, 857, 407, 7160, 11, 257, 649, 318, 2087, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 1988, 318, 6045, 290, 2099, 62, 1659, 62, 8367, 318, 407, 900, 11, 262, 5726, 739, 705, 28665, 6, 198, 220, 220, 220, 220, 220, 220, 220, 318, 900, 284, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1114, 1963, 342, 961, 276, 290, 18540, 305, 919, 4056, 691, 257, 2060, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 14, 16663, 3551, 284, 262, 6831, 284, 3368, 1165, 881, 24580, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3597, 284, 262, 6831, 13, 770, 318, 355, 890, 355, 262, 705, 43027, 6, 373, 3804, 284, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3184, 11012, 739, 4238, 5612, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5721, 25, 6530, 286, 262, 5721, 262, 11507, 318, 1100, 422, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 5721, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1988, 25, 968, 1988, 286, 262, 7368, 5726, 287, 262, 6831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2099, 62, 1659, 62, 8367, 25, 10664, 276, 611, 5721, 857, 3465, 7160, 393, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 318, 6565, 1351, 13, 383, 4938, 3858, 262, 13042, 705, 600, 3256, 705, 22468, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 30388, 3256, 705, 8841, 6, 290, 705, 600, 14, 22468, 14, 30388, 14, 8841, 7177, 6, 393, 262, 3858, 493, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12178, 11, 20512, 290, 965, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 2099, 62, 1659, 62, 8367, 25, 965, 393, 2099, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 691, 62, 361, 62, 28920, 25, 1002, 6407, 11, 340, 481, 691, 3551, 284, 262, 6831, 611, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18640, 338, 5726, 739, 705, 28665, 6, 318, 6565, 13, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 691, 62, 361, 62, 28920, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 11052, 12331, 25, 1002, 5721, 7160, 11, 475, 2099, 857, 407, 2872, 11, 393, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6565, 1351, 318, 3804, 1231, 2099, 62, 1659, 62, 8367, 1813, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 1963, 342, 961, 276, 14, 16680, 541, 305, 919, 4056, 691, 257, 2060, 1429, 14, 16663, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 857, 597, 3597, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43027, 14512, 6045, 290, 2116, 13, 43027, 14512, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 2860, 62, 28665, 62, 361, 62, 1662, 62, 1069, 1023, 62, 392, 62, 9122, 62, 4906, 7, 28665, 11, 2099, 62, 1659, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 8841, 796, 2116, 13, 834, 1102, 1851, 62, 1462, 62, 8367, 62, 8841, 7, 8367, 11, 2099, 62, 1659, 62, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 8841, 796, 2116, 13, 834, 41915, 62, 22708, 62, 4480, 62, 11545, 62, 421, 6421, 7, 8367, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 11600, 796, 8633, 7, 13344, 7, 944, 13, 28665, 62, 14933, 11, 2116, 13, 28665, 62, 19199, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 705, 392, 2099, 7, 8367, 14512, 6045, 8, 14512, 20512, 6, 1249, 299, 32152, 26515, 284, 307, 2198, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1231, 33332, 299, 32152, 290, 12839, 17965, 319, 340, 852, 29107, 903, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 4906, 62, 11600, 58, 28665, 60, 6624, 705, 32541, 6, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 357, 4906, 7, 8367, 14512, 6045, 8, 14512, 20512, 393, 1988, 14512, 6045, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 8841, 796, 24018, 90, 15, 92, 6, 1911, 18982, 7, 8367, 62, 8841, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 691, 62, 361, 62, 28920, 290, 2116, 13, 271, 62, 28920, 7, 28665, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 13, 41049, 7203, 16977, 4539, 25823, 19990, 90, 15, 92, 7879, 796, 1391, 16, 92, 33411, 19990, 312, 7879, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28, 1391, 17, 92, 5357, 1391, 15, 92, 3180, 15697, 1911, 18982, 7, 28665, 11, 1988, 62, 8841, 11, 2116, 13, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 13, 41049, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 16977, 4539, 25823, 19990, 90, 15, 92, 7879, 796, 1391, 16, 92, 33411, 4686, 796, 1391, 17, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5721, 11, 1988, 62, 8841, 11, 2116, 13, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 13, 41509, 3419, 628, 220, 220, 220, 825, 3748, 62, 43420, 62, 15908, 7, 944, 11, 3108, 62, 34945, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 3108, 284, 850, 34945, 287, 705, 6978, 62, 34945, 6, 3748, 284, 18640, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 850, 34945, 481, 307, 3706, 705, 4475, 62, 2435, 62, 3672, 62, 312, 6, 290, 318, 5292, 284, 198, 220, 220, 220, 220, 220, 220, 220, 3650, 2482, 287, 13, 1002, 705, 43420, 62, 15908, 6, 287, 262, 6831, 318, 6565, 11, 257, 649, 290, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3748, 8619, 318, 2727, 290, 262, 3108, 8574, 287, 705, 43420, 62, 15908, 4458, 220, 198, 220, 220, 220, 220, 220, 220, 220, 15323, 262, 3108, 287, 705, 43420, 62, 15908, 6, 318, 655, 4504, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3108, 62, 34945, 25, 10644, 284, 8619, 286, 543, 284, 787, 257, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 34945, 13, 1002, 705, 6978, 62, 34945, 6, 4940, 351, 705, 15763, 14, 3256, 326, 636, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 6928, 416, 262, 1336, 3108, 286, 262, 6808, 8619, 286, 262, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1628, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 3108, 62, 34945, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 82, 25, 6462, 3108, 284, 649, 850, 34945, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 15908, 796, 2116, 13, 961, 7203, 43420, 62, 15908, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2482, 62, 15908, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 43027, 6624, 6045, 393, 2116, 13, 43027, 6624, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 11925, 7, 6978, 62, 34945, 8, 18189, 642, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 3108, 62, 34945, 58, 15, 25, 20, 60, 6624, 705, 15763, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 34945, 796, 28686, 13, 6978, 13, 22179, 7, 944, 13, 6978, 62, 1676, 73, 62, 15763, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 62, 34945, 58, 20, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 6978, 62, 34945, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 834, 1136, 62, 4475, 62, 392, 62, 2435, 62, 292, 62, 8841, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 15908, 15853, 705, 62, 6, 1343, 965, 7, 944, 13, 961, 10786, 3672, 6, 4008, 1343, 705, 62, 6, 1343, 965, 7, 944, 13, 312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 15908, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 5305, 6978, 7, 43420, 62, 15908, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 28015, 15908, 7, 43420, 62, 15908, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 28665, 2625, 43420, 62, 15908, 1600, 1988, 28, 43420, 62, 15908, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 691, 62, 361, 62, 28920, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 2482, 62, 15908, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2482, 62, 15908, 796, 2116, 13, 961, 7203, 43420, 62, 15908, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2482, 62, 15908, 628, 220, 220, 220, 825, 5721, 62, 1069, 1023, 7, 944, 11, 5721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 6407, 611, 5721, 318, 257, 5721, 287, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 44161, 578, 18, 13, 18843, 864, 12331, 25, 15329, 863, 517, 621, 642, 4201, 284, 1100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 262, 6831, 11, 780, 584, 14390, 14, 14681, 274, 389, 8179, 3597, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 340, 13, 6378, 1165, 881, 24580, 3597, 318, 1760, 290, 340, 9217, 281, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 4049, 287, 262, 2836, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5721, 287, 2116, 13, 28665, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28665, 62, 14933, 11, 2116, 13, 28665, 62, 19199, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49385, 13, 1136, 62, 9945, 62, 28665, 62, 14933, 62, 392, 62, 19199, 7, 944, 13, 9945, 62, 66, 21471, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 5721, 287, 2116, 13, 28665, 62, 14933, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 318, 62, 28920, 7, 944, 11, 5721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 6407, 611, 5726, 287, 262, 6831, 739, 705, 28665, 6, 318, 6565, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 44161, 578, 18, 13, 18843, 864, 12331, 25, 15329, 863, 517, 621, 642, 4201, 284, 1100, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 262, 6831, 11, 780, 584, 14390, 14, 14681, 274, 389, 8179, 3597, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 340, 13, 6378, 1165, 881, 24580, 3597, 318, 1760, 290, 340, 9217, 281, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 4049, 287, 262, 2836, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2116, 13, 961, 7, 28665, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 6624, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 900, 62, 28920, 7, 944, 11, 5721, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 5726, 739, 705, 28665, 6, 287, 262, 6831, 284, 6565, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 7, 28665, 11, 6045, 8, 628, 220, 220, 220, 825, 651, 62, 312, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 705, 2389, 6, 286, 262, 5884, 18640, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 312, 628, 220, 220, 220, 825, 651, 62, 6978, 62, 1676, 73, 62, 15763, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 3108, 284, 262, 6808, 8619, 286, 262, 1628, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1628, 338, 6808, 8619, 318, 9672, 284, 307, 810, 262, 45302, 14323, 62, 9945, 14, 6, 198, 220, 220, 220, 220, 220, 220, 220, 8619, 318, 5140, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 6978, 62, 1676, 73, 62, 15763, 628, 220, 220, 220, 825, 4296, 62, 26270, 16, 62, 18558, 315, 2977, 7, 944, 11, 13532, 62, 18558, 315, 2977, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 10260, 262, 705, 26270, 16, 62, 18558, 18187, 6, 5721, 287, 262, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 21394, 262, 5726, 284, 262, 427, 64, 16, 286, 477, 262, 3121, 2977, 13, 383, 1502, 481, 198, 220, 220, 220, 220, 220, 220, 220, 2689, 262, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13532, 62, 18558, 315, 2977, 25, 7343, 286, 1336, 13532, 284, 3121, 2977, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 13532, 62, 18558, 315, 2977, 25, 685, 2536, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 44161, 578, 18, 13, 18843, 864, 12331, 25, 15329, 863, 517, 621, 642, 4201, 284, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 6831, 11, 780, 584, 14390, 14, 14681, 274, 389, 8179, 3597, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 340, 13, 6378, 1165, 881, 24580, 3597, 318, 1760, 290, 340, 9217, 281, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 4049, 287, 262, 2836, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 427, 64, 16, 796, 12234, 8019, 13, 26270, 16, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 28883, 287, 3121, 2977, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 18558, 18187, 11, 705, 81, 11537, 355, 28883, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 16, 13, 19119, 7, 18558, 18187, 62, 7753, 13, 961, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 10786, 26270, 16, 62, 18558, 315, 2977, 3256, 427, 64, 16, 8, 628, 220, 220, 220, 825, 12233, 62, 6738, 62, 48806, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38727, 18640, 422, 6831, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 430, 2696, 44161, 578, 18, 13, 18843, 864, 12331, 25, 15329, 863, 517, 621, 642, 4201, 284, 3551, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 262, 6831, 11, 780, 584, 14390, 14, 14681, 274, 389, 8179, 3597, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 340, 13, 6378, 1165, 881, 24580, 3597, 318, 1760, 290, 340, 9217, 281, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1486, 4049, 287, 262, 2836, 1430, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 13, 41049, 7203, 7206, 2538, 9328, 16034, 4539, 33411, 4686, 796, 1391, 15, 92, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 312, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 8095, 62, 38993, 796, 10352, 628, 220, 220, 220, 825, 1969, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 2601, 4629, 4637, 284, 12429, 14323, 62, 9945, 1174, 6831, 290, 751, 20150, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 8095, 62, 38993, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 357, 944, 13, 43027, 6624, 6045, 393, 2116, 13, 43027, 6624, 2116, 13, 8807, 62, 13564, 62, 261, 62, 43027, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 62, 2435, 796, 640, 13, 2435, 3419, 532, 2116, 13, 9688, 62, 2435, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 973, 62, 11930, 2435, 796, 45144, 15, 92, 71, 1391, 16, 92, 76, 1391, 17, 92, 82, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 1484, 62, 2435, 1220, 4570, 405, 828, 493, 7, 1484, 62, 2435, 1220, 3126, 828, 973, 62, 2435, 4064, 3126, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 10786, 1484, 62, 11930, 2435, 3256, 973, 62, 11930, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 13564, 10786, 13376, 3256, 705, 43952, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 62, 66, 21471, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9945, 13, 19836, 3419, 628, 220, 220, 220, 825, 11593, 1136, 62, 4475, 62, 392, 62, 2435, 62, 292, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 1366, 290, 640, 355, 705, 17688, 12, 31948, 12, 10430, 62, 39792, 12, 9452, 1769, 12, 12211, 82, 30827, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 640, 13, 2536, 31387, 7203, 4, 56, 12, 4, 65, 12, 4, 67, 62, 4, 39, 12, 4, 44, 12, 4, 50, 4943, 628, 198, 198, 4299, 751, 62, 28920, 62, 14323, 7, 8095, 62, 38993, 28, 25101, 2599, 198, 220, 220, 220, 37227, 4550, 281, 6565, 5726, 656, 262, 6831, 290, 3184, 11012, 5884, 284, 340, 13, 628, 220, 220, 220, 1058, 17143, 3650, 62, 38993, 25, 1002, 10352, 11, 645, 20150, 318, 2087, 284, 262, 6831, 13, 198, 220, 220, 220, 220, 220, 220, 220, 27095, 973, 618, 1281, 36948, 357, 41464, 2890, 8, 1366, 422, 257, 18640, 13, 198, 220, 220, 220, 1058, 4906, 3650, 62, 38993, 25, 20512, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 20613, 796, 49385, 13, 8443, 62, 14323, 62, 9945, 3419, 198, 220, 220, 220, 20613, 62, 66, 21471, 796, 20613, 13, 66, 21471, 3419, 198, 220, 220, 220, 4277, 62, 9945, 62, 28665, 82, 796, 13538, 198, 220, 220, 220, 329, 1994, 287, 49385, 13, 12286, 62, 9945, 62, 28665, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 9945, 62, 28665, 82, 15853, 1994, 1343, 366, 366, 1343, 965, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49385, 13, 12286, 62, 9945, 62, 28665, 82, 58, 2539, 12962, 1343, 33172, 366, 198, 220, 220, 220, 4277, 62, 9945, 62, 28665, 82, 796, 4277, 62, 9945, 62, 28665, 82, 58, 21912, 17, 60, 198, 220, 220, 220, 20613, 62, 66, 21471, 13, 41049, 7203, 43387, 6158, 43679, 16876, 5626, 7788, 1797, 4694, 4539, 37913, 15, 22133, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 62, 9945, 62, 28665, 82, 4008, 198, 220, 220, 220, 20613, 62, 66, 21471, 13, 41049, 7203, 20913, 17395, 39319, 4539, 5550, 38865, 26173, 35409, 4943, 198, 220, 220, 220, 20613, 62, 312, 796, 20613, 62, 66, 21471, 13, 12957, 808, 312, 198, 220, 220, 220, 20613, 13, 41509, 3419, 198, 220, 220, 220, 20613, 62, 66, 21471, 13, 19836, 3419, 198, 220, 220, 220, 20613, 13, 19836, 3419, 628, 220, 220, 220, 1441, 3184, 11012, 7, 9945, 62, 312, 28, 9945, 62, 312, 11, 3650, 62, 38993, 28, 8095, 62, 38993, 8, 198 ]
2.209911
7,184
from tensorflow.python.keras.models import Input, Model from tensorflow.python.keras.layers import Dense, Reshape, Activation, Conv2D, Conv2DTranspose from tensorflow.python.keras.layers import BatchNormalization, Add, Embedding, Concatenate import numpy as np import tensorflow as tf from tensorflow.python.keras import backend as K from gan.utils import glorot_init, resblock, dcblock, get_m_group from gan.layers.coloring import ConditionalConv11, ConditionalCenterScale, CenterScale, FactorizedConv11 from gan.layers.normalization import DecorelationNormalization from gan.layers.misc import Split from layers.spectral_normalized_layers import SNConv2D, SNConditionalConv11, SNDense, SNEmbeding, SNFactorizedConv11 from functools import partial
[ 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 27530, 1330, 23412, 11, 9104, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 75, 6962, 1330, 360, 1072, 11, 1874, 71, 1758, 11, 13144, 341, 11, 34872, 17, 35, 11, 34872, 17, 35, 8291, 3455, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 75, 6962, 1330, 347, 963, 26447, 1634, 11, 3060, 11, 13302, 6048, 278, 11, 1482, 9246, 268, 378, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 1330, 30203, 355, 509, 198, 198, 6738, 308, 272, 13, 26791, 1330, 26996, 313, 62, 15003, 11, 581, 9967, 11, 30736, 9967, 11, 651, 62, 76, 62, 8094, 198, 6738, 308, 272, 13, 75, 6962, 13, 4033, 3255, 1330, 9724, 1859, 3103, 85, 1157, 11, 9724, 1859, 23656, 29990, 11, 3337, 29990, 11, 27929, 1143, 3103, 85, 1157, 198, 6738, 308, 272, 13, 75, 6962, 13, 11265, 1634, 1330, 4280, 382, 7592, 26447, 1634, 198, 6738, 308, 272, 13, 75, 6962, 13, 44374, 1330, 27758, 198, 6738, 11685, 13, 4443, 1373, 62, 11265, 1143, 62, 75, 6962, 1330, 11346, 3103, 85, 17, 35, 11, 311, 7792, 623, 1859, 3103, 85, 1157, 11, 311, 8575, 1072, 11, 11346, 31567, 8228, 11, 11346, 41384, 1143, 3103, 85, 1157, 198, 6738, 1257, 310, 10141, 1330, 13027, 628, 628 ]
3.194915
236
# Copyright 2017 LinkedIn Corporation. All rights reserved. Licensed under the BSD-2 Clause license. # See LICENSE in the project root for license information. import os from fossor.checks.check import Check class LoadAvg(Check): '''this Check will compare the current load average summaries against the count of CPU cores in play, and will alert the user if there are more processes waiting''' if __name__ == '__main__': l = LoadAvg() print(l.run({}))
[ 2, 15069, 2177, 27133, 10501, 13, 1439, 2489, 10395, 13, 49962, 739, 262, 347, 10305, 12, 17, 28081, 5964, 13, 198, 2, 4091, 38559, 24290, 287, 262, 1628, 6808, 329, 5964, 1321, 13, 198, 198, 11748, 28686, 198, 6738, 10967, 273, 13, 42116, 13, 9122, 1330, 6822, 628, 198, 4871, 8778, 48997, 7, 9787, 2599, 198, 220, 220, 220, 705, 7061, 5661, 6822, 481, 8996, 262, 1459, 3440, 2811, 30114, 3166, 1028, 262, 954, 286, 9135, 21758, 198, 220, 220, 220, 287, 711, 11, 290, 481, 7995, 262, 2836, 611, 612, 389, 517, 7767, 4953, 7061, 6, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 300, 796, 8778, 48997, 3419, 198, 220, 220, 220, 3601, 7, 75, 13, 5143, 15090, 92, 4008, 198 ]
3.618321
131
from requests import HTTPError from urllib.parse import parse_qs from requests.exceptions import ConnectTimeout, ReadTimeout import pytest import requests_mock from app.clients.sms.firetext import get_firetext_responses, SmsClientResponseException, FiretextClientResponseException
[ 6738, 7007, 1330, 14626, 12331, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 21136, 62, 48382, 198, 6738, 7007, 13, 1069, 11755, 1330, 8113, 48031, 11, 4149, 48031, 198, 198, 11748, 12972, 9288, 198, 11748, 7007, 62, 76, 735, 198, 198, 6738, 598, 13, 565, 2334, 13, 82, 907, 13, 6495, 5239, 1330, 651, 62, 6495, 5239, 62, 16733, 274, 11, 311, 907, 11792, 31077, 16922, 11, 3764, 5239, 11792, 31077, 16922, 628, 628, 628, 628, 628, 628 ]
3.769231
78
import random # names = ['Alex', 'Beth', 'Carol', 'Dave', 'Kim', 'Sam', 'Heather', 'Hank'] # students_scores = {student:random.randint(1, 100) for student in names} # passed_students = {student:score for (student, score) in students_scores.items() if score > 59} # print(students_scores) # print(passed_students) # sentence = "What is the Airspeed Velocity of an Unladden Swallow?" # result = {word:len(word) for word in sentence.split(' ')} # print(result) # weather_c = { # 'Monday': 12, # 'Tuesday': 14, # 'Wednesday': 15, # 'Thursday': 14, # 'Friday': 21, # 'Saturday': 22, # 'Sunday': 24 # } # weather_f = {day: temp * 9 / 5 + 32 for (day, temp) in weather_c.items()} # print(weather_f) # import pandas # # student_dict = { # 'student': ['Mary', 'Andy', 'Peter'], # 'score': [56, 76, 98] # } # student_data_frame = pandas.DataFrame(student_dict) # print(student_data_frame) # for (index, row) in student_data_frame.iterrows(): # if row.student == 'Mary': # print(row.score) import pandas letter_dict = {r.letter:r.code for (i, r) in pandas.read_csv('nato_phonetic_alphabet.csv').iterrows()} generate_phonetic()
[ 11748, 4738, 201, 198, 201, 198, 2, 3891, 796, 37250, 15309, 3256, 705, 33, 2788, 3256, 705, 9914, 349, 3256, 705, 27984, 3256, 705, 26374, 3256, 705, 16305, 3256, 705, 1544, 1032, 3256, 705, 39, 962, 20520, 201, 198, 2, 2444, 62, 1416, 2850, 796, 1391, 50139, 25, 25120, 13, 25192, 600, 7, 16, 11, 1802, 8, 329, 3710, 287, 3891, 92, 201, 198, 2, 3804, 62, 19149, 658, 796, 1391, 50139, 25, 26675, 329, 357, 50139, 11, 4776, 8, 287, 2444, 62, 1416, 2850, 13, 23814, 3419, 611, 4776, 1875, 7863, 92, 201, 198, 2, 3601, 7, 19149, 658, 62, 1416, 2850, 8, 201, 198, 2, 3601, 7, 6603, 276, 62, 19149, 658, 8, 201, 198, 201, 198, 2, 6827, 796, 366, 2061, 318, 262, 3701, 12287, 43137, 286, 281, 791, 75, 38014, 2451, 12154, 1701, 201, 198, 2, 1255, 796, 1391, 4775, 25, 11925, 7, 4775, 8, 329, 1573, 287, 6827, 13, 35312, 10786, 705, 38165, 201, 198, 2, 3601, 7, 20274, 8, 201, 198, 201, 198, 2, 6193, 62, 66, 796, 1391, 201, 198, 2, 220, 220, 220, 220, 705, 23810, 10354, 1105, 11, 201, 198, 2, 220, 220, 220, 220, 705, 26133, 10354, 1478, 11, 201, 198, 2, 220, 220, 220, 220, 705, 27150, 10354, 1315, 11, 201, 198, 2, 220, 220, 220, 220, 705, 25381, 10354, 1478, 11, 201, 198, 2, 220, 220, 220, 220, 705, 20610, 10354, 2310, 11, 201, 198, 2, 220, 220, 220, 220, 705, 19844, 10354, 2534, 11, 201, 198, 2, 220, 220, 220, 220, 705, 21934, 10354, 1987, 201, 198, 2, 1782, 201, 198, 2, 6193, 62, 69, 796, 1391, 820, 25, 20218, 1635, 860, 1220, 642, 1343, 3933, 329, 357, 820, 11, 20218, 8, 287, 6193, 62, 66, 13, 23814, 3419, 92, 201, 198, 2, 3601, 7, 23563, 62, 69, 8, 201, 198, 201, 198, 2, 1330, 19798, 292, 201, 198, 2, 201, 198, 2, 3710, 62, 11600, 796, 1391, 201, 198, 2, 220, 220, 220, 220, 705, 50139, 10354, 37250, 24119, 3256, 705, 35314, 3256, 705, 19727, 6, 4357, 201, 198, 2, 220, 220, 220, 220, 705, 26675, 10354, 685, 3980, 11, 8684, 11, 9661, 60, 201, 198, 2, 1782, 201, 198, 2, 3710, 62, 7890, 62, 14535, 796, 19798, 292, 13, 6601, 19778, 7, 50139, 62, 11600, 8, 201, 198, 2, 3601, 7, 50139, 62, 7890, 62, 14535, 8, 201, 198, 2, 329, 357, 9630, 11, 5752, 8, 287, 3710, 62, 7890, 62, 14535, 13, 2676, 8516, 33529, 201, 198, 2, 220, 220, 220, 220, 611, 5752, 13, 50139, 6624, 705, 24119, 10354, 201, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 808, 13, 26675, 8, 201, 198, 11748, 19798, 292, 201, 198, 201, 198, 9291, 62, 11600, 796, 1391, 81, 13, 9291, 25, 81, 13, 8189, 329, 357, 72, 11, 374, 8, 287, 19798, 292, 13, 961, 62, 40664, 10786, 77, 5549, 62, 746, 261, 5139, 62, 17307, 8380, 13, 40664, 27691, 2676, 8516, 3419, 92, 201, 198, 201, 198, 201, 198, 8612, 378, 62, 746, 261, 5139, 3419 ]
2.386588
507
import pyeccodes.accessors as _
[ 11748, 279, 5948, 535, 4147, 13, 15526, 669, 355, 4808, 628 ]
3
11
"""Prepare OpenGL commands for use in templates.""" from enum import auto, Enum from typing import Iterable, Mapping, Optional, Union import attr from gladiator.parse.command import Command, Type from gladiator.prepare.enum import PreparedEnum from gladiator.prepare.style import transform_symbol from gladiator.optional import OptionalValue from gladiator.options import Options from gladiator.resources import read_resource_file @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) @attr.s(auto_attribs=True, kw_only=True, slots=True, frozen=True) _TYPE_TRANSLATIONS = dict( t.split(",") for t in read_resource_file("data/type_translations").split("\n") if t ) # TODO: take options such as casing, style and namespace # TODO: generate special wrappers for generators and deleters def prepare_commands( commands: Iterable[Command], prepared_enums: Mapping[str, PreparedEnum], options: Options, ): """Prepare the given commands for use as references and in templates. The given enums are used to construct type references. Yields tuples mapping the original command name to the prepared command. """ for command in commands: yield command.name, PreparedCommand( original=command, type_=CommandType.DEFAULT, implementation=_make_default_implementation(command, prepared_enums), name=transform_symbol( command.name, options.function_case, options.omit_prefix ), )
[ 37811, 37534, 533, 30672, 9729, 329, 779, 287, 24019, 526, 15931, 198, 198, 6738, 33829, 1330, 8295, 11, 2039, 388, 198, 6738, 19720, 1330, 40806, 540, 11, 337, 5912, 11, 32233, 11, 4479, 198, 198, 11748, 708, 81, 198, 198, 6738, 1278, 33716, 13, 29572, 13, 21812, 1330, 9455, 11, 5994, 198, 6738, 1278, 33716, 13, 46012, 533, 13, 44709, 1330, 19141, 1144, 4834, 388, 198, 6738, 1278, 33716, 13, 46012, 533, 13, 7635, 1330, 6121, 62, 1837, 23650, 198, 6738, 1278, 33716, 13, 25968, 1330, 32233, 11395, 198, 6738, 1278, 33716, 13, 25811, 1330, 18634, 198, 6738, 1278, 33716, 13, 37540, 1330, 1100, 62, 31092, 62, 7753, 628, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 31, 35226, 13, 82, 7, 23736, 62, 1078, 822, 82, 28, 17821, 11, 479, 86, 62, 8807, 28, 17821, 11, 17314, 28, 17821, 11, 12912, 28, 17821, 8, 628, 198, 62, 25216, 62, 5446, 1565, 8634, 18421, 796, 8633, 7, 198, 220, 220, 220, 256, 13, 35312, 7, 2430, 8, 329, 256, 287, 1100, 62, 31092, 62, 7753, 7203, 7890, 14, 4906, 62, 7645, 49905, 11074, 35312, 7203, 59, 77, 4943, 611, 256, 198, 8, 628, 628, 198, 198, 2, 16926, 46, 25, 1011, 3689, 884, 355, 39731, 11, 3918, 290, 25745, 198, 2, 16926, 46, 25, 7716, 2041, 7917, 11799, 329, 27298, 290, 10881, 1010, 628, 198, 4299, 8335, 62, 9503, 1746, 7, 198, 220, 220, 220, 9729, 25, 40806, 540, 58, 21575, 4357, 198, 220, 220, 220, 5597, 62, 268, 5700, 25, 337, 5912, 58, 2536, 11, 19141, 1144, 4834, 388, 4357, 198, 220, 220, 220, 3689, 25, 18634, 11, 198, 2599, 198, 220, 220, 220, 37227, 37534, 533, 262, 1813, 9729, 329, 779, 355, 10288, 290, 287, 24019, 13, 383, 198, 220, 220, 220, 1813, 551, 5700, 389, 973, 284, 5678, 2099, 10288, 13, 575, 1164, 82, 12777, 2374, 16855, 262, 198, 220, 220, 220, 2656, 3141, 1438, 284, 262, 5597, 3141, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 329, 3141, 287, 9729, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 3141, 13, 3672, 11, 19141, 1144, 21575, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2656, 28, 21812, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 28, 21575, 6030, 13, 7206, 38865, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7822, 28, 62, 15883, 62, 12286, 62, 320, 32851, 7, 21812, 11, 5597, 62, 268, 5700, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 35636, 62, 1837, 23650, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3141, 13, 3672, 11, 3689, 13, 8818, 62, 7442, 11, 3689, 13, 296, 270, 62, 40290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198 ]
2.787425
668
""" This file contains all the functions used in the notebooks under the Binary Quadratic Model section. Prepared by Akash Narayanan B """ from dimod import BinaryQuadraticModel # Task 3 linear = {'x1': 3, 'x2': -1, 'x3': 10, 'x4': 7} quadratic = {('x1', 'x2'): 2, ('x1', 'x3'): -5, ('x2', 'x3'): 3, ('x3', 'x4'): 11} offset = 8 vartype = 'BINARY'
[ 37811, 198, 1212, 2393, 4909, 477, 262, 5499, 973, 287, 262, 43935, 220, 198, 4625, 262, 45755, 20648, 81, 1512, 9104, 2665, 13, 198, 198, 6719, 29190, 416, 9084, 1077, 13596, 22931, 272, 347, 198, 37811, 198, 6738, 5391, 375, 1330, 45755, 4507, 41909, 1512, 17633, 198, 198, 2, 15941, 513, 198, 198, 29127, 796, 1391, 6, 87, 16, 10354, 513, 11, 705, 87, 17, 10354, 532, 16, 11, 705, 87, 18, 10354, 838, 11, 705, 87, 19, 10354, 767, 92, 198, 421, 41909, 1512, 796, 1391, 10786, 87, 16, 3256, 705, 87, 17, 6, 2599, 362, 11, 19203, 87, 16, 3256, 705, 87, 18, 6, 2599, 532, 20, 11, 19203, 87, 17, 3256, 705, 87, 18, 6, 2599, 513, 11, 19203, 87, 18, 3256, 705, 87, 19, 6, 2599, 1367, 92, 198, 28968, 796, 807, 198, 85, 433, 2981, 796, 705, 33, 1268, 13153, 6 ]
2.40411
146
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2017-09-22 13:19 from __future__ import unicode_literals from django.db import migrations, models
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 940, 13, 23, 319, 2177, 12, 2931, 12, 1828, 1511, 25, 1129, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.736842
57
""" ScanObjectNN download: http://103.24.77.34/scanobjectnn/h5_files.zip """ import os import sys import glob import h5py import numpy as np from torch.utils.data import Dataset os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" if __name__ == '__main__': train = ScanObjectNN(1024) test = ScanObjectNN(1024, 'test') for data, label in train: print(data.shape) print(label)
[ 37811, 198, 33351, 10267, 6144, 4321, 25, 2638, 1378, 15197, 13, 1731, 13, 3324, 13, 2682, 14, 35836, 15252, 20471, 14, 71, 20, 62, 16624, 13, 13344, 198, 37811, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 15095, 198, 11748, 289, 20, 9078, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 198, 198, 418, 13, 268, 2268, 14692, 39, 8068, 20, 62, 19108, 62, 25664, 62, 36840, 2751, 8973, 796, 366, 37, 23719, 1, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 4512, 796, 20937, 10267, 6144, 7, 35500, 8, 198, 220, 220, 220, 1332, 796, 20937, 10267, 6144, 7, 35500, 11, 705, 9288, 11537, 198, 220, 220, 220, 329, 1366, 11, 6167, 287, 4512, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 7890, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 18242, 8, 198 ]
2.484663
163
default_app_config = "sgi.recursos_humanos.apps.RecursosHumanosConfig"
[ 12286, 62, 1324, 62, 11250, 796, 366, 82, 12397, 13, 8344, 1834, 418, 62, 10734, 418, 13, 18211, 13, 6690, 1834, 418, 20490, 418, 16934, 1, 198 ]
2.62963
27
import re import hashlib import time import StringIO __version__ = '0.8' #GNTP/<version> <messagetype> <encryptionAlgorithmID>[:<ivValue>][ <keyHashAlgorithmID>:<keyHash>.<salt>] GNTP_INFO_LINE = re.compile( 'GNTP/(?P<version>\d+\.\d+) (?P<messagetype>REGISTER|NOTIFY|SUBSCRIBE|\-OK|\-ERROR)' + ' (?P<encryptionAlgorithmID>[A-Z0-9]+(:(?P<ivValue>[A-F0-9]+))?) ?' + '((?P<keyHashAlgorithmID>[A-Z0-9]+):(?P<keyHash>[A-F0-9]+).(?P<salt>[A-F0-9]+))?\r\n', re.IGNORECASE ) GNTP_INFO_LINE_SHORT = re.compile( 'GNTP/(?P<version>\d+\.\d+) (?P<messagetype>REGISTER|NOTIFY|SUBSCRIBE|\-OK|\-ERROR)', re.IGNORECASE ) GNTP_HEADER = re.compile('([\w-]+):(.+)') GNTP_EOL = '\r\n' class _GNTPBuffer(StringIO.StringIO): """GNTP Buffer class""" def writefmt(self, message="", *args): """Shortcut function for writing GNTP Headers""" self.write((message % args).encode('utf8', 'replace')) self.write(GNTP_EOL) class _GNTPBase(object): """Base initilization :param string messagetype: GNTP Message type :param string version: GNTP Protocol version :param string encription: Encryption protocol """ def _parse_info(self, data): """Parse the first line of a GNTP message to get security and other info values :param string data: GNTP Message :return dict: Parsed GNTP Info line """ match = GNTP_INFO_LINE.match(data) if not match: raise ParseError('ERROR_PARSING_INFO_LINE') info = match.groupdict() if info['encryptionAlgorithmID'] == 'NONE': info['encryptionAlgorithmID'] = None return info def set_password(self, password, encryptAlgo='MD5'): """Set a password for a GNTP Message :param string password: Null to clear password :param string encryptAlgo: Supports MD5, SHA1, SHA256, SHA512 """ hash = { 'MD5': hashlib.md5, 'SHA1': hashlib.sha1, 'SHA256': hashlib.sha256, 'SHA512': hashlib.sha512, } self.password = password self.encryptAlgo = encryptAlgo.upper() if not password: self.info['encryptionAlgorithmID'] = None self.info['keyHashAlgorithm'] = None return if not self.encryptAlgo in hash.keys(): raise UnsupportedError('INVALID HASH "%s"' % self.encryptAlgo) hashfunction = hash.get(self.encryptAlgo) password = password.encode('utf8') seed = time.ctime() salt = hashfunction(seed).hexdigest() saltHash = hashfunction(seed).digest() keyBasis = password + saltHash key = hashfunction(keyBasis).digest() keyHash = hashfunction(key).hexdigest() self.info['keyHashAlgorithmID'] = self.encryptAlgo self.info['keyHash'] = keyHash.upper() self.info['salt'] = salt.upper() def _decode_hex(self, value): """Helper function to decode hex string to `proper` hex string :param string value: Human readable hex string :return string: Hex string """ result = '' for i in range(0, len(value), 2): tmp = int(value[i:i + 2], 16) result += chr(tmp) return result def _validate_password(self, password): """Validate GNTP Message against stored password""" self.password = password if password == None: raise AuthError('Missing password') keyHash = self.info.get('keyHash', None) if keyHash is None and self.password is None: return True if keyHash is None: raise AuthError('Invalid keyHash') if self.password is None: raise AuthError('Missing password') password = self.password.encode('utf8') saltHash = self._decode_hex(self.info['salt']) keyBasis = password + saltHash key = hashlib.md5(keyBasis).digest() keyHash = hashlib.md5(key).hexdigest() if not keyHash.upper() == self.info['keyHash'].upper(): raise AuthError('Invalid Hash') return True def validate(self): """Verify required headers""" for header in self._requiredHeaders: if not self.headers.get(header, False): raise ParseError('Missing Notification Header: ' + header) def _format_info(self): """Generate info line for GNTP Message :return string: """ info = u'GNTP/%s %s' % ( self.info.get('version'), self.info.get('messagetype'), ) if self.info.get('encryptionAlgorithmID', None): info += ' %s:%s' % ( self.info.get('encryptionAlgorithmID'), self.info.get('ivValue'), ) else: info += ' NONE' if self.info.get('keyHashAlgorithmID', None): info += ' %s:%s.%s' % ( self.info.get('keyHashAlgorithmID'), self.info.get('keyHash'), self.info.get('salt') ) return info def _parse_dict(self, data): """Helper function to parse blocks of GNTP headers into a dictionary :param string data: :return dict: """ dict = {} for line in data.split('\r\n'): match = GNTP_HEADER.match(line) if not match: continue key = unicode(match.group(1).strip(), 'utf8', 'replace') val = unicode(match.group(2).strip(), 'utf8', 'replace') dict[key] = val return dict def add_resource(self, data): """Add binary resource :param string data: Binary Data """ identifier = hashlib.md5(data).hexdigest() self.resources[identifier] = data return 'x-growl-resource://%s' % identifier def decode(self, data, password=None): """Decode GNTP Message :param string data: """ self.password = password self.raw = data parts = self.raw.split('\r\n\r\n') self.info = self._parse_info(data) self.headers = self._parse_dict(parts[0]) def encode(self): """Encode a generic GNTP Message :return string: GNTP Message ready to be sent """ buffer = _GNTPBuffer() buffer.writefmt(self._format_info()) #Headers for k, v in self.headers.iteritems(): buffer.writefmt('%s: %s', k, v) buffer.writefmt() #Resources for resource, data in self.resources.iteritems(): buffer.writefmt('Identifier: %s', resource) buffer.writefmt('Length: %d', len(data)) buffer.writefmt() buffer.write(data) buffer.writefmt() buffer.writefmt() return buffer.getvalue() class GNTPRegister(_GNTPBase): """Represents a GNTP Registration Command :param string data: (Optional) See decode() :param string password: (Optional) Password to use while encoding/decoding messages """ _requiredHeaders = [ 'Application-Name', 'Notifications-Count' ] _requiredNotificationHeaders = ['Notification-Name'] def validate(self): '''Validate required headers and validate notification headers''' for header in self._requiredHeaders: if not self.headers.get(header, False): raise ParseError('Missing Registration Header: ' + header) for notice in self.notifications: for header in self._requiredNotificationHeaders: if not notice.get(header, False): raise ParseError('Missing Notification Header: ' + header) def decode(self, data, password): """Decode existing GNTP Registration message :param string data: Message to decode """ self.raw = data parts = self.raw.split('\r\n\r\n') self.info = self._parse_info(data) self._validate_password(password) self.headers = self._parse_dict(parts[0]) for i, part in enumerate(parts): if i == 0: continue # Skip Header if part.strip() == '': continue notice = self._parse_dict(part) if notice.get('Notification-Name', False): self.notifications.append(notice) elif notice.get('Identifier', False): notice['Data'] = self._decode_binary(part, notice) #open('register.png','wblol').write(notice['Data']) self.resources[notice.get('Identifier')] = notice def add_notification(self, name, enabled=True): """Add new Notification to Registration message :param string name: Notification Name :param boolean enabled: Enable this notification by default """ notice = {} notice['Notification-Name'] = u'%s' % name notice['Notification-Enabled'] = u'%s' % enabled self.notifications.append(notice) self.add_header('Notifications-Count', len(self.notifications)) def encode(self): """Encode a GNTP Registration Message :return string: Encoded GNTP Registration message """ buffer = _GNTPBuffer() buffer.writefmt(self._format_info()) #Headers for k, v in self.headers.iteritems(): buffer.writefmt('%s: %s', k, v) buffer.writefmt() #Notifications if len(self.notifications) > 0: for notice in self.notifications: for k, v in notice.iteritems(): buffer.writefmt('%s: %s', k, v) buffer.writefmt() #Resources for resource, data in self.resources.iteritems(): buffer.writefmt('Identifier: %s', resource) buffer.writefmt('Length: %d', len(data)) buffer.writefmt() buffer.write(data) buffer.writefmt() buffer.writefmt() return buffer.getvalue() class GNTPNotice(_GNTPBase): """Represents a GNTP Notification Command :param string data: (Optional) See decode() :param string app: (Optional) Set Application-Name :param string name: (Optional) Set Notification-Name :param string title: (Optional) Set Notification Title :param string password: (Optional) Password to use while encoding/decoding messages """ _requiredHeaders = [ 'Application-Name', 'Notification-Name', 'Notification-Title' ] def decode(self, data, password): """Decode existing GNTP Notification message :param string data: Message to decode. """ self.raw = data parts = self.raw.split('\r\n\r\n') self.info = self._parse_info(data) self._validate_password(password) self.headers = self._parse_dict(parts[0]) for i, part in enumerate(parts): if i == 0: continue # Skip Header if part.strip() == '': continue notice = self._parse_dict(part) if notice.get('Identifier', False): notice['Data'] = self._decode_binary(part, notice) #open('notice.png','wblol').write(notice['Data']) self.resources[notice.get('Identifier')] = notice class GNTPSubscribe(_GNTPBase): """Represents a GNTP Subscribe Command :param string data: (Optional) See decode() :param string password: (Optional) Password to use while encoding/decoding messages """ _requiredHeaders = [ 'Subscriber-ID', 'Subscriber-Name', ] class GNTPOK(_GNTPBase): """Represents a GNTP OK Response :param string data: (Optional) See _GNTPResponse.decode() :param string action: (Optional) Set type of action the OK Response is for """ _requiredHeaders = ['Response-Action'] class GNTPError(_GNTPBase): """Represents a GNTP Error response :param string data: (Optional) See _GNTPResponse.decode() :param string errorcode: (Optional) Error code :param string errordesc: (Optional) Error Description """ _requiredHeaders = ['Error-Code', 'Error-Description'] def parse_gntp(data, password=None): """Attempt to parse a message as a GNTP message :param string data: Message to be parsed :param string password: Optional password to be used to verify the message """ match = GNTP_INFO_LINE_SHORT.match(data) if not match: raise ParseError('INVALID_GNTP_INFO') info = match.groupdict() if info['messagetype'] == 'REGISTER': return GNTPRegister(data, password=password) elif info['messagetype'] == 'NOTIFY': return GNTPNotice(data, password=password) elif info['messagetype'] == 'SUBSCRIBE': return GNTPSubscribe(data, password=password) elif info['messagetype'] == '-OK': return GNTPOK(data) elif info['messagetype'] == '-ERROR': return GNTPError(data) raise ParseError('INVALID_GNTP_MESSAGE')
[ 11748, 302, 198, 11748, 12234, 8019, 198, 11748, 640, 198, 11748, 10903, 9399, 198, 198, 834, 9641, 834, 796, 705, 15, 13, 23, 6, 198, 198, 2, 16630, 7250, 14, 27, 9641, 29, 1279, 37348, 363, 2963, 431, 29, 1279, 12685, 13168, 2348, 42289, 2389, 36937, 25, 27, 452, 11395, 29, 7131, 1279, 2539, 26257, 2348, 42289, 2389, 31175, 27, 2539, 26257, 28401, 27, 82, 2501, 37981, 198, 16630, 7250, 62, 10778, 62, 24027, 796, 302, 13, 5589, 576, 7, 198, 197, 6, 16630, 7250, 29006, 30, 47, 27, 9641, 29, 59, 67, 10, 17405, 59, 67, 28988, 357, 30, 47, 27, 37348, 363, 2963, 431, 29, 31553, 41517, 91, 11929, 5064, 56, 91, 12564, 4462, 34, 7112, 12473, 91, 41441, 11380, 91, 41441, 24908, 33047, 1343, 198, 197, 6, 357, 30, 47, 27, 12685, 13168, 2348, 42289, 2389, 36937, 32, 12, 57, 15, 12, 24, 60, 33747, 37498, 30, 47, 27, 452, 11395, 36937, 32, 12, 37, 15, 12, 24, 48688, 4008, 10091, 5633, 6, 1343, 198, 197, 6, 19510, 30, 47, 27, 2539, 26257, 2348, 42289, 2389, 36937, 32, 12, 57, 15, 12, 24, 48688, 2599, 7, 30, 47, 27, 2539, 26257, 36937, 32, 12, 37, 15, 12, 24, 48688, 737, 7, 30, 47, 27, 82, 2501, 36937, 32, 12, 37, 15, 12, 24, 48688, 4008, 30, 59, 81, 59, 77, 3256, 198, 197, 260, 13, 16284, 1581, 2943, 11159, 198, 8, 198, 198, 16630, 7250, 62, 10778, 62, 24027, 62, 9693, 9863, 796, 302, 13, 5589, 576, 7, 198, 197, 6, 16630, 7250, 29006, 30, 47, 27, 9641, 29, 59, 67, 10, 17405, 59, 67, 28988, 357, 30, 47, 27, 37348, 363, 2963, 431, 29, 31553, 41517, 91, 11929, 5064, 56, 91, 12564, 4462, 34, 7112, 12473, 91, 41441, 11380, 91, 41441, 24908, 8, 3256, 198, 197, 260, 13, 16284, 1581, 2943, 11159, 198, 8, 198, 198, 16630, 7250, 62, 37682, 1137, 796, 302, 13, 5589, 576, 10786, 26933, 59, 86, 12, 48688, 2599, 7, 13, 28988, 11537, 198, 198, 16630, 7250, 62, 36, 3535, 796, 705, 59, 81, 59, 77, 6, 628, 628, 628, 198, 4871, 4808, 16630, 7250, 28632, 7, 10100, 9399, 13, 10100, 9399, 2599, 198, 197, 37811, 16630, 7250, 47017, 1398, 37811, 198, 197, 4299, 3551, 69, 16762, 7, 944, 11, 3275, 2625, 1600, 1635, 22046, 2599, 198, 197, 197, 37811, 16438, 8968, 2163, 329, 3597, 15484, 7250, 7123, 364, 37811, 198, 197, 197, 944, 13, 13564, 19510, 20500, 4064, 26498, 737, 268, 8189, 10786, 40477, 23, 3256, 705, 33491, 6, 4008, 198, 197, 197, 944, 13, 13564, 7, 16630, 7250, 62, 36, 3535, 8, 628, 198, 4871, 4808, 16630, 7250, 14881, 7, 15252, 2599, 198, 197, 37811, 14881, 2315, 346, 1634, 628, 197, 25, 17143, 4731, 2085, 363, 2963, 431, 25, 15484, 7250, 16000, 2099, 198, 197, 25, 17143, 4731, 2196, 25, 15484, 7250, 20497, 2196, 198, 197, 25, 17143, 4731, 2207, 2918, 25, 14711, 13168, 8435, 198, 197, 37811, 628, 197, 4299, 4808, 29572, 62, 10951, 7, 944, 11, 1366, 2599, 198, 197, 197, 37811, 10044, 325, 262, 717, 1627, 286, 257, 15484, 7250, 3275, 284, 651, 2324, 290, 584, 7508, 3815, 628, 197, 197, 25, 17143, 4731, 1366, 25, 15484, 7250, 16000, 198, 197, 197, 25, 7783, 8633, 25, 23042, 276, 15484, 7250, 14151, 1627, 198, 197, 197, 37811, 628, 197, 197, 15699, 796, 15484, 7250, 62, 10778, 62, 24027, 13, 15699, 7, 7890, 8, 628, 197, 197, 361, 407, 2872, 25, 198, 197, 197, 197, 40225, 2547, 325, 12331, 10786, 24908, 62, 27082, 50, 2751, 62, 10778, 62, 24027, 11537, 628, 197, 197, 10951, 796, 2872, 13, 8094, 11600, 3419, 198, 197, 197, 361, 7508, 17816, 12685, 13168, 2348, 42289, 2389, 20520, 6624, 705, 45, 11651, 10354, 198, 197, 197, 197, 10951, 17816, 12685, 13168, 2348, 42289, 2389, 20520, 796, 6045, 628, 197, 197, 7783, 7508, 628, 197, 4299, 900, 62, 28712, 7, 944, 11, 9206, 11, 34117, 2348, 2188, 11639, 12740, 20, 6, 2599, 198, 197, 197, 37811, 7248, 257, 9206, 329, 257, 15484, 7250, 16000, 628, 197, 197, 25, 17143, 4731, 9206, 25, 35886, 284, 1598, 9206, 198, 197, 197, 25, 17143, 4731, 34117, 2348, 2188, 25, 45267, 10670, 20, 11, 25630, 16, 11, 25630, 11645, 11, 25630, 25836, 198, 197, 197, 37811, 198, 197, 197, 17831, 796, 1391, 198, 197, 197, 197, 6, 12740, 20, 10354, 12234, 8019, 13, 9132, 20, 11, 198, 197, 197, 197, 6, 37596, 16, 10354, 12234, 8019, 13, 26270, 16, 11, 198, 197, 197, 197, 6, 37596, 11645, 10354, 12234, 8019, 13, 26270, 11645, 11, 198, 197, 197, 197, 6, 37596, 25836, 10354, 12234, 8019, 13, 26270, 25836, 11, 198, 197, 197, 92, 628, 197, 197, 944, 13, 28712, 796, 9206, 198, 197, 197, 944, 13, 12685, 6012, 2348, 2188, 796, 34117, 2348, 2188, 13, 45828, 3419, 198, 197, 197, 361, 407, 9206, 25, 198, 197, 197, 197, 944, 13, 10951, 17816, 12685, 13168, 2348, 42289, 2389, 20520, 796, 6045, 198, 197, 197, 197, 944, 13, 10951, 17816, 2539, 26257, 2348, 42289, 20520, 796, 6045, 198, 197, 197, 197, 7783, 198, 197, 197, 361, 407, 2116, 13, 12685, 6012, 2348, 2188, 287, 12234, 13, 13083, 33529, 198, 197, 197, 197, 40225, 791, 15999, 12331, 10786, 1268, 23428, 2389, 367, 11211, 36521, 82, 30543, 4064, 2116, 13, 12685, 6012, 2348, 2188, 8, 628, 197, 197, 17831, 8818, 796, 12234, 13, 1136, 7, 944, 13, 12685, 6012, 2348, 2188, 8, 628, 197, 197, 28712, 796, 9206, 13, 268, 8189, 10786, 40477, 23, 11537, 198, 197, 197, 28826, 796, 640, 13, 310, 524, 3419, 198, 197, 197, 82, 2501, 796, 12234, 8818, 7, 28826, 737, 33095, 12894, 395, 3419, 198, 197, 197, 82, 2501, 26257, 796, 12234, 8818, 7, 28826, 737, 12894, 395, 3419, 198, 197, 197, 2539, 15522, 271, 796, 9206, 1343, 8268, 26257, 198, 197, 197, 2539, 796, 12234, 8818, 7, 2539, 15522, 271, 737, 12894, 395, 3419, 198, 197, 197, 2539, 26257, 796, 12234, 8818, 7, 2539, 737, 33095, 12894, 395, 3419, 628, 197, 197, 944, 13, 10951, 17816, 2539, 26257, 2348, 42289, 2389, 20520, 796, 2116, 13, 12685, 6012, 2348, 2188, 198, 197, 197, 944, 13, 10951, 17816, 2539, 26257, 20520, 796, 1994, 26257, 13, 45828, 3419, 198, 197, 197, 944, 13, 10951, 17816, 82, 2501, 20520, 796, 8268, 13, 45828, 3419, 628, 197, 4299, 4808, 12501, 1098, 62, 33095, 7, 944, 11, 1988, 2599, 198, 197, 197, 37811, 47429, 2163, 284, 36899, 17910, 4731, 284, 4600, 1676, 525, 63, 17910, 4731, 628, 197, 197, 25, 17143, 4731, 1988, 25, 5524, 31744, 17910, 4731, 198, 197, 197, 25, 7783, 4731, 25, 22212, 4731, 198, 197, 197, 37811, 198, 197, 197, 20274, 796, 10148, 198, 197, 197, 1640, 1312, 287, 2837, 7, 15, 11, 18896, 7, 8367, 828, 362, 2599, 198, 197, 197, 197, 22065, 796, 493, 7, 8367, 58, 72, 25, 72, 1343, 362, 4357, 1467, 8, 198, 197, 197, 197, 20274, 15853, 442, 81, 7, 22065, 8, 198, 197, 197, 7783, 1255, 628, 197, 4299, 4808, 12102, 378, 62, 28712, 7, 944, 11, 9206, 2599, 198, 197, 197, 37811, 7762, 20540, 15484, 7250, 16000, 1028, 8574, 9206, 37811, 198, 197, 197, 944, 13, 28712, 796, 9206, 198, 197, 197, 361, 9206, 6624, 6045, 25, 198, 197, 197, 197, 40225, 26828, 12331, 10786, 43730, 9206, 11537, 198, 197, 197, 2539, 26257, 796, 2116, 13, 10951, 13, 1136, 10786, 2539, 26257, 3256, 6045, 8, 198, 197, 197, 361, 1994, 26257, 318, 6045, 290, 2116, 13, 28712, 318, 6045, 25, 198, 197, 197, 197, 7783, 6407, 198, 197, 197, 361, 1994, 26257, 318, 6045, 25, 198, 197, 197, 197, 40225, 26828, 12331, 10786, 44651, 1994, 26257, 11537, 198, 197, 197, 361, 2116, 13, 28712, 318, 6045, 25, 198, 197, 197, 197, 40225, 26828, 12331, 10786, 43730, 9206, 11537, 628, 197, 197, 28712, 796, 2116, 13, 28712, 13, 268, 8189, 10786, 40477, 23, 11537, 198, 197, 197, 82, 2501, 26257, 796, 2116, 13557, 12501, 1098, 62, 33095, 7, 944, 13, 10951, 17816, 82, 2501, 6, 12962, 628, 197, 197, 2539, 15522, 271, 796, 9206, 1343, 8268, 26257, 198, 197, 197, 2539, 796, 12234, 8019, 13, 9132, 20, 7, 2539, 15522, 271, 737, 12894, 395, 3419, 198, 197, 197, 2539, 26257, 796, 12234, 8019, 13, 9132, 20, 7, 2539, 737, 33095, 12894, 395, 3419, 628, 197, 197, 361, 407, 1994, 26257, 13, 45828, 3419, 6624, 2116, 13, 10951, 17816, 2539, 26257, 6, 4083, 45828, 33529, 198, 197, 197, 197, 40225, 26828, 12331, 10786, 44651, 21059, 11537, 198, 197, 197, 7783, 6407, 628, 197, 4299, 26571, 7, 944, 2599, 198, 197, 197, 37811, 13414, 1958, 2672, 24697, 37811, 198, 197, 197, 1640, 13639, 287, 2116, 13557, 35827, 13847, 364, 25, 198, 197, 197, 197, 361, 407, 2116, 13, 50145, 13, 1136, 7, 25677, 11, 10352, 2599, 198, 197, 197, 197, 197, 40225, 2547, 325, 12331, 10786, 43730, 42808, 48900, 25, 705, 1343, 13639, 8, 628, 197, 4299, 4808, 18982, 62, 10951, 7, 944, 2599, 198, 197, 197, 37811, 8645, 378, 7508, 1627, 329, 15484, 7250, 16000, 628, 197, 197, 25, 7783, 4731, 25, 198, 197, 197, 37811, 198, 197, 197, 10951, 796, 334, 6, 16630, 7250, 14, 4, 82, 4064, 82, 6, 4064, 357, 198, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 9641, 33809, 198, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 37348, 363, 2963, 431, 33809, 198, 197, 197, 8, 198, 197, 197, 361, 2116, 13, 10951, 13, 1136, 10786, 12685, 13168, 2348, 42289, 2389, 3256, 6045, 2599, 198, 197, 197, 197, 10951, 15853, 705, 4064, 82, 25, 4, 82, 6, 4064, 357, 198, 197, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 12685, 13168, 2348, 42289, 2389, 33809, 198, 197, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 452, 11395, 33809, 198, 197, 197, 197, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 10951, 15853, 705, 399, 11651, 6, 628, 197, 197, 361, 2116, 13, 10951, 13, 1136, 10786, 2539, 26257, 2348, 42289, 2389, 3256, 6045, 2599, 198, 197, 197, 197, 10951, 15853, 705, 4064, 82, 25, 4, 82, 13, 4, 82, 6, 4064, 357, 198, 197, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 2539, 26257, 2348, 42289, 2389, 33809, 198, 197, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 2539, 26257, 33809, 198, 197, 197, 197, 197, 944, 13, 10951, 13, 1136, 10786, 82, 2501, 11537, 198, 197, 197, 197, 8, 628, 197, 197, 7783, 7508, 628, 197, 4299, 4808, 29572, 62, 11600, 7, 944, 11, 1366, 2599, 198, 197, 197, 37811, 47429, 2163, 284, 21136, 7021, 286, 15484, 7250, 24697, 656, 257, 22155, 628, 197, 197, 25, 17143, 4731, 1366, 25, 198, 197, 197, 25, 7783, 8633, 25, 198, 197, 197, 37811, 198, 197, 197, 11600, 796, 23884, 198, 197, 197, 1640, 1627, 287, 1366, 13, 35312, 10786, 59, 81, 59, 77, 6, 2599, 198, 197, 197, 197, 15699, 796, 15484, 7250, 62, 37682, 1137, 13, 15699, 7, 1370, 8, 198, 197, 197, 197, 361, 407, 2872, 25, 198, 197, 197, 197, 197, 43043, 628, 197, 197, 197, 2539, 796, 28000, 1098, 7, 15699, 13, 8094, 7, 16, 737, 36311, 22784, 705, 40477, 23, 3256, 705, 33491, 11537, 198, 197, 197, 197, 2100, 796, 28000, 1098, 7, 15699, 13, 8094, 7, 17, 737, 36311, 22784, 705, 40477, 23, 3256, 705, 33491, 11537, 198, 197, 197, 197, 11600, 58, 2539, 60, 796, 1188, 198, 197, 197, 7783, 8633, 628, 197, 4299, 751, 62, 31092, 7, 944, 11, 1366, 2599, 198, 197, 197, 37811, 4550, 13934, 8271, 628, 197, 197, 25, 17143, 4731, 1366, 25, 45755, 6060, 198, 197, 197, 37811, 198, 197, 197, 738, 7483, 796, 12234, 8019, 13, 9132, 20, 7, 7890, 737, 33095, 12894, 395, 3419, 198, 197, 197, 944, 13, 37540, 58, 738, 7483, 60, 796, 1366, 198, 197, 197, 7783, 705, 87, 12, 45921, 75, 12, 31092, 1378, 4, 82, 6, 4064, 27421, 628, 197, 4299, 36899, 7, 944, 11, 1366, 11, 9206, 28, 14202, 2599, 198, 197, 197, 37811, 10707, 1098, 15484, 7250, 16000, 628, 197, 197, 25, 17143, 4731, 1366, 25, 198, 197, 197, 37811, 198, 197, 197, 944, 13, 28712, 796, 9206, 198, 197, 197, 944, 13, 1831, 796, 1366, 198, 197, 197, 42632, 796, 2116, 13, 1831, 13, 35312, 10786, 59, 81, 59, 77, 59, 81, 59, 77, 11537, 198, 197, 197, 944, 13, 10951, 796, 2116, 13557, 29572, 62, 10951, 7, 7890, 8, 198, 197, 197, 944, 13, 50145, 796, 2116, 13557, 29572, 62, 11600, 7, 42632, 58, 15, 12962, 628, 197, 4299, 37773, 7, 944, 2599, 198, 197, 197, 37811, 4834, 8189, 257, 14276, 15484, 7250, 16000, 628, 197, 197, 25, 7783, 4731, 25, 15484, 7250, 16000, 3492, 284, 307, 1908, 198, 197, 197, 37811, 628, 197, 197, 22252, 796, 4808, 16630, 7250, 28632, 3419, 628, 197, 197, 22252, 13, 13564, 69, 16762, 7, 944, 13557, 18982, 62, 10951, 28955, 628, 197, 197, 2, 13847, 364, 198, 197, 197, 1640, 479, 11, 410, 287, 2116, 13, 50145, 13, 2676, 23814, 33529, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 4, 82, 25, 4064, 82, 3256, 479, 11, 410, 8, 198, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 628, 197, 197, 2, 33236, 198, 197, 197, 1640, 8271, 11, 1366, 287, 2116, 13, 37540, 13, 2676, 23814, 33529, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 33234, 7483, 25, 4064, 82, 3256, 8271, 8, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 24539, 25, 4064, 67, 3256, 18896, 7, 7890, 4008, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 198, 197, 197, 197, 22252, 13, 13564, 7, 7890, 8, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 628, 197, 197, 7783, 11876, 13, 1136, 8367, 3419, 628, 198, 4871, 402, 11251, 4805, 1533, 1694, 28264, 16630, 7250, 14881, 2599, 198, 197, 37811, 6207, 6629, 257, 15484, 7250, 24610, 9455, 628, 197, 25, 17143, 4731, 1366, 25, 357, 30719, 8, 4091, 36899, 3419, 198, 197, 25, 17143, 4731, 9206, 25, 357, 30719, 8, 30275, 284, 779, 981, 21004, 14, 12501, 7656, 6218, 198, 197, 37811, 198, 197, 62, 35827, 13847, 364, 796, 685, 198, 197, 197, 6, 23416, 12, 5376, 3256, 198, 197, 197, 6, 3673, 6637, 12, 12332, 6, 198, 197, 60, 198, 197, 62, 35827, 3673, 2649, 13847, 364, 796, 37250, 3673, 2649, 12, 5376, 20520, 628, 197, 4299, 26571, 7, 944, 2599, 198, 197, 197, 7061, 6, 7762, 20540, 2672, 24697, 290, 26571, 14483, 24697, 7061, 6, 198, 197, 197, 1640, 13639, 287, 2116, 13557, 35827, 13847, 364, 25, 198, 197, 197, 197, 361, 407, 2116, 13, 50145, 13, 1136, 7, 25677, 11, 10352, 2599, 198, 197, 197, 197, 197, 40225, 2547, 325, 12331, 10786, 43730, 24610, 48900, 25, 705, 1343, 13639, 8, 198, 197, 197, 1640, 4003, 287, 2116, 13, 1662, 6637, 25, 198, 197, 197, 197, 1640, 13639, 287, 2116, 13557, 35827, 3673, 2649, 13847, 364, 25, 198, 197, 197, 197, 197, 361, 407, 4003, 13, 1136, 7, 25677, 11, 10352, 2599, 198, 197, 197, 197, 197, 197, 40225, 2547, 325, 12331, 10786, 43730, 42808, 48900, 25, 705, 1343, 13639, 8, 628, 197, 4299, 36899, 7, 944, 11, 1366, 11, 9206, 2599, 198, 197, 197, 37811, 10707, 1098, 4683, 15484, 7250, 24610, 3275, 628, 197, 197, 25, 17143, 4731, 1366, 25, 16000, 284, 36899, 198, 197, 197, 37811, 198, 197, 197, 944, 13, 1831, 796, 1366, 198, 197, 197, 42632, 796, 2116, 13, 1831, 13, 35312, 10786, 59, 81, 59, 77, 59, 81, 59, 77, 11537, 198, 197, 197, 944, 13, 10951, 796, 2116, 13557, 29572, 62, 10951, 7, 7890, 8, 198, 197, 197, 944, 13557, 12102, 378, 62, 28712, 7, 28712, 8, 198, 197, 197, 944, 13, 50145, 796, 2116, 13557, 29572, 62, 11600, 7, 42632, 58, 15, 12962, 628, 197, 197, 1640, 1312, 11, 636, 287, 27056, 378, 7, 42632, 2599, 198, 197, 197, 197, 361, 1312, 6624, 657, 25, 198, 197, 197, 197, 197, 43043, 220, 1303, 32214, 48900, 198, 197, 197, 197, 361, 636, 13, 36311, 3419, 6624, 10148, 25, 198, 197, 197, 197, 197, 43043, 198, 197, 197, 197, 42138, 796, 2116, 13557, 29572, 62, 11600, 7, 3911, 8, 198, 197, 197, 197, 361, 4003, 13, 1136, 10786, 3673, 2649, 12, 5376, 3256, 10352, 2599, 198, 197, 197, 197, 197, 944, 13, 1662, 6637, 13, 33295, 7, 42138, 8, 198, 197, 197, 197, 417, 361, 4003, 13, 1136, 10786, 33234, 7483, 3256, 10352, 2599, 198, 197, 197, 197, 197, 42138, 17816, 6601, 20520, 796, 2116, 13557, 12501, 1098, 62, 39491, 7, 3911, 11, 4003, 8, 198, 197, 197, 197, 197, 2, 9654, 10786, 30238, 13, 11134, 41707, 86, 2436, 349, 27691, 13564, 7, 42138, 17816, 6601, 6, 12962, 198, 197, 197, 197, 197, 944, 13, 37540, 58, 42138, 13, 1136, 10786, 33234, 7483, 11537, 60, 796, 4003, 628, 197, 4299, 751, 62, 1662, 2649, 7, 944, 11, 1438, 11, 9343, 28, 17821, 2599, 198, 197, 197, 37811, 4550, 649, 42808, 284, 24610, 3275, 628, 197, 197, 25, 17143, 4731, 1438, 25, 42808, 6530, 198, 197, 197, 25, 17143, 25131, 9343, 25, 27882, 428, 14483, 416, 4277, 198, 197, 197, 37811, 198, 197, 197, 42138, 796, 23884, 198, 197, 197, 42138, 17816, 3673, 2649, 12, 5376, 20520, 796, 334, 6, 4, 82, 6, 4064, 1438, 198, 197, 197, 42138, 17816, 3673, 2649, 12, 20491, 20520, 796, 334, 6, 4, 82, 6, 4064, 9343, 628, 197, 197, 944, 13, 1662, 6637, 13, 33295, 7, 42138, 8, 198, 197, 197, 944, 13, 2860, 62, 25677, 10786, 3673, 6637, 12, 12332, 3256, 18896, 7, 944, 13, 1662, 6637, 4008, 628, 197, 4299, 37773, 7, 944, 2599, 198, 197, 197, 37811, 4834, 8189, 257, 15484, 7250, 24610, 16000, 628, 197, 197, 25, 7783, 4731, 25, 14711, 9043, 15484, 7250, 24610, 3275, 198, 197, 197, 37811, 628, 197, 197, 22252, 796, 4808, 16630, 7250, 28632, 3419, 628, 197, 197, 22252, 13, 13564, 69, 16762, 7, 944, 13557, 18982, 62, 10951, 28955, 628, 197, 197, 2, 13847, 364, 198, 197, 197, 1640, 479, 11, 410, 287, 2116, 13, 50145, 13, 2676, 23814, 33529, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 4, 82, 25, 4064, 82, 3256, 479, 11, 410, 8, 198, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 628, 197, 197, 2, 3673, 6637, 198, 197, 197, 361, 18896, 7, 944, 13, 1662, 6637, 8, 1875, 657, 25, 198, 197, 197, 197, 1640, 4003, 287, 2116, 13, 1662, 6637, 25, 198, 197, 197, 197, 197, 1640, 479, 11, 410, 287, 4003, 13, 2676, 23814, 33529, 198, 197, 197, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 4, 82, 25, 4064, 82, 3256, 479, 11, 410, 8, 198, 197, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 628, 197, 197, 2, 33236, 198, 197, 197, 1640, 8271, 11, 1366, 287, 2116, 13, 37540, 13, 2676, 23814, 33529, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 33234, 7483, 25, 4064, 82, 3256, 8271, 8, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 10786, 24539, 25, 4064, 67, 3256, 18896, 7, 7890, 4008, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 198, 197, 197, 197, 22252, 13, 13564, 7, 7890, 8, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 198, 197, 197, 197, 22252, 13, 13564, 69, 16762, 3419, 628, 197, 197, 7783, 11876, 13, 1136, 8367, 3419, 628, 198, 4871, 15484, 7250, 26396, 28264, 16630, 7250, 14881, 2599, 198, 197, 37811, 6207, 6629, 257, 15484, 7250, 42808, 9455, 628, 197, 25, 17143, 4731, 1366, 25, 357, 30719, 8, 4091, 36899, 3419, 198, 197, 25, 17143, 4731, 598, 25, 357, 30719, 8, 5345, 15678, 12, 5376, 198, 197, 25, 17143, 4731, 1438, 25, 357, 30719, 8, 5345, 42808, 12, 5376, 198, 197, 25, 17143, 4731, 3670, 25, 357, 30719, 8, 5345, 42808, 11851, 198, 197, 25, 17143, 4731, 9206, 25, 357, 30719, 8, 30275, 284, 779, 981, 21004, 14, 12501, 7656, 6218, 198, 197, 37811, 198, 197, 62, 35827, 13847, 364, 796, 685, 198, 197, 197, 6, 23416, 12, 5376, 3256, 198, 197, 197, 6, 3673, 2649, 12, 5376, 3256, 198, 197, 197, 6, 3673, 2649, 12, 19160, 6, 198, 197, 60, 628, 197, 4299, 36899, 7, 944, 11, 1366, 11, 9206, 2599, 198, 197, 197, 37811, 10707, 1098, 4683, 15484, 7250, 42808, 3275, 628, 197, 197, 25, 17143, 4731, 1366, 25, 16000, 284, 36899, 13, 198, 197, 197, 37811, 198, 197, 197, 944, 13, 1831, 796, 1366, 198, 197, 197, 42632, 796, 2116, 13, 1831, 13, 35312, 10786, 59, 81, 59, 77, 59, 81, 59, 77, 11537, 198, 197, 197, 944, 13, 10951, 796, 2116, 13557, 29572, 62, 10951, 7, 7890, 8, 198, 197, 197, 944, 13557, 12102, 378, 62, 28712, 7, 28712, 8, 198, 197, 197, 944, 13, 50145, 796, 2116, 13557, 29572, 62, 11600, 7, 42632, 58, 15, 12962, 628, 197, 197, 1640, 1312, 11, 636, 287, 27056, 378, 7, 42632, 2599, 198, 197, 197, 197, 361, 1312, 6624, 657, 25, 198, 197, 197, 197, 197, 43043, 220, 1303, 32214, 48900, 198, 197, 197, 197, 361, 636, 13, 36311, 3419, 6624, 10148, 25, 198, 197, 197, 197, 197, 43043, 198, 197, 197, 197, 42138, 796, 2116, 13557, 29572, 62, 11600, 7, 3911, 8, 198, 197, 197, 197, 361, 4003, 13, 1136, 10786, 33234, 7483, 3256, 10352, 2599, 198, 197, 197, 197, 197, 42138, 17816, 6601, 20520, 796, 2116, 13557, 12501, 1098, 62, 39491, 7, 3911, 11, 4003, 8, 198, 197, 197, 197, 197, 2, 9654, 10786, 42138, 13, 11134, 41707, 86, 2436, 349, 27691, 13564, 7, 42138, 17816, 6601, 6, 12962, 198, 197, 197, 197, 197, 944, 13, 37540, 58, 42138, 13, 1136, 10786, 33234, 7483, 11537, 60, 796, 4003, 628, 198, 4871, 402, 11251, 3705, 549, 12522, 28264, 16630, 7250, 14881, 2599, 198, 197, 37811, 6207, 6629, 257, 15484, 7250, 19808, 9455, 628, 197, 25, 17143, 4731, 1366, 25, 357, 30719, 8, 4091, 36899, 3419, 198, 197, 25, 17143, 4731, 9206, 25, 357, 30719, 8, 30275, 284, 779, 981, 21004, 14, 12501, 7656, 6218, 198, 197, 37811, 198, 197, 62, 35827, 13847, 364, 796, 685, 198, 197, 197, 6, 7004, 1416, 24735, 12, 2389, 3256, 198, 197, 197, 6, 7004, 1416, 24735, 12, 5376, 3256, 198, 197, 60, 628, 198, 4871, 15484, 7250, 11380, 28264, 16630, 7250, 14881, 2599, 198, 197, 37811, 6207, 6629, 257, 15484, 7250, 7477, 18261, 628, 197, 25, 17143, 4731, 1366, 25, 357, 30719, 8, 4091, 4808, 38, 11251, 4805, 9774, 2591, 13, 12501, 1098, 3419, 198, 197, 25, 17143, 4731, 2223, 25, 357, 30719, 8, 5345, 2099, 286, 2223, 262, 7477, 18261, 318, 329, 198, 197, 37811, 198, 197, 62, 35827, 13847, 364, 796, 37250, 31077, 12, 12502, 20520, 628, 198, 4871, 15484, 7250, 12331, 28264, 16630, 7250, 14881, 2599, 198, 197, 37811, 6207, 6629, 257, 15484, 7250, 13047, 2882, 628, 197, 25, 17143, 4731, 1366, 25, 357, 30719, 8, 4091, 4808, 38, 11251, 4805, 9774, 2591, 13, 12501, 1098, 3419, 198, 197, 25, 17143, 4731, 4049, 8189, 25, 357, 30719, 8, 13047, 2438, 198, 197, 25, 17143, 4731, 11454, 585, 3798, 25, 357, 30719, 8, 13047, 12489, 198, 197, 37811, 198, 197, 62, 35827, 13847, 364, 796, 37250, 12331, 12, 10669, 3256, 705, 12331, 12, 11828, 20520, 628, 198, 4299, 21136, 62, 70, 429, 79, 7, 7890, 11, 9206, 28, 14202, 2599, 198, 197, 37811, 37177, 284, 21136, 257, 3275, 355, 257, 15484, 7250, 3275, 628, 197, 25, 17143, 4731, 1366, 25, 16000, 284, 307, 44267, 198, 197, 25, 17143, 4731, 9206, 25, 32233, 9206, 284, 307, 973, 284, 11767, 262, 3275, 198, 197, 37811, 198, 197, 15699, 796, 15484, 7250, 62, 10778, 62, 24027, 62, 9693, 9863, 13, 15699, 7, 7890, 8, 198, 197, 361, 407, 2872, 25, 198, 197, 197, 40225, 2547, 325, 12331, 10786, 1268, 23428, 2389, 62, 16630, 7250, 62, 10778, 11537, 198, 197, 10951, 796, 2872, 13, 8094, 11600, 3419, 198, 197, 361, 7508, 17816, 37348, 363, 2963, 431, 20520, 6624, 705, 31553, 41517, 10354, 198, 197, 197, 7783, 402, 11251, 4805, 1533, 1694, 7, 7890, 11, 9206, 28, 28712, 8, 198, 197, 417, 361, 7508, 17816, 37348, 363, 2963, 431, 20520, 6624, 705, 11929, 5064, 56, 10354, 198, 197, 197, 7783, 15484, 7250, 26396, 7, 7890, 11, 9206, 28, 28712, 8, 198, 197, 417, 361, 7508, 17816, 37348, 363, 2963, 431, 20520, 6624, 705, 12564, 4462, 34, 7112, 12473, 10354, 198, 197, 197, 7783, 402, 11251, 3705, 549, 12522, 7, 7890, 11, 9206, 28, 28712, 8, 198, 197, 417, 361, 7508, 17816, 37348, 363, 2963, 431, 20520, 6624, 705, 12, 11380, 10354, 198, 197, 197, 7783, 15484, 7250, 11380, 7, 7890, 8, 198, 197, 417, 361, 7508, 17816, 37348, 363, 2963, 431, 20520, 6624, 705, 12, 24908, 10354, 198, 197, 197, 7783, 15484, 7250, 12331, 7, 7890, 8, 198, 197, 40225, 2547, 325, 12331, 10786, 1268, 23428, 2389, 62, 16630, 7250, 62, 44, 1546, 4090, 8264, 11537, 198 ]
2.707618
4,135
from .backend import * from .commands import * check_config() if not DB_PATH.is_file(): init_db() init_firewall()
[ 6738, 764, 1891, 437, 1330, 1635, 198, 6738, 764, 9503, 1746, 1330, 1635, 198, 198, 9122, 62, 11250, 3419, 198, 198, 361, 407, 20137, 62, 34219, 13, 271, 62, 7753, 33529, 198, 220, 220, 220, 2315, 62, 9945, 3419, 198, 220, 220, 220, 2315, 62, 6495, 11930, 3419, 198 ]
2.530612
49
"""Copyright 2022 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # [START drive_recover_team_drives] from __future__ import print_function import google.auth from googleapiclient.discovery import build from googleapiclient.errors import HttpError def recover_team_drives(real_user): """Finds all Team Drives without an organizer and add one Args: real_user:User ID for the new organizer. Returns: team drives_object. Load pre-authorized user credentials from the environment. TODO(developer) - See https://developers.google.com/identity for guides on implementing OAuth2 for the application. """ creds, _ = google.auth.default() try: # call drive api client service = build('drive', 'v3', credentials=creds) # pylint: disable=maybe-no-member team_drives = [] page_token = None new_organizer_permission = {'type': 'user', 'role': 'organizer', 'value': '[email protected]'} new_organizer_permission['emailAddress'] = real_user while True: response = service.teamdrives().list(q='organizerCount = 0', fields='nextPageToken, ' 'teamDrives(id, ' 'name)', useDomainAdminAccess=True, pageToken=page_token ).execute() for team_drive in response.get('teamDrives', []): print('Found Team Drive without organizer: {team_drive.get(' '"title")},{team_drive.get("id")}') permission = service.permissions().create( fileId=team_drive.get('id'), body=new_organizer_permission, useDomainAdminAccess=True, supportsTeamDrives=True, fields='id').execute() print(F'Added organizer permission:{permission.get("id")}') team_drives.extend(response.get('teamDrives', [])) page_token = response.get('nextPageToken', None) if page_token is None: break except HttpError as error: print(F'An error occurred: {error}') team_drives = None print(team_drives) if __name__ == '__main__': recover_team_drives(real_user='[email protected]') # [END drive_recover_team_drives]
[ 37811, 15269, 33160, 3012, 11419, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 198, 2, 685, 2257, 7227, 3708, 62, 260, 9631, 62, 15097, 62, 7553, 1158, 60, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 23645, 13, 18439, 198, 6738, 23645, 499, 291, 75, 1153, 13, 67, 40821, 1330, 1382, 198, 6738, 23645, 499, 291, 75, 1153, 13, 48277, 1330, 367, 29281, 12331, 628, 198, 4299, 8551, 62, 15097, 62, 7553, 1158, 7, 5305, 62, 7220, 2599, 198, 220, 220, 220, 37227, 16742, 82, 477, 4816, 5809, 1158, 1231, 281, 26311, 290, 751, 530, 198, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1103, 62, 7220, 25, 12982, 4522, 329, 262, 649, 26311, 13, 198, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 10182, 62, 15252, 13, 628, 220, 220, 220, 8778, 662, 12, 19721, 2836, 18031, 422, 262, 2858, 13, 198, 220, 220, 220, 16926, 46, 7, 16244, 263, 8, 532, 4091, 3740, 1378, 16244, 364, 13, 13297, 13, 785, 14, 738, 414, 198, 220, 220, 220, 329, 17555, 319, 15427, 440, 30515, 17, 329, 262, 3586, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2600, 82, 11, 4808, 796, 23645, 13, 18439, 13, 12286, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 869, 3708, 40391, 5456, 198, 220, 220, 220, 220, 220, 220, 220, 2139, 796, 1382, 10786, 19472, 3256, 705, 85, 18, 3256, 18031, 28, 66, 445, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 2645, 600, 25, 15560, 28, 25991, 12, 3919, 12, 19522, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 7553, 1158, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 30001, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9971, 7509, 62, 525, 3411, 796, 1391, 6, 4906, 10354, 705, 7220, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 18090, 10354, 705, 9971, 7509, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 8367, 10354, 705, 7220, 31, 20688, 13, 785, 6, 92, 628, 220, 220, 220, 220, 220, 220, 220, 649, 62, 9971, 7509, 62, 525, 3411, 17816, 12888, 20231, 20520, 796, 1103, 62, 7220, 628, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2882, 796, 2139, 13, 15097, 7553, 1158, 22446, 4868, 7, 80, 11639, 9971, 7509, 12332, 796, 657, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 11639, 19545, 9876, 30642, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15097, 20564, 1158, 7, 312, 11, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 8, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 43961, 46787, 15457, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 30642, 28, 7700, 62, 30001, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6739, 41049, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1074, 62, 19472, 287, 2882, 13, 1136, 10786, 15097, 20564, 1158, 3256, 17635, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 21077, 4816, 9974, 1231, 26311, 25, 1391, 15097, 62, 19472, 13, 1136, 10786, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 7839, 4943, 5512, 90, 15097, 62, 19472, 13, 1136, 7203, 312, 4943, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7170, 796, 2139, 13, 525, 8481, 22446, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 7390, 28, 15097, 62, 19472, 13, 1136, 10786, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1767, 28, 3605, 62, 9971, 7509, 62, 525, 3411, 11, 779, 43961, 46787, 15457, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6971, 15592, 20564, 1158, 28, 17821, 11, 7032, 11639, 312, 27691, 41049, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37, 6, 13003, 26311, 7170, 29164, 525, 3411, 13, 1136, 7203, 312, 4943, 92, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 7553, 1158, 13, 2302, 437, 7, 26209, 13, 1136, 10786, 15097, 20564, 1158, 3256, 17635, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2443, 62, 30001, 796, 2882, 13, 1136, 10786, 19545, 9876, 30642, 3256, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2443, 62, 30001, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 2845, 367, 29281, 12331, 355, 4049, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37, 6, 2025, 4049, 5091, 25, 1391, 18224, 92, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1074, 62, 7553, 1158, 796, 6045, 628, 220, 220, 220, 3601, 7, 15097, 62, 7553, 1158, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 8551, 62, 15097, 62, 7553, 1158, 7, 5305, 62, 7220, 11639, 21287, 7220, 16, 31, 5225, 43076, 12629, 13, 7959, 11537, 198, 2, 685, 10619, 3708, 62, 260, 9631, 62, 15097, 62, 7553, 1158, 60, 198 ]
2.190071
1,410
import json import numpy as np import pandas as pd from sklearn.externals import joblib from bld.project_paths import project_paths_join as ppj # This list is ordered according to the item table in our paper. PERCEIVED_CONTROL = [ "LOC_LIFES_COURSE", "LOC_ACHIEVED_DESERVE", "LOC_LUCK", "LOC_OTHERS", "LOC_DOUBT", "LOC_POSSIBILITIES", "LOC_LITTLE_CONTROL", ] LOC_VALUES = { "[1] Trifft ueberhaupt nicht zu": 1, "[2] [2/10]": 2, "[3] [3/10]": 3, "[4] [4/10]": 4, "[5] [5/10]": 5, "[6] [6/10]": 6, "[7] Trifft voll zu": 7, } def invert_items(df): """This function inverts the scale of some items of LoC so that for all items higher numbers reflect greater feelings of control.""" inverted_items = [ "LOC_ACHIEVED_DESERVE", "LOC_LUCK", "LOC_OTHERS", "LOC_DOUBT", "LOC_POSSIBILITIES", "LOC_ABILITIES", "LOC_LITTLE_CONTROL", ] for item in inverted_items: df[item].replace( to_replace=[1, 2, 3, 4, 5, 6, 7], value=[7, 6, 5, 4, 3, 2, 1], inplace=True ) return df def create_index(df): """This function creates and index which is the average over all LoC items.""" df["LOC_INDEX"] = df[PERCEIVED_CONTROL].mean(axis="columns") return df if __name__ == "__main__": # Load dataset df = pd.read_pickle(ppj("OUT_DATA", "loc_raw.pkl")) # Clean the data df = clean_variables(df) # Invert items so that higher numbers indicate greater feelings of control df = invert_items(df) # Calculate Cronbach's alpha for the whole scale data = df[[i for i in df if "LOC" in i]].values.T cronbachs_alpha_ten = calculate_cronbachs_alpha(data) # Restrict to seven item scale proposed by Specht et al (2013) df = df[["ID", "YEAR"] + PERCEIVED_CONTROL] # Create an index as the average of LoC items df = create_index(df) # Calculate Cronbach's Alpha for seven item scale. First, reshape the data # to n (items) * p (observations) data = df[PERCEIVED_CONTROL].values.T cronbachs_alpha_seven = calculate_cronbachs_alpha(data) # Create container container = {} container["data"] = df # Save numbers to json with open(ppj("OUT_TABLES", "cronbachs_alphas.json"), "w") as file: file.write( json.dumps( {"ca_seven": cronbachs_alpha_seven, "ca_ten": cronbachs_alpha_ten} ) ) # Save data for PCA and FA joblib.dump(container, ppj("OUT_DATA", "loc_container.pkl"))
[ 11748, 33918, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 13, 1069, 759, 874, 1330, 1693, 8019, 198, 198, 6738, 275, 335, 13, 16302, 62, 6978, 82, 1330, 1628, 62, 6978, 82, 62, 22179, 355, 9788, 73, 628, 198, 2, 770, 1351, 318, 6149, 1864, 284, 262, 2378, 3084, 287, 674, 3348, 13, 198, 18973, 5222, 3824, 1961, 62, 10943, 5446, 3535, 796, 685, 198, 220, 220, 220, 366, 29701, 62, 43, 5064, 1546, 62, 34, 11698, 5188, 1600, 198, 220, 220, 220, 366, 29701, 62, 16219, 10008, 53, 1961, 62, 30910, 1137, 6089, 1600, 198, 220, 220, 220, 366, 29701, 62, 43, 16696, 1600, 198, 220, 220, 220, 366, 29701, 62, 26946, 4877, 1600, 198, 220, 220, 220, 366, 29701, 62, 35, 2606, 19313, 1600, 198, 220, 220, 220, 366, 29701, 62, 37997, 11584, 49516, 1600, 198, 220, 220, 220, 366, 29701, 62, 43, 22470, 2538, 62, 10943, 5446, 3535, 1600, 198, 60, 628, 198, 29701, 62, 23428, 35409, 796, 1391, 198, 220, 220, 220, 12878, 16, 60, 833, 361, 701, 334, 68, 527, 71, 559, 457, 299, 30830, 1976, 84, 1298, 352, 11, 198, 220, 220, 220, 12878, 17, 60, 685, 17, 14, 940, 60, 1298, 362, 11, 198, 220, 220, 220, 12878, 18, 60, 685, 18, 14, 940, 60, 1298, 513, 11, 198, 220, 220, 220, 12878, 19, 60, 685, 19, 14, 940, 60, 1298, 604, 11, 198, 220, 220, 220, 12878, 20, 60, 685, 20, 14, 940, 60, 1298, 642, 11, 198, 220, 220, 220, 12878, 21, 60, 685, 21, 14, 940, 60, 1298, 718, 11, 198, 220, 220, 220, 12878, 22, 60, 833, 361, 701, 410, 692, 1976, 84, 1298, 767, 11, 198, 92, 628, 628, 198, 4299, 287, 1851, 62, 23814, 7, 7568, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 287, 24040, 262, 5046, 286, 617, 3709, 286, 6706, 34, 523, 326, 329, 477, 198, 220, 220, 220, 3709, 2440, 3146, 4079, 3744, 7666, 286, 1630, 526, 15931, 198, 220, 220, 220, 37204, 62, 23814, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 16219, 10008, 53, 1961, 62, 30910, 1137, 6089, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 43, 16696, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 26946, 4877, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 35, 2606, 19313, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 37997, 11584, 49516, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 32, 49516, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29701, 62, 43, 22470, 2538, 62, 10943, 5446, 3535, 1600, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 329, 2378, 287, 37204, 62, 23814, 25, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 58, 9186, 4083, 33491, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 33491, 41888, 16, 11, 362, 11, 513, 11, 604, 11, 642, 11, 718, 11, 767, 4357, 1988, 41888, 22, 11, 718, 11, 642, 11, 604, 11, 513, 11, 362, 11, 352, 4357, 287, 5372, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 47764, 628, 198, 4299, 2251, 62, 9630, 7, 7568, 2599, 198, 220, 220, 220, 37227, 1212, 2163, 8075, 290, 6376, 543, 318, 262, 2811, 625, 477, 6706, 34, 198, 220, 220, 220, 3709, 526, 15931, 198, 220, 220, 220, 47764, 14692, 29701, 62, 12115, 6369, 8973, 796, 47764, 58, 18973, 5222, 3824, 1961, 62, 10943, 5446, 3535, 4083, 32604, 7, 22704, 2625, 28665, 82, 4943, 628, 220, 220, 220, 1441, 47764, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1303, 8778, 27039, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 27729, 293, 7, 381, 73, 7203, 12425, 62, 26947, 1600, 366, 17946, 62, 1831, 13, 79, 41582, 48774, 198, 220, 220, 220, 1303, 5985, 262, 1366, 198, 220, 220, 220, 47764, 796, 3424, 62, 25641, 2977, 7, 7568, 8, 198, 220, 220, 220, 1303, 554, 1851, 3709, 523, 326, 2440, 3146, 7603, 3744, 7666, 286, 1630, 198, 220, 220, 220, 47764, 796, 287, 1851, 62, 23814, 7, 7568, 8, 198, 220, 220, 220, 1303, 27131, 378, 31683, 19496, 338, 17130, 329, 262, 2187, 5046, 198, 220, 220, 220, 1366, 796, 47764, 30109, 72, 329, 1312, 287, 47764, 611, 366, 29701, 1, 287, 1312, 60, 4083, 27160, 13, 51, 198, 220, 220, 220, 1067, 261, 19496, 82, 62, 26591, 62, 1452, 796, 15284, 62, 66, 1313, 19496, 82, 62, 26591, 7, 7890, 8, 198, 220, 220, 220, 1303, 37163, 284, 3598, 2378, 5046, 5150, 416, 2531, 21474, 2123, 435, 357, 6390, 8, 198, 220, 220, 220, 47764, 796, 47764, 58, 14692, 2389, 1600, 366, 56, 17133, 8973, 1343, 19878, 5222, 3824, 1961, 62, 10943, 5446, 3535, 60, 198, 220, 220, 220, 1303, 13610, 281, 6376, 355, 262, 2811, 286, 6706, 34, 3709, 198, 220, 220, 220, 47764, 796, 2251, 62, 9630, 7, 7568, 8, 198, 220, 220, 220, 1303, 27131, 378, 31683, 19496, 338, 12995, 329, 3598, 2378, 5046, 13, 3274, 11, 27179, 1758, 262, 1366, 198, 220, 220, 220, 1303, 284, 299, 357, 23814, 8, 1635, 279, 357, 672, 3168, 602, 8, 198, 220, 220, 220, 1366, 796, 47764, 58, 18973, 5222, 3824, 1961, 62, 10943, 5446, 3535, 4083, 27160, 13, 51, 198, 220, 220, 220, 1067, 261, 19496, 82, 62, 26591, 62, 26548, 796, 15284, 62, 66, 1313, 19496, 82, 62, 26591, 7, 7890, 8, 198, 220, 220, 220, 1303, 13610, 9290, 198, 220, 220, 220, 9290, 796, 23884, 198, 220, 220, 220, 9290, 14692, 7890, 8973, 796, 47764, 198, 220, 220, 220, 1303, 12793, 3146, 284, 33918, 198, 220, 220, 220, 351, 1280, 7, 381, 73, 7203, 12425, 62, 5603, 9148, 1546, 1600, 366, 66, 1313, 19496, 82, 62, 282, 5902, 13, 17752, 12340, 366, 86, 4943, 355, 2393, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 67, 8142, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 6888, 62, 26548, 1298, 1067, 261, 19496, 82, 62, 26591, 62, 26548, 11, 366, 6888, 62, 1452, 1298, 1067, 261, 19496, 82, 62, 26591, 62, 1452, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1303, 12793, 1366, 329, 4217, 32, 290, 9677, 198, 220, 220, 220, 1693, 8019, 13, 39455, 7, 34924, 11, 9788, 73, 7203, 12425, 62, 26947, 1600, 366, 17946, 62, 34924, 13, 79, 41582, 48774, 198 ]
2.263204
1,136
import os import sys import time import shutil import argparse import traceback import subprocess from . import __version__
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 640, 198, 11748, 4423, 346, 198, 11748, 1822, 29572, 198, 11748, 12854, 1891, 198, 11748, 850, 14681, 198, 6738, 764, 1330, 11593, 9641, 834, 628 ]
3.90625
32
import os import json import shlex from .cli_bash_operator import CliBashOperator from ..config import OPEN_BUS_PIPELINES_ROOTDIR
[ 11748, 28686, 198, 11748, 33918, 198, 11748, 427, 2588, 198, 198, 6738, 764, 44506, 62, 41757, 62, 46616, 1330, 1012, 72, 33, 1077, 18843, 1352, 198, 6738, 11485, 11250, 1330, 38303, 62, 45346, 62, 47, 4061, 3698, 1268, 1546, 62, 13252, 2394, 34720, 628 ]
3
44
#!/usr/bin/env python # _*_ coding: utf-8 _*_ __author__: 'Patrick Wang' __date__: '2019/2/28 14:52' from scrapy.cmdline import execute import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__))) # execute(["scrapy", "crawl", "jobbole"]) execute(["scrapy", "crawl", "zhihu"]) # execute(["scrapy", "crawl", "lagou"])
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 4808, 9, 62, 19617, 25, 3384, 69, 12, 23, 4808, 9, 62, 198, 834, 9800, 834, 25, 705, 32718, 15233, 6, 198, 834, 4475, 834, 25, 705, 23344, 14, 17, 14, 2078, 1478, 25, 4309, 6, 198, 198, 6738, 15881, 88, 13, 28758, 1370, 1330, 12260, 198, 11748, 25064, 198, 11748, 28686, 628, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 22305, 198, 198, 2, 12260, 7, 14692, 1416, 2416, 88, 1600, 366, 66, 13132, 1600, 366, 21858, 45693, 8973, 8, 198, 41049, 7, 14692, 1416, 2416, 88, 1600, 366, 66, 13132, 1600, 366, 23548, 48406, 8973, 8, 198, 2, 12260, 7, 14692, 1416, 2416, 88, 1600, 366, 66, 13132, 1600, 366, 30909, 280, 8973, 8, 198 ]
2.368056
144
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module defines exceptions for Presto operations. It follows the structure defined in pep-0249. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import random import time import prestodb.logging logger = prestodb.logging.get_logger(__name__)
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 37811, 198, 198, 1212, 8265, 15738, 13269, 329, 24158, 78, 4560, 13, 632, 5679, 262, 4645, 198, 23211, 287, 279, 538, 12, 15, 21626, 13, 198, 37811, 198, 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 1257, 310, 10141, 198, 11748, 4738, 198, 11748, 640, 198, 198, 11748, 16153, 375, 65, 13, 6404, 2667, 198, 198, 6404, 1362, 796, 16153, 375, 65, 13, 6404, 2667, 13, 1136, 62, 6404, 1362, 7, 834, 3672, 834, 8, 628, 628, 628, 628, 628, 628 ]
3.697095
241
from os import remove import shlex from os.path import isfile, join, split, splitext from prody.tests import TestCase, skipIf, skipUnless from numpy.testing import * try: import numpy.testing.decorators as dec except ImportError: from numpy.testing import dec from prody.tests.datafiles import TEMPDIR, pathDatafile from prody.apps import prody_parser from prody.tests import MATPLOTLIB, NOPRODYCMD, WINDOWS
[ 6738, 28686, 1330, 4781, 198, 11748, 427, 2588, 198, 6738, 28686, 13, 6978, 1330, 318, 7753, 11, 4654, 11, 6626, 11, 4328, 578, 742, 198, 6738, 386, 9892, 13, 41989, 1330, 6208, 20448, 11, 14267, 1532, 11, 14267, 28042, 198, 198, 6738, 299, 32152, 13, 33407, 1330, 1635, 198, 28311, 25, 198, 220, 220, 220, 1330, 299, 32152, 13, 33407, 13, 12501, 273, 2024, 355, 875, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 422, 299, 32152, 13, 33407, 1330, 875, 198, 198, 6738, 386, 9892, 13, 41989, 13, 7890, 16624, 1330, 309, 3620, 5760, 4663, 11, 3108, 6601, 7753, 198, 198, 6738, 386, 9892, 13, 18211, 1330, 386, 9892, 62, 48610, 198, 198, 6738, 386, 9892, 13, 41989, 1330, 36775, 6489, 2394, 40347, 11, 399, 3185, 49, 33076, 34, 12740, 11, 370, 12115, 22845, 198 ]
3.065693
137
from __future__ import absolute_import from datetime import datetime import factory from . import models from talks.users.models import Collection, CollectionItem, CollectedDepartment
[ 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 8860, 198, 198, 6738, 764, 1330, 4981, 198, 6738, 6130, 13, 18417, 13, 27530, 1330, 12251, 11, 12251, 7449, 11, 9745, 276, 36261, 628, 628, 628, 198 ]
4.266667
45
from __future__ import unicode_literals from django.apps import AppConfig
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.619048
21
#!/usr/bin/env python3 # # setup.py # From the stagger project: http://code.google.com/p/stagger/ # # Copyright (c) 2009-2011 Karoly Lorentey <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import distribute_setup distribute_setup.use_setuptools() from setuptools import setup; setup( name="stagger", version="0.4.2", url="http://code.google.com/p/stagger", author="Karoly Lorentey", author_email="[email protected]", packages=["stagger"], entry_points = { 'console_scripts': ['stagger = stagger.commandline:main'] }, test_suite = "test.alltests.suite", license="BSD", description="ID3v1/ID3v2 tag manipulation package in pure Python 3", long_description=""" The ID3v2 tag format is notorious for its useless specification documents and its quirky, mutually incompatible part-implementations. Stagger is to provide a robust tagging package that is able to handle all the various badly formatted tags out there and allow you to convert them to a consensus format. """, classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Topic :: Multimedia :: Sound/Audio" ], )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 198, 2, 9058, 13, 9078, 198, 2, 3574, 262, 20778, 1628, 25, 2638, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 301, 7928, 14, 198, 2, 198, 2, 15069, 357, 66, 8, 3717, 12, 9804, 9375, 3366, 15639, 429, 2959, 220, 1279, 21070, 3366, 31, 31131, 429, 2959, 13, 13415, 29, 198, 2, 1439, 2489, 10395, 13, 198, 2, 220, 198, 2, 2297, 396, 3890, 290, 779, 287, 2723, 290, 13934, 5107, 11, 351, 393, 1231, 198, 2, 17613, 11, 389, 10431, 2810, 326, 262, 1708, 3403, 198, 2, 389, 1138, 25, 198, 2, 220, 198, 2, 532, 2297, 396, 2455, 507, 286, 2723, 2438, 1276, 12377, 262, 2029, 6634, 198, 2, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 13, 198, 2, 220, 198, 2, 532, 2297, 396, 2455, 507, 287, 13934, 1296, 1276, 22919, 262, 2029, 6634, 198, 2, 220, 220, 4003, 11, 428, 1351, 286, 3403, 290, 262, 1708, 37592, 287, 198, 2, 220, 220, 262, 10314, 290, 14, 273, 584, 5696, 2810, 351, 262, 198, 2, 220, 220, 6082, 13, 198, 2, 220, 198, 2, 12680, 47466, 3180, 36592, 2389, 1961, 11050, 3336, 27975, 38162, 9947, 367, 15173, 4877, 5357, 27342, 9865, 3843, 20673, 198, 2, 366, 1921, 3180, 1, 5357, 15529, 7788, 32761, 6375, 8959, 49094, 34764, 11015, 11, 47783, 2751, 11, 21728, 5626, 198, 2, 40880, 5390, 11, 3336, 8959, 49094, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 5357, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 15986, 13954, 48778, 1961, 13, 3268, 8005, 49261, 50163, 3336, 198, 2, 27975, 38162, 9947, 49707, 14418, 6375, 27342, 9865, 3843, 20673, 9348, 43031, 19146, 7473, 15529, 42242, 11, 3268, 17931, 23988, 11, 198, 2, 19387, 25256, 1847, 11, 38846, 11, 7788, 3620, 6489, 13153, 11, 6375, 7102, 5188, 10917, 3525, 12576, 29506, 25552, 357, 1268, 39149, 2751, 11, 198, 2, 21728, 5626, 40880, 5390, 11, 41755, 11335, 10979, 3963, 28932, 2257, 2043, 37780, 21090, 50, 6375, 49254, 26, 198, 2, 406, 18420, 3963, 23210, 11, 42865, 11, 6375, 4810, 19238, 29722, 26, 6375, 43949, 44180, 23255, 49, 8577, 24131, 8, 29630, 36, 5959, 198, 2, 7257, 2937, 1961, 5357, 6177, 15529, 3336, 15513, 3963, 43031, 25382, 11, 7655, 2767, 16879, 3268, 27342, 10659, 11, 19269, 18379, 198, 2, 43031, 25382, 11, 6375, 309, 9863, 357, 1268, 39149, 2751, 399, 7156, 43, 3528, 18310, 6375, 25401, 54, 24352, 8, 5923, 1797, 2751, 3268, 198, 2, 15529, 34882, 16289, 3963, 3336, 23210, 3963, 12680, 47466, 11, 45886, 16876, 5984, 29817, 1961, 3963, 3336, 198, 2, 28069, 11584, 25382, 3963, 13558, 3398, 29506, 11879, 13, 198, 220, 220, 198, 11748, 14983, 62, 40406, 198, 17080, 4163, 62, 40406, 13, 1904, 62, 2617, 37623, 10141, 3419, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 26, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 2625, 301, 7928, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 19, 13, 17, 1600, 198, 220, 220, 220, 19016, 2625, 4023, 1378, 8189, 13, 13297, 13, 785, 14, 79, 14, 301, 7928, 1600, 198, 220, 220, 220, 1772, 2625, 37753, 3366, 15639, 429, 2959, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 21070, 3366, 31, 31131, 429, 2959, 13, 13415, 1600, 198, 220, 220, 220, 10392, 28, 14692, 301, 7928, 33116, 198, 220, 220, 220, 5726, 62, 13033, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 37250, 301, 7928, 796, 20778, 13, 21812, 1370, 25, 12417, 20520, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 1332, 62, 2385, 578, 796, 366, 9288, 13, 439, 41989, 13, 2385, 578, 1600, 198, 220, 220, 220, 5964, 2625, 21800, 1600, 198, 220, 220, 220, 6764, 2625, 2389, 18, 85, 16, 14, 2389, 18, 85, 17, 7621, 17512, 5301, 287, 5899, 11361, 513, 1600, 198, 220, 220, 220, 890, 62, 11213, 2625, 15931, 198, 464, 4522, 18, 85, 17, 7621, 5794, 318, 18192, 329, 663, 13894, 20855, 198, 15390, 2886, 290, 663, 37276, 11, 26519, 27294, 198, 3911, 12, 320, 26908, 602, 13, 520, 7928, 318, 284, 2148, 257, 12373, 49620, 5301, 198, 5562, 318, 1498, 284, 5412, 477, 262, 2972, 11234, 39559, 15940, 503, 612, 198, 392, 1249, 345, 284, 10385, 606, 284, 257, 11529, 5794, 13, 198, 15931, 1600, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 41206, 12678, 7904, 604, 532, 17993, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 347, 10305, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 33221, 7904, 7854, 20626, 7904, 9506, 14, 21206, 1, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 1267, 198 ]
3.11071
831
#!/usr/bin/env python3 """Calculate the value of pi using multiprocessing in Python""" from datetime import datetime from multiprocessing import Pool import os from sys import argv if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 37811, 9771, 3129, 378, 262, 1988, 286, 31028, 1262, 18540, 305, 919, 278, 287, 11361, 37811, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 18540, 305, 919, 278, 1330, 19850, 198, 11748, 28686, 198, 6738, 25064, 1330, 1822, 85, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.15493
71
# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """squad_question_generation dataset.""" import os import tensorflow as tf import tensorflow_datasets.public_api as tfds from tensorflow_datasets.question_answering import qa_utils _CITATION = """\ @article{zhou2017neural, title={Neural Question Generation from Text: A Preliminary Study}, author={Zhou, Qingyu and Yang, Nan and Wei, Furu and Tan, Chuanqi and Bao, Hangbo and Zhou, Ming}, journal={arXiv preprint arXiv:1704.01792}, year={2017} } @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } """ _DESCRIPTION = """\ Question generation using squad dataset and data split described in 'Neural Question Generation from Text: A Preliminary Study'. """ _URLS = { "train": "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json", "dev": "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json", "mapping": "https://res.qyzhou.me/qas_id_in_squad.zip", } _HOMEPAGE_URL = "https://github.com/magic282/NQG" class SquadQuestionGeneration(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for squad_question_generation dataset.""" VERSION = tfds.core.Version("1.0.0") RELEASE_NOTES = { "1.0.0": "Initial build.", } def _info(self): """Returns the dataset metadata.""" features_dict = qa_utils.SQUADLIKE_FEATURES return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=features_dict, supervised_keys=("context", "question"), homepage=_HOMEPAGE_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_paths = dl_manager.download_and_extract(_URLS) mapping_dir = os.path.join(dl_paths["mapping"], "qas_id_in_squad") return { tfds.Split.TRAIN: self._generate_examples(dl_paths["train"], os.path.join(mapping_dir, "train.txt.id")), tfds.Split.VALIDATION: self._generate_examples( dl_paths["dev"], os.path.join(mapping_dir, "dev.txt.shuffle.dev.id")), tfds.Split.TEST: self._generate_examples( dl_paths["dev"], os.path.join(mapping_dir, "dev.txt.shuffle.test.id")), } def _generate_examples(self, data_path: str, mapping_path: str): """Yields examples.""" with tf.io.gfile.GFile(mapping_path, "r") as f: ids = set(f.read().splitlines()) for k, ex in qa_utils.generate_squadlike_examples(data_path): if k in ids: yield k, ex
[ 2, 19617, 28, 40477, 12, 23, 198, 2, 15069, 33448, 383, 309, 22854, 37535, 16092, 292, 1039, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 16485, 324, 62, 25652, 62, 20158, 27039, 526, 15931, 198, 198, 11748, 28686, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 11125, 62, 19608, 292, 1039, 13, 11377, 62, 15042, 355, 48700, 9310, 198, 6738, 11192, 273, 11125, 62, 19608, 292, 1039, 13, 25652, 62, 504, 86, 1586, 1330, 10662, 64, 62, 26791, 198, 198, 62, 34, 2043, 6234, 796, 37227, 59, 198, 31, 20205, 90, 38536, 5539, 710, 1523, 11, 198, 220, 3670, 34758, 8199, 1523, 18233, 16588, 422, 8255, 25, 317, 28887, 38429, 12481, 5512, 198, 220, 1772, 34758, 57, 15710, 11, 28927, 24767, 290, 10998, 11, 18008, 290, 29341, 11, 376, 14717, 290, 11818, 11, 609, 7258, 40603, 290, 347, 5488, 11, 24300, 2127, 290, 32222, 11, 26980, 5512, 198, 220, 3989, 34758, 283, 55, 452, 662, 4798, 610, 55, 452, 25, 1558, 3023, 13, 486, 48156, 5512, 198, 220, 614, 34758, 5539, 92, 198, 92, 198, 31, 20205, 90, 5304, 283, 55, 452, 14198, 1899, 4309, 1120, 49, 11, 198, 220, 220, 220, 220, 220, 220, 1772, 796, 22935, 49, 1228, 14225, 21070, 5512, 1736, 272, 615, 290, 1391, 57, 33255, 5512, 40922, 290, 1391, 43, 11081, 18218, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17431, 18797, 259, 290, 1391, 43, 15483, 5512, 38506, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 45144, 50, 4507, 2885, 25, 1802, 11, 830, 10, 20396, 329, 10850, 3082, 7345, 295, 286, 8255, 92, 1600, 198, 220, 220, 220, 220, 220, 3989, 796, 1391, 283, 55, 452, 304, 12, 17190, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 614, 796, 1584, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 312, 796, 1391, 283, 55, 452, 25, 1433, 3312, 13, 2713, 9031, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 5468, 796, 1391, 283, 55, 452, 25, 1433, 3312, 13, 2713, 9031, 5512, 198, 17474, 36698, 844, 796, 1391, 283, 55, 452, 5512, 198, 220, 220, 220, 220, 220, 220, 304, 4798, 796, 1391, 1433, 3312, 13, 2713, 9031, 5512, 198, 92, 198, 37811, 198, 198, 62, 30910, 40165, 796, 37227, 59, 198, 24361, 5270, 1262, 8244, 27039, 290, 1366, 6626, 3417, 287, 198, 6, 8199, 1523, 18233, 16588, 422, 8255, 25, 317, 28887, 38429, 12481, 4458, 198, 37811, 198, 198, 62, 4261, 6561, 796, 1391, 198, 220, 220, 220, 366, 27432, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 430, 73, 14225, 21070, 13, 12567, 13, 952, 14, 50, 4507, 2885, 12, 20676, 11934, 14, 19608, 292, 316, 14, 27432, 12, 85, 16, 13, 16, 13, 17752, 1600, 198, 220, 220, 220, 366, 7959, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 430, 73, 14225, 21070, 13, 12567, 13, 952, 14, 50, 4507, 2885, 12, 20676, 11934, 14, 19608, 292, 316, 14, 7959, 12, 85, 16, 13, 16, 13, 17752, 1600, 198, 220, 220, 220, 366, 76, 5912, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 366, 5450, 1378, 411, 13, 80, 88, 38536, 13, 1326, 14, 80, 292, 62, 312, 62, 259, 62, 16485, 324, 13, 13344, 1600, 198, 92, 198, 62, 39069, 4537, 8264, 62, 21886, 796, 366, 5450, 1378, 12567, 13, 785, 14, 32707, 32568, 14, 45, 48, 38, 1, 628, 198, 4871, 11630, 24361, 8645, 341, 7, 27110, 9310, 13, 7295, 13, 8645, 1352, 15001, 32875, 2599, 198, 220, 37227, 27354, 292, 316, 32875, 329, 8244, 62, 25652, 62, 20158, 27039, 526, 15931, 628, 220, 44156, 2849, 796, 48700, 9310, 13, 7295, 13, 14815, 7203, 16, 13, 15, 13, 15, 4943, 198, 220, 46492, 62, 11929, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 366, 16, 13, 15, 13, 15, 1298, 366, 24243, 1382, 33283, 198, 220, 1782, 628, 220, 825, 4808, 10951, 7, 944, 2599, 198, 220, 220, 220, 37227, 35561, 262, 27039, 20150, 526, 15931, 198, 220, 220, 220, 3033, 62, 11600, 796, 10662, 64, 62, 26791, 13, 50, 10917, 2885, 31271, 7336, 62, 15112, 47471, 198, 220, 220, 220, 1441, 48700, 9310, 13, 7295, 13, 27354, 292, 316, 12360, 7, 198, 220, 220, 220, 220, 220, 220, 220, 27098, 28, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 62, 30910, 40165, 11, 198, 220, 220, 220, 220, 220, 220, 220, 3033, 28, 40890, 62, 11600, 11, 198, 220, 220, 220, 220, 220, 220, 220, 28679, 62, 13083, 28, 7203, 22866, 1600, 366, 25652, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 34940, 28, 62, 39069, 4537, 8264, 62, 21886, 11, 198, 220, 220, 220, 220, 220, 220, 220, 27860, 28, 62, 34, 2043, 6234, 11, 198, 220, 220, 220, 1267, 628, 220, 825, 4808, 35312, 62, 8612, 2024, 7, 944, 11, 288, 75, 62, 37153, 2599, 198, 220, 220, 220, 37227, 35561, 27758, 8645, 2024, 526, 15931, 198, 220, 220, 220, 288, 75, 62, 6978, 82, 796, 288, 75, 62, 37153, 13, 15002, 62, 392, 62, 2302, 974, 28264, 4261, 6561, 8, 198, 220, 220, 220, 16855, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 25404, 62, 6978, 82, 14692, 76, 5912, 33116, 366, 80, 292, 62, 312, 62, 259, 62, 16485, 324, 4943, 198, 220, 220, 220, 1441, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 9310, 13, 41205, 13, 51, 3861, 1268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8612, 378, 62, 1069, 12629, 7, 25404, 62, 6978, 82, 14692, 27432, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 76, 5912, 62, 15908, 11, 366, 27432, 13, 14116, 13, 312, 4943, 828, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 9310, 13, 41205, 13, 23428, 2389, 6234, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8612, 378, 62, 1069, 12629, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 75, 62, 6978, 82, 14692, 7959, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 76, 5912, 62, 15908, 11, 366, 7959, 13, 14116, 13, 1477, 18137, 13, 7959, 13, 312, 4943, 828, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 9310, 13, 41205, 13, 51, 6465, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 8612, 378, 62, 1069, 12629, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 75, 62, 6978, 82, 14692, 7959, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 76, 5912, 62, 15908, 11, 366, 7959, 13, 14116, 13, 1477, 18137, 13, 9288, 13, 312, 4943, 828, 198, 220, 220, 220, 1782, 628, 220, 825, 4808, 8612, 378, 62, 1069, 12629, 7, 944, 11, 1366, 62, 6978, 25, 965, 11, 16855, 62, 6978, 25, 965, 2599, 198, 220, 220, 220, 37227, 56, 1164, 82, 6096, 526, 15931, 198, 220, 220, 220, 351, 48700, 13, 952, 13, 70, 7753, 13, 38, 8979, 7, 76, 5912, 62, 6978, 11, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 2340, 796, 900, 7, 69, 13, 961, 22446, 35312, 6615, 28955, 198, 220, 220, 220, 329, 479, 11, 409, 287, 10662, 64, 62, 26791, 13, 8612, 378, 62, 16485, 324, 2339, 62, 1069, 12629, 7, 7890, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 611, 479, 287, 220, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 479, 11, 409, 198 ]
2.388776
1,479
import sys from ujson import loads, dumps for line in sys.stdin: obj = loads(line) sys.stdout.write(dumps(obj['actor'])) sys.stdout.write('\n')
[ 11748, 25064, 198, 6738, 334, 17752, 1330, 15989, 11, 45514, 198, 198, 1640, 1627, 287, 25064, 13, 19282, 259, 25, 198, 220, 220, 220, 26181, 796, 15989, 7, 1370, 8, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 7, 67, 8142, 7, 26801, 17816, 11218, 20520, 4008, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 13564, 10786, 59, 77, 11537, 628, 198 ]
2.446154
65
from azure.storage.queue import ( QueueClient, TextBase64EncodePolicy, TextBase64DecodePolicy ) import os, uuid, time, json import mysql.connector from datetime import datetime connect_str = "DefaultEndpointsProtocol=https;AccountName=replace;AccountKey=replacewithyours;EndpointSuffix=core.windows.net" queue_name = "name of queue" mySql_dbName = "sensordata" mySql_tableName = "temperature" queue_client = QueueClient.from_connection_string(conn_str=connect_str, queue_name=queue_name, message_decode_policy=TextBase64DecodePolicy()) messages = queue_client.receive_messages(messages_per_page=5) db = mysql.connector.connect( host="db", user="root", passwd="example", database=mySql_dbName ) cursor = db.cursor() for message in messages: processMessage() queue_client.delete_message(message.id, message.pop_receipt) time.sleep(0.1) print("All Done")
[ 6738, 35560, 495, 13, 35350, 13, 36560, 1330, 357, 198, 220, 220, 220, 220, 220, 220, 220, 4670, 518, 11792, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 14881, 2414, 4834, 8189, 36727, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8255, 14881, 2414, 10707, 1098, 36727, 198, 8, 198, 198, 11748, 28686, 11, 334, 27112, 11, 640, 11, 33918, 198, 11748, 48761, 13, 8443, 273, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 8443, 62, 2536, 796, 366, 19463, 12915, 13033, 19703, 4668, 28, 5450, 26, 30116, 5376, 28, 33491, 26, 30116, 9218, 28, 35666, 330, 413, 342, 88, 4662, 26, 12915, 4122, 50, 1648, 844, 28, 7295, 13, 28457, 13, 3262, 1, 198, 36560, 62, 3672, 796, 366, 3672, 286, 16834, 1, 198, 198, 1820, 50, 13976, 62, 9945, 5376, 796, 366, 82, 641, 585, 1045, 1, 198, 1820, 50, 13976, 62, 11487, 5376, 796, 366, 11498, 21069, 1, 198, 198, 36560, 62, 16366, 796, 4670, 518, 11792, 13, 6738, 62, 38659, 62, 8841, 7, 37043, 62, 2536, 28, 8443, 62, 2536, 11, 16834, 62, 3672, 28, 36560, 62, 3672, 11, 3275, 62, 12501, 1098, 62, 30586, 28, 8206, 14881, 2414, 10707, 1098, 36727, 28955, 198, 37348, 1095, 796, 16834, 62, 16366, 13, 260, 15164, 62, 37348, 1095, 7, 37348, 1095, 62, 525, 62, 7700, 28, 20, 8, 198, 198, 9945, 796, 48761, 13, 8443, 273, 13, 8443, 7, 198, 220, 2583, 2625, 9945, 1600, 198, 220, 2836, 2625, 15763, 1600, 198, 220, 1208, 16993, 2625, 20688, 1600, 198, 220, 6831, 28, 1820, 50, 13976, 62, 9945, 5376, 198, 8, 198, 66, 21471, 796, 20613, 13, 66, 21471, 3419, 198, 198, 1640, 3275, 287, 6218, 25, 198, 220, 220, 220, 1429, 12837, 3419, 198, 220, 220, 220, 16834, 62, 16366, 13, 33678, 62, 20500, 7, 20500, 13, 312, 11, 3275, 13, 12924, 62, 260, 344, 10257, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 15, 13, 16, 8, 198, 198, 4798, 7203, 3237, 24429, 4943, 628 ]
2.714715
333
from .controllers.twitter import search
[ 6738, 764, 3642, 36667, 13, 6956, 1330, 2989 ]
4.875
8
while True: try: print("a") finally: continue
[ 4514, 6407, 25, 198, 220, 1949, 25, 198, 220, 220, 220, 3601, 7203, 64, 4943, 198, 220, 3443, 25, 198, 220, 220, 220, 2555 ]
2.375
24
import copy if __name__ == '__main__': epss = np.logspace(-10, -1, 30) baseline_objective = augmented_objective(x0) xis = [] for eps in epss: xi = copy.copy(x0) xi[4] += eps xis.append(xi) objs = [augmented_objective(xi) for xi in xis] # pool = mp.Pool(mp.cpu_count()) # objs = pool.map(augmented_objective, xis) # pool.close() objs = np.array(objs) derivs = (objs - baseline_objective) / epss fig, ax = plt.subplots(1, 1, figsize=(6.4, 4.8), dpi=200) plt.loglog(epss, np.abs(derivs), ".-") plt.show()
[ 11748, 4866, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2462, 824, 796, 45941, 13, 6404, 13200, 32590, 940, 11, 532, 16, 11, 1542, 8, 198, 220, 220, 220, 14805, 62, 15252, 425, 796, 30259, 62, 15252, 425, 7, 87, 15, 8, 198, 220, 220, 220, 2124, 271, 796, 17635, 198, 220, 220, 220, 329, 304, 862, 287, 2462, 824, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 796, 4866, 13, 30073, 7, 87, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 72, 58, 19, 60, 15853, 304, 862, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 271, 13, 33295, 7, 29992, 8, 628, 220, 220, 220, 909, 8457, 796, 685, 559, 5154, 276, 62, 15252, 425, 7, 29992, 8, 329, 2124, 72, 287, 2124, 271, 60, 198, 220, 220, 220, 1303, 5933, 796, 29034, 13, 27201, 7, 3149, 13, 36166, 62, 9127, 28955, 198, 220, 220, 220, 1303, 909, 8457, 796, 5933, 13, 8899, 7, 559, 5154, 276, 62, 15252, 425, 11, 2124, 271, 8, 198, 220, 220, 220, 1303, 5933, 13, 19836, 3419, 628, 220, 220, 220, 909, 8457, 796, 45941, 13, 18747, 7, 672, 8457, 8, 628, 220, 220, 220, 16124, 82, 796, 357, 672, 8457, 532, 14805, 62, 15252, 425, 8, 1220, 2462, 824, 628, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 352, 11, 2336, 7857, 16193, 21, 13, 19, 11, 604, 13, 23, 828, 288, 14415, 28, 2167, 8, 198, 220, 220, 220, 458, 83, 13, 6404, 6404, 7, 538, 824, 11, 45941, 13, 8937, 7, 1082, 452, 82, 828, 366, 7874, 4943, 198, 220, 220, 220, 458, 83, 13, 12860, 3419 ]
2
291
# Copyright (c) 2016 Ansible, Inc. # All Rights Reserved. import logging from django.db import models from django.utils.translation import ugettext_lazy as _ from awx.main.fields import JSONBField __all__ = ('Fact',) logger = logging.getLogger('awx.main.models.fact') class Fact(models.Model): """A model representing a fact returned from Ansible. Facts are stored as JSON dictionaries. """ host = models.ForeignKey( 'Host', related_name='facts', db_index=True, on_delete=models.CASCADE, help_text=_('Host for the facts that the fact scan captured.'), ) timestamp = models.DateTimeField( default=None, editable=False, help_text=_('Date and time of the corresponding fact scan gathering time.') ) module = models.CharField(max_length=128) facts = JSONBField(blank=True, default={}, help_text=_('Arbitrary JSON structure of module facts captured at timestamp for a single host.')) @staticmethod @staticmethod @staticmethod
[ 2, 15069, 357, 66, 8, 1584, 28038, 856, 11, 3457, 13, 198, 2, 1439, 6923, 33876, 13, 198, 198, 11748, 18931, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 3253, 87, 13, 12417, 13, 25747, 1330, 19449, 33, 15878, 198, 198, 834, 439, 834, 796, 19203, 29054, 3256, 8, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 10786, 707, 87, 13, 12417, 13, 27530, 13, 22584, 11537, 628, 198, 4871, 19020, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 32, 2746, 10200, 257, 1109, 4504, 422, 28038, 856, 13, 198, 220, 220, 220, 26972, 389, 8574, 355, 19449, 48589, 3166, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2583, 796, 4981, 13, 33616, 9218, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 17932, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3519, 62, 3672, 11639, 37473, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 62, 9630, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 28, 62, 10786, 17932, 329, 262, 6419, 326, 262, 1109, 9367, 7907, 2637, 828, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 41033, 796, 4981, 13, 10430, 7575, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4277, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4370, 540, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1037, 62, 5239, 28, 62, 10786, 10430, 290, 640, 286, 262, 11188, 1109, 9367, 11228, 640, 2637, 8, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 8265, 796, 4981, 13, 12441, 15878, 7, 9806, 62, 13664, 28, 12762, 8, 198, 220, 220, 220, 6419, 796, 19449, 33, 15878, 7, 27190, 28, 17821, 11, 4277, 34758, 5512, 1037, 62, 5239, 28, 62, 10786, 3163, 2545, 11619, 19449, 4645, 286, 8265, 6419, 7907, 379, 41033, 329, 257, 2060, 2583, 2637, 4008, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628 ]
2.776596
376
# import multiprocessing pidfile = 'flask_app.pid' workers = 2 # workers = multiprocessing.cpu_count() * 2 + 1 bind = '0.0.0.0:80' accesslog = './logs/access.log' errorlog = './logs/error.log' #certfile = './certs/local.cer' #keyfile = './certs/local.key' # user = 'ubuntu' # group = 'ubuntu'
[ 2, 1330, 18540, 305, 919, 278, 198, 198, 35317, 7753, 796, 705, 2704, 2093, 62, 1324, 13, 35317, 6, 198, 22896, 796, 362, 198, 2, 3259, 796, 18540, 305, 919, 278, 13, 36166, 62, 9127, 3419, 1635, 362, 1343, 352, 198, 21653, 796, 705, 15, 13, 15, 13, 15, 13, 15, 25, 1795, 6, 198, 15526, 6404, 796, 705, 19571, 6404, 82, 14, 15526, 13, 6404, 6, 198, 18224, 6404, 796, 705, 19571, 6404, 82, 14, 18224, 13, 6404, 6, 198, 2, 22583, 7753, 796, 705, 19571, 22583, 82, 14, 12001, 13, 2189, 6, 198, 2, 2539, 7753, 796, 705, 19571, 22583, 82, 14, 12001, 13, 2539, 6, 198, 2, 2836, 796, 705, 32230, 6, 198, 2, 1448, 796, 705, 32230, 6 ]
2.401639
122
from django.core.management.base import BaseCommand from django.contrib.contenttypes.models import ContentType from django.db.models.functions import Length from user.models import User from discussion.models import Thread import uuid from utils.siftscience import decisions_api, events_api
[ 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 11299, 19199, 13, 27530, 1330, 14041, 6030, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 13, 12543, 2733, 1330, 22313, 198, 198, 6738, 2836, 13, 27530, 1330, 11787, 198, 6738, 5114, 13, 27530, 1330, 14122, 198, 11748, 334, 27112, 198, 198, 6738, 3384, 4487, 13, 82, 19265, 4234, 1330, 5370, 62, 15042, 11, 2995, 62, 15042, 198 ]
3.805195
77
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ray from ray import tune from copy import deepcopy import os from zoo.automl.search.abstract import * from zoo.automl.common.util import * from zoo.automl.common.metrics import Evaluator from zoo.automl.impute.impute import * from ray.tune import Trainable import ray.tune.track from zoo.automl.logger import TensorboardXLogger from zoo.automl.model.model_builder import ModelBuilder from zoo.automl.feature.identity_transformer import IdentityTransformer from zoo.automl.search.tune_utils import (create_searcher, create_scheduler) SEARCH_ALG_ALLOWED = ("variant_generator", "skopt", "bayesopt") class RayTuneSearchEngine(SearchEngine): """ Tune driver """ def __init__(self, logs_dir="", resources_per_trial=None, name="", remote_dir=None, ): """ Constructor :param resources_per_trial: resources for each trial """ self.pipeline = None self.train_func = None self.trainable_class = None self.resources_per_trail = resources_per_trial self.trials = None self.remote_dir = remote_dir self.name = name self.logs_dir = os.path.abspath(os.path.expanduser(logs_dir)) def compile(self, data, model_create_func, recipe, search_space=None, search_alg=None, search_alg_params=None, scheduler=None, scheduler_params=None, feature_transformers=None, mc=False, metric="mse"): """ Do necessary preparations for the engine :param input_df: :param search_space: :param num_samples: :param stop: :param search_algorithm: :param search_algorithm_params: :param fixed_params: :param feature_transformers: :param model: :param validation_df: :param metric: :return: """ # data mode detection assert isinstance(data, dict), 'ERROR: Argument \'data\' should be a dictionary.' data_mode = None # data_mode can only be 'dataframe' or 'ndarray' data_schema = set(data.keys()) if set(["df"]).issubset(data_schema): data_mode = 'dataframe' if set(["x", "y"]).issubset(data_schema): data_mode = 'ndarray' assert data_mode in ['dataframe', 'ndarray'],\ 'ERROR: Argument \'data\' should fit either \ dataframe schema (include \'df\' in keys) or\ ndarray (include \'x\' and \'y\' in keys) schema.' # data extract if data_mode == 'dataframe': input_df = data['df'] feature_cols = data.get("feature_cols", None) target_col = data.get("target_col", None) validation_df = data.get("val_df", None) else: if data["x"].ndim == 1: data["x"] = data["x"].reshape(-1, 1) if data["y"].ndim == 1: data["y"] = data["y"].reshape(-1, 1) if "val_x" in data.keys() and data["val_x"].ndim == 1: data["val_x"] = data["val_x"].reshape(-1, 1) if "val_y" in data.keys() and data["val_y"].ndim == 1: data["val_y"] = data["val_y"].reshape(-1, 1) input_data = {"x": data["x"], "y": data["y"]} if 'val_x' in data.keys(): validation_data = {"x": data["val_x"], "y": data["val_y"]} else: validation_data = None # prepare parameters for search engine runtime_params = recipe.runtime_params() self.num_samples = runtime_params['num_samples'] stop = dict(runtime_params) del stop['num_samples'] self.stop_criteria = stop if search_space is None: search_space = recipe.search_space(all_available_features=None) self._search_alg = RayTuneSearchEngine._set_search_alg(search_alg, search_alg_params, recipe, search_space) self._scheduler = RayTuneSearchEngine._set_scheduler(scheduler, scheduler_params) self.search_space = self._prepare_tune_config(search_space) if feature_transformers is None and data_mode == 'dataframe': feature_transformers = IdentityTransformer(feature_cols, target_col) if data_mode == 'dataframe': self.train_func = self._prepare_train_func(input_data=input_df, model_create_func=model_create_func, feature_transformers=feature_transformers, validation_data=validation_df, metric=metric, mc=mc, remote_dir=self.remote_dir, numpy_format=False ) else: self.train_func = self._prepare_train_func(input_data=input_data, model_create_func=model_create_func, feature_transformers=None, validation_data=validation_data, metric=metric, mc=mc, remote_dir=self.remote_dir, numpy_format=True ) # self.trainable_class = self._prepare_trainable_class(input_df, # feature_transformers, # # model, # future_seq_len, # validation_df, # metric_op, # self.remote_dir) @staticmethod @staticmethod def run(self): """ Run trials :return: trials result """ analysis = tune.run( self.train_func, local_dir=self.logs_dir, name=self.name, stop=self.stop_criteria, config=self.search_space, search_alg=self._search_alg, num_samples=self.num_samples, scheduler=self._scheduler, resources_per_trial=self.resources_per_trail, verbose=1, reuse_actors=True ) self.trials = analysis.trials # Visualization code for ray (leaderboard) # catch the ImportError Since it has been processed in TensorboardXLogger tf_config, tf_metric = self._log_adapt(analysis) self.logger = TensorboardXLogger(os.path.join(self.logs_dir, self.name+"_leaderboard")) self.logger.run(tf_config, tf_metric) self.logger.close() return analysis @staticmethod def _get_best_trial(trial_list, metric): """Retrieve the best trial.""" return max(trial_list, key=lambda trial: trial.last_result.get(metric, 0)) @staticmethod @staticmethod def _get_best_result(trial_list, metric): """Retrieve the last result from the best trial.""" return {metric: RayTuneSearchEngine._get_best_trial(trial_list, metric).last_result[metric]} @staticmethod @staticmethod def _prepare_train_func(input_data, model_create_func, feature_transformers, metric, validation_data=None, mc=False, remote_dir=None, numpy_format=False, ): """ Prepare the train function for ray tune :param input_df: input dataframe :param feature_transformers: feature transformers :param model: model or model selector :param validation_df: validation dataframe :param metric: the rewarding metric :return: the train function """ numpy_format_id = ray.put(numpy_format) input_data_id = ray.put(input_data) ft_id = ray.put(feature_transformers) # model_id = ray.put(model) # validation data processing df_not_empty = isinstance(validation_data, dict) or\ (isinstance(validation_data, pd.DataFrame) and not validation_data.empty) df_list_not_empty = isinstance(validation_data, dict) or\ (isinstance(validation_data, list) and validation_data and not all([d.empty for d in validation_data])) if validation_data is not None and (df_not_empty or df_list_not_empty): validation_data_id = ray.put(validation_data) is_val_valid = True else: is_val_valid = False return train_func @staticmethod def _prepare_trainable_class(input_df, feature_transformers, future_seq_len, metric, validation_df=None, mc=False, remote_dir=None ): """ Prepare the train function for ray tune :param input_df: input dataframe :param feature_transformers: feature transformers :param model: model or model selector :param validation_df: validation dataframe :param metric: the rewarding metric :return: the train function """ input_df_id = ray.put(input_df) ft_id = ray.put(feature_transformers) # model_id = ray.put(model) df_not_empty = isinstance(validation_df, pd.DataFrame) and not validation_df.empty df_list_not_empty = isinstance(validation_df, list) and validation_df \ and not all([d.empty for d in validation_df]) if validation_df is not None and (df_not_empty or df_list_not_empty): validation_df_id = ray.put(validation_df) is_val_df_valid = True else: is_val_df_valid = False return TrainableClass
[ 2, 198, 2, 15069, 2864, 30437, 21980, 46665, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 198, 11748, 26842, 198, 6738, 26842, 1330, 14009, 198, 6738, 4866, 1330, 2769, 30073, 198, 11748, 28686, 198, 198, 6738, 26626, 13, 2306, 296, 75, 13, 12947, 13, 397, 8709, 1330, 1635, 198, 6738, 26626, 13, 2306, 296, 75, 13, 11321, 13, 22602, 1330, 1635, 198, 6738, 26626, 13, 2306, 296, 75, 13, 11321, 13, 4164, 10466, 1330, 26439, 84, 1352, 198, 6738, 26626, 13, 2306, 296, 75, 13, 11011, 1133, 13, 11011, 1133, 1330, 1635, 198, 6738, 26842, 13, 83, 1726, 1330, 16835, 540, 198, 11748, 26842, 13, 83, 1726, 13, 11659, 198, 6738, 26626, 13, 2306, 296, 75, 13, 6404, 1362, 1330, 309, 22854, 3526, 55, 11187, 1362, 198, 6738, 26626, 13, 2306, 296, 75, 13, 19849, 13, 19849, 62, 38272, 1330, 9104, 32875, 198, 6738, 26626, 13, 2306, 296, 75, 13, 30053, 13, 738, 414, 62, 7645, 16354, 1330, 27207, 8291, 16354, 198, 6738, 26626, 13, 2306, 296, 75, 13, 12947, 13, 83, 1726, 62, 26791, 1330, 357, 17953, 62, 325, 283, 2044, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 1416, 704, 18173, 8, 198, 198, 5188, 31315, 62, 1847, 38, 62, 7036, 3913, 1961, 796, 5855, 25641, 415, 62, 8612, 1352, 1600, 366, 8135, 8738, 1600, 366, 24406, 274, 8738, 4943, 628, 198, 4871, 7760, 51, 1726, 18243, 13798, 7, 18243, 13798, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 42587, 4639, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17259, 62, 15908, 2625, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4133, 62, 525, 62, 45994, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 2625, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28407, 273, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 4133, 62, 525, 62, 45994, 25, 4133, 329, 1123, 4473, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 79, 541, 4470, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 20786, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 540, 62, 4871, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37540, 62, 525, 62, 9535, 346, 796, 4133, 62, 525, 62, 45994, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28461, 874, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47960, 62, 15908, 796, 6569, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 3672, 796, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 82, 62, 15908, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 11201, 392, 7220, 7, 6404, 82, 62, 15908, 4008, 628, 220, 220, 220, 825, 17632, 7, 944, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 17953, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 13200, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 14016, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 14016, 62, 37266, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 62, 37266, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36650, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 2625, 76, 325, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2141, 3306, 21518, 329, 262, 3113, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5128, 62, 7568, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2989, 62, 13200, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 997, 62, 82, 12629, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2245, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2989, 62, 282, 42289, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2989, 62, 282, 42289, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5969, 62, 37266, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3895, 62, 35636, 364, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2746, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21201, 62, 7568, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18663, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1366, 4235, 13326, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 7890, 11, 8633, 828, 705, 24908, 25, 45751, 34373, 7890, 43054, 815, 307, 257, 22155, 2637, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14171, 796, 6045, 220, 1303, 1366, 62, 14171, 460, 691, 307, 705, 7890, 14535, 6, 393, 705, 358, 18747, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 15952, 2611, 796, 900, 7, 7890, 13, 13083, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 7, 14692, 7568, 8973, 737, 747, 549, 2617, 7, 7890, 62, 15952, 2611, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14171, 796, 705, 7890, 14535, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 900, 7, 14692, 87, 1600, 366, 88, 8973, 737, 747, 549, 2617, 7, 7890, 62, 15952, 2611, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 14171, 796, 705, 358, 18747, 6, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 1366, 62, 14171, 287, 37250, 7890, 14535, 3256, 705, 358, 18747, 6, 4357, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24908, 25, 45751, 34373, 7890, 43054, 815, 4197, 2035, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 32815, 357, 17256, 34373, 7568, 43054, 287, 8251, 8, 393, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 67, 18747, 357, 17256, 34373, 87, 43054, 290, 34373, 88, 43054, 287, 8251, 8, 32815, 2637, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1366, 7925, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 14171, 6624, 705, 7890, 14535, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7568, 796, 1366, 17816, 7568, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 4033, 82, 796, 1366, 13, 1136, 7203, 30053, 62, 4033, 82, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2496, 62, 4033, 796, 1366, 13, 1136, 7203, 16793, 62, 4033, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7568, 796, 1366, 13, 1136, 7203, 2100, 62, 7568, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 14692, 87, 1, 4083, 358, 320, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 87, 8973, 796, 1366, 14692, 87, 1, 4083, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 14692, 88, 1, 4083, 358, 320, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 88, 8973, 796, 1366, 14692, 88, 1, 4083, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 2100, 62, 87, 1, 287, 1366, 13, 13083, 3419, 290, 1366, 14692, 2100, 62, 87, 1, 4083, 358, 320, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 2100, 62, 87, 8973, 796, 1366, 14692, 2100, 62, 87, 1, 4083, 3447, 1758, 32590, 16, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 2100, 62, 88, 1, 287, 1366, 13, 13083, 3419, 290, 1366, 14692, 2100, 62, 88, 1, 4083, 358, 320, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 2100, 62, 88, 8973, 796, 1366, 14692, 2100, 62, 88, 1, 4083, 3447, 1758, 32590, 16, 11, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 796, 19779, 87, 1298, 1366, 14692, 87, 33116, 366, 88, 1298, 1366, 14692, 88, 8973, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2100, 62, 87, 6, 287, 1366, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 796, 19779, 87, 1298, 1366, 14692, 2100, 62, 87, 33116, 366, 88, 1298, 1366, 14692, 2100, 62, 88, 8973, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8335, 10007, 329, 2989, 3113, 198, 220, 220, 220, 220, 220, 220, 220, 19124, 62, 37266, 796, 8364, 13, 43282, 62, 37266, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22510, 62, 82, 12629, 796, 19124, 62, 37266, 17816, 22510, 62, 82, 12629, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2245, 796, 8633, 7, 43282, 62, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 2245, 17816, 22510, 62, 82, 12629, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11338, 62, 22213, 5142, 796, 2245, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2989, 62, 13200, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 13200, 796, 8364, 13, 12947, 62, 13200, 7, 439, 62, 15182, 62, 40890, 28, 14202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 12947, 62, 14016, 796, 7760, 51, 1726, 18243, 13798, 13557, 2617, 62, 12947, 62, 14016, 7, 12947, 62, 14016, 11, 2989, 62, 14016, 62, 37266, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8364, 11, 2989, 62, 13200, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1416, 704, 18173, 796, 7760, 51, 1726, 18243, 13798, 13557, 2617, 62, 1416, 704, 18173, 7, 1416, 704, 18173, 11, 6038, 18173, 62, 37266, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12947, 62, 13200, 796, 2116, 13557, 46012, 533, 62, 83, 1726, 62, 11250, 7, 12947, 62, 13200, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 3895, 62, 35636, 364, 318, 6045, 290, 1366, 62, 14171, 6624, 705, 7890, 14535, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 796, 27207, 8291, 16354, 7, 30053, 62, 4033, 82, 11, 2496, 62, 4033, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 62, 14171, 6624, 705, 7890, 14535, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 20786, 796, 2116, 13557, 46012, 533, 62, 27432, 62, 20786, 7, 15414, 62, 7890, 28, 15414, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 17953, 62, 20786, 28, 19849, 62, 17953, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 28, 30053, 62, 35636, 364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 28, 12102, 341, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36650, 28, 23209, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 15908, 28, 944, 13, 47960, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 18982, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 20786, 796, 2116, 13557, 46012, 533, 62, 27432, 62, 20786, 7, 15414, 62, 7890, 28, 15414, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 17953, 62, 20786, 28, 19849, 62, 17953, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 28, 12102, 341, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 28, 4164, 1173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36650, 28, 23209, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 15908, 28, 944, 13, 47960, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 18982, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2116, 13, 27432, 540, 62, 4871, 796, 2116, 13557, 46012, 533, 62, 27432, 540, 62, 4871, 7, 15414, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2746, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2003, 62, 41068, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 62, 404, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 47960, 62, 15908, 8, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 825, 1057, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5660, 9867, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 9867, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3781, 796, 14009, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1957, 62, 15908, 28, 944, 13, 6404, 82, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 944, 13, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2245, 28, 944, 13, 11338, 62, 22213, 5142, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 28, 944, 13, 12947, 62, 13200, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2989, 62, 14016, 28, 944, 13557, 12947, 62, 14016, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 82, 12629, 28, 944, 13, 22510, 62, 82, 12629, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6038, 18173, 28, 944, 13557, 1416, 704, 18173, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4133, 62, 525, 62, 45994, 28, 944, 13, 37540, 62, 525, 62, 9535, 346, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15942, 577, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32349, 62, 529, 669, 28, 17821, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 28461, 874, 796, 3781, 13, 28461, 874, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15612, 1634, 2438, 329, 26842, 357, 27940, 3526, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4929, 262, 17267, 12331, 4619, 340, 468, 587, 13686, 287, 309, 22854, 3526, 55, 11187, 1362, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 62, 11250, 11, 48700, 62, 4164, 1173, 796, 2116, 13557, 6404, 62, 42552, 7, 20930, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 796, 309, 22854, 3526, 55, 11187, 1362, 7, 418, 13, 6978, 13, 22179, 7, 944, 13, 6404, 82, 62, 15908, 11, 2116, 13, 3672, 10, 1, 62, 27940, 3526, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 5143, 7, 27110, 62, 11250, 11, 48700, 62, 4164, 1173, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 6404, 1362, 13, 19836, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3781, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 1136, 62, 13466, 62, 45994, 7, 45994, 62, 4868, 11, 18663, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 262, 1266, 4473, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 45994, 62, 4868, 11, 1994, 28, 50033, 4473, 25, 4473, 13, 12957, 62, 20274, 13, 1136, 7, 4164, 1173, 11, 657, 4008, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 1136, 62, 13466, 62, 20274, 7, 45994, 62, 4868, 11, 18663, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9781, 30227, 262, 938, 1255, 422, 262, 1266, 4473, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1391, 4164, 1173, 25, 7760, 51, 1726, 18243, 13798, 13557, 1136, 62, 13466, 62, 45994, 7, 45994, 62, 4868, 11, 18663, 737, 12957, 62, 20274, 58, 4164, 1173, 48999, 628, 220, 220, 220, 2488, 12708, 24396, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 46012, 533, 62, 27432, 62, 20786, 7, 15414, 62, 7890, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 17953, 62, 20786, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36650, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 15908, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 18982, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43426, 262, 4512, 2163, 329, 26842, 14009, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5128, 62, 7568, 25, 5128, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3895, 62, 35636, 364, 25, 3895, 6121, 364, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2746, 25, 2746, 393, 2746, 31870, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21201, 62, 7568, 25, 21201, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18663, 25, 262, 23404, 18663, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 4512, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 299, 32152, 62, 18982, 62, 312, 796, 26842, 13, 1996, 7, 77, 32152, 62, 18982, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7890, 62, 312, 796, 26842, 13, 1996, 7, 15414, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10117, 62, 312, 796, 26842, 13, 1996, 7, 30053, 62, 35636, 364, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2746, 62, 312, 796, 26842, 13, 1996, 7, 19849, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 21201, 1366, 7587, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 1662, 62, 28920, 796, 318, 39098, 7, 12102, 341, 62, 7890, 11, 8633, 8, 393, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 271, 39098, 7, 12102, 341, 62, 7890, 11, 279, 67, 13, 6601, 19778, 8, 290, 407, 21201, 62, 7890, 13, 28920, 8, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 4868, 62, 1662, 62, 28920, 796, 318, 39098, 7, 12102, 341, 62, 7890, 11, 8633, 8, 393, 59, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 271, 39098, 7, 12102, 341, 62, 7890, 11, 1351, 8, 290, 21201, 62, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 477, 26933, 67, 13, 28920, 329, 288, 287, 21201, 62, 7890, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21201, 62, 7890, 318, 407, 6045, 290, 357, 7568, 62, 1662, 62, 28920, 393, 47764, 62, 4868, 62, 1662, 62, 28920, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7890, 62, 312, 796, 26842, 13, 1996, 7, 12102, 341, 62, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2100, 62, 12102, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2100, 62, 12102, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 4512, 62, 20786, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 46012, 533, 62, 27432, 540, 62, 4871, 7, 15414, 62, 7568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3895, 62, 35636, 364, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2003, 62, 41068, 62, 11925, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18663, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7568, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36650, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6569, 62, 15908, 28, 14202, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43426, 262, 4512, 2163, 329, 26842, 14009, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 5128, 62, 7568, 25, 5128, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 3895, 62, 35636, 364, 25, 3895, 6121, 364, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2746, 25, 2746, 393, 2746, 31870, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 21201, 62, 7568, 25, 21201, 1366, 14535, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18663, 25, 262, 23404, 18663, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 262, 4512, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 7568, 62, 312, 796, 26842, 13, 1996, 7, 15414, 62, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10117, 62, 312, 796, 26842, 13, 1996, 7, 30053, 62, 35636, 364, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2746, 62, 312, 796, 26842, 13, 1996, 7, 19849, 8, 628, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 1662, 62, 28920, 796, 318, 39098, 7, 12102, 341, 62, 7568, 11, 279, 67, 13, 6601, 19778, 8, 290, 407, 21201, 62, 7568, 13, 28920, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 4868, 62, 1662, 62, 28920, 796, 318, 39098, 7, 12102, 341, 62, 7568, 11, 1351, 8, 290, 21201, 62, 7568, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 477, 26933, 67, 13, 28920, 329, 288, 287, 21201, 62, 7568, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 611, 21201, 62, 7568, 318, 407, 6045, 290, 357, 7568, 62, 1662, 62, 28920, 393, 47764, 62, 4868, 62, 1662, 62, 28920, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21201, 62, 7568, 62, 312, 796, 26842, 13, 1996, 7, 12102, 341, 62, 7568, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2100, 62, 7568, 62, 12102, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 2100, 62, 7568, 62, 12102, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 16835, 540, 9487, 198 ]
1.901993
6,020
from .custom import * @DATASETS.register_module(force=True)
[ 6738, 764, 23144, 1330, 1635, 198, 198, 31, 35, 1404, 1921, 32716, 13, 30238, 62, 21412, 7, 3174, 28, 17821, 8 ]
2.857143
21
import os from utilidades.consola import * from CriptografiaModerna.menuCM import menuCM from CriptografiaClasica.menuCC import menuCC #DEFINICIÓN DE VARIABLES #DEFINICIÓN DE FUNCIONES limpiarPantalla() iniciarMenu() despedida() input('') limpiarPantalla()
[ 11748, 28686, 201, 198, 6738, 7736, 312, 2367, 13, 5936, 5708, 1330, 1635, 201, 198, 6738, 327, 1968, 519, 32188, 544, 31439, 64, 13, 26272, 24187, 1330, 6859, 24187, 201, 198, 6738, 327, 1968, 519, 32188, 544, 2601, 292, 3970, 13, 26272, 4093, 1330, 6859, 4093, 201, 198, 201, 198, 2, 7206, 20032, 2149, 40, 127, 241, 45, 5550, 569, 1503, 3539, 9148, 1546, 201, 198, 201, 198, 201, 198, 2, 7206, 20032, 2149, 40, 127, 241, 45, 5550, 29397, 34, 2849, 1546, 201, 198, 201, 198, 201, 198, 2475, 79, 12571, 47, 415, 30315, 3419, 201, 198, 47277, 12571, 23381, 3419, 201, 198, 8906, 9124, 3755, 3419, 201, 198, 15414, 7, 7061, 8, 201, 198, 2475, 79, 12571, 47, 415, 30315, 3419 ]
2.243902
123
#!/usr/bin/env python # coding=utf-8 # Stan 2012-03-12 from __future__ import (division, absolute_import, print_function, unicode_literals) import sys import os import logging from importlib import import_module from .core.types23 import * from .core.db import getDbUri, openDbUri from .core.recorder import Recorder from . import __version__ as index_version from .base import proceed from .base.parse import parse_files from .base.models import Base, Error
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 19617, 28, 40477, 12, 23, 198, 2, 7299, 2321, 12, 3070, 12, 1065, 198, 198, 6738, 11593, 37443, 834, 1330, 357, 21426, 11, 4112, 62, 11748, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 8818, 11, 28000, 1098, 62, 17201, 874, 8, 198, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 18931, 198, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 198, 6738, 764, 7295, 13, 19199, 1954, 1330, 1635, 198, 6738, 764, 7295, 13, 9945, 1330, 651, 43832, 52, 380, 11, 1280, 43832, 52, 380, 198, 6738, 764, 7295, 13, 8344, 2875, 1330, 3311, 2875, 198, 198, 6738, 764, 1330, 11593, 9641, 834, 355, 6376, 62, 9641, 198, 6738, 764, 8692, 1330, 5120, 198, 6738, 764, 8692, 13, 29572, 1330, 21136, 62, 16624, 198, 6738, 764, 8692, 13, 27530, 1330, 7308, 11, 13047, 628 ]
2.97561
164
############################################################################## ############################################################################## ############################################################################## ##############################################################################
[ 198, 29113, 29113, 7804, 4242, 2235, 628, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 29113, 29113, 7804, 4242, 2235, 198, 220, 220, 220, 220, 198, 29113, 29113, 7804, 4242, 2235, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 29113, 29113, 7804, 4242, 2235, 198 ]
6.444444
54
import torch.utils.data as data from PIL import Image import os import os.path import random def _make_dataset(dir): """ Creates a 2D list of all the frames in N clips containing M frames each. 2D List Structure: [[frame00, frame01,...frameM] <-- clip0 [frame00, frame01,...frameM] <-- clip0 : [frame00, frame01,...frameM]] <-- clipN Parameters ---------- dir : string root directory containing clips. Returns ------- list 2D list described above. """ framesPath = [] # Find and loop over all the clips in root `dir`. for index, folder in enumerate(os.listdir(dir)): clipsFolderPath = os.path.join(dir, folder) # Skip items which are not folders. if not (os.path.isdir(clipsFolderPath)): continue framesPath.append([]) # Find and loop over all the frames inside the clip. for image in sorted(os.listdir(clipsFolderPath)): # Add path to list. framesPath[index].append(os.path.join(clipsFolderPath, image)) return framesPath def _make_video_dataset(dir): """ Creates a 1D list of all the frames. 1D List Structure: [frame0, frame1,...frameN] Parameters ---------- dir : string root directory containing frames. Returns ------- list 1D list described above. """ framesPath = [] # Find and loop over all the frames in root `dir`. for image in sorted(os.listdir(dir)): # Add path to list. framesPath.append(os.path.join(dir, image)) return framesPath def _pil_loader(path, cropArea=None, resizeDim=None, frameFlip=0): """ Opens image at `path` using pil and applies data augmentation. Parameters ---------- path : string path of the image. cropArea : tuple, optional coordinates for cropping image. Default: None resizeDim : tuple, optional dimensions for resizing image. Default: None frameFlip : int, optional Non zero to flip image horizontally. Default: 0 Returns ------- list 2D list described above. """ # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) # Resize image if specified. resized_img = img.resize(resizeDim, Image.ANTIALIAS) if (resizeDim != None) else img # Crop image if crop area specified. cropped_img = img.crop(cropArea) if (cropArea != None) else resized_img # Flip image horizontally if specified. flipped_img = cropped_img.transpose(Image.FLIP_LEFT_RIGHT) if frameFlip else cropped_img return flipped_img.convert('RGB') class SuperSloMo(data.Dataset): """ A dataloader for loading N samples arranged in this way: |-- clip0 |-- frame00 |-- frame01 : |-- frame11 |-- frame12 |-- clip1 |-- frame00 |-- frame01 : |-- frame11 |-- frame12 : : |-- clipN |-- frame00 |-- frame01 : |-- frame11 |-- frame12 ... Attributes ---------- framesPath : list List of frames' path in the dataset. Methods ------- __getitem__(index) Returns the sample corresponding to `index` from dataset. __len__() Returns the size of dataset. Invoked as len(datasetObj). __repr__() Returns printable representation of the dataset object. """ def __init__(self, root, transform=None, dim=(640, 360), randomCropSize=(352, 352), train=True): """ Parameters ---------- root : string Root directory path. transform : callable, optional A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. dim : tuple, optional Dimensions of images in dataset. Default: (640, 360) randomCropSize : tuple, optional Dimensions of random crop to be applied. Default: (352, 352) train : boolean, optional Specifies if the dataset is for training or testing/validation. `True` returns samples with data augmentation like random flipping, random cropping, etc. while `False` returns the samples without randomization. Default: True """ # Populate the list with image paths for all the # frame in `root`. framesPath = _make_dataset(root) # Raise error if no images found in root. if len(framesPath) == 0: raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n")) self.randomCropSize = randomCropSize self.cropX0 = dim[0] - randomCropSize[0] self.cropY0 = dim[1] - randomCropSize[1] self.root = root self.transform = transform self.train = train self.framesPath = framesPath def __getitem__(self, index): """ Returns the sample corresponding to `index` from dataset. The sample consists of two reference frames - I0 and I1 - and a random frame chosen from the 7 intermediate frames available between I0 and I1 along with it's relative index. Parameters ---------- index : int Index Returns ------- tuple (sample, returnIndex) where sample is [I0, intermediate_frame, I1] and returnIndex is the position of `random_intermediate_frame`. e.g.- `returnIndex` of frame next to I0 would be 0 and frame before I1 would be 6. """ sample = [] if (self.train): ### Data Augmentation ### # To select random 9 frames from 12 frames in a clip firstFrame = random.randint(0, 3) # Apply random crop on the 9 input frames cropX = random.randint(0, self.cropX0) cropY = random.randint(0, self.cropY0) cropArea = (cropX, cropY, cropX + self.randomCropSize[0], cropY + self.randomCropSize[1]) # Random reverse frame #frameRange = range(firstFrame, firstFrame + 9) if (random.randint(0, 1)) else range(firstFrame + 8, firstFrame - 1, -1) IFrameIndex = random.randint(firstFrame + 1, firstFrame + 7) if (random.randint(0, 1)): frameRange = [firstFrame, IFrameIndex, firstFrame + 8] returnIndex = IFrameIndex - firstFrame - 1 else: frameRange = [firstFrame + 8, IFrameIndex, firstFrame] returnIndex = firstFrame - IFrameIndex + 7 # Random flip frame randomFrameFlip = random.randint(0, 1) else: # Fixed settings to return same samples every epoch. # For validation/test sets. firstFrame = 0 cropArea = (0, 0, self.randomCropSize[0], self.randomCropSize[1]) IFrameIndex = ((index) % 7 + 1) returnIndex = IFrameIndex - 1 frameRange = [0, IFrameIndex, 8] randomFrameFlip = 0 # Loop over for all frames corresponding to the `index`. for frameIndex in frameRange: # Open image using pil and augment the image. image = _pil_loader(self.framesPath[index][frameIndex], cropArea=cropArea, frameFlip=randomFrameFlip) # Apply transformation if specified. if self.transform is not None: image = self.transform(image) sample.append(image) return sample, returnIndex def __len__(self): """ Returns the size of dataset. Invoked as len(datasetObj). Returns ------- int number of samples. """ return len(self.framesPath) def __repr__(self): """ Returns printable representation of the dataset object. Returns ------- string info. """ fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class UCI101Test(data.Dataset): """ A dataloader for loading N samples arranged in this way: |-- clip0 |-- frame00 |-- frame01 |-- frame02 |-- clip1 |-- frame00 |-- frame01 |-- frame02 : : |-- clipN |-- frame00 |-- frame01 |-- frame02 ... Attributes ---------- framesPath : list List of frames' path in the dataset. Methods ------- __getitem__(index) Returns the sample corresponding to `index` from dataset. __len__() Returns the size of dataset. Invoked as len(datasetObj). __repr__() Returns printable representation of the dataset object. """ def __init__(self, root, transform=None): """ Parameters ---------- root : string Root directory path. transform : callable, optional A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. """ # Populate the list with image paths for all the # frame in `root`. framesPath = _make_dataset(root) # Raise error if no images found in root. if len(framesPath) == 0: raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n")) self.root = root self.framesPath = framesPath self.transform = transform def __getitem__(self, index): """ Returns the sample corresponding to `index` from dataset. The sample consists of two reference frames - I0 and I1 - and a intermediate frame between I0 and I1. Parameters ---------- index : int Index Returns ------- tuple (sample, returnIndex) where sample is [I0, intermediate_frame, I1] and returnIndex is the position of `intermediate_frame`. The returnIndex is always 3 and is being returned to maintain compatibility with the `SuperSloMo` dataloader where 3 corresponds to the middle frame. """ sample = [] # Loop over for all frames corresponding to the `index`. for framePath in self.framesPath[index]: # Open image using pil. image = _pil_loader(framePath) # Apply transformation if specified. if self.transform is not None: image = self.transform(image) sample.append(image) return sample, 3 def __len__(self): """ Returns the size of dataset. Invoked as len(datasetObj). Returns ------- int number of samples. """ return len(self.framesPath) def __repr__(self): """ Returns printable representation of the dataset object. Returns ------- string info. """ fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class Video(data.Dataset): """ A dataloader for loading all video frames in a folder: |-- frame0 |-- frame1 : : |-- frameN ... Attributes ---------- framesPath : list List of frames' path in the dataset. origDim : tuple original dimensions of the video. dim : tuple resized dimensions of the video (for CNN). Methods ------- __getitem__(index) Returns the sample corresponding to `index` from dataset. __len__() Returns the size of dataset. Invoked as len(datasetObj). __repr__() Returns printable representation of the dataset object. """ def __init__(self, root, transform=None): """ Parameters ---------- root : string Root directory path. transform : callable, optional A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. """ # Populate the list with image paths for all the # frame in `root`. framesPath = _make_video_dataset(root) # Get dimensions of frames frame = _pil_loader(framesPath[0]) self.origDim = frame.size self.dim = int(self.origDim[0] / 32) * 32, int(self.origDim[1] / 32) * 32 # Raise error if no images found in root. if len(framesPath) == 0: raise(RuntimeError("Found 0 files in: " + root + "\n")) self.root = root self.framesPath = framesPath self.transform = transform def __getitem__(self, index): """ Returns the sample corresponding to `index` from dataset. The sample consists of two reference frames - I0 and I1. Parameters ---------- index : int Index Returns ------- list sample is [I0, I1] where I0 is the frame with index `index` and I1 is the next frame. """ sample = [] # Loop over for all frames corresponding to the `index`. for framePath in [self.framesPath[index], self.framesPath[index + 1]]: # Open image using pil. image = _pil_loader(framePath, resizeDim=self.dim) # Apply transformation if specified. if self.transform is not None: image = self.transform(image) sample.append(image) return sample def __len__(self): """ Returns the size of dataset. Invoked as len(datasetObj). Returns ------- int number of samples. """ # Using `-1` so that dataloader accesses only upto # frames [N-1, N] and not [N, N+1] which because frame # N+1 doesn't exist. return len(self.framesPath) - 1 def __repr__(self): """ Returns printable representation of the dataset object. Returns ------- string info. """ fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str class Images(data.Dataset): """ A dataloader for loading all video frames in a folder: |-- frame0 |-- frame1 : : |-- frameN ... Attributes ---------- framesPath : list List of frames' path in the dataset. origDim : tuple original dimensions of the video. dim : tuple resized dimensions of the video (for CNN). Methods ------- __getitem__(index) Returns the sample corresponding to `index` from dataset. __len__() Returns the size of dataset. Invoked as len(datasetObj). __repr__() Returns printable representation of the dataset object. """ def __init__(self, frame0, frame1, transform=None): """ Parameters ---------- frame0 : string Input image 1 frame1: string Input image 2 transform : callable, optional A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. """ # Populate the list with image paths for all the # frame in `root`. framesPath = [frame0, frame1] # Get dimensions of frames frame = _pil_loader(frame0) self.origDim = frame.size self.dim = int(self.origDim[0] / 32) * 32, int(self.origDim[1] / 32) * 32 # Raise error if no images found in root. if len(framesPath) == 0: raise(RuntimeError("Found 0 files in: " + root + "\n")) self.framesPath = framesPath self.transform = transform def __getitem__(self, index): """ Returns the sample corresponding to `index` from dataset. The sample consists of two reference frames - I0 and I1. Parameters ---------- index : int Index Returns ------- list sample is [I0, I1] where I0 is the frame with index `index` and I1 is the next frame. """ sample = [] # Loop over for all frames corresponding to the `index`. for framePath in [self.framesPath[index], self.framesPath[index + 1]]: # Open image using pil. image = _pil_loader(framePath, resizeDim=self.dim) # Apply transformation if specified. if self.transform is not None: image = self.transform(image) sample.append(image) return sample def __len__(self): """ Returns the size of dataset. Invoked as len(datasetObj). Returns ------- int number of samples. """ # Using `-1` so that dataloader accesses only upto # frames [N-1, N] and not [N, N+1] which because frame # N+1 doesn't exist. return len(self.framesPath) - 1 def __repr__(self): """ Returns printable representation of the dataset object. Returns ------- string info. """ fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str
[ 11748, 28034, 13, 26791, 13, 7890, 355, 1366, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 4738, 628, 198, 4299, 4808, 15883, 62, 19608, 292, 316, 7, 15908, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 362, 35, 1351, 286, 477, 262, 13431, 287, 399, 19166, 7268, 198, 220, 220, 220, 337, 13431, 1123, 13, 628, 220, 220, 220, 362, 35, 7343, 32522, 25, 198, 220, 220, 220, 16410, 14535, 405, 11, 5739, 486, 42303, 14535, 44, 60, 220, 1279, 438, 10651, 15, 198, 220, 220, 220, 220, 685, 14535, 405, 11, 5739, 486, 42303, 14535, 44, 60, 220, 1279, 438, 10651, 15, 198, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 685, 14535, 405, 11, 5739, 486, 42303, 14535, 44, 11907, 1279, 438, 10651, 45, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 8619, 7268, 19166, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 1351, 3417, 2029, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 13431, 15235, 796, 17635, 198, 220, 220, 220, 1303, 9938, 290, 9052, 625, 477, 262, 19166, 287, 6808, 4600, 15908, 44646, 198, 220, 220, 220, 329, 6376, 11, 9483, 287, 27056, 378, 7, 418, 13, 4868, 15908, 7, 15908, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 19166, 41092, 15235, 796, 28686, 13, 6978, 13, 22179, 7, 15908, 11, 9483, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 32214, 3709, 543, 389, 407, 24512, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 418, 13, 6978, 13, 9409, 343, 7, 31945, 41092, 15235, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 13, 33295, 26933, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 290, 9052, 625, 477, 262, 13431, 2641, 262, 10651, 13, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2939, 287, 23243, 7, 418, 13, 4868, 15908, 7, 31945, 41092, 15235, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3108, 284, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 58, 9630, 4083, 33295, 7, 418, 13, 6978, 13, 22179, 7, 31945, 41092, 15235, 11, 2939, 4008, 198, 220, 220, 220, 1441, 13431, 15235, 198, 198, 4299, 4808, 15883, 62, 15588, 62, 19608, 292, 316, 7, 15908, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 352, 35, 1351, 286, 477, 262, 13431, 13, 628, 220, 220, 220, 352, 35, 7343, 32522, 25, 198, 220, 220, 220, 685, 14535, 15, 11, 5739, 16, 42303, 14535, 45, 60, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 8619, 7268, 13431, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 352, 35, 1351, 3417, 2029, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 13431, 15235, 796, 17635, 198, 220, 220, 220, 1303, 9938, 290, 9052, 625, 477, 262, 13431, 287, 6808, 4600, 15908, 44646, 198, 220, 220, 220, 329, 2939, 287, 23243, 7, 418, 13, 4868, 15908, 7, 15908, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 3108, 284, 1351, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 15908, 11, 2939, 4008, 198, 220, 220, 220, 1441, 13431, 15235, 198, 198, 4299, 4808, 79, 346, 62, 29356, 7, 6978, 11, 13833, 30547, 28, 14202, 11, 47558, 29271, 28, 14202, 11, 5739, 7414, 541, 28, 15, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8670, 641, 2939, 379, 4600, 6978, 63, 1262, 5560, 290, 8991, 1366, 16339, 14374, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 3108, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 286, 262, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 13833, 30547, 1058, 46545, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22715, 329, 6763, 2105, 2939, 13, 15161, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 47558, 29271, 1058, 46545, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15225, 329, 581, 2890, 2939, 13, 15161, 25, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 7414, 541, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8504, 6632, 284, 14283, 2939, 36774, 13, 15161, 25, 657, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 35, 1351, 3417, 2029, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 1303, 1280, 3108, 355, 2393, 284, 3368, 20857, 20361, 357, 5450, 1378, 12567, 13, 785, 14, 29412, 12, 27215, 322, 14, 47, 359, 322, 14, 37165, 14, 23, 2327, 8, 198, 220, 220, 220, 351, 1280, 7, 6978, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 9654, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1874, 1096, 2939, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1143, 62, 9600, 796, 33705, 13, 411, 1096, 7, 411, 1096, 29271, 11, 7412, 13, 8643, 12576, 43429, 8, 611, 357, 411, 1096, 29271, 14512, 6045, 8, 2073, 33705, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 327, 1773, 2939, 611, 13833, 1989, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 48998, 62, 9600, 796, 33705, 13, 31476, 7, 31476, 30547, 8, 611, 357, 31476, 30547, 14512, 6045, 8, 2073, 581, 1143, 62, 9600, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29583, 2939, 36774, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 26157, 62, 9600, 796, 48998, 62, 9600, 13, 7645, 3455, 7, 5159, 13, 3697, 4061, 62, 2538, 9792, 62, 49, 9947, 8, 611, 5739, 7414, 541, 2073, 48998, 62, 9600, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 26157, 62, 9600, 13, 1102, 1851, 10786, 36982, 11537, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 4871, 3115, 50, 5439, 16632, 7, 7890, 13, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4818, 282, 1170, 263, 329, 11046, 399, 8405, 14921, 287, 428, 835, 25, 628, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1065, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1065, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 45, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1157, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 1065, 628, 220, 220, 220, 2644, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 13431, 15235, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 13431, 6, 3108, 287, 262, 27039, 13, 628, 220, 220, 220, 25458, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 11593, 1136, 9186, 834, 7, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 198, 220, 220, 220, 11593, 11925, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 198, 220, 220, 220, 11593, 260, 1050, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 6808, 11, 6121, 28, 14202, 11, 5391, 16193, 31102, 11, 11470, 828, 4738, 34, 1773, 10699, 16193, 33394, 11, 44063, 828, 4512, 28, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20410, 8619, 3108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 1058, 869, 540, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 14, 35636, 326, 2753, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 6291, 290, 5860, 257, 14434, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 11, 7559, 7645, 23914, 13, 29531, 34, 1773, 15506, 329, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 1058, 46545, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41265, 286, 4263, 287, 27039, 13, 15161, 25, 357, 31102, 11, 11470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 34, 1773, 10699, 1058, 46545, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41265, 286, 4738, 13833, 284, 307, 5625, 13, 15161, 25, 357, 33394, 11, 44063, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4512, 1058, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 6945, 611, 262, 27039, 318, 329, 3047, 393, 4856, 14, 12102, 341, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 17821, 63, 5860, 8405, 351, 1366, 16339, 14374, 588, 4738, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33097, 11, 4738, 6763, 2105, 11, 3503, 13, 981, 4600, 25101, 63, 5860, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8405, 1231, 4738, 1634, 13, 15161, 25, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8099, 5039, 262, 1351, 351, 2939, 13532, 329, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5739, 287, 4600, 15763, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 796, 4808, 15883, 62, 19608, 292, 316, 7, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35123, 4049, 611, 645, 4263, 1043, 287, 6808, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37805, 15235, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7, 41006, 12331, 7203, 21077, 657, 3696, 287, 850, 11379, 364, 286, 25, 366, 1343, 6808, 1343, 37082, 77, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 34, 1773, 10699, 796, 4738, 34, 1773, 10699, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31476, 55, 15, 220, 220, 220, 220, 220, 220, 220, 220, 796, 5391, 58, 15, 60, 532, 4738, 34, 1773, 10699, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 31476, 56, 15, 220, 220, 220, 220, 220, 220, 220, 220, 796, 5391, 58, 16, 60, 532, 4738, 34, 1773, 10699, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 6808, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 220, 220, 220, 220, 220, 796, 6121, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27432, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 4512, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 15235, 220, 220, 220, 220, 796, 13431, 15235, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 6376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6291, 10874, 286, 734, 4941, 13431, 532, 314, 15, 290, 314, 16, 532, 198, 220, 220, 220, 220, 220, 220, 220, 290, 257, 4738, 5739, 7147, 422, 262, 767, 19898, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 1695, 1022, 314, 15, 290, 314, 16, 1863, 351, 340, 338, 3585, 6376, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 39873, 11, 1441, 15732, 8, 810, 6291, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 40, 15, 11, 19898, 62, 14535, 11, 314, 16, 60, 290, 1441, 15732, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2292, 286, 4600, 25120, 62, 3849, 13857, 62, 14535, 44646, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 304, 13, 70, 7874, 4600, 7783, 15732, 63, 286, 5739, 1306, 284, 314, 15, 561, 307, 657, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 878, 314, 16, 561, 307, 718, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 357, 944, 13, 27432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44386, 6060, 2447, 14374, 44386, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1675, 2922, 4738, 860, 13431, 422, 1105, 13431, 287, 257, 10651, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 19778, 796, 4738, 13, 25192, 600, 7, 15, 11, 513, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 4738, 13833, 319, 262, 860, 5128, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 55, 796, 4738, 13, 25192, 600, 7, 15, 11, 2116, 13, 31476, 55, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 56, 796, 4738, 13, 25192, 600, 7, 15, 11, 2116, 13, 31476, 56, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 30547, 796, 357, 31476, 55, 11, 13833, 56, 11, 13833, 55, 1343, 2116, 13, 25120, 34, 1773, 10699, 58, 15, 4357, 13833, 56, 1343, 2116, 13, 25120, 34, 1773, 10699, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 9575, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14535, 17257, 796, 2837, 7, 11085, 19778, 11, 717, 19778, 1343, 860, 8, 611, 357, 25120, 13, 25192, 600, 7, 15, 11, 352, 4008, 2073, 2837, 7, 11085, 19778, 1343, 807, 11, 717, 19778, 532, 352, 11, 532, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 19778, 15732, 796, 4738, 13, 25192, 600, 7, 11085, 19778, 1343, 352, 11, 717, 19778, 1343, 767, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 25120, 13, 25192, 600, 7, 15, 11, 352, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 17257, 796, 685, 11085, 19778, 11, 314, 19778, 15732, 11, 717, 19778, 1343, 807, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 15732, 796, 314, 19778, 15732, 532, 717, 19778, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 17257, 796, 685, 11085, 19778, 1343, 807, 11, 314, 19778, 15732, 11, 717, 19778, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 15732, 796, 717, 19778, 532, 314, 19778, 15732, 1343, 767, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 14534, 14283, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 19778, 7414, 541, 796, 4738, 13, 25192, 600, 7, 15, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10832, 6460, 284, 1441, 976, 8405, 790, 36835, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 21201, 14, 9288, 5621, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 717, 19778, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13833, 30547, 796, 357, 15, 11, 657, 11, 2116, 13, 25120, 34, 1773, 10699, 58, 15, 4357, 2116, 13, 25120, 34, 1773, 10699, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 314, 19778, 15732, 796, 14808, 9630, 8, 4064, 767, 220, 1343, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 15732, 796, 314, 19778, 15732, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 17257, 796, 685, 15, 11, 314, 19778, 15732, 11, 807, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 19778, 7414, 541, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 329, 477, 13431, 11188, 284, 262, 4600, 9630, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 15732, 287, 5739, 17257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 2939, 1262, 5560, 290, 35016, 262, 2939, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4808, 79, 346, 62, 29356, 7, 944, 13, 37805, 15235, 58, 9630, 7131, 14535, 15732, 4357, 13833, 30547, 28, 31476, 30547, 11, 5739, 7414, 541, 28, 25120, 19778, 7414, 541, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 13389, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35636, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 35636, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6291, 11, 1441, 15732, 628, 198, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 8405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 37805, 15235, 8, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 796, 705, 27354, 292, 316, 705, 1343, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 7913, 286, 4818, 499, 1563, 82, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 834, 11925, 834, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 20410, 13397, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 705, 220, 220, 220, 3602, 23914, 357, 361, 597, 2599, 705, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 90, 15, 18477, 16, 32239, 77, 4458, 18982, 7, 22065, 11, 2116, 13, 35636, 13, 834, 260, 1050, 834, 22446, 33491, 10786, 59, 77, 3256, 705, 59, 77, 6, 1343, 705, 705, 1635, 18896, 7, 22065, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46996, 62, 2536, 198, 220, 220, 220, 220, 198, 4871, 14417, 40, 8784, 14402, 7, 7890, 13, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4818, 282, 1170, 263, 329, 11046, 399, 8405, 14921, 287, 428, 835, 25, 628, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 2999, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 2999, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 10651, 45, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 405, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 486, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 2999, 628, 220, 220, 220, 2644, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 13431, 15235, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 13431, 6, 3108, 287, 262, 27039, 13, 628, 220, 220, 220, 25458, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 11593, 1136, 9186, 834, 7, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 198, 220, 220, 220, 11593, 11925, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 198, 220, 220, 220, 11593, 260, 1050, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 6808, 11, 6121, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20410, 8619, 3108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 1058, 869, 540, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 14, 35636, 326, 2753, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 6291, 290, 5860, 257, 14434, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 11, 7559, 7645, 23914, 13, 29531, 34, 1773, 15506, 329, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8099, 5039, 262, 1351, 351, 2939, 13532, 329, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5739, 287, 4600, 15763, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 796, 4808, 15883, 62, 19608, 292, 316, 7, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 35123, 4049, 611, 645, 4263, 1043, 287, 6808, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37805, 15235, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7, 41006, 12331, 7203, 21077, 657, 3696, 287, 850, 11379, 364, 286, 25, 366, 1343, 6808, 1343, 37082, 77, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 6808, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 15235, 220, 220, 220, 220, 796, 13431, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 220, 220, 220, 220, 220, 796, 6121, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 6376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6291, 10874, 286, 734, 4941, 13431, 532, 314, 15, 290, 314, 16, 532, 198, 220, 220, 220, 220, 220, 220, 220, 290, 257, 19898, 5739, 1022, 314, 15, 290, 314, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 39873, 11, 1441, 15732, 8, 810, 6291, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 40, 15, 11, 19898, 62, 14535, 11, 314, 16, 60, 290, 1441, 15732, 318, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 2292, 286, 4600, 3849, 13857, 62, 14535, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1441, 15732, 318, 1464, 513, 290, 318, 852, 4504, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 5529, 17764, 351, 262, 4600, 12442, 50, 5439, 16632, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 263, 810, 513, 24866, 284, 262, 3504, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 329, 477, 13431, 11188, 284, 262, 4600, 9630, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 15235, 287, 2116, 13, 37805, 15235, 58, 9630, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 2939, 1262, 5560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4808, 79, 346, 62, 29356, 7, 14535, 15235, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 13389, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35636, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 35636, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6291, 11, 513, 628, 198, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 8405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 37805, 15235, 8, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 796, 705, 27354, 292, 316, 705, 1343, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 7913, 286, 4818, 499, 1563, 82, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 834, 11925, 834, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 20410, 13397, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 705, 220, 220, 220, 3602, 23914, 357, 361, 597, 2599, 705, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 90, 15, 18477, 16, 32239, 77, 4458, 18982, 7, 22065, 11, 2116, 13, 35636, 13, 834, 260, 1050, 834, 22446, 33491, 10786, 59, 77, 3256, 705, 59, 77, 6, 1343, 705, 705, 1635, 18896, 7, 22065, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46996, 62, 2536, 198, 198, 4871, 7623, 7, 7890, 13, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4818, 282, 1170, 263, 329, 11046, 477, 2008, 13431, 287, 257, 9483, 25, 628, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 15, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 45, 628, 220, 220, 220, 2644, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 13431, 15235, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 13431, 6, 3108, 287, 262, 27039, 13, 198, 220, 220, 220, 1796, 29271, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 15225, 286, 262, 2008, 13, 198, 220, 220, 220, 5391, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1143, 15225, 286, 262, 2008, 357, 1640, 8100, 737, 628, 220, 220, 220, 25458, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 11593, 1136, 9186, 834, 7, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 198, 220, 220, 220, 11593, 11925, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 198, 220, 220, 220, 11593, 260, 1050, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 6808, 11, 6121, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6808, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20410, 8619, 3108, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 1058, 869, 540, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 14, 35636, 326, 2753, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 6291, 290, 5860, 257, 14434, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 11, 7559, 7645, 23914, 13, 29531, 34, 1773, 15506, 329, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8099, 5039, 262, 1351, 351, 2939, 13532, 329, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5739, 287, 4600, 15763, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 796, 4808, 15883, 62, 15588, 62, 19608, 292, 316, 7, 15763, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 15225, 286, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 220, 220, 220, 220, 220, 220, 220, 796, 4808, 79, 346, 62, 29356, 7, 37805, 15235, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11612, 29271, 796, 5739, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27740, 220, 220, 220, 220, 796, 493, 7, 944, 13, 11612, 29271, 58, 15, 60, 1220, 3933, 8, 1635, 3933, 11, 493, 7, 944, 13, 11612, 29271, 58, 16, 60, 1220, 3933, 8, 1635, 3933, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 35123, 4049, 611, 645, 4263, 1043, 287, 6808, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37805, 15235, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7, 41006, 12331, 7203, 21077, 657, 3696, 287, 25, 366, 1343, 6808, 1343, 37082, 77, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15763, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 6808, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 15235, 220, 220, 220, 220, 796, 13431, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 220, 220, 220, 220, 220, 796, 6121, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 6376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6291, 10874, 286, 734, 4941, 13431, 532, 314, 15, 290, 314, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 318, 685, 40, 15, 11, 314, 16, 60, 810, 314, 15, 318, 262, 5739, 351, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 9630, 63, 290, 314, 16, 318, 262, 1306, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 329, 477, 13431, 11188, 284, 262, 4600, 9630, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 15235, 287, 685, 944, 13, 37805, 15235, 58, 9630, 4357, 2116, 13, 37805, 15235, 58, 9630, 1343, 352, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 2939, 1262, 5560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4808, 79, 346, 62, 29356, 7, 14535, 15235, 11, 47558, 29271, 28, 944, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 13389, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35636, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 35636, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6291, 628, 198, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 8405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8554, 4600, 12, 16, 63, 523, 326, 4818, 282, 1170, 263, 1895, 274, 691, 18529, 78, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13431, 685, 45, 12, 16, 11, 399, 60, 290, 407, 685, 45, 11, 399, 10, 16, 60, 543, 780, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 399, 10, 16, 1595, 470, 2152, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 37805, 15235, 8, 532, 352, 220, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 796, 705, 27354, 292, 316, 705, 1343, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 7913, 286, 4818, 499, 1563, 82, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 834, 11925, 834, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 20410, 13397, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 705, 220, 220, 220, 3602, 23914, 357, 361, 597, 2599, 705, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 90, 15, 18477, 16, 32239, 77, 4458, 18982, 7, 22065, 11, 2116, 13, 35636, 13, 834, 260, 1050, 834, 22446, 33491, 10786, 59, 77, 3256, 705, 59, 77, 6, 1343, 705, 705, 1635, 18896, 7, 22065, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46996, 62, 2536, 628, 628, 198, 4871, 5382, 7, 7890, 13, 27354, 292, 316, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 4818, 282, 1170, 263, 329, 11046, 477, 2008, 13431, 287, 257, 9483, 25, 628, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 15, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 16, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 44233, 5739, 45, 628, 220, 220, 220, 2644, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 13431, 15235, 1058, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 13431, 6, 3108, 287, 262, 27039, 13, 198, 220, 220, 220, 1796, 29271, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 2656, 15225, 286, 262, 2008, 13, 198, 220, 220, 220, 5391, 1058, 46545, 198, 220, 220, 220, 220, 220, 220, 220, 581, 1143, 15225, 286, 262, 2008, 357, 1640, 8100, 737, 628, 220, 220, 220, 25458, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 11593, 1136, 9186, 834, 7, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 198, 220, 220, 220, 11593, 11925, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 198, 220, 220, 220, 11593, 260, 1050, 834, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 198, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 5739, 15, 11, 5739, 16, 11, 6121, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 15, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23412, 2939, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 16, 25, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 23412, 2939, 362, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 1058, 869, 540, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 2163, 14, 35636, 326, 2753, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 257, 6291, 290, 5860, 257, 14434, 2196, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 11, 7559, 7645, 23914, 13, 29531, 34, 1773, 15506, 329, 4263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8099, 5039, 262, 1351, 351, 2939, 13532, 329, 477, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5739, 287, 4600, 15763, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 15235, 796, 685, 14535, 15, 11, 5739, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 15225, 286, 13431, 198, 220, 220, 220, 220, 220, 220, 220, 5739, 220, 220, 220, 220, 220, 220, 220, 796, 4808, 79, 346, 62, 29356, 7, 14535, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11612, 29271, 796, 5739, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 27740, 220, 220, 220, 220, 796, 493, 7, 944, 13, 11612, 29271, 58, 15, 60, 1220, 3933, 8, 1635, 3933, 11, 493, 7, 944, 13, 11612, 29271, 58, 16, 60, 1220, 3933, 8, 1635, 3933, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 35123, 4049, 611, 645, 4263, 1043, 287, 6808, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 37805, 15235, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 7, 41006, 12331, 7203, 21077, 657, 3696, 287, 25, 366, 1343, 6808, 1343, 37082, 77, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37805, 15235, 220, 220, 220, 220, 796, 13431, 15235, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 35636, 220, 220, 220, 220, 220, 796, 6121, 628, 220, 220, 220, 825, 11593, 1136, 9186, 834, 7, 944, 11, 6376, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 6291, 11188, 284, 4600, 9630, 63, 422, 27039, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 6291, 10874, 286, 734, 4941, 13431, 532, 314, 15, 290, 314, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12901, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 318, 685, 40, 15, 11, 314, 16, 60, 810, 314, 15, 318, 262, 5739, 351, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 9630, 63, 290, 314, 16, 318, 262, 1306, 5739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 26304, 625, 329, 477, 13431, 11188, 284, 262, 4600, 9630, 44646, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5739, 15235, 287, 685, 944, 13, 37805, 15235, 58, 9630, 4357, 2116, 13, 37805, 15235, 58, 9630, 1343, 352, 60, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4946, 2939, 1262, 5560, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 4808, 79, 346, 62, 29356, 7, 14535, 15235, 11, 47558, 29271, 28, 944, 13, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 13389, 611, 7368, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 35636, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2116, 13, 35636, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 13, 33295, 7, 9060, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6291, 628, 198, 220, 220, 220, 825, 11593, 11925, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 262, 2546, 286, 27039, 13, 10001, 6545, 355, 18896, 7, 19608, 292, 316, 49201, 737, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 8405, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 8554, 4600, 12, 16, 63, 523, 326, 4818, 282, 1170, 263, 1895, 274, 691, 18529, 78, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 13431, 685, 45, 12, 16, 11, 399, 60, 290, 407, 685, 45, 11, 399, 10, 16, 60, 543, 780, 5739, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 399, 10, 16, 1595, 470, 2152, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18896, 7, 944, 13, 37805, 15235, 8, 532, 352, 220, 628, 220, 220, 220, 825, 11593, 260, 1050, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 16409, 3601, 540, 10552, 286, 262, 27039, 2134, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 796, 705, 27354, 292, 316, 705, 1343, 2116, 13, 834, 4871, 834, 13, 834, 3672, 834, 1343, 705, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 7913, 286, 4818, 499, 1563, 82, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 834, 11925, 834, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 220, 220, 220, 20410, 13397, 25, 23884, 59, 77, 4458, 18982, 7, 944, 13, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 705, 220, 220, 220, 3602, 23914, 357, 361, 597, 2599, 705, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 62, 2536, 15853, 705, 90, 15, 18477, 16, 32239, 77, 4458, 18982, 7, 22065, 11, 2116, 13, 35636, 13, 834, 260, 1050, 834, 22446, 33491, 10786, 59, 77, 3256, 705, 59, 77, 6, 1343, 705, 705, 1635, 18896, 7, 22065, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 46996, 62, 2536 ]
2.183961
8,953
from typing import Optional from botocore.client import BaseClient from typing import Dict from botocore.paginate import Paginator from botocore.waiter import Waiter from typing import Union from typing import List
[ 6738, 19720, 1330, 32233, 198, 6738, 10214, 420, 382, 13, 16366, 1330, 7308, 11792, 198, 6738, 19720, 1330, 360, 713, 198, 6738, 10214, 420, 382, 13, 79, 363, 4559, 1330, 31525, 20900, 198, 6738, 10214, 420, 382, 13, 10247, 2676, 1330, 15329, 2676, 198, 6738, 19720, 1330, 4479, 198, 6738, 19720, 1330, 7343, 628 ]
4
54
# -*- coding: utf-8 -*- __author__ = "R. Bauer" __copyright__ = "MedPhyDO - Machbarkeitsstudien des Instituts für Medizinische Strahlenphysik und Strahlenschutz am Klinikum Dortmund im Rahmen von Bachelor und Masterarbeiten an der TU-Dortmund / FH-Dortmund" __credits__ = ["R.Bauer", "K.Loot"] __license__ = "MIT" __version__ = "0.1.2" __status__ = "Prototype" from dotmap import DotMap import os.path as osp from pathlib import Path import pandas as pd import numpy as np import json from datetime import date from isp.dicom import ispDicom from isp.config import dict_merge from app.config import infoFields from app.aria import ariaClass #from app.dicom import dicomClass from app.results import ispResults from app.qa.mlc import checkMlc from app.qa.field import checkField from app.qa.wl import checkWL from app.qa.vmat import checkVMAT import logging logger = logging.getLogger( "MQTT" ) class ariaDicomClass( ariaClass, ispDicom ): '''Zentrale Klasse Attributes ---------- config : Dot konfigurations Daten variables : Metadaten aus config.variables infoFields: Infofelder aus config dicomfiles: dict geladene Dicom dateien pd_results: pd testergebnisse als Pandas tabelle resultfile Datei mit Ergebnissen als panda File lastSQL: str die letzte durchgeführte sql Abfrage ''' def __init__( self, database=None, server="VMSDBD", config=None ): """Klasse sowie ariaClass und dicomClass initialisieren """ # Klassen defaults setzen und übergaben self.config = config self.variables = self.config.variables self.infoFields = infoFields self.dicomfiles: dict = {} self.pd_results = None self.resultfile = None self.lastSQL = "" # ariaClass initialisieren ariaClass.__init__( self, database ) # dicomClass initialisieren. Der Erfolg kann über dicomClass.initialized abgefragt werden ispDicom.__init__( self, server, self.config ) # Datei mit Ergebnissen als pandas laden self.resultfile = osp.join( self.config.get("resultsPath", ".."), self.config.get("database.gqa.name", "gqa.json") ) self.pd_results = ispResults( self.config, self.resultfile ) def initResultsPath(self, AcquisitionYear=None ): '''Den Ablegeort zu den PDF Dateien bestimmen in variables.path befindet sich jetzt der resultsPath ggf. mit angehängten AcquisitionYear Parameters ---------- AcquisitionYear : TYPE, optional DESCRIPTION. The default is None. Returns ------- dirname : str der aktuelle PDF Pfad (auch in self.variables["path"] ) ''' paths = [ ] # ist der Pfad relativ angegeben ab base path verwenden if self.config["resultsPath"][0] == ".": paths.append( self.config["BASE_DIR"] ) paths.append( self.config["resultsPath"] ) else: paths.append( self.config["resultsPath"] ) # zusätzlich noch das AcquisitionYear anfügen if AcquisitionYear: paths.append( str(AcquisitionYear) ) # den Pfad in variables["path"] ablegen dirname = osp.abspath( osp.join( *paths ) ) self.variables["path"] = dirname return dirname def getAllGQA(self, pids=None, testTags:list=None, year:int=None, month:int=None, day:int=None, withInfo=True, withResult=False ): '''Holt für die angegebenen PatientenIds aus allen Courses die Felder mit Angaben in [Radiation].[Comment] und wertet sie entsprechend aus Parameters ---------- pids : list, optional DESCRIPTION. The default is None. testTags : list, optional DESCRIPTION. The default is None. year : int, optional DESCRIPTION. The default is None. month : int, optional DESCRIPTION. The default is None. day : int, optional DESCRIPTION. The default is None. withInfo : TYPE, optional DESCRIPTION. The default is True. withResult : TYPE, optional DESCRIPTION. The default is False. Returns ------- gqa : dict Aufbau:: units: dict <unit>: dict <infoType>: dict ready: dict all: int <energy> : int gqa: dict fields: int energyFields: int counts: dict all: int <energy> : int pdf: dict, items: dict <energy>: dict <SliceUID>: {info} -> dies wird bei run in ein DataFrame umgewandelt series: [], ''' if not pids: return {} if type(pids) == str: pids = pids.split(",") if not type(pids) == list: pids = [pids] if not pids or len(pids) == 0: return {} # filter zusammenstellen where = "LEN([Radiation].[Comment]) > 0 " subSql = [] for pid in pids: subSql.append( "[Patient].[PatientId]='{}'".format( pid.strip() ) ) if len( subSql ) > 0: where += " AND (" + " OR ".join( subSql ) + ")" images, sql = self.getImages( addWhere=where, AcquisitionYear=year, AcquisitionMonth=month, AcquisitionDay=day, testTags=testTags ) self.lastSQL = sql # Pfad für die PDF Dateien self.initResultsPath( year ) return self.prepareGQA( images, year=year, withInfo=withInfo, withResult=withResult ) def prepareGQA(self, imagedatas=[], year:int=0, withInfo=True, withResult=False, withDicomData:bool=False ): """Auswertung für GQA vorbereiten zusätzlich noch Ergebnisse aus der Datenbank einfügen Benötig config.GQA und config.units - units: ["Linac-1", "Linac-2"], - gqa : dict <testId>: dict <unit>: dict fields: int energyFields: int Parameters ---------- imagedatas : list, optional Auflistungen von Bildinformationen aus der Aria Datenbank. The default is []. year : int, optional DESCRIPTION. The default is 0. withInfo : TYPE, optional alle ImageInfos mit hinzufügen. The default is True. withResult : boolean, optional Testergebnisse mit ausgeben. The default is False. withDicomData : boolean, optional Info pro gerät in dicomfiles ablegen. The default is False. Returns ------- gqa : dict # alles aus config.gqa dabei die Unites mit Daten füllen <testname> info: inaktiv tip anleitung options: TODO: tolerance: <energy> <unit-n> fields: int energyFields: int energy: list """ # dicom gerät , name , infos self.dicomfiles = {} units = self.config.units # Dateien im Pfad pdfFiles = [] if osp.exists( self.variables["path"] ): p = Path( self.variables["path"] ) pdfFiles = [i.name for i in p.glob( '*.pdf' )] # files = os.listdir( self.variables["path"] ) data = { "GQA" : self.config.get("GQA").toDict(), "units" : units, "testTags" : {}, "testIds": {} } # nur das gesuchte Jahr, ohne index df_results = self.pd_results.gqa[ self.pd_results.gqa['year'] == year ].reset_index() result_fields = [ "acceptance", "group" ] if withResult: result_fields.append("data") # neuen index setzen # Das geht nur bei daten in df_results if len(df_results.index) > 0: df_results.set_index( df_results.apply(lambda x: f"{x['year']}|{x['unit']}|{x['test']}|{x['energy']}|{x['month']}", axis=1), inplace=True ) data["results"] = df_results[ result_fields ].to_dict( orient="split" ) else: data["results"] = { "columns":result_fields, "data":[], "index":[] } # tags und gqa ids bestimmen for testid, item in self.config.GQA.items(): if "tag" in item: data["testTags"][ item["tag"] ] = testid data["testIds"][ testid ] = item["tag"] tagNotFound = {} inactiv = [] testNotFound = [] for imagedata in imagedatas: # bereitetet die Datenbank Informationen auf info = self.getImageInfos( imagedata ) unit = info["unit"] energy = info["energy"] # # zusätzlich die Daten in self.dicomfiles ablegen # if withDicomData: if not unit in self.dicomfiles: self.dicomfiles[ unit ] = {} # zusätzlich in dicomfiles ablegen self.dicomfiles[ unit ][ info["id"] ] = info # Felder zuordnen, eine Aufnahme kann für mehrere tests verwendet werden # tag für die Datenbank, testid für das PDF for testTag in info["testTags"]: # nur wenn es auch einen test gibt if not testTag in data["testTags"]: tagNotFound[ testTag ] = testTag continue testId = data["testTags"][testTag] # ist der test in gqa nicht erlaubt überspringen # inaktive kann auch einen Text enthalten der beschreibt warum # FIXME: inaktive t = "GQA.{}.info.inaktiv".format( testId ) if not self.config.get(t, False) == False: inactiv.append( self.config.get(t) ) continue # gibt es in GQA passend zum Test dem Gerät und der Energie einen Eintrag t = "GQA.{}.{}.energyFields.{}".format( testId, unit, energy ) energyFields = self.config.get(t, False) if energyFields == False: testNotFound.append( t ) continue # Art des tests MT|JT tagArt = testId[0:2] if tagArt == "JT": dateFlag = "0" else: dateFlag = str( info["AcquisitionMonth"] ) # test_unit = data["GQA"][testId][unit] if not dateFlag in test_unit: test_unit[ dateFlag ] = {} if not energy in test_unit[ dateFlag ]: test_unit[ dateFlag ][energy] = { "counts": 0, "ready": False, "pdfName" : "", "pdf": False, "acceptance" : {} } # Anzahl der Felder für das Datumsflag der jeweiligen Energie erhöhen (counts) test_unit[ dateFlag ][ energy ][ "counts" ] += 1 # auf mid Anzahl prüfen if test_unit[ dateFlag ][ energy ][ "counts" ] >= energyFields: test_unit[ dateFlag ][ energy ][ "ready" ] = True # PDF Dateiname zusammenstellen pdfName = self.config.render_template( self.config["templates"][ "PDF-" + tagArt + "-filename"], { "AcquisitionYear": info["AcquisitionYear"], "AcquisitionMonth": info["AcquisitionMonth"], "unit": unit, "energy": energy, "testId": testId } ) if pdfName in pdfFiles: test_unit[ dateFlag ][ energy ][ "pdfName" ] = pdfName test_unit[ dateFlag ][ energy ][ "pdf" ] = True # nicht gefundene Tags data["inactiv"] = inactiv data["tagNotFound"] = tagNotFound data["testNotFound"] = testNotFound return data # ---------------------- einfache Ausgaben def getTagging(self, art:str="full", pid:list=[], output_format="json" ): """alle Tags in Comment Feldern als html Tabelle zurückgeben Parameters ---------- art : str, optional Art der Tagging Tabellen (). The default is "full". * full * sum * test * tags pid : list, optional Angabe von PatientsIds für die Tags bestimmt werden sollen. The default is []. output_format: str Format der Ausgabe [ json, html ] Returns ------- str|dict html Tags code oder dict. """ style = """ <style> .gqa-tagging { } .gqa-tagging table { color: #333; font-family: Helvetica, Arial, sans-serif; min-width: 100px; border-collapse: collapse; border-spacing: 0; font-size: 10px; } .gqa-tagging table td, .gqa-tagging table th { border: 1px solid gray; text-align: center; vertical-align: middle; } .gqa-tagging table th { font-weight: bold; } .gqa-tagging table thead th, .gqa-tagging table tbody th { background-color: #F7F7F7; } .gqa-tagging table td { background-color: white; } .gqa-tagging table th, .gqa-tagging table td, .gqa-tagging table caption { padding: 2px 2px 2px 2px; } </style> """ split = True if art == "tags": # bei tags conmment nicht splitten split = False tags = self.getTags( pid, split ) if output_format == "json": return tags if not tags or len(tags) == 0: return "getTagging: keine Daten gefunden" html = '<div class="gqa-tagging flex-1">' html += '<h1 class="m-0 p-1 text-white bg-secondary">Art: ' + art + '</h2>' # Pandas erzeugen df = pd.DataFrame( tags ) if art == "full": table = pd.pivot_table( df, index=['Comment', 'CourseId', 'PlanSetupId', 'Energy', 'DoseRate', 'RadiationId'], columns='PatientId', values= "nummer", fill_value=0 ) elif art == "sum": table = pd.pivot_table( df, index=['Comment', 'CourseId', 'PlanSetupId','Energy', 'DoseRate'], columns=['PatientId'], values= 'nummer', aggfunc=[np.sum], fill_value=0 ) elif art == "test": table = pd.pivot_table( df, index=['Comment', 'CourseId', 'Energy', 'DoseRate'], columns=[ 'PlanSetupId', 'PatientId'], values= 'nummer', aggfunc=[np.sum], fill_value=0 ) elif art == "tags": table = pd.pivot_table( df, index=['Comment'], columns=['PatientId'], values= 'nummer', fill_value=0 #aggfunc=[np.sum] ) # tags zurückgeben als einfache Tabelle #table = df[ ["Comment"] ].groupby( "Comment" ).first().reset_index() # table.fillna('', inplace=True) html += (table.style .applymap( highlight_fifty ) .set_table_attributes('class="gqa-tagging-table"') #.float_format() .render() ) html += '</div>' return style + html def getMatrix( self, output_format="json", params:dict={} ): """Gibt eine Liste alle Testbeschreibungen (config) mit Anleitungen Parameters ---------- output_format: str Format der Ausgabe [ json, html ] params: dict Aufrufparameter mit year und month Returns ------- str|dict html matrix code oder dict. """ # jahr und Monat bei 0 mit dem aktuellen belegen today = date.today() if params["year"] == 0: params["year"] = today.year if params["month"] == 0: params["month"] = today.month # pdf wird zum laden der Texte verwendet from isp.mpdf import PdfGenerator as ispPdf pdf = ispPdf() html_jt = "" html_mt = "" html_nn = "" data_dict = {} for key, content in self.config.GQA.items(): data = { "key" : key, "tip" : "", "need" : "", "anleitung" : "", "chips" : "" } chips = [] # units und energy for unit_key, unit in self.config.units.items(): if unit in content: for energy in content[ unit ].energy: chips.append( { "class": "badge badge-pill badge-info mr-1", "content": "{} - {}".format( unit_key, energy ) } ) # info bestimmen info = content.info data["tip"] = info.get("tip", "") need = info.get("need", "") if type(need) == str and need != "": chips.append( { "class": "badge badge-pill badge-success", "content": 'benötigt: ' + need } ) # Anleitung anleitung_filename = info.get("anleitung", "") data["anleitung"] = '<p class="badge badge-pill badge-primary">Anleitung fehlt!</p>' if anleitung_filename != "": anleitung = pdf.textFile(anleitung_filename, render = False) if anleitung: data["anleitung"] = anleitung # Toleranz tolerance = content.info.get("tolerance", False) if tolerance: data["anleitung"] += "<h6>Toleranz</h6>" # ggf formel erstellen for e, item in tolerance.items(): self.prepare_tolerance(key, e) pass # toleranz einfügen data["anleitung"] += '<pre class="toleranz bg-light text-monospace ">' + json.dumps( tolerance, indent=2 ) + '</pre>' # ist der test als inaktiv Hinweis ausgeben inaktiv = content.info.get('inaktiv', False) if inaktiv != False: chips.append( { "class": "inaktiv", "content": 'Inaktiv: ' + inaktiv } ) # gibt es optional Angaben optional = content.info.get('optional', []) if len(optional) > 0: for item in optional: chips.append( { "class": "badge badge-pill badge-primary", "content": 'Optional wenn: ' + item + ' OK' } ) # TODO todo = content.info.get("TODO", False) if todo and len(todo) > 0: data["anleitung"] += "TODO" data["anleitung"] += '<pre class="p-1 bg-warning">' for t in todo: data["anleitung"] += "* " + t + "\n" data["anleitung"] += '</pre>' # markierungen zusammenstellen for chip in chips: data["chips"] += '<div class="{class}">{content}</div>'.format(**chip) data_dict[ key ] = content.toDict() data_dict[ key ][ "anleitung" ] = anleitung card = """ <div class="card m-3" > <div class="card-header"> <span class="font-weight-bolder">{key}</span> <span class="pl-3">{tip}</span> <div class="float-right">{chips}</div> </div> <div class="card-body p-1"> {anleitung} </div> </div> """.format( **data ) if key[0:2] == "JT": html_jt += card elif key[0:2] == "MT": html_mt += card else: html_nn += card if output_format == "json": return data_dict style = """ <style> /* Anpassung pdf text */ .gqa_matrix h2 { font-size: 1.1667em; font-weight: bold; line-height: 1.286em; margin-top: 0.5em; margin-bottom: 0.5em; } .gqa_matrix .card-body p::first-of-type { background-color: #FFFFFFAA; } </style> """ html = ''' <div class="gqa_matrix"> <h1 class="m-0 p-1 text-white bg-secondary" >Angaben für: {month}/{year}</h1> <content class="p-1 d-flex flex-row" > <div class="w-50">{jt}</div> <div class="w-50">{mt}</div> <div class="">{nn}</div> </content> </div> '''.format( jt=html_jt, mt=html_mt, nn=html_nn, **params ) return style + html def prepare_tolerance(self, testid:str="", energy=None): """Prüft ob es in conig eine tolerance Angabe für die testid und die Energie gibt Stellt wenn f nicht angegeben wurde eine Formel in f zusammen Gibt es eine GQA.<testid>.info.tolerance.default Angabe, so wird diese als Grundlage für alle Energien verwendet Zweig in config:: GQA.<testid>.info.tolerance.<energy> { name: { f: formel mit {value} value: wert range: [min, max] operator: [ eq, ne, lt, gt, le, ge] } } Parameters ---------- testid : str, optional id des zu verarbeitenden tolerance Bereichs energy : str, optional Augabe der Energie für die Info. The default is None. Ohne Angabe wird nur der Parameter info zurückgegeben Returns ------- info : dict Parameter info mit zusätzlichen Angaben für die Energie. Beispiel:: "default": { "warning" : { "f":"abs({value}) > 1.0", "unit": "%" }, "error" : { "f":"abs({value}) > 2.0", "unit": "%" }, "check" : { "field": "diff", "query":"ME == 100" } }, "MU_20": { "warning" : { "f":"abs({value}) > 1.0", "unit": "%" }, "error" : { "f":"abs({value}) > 2.5", "unit": "%" }, "check" : { "field": "diff", "query":"ME == 20" } }, """ info = self.config.get( ["GQA", testid, "info" ] ) default = info.tolerance.get( "default", False ) tolerance = info.tolerance.get( energy, False ) if not tolerance and not default: return DotMap() if not default: default = DotMap() if tolerance: tolerance = dict_merge( default, tolerance) else: tolerance = default #print("prepare_tolerance tolerance", tolerance ) import functools # alle Angaben durchgehen for name in tolerance: if not isinstance( tolerance.get(name), dict ): continue for artName, art in tolerance.get(name).items(): # überspringen wenn art = soll oder f schon vorhanden if artName == "soll" or art.get("f", None): continue # gibt es keine formel dann erstellen # wurde ein wert angegeben _value = art.get("value", None) _range = art.get("range", None) if _value: #zuerst den operator festlegen operator = art.get("operator", "gt") # [ eq, ne, lt, gt, le, ge] operator = functools.reduce(lambda a, b: a.replace(*b) , [('eq','=='),('ne','!='),('lt', '<'),( 'gt', '>'),( 'le','<='),( 'ge', '>=')] #iterable of pairs: (oldval, newval) , operator #The string from which to replace values ) tolerance[name][artName]["f"] = "abs({}) {} {}".format( "{value}", operator, _value ) # wurde ein Bereich angegeben elif art.get("range", None) and len(_range) >= 2: tolerance[name][artName]["f"] = "{} <= {} >= {}".format( _range[0], "{value}", _range[1] ) return tolerance # ---------------------- Test durchführung
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 366, 49, 13, 41971, 1, 198, 834, 22163, 4766, 834, 796, 366, 9921, 2725, 88, 18227, 532, 7080, 5657, 365, 896, 19149, 2013, 748, 37931, 5500, 277, 25151, 2019, 528, 259, 46097, 520, 11392, 11925, 34411, 1134, 3318, 520, 11392, 75, 641, 354, 27839, 716, 509, 2815, 1134, 388, 36888, 545, 18655, 3653, 18042, 33399, 3318, 5599, 283, 15357, 268, 281, 4587, 309, 52, 12, 35, 34876, 1220, 376, 39, 12, 35, 34876, 1, 198, 834, 66, 20696, 834, 796, 14631, 49, 13, 33, 16261, 1600, 366, 42, 13, 43, 1025, 8973, 198, 834, 43085, 834, 796, 366, 36393, 1, 198, 834, 9641, 834, 796, 366, 15, 13, 16, 13, 17, 1, 198, 834, 13376, 834, 796, 366, 19703, 8690, 1, 198, 198, 6738, 16605, 8899, 1330, 22875, 13912, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 6738, 3108, 8019, 1330, 10644, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 6738, 4818, 8079, 1330, 3128, 198, 198, 6738, 318, 79, 13, 67, 291, 296, 1330, 318, 79, 35, 291, 296, 198, 6738, 318, 79, 13, 11250, 1330, 8633, 62, 647, 469, 198, 198, 6738, 598, 13, 11250, 1330, 7508, 15878, 82, 198, 198, 6738, 598, 13, 10312, 1330, 257, 7496, 9487, 198, 2, 6738, 598, 13, 67, 291, 296, 1330, 288, 291, 296, 9487, 198, 6738, 598, 13, 43420, 1330, 318, 79, 25468, 198, 198, 6738, 598, 13, 20402, 13, 4029, 66, 1330, 2198, 44, 44601, 198, 6738, 598, 13, 20402, 13, 3245, 1330, 2198, 15878, 198, 6738, 598, 13, 20402, 13, 40989, 1330, 2198, 54, 43, 198, 6738, 598, 13, 20402, 13, 85, 6759, 1330, 2198, 15996, 1404, 198, 198, 11748, 18931, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 366, 49215, 15751, 1, 1267, 628, 198, 4871, 257, 7496, 35, 291, 296, 9487, 7, 257, 7496, 9487, 11, 318, 79, 35, 291, 296, 15179, 198, 220, 220, 220, 705, 7061, 57, 298, 81, 1000, 14770, 21612, 628, 220, 220, 220, 49213, 198, 220, 220, 220, 24200, 438, 628, 220, 220, 220, 4566, 1058, 22875, 198, 220, 220, 220, 220, 220, 220, 220, 479, 261, 5647, 20074, 16092, 268, 198, 220, 220, 220, 9633, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 3395, 324, 36686, 257, 385, 4566, 13, 25641, 2977, 198, 220, 220, 220, 7508, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4806, 1659, 68, 6499, 257, 385, 4566, 198, 220, 220, 220, 288, 291, 296, 16624, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 20383, 324, 1734, 360, 291, 296, 3128, 2013, 198, 220, 220, 220, 279, 67, 62, 43420, 25, 279, 67, 198, 220, 220, 220, 220, 220, 220, 220, 256, 7834, 469, 9374, 20782, 435, 82, 16492, 292, 7400, 13485, 198, 220, 220, 220, 1255, 7753, 198, 220, 220, 220, 220, 220, 220, 220, 7536, 72, 10255, 5256, 469, 9374, 747, 268, 435, 82, 279, 5282, 9220, 198, 220, 220, 220, 938, 17861, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 1309, 89, 660, 288, 2575, 469, 69, 9116, 11840, 660, 44161, 2275, 8310, 496, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 2116, 11, 6831, 28, 14202, 11, 4382, 2625, 53, 5653, 11012, 35, 1600, 4566, 28, 14202, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 42, 75, 21612, 45125, 494, 257, 7496, 9487, 3318, 288, 291, 296, 9487, 4238, 271, 494, 918, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14770, 562, 268, 26235, 900, 4801, 3318, 6184, 120, 3900, 397, 268, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 796, 4566, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25641, 2977, 796, 2116, 13, 11250, 13, 25641, 2977, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 10951, 15878, 82, 796, 7508, 15878, 82, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 291, 296, 16624, 25, 8633, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30094, 62, 43420, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 7753, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 17861, 796, 13538, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 7496, 9487, 4238, 271, 494, 918, 198, 220, 220, 220, 220, 220, 220, 220, 257, 7496, 9487, 13, 834, 15003, 834, 7, 2116, 11, 6831, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 291, 296, 9487, 4238, 271, 494, 918, 13, 9626, 5256, 9062, 70, 479, 1236, 6184, 120, 527, 288, 291, 296, 9487, 13, 17532, 450, 469, 8310, 363, 83, 266, 263, 6559, 198, 220, 220, 220, 220, 220, 220, 220, 318, 79, 35, 291, 296, 13, 834, 15003, 834, 7, 2116, 11, 4382, 11, 2116, 13, 11250, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7536, 72, 10255, 5256, 469, 9374, 747, 268, 435, 82, 19798, 292, 9717, 268, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 20274, 7753, 796, 267, 2777, 13, 22179, 7, 2116, 13, 11250, 13, 1136, 7203, 43420, 15235, 1600, 366, 492, 12340, 2116, 13, 11250, 13, 1136, 7203, 48806, 13, 70, 20402, 13, 3672, 1600, 366, 70, 20402, 13, 17752, 4943, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30094, 62, 43420, 796, 318, 79, 25468, 7, 2116, 13, 11250, 11, 2116, 13, 20274, 7753, 1267, 628, 220, 220, 220, 825, 2315, 25468, 15235, 7, 944, 11, 44564, 17688, 28, 14202, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 21306, 45349, 469, 419, 1976, 84, 2853, 12960, 7536, 2013, 1266, 320, 3653, 198, 220, 220, 220, 220, 220, 220, 220, 287, 9633, 13, 6978, 307, 19796, 316, 264, 488, 12644, 89, 83, 4587, 2482, 15235, 308, 70, 69, 13, 10255, 281, 469, 71, 11033, 782, 1452, 44564, 17688, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 44564, 17688, 1058, 41876, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4587, 257, 21841, 2731, 293, 12960, 38477, 324, 357, 559, 354, 287, 2116, 13, 25641, 2977, 14692, 6978, 8973, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 13532, 796, 685, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 83, 4587, 38477, 324, 48993, 452, 281, 469, 469, 11722, 450, 2779, 3108, 3326, 86, 437, 268, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 11250, 14692, 43420, 15235, 1, 7131, 15, 60, 6624, 366, 526, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 2116, 13, 11250, 14692, 33, 11159, 62, 34720, 8973, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 2116, 13, 11250, 14692, 43420, 15235, 8973, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 2116, 13, 11250, 14692, 43420, 15235, 8973, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1976, 385, 11033, 22877, 33467, 645, 354, 288, 292, 44564, 17688, 281, 69, 9116, 5235, 198, 220, 220, 220, 220, 220, 220, 220, 611, 44564, 17688, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 965, 7, 12832, 421, 10027, 17688, 8, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2853, 38477, 324, 287, 220, 9633, 14692, 6978, 8973, 450, 1455, 268, 198, 220, 220, 220, 220, 220, 220, 220, 26672, 3672, 796, 267, 2777, 13, 397, 2777, 776, 7, 267, 2777, 13, 22179, 7, 1635, 6978, 82, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25641, 2977, 14692, 6978, 8973, 796, 26672, 3672, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 26672, 3672, 628, 220, 220, 220, 825, 651, 3237, 38, 48, 32, 7, 944, 11, 279, 2340, 28, 14202, 11, 1332, 36142, 25, 4868, 28, 14202, 11, 614, 25, 600, 28, 14202, 11, 1227, 25, 600, 28, 14202, 11, 1110, 25, 600, 28, 14202, 11, 351, 12360, 28, 17821, 11, 351, 23004, 28, 25101, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 39, 5978, 277, 25151, 4656, 281, 469, 469, 11722, 268, 35550, 268, 7390, 82, 257, 385, 477, 268, 2734, 8448, 198, 220, 220, 220, 220, 220, 220, 220, 4656, 5452, 6499, 10255, 2895, 397, 268, 287, 685, 15546, 3920, 60, 3693, 21357, 60, 3318, 266, 861, 316, 264, 494, 220, 658, 3866, 2395, 358, 257, 385, 628, 198, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 279, 2340, 1058, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 36142, 1058, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 614, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1227, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1110, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12360, 1058, 41876, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 23004, 1058, 41876, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 10352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 308, 20402, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 3046, 65, 559, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4991, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 20850, 31175, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 10951, 6030, 31175, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3492, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 22554, 29, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 20402, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 15878, 82, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9853, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 477, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 22554, 29, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37124, 25, 8633, 11, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3709, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 22554, 31175, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 11122, 501, 27586, 31175, 1391, 10951, 92, 4613, 10564, 266, 1447, 307, 72, 1057, 287, 304, 259, 6060, 19778, 334, 11296, 413, 392, 2120, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2168, 25, 685, 4357, 628, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 79, 2340, 8, 6624, 965, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 2340, 796, 279, 2340, 13, 35312, 7, 2430, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2099, 7, 79, 2340, 8, 6624, 1351, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 2340, 796, 685, 79, 2340, 60, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 279, 2340, 393, 18896, 7, 79, 2340, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 8106, 1976, 385, 321, 3653, 301, 40635, 198, 220, 220, 220, 220, 220, 220, 220, 810, 796, 366, 43, 1677, 26933, 15546, 3920, 60, 3693, 21357, 12962, 1875, 657, 220, 366, 628, 220, 220, 220, 220, 220, 220, 220, 850, 50, 13976, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 46514, 287, 279, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 50, 13976, 13, 33295, 7, 12878, 12130, 1153, 60, 3693, 12130, 1153, 7390, 60, 11639, 90, 92, 6, 1911, 18982, 7, 46514, 13, 36311, 3419, 1267, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 850, 50, 13976, 1267, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 810, 15853, 366, 5357, 5855, 1343, 366, 6375, 27071, 22179, 7, 850, 50, 13976, 1267, 1343, 366, 16725, 628, 220, 220, 220, 220, 220, 220, 220, 4263, 11, 44161, 796, 2116, 13, 1136, 29398, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 751, 8496, 28, 3003, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44564, 17688, 28, 1941, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44564, 31948, 28, 8424, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44564, 12393, 28, 820, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 36142, 28, 9288, 36142, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 12957, 17861, 796, 44161, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38477, 324, 277, 25151, 4656, 12960, 7536, 2013, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 15003, 25468, 15235, 7, 614, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 46012, 533, 38, 48, 32, 7, 4263, 11, 614, 28, 1941, 11, 351, 12360, 28, 4480, 12360, 11, 351, 23004, 28, 4480, 23004, 1267, 628, 220, 220, 220, 825, 8335, 38, 48, 32, 7, 944, 11, 545, 1886, 265, 292, 41888, 4357, 614, 25, 600, 28, 15, 11, 351, 12360, 28, 17821, 11, 351, 23004, 28, 25101, 11, 351, 35, 291, 296, 6601, 25, 30388, 28, 25101, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 385, 86, 861, 2150, 277, 25151, 402, 48, 32, 410, 27688, 567, 270, 268, 1976, 385, 11033, 22877, 33467, 645, 354, 5256, 469, 9374, 20782, 257, 385, 4587, 16092, 268, 17796, 304, 10745, 9116, 5235, 628, 220, 220, 220, 220, 220, 220, 220, 3932, 9101, 83, 328, 4566, 13, 38, 48, 32, 3318, 4566, 13, 41667, 628, 220, 220, 220, 220, 220, 220, 220, 532, 4991, 25, 14631, 14993, 330, 12, 16, 1600, 366, 14993, 330, 12, 17, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 532, 308, 20402, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 9288, 7390, 31175, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 20850, 31175, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 15878, 82, 25, 493, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 545, 1886, 265, 292, 1058, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40666, 2704, 396, 2150, 268, 18042, 44406, 17018, 268, 257, 385, 4587, 6069, 64, 16092, 268, 17796, 13, 383, 4277, 318, 685, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 614, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22196, 40165, 13, 383, 4277, 318, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12360, 1058, 41876, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28654, 7412, 18943, 418, 10255, 289, 259, 89, 3046, 9116, 5235, 13, 383, 4277, 318, 6407, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 23004, 1058, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 309, 7834, 469, 9374, 20782, 10255, 257, 385, 469, 11722, 13, 383, 4277, 318, 10352, 13, 198, 220, 220, 220, 220, 220, 220, 220, 351, 35, 291, 296, 6601, 1058, 25131, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14151, 386, 27602, 11033, 83, 287, 288, 291, 296, 16624, 450, 1455, 268, 13, 383, 4277, 318, 10352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 308, 20402, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 477, 274, 257, 385, 4566, 13, 70, 20402, 288, 11231, 72, 4656, 791, 2737, 10255, 16092, 268, 277, 9116, 297, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 9288, 3672, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 461, 83, 452, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8171, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 293, 270, 2150, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3689, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16926, 46, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 22554, 29, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 20850, 12, 77, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7032, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 15878, 82, 25, 493, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 25, 1351, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 288, 291, 296, 27602, 11033, 83, 837, 1438, 837, 1167, 418, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 291, 296, 16624, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 4991, 796, 2116, 13, 11250, 13, 41667, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 7536, 2013, 545, 38477, 324, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 25876, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 267, 2777, 13, 1069, 1023, 7, 2116, 13, 25641, 2977, 14692, 6978, 8973, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 796, 10644, 7, 2116, 13, 25641, 2977, 14692, 6978, 8973, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37124, 25876, 796, 685, 72, 13, 3672, 329, 1312, 287, 279, 13, 4743, 672, 7, 705, 24620, 12315, 6, 48600, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3696, 796, 28686, 13, 4868, 15908, 7, 2116, 13, 25641, 2977, 14692, 6978, 8973, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 38, 48, 32, 1, 1058, 2116, 13, 11250, 13, 1136, 7203, 38, 48, 32, 11074, 1462, 35, 713, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 41667, 1, 1058, 4991, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 36142, 1, 1058, 1391, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 7390, 82, 1298, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 333, 288, 292, 308, 274, 794, 660, 48984, 81, 11, 11752, 710, 6376, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 43420, 796, 2116, 13, 30094, 62, 43420, 13, 70, 20402, 58, 2116, 13, 30094, 62, 43420, 13, 70, 20402, 17816, 1941, 20520, 6624, 614, 20740, 42503, 62, 9630, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 25747, 796, 685, 366, 13635, 590, 1600, 366, 8094, 1, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 611, 351, 23004, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 25747, 13, 33295, 7203, 7890, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 497, 84, 268, 6376, 900, 4801, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 29533, 4903, 4352, 299, 333, 307, 72, 4818, 268, 287, 47764, 62, 43420, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7568, 62, 43420, 13, 9630, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 43420, 13, 2617, 62, 9630, 7, 47764, 62, 43420, 13, 39014, 7, 50033, 2124, 25, 277, 1, 90, 87, 17816, 1941, 20520, 92, 91, 90, 87, 17816, 20850, 20520, 92, 91, 90, 87, 17816, 9288, 20520, 92, 91, 90, 87, 17816, 22554, 20520, 92, 91, 90, 87, 17816, 8424, 20520, 92, 1600, 16488, 28, 16, 828, 287, 5372, 28, 17821, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 43420, 8973, 796, 47764, 62, 43420, 58, 1255, 62, 25747, 20740, 1462, 62, 11600, 7, 11367, 2625, 35312, 1, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 43420, 8973, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 28665, 82, 1298, 20274, 62, 25747, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 7890, 20598, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9630, 20598, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 15940, 3318, 308, 20402, 220, 2340, 1266, 320, 3653, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1332, 312, 11, 2378, 287, 2116, 13, 11250, 13, 38, 48, 32, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 12985, 1, 287, 2378, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 9288, 36142, 1, 7131, 2378, 14692, 12985, 8973, 2361, 796, 1332, 312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 9288, 7390, 82, 1, 7131, 1332, 312, 2361, 796, 2378, 14692, 12985, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 7621, 3673, 21077, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 287, 15791, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 3673, 21077, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 545, 1886, 1045, 287, 545, 1886, 265, 292, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 45303, 270, 316, 316, 4656, 16092, 268, 17796, 6188, 268, 257, 3046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 1136, 5159, 18943, 418, 7, 545, 1886, 1045, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4326, 796, 7508, 14692, 20850, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 796, 220, 7508, 14692, 22554, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1976, 385, 11033, 22877, 33467, 4656, 16092, 268, 287, 2116, 13, 67, 291, 296, 16624, 450, 1455, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 351, 35, 291, 296, 6601, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4326, 287, 2116, 13, 67, 291, 296, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 291, 296, 16624, 58, 4326, 2361, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1976, 385, 11033, 22877, 33467, 287, 288, 291, 296, 16624, 450, 1455, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 67, 291, 296, 16624, 58, 4326, 41832, 7508, 14692, 312, 8973, 2361, 796, 7508, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 5452, 6499, 1976, 84, 585, 38572, 11, 304, 500, 317, 3046, 40909, 1326, 479, 1236, 277, 25151, 502, 71, 260, 260, 5254, 3326, 86, 437, 316, 266, 263, 6559, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7621, 277, 25151, 4656, 16092, 268, 17796, 11, 1332, 312, 277, 25151, 288, 292, 12960, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1332, 24835, 287, 7508, 14692, 9288, 36142, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 333, 266, 1697, 1658, 257, 794, 304, 42326, 1332, 46795, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1332, 24835, 287, 1366, 14692, 9288, 36142, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 3673, 21077, 58, 1332, 24835, 2361, 796, 1332, 24835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 7390, 796, 1366, 14692, 9288, 36142, 1, 7131, 9288, 24835, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 83, 4587, 1332, 287, 308, 20402, 299, 30830, 1931, 5031, 549, 83, 6184, 120, 1213, 12667, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 461, 83, 425, 479, 1236, 257, 794, 304, 42326, 8255, 920, 14201, 1452, 4587, 7284, 354, 260, 571, 83, 1175, 388, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44855, 11682, 25, 287, 461, 83, 425, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 366, 38, 48, 32, 13, 90, 27422, 10951, 13, 259, 461, 83, 452, 1911, 18982, 7, 1332, 7390, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13, 11250, 13, 1136, 7, 83, 11, 10352, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 15791, 13, 33295, 7, 2116, 13, 11250, 13, 1136, 7, 83, 8, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 46795, 83, 1658, 287, 402, 48, 32, 1208, 437, 1976, 388, 6208, 1357, 13573, 11033, 83, 3318, 4587, 412, 1008, 22699, 304, 42326, 412, 600, 22562, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 796, 366, 38, 48, 32, 13, 90, 27422, 90, 27422, 22554, 15878, 82, 13, 90, 92, 1911, 18982, 7, 1332, 7390, 11, 4326, 11, 2568, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2568, 15878, 82, 796, 2116, 13, 11250, 13, 1136, 7, 83, 11, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2568, 15878, 82, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 3673, 21077, 13, 33295, 7, 256, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3683, 748, 5254, 19308, 91, 41, 51, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7621, 8001, 796, 1332, 7390, 58, 15, 25, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7621, 8001, 6624, 366, 41, 51, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 34227, 796, 366, 15, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3128, 34227, 796, 965, 7, 7508, 14692, 12832, 421, 10027, 31948, 8973, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 796, 1366, 14692, 38, 48, 32, 1, 7131, 9288, 7390, 7131, 20850, 60, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 3128, 34227, 287, 1332, 62, 20850, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 2361, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2568, 287, 1332, 62, 20850, 58, 3128, 34227, 2361, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 41832, 22554, 60, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9127, 82, 1298, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1493, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12315, 5376, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12315, 1298, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13635, 590, 1, 1058, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1052, 89, 15668, 4587, 5452, 6499, 277, 25151, 288, 292, 16092, 5700, 32109, 4587, 12711, 68, 346, 9324, 412, 1008, 22699, 1931, 71, 9101, 831, 357, 9127, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 41832, 2568, 41832, 366, 9127, 82, 1, 2361, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 257, 3046, 3095, 1052, 89, 15668, 778, 9116, 41037, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1332, 62, 20850, 58, 3128, 34227, 41832, 2568, 41832, 366, 9127, 82, 1, 2361, 220, 18189, 2568, 15878, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 41832, 2568, 41832, 366, 1493, 1, 2361, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 12960, 7536, 259, 480, 1976, 385, 321, 3653, 301, 40635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37124, 5376, 796, 2116, 13, 11250, 13, 13287, 62, 28243, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 11250, 14692, 11498, 17041, 1, 7131, 366, 20456, 21215, 1343, 7621, 8001, 1343, 27444, 34345, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12832, 421, 10027, 17688, 1298, 7508, 14692, 12832, 421, 10027, 17688, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12832, 421, 10027, 31948, 1298, 7508, 14692, 12832, 421, 10027, 31948, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 20850, 1298, 4326, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22554, 1298, 2568, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 7390, 1298, 1332, 7390, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 37124, 5376, 287, 37124, 25876, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 41832, 2568, 41832, 366, 12315, 5376, 1, 2361, 796, 37124, 5376, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 20850, 58, 3128, 34227, 41832, 2568, 41832, 366, 12315, 1, 2361, 796, 6407, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 299, 30830, 308, 891, 917, 1734, 44789, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 259, 15791, 8973, 796, 287, 15791, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 12985, 3673, 21077, 8973, 796, 7621, 3673, 21077, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 9288, 3673, 21077, 8973, 796, 1332, 3673, 21077, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 628, 220, 220, 220, 1303, 41436, 438, 304, 10745, 4891, 27545, 70, 397, 268, 198, 220, 220, 220, 825, 651, 51, 16406, 7, 944, 11, 1242, 25, 2536, 2625, 12853, 1600, 46514, 25, 4868, 41888, 4357, 5072, 62, 18982, 2625, 17752, 1, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6765, 44789, 287, 18957, 34873, 1142, 435, 82, 27711, 309, 9608, 293, 1976, 333, 9116, 694, 469, 11722, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1242, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3683, 4587, 309, 16406, 16904, 40635, 27972, 383, 4277, 318, 366, 12853, 1911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1336, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 1332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 15940, 628, 220, 220, 220, 220, 220, 220, 220, 46514, 1058, 1351, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2895, 11231, 18042, 28021, 7390, 82, 277, 25151, 4656, 44789, 1266, 8608, 83, 266, 263, 6559, 523, 297, 268, 13, 383, 4277, 318, 685, 4083, 628, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 18982, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18980, 4587, 27545, 70, 11231, 685, 33918, 11, 27711, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 965, 91, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 44789, 2438, 267, 1082, 8633, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 3918, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7635, 29, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 1391, 628, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 25, 1303, 20370, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 12, 17989, 25, 5053, 16809, 3970, 11, 317, 4454, 11, 38078, 12, 2655, 361, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 12, 10394, 25, 1802, 8416, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4865, 12, 26000, 7512, 25, 9807, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4865, 12, 2777, 4092, 25, 657, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 12, 7857, 25, 838, 8416, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 41560, 11, 764, 70, 20402, 12, 12985, 2667, 3084, 294, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4865, 25, 352, 8416, 4735, 12768, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2420, 12, 31494, 25, 3641, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11723, 12, 31494, 25, 3504, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 294, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 12, 6551, 25, 10758, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 262, 324, 294, 11, 764, 70, 20402, 12, 12985, 2667, 3084, 256, 2618, 294, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4469, 12, 8043, 25, 1303, 37, 22, 37, 22, 37, 22, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 41560, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4469, 12, 8043, 25, 2330, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 12, 12985, 2667, 3084, 294, 11, 764, 70, 20402, 12, 12985, 2667, 3084, 41560, 11, 764, 70, 20402, 12, 12985, 2667, 3084, 8305, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24511, 25, 362, 8416, 362, 8416, 362, 8416, 362, 8416, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7635, 29, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 6626, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1242, 6624, 366, 31499, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 307, 72, 15940, 369, 76, 434, 299, 30830, 4328, 2621, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 796, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 15940, 796, 2116, 13, 1136, 36142, 7, 46514, 11, 6626, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 15940, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 15940, 393, 18896, 7, 31499, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 1136, 51, 16406, 25, 885, 500, 16092, 268, 308, 891, 917, 268, 1, 628, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 705, 27, 7146, 1398, 2625, 70, 20402, 12, 12985, 2667, 7059, 12, 16, 5320, 6, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 15853, 705, 27, 71, 16, 1398, 2625, 76, 12, 15, 279, 12, 16, 2420, 12, 11186, 275, 70, 12, 38238, 5320, 8001, 25, 705, 1343, 1242, 1343, 705, 3556, 71, 17, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16492, 292, 1931, 2736, 42740, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 15940, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1242, 6624, 366, 12853, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 279, 67, 13, 79, 45785, 62, 11487, 7, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 17816, 21357, 3256, 705, 49046, 7390, 3256, 705, 20854, 40786, 7390, 3256, 705, 28925, 3256, 705, 35, 577, 32184, 3256, 705, 15546, 3920, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 11639, 12130, 1153, 7390, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 28, 366, 22510, 647, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1242, 6624, 366, 16345, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 279, 67, 13, 79, 45785, 62, 11487, 7, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 17816, 21357, 3256, 705, 49046, 7390, 3256, 705, 20854, 40786, 7390, 41707, 28925, 3256, 705, 35, 577, 32184, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 17816, 12130, 1153, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 28, 705, 22510, 647, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4194, 20786, 41888, 37659, 13, 16345, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1242, 6624, 366, 9288, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 279, 67, 13, 79, 45785, 62, 11487, 7, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 17816, 21357, 3256, 705, 49046, 7390, 3256, 705, 28925, 3256, 705, 35, 577, 32184, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 41888, 705, 20854, 40786, 7390, 3256, 705, 12130, 1153, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 28, 705, 22510, 647, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4194, 20786, 41888, 37659, 13, 16345, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1242, 6624, 366, 31499, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 279, 67, 13, 79, 45785, 62, 11487, 7, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 28, 17816, 21357, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15180, 28, 17816, 12130, 1153, 7390, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 28, 705, 22510, 647, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 8367, 28, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9460, 20786, 41888, 37659, 13, 16345, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 15940, 1976, 333, 9116, 694, 469, 11722, 435, 82, 304, 10745, 4891, 309, 9608, 293, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 11487, 796, 47764, 58, 14631, 21357, 8973, 20740, 8094, 1525, 7, 366, 21357, 1, 6739, 11085, 22446, 42503, 62, 9630, 3419, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3084, 13, 20797, 2616, 10786, 3256, 287, 5372, 28, 17821, 8, 628, 220, 220, 220, 220, 220, 220, 220, 27711, 15853, 357, 11487, 13, 7635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 39014, 8899, 7, 7238, 62, 69, 24905, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2617, 62, 11487, 62, 1078, 7657, 10786, 4871, 2625, 70, 20402, 12, 12985, 2667, 12, 11487, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 13, 22468, 62, 18982, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 13287, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 27711, 15853, 705, 3556, 7146, 29, 6, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3918, 1343, 27711, 628, 198, 220, 220, 220, 825, 651, 46912, 7, 2116, 11, 5072, 62, 18982, 2625, 17752, 1600, 42287, 25, 11600, 34758, 92, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 38, 571, 83, 304, 500, 7343, 68, 28654, 6208, 12636, 354, 260, 571, 2150, 268, 357, 11250, 8, 10255, 1052, 293, 270, 2150, 268, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 62, 18982, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18980, 4587, 27545, 70, 11231, 685, 33918, 11, 27711, 2361, 198, 220, 220, 220, 220, 220, 220, 220, 42287, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 317, 3046, 622, 69, 17143, 2357, 10255, 614, 3318, 1227, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 965, 91, 11600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 17593, 2438, 267, 1082, 8633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 474, 993, 81, 3318, 2892, 265, 307, 72, 657, 10255, 1357, 257, 21841, 518, 297, 268, 307, 1455, 268, 198, 220, 220, 220, 220, 220, 220, 220, 1909, 796, 3128, 13, 40838, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 14692, 1941, 8973, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 1941, 8973, 796, 1909, 13, 1941, 198, 220, 220, 220, 220, 220, 220, 220, 611, 42287, 14692, 8424, 8973, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 14692, 8424, 8973, 796, 1909, 13, 8424, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 37124, 266, 1447, 1976, 388, 9717, 268, 4587, 3567, 660, 3326, 86, 437, 316, 198, 220, 220, 220, 220, 220, 220, 220, 422, 318, 79, 13, 3149, 7568, 1330, 350, 7568, 8645, 1352, 355, 318, 79, 47, 7568, 198, 220, 220, 220, 220, 220, 220, 220, 37124, 796, 318, 79, 47, 7568, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 73, 83, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 16762, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 20471, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 2695, 287, 2116, 13, 11250, 13, 38, 48, 32, 13, 23814, 33529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2539, 1, 1058, 1994, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22504, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 31227, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 272, 293, 270, 2150, 1, 1058, 366, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 354, 2419, 1, 1058, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12014, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4991, 3318, 2568, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4326, 62, 2539, 11, 4326, 287, 2116, 13, 11250, 13, 41667, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4326, 287, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2568, 287, 2695, 58, 4326, 20740, 22554, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12014, 13, 33295, 7, 1391, 366, 4871, 1298, 366, 14774, 469, 23009, 12, 27215, 23009, 12, 10951, 285, 81, 12, 16, 1600, 366, 11299, 1298, 45144, 92, 532, 23884, 1911, 18982, 7, 4326, 62, 2539, 11, 2568, 1267, 220, 1782, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7508, 1266, 320, 3653, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2695, 13, 10951, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 22504, 8973, 796, 7508, 13, 1136, 7203, 22504, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 796, 7508, 13, 1136, 7203, 31227, 1600, 366, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2099, 7, 31227, 8, 6624, 965, 290, 761, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12014, 13, 33295, 7, 1391, 366, 4871, 1298, 366, 14774, 469, 23009, 12, 27215, 23009, 12, 13138, 1600, 366, 11299, 1298, 705, 11722, 9101, 83, 328, 83, 25, 705, 1343, 761, 220, 1782, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1052, 293, 270, 2150, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 293, 270, 2150, 62, 34345, 796, 7508, 13, 1136, 7203, 272, 293, 270, 2150, 1600, 366, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 796, 705, 27, 79, 1398, 2625, 14774, 469, 23009, 12, 27215, 23009, 12, 39754, 5320, 2025, 293, 270, 2150, 730, 71, 2528, 0, 3556, 79, 29, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 281, 293, 270, 2150, 62, 34345, 14512, 366, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 281, 293, 270, 2150, 796, 37124, 13, 5239, 8979, 7, 272, 293, 270, 2150, 62, 34345, 11, 8543, 796, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 281, 293, 270, 2150, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 796, 281, 293, 270, 2150, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 309, 13625, 35410, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 796, 2695, 13, 10951, 13, 1136, 7203, 83, 37668, 1600, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 15621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 33490, 71, 21, 29, 51, 13625, 35410, 3556, 71, 21, 24618, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 70, 69, 1296, 417, 1931, 301, 40635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 304, 11, 2378, 287, 15621, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46012, 533, 62, 83, 37668, 7, 2539, 11, 304, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8214, 35410, 304, 10745, 9116, 5235, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 705, 27, 3866, 1398, 2625, 83, 13625, 35410, 275, 70, 12, 2971, 2420, 12, 2144, 24912, 366, 29, 6, 1343, 33918, 13, 67, 8142, 7, 15621, 11, 33793, 28, 17, 1267, 1343, 705, 3556, 3866, 29, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 318, 83, 4587, 1332, 435, 82, 287, 461, 83, 452, 29094, 732, 271, 220, 257, 385, 469, 11722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 461, 83, 452, 796, 2695, 13, 10951, 13, 1136, 10786, 259, 461, 83, 452, 3256, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 287, 461, 83, 452, 14512, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12014, 13, 33295, 7, 1391, 366, 4871, 1298, 366, 259, 461, 83, 452, 1600, 366, 11299, 1298, 705, 818, 461, 83, 452, 25, 705, 1343, 287, 461, 83, 452, 1782, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 46795, 83, 1658, 11902, 2895, 397, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11902, 796, 2695, 13, 10951, 13, 1136, 10786, 25968, 3256, 685, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 25968, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2378, 287, 11902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12014, 13, 33295, 7, 1391, 366, 4871, 1298, 366, 14774, 469, 23009, 12, 27215, 23009, 12, 39754, 1600, 366, 11299, 1298, 705, 30719, 266, 1697, 25, 705, 1343, 2378, 1343, 705, 7477, 6, 1782, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16926, 46, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 4598, 796, 2695, 13, 10951, 13, 1136, 7203, 51, 3727, 46, 1600, 10352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 284, 4598, 290, 18896, 7, 83, 24313, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 366, 51, 3727, 46, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 705, 27, 3866, 1398, 2625, 79, 12, 16, 275, 70, 12, 43917, 5320, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 284, 4598, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 366, 9, 366, 1343, 256, 1343, 37082, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 272, 293, 270, 2150, 8973, 15853, 705, 3556, 3866, 29, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1317, 959, 2150, 268, 1976, 385, 321, 3653, 301, 40635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 11594, 287, 12014, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 14692, 354, 2419, 8973, 15853, 705, 27, 7146, 1398, 2625, 90, 4871, 92, 5320, 90, 11299, 92, 3556, 7146, 29, 4458, 18982, 7, 1174, 35902, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 58, 1994, 2361, 796, 2695, 13, 1462, 35, 713, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 62, 11600, 58, 1994, 41832, 366, 272, 293, 270, 2150, 1, 2361, 796, 281, 293, 270, 2150, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2657, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 9517, 285, 12, 18, 1, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 9517, 12, 25677, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 12626, 1398, 2625, 10331, 12, 6551, 12, 65, 19892, 5320, 90, 2539, 92, 3556, 12626, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 12626, 1398, 2625, 489, 12, 18, 5320, 90, 22504, 92, 3556, 12626, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 22468, 12, 3506, 5320, 90, 354, 2419, 92, 3556, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 9517, 12, 2618, 279, 12, 16, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 272, 293, 270, 2150, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7359, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 1911, 18982, 7, 12429, 7890, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 58, 15, 25, 17, 60, 6624, 366, 41, 51, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 73, 83, 15853, 2657, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1994, 58, 15, 25, 17, 60, 6624, 366, 13752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 16762, 15853, 2657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27711, 62, 20471, 15853, 2657, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5072, 62, 18982, 6624, 366, 17752, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1366, 62, 11600, 628, 220, 220, 220, 220, 220, 220, 220, 3918, 796, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7635, 29, 198, 220, 220, 220, 220, 220, 220, 220, 11900, 1052, 6603, 2150, 37124, 2420, 9466, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 62, 6759, 8609, 289, 17, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 12, 7857, 25, 352, 13, 1433, 3134, 368, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 12, 6551, 25, 10758, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1627, 12, 17015, 25, 352, 13, 27033, 368, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10330, 12, 4852, 25, 657, 13, 20, 368, 26, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10330, 12, 22487, 25, 657, 13, 20, 368, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 764, 70, 20402, 62, 6759, 8609, 764, 9517, 12, 2618, 279, 3712, 11085, 12, 1659, 12, 4906, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4469, 12, 8043, 25, 1303, 29312, 5777, 3838, 26, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7635, 29, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27711, 796, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 70, 20402, 62, 6759, 8609, 5320, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 71, 16, 1398, 2625, 76, 12, 15, 279, 12, 16, 2420, 12, 11186, 275, 70, 12, 38238, 1, 1875, 13450, 397, 268, 277, 25151, 25, 1391, 8424, 92, 14, 90, 1941, 92, 3556, 71, 16, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 11299, 1398, 2625, 79, 12, 16, 288, 12, 32880, 7059, 12, 808, 1, 1875, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 86, 12, 1120, 5320, 90, 73, 83, 92, 3556, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 86, 12, 1120, 5320, 90, 16762, 92, 3556, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 1279, 7146, 1398, 2625, 5320, 90, 20471, 92, 3556, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 11299, 29, 198, 220, 220, 220, 220, 220, 220, 220, 7359, 7146, 29, 198, 220, 220, 220, 220, 220, 220, 220, 10148, 4458, 18982, 7, 474, 83, 28, 6494, 62, 73, 83, 11, 45079, 28, 6494, 62, 16762, 11, 299, 77, 28, 6494, 62, 20471, 11, 12429, 37266, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 3918, 1343, 27711, 628, 220, 220, 220, 825, 8335, 62, 83, 37668, 7, 944, 11, 1332, 312, 25, 2536, 2625, 1600, 2568, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 6836, 9116, 701, 909, 1658, 287, 369, 328, 304, 500, 15621, 2895, 11231, 277, 25151, 4656, 1332, 312, 3318, 4656, 412, 1008, 22699, 46795, 83, 628, 220, 220, 220, 220, 220, 220, 220, 520, 695, 83, 266, 1697, 277, 299, 30830, 281, 469, 469, 11722, 266, 2799, 68, 304, 500, 5178, 417, 287, 277, 1976, 385, 321, 3653, 628, 220, 220, 220, 220, 220, 220, 220, 12488, 83, 1658, 304, 500, 402, 48, 32, 29847, 9288, 312, 28401, 10951, 13, 83, 37668, 13, 12286, 2895, 11231, 11, 523, 266, 1447, 10564, 68, 435, 82, 25665, 358, 75, 496, 277, 25151, 28654, 412, 25649, 2013, 3326, 86, 437, 316, 628, 220, 220, 220, 220, 220, 220, 220, 1168, 732, 328, 287, 4566, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 402, 48, 32, 29847, 9288, 312, 28401, 10951, 13, 83, 37668, 29847, 22554, 29, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 25, 1296, 417, 10255, 1391, 8367, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 25, 266, 861, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2837, 25, 685, 1084, 11, 3509, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10088, 25, 685, 37430, 11, 497, 11, 300, 83, 11, 308, 83, 11, 443, 11, 4903, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 312, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 748, 1976, 84, 3326, 283, 15357, 437, 268, 15621, 37951, 488, 82, 628, 220, 220, 220, 220, 220, 220, 220, 2568, 1058, 965, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2447, 11231, 4587, 412, 1008, 22699, 277, 25151, 4656, 14151, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3966, 710, 2895, 11231, 266, 1447, 299, 333, 4587, 25139, 2357, 7508, 1976, 333, 9116, 694, 469, 469, 11722, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 1058, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25139, 2357, 7508, 10255, 1976, 385, 11033, 22877, 677, 831, 2895, 397, 268, 277, 25151, 4656, 412, 1008, 22699, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1355, 8802, 8207, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 12286, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43917, 1, 1058, 1391, 366, 69, 2404, 8937, 15090, 8367, 30072, 1875, 352, 13, 15, 1600, 366, 20850, 1298, 36521, 1, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18224, 1, 1058, 1391, 366, 69, 2404, 8937, 15090, 8367, 30072, 1875, 362, 13, 15, 1600, 366, 20850, 1298, 36521, 1, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9122, 1, 1058, 1391, 366, 3245, 1298, 366, 26069, 1600, 366, 22766, 2404, 11682, 6624, 1802, 1, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 42422, 62, 1238, 1298, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43917, 1, 1058, 1391, 366, 69, 2404, 8937, 15090, 8367, 30072, 1875, 352, 13, 15, 1600, 366, 20850, 1298, 36521, 1, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 18224, 1, 1058, 1391, 366, 69, 2404, 8937, 15090, 8367, 30072, 1875, 362, 13, 20, 1600, 366, 20850, 1298, 36521, 1, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 9122, 1, 1058, 1391, 366, 3245, 1298, 366, 26069, 1600, 366, 22766, 2404, 11682, 6624, 1160, 1, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 7508, 796, 2116, 13, 11250, 13, 1136, 7, 14631, 38, 48, 32, 1600, 1332, 312, 11, 366, 10951, 1, 2361, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 7508, 13, 83, 37668, 13, 1136, 7, 366, 12286, 1600, 10352, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 15621, 796, 7508, 13, 83, 37668, 13, 1136, 7, 2568, 11, 10352, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 15621, 290, 407, 4277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 22875, 13912, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 4277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 796, 22875, 13912, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 15621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 796, 8633, 62, 647, 469, 7, 4277, 11, 15621, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 796, 4277, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 46012, 533, 62, 83, 37668, 15621, 1600, 15621, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1330, 1257, 310, 10141, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 28654, 2895, 397, 268, 288, 2575, 469, 831, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 15621, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 15621, 13, 1136, 7, 3672, 828, 8633, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1242, 5376, 11, 1242, 287, 15621, 13, 1136, 7, 3672, 737, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 6184, 120, 1213, 12667, 268, 266, 1697, 1242, 796, 523, 297, 267, 1082, 277, 5513, 261, 410, 273, 4993, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1242, 5376, 6624, 366, 568, 297, 1, 393, 1242, 13, 1136, 7203, 69, 1600, 6045, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 46795, 83, 1658, 885, 500, 1296, 417, 288, 1236, 1931, 301, 40635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 266, 2799, 68, 304, 259, 266, 861, 281, 469, 469, 11722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 8367, 796, 1242, 13, 1136, 7203, 8367, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 9521, 796, 1242, 13, 1136, 7203, 9521, 1600, 6045, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4808, 8367, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 89, 15573, 301, 2853, 10088, 15292, 1455, 268, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10088, 796, 1242, 13, 1136, 7203, 46616, 1600, 366, 13655, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 685, 37430, 11, 497, 11, 300, 83, 11, 308, 83, 11, 443, 11, 4903, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10088, 796, 1257, 310, 10141, 13, 445, 7234, 7, 50033, 257, 11, 275, 25, 257, 13, 33491, 46491, 65, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 685, 10786, 27363, 41707, 855, 33809, 10786, 710, 41707, 0, 11639, 828, 10786, 2528, 3256, 705, 27, 33809, 7, 705, 13655, 3256, 705, 29, 33809, 7, 705, 293, 41707, 27, 11639, 828, 7, 705, 469, 3256, 705, 29, 28, 11537, 60, 1303, 2676, 540, 286, 14729, 25, 357, 727, 2100, 11, 649, 2100, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 10088, 1303, 464, 4731, 422, 543, 284, 6330, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 58, 3672, 7131, 433, 5376, 7131, 1, 69, 8973, 796, 366, 8937, 15090, 30072, 23884, 23884, 1911, 18982, 7, 45144, 8367, 92, 1600, 10088, 11, 4808, 8367, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 266, 2799, 68, 304, 259, 37951, 488, 281, 469, 469, 11722, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1242, 13, 1136, 7203, 9521, 1600, 6045, 8, 290, 18896, 28264, 9521, 8, 18189, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15621, 58, 3672, 7131, 433, 5376, 7131, 1, 69, 8973, 796, 45144, 92, 19841, 23884, 18189, 23884, 1911, 18982, 7, 4808, 9521, 58, 15, 4357, 45144, 8367, 92, 1600, 4808, 9521, 58, 16, 60, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 15621, 628, 198, 220, 220, 220, 1303, 41436, 438, 6208, 288, 2575, 69, 9116, 11840, 2150, 628 ]
1.882654
13,473
#!/usr/bin/env python ## evoware/py -- python modules for Evoware scripting ## Copyright 2014 - 2019 Raik Gruenberg ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """Reset a (worklist) file to empty; or create an empty file.""" import sys, os import evoware.fileutil as F import evoware.dialogs as D ########################### # MAIN ########################### if __name__ == '__main__': f = '' try: if len(sys.argv) < 2: _use() f = F.absfile(sys.argv[1]) h = open(f, 'w') h.close() except Exception as why: D.lastException('Error resetting file %r' % f)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2235, 220, 819, 322, 533, 14, 9078, 1377, 21015, 13103, 329, 4319, 322, 533, 36883, 198, 2235, 220, 220, 15069, 1946, 532, 13130, 7567, 1134, 25665, 23140, 198, 2235, 198, 2235, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2235, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2235, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2235, 198, 2235, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2235, 198, 2235, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2235, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2235, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2235, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2235, 220, 220, 11247, 739, 262, 13789, 13, 198, 37811, 4965, 316, 257, 357, 1818, 4868, 8, 2393, 284, 6565, 26, 393, 2251, 281, 6565, 2393, 526, 15931, 198, 198, 11748, 25064, 11, 28686, 198, 198, 11748, 819, 322, 533, 13, 7753, 22602, 355, 376, 198, 11748, 819, 322, 533, 13, 38969, 18463, 355, 360, 198, 198, 14468, 7804, 21017, 198, 2, 8779, 1268, 198, 14468, 7804, 21017, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 198, 220, 220, 220, 277, 796, 10148, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 17597, 13, 853, 85, 8, 1279, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 1904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 277, 796, 376, 13, 8937, 7753, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 289, 796, 1280, 7, 69, 11, 705, 86, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 289, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2845, 35528, 355, 1521, 25, 198, 220, 220, 220, 220, 220, 220, 220, 360, 13, 12957, 16922, 10786, 12331, 13259, 889, 2393, 4064, 81, 6, 4064, 277, 8, 198 ]
2.726651
439
# test.py # a list of attributes a component should have for sure basic = [ 'merit_tag', 'styling', 'dof', 'lower', 'upper', 'lifetime', 'capex', 'opex', 'variable_cost', 'variable_income', ] power_control = [ 'positive', 'negative', ]
[ 2, 1332, 13, 9078, 198, 198, 2, 257, 1351, 286, 12608, 257, 7515, 815, 423, 329, 1654, 198, 35487, 796, 685, 198, 220, 220, 220, 705, 647, 270, 62, 12985, 3256, 198, 220, 220, 220, 705, 34365, 1359, 3256, 198, 220, 220, 220, 705, 67, 1659, 3256, 198, 220, 220, 220, 705, 21037, 3256, 198, 220, 220, 220, 705, 45828, 3256, 198, 220, 220, 220, 705, 36195, 8079, 3256, 198, 220, 220, 220, 705, 36435, 87, 3256, 198, 220, 220, 220, 705, 404, 1069, 3256, 198, 220, 220, 220, 705, 45286, 62, 15805, 3256, 198, 220, 220, 220, 705, 45286, 62, 12519, 3256, 198, 60, 198, 198, 6477, 62, 13716, 796, 685, 198, 220, 220, 220, 705, 24561, 3256, 198, 220, 220, 220, 705, 31591, 3256, 198, 60, 628 ]
2.224806
129
import tensorflow as tf #from tensorflow import keras #from tensorflow.keras import backend as K import numpy as np #import matplotlib.pyplot as plt from time import sleep #=======================================================================================# class SOMLayer(tf.keras.layers.Layer): """ Self-Organizing Map layer class with rectangular topology # Example ``` model.add(SOMLayer(map_size=(10,10))) ``` # Arguments map_size: Tuple representing the size of the rectangular map. Number of prototypes is map_size[0]*map_size[1]. prototypes: Numpy array with shape `(n_prototypes, latent_dim)` witch represents the initial cluster centers # Input shape 2D tensor with shape: `(n_samples, latent_dim)` # Output shape 2D tensor with shape: `(n_samples, n_prototypes)` """ def call(self, inputs, **kwargs): """ Calculate pairwise squared euclidean distances between inputs and prototype vectors Arguments: inputs: the variable containing data, Tensor with shape `(n_samples, latent_dim)` Return: d: distances between inputs and prototypes, Tensor with shape `(n_samples, n_prototypes)` """ # Note: (tf.expand_dims(inputs, axis=1) - self.prototypes) has shape (n_samples, n_prototypes, latent_dim) d = tf.reduce_sum(tf.square(tf.expand_dims(inputs, axis=1) - self.prototypes), axis=2) return d
[ 11748, 11192, 273, 11125, 355, 48700, 198, 2, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 2, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 30203, 355, 509, 198, 11748, 299, 32152, 355, 45941, 198, 2, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 640, 1330, 3993, 198, 198, 2, 23926, 4770, 1421, 18604, 2, 198, 198, 4871, 42121, 49925, 7, 27110, 13, 6122, 292, 13, 75, 6962, 13, 49925, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12189, 12, 26121, 2890, 9347, 7679, 1398, 351, 36954, 1353, 1435, 198, 220, 220, 220, 1303, 17934, 198, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 13, 2860, 7, 50, 2662, 49925, 7, 8899, 62, 7857, 16193, 940, 11, 940, 22305, 198, 220, 220, 220, 7559, 63, 198, 220, 220, 220, 1303, 20559, 2886, 198, 220, 220, 220, 220, 220, 220, 220, 3975, 62, 7857, 25, 309, 29291, 10200, 262, 2546, 286, 262, 36954, 3975, 13, 7913, 286, 32338, 318, 3975, 62, 7857, 58, 15, 60, 9, 8899, 62, 7857, 58, 16, 4083, 198, 220, 220, 220, 220, 220, 220, 220, 32338, 25, 399, 32152, 7177, 351, 5485, 4600, 7, 77, 62, 11235, 13567, 11, 41270, 62, 27740, 8, 63, 16365, 6870, 262, 4238, 13946, 10399, 198, 220, 220, 220, 1303, 23412, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 362, 35, 11192, 273, 351, 5485, 25, 4600, 7, 77, 62, 82, 12629, 11, 41270, 62, 27740, 8, 63, 198, 220, 220, 220, 1303, 25235, 5485, 198, 220, 220, 220, 220, 220, 220, 220, 362, 35, 11192, 273, 351, 5485, 25, 4600, 7, 77, 62, 82, 12629, 11, 299, 62, 11235, 13567, 8, 63, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 869, 7, 944, 11, 17311, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 27131, 378, 5166, 3083, 44345, 304, 36616, 485, 272, 18868, 1022, 17311, 290, 14879, 30104, 198, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17311, 25, 262, 7885, 7268, 1366, 11, 309, 22854, 351, 5485, 4600, 7, 77, 62, 82, 12629, 11, 41270, 62, 27740, 8, 63, 198, 220, 220, 220, 220, 220, 220, 220, 8229, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 25, 18868, 1022, 17311, 290, 32338, 11, 309, 22854, 351, 5485, 4600, 7, 77, 62, 82, 12629, 11, 299, 62, 11235, 13567, 8, 63, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5740, 25, 357, 27110, 13, 11201, 392, 62, 67, 12078, 7, 15414, 82, 11, 16488, 28, 16, 8, 532, 2116, 13, 11235, 13567, 8, 468, 5485, 357, 77, 62, 82, 12629, 11, 299, 62, 11235, 13567, 11, 41270, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 288, 796, 48700, 13, 445, 7234, 62, 16345, 7, 27110, 13, 23415, 7, 27110, 13, 11201, 392, 62, 67, 12078, 7, 15414, 82, 11, 16488, 28, 16, 8, 532, 2116, 13, 11235, 13567, 828, 16488, 28, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 288, 628 ]
2.699634
546
# 034_Aumentos_multiplos.py print() salario = float(input("Salário atual: R$")) print() # if (salario <= 1250): # salario *= 1.15 # -> salario = salario * 1.15 # else: # salario *= 1.10 # -> salario = salario * 1.10 salario = salario * 1.15 if salario<= 1250 else salario * 1.10 print(f"Seu novo salário será: {salario:.2f}") print()
[ 2, 657, 2682, 62, 32, 1713, 418, 62, 47945, 418, 13, 9078, 198, 198, 4798, 3419, 198, 21680, 4982, 796, 12178, 7, 15414, 7203, 19221, 6557, 27250, 379, 723, 25, 371, 3, 48774, 198, 4798, 3419, 198, 2, 611, 357, 21680, 4982, 19841, 1105, 1120, 2599, 198, 2, 220, 220, 220, 220, 3664, 4982, 1635, 28, 352, 13, 1314, 1303, 4613, 3664, 4982, 796, 3664, 4982, 1635, 352, 13, 1314, 198, 2, 2073, 25, 198, 2, 220, 220, 220, 220, 3664, 4982, 1635, 28, 352, 13, 940, 1303, 4613, 3664, 4982, 796, 3664, 4982, 1635, 352, 13, 940, 198, 198, 21680, 4982, 796, 3664, 4982, 1635, 352, 13, 1314, 611, 3664, 4982, 27, 28, 1105, 1120, 2073, 3664, 4982, 1635, 352, 13, 940, 198, 198, 4798, 7, 69, 1, 4653, 84, 645, 13038, 3664, 6557, 27250, 1055, 6557, 25, 1391, 21680, 4982, 25, 13, 17, 69, 92, 4943, 198, 4798, 3419, 198 ]
2.269737
152
# # Copyright 2020 Two Sigma Open Source, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """This program should exit within a second or two if CTRL+C is pressed (SIGINT).""" import time import uberjob if __name__ == "__main__": main()
[ 2, 198, 2, 15069, 12131, 4930, 31669, 4946, 8090, 11, 11419, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 37811, 1212, 1430, 815, 8420, 1626, 257, 1218, 393, 734, 611, 45249, 10, 34, 318, 12070, 357, 50, 3528, 12394, 21387, 15931, 198, 11748, 640, 198, 198, 11748, 48110, 21858, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.631068
206
from collections import defaultdict import numpy as np r, c, k = map(int, input().split()) items = np.zeros((r, c), np.int32) for _ in range(k): y, x, v = map(int, input().split()) items[y - 1, x - 1] = v dp = np.zeros((r, c, 4), np.int64) for y in range(r): for x in range(c): dp[y, x, 0] = max(dp[y - 1, x]) if y != 0 else 0 dp[y, x, 1] = max(dp[y - 1, x]) + items[y, x] if y != 0 else 0 dp[y, x, 0] = max(dp[y, x, 0], dp[y, x - 1, 0]) if x != 0 else dp[y, x, 0] if x != 0: for k in range(3): dp[y, x, k + 1] = max(dp[y, x - 1, k] + items[y, x], dp[y, x - 1, k + 1], dp[y, x, k + 1]) else: dp[y, x, 1] = dp[y, x, 0] + items[y, x] #print(*dp, sep="\n") print(max(dp[-1, -1]))
[ 6738, 17268, 1330, 4277, 11600, 198, 11748, 299, 32152, 355, 45941, 198, 198, 81, 11, 269, 11, 479, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 23814, 796, 45941, 13, 9107, 418, 19510, 81, 11, 269, 828, 45941, 13, 600, 2624, 8, 198, 198, 1640, 4808, 287, 2837, 7, 74, 2599, 198, 220, 220, 220, 331, 11, 2124, 11, 410, 796, 3975, 7, 600, 11, 5128, 22446, 35312, 28955, 198, 220, 220, 220, 3709, 58, 88, 532, 352, 11, 2124, 532, 352, 60, 796, 410, 198, 198, 26059, 796, 45941, 13, 9107, 418, 19510, 81, 11, 269, 11, 604, 828, 45941, 13, 600, 2414, 8, 198, 198, 1640, 331, 287, 2837, 7, 81, 2599, 198, 220, 220, 220, 329, 2124, 287, 2837, 7, 66, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 58, 88, 11, 2124, 11, 657, 60, 796, 3509, 7, 26059, 58, 88, 532, 352, 11, 2124, 12962, 611, 331, 14512, 657, 2073, 657, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 58, 88, 11, 2124, 11, 352, 60, 796, 3509, 7, 26059, 58, 88, 532, 352, 11, 2124, 12962, 1343, 3709, 58, 88, 11, 2124, 60, 611, 331, 14512, 657, 2073, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 288, 79, 58, 88, 11, 2124, 11, 657, 60, 796, 3509, 7, 26059, 58, 88, 11, 2124, 11, 657, 4357, 288, 79, 58, 88, 11, 2124, 532, 352, 11, 657, 12962, 611, 2124, 14512, 657, 2073, 288, 79, 58, 88, 11, 2124, 11, 657, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2124, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 287, 2837, 7, 18, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 79, 58, 88, 11, 2124, 11, 479, 1343, 352, 60, 796, 3509, 7, 26059, 58, 88, 11, 2124, 532, 352, 11, 479, 60, 1343, 3709, 58, 88, 11, 2124, 4357, 288, 79, 58, 88, 11, 2124, 532, 352, 11, 479, 1343, 352, 4357, 288, 79, 58, 88, 11, 2124, 11, 479, 1343, 352, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 79, 58, 88, 11, 2124, 11, 352, 60, 796, 288, 79, 58, 88, 11, 2124, 11, 657, 60, 1343, 3709, 58, 88, 11, 2124, 60, 198, 198, 2, 4798, 46491, 26059, 11, 41767, 2625, 59, 77, 4943, 198, 4798, 7, 9806, 7, 26059, 58, 12, 16, 11, 532, 16, 60, 4008 ]
1.773243
441
#!/usr/bin/python2 -utt # -*- coding: utf-8 -*- import torch import torch.nn as nn import numpy as np import sys import os import time from PIL import Image from torch.autograd import Variable import torch.backends.cudnn as cudnn import torch.optim as optim from tqdm import tqdm import math import torch.nn.functional as F from copy import deepcopy from SparseImgRepresenter import ScaleSpaceAffinePatchExtractor from LAF import denormalizeLAFs, LAFs2ellT, abc2A from Utils import line_prepender from architectures import AffNetFast from HandCraftedModules import AffineShapeEstimator USE_CUDA = False try: input_img_fname = sys.argv[1] output_fname = sys.argv[2] nfeats = int(sys.argv[3]) except: print "Wrong input format. Try python hesaffBaum.py imgs/cat.png cat.txt 2000" sys.exit(1) img = Image.open(input_img_fname).convert('RGB') img = np.mean(np.array(img), axis = 2) var_image = torch.autograd.Variable(torch.from_numpy(img.astype(np.float32)), volatile = True) var_image_reshape = var_image.view(1, 1, var_image.size(0),var_image.size(1)) HA = ScaleSpaceAffinePatchExtractor( mrSize = 5.192, num_features = nfeats, border = 5, num_Baum_iters = 16, AffNet = AffineShapeEstimator(patch_size=19)) if USE_CUDA: HA = HA.cuda() var_image_reshape = var_image_reshape.cuda() LAFs, resp = HA(var_image_reshape) ells = LAFs2ellT(LAFs.cpu()).cpu().numpy() np.savetxt(output_fname, ells, delimiter=' ', fmt='%10.10f') line_prepender(output_fname, str(len(ells))) line_prepender(output_fname, '1.0')
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 532, 15318, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 28686, 198, 11748, 640, 198, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 35748, 198, 11748, 28034, 13, 1891, 2412, 13, 66, 463, 20471, 355, 269, 463, 20471, 198, 11748, 28034, 13, 40085, 355, 6436, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 10688, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 198, 6738, 4866, 1330, 2769, 30073, 198, 198, 6738, 1338, 17208, 3546, 70, 40171, 263, 1330, 21589, 14106, 35191, 500, 33952, 11627, 40450, 198, 6738, 406, 8579, 1330, 2853, 6636, 1096, 43, 8579, 82, 11, 406, 8579, 82, 17, 695, 51, 11, 450, 66, 17, 32, 198, 6738, 7273, 4487, 1330, 1627, 62, 46012, 2194, 198, 6738, 45619, 1330, 6708, 7934, 22968, 198, 6738, 7157, 14467, 276, 5841, 5028, 1330, 6708, 500, 33383, 22362, 320, 1352, 198, 19108, 62, 43633, 5631, 796, 10352, 198, 28311, 25, 198, 220, 220, 220, 5128, 62, 9600, 62, 69, 3672, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 5072, 62, 69, 3672, 796, 25064, 13, 853, 85, 58, 17, 60, 198, 220, 220, 220, 299, 5036, 1381, 796, 493, 7, 17597, 13, 853, 85, 58, 18, 12962, 198, 16341, 25, 198, 220, 220, 220, 3601, 366, 39213, 506, 5128, 5794, 13, 9993, 21015, 10818, 2001, 33, 26043, 13, 9078, 545, 14542, 14, 9246, 13, 11134, 3797, 13, 14116, 4751, 1, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 9600, 796, 7412, 13, 9654, 7, 15414, 62, 9600, 62, 69, 3672, 737, 1102, 1851, 10786, 36982, 11537, 198, 9600, 796, 45941, 13, 32604, 7, 37659, 13, 18747, 7, 9600, 828, 16488, 796, 362, 8, 198, 198, 7785, 62, 9060, 796, 28034, 13, 2306, 519, 6335, 13, 43015, 7, 13165, 354, 13, 6738, 62, 77, 32152, 7, 9600, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 36911, 22750, 796, 6407, 8, 198, 7785, 62, 9060, 62, 3447, 1758, 796, 1401, 62, 9060, 13, 1177, 7, 16, 11, 352, 11, 1401, 62, 9060, 13, 7857, 7, 15, 828, 7785, 62, 9060, 13, 7857, 7, 16, 4008, 198, 198, 7801, 796, 21589, 14106, 35191, 500, 33952, 11627, 40450, 7, 285, 81, 10699, 796, 642, 13, 17477, 11, 997, 62, 40890, 796, 299, 5036, 1381, 11, 4865, 796, 642, 11, 997, 62, 33, 26043, 62, 270, 364, 796, 1467, 11, 6708, 7934, 796, 6708, 500, 33383, 22362, 320, 1352, 7, 17147, 62, 7857, 28, 1129, 4008, 198, 361, 23210, 62, 43633, 5631, 25, 198, 220, 220, 220, 14558, 796, 14558, 13, 66, 15339, 3419, 198, 220, 220, 220, 1401, 62, 9060, 62, 3447, 1758, 796, 1401, 62, 9060, 62, 3447, 1758, 13, 66, 15339, 3419, 198, 198, 43, 8579, 82, 11, 1217, 796, 14558, 7, 7785, 62, 9060, 62, 3447, 1758, 8, 198, 19187, 220, 796, 406, 8579, 82, 17, 695, 51, 7, 43, 8579, 82, 13, 36166, 3419, 737, 36166, 22446, 77, 32152, 3419, 198, 198, 37659, 13, 21928, 14116, 7, 22915, 62, 69, 3672, 11, 30004, 82, 11, 46728, 2676, 11639, 46083, 46996, 11639, 4, 940, 13, 940, 69, 11537, 198, 1370, 62, 46012, 2194, 7, 22915, 62, 69, 3672, 11, 965, 7, 11925, 7, 19187, 22305, 198, 1370, 62, 46012, 2194, 7, 22915, 62, 69, 3672, 11, 705, 16, 13, 15, 11537, 198 ]
2.585859
594
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2020 all rights reserved # # externals import os # superclass from .String import String # declaration class EnvVar(String): """ A type declarator for strings whose default values are associated with an environment variable """ # constants typename = 'envvar' # the name of my type # meta-methods # end of file
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 285, 40302, 257, 13, 70, 13, 257, 26884, 85, 6557, 89, 271, 198, 2, 29617, 39795, 198, 2, 357, 66, 8, 7795, 12, 42334, 477, 2489, 10395, 198, 2, 628, 198, 2, 409, 759, 874, 198, 11748, 28686, 198, 2, 2208, 4871, 198, 6738, 764, 10100, 1330, 10903, 628, 198, 2, 14305, 198, 4871, 2039, 85, 19852, 7, 10100, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 2099, 2377, 283, 1352, 329, 13042, 3025, 4277, 3815, 389, 3917, 351, 281, 2858, 7885, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 38491, 198, 220, 220, 220, 2170, 12453, 796, 705, 24330, 7785, 6, 1303, 262, 1438, 286, 616, 2099, 628, 198, 220, 220, 220, 1303, 13634, 12, 24396, 82, 628, 198, 2, 886, 286, 2393, 198 ]
2.836735
147
from ..share.cal import parse_abs_from_rel_date from .streams import Stream __all__ = ["load_stream"] def load_stream( programme="Today", station="r4", broadcaster="bbc", ymd=None, ymd_ago=None, **stream_opts, ): """ Create a `Stream` for a specific episode of a radio programme from the named arguments and pass `stream_opts` through. `ymd` and `ymd_ago` are options to specify either an absolute or relative date as `(year, month, day)` tuple of 3 integers in both cases. `ymd` defaults to today's date and `ymd_ago` defaults to `(0,0,0)`. `stream_opts` include: - `transcribe=False` to determine whether the `Stream.transcribe` method is called upon initialisation - `reload=False` to control whether to reload the stream from disk - `min_s=5.`/`max_s=50.` to control the min./max. audio segment length. If `reload` is True, do not pull/preprocess/transcribe: the transcripts are expected to already exist on disk, so just load them from there and recreate the `Stream`. """ if broadcaster != "bbc": raise NotImplementedError("Only currently supporting BBC stations") date = parse_abs_from_rel_date(ymd=ymd, ymd_ago=ymd_ago) ymd = (date.year, date.month, date.day) stream = Stream(programme, station, broadcaster, ymd, **stream_opts) return stream
[ 6738, 11485, 20077, 13, 9948, 1330, 21136, 62, 8937, 62, 6738, 62, 2411, 62, 4475, 198, 6738, 764, 5532, 82, 1330, 13860, 198, 198, 834, 439, 834, 796, 14631, 2220, 62, 5532, 8973, 628, 198, 4299, 3440, 62, 5532, 7, 198, 220, 220, 220, 11383, 2625, 8888, 1600, 198, 220, 220, 220, 4429, 2625, 81, 19, 1600, 198, 220, 220, 220, 26661, 2625, 11848, 66, 1600, 198, 220, 220, 220, 331, 9132, 28, 14202, 11, 198, 220, 220, 220, 331, 9132, 62, 3839, 28, 14202, 11, 198, 220, 220, 220, 12429, 5532, 62, 404, 912, 11, 198, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13610, 257, 4600, 12124, 63, 329, 257, 2176, 4471, 286, 257, 5243, 11383, 422, 262, 3706, 198, 220, 220, 220, 7159, 290, 1208, 4600, 5532, 62, 404, 912, 63, 832, 13, 628, 220, 220, 220, 4600, 4948, 67, 63, 290, 4600, 4948, 67, 62, 3839, 63, 389, 3689, 284, 11986, 2035, 281, 4112, 198, 220, 220, 220, 393, 3585, 3128, 355, 4600, 7, 1941, 11, 1227, 11, 1110, 8, 63, 46545, 286, 513, 37014, 287, 1111, 2663, 13, 198, 220, 220, 220, 4600, 4948, 67, 63, 26235, 284, 1909, 338, 3128, 290, 4600, 4948, 67, 62, 3839, 63, 26235, 284, 4600, 7, 15, 11, 15, 11, 15, 8, 44646, 628, 220, 220, 220, 4600, 5532, 62, 404, 912, 63, 2291, 25, 198, 220, 220, 220, 532, 4600, 7645, 66, 4892, 28, 25101, 63, 284, 5004, 1771, 262, 4600, 12124, 13, 7645, 66, 4892, 63, 198, 220, 220, 220, 220, 220, 2446, 318, 1444, 2402, 4238, 5612, 198, 220, 220, 220, 532, 4600, 260, 2220, 28, 25101, 63, 284, 1630, 1771, 284, 18126, 262, 4269, 422, 11898, 198, 220, 220, 220, 532, 4600, 1084, 62, 82, 28, 20, 13, 63, 14, 63, 9806, 62, 82, 28, 1120, 13, 63, 284, 1630, 262, 949, 19571, 9806, 13, 6597, 10618, 4129, 13, 628, 220, 220, 220, 1002, 4600, 260, 2220, 63, 318, 6407, 11, 466, 407, 2834, 14, 3866, 14681, 14, 7645, 66, 4892, 25, 262, 29351, 389, 2938, 198, 220, 220, 220, 284, 1541, 2152, 319, 11898, 11, 523, 655, 3440, 606, 422, 612, 290, 32049, 262, 4600, 12124, 44646, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 26661, 14512, 366, 11848, 66, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 1892, 3546, 1154, 12061, 12331, 7203, 10049, 3058, 6493, 7823, 8985, 4943, 198, 220, 220, 220, 3128, 796, 21136, 62, 8937, 62, 6738, 62, 2411, 62, 4475, 7, 4948, 67, 28, 4948, 67, 11, 331, 9132, 62, 3839, 28, 4948, 67, 62, 3839, 8, 198, 220, 220, 220, 331, 9132, 796, 357, 4475, 13, 1941, 11, 3128, 13, 8424, 11, 3128, 13, 820, 8, 198, 220, 220, 220, 4269, 796, 13860, 7, 23065, 1326, 11, 4429, 11, 26661, 11, 331, 9132, 11, 12429, 5532, 62, 404, 912, 8, 198, 220, 220, 220, 1441, 4269, 198 ]
2.818557
485
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2022 Valory AG # Copyright 2018-2021 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the tests of the dialogue classes of the generic seller skill.""" from pathlib import Path from typing import cast import pytest from aea.exceptions import AEAEnforceError from aea.helpers.transaction.base import Terms from aea.protocols.dialogue.base import DialogueLabel from aea.test_tools.test_skill import BaseSkillTestCase, COUNTERPARTY_AGENT_ADDRESS from packages.fetchai.protocols.default.message import DefaultMessage from packages.fetchai.protocols.fipa.message import FipaMessage from packages.fetchai.protocols.ledger_api.message import LedgerApiMessage from packages.fetchai.protocols.oef_search.message import OefSearchMessage from packages.fetchai.skills.generic_seller.dialogues import ( DefaultDialogue, DefaultDialogues, FipaDialogue, FipaDialogues, LedgerApiDialogue, LedgerApiDialogues, OefSearchDialogue, OefSearchDialogues, ) from tests.conftest import ROOT_DIR class TestDialogues(BaseSkillTestCase): """Test dialogue classes of generic seller.""" path_to_skill = Path(ROOT_DIR, "packages", "fetchai", "skills", "generic_seller") @classmethod def setup(cls): """Setup the test class.""" super().setup() cls.default_dialogues = cast( DefaultDialogues, cls._skill.skill_context.default_dialogues ) cls.fipa_dialogues = cast( FipaDialogues, cls._skill.skill_context.fipa_dialogues ) cls.ledger_api_dialogues = cast( LedgerApiDialogues, cls._skill.skill_context.ledger_api_dialogues ) cls.oef_search_dialogues = cast( OefSearchDialogues, cls._skill.skill_context.oef_search_dialogues ) def test_default_dialogues(self): """Test the DefaultDialogues class.""" _, dialogue = self.default_dialogues.create( counterparty=COUNTERPARTY_AGENT_ADDRESS, performative=DefaultMessage.Performative.BYTES, content=b"some_content", ) assert dialogue.role == DefaultDialogue.Role.AGENT assert dialogue.self_address == self.skill.skill_context.agent_address def test_fipa_dialogue(self): """Test the FipaDialogue class.""" fipa_dialogue = FipaDialogue( DialogueLabel( ("", ""), COUNTERPARTY_AGENT_ADDRESS, self.skill.skill_context.agent_address, ), self.skill.skill_context.agent_address, role=DefaultDialogue.Role.AGENT, ) # terms with pytest.raises(AEAEnforceError, match="Terms not set!"): assert fipa_dialogue.terms terms = Terms( "some_ledger_id", self.skill.skill_context.agent_address, "counterprty", {"currency_id": 50}, {"good_id": -10}, "some_nonce", ) fipa_dialogue.terms = terms with pytest.raises(AEAEnforceError, match="Terms already set!"): fipa_dialogue.terms = terms assert fipa_dialogue.terms == terms def test_fipa_dialogues(self): """Test the FipaDialogues class.""" _, dialogue = self.fipa_dialogues.create( counterparty=COUNTERPARTY_AGENT_ADDRESS, performative=FipaMessage.Performative.CFP, query="some_query", ) assert dialogue.role == FipaDialogue.Role.SELLER assert dialogue.self_address == self.skill.skill_context.agent_address def test_ledger_api_dialogue(self): """Test the LedgerApiDialogue class.""" ledger_api_dialogue = LedgerApiDialogue( DialogueLabel( ("", ""), COUNTERPARTY_AGENT_ADDRESS, self.skill.skill_context.agent_address, ), self.skill.skill_context.agent_address, role=LedgerApiDialogue.Role.AGENT, ) # associated_fipa_dialogue with pytest.raises(AEAEnforceError, match="FipaDialogue not set!"): assert ledger_api_dialogue.associated_fipa_dialogue fipa_dialogue = FipaDialogue( DialogueLabel( ("", ""), COUNTERPARTY_AGENT_ADDRESS, self.skill.skill_context.agent_address, ), self.skill.skill_context.agent_address, role=FipaDialogue.Role.BUYER, ) ledger_api_dialogue.associated_fipa_dialogue = fipa_dialogue with pytest.raises(AEAEnforceError, match="FipaDialogue already set!"): ledger_api_dialogue.associated_fipa_dialogue = fipa_dialogue assert ledger_api_dialogue.associated_fipa_dialogue == fipa_dialogue def test_ledger_api_dialogues(self): """Test the LedgerApiDialogues class.""" _, dialogue = self.ledger_api_dialogues.create( counterparty=COUNTERPARTY_AGENT_ADDRESS, performative=LedgerApiMessage.Performative.GET_BALANCE, ledger_id="some_ledger_id", address="some_address", ) assert dialogue.role == LedgerApiDialogue.Role.AGENT assert dialogue.self_address == str(self.skill.skill_context.skill_id) def test_oef_search_dialogues(self): """Test the OefSearchDialogues class.""" _, dialogue = self.oef_search_dialogues.create( counterparty=COUNTERPARTY_AGENT_ADDRESS, performative=OefSearchMessage.Performative.SEARCH_SERVICES, query="some_query", ) assert dialogue.role == OefSearchDialogue.Role.AGENT assert dialogue.self_address == str(self.skill.skill_context.skill_id)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 16529, 26171, 198, 2, 198, 2, 220, 220, 15069, 33160, 3254, 652, 13077, 198, 2, 220, 220, 15069, 2864, 12, 1238, 2481, 376, 7569, 13, 20185, 15302, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 16529, 26171, 198, 37811, 1212, 8265, 4909, 262, 5254, 286, 262, 10721, 6097, 286, 262, 14276, 18583, 5032, 526, 15931, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 6738, 19720, 1330, 3350, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 257, 18213, 13, 1069, 11755, 1330, 317, 16412, 4834, 3174, 12331, 198, 6738, 257, 18213, 13, 16794, 364, 13, 7645, 2673, 13, 8692, 1330, 17637, 198, 6738, 257, 18213, 13, 11235, 4668, 82, 13, 38969, 5119, 13, 8692, 1330, 34709, 33986, 198, 6738, 257, 18213, 13, 9288, 62, 31391, 13, 9288, 62, 42401, 1330, 7308, 35040, 14402, 20448, 11, 31404, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 198, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 12286, 13, 20500, 1330, 15161, 12837, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 69, 541, 64, 13, 20500, 1330, 376, 541, 64, 12837, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 992, 1362, 62, 15042, 13, 20500, 1330, 22964, 1362, 32, 14415, 12837, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 11235, 4668, 82, 13, 78, 891, 62, 12947, 13, 20500, 1330, 440, 891, 18243, 12837, 198, 6738, 10392, 13, 69, 7569, 1872, 13, 8135, 2171, 13, 41357, 62, 32932, 13, 38969, 519, 947, 1330, 357, 198, 220, 220, 220, 15161, 41099, 11, 198, 220, 220, 220, 15161, 44204, 947, 11, 198, 220, 220, 220, 376, 541, 64, 41099, 11, 198, 220, 220, 220, 376, 541, 64, 44204, 947, 11, 198, 220, 220, 220, 22964, 1362, 32, 14415, 41099, 11, 198, 220, 220, 220, 22964, 1362, 32, 14415, 44204, 947, 11, 198, 220, 220, 220, 440, 891, 18243, 41099, 11, 198, 220, 220, 220, 440, 891, 18243, 44204, 947, 11, 198, 8, 198, 198, 6738, 5254, 13, 1102, 701, 395, 1330, 15107, 2394, 62, 34720, 628, 198, 4871, 6208, 44204, 947, 7, 14881, 35040, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 14402, 10721, 6097, 286, 14276, 18583, 526, 15931, 628, 220, 220, 220, 3108, 62, 1462, 62, 42401, 796, 10644, 7, 13252, 2394, 62, 34720, 11, 366, 43789, 1600, 366, 69, 7569, 1872, 1600, 366, 8135, 2171, 1600, 366, 41357, 62, 32932, 4943, 628, 220, 220, 220, 2488, 4871, 24396, 198, 220, 220, 220, 825, 9058, 7, 565, 82, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 40786, 262, 1332, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2208, 22446, 40406, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 12286, 62, 38969, 519, 947, 796, 3350, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15161, 44204, 947, 11, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 12286, 62, 38969, 519, 947, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 69, 541, 64, 62, 38969, 519, 947, 796, 3350, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 376, 541, 64, 44204, 947, 11, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 69, 541, 64, 62, 38969, 519, 947, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 992, 1362, 62, 15042, 62, 38969, 519, 947, 796, 3350, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22964, 1362, 32, 14415, 44204, 947, 11, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 992, 1362, 62, 15042, 62, 38969, 519, 947, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 537, 82, 13, 78, 891, 62, 12947, 62, 38969, 519, 947, 796, 3350, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 440, 891, 18243, 44204, 947, 11, 537, 82, 13557, 42401, 13, 42401, 62, 22866, 13, 78, 891, 62, 12947, 62, 38969, 519, 947, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 1332, 62, 12286, 62, 38969, 519, 947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 15161, 44204, 947, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 10721, 796, 2116, 13, 12286, 62, 38969, 519, 947, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 28, 34, 19385, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 19463, 12837, 13, 5990, 687, 876, 13, 17513, 51, 1546, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2695, 28, 65, 1, 11246, 62, 11299, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 18090, 6624, 15161, 41099, 13, 47445, 13, 4760, 3525, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 944, 62, 21975, 6624, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 628, 220, 220, 220, 825, 1332, 62, 69, 541, 64, 62, 38969, 5119, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 376, 541, 64, 41099, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 277, 541, 64, 62, 38969, 5119, 796, 376, 541, 64, 41099, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34709, 33986, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 28, 19463, 41099, 13, 47445, 13, 4760, 3525, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 14242, 32, 4834, 3174, 12331, 11, 2872, 2625, 15156, 907, 407, 900, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 541, 64, 62, 38969, 5119, 13, 38707, 198, 220, 220, 220, 220, 220, 220, 220, 2846, 796, 17637, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11246, 62, 992, 1362, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 24588, 1050, 774, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 34415, 62, 312, 1298, 2026, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 11274, 62, 312, 1298, 532, 940, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11246, 62, 13159, 344, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 277, 541, 64, 62, 38969, 5119, 13, 38707, 796, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 14242, 32, 4834, 3174, 12331, 11, 2872, 2625, 15156, 907, 1541, 900, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 541, 64, 62, 38969, 5119, 13, 38707, 796, 2846, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 541, 64, 62, 38969, 5119, 13, 38707, 6624, 2846, 628, 220, 220, 220, 825, 1332, 62, 69, 541, 64, 62, 38969, 519, 947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 376, 541, 64, 44204, 947, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 10721, 796, 2116, 13, 69, 541, 64, 62, 38969, 519, 947, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 28, 34, 19385, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 37, 541, 64, 12837, 13, 5990, 687, 876, 13, 34, 5837, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 2625, 11246, 62, 22766, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 18090, 6624, 376, 541, 64, 41099, 13, 47445, 13, 5188, 3069, 1137, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 944, 62, 21975, 6624, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 628, 220, 220, 220, 825, 1332, 62, 992, 1362, 62, 15042, 62, 38969, 5119, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 22964, 1362, 32, 14415, 41099, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 15042, 62, 38969, 5119, 796, 22964, 1362, 32, 14415, 41099, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34709, 33986, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 28, 42416, 1362, 32, 14415, 41099, 13, 47445, 13, 4760, 3525, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3917, 62, 69, 541, 64, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 14242, 32, 4834, 3174, 12331, 11, 2872, 2625, 37, 541, 64, 41099, 407, 900, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 37208, 62, 15042, 62, 38969, 5119, 13, 32852, 62, 69, 541, 64, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 277, 541, 64, 62, 38969, 5119, 796, 376, 541, 64, 41099, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 34709, 33986, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5855, 1600, 366, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31404, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 42401, 13, 42401, 62, 22866, 13, 25781, 62, 21975, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2597, 28, 37, 541, 64, 41099, 13, 47445, 13, 19499, 56, 1137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 15042, 62, 38969, 5119, 13, 32852, 62, 69, 541, 64, 62, 38969, 5119, 796, 277, 541, 64, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 14242, 32, 4834, 3174, 12331, 11, 2872, 2625, 37, 541, 64, 41099, 1541, 900, 2474, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 15042, 62, 38969, 5119, 13, 32852, 62, 69, 541, 64, 62, 38969, 5119, 796, 277, 541, 64, 62, 38969, 5119, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 37208, 62, 15042, 62, 38969, 5119, 13, 32852, 62, 69, 541, 64, 62, 38969, 5119, 6624, 277, 541, 64, 62, 38969, 5119, 628, 220, 220, 220, 825, 1332, 62, 992, 1362, 62, 15042, 62, 38969, 519, 947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 22964, 1362, 32, 14415, 44204, 947, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 10721, 796, 2116, 13, 992, 1362, 62, 15042, 62, 38969, 519, 947, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 28, 34, 19385, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 42416, 1362, 32, 14415, 12837, 13, 5990, 687, 876, 13, 18851, 62, 33, 1847, 19240, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37208, 62, 312, 2625, 11246, 62, 992, 1362, 62, 312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2209, 2625, 11246, 62, 21975, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 18090, 6624, 22964, 1362, 32, 14415, 41099, 13, 47445, 13, 4760, 3525, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 944, 62, 21975, 6624, 965, 7, 944, 13, 42401, 13, 42401, 62, 22866, 13, 42401, 62, 312, 8, 628, 220, 220, 220, 825, 1332, 62, 78, 891, 62, 12947, 62, 38969, 519, 947, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 14402, 262, 440, 891, 18243, 44204, 947, 1398, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 11, 10721, 796, 2116, 13, 78, 891, 62, 12947, 62, 38969, 519, 947, 13, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3753, 10608, 28, 34, 19385, 5781, 30709, 56, 62, 4760, 3525, 62, 2885, 7707, 7597, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1620, 876, 28, 46, 891, 18243, 12837, 13, 5990, 687, 876, 13, 5188, 31315, 62, 35009, 53, 34444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12405, 2625, 11246, 62, 22766, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 18090, 6624, 440, 891, 18243, 41099, 13, 47445, 13, 4760, 3525, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 10721, 13, 944, 62, 21975, 6624, 965, 7, 944, 13, 42401, 13, 42401, 62, 22866, 13, 42401, 62, 312, 8, 198 ]
2.337302
2,772
import numpy as np import matplotlib.pyplot as plt import sys S = read_instance(sys.argv[1]) plt.hist(S.flatten(), bins=np.linspace(0, 1, 200)) plt.title("Histogram of similarity values") plt.xlabel("Similarity") plt.ylabel("Frequency") plt.savefig(sys.argv[1]+"_viz2.pdf", dpi=400) plt.close() n = len(S) x = np.arange(n) S[(x,x)] = 0.5 S = S - 0.5 m = np.quantile(np.abs(S), 0.99) S = S / m / 2 S = S + 0.5 S[(x,x)] = 1 #print(S) plt.imshow(S, vmin=0, vmax=1, cmap='RdBu_r') plt.colorbar() plt.title("Similarity matrix") plt.savefig(sys.argv[1]+"_viz1.pdf", dpi=400) plt.close()
[ 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 25064, 198, 198, 50, 796, 1100, 62, 39098, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 489, 83, 13, 10034, 7, 50, 13, 2704, 41769, 22784, 41701, 28, 37659, 13, 21602, 10223, 7, 15, 11, 352, 11, 939, 4008, 198, 489, 83, 13, 7839, 7203, 13749, 21857, 286, 26789, 3815, 4943, 198, 489, 83, 13, 87, 18242, 7203, 18925, 414, 4943, 198, 489, 83, 13, 2645, 9608, 7203, 37, 28707, 4943, 198, 489, 83, 13, 21928, 5647, 7, 17597, 13, 853, 85, 58, 16, 48688, 1, 62, 85, 528, 17, 13, 12315, 1600, 288, 14415, 28, 7029, 8, 198, 489, 83, 13, 19836, 3419, 198, 198, 77, 796, 18896, 7, 50, 8, 198, 87, 796, 45941, 13, 283, 858, 7, 77, 8, 198, 198, 50, 58, 7, 87, 11, 87, 15437, 796, 657, 13, 20, 198, 50, 796, 311, 532, 657, 13, 20, 198, 76, 796, 45941, 13, 40972, 576, 7, 37659, 13, 8937, 7, 50, 828, 657, 13, 2079, 8, 198, 50, 796, 311, 1220, 285, 1220, 362, 198, 50, 796, 311, 1343, 657, 13, 20, 198, 50, 58, 7, 87, 11, 87, 15437, 796, 352, 220, 198, 2, 4798, 7, 50, 8, 198, 198, 489, 83, 13, 320, 12860, 7, 50, 11, 410, 1084, 28, 15, 11, 410, 9806, 28, 16, 11, 269, 8899, 11639, 49, 36077, 84, 62, 81, 11537, 198, 489, 83, 13, 8043, 5657, 3419, 198, 489, 83, 13, 7839, 7203, 18925, 414, 17593, 4943, 198, 489, 83, 13, 21928, 5647, 7, 17597, 13, 853, 85, 58, 16, 48688, 1, 62, 85, 528, 16, 13, 12315, 1600, 288, 14415, 28, 7029, 8, 198, 489, 83, 13, 19836, 3419, 198 ]
2
293
import logging import os import sys cwd = os.getcwd() if cwd not in sys.path: sys.path.append( cwd ) new_path = [ os.path.join( cwd, "lib" ) ] if new_path not in sys.path: new_path.extend( sys.path ) sys.path = new_path from galaxy.util import parse_xml log = logging.getLogger(__name__) # Set a 10 minute timeout for repository installation. repository_installation_timeout = 600 def get_installed_repository_info( elem, last_galaxy_test_file_dir, last_tested_repository_name, last_tested_changeset_revision, tool_path ): """ Return the GALAXY_TEST_FILE_DIR, the containing repository name and the change set revision for the tool elem. This only happens when testing tools installed from the tool shed. """ tool_config_path = elem.get( 'file' ) installed_tool_path_items = tool_config_path.split( '/repos/' ) sans_shed = installed_tool_path_items[ 1 ] path_items = sans_shed.split( '/' ) repository_owner = path_items[ 0 ] repository_name = path_items[ 1 ] changeset_revision = path_items[ 2 ] if repository_name != last_tested_repository_name or changeset_revision != last_tested_changeset_revision: # Locate the test-data directory. installed_tool_path = os.path.join( installed_tool_path_items[ 0 ], 'repos', repository_owner, repository_name, changeset_revision ) for root, dirs, files in os.walk( os.path.join(tool_path, installed_tool_path )): if '.' in dirs: dirs.remove( '.hg' ) if 'test-data' in dirs: return os.path.join( root, 'test-data' ), repository_name, changeset_revision return None, repository_name, changeset_revision return last_galaxy_test_file_dir, last_tested_repository_name, last_tested_changeset_revision def parse_tool_panel_config( config, shed_tools_dict ): """ Parse a shed-related tool panel config to generate the shed_tools_dict. This only happens when testing tools installed from the tool shed. """ last_galaxy_test_file_dir = None last_tested_repository_name = None last_tested_changeset_revision = None tool_path = None has_test_data = False tree = parse_xml( config ) root = tree.getroot() tool_path = root.get('tool_path') for elem in root: if elem.tag == 'tool': galaxy_test_file_dir, \ last_tested_repository_name, \ last_tested_changeset_revision = get_installed_repository_info( elem, last_galaxy_test_file_dir, last_tested_repository_name, last_tested_changeset_revision, tool_path ) if galaxy_test_file_dir: if not has_test_data: has_test_data = True if galaxy_test_file_dir != last_galaxy_test_file_dir: if not os.path.isabs( galaxy_test_file_dir ): galaxy_test_file_dir = os.path.join( os.getcwd(), galaxy_test_file_dir ) guid = elem.get( 'guid' ) shed_tools_dict[ guid ] = galaxy_test_file_dir last_galaxy_test_file_dir = galaxy_test_file_dir elif elem.tag == 'section': for section_elem in elem: if section_elem.tag == 'tool': galaxy_test_file_dir, \ last_tested_repository_name, \ last_tested_changeset_revision = get_installed_repository_info( section_elem, last_galaxy_test_file_dir, last_tested_repository_name, last_tested_changeset_revision, tool_path ) if galaxy_test_file_dir: if not has_test_data: has_test_data = True if galaxy_test_file_dir != last_galaxy_test_file_dir: if not os.path.isabs( galaxy_test_file_dir ): galaxy_test_file_dir = os.path.join( os.getcwd(), galaxy_test_file_dir ) guid = section_elem.get( 'guid' ) shed_tools_dict[ guid ] = galaxy_test_file_dir last_galaxy_test_file_dir = galaxy_test_file_dir return has_test_data, shed_tools_dict
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 66, 16993, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 361, 269, 16993, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 25064, 13, 6978, 13, 33295, 7, 269, 16993, 1267, 198, 198, 3605, 62, 6978, 796, 685, 28686, 13, 6978, 13, 22179, 7, 269, 16993, 11, 366, 8019, 1, 1267, 2361, 198, 361, 649, 62, 6978, 407, 287, 25064, 13, 6978, 25, 198, 220, 220, 220, 649, 62, 6978, 13, 2302, 437, 7, 25064, 13, 6978, 1267, 198, 220, 220, 220, 25064, 13, 6978, 796, 649, 62, 6978, 198, 198, 6738, 16161, 13, 22602, 1330, 21136, 62, 19875, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 2, 5345, 257, 838, 5664, 26827, 329, 16099, 9988, 13, 198, 260, 1930, 37765, 62, 17350, 341, 62, 48678, 796, 10053, 628, 198, 4299, 651, 62, 37050, 62, 260, 1930, 37765, 62, 10951, 7, 9766, 76, 11, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 11, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 11, 2891, 62, 6978, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 262, 402, 1847, 25922, 56, 62, 51, 6465, 62, 25664, 62, 34720, 11, 262, 7268, 16099, 1438, 290, 262, 198, 220, 220, 220, 1487, 900, 18440, 329, 262, 2891, 9766, 76, 13, 770, 691, 4325, 618, 4856, 198, 220, 220, 220, 4899, 6589, 422, 262, 2891, 14999, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2891, 62, 11250, 62, 6978, 796, 9766, 76, 13, 1136, 7, 705, 7753, 6, 1267, 198, 220, 220, 220, 6589, 62, 25981, 62, 6978, 62, 23814, 796, 2891, 62, 11250, 62, 6978, 13, 35312, 7, 31051, 260, 1930, 14, 6, 1267, 198, 220, 220, 220, 38078, 62, 35762, 796, 6589, 62, 25981, 62, 6978, 62, 23814, 58, 352, 2361, 198, 220, 220, 220, 3108, 62, 23814, 796, 38078, 62, 35762, 13, 35312, 7, 31051, 6, 1267, 198, 220, 220, 220, 16099, 62, 18403, 796, 3108, 62, 23814, 58, 657, 2361, 198, 220, 220, 220, 16099, 62, 3672, 796, 3108, 62, 23814, 58, 352, 2361, 198, 220, 220, 220, 2458, 316, 62, 260, 10178, 796, 3108, 62, 23814, 58, 362, 2361, 198, 220, 220, 220, 611, 16099, 62, 3672, 14512, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 393, 2458, 316, 62, 260, 10178, 14512, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 406, 13369, 262, 1332, 12, 7890, 8619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6589, 62, 25981, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 6589, 62, 25981, 62, 6978, 62, 23814, 58, 657, 16589, 705, 260, 1930, 3256, 16099, 62, 18403, 11, 16099, 62, 3672, 11, 2458, 316, 62, 260, 10178, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 3696, 287, 28686, 13, 11152, 7, 28686, 13, 6978, 13, 22179, 7, 25981, 62, 6978, 11, 6589, 62, 25981, 62, 6978, 1267, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 2637, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17062, 13, 28956, 7, 45302, 71, 70, 6, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 9288, 12, 7890, 6, 287, 288, 17062, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 6808, 11, 705, 9288, 12, 7890, 6, 10612, 16099, 62, 3672, 11, 2458, 316, 62, 260, 10178, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 11, 16099, 62, 3672, 11, 2458, 316, 62, 260, 10178, 198, 220, 220, 220, 1441, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 11, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 628, 198, 4299, 21136, 62, 25981, 62, 35330, 62, 11250, 7, 4566, 11, 14999, 62, 31391, 62, 11600, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2547, 325, 257, 14999, 12, 5363, 2891, 6103, 4566, 284, 7716, 262, 14999, 62, 31391, 62, 11600, 13, 770, 691, 4325, 618, 4856, 4899, 6589, 422, 262, 2891, 14999, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 796, 6045, 198, 220, 220, 220, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 796, 6045, 198, 220, 220, 220, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 796, 6045, 198, 220, 220, 220, 2891, 62, 6978, 796, 6045, 198, 220, 220, 220, 468, 62, 9288, 62, 7890, 796, 10352, 198, 220, 220, 220, 5509, 796, 21136, 62, 19875, 7, 4566, 1267, 198, 220, 220, 220, 6808, 796, 5509, 13, 1136, 15763, 3419, 198, 220, 220, 220, 2891, 62, 6978, 796, 6808, 13, 1136, 10786, 25981, 62, 6978, 11537, 198, 220, 220, 220, 329, 9766, 76, 287, 6808, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9766, 76, 13, 12985, 6624, 705, 25981, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16161, 62, 9288, 62, 7753, 62, 15908, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 796, 651, 62, 37050, 62, 260, 1930, 37765, 62, 10951, 7, 9766, 76, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 62, 6978, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16161, 62, 9288, 62, 7753, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 62, 9288, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 62, 9288, 62, 7890, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16161, 62, 9288, 62, 7753, 62, 15908, 14512, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 271, 8937, 7, 16161, 62, 9288, 62, 7753, 62, 15908, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16161, 62, 9288, 62, 7753, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 28686, 13, 1136, 66, 16993, 22784, 16161, 62, 9288, 62, 7753, 62, 15908, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10103, 796, 9766, 76, 13, 1136, 7, 705, 5162, 312, 6, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14999, 62, 31391, 62, 11600, 58, 10103, 2361, 796, 16161, 62, 9288, 62, 7753, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 796, 16161, 62, 9288, 62, 7753, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 9766, 76, 13, 12985, 6624, 705, 5458, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2665, 62, 68, 10671, 287, 9766, 76, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2665, 62, 68, 10671, 13, 12985, 6624, 705, 25981, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16161, 62, 9288, 62, 7753, 62, 15908, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 796, 651, 62, 37050, 62, 260, 1930, 37765, 62, 10951, 7, 2665, 62, 68, 10671, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 260, 1930, 37765, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 39612, 62, 36653, 316, 62, 260, 10178, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2891, 62, 6978, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16161, 62, 9288, 62, 7753, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 468, 62, 9288, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 468, 62, 9288, 62, 7890, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 16161, 62, 9288, 62, 7753, 62, 15908, 14512, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 271, 8937, 7, 16161, 62, 9288, 62, 7753, 62, 15908, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16161, 62, 9288, 62, 7753, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 28686, 13, 1136, 66, 16993, 22784, 16161, 62, 9288, 62, 7753, 62, 15908, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10103, 796, 2665, 62, 68, 10671, 13, 1136, 7, 705, 5162, 312, 6, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14999, 62, 31391, 62, 11600, 58, 10103, 2361, 796, 16161, 62, 9288, 62, 7753, 62, 15908, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 13528, 6969, 62, 9288, 62, 7753, 62, 15908, 796, 16161, 62, 9288, 62, 7753, 62, 15908, 198, 220, 220, 220, 1441, 468, 62, 9288, 62, 7890, 11, 14999, 62, 31391, 62, 11600, 198 ]
1.894531
2,560
largura = float(input('Qual a largura da parede em metros? ')) altura = float(input('Qual a altura da parede em metros? ')) area = largura * altura print(f'A área dessa parede é: {area}m². ') tinta = area / 2 print(f'Será usado {tinta}L de tinta para cada metro quadrado.')
[ 15521, 5330, 796, 12178, 7, 15414, 10786, 46181, 257, 2552, 5330, 12379, 279, 1144, 68, 795, 1138, 4951, 30, 705, 4008, 198, 2501, 5330, 796, 12178, 7, 15414, 10786, 46181, 257, 5988, 5330, 12379, 279, 1144, 68, 795, 1138, 4951, 30, 705, 4008, 198, 20337, 796, 2552, 5330, 1635, 5988, 5330, 198, 4798, 7, 69, 6, 32, 6184, 94, 21468, 288, 21411, 279, 1144, 68, 38251, 25, 1391, 20337, 92, 76, 31185, 13, 705, 8, 198, 83, 600, 64, 796, 1989, 1220, 362, 198, 4798, 7, 69, 6, 7089, 6557, 514, 4533, 1391, 83, 600, 64, 92, 43, 390, 34791, 64, 31215, 269, 4763, 24536, 15094, 81, 4533, 2637, 8 ]
2.481818
110
from django.db import models class Profile(models.Model): """Profile model.""" user = models.OneToOneField('user.User', on_delete=models.CASCADE) picture = models.ImageField( 'profile picture', upload_to='user/pictures/', blank=True, null=True ) biography = models.TextField(max_length=500, blank=True) movies_create = models.PositiveIntegerField(default=0) movies_recomment = models.PositiveIntegerField(default=0)
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 628, 198, 4871, 13118, 7, 27530, 13, 17633, 2599, 198, 220, 220, 220, 37227, 37046, 2746, 526, 15931, 628, 220, 220, 220, 2836, 796, 4981, 13, 3198, 2514, 3198, 15878, 10786, 7220, 13, 12982, 3256, 319, 62, 33678, 28, 27530, 13, 34, 42643, 19266, 8, 628, 220, 220, 220, 4286, 796, 4981, 13, 5159, 15878, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13317, 4286, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9516, 62, 1462, 11639, 7220, 14, 18847, 942, 14, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 9178, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9242, 28, 17821, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 26444, 796, 4981, 13, 8206, 15878, 7, 9806, 62, 13664, 28, 4059, 11, 9178, 28, 17821, 8, 628, 220, 220, 220, 6918, 62, 17953, 796, 4981, 13, 21604, 1800, 46541, 15878, 7, 12286, 28, 15, 8, 198, 220, 220, 220, 6918, 62, 260, 23893, 796, 4981, 13, 21604, 1800, 46541, 15878, 7, 12286, 28, 15, 8, 198 ]
2.642857
182
def resolve(): ''' code here 求めるものは  k番目のボールを除いた N−1個のボールから、書かれている整数が等しいような異なる2つのボールを選び出す方法 言い換えて  ①同じ数から2個選ぶ組み合わせの和  ②k番目のボールを除いた N−1個のボールから、K番目のボールと同じ数を選ぶ数 ※選ぶボールとペアになっていた個数を数え上げて引く  ①-② ''' import collections N = int(input()) A_list = [int(item) for item in input().split()] origin_dict = collections.Counter(A_list) twopair_in_N = 0 for i in origin_dict.values(): twopair_in_N += i*(i-1)//2 for j in range(N): deff = origin_dict[A_list[j]] -1 print(twopair_in_N - deff) if __name__ == "__main__": resolve()
[ 4299, 10568, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 2438, 994, 628, 220, 220, 220, 10545, 109, 224, 1792, 223, 25748, 43266, 5641, 31676, 198, 220, 220, 220, 220, 5099, 222, 74, 45911, 103, 33566, 106, 5641, 1209, 250, 43353, 31758, 165, 247, 97, 18566, 25224, 399, 14095, 16, 161, 222, 233, 5641, 1209, 250, 43353, 27370, 36853, 23513, 162, 249, 116, 27370, 39258, 28134, 18566, 25748, 46763, 112, 46763, 108, 35585, 163, 255, 231, 22180, 18566, 1792, 230, 29557, 26945, 45911, 108, 26945, 25748, 17, 2515, 97, 5641, 1209, 250, 43353, 31758, 34402, 116, 2515, 111, 49035, 118, 33623, 43095, 37345, 243, 198, 220, 220, 220, 5525, 101, 222, 18566, 162, 237, 249, 2515, 230, 28134, 198, 220, 220, 220, 220, 5099, 222, 158, 239, 254, 28938, 234, 2515, 246, 46763, 108, 27370, 36853, 17, 161, 222, 233, 34402, 116, 2515, 114, 163, 113, 226, 2515, 123, 28938, 230, 1792, 237, 2515, 249, 15474, 240, 234, 198, 220, 220, 220, 220, 5099, 222, 158, 239, 94, 74, 45911, 103, 33566, 106, 5641, 1209, 250, 43353, 31758, 165, 247, 97, 18566, 25224, 399, 14095, 16, 161, 222, 233, 5641, 1209, 250, 43353, 27370, 36853, 23513, 42, 45911, 103, 33566, 106, 5641, 1209, 250, 43353, 30201, 28938, 234, 2515, 246, 46763, 108, 31758, 34402, 116, 2515, 35050, 243, 108, 198, 220, 220, 220, 220, 220, 220, 220, 564, 119, 34402, 116, 2515, 114, 1209, 250, 43353, 30201, 1209, 248, 11839, 28618, 26945, 33180, 28134, 18566, 25224, 161, 222, 233, 46763, 108, 31758, 46763, 108, 2515, 230, 41468, 2515, 240, 28134, 28156, 243, 31917, 198, 220, 220, 220, 220, 5099, 222, 158, 239, 254, 12, 158, 239, 94, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 1330, 17268, 628, 220, 220, 220, 399, 796, 493, 7, 15414, 28955, 198, 220, 220, 220, 317, 62, 4868, 796, 685, 600, 7, 9186, 8, 329, 2378, 287, 5128, 22446, 35312, 3419, 60, 198, 220, 220, 220, 8159, 62, 11600, 796, 17268, 13, 31694, 7, 32, 62, 4868, 8, 628, 220, 220, 220, 665, 404, 958, 62, 259, 62, 45, 796, 657, 198, 220, 220, 220, 329, 1312, 287, 8159, 62, 11600, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 665, 404, 958, 62, 259, 62, 45, 15853, 1312, 9, 7, 72, 12, 16, 8, 1003, 17, 628, 220, 220, 220, 329, 474, 287, 2837, 7, 45, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 390, 487, 796, 8159, 62, 11600, 58, 32, 62, 4868, 58, 73, 11907, 532, 16, 628, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 4246, 404, 958, 62, 259, 62, 45, 532, 390, 487, 8, 198, 220, 220, 220, 220, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 10568, 3419, 198 ]
1.324895
474
import os import pandas as pd def runtime_input_folder(scenario, datasheet_name): """ Creates a SyncroSim Datasheet input folder. Parameters ---------- scenario : Scenario Scenario class instance. datasheet_name : String Name of SyncroSim Datasheet. Returns ------- String Path to input folder. """ _validate_environment() parent_folder = _environment.input_directory.item() return _create_scenario_folder(scenario, parent_folder, datasheet_name) def runtime_output_folder(scenario, datasheet_name): """ Creates a SyncroSim Datasheet output folder. Parameters ---------- scenario : Scenario Scenario class instance. datasheet_name : String Name of SyncroSim Datasheet. Returns ------- String Path to ouput folder. """ _validate_environment() parent_folder = _environment.output_directory.item() return _create_scenario_folder(scenario, parent_folder, datasheet_name) def runtime_temp_folder(folder_name): """ Creates a SyncroSim Datasheet temporary folder. Parameters ---------- folder_name : String Name of temporary folder. Returns ------- String Path to temporary folder. """ _validate_environment() return _create_temp_folder(folder_name) def progress_bar(report_type="step", iteration=None, timestep=None, total_steps=None, message=None): """ Begins, steps, ends, and reports progress for a SyncroSim simulation. Parameters ---------- report_type : String, optional Directive to "begin", "end", "report", "message", or "step" the simulation. The default is "step". iteration : Int, optional Number of iterations. The default is None. timestep : Int, optional Number of timesteps. The default is None. total_steps : Int, optional Number of total steps in the simulation. The default is None. message : String, optional A message to print to the progress bar status. The default is None. Raises ------ TypeError If iteration, timestep, or total_steps are not Integers. ValueError If report_type is not "begin", "end", "step", "report", or "message". Returns ------- None. """ _validate_environment() # Begin progress bar tracking if report_type == "begin": try: assert total_steps % 1 == 0 total_steps = int(total_steps) print("ssim-task-start=%d\r\n" % total_steps, flush=True) except AssertionError or TypeError: raise TypeError("total_steps must be an Integer") # End progress bar tracking elif report_type == "end": print("ssim-task-end=True\r\n", flush=True) # Step progress bar elif report_type == "step": print("ssim-task-step=1\r\n", flush=True) # Report iteration and timestep elif report_type == "report": try: assert iteration % 1 == 0 assert timestep % 1 == 0 print( f"ssim-task-status=Simulating -> Iteration is {iteration}" + " - Timestep is {timestep}\r\n", flush=True) except AssertionError or TypeError: raise TypeError("iteration and timestep must be Integers") # Print arbitrary message elif report_type == "message": print( "ssim-task-status=" + str(message) + "\r\n", flush=True) else: raise ValueError("Invalid report_type") def update_run_log(*message, sep=""): """ Begins, steps, ends, and reports progress for a SyncroSim simulation. Parameters ---------- *message : String Message to write to the run log. Can be provided as multiple arguments that will be concatenated together using sep. sep : String, optional String to use if concatenating multiple message arguments. The default is an empty String. Raises ------ ValueError If no message is provided. Returns ------- None. """ _validate_environment() # Check that a message is provided if len(message) == 0: raise ValueError("Please include a message to send to the run log.") # Initialize the message final_message = "ssim-task-log=" + str(message[0]) # Concatenate additional message pieces if len(message) > 1: for m in message[1:]: final_message = final_message + str(sep) + str(m) # Finalize message final_message = final_message + "\r\n" print(final_message, flush=True)
[ 11748, 28686, 198, 11748, 19798, 292, 355, 279, 67, 198, 198, 4299, 19124, 62, 15414, 62, 43551, 7, 1416, 39055, 11, 19395, 25473, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 35908, 305, 8890, 16092, 292, 25473, 5128, 9483, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 8883, 1058, 1446, 39055, 198, 220, 220, 220, 220, 220, 220, 220, 1446, 39055, 1398, 4554, 13, 198, 220, 220, 220, 19395, 25473, 62, 3672, 1058, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 35908, 305, 8890, 16092, 292, 25473, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 5128, 9483, 13, 628, 220, 220, 220, 37227, 220, 220, 220, 220, 198, 220, 220, 220, 4808, 12102, 378, 62, 38986, 3419, 198, 220, 220, 220, 2560, 62, 43551, 796, 4808, 38986, 13, 15414, 62, 34945, 13, 9186, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 4808, 17953, 62, 1416, 39055, 62, 43551, 7, 1416, 39055, 11, 2560, 62, 43551, 11, 19395, 25473, 62, 3672, 8, 198, 198, 4299, 19124, 62, 22915, 62, 43551, 7, 1416, 39055, 11, 19395, 25473, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 35908, 305, 8890, 16092, 292, 25473, 5072, 9483, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 8883, 1058, 1446, 39055, 198, 220, 220, 220, 220, 220, 220, 220, 1446, 39055, 1398, 4554, 13, 198, 220, 220, 220, 19395, 25473, 62, 3672, 1058, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 35908, 305, 8890, 16092, 292, 25473, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 267, 929, 315, 9483, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 38986, 3419, 198, 220, 220, 220, 2560, 62, 43551, 796, 4808, 38986, 13, 22915, 62, 34945, 13, 9186, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 4808, 17953, 62, 1416, 39055, 62, 43551, 7, 1416, 39055, 11, 2560, 62, 43551, 11, 19395, 25473, 62, 3672, 8, 198, 198, 4299, 19124, 62, 29510, 62, 43551, 7, 43551, 62, 3672, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7921, 274, 257, 35908, 305, 8890, 16092, 292, 25473, 8584, 9483, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 9483, 62, 3672, 1058, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 8584, 9483, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 8584, 9483, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 38986, 3419, 198, 220, 220, 220, 1441, 4808, 17953, 62, 29510, 62, 43551, 7, 43551, 62, 3672, 8, 198, 198, 4299, 4371, 62, 5657, 7, 13116, 62, 4906, 2625, 9662, 1600, 24415, 28, 14202, 11, 4628, 395, 538, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 20214, 28, 14202, 11, 3275, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48139, 11, 4831, 11, 5645, 11, 290, 3136, 4371, 329, 257, 35908, 305, 8890, 18640, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 989, 62, 4906, 1058, 10903, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 34736, 284, 366, 27471, 1600, 366, 437, 1600, 366, 13116, 1600, 366, 20500, 1600, 393, 366, 9662, 1, 262, 198, 220, 220, 220, 220, 220, 220, 220, 18640, 13, 383, 4277, 318, 366, 9662, 1911, 198, 220, 220, 220, 24415, 1058, 2558, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 34820, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 4628, 395, 538, 1058, 2558, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 4628, 395, 25386, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 2472, 62, 20214, 1058, 2558, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 7913, 286, 2472, 4831, 287, 262, 18640, 13, 383, 4277, 318, 6045, 13, 198, 220, 220, 220, 3275, 1058, 10903, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 317, 3275, 284, 3601, 284, 262, 4371, 2318, 3722, 13, 383, 4277, 318, 6045, 13, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 5994, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 24415, 11, 4628, 395, 538, 11, 393, 2472, 62, 20214, 389, 407, 15995, 364, 13, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 989, 62, 4906, 318, 407, 366, 27471, 1600, 366, 437, 1600, 366, 9662, 1600, 366, 13116, 1600, 393, 366, 20500, 1911, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6045, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 38986, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 16623, 4371, 2318, 9646, 198, 220, 220, 220, 611, 989, 62, 4906, 6624, 366, 27471, 1298, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 2472, 62, 20214, 4064, 352, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2472, 62, 20214, 796, 493, 7, 23350, 62, 20214, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 824, 320, 12, 35943, 12, 9688, 28, 4, 67, 59, 81, 59, 77, 1, 4064, 2472, 62, 20214, 11, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 2195, 861, 295, 12331, 393, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 23350, 62, 20214, 1276, 307, 281, 34142, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5268, 4371, 2318, 9646, 198, 220, 220, 220, 1288, 361, 989, 62, 4906, 6624, 366, 437, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 824, 320, 12, 35943, 12, 437, 28, 17821, 59, 81, 59, 77, 1600, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 5012, 4371, 2318, 198, 220, 220, 220, 1288, 361, 989, 62, 4906, 6624, 366, 9662, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 824, 320, 12, 35943, 12, 9662, 28, 16, 59, 81, 59, 77, 1600, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6358, 24415, 290, 4628, 395, 538, 198, 220, 220, 220, 1288, 361, 989, 62, 4906, 6624, 366, 13116, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 24415, 4064, 352, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 4628, 395, 538, 4064, 352, 6624, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 1, 824, 320, 12, 35943, 12, 13376, 28, 8890, 8306, 4613, 40806, 341, 318, 1391, 2676, 341, 36786, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 532, 5045, 395, 538, 318, 1391, 16514, 395, 538, 32239, 81, 59, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24773, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 2195, 861, 295, 12331, 393, 5994, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 7203, 2676, 341, 290, 4628, 395, 538, 1276, 307, 15995, 364, 4943, 628, 220, 220, 220, 1303, 12578, 14977, 3275, 198, 220, 220, 220, 1288, 361, 989, 62, 4906, 6624, 366, 20500, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 824, 320, 12, 35943, 12, 13376, 2625, 1343, 965, 7, 20500, 8, 1343, 37082, 81, 59, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24773, 28, 17821, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 989, 62, 4906, 4943, 198, 198, 4299, 4296, 62, 5143, 62, 6404, 46491, 20500, 11, 41767, 33151, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 48139, 11, 4831, 11, 5645, 11, 290, 3136, 4371, 329, 257, 35908, 305, 8890, 18640, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 1635, 20500, 1058, 10903, 198, 220, 220, 220, 220, 220, 220, 220, 16000, 284, 3551, 284, 262, 1057, 2604, 13, 1680, 307, 2810, 355, 3294, 7159, 198, 220, 220, 220, 220, 220, 220, 220, 326, 481, 307, 1673, 36686, 515, 1978, 1262, 41767, 13, 198, 220, 220, 220, 41767, 1058, 10903, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 10903, 284, 779, 611, 1673, 36686, 803, 3294, 3275, 7159, 13, 383, 4277, 198, 220, 220, 220, 220, 220, 220, 220, 318, 281, 6565, 10903, 13, 628, 220, 220, 220, 7567, 2696, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 11052, 12331, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 645, 3275, 318, 2810, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6045, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 38986, 3419, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 6822, 326, 257, 3275, 318, 2810, 198, 220, 220, 220, 611, 18896, 7, 20500, 8, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 5492, 2291, 257, 3275, 284, 3758, 284, 262, 1057, 2604, 19570, 628, 220, 220, 220, 1303, 20768, 1096, 262, 3275, 198, 220, 220, 220, 2457, 62, 20500, 796, 366, 824, 320, 12, 35943, 12, 6404, 2625, 1343, 965, 7, 20500, 58, 15, 12962, 628, 220, 220, 220, 1303, 1482, 9246, 268, 378, 3224, 3275, 5207, 198, 220, 220, 220, 611, 18896, 7, 20500, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 285, 287, 3275, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 20500, 796, 2457, 62, 20500, 1343, 965, 7, 325, 79, 8, 1343, 965, 7, 76, 8, 628, 220, 220, 220, 1303, 8125, 1096, 3275, 198, 220, 220, 220, 2457, 62, 20500, 796, 2457, 62, 20500, 1343, 37082, 81, 59, 77, 1, 628, 220, 220, 220, 3601, 7, 20311, 62, 20500, 11, 24773, 28, 17821, 8, 628 ]
2.525027
1,878
#! /usr/bin/env python3 # The MIT License (MIT) # # Copyright(c) 2021, Damien Feneyrou <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Palanteer: Generate an external strings lookup from C++ code # and/or from a binary (for the automatic instrumentation case) # # What it does for source code filenames: # - loop on all the provided C/C++ files # - identify Palanteer calls and corresponding parameters + file basenames # - compute and display the tuple <key> <string> on stdout # # What it does for a provided binary: # - calls "nm" on the Linux elf binary # - collect all symbols from the text section # - format and display the tuples <key> <string> on stdout (2 per function: filename and functio import sys if sys.version_info.major < 3: print("ERROR: This tool requires python3 (not python2)", file=sys.stderr) sys.exit(1) import os import os.path import re import subprocess # Constants # ========= # Regexp to detect if a word which starts with pl[g] (so that it looks like a command) followed with a parenthesis MATCH_DETECT = re.compile(".*?(^|[^a-zA-Z\d])pl(g?)([a-zA-Z]*)\s*\((.*)") # Regexp to extract the symbols from the text section, and also the weak ones MATCH_INFO_LINE = re.compile("^([0-9a-z]+)\s+[TW]\s(.*?)\s(\S+):(\d+)$", re.IGNORECASE) # Commands whose parameters shall be processed. Associated values are: 0=convert only strings 1=convert all parameters PL_COMMANDS_TYPE = { "Assert": 1, "Begin": 0, "End": 0, "Data": 0, "Text": 0, "DeclareThread": 0, "LockNotify": 0, "LockNotifyDyn": 0, "LockWait": 0, "LockWaitDyn": 0, "LockState": 0, "LockStateDyn": 0, "LockScopeState": 0, "LockScopeStateDyn": 0, "MakeString": 0, "Marker": 0, "MarkerDyn": 0, "MemPush": 0, "RegisterCli": 1, "Scope": 0, "Text": 0, "Var": 1, } # Helpers # ======= # Main entry # ========== # Bootstrap if __name__ == "__main__": main(sys.argv) # Unit test # ========= # ./extStringCppParser.py extStringCppParser.py shall give "good" followed by a sequential numbers, and no "BAD" """ plBegin aa("BAD0"); plBegin("good01"); plBegin ("good02"); plBegin("good03", "good04"); plgBegin(BAD1, "good05"); plBegin("good06", "good07") "BAD2"; plBegin("good08", // "BAD3" "good09"); // "BAD4" plVar(good10, good11); plgVar (BAD5, good12, good13); plgVar (BAD6, good14, // BAD7 good15); plAssert(good16); plgAssert(BAD8, good17, good18); plAssert(good19(a,b()), good20("content("), good21); not at start of the line plMakeString("good22"),plMakeString ("good23" ) , plMakeString ( "good24") plBegin("good25 <<< last one"); // Easy one at the end so it is easy to detect non sequential "goods" """
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 2, 383, 17168, 13789, 357, 36393, 8, 198, 2, 198, 2, 15069, 7, 66, 8, 33448, 11, 46107, 376, 1734, 88, 472, 1279, 7568, 1734, 88, 472, 31, 14816, 13, 785, 29, 198, 2, 198, 2, 2448, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 2, 286, 428, 3788, 290, 3917, 10314, 3696, 7, 1169, 366, 25423, 12340, 284, 1730, 198, 2, 287, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 2, 284, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 2, 9088, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 2, 30760, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 1058, 198, 2, 198, 2, 383, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 2, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 2, 198, 2, 3336, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 2, 8959, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 2, 376, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 1268, 8005, 49261, 50163, 3336, 198, 2, 37195, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 2, 43031, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 2, 16289, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 2, 47466, 13, 628, 198, 2, 3175, 12427, 263, 25, 2980, 378, 281, 7097, 13042, 35847, 422, 327, 4880, 2438, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 14, 273, 422, 257, 13934, 357, 1640, 262, 11353, 8875, 341, 1339, 8, 198, 2, 198, 2, 1867, 340, 857, 329, 2723, 2438, 1226, 268, 1047, 25, 198, 2, 220, 532, 9052, 319, 477, 262, 2810, 327, 14, 34, 4880, 3696, 198, 2, 220, 220, 532, 5911, 3175, 12427, 263, 3848, 290, 11188, 10007, 1343, 2393, 1615, 268, 1047, 198, 2, 220, 220, 532, 24061, 290, 3359, 262, 46545, 1279, 2539, 29, 1279, 8841, 29, 319, 14367, 448, 198, 2, 198, 2, 1867, 340, 857, 329, 257, 2810, 13934, 25, 198, 2, 220, 532, 3848, 366, 21533, 1, 319, 262, 7020, 23878, 13934, 198, 2, 220, 532, 2824, 477, 14354, 422, 262, 2420, 2665, 198, 2, 220, 532, 5794, 290, 3359, 262, 12777, 2374, 1279, 2539, 29, 1279, 8841, 29, 319, 14367, 448, 357, 17, 583, 2163, 25, 29472, 290, 1257, 310, 952, 198, 198, 11748, 25064, 198, 198, 361, 25064, 13, 9641, 62, 10951, 13, 22478, 1279, 513, 25, 198, 220, 220, 220, 3601, 7203, 24908, 25, 770, 2891, 4433, 21015, 18, 357, 1662, 21015, 17, 42501, 2393, 28, 17597, 13, 301, 1082, 81, 8, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 11748, 28686, 198, 11748, 28686, 13, 6978, 198, 11748, 302, 198, 11748, 850, 14681, 628, 198, 2, 4757, 1187, 198, 2, 796, 2559, 198, 198, 2, 797, 25636, 79, 284, 4886, 611, 257, 1573, 543, 4940, 351, 458, 58, 70, 60, 357, 568, 326, 340, 3073, 588, 257, 3141, 8, 3940, 351, 257, 2560, 8497, 198, 44, 11417, 62, 35, 2767, 9782, 796, 302, 13, 5589, 576, 7, 1911, 9, 30, 7, 61, 91, 58, 61, 64, 12, 89, 32, 12, 57, 59, 67, 12962, 489, 7, 70, 30, 5769, 58, 64, 12, 89, 32, 12, 57, 60, 9, 19415, 82, 9, 59, 19510, 15885, 8, 4943, 198, 2, 797, 25636, 79, 284, 7925, 262, 14354, 422, 262, 2420, 2665, 11, 290, 635, 262, 4939, 3392, 198, 44, 11417, 62, 10778, 62, 24027, 796, 302, 13, 5589, 576, 7203, 61, 26933, 15, 12, 24, 64, 12, 89, 48688, 19415, 82, 10, 58, 34551, 60, 59, 82, 7, 15885, 10091, 59, 82, 38016, 50, 10, 2599, 38016, 67, 28988, 3, 1600, 302, 13, 16284, 1581, 2943, 11159, 8, 198, 198, 2, 49505, 3025, 10007, 2236, 307, 13686, 13, 10575, 3815, 389, 25, 657, 28, 1102, 1851, 691, 13042, 220, 220, 352, 28, 1102, 1851, 477, 10007, 198, 6489, 62, 9858, 10725, 5258, 62, 25216, 796, 1391, 198, 220, 220, 220, 366, 8021, 861, 1298, 352, 11, 198, 220, 220, 220, 366, 44140, 1298, 657, 11, 198, 220, 220, 220, 366, 12915, 1298, 657, 11, 198, 220, 220, 220, 366, 6601, 1298, 657, 11, 198, 220, 220, 220, 366, 8206, 1298, 657, 11, 198, 220, 220, 220, 366, 37835, 533, 16818, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 3673, 1958, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 3673, 1958, 35, 2047, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 21321, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 21321, 35, 2047, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 9012, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 9012, 35, 2047, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 43642, 9012, 1298, 657, 11, 198, 220, 220, 220, 366, 25392, 43642, 9012, 35, 2047, 1298, 657, 11, 198, 220, 220, 220, 366, 12050, 10100, 1298, 657, 11, 198, 220, 220, 220, 366, 9704, 263, 1298, 657, 11, 198, 220, 220, 220, 366, 9704, 263, 35, 2047, 1298, 657, 11, 198, 220, 220, 220, 366, 13579, 49222, 1298, 657, 11, 198, 220, 220, 220, 366, 38804, 2601, 72, 1298, 352, 11, 198, 220, 220, 220, 366, 43642, 1298, 657, 11, 198, 220, 220, 220, 366, 8206, 1298, 657, 11, 198, 220, 220, 220, 366, 19852, 1298, 352, 11, 198, 92, 198, 198, 2, 10478, 364, 198, 2, 29335, 855, 628, 628, 198, 2, 8774, 5726, 198, 2, 796, 2559, 28, 628, 198, 198, 2, 18892, 26418, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 7, 17597, 13, 853, 85, 8, 628, 198, 2, 11801, 1332, 198, 2, 796, 2559, 198, 198, 2, 24457, 2302, 10100, 34, 381, 46677, 13, 9078, 1070, 10100, 34, 381, 46677, 13, 9078, 220, 2236, 1577, 366, 11274, 1, 3940, 416, 257, 35582, 3146, 11, 290, 645, 366, 33, 2885, 1, 198, 37811, 198, 489, 44140, 220, 257, 64, 7203, 33, 2885, 15, 15341, 198, 198, 489, 44140, 7203, 11274, 486, 15341, 198, 489, 44140, 5855, 11274, 2999, 15341, 198, 489, 44140, 7203, 11274, 3070, 1600, 366, 11274, 3023, 15341, 198, 489, 70, 44140, 7, 33, 2885, 16, 11, 366, 11274, 2713, 15341, 198, 489, 44140, 7203, 11274, 3312, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11274, 2998, 4943, 366, 33, 2885, 17, 8172, 198, 489, 44140, 7203, 11274, 2919, 1600, 3373, 366, 33, 2885, 18, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 11274, 2931, 15341, 3373, 366, 33, 2885, 19, 1, 198, 489, 19852, 7, 11274, 940, 11, 922, 1157, 1776, 198, 489, 70, 19852, 357, 33, 2885, 20, 11, 922, 1065, 11, 198, 220, 220, 220, 220, 220, 220, 220, 922, 1485, 1776, 198, 489, 70, 19852, 357, 33, 2885, 21, 11, 922, 1415, 11, 3373, 33934, 22, 198, 220, 220, 220, 220, 220, 220, 220, 922, 1314, 1776, 198, 489, 8021, 861, 7, 11274, 1433, 1776, 198, 489, 70, 8021, 861, 7, 33, 2885, 23, 11, 922, 1558, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 922, 1507, 1776, 198, 489, 8021, 861, 7, 11274, 1129, 7, 64, 11, 65, 3419, 828, 922, 1238, 7203, 11299, 7203, 828, 922, 2481, 1776, 198, 198, 1662, 379, 923, 286, 262, 1627, 458, 12050, 10100, 7203, 11274, 1828, 12340, 489, 12050, 10100, 5855, 11274, 1954, 1, 1267, 837, 458, 12050, 10100, 357, 366, 11274, 1731, 4943, 198, 198, 489, 44140, 7203, 11274, 1495, 9959, 27, 938, 530, 15341, 3373, 16789, 530, 379, 262, 886, 523, 340, 318, 2562, 284, 4886, 1729, 35582, 366, 11274, 82, 1, 198, 37811, 198 ]
2.776642
1,370
# Generated by Django 3.2.3 on 2021-05-28 10:52 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 513, 13, 17, 13, 18, 319, 33448, 12, 2713, 12, 2078, 838, 25, 4309, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
s = input() m, n = s.split(" ") m = int(m) n = int(n) for ri in range(m): for ci in range(n): v = ( ri + 1 ) * ( ci + 1 ) print(v, end=" ") print()
[ 82, 796, 5128, 3419, 198, 76, 11, 299, 796, 264, 13, 35312, 7203, 366, 8, 198, 76, 796, 493, 7, 76, 8, 198, 77, 796, 493, 7, 77, 8, 198, 198, 1640, 374, 72, 287, 2837, 7, 76, 2599, 198, 220, 220, 220, 329, 269, 72, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 410, 796, 357, 374, 72, 1343, 352, 1267, 1635, 357, 269, 72, 1343, 352, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 85, 11, 886, 2625, 366, 8, 198, 220, 220, 220, 3601, 3419, 628 ]
1.793814
97
# !/usr/bin/python # _ _ ____ _ _ ____ _ _ _ # | | (_) ___ ___ _ __ ___ ___ | _ \| | __ _| |_ ___ | _ \ ___ ___ ___ __ _ _ __ (_) |_(_) ___ _ __ # | | | |/ __/ _ \ '_ \/ __|/ _ \ | |_) | |/ _` | __/ _ \ | |_) / _ \/ __/ _ \ / _` | '_ \| | __| |/ _ \| '_ \ # | |___| | (__ __/ | | \__ \ __/ | __/| | (_| | |_ __/ | _ < __/ (__ (_) | (_| | | | | | |_| | (_) | | | | # |_____|_|\___\___|_| |_|___/\___| |_| |_|\__,_|\__\___| |_| \_\___|\___\___/ \__, |_| |_|_|\__|_|\___/|_| |_| # |___/ # (c) Shahar Gino, July-2017, [email protected] # --------------------------------------------------------------------------------------------------------------- class PossiblePlate: """ Class for representing a (possible) license-plate object """ # -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. -- .. def __init__(self): """ Constructor """ self.imgPlate = None self.imgGrayscale = None self.imgThresh = None self.rrLocationOfPlateInScene = None self.rrLocationOfPlateInSceneGbl = None self.strChars = "" self.rectFind = False
[ 2, 5145, 14, 14629, 14, 8800, 14, 29412, 198, 2, 220, 4808, 220, 220, 220, 220, 4808, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1427, 220, 4808, 220, 220, 220, 220, 220, 220, 4808, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1427, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 4808, 220, 220, 4808, 198, 2, 930, 930, 220, 220, 44104, 8, 46444, 46444, 4808, 11593, 220, 46444, 220, 46444, 220, 930, 220, 4808, 3467, 91, 930, 11593, 4808, 91, 930, 62, 46444, 220, 930, 220, 4808, 3467, 46444, 220, 46444, 46444, 220, 220, 11593, 4808, 4808, 11593, 44104, 8, 930, 62, 28264, 8, 46444, 220, 4808, 11593, 198, 2, 930, 930, 220, 220, 930, 930, 14, 11593, 14, 4808, 3467, 705, 62, 3467, 14, 11593, 91, 14, 4808, 3467, 930, 930, 62, 8, 930, 930, 14, 4808, 63, 930, 11593, 14, 4808, 3467, 930, 930, 62, 8, 1220, 4808, 3467, 14, 11593, 14, 4808, 3467, 1220, 4808, 63, 930, 705, 62, 3467, 91, 930, 11593, 91, 930, 14, 4808, 3467, 91, 705, 62, 3467, 198, 2, 930, 930, 17569, 91, 930, 357, 834, 220, 11593, 14, 930, 930, 3467, 834, 3467, 220, 11593, 14, 930, 220, 11593, 14, 91, 930, 44104, 91, 930, 930, 62, 220, 11593, 14, 930, 220, 4808, 1279, 220, 11593, 14, 357, 834, 44104, 8, 930, 44104, 91, 930, 930, 930, 930, 930, 930, 62, 91, 930, 44104, 8, 930, 930, 930, 930, 198, 2, 930, 29343, 91, 62, 91, 59, 17569, 59, 17569, 91, 62, 91, 930, 62, 91, 17569, 14, 59, 17569, 91, 930, 62, 91, 220, 220, 930, 62, 91, 59, 834, 11, 62, 91, 59, 834, 59, 17569, 91, 930, 62, 91, 3467, 62, 59, 17569, 91, 59, 17569, 59, 17569, 14, 3467, 834, 11, 930, 62, 91, 930, 62, 91, 62, 91, 59, 834, 91, 62, 91, 59, 17569, 14, 91, 62, 91, 930, 62, 91, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17569, 14, 198, 2, 357, 66, 8, 18381, 283, 402, 2879, 11, 2901, 12, 5539, 11, 264, 1655, 78, 22567, 31, 14816, 13, 785, 198, 198, 2, 16529, 3880, 24305, 198, 4871, 33671, 3646, 378, 25, 198, 220, 220, 220, 37227, 5016, 329, 10200, 257, 357, 79, 4733, 8, 5964, 12, 6816, 2134, 37227, 628, 220, 220, 220, 1303, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 1377, 11485, 198, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 28407, 273, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 3646, 378, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 8642, 592, 38765, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 9600, 817, 3447, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21062, 14749, 5189, 3646, 378, 818, 36542, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21062, 14749, 5189, 3646, 378, 818, 36542, 38, 2436, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2536, 1925, 945, 796, 13538, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2554, 16742, 796, 10352, 198 ]
1.958209
670