content
stringlengths
1
1.04M
input_ids
sequencelengths
1
774k
ratio_char_token
float64
0.38
22.9
token_count
int64
1
774k
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="choixpeau", version="0.0.9", author="Keurcien Luu", author_email="[email protected]", description="Efficiently assign users to buckets.", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(exclude=['tests']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=[ "redis" ] )
[ 11748, 900, 37623, 10141, 198, 198, 4480, 1280, 7203, 15675, 11682, 13, 9132, 1600, 366, 81, 4943, 355, 277, 71, 25, 198, 220, 220, 220, 890, 62, 11213, 796, 277, 71, 13, 961, 3419, 198, 198, 2617, 37623, 10141, 13, 40406, 7, 198, 220, 220, 220, 1438, 2625, 6679, 844, 431, 559, 1600, 198, 220, 220, 220, 2196, 2625, 15, 13, 15, 13, 24, 1600, 198, 220, 220, 220, 1772, 2625, 8896, 333, 979, 268, 6026, 84, 1600, 198, 220, 220, 220, 1772, 62, 12888, 2625, 365, 333, 979, 268, 31, 1324, 6679, 577, 13, 952, 1600, 198, 220, 220, 220, 6764, 2625, 36, 5632, 306, 8333, 2985, 284, 38674, 33283, 198, 220, 220, 220, 890, 62, 11213, 28, 6511, 62, 11213, 11, 198, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 10392, 28, 2617, 37623, 10141, 13, 19796, 62, 43789, 7, 1069, 9152, 28, 17816, 41989, 20520, 828, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 21015, 62, 47911, 11639, 29, 28, 18, 13, 21, 3256, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 366, 445, 271, 1, 198, 220, 220, 220, 2361, 198, 8 ]
2.5
266
#================================ # RESEARCH GROUP PROJECT [RGP] #================================ # This file is part of the COMP3096 Research Group Project. # System import logging # Gym Imports import gym from gym.spaces import Box, Discrete, Tuple # PySC2 Imports from pysc2.lib.actions import FUNCTIONS, FunctionCall from pysc2.lib.features import SCREEN_FEATURES # Numpy import numpy as np # Typing from typing import List from sc2g.env.unit_tracking import UnitTrackingEnv # Setup logger = logging.getLogger(__name__) logger.setLevel(logging.INFO)
[ 2, 10052, 198, 2, 15731, 17133, 3398, 44441, 21965, 23680, 685, 49, 16960, 60, 198, 2, 10052, 198, 2, 770, 2393, 318, 636, 286, 262, 24301, 1270, 4846, 4992, 4912, 4935, 13, 198, 198, 2, 4482, 198, 11748, 18931, 198, 198, 2, 31187, 1846, 3742, 198, 11748, 11550, 198, 6738, 11550, 13, 2777, 2114, 1330, 8315, 11, 8444, 8374, 11, 309, 29291, 198, 198, 2, 9485, 6173, 17, 1846, 3742, 198, 6738, 279, 28349, 17, 13, 8019, 13, 4658, 1330, 29397, 4177, 11053, 11, 15553, 14134, 198, 6738, 279, 28349, 17, 13, 8019, 13, 40890, 1330, 6374, 2200, 1677, 62, 15112, 47471, 198, 198, 2, 399, 32152, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 17134, 278, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 629, 17, 70, 13, 24330, 13, 20850, 62, 36280, 1330, 11801, 2898, 5430, 4834, 85, 198, 198, 2, 31122, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 1362, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 628 ]
3.273256
172
""" Initialize an authenticated instance of PRAW to interact with. $ python -i initialize_session.py """ from ttrv.docs import AGENT from ttrv.packages import praw from ttrv.content import RequestHeaderRateLimiter from ttrv.config import Config config = Config() config.load_refresh_token() reddit = praw.Reddit( user_agent=AGENT.format(version='test_session'), decode_html_entities=False, disable_update_check=True, timeout=10, # 10 second request timeout handler=RequestHeaderRateLimiter()) reddit.set_oauth_app_info( config['oauth_client_id'], config['oauth_client_secret'], config['oauth_redirect_uri']) reddit.refresh_access_information(config.refresh_token) inbox = reddit.get_inbox() items = [next(inbox) for _ in range(20)] pass
[ 37811, 198, 24243, 1096, 281, 44529, 4554, 286, 350, 20530, 284, 9427, 351, 13, 198, 198, 3, 21015, 532, 72, 41216, 62, 29891, 13, 9078, 198, 37811, 198, 6738, 256, 2213, 85, 13, 31628, 1330, 13077, 3525, 198, 6738, 256, 2213, 85, 13, 43789, 1330, 279, 1831, 198, 6738, 256, 2213, 85, 13, 11299, 1330, 19390, 39681, 32184, 19352, 2676, 198, 6738, 256, 2213, 85, 13, 11250, 1330, 17056, 198, 198, 11250, 796, 17056, 3419, 198, 11250, 13, 2220, 62, 5420, 3447, 62, 30001, 3419, 198, 198, 10748, 796, 279, 1831, 13, 22367, 7, 198, 220, 220, 220, 2836, 62, 25781, 28, 4760, 3525, 13, 18982, 7, 9641, 11639, 9288, 62, 29891, 33809, 198, 220, 220, 220, 36899, 62, 6494, 62, 298, 871, 28, 25101, 11, 198, 220, 220, 220, 15560, 62, 19119, 62, 9122, 28, 17821, 11, 198, 220, 220, 220, 26827, 28, 940, 11, 220, 1303, 838, 1218, 2581, 26827, 198, 220, 220, 220, 21360, 28, 18453, 39681, 32184, 19352, 2676, 28955, 628, 198, 10748, 13, 2617, 62, 12162, 1071, 62, 1324, 62, 10951, 7, 198, 220, 220, 220, 4566, 17816, 12162, 1071, 62, 16366, 62, 312, 6, 4357, 198, 220, 220, 220, 4566, 17816, 12162, 1071, 62, 16366, 62, 21078, 6, 4357, 198, 220, 220, 220, 4566, 17816, 12162, 1071, 62, 445, 1060, 62, 9900, 6, 12962, 198, 10748, 13, 5420, 3447, 62, 15526, 62, 17018, 7, 11250, 13, 5420, 3447, 62, 30001, 8, 198, 198, 259, 3524, 796, 18374, 13, 1136, 62, 259, 3524, 3419, 198, 23814, 796, 685, 19545, 7, 259, 3524, 8, 329, 4808, 287, 2837, 7, 1238, 15437, 198, 6603, 198 ]
2.895522
268
""" Example on how to plot a Skew-T plot of a sounding -------------------------------------------------- This example shows how to make a Skew-T plot from a sounding and calculate stability indicies. METPy needs to be installed in order to run this example """ import act from matplotlib import pyplot as plt try: import metpy METPY = True except ImportError: METPY = False if METPY: # Read data sonde_ds = act.io.armfiles.read_netcdf( act.tests.sample_files.EXAMPLE_SONDE1) print(list(sonde_ds)) # Calculate stability indicies sonde_ds = act.retrievals.calculate_stability_indicies( sonde_ds, temp_name="tdry", td_name="dp", p_name="pres", rh_name='rh') print(sonde_ds["lifted_index"]) # Set up plot skewt = act.plotting.SkewTDisplay(sonde_ds, figsize=(15, 10)) # Add data skewt.plot_from_u_and_v('u_wind', 'v_wind', 'pres', 'tdry', 'dp') sonde_ds.close() plt.show()
[ 37811, 198, 16281, 319, 703, 284, 7110, 257, 19460, 86, 12, 51, 7110, 286, 257, 22655, 198, 47232, 438, 198, 198, 1212, 1672, 2523, 703, 284, 787, 257, 19460, 86, 12, 51, 7110, 422, 257, 22655, 198, 392, 15284, 10159, 2699, 444, 13, 220, 31243, 20519, 2476, 284, 307, 6589, 198, 259, 1502, 284, 1057, 428, 1672, 198, 198, 37811, 628, 198, 11748, 719, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 198, 28311, 25, 198, 220, 220, 220, 1330, 1138, 9078, 198, 220, 220, 220, 31243, 47, 56, 796, 6407, 198, 16341, 17267, 12331, 25, 198, 220, 220, 220, 31243, 47, 56, 796, 10352, 198, 198, 361, 31243, 47, 56, 25, 198, 220, 220, 220, 1303, 4149, 1366, 198, 220, 220, 220, 264, 14378, 62, 9310, 796, 719, 13, 952, 13, 1670, 16624, 13, 961, 62, 3262, 66, 7568, 7, 198, 220, 220, 220, 220, 220, 220, 220, 719, 13, 41989, 13, 39873, 62, 16624, 13, 6369, 2390, 16437, 62, 11782, 7206, 16, 8, 628, 220, 220, 220, 3601, 7, 4868, 7, 82, 14378, 62, 9310, 4008, 198, 220, 220, 220, 1303, 27131, 378, 10159, 2699, 444, 198, 220, 220, 220, 264, 14378, 62, 9310, 796, 719, 13, 1186, 380, 1990, 874, 13, 9948, 3129, 378, 62, 301, 1799, 62, 521, 291, 444, 7, 198, 220, 220, 220, 220, 220, 220, 220, 264, 14378, 62, 9310, 11, 20218, 62, 3672, 2625, 8671, 563, 1600, 41560, 62, 3672, 2625, 26059, 1600, 279, 62, 3672, 2625, 18302, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 9529, 62, 3672, 11639, 17179, 11537, 198, 220, 220, 220, 3601, 7, 82, 14378, 62, 9310, 14692, 75, 21715, 62, 9630, 8973, 8, 628, 220, 220, 220, 1303, 5345, 510, 7110, 198, 220, 220, 220, 43370, 83, 796, 719, 13, 29487, 889, 13, 50, 365, 86, 51, 23114, 7, 82, 14378, 62, 9310, 11, 2336, 7857, 16193, 1314, 11, 838, 4008, 628, 220, 220, 220, 1303, 3060, 1366, 198, 220, 220, 220, 43370, 83, 13, 29487, 62, 6738, 62, 84, 62, 392, 62, 85, 10786, 84, 62, 7972, 3256, 705, 85, 62, 7972, 3256, 705, 18302, 3256, 705, 8671, 563, 3256, 705, 26059, 11537, 198, 220, 220, 220, 264, 14378, 62, 9310, 13, 19836, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198 ]
2.507813
384
import sys predotarOutput(sys.argv[1],sys.argv[2])
[ 11748, 25064, 198, 198, 28764, 313, 283, 26410, 7, 17597, 13, 853, 85, 58, 16, 4357, 17597, 13, 853, 85, 58, 17, 12962, 198 ]
2.166667
24
""" Author: Sarah Masud Copyright (c): Sarah Masud """ import json import numpy as np from datetime import datetime, timedelta import os import sys main_dir = os.path.join("data", "reddit_data") with open(os.path.join(main_dir, "selected_discussion_nov.jsonlist"), "r") as f: data = f.readlines() n = len(data) print(n) sys.stdout.flush() subreddit_stats = {} input_dir_path = os.path.join("data", "reddit_data", "NOV_INPUT") output_dir_path = os.path.join("data", "reddit_data", "NOV_OUTPUT") output_hour_dir_path = os.path.join("data", "reddit_data", "NOV_OUTPUT_HOUR") for i in range(n): print(i) sys.stdout.flush() each_reddit = json.loads(data[i]) key = list(each_reddit.keys())[0] each_reddit = each_reddit[key] subreddit_stats[i] = {} subreddit_stats[i]['total'] = len(each_reddit) atleast_1 = 0 atleast_10 = 0 sub_dir_path = os.path.join(input_dir_path, str(i)) os.mkdir(sub_dir_path) out_sub_dir_path = os.path.join(output_dir_path, str(i)) os.mkdir(out_sub_dir_path) out_hour_sub_dir_path = os.path.join(output_hour_dir_path, str(i)) os.mkdir(out_hour_sub_dir_path) for index, each_post in enumerate(each_reddit): event_list_temp = [] if len(each_post['comments']) < 10: continue d1 = datetime.fromtimestamp(each_post['created_utc']) event_list_temp = [] for each_comment in each_post['comments']: d2 = datetime.fromtimestamp(each_comment['created_utc']) if d2 > d1 + timedelta(days=30): break td = d2 - d1 td = td.total_seconds() / 3600 # in hours event_list_temp.append(str(td) + " " + "1") l = len(event_list_temp) if l < 10: atleast_1 += 1 continue event_list = [] event_list.append(str(l + 1) + " " + str(each_post['created_utc'])) event_list.append("0.0 1") event_list.extend(event_list_temp) atleast_1 += 1 atleast_10 += 1 file_path = os.path.join(sub_dir_path, str(index) + ".txt") with open(file_path, "w") as f: for each_line in event_list: f.write(each_line + "\n") if atleast_10 == 0: print("10-0", i) sys.stdout.flush() os.rmdir(sub_dir_path) os.rmdir(out_sub_dir_path) os.rmdir(out_hour_sub_dir_path) subreddit_stats[i]['atleast_1'] = atleast_1 subreddit_stats[i]['atleast_10'] = atleast_10 with open(os.path.join(main_dir, "subreddit_stats_nov_10.json"), "w") as f: json.dump(subreddit_stats, f, indent=True)
[ 37811, 198, 13838, 25, 10490, 11066, 463, 198, 15269, 357, 66, 2599, 10490, 11066, 463, 198, 37811, 198, 198, 11748, 33918, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 12417, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 10748, 62, 7890, 4943, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 12417, 62, 15908, 11, 366, 34213, 62, 15410, 11956, 62, 37302, 13, 17752, 4868, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 81, 4943, 355, 277, 25, 198, 220, 220, 220, 1366, 796, 277, 13, 961, 6615, 3419, 198, 77, 796, 18896, 7, 7890, 8, 198, 4798, 7, 77, 8, 198, 17597, 13, 19282, 448, 13, 25925, 3419, 198, 198, 7266, 10748, 62, 34242, 796, 23884, 198, 15414, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 10748, 62, 7890, 1600, 366, 45, 8874, 62, 1268, 30076, 4943, 198, 22915, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 10748, 62, 7890, 1600, 366, 45, 8874, 62, 2606, 7250, 3843, 4943, 198, 22915, 62, 9769, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7203, 7890, 1600, 366, 10748, 62, 7890, 1600, 366, 45, 8874, 62, 2606, 7250, 3843, 62, 39, 11698, 4943, 198, 198, 1640, 1312, 287, 2837, 7, 77, 2599, 198, 220, 220, 220, 3601, 7, 72, 8, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 1123, 62, 10748, 796, 33918, 13, 46030, 7, 7890, 58, 72, 12962, 198, 220, 220, 220, 1994, 796, 1351, 7, 27379, 62, 10748, 13, 13083, 28955, 58, 15, 60, 198, 220, 220, 220, 1123, 62, 10748, 796, 1123, 62, 10748, 58, 2539, 60, 198, 220, 220, 220, 25163, 62, 34242, 58, 72, 60, 796, 23884, 198, 220, 220, 220, 25163, 62, 34242, 58, 72, 7131, 6, 23350, 20520, 796, 18896, 7, 27379, 62, 10748, 8, 198, 220, 220, 220, 379, 293, 459, 62, 16, 796, 657, 198, 220, 220, 220, 379, 293, 459, 62, 940, 796, 657, 198, 220, 220, 220, 850, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15414, 62, 15908, 62, 6978, 11, 965, 7, 72, 4008, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 503, 62, 7266, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 15908, 62, 6978, 11, 965, 7, 72, 4008, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 448, 62, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 503, 62, 9769, 62, 7266, 62, 15908, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 22915, 62, 9769, 62, 15908, 62, 6978, 11, 965, 7, 72, 4008, 198, 220, 220, 220, 28686, 13, 28015, 15908, 7, 448, 62, 9769, 62, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 329, 6376, 11, 1123, 62, 7353, 287, 27056, 378, 7, 27379, 62, 10748, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 62, 29510, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 27379, 62, 7353, 17816, 15944, 6, 12962, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 288, 16, 796, 4818, 8079, 13, 6738, 16514, 27823, 7, 27379, 62, 7353, 17816, 25598, 62, 315, 66, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 62, 29510, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 62, 23893, 287, 1123, 62, 7353, 17816, 15944, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 17, 796, 4818, 8079, 13, 6738, 16514, 27823, 7, 27379, 62, 23893, 17816, 25598, 62, 315, 66, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 17, 1875, 288, 16, 1343, 28805, 12514, 7, 12545, 28, 1270, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 796, 288, 17, 532, 288, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41560, 796, 41560, 13, 23350, 62, 43012, 3419, 1220, 4570, 405, 220, 1303, 287, 2250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 62, 29510, 13, 33295, 7, 2536, 7, 8671, 8, 1343, 366, 366, 1343, 366, 16, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 300, 796, 18896, 7, 15596, 62, 4868, 62, 29510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 1279, 838, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 379, 293, 459, 62, 16, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 13, 33295, 7, 2536, 7, 75, 1343, 352, 8, 1343, 366, 366, 1343, 965, 7, 27379, 62, 7353, 17816, 25598, 62, 315, 66, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 13, 33295, 7203, 15, 13, 15, 352, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1785, 62, 4868, 13, 2302, 437, 7, 15596, 62, 4868, 62, 29510, 8, 198, 220, 220, 220, 220, 220, 220, 220, 379, 293, 459, 62, 16, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 379, 293, 459, 62, 940, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 7266, 62, 15908, 62, 6978, 11, 965, 7, 9630, 8, 1343, 27071, 14116, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 7753, 62, 6978, 11, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1123, 62, 1370, 287, 1785, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 7, 27379, 62, 1370, 1343, 37082, 77, 4943, 198, 220, 220, 220, 611, 379, 293, 459, 62, 940, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 940, 12, 15, 1600, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 81, 9132, 343, 7, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 81, 9132, 343, 7, 448, 62, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 81, 9132, 343, 7, 448, 62, 9769, 62, 7266, 62, 15908, 62, 6978, 8, 198, 220, 220, 220, 25163, 62, 34242, 58, 72, 7131, 6, 265, 293, 459, 62, 16, 20520, 796, 379, 293, 459, 62, 16, 198, 220, 220, 220, 25163, 62, 34242, 58, 72, 7131, 6, 265, 293, 459, 62, 940, 20520, 796, 379, 293, 459, 62, 940, 198, 4480, 1280, 7, 418, 13, 6978, 13, 22179, 7, 12417, 62, 15908, 11, 366, 7266, 10748, 62, 34242, 62, 37302, 62, 940, 13, 17752, 12340, 366, 86, 4943, 355, 277, 25, 198, 220, 220, 220, 33918, 13, 39455, 7, 7266, 10748, 62, 34242, 11, 277, 11, 33793, 28, 17821, 8, 198 ]
2.07565
1,269
# Generated by Django 2.2.4 on 2019-10-06 15:46 from django.db import migrations, models
[ 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 19, 319, 13130, 12, 940, 12, 3312, 1315, 25, 3510, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 628 ]
2.84375
32
from ibslib.io import aims_extractor __author__='Manny Bier' def extract(struct_dir, extractor="aims", extractor_kwargs={}): """ Purpose is to extract information from a specific direcoty format. For example, extract FHI-aims calculation directories to a Structure json file. Arguments --------- struct_dir: path Path to the directory that information will be extracted from extractor: str Extraction method to use kwargs: dict Dictionary of keyword arguments which will be passed to the extraction process. """ if extractor == "aims": result = aims_extractor.extract(struct_dir, extractor_kwargs) return result if __name__ == "__main__": struct_dir = "/Users/ibier/Research/Results/Hab_Project/FUQJIK/2_mpc/Genarris/Relaxation" result = extract(struct_dir, extractor="aims")
[ 628, 198, 6738, 24283, 6649, 571, 13, 952, 1330, 12031, 62, 2302, 40450, 198, 198, 834, 9800, 834, 11639, 44, 7737, 347, 959, 6, 198, 198, 4299, 7925, 7, 7249, 62, 15908, 11, 7925, 273, 2625, 1385, 82, 1600, 7925, 273, 62, 46265, 22046, 34758, 92, 2599, 198, 220, 220, 220, 37227, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 32039, 318, 284, 7925, 1321, 422, 257, 2176, 19958, 25557, 88, 5794, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1114, 1672, 11, 7925, 376, 25374, 12, 1385, 82, 17952, 29196, 284, 257, 32522, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 2393, 13, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 20559, 2886, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 2878, 62, 15908, 25, 3108, 198, 220, 220, 220, 220, 220, 220, 220, 10644, 284, 262, 8619, 326, 1321, 481, 307, 21242, 422, 198, 220, 220, 220, 7925, 273, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 5683, 7861, 2446, 284, 779, 198, 220, 220, 220, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 21179, 7159, 543, 481, 307, 3804, 284, 262, 22236, 198, 220, 220, 220, 220, 220, 220, 220, 1429, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 7925, 273, 6624, 366, 1385, 82, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 12031, 62, 2302, 40450, 13, 2302, 974, 7, 7249, 62, 15908, 11, 7925, 273, 62, 46265, 22046, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2878, 62, 15908, 796, 12813, 14490, 14, 571, 959, 14, 25104, 14, 25468, 14, 39, 397, 62, 16775, 14, 38989, 48, 41, 18694, 14, 17, 62, 3149, 66, 14, 13746, 283, 2442, 14, 6892, 897, 341, 1, 198, 220, 220, 220, 1255, 796, 7925, 7, 7249, 62, 15908, 11, 7925, 273, 2625, 1385, 82, 4943, 198 ]
2.572222
360
from sqlalchemy.orm import scoped_session as ss
[ 6738, 44161, 282, 26599, 13, 579, 1330, 629, 19458, 62, 29891, 355, 37786, 628 ]
3.5
14
import re typ='Extra stings Hello 2134567 World_This is a Regex Demo Extra stings' result = re.search('(Extra) stings Hello 2134567 (.*) is a Regex Demo Extra (.*)',typ ,re.S) print(result.group(1,2,3)) # type="submit" id="su" value="百度一下" class="bg s_btn"></span><span class="tools"><span id="mHolder"><div id="mCon"><span>输入法</span></div><ul id="mMenu">
[ 11748, 302, 198, 28004, 11639, 27726, 336, 654, 18435, 28658, 2231, 3134, 2159, 62, 1212, 318, 257, 797, 25636, 34588, 17221, 336, 654, 6, 198, 20274, 796, 302, 13, 12947, 10786, 7, 27726, 8, 336, 654, 18435, 28658, 2231, 3134, 357, 15885, 8, 318, 257, 797, 25636, 34588, 17221, 357, 15885, 8, 3256, 28004, 837, 260, 13, 50, 8, 198, 198, 4798, 7, 20274, 13, 8094, 7, 16, 11, 17, 11, 18, 4008, 198, 2, 2099, 2625, 46002, 1, 4686, 2625, 2385, 1, 1988, 2625, 163, 247, 122, 41753, 99, 31660, 10310, 233, 1, 1398, 2625, 35904, 264, 62, 46118, 23984, 12626, 6927, 12626, 1398, 2625, 31391, 22039, 12626, 4686, 2625, 76, 39, 19892, 22039, 7146, 4686, 2625, 76, 3103, 22039, 12626, 29, 164, 122, 241, 17739, 98, 37345, 243, 3556, 12626, 12240, 7146, 6927, 377, 4686, 2625, 76, 23381, 5320 ]
2.524823
141
import io import sys from typing import List from hstest.dynamic.input.dynamic_input_func import DynamicTestFunction, DynamicInputFunction from hstest.dynamic.input.input_mock import InputMock
[ 11748, 33245, 198, 11748, 25064, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 289, 301, 395, 13, 67, 28995, 13, 15414, 13, 67, 28995, 62, 15414, 62, 20786, 1330, 26977, 14402, 22203, 11, 26977, 20560, 22203, 198, 6738, 289, 301, 395, 13, 67, 28995, 13, 15414, 13, 15414, 62, 76, 735, 1330, 23412, 44, 735, 628 ]
3.482143
56
import rx from rx import operators as ops import operator def demo_starmap(): '''tuple unpacking''' a = rx.of(1, 2, 3, 4) b = rx.of(2, 2, 4, 4) a.pipe( ops.zip(b), ops.starmap(operator.mul) ).subscribe(print) if __name__ == '__main__': #demo_zip() demo_starmap()
[ 11748, 374, 87, 198, 6738, 374, 87, 1330, 12879, 355, 39628, 198, 11748, 10088, 198, 198, 4299, 13605, 62, 301, 1670, 499, 33529, 198, 220, 220, 220, 705, 7061, 83, 29291, 8593, 5430, 7061, 6, 198, 220, 220, 220, 220, 198, 220, 220, 220, 257, 796, 374, 87, 13, 1659, 7, 16, 11, 362, 11, 513, 11, 604, 8, 198, 220, 220, 220, 275, 796, 374, 87, 13, 1659, 7, 17, 11, 362, 11, 604, 11, 604, 8, 628, 220, 220, 220, 257, 13, 34360, 7, 198, 220, 220, 220, 220, 220, 220, 220, 39628, 13, 13344, 7, 65, 828, 198, 220, 220, 220, 220, 220, 220, 220, 39628, 13, 301, 1670, 499, 7, 46616, 13, 76, 377, 8, 198, 220, 220, 220, 6739, 7266, 12522, 7, 4798, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 9536, 78, 62, 13344, 3419, 198, 220, 220, 220, 13605, 62, 301, 1670, 499, 3419 ]
1.950311
161
import unittest from cloudwanderer import URN from ..helpers import CloudWandererCalls, ExpectedCall, MultipleResourceScenario, NoMotoMock, SingleResourceScenario
[ 11748, 555, 715, 395, 198, 198, 6738, 6279, 86, 392, 11882, 1330, 37902, 45, 198, 198, 6738, 11485, 16794, 364, 1330, 10130, 54, 392, 11882, 34, 5691, 11, 1475, 7254, 14134, 11, 20401, 26198, 3351, 39055, 11, 1400, 44, 2069, 44, 735, 11, 14206, 26198, 3351, 39055, 628 ]
3.458333
48
import os from flask import Flask, json, Response, request, render_template, send_file, jsonify, send_from_directory from werkzeug.utils import secure_filename import requests from flask_cors import CORS from datetime import datetime import torch import torch.nn.functional as F import numpy as np import json import torchvision.transforms as transforms # import matplotlib.pyplot as plt # import matplotlib.cm as cm import skimage.transform import argparse from scipy.misc import imread, imresize from PIL import Image import shutil from PIL import Image torch.set_default_tensor_type('torch.cuda.FloatTensor') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = 'cpu' print('-------------', device) def caption_image_beam_search(encoder, decoder, image_path, word_map, beam_size): """ Reads an image and captions it with beam search. :param encoder: encoder model :param decoder: decoder model :param image_path: path to image :param word_map: word map :param beam_size: number of sequences to consider at each decode-step :return: caption, weights for visualization """ k = beam_size vocab_size = len(word_map) # Read image and process img = imread(image_path) if len(img.shape) == 2: img = img[:, :, np.newaxis] img = np.concatenate([img, img, img], axis=2) # img = imresize(img, (256, 256)) img = img.transpose(2, 0, 1) img = img / 255. img = torch.FloatTensor(img).to(device) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform = transforms.Compose([normalize]) image = transform(img) # (3, 256, 256) # Encode image = image.unsqueeze(0) # (1, 3, 256, 256) # (1, enc_image_size, enc_image_size, encoder_dim) encoder_out = encoder(image) enc_image_size = encoder_out.size(1) encoder_dim = encoder_out.size(3) # Flatten encoding # (1, num_pixels, encoder_dim) encoder_out = encoder_out.view(1, -1, encoder_dim) num_pixels = encoder_out.size(1) # We'll treat the problem as having a batch size of k # (k, num_pixels, encoder_dim) encoder_out = encoder_out.expand(k, num_pixels, encoder_dim) # Tensor to store top k previous words at each step; now they're just <start> k_prev_words = torch.LongTensor( [[word_map['<start>']]] * k).to(device) # (k, 1) # Tensor to store top k sequences; now they're just <start> seqs = k_prev_words # (k, 1) # Tensor to store top k sequences' scores; now they're just 0 top_k_scores = torch.zeros(k, 1).to(device) # (k, 1) # Tensor to store top k sequences' alphas; now they're just 1s seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to( device) # (k, 1, enc_image_size, enc_image_size) # Lists to store completed sequences, their alphas and scores complete_seqs = list() complete_seqs_alpha = list() complete_seqs_scores = list() # Start decoding step = 1 h, c = decoder.init_hidden_state(encoder_out) # s is a number less than or equal to k, because sequences are removed from this process once they hit <end> while True: embeddings = decoder.embedding( k_prev_words).squeeze(1) # (s, embed_dim) # (s, encoder_dim), (s, num_pixels) awe, alpha = decoder.attention(encoder_out, h) # (s, enc_image_size, enc_image_size) alpha = alpha.view(-1, enc_image_size, enc_image_size) # gating scalar, (s, encoder_dim) gate = decoder.sigmoid(decoder.f_beta(h)) awe = gate * awe h, c = decoder.decode_step( torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim) scores = decoder.fc(h) # (s, vocab_size) scores = F.log_softmax(scores, dim=1) # Add scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size) # For the first step, all k points will have the same scores (since same k previous words, h, c) if step == 1: top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s) else: # Unroll and find top scores, and their unrolled indices # (s) top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # Convert unrolled indices to actual indices of scores prev_word_inds = top_k_words / vocab_size # (s) next_word_inds = top_k_words % vocab_size # (s) # Add new words to sequences, alphas seqs = torch.cat( [seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1) seqs_alpha = torch.cat([seqs_alpha[prev_word_inds], alpha[prev_word_inds].unsqueeze(1)], dim=1) # (s, step+1, enc_image_size, enc_image_size) # Which sequences are incomplete (didn't reach <end>)? incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if next_word != word_map['<end>']] complete_inds = list( set(range(len(next_word_inds))) - set(incomplete_inds)) # Set aside complete sequences if len(complete_inds) > 0: complete_seqs.extend(seqs[complete_inds].tolist()) complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist()) complete_seqs_scores.extend(top_k_scores[complete_inds]) k -= len(complete_inds) # reduce beam length accordingly # Proceed with incomplete sequences if k == 0: break seqs = seqs[incomplete_inds] seqs_alpha = seqs_alpha[incomplete_inds] h = h[prev_word_inds[incomplete_inds]] c = c[prev_word_inds[incomplete_inds]] encoder_out = encoder_out[prev_word_inds[incomplete_inds]] top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1) k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1) # Break if things have been going on too long if step > 50: break step += 1 i = complete_seqs_scores.index(max(complete_seqs_scores)) seq = complete_seqs[i] alphas = complete_seqs_alpha[i] # print('seq', seq) return seq, alphas app = Flask(__name__, static_folder='storage') init_app() path_model = 'BEST_checkpoint_coco_5_cap_per_img_5_min_word_freq.pth.tar' path_word_map = 'WORDMAP_coco_5_cap_per_img_5_min_word_freq.json' beam_size = 5 # Load model checkpoint = torch.load(path_model, map_location=str(device)) decoder = checkpoint['decoder'] decoder = decoder.to(device) decoder.eval() encoder = checkpoint['encoder'] encoder = encoder.to(device) encoder.eval() # Load word map (word2ix) with open(path_word_map, 'r') as j: word_map = json.load(j) rev_word_map = {v: k for k, v in word_map.items()} # ix2word VALID_IMAGE_EXTENSIONS = [ ".jpg", ".jpeg", ".png", ".gif", ] @app.route('/api', methods=['GET']) @app.route('/api/add_image', methods=['POST']) @app.route('/api/add_url_image', methods=['GET']) if __name__ == '__main__': app.run( host='0.0.0.0', port=5000 #debug=False, #threaded=False )
[ 198, 11748, 28686, 198, 6738, 42903, 1330, 46947, 11, 33918, 11, 18261, 11, 2581, 11, 8543, 62, 28243, 11, 3758, 62, 7753, 11, 33918, 1958, 11, 3758, 62, 6738, 62, 34945, 198, 6738, 266, 9587, 2736, 1018, 13, 26791, 1330, 5713, 62, 34345, 198, 11748, 7007, 198, 6738, 42903, 62, 66, 669, 1330, 327, 20673, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 33918, 198, 11748, 28034, 10178, 13, 7645, 23914, 355, 31408, 198, 2, 1330, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 2, 1330, 2603, 29487, 8019, 13, 11215, 355, 12067, 198, 11748, 1341, 9060, 13, 35636, 198, 11748, 1822, 29572, 198, 6738, 629, 541, 88, 13, 44374, 1330, 545, 961, 11, 545, 411, 1096, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 4423, 346, 198, 6738, 350, 4146, 1330, 7412, 198, 13165, 354, 13, 2617, 62, 12286, 62, 83, 22854, 62, 4906, 10786, 13165, 354, 13, 66, 15339, 13, 43879, 51, 22854, 11537, 198, 198, 25202, 796, 28034, 13, 25202, 7203, 66, 15339, 1, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 366, 36166, 4943, 198, 2, 3335, 796, 705, 36166, 6, 198, 4798, 10786, 32501, 3256, 3335, 8, 628, 198, 4299, 8305, 62, 9060, 62, 40045, 62, 12947, 7, 12685, 12342, 11, 875, 12342, 11, 2939, 62, 6978, 11, 1573, 62, 8899, 11, 15584, 62, 7857, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4149, 82, 281, 2939, 290, 3144, 507, 340, 351, 15584, 2989, 13, 628, 220, 220, 220, 1058, 17143, 2207, 12342, 25, 2207, 12342, 2746, 198, 220, 220, 220, 1058, 17143, 875, 12342, 25, 875, 12342, 2746, 198, 220, 220, 220, 1058, 17143, 2939, 62, 6978, 25, 3108, 284, 2939, 198, 220, 220, 220, 1058, 17143, 1573, 62, 8899, 25, 1573, 3975, 198, 220, 220, 220, 1058, 17143, 15584, 62, 7857, 25, 1271, 286, 16311, 284, 2074, 379, 1123, 36899, 12, 9662, 198, 220, 220, 220, 1058, 7783, 25, 8305, 11, 19590, 329, 32704, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 479, 796, 15584, 62, 7857, 198, 220, 220, 220, 12776, 397, 62, 7857, 796, 18896, 7, 4775, 62, 8899, 8, 628, 220, 220, 220, 1303, 4149, 2939, 290, 1429, 198, 220, 220, 220, 33705, 796, 545, 961, 7, 9060, 62, 6978, 8, 198, 220, 220, 220, 611, 18896, 7, 9600, 13, 43358, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 33705, 58, 45299, 1058, 11, 45941, 13, 3605, 22704, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 45941, 13, 1102, 9246, 268, 378, 26933, 9600, 11, 33705, 11, 33705, 4357, 16488, 28, 17, 8, 198, 220, 220, 220, 1303, 33705, 796, 545, 411, 1096, 7, 9600, 11, 357, 11645, 11, 17759, 4008, 198, 220, 220, 220, 33705, 796, 33705, 13, 7645, 3455, 7, 17, 11, 657, 11, 352, 8, 198, 220, 220, 220, 33705, 796, 33705, 1220, 14280, 13, 198, 220, 220, 220, 33705, 796, 28034, 13, 43879, 51, 22854, 7, 9600, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 3487, 1096, 796, 31408, 13, 26447, 1096, 7, 32604, 41888, 15, 13, 32642, 11, 657, 13, 29228, 11, 657, 13, 29703, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 41888, 15, 13, 23539, 11, 657, 13, 24137, 11, 657, 13, 18182, 12962, 198, 220, 220, 220, 6121, 796, 31408, 13, 7293, 577, 26933, 11265, 1096, 12962, 198, 220, 220, 220, 2939, 796, 6121, 7, 9600, 8, 220, 1303, 357, 18, 11, 17759, 11, 17759, 8, 628, 220, 220, 220, 1303, 2039, 8189, 198, 220, 220, 220, 2939, 796, 2939, 13, 13271, 421, 1453, 2736, 7, 15, 8, 220, 1303, 357, 16, 11, 513, 11, 17759, 11, 17759, 8, 198, 220, 220, 220, 1303, 357, 16, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 12342, 62, 27740, 8, 198, 220, 220, 220, 2207, 12342, 62, 448, 796, 2207, 12342, 7, 9060, 8, 198, 220, 220, 220, 2207, 62, 9060, 62, 7857, 796, 2207, 12342, 62, 448, 13, 7857, 7, 16, 8, 198, 220, 220, 220, 2207, 12342, 62, 27740, 796, 2207, 12342, 62, 448, 13, 7857, 7, 18, 8, 628, 220, 220, 220, 1303, 1610, 41769, 21004, 198, 220, 220, 220, 1303, 357, 16, 11, 997, 62, 79, 14810, 11, 2207, 12342, 62, 27740, 8, 198, 220, 220, 220, 2207, 12342, 62, 448, 796, 2207, 12342, 62, 448, 13, 1177, 7, 16, 11, 532, 16, 11, 2207, 12342, 62, 27740, 8, 198, 220, 220, 220, 997, 62, 79, 14810, 796, 2207, 12342, 62, 448, 13, 7857, 7, 16, 8, 628, 220, 220, 220, 1303, 775, 1183, 2190, 262, 1917, 355, 1719, 257, 15458, 2546, 286, 479, 198, 220, 220, 220, 1303, 357, 74, 11, 997, 62, 79, 14810, 11, 2207, 12342, 62, 27740, 8, 198, 220, 220, 220, 2207, 12342, 62, 448, 796, 2207, 12342, 62, 448, 13, 11201, 392, 7, 74, 11, 997, 62, 79, 14810, 11, 2207, 12342, 62, 27740, 8, 628, 220, 220, 220, 1303, 309, 22854, 284, 3650, 1353, 479, 2180, 2456, 379, 1123, 2239, 26, 783, 484, 821, 655, 1279, 9688, 29, 198, 220, 220, 220, 479, 62, 47050, 62, 10879, 796, 28034, 13, 14617, 51, 22854, 7, 198, 220, 220, 220, 220, 220, 220, 220, 16410, 4775, 62, 8899, 17816, 27, 9688, 29, 6, 11907, 60, 1635, 479, 737, 1462, 7, 25202, 8, 220, 1303, 357, 74, 11, 352, 8, 628, 220, 220, 220, 1303, 309, 22854, 284, 3650, 1353, 479, 16311, 26, 783, 484, 821, 655, 1279, 9688, 29, 198, 220, 220, 220, 33756, 82, 796, 479, 62, 47050, 62, 10879, 220, 1303, 357, 74, 11, 352, 8, 628, 220, 220, 220, 1303, 309, 22854, 284, 3650, 1353, 479, 16311, 6, 8198, 26, 783, 484, 821, 655, 657, 198, 220, 220, 220, 1353, 62, 74, 62, 1416, 2850, 796, 28034, 13, 9107, 418, 7, 74, 11, 352, 737, 1462, 7, 25202, 8, 220, 1303, 357, 74, 11, 352, 8, 628, 220, 220, 220, 1303, 309, 22854, 284, 3650, 1353, 479, 16311, 6, 435, 5902, 26, 783, 484, 821, 655, 352, 82, 198, 220, 220, 220, 33756, 82, 62, 26591, 796, 28034, 13, 1952, 7, 74, 11, 352, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 737, 1462, 7, 198, 220, 220, 220, 220, 220, 220, 220, 3335, 8, 220, 1303, 357, 74, 11, 352, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 8, 628, 220, 220, 220, 1303, 44968, 284, 3650, 5668, 16311, 11, 511, 435, 5902, 290, 8198, 198, 220, 220, 220, 1844, 62, 41068, 82, 796, 1351, 3419, 198, 220, 220, 220, 1844, 62, 41068, 82, 62, 26591, 796, 1351, 3419, 198, 220, 220, 220, 1844, 62, 41068, 82, 62, 1416, 2850, 796, 1351, 3419, 628, 220, 220, 220, 1303, 7253, 39938, 198, 220, 220, 220, 2239, 796, 352, 198, 220, 220, 220, 289, 11, 269, 796, 875, 12342, 13, 15003, 62, 30342, 62, 5219, 7, 12685, 12342, 62, 448, 8, 628, 220, 220, 220, 1303, 264, 318, 257, 1271, 1342, 621, 393, 4961, 284, 479, 11, 780, 16311, 389, 4615, 422, 428, 1429, 1752, 484, 2277, 1279, 437, 29, 198, 220, 220, 220, 981, 6407, 25, 628, 220, 220, 220, 220, 220, 220, 220, 11525, 67, 654, 796, 875, 12342, 13, 20521, 12083, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 62, 47050, 62, 10879, 737, 16485, 1453, 2736, 7, 16, 8, 220, 1303, 357, 82, 11, 11525, 62, 27740, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 82, 11, 2207, 12342, 62, 27740, 828, 357, 82, 11, 997, 62, 79, 14810, 8, 198, 220, 220, 220, 220, 220, 220, 220, 25030, 11, 17130, 796, 875, 12342, 13, 1078, 1463, 7, 12685, 12342, 62, 448, 11, 289, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 82, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 796, 17130, 13, 1177, 32590, 16, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 308, 803, 16578, 283, 11, 357, 82, 11, 2207, 12342, 62, 27740, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8946, 796, 875, 12342, 13, 82, 17225, 1868, 7, 12501, 12342, 13, 69, 62, 31361, 7, 71, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 25030, 796, 8946, 1635, 25030, 628, 220, 220, 220, 220, 220, 220, 220, 289, 11, 269, 796, 875, 12342, 13, 12501, 1098, 62, 9662, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 9246, 26933, 20521, 67, 654, 11, 25030, 4357, 5391, 28, 16, 828, 357, 71, 11, 269, 4008, 220, 1303, 357, 82, 11, 875, 12342, 62, 27740, 8, 628, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 875, 12342, 13, 16072, 7, 71, 8, 220, 1303, 357, 82, 11, 12776, 397, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 376, 13, 6404, 62, 4215, 9806, 7, 1416, 2850, 11, 5391, 28, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 198, 220, 220, 220, 220, 220, 220, 220, 8198, 796, 1353, 62, 74, 62, 1416, 2850, 13, 11201, 392, 62, 292, 7, 1416, 2850, 8, 1343, 8198, 220, 1303, 357, 82, 11, 12776, 397, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1114, 262, 717, 2239, 11, 477, 479, 2173, 481, 423, 262, 976, 8198, 357, 20777, 976, 479, 2180, 2456, 11, 289, 11, 269, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 74, 62, 1416, 2850, 11, 1353, 62, 74, 62, 10879, 796, 8198, 58, 15, 4083, 4852, 74, 7, 74, 11, 657, 11, 6407, 11, 6407, 8, 220, 1303, 357, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 791, 2487, 290, 1064, 1353, 8198, 11, 290, 511, 555, 8375, 36525, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 357, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 74, 62, 1416, 2850, 11, 1353, 62, 74, 62, 10879, 796, 8198, 13, 1177, 32590, 16, 737, 4852, 74, 7, 74, 11, 657, 11, 6407, 11, 6407, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 555, 8375, 36525, 284, 4036, 36525, 286, 8198, 198, 220, 220, 220, 220, 220, 220, 220, 8654, 62, 4775, 62, 521, 82, 796, 1353, 62, 74, 62, 10879, 1220, 12776, 397, 62, 7857, 220, 1303, 357, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 4775, 62, 521, 82, 796, 1353, 62, 74, 62, 10879, 4064, 12776, 397, 62, 7857, 220, 1303, 357, 82, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 649, 2456, 284, 16311, 11, 435, 5902, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 82, 796, 28034, 13, 9246, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 41068, 82, 58, 47050, 62, 4775, 62, 521, 82, 4357, 1306, 62, 4775, 62, 521, 82, 13, 13271, 421, 1453, 2736, 7, 16, 8, 4357, 5391, 28, 16, 8, 220, 1303, 357, 82, 11, 2239, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 82, 62, 26591, 796, 28034, 13, 9246, 26933, 41068, 82, 62, 26591, 58, 47050, 62, 4775, 62, 521, 82, 4357, 17130, 58, 47050, 62, 4775, 62, 521, 82, 4083, 13271, 421, 1453, 2736, 7, 16, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5391, 28, 16, 8, 220, 1303, 357, 82, 11, 2239, 10, 16, 11, 2207, 62, 9060, 62, 7857, 11, 2207, 62, 9060, 62, 7857, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9022, 16311, 389, 17503, 357, 45168, 470, 3151, 1279, 437, 29, 19427, 198, 220, 220, 220, 220, 220, 220, 220, 17503, 62, 521, 82, 796, 685, 521, 329, 773, 11, 1306, 62, 4775, 287, 27056, 378, 7, 19545, 62, 4775, 62, 521, 82, 8, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 4775, 14512, 1573, 62, 8899, 17816, 27, 437, 29, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1844, 62, 521, 82, 796, 1351, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 900, 7, 9521, 7, 11925, 7, 19545, 62, 4775, 62, 521, 82, 22305, 532, 900, 7, 259, 20751, 62, 521, 82, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 5345, 7263, 1844, 16311, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 20751, 62, 521, 82, 8, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1844, 62, 41068, 82, 13, 2302, 437, 7, 41068, 82, 58, 20751, 62, 521, 82, 4083, 83, 349, 396, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1844, 62, 41068, 82, 62, 26591, 13, 2302, 437, 7, 41068, 82, 62, 26591, 58, 20751, 62, 521, 82, 4083, 83, 349, 396, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1844, 62, 41068, 82, 62, 1416, 2850, 13, 2302, 437, 7, 4852, 62, 74, 62, 1416, 2850, 58, 20751, 62, 521, 82, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 479, 48185, 18896, 7, 20751, 62, 521, 82, 8, 220, 1303, 4646, 15584, 4129, 16062, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 24889, 351, 17503, 16311, 198, 220, 220, 220, 220, 220, 220, 220, 611, 479, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 82, 796, 33756, 82, 58, 259, 20751, 62, 521, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 33756, 82, 62, 26591, 796, 33756, 82, 62, 26591, 58, 259, 20751, 62, 521, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 289, 796, 289, 58, 47050, 62, 4775, 62, 521, 82, 58, 259, 20751, 62, 521, 82, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 269, 58, 47050, 62, 4775, 62, 521, 82, 58, 259, 20751, 62, 521, 82, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 2207, 12342, 62, 448, 796, 2207, 12342, 62, 448, 58, 47050, 62, 4775, 62, 521, 82, 58, 259, 20751, 62, 521, 82, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1353, 62, 74, 62, 1416, 2850, 796, 1353, 62, 74, 62, 1416, 2850, 58, 259, 20751, 62, 521, 82, 4083, 13271, 421, 1453, 2736, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 479, 62, 47050, 62, 10879, 796, 1306, 62, 4775, 62, 521, 82, 58, 259, 20751, 62, 521, 82, 4083, 13271, 421, 1453, 2736, 7, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 12243, 611, 1243, 423, 587, 1016, 319, 1165, 890, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 1875, 2026, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 628, 220, 220, 220, 1312, 796, 1844, 62, 41068, 82, 62, 1416, 2850, 13, 9630, 7, 9806, 7, 20751, 62, 41068, 82, 62, 1416, 2850, 4008, 198, 220, 220, 220, 33756, 796, 1844, 62, 41068, 82, 58, 72, 60, 198, 220, 220, 220, 435, 5902, 796, 1844, 62, 41068, 82, 62, 26591, 58, 72, 60, 198, 220, 220, 220, 1303, 3601, 10786, 41068, 3256, 33756, 8, 198, 220, 220, 220, 1441, 33756, 11, 435, 5902, 628, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 11, 9037, 62, 43551, 11639, 35350, 11537, 628, 198, 198, 15003, 62, 1324, 3419, 198, 6978, 62, 19849, 796, 705, 33, 6465, 62, 9122, 4122, 62, 66, 25634, 62, 20, 62, 11128, 62, 525, 62, 9600, 62, 20, 62, 1084, 62, 4775, 62, 19503, 80, 13, 79, 400, 13, 18870, 6, 198, 6978, 62, 4775, 62, 8899, 796, 705, 54, 12532, 33767, 62, 66, 25634, 62, 20, 62, 11128, 62, 525, 62, 9600, 62, 20, 62, 1084, 62, 4775, 62, 19503, 80, 13, 17752, 6, 198, 40045, 62, 7857, 796, 642, 198, 2, 8778, 2746, 198, 9122, 4122, 796, 28034, 13, 2220, 7, 6978, 62, 19849, 11, 3975, 62, 24886, 28, 2536, 7, 25202, 4008, 198, 12501, 12342, 796, 26954, 17816, 12501, 12342, 20520, 198, 12501, 12342, 796, 875, 12342, 13, 1462, 7, 25202, 8, 198, 12501, 12342, 13, 18206, 3419, 198, 12685, 12342, 796, 26954, 17816, 12685, 12342, 20520, 198, 12685, 12342, 796, 2207, 12342, 13, 1462, 7, 25202, 8, 198, 12685, 12342, 13, 18206, 3419, 198, 2, 8778, 1573, 3975, 357, 4775, 17, 844, 8, 198, 4480, 1280, 7, 6978, 62, 4775, 62, 8899, 11, 705, 81, 11537, 355, 474, 25, 198, 220, 220, 220, 1573, 62, 8899, 796, 33918, 13, 2220, 7, 73, 8, 198, 18218, 62, 4775, 62, 8899, 796, 1391, 85, 25, 479, 329, 479, 11, 410, 287, 1573, 62, 8899, 13, 23814, 3419, 92, 220, 1303, 220, 844, 17, 4775, 198, 198, 23428, 2389, 62, 3955, 11879, 62, 13918, 16938, 11053, 796, 685, 198, 220, 220, 220, 27071, 9479, 1600, 198, 220, 220, 220, 27071, 73, 22071, 1600, 198, 220, 220, 220, 27071, 11134, 1600, 198, 220, 220, 220, 27071, 27908, 1600, 198, 60, 628, 628, 628, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 2860, 62, 9060, 3256, 5050, 28, 17816, 32782, 6, 12962, 628, 198, 31, 1324, 13, 38629, 10786, 14, 15042, 14, 2860, 62, 6371, 62, 9060, 3256, 5050, 28, 17816, 18851, 6, 12962, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 598, 13, 5143, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2583, 11639, 15, 13, 15, 13, 15, 13, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 2493, 28, 27641, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 24442, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16663, 276, 28, 25101, 198, 220, 220, 220, 1267, 628 ]
2.287793
3,162
from aiogram import types from aiogram.dispatcher.filters.builtin import CommandStart from loader import dp @dp.message_handler(CommandStart())
[ 6738, 257, 72, 21857, 1330, 3858, 198, 6738, 257, 72, 21857, 13, 6381, 8071, 2044, 13, 10379, 1010, 13, 18780, 259, 1330, 9455, 10434, 198, 198, 6738, 40213, 1330, 288, 79, 628, 198, 31, 26059, 13, 20500, 62, 30281, 7, 21575, 10434, 28955, 198 ]
3.340909
44
import unittest from pytextgame.colors import * from pytextgame.displays import Displays from pytextgame.geometry import * from pytextgame.window import Window if __name__ == '__main__': unittest.main()
[ 198, 11748, 555, 715, 395, 198, 6738, 12972, 5239, 6057, 13, 4033, 669, 1330, 1635, 198, 6738, 12972, 5239, 6057, 13, 6381, 26024, 1330, 3167, 26024, 198, 6738, 12972, 5239, 6057, 13, 469, 15748, 1330, 1635, 198, 6738, 12972, 5239, 6057, 13, 17497, 1330, 26580, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.072464
69
# Copyright 2018 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test create and print a batch from the flying shapes dataset. """ from third_party import dataset def test_flying_shapes(): """Wrapper for flying_shapes.py data generator.""" config = {} config['seq_length'] = 10 config['batch_size'] = 2 config['image_size'] = 600 config['num_digits'] = 3 config['step_length'] = 0.5 config['digit_size'] = 180 config['frame_size'] = (config['image_size']**2) * 3 config['file_path'] = 'flying_shapes.npy' data_generator = dataset.FlyingShapesDataHandler(config) x, bboxes = data_generator.GetUnlabelledBatch() data_generator.DisplayData(x, bboxes) x2, bboxes2 = data_generator.GetLabelledBatch() data_generator.DisplayData(x2, bboxes2)
[ 2, 15069, 2864, 3012, 11419, 198, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 198, 2, 220, 220, 220, 3740, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 14402, 2251, 290, 3601, 257, 15458, 422, 262, 7348, 15268, 27039, 13, 198, 37811, 198, 6738, 2368, 62, 10608, 1330, 27039, 628, 198, 4299, 1332, 62, 45928, 62, 1477, 7916, 33529, 198, 220, 37227, 36918, 2848, 329, 7348, 62, 1477, 7916, 13, 9078, 1366, 17301, 526, 15931, 628, 220, 4566, 796, 23884, 198, 220, 4566, 17816, 41068, 62, 13664, 20520, 796, 838, 198, 220, 4566, 17816, 43501, 62, 7857, 20520, 796, 362, 198, 220, 4566, 17816, 9060, 62, 7857, 20520, 796, 10053, 198, 220, 4566, 17816, 22510, 62, 12894, 896, 20520, 796, 513, 198, 220, 4566, 17816, 9662, 62, 13664, 20520, 796, 657, 13, 20, 198, 220, 4566, 17816, 27003, 62, 7857, 20520, 796, 11546, 198, 220, 4566, 17816, 14535, 62, 7857, 20520, 796, 357, 11250, 17816, 9060, 62, 7857, 20520, 1174, 17, 8, 1635, 513, 198, 220, 4566, 17816, 7753, 62, 6978, 20520, 796, 705, 45928, 62, 1477, 7916, 13, 77, 9078, 6, 628, 220, 1366, 62, 8612, 1352, 796, 27039, 13, 49095, 2484, 7916, 6601, 25060, 7, 11250, 8, 198, 220, 2124, 11, 275, 29305, 796, 1366, 62, 8612, 1352, 13, 3855, 3118, 23912, 11978, 33, 963, 3419, 198, 220, 1366, 62, 8612, 1352, 13, 23114, 6601, 7, 87, 11, 275, 29305, 8, 628, 220, 2124, 17, 11, 275, 29305, 17, 796, 1366, 62, 8612, 1352, 13, 3855, 17822, 11978, 33, 963, 3419, 198, 220, 1366, 62, 8612, 1352, 13, 23114, 6601, 7, 87, 17, 11, 275, 29305, 17, 8, 198 ]
3.293059
389
#! /usr/bin/env python3 # -*- coding: utf-8 -*- red='\033[31m' reset='\033[0m' s = "[€€€éä] nice " + red + "colors" + reset + '!\n' print(s) #import tempfile #fd, path = tempfile.mkstemp() #print fd, path """ tmpf = os.fdopen(fd, 'w') try: with as tmp: # do stuff with temp file tmp.write('stuff') finally: os.remove(path) f = tempfile.NamedTemporaryFile() """ # write string into file f = open("tmp.txt", 'w') for i in range(5): f.write(s) f.close() # read string from file f = open("tmp.txt", 'r') for l in f.readlines(): print(l, end=' ') #print l.encode('utf-8').decode('unicode_escape'), #print l.decode('unicode_escape')
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 628, 198, 445, 11639, 59, 44427, 58, 3132, 76, 6, 198, 42503, 11639, 59, 44427, 58, 15, 76, 6, 198, 198, 82, 796, 12878, 26391, 26391, 26391, 2634, 11033, 60, 3621, 366, 1343, 2266, 1343, 366, 4033, 669, 1, 1343, 13259, 1343, 705, 0, 59, 77, 6, 198, 4798, 7, 82, 8, 628, 198, 2, 11748, 20218, 7753, 198, 2, 16344, 11, 3108, 796, 20218, 7753, 13, 28015, 927, 79, 3419, 198, 2, 4798, 277, 67, 11, 3108, 198, 198, 37811, 198, 22065, 69, 796, 28686, 13, 16344, 9654, 7, 16344, 11, 705, 86, 11537, 198, 198, 28311, 25, 198, 220, 220, 220, 351, 220, 355, 45218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 466, 3404, 351, 20218, 2393, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 13, 13564, 10786, 41094, 11537, 198, 69, 3289, 25, 198, 220, 220, 220, 220, 198, 418, 13, 28956, 7, 6978, 8, 628, 198, 69, 796, 20218, 7753, 13, 45, 2434, 12966, 5551, 8979, 3419, 198, 37811, 198, 198, 2, 3551, 4731, 656, 2393, 198, 69, 796, 1280, 7203, 22065, 13, 14116, 1600, 705, 86, 11537, 198, 1640, 1312, 287, 2837, 7, 20, 2599, 198, 220, 220, 220, 277, 13, 13564, 7, 82, 8, 198, 69, 13, 19836, 3419, 198, 198, 2, 1100, 4731, 422, 2393, 198, 69, 796, 1280, 7203, 22065, 13, 14116, 1600, 705, 81, 11537, 198, 1640, 300, 287, 277, 13, 961, 6615, 33529, 198, 220, 220, 220, 3601, 7, 75, 11, 886, 11639, 705, 8, 198, 220, 220, 220, 1303, 4798, 300, 13, 268, 8189, 10786, 40477, 12, 23, 27691, 12501, 1098, 10786, 46903, 1098, 62, 41915, 33809, 198, 220, 220, 220, 1303, 4798, 300, 13, 12501, 1098, 10786, 46903, 1098, 62, 41915, 11537, 628, 198 ]
2.171975
314
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import logging from gmprocess.subcommands.lazy_loader import LazyLoader arg_dicts = LazyLoader( 'arg_dicts', globals(), 'gmprocess.subcommands.arg_dicts') base = LazyLoader('base', globals(), 'gmprocess.subcommands.base') distributed = LazyLoader('distributed', globals(), 'dask.distributed') ws = LazyLoader('ws', globals(), 'gmprocess.io.asdf.stream_workspace') station_summary = LazyLoader( 'station_summary', globals(), 'gmprocess.metrics.station_summary') const = LazyLoader('const', globals(), 'gmprocess.utils.constants') class ComputeWaveformMetricsModule(base.SubcommandModule): """Compute waveform metrics. """ command_name = 'compute_waveform_metrics' aliases = ('wm', ) arguments = [ arg_dicts.ARG_DICTS['eventid'], arg_dicts.ARG_DICTS['textfile'], arg_dicts.ARG_DICTS['label'], arg_dicts.ARG_DICTS['overwrite'], arg_dicts.ARG_DICTS['num_processes'] ] def main(self, gmrecords): """Compute waveform metrics. Args: gmrecords: GMrecordsApp instance. """ logging.info('Running subcommand \'%s\'' % self.command_name) self.gmrecords = gmrecords self._check_arguments() self._get_events() for event in self.events: self._compute_event_waveform_metrics(event) self._summarize_files_created()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 28686, 198, 11748, 18931, 198, 198, 6738, 308, 76, 14681, 13, 7266, 9503, 1746, 13, 75, 12582, 62, 29356, 1330, 406, 12582, 17401, 198, 853, 62, 11600, 82, 796, 406, 12582, 17401, 7, 198, 220, 220, 220, 705, 853, 62, 11600, 82, 3256, 15095, 874, 22784, 705, 39870, 14681, 13, 7266, 9503, 1746, 13, 853, 62, 11600, 82, 11537, 198, 8692, 796, 406, 12582, 17401, 10786, 8692, 3256, 15095, 874, 22784, 705, 39870, 14681, 13, 7266, 9503, 1746, 13, 8692, 11537, 198, 17080, 6169, 796, 406, 12582, 17401, 10786, 17080, 6169, 3256, 15095, 874, 22784, 705, 67, 2093, 13, 17080, 6169, 11537, 198, 18504, 796, 406, 12582, 17401, 10786, 18504, 3256, 15095, 874, 22784, 705, 39870, 14681, 13, 952, 13, 292, 7568, 13, 5532, 62, 5225, 10223, 11537, 198, 17529, 62, 49736, 796, 406, 12582, 17401, 7, 198, 220, 220, 220, 705, 17529, 62, 49736, 3256, 15095, 874, 22784, 705, 39870, 14681, 13, 4164, 10466, 13, 17529, 62, 49736, 11537, 198, 9979, 796, 406, 12582, 17401, 10786, 9979, 3256, 15095, 874, 22784, 705, 39870, 14681, 13, 26791, 13, 9979, 1187, 11537, 628, 198, 4871, 3082, 1133, 39709, 687, 9171, 10466, 26796, 7, 8692, 13, 7004, 21812, 26796, 2599, 198, 220, 220, 220, 37227, 7293, 1133, 6769, 687, 20731, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3141, 62, 3672, 796, 705, 5589, 1133, 62, 19204, 687, 62, 4164, 10466, 6, 198, 220, 220, 220, 47217, 796, 19203, 26377, 3256, 1267, 628, 220, 220, 220, 7159, 796, 685, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 11600, 82, 13, 1503, 38, 62, 35, 2149, 4694, 17816, 15596, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 11600, 82, 13, 1503, 38, 62, 35, 2149, 4694, 17816, 5239, 7753, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 11600, 82, 13, 1503, 38, 62, 35, 2149, 4694, 17816, 18242, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 11600, 82, 13, 1503, 38, 62, 35, 2149, 4694, 17816, 2502, 13564, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 1822, 62, 11600, 82, 13, 1503, 38, 62, 35, 2149, 4694, 17816, 22510, 62, 14681, 274, 20520, 198, 220, 220, 220, 2361, 628, 220, 220, 220, 825, 1388, 7, 944, 11, 308, 76, 8344, 3669, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7293, 1133, 6769, 687, 20731, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 76, 8344, 3669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6951, 8344, 3669, 4677, 4554, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 28768, 850, 21812, 34373, 4, 82, 59, 7061, 4064, 2116, 13, 21812, 62, 3672, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 39870, 8344, 3669, 796, 308, 76, 8344, 3669, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 9122, 62, 853, 2886, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 31534, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1785, 287, 2116, 13, 31534, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 5589, 1133, 62, 15596, 62, 19204, 687, 62, 4164, 10466, 7, 15596, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16345, 3876, 1096, 62, 16624, 62, 25598, 3419, 198 ]
2.334405
622
import pandas as pd import math import cv2 import numpy as np import matplotlib import random from bestguess.bestguess import BestGuessModule, MODEL_CHANNELS from stochastic_optimizer import BestChangeLayer # matplotlib.use('agg') import matplotlib.pyplot as plt import time import torch import torch.nn as nn import os from torch import optim from torch.utils.data import Dataset, DataLoader from torch.utils.tensorboard import SummaryWriter LR = 1e-4 BATCH_SIZE = 128 STEPS_PER_EPOCH = 1024 EPOCHS = 128 GOL_DELTA = 2 TEST_SAMPLES = 20 HALF_LR_AFTER_N_EPOCHS = 32 OUTLINE_SIZE = 5*2 RUN_NAME = time.strftime("%Y_%m_%d_%H_%M_%S") + '_GoL_delta_' + str(GOL_DELTA) SNAPSHOTS_DIR = '../out/training/snapshots/{}'.format(RUN_NAME) TENSORBOARD_LOGS_DIR = '../out/training/logs' VIDEO_DIR = '../out/training/videos/{}'.format(RUN_NAME) SUBMISSION_DIR = '../out/submissions' SUBMISSION_FILE_FORMAT = SUBMISSION_DIR + '/submission_{}.csv' SCORE_FILE_FORMAT = SUBMISSION_DIR + '/score_{}.csv' if __name__ == "__main__": improve_submission()
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 10688, 198, 198, 11748, 269, 85, 17, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 198, 11748, 4738, 198, 198, 6738, 1266, 5162, 408, 13, 13466, 5162, 408, 1330, 6705, 8205, 408, 26796, 11, 19164, 3698, 62, 3398, 22846, 37142, 198, 6738, 3995, 354, 3477, 62, 40085, 7509, 1330, 6705, 19400, 49925, 198, 198, 2, 2603, 29487, 8019, 13, 1904, 10786, 9460, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 640, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28686, 198, 198, 6738, 28034, 1330, 6436, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 16092, 292, 316, 11, 6060, 17401, 198, 6738, 28034, 13, 26791, 13, 83, 22854, 3526, 1330, 21293, 34379, 628, 198, 35972, 796, 352, 68, 12, 19, 198, 33, 11417, 62, 33489, 796, 13108, 198, 30516, 3705, 62, 18973, 62, 8905, 46, 3398, 796, 28119, 198, 8905, 46, 3398, 50, 796, 13108, 198, 38, 3535, 62, 35, 3698, 5603, 796, 362, 198, 51, 6465, 62, 49302, 6489, 1546, 796, 1160, 198, 39, 1847, 37, 62, 35972, 62, 8579, 5781, 62, 45, 62, 8905, 46, 3398, 50, 796, 3933, 198, 12425, 24027, 62, 33489, 796, 642, 9, 17, 198, 49, 4944, 62, 20608, 796, 640, 13, 2536, 31387, 7203, 4, 56, 62, 4, 76, 62, 4, 67, 62, 4, 39, 62, 4, 44, 62, 4, 50, 4943, 1343, 705, 62, 5247, 43, 62, 67, 12514, 62, 6, 1343, 965, 7, 38, 3535, 62, 35, 3698, 5603, 8, 198, 15571, 2969, 9693, 33472, 62, 34720, 796, 705, 40720, 448, 14, 34409, 14, 45380, 20910, 14, 90, 92, 4458, 18982, 7, 49, 4944, 62, 20608, 8, 198, 51, 16938, 1581, 8202, 9795, 62, 25294, 50, 62, 34720, 796, 705, 40720, 448, 14, 34409, 14, 6404, 82, 6, 198, 42937, 62, 34720, 796, 705, 40720, 448, 14, 34409, 14, 32861, 14, 90, 92, 4458, 18982, 7, 49, 4944, 62, 20608, 8, 198, 50, 10526, 44, 40373, 62, 34720, 796, 705, 40720, 448, 14, 7266, 8481, 6, 198, 50, 10526, 44, 40373, 62, 25664, 62, 21389, 1404, 796, 28932, 44, 40373, 62, 34720, 1343, 31051, 7266, 3411, 23330, 27422, 40664, 6, 198, 6173, 6965, 62, 25664, 62, 21389, 1404, 796, 28932, 44, 40373, 62, 34720, 1343, 31051, 26675, 23330, 27422, 40664, 6, 628, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 2987, 62, 7266, 3411, 3419, 198 ]
2.516667
420
import copy import numpy as np from sparse_dot_mkl import dot_product_mkl from utils import MIN_FLOAT from IPython import embed #def raw_overlap(node, constraint, num_points):
[ 11748, 4866, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 29877, 62, 26518, 62, 28015, 75, 1330, 16605, 62, 11167, 62, 28015, 75, 198, 198, 6738, 3384, 4487, 1330, 20625, 62, 3697, 46, 1404, 198, 198, 6738, 6101, 7535, 1330, 11525, 628, 198, 2, 4299, 8246, 62, 2502, 37796, 7, 17440, 11, 32315, 11, 997, 62, 13033, 2599, 628 ]
3.033333
60
""" Name: InsanityNet Last Date Edited: 18-Feb-2022 Description: Imperial and Metric conversion. Feet and Inches to Meters OR Meters to Feet and Inches Requirements: fractions.Fraction function built into Python3 Known Issues: 1. Negative Feet and Positive Inches. I can't be bothered to fix it at 11 PM. """ # Necessary imports for this script to function. from fractions import Fraction as Fracs # Imperial to Metric Conversion def imperial(x): """ This function will convert Imperial Feet (and Inches) to Metric Meters (or Centimeters if less than 1 whole Meter :return: Converted value from Imperial to Metric """ # FEET SECTION # Take the feet from Array and set to variable frac_ft frac_ft = float(x[0]) # Convert from Feet to Meters result_1 = frac_ft * 0.3048 # Format the resulting converted float to have 4 decimal places result_1 = float("{:.4f}".format(result_1)) # INCHES SECTION # INCH TO METERS # Connvert the inch (and fraction inch) to decimal inch frac = float(sum(Fracs(s) for s in x[1].split())) # Calculate Inch section of results result_2 = frac / 39.37 # RESULTS # Calculate the results result = result_1 + result_2 # Format to 4 decimal places result = float("{:.4f}".format(result)) # RETURN SECTION # Return the converted result to be displayed return result # Metric to Imperial Conversion def metric(x): """ This function will convert Metric meters to Imperial Feet (and Inches). :return: Converted value from Metric to Imperial """ # Initial conversion # Meters to Feet meters_in_ft = float("{:.4f}".format(x * 3.280839895)) # Inches portion of conversion meters_in_in = meters_in_ft % 1 * 12 # For the weird rounding issues where it assumes .999 is 12 inches (1ft) just convert it over to prevent # 5 ft 12 inch issues if meters_in_in >= 11.992: meters_in_ft = meters_in_ft + 1 meters_in_in = meters_in_in - 11.992 # LIMIT/FORMAT OUTPUTS # Limit Feet to 0 decimal places meters_in_ft = int(meters_in_ft) # Limit Inches to 2 decimal places meters_in_in = float("{:.2f}".format(meters_in_in)) # Return the return meters_in_ft, meters_in_in # Main function # If not called as library, run the specified function automatically. if __name__ == "__main__": # MEME CONTROL! 'Cause it's 11 PM and I have no impulse control. coconut = 1 # If coconut != NULL run the program if coconut != '': main() # Otherwise, find the coconut so the program can run! else: print(f"Coconut is NULL. Find the Coconut.") # My friend Kolock can go <explitive> himself for recommending complexity be added to this program. # If negative feet and positive inches are input, wrong answer. I do not care enough to fix it at this time # This is essentially python 101 so this is already overcomplicated based on your teachings. -_- # My friend Kolock also specified I needed to add this: Coconut.jpg # The above Something about good luck. Oh well, it's 11 PM, and I am tired of programming for the day. # My Australian friend is a bad influence on me when I do not have impulse control this late at night.
[ 37811, 198, 5376, 25, 7088, 19689, 7934, 198, 5956, 7536, 34212, 25, 1248, 12, 15146, 12, 1238, 1828, 198, 198, 11828, 25, 198, 220, 220, 220, 11773, 290, 3395, 1173, 11315, 13, 198, 220, 220, 220, 43391, 290, 554, 2052, 284, 3395, 364, 6375, 3395, 364, 284, 43391, 290, 554, 2052, 198, 198, 42249, 25, 198, 220, 220, 220, 49876, 13, 37, 7861, 2163, 3170, 656, 11361, 18, 198, 198, 29870, 22852, 25, 198, 220, 220, 220, 352, 13, 36183, 43391, 290, 33733, 554, 2052, 13, 314, 460, 470, 307, 20466, 284, 4259, 340, 379, 1367, 3122, 13, 198, 37811, 198, 198, 2, 19652, 408, 560, 17944, 329, 428, 4226, 284, 2163, 13, 198, 6738, 49876, 1330, 376, 7861, 355, 1305, 16436, 628, 198, 2, 11773, 284, 3395, 1173, 44101, 198, 4299, 14312, 7, 87, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 481, 10385, 11773, 43391, 357, 392, 554, 2052, 8, 284, 3395, 1173, 3395, 364, 357, 273, 1979, 31551, 611, 1342, 621, 352, 2187, 46423, 628, 220, 220, 220, 1058, 7783, 25, 43433, 1988, 422, 11773, 284, 3395, 1173, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 18630, 2767, 44513, 198, 220, 220, 220, 1303, 7214, 262, 3625, 422, 15690, 290, 900, 284, 7885, 1216, 330, 62, 701, 198, 220, 220, 220, 1216, 330, 62, 701, 796, 12178, 7, 87, 58, 15, 12962, 628, 220, 220, 220, 1303, 38240, 422, 43391, 284, 3395, 364, 198, 220, 220, 220, 1255, 62, 16, 796, 1216, 330, 62, 701, 1635, 657, 13, 1270, 2780, 628, 220, 220, 220, 1303, 18980, 262, 7186, 11513, 12178, 284, 423, 604, 32465, 4113, 198, 220, 220, 220, 1255, 62, 16, 796, 12178, 7203, 90, 25, 13, 19, 69, 92, 1911, 18982, 7, 20274, 62, 16, 4008, 628, 220, 220, 220, 1303, 3268, 3398, 1546, 44513, 628, 220, 220, 220, 1303, 3268, 3398, 5390, 31243, 4877, 198, 220, 220, 220, 1303, 20776, 1851, 262, 11111, 357, 392, 13390, 11111, 8, 284, 32465, 11111, 198, 220, 220, 220, 1216, 330, 796, 12178, 7, 16345, 7, 6732, 16436, 7, 82, 8, 329, 264, 287, 2124, 58, 16, 4083, 35312, 3419, 4008, 628, 220, 220, 220, 1303, 27131, 378, 554, 354, 2665, 286, 2482, 198, 220, 220, 220, 1255, 62, 17, 796, 1216, 330, 1220, 5014, 13, 2718, 628, 220, 220, 220, 1303, 15731, 35342, 198, 220, 220, 220, 1303, 27131, 378, 262, 2482, 198, 220, 220, 220, 1255, 796, 1255, 62, 16, 1343, 1255, 62, 17, 628, 220, 220, 220, 1303, 18980, 284, 604, 32465, 4113, 198, 220, 220, 220, 1255, 796, 12178, 7203, 90, 25, 13, 19, 69, 92, 1911, 18982, 7, 20274, 4008, 628, 220, 220, 220, 1303, 30826, 27064, 44513, 198, 220, 220, 220, 1303, 8229, 262, 11513, 1255, 284, 307, 9066, 198, 220, 220, 220, 1441, 1255, 628, 198, 2, 3395, 1173, 284, 11773, 44101, 198, 4299, 18663, 7, 87, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 481, 10385, 3395, 1173, 10700, 284, 11773, 43391, 357, 392, 554, 2052, 737, 628, 220, 220, 220, 1058, 7783, 25, 43433, 1988, 422, 3395, 1173, 284, 11773, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 1303, 20768, 11315, 198, 220, 220, 220, 1303, 3395, 364, 284, 43391, 198, 220, 220, 220, 10700, 62, 259, 62, 701, 796, 12178, 7203, 90, 25, 13, 19, 69, 92, 1911, 18982, 7, 87, 1635, 513, 13, 21033, 23, 31952, 3865, 4008, 628, 220, 220, 220, 1303, 554, 2052, 6903, 286, 11315, 198, 220, 220, 220, 10700, 62, 259, 62, 259, 796, 10700, 62, 259, 62, 701, 4064, 352, 1635, 1105, 628, 220, 220, 220, 1303, 1114, 262, 7650, 38185, 2428, 810, 340, 18533, 764, 17032, 318, 1105, 8331, 357, 16, 701, 8, 655, 10385, 340, 625, 284, 2948, 198, 220, 220, 220, 1303, 642, 10117, 1105, 11111, 2428, 198, 220, 220, 220, 611, 10700, 62, 259, 62, 259, 18189, 1367, 13, 41561, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10700, 62, 259, 62, 701, 796, 10700, 62, 259, 62, 701, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 10700, 62, 259, 62, 259, 796, 10700, 62, 259, 62, 259, 532, 1367, 13, 41561, 628, 220, 220, 220, 1303, 27564, 2043, 14, 21389, 1404, 16289, 30076, 50, 198, 220, 220, 220, 1303, 27272, 43391, 284, 657, 32465, 4113, 198, 220, 220, 220, 10700, 62, 259, 62, 701, 796, 493, 7, 4164, 364, 62, 259, 62, 701, 8, 198, 220, 220, 220, 1303, 27272, 554, 2052, 284, 362, 32465, 4113, 198, 220, 220, 220, 10700, 62, 259, 62, 259, 796, 12178, 7203, 90, 25, 13, 17, 69, 92, 1911, 18982, 7, 4164, 364, 62, 259, 62, 259, 4008, 628, 220, 220, 220, 1303, 8229, 262, 198, 220, 220, 220, 1441, 10700, 62, 259, 62, 701, 11, 10700, 62, 259, 62, 259, 628, 198, 2, 8774, 2163, 628, 198, 2, 1002, 407, 1444, 355, 5888, 11, 1057, 262, 7368, 2163, 6338, 13, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 1303, 35153, 36, 49833, 0, 705, 42323, 340, 338, 1367, 3122, 290, 314, 423, 645, 25278, 1630, 13, 198, 220, 220, 220, 20132, 796, 352, 628, 220, 220, 220, 1303, 1002, 20132, 14512, 15697, 1057, 262, 1430, 198, 220, 220, 220, 611, 20132, 14512, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1388, 3419, 628, 220, 220, 220, 1303, 15323, 11, 1064, 262, 20132, 523, 262, 1430, 460, 1057, 0, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 1, 34, 420, 16478, 318, 15697, 13, 9938, 262, 46943, 19570, 198, 198, 2, 2011, 1545, 25910, 735, 460, 467, 1279, 20676, 1800, 29, 2241, 329, 34639, 13357, 307, 2087, 284, 428, 1430, 13, 198, 2, 1002, 4633, 3625, 290, 3967, 8331, 389, 5128, 11, 2642, 3280, 13, 314, 466, 407, 1337, 1576, 284, 4259, 340, 379, 428, 640, 198, 2, 770, 318, 6986, 21015, 8949, 523, 428, 318, 1541, 625, 23855, 3474, 1912, 319, 534, 19564, 13, 532, 22955, 198, 2, 2011, 1545, 25910, 735, 635, 7368, 314, 2622, 284, 751, 428, 25, 46943, 13, 9479, 198, 2, 383, 2029, 13742, 546, 922, 8458, 13, 3966, 880, 11, 340, 338, 1367, 3122, 11, 290, 314, 716, 10032, 286, 8300, 329, 262, 1110, 13, 198, 2, 2011, 6638, 1545, 318, 257, 2089, 4588, 319, 502, 618, 314, 466, 407, 423, 25278, 1630, 428, 2739, 379, 1755, 13, 198 ]
3.052045
1,076
# Authors: # Trevor Perrin # Moxie Marlinspike # # See the LICENSE file for legal information regarding use of this file. import sys from tack.version import __version__ from tack.commands.Command import Command from tack.commands.GenerateKeyCommand import GenerateKeyCommand from tack.commands.SignCommand import SignCommand from tack.commands.ViewCommand import ViewCommand from tack.commands.PackCommand import PackCommand from tack.commands.UnpackCommand import UnpackCommand
[ 2, 46665, 25, 220, 198, 2, 220, 220, 25389, 2448, 12769, 198, 2, 220, 220, 337, 1140, 494, 38134, 79, 522, 198, 2, 198, 2, 4091, 262, 38559, 24290, 2393, 329, 2742, 1321, 5115, 779, 286, 428, 2393, 13, 198, 198, 11748, 25064, 198, 6738, 6331, 13, 9641, 1330, 11593, 9641, 834, 198, 6738, 6331, 13, 9503, 1746, 13, 21575, 1330, 9455, 198, 6738, 6331, 13, 9503, 1746, 13, 8645, 378, 9218, 21575, 1330, 2980, 378, 9218, 21575, 198, 6738, 6331, 13, 9503, 1746, 13, 11712, 21575, 1330, 5865, 21575, 198, 6738, 6331, 13, 9503, 1746, 13, 7680, 21575, 1330, 3582, 21575, 198, 6738, 6331, 13, 9503, 1746, 13, 11869, 21575, 1330, 6400, 21575, 198, 6738, 6331, 13, 9503, 1746, 13, 3118, 8002, 21575, 1330, 791, 8002, 21575, 198 ]
3.767442
129
import serial from .serial_mock.serial import Serial as SerialMock from time import sleep DELAY_BETWEEN_MESSAGES = 0.05
[ 11748, 11389, 198, 6738, 764, 46911, 62, 76, 735, 13, 46911, 1330, 23283, 355, 23283, 44, 735, 198, 6738, 640, 1330, 3993, 198, 198, 35, 3698, 4792, 62, 33, 2767, 8845, 1677, 62, 44, 1546, 4090, 48075, 796, 657, 13, 2713, 628 ]
2.904762
42
from collections import Collection import altair as alt import pandas as pd def histogram(x, data, opacity=1., maxbins=30, color=None, padding=0,): """Display a histogram. Parameters ---------- x : str value to be binned data : pandas.DataFrame dataframe containing x opacity : float opacity of the histogram layer maxbins : int max bins allowable in the histogram color : str, None Color of histogram layer padding : int Amount of padding on ends of x-axis Example ------- >>> import cosilico.base as base >>> import seaborn as sns >>> >>> iris = sns.load_dataset('iris') >>> >>> base.histogram('sepal_length', iris) Returns ------- altair.Chart """ mark_kwargs = { 'opacity': opacity, } if color is not None: mark_kwargs['color'] = color chart = alt.Chart(data).mark_bar(**mark_kwargs).encode( x=alt.X(f'{x}:Q', bin=alt.Bin(maxbins=maxbins), title=x, scale=alt.Scale(padding=padding) ), y=alt.Y('count():Q', title='Count', ) ) return chart def layered_histogram(x, hue, data, opacity=.6, maxbins=100, stack=None, padding=0): """Display a layered histogram. Parameters ---------- x : str value to be binned hue : str value defining layers of the histogram data : pandas.DataFrame dataframe containing x and hue columns opacity : float opacity of the histogram layers maxbins : int max bins allowable in the histogram stack : str, None, bool argument for stack parameter in altair. If None, then the areas of the layers that overlap will be different colors. If 'zero', then the layers will completly occlude one another. padding : int Amount of padding on ends of x-axis Example ------- >>> import cosilico.base as base >>> import seaborn as sns >>> >>> iris = sns.load_dataset('iris') >>> >>> base.layered_histogram('sepal_length', 'species', iris) Returns ------- altair.Chart """ chart = alt.Chart(data).mark_area( opacity=opacity, interpolate='step' ).encode( alt.X(f'{x}:Q', bin=alt.Bin(maxbins=100), title=x, scale=alt.Scale(padding=padding)), alt.Y('count()', stack=stack, title='Count'), alt.Color(f'{hue}:N') ) return chart def distribution_plot(x, data, color=None, opacity=.6, bandwidth=.3, filled=True, steps=200, x_pad_scaler=.2, line_only=False, orientation='vertical'): """Display a simple distribution plot. Parameters ---------- x : str value to calculate distribution for. data : pandas.DataFrame dataframe containing x column color : str, None color of the distribution mark opacity : float opacity of the distribution plot layers bandwidth : float bandwidth used for density calculations steps : int number of steps used for smoothing distribution lines x_pad_scaler : float Used to extend x-axis range if needed. Adds x_pad_scaler * (x_max_value - x_min_value) to each side of the x-axis. filled : bool Whether the curve is filled or not. line_only : bool Whether to include only the distribution plot kernel line orientation : str Can either be 'vertical' or 'horizontal' Example ------- >>> import cosilico.base as base >>> import seaborn as sns >>> >>> iris = sns.load_dataset('iris') >>> base.distribution_plot('sepal_length', iris) Returns ------- altair.Chart """ chart = alt.Chart(data) value_range = max(data[x]) - min(data[x]) chart = chart.transform_density( density=x, bandwidth=bandwidth, counts=True, extent=[min(data[x]) - float(x_pad_scaler * value_range), max(data[x]) + float(x_pad_scaler * value_range)], steps=steps, ) axis_kwargs, mark_kwargs = {}, {} if orientation == 'vertical': mark_kwargs['orient'] = alt.Orientation('vertical') if line_only: chart = chart.mark_line(opacity=opacity, **mark_kwargs) # axis_kwargs['axis'] = None # if orientation == 'vertical': # encode_kwargs['order'] = 'value:Q' else: chart = chart.mark_area(opacity=opacity, filled=filled, **mark_kwargs) # chart = chart.encode( # x=alt.X(f'value:Q', # title=x, # **axis_kwargs # ), # y=alt.Y('density:Q', # **axis_kwargs # ), # ) if orientation == 'horizontal': chart = chart.encode( x=alt.X(f'value:Q', title=x, **axis_kwargs ), y=alt.Y('density:Q', **axis_kwargs ), ) else: chart = chart.encode( y=alt.X(f'value:Q', title=x, **axis_kwargs ), x=alt.Y('density:Q', **axis_kwargs ), order='value:Q' ) return chart def layered_distribution_plot(x, data, hue=None, opacity=.6, bandwidth=.3, steps=200, stack=None, x_pad_scaler=.2, filled=True): """Display a layered distribution plot. Parameters ---------- x : Collection, str value to calculate distribution for. If x is an iterable, then x will be treated as a list values to use for a fold transform. If x is a str, data will not be fold transformed data : pandas.DataFrame dataframe containing values hue : str, None value defining layers of the distribution plot. If x is a a string, then hue must be specified. Otherwise legend will be named by the hue value. opacity : float opacity of the distribution plot layers bandwidth : float bandwidth used for density calculations steps : int number of steps used for smoothing distribution lines stack : str, None, bool argument for stack parameter in altair. If None, then the areas of the layers that overlap will be different colors. If 'zero', then the layers will completly occlude one another. x_pad_scaler : float Used to extend x-axis range if needed. Adds x_pad_scaler * (x_max_value - x_min_value) to each side of the x-axis. filled : bool Whether the layers are filled or not. Example ------- >>> import cosilico.base as base >>> import seaborn as sns >>> >>> iris = sns.load_dataset('iris') >>> variables = ['sepal_length', 'sepal_width', ... 'petal_length', 'petal_width'] >>> base.layered_distribution_plot(variables, iris) Returns ------- altair.Chart """ transformed = data.copy() if isinstance(x, Collection) and not isinstance(x, str): transformed = data.melt(value_vars=x) x = 'value' if hue is not None: transformed.columns = [hue if c == 'variable' else c for c in transformed.columns] else: hue = 'variable' value_range = max(transformed[x]) - min(transformed[x]) chart = alt.Chart(transformed).transform_density( density=x, bandwidth=bandwidth, groupby=[hue], counts=True, extent=[min(transformed[x]) - float(x_pad_scaler * value_range), max(transformed[x]) + float(x_pad_scaler * value_range)], steps=steps, ).mark_area( opacity=opacity, filled=filled, ).encode( x=alt.X(f'value:Q', title=x ), y=alt.Y('density:Q', stack=stack), color=alt.Color(f'{hue}:N') ) return chart def boxplot(x, y, data, color=None): """Display a boxplot. Arguments --------- x : str column in data holding x-axis categories y : str column in data holding y-axis values data : pandas.DataFrame dataframe holding x and y color : str, None If color is None, boxes will be colored by x. Otherwise all boxes will be set to color. Example ------- >>> import seaborn as sns >>> import cosilico.base as base >>> >>> iris = sns.load_dataset('iris') >>> >>> base.boxplot('species', 'sepal_width', iris) Output ------ altair.Chart """ mark_kwargs, encode_kwargs = {}, {} if color is not None: mark_kwargs['color'] = color else: encode_kwargs['color'] = color=alt.Color(f'{x}:N') chart = alt.Chart(data).mark_boxplot(**mark_kwargs).encode( x=alt.X(f'{x}:N'), y=alt.Y(f'{y}:Q'), **encode_kwargs ) return chart
[ 6738, 17268, 1330, 12251, 198, 198, 11748, 5988, 958, 355, 5988, 198, 11748, 19798, 292, 355, 279, 67, 628, 198, 4299, 1554, 21857, 7, 87, 11, 1366, 11, 45912, 28, 16, 1539, 3509, 65, 1040, 28, 1270, 11, 3124, 28, 14202, 11, 24511, 28, 15, 11, 2599, 198, 220, 220, 220, 37227, 23114, 257, 1554, 21857, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 284, 307, 9874, 2817, 198, 220, 220, 220, 1366, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 7268, 2124, 198, 220, 220, 220, 45912, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 286, 262, 1554, 21857, 7679, 198, 220, 220, 220, 3509, 65, 1040, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 41701, 49299, 287, 262, 1554, 21857, 198, 220, 220, 220, 3124, 1058, 965, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 5315, 286, 1554, 21857, 7679, 198, 220, 220, 220, 24511, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 24511, 319, 5645, 286, 2124, 12, 22704, 628, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 1330, 8615, 346, 3713, 13, 8692, 355, 2779, 198, 220, 220, 220, 13163, 1330, 384, 397, 1211, 355, 3013, 82, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 4173, 271, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 10786, 29616, 11537, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 2779, 13, 10034, 21857, 10786, 325, 18596, 62, 13664, 3256, 4173, 271, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5988, 958, 13, 45488, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1317, 62, 46265, 22046, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 404, 4355, 10354, 45912, 11, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 611, 3124, 318, 407, 6045, 25, 1317, 62, 46265, 22046, 17816, 8043, 20520, 796, 3124, 628, 220, 220, 220, 8262, 796, 5988, 13, 45488, 7, 7890, 737, 4102, 62, 5657, 7, 1174, 4102, 62, 46265, 22046, 737, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 55, 7, 69, 6, 90, 87, 38362, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9874, 28, 2501, 13, 33, 259, 7, 9806, 65, 1040, 28, 9806, 65, 1040, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 2501, 13, 29990, 7, 39231, 28, 39231, 8, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 56, 10786, 9127, 33529, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11639, 12332, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 8262, 198, 198, 4299, 37748, 62, 10034, 21857, 7, 87, 11, 37409, 11, 1366, 11, 45912, 28, 13, 21, 11, 3509, 65, 1040, 28, 3064, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 28, 14202, 11, 24511, 28, 15, 2599, 198, 220, 220, 220, 37227, 23114, 257, 37748, 1554, 21857, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 284, 307, 9874, 2817, 198, 220, 220, 220, 37409, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 16215, 11685, 286, 262, 1554, 21857, 198, 220, 220, 220, 1366, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 7268, 2124, 290, 37409, 15180, 198, 220, 220, 220, 45912, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 286, 262, 1554, 21857, 11685, 198, 220, 220, 220, 3509, 65, 1040, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 3509, 41701, 49299, 287, 262, 1554, 21857, 198, 220, 220, 220, 8931, 1058, 965, 11, 6045, 11, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 329, 8931, 11507, 287, 5988, 958, 13, 1002, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 788, 262, 3006, 286, 262, 11685, 326, 21721, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1180, 7577, 13, 1002, 705, 22570, 3256, 788, 262, 11685, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1224, 83, 306, 1609, 38792, 530, 1194, 13, 198, 220, 220, 220, 24511, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 26308, 286, 24511, 319, 5645, 286, 2124, 12, 22704, 628, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 1330, 8615, 346, 3713, 13, 8692, 355, 2779, 198, 220, 220, 220, 13163, 1330, 384, 397, 1211, 355, 3013, 82, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 4173, 271, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 10786, 29616, 11537, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 2779, 13, 10724, 1068, 62, 10034, 21857, 10786, 325, 18596, 62, 13664, 3256, 705, 35448, 3256, 4173, 271, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5988, 958, 13, 45488, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 8262, 796, 5988, 13, 45488, 7, 7890, 737, 4102, 62, 20337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 28, 404, 4355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 39555, 378, 11639, 9662, 6, 198, 220, 220, 220, 6739, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 5988, 13, 55, 7, 69, 6, 90, 87, 38362, 48, 3256, 9874, 28, 2501, 13, 33, 259, 7, 9806, 65, 1040, 28, 3064, 828, 3670, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5046, 28, 2501, 13, 29990, 7, 39231, 28, 39231, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 5988, 13, 56, 10786, 9127, 3419, 3256, 8931, 28, 25558, 11, 3670, 11639, 12332, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 5988, 13, 10258, 7, 69, 6, 90, 71, 518, 38362, 45, 11537, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 8262, 198, 198, 4299, 6082, 62, 29487, 7, 87, 11, 1366, 11, 3124, 28, 14202, 11, 45912, 28, 13, 21, 11, 19484, 28, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5901, 28, 17821, 11, 4831, 28, 2167, 11, 2124, 62, 15636, 62, 1416, 36213, 28, 13, 17, 11, 1627, 62, 8807, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 12852, 11639, 1851, 605, 6, 2599, 198, 220, 220, 220, 37227, 23114, 257, 2829, 6082, 7110, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 284, 15284, 6082, 329, 13, 198, 220, 220, 220, 1366, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 7268, 2124, 5721, 198, 220, 220, 220, 3124, 1058, 965, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 286, 262, 6082, 1317, 198, 220, 220, 220, 45912, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 286, 262, 6082, 7110, 11685, 198, 220, 220, 220, 19484, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 19484, 973, 329, 12109, 16765, 198, 220, 220, 220, 4831, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 220, 4831, 973, 329, 32746, 722, 6082, 3951, 198, 220, 220, 220, 2124, 62, 15636, 62, 1416, 36213, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 16718, 284, 9117, 2124, 12, 22704, 2837, 611, 2622, 13, 34333, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 15636, 62, 1416, 36213, 1635, 357, 87, 62, 9806, 62, 8367, 532, 2124, 62, 1084, 62, 8367, 8, 284, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 286, 262, 2124, 12, 22704, 13, 198, 220, 220, 220, 5901, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 12133, 318, 5901, 393, 407, 13, 198, 220, 220, 220, 1627, 62, 8807, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 2291, 691, 262, 6082, 7110, 9720, 1627, 198, 220, 220, 220, 12852, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1680, 2035, 307, 705, 1851, 605, 6, 393, 705, 17899, 38342, 6, 628, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 1330, 8615, 346, 3713, 13, 8692, 355, 2779, 198, 220, 220, 220, 13163, 1330, 384, 397, 1211, 355, 3013, 82, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 4173, 271, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 10786, 29616, 11537, 198, 220, 220, 220, 13163, 2779, 13, 17080, 3890, 62, 29487, 10786, 325, 18596, 62, 13664, 3256, 4173, 271, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5988, 958, 13, 45488, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8262, 796, 5988, 13, 45488, 7, 7890, 8, 628, 220, 220, 220, 1988, 62, 9521, 796, 3509, 7, 7890, 58, 87, 12962, 532, 949, 7, 7890, 58, 87, 12962, 198, 220, 220, 220, 8262, 796, 8262, 13, 35636, 62, 43337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12109, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19484, 28, 3903, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9853, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6287, 41888, 1084, 7, 7890, 58, 87, 12962, 532, 12178, 7, 87, 62, 15636, 62, 1416, 36213, 1635, 1988, 62, 9521, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 7890, 58, 87, 12962, 1343, 12178, 7, 87, 62, 15636, 62, 1416, 36213, 1635, 1988, 62, 9521, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 28, 20214, 11, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 16488, 62, 46265, 22046, 11, 1317, 62, 46265, 22046, 796, 1391, 5512, 23884, 198, 220, 220, 220, 611, 12852, 6624, 705, 1851, 605, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 62, 46265, 22046, 17816, 13989, 20520, 796, 5988, 13, 46, 8289, 341, 10786, 1851, 605, 11537, 198, 220, 220, 220, 611, 1627, 62, 8807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8262, 796, 8262, 13, 4102, 62, 1370, 7, 404, 4355, 28, 404, 4355, 11, 12429, 4102, 62, 46265, 22046, 8, 198, 2, 220, 220, 220, 220, 220, 220, 220, 16488, 62, 46265, 22046, 17816, 22704, 20520, 796, 6045, 198, 2, 220, 220, 220, 220, 220, 220, 220, 611, 12852, 6624, 705, 1851, 605, 10354, 198, 2, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37773, 62, 46265, 22046, 17816, 2875, 20520, 796, 705, 8367, 25, 48, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8262, 796, 8262, 13, 4102, 62, 20337, 7, 404, 4355, 28, 404, 4355, 11, 5901, 28, 20286, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 4102, 62, 46265, 22046, 8, 198, 1303, 220, 220, 8262, 796, 8262, 13, 268, 8189, 7, 198, 1303, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 55, 7, 69, 6, 8367, 25, 48, 3256, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 87, 11, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 1303, 220, 220, 220, 220, 220, 220, 10612, 198, 1303, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 56, 10786, 43337, 25, 48, 3256, 198, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 1303, 220, 220, 220, 220, 220, 220, 10612, 198, 1303, 220, 220, 1267, 628, 220, 220, 220, 220, 198, 220, 220, 220, 611, 12852, 6624, 705, 17899, 38342, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 8262, 796, 8262, 13, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 55, 7, 69, 6, 8367, 25, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 56, 10786, 43337, 25, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8262, 796, 8262, 13, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 55, 7, 69, 6, 8367, 25, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 56, 10786, 43337, 25, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 22704, 62, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1502, 11639, 8367, 25, 48, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 8262, 628, 198, 4299, 37748, 62, 17080, 3890, 62, 29487, 7, 87, 11, 1366, 11, 37409, 28, 14202, 11, 45912, 28, 13, 21, 11, 19484, 28, 13, 18, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 28, 2167, 11, 8931, 28, 14202, 11, 2124, 62, 15636, 62, 1416, 36213, 28, 13, 17, 11, 5901, 28, 17821, 2599, 198, 220, 220, 220, 37227, 23114, 257, 37748, 6082, 7110, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2124, 1058, 12251, 11, 965, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 284, 15284, 6082, 329, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 2124, 318, 281, 11629, 540, 11, 788, 2124, 481, 307, 5716, 355, 257, 1351, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 284, 779, 329, 257, 5591, 6121, 13, 1002, 2124, 318, 257, 965, 11, 1366, 481, 407, 307, 198, 220, 220, 220, 220, 220, 220, 220, 5591, 14434, 198, 220, 220, 220, 1366, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 7268, 3815, 198, 220, 220, 220, 37409, 1058, 965, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 16215, 11685, 286, 262, 6082, 7110, 13, 1002, 2124, 318, 257, 220, 198, 220, 220, 220, 220, 220, 220, 220, 257, 4731, 11, 788, 37409, 1276, 307, 7368, 13, 15323, 8177, 481, 198, 220, 220, 220, 220, 220, 220, 220, 307, 3706, 416, 262, 37409, 1988, 13, 198, 220, 220, 220, 45912, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 286, 262, 6082, 7110, 11685, 198, 220, 220, 220, 19484, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 19484, 973, 329, 12109, 16765, 198, 220, 220, 220, 4831, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1271, 286, 220, 4831, 973, 329, 32746, 722, 6082, 3951, 198, 220, 220, 220, 8931, 1058, 965, 11, 6045, 11, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 329, 8931, 11507, 287, 5988, 958, 13, 1002, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 788, 262, 3006, 286, 262, 11685, 326, 21721, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 1180, 7577, 13, 1002, 705, 22570, 3256, 788, 262, 11685, 481, 198, 220, 220, 220, 220, 220, 220, 220, 1224, 83, 306, 1609, 38792, 530, 1194, 13, 198, 220, 220, 220, 2124, 62, 15636, 62, 1416, 36213, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 16718, 284, 9117, 2124, 12, 22704, 2837, 611, 2622, 13, 34333, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 15636, 62, 1416, 36213, 1635, 357, 87, 62, 9806, 62, 8367, 532, 2124, 62, 1084, 62, 8367, 8, 284, 1123, 198, 220, 220, 220, 220, 220, 220, 220, 1735, 286, 262, 2124, 12, 22704, 13, 198, 220, 220, 220, 5901, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 10127, 262, 11685, 389, 5901, 393, 407, 13, 628, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 1330, 8615, 346, 3713, 13, 8692, 355, 2779, 198, 220, 220, 220, 13163, 1330, 384, 397, 1211, 355, 3013, 82, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 4173, 271, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 10786, 29616, 11537, 198, 220, 220, 220, 13163, 9633, 796, 37250, 325, 18596, 62, 13664, 3256, 705, 325, 18596, 62, 10394, 3256, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6449, 282, 62, 13664, 3256, 705, 6449, 282, 62, 10394, 20520, 198, 220, 220, 220, 13163, 2779, 13, 10724, 1068, 62, 17080, 3890, 62, 29487, 7, 25641, 2977, 11, 4173, 271, 8, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 5988, 958, 13, 45488, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 14434, 796, 1366, 13, 30073, 3419, 198, 220, 220, 220, 611, 318, 39098, 7, 87, 11, 12251, 8, 290, 407, 318, 39098, 7, 87, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 14434, 796, 1366, 13, 76, 2120, 7, 8367, 62, 85, 945, 28, 87, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 705, 8367, 6, 198, 220, 220, 220, 220, 220, 220, 220, 611, 37409, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14434, 13, 28665, 82, 796, 685, 71, 518, 611, 269, 6624, 705, 45286, 6, 2073, 269, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 269, 287, 14434, 13, 28665, 82, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37409, 796, 705, 45286, 6, 628, 220, 220, 220, 1988, 62, 9521, 796, 3509, 7, 7645, 12214, 58, 87, 12962, 532, 949, 7, 7645, 12214, 58, 87, 12962, 198, 220, 220, 220, 8262, 796, 5988, 13, 45488, 7, 7645, 12214, 737, 35636, 62, 43337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 12109, 28, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19484, 28, 3903, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1448, 1525, 41888, 71, 518, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 9853, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6287, 41888, 1084, 7, 7645, 12214, 58, 87, 12962, 532, 12178, 7, 87, 62, 15636, 62, 1416, 36213, 1635, 1988, 62, 9521, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 7, 7645, 12214, 58, 87, 12962, 1343, 12178, 7, 87, 62, 15636, 62, 1416, 36213, 1635, 1988, 62, 9521, 8, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 4831, 28, 20214, 11, 198, 220, 220, 220, 6739, 4102, 62, 20337, 7, 198, 220, 220, 220, 220, 220, 220, 220, 45912, 28, 404, 4355, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5901, 28, 20286, 11, 198, 220, 220, 220, 6739, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 55, 7, 69, 6, 8367, 25, 48, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 28, 87, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 56, 10786, 43337, 25, 48, 3256, 8931, 28, 25558, 828, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 2501, 13, 10258, 7, 69, 6, 90, 71, 518, 38362, 45, 11537, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 8262, 628, 198, 4299, 3091, 29487, 7, 87, 11, 331, 11, 1366, 11, 3124, 28, 14202, 2599, 198, 220, 220, 220, 37227, 23114, 257, 3091, 29487, 13, 628, 220, 220, 220, 20559, 2886, 198, 220, 220, 220, 45337, 198, 220, 220, 220, 2124, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 287, 1366, 4769, 2124, 12, 22704, 9376, 198, 220, 220, 220, 331, 1058, 965, 198, 220, 220, 220, 220, 220, 220, 220, 5721, 287, 1366, 4769, 331, 12, 22704, 3815, 198, 220, 220, 220, 1366, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 14535, 4769, 2124, 290, 331, 198, 220, 220, 220, 3124, 1058, 965, 11, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 3124, 318, 6045, 11, 10559, 481, 307, 16396, 416, 2124, 13, 198, 220, 220, 220, 220, 220, 220, 220, 15323, 477, 10559, 481, 307, 900, 284, 3124, 13, 628, 220, 220, 220, 17934, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 13163, 1330, 384, 397, 1211, 355, 3013, 82, 198, 220, 220, 220, 13163, 1330, 8615, 346, 3713, 13, 8692, 355, 2779, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 4173, 271, 796, 3013, 82, 13, 2220, 62, 19608, 292, 316, 10786, 29616, 11537, 198, 220, 220, 220, 13163, 198, 220, 220, 220, 13163, 2779, 13, 3524, 29487, 10786, 35448, 3256, 705, 325, 18596, 62, 10394, 3256, 4173, 271, 8, 628, 220, 220, 220, 25235, 198, 220, 220, 220, 40103, 198, 220, 220, 220, 5988, 958, 13, 45488, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1317, 62, 46265, 22046, 11, 37773, 62, 46265, 22046, 796, 1391, 5512, 23884, 198, 220, 220, 220, 611, 3124, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 62, 46265, 22046, 17816, 8043, 20520, 796, 3124, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37773, 62, 46265, 22046, 17816, 8043, 20520, 796, 3124, 28, 2501, 13, 10258, 7, 69, 6, 90, 87, 38362, 45, 11537, 198, 220, 220, 220, 8262, 796, 5988, 13, 45488, 7, 7890, 737, 4102, 62, 3524, 29487, 7, 1174, 4102, 62, 46265, 22046, 737, 268, 8189, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 28, 2501, 13, 55, 7, 69, 6, 90, 87, 38362, 45, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 331, 28, 2501, 13, 56, 7, 69, 6, 90, 88, 38362, 48, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 12429, 268, 8189, 62, 46265, 22046, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 1441, 8262, 198 ]
2.265424
3,971
"""A client to OWL.""" from typing import Optional from indra.databases.owl_client import OwlClient _client = OwlClient('ido') def get_ido_name_from_ido_id(ido_id: str) -> Optional[str]: """Return the HP name corresponding to the given HP ID. Parameters ---------- ido_id : The IDO identifier to be converted. Example: "0000403" Returns ------- : The IDO name corresponding to the given IDO identifier. """ return _client.get_name_from_id(ido_id) def get_ido_id_from_ido_name(ido_name: str) -> Optional[str]: """Return the HP identifier corresponding to the given IDO name. Parameters ---------- ido_name : The IDO name to be converted. Example: "parasite role" Returns ------- : The IDO identifier corresponding to the given IDO name. """ return _client.get_id_from_name(ido_name)
[ 37811, 32, 5456, 284, 47210, 43, 526, 15931, 198, 198, 6738, 19720, 1330, 32233, 198, 198, 6738, 773, 430, 13, 19608, 18826, 13, 4883, 62, 16366, 1330, 37007, 11792, 198, 198, 62, 16366, 796, 37007, 11792, 10786, 17305, 11537, 628, 198, 4299, 651, 62, 17305, 62, 3672, 62, 6738, 62, 17305, 62, 312, 7, 17305, 62, 312, 25, 965, 8, 4613, 32233, 58, 2536, 5974, 198, 220, 220, 220, 37227, 13615, 262, 6574, 1438, 11188, 284, 262, 1813, 6574, 4522, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4686, 78, 62, 312, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4522, 46, 27421, 284, 307, 11513, 13, 17934, 25, 366, 2388, 31552, 1, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4522, 46, 1438, 11188, 284, 262, 1813, 4522, 46, 27421, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 16366, 13, 1136, 62, 3672, 62, 6738, 62, 312, 7, 17305, 62, 312, 8, 628, 198, 4299, 651, 62, 17305, 62, 312, 62, 6738, 62, 17305, 62, 3672, 7, 17305, 62, 3672, 25, 965, 8, 4613, 32233, 58, 2536, 5974, 198, 220, 220, 220, 37227, 13615, 262, 6574, 27421, 11188, 284, 262, 1813, 4522, 46, 1438, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 4686, 78, 62, 3672, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4522, 46, 1438, 284, 307, 11513, 13, 17934, 25, 366, 1845, 292, 578, 2597, 1, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 1058, 198, 220, 220, 220, 220, 220, 220, 220, 383, 4522, 46, 27421, 11188, 284, 262, 1813, 4522, 46, 1438, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 4808, 16366, 13, 1136, 62, 312, 62, 6738, 62, 3672, 7, 17305, 62, 3672, 8, 198 ]
2.70997
331
# Python solution for 'max diff - easy' codewars question. # Level: 7 kyu # Tags: FUNDAMENTALS, MATHEMATICS, ALGORITHMS, NUMBERS, COLLECTIONS, LISTS, DATA STRUCTURES, AND ARRAYS. # Author: Jack Brokenshire # Date: 16/07/2020 import unittest def max_diff(lst): """ Finds the difference beteween the largest and smallest items in a list. :param lst: a list of integers. :return: the difference between the biggest and the smallest value in a list received as parameter, otherwise, 0. """ if lst: return max(lst) - min(lst) return 0 class TestMaxDiff(unittest.TestCase): """Class to test 'max_diff' function""" if __name__ == '__main__': unittest.main()
[ 2, 11361, 4610, 329, 705, 9806, 814, 532, 2562, 6, 14873, 413, 945, 1808, 13, 198, 2, 5684, 25, 767, 479, 24767, 198, 2, 44789, 25, 29397, 35, 2390, 3525, 23333, 11, 337, 12599, 3620, 1404, 19505, 11, 8355, 38, 1581, 10554, 5653, 11, 36871, 33, 4877, 11, 20444, 16779, 11053, 11, 406, 1797, 4694, 11, 42865, 19269, 18415, 29514, 11, 5357, 5923, 3861, 16309, 13, 198, 2, 6434, 25, 3619, 2806, 14972, 10695, 198, 2, 7536, 25, 1467, 14, 2998, 14, 42334, 198, 198, 11748, 555, 715, 395, 628, 198, 4299, 3509, 62, 26069, 7, 75, 301, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9938, 82, 262, 3580, 731, 413, 6429, 262, 4387, 290, 18197, 3709, 287, 257, 1351, 13, 198, 220, 220, 220, 1058, 17143, 300, 301, 25, 257, 1351, 286, 37014, 13, 198, 220, 220, 220, 1058, 7783, 25, 262, 3580, 1022, 262, 4094, 290, 262, 18197, 1988, 287, 257, 1351, 2722, 355, 11507, 11, 4306, 11, 657, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 300, 301, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3509, 7, 75, 301, 8, 532, 949, 7, 75, 301, 8, 198, 220, 220, 220, 1441, 657, 628, 198, 4871, 6208, 11518, 28813, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 9487, 284, 1332, 705, 9806, 62, 26069, 6, 2163, 37811, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.742188
256
from PyQt5.QtCore import QDataStream, QIODevice, QObject, QByteArray, pyqtSignal from PyQt5.QtCore import * from PyQt5.QtWidgets import QApplication, QDialog, QMainWindow, QLineEdit, QPushButton, QVBoxLayout from PyQt5.QtWidgets import * from PyQt5.QtNetwork import QTcpSocket, QAbstractSocket from PyQt5.QtNetwork import * from PyQt5.QtGui import QPixmap, QImage from PyQt5 import QtWidgets, uic from functools import partial from libs.clientAbstract import ClientAbstract # PORTS = (9998, 8000) # class Client(QMainWindow, Ui_MainWindow):
[ 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1195, 6601, 12124, 11, 1195, 40, 3727, 1990, 501, 11, 1195, 10267, 11, 1195, 40778, 19182, 11, 12972, 39568, 11712, 282, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 14055, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1195, 23416, 11, 1195, 44204, 11, 1195, 13383, 27703, 11, 1195, 13949, 18378, 11, 1195, 49222, 21864, 11, 1195, 53, 14253, 32517, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 54, 312, 11407, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 26245, 1330, 1195, 51, 13155, 39105, 11, 1195, 23839, 39105, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 26245, 1330, 1635, 198, 6738, 9485, 48, 83, 20, 13, 48, 83, 8205, 72, 1330, 1195, 47, 844, 8899, 11, 1195, 5159, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 6738, 9485, 48, 83, 20, 1330, 33734, 54, 312, 11407, 11, 334, 291, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 9195, 82, 13, 16366, 23839, 1330, 20985, 23839, 198, 198, 2, 350, 33002, 796, 357, 2079, 4089, 11, 38055, 8, 198, 198, 2, 1398, 20985, 7, 48, 13383, 27703, 11, 471, 72, 62, 13383, 27703, 2599, 628, 198 ]
2.443038
237
# from __future__ import absolute_import # from __future__ import division from __future__ import print_function import os import glob import numpy as np from PIL import Image import cv2 if __name__ == '__main__': main()
[ 2, 422, 11593, 37443, 834, 1330, 4112, 62, 11748, 198, 2, 422, 11593, 37443, 834, 1330, 7297, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 28686, 198, 11748, 15095, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 11748, 269, 85, 17, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419 ]
3.304348
69
import csv, os os.chdir('C:\\Users\\tomas\\Desktop\\Multi-Side Flashcard Project\\Sentences from Tatoeba\\') csv_handle = open("jpn_sentences.tsv",'r') csv_read = csv.reader(csv_handle, delimiter="\t") csvList = list(csv_read) #print(len(csvList)) #print(f"Row 1, column 3: {csvList[0][2]}",f"Row 1, column 1: {csvList[0][0]}") tatoebaDict = {} for row in csvList: tatoebaDict[row[0]] = row[2] import shelve os.chdir('C:\\Users\\tomas\\Desktop\\Multi-Side Flashcard Project\\') d = shelve.open("N1 vocab data") vocab = d['Vocab 1'] d.close() #print(len(vocab)) #sentence matching. #create a list matching sentences for each word #first match my kanji, then match by kana, then match by kanji minus a ru at the end(or similar) #Else append 'Sentence not found' #NOTE -> you want to get some sort of autoconjugator for words #refine this list to one sentence if 1) that sentence that has other words from vocab in it. (the most words) #2) if length is 1 then no need to refine. listOfLists = [] from progress.bar import ChargingBar endings = {'しい':['しく','しな'], "う":["って","った","わない",'い','え'], "つ":["って","った","た",'ち','て'], 'いる':['いた','いて','い','いま','いない','いろ'], 'える':['えた','えて','え','えま','えない','えろ'], "る":["って","て","った","た",'り','れ','ま','ない','ろ'], "く":["いて","いた","か","き","け"], "ぐ":["いで","いだ","が","ぎ","げ"], "ぬ":["んで","んだ","な","に","ね"], "ぶ":["んで","んだ","ば","び","べ"], "む":["んで","んだ","ま","み","め"], "す":["して","した","さ","し","せ"]} with ChargingBar(max=len(vocab)) as bar: for word in vocab: nestedList = [] for code in tatoebaDict: #print(f"DEBUGGING\nWord index zero = {word[0]}\nType of word index zero = {type(word[0])}") #print(f"DEBUGGING\nContents of current key = {tatoebaDict[code]}\nType of content at current key = {type(tatoebaDict[code])}") if word[0] in tatoebaDict[code]: #print("DEBUGGING: IF") nestedList.append(tatoebaDict[code]) elif word[0][-1] in list(endings.keys()): for subend in endings[word[0][-1]]: tempWord = word[0][:-1] + subend if tempWord in tatoebaDict[code]: #print("DEBUGGING: ELIF2") if tatoebaDict[code] not in nestedList: nestedList.append(tatoebaDict[code]) elif word[1] in tatoebaDict[code]: #print("DEBUGGING: ELIF1") nestedList.append(tatoebaDict[code]) if len(nestedList) == 0: nestedList.append('Sentence not found.') #print('Sentence not found.') listOfLists.append(nestedList) #print(f"LENGTH of listOfLists:{len(listOfLists)} ") bar.next() #print('LENGTH:\n',len(listOfLists),'CONTENTS:\n',listOfLists) newData = shelve.open('Raw Sentences') newData['Raw Sentences 2'] = listOfLists newData.close()
[ 11748, 269, 21370, 11, 28686, 201, 198, 418, 13, 354, 15908, 10786, 34, 25, 6852, 14490, 6852, 83, 16911, 6852, 36881, 6852, 29800, 12, 24819, 9973, 9517, 4935, 6852, 31837, 3007, 422, 309, 5549, 1765, 64, 6852, 11537, 201, 198, 40664, 62, 28144, 796, 1280, 7203, 73, 21999, 62, 34086, 3007, 13, 912, 85, 1600, 6, 81, 11537, 201, 198, 40664, 62, 961, 796, 269, 21370, 13, 46862, 7, 40664, 62, 28144, 11, 46728, 2676, 2625, 59, 83, 4943, 201, 198, 40664, 8053, 796, 1351, 7, 40664, 62, 961, 8, 201, 198, 2, 4798, 7, 11925, 7, 40664, 8053, 4008, 201, 198, 2, 4798, 7, 69, 1, 25166, 352, 11, 5721, 513, 25, 1391, 40664, 8053, 58, 15, 7131, 17, 48999, 1600, 69, 1, 25166, 352, 11, 5721, 352, 25, 1391, 40664, 8053, 58, 15, 7131, 15, 48999, 4943, 201, 198, 83, 5549, 1765, 64, 35, 713, 796, 23884, 201, 198, 1640, 5752, 287, 269, 21370, 8053, 25, 220, 201, 198, 197, 83, 5549, 1765, 64, 35, 713, 58, 808, 58, 15, 11907, 796, 5752, 58, 17, 60, 201, 198, 201, 198, 201, 198, 11748, 7497, 303, 201, 198, 201, 198, 418, 13, 354, 15908, 10786, 34, 25, 6852, 14490, 6852, 83, 16911, 6852, 36881, 6852, 29800, 12, 24819, 9973, 9517, 4935, 6852, 11537, 201, 198, 67, 796, 7497, 303, 13, 9654, 7203, 45, 16, 12776, 397, 1366, 4943, 201, 198, 18893, 397, 796, 288, 17816, 53, 420, 397, 352, 20520, 201, 198, 67, 13, 19836, 3419, 201, 198, 2, 4798, 7, 11925, 7, 18893, 397, 4008, 201, 198, 2, 34086, 594, 12336, 13, 201, 198, 2, 17953, 257, 1351, 12336, 13439, 329, 1123, 1573, 201, 198, 2, 11085, 2872, 616, 43998, 7285, 11, 788, 2872, 416, 479, 2271, 11, 788, 2872, 416, 43998, 7285, 20208, 257, 7422, 379, 262, 886, 7, 273, 2092, 8, 201, 198, 2, 40674, 24443, 705, 31837, 594, 407, 1043, 6, 201, 198, 2, 16580, 4613, 345, 765, 284, 651, 617, 3297, 286, 1960, 36221, 31761, 1352, 329, 2456, 201, 198, 2, 5420, 500, 428, 1351, 284, 530, 6827, 611, 352, 8, 326, 6827, 326, 468, 584, 2456, 422, 12776, 397, 287, 340, 13, 357, 1169, 749, 2456, 8, 201, 198, 2, 17, 8, 611, 4129, 318, 352, 788, 645, 761, 284, 35139, 13, 201, 198, 4868, 5189, 43, 1023, 796, 17635, 201, 198, 6738, 4371, 13, 5657, 1330, 14797, 278, 10374, 201, 198, 437, 654, 796, 1391, 6, 22180, 18566, 10354, 17816, 22180, 31917, 41707, 22180, 26945, 6, 4357, 201, 198, 1, 29557, 26358, 33180, 28134, 2430, 33180, 25224, 2430, 1792, 237, 26945, 18566, 1600, 6, 18566, 41707, 2515, 230, 6, 4357, 201, 198, 1, 2515, 97, 26358, 33180, 28134, 2430, 33180, 25224, 2430, 25224, 1600, 6, 2515, 94, 41707, 28134, 6, 4357, 201, 198, 6, 18566, 25748, 10354, 17816, 18566, 25224, 41707, 18566, 28134, 41707, 18566, 41707, 18566, 30159, 41707, 18566, 26945, 18566, 41707, 18566, 1792, 235, 6, 4357, 201, 198, 6, 2515, 230, 25748, 10354, 17816, 2515, 230, 25224, 41707, 2515, 230, 28134, 41707, 2515, 230, 41707, 2515, 230, 30159, 41707, 2515, 230, 26945, 18566, 41707, 2515, 230, 1792, 235, 6, 4357, 201, 198, 1, 25748, 26358, 33180, 28134, 2430, 28134, 2430, 33180, 25224, 2430, 25224, 1600, 6, 28255, 41707, 39258, 41707, 30159, 41707, 26945, 18566, 41707, 1792, 235, 6, 4357, 201, 198, 1, 31917, 26358, 18566, 28134, 2430, 18566, 25224, 2430, 27370, 2430, 33778, 2430, 2515, 239, 33116, 201, 198, 1, 2515, 238, 26358, 18566, 30640, 2430, 18566, 46777, 2430, 35585, 2430, 2515, 236, 2430, 2515, 240, 33116, 201, 198, 1, 2515, 105, 26358, 22174, 30640, 2430, 22174, 46777, 2430, 26945, 2430, 28618, 2430, 2515, 255, 33116, 201, 198, 1, 2515, 114, 26358, 22174, 30640, 2430, 22174, 46777, 2430, 2515, 108, 2430, 2515, 111, 2430, 2515, 117, 33116, 201, 198, 1, 1792, 222, 26358, 22174, 30640, 2430, 22174, 46777, 2430, 30159, 2430, 2515, 123, 2430, 1792, 223, 33116, 201, 198, 1, 33623, 26358, 22180, 28134, 2430, 22180, 25224, 2430, 43357, 2430, 22180, 2430, 2515, 249, 8973, 92, 201, 198, 4480, 14797, 278, 10374, 7, 9806, 28, 11925, 7, 18893, 397, 4008, 355, 2318, 25, 201, 198, 197, 1640, 1573, 287, 12776, 397, 25, 201, 198, 197, 197, 77, 7287, 8053, 796, 17635, 201, 198, 197, 197, 1640, 2438, 287, 256, 5549, 1765, 64, 35, 713, 25, 201, 198, 197, 197, 197, 2, 4798, 7, 69, 1, 30531, 38, 2751, 59, 77, 26449, 6376, 6632, 796, 1391, 4775, 58, 15, 60, 32239, 77, 6030, 286, 1573, 6376, 6632, 796, 1391, 4906, 7, 4775, 58, 15, 12962, 92, 4943, 201, 198, 197, 197, 197, 2, 4798, 7, 69, 1, 30531, 38, 2751, 59, 77, 15842, 286, 1459, 1994, 796, 1391, 83, 5549, 1765, 64, 35, 713, 58, 8189, 60, 32239, 77, 6030, 286, 2695, 379, 1459, 1994, 796, 1391, 4906, 7, 83, 5549, 1765, 64, 35, 713, 58, 8189, 12962, 92, 4943, 201, 198, 197, 197, 197, 361, 1573, 58, 15, 60, 287, 256, 5549, 1765, 64, 35, 713, 58, 8189, 5974, 201, 198, 197, 197, 197, 197, 2, 4798, 7203, 30531, 38, 2751, 25, 16876, 4943, 201, 198, 197, 197, 197, 197, 77, 7287, 8053, 13, 33295, 7, 83, 5549, 1765, 64, 35, 713, 58, 8189, 12962, 201, 198, 197, 197, 197, 417, 361, 1573, 58, 15, 7131, 12, 16, 60, 287, 1351, 7, 437, 654, 13, 13083, 3419, 2599, 201, 198, 197, 197, 197, 197, 1640, 850, 437, 287, 38168, 58, 4775, 58, 15, 7131, 12, 16, 60, 5974, 201, 198, 197, 197, 197, 197, 197, 29510, 26449, 796, 1573, 58, 15, 7131, 21912, 16, 60, 1343, 850, 437, 201, 198, 197, 197, 197, 197, 197, 361, 20218, 26449, 287, 256, 5549, 1765, 64, 35, 713, 58, 8189, 5974, 201, 198, 197, 197, 197, 197, 197, 197, 2, 4798, 7203, 30531, 38, 2751, 25, 17852, 5064, 17, 4943, 201, 198, 197, 197, 197, 197, 197, 197, 361, 256, 5549, 1765, 64, 35, 713, 58, 8189, 60, 407, 287, 28376, 8053, 25, 201, 198, 197, 197, 197, 197, 197, 197, 197, 77, 7287, 8053, 13, 33295, 7, 83, 5549, 1765, 64, 35, 713, 58, 8189, 12962, 201, 198, 197, 197, 197, 417, 361, 1573, 58, 16, 60, 287, 256, 5549, 1765, 64, 35, 713, 58, 8189, 5974, 201, 198, 197, 197, 197, 197, 2, 4798, 7203, 30531, 38, 2751, 25, 17852, 5064, 16, 4943, 201, 198, 197, 197, 197, 197, 77, 7287, 8053, 13, 33295, 7, 83, 5549, 1765, 64, 35, 713, 58, 8189, 12962, 201, 198, 197, 197, 361, 18896, 7, 77, 7287, 8053, 8, 6624, 657, 25, 201, 198, 197, 197, 197, 77, 7287, 8053, 13, 33295, 10786, 31837, 594, 407, 1043, 2637, 8, 201, 198, 197, 197, 197, 2, 4798, 10786, 31837, 594, 407, 1043, 2637, 8, 201, 198, 197, 197, 4868, 5189, 43, 1023, 13, 33295, 7, 77, 7287, 8053, 8, 201, 198, 197, 197, 2, 4798, 7, 69, 1, 43, 49494, 286, 1351, 5189, 43, 1023, 29164, 11925, 7, 4868, 5189, 43, 1023, 38165, 366, 8, 201, 198, 197, 197, 5657, 13, 19545, 3419, 201, 198, 201, 198, 2, 4798, 10786, 43, 49494, 7479, 77, 3256, 11925, 7, 4868, 5189, 43, 1023, 828, 6, 37815, 15365, 7479, 77, 3256, 4868, 5189, 43, 1023, 8, 201, 198, 3605, 6601, 796, 7497, 303, 13, 9654, 10786, 27369, 11352, 3007, 11537, 201, 198, 3605, 6601, 17816, 27369, 11352, 3007, 362, 20520, 796, 1351, 5189, 43, 1023, 201, 198, 3605, 6601, 13, 19836, 3419 ]
2.178427
1,233
import numpy as np import chainer import chainer.functions as F from chainer import initializers from chainer import variable class Normalize(chainer.Link): """Learnable L2 normalization [#]_. This link normalizes input along the channel axis and scales it. The scale factors are trained channel-wise. .. [#] Wei Liu, Andrew Rabinovich, Alexander C. Berg. ParseNet: Looking Wider to See Better. ICLR 2016. Args: n_channel (int): The number of channels. initial: A value to initialize the scale factors. It is pased to :meth:`chainer.initializers._get_initializer`. The default value is 0. eps (float): A small value to avoid zero-division. The default value is :math:`1e-5`. """ def forward(self, x): """Normalize input and scale it. Args: x (chainer.Variable): A variable holding 4-dimensional array. Its :obj:`dtype` is :obj:`numpy.float32`. Returns: chainer.Variable: The shape and :obj:`dtype` are same as those of input. """ x = F.normalize(x, eps=self.eps, axis=1) scale = F.broadcast_to(self.scale[:, np.newaxis, np.newaxis], x.shape) return F.cast(x * scale, chainer.get_dtype())
[ 11748, 299, 32152, 355, 45941, 198, 198, 11748, 6333, 263, 198, 11748, 6333, 263, 13, 12543, 2733, 355, 376, 198, 6738, 6333, 263, 1330, 4238, 11341, 198, 6738, 6333, 263, 1330, 7885, 628, 198, 4871, 14435, 1096, 7, 7983, 263, 13, 11280, 2599, 198, 220, 220, 220, 37227, 20238, 540, 406, 17, 3487, 1634, 685, 2, 60, 44807, 628, 220, 220, 220, 770, 2792, 3487, 4340, 5128, 1863, 262, 6518, 16488, 290, 16252, 340, 13, 198, 220, 220, 220, 383, 5046, 5087, 389, 8776, 6518, 12, 3083, 13, 628, 220, 220, 220, 11485, 685, 2, 60, 29341, 18258, 11, 6858, 371, 6014, 18198, 11, 10009, 327, 13, 24626, 13, 198, 220, 220, 220, 220, 220, 220, 2547, 325, 7934, 25, 15616, 370, 1304, 284, 4091, 11625, 13, 314, 5097, 49, 1584, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 299, 62, 17620, 357, 600, 2599, 383, 1271, 286, 9619, 13, 198, 220, 220, 220, 220, 220, 220, 220, 4238, 25, 317, 1988, 284, 41216, 262, 5046, 5087, 13, 632, 318, 279, 839, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 63, 7983, 263, 13, 36733, 11341, 13557, 1136, 62, 36733, 7509, 44646, 383, 4277, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 657, 13, 198, 220, 220, 220, 220, 220, 220, 220, 304, 862, 357, 22468, 2599, 317, 1402, 1988, 284, 3368, 6632, 12, 21426, 13, 383, 4277, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 1058, 11018, 25, 63, 16, 68, 12, 20, 44646, 628, 220, 220, 220, 37227, 628, 220, 220, 220, 825, 2651, 7, 944, 11, 2124, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 26447, 1096, 5128, 290, 5046, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 357, 7983, 263, 13, 43015, 2599, 317, 7885, 4769, 604, 12, 19577, 7177, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6363, 1058, 26801, 25, 63, 67, 4906, 63, 318, 1058, 26801, 25, 63, 77, 32152, 13, 22468, 2624, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6333, 263, 13, 43015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 5485, 290, 1058, 26801, 25, 63, 67, 4906, 63, 389, 976, 355, 883, 286, 5128, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 376, 13, 11265, 1096, 7, 87, 11, 304, 862, 28, 944, 13, 25386, 11, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5046, 796, 376, 13, 36654, 2701, 62, 1462, 7, 944, 13, 9888, 58, 45299, 45941, 13, 3605, 22704, 11, 45941, 13, 3605, 22704, 4357, 2124, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 376, 13, 2701, 7, 87, 1635, 5046, 11, 6333, 263, 13, 1136, 62, 67, 4906, 28955, 198 ]
2.43633
534
#!/usr/bin/python2.4 # Small script to show PostgreSQL and Pyscopg together # import json import psycopg2 import sys match_id = sys.argv[1] match_id = 2125002095 conn = psycopg2.connect("dbname='postgres' user='petergleixner' host='localhost' password=''") cursor = conn.cursor() cursor.execute('''SELECT replay_file FROM replay_data WHERE match_id = %s''' %(match_id)) db_file = cursor.fetchone() replay_file = json.dumps(db_file)[1:-1] meta_info = json.loads(replay_file)["meta_info"] game_info = meta_info["game_info"] player_info = meta_info["player_info"] replay = json.loads(replay_file)["replay"] #Creating dict with heroname:list hero_dict = dict() for g in player_info: hero_dict[g["hero_name"]] = [] count = 0 for r in replay: if "gold_total" in r["data"]: count = count + 1 hero_name = r["data"]["hero_name"] tick = r["tick"] gold = r["data"]["gold_total"] tmp_dict = {"x":tick, "y":gold} hero_dict[hero_name].append(tmp_dict) print count print hero_name print "------------------" #if hero_name == "lion": for hero_name in hero_dict: tmp_hero_gold = json.dumps(hero_dict[hero_name]) #cursor.execute('''INSERT INTO gold_xp (match_id, hero_name, team_id, gold_data) VALUES (%s,%s,%s,%s)''', (match_id, hero_name, 4, tmp_hero_gold)) #conn.commit()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 17, 13, 19, 198, 2, 10452, 4226, 284, 905, 2947, 47701, 290, 350, 893, 22163, 70, 1978, 198, 2, 198, 198, 11748, 33918, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 25064, 198, 198, 15699, 62, 312, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 15699, 62, 312, 796, 23679, 4059, 1238, 3865, 198, 37043, 796, 17331, 22163, 70, 17, 13, 8443, 7203, 9945, 3672, 11639, 7353, 34239, 6, 2836, 11639, 79, 2357, 70, 293, 844, 1008, 6, 2583, 11639, 36750, 6, 9206, 28, 7061, 4943, 198, 66, 21471, 796, 48260, 13, 66, 21471, 3419, 198, 66, 21471, 13, 41049, 7, 7061, 6, 46506, 24788, 62, 7753, 16034, 24788, 62, 7890, 33411, 2872, 62, 312, 796, 4064, 82, 7061, 6, 4064, 7, 15699, 62, 312, 4008, 198, 9945, 62, 7753, 796, 23493, 13, 69, 7569, 505, 3419, 198, 198, 260, 1759, 62, 7753, 796, 33918, 13, 67, 8142, 7, 9945, 62, 7753, 38381, 16, 21912, 16, 60, 198, 198, 28961, 62, 10951, 796, 33918, 13, 46030, 7, 260, 1759, 62, 7753, 8, 14692, 28961, 62, 10951, 8973, 198, 6057, 62, 10951, 796, 13634, 62, 10951, 14692, 6057, 62, 10951, 8973, 198, 7829, 62, 10951, 796, 13634, 62, 10951, 14692, 7829, 62, 10951, 8973, 198, 260, 1759, 796, 33918, 13, 46030, 7, 260, 1759, 62, 7753, 8, 14692, 260, 1759, 8973, 198, 198, 2, 32071, 8633, 351, 607, 261, 480, 25, 4868, 198, 198, 11718, 62, 11600, 796, 8633, 3419, 198, 1640, 308, 287, 2137, 62, 10951, 25, 198, 220, 220, 220, 4293, 62, 11600, 58, 70, 14692, 11718, 62, 3672, 8973, 60, 796, 17635, 198, 9127, 796, 657, 198, 1640, 374, 287, 24788, 25, 198, 220, 220, 220, 611, 366, 24267, 62, 23350, 1, 287, 374, 14692, 7890, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 954, 796, 954, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 4293, 62, 3672, 796, 374, 14692, 7890, 1, 7131, 1, 11718, 62, 3672, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 4378, 796, 374, 14692, 42298, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 3869, 796, 374, 14692, 7890, 1, 7131, 1, 24267, 62, 23350, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 62, 11600, 796, 19779, 87, 1298, 42298, 11, 366, 88, 1298, 24267, 92, 198, 220, 220, 220, 220, 220, 220, 220, 4293, 62, 11600, 58, 11718, 62, 3672, 4083, 33295, 7, 22065, 62, 11600, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 954, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 4293, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 366, 1783, 438, 1, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 361, 4293, 62, 3672, 6624, 366, 75, 295, 1298, 628, 198, 1640, 4293, 62, 3672, 287, 4293, 62, 11600, 25, 198, 220, 220, 220, 45218, 62, 11718, 62, 24267, 796, 33918, 13, 67, 8142, 7, 11718, 62, 11600, 58, 11718, 62, 3672, 12962, 198, 220, 220, 220, 1303, 66, 21471, 13, 41049, 7, 7061, 6, 20913, 17395, 39319, 3869, 62, 42372, 357, 15699, 62, 312, 11, 4293, 62, 3672, 11, 1074, 62, 312, 11, 3869, 62, 7890, 8, 26173, 35409, 37633, 82, 11, 4, 82, 11, 4, 82, 11, 4, 82, 8, 7061, 3256, 357, 15699, 62, 312, 11, 4293, 62, 3672, 11, 604, 11, 45218, 62, 11718, 62, 24267, 4008, 198, 220, 220, 220, 1303, 37043, 13, 41509, 3419, 628 ]
2.371528
576
import pandas as pd import numpy as np import operator import warnings from ml.analysis.hypothesis_testing import HypothesisTester class HTestAutoPilot: """ Chooses what is the most adequate hypothesis test for a given dataset, based on its datatypes and the assumptions of each test """ @staticmethod def check_binary(col): """ Check if data is binary Parameters ---------- col : array_like Array of sample data, must be quantitative data. Returns ------- Bool """ for data in col: if data not in [0, 1]: return False return True @staticmethod def check_norm(sample1, sample2, alpha=0.05, normality_method='shapiro'): """ Check normality Parameters ---------- sample1 : array_like Array of sample data, must be quantitative data. sample2 : array_like Array of sample data, must be quantitative data. alpha : float level of significance (default = 0.05) normality_method : string normality test to be applied Returns ------- Array """ return [HypothesisTester.normality_test( s, alpha=alpha, method=normality_method, show_graph=False ).loc['normal'][0] for s in [sample1, sample2]] @staticmethod def correlation(sample1, sample2, alpha=0.05, alternative='two-sided', normality_method='shapiro', show_graph=True, **kwargs): """ Autopilot for correlation tests Parameters ---------- sample1 : array_like Array of sample data, must be quantitative data. sample2 : array_like Array of sample data, must be quantitative data. alpha : float level of significance (default = 0.05) alternative : string Specify whether the alternative hypothesis is `'two-sided'`, `'greater'` or `'less'` to specify the direction of the test. normality_method : string normality test to be applied Returns ------- pd.DataFrame """ sample1, sample2 = np.array(sample1), np.array(sample2) np_types = [np.dtype(i) for i in [np.int32, np.int64, np.float32, np.float64]] if any([t not in np_types for t in [sample1.dtype, sample2.dtype]]): raise Exception('Samples are not numerical. ', 'Try using categorical_test method instead.') check_bin1 = HTestAutoPilot.check_binary(sample1) check_bin2 = HTestAutoPilot.check_binary(sample2) if check_bin1 and check_bin2: raise Exception('Both samples are binary, ', 'unable to calculate correlation.') elif sum([check_bin1, check_bin2]) == 1: print('One binary sample and one real sample.', 'Point-biserial correlation is going to be applied.') corr_method = 'pointbiserial' binary_sample = sample2 if not check_bin1 else sample1 num_sample = sample1 if not check_bin1 else sample2 sample1, sample2 = [binary_sample, num_sample] else: check_norm1, check_norm2 = HTestAutoPilot.check_norm( sample1, sample2, alpha, normality_method ) if check_norm1 and check_norm2: print('Samples are normally distributed.', 'Using Pearson correlation.') corr_method = 'pearson' else: print('Samples are not normally distributed.', 'Using Spearman correlation.') corr_method = 'spearman' df_result = HypothesisTester.correlation_test( sample1, sample2, method=corr_method, alpha=alpha, alternative=alternative, show_graph=show_graph, **kwargs ) return df_result @staticmethod def categorical(df, sample1, sample2, alpha=0.05, alternative='two-sided', correction=True, show_graph=True, **kwargs): """ Autopilot for tests with categorical variables Parameters ---------- df : pandas.DataFrame The dataframe containing the ocurrences for the test. sample1 : string The variable name for the test. Must be names of columns in ``data``. sample2 : string The variable name for the test. Must be names of columns in ``data``. alpha : float level of significance (default = 0.05) alternative : string Specify whether to return `'two-sided'`, `'greater'` or `'less'` p-value to specify the direction of the test. correction : bool Whether to apply Yates' correction when the degree of freedom of the observed contingency table is 1 (Yates 1934). In case of Chi-squared test. show_graph: boolean display the graph. Returns ------- pd.DataFrame """ df_chi2 = HypothesisTester.chi2_test( df, sample1, sample2, correction, alpha, show_graph, **kwargs ) table = (df.groupby([sample1, sample2]).size() > 5) if table.sum() == len(table): df_result = df_chi2 else: if len(df[sample1].unique()) == 2 and len(df[sample2].unique()) == 2: warnings.warn("The number of observations is not indicated " + "for the chi-squared test, cannot garantee a " + "correct inference. Also using Fisher's exact" + " test.") df_fisher = HypothesisTester.fisher_exact_test( df, sample1, sample2, alpha, show_graph=False ) df_result = pd.concat([df_chi2, df_fisher], axis=1).fillna('-') else: warnings.warn("The number of observations is not indicated " + "for the chi-squared test, cannot garantee a " + "correct inference.") df_result = df_chi2 return df_result @staticmethod def independent_difference(sample1, sample2, alpha=0.05, alternative='two-sided', correction='auto', r=0.707, normality_method='shapiro', show_graph=True, **kwargs): """ Autopilot for testing the difference in means for independent samples Parameters ---------- sample1 : array_like Array of sample data, must be quantitative data. sample2 : array_like Array of sample data, must be quantitative data. alpha : float level of significance (default = 0.05) alternative : string Specify whether the alternative hypothesis is `'two-sided'`, `'greater'` or `'less'` to specify the direction of the test. correction : string or boolean For unpaired two sample T-tests, specify whether or not to correct for unequal variances using Welch separate variances T-test. If 'auto', it will automatically uses Welch T-test when the sample sizes are unequal, as recommended by Zimmerman 2004. r : float Cauchy scale factor for computing the Bayes Factor. Smaller values of r (e.g. 0.5), may be appropriate when small effect sizes are expected a priori; larger values of r are appropriate when large effect sizes are expected (Rouder et al 2009). The default is 0.707 (= :math:`\sqrt{2} / 2`). normality_method : string normality test to be applied show_graph: boolean display the graph. Returns ------- pd.DataFrame """ check_norm1, check_norm2 = HTestAutoPilot.check_norm( sample1, sample2, alpha, normality_method ) if check_norm1 and check_norm2: print('Samples are normally distributed, an ideal condition', 'for the application of t-test') df_result = HypothesisTester.t_test( sample1, sample2, paired=False, alpha=alpha, alternative=alternative, correction=correction, r=r, show_graph=show_graph, **kwargs ) elif (check_norm1 is False and len(sample1) < 30) or \ (check_norm2 is False and len(sample2) < 30): print('At least one of the samples is not normally distributed.', 'However, the t-test can be applied due to central limit', 'theorem (n>30). The Mann-Whitney test is also an option', 'as it does not make any assumptions about data ditribution', '(non-parametric alternative)') df_result = HypothesisTester.mann_whitney_2indep( sample1, sample2, alpha, alternative, show_graph, **kwargs ) else: print('At least one of the samples is not normally distributed', 'and due to the number of observations the central limit', 'theorem does not apply. In this case, the Mann-Whitney', 'test is used as it does not make any assumptions about', 'data ditribution (non-parametric alternative)') df_result = HypothesisTester.t_test( sample1, sample2, paired=False, alpha=alpha, alternative=alternative, correction=correction, r=r, show_graph=show_graph, **kwargs ) df_result_non_param = HypothesisTester.mann_whitney_2indep( sample1, sample2, alpha, alternative, show_graph=False ) df_result = ( pd.concat([df_result, df_result_non_param], axis=1) .reindex(['T', 'dof', 'cohen-d', 'BF10', 'power', 'U-val', 'RBC', 'CLES', 'p-val', 'CI95%', 'H0', 'H1', 'Result']) .fillna('-') ) return df_result @staticmethod def dependent_difference(sample1, sample2, alpha=0.05, alternative='two-sided', correction='auto', r=0.707, normality_method='shapiro', show_graph=True, **kwargs): """ Autopilot for testing the difference in means for dependent samples Parameters ---------- sample1 : array_like Array of sample data, must be quantitative data. sample2 : array_like Array of sample data, must be quantitative data. alpha : float level of significance (default = 0.05) alternative : string Specify whether the alternative hypothesis is `'two-sided'`, `'greater'` or `'less'` to specify the direction of the test. correction : string or boolean For unpaired two sample T-tests, specify whether or not to correct for unequal variances using Welch separate variances T-test. If 'auto', it will automatically uses Welch T-test when the sample sizes are unequal, as recommended by Zimmerman 2004. r : float Cauchy scale factor for computing the Bayes Factor. Smaller values of r (e.g. 0.5), may be appropriate when small effect sizes are expected a priori; larger values of r are appropriate when large effect sizes are expected (Rouder et al 2009). The default is 0.707 (= :math:`\sqrt{2} / 2`). normality_method : string normality test to be applied show_graph: boolean display the graph. Returns ------- pd.DataFrame """ diff_sample = sorted(list(map(operator.sub, sample1, sample2))) check_norm_diff = ( HypothesisTester .normality_test( diff_sample, alpha, normality_method, show_graph=False ) .loc['normal'][0] ) if check_norm_diff: print('The distribution of differences is normally distributed', 'an ideal condition for the application of t-test.') df_result = HypothesisTester.t_test( sample1, sample2, paired=True, alpha=alpha, alternative=alternative, correction=correction, r=r, show_graph=show_graph, **kwargs ) elif len(sample1) > 30 and len(sample2) > 30: print('The distribution of differences is not normally', 'distributed. However, the t-test can be applied', 'due to central limit theorem (n>30). The Wilcoxon', 'test is also an option as it does not make any assumptions', 'about data ditribution (non-parametric alternative).') df_result = HypothesisTester.t_test( sample1, sample2, paired=True, alpha=alpha, alternative=alternative, correction=correction, r=r, show_graph=show_graph, **kwargs ) df_result_non_param = HypothesisTester.wilcoxon_test( sample1, sample2, alpha, alternative, show_graph=False, **kwargs ) df_result = ( pd.concat([df_result, df_result_non_param], axis=1) .reindex([ 'T', 'dof', 'cohen-d', 'BF10', 'power', 'W-val', 'RBC', 'CLES', 'p-val', 'CI95%', 'H0', 'H1', 'Result' ]) .fillna('-') ) else: print('The distribution of differences is not normally', 'distributed and due to the number of observations the', 'central limit theorem does not apply. In this case,', 'the Wilcoxon test is indicated as it does not make', 'any assumptions about data distribution', '(non-parametric alternative).') df_result = HypothesisTester.wilcoxon_test( sample1, sample2, alpha, alternative, show_graph, **kwargs ) return df_result
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 10088, 198, 11748, 14601, 198, 6738, 25962, 13, 20930, 13, 36362, 313, 8497, 62, 33407, 1330, 21209, 313, 8497, 51, 7834, 628, 198, 4871, 7154, 395, 27722, 47, 23439, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10031, 4629, 644, 318, 262, 749, 12872, 14078, 1332, 329, 257, 1813, 27039, 11, 198, 220, 220, 220, 1912, 319, 663, 4818, 265, 9497, 290, 262, 14895, 286, 1123, 1332, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2198, 62, 39491, 7, 4033, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 611, 1366, 318, 13934, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 951, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 347, 970, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1366, 287, 951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1366, 407, 287, 685, 15, 11, 352, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 2198, 62, 27237, 7, 39873, 16, 11, 6291, 17, 11, 17130, 28, 15, 13, 2713, 11, 2593, 1483, 62, 24396, 11639, 1477, 499, 7058, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6822, 2593, 1483, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 286, 12085, 357, 12286, 796, 657, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 62, 24396, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 1332, 284, 307, 5625, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 49926, 313, 8497, 51, 7834, 13, 27237, 1483, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 28, 27237, 1483, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 6739, 17946, 17816, 11265, 6, 7131, 15, 60, 329, 264, 287, 685, 39873, 16, 11, 6291, 17, 11907, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 16096, 7, 39873, 16, 11, 6291, 17, 11, 17130, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11639, 11545, 12, 22339, 3256, 2593, 1483, 62, 24396, 11639, 1477, 499, 7058, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5231, 404, 23439, 329, 16096, 5254, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 286, 12085, 357, 12286, 796, 657, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5559, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 1771, 262, 5559, 14078, 318, 4600, 6, 11545, 12, 22339, 6, 47671, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 6, 18223, 263, 6, 63, 393, 4600, 6, 1203, 6, 63, 284, 11986, 262, 4571, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 62, 24396, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 1332, 284, 307, 5625, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 6291, 17, 796, 45941, 13, 18747, 7, 39873, 16, 828, 45941, 13, 18747, 7, 39873, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 62, 19199, 796, 685, 37659, 13, 67, 4906, 7, 72, 8, 329, 1312, 287, 685, 37659, 13, 600, 2624, 11, 45941, 13, 600, 2414, 11, 45941, 13, 22468, 2624, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 22468, 2414, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 611, 597, 26933, 83, 407, 287, 45941, 62, 19199, 329, 256, 287, 685, 39873, 16, 13, 67, 4906, 11, 6291, 17, 13, 67, 4906, 11907, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 50, 12629, 389, 407, 29052, 13, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23433, 1262, 4253, 12409, 62, 9288, 2446, 2427, 2637, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 8800, 16, 796, 7154, 395, 27722, 47, 23439, 13, 9122, 62, 39491, 7, 39873, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 8800, 17, 796, 7154, 395, 27722, 47, 23439, 13, 9122, 62, 39491, 7, 39873, 17, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 8800, 16, 290, 2198, 62, 8800, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 10786, 10265, 8405, 389, 13934, 11, 46083, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 403, 540, 284, 15284, 16096, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2160, 26933, 9122, 62, 8800, 16, 11, 2198, 62, 8800, 17, 12962, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 3198, 13934, 6291, 290, 530, 1103, 6291, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12727, 12, 65, 5847, 498, 16096, 318, 1016, 284, 307, 5625, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 24396, 796, 705, 4122, 65, 5847, 498, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13934, 62, 39873, 796, 6291, 17, 611, 407, 2198, 62, 8800, 16, 2073, 6291, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 39873, 796, 6291, 16, 611, 407, 2198, 62, 8800, 16, 2073, 6291, 17, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 6291, 17, 796, 685, 39491, 62, 39873, 11, 997, 62, 39873, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 27237, 16, 11, 2198, 62, 27237, 17, 796, 7154, 395, 27722, 47, 23439, 13, 9122, 62, 27237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 2593, 1483, 62, 24396, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 27237, 16, 290, 2198, 62, 27237, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 12629, 389, 7685, 9387, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12814, 31074, 16096, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 24396, 796, 705, 431, 12613, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 12629, 389, 407, 7685, 9387, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12814, 27836, 805, 16096, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1162, 81, 62, 24396, 796, 705, 4125, 283, 805, 6, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 10215, 49501, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2446, 28, 10215, 81, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 28, 33645, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 12860, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 62, 20274, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4253, 12409, 7, 7568, 11, 6291, 16, 11, 6291, 17, 11, 17130, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11639, 11545, 12, 22339, 3256, 17137, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5231, 404, 23439, 329, 5254, 351, 4253, 12409, 9633, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 1058, 19798, 292, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1366, 14535, 7268, 262, 267, 22019, 34303, 329, 262, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 7885, 1438, 329, 262, 1332, 13, 12039, 307, 3891, 286, 15180, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 7890, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 7885, 1438, 329, 262, 1332, 13, 12039, 307, 3891, 286, 15180, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 7890, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 286, 12085, 357, 12286, 796, 657, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5559, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 1771, 284, 1441, 4600, 6, 11545, 12, 22339, 6, 47671, 4600, 6, 18223, 263, 6, 63, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 6, 1203, 6, 63, 279, 12, 8367, 284, 11986, 262, 4571, 286, 262, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17137, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10127, 284, 4174, 34916, 6, 17137, 618, 262, 4922, 286, 4925, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 262, 6515, 38820, 3084, 318, 352, 357, 56, 689, 29300, 737, 554, 1339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 286, 21380, 12, 16485, 1144, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 262, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 11072, 17, 796, 21209, 313, 8497, 51, 7834, 13, 11072, 17, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3084, 796, 357, 7568, 13, 8094, 1525, 26933, 39873, 16, 11, 6291, 17, 35944, 7857, 3419, 1875, 642, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3084, 13, 16345, 3419, 6624, 18896, 7, 11487, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 47764, 62, 11072, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 7568, 58, 39873, 16, 4083, 34642, 28955, 6624, 362, 290, 18896, 7, 7568, 58, 39873, 17, 4083, 34642, 28955, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 464, 1271, 286, 13050, 318, 407, 8203, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 262, 33166, 12, 16485, 1144, 1332, 11, 2314, 308, 4741, 1453, 257, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30283, 32278, 13, 4418, 1262, 14388, 338, 2748, 1, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1332, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 69, 4828, 796, 21209, 313, 8497, 51, 7834, 13, 69, 4828, 62, 1069, 529, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 279, 67, 13, 1102, 9246, 26933, 7568, 62, 11072, 17, 11, 47764, 62, 69, 4828, 4357, 16488, 28, 16, 737, 20797, 2616, 10786, 12, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14601, 13, 40539, 7203, 464, 1271, 286, 13050, 318, 407, 8203, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 262, 33166, 12, 16485, 1144, 1332, 11, 2314, 308, 4741, 1453, 257, 366, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30283, 32278, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 47764, 62, 11072, 17, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 62, 20274, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4795, 62, 26069, 1945, 7, 39873, 16, 11, 6291, 17, 11, 17130, 28, 15, 13, 2713, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11639, 11545, 12, 22339, 3256, 17137, 11639, 23736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 28, 15, 13, 24038, 11, 2593, 1483, 62, 24396, 11639, 1477, 499, 7058, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5231, 404, 23439, 329, 4856, 262, 3580, 287, 1724, 329, 4795, 8405, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 286, 12085, 357, 12286, 796, 657, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5559, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 1771, 262, 5559, 14078, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 6, 11545, 12, 22339, 6, 47671, 4600, 6, 18223, 263, 6, 63, 393, 4600, 6, 1203, 6, 63, 284, 11986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 262, 4571, 286, 262, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17137, 1058, 4731, 393, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 8593, 9820, 734, 6291, 309, 12, 41989, 11, 11986, 1771, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 407, 284, 3376, 329, 37334, 1401, 16097, 1262, 41524, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4553, 1401, 16097, 309, 12, 9288, 13, 1002, 705, 23736, 3256, 340, 481, 6338, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3544, 41524, 309, 12, 9288, 618, 262, 6291, 10620, 389, 37334, 11, 355, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7151, 416, 24332, 5472, 13, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 559, 29658, 5046, 5766, 329, 14492, 262, 4696, 274, 27929, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10452, 263, 3815, 286, 374, 357, 68, 13, 70, 13, 657, 13, 20, 828, 743, 307, 5035, 618, 1402, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1245, 10620, 389, 2938, 257, 3161, 72, 26, 4025, 3815, 286, 374, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5035, 618, 1588, 1245, 10620, 389, 2938, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 49, 280, 1082, 2123, 435, 3717, 737, 383, 4277, 318, 657, 13, 24038, 46121, 1058, 11018, 25, 63, 59, 31166, 17034, 90, 17, 92, 1220, 362, 63, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 62, 24396, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 1332, 284, 307, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 262, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 27237, 16, 11, 2198, 62, 27237, 17, 796, 7154, 395, 27722, 47, 23439, 13, 9122, 62, 27237, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 2593, 1483, 62, 24396, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 27237, 16, 290, 2198, 62, 27237, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 50, 12629, 389, 7685, 9387, 11, 281, 7306, 4006, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1640, 262, 3586, 286, 256, 12, 9288, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 83, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20312, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 28, 33645, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 28, 10215, 8243, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 12860, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 9122, 62, 27237, 16, 318, 10352, 290, 18896, 7, 39873, 16, 8, 1279, 1542, 8, 393, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 9122, 62, 27237, 17, 318, 10352, 290, 18896, 7, 39873, 17, 8, 1279, 1542, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2953, 1551, 530, 286, 262, 8405, 318, 407, 7685, 9387, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4864, 11, 262, 256, 12, 9288, 460, 307, 5625, 2233, 284, 4318, 4179, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1169, 29625, 357, 77, 29, 1270, 737, 383, 20291, 12, 43617, 1681, 1332, 318, 635, 281, 3038, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 292, 340, 857, 407, 787, 597, 14895, 546, 1366, 288, 270, 3890, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29513, 13159, 12, 17143, 19482, 5559, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 9038, 62, 1929, 270, 1681, 62, 17, 521, 538, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 2953, 1551, 530, 286, 262, 8405, 318, 407, 7685, 9387, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 392, 2233, 284, 262, 1271, 286, 13050, 262, 4318, 4179, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1169, 29625, 857, 407, 4174, 13, 554, 428, 1339, 11, 262, 20291, 12, 43617, 1681, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 318, 973, 355, 340, 857, 407, 787, 597, 14895, 546, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 288, 270, 3890, 357, 13159, 12, 17143, 19482, 5559, 8, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 83, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20312, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 28, 33645, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 28, 10215, 8243, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 12860, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 62, 13159, 62, 17143, 796, 21209, 313, 8497, 51, 7834, 13, 9038, 62, 1929, 270, 1681, 62, 17, 521, 538, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 1102, 9246, 26933, 7568, 62, 20274, 11, 47764, 62, 20274, 62, 13159, 62, 17143, 4357, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 260, 9630, 7, 17816, 51, 3256, 705, 67, 1659, 3256, 705, 1073, 831, 12, 67, 3256, 705, 29499, 940, 3256, 705, 6477, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 52, 12, 2100, 3256, 705, 49, 2749, 3256, 705, 5097, 1546, 3256, 705, 79, 12, 2100, 3256, 705, 25690, 3865, 4, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39, 15, 3256, 705, 39, 16, 3256, 705, 23004, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 20797, 2616, 10786, 12, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 62, 20274, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 10795, 62, 26069, 1945, 7, 39873, 16, 11, 6291, 17, 11, 17130, 28, 15, 13, 2713, 11, 5559, 11639, 11545, 12, 22339, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 11639, 23736, 3256, 374, 28, 15, 13, 24038, 11, 2593, 1483, 62, 24396, 11639, 1477, 499, 7058, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 17821, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 5231, 404, 23439, 329, 4856, 262, 3580, 287, 1724, 329, 10795, 8405, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 1058, 7177, 62, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15690, 286, 6291, 1366, 11, 1276, 307, 26610, 1366, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17130, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 286, 12085, 357, 12286, 796, 657, 13, 2713, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5559, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18291, 1958, 1771, 262, 5559, 14078, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4600, 6, 11545, 12, 22339, 6, 47671, 4600, 6, 18223, 263, 6, 63, 393, 4600, 6, 1203, 6, 63, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11986, 262, 4571, 286, 262, 1332, 13, 198, 220, 220, 220, 220, 220, 220, 220, 17137, 1058, 4731, 393, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1114, 8593, 9820, 734, 6291, 309, 12, 41989, 11, 11986, 1771, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 407, 284, 3376, 329, 37334, 1401, 16097, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 41524, 4553, 1401, 16097, 309, 12, 9288, 13, 1002, 705, 23736, 3256, 340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 481, 6338, 3544, 41524, 309, 12, 9288, 618, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 10620, 389, 37334, 11, 355, 7151, 416, 24332, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5472, 13, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1058, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 327, 559, 29658, 5046, 5766, 329, 14492, 262, 4696, 274, 27929, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10452, 263, 3815, 286, 374, 357, 68, 13, 70, 13, 657, 13, 20, 828, 743, 307, 5035, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 618, 1402, 1245, 10620, 389, 2938, 257, 3161, 72, 26, 4025, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 286, 374, 389, 5035, 618, 1588, 1245, 10620, 389, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2938, 357, 49, 280, 1082, 2123, 435, 3717, 737, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 318, 657, 13, 24038, 46121, 1058, 11018, 25, 63, 59, 31166, 17034, 90, 17, 92, 1220, 362, 63, 737, 198, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 62, 24396, 1058, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 1332, 284, 307, 5625, 198, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 25, 25131, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3359, 262, 4823, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 198, 220, 220, 220, 220, 220, 220, 220, 35656, 198, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 814, 62, 39873, 796, 23243, 7, 4868, 7, 8899, 7, 46616, 13, 7266, 11, 6291, 16, 11, 6291, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 27237, 62, 26069, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21209, 313, 8497, 51, 7834, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 27237, 1483, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 814, 62, 39873, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2593, 1483, 62, 24396, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 25101, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 17946, 17816, 11265, 6, 7131, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2198, 62, 27237, 62, 26069, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 464, 6082, 286, 5400, 318, 7685, 9387, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 272, 7306, 4006, 329, 262, 3586, 286, 256, 12, 9288, 2637, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 83, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20312, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 28, 33645, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 28, 10215, 8243, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 12860, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 39873, 16, 8, 1875, 1542, 290, 18896, 7, 39873, 17, 8, 1875, 1542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 464, 6082, 286, 5400, 318, 407, 7685, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 6169, 13, 2102, 11, 262, 256, 12, 9288, 460, 307, 5625, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23301, 284, 4318, 4179, 44728, 357, 77, 29, 1270, 737, 383, 5187, 1073, 23813, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9288, 318, 635, 281, 3038, 355, 340, 857, 407, 787, 597, 14895, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10755, 1366, 288, 270, 3890, 357, 13159, 12, 17143, 19482, 5559, 737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 83, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20312, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 26591, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 28, 33645, 876, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17137, 28, 10215, 8243, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 374, 28, 81, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 12860, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 62, 13159, 62, 17143, 796, 21209, 313, 8497, 51, 7834, 13, 86, 346, 1073, 23813, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 67, 13, 1102, 9246, 26933, 7568, 62, 20274, 11, 47764, 62, 20274, 62, 13159, 62, 17143, 4357, 16488, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 260, 9630, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 51, 3256, 705, 67, 1659, 3256, 705, 1073, 831, 12, 67, 3256, 705, 29499, 940, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 6477, 3256, 705, 54, 12, 2100, 3256, 705, 49, 2749, 3256, 705, 5097, 1546, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 79, 12, 2100, 3256, 705, 25690, 3865, 4, 3256, 705, 39, 15, 3256, 705, 39, 16, 3256, 705, 23004, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 20797, 2616, 10786, 12, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 464, 6082, 286, 5400, 318, 407, 7685, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 17080, 6169, 290, 2233, 284, 262, 1271, 286, 13050, 262, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 31463, 4179, 44728, 857, 407, 4174, 13, 554, 428, 1339, 11, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1169, 5187, 1073, 23813, 1332, 318, 8203, 355, 340, 857, 407, 787, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1092, 14895, 546, 1366, 6082, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29513, 13159, 12, 17143, 19482, 5559, 737, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 62, 20274, 796, 21209, 313, 8497, 51, 7834, 13, 86, 346, 1073, 23813, 62, 9288, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5559, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 905, 62, 34960, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12429, 46265, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 47764, 62, 20274, 198 ]
1.939811
8,274
""" Initial migration Revision ID: 4defdf508e78 Revises: (none) Create Date: 2021-10-19 20:14:59.350979 """ from alembic import op import sqlalchemy as sa from url_shortener.database.functions import utc_now # revision identifiers, used by Alembic. revision = '4defdf508e78' down_revision = None branch_labels = None depends_on = None
[ 37811, 198, 24243, 13472, 198, 198, 18009, 1166, 4522, 25, 604, 4299, 7568, 33042, 68, 3695, 198, 18009, 2696, 25, 357, 23108, 8, 198, 16447, 7536, 25, 33448, 12, 940, 12, 1129, 1160, 25, 1415, 25, 3270, 13, 14877, 24, 3720, 198, 37811, 198, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 11748, 44161, 282, 26599, 355, 473, 198, 198, 6738, 19016, 62, 19509, 877, 13, 48806, 13, 12543, 2733, 1330, 3384, 66, 62, 2197, 628, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 705, 19, 4299, 7568, 33042, 68, 3695, 6, 198, 2902, 62, 260, 10178, 796, 6045, 198, 1671, 3702, 62, 23912, 1424, 796, 6045, 198, 10378, 2412, 62, 261, 796, 6045, 628, 198 ]
2.780488
123
# -*- coding: utf-8 -*- """ Created on Mon Dec 17 16:25:07 2018 @author: Albert """ import pandas as pd import numpy as np df = pd.read_csv("./PreprocessedDataFiles/MergedPreprocessedDataFiles/MergedPreprocessedDrinkingDataLabels v2.csv") # originalDF = df df['index'] = range(0, len(df)) splitRatio = [0.6,0.2,0.2] if __name__=="__main__": train, val, test = indicesSplit(splitRatio) np.savez("./Splits/indicesSplits.npz", train = train, val = val, test = test)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 41972, 319, 2892, 4280, 1596, 1467, 25, 1495, 25, 2998, 2864, 198, 198, 31, 9800, 25, 9966, 198, 37811, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 198, 7568, 796, 279, 67, 13, 961, 62, 40664, 7, 1911, 14, 6719, 14681, 276, 6601, 25876, 14, 13102, 2004, 6719, 14681, 276, 6601, 25876, 14, 13102, 2004, 6719, 14681, 276, 6187, 8040, 6601, 17822, 1424, 410, 17, 13, 40664, 4943, 198, 2, 2656, 8068, 796, 47764, 198, 7568, 17816, 9630, 20520, 796, 2837, 7, 15, 11, 18896, 7, 7568, 4008, 198, 198, 35312, 29665, 952, 796, 685, 15, 13, 21, 11, 15, 13, 17, 11, 15, 13, 17, 60, 198, 198, 361, 11593, 3672, 834, 855, 1, 834, 12417, 834, 1298, 198, 220, 220, 220, 4512, 11, 1188, 11, 1332, 796, 36525, 41205, 7, 35312, 29665, 952, 8, 198, 220, 220, 220, 45941, 13, 21928, 89, 7, 1911, 14, 26568, 896, 14, 521, 1063, 26568, 896, 13, 37659, 89, 1600, 4512, 796, 4512, 11, 1188, 796, 1188, 11, 1332, 796, 1332, 8, 220, 220, 220, 220, 198 ]
2.431472
197
import functools import inspect import six from doubles.call_count_accumulator import CallCountAccumulator from doubles.exceptions import MockExpectationError, VerifyingBuiltinDoubleArgumentError import doubles.lifecycle from doubles.verification import verify_arguments _any = object() class Allowance(object): """An individual method allowance (stub).""" def __init__(self, target, method_name, caller): """ :param Target target: The object owning the method to stub. :param str method_name: The name of the method to stub. """ self._target = target self._method_name = method_name self._caller = caller self.args = _any self.kwargs = _any self._custom_matcher = None self._is_satisfied = True self._call_counter = CallCountAccumulator() self._return_value = lambda *args, **kwargs: None def and_raise(self, exception, *args, **kwargs): """Causes the double to raise the provided exception when called. If provided, additional arguments (positional and keyword) passed to `and_raise` are used in the exception instantiation. :param Exception exception: The exception to raise. """ self._return_value = proxy_exception return self def and_raise_future(self, exception): """Similar to `and_raise` but the doubled method returns a future. :param Exception exception: The exception to raise. """ future = _get_future() future.set_exception(exception) return self.and_return(future) def and_return_future(self, *return_values): """Similar to `and_return` but the doubled method returns a future. :param object return_values: The values the double will return when called, """ futures = [] for value in return_values: future = _get_future() future.set_result(value) futures.append(future) return self.and_return(*futures) def and_return(self, *return_values): """Set a return value for an allowance Causes the double to return the provided values in order. If multiple values are provided, they are returned one at a time in sequence as the double is called. If the double is called more times than there are return values, it should continue to return the last value in the list. :param object return_values: The values the double will return when called, """ if not return_values: raise TypeError('and_return() expected at least 1 return value') return_values = list(return_values) final_value = return_values.pop() self.and_return_result_of( lambda: return_values.pop(0) if return_values else final_value ) return self def and_return_result_of(self, return_value): """ Causes the double to return the result of calling the provided value. :param return_value: A callable that will be invoked to determine the double's return value. :type return_value: any callable object """ if not check_func_takes_args(return_value): self._return_value = lambda *args, **kwargs: return_value() else: self._return_value = return_value return self def is_satisfied(self): """Returns a boolean indicating whether or not the double has been satisfied. Stubs are always satisfied, but mocks are only satisfied if they've been called as was declared. :return: Whether or not the double is satisfied. :rtype: bool """ return self._is_satisfied def with_args(self, *args, **kwargs): """Declares that the double can only be called with the provided arguments. :param args: Any positional arguments required for invocation. :param kwargs: Any keyword arguments required for invocation. """ self.args = args self.kwargs = kwargs self.verify_arguments() return self def with_args_validator(self, matching_function): """Define a custom function for testing arguments :param func matching_function: The function used to test arguments passed to the stub. """ self.args = None self.kwargs = None self._custom_matcher = matching_function return self def __call__(self, *args, **kwargs): """A short hand syntax for with_args Allows callers to do: allow(module).foo.with_args(1, 2) With: allow(module).foo(1, 2) :param args: Any positional arguments required for invocation. :param kwargs: Any keyword arguments required for invocation. """ return self.with_args(*args, **kwargs) def with_no_args(self): """Declares that the double can only be called with no arguments.""" self.args = () self.kwargs = {} self.verify_arguments() return self def satisfy_any_args_match(self): """Returns a boolean indicating whether or not the stub will accept arbitrary arguments. This will be true unless the user has specified otherwise using ``with_args`` or ``with_no_args``. :return: Whether or not the stub accepts arbitrary arguments. :rtype: bool """ return self.args is _any and self.kwargs is _any def satisfy_exact_match(self, args, kwargs): """Returns a boolean indicating whether or not the stub will accept the provided arguments. :return: Whether or not the stub accepts the provided arguments. :rtype: bool """ if self.args is None and self.kwargs is None: return False elif self.args is _any and self.kwargs is _any: return True elif args == self.args and kwargs == self.kwargs: return True elif len(args) != len(self.args) or len(kwargs) != len(self.kwargs): return False if not all(x == y or y == x for x, y in zip(args, self.args)): return False for key, value in self.kwargs.items(): if key not in kwargs: return False elif not (kwargs[key] == value or value == kwargs[key]): return False return True def satisfy_custom_matcher(self, args, kwargs): """Return a boolean indicating if the args satisfy the stub :return: Whether or not the stub accepts the provided arguments. :rtype: bool """ if not self._custom_matcher: return False try: return self._custom_matcher(*args, **kwargs) except Exception: return False def return_value(self, *args, **kwargs): """Extracts the real value to be returned from the wrapping callable. :return: The value the double should return when called. """ self._called() return self._return_value(*args, **kwargs) def verify_arguments(self, args=None, kwargs=None): """Ensures that the arguments specified match the signature of the real method. :raise: ``VerifyingDoubleError`` if the arguments do not match. """ args = self.args if args is None else args kwargs = self.kwargs if kwargs is None else kwargs try: verify_arguments(self._target, self._method_name, args, kwargs) except VerifyingBuiltinDoubleArgumentError: if doubles.lifecycle.ignore_builtin_verification(): raise @verify_count_is_non_negative def exactly(self, n): """Set an exact call count allowance :param integer n: """ self._call_counter.set_exact(n) return self @verify_count_is_non_negative def at_least(self, n): """Set a minimum call count allowance :param integer n: """ self._call_counter.set_minimum(n) return self @verify_count_is_non_negative def at_most(self, n): """Set a maximum call count allowance :param integer n: """ self._call_counter.set_maximum(n) return self def never(self): """Set an expected call count allowance of 0""" self.exactly(0) return self def once(self): """Set an expected call count allowance of 1""" self.exactly(1) return self def twice(self): """Set an expected call count allowance of 2""" self.exactly(2) return self @property time = times def _called(self): """Indicate that the allowance was called :raise MockExpectationError if the allowance has been called too many times """ if self._call_counter.called().has_too_many_calls(): self.raise_failure_exception() def raise_failure_exception(self, expect_or_allow='Allowed'): """Raises a ``MockExpectationError`` with a useful message. :raise: ``MockExpectationError`` """ raise MockExpectationError( "{} '{}' to be called {}on {!r} with {}, but was not. ({}:{})".format( expect_or_allow, self._method_name, self._call_counter.error_string(), self._target.obj, self._expected_argument_string(), self._caller.filename, self._caller.lineno, ) ) def _expected_argument_string(self): """Generates a string describing what arguments the double expected. :return: A string describing expected arguments. :rtype: str """ if self.args is _any and self.kwargs is _any: return 'any args' elif self._custom_matcher: return "custom matcher: '{}'".format(self._custom_matcher.__name__) else: return build_argument_repr_string(self.args, self.kwargs)
[ 11748, 1257, 310, 10141, 198, 11748, 10104, 198, 198, 11748, 2237, 198, 198, 6738, 21938, 13, 13345, 62, 9127, 62, 4134, 388, 8927, 1330, 4889, 12332, 17320, 388, 8927, 198, 6738, 21938, 13, 1069, 11755, 1330, 44123, 3109, 806, 341, 12331, 11, 4643, 4035, 39582, 259, 25628, 28100, 1713, 12331, 198, 11748, 21938, 13, 36195, 47510, 198, 6738, 21938, 13, 332, 2649, 1330, 11767, 62, 853, 2886, 198, 198, 62, 1092, 796, 2134, 3419, 628, 628, 628, 198, 4871, 22507, 590, 7, 15252, 2599, 198, 220, 220, 220, 37227, 2025, 1981, 2446, 24930, 357, 301, 549, 21387, 15931, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 2496, 11, 2446, 62, 3672, 11, 24955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 12744, 2496, 25, 383, 2134, 23107, 262, 2446, 284, 17071, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 965, 2446, 62, 3672, 25, 383, 1438, 286, 262, 2446, 284, 17071, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 796, 2496, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24396, 62, 3672, 796, 2446, 62, 3672, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 263, 796, 24955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22046, 796, 4808, 1092, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46265, 22046, 796, 4808, 1092, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 23144, 62, 6759, 2044, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 271, 62, 82, 17403, 798, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 62, 24588, 796, 4889, 12332, 17320, 388, 8927, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8367, 796, 37456, 1635, 22046, 11, 12429, 46265, 22046, 25, 6045, 628, 220, 220, 220, 825, 290, 62, 40225, 7, 944, 11, 6631, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 24334, 2664, 262, 4274, 284, 5298, 262, 2810, 6631, 618, 1444, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 2810, 11, 3224, 7159, 357, 1930, 1859, 290, 21179, 8, 3804, 284, 198, 220, 220, 220, 220, 220, 220, 220, 4600, 392, 62, 40225, 63, 389, 973, 287, 262, 6631, 9113, 3920, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 35528, 6631, 25, 383, 6631, 284, 5298, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8367, 796, 15741, 62, 1069, 4516, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 290, 62, 40225, 62, 37443, 7, 944, 11, 6631, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18925, 284, 4600, 392, 62, 40225, 63, 475, 262, 15229, 2446, 5860, 257, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 35528, 6631, 25, 383, 6631, 284, 5298, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2003, 796, 4808, 1136, 62, 37443, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2003, 13, 2617, 62, 1069, 4516, 7, 1069, 4516, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 392, 62, 7783, 7, 37443, 8, 628, 220, 220, 220, 825, 290, 62, 7783, 62, 37443, 7, 944, 11, 1635, 7783, 62, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 18925, 284, 4600, 392, 62, 7783, 63, 475, 262, 15229, 2446, 5860, 257, 2003, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2134, 1441, 62, 27160, 25, 383, 3815, 262, 4274, 481, 1441, 618, 1444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 25650, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 1441, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2003, 796, 4808, 1136, 62, 37443, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2003, 13, 2617, 62, 20274, 7, 8367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25650, 13, 33295, 7, 37443, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 392, 62, 7783, 46491, 69, 315, 942, 8, 628, 220, 220, 220, 825, 290, 62, 7783, 7, 944, 11, 1635, 7783, 62, 27160, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 257, 1441, 1988, 329, 281, 24930, 628, 220, 220, 220, 220, 220, 220, 220, 46865, 262, 4274, 284, 1441, 262, 2810, 3815, 287, 1502, 13, 220, 1002, 3294, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 389, 2810, 11, 484, 389, 4504, 530, 379, 257, 640, 287, 8379, 355, 262, 4274, 318, 1444, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 4274, 318, 1444, 517, 1661, 621, 612, 389, 1441, 3815, 11, 340, 815, 2555, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 262, 938, 1988, 287, 262, 1351, 13, 628, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2134, 1441, 62, 27160, 25, 383, 3815, 262, 4274, 481, 1441, 618, 1444, 11, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 1441, 62, 27160, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 5994, 12331, 10786, 392, 62, 7783, 3419, 2938, 379, 1551, 352, 1441, 1988, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 62, 27160, 796, 1351, 7, 7783, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2457, 62, 8367, 796, 1441, 62, 27160, 13, 12924, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 392, 62, 7783, 62, 20274, 62, 1659, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 1441, 62, 27160, 13, 12924, 7, 15, 8, 611, 1441, 62, 27160, 2073, 2457, 62, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 290, 62, 7783, 62, 20274, 62, 1659, 7, 944, 11, 1441, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 46865, 262, 4274, 284, 1441, 262, 1255, 286, 4585, 262, 2810, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1441, 62, 8367, 25, 317, 869, 540, 326, 481, 307, 24399, 284, 5004, 262, 4274, 338, 1441, 1988, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4906, 1441, 62, 8367, 25, 597, 869, 540, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2198, 62, 20786, 62, 83, 1124, 62, 22046, 7, 7783, 62, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8367, 796, 37456, 1635, 22046, 11, 12429, 46265, 22046, 25, 1441, 62, 8367, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7783, 62, 8367, 796, 1441, 62, 8367, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 318, 62, 82, 17403, 798, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 257, 25131, 12739, 1771, 393, 407, 262, 4274, 468, 587, 11378, 13, 628, 220, 220, 220, 220, 220, 220, 220, 520, 23161, 389, 1464, 11378, 11, 475, 285, 3320, 389, 691, 11378, 611, 484, 1053, 587, 198, 220, 220, 220, 220, 220, 220, 220, 1444, 355, 373, 6875, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10127, 393, 407, 262, 4274, 318, 11378, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 271, 62, 82, 17403, 798, 628, 220, 220, 220, 825, 351, 62, 22046, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 3565, 326, 262, 4274, 460, 691, 307, 1444, 351, 262, 2810, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 26498, 25, 4377, 45203, 7159, 2672, 329, 43219, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 4377, 21179, 7159, 2672, 329, 43219, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22046, 796, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46265, 22046, 796, 479, 86, 22046, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 332, 1958, 62, 853, 2886, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 351, 62, 22046, 62, 12102, 1352, 7, 944, 11, 12336, 62, 8818, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7469, 500, 257, 2183, 2163, 329, 4856, 7159, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25439, 12336, 62, 8818, 25, 220, 383, 2163, 973, 284, 1332, 7159, 3804, 284, 262, 17071, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22046, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46265, 22046, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 23144, 62, 6759, 2044, 796, 12336, 62, 8818, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 1790, 1021, 15582, 329, 351, 62, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 40402, 869, 364, 284, 466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 7, 21412, 737, 21943, 13, 4480, 62, 22046, 7, 16, 11, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2080, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1249, 7, 21412, 737, 21943, 7, 16, 11, 362, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 26498, 25, 4377, 45203, 7159, 2672, 329, 43219, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 479, 86, 22046, 25, 4377, 21179, 7159, 2672, 329, 43219, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 4480, 62, 22046, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 351, 62, 3919, 62, 22046, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37835, 3565, 326, 262, 4274, 460, 691, 307, 1444, 351, 645, 7159, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 22046, 796, 7499, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 46265, 22046, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 332, 1958, 62, 853, 2886, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 15959, 62, 1092, 62, 22046, 62, 15699, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 257, 25131, 12739, 1771, 393, 407, 262, 17071, 481, 2453, 14977, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 481, 307, 2081, 4556, 262, 2836, 468, 7368, 4306, 1262, 7559, 4480, 62, 22046, 15506, 393, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 4480, 62, 3919, 62, 22046, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10127, 393, 407, 262, 17071, 18178, 14977, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 22046, 318, 4808, 1092, 290, 2116, 13, 46265, 22046, 318, 4808, 1092, 628, 220, 220, 220, 825, 15959, 62, 1069, 529, 62, 15699, 7, 944, 11, 26498, 11, 479, 86, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 35561, 257, 25131, 12739, 1771, 393, 407, 262, 17071, 481, 2453, 262, 2810, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10127, 393, 407, 262, 17071, 18178, 262, 2810, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22046, 318, 6045, 290, 2116, 13, 46265, 22046, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13, 22046, 318, 4808, 1092, 290, 2116, 13, 46265, 22046, 318, 4808, 1092, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 26498, 6624, 2116, 13, 22046, 290, 479, 86, 22046, 6624, 2116, 13, 46265, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 18896, 7, 22046, 8, 14512, 18896, 7, 944, 13, 22046, 8, 393, 18896, 7, 46265, 22046, 8, 14512, 18896, 7, 944, 13, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 87, 6624, 331, 393, 331, 6624, 2124, 329, 2124, 11, 331, 287, 19974, 7, 22046, 11, 2116, 13, 22046, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 11, 1988, 287, 2116, 13, 46265, 22046, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1994, 407, 287, 479, 86, 22046, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 407, 357, 46265, 22046, 58, 2539, 60, 6624, 1988, 393, 1988, 6624, 479, 86, 22046, 58, 2539, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 6407, 628, 220, 220, 220, 825, 15959, 62, 23144, 62, 6759, 2044, 7, 944, 11, 26498, 11, 479, 86, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 25131, 12739, 611, 262, 26498, 15959, 262, 17071, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 10127, 393, 407, 262, 17071, 18178, 262, 2810, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 2116, 13557, 23144, 62, 6759, 2044, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 23144, 62, 6759, 2044, 46491, 22046, 11, 12429, 46265, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 35528, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 10352, 628, 220, 220, 220, 825, 1441, 62, 8367, 7, 944, 11, 1635, 22046, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 11627, 974, 82, 262, 1103, 1988, 284, 307, 4504, 422, 262, 27074, 869, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 383, 1988, 262, 4274, 815, 1441, 618, 1444, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 7174, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13557, 7783, 62, 8367, 46491, 22046, 11, 12429, 46265, 22046, 8, 628, 220, 220, 220, 825, 11767, 62, 853, 2886, 7, 944, 11, 26498, 28, 14202, 11, 479, 86, 22046, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4834, 82, 942, 326, 262, 7159, 7368, 2872, 262, 9877, 286, 262, 1103, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 40225, 25, 7559, 13414, 4035, 25628, 12331, 15506, 611, 262, 7159, 466, 407, 2872, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 26498, 796, 2116, 13, 22046, 611, 26498, 318, 6045, 2073, 26498, 198, 220, 220, 220, 220, 220, 220, 220, 479, 86, 22046, 796, 2116, 13, 46265, 22046, 611, 479, 86, 22046, 318, 6045, 2073, 479, 86, 22046, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11767, 62, 853, 2886, 7, 944, 13557, 16793, 11, 2116, 13557, 24396, 62, 3672, 11, 26498, 11, 479, 86, 22046, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 4643, 4035, 39582, 259, 25628, 28100, 1713, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 21938, 13, 36195, 47510, 13, 46430, 62, 18780, 259, 62, 332, 2649, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 628, 220, 220, 220, 2488, 332, 1958, 62, 9127, 62, 271, 62, 13159, 62, 31591, 198, 220, 220, 220, 825, 3446, 7, 944, 11, 299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 281, 2748, 869, 954, 24930, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18253, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 62, 24588, 13, 2617, 62, 1069, 529, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 332, 1958, 62, 9127, 62, 271, 62, 13159, 62, 31591, 198, 220, 220, 220, 825, 379, 62, 293, 459, 7, 944, 11, 299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 257, 5288, 869, 954, 24930, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18253, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 62, 24588, 13, 2617, 62, 39504, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 332, 1958, 62, 9127, 62, 271, 62, 13159, 62, 31591, 198, 220, 220, 220, 825, 379, 62, 1712, 7, 944, 11, 299, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 257, 5415, 869, 954, 24930, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 18253, 299, 25, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 62, 24588, 13, 2617, 62, 47033, 7, 77, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 1239, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 281, 2938, 869, 954, 24930, 286, 657, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 24342, 7, 15, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 1752, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 281, 2938, 869, 954, 24930, 286, 352, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 24342, 7, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 825, 5403, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 7248, 281, 2938, 869, 954, 24930, 286, 362, 37811, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1069, 24342, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 628, 220, 220, 220, 2488, 26745, 198, 220, 220, 220, 640, 796, 1661, 628, 220, 220, 220, 825, 4808, 7174, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 5497, 5344, 326, 262, 24930, 373, 1444, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 40225, 44123, 3109, 806, 341, 12331, 611, 262, 24930, 468, 587, 1444, 1165, 867, 1661, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13557, 13345, 62, 24588, 13, 7174, 22446, 10134, 62, 18820, 62, 21834, 62, 66, 5691, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40225, 62, 32165, 495, 62, 1069, 4516, 3419, 628, 220, 220, 220, 825, 5298, 62, 32165, 495, 62, 1069, 4516, 7, 944, 11, 1607, 62, 273, 62, 12154, 11639, 3237, 6972, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 21762, 2696, 257, 7559, 44, 735, 3109, 806, 341, 12331, 15506, 351, 257, 4465, 3275, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 40225, 25, 7559, 44, 735, 3109, 806, 341, 12331, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 5298, 44123, 3109, 806, 341, 12331, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45144, 92, 705, 90, 92, 6, 284, 307, 1444, 23884, 261, 1391, 0, 81, 92, 351, 1391, 5512, 475, 373, 407, 13, 37913, 92, 29164, 30072, 1911, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1607, 62, 273, 62, 12154, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 24396, 62, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 62, 24588, 13, 18224, 62, 8841, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 16793, 13, 26801, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 40319, 62, 49140, 62, 8841, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 263, 13, 34345, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 13345, 263, 13, 2815, 23397, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 825, 4808, 40319, 62, 49140, 62, 8841, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 8645, 689, 257, 4731, 12059, 644, 7159, 262, 4274, 2938, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 7783, 25, 317, 4731, 12059, 2938, 7159, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 81, 4906, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 22046, 318, 4808, 1092, 290, 2116, 13, 46265, 22046, 318, 4808, 1092, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 1092, 26498, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2116, 13557, 23144, 62, 6759, 2044, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 366, 23144, 2603, 2044, 25, 705, 90, 92, 6, 1911, 18982, 7, 944, 13557, 23144, 62, 6759, 2044, 13, 834, 3672, 834, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1382, 62, 49140, 62, 260, 1050, 62, 8841, 7, 944, 13, 22046, 11, 2116, 13, 46265, 22046, 8, 198 ]
2.481454
4,071
import tensorflow as tf from network.ConvBlock import conv2d_bn
[ 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 3127, 13, 3103, 85, 12235, 1330, 3063, 17, 67, 62, 9374, 628, 198 ]
3.142857
21
# myapp/models.py from myapp import db # define model here
[ 2, 616, 1324, 14, 27530, 13, 9078, 198, 6738, 616, 1324, 1330, 20613, 198, 198, 2, 8160, 2746, 994, 198 ]
3
20
#!/usr/bin/env python import argparse import logging import os import sys from distutils.spawn import find_executable from subprocess import call if __name__ == '__main__': logging.basicConfig(format='%(message)s', level=logging.INFO, stream=sys.stdout) sys.exit(run_tests(parse_args()))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 28686, 198, 11748, 25064, 198, 198, 6738, 1233, 26791, 13, 48183, 1330, 1064, 62, 18558, 18187, 198, 6738, 850, 14681, 1330, 869, 628, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 10778, 11, 4269, 28, 17597, 13, 19282, 448, 8, 198, 220, 220, 220, 25064, 13, 37023, 7, 5143, 62, 41989, 7, 29572, 62, 22046, 3419, 4008, 198 ]
2.932692
104
# encoding: UTF-8 from vnpy.trader import vtConstant from okcoinGateway import OkcoinGateway gatewayClass = OkcoinGateway gatewayName = 'OKEX' gatewayDisplayName = u'OkEx' gatewayType = vtConstant.GATEWAYTYPE_BTC gatewayQryEnabled = True
[ 2, 21004, 25, 41002, 12, 23, 198, 198, 6738, 410, 77, 9078, 13, 2213, 5067, 1330, 410, 83, 3103, 18797, 198, 6738, 12876, 3630, 22628, 1014, 1330, 6762, 3630, 22628, 1014, 198, 198, 10494, 1014, 9487, 796, 6762, 3630, 22628, 1014, 198, 10494, 1014, 5376, 796, 705, 11380, 6369, 6, 198, 10494, 1014, 23114, 5376, 796, 334, 6, 18690, 3109, 6, 198, 10494, 1014, 6030, 796, 410, 83, 3103, 18797, 13, 38, 6158, 27285, 25216, 62, 35964, 198, 10494, 1014, 48, 563, 20491, 796, 6407, 628 ]
2.802326
86
# -*- coding: utf-8 -*- import collections
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 17268, 628, 628, 198 ]
2.4
20
from lolviz import * import time import os import psutil def search(root:TrieNode, s:str, i=0) -> bool: "Return true if s is prefix of word in Trie or full word in Trie" p = root while p is not None: if i>=len(s): return True e = ord(s[i]) - ord('a') if p.edges[e] is None: return False p = p.edges[e] i += 1 return True if __name__ == '__main__': words = load() #words = words[:12000] # reduce size of word list during development print(f"{len(words)} words in dictionary") process = psutil.Process(os.getpid()) print(f"{process.memory_info().rss/1024**2:,.3f} MB in use before creating TRIE") root = create_trie(words) process = psutil.Process(os.getpid()) print(f"{process.memory_info().rss/1024**2:,.3f} MB in use after creating TRIE") trie_search(words) #objviz(root).view()
[ 6738, 19462, 85, 528, 1330, 1635, 198, 11748, 640, 198, 11748, 28686, 198, 11748, 26692, 22602, 628, 198, 198, 4299, 2989, 7, 15763, 25, 51, 5034, 19667, 11, 264, 25, 2536, 11, 1312, 28, 15, 8, 4613, 20512, 25, 198, 220, 220, 220, 366, 13615, 2081, 611, 264, 318, 21231, 286, 1573, 287, 309, 5034, 393, 1336, 1573, 287, 309, 5034, 1, 198, 220, 220, 220, 279, 796, 6808, 198, 220, 220, 220, 981, 279, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 29, 28, 11925, 7, 82, 2599, 1441, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 304, 796, 2760, 7, 82, 58, 72, 12962, 532, 2760, 10786, 64, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 13, 276, 3212, 58, 68, 60, 318, 6045, 25, 1441, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 279, 796, 279, 13, 276, 3212, 58, 68, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 1441, 6407, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2456, 796, 3440, 3419, 198, 220, 220, 220, 1303, 10879, 796, 2456, 58, 25, 1065, 830, 60, 1303, 4646, 2546, 286, 1573, 1351, 1141, 2478, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 11925, 7, 10879, 38165, 2456, 287, 22155, 4943, 628, 220, 220, 220, 1429, 796, 26692, 22602, 13, 18709, 7, 418, 13, 1136, 35317, 28955, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 14681, 13, 31673, 62, 10951, 22446, 42216, 14, 35500, 1174, 17, 25, 38508, 18, 69, 92, 10771, 287, 779, 878, 4441, 37679, 36, 4943, 628, 220, 220, 220, 6808, 796, 2251, 62, 83, 5034, 7, 10879, 8, 628, 220, 220, 220, 1429, 796, 26692, 22602, 13, 18709, 7, 418, 13, 1136, 35317, 28955, 198, 220, 220, 220, 3601, 7, 69, 1, 90, 14681, 13, 31673, 62, 10951, 22446, 42216, 14, 35500, 1174, 17, 25, 38508, 18, 69, 92, 10771, 287, 779, 706, 4441, 37679, 36, 4943, 628, 220, 220, 220, 1333, 68, 62, 12947, 7, 10879, 8, 628, 220, 220, 220, 1303, 26801, 85, 528, 7, 15763, 737, 1177, 3419 ]
2.415761
368
# Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from collections import defaultdict def _validate_runtime_features_graph(features): """ Raises AssertionError when sanity check failed. @param features: a List[Dict]. See origin_trials(). @returns None """ feature_pool = {str(f['name']) for f in features} origin_trial_pool = { str(f['name']) for f in features if f['origin_trial_feature_name'] } for f in features: assert not f['implied_by'] or not f['depends_on'], _error_message( 'Only one of implied_by and depends_on is allowed', f['name']) for d in f['depends_on']: assert d in feature_pool, _error_message( 'Depends on non-existent-feature', f['name'], d) for i in f['implied_by']: assert i in feature_pool, _error_message( 'Implied by non-existent-feature', f['name'], i) assert f['origin_trial_feature_name'] or i not in origin_trial_pool, \ _error_message( 'A feature must be in origin trial if implied by an origin trial feature', f['name'], i) graph = { str(feature['name']): feature['depends_on'] + feature['implied_by'] for feature in features } path = set() for f in features: assert not has_cycle(str(f['name'])), _error_message( 'Cycle found in depends_on/implied_by graph', f['name']) def origin_trials(features): """ This function returns all features that are in origin trial. The dependency is considered in origin trial if itself is in origin trial or any of its dependencies are in origin trial. Propagate dependency tag use DFS can find all features that are in origin trial. @param features: a List[Dict]. Each Dict must have keys 'name', 'depends_on', 'implied_by' and 'origin_trial_feature_name' (see runtime_enabled_features.json5). @returns Set[str(runtime feature name)] """ _validate_runtime_features_graph(features) origin_trials_set = set() graph = defaultdict(list) for feature in features: for dependency in feature['depends_on']: graph[dependency].append(str(feature['name'])) for feature in features: if feature['origin_trial_feature_name']: dfs(str(feature['name'])) return origin_trials_set
[ 2, 15069, 13130, 383, 18255, 1505, 46665, 13, 1439, 2489, 10395, 13, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 6738, 17268, 1330, 4277, 11600, 628, 198, 198, 4299, 4808, 12102, 378, 62, 43282, 62, 40890, 62, 34960, 7, 40890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 7567, 2696, 2195, 861, 295, 12331, 618, 34182, 2198, 4054, 13, 198, 220, 220, 220, 2488, 17143, 3033, 25, 257, 7343, 58, 35, 713, 4083, 4091, 8159, 62, 28461, 874, 22446, 198, 220, 220, 220, 2488, 7783, 82, 6045, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3895, 62, 7742, 796, 1391, 2536, 7, 69, 17816, 3672, 6, 12962, 329, 277, 287, 3033, 92, 198, 220, 220, 220, 8159, 62, 45994, 62, 7742, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 965, 7, 69, 17816, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 3033, 611, 277, 17816, 47103, 62, 45994, 62, 30053, 62, 3672, 20520, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 329, 277, 287, 3033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 277, 17816, 23928, 798, 62, 1525, 20520, 393, 407, 277, 17816, 10378, 2412, 62, 261, 6, 4357, 4808, 18224, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10049, 530, 286, 17142, 62, 1525, 290, 8338, 62, 261, 318, 3142, 3256, 277, 17816, 3672, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 288, 287, 277, 17816, 10378, 2412, 62, 261, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 288, 287, 3895, 62, 7742, 11, 4808, 18224, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12156, 2412, 319, 1729, 12, 32786, 12, 30053, 3256, 277, 17816, 3672, 6, 4357, 288, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 277, 17816, 23928, 798, 62, 1525, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 1312, 287, 3895, 62, 7742, 11, 4808, 18224, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 29710, 798, 416, 1729, 12, 32786, 12, 30053, 3256, 277, 17816, 3672, 6, 4357, 1312, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 277, 17816, 47103, 62, 45994, 62, 30053, 62, 3672, 20520, 393, 1312, 407, 287, 8159, 62, 45994, 62, 7742, 11, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 18224, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32, 3895, 1276, 307, 287, 8159, 4473, 611, 17142, 416, 281, 8159, 4473, 3895, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 17816, 3672, 6, 4357, 1312, 8, 628, 220, 220, 220, 4823, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 965, 7, 30053, 17816, 3672, 20520, 2599, 3895, 17816, 10378, 2412, 62, 261, 20520, 1343, 3895, 17816, 23928, 798, 62, 1525, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 329, 3895, 287, 3033, 198, 220, 220, 220, 1782, 198, 220, 220, 220, 3108, 796, 900, 3419, 628, 220, 220, 220, 329, 277, 287, 3033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 407, 468, 62, 13696, 7, 2536, 7, 69, 17816, 3672, 6, 12962, 828, 4808, 18224, 62, 20500, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 20418, 2375, 1043, 287, 8338, 62, 261, 14, 23928, 798, 62, 1525, 4823, 3256, 277, 17816, 3672, 6, 12962, 628, 198, 4299, 8159, 62, 28461, 874, 7, 40890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 2163, 5860, 477, 3033, 326, 389, 287, 8159, 4473, 13, 198, 220, 220, 220, 383, 20203, 318, 3177, 287, 8159, 4473, 611, 2346, 318, 287, 8159, 4473, 198, 220, 220, 220, 393, 597, 286, 663, 20086, 389, 287, 8159, 4473, 13, 8772, 37861, 20203, 198, 220, 220, 220, 7621, 779, 360, 10652, 460, 1064, 477, 3033, 326, 389, 287, 8159, 4473, 13, 628, 220, 220, 220, 2488, 17143, 3033, 25, 257, 7343, 58, 35, 713, 4083, 5501, 360, 713, 1276, 423, 8251, 705, 3672, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10378, 2412, 62, 261, 3256, 705, 23928, 798, 62, 1525, 6, 290, 705, 47103, 62, 45994, 62, 30053, 62, 3672, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 3826, 19124, 62, 25616, 62, 40890, 13, 17752, 20, 737, 198, 220, 220, 220, 2488, 7783, 82, 5345, 58, 2536, 7, 43282, 3895, 1438, 15437, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4808, 12102, 378, 62, 43282, 62, 40890, 62, 34960, 7, 40890, 8, 628, 220, 220, 220, 8159, 62, 28461, 874, 62, 2617, 796, 900, 3419, 628, 220, 220, 220, 4823, 796, 4277, 11600, 7, 4868, 8, 198, 220, 220, 220, 329, 3895, 287, 3033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 20203, 287, 3895, 17816, 10378, 2412, 62, 261, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4823, 58, 45841, 1387, 4083, 33295, 7, 2536, 7, 30053, 17816, 3672, 20520, 4008, 628, 220, 220, 220, 329, 3895, 287, 3033, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3895, 17816, 47103, 62, 45994, 62, 30053, 62, 3672, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9501, 7, 2536, 7, 30053, 17816, 3672, 20520, 4008, 628, 220, 220, 220, 1441, 8159, 62, 28461, 874, 62, 2617, 198 ]
2.537
1,000
Birds_year0 = 100 Birth_rate = 0.5 Death_rate = 0.2 # We repeat the "for" loop with an additional step: every time bird population reaches 1000, an epidemic kills half of them Time=[0] Birds=[100] for year in range (1,51) : Birds = Birds + [Birds[-1] + Birds[-1] * Birth_rate - Birds[-1] * Death_rate ] Time = Time + [year] if Birds[-1]>1000: Birds[-1]=Birds[-1]/2 print(Birds[-1]) import matplotlib.pyplot as plt plt.plot(Time,Birds) plt.xlabel("Time (years)") plt.ylabel("# of birds") plt.title('Birds population growth') plt.show()
[ 33, 11049, 62, 1941, 15, 796, 1802, 220, 201, 198, 38480, 62, 4873, 796, 657, 13, 20, 201, 198, 20148, 62, 4873, 796, 657, 13, 17, 201, 198, 2, 775, 9585, 262, 366, 1640, 1, 9052, 351, 281, 3224, 2239, 25, 790, 640, 6512, 3265, 12229, 8576, 11, 281, 18195, 12847, 2063, 286, 606, 201, 198, 7575, 41888, 15, 60, 201, 198, 33, 11049, 41888, 3064, 60, 201, 198, 1640, 614, 287, 2837, 357, 16, 11, 4349, 8, 1058, 201, 198, 220, 220, 220, 27124, 796, 27124, 1343, 685, 33, 11049, 58, 12, 16, 60, 1343, 27124, 58, 12, 16, 60, 1635, 17647, 62, 4873, 532, 27124, 58, 12, 16, 60, 1635, 5830, 62, 4873, 2361, 201, 198, 220, 220, 220, 3862, 796, 3862, 1343, 685, 1941, 60, 201, 198, 220, 220, 220, 611, 27124, 58, 12, 16, 60, 29, 12825, 25, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 27124, 58, 12, 16, 22241, 33, 11049, 58, 12, 16, 60, 14, 17, 201, 198, 220, 220, 220, 3601, 7, 33, 11049, 58, 12, 16, 12962, 201, 198, 220, 220, 220, 220, 201, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 201, 198, 489, 83, 13, 29487, 7, 7575, 11, 33, 11049, 8, 201, 198, 489, 83, 13, 87, 18242, 7203, 7575, 357, 19002, 8, 4943, 201, 198, 489, 83, 13, 2645, 9608, 7203, 2, 286, 10087, 4943, 201, 198, 489, 83, 13, 7839, 10786, 33, 11049, 3265, 3349, 11537, 201, 198, 489, 83, 13, 12860, 3419, 201, 198, 201, 198 ]
2.292969
256
# -*- coding: utf-8 -*- """ Created on Fri Dec 6 00:06:55 2019 @author: - """ import pandas as pd import numpy as np from matplotlib import pyplot as plt import os from datetime import datetime from gensim import corpora, models, similarities from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords os.getcwd() os.chdir('C:\\Users\\abhishekpandey\\Desktop') articles = pd.read_excel('speech_input.xlsx', sheet_name = 'Sheet1') articles.head() #Concatenating the articles titles and bodies english_articles_content = (articles['Text']).tolist() english_stopset = set(stopwords.words('english')).union( {"things", "that's", "something", "take", "don't", "may", "want", "you're", "set", "might", "says", "including", "lot", "much", "said", "know", "good", "step", "often", "going", "thing", "things", "think", "back", "actually", "better", "look", "find", "right", "example", "verb", "verbs"}) #Tokenizing words of articles tokenizer = RegexpTokenizer(r"(?u)[\b\#a-zA-Z][\w&-_]+\b") english_articles_tokens = list(map(lambda d: [token for token in tokenizer.tokenize(d.lower()) if token not in english_stopset], english_articles_content)) bigram_transformer = models.Phrases(english_articles_tokens) english_articles_unigrams_bigrams_tokens = list(bigram_transformer[english_articles_tokens]) #Creating a dictionary and filtering out too rare and too common tokens english_dictionary = corpora.Dictionary(english_articles_unigrams_bigrams_tokens) english_dictionary.compactify() print(english_dictionary) #Processing Bag-of-Words (BoW) for each article english_articles_bow = [english_dictionary.doc2bow(doc) for doc in english_articles_unigrams_bigrams_tokens] #Training the LDA topic model on English articles lda_model = models.LdaModel(english_articles_bow, id2word=english_dictionary, num_topics=30, passes=10, iterations=500) #Processing the topics for each article english_articles_lda = lda_model[english_articles_bow] #Computing the main topic of each article topics_top_words = get_topics_top_words(lda_model, 5) #Return the discovered topics, sorted by popularity corpus_main_topics = get_main_topics(english_articles_lda, topics_top_words) main_topics_df = pd.DataFrame(corpus_main_topics, columns=['topic']).groupby('topic').size().sort_values(ascending=True).reset_index() main_topics_df.columns = ['topic','count'] main_topics_df.sort_values('count', ascending=False) main_topics_df.plot(kind='barh', x='topic', y='count', figsize=(7,20), title='Main topics on shared English articles') articles_full = articles articles_full['tagged_keywords'] = corpus_main_topics articles_full.drop('tagged_keywords', axis=1, inplace =True)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 201, 198, 37811, 201, 198, 41972, 319, 19480, 4280, 220, 718, 3571, 25, 3312, 25, 2816, 13130, 201, 198, 201, 198, 31, 9800, 25, 532, 201, 198, 37811, 201, 198, 201, 198, 11748, 19798, 292, 355, 279, 67, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 201, 198, 11748, 28686, 201, 198, 6738, 4818, 8079, 1330, 4818, 8079, 201, 198, 6738, 308, 641, 320, 1330, 3990, 64, 11, 4981, 11, 20594, 201, 198, 6738, 299, 2528, 74, 13, 30001, 1096, 1330, 797, 25636, 79, 30642, 7509, 201, 198, 6738, 299, 2528, 74, 13, 10215, 79, 385, 1330, 2245, 10879, 201, 198, 201, 198, 418, 13, 1136, 66, 16993, 3419, 201, 198, 418, 13, 354, 15908, 10786, 34, 25, 6852, 14490, 6852, 397, 14363, 258, 74, 79, 392, 2959, 6852, 36881, 11537, 201, 198, 201, 198, 26845, 796, 279, 67, 13, 961, 62, 1069, 5276, 10786, 45862, 62, 15414, 13, 87, 7278, 87, 3256, 9629, 62, 3672, 796, 705, 3347, 316, 16, 11537, 201, 198, 26845, 13, 2256, 3419, 201, 198, 201, 198, 201, 198, 2, 3103, 9246, 268, 803, 262, 6685, 8714, 290, 5920, 201, 198, 39126, 62, 26845, 62, 11299, 796, 357, 26845, 17816, 8206, 20520, 737, 83, 349, 396, 3419, 201, 198, 201, 198, 39126, 62, 11338, 2617, 796, 900, 7, 11338, 10879, 13, 10879, 10786, 39126, 11537, 737, 24592, 7, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19779, 27971, 1600, 366, 5562, 338, 1600, 366, 18927, 1600, 366, 20657, 1600, 366, 9099, 470, 1600, 366, 11261, 1600, 366, 42949, 1600, 366, 5832, 821, 1600, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 2617, 1600, 366, 44092, 1600, 366, 82, 592, 1600, 366, 8201, 1600, 366, 26487, 1600, 366, 29482, 1600, 366, 30079, 1600, 366, 16275, 1600, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11274, 1600, 366, 9662, 1600, 366, 28950, 1600, 366, 5146, 1600, 366, 1197, 1600, 366, 27971, 1600, 366, 14925, 1600, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1891, 1600, 366, 37739, 1600, 366, 27903, 1600, 366, 5460, 1600, 366, 19796, 1600, 366, 3506, 1600, 366, 20688, 1600, 220, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19011, 1600, 366, 46211, 20662, 8, 201, 198, 201, 198, 2, 30642, 2890, 2456, 286, 6685, 201, 198, 30001, 7509, 796, 797, 25636, 79, 30642, 7509, 7, 81, 18109, 30, 84, 38381, 59, 65, 59, 2, 64, 12, 89, 32, 12, 57, 7131, 59, 86, 5, 12, 62, 48688, 59, 65, 4943, 201, 198, 39126, 62, 26845, 62, 83, 482, 641, 796, 1351, 7, 8899, 7, 50033, 288, 25, 685, 30001, 329, 11241, 287, 11241, 7509, 13, 30001, 1096, 7, 67, 13, 21037, 28955, 611, 11241, 407, 287, 46932, 62, 11338, 2617, 4357, 46932, 62, 26845, 62, 11299, 4008, 201, 198, 201, 198, 14261, 859, 62, 7645, 16354, 796, 4981, 13, 2725, 81, 1386, 7, 39126, 62, 26845, 62, 83, 482, 641, 8, 201, 198, 39126, 62, 26845, 62, 403, 328, 9474, 62, 14261, 9474, 62, 83, 482, 641, 796, 1351, 7, 14261, 859, 62, 7645, 16354, 58, 39126, 62, 26845, 62, 83, 482, 641, 12962, 201, 198, 201, 198, 2, 32071, 257, 22155, 290, 25431, 503, 1165, 4071, 290, 1165, 2219, 16326, 201, 198, 39126, 62, 67, 14188, 796, 3990, 64, 13, 35, 14188, 7, 39126, 62, 26845, 62, 403, 328, 9474, 62, 14261, 9474, 62, 83, 482, 641, 8, 201, 198, 39126, 62, 67, 14188, 13, 5589, 529, 1958, 3419, 201, 198, 4798, 7, 39126, 62, 67, 14188, 8, 201, 198, 201, 198, 2, 18709, 278, 20127, 12, 1659, 12, 37117, 357, 16635, 54, 8, 329, 1123, 2708, 201, 198, 39126, 62, 26845, 62, 8176, 796, 685, 39126, 62, 67, 14188, 13, 15390, 17, 8176, 7, 15390, 8, 329, 2205, 287, 46932, 62, 26845, 62, 403, 328, 9474, 62, 14261, 9474, 62, 83, 482, 641, 60, 201, 198, 201, 198, 2, 44357, 262, 406, 5631, 7243, 2746, 319, 3594, 6685, 201, 198, 18986, 62, 19849, 796, 4981, 13, 43, 6814, 17633, 7, 39126, 62, 26845, 62, 8176, 11, 4686, 17, 4775, 28, 39126, 62, 67, 14188, 11, 997, 62, 4852, 873, 28, 1270, 11, 8318, 28, 940, 11, 34820, 28, 4059, 8, 201, 198, 201, 198, 2, 18709, 278, 262, 10233, 329, 1123, 2708, 201, 198, 39126, 62, 26845, 62, 18986, 796, 300, 6814, 62, 19849, 58, 39126, 62, 26845, 62, 8176, 60, 201, 198, 201, 198, 2, 5377, 48074, 262, 1388, 7243, 286, 1123, 2708, 201, 198, 4852, 873, 62, 4852, 62, 10879, 796, 651, 62, 4852, 873, 62, 4852, 62, 10879, 7, 18986, 62, 19849, 11, 642, 8, 201, 198, 201, 198, 2, 13615, 262, 5071, 10233, 11, 23243, 416, 11533, 201, 198, 10215, 79, 385, 62, 12417, 62, 4852, 873, 796, 651, 62, 12417, 62, 4852, 873, 7, 39126, 62, 26845, 62, 18986, 11, 10233, 62, 4852, 62, 10879, 8, 201, 198, 201, 198, 12417, 62, 4852, 873, 62, 7568, 796, 279, 67, 13, 6601, 19778, 7, 10215, 79, 385, 62, 12417, 62, 4852, 873, 11, 15180, 28, 17816, 26652, 20520, 737, 8094, 1525, 10786, 26652, 27691, 7857, 22446, 30619, 62, 27160, 7, 3372, 1571, 28, 17821, 737, 42503, 62, 9630, 3419, 201, 198, 12417, 62, 4852, 873, 62, 7568, 13, 28665, 82, 796, 37250, 26652, 41707, 9127, 20520, 201, 198, 12417, 62, 4852, 873, 62, 7568, 13, 30619, 62, 27160, 10786, 9127, 3256, 41988, 28, 25101, 8, 201, 198, 201, 198, 12417, 62, 4852, 873, 62, 7568, 13, 29487, 7, 11031, 11639, 5657, 71, 3256, 2124, 11639, 26652, 3256, 331, 11639, 9127, 3256, 2336, 7857, 16193, 22, 11, 1238, 828, 3670, 11639, 13383, 10233, 319, 4888, 3594, 6685, 11537, 201, 198, 201, 198, 26845, 62, 12853, 796, 6685, 201, 198, 26845, 62, 12853, 17816, 12985, 2004, 62, 2539, 10879, 20520, 796, 35789, 62, 12417, 62, 4852, 873, 201, 198, 26845, 62, 12853, 13, 14781, 10786, 12985, 2004, 62, 2539, 10879, 3256, 16488, 28, 16, 11, 287, 5372, 796, 17821, 8, 201, 198, 201, 198 ]
2.651445
1,073
from getpass import getpass from django.contrib.auth import get_user_model from django.core.management.base import BaseCommand from django.db.utils import IntegrityError UserModel = get_user_model() USERNAME_DEFAULT = "player" class Command(BaseCommand): """Create the player special user.""" help = "Create player account." def add_arguments(self, parser): """Add arguments for the command. Args: parser (argparse.ArgumentParser): Parser. """ parser.add_argument( "--username", help="Specifies the loging for the player. Default to '{}'.".format( USERNAME_DEFAULT ), ) parser.add_argument("--password", help="Specifies the password for the player.") parser.add_argument( "--noinput", help="Tells Django to NOT prompt the user for input of any kind. " "Use command line arguments only.", action="store_true", ) @staticmethod def get_username(): """Get username from user. Returns: str: Username. """ username = input("Username (default: '{}'): ".format(USERNAME_DEFAULT)) return username or USERNAME_DEFAULT def get_password(self): """Get password from user. Returns: str: Password. """ while True: password = getpass() password_confirm = getpass("Password (again): ") if not password == password_confirm: self.stderr.write("Error: Your passwords didn't match.") continue return password def create_player(self, username, password): """Create player from provided credentials. Args: username (str): Username for the player. password (str): Password for the player. """ # check password if not password: self.stderr.write("Error: Blank passwords aren't allowed.") return try: UserModel.objects.create_user( username, password=password, email="{}@player".format(username), validated_by_email=True, validated_by_manager=True, playlist_permission_level=UserModel.PLAYER, ) except (IntegrityError, ValueError) as e: self.stderr.write("Error: {}".format(e)) return self.stdout.write("Player created successfully.") def handle(self, *args, **options): """Handle the command.""" # in non interactive mode if options["noinput"]: self.create_player( (options["username"] or USERNAME_DEFAULT), options["password"] ) return # interactive mode # username if options["username"]: username = options["username"] else: username = self.get_username() # password if options["password"]: password = options["password"] else: password = self.get_password() self.create_player(username, password)
[ 6738, 651, 6603, 1330, 651, 6603, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 1330, 651, 62, 7220, 62, 19849, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 42625, 14208, 13, 9945, 13, 26791, 1330, 39348, 12331, 198, 198, 12982, 17633, 796, 651, 62, 7220, 62, 19849, 3419, 198, 198, 29904, 20608, 62, 7206, 38865, 796, 366, 7829, 1, 628, 198, 4871, 9455, 7, 14881, 21575, 2599, 198, 220, 220, 220, 37227, 16447, 262, 2137, 2041, 2836, 526, 15931, 628, 220, 220, 220, 1037, 796, 366, 16447, 2137, 1848, 526, 628, 220, 220, 220, 825, 751, 62, 853, 2886, 7, 944, 11, 30751, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 4550, 7159, 329, 262, 3141, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30751, 357, 853, 29572, 13, 28100, 1713, 46677, 2599, 23042, 263, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 29460, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 22882, 6945, 262, 2604, 278, 329, 262, 2137, 13, 15161, 284, 705, 90, 92, 30827, 13, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1294, 1137, 20608, 62, 7206, 38865, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7203, 438, 28712, 1600, 1037, 2625, 22882, 6945, 262, 9206, 329, 262, 2137, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 13, 2860, 62, 49140, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 438, 3919, 15414, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 51, 19187, 37770, 284, 5626, 6152, 262, 2836, 329, 5128, 286, 597, 1611, 13, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 11041, 3141, 1627, 7159, 691, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 651, 62, 29460, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 20579, 422, 2836, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 25, 50069, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 5128, 7203, 5842, 13292, 357, 12286, 25, 705, 90, 92, 6, 2599, 27071, 18982, 7, 29904, 20608, 62, 7206, 38865, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20579, 393, 1294, 1137, 20608, 62, 7206, 38865, 628, 220, 220, 220, 825, 651, 62, 28712, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 9206, 422, 2836, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 25, 30275, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 651, 6603, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 62, 10414, 2533, 796, 651, 6603, 7203, 35215, 357, 17776, 2599, 366, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9206, 6624, 9206, 62, 10414, 2533, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 1082, 81, 13, 13564, 7203, 12331, 25, 3406, 21442, 1422, 470, 2872, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 9206, 628, 220, 220, 220, 825, 2251, 62, 7829, 7, 944, 11, 20579, 11, 9206, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 16447, 2137, 422, 2810, 18031, 13, 628, 220, 220, 220, 220, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 357, 2536, 2599, 50069, 329, 262, 2137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 357, 2536, 2599, 30275, 329, 262, 2137, 13, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2198, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 9206, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 1082, 81, 13, 13564, 7203, 12331, 25, 31990, 21442, 3588, 470, 3142, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 17633, 13, 48205, 13, 17953, 62, 7220, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 28, 28712, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3053, 2625, 90, 92, 31, 7829, 1911, 18982, 7, 29460, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31031, 62, 1525, 62, 12888, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31031, 62, 1525, 62, 37153, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 33178, 62, 525, 3411, 62, 5715, 28, 12982, 17633, 13, 31519, 1137, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 34500, 10138, 12331, 11, 11052, 12331, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 301, 1082, 81, 13, 13564, 7203, 12331, 25, 23884, 1911, 18982, 7, 68, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 19282, 448, 13, 13564, 7203, 14140, 2727, 7675, 19570, 628, 220, 220, 220, 825, 5412, 7, 944, 11, 1635, 22046, 11, 12429, 25811, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 37508, 262, 3141, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 287, 1729, 14333, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 14692, 3919, 15414, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 62, 7829, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 25811, 14692, 29460, 8973, 393, 1294, 1137, 20608, 62, 7206, 38865, 828, 3689, 14692, 28712, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 14333, 4235, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 20579, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 14692, 29460, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 3689, 14692, 29460, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20579, 796, 2116, 13, 1136, 62, 29460, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9206, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3689, 14692, 28712, 1, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 3689, 14692, 28712, 8973, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9206, 796, 2116, 13, 1136, 62, 28712, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 17953, 62, 7829, 7, 29460, 11, 9206, 8, 198 ]
2.224518
1,452
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: ga4gh/schemas/ga4gh/genotype_phenotype_service.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from ga4gh.schemas.ga4gh import common_pb2 as ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2 from ga4gh.schemas.ga4gh import genotype_phenotype_pb2 as ga4gh_dot_schemas_dot_ga4gh_dot_genotype__phenotype__pb2 from ga4gh.schemas.google.api import annotations_pb2 as ga4gh_dot_schemas_dot_google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='ga4gh/schemas/ga4gh/genotype_phenotype_service.proto', package='ga4gh.schemas.ga4gh', syntax='proto3', serialized_pb=_b('\n4ga4gh/schemas/ga4gh/genotype_phenotype_service.proto\x12\x13ga4gh.schemas.ga4gh\x1a ga4gh/schemas/ga4gh/common.proto\x1a,ga4gh/schemas/ga4gh/genotype_phenotype.proto\x1a*ga4gh/schemas/google/api/annotations.proto\"b\n%SearchPhenotypeAssociationSetsRequest\x12\x12\n\ndataset_id\x18\x01 \x01(\t\x12\x11\n\tpage_size\x18\x02 \x01(\x03\x12\x12\n\npage_token\x18\x03 \x01(\t\"\x93\x01\n&SearchPhenotypeAssociationSetsResponse\x12P\n\x1aphenotype_association_sets\x18\x01 \x03(\x0b\x32,.ga4gh.schemas.ga4gh.PhenotypeAssociationSet\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t\"E\n\x11OntologyTermQuery\x12\x30\n\x05terms\x18\x01 \x03(\x0b\x32!.ga4gh.schemas.ga4gh.OntologyTerm\"O\n\x17\x45xternalIdentifierQuery\x12\x34\n\x03ids\x18\x01 \x03(\x0b\x32\'.ga4gh.schemas.ga4gh.ExternalIdentifier\"\xa4\x01\n\rEvidenceQuery\x12\x37\n\x0c\x65videnceType\x18\x01 \x01(\x0b\x32!.ga4gh.schemas.ga4gh.OntologyTerm\x12\x13\n\x0b\x64\x65scription\x18\x02 \x01(\t\x12\x45\n\x14\x65xternal_identifiers\x18\x03 \x03(\x0b\x32\'.ga4gh.schemas.ga4gh.ExternalIdentifier\"\xa8\x02\n\x17SearchPhenotypesRequest\x12$\n\x1cphenotype_association_set_id\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\t\x12\x13\n\x0b\x64\x65scription\x18\x03 \x01(\t\x12/\n\x04type\x18\x04 \x01(\x0b\x32!.ga4gh.schemas.ga4gh.OntologyTerm\x12\x35\n\nqualifiers\x18\x05 \x03(\x0b\x32!.ga4gh.schemas.ga4gh.OntologyTerm\x12\x37\n\x0c\x61ge_of_onset\x18\x06 \x01(\x0b\x32!.ga4gh.schemas.ga4gh.OntologyTerm\x12\x11\n\tpage_size\x18\x07 \x01(\x03\x12\x12\n\npage_token\x18\x08 \x01(\t\"o\n\x18SearchPhenotypesResponse\x12:\n\nphenotypes\x18\x01 \x03(\x0b\x32&.ga4gh.schemas.ga4gh.PhenotypeInstance\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t\"\xcf\x01\n\x1eSearchGenotypePhenotypeRequest\x12$\n\x1cphenotype_association_set_id\x18\x01 \x01(\t\x12\x13\n\x0b\x66\x65\x61ture_ids\x18\x02 \x03(\t\x12\x15\n\rphenotype_ids\x18\x03 \x03(\t\x12\x34\n\x08\x65vidence\x18\x04 \x03(\x0b\x32\".ga4gh.schemas.ga4gh.EvidenceQuery\x12\x11\n\tpage_size\x18\x05 \x01(\x03\x12\x12\n\npage_token\x18\x06 \x01(\t\"\x82\x01\n\x1fSearchGenotypePhenotypeResponse\x12\x46\n\x0c\x61ssociations\x18\x01 \x03(\x0b\x32\x30.ga4gh.schemas.ga4gh.FeaturePhenotypeAssociation\x12\x17\n\x0fnext_page_token\x18\x02 \x01(\t2\xcd\x04\n\x18GenotypePhenotypeService\x12\xd0\x01\n\x1eSearchPhenotypeAssociationSets\x12:.ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest\x1a;.ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsResponse\"5\x82\xd3\xe4\x93\x02/\"*/v0.6.0a10/phenotypeassociationsets/search:\x01*\x12\x97\x01\n\x0fSearchPhenotype\x12,.ga4gh.schemas.ga4gh.SearchPhenotypesRequest\x1a-.ga4gh.schemas.ga4gh.SearchPhenotypesResponse\"\'\x82\xd3\xe4\x93\x02!\"\x1c/v0.6.0a10/phenotypes/search:\x01*\x12\xc3\x01\n\x1bSearchPhenotypeAssociations\x12\x33.ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest\x1a\x34.ga4gh.schemas.ga4gh.SearchGenotypePhenotypeResponse\"9\x82\xd3\xe4\x93\x02\x33\"./v0.6.0a10/featurephenotypeassociations/search:\x01*b\x06proto3') , dependencies=[ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2.DESCRIPTOR,ga4gh_dot_schemas_dot_ga4gh_dot_genotype__phenotype__pb2.DESCRIPTOR,ga4gh_dot_schemas_dot_google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _SEARCHPHENOTYPEASSOCIATIONSETSREQUEST = _descriptor.Descriptor( name='SearchPhenotypeAssociationSetsRequest', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_id', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest.dataset_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_size', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest.page_size', index=1, number=2, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_token', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest.page_token', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=201, serialized_end=299, ) _SEARCHPHENOTYPEASSOCIATIONSETSRESPONSE = _descriptor.Descriptor( name='SearchPhenotypeAssociationSetsResponse', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phenotype_association_sets', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsResponse.phenotype_association_sets', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='next_page_token', full_name='ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsResponse.next_page_token', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=302, serialized_end=449, ) _ONTOLOGYTERMQUERY = _descriptor.Descriptor( name='OntologyTermQuery', full_name='ga4gh.schemas.ga4gh.OntologyTermQuery', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='terms', full_name='ga4gh.schemas.ga4gh.OntologyTermQuery.terms', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=451, serialized_end=520, ) _EXTERNALIDENTIFIERQUERY = _descriptor.Descriptor( name='ExternalIdentifierQuery', full_name='ga4gh.schemas.ga4gh.ExternalIdentifierQuery', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='ids', full_name='ga4gh.schemas.ga4gh.ExternalIdentifierQuery.ids', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=522, serialized_end=601, ) _EVIDENCEQUERY = _descriptor.Descriptor( name='EvidenceQuery', full_name='ga4gh.schemas.ga4gh.EvidenceQuery', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='evidenceType', full_name='ga4gh.schemas.ga4gh.EvidenceQuery.evidenceType', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='description', full_name='ga4gh.schemas.ga4gh.EvidenceQuery.description', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='external_identifiers', full_name='ga4gh.schemas.ga4gh.EvidenceQuery.external_identifiers', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=604, serialized_end=768, ) _SEARCHPHENOTYPESREQUEST = _descriptor.Descriptor( name='SearchPhenotypesRequest', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phenotype_association_set_id', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.phenotype_association_set_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='id', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='description', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.description', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.type', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='qualifiers', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.qualifiers', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='age_of_onset', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.age_of_onset', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_size', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.page_size', index=6, number=7, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_token', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesRequest.page_token', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=771, serialized_end=1067, ) _SEARCHPHENOTYPESRESPONSE = _descriptor.Descriptor( name='SearchPhenotypesResponse', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phenotypes', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesResponse.phenotypes', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='next_page_token', full_name='ga4gh.schemas.ga4gh.SearchPhenotypesResponse.next_page_token', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1069, serialized_end=1180, ) _SEARCHGENOTYPEPHENOTYPEREQUEST = _descriptor.Descriptor( name='SearchGenotypePhenotypeRequest', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='phenotype_association_set_id', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.phenotype_association_set_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='feature_ids', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.feature_ids', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='phenotype_ids', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.phenotype_ids', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='evidence', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.evidence', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_size', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.page_size', index=4, number=5, type=3, cpp_type=2, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='page_token', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest.page_token', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1183, serialized_end=1390, ) _SEARCHGENOTYPEPHENOTYPERESPONSE = _descriptor.Descriptor( name='SearchGenotypePhenotypeResponse', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='associations', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeResponse.associations', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='next_page_token', full_name='ga4gh.schemas.ga4gh.SearchGenotypePhenotypeResponse.next_page_token', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1393, serialized_end=1523, ) _SEARCHPHENOTYPEASSOCIATIONSETSRESPONSE.fields_by_name['phenotype_association_sets'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_genotype__phenotype__pb2._PHENOTYPEASSOCIATIONSET _ONTOLOGYTERMQUERY.fields_by_name['terms'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._ONTOLOGYTERM _EXTERNALIDENTIFIERQUERY.fields_by_name['ids'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._EXTERNALIDENTIFIER _EVIDENCEQUERY.fields_by_name['evidenceType'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._ONTOLOGYTERM _EVIDENCEQUERY.fields_by_name['external_identifiers'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._EXTERNALIDENTIFIER _SEARCHPHENOTYPESREQUEST.fields_by_name['type'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._ONTOLOGYTERM _SEARCHPHENOTYPESREQUEST.fields_by_name['qualifiers'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._ONTOLOGYTERM _SEARCHPHENOTYPESREQUEST.fields_by_name['age_of_onset'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_common__pb2._ONTOLOGYTERM _SEARCHPHENOTYPESRESPONSE.fields_by_name['phenotypes'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_genotype__phenotype__pb2._PHENOTYPEINSTANCE _SEARCHGENOTYPEPHENOTYPEREQUEST.fields_by_name['evidence'].message_type = _EVIDENCEQUERY _SEARCHGENOTYPEPHENOTYPERESPONSE.fields_by_name['associations'].message_type = ga4gh_dot_schemas_dot_ga4gh_dot_genotype__phenotype__pb2._FEATUREPHENOTYPEASSOCIATION DESCRIPTOR.message_types_by_name['SearchPhenotypeAssociationSetsRequest'] = _SEARCHPHENOTYPEASSOCIATIONSETSREQUEST DESCRIPTOR.message_types_by_name['SearchPhenotypeAssociationSetsResponse'] = _SEARCHPHENOTYPEASSOCIATIONSETSRESPONSE DESCRIPTOR.message_types_by_name['OntologyTermQuery'] = _ONTOLOGYTERMQUERY DESCRIPTOR.message_types_by_name['ExternalIdentifierQuery'] = _EXTERNALIDENTIFIERQUERY DESCRIPTOR.message_types_by_name['EvidenceQuery'] = _EVIDENCEQUERY DESCRIPTOR.message_types_by_name['SearchPhenotypesRequest'] = _SEARCHPHENOTYPESREQUEST DESCRIPTOR.message_types_by_name['SearchPhenotypesResponse'] = _SEARCHPHENOTYPESRESPONSE DESCRIPTOR.message_types_by_name['SearchGenotypePhenotypeRequest'] = _SEARCHGENOTYPEPHENOTYPEREQUEST DESCRIPTOR.message_types_by_name['SearchGenotypePhenotypeResponse'] = _SEARCHGENOTYPEPHENOTYPERESPONSE SearchPhenotypeAssociationSetsRequest = _reflection.GeneratedProtocolMessageType('SearchPhenotypeAssociationSetsRequest', (_message.Message,), dict( DESCRIPTOR = _SEARCHPHENOTYPEASSOCIATIONSETSREQUEST, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsRequest) )) _sym_db.RegisterMessage(SearchPhenotypeAssociationSetsRequest) SearchPhenotypeAssociationSetsResponse = _reflection.GeneratedProtocolMessageType('SearchPhenotypeAssociationSetsResponse', (_message.Message,), dict( DESCRIPTOR = _SEARCHPHENOTYPEASSOCIATIONSETSRESPONSE, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchPhenotypeAssociationSetsResponse) )) _sym_db.RegisterMessage(SearchPhenotypeAssociationSetsResponse) OntologyTermQuery = _reflection.GeneratedProtocolMessageType('OntologyTermQuery', (_message.Message,), dict( DESCRIPTOR = _ONTOLOGYTERMQUERY, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.OntologyTermQuery) )) _sym_db.RegisterMessage(OntologyTermQuery) ExternalIdentifierQuery = _reflection.GeneratedProtocolMessageType('ExternalIdentifierQuery', (_message.Message,), dict( DESCRIPTOR = _EXTERNALIDENTIFIERQUERY, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.ExternalIdentifierQuery) )) _sym_db.RegisterMessage(ExternalIdentifierQuery) EvidenceQuery = _reflection.GeneratedProtocolMessageType('EvidenceQuery', (_message.Message,), dict( DESCRIPTOR = _EVIDENCEQUERY, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.EvidenceQuery) )) _sym_db.RegisterMessage(EvidenceQuery) SearchPhenotypesRequest = _reflection.GeneratedProtocolMessageType('SearchPhenotypesRequest', (_message.Message,), dict( DESCRIPTOR = _SEARCHPHENOTYPESREQUEST, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchPhenotypesRequest) )) _sym_db.RegisterMessage(SearchPhenotypesRequest) SearchPhenotypesResponse = _reflection.GeneratedProtocolMessageType('SearchPhenotypesResponse', (_message.Message,), dict( DESCRIPTOR = _SEARCHPHENOTYPESRESPONSE, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchPhenotypesResponse) )) _sym_db.RegisterMessage(SearchPhenotypesResponse) SearchGenotypePhenotypeRequest = _reflection.GeneratedProtocolMessageType('SearchGenotypePhenotypeRequest', (_message.Message,), dict( DESCRIPTOR = _SEARCHGENOTYPEPHENOTYPEREQUEST, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchGenotypePhenotypeRequest) )) _sym_db.RegisterMessage(SearchGenotypePhenotypeRequest) SearchGenotypePhenotypeResponse = _reflection.GeneratedProtocolMessageType('SearchGenotypePhenotypeResponse', (_message.Message,), dict( DESCRIPTOR = _SEARCHGENOTYPEPHENOTYPERESPONSE, __module__ = 'ga4gh.schemas.ga4gh.genotype_phenotype_service_pb2' # @@protoc_insertion_point(class_scope:ga4gh.schemas.ga4gh.SearchGenotypePhenotypeResponse) )) _sym_db.RegisterMessage(SearchGenotypePhenotypeResponse) # @@protoc_insertion_point(module_scope)
[ 2, 2980, 515, 416, 262, 8435, 11876, 17050, 13, 220, 8410, 5626, 48483, 0, 198, 2, 2723, 25, 31986, 19, 456, 14, 1416, 4411, 292, 14, 4908, 19, 456, 14, 5235, 8690, 62, 31024, 8690, 62, 15271, 13, 1676, 1462, 198, 198, 11748, 25064, 198, 62, 65, 28, 17597, 13, 9641, 62, 10951, 58, 15, 60, 27, 18, 290, 357, 50033, 2124, 25, 87, 8, 393, 357, 50033, 2124, 25, 87, 13, 268, 8189, 10786, 75, 10680, 16, 6, 4008, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 355, 4808, 20147, 1968, 273, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 3275, 355, 4808, 20500, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 14580, 355, 4808, 5420, 1564, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 6194, 62, 48806, 355, 4808, 1837, 23650, 62, 48806, 198, 6738, 23645, 13, 11235, 672, 3046, 1330, 43087, 62, 40842, 17, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 320, 3742, 8, 198, 198, 62, 37047, 62, 9945, 796, 4808, 1837, 23650, 62, 48806, 13, 19463, 3419, 628, 198, 6738, 31986, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 1330, 2219, 62, 40842, 17, 355, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 198, 6738, 31986, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 1330, 2429, 8690, 62, 31024, 8690, 62, 40842, 17, 355, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 5235, 8690, 834, 31024, 8690, 834, 40842, 17, 198, 6738, 31986, 19, 456, 13, 1416, 4411, 292, 13, 13297, 13, 15042, 1330, 37647, 62, 40842, 17, 355, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 13297, 62, 26518, 62, 15042, 62, 26518, 62, 34574, 602, 834, 40842, 17, 628, 198, 30910, 36584, 32961, 796, 4808, 20147, 1968, 273, 13, 8979, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 4908, 19, 456, 14, 1416, 4411, 292, 14, 4908, 19, 456, 14, 5235, 8690, 62, 31024, 8690, 62, 15271, 13, 1676, 1462, 3256, 198, 220, 5301, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 3256, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 11389, 1143, 62, 40842, 28, 62, 65, 10786, 59, 77, 19, 4908, 19, 456, 14, 1416, 4411, 292, 14, 4908, 19, 456, 14, 5235, 8690, 62, 31024, 8690, 62, 15271, 13, 1676, 1462, 59, 87, 1065, 59, 87, 1485, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 59, 87, 16, 64, 31986, 19, 456, 14, 1416, 4411, 292, 14, 4908, 19, 456, 14, 11321, 13, 1676, 1462, 59, 87, 16, 64, 11, 4908, 19, 456, 14, 1416, 4411, 292, 14, 4908, 19, 456, 14, 5235, 8690, 62, 31024, 8690, 13, 1676, 1462, 59, 87, 16, 64, 9, 4908, 19, 456, 14, 1416, 4411, 292, 14, 13297, 14, 15042, 14, 34574, 602, 13, 1676, 1462, 7879, 65, 59, 77, 4, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 358, 265, 292, 316, 62, 312, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 83, 7700, 62, 7857, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 87, 3070, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 77, 7700, 62, 30001, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 7879, 59, 87, 6052, 59, 87, 486, 59, 77, 5, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 59, 87, 1065, 47, 59, 77, 59, 87, 16, 499, 831, 8690, 62, 562, 41003, 62, 28709, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 38508, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 47, 831, 8690, 8021, 41003, 7248, 59, 87, 1065, 59, 87, 1558, 59, 77, 59, 87, 15, 69, 19545, 62, 7700, 62, 30001, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 7879, 36, 59, 77, 59, 87, 1157, 45984, 1435, 40596, 20746, 59, 87, 1065, 59, 87, 1270, 59, 77, 59, 87, 2713, 38707, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 43179, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 7879, 46, 59, 77, 59, 87, 1558, 59, 87, 2231, 87, 4358, 33234, 7483, 20746, 59, 87, 1065, 59, 87, 2682, 59, 77, 59, 87, 3070, 2340, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 41506, 33234, 7483, 7879, 59, 27865, 19, 59, 87, 486, 59, 77, 59, 81, 46785, 20746, 59, 87, 1065, 59, 87, 2718, 59, 77, 59, 87, 15, 66, 59, 87, 2996, 85, 1704, 6030, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 43179, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 59, 87, 1065, 59, 87, 1485, 59, 77, 59, 87, 15, 65, 59, 87, 2414, 59, 87, 2996, 33584, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 2231, 59, 77, 59, 87, 1415, 59, 87, 2996, 87, 4358, 62, 738, 13350, 59, 87, 1507, 59, 87, 3070, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 4458, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 41506, 33234, 7483, 7879, 59, 27865, 23, 59, 87, 2999, 59, 77, 59, 87, 1558, 18243, 47, 831, 13567, 18453, 59, 87, 1065, 3, 59, 77, 59, 87, 16, 13155, 831, 8690, 62, 562, 41003, 62, 2617, 62, 312, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 77, 59, 77, 59, 87, 2999, 312, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1485, 59, 77, 59, 87, 15, 65, 59, 87, 2414, 59, 87, 2996, 33584, 59, 87, 1507, 59, 87, 3070, 3467, 87, 486, 38016, 83, 59, 87, 1065, 14, 59, 77, 59, 87, 3023, 4906, 59, 87, 1507, 59, 87, 3023, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 43179, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 59, 87, 1065, 59, 87, 2327, 59, 77, 59, 77, 13255, 13350, 59, 87, 1507, 59, 87, 2713, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 43179, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 59, 87, 1065, 59, 87, 2718, 59, 77, 59, 87, 15, 66, 59, 87, 5333, 469, 62, 1659, 62, 684, 316, 59, 87, 1507, 59, 87, 3312, 3467, 87, 486, 38016, 87, 15, 65, 59, 87, 2624, 43179, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 83, 7700, 62, 7857, 59, 87, 1507, 59, 87, 2998, 3467, 87, 486, 38016, 87, 3070, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 77, 7700, 62, 30001, 59, 87, 1507, 59, 87, 2919, 3467, 87, 486, 38016, 83, 7879, 78, 59, 77, 59, 87, 1507, 18243, 47, 831, 13567, 31077, 59, 87, 1065, 7479, 77, 59, 77, 31024, 13567, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 5, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 47, 831, 8690, 33384, 59, 87, 1065, 59, 87, 1558, 59, 77, 59, 87, 15, 69, 19545, 62, 7700, 62, 30001, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 7879, 59, 87, 12993, 59, 87, 486, 59, 77, 59, 87, 16, 68, 18243, 13746, 8690, 47, 831, 8690, 18453, 59, 87, 1065, 3, 59, 77, 59, 87, 16, 13155, 831, 8690, 62, 562, 41003, 62, 2617, 62, 312, 59, 87, 1507, 59, 87, 486, 3467, 87, 486, 38016, 83, 59, 87, 1065, 59, 87, 1485, 59, 77, 59, 87, 15, 65, 59, 87, 2791, 59, 87, 2996, 59, 87, 5333, 83, 495, 62, 2340, 59, 87, 1507, 59, 87, 2999, 3467, 87, 3070, 38016, 83, 59, 87, 1065, 59, 87, 1314, 59, 77, 59, 81, 31024, 8690, 62, 2340, 59, 87, 1507, 59, 87, 3070, 3467, 87, 3070, 38016, 83, 59, 87, 1065, 59, 87, 2682, 59, 77, 59, 87, 2919, 59, 87, 2996, 85, 1704, 59, 87, 1507, 59, 87, 3023, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 1911, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 59, 87, 1065, 59, 87, 1157, 59, 77, 59, 83, 7700, 62, 7857, 59, 87, 1507, 59, 87, 2713, 3467, 87, 486, 38016, 87, 3070, 59, 87, 1065, 59, 87, 1065, 59, 77, 59, 77, 7700, 62, 30001, 59, 87, 1507, 59, 87, 3312, 3467, 87, 486, 38016, 83, 7879, 59, 87, 6469, 59, 87, 486, 59, 77, 59, 87, 16, 69, 18243, 13746, 8690, 47, 831, 8690, 31077, 59, 87, 1065, 59, 87, 3510, 59, 77, 59, 87, 15, 66, 59, 87, 5333, 824, 1733, 602, 59, 87, 1507, 59, 87, 486, 3467, 87, 3070, 38016, 87, 15, 65, 59, 87, 2624, 59, 87, 1270, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 38816, 47, 831, 8690, 8021, 41003, 59, 87, 1065, 59, 87, 1558, 59, 77, 59, 87, 15, 69, 19545, 62, 7700, 62, 30001, 59, 87, 1507, 59, 87, 2999, 3467, 87, 486, 38016, 83, 17, 59, 87, 10210, 59, 87, 3023, 59, 77, 59, 87, 1507, 13746, 8690, 47, 831, 8690, 16177, 59, 87, 1065, 59, 24954, 15, 59, 87, 486, 59, 77, 59, 87, 16, 68, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 59, 87, 1065, 25, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 59, 87, 16, 64, 26, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 7879, 20, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 14, 7879, 16208, 85, 15, 13, 21, 13, 15, 64, 940, 14, 31024, 8690, 562, 1733, 602, 1039, 14, 12947, 7479, 87, 486, 9, 59, 87, 1065, 59, 87, 5607, 59, 87, 486, 59, 77, 59, 87, 15, 69, 18243, 47, 831, 8690, 59, 87, 1065, 38508, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 59, 87, 16, 64, 34507, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 31077, 7879, 43054, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 0, 7879, 59, 87, 16, 66, 14, 85, 15, 13, 21, 13, 15, 64, 940, 14, 31024, 13567, 14, 12947, 7479, 87, 486, 9, 59, 87, 1065, 59, 25306, 18, 59, 87, 486, 59, 77, 59, 87, 16, 65, 18243, 47, 831, 8690, 8021, 1733, 602, 59, 87, 1065, 59, 87, 2091, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 59, 87, 16, 64, 59, 87, 2682, 13, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 31077, 7879, 24, 59, 87, 6469, 59, 24954, 18, 59, 27705, 19, 59, 87, 6052, 59, 87, 2999, 59, 87, 2091, 59, 1911, 14, 85, 15, 13, 21, 13, 15, 64, 940, 14, 30053, 31024, 8690, 562, 1733, 602, 14, 12947, 7479, 87, 486, 9, 65, 59, 87, 3312, 1676, 1462, 18, 11537, 198, 220, 837, 198, 220, 20086, 41888, 4908, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 4908, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 5235, 8690, 834, 31024, 8690, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 4908, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 13297, 62, 26518, 62, 15042, 62, 26518, 62, 34574, 602, 834, 40842, 17, 13, 30910, 36584, 32961, 11, 12962, 198, 62, 37047, 62, 9945, 13, 38804, 8979, 24564, 1968, 273, 7, 30910, 36584, 32961, 8, 628, 628, 198, 62, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 32716, 2200, 35780, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 19608, 292, 316, 62, 312, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 13, 19608, 292, 316, 62, 312, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 7857, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 13, 7700, 62, 7857, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 18, 11, 269, 381, 62, 4906, 28, 17, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 15, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 13, 7700, 62, 30001, 3256, 6376, 28, 17, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 18, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 1264, 11, 198, 220, 11389, 1143, 62, 437, 28, 22579, 11, 198, 8, 628, 198, 62, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 2767, 12562, 1546, 47, 1340, 5188, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 31024, 8690, 62, 562, 41003, 62, 28709, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 13, 31024, 8690, 62, 562, 41003, 62, 28709, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 19545, 62, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 13, 19545, 62, 7700, 62, 30001, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 22709, 11, 198, 220, 11389, 1143, 62, 437, 28, 31911, 11, 198, 8, 628, 198, 62, 35830, 43781, 5781, 44, 10917, 19664, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 45984, 1435, 40596, 20746, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 20746, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 38707, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 20746, 13, 38707, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 36330, 11, 198, 220, 11389, 1143, 62, 437, 28, 31211, 11, 198, 8, 628, 198, 62, 6369, 31800, 1847, 25256, 5064, 38311, 10917, 19664, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 41506, 33234, 7483, 20746, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 41506, 33234, 7483, 20746, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 2340, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 41506, 33234, 7483, 20746, 13, 2340, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 49542, 11, 198, 220, 11389, 1143, 62, 437, 28, 41706, 11, 198, 8, 628, 198, 62, 36, 11008, 18310, 10917, 19664, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 46785, 20746, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 46817, 6030, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 13, 46817, 6030, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 11213, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 13, 11213, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 22615, 62, 738, 13350, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 13, 22615, 62, 738, 13350, 3256, 6376, 28, 17, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 18, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 31916, 11, 198, 220, 11389, 1143, 62, 437, 28, 30610, 11, 198, 8, 628, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 47, 831, 13567, 18453, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 31024, 8690, 62, 562, 41003, 62, 2617, 62, 312, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 31024, 8690, 62, 562, 41003, 62, 2617, 62, 312, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 312, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 312, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 11213, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 11213, 3256, 6376, 28, 17, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 18, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 4906, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 4906, 3256, 6376, 28, 18, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 19, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 13255, 13350, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 13255, 13350, 3256, 6376, 28, 19, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 20, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 496, 62, 1659, 62, 684, 316, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 496, 62, 1659, 62, 684, 316, 3256, 6376, 28, 20, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 21, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 7857, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 7700, 62, 7857, 3256, 6376, 28, 21, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 22, 11, 2099, 28, 18, 11, 269, 381, 62, 4906, 28, 17, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 15, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 13, 7700, 62, 30001, 3256, 6376, 28, 22, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 23, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 46761, 11, 198, 220, 11389, 1143, 62, 437, 28, 940, 3134, 11, 198, 8, 628, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 19535, 47, 1340, 5188, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 47, 831, 13567, 31077, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 31077, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 31024, 13567, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 31077, 13, 31024, 13567, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 19545, 62, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 31077, 13, 19545, 62, 7700, 62, 30001, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 940, 3388, 11, 198, 220, 11389, 1143, 62, 437, 28, 1157, 1795, 11, 198, 8, 628, 198, 62, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 48232, 9338, 35780, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 13746, 8690, 47, 831, 8690, 18453, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 31024, 8690, 62, 562, 41003, 62, 2617, 62, 312, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 31024, 8690, 62, 562, 41003, 62, 2617, 62, 312, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 30053, 62, 2340, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 30053, 62, 2340, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 31024, 8690, 62, 2340, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 31024, 8690, 62, 2340, 3256, 6376, 28, 17, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 18, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 46817, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 46817, 3256, 6376, 28, 18, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 19, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 7857, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 7700, 62, 7857, 3256, 6376, 28, 19, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 20, 11, 2099, 28, 18, 11, 269, 381, 62, 4906, 28, 17, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 15, 11, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 13, 7700, 62, 30001, 3256, 6376, 28, 20, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 21, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 1157, 5999, 11, 198, 220, 11389, 1143, 62, 437, 28, 1485, 3829, 11, 198, 8, 628, 198, 62, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 56, 18973, 1546, 47, 1340, 5188, 796, 4808, 20147, 1968, 273, 13, 24564, 1968, 273, 7, 198, 220, 1438, 11639, 18243, 13746, 8690, 47, 831, 8690, 31077, 3256, 198, 220, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 31077, 3256, 198, 220, 29472, 28, 14202, 11, 198, 220, 2393, 28, 30910, 36584, 32961, 11, 198, 220, 7268, 62, 4906, 28, 14202, 11, 198, 220, 7032, 41888, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 562, 1733, 602, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 31077, 13, 562, 1733, 602, 3256, 6376, 28, 15, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 16, 11, 2099, 28, 1157, 11, 269, 381, 62, 4906, 28, 940, 11, 6167, 28, 18, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 41888, 4357, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 220, 220, 4808, 20147, 1968, 273, 13, 15878, 24564, 1968, 273, 7, 198, 220, 220, 220, 220, 220, 1438, 11639, 19545, 62, 7700, 62, 30001, 3256, 1336, 62, 3672, 11639, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 31077, 13, 19545, 62, 7700, 62, 30001, 3256, 6376, 28, 16, 11, 198, 220, 220, 220, 220, 220, 1271, 28, 17, 11, 2099, 28, 24, 11, 269, 381, 62, 4906, 28, 24, 11, 6167, 28, 16, 11, 198, 220, 220, 220, 220, 220, 468, 62, 12286, 62, 8367, 28, 25101, 11, 4277, 62, 8367, 28, 62, 65, 7203, 11074, 12501, 1098, 10786, 40477, 12, 23, 33809, 198, 220, 220, 220, 220, 220, 3275, 62, 4906, 28, 14202, 11, 33829, 62, 4906, 28, 14202, 11, 7268, 62, 4906, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 318, 62, 2302, 3004, 28, 25101, 11, 7552, 62, 29982, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 3689, 28, 14202, 828, 198, 220, 16589, 198, 220, 18366, 41888, 198, 220, 16589, 198, 220, 28376, 62, 19199, 41888, 4357, 198, 220, 33829, 62, 19199, 41888, 198, 220, 16589, 198, 220, 3689, 28, 14202, 11, 198, 220, 318, 62, 2302, 437, 540, 28, 25101, 11, 198, 220, 15582, 11639, 1676, 1462, 18, 3256, 198, 220, 7552, 62, 81, 6231, 41888, 4357, 198, 220, 530, 1659, 82, 41888, 198, 220, 16589, 198, 220, 11389, 1143, 62, 9688, 28, 1485, 6052, 11, 198, 220, 11389, 1143, 62, 437, 28, 1314, 1954, 11, 198, 8, 198, 198, 62, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 2767, 12562, 1546, 47, 1340, 5188, 13, 25747, 62, 1525, 62, 3672, 17816, 31024, 8690, 62, 562, 41003, 62, 28709, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 5235, 8690, 834, 31024, 8690, 834, 40842, 17, 13557, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 2767, 198, 62, 35830, 43781, 5781, 44, 10917, 19664, 13, 25747, 62, 1525, 62, 3672, 17816, 38707, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 35830, 43781, 5781, 44, 198, 62, 6369, 31800, 1847, 25256, 5064, 38311, 10917, 19664, 13, 25747, 62, 1525, 62, 3672, 17816, 2340, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 6369, 31800, 1847, 25256, 5064, 38311, 198, 62, 36, 11008, 18310, 10917, 19664, 13, 25747, 62, 1525, 62, 3672, 17816, 46817, 6030, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 35830, 43781, 5781, 44, 198, 62, 36, 11008, 18310, 10917, 19664, 13, 25747, 62, 1525, 62, 3672, 17816, 22615, 62, 738, 13350, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 6369, 31800, 1847, 25256, 5064, 38311, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 13, 25747, 62, 1525, 62, 3672, 17816, 4906, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 35830, 43781, 5781, 44, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 13, 25747, 62, 1525, 62, 3672, 17816, 13255, 13350, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 35830, 43781, 5781, 44, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 13, 25747, 62, 1525, 62, 3672, 17816, 496, 62, 1659, 62, 684, 316, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 11321, 834, 40842, 17, 13557, 35830, 43781, 5781, 44, 198, 62, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 19535, 47, 1340, 5188, 13, 25747, 62, 1525, 62, 3672, 17816, 31024, 13567, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 5235, 8690, 834, 31024, 8690, 834, 40842, 17, 13557, 11909, 1677, 2394, 56, 11401, 38604, 19240, 198, 62, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 48232, 9338, 35780, 13, 25747, 62, 1525, 62, 3672, 17816, 46817, 6, 4083, 20500, 62, 4906, 796, 4808, 36, 11008, 18310, 10917, 19664, 198, 62, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 56, 18973, 1546, 47, 1340, 5188, 13, 25747, 62, 1525, 62, 3672, 17816, 562, 1733, 602, 6, 4083, 20500, 62, 4906, 796, 31986, 19, 456, 62, 26518, 62, 1416, 4411, 292, 62, 26518, 62, 4908, 19, 456, 62, 26518, 62, 5235, 8690, 834, 31024, 8690, 834, 40842, 17, 13557, 15112, 40086, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 6234, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 20520, 796, 4808, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 32716, 2200, 35780, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 20520, 796, 4808, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 2767, 12562, 1546, 47, 1340, 5188, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 45984, 1435, 40596, 20746, 20520, 796, 4808, 35830, 43781, 5781, 44, 10917, 19664, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 41506, 33234, 7483, 20746, 20520, 796, 4808, 6369, 31800, 1847, 25256, 5064, 38311, 10917, 19664, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 46785, 20746, 20520, 796, 4808, 36, 11008, 18310, 10917, 19664, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 47, 831, 13567, 18453, 20520, 796, 4808, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 47, 831, 13567, 31077, 20520, 796, 4808, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 19535, 47, 1340, 5188, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 13746, 8690, 47, 831, 8690, 18453, 20520, 796, 4808, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 48232, 9338, 35780, 198, 30910, 36584, 32961, 13, 20500, 62, 19199, 62, 1525, 62, 3672, 17816, 18243, 13746, 8690, 47, 831, 8690, 31077, 20520, 796, 4808, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 56, 18973, 1546, 47, 1340, 5188, 198, 198, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 32716, 2200, 35780, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 18453, 8, 198, 198, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 11909, 1677, 2394, 56, 11401, 10705, 4503, 40, 18421, 2767, 12562, 1546, 47, 1340, 5188, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 47, 831, 8690, 8021, 41003, 50, 1039, 31077, 8, 198, 198, 45984, 1435, 40596, 20746, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 45984, 1435, 40596, 20746, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 35830, 43781, 5781, 44, 10917, 19664, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 45984, 1435, 40596, 20746, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 45984, 1435, 40596, 20746, 8, 198, 198, 41506, 33234, 7483, 20746, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 41506, 33234, 7483, 20746, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 6369, 31800, 1847, 25256, 5064, 38311, 10917, 19664, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 41506, 33234, 7483, 20746, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 41506, 33234, 7483, 20746, 8, 198, 198, 46785, 20746, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 46785, 20746, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 36, 11008, 18310, 10917, 19664, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 46785, 20746, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 46785, 20746, 8, 198, 198, 18243, 47, 831, 13567, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 47, 831, 13567, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 2200, 35780, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 18453, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 47, 831, 13567, 18453, 8, 198, 198, 18243, 47, 831, 13567, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 47, 831, 13567, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 11909, 1677, 2394, 48232, 1546, 19535, 47, 1340, 5188, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 47, 831, 13567, 31077, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 47, 831, 13567, 31077, 8, 198, 198, 18243, 13746, 8690, 47, 831, 8690, 18453, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 13746, 8690, 47, 831, 8690, 18453, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 48232, 9338, 35780, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 18453, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 13746, 8690, 47, 831, 8690, 18453, 8, 198, 198, 18243, 13746, 8690, 47, 831, 8690, 31077, 796, 4808, 5420, 1564, 13, 8645, 515, 19703, 4668, 12837, 6030, 10786, 18243, 13746, 8690, 47, 831, 8690, 31077, 3256, 44104, 20500, 13, 12837, 11, 828, 8633, 7, 198, 220, 22196, 36584, 32961, 796, 4808, 5188, 31315, 35353, 2394, 48232, 8905, 39, 1677, 2394, 56, 18973, 1546, 47, 1340, 5188, 11, 198, 220, 11593, 21412, 834, 796, 705, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 5235, 8690, 62, 31024, 8690, 62, 15271, 62, 40842, 17, 6, 198, 220, 1303, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 4871, 62, 29982, 25, 4908, 19, 456, 13, 1416, 4411, 292, 13, 4908, 19, 456, 13, 18243, 13746, 8690, 47, 831, 8690, 31077, 8, 198, 220, 15306, 198, 62, 37047, 62, 9945, 13, 38804, 12837, 7, 18243, 13746, 8690, 47, 831, 8690, 31077, 8, 628, 198, 2, 25248, 11235, 420, 62, 28463, 295, 62, 4122, 7, 21412, 62, 29982, 8, 198 ]
2.396204
10,275
import os, logging from typing import Any from dotenv import load_dotenv from supabase import create_client, Client from headlinenews import RSSParser from postgrest_py import exceptions
[ 11748, 28686, 11, 18931, 198, 6738, 19720, 1330, 4377, 198, 6738, 16605, 24330, 1330, 3440, 62, 26518, 24330, 198, 6738, 7418, 5754, 1330, 2251, 62, 16366, 11, 20985, 198, 6738, 1182, 2815, 268, 15515, 1330, 19340, 4303, 28198, 198, 6738, 1281, 70, 2118, 62, 9078, 1330, 13269, 628 ]
3.916667
48
import asyncio import functools def futurized(o): ''' Makes the given object to be awaitable. :param any o: Object to wrap :return: awaitable that resolves to provided object :rtype: asyncio.Future Anything passed to :code:`futurized` is wrapped in :code:`asyncio.Future`. This makes it awaitable (can be run with :code:`await` or :code:`yield from`) as a result of await it returns the original object. If provided object is a Exception (or its sublcass) then the `Future` will raise it on await. .. code-block:: python fut = aiounittest.futurized('SOME TEXT') ret = await fut print(ret) # prints SOME TEXT fut = aiounittest.futurized(Exception('Dummy error')) ret = await fut # will raise the exception "dummy error" The main goal is to use it with :code:`unittest.mock.Mock` (or :code:`MagicMock`) to be able to mock awaitable functions (coroutines). Consider the below code .. code-block:: python from asyncio import sleep async def add(x, y): await sleep(666) return x + y You rather don't want to wait 666 seconds, you've gotta mock that. .. code-block:: python from aiounittest import futurized, AsyncTestCase from unittest.mock import Mock, patch import dummy_math class MyAddTest(AsyncTestCase): async def test_add(self): mock_sleep = Mock(return_value=futurized('whatever')) patch('dummy_math.sleep', mock_sleep).start() ret = await dummy_math.add(5, 6) self.assertEqual(ret, 11) mock_sleep.assert_called_once_with(666) async def test_fail(self): mock_sleep = Mock(return_value=futurized(Exception('whatever'))) patch('dummy_math.sleep', mock_sleep).start() with self.assertRaises(Exception) as e: await dummy_math.add(5, 6) mock_sleep.assert_called_once_with(666) ''' f = asyncio.Future() if isinstance(o, Exception): f.set_exception(o) else: f.set_result(o) return f def run_sync(func=None, loop=None): ''' Runs synchonously given function (coroutine) :param callable func: function to run (mostly coroutine) :param ioloop loop: event loop to use to run `func` :type loop: event loop of None By default the brand new event loop will be created (old closed). After completion, the loop will be closed and then recreated, set as default, leaving asyncio clean. **Note**: :code:`aiounittest.async_test` is an alias of :code:`aiounittest.helpers.run_sync` Function can be used like a `pytest.mark.asyncio` (implemetation differs), but it's compatible with :code:`unittest.TestCase` class. .. code-block:: python import asyncio import unittest from aiounittest import async_test async def add(x, y): await asyncio.sleep(0.1) return x + y class MyAsyncTestDecorator(unittest.TestCase): @async_test async def test_async_add(self): ret = await add(5, 6) self.assertEqual(ret, 11) .. note:: If the loop is provided, it won't be closed. It's up to you. This function is also used internally by :code:`aiounittest.AsyncTestCase` to run coroutines. ''' if func is None: return decorator else: return decorator(func) async_test = run_sync
[ 11748, 30351, 952, 198, 11748, 1257, 310, 10141, 628, 198, 4299, 13294, 44796, 7, 78, 2599, 198, 220, 220, 220, 705, 7061, 27433, 262, 1813, 2134, 284, 307, 25507, 540, 13, 628, 220, 220, 220, 1058, 17143, 597, 267, 25, 9515, 284, 14441, 198, 220, 220, 220, 1058, 7783, 25, 25507, 540, 326, 38709, 284, 2810, 2134, 198, 220, 220, 220, 1058, 81, 4906, 25, 30351, 952, 13, 29783, 628, 220, 220, 220, 21035, 3804, 284, 1058, 8189, 25, 63, 69, 315, 44796, 63, 318, 12908, 287, 1058, 8189, 25, 63, 292, 13361, 952, 13, 29783, 44646, 198, 220, 220, 220, 770, 1838, 340, 25507, 540, 357, 5171, 307, 1057, 351, 1058, 8189, 25, 63, 707, 4548, 63, 393, 1058, 8189, 25, 63, 88, 1164, 422, 63, 8, 355, 198, 220, 220, 220, 257, 1255, 286, 25507, 340, 5860, 262, 2656, 2134, 13, 628, 220, 220, 220, 1002, 2810, 2134, 318, 257, 35528, 357, 273, 663, 850, 44601, 562, 8, 788, 262, 4600, 29783, 63, 481, 5298, 340, 319, 25507, 13, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 13294, 796, 257, 72, 977, 715, 395, 13, 69, 315, 44796, 10786, 50, 13649, 40383, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 25507, 13294, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 1186, 8, 220, 1303, 20842, 41670, 40383, 628, 220, 220, 220, 220, 220, 220, 220, 13294, 796, 257, 72, 977, 715, 395, 13, 69, 315, 44796, 7, 16922, 10786, 35, 13513, 4049, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 25507, 13294, 220, 1303, 481, 5298, 262, 6631, 366, 67, 13513, 4049, 1, 628, 198, 220, 220, 220, 383, 1388, 3061, 318, 284, 779, 340, 351, 1058, 8189, 25, 63, 403, 715, 395, 13, 76, 735, 13, 44, 735, 63, 357, 273, 1058, 8189, 25, 63, 22975, 44, 735, 63, 8, 284, 198, 220, 220, 220, 307, 1498, 284, 15290, 25507, 540, 5499, 357, 10215, 448, 1127, 737, 628, 198, 220, 220, 220, 12642, 262, 2174, 2438, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 30351, 952, 1330, 3993, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 825, 751, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 3993, 7, 27310, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 1343, 331, 628, 220, 220, 220, 921, 2138, 836, 470, 765, 284, 4043, 43364, 4201, 11, 345, 1053, 17753, 15290, 326, 13, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 257, 72, 977, 715, 395, 1330, 13294, 44796, 11, 1081, 13361, 14402, 20448, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 555, 715, 395, 13, 76, 735, 1330, 44123, 11, 8529, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 31548, 62, 11018, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 4550, 14402, 7, 42367, 14402, 20448, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 825, 1332, 62, 2860, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 42832, 796, 44123, 7, 7783, 62, 8367, 28, 69, 315, 44796, 10786, 39664, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8529, 10786, 67, 13513, 62, 11018, 13, 42832, 3256, 15290, 62, 42832, 737, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 25507, 31548, 62, 11018, 13, 2860, 7, 20, 11, 718, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 1186, 11, 1367, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 42832, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 27310, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 825, 1332, 62, 32165, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 42832, 796, 44123, 7, 7783, 62, 8367, 28, 69, 315, 44796, 7, 16922, 10786, 39664, 6, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8529, 10786, 67, 13513, 62, 11018, 13, 42832, 3256, 15290, 62, 42832, 737, 9688, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 16922, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 31548, 62, 11018, 13, 2860, 7, 20, 11, 718, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15290, 62, 42832, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 27310, 8, 628, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 277, 796, 30351, 952, 13, 29783, 3419, 198, 220, 220, 220, 611, 318, 39098, 7, 78, 11, 35528, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 2617, 62, 1069, 4516, 7, 78, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 2617, 62, 20274, 7, 78, 8, 198, 220, 220, 220, 1441, 277, 628, 198, 4299, 1057, 62, 27261, 7, 20786, 28, 14202, 11, 9052, 28, 14202, 2599, 198, 220, 220, 220, 705, 7061, 44743, 6171, 354, 261, 3481, 1813, 2163, 357, 10215, 28399, 8, 628, 220, 220, 220, 1058, 17143, 869, 540, 25439, 25, 2163, 284, 1057, 357, 29471, 1162, 28399, 8, 198, 220, 220, 220, 1058, 17143, 1312, 349, 11224, 9052, 25, 1785, 9052, 284, 779, 284, 1057, 4600, 20786, 63, 198, 220, 220, 220, 1058, 4906, 9052, 25, 1785, 9052, 286, 6045, 628, 220, 220, 220, 2750, 4277, 262, 4508, 649, 1785, 9052, 481, 307, 2727, 357, 727, 4838, 737, 2293, 11939, 11, 262, 9052, 481, 307, 4838, 290, 788, 11027, 515, 11, 900, 355, 4277, 11, 198, 220, 220, 220, 4305, 30351, 952, 3424, 13, 628, 220, 220, 220, 12429, 6425, 1174, 25, 1058, 8189, 25, 63, 1872, 977, 715, 395, 13, 292, 13361, 62, 9288, 63, 318, 281, 16144, 286, 1058, 8189, 25, 63, 1872, 977, 715, 395, 13, 16794, 364, 13, 5143, 62, 27261, 63, 628, 220, 220, 220, 15553, 460, 307, 973, 588, 257, 4600, 9078, 9288, 13, 4102, 13, 292, 13361, 952, 63, 357, 320, 1154, 4164, 341, 24242, 828, 198, 220, 220, 220, 475, 340, 338, 11670, 351, 1058, 8189, 25, 63, 403, 715, 395, 13, 14402, 20448, 63, 1398, 13, 628, 220, 220, 220, 11485, 2438, 12, 9967, 3712, 21015, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 30351, 952, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1330, 555, 715, 395, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 422, 257, 72, 977, 715, 395, 1330, 30351, 62, 9288, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 825, 751, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25507, 30351, 952, 13, 42832, 7, 15, 13, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 1343, 331, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 42367, 14402, 10707, 273, 1352, 7, 403, 715, 395, 13, 14402, 20448, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 292, 13361, 62, 9288, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 825, 1332, 62, 292, 13361, 62, 2860, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1005, 796, 25507, 751, 7, 20, 11, 718, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 1186, 11, 1367, 8, 628, 198, 220, 220, 220, 11485, 3465, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 9052, 318, 2810, 11, 340, 1839, 470, 307, 4838, 13, 632, 338, 510, 284, 345, 13, 628, 220, 220, 220, 770, 2163, 318, 635, 973, 20947, 416, 1058, 8189, 25, 63, 1872, 977, 715, 395, 13, 42367, 14402, 20448, 63, 284, 1057, 1162, 448, 1127, 13, 628, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 611, 25439, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11705, 1352, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11705, 1352, 7, 20786, 8, 628, 198, 292, 13361, 62, 9288, 796, 1057, 62, 27261, 198 ]
2.289067
1,619
""" check engine light """ import tkinter as tk from tkinter import ttk from typing import TYPE_CHECKING, Dict, Optional from core.gui.dialogs.dialog import Dialog from core.gui.themes import PADX, PADY from core.gui.widgets import CodeText from core.gui.wrappers import ExceptionEvent, ExceptionLevel if TYPE_CHECKING: from core.gui.app import Application
[ 37811, 198, 9122, 3113, 1657, 198, 37811, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 6738, 256, 74, 3849, 1330, 256, 30488, 198, 6738, 19720, 1330, 41876, 62, 50084, 2751, 11, 360, 713, 11, 32233, 198, 198, 6738, 4755, 13, 48317, 13, 38969, 18463, 13, 38969, 519, 1330, 21269, 519, 198, 6738, 4755, 13, 48317, 13, 1169, 6880, 1330, 350, 2885, 55, 11, 350, 2885, 56, 198, 6738, 4755, 13, 48317, 13, 28029, 11407, 1330, 6127, 8206, 198, 6738, 4755, 13, 48317, 13, 29988, 11799, 1330, 35528, 9237, 11, 35528, 4971, 198, 198, 361, 41876, 62, 50084, 2751, 25, 198, 220, 220, 220, 422, 4755, 13, 48317, 13, 1324, 1330, 15678, 628 ]
3.221239
113
""" Game fix for STAR WARS Galactic Battlegrounds Saga """ #pylint: disable=C0103 from protonfixes import util
[ 37811, 3776, 4259, 329, 25424, 11837, 50, 23509, 12350, 28272, 82, 19743, 198, 37811, 198, 198, 2, 79, 2645, 600, 25, 15560, 28, 34, 486, 3070, 198, 198, 6738, 386, 1122, 42624, 1330, 7736, 198 ]
3.228571
35
a=1 b=2 c=3 d=4 你是不是个沙雕 f=6
[ 64, 28, 16, 198, 65, 28, 17, 198, 66, 28, 18, 198, 67, 28, 19, 198, 19526, 254, 42468, 38834, 42468, 10310, 103, 162, 110, 247, 37239, 243, 198, 69, 28, 21, 198 ]
0.848485
33
import os import uuid from viadot.sources import AzureDataLake from viadot.tasks import ( AzureDataLakeDownload, AzureDataLakeToDF, AzureDataLakeUpload, AzureDataLakeCopy, AzureDataLakeList, ) uuid_4 = uuid.uuid4() uuid_4_2 = uuid.uuid4() file_name = f"test_file_{uuid_4}.csv" file_name_2 = f"test_file_{uuid_4}.csv" adls_path = f"raw/supermetrics/{file_name}" adls_path_2 = f"raw/supermetrics/{file_name_2}" file_name_parquet = f"test_file_{uuid_4}.parquet" adls_path_parquet = f"raw/supermetrics/{file_name_parquet}" # TODO: add pytest-depends as download tests depend on the upload # and can't be ran separately
[ 11748, 28686, 198, 11748, 334, 27112, 198, 198, 6738, 25357, 324, 313, 13, 82, 2203, 1330, 22134, 6601, 43035, 198, 6738, 25357, 324, 313, 13, 83, 6791, 1330, 357, 198, 220, 220, 220, 22134, 6601, 43035, 10002, 11, 198, 220, 220, 220, 22134, 6601, 43035, 2514, 8068, 11, 198, 220, 220, 220, 22134, 6601, 43035, 41592, 11, 198, 220, 220, 220, 22134, 6601, 43035, 29881, 11, 198, 220, 220, 220, 22134, 6601, 43035, 8053, 11, 198, 8, 198, 198, 12303, 312, 62, 19, 796, 334, 27112, 13, 12303, 312, 19, 3419, 198, 12303, 312, 62, 19, 62, 17, 796, 334, 27112, 13, 12303, 312, 19, 3419, 198, 198, 7753, 62, 3672, 796, 277, 1, 9288, 62, 7753, 23330, 12303, 312, 62, 19, 27422, 40664, 1, 198, 7753, 62, 3672, 62, 17, 796, 277, 1, 9288, 62, 7753, 23330, 12303, 312, 62, 19, 27422, 40664, 1, 198, 324, 7278, 62, 6978, 796, 277, 1, 1831, 14, 16668, 4164, 10466, 14, 90, 7753, 62, 3672, 36786, 198, 324, 7278, 62, 6978, 62, 17, 796, 277, 1, 1831, 14, 16668, 4164, 10466, 14, 90, 7753, 62, 3672, 62, 17, 36786, 198, 198, 7753, 62, 3672, 62, 1845, 21108, 796, 277, 1, 9288, 62, 7753, 23330, 12303, 312, 62, 19, 27422, 1845, 21108, 1, 198, 324, 7278, 62, 6978, 62, 1845, 21108, 796, 277, 1, 1831, 14, 16668, 4164, 10466, 14, 90, 7753, 62, 3672, 62, 1845, 21108, 36786, 198, 198, 2, 16926, 46, 25, 751, 12972, 9288, 12, 10378, 2412, 355, 4321, 5254, 4745, 319, 262, 9516, 198, 2, 290, 460, 470, 307, 4966, 13869, 628, 628, 628, 198 ]
2.428571
266
#Author: Satwik Bhattamishra import tensorflow as tf import numpy as np import tensorflow.examples.tutorials.mnist.input_data as input_data if __name__ == '__main__': denoising_autoencoder()
[ 2, 13838, 25, 7031, 20763, 347, 11653, 321, 680, 430, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 11192, 273, 11125, 13, 1069, 12629, 13, 83, 44917, 82, 13, 10295, 396, 13, 15414, 62, 7890, 355, 5128, 62, 7890, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 6559, 78, 1710, 62, 2306, 6571, 66, 12342, 3419, 198 ]
2.746479
71
# -*- coding: utf-8 -*- """ @Time : 2020/10/25 17:14 @Auth : Qi @IDE : PyCharm @Title: 845. 数组中的最长山脉 @Link : https://leetcode-cn.com/problems/longest-mountain-in-array/ """ if __name__ == '__main__': # 测试用例 s = Solution() print(s.longestMountain([2, 1, 4, 7, 3, 2, 5])) print(s.longestMountain([0, 1, 0, 0, 1, 1, 1, 1])) print(s.longestMountain([2, 2, 2]))
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 31, 7575, 1058, 12131, 14, 940, 14, 1495, 1596, 25, 1415, 198, 31, 30515, 1058, 21924, 198, 31, 14114, 220, 1058, 9485, 1925, 1670, 198, 31, 19160, 25, 807, 2231, 13, 10545, 243, 108, 163, 119, 226, 40792, 21410, 17312, 222, 165, 243, 123, 161, 109, 109, 164, 226, 231, 198, 31, 11280, 1058, 3740, 1378, 293, 316, 8189, 12, 31522, 13, 785, 14, 1676, 22143, 14, 6511, 395, 12, 14948, 391, 12, 259, 12, 18747, 14, 198, 37811, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 10545, 113, 233, 46237, 243, 18796, 101, 160, 122, 233, 198, 220, 220, 220, 264, 796, 28186, 3419, 198, 220, 220, 220, 3601, 7, 82, 13, 6511, 395, 44, 18635, 26933, 17, 11, 352, 11, 604, 11, 767, 11, 513, 11, 362, 11, 642, 60, 4008, 198, 220, 220, 220, 3601, 7, 82, 13, 6511, 395, 44, 18635, 26933, 15, 11, 352, 11, 657, 11, 657, 11, 352, 11, 352, 11, 352, 11, 352, 60, 4008, 198, 220, 220, 220, 3601, 7, 82, 13, 6511, 395, 44, 18635, 26933, 17, 11, 362, 11, 362, 60, 4008, 198 ]
1.814286
210
import os import time import cv2 from inference_new import * import argparse from glob import glob if __name__ == "__main__": parser = argparse.ArgumentParser(description="Command for running the Inpainting Pipeline on RGBD satellite imagery") parser.add_argument('--gpu', type=str, default='0', help='the gpu that will be used, e.g "0"') parser.add_argument('--nrep', type=int, default=9, help='repeated depth-inpainting iterations (def: 9)') parser.add_argument('--input-rgb', type=str, default='./example_input_RGB.png', help='path to the 3-channel RGB input file.') parser.add_argument('--input-dsm', type=str, default='./example_input_DSM.tif', help='path to the DSM input file.') parser.add_argument('--input-dtm', type=str, default='./example_input_DTM.tif', help='path to the DTM input file.') parser.add_argument('--outputdir', type=str, default='./results', help='path to write output prediction') parser.add_argument('--outputfile', type=str, default='example_output', help='Inpainted output') parser.add_argument('--fp16', action='store_true', default=False, help='whether to use FP16 inference.') parser.add_argument('--trn-dir', type=str, default='./models', help='directory which contains caffe model for inference') parser.add_argument('--iter', type=int, default=0, help='which iteration model to choose (def: 0 [choose latest])') parser.add_argument('--model-type', type=str, default='rgbd', help='Model Type') parser.add_argument('--extra-pad', type=int, default=0, help='add extra mirror padding to input ' '[sometimes improves results at border pixels] (def: 0)') args = parser.parse_args() log.info(args) main()
[ 11748, 28686, 198, 11748, 640, 198, 11748, 269, 85, 17, 198, 6738, 32278, 62, 3605, 1330, 1635, 198, 11748, 1822, 29572, 198, 6738, 15095, 1330, 15095, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 21575, 329, 2491, 262, 554, 35436, 889, 37709, 319, 25228, 35, 11210, 19506, 4943, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 46999, 3256, 2099, 28, 2536, 11, 4277, 11639, 15, 3256, 1037, 11639, 1169, 308, 19944, 326, 481, 307, 973, 11, 304, 13, 70, 366, 15, 1, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 77, 7856, 3256, 2099, 28, 600, 11, 4277, 28, 24, 11, 1037, 11639, 45956, 515, 6795, 12, 259, 35436, 889, 34820, 357, 4299, 25, 860, 8, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 12, 81, 22296, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 20688, 62, 15414, 62, 36982, 13, 11134, 3256, 1037, 11639, 6978, 284, 262, 513, 12, 17620, 25228, 5128, 2393, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 12, 67, 5796, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 20688, 62, 15414, 62, 5258, 44, 13, 49929, 3256, 1037, 11639, 6978, 284, 262, 37297, 5128, 2393, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15414, 12, 67, 17209, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 20688, 62, 15414, 62, 35, 15972, 13, 49929, 3256, 1037, 11639, 6978, 284, 262, 360, 15972, 5128, 2393, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22915, 15908, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 43420, 3256, 1037, 11639, 6978, 284, 3551, 5072, 17724, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 22915, 7753, 3256, 2099, 28, 2536, 11, 4277, 11639, 20688, 62, 22915, 3256, 1037, 11639, 818, 47351, 5072, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 46428, 1433, 3256, 2223, 11639, 8095, 62, 7942, 3256, 4277, 28, 25101, 11, 1037, 11639, 25356, 284, 779, 31459, 1433, 32278, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 2213, 77, 12, 15908, 3256, 2099, 28, 2536, 11, 4277, 28, 4458, 14, 27530, 3256, 1037, 11639, 34945, 543, 4909, 21121, 2746, 329, 32278, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 2676, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 11639, 4758, 24415, 2746, 284, 3853, 357, 4299, 25, 657, 685, 6679, 577, 3452, 12962, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19849, 12, 4906, 3256, 2099, 28, 2536, 11, 4277, 11639, 41345, 17457, 3256, 1037, 11639, 17633, 5994, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 26086, 12, 15636, 3256, 2099, 28, 600, 11, 4277, 28, 15, 11, 1037, 11639, 2860, 3131, 10162, 24511, 284, 5128, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 44438, 29810, 19575, 2482, 379, 4865, 17848, 60, 357, 4299, 25, 657, 8, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 2604, 13, 10951, 7, 22046, 8, 198, 220, 220, 220, 1388, 3419 ]
2.877651
613
from __future__ import print_function from __future__ import division from builtins import zip from builtins import range from builtins import object from past.utils import old_div __author__ = 'grburgess' import collections import os import numpy as np import pandas as pd from pandas import HDFStore from threeML.exceptions.custom_exceptions import custom_warnings from threeML.io.file_utils import sanitize_filename from threeML.utils.spectrum.binned_spectrum import Quality from threeML.utils.time_interval import TimeIntervalSet from threeML.utils.time_series.polynomial import polyfit, unbinned_polyfit, Polynomial # find out how many splits we need to make
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 3170, 1040, 1330, 19974, 198, 6738, 3170, 1040, 1330, 2837, 198, 6738, 3170, 1040, 1330, 2134, 198, 6738, 1613, 13, 26791, 1330, 1468, 62, 7146, 198, 834, 9800, 834, 796, 705, 2164, 7423, 408, 6, 198, 198, 11748, 17268, 198, 11748, 28686, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 19798, 292, 1330, 5572, 37, 22658, 198, 198, 6738, 1115, 5805, 13, 1069, 11755, 13, 23144, 62, 1069, 11755, 1330, 2183, 62, 40539, 654, 198, 6738, 1115, 5805, 13, 952, 13, 7753, 62, 26791, 1330, 5336, 270, 1096, 62, 34345, 198, 6738, 1115, 5805, 13, 26791, 13, 4443, 6582, 13, 8800, 2817, 62, 4443, 6582, 1330, 14156, 198, 6738, 1115, 5805, 13, 26791, 13, 2435, 62, 3849, 2100, 1330, 3862, 9492, 2100, 7248, 198, 6738, 1115, 5805, 13, 26791, 13, 2435, 62, 25076, 13, 35428, 26601, 498, 1330, 7514, 11147, 11, 555, 8800, 2817, 62, 35428, 11147, 11, 12280, 26601, 498, 628, 628, 198, 198, 2, 1064, 503, 703, 867, 30778, 356, 761, 284, 787, 628 ]
3.52356
191
import requests import json from flask.cli import FlaskGroup from flask import jsonify from serivce.app import create_app app = create_app() data = json.dumps(dict(name='service', port='8000')) headers = {'Content-type': 'application/json'} requests.post('http://localhost:5000/instance', headers=headers, data=data) cli = FlaskGroup(app) if __name__ == '__main__': cli()
[ 11748, 7007, 198, 11748, 33918, 198, 198, 6738, 42903, 13, 44506, 1330, 46947, 13247, 198, 6738, 42903, 1330, 33918, 1958, 198, 6738, 1055, 452, 344, 13, 1324, 1330, 2251, 62, 1324, 198, 198, 1324, 796, 2251, 62, 1324, 3419, 628, 198, 7890, 796, 33918, 13, 67, 8142, 7, 11600, 7, 3672, 11639, 15271, 3256, 2493, 11639, 33942, 6, 4008, 198, 50145, 796, 1391, 6, 19746, 12, 4906, 10354, 705, 31438, 14, 17752, 6, 92, 198, 8897, 3558, 13, 7353, 10786, 4023, 1378, 36750, 25, 27641, 14, 39098, 3256, 24697, 28, 50145, 11, 1366, 28, 7890, 8, 198, 198, 44506, 796, 46947, 13247, 7, 1324, 8, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 537, 72, 3419, 198 ]
3.056
125
"""Canvas that displays the full game board.""" # Standard Python Libraries import tkinter as tk # Third-Party Libraries import numpy as np from . import constants from .board import DorfBoard
[ 37811, 6090, 11017, 326, 11298, 262, 1336, 983, 3096, 526, 15931, 198, 2, 8997, 11361, 46267, 198, 11748, 256, 74, 3849, 355, 256, 74, 198, 198, 2, 10467, 12, 33553, 46267, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 764, 1330, 38491, 198, 6738, 764, 3526, 1330, 12528, 69, 29828, 628, 628 ]
3.735849
53
import requests from bs4 import BeautifulSoup from tabulate import tabulate
[ 11748, 7007, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 6738, 7400, 5039, 1330, 7400, 5039, 198 ]
4
19
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Parser test for MacOS Cups IPP Log files.""" import unittest from dfvfs.helpers import fake_file_system_builder from dfvfs.path import fake_path_spec from plaso.lib import definitions from plaso.lib import errors from plaso.parsers import cups_ipp from tests.parsers import test_lib class CupsIppParserTest(test_lib.ParserTestCase): """Tests for MacOS Cups IPP parser.""" # pylint: disable=protected-access _ATTRIBUTES_GROUP_DATA = bytes(bytearray([ 0x01, 0x47, 0x00, 0x12, 0x61, 0x74, 0x74, 0x72, 0x69, 0x62, 0x75, 0x74, 0x65, 0x73, 0x2d, 0x63, 0x68, 0x61, 0x72, 0x73, 0x65, 0x74, 0x00, 0x05, 0x75, 0x74, 0x66, 0x2d, 0x38, 0x03])) def _CreateAttributeTestData(self, parser, tag_value, name, value_data): """Creates attribute test data. Args: parser (CupsIppParser): CUPS IPP parser. tag_value (int): value of the attribute tag. name (str): name of the attribute. value_data (bytes): data of the attribute value. Returns: bytes: attribute test data. """ attribute_map = parser._GetDataTypeMap('cups_ipp_attribute') attribute = attribute_map.CreateStructureValues( tag_value=tag_value, name_size=len(name), name=name, value_data_size=len(value_data), value_data=value_data) return attribute_map.FoldByteStream(attribute) def _CreateDateTimeValueData(self, parser): """Creates date time value test data. Args: parser (CupsIppParser): CUPS IPP parser. Returns: bytes: date time value test data. """ datetime_map = parser._GetDataTypeMap('cups_ipp_datetime_value') datetime = datetime_map.CreateStructureValues( year=2018, month=11, day_of_month=27, hours=16, minutes=41, seconds=51, deciseconds=5, direction_from_utc=ord('+'), hours_from_utc=1, minutes_from_utc=0) return datetime_map.FoldByteStream(datetime) def _CreateHeaderData(self, parser): """Creates header test data. Args: parser (CupsIppParser): CUPS IPP parser. Returns: bytes: header test data. """ header_map = parser._GetDataTypeMap('cups_ipp_header') header = header_map.CreateStructureValues( major_version=1, minor_version=1, operation_identifier=5, request_identifier=0) return header_map.FoldByteStream(header) def testGetStringValue(self): """Tests the _GetStringValue function.""" parser = cups_ipp.CupsIppParser() string_value = parser._GetStringValue({}, 'test') self.assertIsNone(string_value) string_value = parser._GetStringValue({'test': ['1', '2,3', '4']}, 'test') self.assertEqual(string_value, '1, "2,3", 4') def testParseAttribute(self): """Tests the _ParseAttribute function.""" parser = cups_ipp.CupsIppParser() attribute_data = self._CreateAttributeTestData( parser, 0x00, 'test', b'\x12') file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'test') self.assertEqual(value, b'\x12') # Test with attribute data too small. file_object = self._CreateFileObject('cups_ipp', attribute_data[:-1]) with self.assertRaises(errors.ParseError): parser._ParseAttribute(file_object) # Test attribute with integer value. attribute_data = self._CreateAttributeTestData( parser, 0x21, 'int', b'\x12\x34\x56\x78') file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'int') self.assertEqual(value, 0x12345678) # Test attribute with boolean value. attribute_data = self._CreateAttributeTestData( parser, 0x22, 'bool', b'\x01') file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'bool') self.assertEqual(value, True) # Test attribute with date time value. datetime_data = self._CreateDateTimeValueData(parser) attribute_data = self._CreateAttributeTestData( parser, 0x31, 'datetime', datetime_data) file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'datetime') self.assertIsNotNone(value) self.assertEqual(value.year, 2018) # Test attribute with string without language. attribute_data = self._CreateAttributeTestData( parser, 0x42, 'string', b'NOLANG') file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'string') self.assertEqual(value, 'NOLANG') # Test attribute with ASCII string and tag value charset. attribute_data = self._CreateAttributeTestData( parser, 0x47, 'charset', b'utf8') file_object = self._CreateFileObject('cups_ipp', attribute_data) name, value = parser._ParseAttribute(file_object) self.assertEqual(name, 'charset') self.assertEqual(value, 'utf8') def testParseAttributesGroup(self): """Tests the _ParseAttributesGroup function.""" parser = cups_ipp.CupsIppParser() file_object = self._CreateFileObject( 'cups_ipp', self._ATTRIBUTES_GROUP_DATA) name_value_pairs = list(parser._ParseAttributesGroup(file_object)) self.assertEqual(name_value_pairs, [('attributes-charset', 'utf-8')]) # Test with unsupported attributes groups start tag value. file_object = self._CreateFileObject('cups_ipp', b''.join([ b'\xff', self._ATTRIBUTES_GROUP_DATA[1:]])) with self.assertRaises(errors.ParseError): list(parser._ParseAttributesGroup(file_object)) def testParseBooleanValue(self): """Tests the _ParseBooleanValue function.""" parser = cups_ipp.CupsIppParser() boolean_value = parser._ParseBooleanValue(b'\x00') self.assertFalse(boolean_value) boolean_value = parser._ParseBooleanValue(b'\x01') self.assertTrue(boolean_value) # Test with unsupported data. with self.assertRaises(errors.ParseError): parser._ParseBooleanValue(b'\x02') def testParseDateTimeValue(self): """Tests the _ParseDateTimeValue function.""" parser = cups_ipp.CupsIppParser() datetime_data = self._CreateDateTimeValueData(parser) datetime_value = parser._ParseDateTimeValue(datetime_data, 0) self.assertIsNotNone(datetime_value) self.assertEqual(datetime_value.year, 2018) # Test with data too small. with self.assertRaises(errors.ParseError): parser._ParseDateTimeValue(datetime_data[:-1], 0) def testParseIntegerValue(self): """Tests the _ParseIntegerValue function.""" parser = cups_ipp.CupsIppParser() integer_value = parser._ParseIntegerValue(b'\x00\x00\x00\x01', 0) self.assertEqual(integer_value, 1) # Test with data too small. with self.assertRaises(errors.ParseError): parser._ParseIntegerValue(b'\x01\x00\x00', 0) def testParseHeader(self): """Tests the _ParseHeader function.""" file_system_builder = fake_file_system_builder.FakeFileSystemBuilder() file_system_builder.AddFile('/cups_ipp', b'') test_path_spec = fake_path_spec.FakePathSpec(location='/cups_ipp') test_file_entry = file_system_builder.file_system.GetFileEntryByPathSpec( test_path_spec) storage_writer = self._CreateStorageWriter() parser_mediator = self._CreateParserMediator( storage_writer, file_entry=test_file_entry) parser = cups_ipp.CupsIppParser() header_data = self._CreateHeaderData(parser) file_object = self._CreateFileObject('cups_ipp', header_data) parser._ParseHeader(parser_mediator, file_object) # Test with header data too small. file_object = self._CreateFileObject('cups_ipp', header_data[:-1]) with self.assertRaises(errors.UnableToParseFile): parser._ParseHeader(parser_mediator, file_object) # Test with unsupported format version. header_map = parser._GetDataTypeMap('cups_ipp_header') header = header_map.CreateStructureValues( major_version=99, minor_version=1, operation_identifier=5, request_identifier=0) header_data = header_map.FoldByteStream(header) file_object = self._CreateFileObject('cups_ipp', header_data) with self.assertRaises(errors.UnableToParseFile): parser._ParseHeader(parser_mediator, file_object) # Test with unsupported operation identifier. header = header_map.CreateStructureValues( major_version=1, minor_version=1, operation_identifier=99, request_identifier=0) header_data = header_map.FoldByteStream(header) file_object = self._CreateFileObject('cups_ipp', header_data) parser._ParseHeader(parser_mediator, file_object) def testParseFileObject(self): """Tests the ParseFileObject function.""" parser = cups_ipp.CupsIppParser() header_data = self._CreateHeaderData(parser) storage_writer = self._CreateStorageWriter() parser_mediator = self._CreateParserMediator(storage_writer) file_object = self._CreateFileObject('cups_ipp', b''.join([ header_data, self._ATTRIBUTES_GROUP_DATA])) parser.ParseFileObject(parser_mediator, file_object) number_of_events = storage_writer.GetNumberOfAttributeContainers('event') self.assertEqual(number_of_events, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'extraction_warning') self.assertEqual(number_of_warnings, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'recovery_warning') self.assertEqual(number_of_warnings, 0) # Test with attribute group data too small. storage_writer = self._CreateStorageWriter() parser_mediator = self._CreateParserMediator(storage_writer) file_object = self._CreateFileObject('cups_ipp', b''.join([ header_data, self._ATTRIBUTES_GROUP_DATA[:-1]])) parser.ParseFileObject(parser_mediator, file_object) number_of_events = storage_writer.GetNumberOfAttributeContainers('event') self.assertEqual(number_of_events, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'extraction_warning') self.assertEqual(number_of_warnings, 1) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'recovery_warning') self.assertEqual(number_of_warnings, 0) # Test attribute with date time value. datetime_data = self._CreateDateTimeValueData(parser) attribute_data = self._CreateAttributeTestData( parser, 0x31, 'date-time-at-creation', datetime_data) storage_writer = self._CreateStorageWriter() parser_mediator = self._CreateParserMediator(storage_writer) file_object = self._CreateFileObject('cups_ipp', b''.join([ header_data, b'\x01', attribute_data, b'\x03'])) parser.ParseFileObject(parser_mediator, file_object) number_of_events = storage_writer.GetNumberOfAttributeContainers('event') self.assertEqual(number_of_events, 1) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'extraction_warning') self.assertEqual(number_of_warnings, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'recovery_warning') self.assertEqual(number_of_warnings, 0) def testParse(self): """Tests the Parse function.""" # TODO: only tested against MacOS Cups IPP (Version 2.0) parser = cups_ipp.CupsIppParser() storage_writer = self._ParseFile(['mac_cups_ipp'], parser) number_of_events = storage_writer.GetNumberOfAttributeContainers('event') self.assertEqual(number_of_events, 3) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'extraction_warning') self.assertEqual(number_of_warnings, 0) number_of_warnings = storage_writer.GetNumberOfAttributeContainers( 'recovery_warning') self.assertEqual(number_of_warnings, 0) events = list(storage_writer.GetSortedEvents()) expected_event_values = { 'application': 'LibreOffice', 'computer_name': 'localhost', 'copies': 1, 'data_type': 'cups:ipp:event', 'date_time': '2013-11-03 18:07:21', 'doc_type': 'application/pdf', 'job_id': 'urn:uuid:d51116d9-143c-3863-62aa-6ef0202de49a', 'job_name': 'Assignament 1', 'owner': 'Joaquin Moreno Garijo', 'printer_id': 'RHULBW', 'timestamp_desc': definitions.TIME_DESCRIPTION_CREATION, 'uri': 'ipp://localhost:631/printers/RHULBW', 'user': 'moxilo'} self.CheckEventValues(storage_writer, events[0], expected_event_values) expected_event_values = { 'data_type': 'cups:ipp:event', 'date_time': '2013-11-03 18:07:21', 'timestamp_desc': definitions.TIME_DESCRIPTION_START} self.CheckEventValues(storage_writer, events[1], expected_event_values) expected_event_values = { 'data_type': 'cups:ipp:event', 'date_time': '2013-11-03 18:07:32', 'timestamp_desc': definitions.TIME_DESCRIPTION_END} self.CheckEventValues(storage_writer, events[2], expected_event_values) if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 46677, 1332, 329, 4100, 2640, 41611, 6101, 47, 5972, 3696, 526, 15931, 198, 198, 11748, 555, 715, 395, 198, 198, 6738, 47764, 85, 9501, 13, 16794, 364, 1330, 8390, 62, 7753, 62, 10057, 62, 38272, 198, 6738, 47764, 85, 9501, 13, 6978, 1330, 8390, 62, 6978, 62, 16684, 198, 198, 6738, 458, 292, 78, 13, 8019, 1330, 17336, 198, 6738, 458, 292, 78, 13, 8019, 1330, 8563, 198, 6738, 458, 292, 78, 13, 79, 945, 364, 1330, 14180, 62, 3974, 198, 198, 6738, 5254, 13, 79, 945, 364, 1330, 1332, 62, 8019, 628, 198, 4871, 41611, 40, 381, 46677, 14402, 7, 9288, 62, 8019, 13, 46677, 14402, 20448, 2599, 198, 220, 37227, 51, 3558, 329, 4100, 2640, 41611, 6101, 47, 30751, 526, 15931, 628, 220, 1303, 279, 2645, 600, 25, 15560, 28, 24326, 12, 15526, 628, 220, 4808, 1404, 5446, 9865, 3843, 1546, 62, 46846, 62, 26947, 796, 9881, 7, 1525, 83, 451, 2433, 26933, 198, 220, 220, 220, 220, 220, 657, 87, 486, 11, 657, 87, 2857, 11, 657, 87, 405, 11, 657, 87, 1065, 11, 657, 87, 5333, 11, 657, 87, 4524, 11, 657, 87, 4524, 11, 657, 87, 4761, 11, 657, 87, 3388, 11, 657, 87, 5237, 11, 657, 87, 2425, 11, 657, 87, 4524, 11, 198, 220, 220, 220, 220, 220, 657, 87, 2996, 11, 657, 87, 4790, 11, 657, 87, 17, 67, 11, 657, 87, 5066, 11, 657, 87, 3104, 11, 657, 87, 5333, 11, 657, 87, 4761, 11, 657, 87, 4790, 11, 657, 87, 2996, 11, 657, 87, 4524, 11, 657, 87, 405, 11, 657, 87, 2713, 11, 198, 220, 220, 220, 220, 220, 657, 87, 2425, 11, 657, 87, 4524, 11, 657, 87, 2791, 11, 657, 87, 17, 67, 11, 657, 87, 2548, 11, 657, 87, 3070, 60, 4008, 628, 220, 825, 4808, 16447, 33682, 14402, 6601, 7, 944, 11, 30751, 11, 7621, 62, 8367, 11, 1438, 11, 1988, 62, 7890, 2599, 198, 220, 220, 220, 37227, 16719, 274, 11688, 1332, 1366, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 30751, 357, 34, 4739, 40, 381, 46677, 2599, 29369, 3705, 6101, 47, 30751, 13, 198, 220, 220, 220, 220, 220, 7621, 62, 8367, 357, 600, 2599, 1988, 286, 262, 11688, 7621, 13, 198, 220, 220, 220, 220, 220, 1438, 357, 2536, 2599, 1438, 286, 262, 11688, 13, 198, 220, 220, 220, 220, 220, 1988, 62, 7890, 357, 33661, 2599, 1366, 286, 262, 11688, 1988, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 9881, 25, 11688, 1332, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11688, 62, 8899, 796, 30751, 13557, 3855, 6601, 6030, 13912, 10786, 66, 4739, 62, 3974, 62, 42348, 11537, 628, 220, 220, 220, 11688, 796, 11688, 62, 8899, 13, 16447, 1273, 5620, 40161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 62, 8367, 28, 12985, 62, 8367, 11, 1438, 62, 7857, 28, 11925, 7, 3672, 828, 1438, 28, 3672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 7890, 62, 7857, 28, 11925, 7, 8367, 62, 7890, 828, 1988, 62, 7890, 28, 8367, 62, 7890, 8, 198, 220, 220, 220, 1441, 11688, 62, 8899, 13, 37, 727, 40778, 12124, 7, 42348, 8, 628, 220, 825, 4808, 16447, 10430, 7575, 11395, 6601, 7, 944, 11, 30751, 2599, 198, 220, 220, 220, 37227, 16719, 274, 3128, 640, 1988, 1332, 1366, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 30751, 357, 34, 4739, 40, 381, 46677, 2599, 29369, 3705, 6101, 47, 30751, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 9881, 25, 3128, 640, 1988, 1332, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4818, 8079, 62, 8899, 796, 30751, 13557, 3855, 6601, 6030, 13912, 10786, 66, 4739, 62, 3974, 62, 19608, 8079, 62, 8367, 11537, 628, 220, 220, 220, 4818, 8079, 796, 4818, 8079, 62, 8899, 13, 16447, 1273, 5620, 40161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 614, 28, 7908, 11, 1227, 28, 1157, 11, 1110, 62, 1659, 62, 8424, 28, 1983, 11, 2250, 28, 1433, 11, 2431, 28, 3901, 11, 4201, 28, 4349, 11, 198, 220, 220, 220, 220, 220, 220, 220, 875, 27866, 24764, 28, 20, 11, 4571, 62, 6738, 62, 315, 66, 28, 585, 10786, 10, 33809, 2250, 62, 6738, 62, 315, 66, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2431, 62, 6738, 62, 315, 66, 28, 15, 8, 198, 220, 220, 220, 1441, 4818, 8079, 62, 8899, 13, 37, 727, 40778, 12124, 7, 19608, 8079, 8, 628, 220, 825, 4808, 16447, 39681, 6601, 7, 944, 11, 30751, 2599, 198, 220, 220, 220, 37227, 16719, 274, 13639, 1332, 1366, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 30751, 357, 34, 4739, 40, 381, 46677, 2599, 29369, 3705, 6101, 47, 30751, 13, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 9881, 25, 13639, 1332, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13639, 62, 8899, 796, 30751, 13557, 3855, 6601, 6030, 13912, 10786, 66, 4739, 62, 3974, 62, 25677, 11537, 628, 220, 220, 220, 13639, 796, 13639, 62, 8899, 13, 16447, 1273, 5620, 40161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1688, 62, 9641, 28, 16, 11, 4159, 62, 9641, 28, 16, 11, 4905, 62, 738, 7483, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 738, 7483, 28, 15, 8, 198, 220, 220, 220, 1441, 13639, 62, 8899, 13, 37, 727, 40778, 12124, 7, 25677, 8, 628, 220, 825, 1332, 3855, 10100, 11395, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 3855, 10100, 11395, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 4731, 62, 8367, 796, 30751, 13557, 3855, 10100, 11395, 15090, 5512, 705, 9288, 11537, 198, 220, 220, 220, 2116, 13, 30493, 3792, 14202, 7, 8841, 62, 8367, 8, 628, 220, 220, 220, 4731, 62, 8367, 796, 30751, 13557, 3855, 10100, 11395, 15090, 6, 9288, 10354, 37250, 16, 3256, 705, 17, 11, 18, 3256, 705, 19, 20520, 5512, 705, 9288, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8841, 62, 8367, 11, 705, 16, 11, 366, 17, 11, 18, 1600, 604, 11537, 628, 220, 825, 1332, 10044, 325, 33682, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 33682, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 405, 11, 705, 9288, 3256, 275, 6, 59, 87, 1065, 11537, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 9288, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 11, 275, 6, 59, 87, 1065, 11537, 628, 220, 220, 220, 1303, 6208, 351, 11688, 1366, 1165, 1402, 13, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 58, 21912, 16, 12962, 628, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 10044, 325, 12331, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 628, 220, 220, 220, 1303, 6208, 11688, 351, 18253, 1988, 13, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 2481, 11, 705, 600, 3256, 275, 6, 59, 87, 1065, 59, 87, 2682, 59, 87, 3980, 59, 87, 3695, 11537, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 600, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 11, 657, 87, 10163, 2231, 30924, 8, 628, 220, 220, 220, 1303, 6208, 11688, 351, 25131, 1988, 13, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 1828, 11, 705, 30388, 3256, 275, 6, 59, 87, 486, 11537, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 30388, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 11, 6407, 8, 628, 220, 220, 220, 1303, 6208, 11688, 351, 3128, 640, 1988, 13, 198, 220, 220, 220, 4818, 8079, 62, 7890, 796, 2116, 13557, 16447, 10430, 7575, 11395, 6601, 7, 48610, 8, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 3132, 11, 705, 19608, 8079, 3256, 4818, 8079, 62, 7890, 8, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 19608, 8079, 11537, 198, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 8367, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 13, 1941, 11, 2864, 8, 628, 220, 220, 220, 1303, 6208, 11688, 351, 4731, 1231, 3303, 13, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 3682, 11, 705, 8841, 3256, 275, 6, 45, 3535, 15567, 11537, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 8841, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 11, 705, 45, 3535, 15567, 11537, 628, 220, 220, 220, 1303, 6208, 11688, 351, 37101, 4731, 290, 7621, 1988, 34534, 316, 13, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 2857, 11, 705, 354, 945, 316, 3256, 275, 6, 40477, 23, 11537, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 11688, 62, 7890, 8, 628, 220, 220, 220, 1438, 11, 1988, 796, 30751, 13557, 10044, 325, 33682, 7, 7753, 62, 15252, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 11, 705, 354, 945, 316, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 8367, 11, 705, 40477, 23, 11537, 628, 220, 825, 1332, 10044, 325, 29021, 13247, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 29021, 13247, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 66, 4739, 62, 3974, 3256, 2116, 13557, 1404, 5446, 9865, 3843, 1546, 62, 46846, 62, 26947, 8, 628, 220, 220, 220, 1438, 62, 8367, 62, 79, 3468, 796, 1351, 7, 48610, 13557, 10044, 325, 29021, 13247, 7, 7753, 62, 15252, 4008, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 3672, 62, 8367, 62, 79, 3468, 11, 685, 10786, 1078, 7657, 12, 354, 945, 316, 3256, 705, 40477, 12, 23, 11537, 12962, 628, 220, 220, 220, 1303, 6208, 351, 24222, 12608, 2628, 923, 7621, 1988, 13, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 275, 35384, 22179, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 275, 6, 59, 47596, 3256, 2116, 13557, 1404, 5446, 9865, 3843, 1546, 62, 46846, 62, 26947, 58, 16, 25, 11907, 4008, 628, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 10044, 325, 12331, 2599, 198, 220, 220, 220, 220, 220, 1351, 7, 48610, 13557, 10044, 325, 29021, 13247, 7, 7753, 62, 15252, 4008, 628, 220, 825, 1332, 10044, 325, 46120, 13087, 11395, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 46120, 13087, 11395, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 25131, 62, 8367, 796, 30751, 13557, 10044, 325, 46120, 13087, 11395, 7, 65, 6, 59, 87, 405, 11537, 198, 220, 220, 220, 2116, 13, 30493, 25101, 7, 2127, 21052, 62, 8367, 8, 628, 220, 220, 220, 25131, 62, 8367, 796, 30751, 13557, 10044, 325, 46120, 13087, 11395, 7, 65, 6, 59, 87, 486, 11537, 198, 220, 220, 220, 2116, 13, 30493, 17821, 7, 2127, 21052, 62, 8367, 8, 628, 220, 220, 220, 1303, 6208, 351, 24222, 1366, 13, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 10044, 325, 12331, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 46120, 13087, 11395, 7, 65, 6, 59, 87, 2999, 11537, 628, 220, 825, 1332, 10044, 325, 10430, 7575, 11395, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 10430, 7575, 11395, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 4818, 8079, 62, 7890, 796, 2116, 13557, 16447, 10430, 7575, 11395, 6601, 7, 48610, 8, 628, 220, 220, 220, 4818, 8079, 62, 8367, 796, 30751, 13557, 10044, 325, 10430, 7575, 11395, 7, 19608, 8079, 62, 7890, 11, 657, 8, 198, 220, 220, 220, 2116, 13, 30493, 3792, 3673, 14202, 7, 19608, 8079, 62, 8367, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 19608, 8079, 62, 8367, 13, 1941, 11, 2864, 8, 628, 220, 220, 220, 1303, 6208, 351, 1366, 1165, 1402, 13, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 10044, 325, 12331, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 10430, 7575, 11395, 7, 19608, 8079, 62, 7890, 58, 21912, 16, 4357, 657, 8, 628, 220, 825, 1332, 10044, 325, 46541, 11395, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 46541, 11395, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 18253, 62, 8367, 796, 30751, 13557, 10044, 325, 46541, 11395, 7, 65, 6, 59, 87, 405, 59, 87, 405, 59, 87, 405, 59, 87, 486, 3256, 657, 8, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 41433, 62, 8367, 11, 352, 8, 628, 220, 220, 220, 1303, 6208, 351, 1366, 1165, 1402, 13, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 10044, 325, 12331, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 46541, 11395, 7, 65, 6, 59, 87, 486, 59, 87, 405, 59, 87, 405, 3256, 657, 8, 628, 220, 825, 1332, 10044, 325, 39681, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 4808, 10044, 325, 39681, 2163, 526, 15931, 198, 220, 220, 220, 2393, 62, 10057, 62, 38272, 796, 8390, 62, 7753, 62, 10057, 62, 38272, 13, 49233, 8979, 11964, 32875, 3419, 198, 220, 220, 220, 2393, 62, 10057, 62, 38272, 13, 4550, 8979, 10786, 14, 66, 4739, 62, 3974, 3256, 275, 7061, 8, 628, 220, 220, 220, 1332, 62, 6978, 62, 16684, 796, 8390, 62, 6978, 62, 16684, 13, 49233, 15235, 22882, 7, 24886, 11639, 14, 66, 4739, 62, 3974, 11537, 198, 220, 220, 220, 1332, 62, 7753, 62, 13000, 796, 2393, 62, 10057, 62, 38272, 13, 7753, 62, 10057, 13, 3855, 8979, 30150, 3886, 15235, 22882, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 6978, 62, 16684, 8, 628, 220, 220, 220, 6143, 62, 16002, 796, 2116, 13557, 16447, 31425, 34379, 3419, 198, 220, 220, 220, 30751, 62, 2379, 1352, 796, 2116, 13557, 16447, 46677, 9921, 38585, 7, 198, 220, 220, 220, 220, 220, 220, 220, 6143, 62, 16002, 11, 2393, 62, 13000, 28, 9288, 62, 7753, 62, 13000, 8, 628, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 13639, 62, 7890, 796, 2116, 13557, 16447, 39681, 6601, 7, 48610, 8, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 13639, 62, 7890, 8, 628, 220, 220, 220, 30751, 13557, 10044, 325, 39681, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1303, 6208, 351, 13639, 1366, 1165, 1402, 13, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 13639, 62, 7890, 58, 21912, 16, 12962, 628, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 3118, 540, 2514, 10044, 325, 8979, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 39681, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1303, 6208, 351, 24222, 5794, 2196, 13, 198, 220, 220, 220, 13639, 62, 8899, 796, 30751, 13557, 3855, 6601, 6030, 13912, 10786, 66, 4739, 62, 3974, 62, 25677, 11537, 628, 220, 220, 220, 13639, 796, 13639, 62, 8899, 13, 16447, 1273, 5620, 40161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1688, 62, 9641, 28, 2079, 11, 4159, 62, 9641, 28, 16, 11, 4905, 62, 738, 7483, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 738, 7483, 28, 15, 8, 198, 220, 220, 220, 13639, 62, 7890, 796, 13639, 62, 8899, 13, 37, 727, 40778, 12124, 7, 25677, 8, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 13639, 62, 7890, 8, 628, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 48277, 13, 3118, 540, 2514, 10044, 325, 8979, 2599, 198, 220, 220, 220, 220, 220, 30751, 13557, 10044, 325, 39681, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1303, 6208, 351, 24222, 4905, 27421, 13, 198, 220, 220, 220, 13639, 796, 13639, 62, 8899, 13, 16447, 1273, 5620, 40161, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1688, 62, 9641, 28, 16, 11, 4159, 62, 9641, 28, 16, 11, 4905, 62, 738, 7483, 28, 2079, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2581, 62, 738, 7483, 28, 15, 8, 198, 220, 220, 220, 13639, 62, 7890, 796, 13639, 62, 8899, 13, 37, 727, 40778, 12124, 7, 25677, 8, 198, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 13639, 62, 7890, 8, 628, 220, 220, 220, 30751, 13557, 10044, 325, 39681, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 825, 1332, 10044, 325, 8979, 10267, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 2547, 325, 8979, 10267, 2163, 526, 15931, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 628, 220, 220, 220, 13639, 62, 7890, 796, 2116, 13557, 16447, 39681, 6601, 7, 48610, 8, 628, 220, 220, 220, 6143, 62, 16002, 796, 2116, 13557, 16447, 31425, 34379, 3419, 198, 220, 220, 220, 30751, 62, 2379, 1352, 796, 2116, 13557, 16447, 46677, 9921, 38585, 7, 35350, 62, 16002, 8, 628, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 275, 35384, 22179, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 7890, 11, 2116, 13557, 1404, 5446, 9865, 3843, 1546, 62, 46846, 62, 26947, 60, 4008, 628, 220, 220, 220, 30751, 13, 10044, 325, 8979, 10267, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 31534, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 10786, 15596, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 31534, 11, 657, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2302, 7861, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1073, 548, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 1303, 6208, 351, 11688, 1448, 1366, 1165, 1402, 13, 198, 220, 220, 220, 6143, 62, 16002, 796, 2116, 13557, 16447, 31425, 34379, 3419, 198, 220, 220, 220, 30751, 62, 2379, 1352, 796, 2116, 13557, 16447, 46677, 9921, 38585, 7, 35350, 62, 16002, 8, 628, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 275, 35384, 22179, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 7890, 11, 2116, 13557, 1404, 5446, 9865, 3843, 1546, 62, 46846, 62, 26947, 58, 21912, 16, 11907, 4008, 628, 220, 220, 220, 30751, 13, 10044, 325, 8979, 10267, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 31534, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 10786, 15596, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 31534, 11, 657, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2302, 7861, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 352, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1073, 548, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 1303, 6208, 11688, 351, 3128, 640, 1988, 13, 198, 220, 220, 220, 4818, 8079, 62, 7890, 796, 2116, 13557, 16447, 10430, 7575, 11395, 6601, 7, 48610, 8, 198, 220, 220, 220, 11688, 62, 7890, 796, 2116, 13557, 16447, 33682, 14402, 6601, 7, 198, 220, 220, 220, 220, 220, 220, 220, 30751, 11, 657, 87, 3132, 11, 705, 4475, 12, 2435, 12, 265, 12, 38793, 3256, 4818, 8079, 62, 7890, 8, 628, 220, 220, 220, 6143, 62, 16002, 796, 2116, 13557, 16447, 31425, 34379, 3419, 198, 220, 220, 220, 30751, 62, 2379, 1352, 796, 2116, 13557, 16447, 46677, 9921, 38585, 7, 35350, 62, 16002, 8, 628, 220, 220, 220, 2393, 62, 15252, 796, 2116, 13557, 16447, 8979, 10267, 10786, 66, 4739, 62, 3974, 3256, 275, 35384, 22179, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 13639, 62, 7890, 11, 275, 6, 59, 87, 486, 3256, 11688, 62, 7890, 11, 275, 6, 59, 87, 3070, 20520, 4008, 628, 220, 220, 220, 30751, 13, 10044, 325, 8979, 10267, 7, 48610, 62, 2379, 1352, 11, 2393, 62, 15252, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 31534, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 10786, 15596, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 31534, 11, 352, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2302, 7861, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1073, 548, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 825, 1332, 10044, 325, 7, 944, 2599, 198, 220, 220, 220, 37227, 51, 3558, 262, 2547, 325, 2163, 526, 15931, 198, 220, 220, 220, 1303, 16926, 46, 25, 691, 6789, 1028, 4100, 2640, 41611, 6101, 47, 357, 14815, 362, 13, 15, 8, 198, 220, 220, 220, 30751, 796, 14180, 62, 3974, 13, 34, 4739, 40, 381, 46677, 3419, 198, 220, 220, 220, 6143, 62, 16002, 796, 2116, 13557, 10044, 325, 8979, 7, 17816, 20285, 62, 66, 4739, 62, 3974, 6, 4357, 30751, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 31534, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 10786, 15596, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 31534, 11, 513, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 2302, 7861, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 1271, 62, 1659, 62, 40539, 654, 796, 6143, 62, 16002, 13, 3855, 15057, 5189, 33682, 4264, 50221, 7, 198, 220, 220, 220, 220, 220, 220, 220, 705, 260, 1073, 548, 62, 43917, 11537, 198, 220, 220, 220, 2116, 13, 30493, 36, 13255, 7, 17618, 62, 1659, 62, 40539, 654, 11, 657, 8, 628, 220, 220, 220, 2995, 796, 1351, 7, 35350, 62, 16002, 13, 3855, 50, 9741, 37103, 28955, 628, 220, 220, 220, 2938, 62, 15596, 62, 27160, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 31438, 10354, 705, 25835, 260, 27743, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33215, 62, 3672, 10354, 705, 36750, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 22163, 444, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 62, 4906, 10354, 705, 66, 4739, 25, 3974, 25, 15596, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 2435, 10354, 705, 6390, 12, 1157, 12, 3070, 1248, 25, 2998, 25, 2481, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15390, 62, 4906, 10354, 705, 31438, 14, 12315, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21858, 62, 312, 10354, 705, 700, 25, 12303, 312, 25, 67, 41647, 1433, 67, 24, 12, 21139, 66, 12, 2548, 5066, 12, 5237, 7252, 12, 21, 891, 15, 19004, 2934, 2920, 64, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 21858, 62, 3672, 10354, 705, 8021, 570, 3263, 352, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18403, 10354, 705, 9908, 48734, 43269, 402, 2743, 7639, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 1050, 3849, 62, 312, 10354, 705, 48587, 6239, 48802, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16514, 27823, 62, 20147, 10354, 17336, 13, 34694, 62, 30910, 40165, 62, 43387, 6234, 11, 198, 220, 220, 220, 220, 220, 220, 220, 705, 9900, 10354, 705, 3974, 1378, 36750, 25, 21, 3132, 14, 1050, 20193, 14, 48587, 6239, 48802, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 10354, 705, 76, 1140, 18526, 6, 92, 628, 220, 220, 220, 2116, 13, 9787, 9237, 40161, 7, 35350, 62, 16002, 11, 2995, 58, 15, 4357, 2938, 62, 15596, 62, 27160, 8, 628, 220, 220, 220, 2938, 62, 15596, 62, 27160, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 62, 4906, 10354, 705, 66, 4739, 25, 3974, 25, 15596, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 2435, 10354, 705, 6390, 12, 1157, 12, 3070, 1248, 25, 2998, 25, 2481, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16514, 27823, 62, 20147, 10354, 17336, 13, 34694, 62, 30910, 40165, 62, 2257, 7227, 92, 628, 220, 220, 220, 2116, 13, 9787, 9237, 40161, 7, 35350, 62, 16002, 11, 2995, 58, 16, 4357, 2938, 62, 15596, 62, 27160, 8, 628, 220, 220, 220, 2938, 62, 15596, 62, 27160, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7890, 62, 4906, 10354, 705, 66, 4739, 25, 3974, 25, 15596, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4475, 62, 2435, 10354, 705, 6390, 12, 1157, 12, 3070, 1248, 25, 2998, 25, 2624, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 16514, 27823, 62, 20147, 10354, 17336, 13, 34694, 62, 30910, 40165, 62, 10619, 92, 628, 220, 220, 220, 2116, 13, 9787, 9237, 40161, 7, 35350, 62, 16002, 11, 2995, 58, 17, 4357, 2938, 62, 15596, 62, 27160, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.630245
5,052
from colorama import Fore from oeda.log import * from oeda.rtxlib.preprocessors.SparkPreProcessor import SparkPreProcessor def init_pre_processors(wf): """ we look into the workflows definition and run the required preprocessors """ if hasattr(wf, "pre_processors"): pp = wf.pre_processors for p in pp: if p["type"] == "spark": p["instance"] = SparkPreProcessor(wf, p) else: info("> Preprocessor | None", Fore.CYAN) def kill_pre_processors(wf): """ after the experiment, we stop all preprocessors """ try: for p in wf.pre_processors: p["instance"].shutdown() info("> Shutting down Spark preprocessor") except AttributeError: pass
[ 6738, 3124, 1689, 1330, 4558, 198, 198, 6738, 267, 18082, 13, 6404, 1330, 1635, 198, 6738, 267, 18082, 13, 17034, 87, 8019, 13, 3866, 14681, 669, 13, 4561, 668, 6719, 18709, 273, 1330, 17732, 6719, 18709, 273, 628, 198, 4299, 2315, 62, 3866, 62, 14681, 669, 7, 86, 69, 2599, 198, 220, 220, 220, 37227, 356, 804, 656, 262, 670, 44041, 6770, 290, 1057, 262, 2672, 662, 14681, 669, 37227, 198, 220, 220, 220, 611, 468, 35226, 7, 86, 69, 11, 366, 3866, 62, 14681, 669, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 9788, 796, 266, 69, 13, 3866, 62, 14681, 669, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 9788, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 14692, 4906, 8973, 6624, 366, 2777, 668, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 14692, 39098, 8973, 796, 17732, 6719, 18709, 273, 7, 86, 69, 11, 279, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 7, 5320, 3771, 41341, 220, 220, 930, 6045, 1600, 4558, 13, 34, 56, 1565, 8, 628, 198, 4299, 1494, 62, 3866, 62, 14681, 669, 7, 86, 69, 2599, 198, 220, 220, 220, 37227, 706, 262, 6306, 11, 356, 2245, 477, 662, 14681, 669, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 279, 287, 266, 69, 13, 3866, 62, 14681, 669, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 14692, 39098, 1, 4083, 49625, 2902, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7508, 7, 5320, 18736, 889, 866, 17732, 662, 41341, 4943, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198 ]
2.316265
332
# -*- coding: utf-8 -*- """ Language translation. """ __all__ = [ "ThZhTranslator", "ZhThTranslator", "Translate" ] from pythainlp.translate.core import Translate from pythainlp.translate.zh_th import ( ThZhTranslator, ZhThTranslator, )
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 32065, 11059, 13, 198, 37811, 198, 198, 834, 439, 834, 796, 685, 198, 220, 220, 220, 366, 817, 57, 71, 8291, 41880, 1600, 198, 220, 220, 220, 366, 57, 71, 817, 8291, 41880, 1600, 198, 220, 220, 220, 366, 8291, 17660, 1, 198, 60, 198, 198, 6738, 279, 5272, 391, 34431, 13, 7645, 17660, 13, 7295, 1330, 3602, 17660, 198, 198, 6738, 279, 5272, 391, 34431, 13, 7645, 17660, 13, 23548, 62, 400, 1330, 357, 198, 220, 220, 220, 536, 57, 71, 8291, 41880, 11, 198, 220, 220, 220, 10511, 817, 8291, 41880, 11, 198, 8, 198 ]
2.300885
113
# Copyright (C) 2019 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Test Custom Attribute Definition validation""" import unittest from mock import MagicMock from ggrc.models import all_models from ggrc.access_control import role as acr class TestCustomAttributeDefinition(unittest.TestCase): """Test Custom Attribute Definition validation""" def test_title_with_asterisk_throws(self): """Test if raises if title contains * symbol""" with self.assertRaises(ValueError): title = "Title with asterisk *" self.cad.definition_type = "assessment_template" self.cad.validate_title("title", title)
[ 2, 15069, 357, 34, 8, 13130, 3012, 3457, 13, 198, 2, 49962, 739, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 1279, 3826, 38559, 24290, 2393, 29, 198, 198, 37811, 14402, 8562, 3460, 4163, 30396, 21201, 37811, 198, 198, 11748, 555, 715, 395, 198, 6738, 15290, 1330, 6139, 44, 735, 198, 198, 6738, 308, 2164, 66, 13, 27530, 1330, 477, 62, 27530, 198, 6738, 308, 2164, 66, 13, 15526, 62, 13716, 1330, 2597, 355, 936, 81, 628, 198, 4871, 6208, 15022, 33682, 36621, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 37227, 14402, 8562, 3460, 4163, 30396, 21201, 37811, 628, 220, 825, 1332, 62, 7839, 62, 4480, 62, 1603, 1984, 62, 400, 8516, 7, 944, 2599, 198, 220, 220, 220, 37227, 14402, 611, 12073, 611, 3670, 4909, 1635, 6194, 37811, 198, 220, 220, 220, 351, 2116, 13, 30493, 21762, 2696, 7, 11395, 12331, 2599, 198, 220, 220, 220, 220, 220, 3670, 796, 366, 19160, 351, 18503, 1984, 1635, 1, 198, 220, 220, 220, 220, 220, 2116, 13, 66, 324, 13, 46758, 62, 4906, 796, 366, 562, 21687, 62, 28243, 1, 198, 220, 220, 220, 220, 220, 2116, 13, 66, 324, 13, 12102, 378, 62, 7839, 7203, 7839, 1600, 3670, 8, 198 ]
3.164319
213
file = open("13") sum = 0 for numbers in file: #print(numbers.rstrip()) numbers = int(numbers) sum += numbers; print(sum) sum = str(sum) print(sum[:10])
[ 7753, 796, 1280, 7203, 1485, 4943, 198, 198, 16345, 796, 657, 198, 1640, 3146, 287, 2393, 25, 198, 220, 220, 220, 1303, 4798, 7, 77, 17024, 13, 81, 36311, 28955, 628, 220, 220, 220, 3146, 796, 493, 7, 77, 17024, 8, 198, 220, 220, 220, 2160, 15853, 3146, 26, 628, 198, 4798, 7, 16345, 8, 198, 198, 16345, 796, 965, 7, 16345, 8, 198, 198, 4798, 7, 16345, 58, 25, 940, 12962, 198 ]
2.342466
73
""" MIT License Copyright (c) 2016 deeplearningathome. http://deeplearningathome.com/ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import tensorflow as tf from autoencoder import AutoEncoder import numpy import time #these are helper functions to read mnist data. They are part of Tensorflow models from utils import maybe_download, extract_data, extract_labels, variable_summaries from tensorflow.contrib.tensorboard.plugins import projector flags = tf.flags flags.DEFINE_string("encoder_network", "784,128,10", "specifies encoder network") flags.DEFINE_float("noise_level", 0.0, "noise level for denoising autoencoder") flags.DEFINE_integer("batch_size", 128, "batch size") flags.DEFINE_integer("num_epochs", 60, "number of epochs") flags.DEFINE_integer("eval_every_step", 2000, "evaluate every x steps") flags.DEFINE_string("acitivation_kind", "sigmoid", "type of neuron activations") flags.DEFINE_float("learning_rate", 0.1, "learning rate") flags.DEFINE_string("optimizer_kind", "rmsprop", "type of oprtimizer") flags.DEFINE_string("logdir", "tblogs", "tensorboard logs") FLAGS = flags.FLAGS if __name__ == "__main__": tf.app.run(main=main)
[ 37811, 198, 36393, 13789, 198, 198, 15269, 357, 66, 8, 1584, 2769, 40684, 776, 462, 13, 2638, 1378, 22089, 40684, 776, 462, 13, 785, 14, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 477, 198, 22163, 444, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 3336, 198, 15821, 37485, 13, 198, 37811, 198, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 6738, 1960, 6571, 66, 12342, 1330, 11160, 27195, 12342, 198, 11748, 299, 32152, 198, 11748, 640, 198, 2, 27218, 389, 31904, 5499, 284, 1100, 285, 77, 396, 1366, 13, 1119, 389, 636, 286, 309, 22854, 11125, 4981, 198, 6738, 3384, 4487, 1330, 3863, 62, 15002, 11, 7925, 62, 7890, 11, 7925, 62, 23912, 1424, 11, 7885, 62, 82, 13929, 3166, 198, 6738, 11192, 273, 11125, 13, 3642, 822, 13, 83, 22854, 3526, 13, 37390, 1330, 43396, 198, 198, 33152, 796, 48700, 13, 33152, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 12685, 12342, 62, 27349, 1600, 366, 37688, 11, 12762, 11, 940, 1600, 366, 16684, 6945, 2207, 12342, 3127, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 3919, 786, 62, 5715, 1600, 657, 13, 15, 11, 366, 3919, 786, 1241, 329, 2853, 78, 1710, 1960, 6571, 66, 12342, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 43501, 62, 7857, 1600, 13108, 11, 366, 43501, 2546, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 22510, 62, 538, 5374, 82, 1600, 3126, 11, 366, 17618, 286, 36835, 82, 4943, 198, 33152, 13, 7206, 29940, 62, 41433, 7203, 18206, 62, 16833, 62, 9662, 1600, 4751, 11, 366, 49786, 790, 2124, 4831, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 330, 270, 26939, 62, 11031, 1600, 366, 82, 17225, 1868, 1600, 366, 4906, 286, 43164, 1753, 602, 4943, 198, 33152, 13, 7206, 29940, 62, 22468, 7203, 40684, 62, 4873, 1600, 657, 13, 16, 11, 366, 40684, 2494, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 40085, 7509, 62, 11031, 1600, 366, 81, 907, 22930, 1600, 366, 4906, 286, 1034, 81, 16514, 7509, 4943, 198, 33152, 13, 7206, 29940, 62, 8841, 7203, 6404, 15908, 1600, 366, 83, 49096, 1600, 366, 83, 22854, 3526, 17259, 4943, 198, 38948, 50, 796, 9701, 13, 38948, 50, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 48700, 13, 1324, 13, 5143, 7, 12417, 28, 12417, 8, 198 ]
3.408293
627
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Jiayi Li' import time, os, re from bson.objectid import ObjectId from werkzeug.utils import secure_filename from flask import request, redirect, url_for, jsonify, abort, Blueprint, make_response, g, flash, current_app from app import db from app.models import User, Blog, Comment from app.filters import markdown_filter from app.utilities import allowed_file, cookie_to_user api = Blueprint('api', __name__, url_prefix='/api') APIS = ('blogs', 'users', 'comments') #************************************ #----------------APIs---------------- #************************************ @api.route('/<collection>') def api_get_all(collection): ''' get all documents from a collection ''' if collection not in APIS: abort(400) cursor = db[collection] a = [] for document in cursor.find().sort("created", -1): if collection == 'users': document.update(password='******') document.update(_id=str(document['_id'])) a.append(document) return jsonify({collection:a}) @api.route('/<collection>/<item_id>') def api_get_one(collection, item_id): ''' get a single document from a collection ''' document = db[collection].find_one({'_id': ObjectId(item_id)}) if not document: abort(400) if collection == 'users': document.update(password='******') document.update(_id=str(document['_id'])) return jsonify(document) @api.route('/blogs/<blog_id>/comments') def api_get_blog_comments(blog_id): ''' get all comments from a blog ''' comments = [] for comment in db.comments.find({'blog_id':blog_id}).sort("created", -1): comment.update(_id=str(comment['_id'])) comment.update(content=markdown_filter(comment['content'])) if comment.get('subcomment'): for subcomment in comment.get('subcontent'): subcomment.update(content=markdown_filter(subcomment['content'])) comments.append(comment) return jsonify(comments=comments) @api.route('/blogs', methods=['POST']) def api_post_blog(): ''' post a new blog ''' if not g.__user__.get('admin'): return make_response('Permission denied.', 403) title = request.form.get('title') tag = request.form.get('tag').lstrip(r'/\;,. ').rstrip(r'/\;,. ') content = request.form.get('content') # create a new Blog and save it to mongodb blog = Blog( user_id = g.__user__.get('_id'), user_name = g.__user__.get('name'), user_image = g.__user__.get('image'), title = title.strip(), tag = re.split(r'[\s\;\,\.\\\/]+', tag), content = content.lstrip('\n').rstrip() ) blog_resp = blog.__dict__ return jsonify(blog_id=str(blog_resp['_id'])) @api.route('/blogs/<blog_id>', methods=['POST']) def api_edit_blog(blog_id): ''' edit a blog and post it ''' if not g.__user__.get('admin'): return make_response('Permission denied.', 403) title = request.form.get('title') tag = request.form.get('tag').lstrip(r'/\;,. ').rstrip(r'/\;,. ') content = request.form.get('content') content = content.lstrip('\n').rstrip() db.blogs.update_one( {'_id': ObjectId(blog_id)}, { '$set': { 'title': title.strip(), 'tag': re.split(r'[\s\;\,\.\\\/]+', tag), 'content': content, 'summary': '%s%s' % (content[:140], '...'), 'last_modified': True, 'modified': int(time.time()) } }) return jsonify(blog_id=blog_id) @api.route('/blogs/<blog_id>/comments', methods=['POST']) def api_post_and_get_comment(blog_id): ''' post a new comment ''' if not g.__user__: return make_response('Please login', 403) content = request.form.get('content').lstrip('\n').rstrip() if not content: return make_response('Content cannot be empty.') # create a new Comment and save it to mongodb blog = db.blogs.find_one({'_id': ObjectId(blog_id)}) comment = Comment( blog_id = blog_id, blog_author = blog.get('user_name'), blog_title = blog.get('title'), user_id = g.__user__.get('_id'), user_name = g.__user__.get('name'), user_image = g.__user__.get('image'), content = content ) comments = [] for document in db.comments.find({'blog_id':blog_id}).sort("created", -1): document.update(_id=str(document['_id'])) document.update(content=markdown_filter(document['content'])) if document.get('subcomment'): for subcomment in document.get('subcontent'): subcomment.update(content=markdown_filter(subcomment['content'])) comments.append(document) return jsonify(comments=comments) @api.route('/blogs/<blog_id>/comments/<comment_id>', methods=['POST']) def api_pose_subcomment(blog_id, comment_id): ''' post a subcomment ''' if not g.__user__: return make_response('Please login', 403) content = request.form.get('content').lstrip('\n').rstrip() if not content: return make_response('Content cannot be empty', 403) comment = db.comments.find_one({'_id': ObjectId(comment_id)}) db.comments.update_one( {'_id': ObjectId(comment_id)}, { '$set': {'subcomment': True}, '$push': { 'subcontent': { '_id': str(ObjectId()), 'user_id': g.__user__.get('_id'), 'user_name': g.__user__.get('name'), 'user_image': g.__user__.get('image'), 'content': content, 'created': int(time.time()) } } }) comments = [] for document in db.comments.find({'blog_id': blog_id}).sort("created", -1): document.update(_id=str(document['_id'])) document.update(content=markdown_filter(document['content'])) if document.get('subcomment'): for subcomment in document.get('subcontent'): subcomment.update(content=markdown_filter(subcomment['content'])) comments.append(document) return jsonify(comments=comments) @api.route('/<collection>/<item_id>/delete', methods=['POST']) def api_delete_one(collection, item_id): ''' delete one document from a certain collection ''' if not g.__user__.get('admin'): return make_response('Permission denied.', 403) if collection == 'comments': blog_id = db.comments.find_one({'_id': ObjectId(item_id)}).get('blog_id') db[collection].delete_one({'_id': ObjectId(item_id)}) if collection == 'blogs': db.comments.delete_many({'blog_id': ObjectId(item_id)}) if collection == 'comments': return redirect(url_for('api.api_get_blog_comments', blog_id=blog_id)) return jsonify(item_id=item_id) @api.route('/comments/<comment_id>/delete/<own_id>', methods=['POST']) def api_delete_subcomment(comment_id, own_id): ''' delete a subcomment from a certain comment ''' if not g.__user__.get('admin'): return make_response('Permission denied.', 403) db.comments.update_one( {'_id': ObjectId(comment_id)}, { '$pull': {'subcontent': {'_id': own_id}} }) if not db.comments.find_one({'_id': ObjectId(comment_id)}).get('subcontent'): db.comments.update_one( {'_id': ObjectId(comment_id)}, { '$set': {'subcomment': False} }) blog_id = db.comments.find_one({'_id': ObjectId(comment_id)}).get('blog_id') return redirect(url_for('api.api_get_blog_comments', blog_id=blog_id)) @api.route('/image/<user_id>', methods=['POST']) def api_upload(user_id): ''' upload image files for user avatar ''' if 'file' not in request.files: flash('No file part') return redirect(request.referrer) file = request.files['file'] if file.filename == '': flash('No selected file') return redirect(request.referrer) if file and allowed_file(file.filename): filename = secure_filename(file.filename) file.save(os.path.join(current_app.config['UPLOAD_FOLDER'], filename)) # update users db.users.update_one( {'_id': ObjectId(user_id)}, { '$set': {'image': '/static/img/' + filename} }) # update blogs db.blogs.update_many( {'user_id': user_id}, { '$set': {'user_image': '/static/img/' + filename} }) # update comments db.comments.update_many( {'user_id': user_id}, { '$set': {'user_image': '/static/img/' + filename} }) # update subcomments in comments for comment in db.comments.find(): if comment.get('subcomment'): for subcomment in comment['subcontent']: # find one match and update one if user_id in subcomment.values(): db.comments.update_one( { '_id': comment['_id'], 'subcontent': {'$elemMatch': {'_id': subcomment['_id']}} }, { '$set': { 'subcontent.$.user_image': '/static/img/' + filename } }) else: flash('File not allowed') return redirect(request.referrer)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 834, 9800, 834, 796, 705, 41, 72, 323, 72, 7455, 6, 198, 198, 11748, 640, 11, 28686, 11, 302, 198, 198, 6738, 275, 1559, 13, 15252, 312, 1330, 9515, 7390, 198, 6738, 266, 9587, 2736, 1018, 13, 26791, 1330, 5713, 62, 34345, 198, 6738, 42903, 1330, 2581, 11, 18941, 11, 19016, 62, 1640, 11, 33918, 1958, 11, 15614, 11, 39932, 11, 787, 62, 26209, 11, 308, 11, 7644, 11, 1459, 62, 1324, 198, 198, 6738, 598, 1330, 20613, 198, 6738, 598, 13, 27530, 1330, 11787, 11, 14001, 11, 18957, 198, 6738, 598, 13, 10379, 1010, 1330, 1317, 2902, 62, 24455, 198, 6738, 598, 13, 315, 2410, 1330, 3142, 62, 7753, 11, 19751, 62, 1462, 62, 7220, 198, 198, 15042, 796, 39932, 10786, 15042, 3256, 11593, 3672, 834, 11, 19016, 62, 40290, 11639, 14, 15042, 11537, 198, 198, 2969, 1797, 796, 19203, 49096, 3256, 705, 18417, 3256, 705, 15944, 11537, 628, 198, 2, 17174, 2466, 198, 2, 1783, 2969, 3792, 1783, 198, 2, 17174, 2466, 198, 198, 31, 15042, 13, 38629, 10786, 14, 27, 43681, 29, 11537, 198, 4299, 40391, 62, 1136, 62, 439, 7, 43681, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 651, 477, 4963, 422, 257, 4947, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4947, 407, 287, 3486, 1797, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 7029, 8, 198, 220, 220, 220, 23493, 796, 20613, 58, 43681, 60, 198, 220, 220, 220, 257, 796, 17635, 198, 220, 220, 220, 329, 3188, 287, 23493, 13, 19796, 22446, 30619, 7203, 25598, 1600, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4947, 6624, 705, 18417, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 7, 28712, 11639, 2466, 1174, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 28264, 312, 28, 2536, 7, 22897, 17816, 62, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 257, 13, 33295, 7, 22897, 8, 198, 220, 220, 220, 1441, 33918, 1958, 15090, 43681, 25, 64, 30072, 628, 198, 31, 15042, 13, 38629, 10786, 14, 27, 43681, 29, 14, 27, 9186, 62, 312, 29, 11537, 198, 4299, 40391, 62, 1136, 62, 505, 7, 43681, 11, 2378, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 651, 257, 2060, 3188, 422, 257, 4947, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3188, 796, 20613, 58, 43681, 4083, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 9186, 62, 312, 8, 30072, 198, 220, 220, 220, 611, 407, 3188, 25, 198, 220, 220, 220, 220, 220, 220, 220, 15614, 7, 7029, 8, 198, 220, 220, 220, 611, 4947, 6624, 705, 18417, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 7, 28712, 11639, 2466, 1174, 11537, 198, 220, 220, 220, 3188, 13, 19119, 28264, 312, 28, 2536, 7, 22897, 17816, 62, 312, 20520, 4008, 198, 220, 220, 220, 1441, 33918, 1958, 7, 22897, 8, 628, 198, 31, 15042, 13, 38629, 10786, 14, 49096, 14, 27, 14036, 62, 312, 29, 14, 15944, 11537, 198, 4299, 40391, 62, 1136, 62, 14036, 62, 15944, 7, 14036, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 651, 477, 3651, 422, 257, 4130, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 3651, 796, 17635, 198, 220, 220, 220, 329, 2912, 287, 20613, 13, 15944, 13, 19796, 15090, 6, 14036, 62, 312, 10354, 14036, 62, 312, 92, 737, 30619, 7203, 25598, 1600, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 13, 19119, 28264, 312, 28, 2536, 7, 23893, 17816, 62, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 2912, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 23893, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2912, 13, 1136, 10786, 7266, 23893, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 850, 23893, 287, 2912, 13, 1136, 10786, 7266, 11299, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 23893, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 7266, 23893, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 13, 33295, 7, 23893, 8, 198, 220, 220, 220, 1441, 33918, 1958, 7, 15944, 28, 15944, 8, 628, 198, 31, 15042, 13, 38629, 10786, 14, 49096, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 7353, 62, 14036, 33529, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1281, 257, 649, 4130, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 13, 1136, 10786, 28482, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5990, 3411, 6699, 2637, 11, 38210, 8, 198, 220, 220, 220, 3670, 796, 2581, 13, 687, 13, 1136, 10786, 7839, 11537, 198, 220, 220, 220, 7621, 796, 2581, 13, 687, 13, 1136, 10786, 12985, 27691, 75, 36311, 7, 81, 26488, 59, 26, 38508, 705, 737, 81, 36311, 7, 81, 26488, 59, 26, 38508, 705, 8, 198, 220, 220, 220, 2695, 796, 2581, 13, 687, 13, 1136, 10786, 11299, 11537, 198, 220, 220, 220, 1303, 2251, 257, 649, 14001, 290, 3613, 340, 284, 285, 506, 375, 65, 198, 220, 220, 220, 4130, 796, 14001, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 62, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 3672, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 3672, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 9060, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 9060, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 796, 3670, 13, 36311, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 796, 302, 13, 35312, 7, 81, 6, 58, 59, 82, 59, 26, 59, 11, 17405, 6852, 11139, 48688, 3256, 7621, 828, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 2695, 13, 75, 36311, 10786, 59, 77, 27691, 81, 36311, 3419, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 4130, 62, 4363, 796, 4130, 13, 834, 11600, 834, 198, 220, 220, 220, 1441, 33918, 1958, 7, 14036, 62, 312, 28, 2536, 7, 14036, 62, 4363, 17816, 62, 312, 20520, 4008, 628, 198, 31, 15042, 13, 38629, 10786, 14, 49096, 14, 27, 14036, 62, 312, 29, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 19312, 62, 14036, 7, 14036, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 4370, 257, 4130, 290, 1281, 340, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 13, 1136, 10786, 28482, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5990, 3411, 6699, 2637, 11, 38210, 8, 198, 220, 220, 220, 3670, 796, 2581, 13, 687, 13, 1136, 10786, 7839, 11537, 198, 220, 220, 220, 7621, 796, 2581, 13, 687, 13, 1136, 10786, 12985, 27691, 75, 36311, 7, 81, 26488, 59, 26, 38508, 705, 737, 81, 36311, 7, 81, 26488, 59, 26, 38508, 705, 8, 198, 220, 220, 220, 2695, 796, 2581, 13, 687, 13, 1136, 10786, 11299, 11537, 198, 220, 220, 220, 2695, 796, 2695, 13, 75, 36311, 10786, 59, 77, 27691, 81, 36311, 3419, 198, 220, 220, 220, 20613, 13, 49096, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 62, 312, 10354, 9515, 7390, 7, 14036, 62, 312, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7839, 10354, 3670, 13, 36311, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12985, 10354, 302, 13, 35312, 7, 81, 6, 58, 59, 82, 59, 26, 59, 11, 17405, 6852, 11139, 48688, 3256, 7621, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11299, 10354, 2695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49736, 10354, 705, 4, 82, 4, 82, 6, 4064, 357, 11299, 58, 25, 15187, 4357, 705, 986, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 12957, 62, 41771, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 41771, 10354, 493, 7, 2435, 13, 2435, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 1441, 33918, 1958, 7, 14036, 62, 312, 28, 14036, 62, 312, 8, 198, 220, 220, 220, 220, 198, 198, 31, 15042, 13, 38629, 10786, 14, 49096, 14, 27, 14036, 62, 312, 29, 14, 15944, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 7353, 62, 392, 62, 1136, 62, 23893, 7, 14036, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1281, 257, 649, 2912, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5492, 17594, 3256, 38210, 8, 198, 220, 220, 220, 2695, 796, 2581, 13, 687, 13, 1136, 10786, 11299, 27691, 75, 36311, 10786, 59, 77, 27691, 81, 36311, 3419, 198, 220, 220, 220, 611, 407, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 19746, 2314, 307, 6565, 2637, 8, 198, 220, 220, 220, 1303, 2251, 257, 649, 18957, 290, 3613, 340, 284, 285, 506, 375, 65, 198, 220, 220, 220, 4130, 796, 20613, 13, 49096, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 14036, 62, 312, 8, 30072, 198, 220, 220, 220, 2912, 796, 18957, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4130, 62, 312, 796, 4130, 62, 312, 11, 198, 220, 220, 220, 220, 220, 220, 220, 4130, 62, 9800, 796, 4130, 13, 1136, 10786, 7220, 62, 3672, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 4130, 62, 7839, 796, 4130, 13, 1136, 10786, 7839, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 312, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 62, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 3672, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 3672, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2836, 62, 9060, 796, 308, 13, 834, 7220, 834, 13, 1136, 10786, 9060, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 2695, 796, 2695, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 3651, 796, 17635, 198, 220, 220, 220, 329, 3188, 287, 20613, 13, 15944, 13, 19796, 15090, 6, 14036, 62, 312, 10354, 14036, 62, 312, 92, 737, 30619, 7203, 25598, 1600, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 28264, 312, 28, 2536, 7, 22897, 17816, 62, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 22897, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3188, 13, 1136, 10786, 7266, 23893, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 850, 23893, 287, 3188, 13, 1136, 10786, 7266, 11299, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 23893, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 7266, 23893, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 13, 33295, 7, 22897, 8, 198, 220, 220, 220, 1441, 33918, 1958, 7, 15944, 28, 15944, 8, 628, 198, 31, 15042, 13, 38629, 10786, 14, 49096, 14, 27, 14036, 62, 312, 29, 14, 15944, 14, 27, 23893, 62, 312, 29, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 3455, 62, 7266, 23893, 7, 14036, 62, 312, 11, 2912, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1281, 257, 850, 23893, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5492, 17594, 3256, 38210, 8, 198, 220, 220, 220, 2695, 796, 2581, 13, 687, 13, 1136, 10786, 11299, 27691, 75, 36311, 10786, 59, 77, 27691, 81, 36311, 3419, 198, 220, 220, 220, 611, 407, 2695, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 19746, 2314, 307, 6565, 3256, 38210, 8, 198, 220, 220, 220, 2912, 796, 20613, 13, 15944, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 8, 30072, 198, 220, 220, 220, 20613, 13, 15944, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 6, 7266, 23893, 10354, 6407, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 14689, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 11299, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 312, 10354, 965, 7, 10267, 7390, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 62, 312, 10354, 308, 13, 834, 7220, 834, 13, 1136, 10786, 62, 312, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 62, 3672, 10354, 308, 13, 834, 7220, 834, 13, 1136, 10786, 3672, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7220, 62, 9060, 10354, 308, 13, 834, 7220, 834, 13, 1136, 10786, 9060, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 11299, 10354, 2695, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25598, 10354, 493, 7, 2435, 13, 2435, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 3651, 796, 17635, 198, 220, 220, 220, 329, 3188, 287, 20613, 13, 15944, 13, 19796, 15090, 6, 14036, 62, 312, 10354, 4130, 62, 312, 92, 737, 30619, 7203, 25598, 1600, 532, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 28264, 312, 28, 2536, 7, 22897, 17816, 62, 312, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3188, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 22897, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3188, 13, 1136, 10786, 7266, 23893, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 850, 23893, 287, 3188, 13, 1136, 10786, 7266, 11299, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 850, 23893, 13, 19119, 7, 11299, 28, 4102, 2902, 62, 24455, 7, 7266, 23893, 17816, 11299, 20520, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3651, 13, 33295, 7, 22897, 8, 198, 220, 220, 220, 1441, 33918, 1958, 7, 15944, 28, 15944, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 31, 15042, 13, 38629, 10786, 14, 27, 43681, 29, 14, 27, 9186, 62, 312, 29, 14, 33678, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 33678, 62, 505, 7, 43681, 11, 2378, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 12233, 530, 3188, 422, 257, 1728, 4947, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 13, 1136, 10786, 28482, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5990, 3411, 6699, 2637, 11, 38210, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4947, 6624, 705, 15944, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 4130, 62, 312, 796, 20613, 13, 15944, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 9186, 62, 312, 38165, 737, 1136, 10786, 14036, 62, 312, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 20613, 58, 43681, 4083, 33678, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 9186, 62, 312, 8, 30072, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 4947, 6624, 705, 49096, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 15944, 13, 33678, 62, 21834, 15090, 6, 14036, 62, 312, 10354, 9515, 7390, 7, 9186, 62, 312, 8, 30072, 198, 220, 220, 220, 611, 4947, 6624, 705, 15944, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 15042, 13, 15042, 62, 1136, 62, 14036, 62, 15944, 3256, 4130, 62, 312, 28, 14036, 62, 312, 4008, 198, 220, 220, 220, 1441, 33918, 1958, 7, 9186, 62, 312, 28, 9186, 62, 312, 8, 628, 198, 31, 15042, 13, 38629, 10786, 14, 15944, 14, 27, 23893, 62, 312, 29, 14, 33678, 14, 27, 593, 62, 312, 29, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 33678, 62, 7266, 23893, 7, 23893, 62, 312, 11, 898, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 12233, 257, 850, 23893, 422, 257, 1728, 2912, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 407, 308, 13, 834, 7220, 834, 13, 1136, 10786, 28482, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 787, 62, 26209, 10786, 5990, 3411, 6699, 2637, 11, 38210, 8, 198, 220, 220, 220, 20613, 13, 15944, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 31216, 10354, 1391, 6, 7266, 11299, 10354, 1391, 6, 62, 312, 10354, 898, 62, 312, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 611, 407, 20613, 13, 15944, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 38165, 737, 1136, 10786, 7266, 11299, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 15944, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 6, 7266, 23893, 10354, 10352, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 4130, 62, 312, 796, 20613, 13, 15944, 13, 19796, 62, 505, 15090, 6, 62, 312, 10354, 9515, 7390, 7, 23893, 62, 312, 38165, 737, 1136, 10786, 14036, 62, 312, 11537, 198, 220, 220, 220, 1441, 18941, 7, 6371, 62, 1640, 10786, 15042, 13, 15042, 62, 1136, 62, 14036, 62, 15944, 3256, 4130, 62, 312, 28, 14036, 62, 312, 4008, 628, 198, 31, 15042, 13, 38629, 10786, 14, 9060, 14, 27, 7220, 62, 312, 29, 3256, 5050, 28, 17816, 32782, 6, 12962, 198, 4299, 40391, 62, 25850, 7, 7220, 62, 312, 2599, 198, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 9516, 2939, 3696, 329, 2836, 30919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 705, 7753, 6, 407, 287, 2581, 13, 16624, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 2949, 2393, 636, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 25927, 13, 260, 2232, 11751, 8, 198, 220, 220, 220, 2393, 796, 2581, 13, 16624, 17816, 7753, 20520, 198, 220, 220, 220, 611, 2393, 13, 34345, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 2949, 6163, 2393, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 18941, 7, 25927, 13, 260, 2232, 11751, 8, 198, 220, 220, 220, 611, 2393, 290, 3142, 62, 7753, 7, 7753, 13, 34345, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 29472, 796, 5713, 62, 34345, 7, 7753, 13, 34345, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2393, 13, 21928, 7, 418, 13, 6978, 13, 22179, 7, 14421, 62, 1324, 13, 11250, 17816, 52, 6489, 41048, 62, 37, 3535, 14418, 6, 4357, 29472, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 2985, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 18417, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 62, 312, 10354, 9515, 7390, 7, 7220, 62, 312, 8, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 6, 9060, 10354, 31051, 12708, 14, 9600, 14, 6, 1343, 29472, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 19118, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 49096, 13, 19119, 62, 21834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 7220, 62, 312, 10354, 2836, 62, 312, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 6, 7220, 62, 9060, 10354, 31051, 12708, 14, 9600, 14, 6, 1343, 29472, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 3651, 198, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 15944, 13, 19119, 62, 21834, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 7220, 62, 312, 10354, 2836, 62, 312, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 6, 7220, 62, 9060, 10354, 31051, 12708, 14, 9600, 14, 6, 1343, 29472, 92, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 850, 15944, 287, 3651, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2912, 287, 20613, 13, 15944, 13, 19796, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2912, 13, 1136, 10786, 7266, 23893, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 850, 23893, 287, 2912, 17816, 7266, 11299, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1064, 530, 2872, 290, 4296, 530, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2836, 62, 312, 287, 850, 23893, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20613, 13, 15944, 13, 19119, 62, 505, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 62, 312, 10354, 2912, 17816, 62, 312, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 11299, 10354, 1391, 6, 3, 68, 10671, 23850, 10354, 1391, 6, 62, 312, 10354, 850, 23893, 17816, 62, 312, 20520, 11709, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3, 2617, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 7266, 11299, 13, 35307, 7220, 62, 9060, 10354, 31051, 12708, 14, 9600, 14, 6, 1343, 29472, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7644, 10786, 8979, 407, 3142, 11537, 198, 220, 220, 220, 1441, 18941, 7, 25927, 13, 260, 2232, 11751, 8 ]
2.134409
4,650
import cv # TODO: This class doesn't seem to be used and is based on old OpenCV bindings. # Either finish the class or remove it. def convert_np_to_cvmat(img_np): """ This gives a: AttributeError: 'numpy.ndarray' object has no attribute 'from_array' ImageAlignment.template_image = ImageAlignment.template_image.from_array() """ # Inspired from https://stackoverflow.com/questions/5575108/how-to-convert-a-numpy-array-view-to-opencv-matrix : h_np, w_np = img_np.shape[:2] tmp_cv = cv.CreateMat(h_np, w_np, cv.CV_8UC3) cv.SetData(tmp_cv, img_np.data, img_np.strides[0]) return tmp_cv
[ 11748, 269, 85, 198, 198, 2, 16926, 46, 25, 770, 1398, 1595, 470, 1283, 284, 307, 973, 290, 318, 1912, 319, 1468, 4946, 33538, 34111, 13, 198, 2, 15467, 5461, 262, 1398, 393, 4781, 340, 13, 628, 198, 4299, 10385, 62, 37659, 62, 1462, 62, 33967, 6759, 7, 9600, 62, 37659, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 3607, 257, 25, 3460, 4163, 12331, 25, 705, 77, 32152, 13, 358, 18747, 6, 2134, 468, 645, 11688, 198, 220, 220, 220, 705, 6738, 62, 18747, 6, 198, 220, 220, 220, 7412, 2348, 16747, 13, 28243, 62, 9060, 796, 7412, 2348, 16747, 13, 28243, 62, 9060, 13, 6738, 62, 18747, 3419, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 45827, 422, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 2816, 2425, 15711, 14, 4919, 12, 1462, 12, 1102, 1851, 12, 64, 12, 77, 32152, 12, 18747, 12, 1177, 12, 1462, 12, 9654, 33967, 12, 6759, 8609, 1058, 198, 220, 220, 220, 289, 62, 37659, 11, 266, 62, 37659, 796, 33705, 62, 37659, 13, 43358, 58, 25, 17, 60, 198, 220, 220, 220, 45218, 62, 33967, 796, 269, 85, 13, 16447, 19044, 7, 71, 62, 37659, 11, 266, 62, 37659, 11, 269, 85, 13, 33538, 62, 23, 9598, 18, 8, 198, 220, 220, 220, 269, 85, 13, 7248, 6601, 7, 22065, 62, 33967, 11, 33705, 62, 37659, 13, 7890, 11, 33705, 62, 37659, 13, 2536, 1460, 58, 15, 12962, 198, 220, 220, 220, 1441, 45218, 62, 33967, 628 ]
2.468504
254
#!/usr/bin/env python """ Script that uses output from cutadapt to quickly detect fully overlapping pairs. It is based on the fact that if sequencing adapters are trimmed from both paired-ends, the resulting fragment needs to be shorter than the pair-end length Depends of cutadapt seqio and xopen modules from version 1.6 Author: Mauricio Barrientos-Somarribas Email: [email protected] Copyright 2014 Mauricio Barrientos-Somarribas Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys import argparse import os.path #Time of script execution and logging module import time import logging import re import math import itertools from collections import * from cutadapt import seqio,xopen from distance import hamming import ctypes #Data Analysis libs import numpy as np #****************Begin of Main *************** #*****************End of Main********************** #Assumes sequences are the same length, with a hamming distance of less than 0.05% of the length #Assumes sequences are aligned and the same length if __name__ == '__main__': #Process command line arguments parser = argparse.ArgumentParser(description="Script to process fastq files after adapter removal and extracts sequences fragments smaller than read length") parser.add_argument("R1",help="Fastq with forward paired-end") parser.add_argument("R2",help="Fastq with reverse paired-end") parser.add_argument("-o","--output-prefix", default=None, help="Prefix of the output files" ) parser.add_argument("--raw_read_length", default=301,type=int, help="Length of raw reads (before adapter trimming). Default: 301" ) parser.add_argument("--min-trim", default=10,type=int, help="Minimum number of bases trimmed to consider the adapter removed was not spurious. Default: 10" ) parser.add_argument("-l","--log-file", default=None, help="Name of the log file") args = parser.parse_args() if validate_args(args): #Initialize log log_level = logging.INFO if args.log_file: logging.basicConfig(filename=args.log_file,level=log_level) else: logging.basicConfig(stream=sys.stderr,level=log_level) time_start = time.time() main( args ) logging.info("Time elapsed: "+str(time.time() - time_start)+"\n") else: logging.error("Invalid arguments. Exiting script\n") sys.exit(1)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 7391, 326, 3544, 5072, 422, 2005, 42552, 284, 2952, 4886, 3938, 32997, 14729, 13, 198, 1026, 318, 1912, 319, 262, 1109, 326, 611, 32841, 46363, 389, 40325, 422, 1111, 20312, 12, 2412, 11, 262, 7186, 198, 8310, 363, 434, 2476, 284, 307, 12238, 621, 262, 5166, 12, 437, 4129, 198, 198, 12156, 2412, 286, 2005, 42552, 33756, 952, 290, 2124, 9654, 13103, 422, 2196, 352, 13, 21, 198, 198, 13838, 25, 18867, 46441, 2409, 8289, 418, 12, 50, 296, 283, 822, 292, 198, 15333, 25, 220, 285, 2899, 46441, 13, 5657, 8289, 418, 31, 4106, 13, 325, 198, 198, 15269, 1946, 18867, 46441, 2409, 8289, 418, 12, 50, 296, 283, 822, 292, 198, 198, 26656, 15385, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 5832, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 1639, 743, 7330, 257, 4866, 286, 262, 13789, 379, 628, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 198, 28042, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 17080, 6169, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 54, 10554, 12425, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 6214, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2475, 20597, 739, 262, 13789, 13, 198, 37811, 198, 198, 11748, 25064, 198, 11748, 1822, 29572, 198, 11748, 28686, 13, 6978, 198, 198, 2, 7575, 286, 4226, 9706, 290, 18931, 8265, 198, 11748, 640, 198, 11748, 18931, 198, 198, 11748, 302, 198, 11748, 10688, 198, 198, 11748, 340, 861, 10141, 198, 6738, 17268, 1330, 1635, 198, 198, 6738, 2005, 42552, 1330, 33756, 952, 11, 87, 9654, 198, 6738, 5253, 1330, 8891, 2229, 198, 11748, 269, 19199, 198, 198, 2, 6601, 14691, 9195, 82, 198, 11748, 299, 32152, 355, 45941, 198, 198, 2, 8412, 44140, 286, 8774, 220, 46068, 8162, 198, 198, 2, 8412, 9, 12915, 286, 8774, 8412, 2466, 1174, 628, 198, 2, 8021, 8139, 16311, 389, 262, 976, 4129, 11, 351, 257, 8891, 2229, 5253, 286, 1342, 621, 657, 13, 2713, 4, 286, 262, 4129, 198, 198, 2, 8021, 8139, 16311, 389, 19874, 290, 262, 976, 4129, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 197, 2, 18709, 3141, 1627, 7159, 198, 197, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 2625, 7391, 284, 1429, 3049, 80, 3696, 706, 21302, 9934, 290, 32139, 16311, 21441, 4833, 621, 1100, 4129, 4943, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 49, 16, 1600, 16794, 2625, 22968, 80, 351, 2651, 20312, 12, 437, 4943, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 49, 17, 1600, 16794, 2625, 22968, 80, 351, 9575, 20312, 12, 437, 4943, 628, 197, 48610, 13, 2860, 62, 49140, 7203, 12, 78, 2430, 438, 22915, 12, 40290, 1600, 4277, 28, 14202, 11, 1037, 2625, 36698, 844, 286, 262, 5072, 3696, 1, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 1831, 62, 961, 62, 13664, 1600, 4277, 28, 18938, 11, 4906, 28, 600, 11, 1037, 2625, 24539, 286, 8246, 9743, 357, 19052, 21302, 15797, 2229, 737, 15161, 25, 25643, 1, 1267, 198, 197, 48610, 13, 2860, 62, 49140, 7203, 438, 1084, 12, 2213, 320, 1600, 4277, 28, 940, 11, 4906, 28, 600, 11, 1037, 2625, 44046, 1271, 286, 12536, 40325, 284, 2074, 262, 21302, 4615, 373, 407, 49062, 13, 15161, 25, 838, 1, 1267, 628, 197, 48610, 13, 2860, 62, 49140, 7203, 12, 75, 2430, 438, 6404, 12, 7753, 1600, 4277, 28, 14202, 11, 1037, 2625, 5376, 286, 262, 2604, 2393, 4943, 628, 197, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 197, 361, 26571, 62, 22046, 7, 22046, 2599, 198, 197, 197, 2, 24243, 1096, 2604, 198, 197, 197, 6404, 62, 5715, 796, 18931, 13, 10778, 198, 197, 197, 361, 26498, 13, 6404, 62, 7753, 25, 198, 197, 197, 197, 6404, 2667, 13, 35487, 16934, 7, 34345, 28, 22046, 13, 6404, 62, 7753, 11, 5715, 28, 6404, 62, 5715, 8, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 6404, 2667, 13, 35487, 16934, 7, 5532, 28, 17597, 13, 301, 1082, 81, 11, 5715, 28, 6404, 62, 5715, 8, 628, 197, 197, 2435, 62, 9688, 796, 640, 13, 2435, 3419, 198, 197, 197, 12417, 7, 26498, 1267, 198, 197, 197, 6404, 2667, 13, 10951, 7203, 7575, 42118, 25, 43825, 2536, 7, 2435, 13, 2435, 3419, 532, 640, 62, 9688, 47762, 1, 59, 77, 4943, 198, 197, 17772, 25, 198, 197, 197, 6404, 2667, 13, 18224, 7203, 44651, 7159, 13, 1475, 1780, 4226, 59, 77, 4943, 198, 197, 197, 17597, 13, 37023, 7, 16, 8, 198 ]
3.455901
805
import torch import torch.nn as nn import torch.nn.functional as F
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 628, 198 ]
3.285714
21
from battleship.grid import Grid, Outcome from battleship.ship import Ship
[ 6738, 10181, 1056, 13, 25928, 1330, 24846, 11, 3806, 2958, 198, 6738, 10181, 1056, 13, 6720, 1330, 16656, 628, 628, 628 ]
3.809524
21
import copy import pytest from typing import Tuple, Optional import torch from torch_sparse import SparseTensor from torch_sparse.matmul import spmm from torch_geometric.nn import MessagePassing from torch_geometric.utils import softmax edge_index = torch.tensor([ [0, 0, 0, 1, 1], [0, 1, 2, 0, 2], ]) adj_t = SparseTensor(row=edge_index[1], col=edge_index[0]) x = ( torch.arange(1, 3, dtype=torch.float), torch.arange(1, 4, dtype=torch.float), )
[ 11748, 4866, 198, 11748, 12972, 9288, 198, 6738, 19720, 1330, 309, 29291, 11, 32233, 198, 198, 11748, 28034, 198, 6738, 28034, 62, 82, 29572, 1330, 1338, 17208, 51, 22854, 198, 6738, 28034, 62, 82, 29572, 13, 6759, 76, 377, 1330, 599, 3020, 198, 6738, 28034, 62, 469, 16996, 13, 20471, 1330, 16000, 14478, 278, 198, 6738, 28034, 62, 469, 16996, 13, 26791, 1330, 2705, 9806, 198, 198, 14907, 62, 9630, 796, 28034, 13, 83, 22854, 26933, 198, 220, 220, 220, 685, 15, 11, 657, 11, 657, 11, 352, 11, 352, 4357, 198, 220, 220, 220, 685, 15, 11, 352, 11, 362, 11, 657, 11, 362, 4357, 198, 12962, 198, 41255, 62, 83, 796, 1338, 17208, 51, 22854, 7, 808, 28, 14907, 62, 9630, 58, 16, 4357, 951, 28, 14907, 62, 9630, 58, 15, 12962, 198, 87, 796, 357, 198, 220, 220, 220, 28034, 13, 283, 858, 7, 16, 11, 513, 11, 288, 4906, 28, 13165, 354, 13, 22468, 828, 198, 220, 220, 220, 28034, 13, 283, 858, 7, 16, 11, 604, 11, 288, 4906, 28, 13165, 354, 13, 22468, 828, 198, 8, 628, 628, 628, 628, 628, 628, 628, 628 ]
2.526316
190
# Author : Ali Snedden # Date : 3/21/20 # License: MIT # Purpose: # This code plots the Johns Hoptins Covid-19 Data # # # # Notes : # # References : # 1. https://github.com/CSSEGISandData/COVID-19 # # # Future: # # # import sys import numpy as np import time import pandas as pd from matplotlib import pyplot as plt from error import exit_with_error from classes import ITALY_DATA from scipy import optimize def print_help(ExitCode): """ ARGS: RETURN: DESCRIPTION: DEBUG: FUTURE: """ sys.stderr.write( "python3 ./src/plot_jhu_data.py country log-lin slice_index\n" " country : See time_series_covid19_confirmed_global.csv\n" " for coutries to plot options\n" " log-lin : required, plot y axis in natural log, if fit is \n" " straight line then experiencing exponential growth.\n" " My hope is to someday implement other to be fit types \n" " (e.g. lin-lin)\n" " slice_index : required, for fitting, e.g. \n" " if = -10, it will fit the last 10 points\n" " if = 10, it will fit the first 10 points\n" " \n" " To Run: \n" " source ~/.local/virtualenvs/python3.7/bin/activate\n") sys.exit(ExitCode) def main(): """ ARGS: RETURN: DESCRIPTION: DEBUG: FUTURE: 1. Add option to fit only a specific section of data. """ # Check Python version nArg = len(sys.argv) # Use python 3 if(sys.version_info[0] != 3): exit_with_error("ERROR!!! Use Python 3\n") # Get options if("-h" in sys.argv[1]): print_help(0) elif(nArg != 4 and nArg != 3): print_help(1) if(nArg == 4): slcIdx = int(sys.argv[3]) startTime = time.time() print("{} \n".format(sys.argv),flush=True) print(" Start Time : {}".format(time.strftime("%a, %d %b %Y %H:%M:%S ", time.localtime())),flush=True) # Get args country = sys.argv[1] plotType = sys.argv[2] # Straight line equals linear growth dataPath = "data/jhu/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" countryFound = False df = pd.read_csv(dataPath) lastDate = df.columns[-1] for index, row in df.iterrows(): # Select country specified if(row.values[1].lower() == country.lower()): if(countryFound == True): exit_with_error("ERROR!! {} should only occur " "once".format(country.lower())) yV = np.asarray(row.values[4:],dtype=np.float32) # y vector -cases xV = np.asarray(range(len(yV))) # x vector - days n = len(xV) # Number of days countryFound = True fig, ax = plt.subplots(1,1) # Generate Plot if(plotType == "log-lin"): ylabel = "ln(cases + 1)" print(yV) yV = yV + 1 yV = np.log(yV) # Slice and only keep what if(nArg == 4): if(slcIdx < 0): xfit = xV[slcIdx:] yfit = yV[slcIdx:] elif(slcIdx > 0): xfit = xV[:slcIdx] yfit = yV[:slcIdx] fit = np.polyfit(xfit,yfit,deg=1) # Reuse xfit, and yfit xfit= np.asarray([x for x in np.arange(0,n,n/100.0)]) yfit= fit[0]*xfit + fit[1] ax.plot(xfit, yfit, label="Fit - y={:.3f}x+{:.3f}".format(fit[0],fit[1])) ax.set_title("Covid-19 in {} (ending {})".format(country, lastDate)) elif(plotType == "lin-lin"): ylabel = "Covid-19_Cases" exit_with_error("ERROR!! I haven't handled this option yet\n") else: exit_with_error("ERROR!! Invalid plotType option\n") ax.plot(xV, yV, label=ylabel) ax.set_xlabel("Time spanning 0-{} days".format(n-1)) ax.set_ylabel("{}".format(ylabel)) ax.legend() plt.show() print("Ended : %s"%(time.strftime("%D:%H:%M:%S"))) print("Run Time : {:.4f} h".format((time.time() - startTime)/3600.0)) sys.exit(0) if __name__ == "__main__": main()
[ 2, 6434, 1058, 12104, 311, 2817, 6559, 198, 2, 7536, 220, 220, 1058, 513, 14, 2481, 14, 1238, 198, 2, 13789, 25, 17168, 198, 2, 32039, 25, 220, 198, 2, 220, 220, 770, 2438, 21528, 262, 25824, 367, 8738, 1040, 39751, 312, 12, 1129, 6060, 198, 2, 220, 220, 220, 198, 2, 198, 2, 220, 220, 220, 198, 2, 11822, 1058, 220, 198, 2, 220, 220, 220, 198, 2, 31458, 1058, 220, 198, 2, 220, 220, 352, 13, 3740, 1378, 12567, 13, 785, 14, 7902, 5188, 38, 1797, 392, 6601, 14, 8220, 11008, 12, 1129, 198, 2, 220, 198, 2, 198, 2, 10898, 25, 198, 2, 220, 220, 220, 198, 2, 198, 2, 198, 11748, 25064, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 640, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 2603, 29487, 8019, 1330, 12972, 29487, 355, 458, 83, 198, 6738, 4049, 1330, 8420, 62, 4480, 62, 18224, 198, 6738, 6097, 1330, 7283, 1847, 56, 62, 26947, 198, 6738, 629, 541, 88, 1330, 27183, 628, 198, 4299, 3601, 62, 16794, 7, 30337, 10669, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5923, 14313, 25, 198, 220, 220, 220, 30826, 27064, 25, 198, 220, 220, 220, 22196, 40165, 25, 198, 220, 220, 220, 16959, 25, 198, 220, 220, 220, 376, 3843, 11335, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25064, 13, 301, 1082, 81, 13, 13564, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 29412, 18, 24457, 10677, 14, 29487, 62, 73, 13415, 62, 7890, 13, 9078, 1499, 2604, 12, 2815, 16416, 62, 9630, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 1499, 220, 220, 1058, 4091, 640, 62, 25076, 62, 66, 709, 312, 1129, 62, 36349, 62, 20541, 13, 40664, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 42304, 1678, 284, 7110, 3689, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 2604, 12, 2815, 220, 220, 1058, 2672, 11, 7110, 331, 16488, 287, 3288, 2604, 11, 611, 4197, 318, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3892, 1627, 788, 13456, 39682, 3349, 13, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2011, 2911, 318, 284, 25580, 3494, 584, 284, 307, 4197, 3858, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 68, 13, 70, 13, 9493, 12, 2815, 19415, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 16416, 62, 9630, 1058, 2672, 11, 329, 15830, 11, 304, 13, 70, 13, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 796, 532, 940, 11, 340, 481, 4197, 262, 938, 838, 2173, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 796, 838, 11, 340, 481, 4197, 262, 717, 838, 2173, 59, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 220, 220, 220, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 1675, 5660, 25, 3467, 77, 1, 198, 220, 220, 220, 220, 220, 220, 220, 366, 220, 220, 2723, 39763, 12001, 14, 32844, 268, 14259, 14, 29412, 18, 13, 22, 14, 8800, 14, 39022, 59, 77, 4943, 198, 220, 220, 220, 25064, 13, 37023, 7, 30337, 10669, 8, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5923, 14313, 25, 198, 220, 220, 220, 30826, 27064, 25, 198, 220, 220, 220, 22196, 40165, 25, 198, 220, 220, 220, 16959, 25, 198, 220, 220, 220, 376, 3843, 11335, 25, 198, 220, 220, 220, 220, 220, 220, 220, 352, 13, 3060, 3038, 284, 4197, 691, 257, 2176, 2665, 286, 1366, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 6822, 11361, 2196, 198, 220, 220, 220, 299, 28100, 796, 18896, 7, 17597, 13, 853, 85, 8, 198, 220, 220, 220, 1303, 5765, 21015, 513, 198, 220, 220, 220, 611, 7, 17597, 13, 9641, 62, 10951, 58, 15, 60, 14512, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 4480, 62, 18224, 7203, 24908, 10185, 5765, 11361, 513, 59, 77, 4943, 198, 220, 220, 220, 1303, 3497, 3689, 220, 198, 220, 220, 220, 611, 7203, 12, 71, 1, 287, 25064, 13, 853, 85, 58, 16, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 16794, 7, 15, 8, 198, 220, 220, 220, 1288, 361, 7, 77, 28100, 14512, 604, 290, 299, 28100, 14512, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 16794, 7, 16, 8, 198, 220, 220, 220, 611, 7, 77, 28100, 6624, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1017, 66, 7390, 87, 796, 493, 7, 17597, 13, 853, 85, 58, 18, 12962, 628, 220, 220, 220, 923, 7575, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 3601, 7203, 90, 92, 3467, 77, 1911, 18982, 7, 17597, 13, 853, 85, 828, 25925, 28, 17821, 8, 198, 220, 220, 220, 3601, 7203, 220, 220, 7253, 3862, 1058, 23884, 1911, 18982, 7, 2435, 13, 2536, 31387, 7203, 4, 64, 11, 4064, 67, 4064, 65, 4064, 56, 4064, 39, 25, 4, 44, 25, 4, 50, 33172, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 12001, 2435, 28955, 828, 25925, 28, 17821, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 3497, 26498, 198, 220, 220, 220, 1499, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 220, 220, 220, 7110, 6030, 796, 25064, 13, 853, 85, 58, 17, 60, 220, 220, 220, 220, 220, 220, 1303, 27680, 1627, 21767, 14174, 3349, 198, 220, 220, 220, 1366, 15235, 796, 366, 7890, 14, 73, 13415, 14, 6359, 325, 62, 66, 709, 312, 62, 1129, 62, 7890, 14, 6359, 325, 62, 66, 709, 312, 62, 1129, 62, 2435, 62, 25076, 14, 2435, 62, 25076, 62, 66, 709, 312, 1129, 62, 36349, 62, 20541, 13, 40664, 1, 198, 220, 220, 220, 1499, 21077, 796, 10352, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 961, 62, 40664, 7, 7890, 15235, 8, 198, 220, 220, 220, 938, 10430, 796, 47764, 13, 28665, 82, 58, 12, 16, 60, 198, 220, 220, 220, 329, 6376, 11, 5752, 287, 47764, 13, 2676, 8516, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 9683, 1499, 7368, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 808, 13, 27160, 58, 16, 4083, 21037, 3419, 6624, 1499, 13, 21037, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 19315, 21077, 6624, 6407, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 4480, 62, 18224, 7203, 24908, 3228, 23884, 815, 691, 3051, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 27078, 1911, 18982, 7, 19315, 13, 21037, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 53, 796, 45941, 13, 292, 18747, 7, 808, 13, 27160, 58, 19, 25, 4357, 67, 4906, 28, 37659, 13, 22468, 2624, 8, 220, 1303, 331, 15879, 532, 33964, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 53, 796, 45941, 13, 292, 18747, 7, 9521, 7, 11925, 7, 88, 53, 22305, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2124, 15879, 532, 1528, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 220, 796, 18896, 7, 87, 53, 8, 220, 220, 1303, 7913, 286, 1528, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1499, 21077, 796, 6407, 198, 220, 220, 220, 198, 220, 220, 220, 2336, 11, 7877, 796, 458, 83, 13, 7266, 489, 1747, 7, 16, 11, 16, 8, 198, 220, 220, 220, 1303, 2980, 378, 28114, 198, 220, 220, 220, 611, 7, 29487, 6030, 6624, 366, 6404, 12, 2815, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 366, 18755, 7, 33964, 1343, 352, 16725, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 88, 53, 8, 198, 220, 220, 220, 220, 220, 220, 220, 331, 53, 796, 331, 53, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 331, 53, 796, 45941, 13, 6404, 7, 88, 53, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3454, 501, 290, 691, 1394, 644, 220, 198, 220, 220, 220, 220, 220, 220, 220, 611, 7, 77, 28100, 6624, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 6649, 66, 7390, 87, 1279, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11147, 796, 2124, 53, 58, 6649, 66, 7390, 87, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 11147, 796, 331, 53, 58, 6649, 66, 7390, 87, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 7, 6649, 66, 7390, 87, 1875, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 11147, 796, 2124, 53, 58, 25, 6649, 66, 7390, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 11147, 796, 331, 53, 58, 25, 6649, 66, 7390, 87, 60, 198, 220, 220, 220, 220, 220, 220, 220, 4197, 796, 45941, 13, 35428, 11147, 7, 87, 11147, 11, 88, 11147, 11, 13500, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 797, 1904, 2124, 11147, 11, 290, 331, 11147, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 11147, 28, 45941, 13, 292, 18747, 26933, 87, 329, 2124, 287, 45941, 13, 283, 858, 7, 15, 11, 77, 11, 77, 14, 3064, 13, 15, 8, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 331, 11147, 28, 4197, 58, 15, 60, 9, 87, 11147, 1343, 4197, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 29487, 7, 87, 11147, 11, 331, 11147, 11, 6167, 2625, 31805, 532, 331, 34758, 25, 13, 18, 69, 92, 87, 10, 90, 25, 13, 18, 69, 92, 1911, 18982, 7, 11147, 58, 15, 4357, 11147, 58, 16, 60, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 13, 2617, 62, 7839, 7203, 34, 709, 312, 12, 1129, 287, 23884, 357, 1571, 23884, 8, 1911, 18982, 7, 19315, 11, 938, 10430, 4008, 198, 220, 220, 220, 1288, 361, 7, 29487, 6030, 6624, 366, 2815, 12, 2815, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 331, 18242, 796, 366, 34, 709, 312, 12, 1129, 62, 34, 1386, 1, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 4480, 62, 18224, 7203, 24908, 3228, 314, 4398, 470, 12118, 428, 3038, 1865, 59, 77, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 62, 4480, 62, 18224, 7203, 24908, 3228, 17665, 7110, 6030, 3038, 59, 77, 4943, 198, 220, 220, 220, 7877, 13, 29487, 7, 87, 53, 11, 331, 53, 11, 6167, 28, 2645, 9608, 8, 198, 220, 220, 220, 7877, 13, 2617, 62, 87, 18242, 7203, 7575, 32557, 657, 12, 90, 92, 1528, 1911, 18982, 7, 77, 12, 16, 4008, 198, 220, 220, 220, 7877, 13, 2617, 62, 2645, 9608, 7203, 90, 92, 1911, 18982, 7, 2645, 9608, 4008, 198, 220, 220, 220, 7877, 13, 1455, 437, 3419, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 628, 220, 220, 220, 3601, 7203, 12915, 276, 1058, 4064, 82, 1, 4, 7, 2435, 13, 2536, 31387, 7203, 4, 35, 25, 4, 39, 25, 4, 44, 25, 4, 50, 1, 22305, 198, 220, 220, 220, 3601, 7203, 10987, 3862, 1058, 46110, 13, 19, 69, 92, 289, 1911, 18982, 19510, 2435, 13, 2435, 3419, 532, 923, 7575, 20679, 2623, 405, 13, 15, 4008, 628, 628, 220, 220, 220, 25064, 13, 37023, 7, 15, 8, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
1.943713
2,203
#! /usr/bin/env python3 # -*- coding:utf-8 -*- ############################################################### # © kenwaldek MIT-license # # Title: tkinter_image Version: 1.0 # Date: 26-12-16 Language: python3 # Description: tkinter inladen van image en text via menubar # ############################################################### from PIL import Image, ImageTk from tkinter import * root = Tk() root.geometry('400x300') app = Window(root) root.mainloop()
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 220, 532, 9, 12, 19617, 25, 40477, 12, 23, 532, 9, 12, 198, 29113, 14468, 7804, 4242, 21017, 198, 2, 10673, 479, 268, 21667, 988, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17168, 12, 43085, 198, 2, 198, 2, 11851, 25, 256, 74, 3849, 62, 9060, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10628, 25, 352, 13, 15, 198, 2, 7536, 25, 2608, 12, 1065, 12, 1433, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15417, 25, 21015, 18, 198, 2, 12489, 25, 256, 74, 3849, 287, 35668, 5719, 2939, 551, 2420, 2884, 1450, 549, 283, 198, 2, 198, 29113, 14468, 7804, 4242, 21017, 198, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 51, 74, 198, 6738, 256, 74, 3849, 1330, 1635, 628, 628, 198, 15763, 796, 309, 74, 3419, 198, 15763, 13, 469, 15748, 10786, 7029, 87, 6200, 11537, 198, 1324, 796, 26580, 7, 15763, 8, 198, 15763, 13, 12417, 26268, 3419, 198 ]
2.588235
204
from django.apps import AppConfig
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628 ]
3.888889
9
#!/usr/bin/env python import logging import time from urllib.parse import urljoin import requests from relay_sdk import Interface, Dynamic as D relay = Interface() relay_api_url = relay.get(D.connection.relayAPIURL) relay_api_token = relay.get(D.connection.token) run_id = relay.get(D.id) headers = {'Authorization': f'Bearer {relay_api_token}'} while True: r = requests.get(urljoin(relay_api_url, f'_puppet/runs/{run_id}'), headers=headers) r.raise_for_status() run = r.json() if run['state']['status'] != 'complete': # XXX: FIXME: We need to take into account next_update_before to handle # this properly. logging.info('Run is not yet complete (currently {}), waiting...'.format(run['state']['status'])) time.sleep(5) continue if run['state'].get('job_id'): relay.outputs.set('jobID', run['state']['job_id']) if run['state'].get('outcome'): relay.outputs.set('outcome', run['state']['outcome']) logging.info('Run complete with outcome {}'.format(run['state'].get('outcome', '(unknown)'))) break
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 11748, 18931, 198, 11748, 640, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 22179, 198, 198, 11748, 7007, 198, 6738, 24248, 62, 21282, 74, 1330, 26491, 11, 26977, 355, 360, 198, 198, 2411, 323, 796, 26491, 3419, 198, 198, 2411, 323, 62, 15042, 62, 6371, 796, 24248, 13, 1136, 7, 35, 13, 38659, 13, 2411, 323, 17614, 21886, 8, 198, 2411, 323, 62, 15042, 62, 30001, 796, 24248, 13, 1136, 7, 35, 13, 38659, 13, 30001, 8, 198, 198, 5143, 62, 312, 796, 24248, 13, 1136, 7, 35, 13, 312, 8, 198, 198, 50145, 796, 1391, 6, 13838, 1634, 10354, 277, 6, 3856, 11258, 1391, 2411, 323, 62, 15042, 62, 30001, 92, 6, 92, 198, 198, 4514, 6407, 25, 198, 220, 220, 220, 374, 796, 7007, 13, 1136, 7, 6371, 22179, 7, 2411, 323, 62, 15042, 62, 6371, 11, 277, 6, 62, 79, 44933, 14, 48381, 14, 90, 5143, 62, 312, 92, 33809, 24697, 28, 50145, 8, 198, 220, 220, 220, 374, 13, 40225, 62, 1640, 62, 13376, 3419, 628, 220, 220, 220, 1057, 796, 374, 13, 17752, 3419, 198, 220, 220, 220, 611, 1057, 17816, 5219, 6, 7131, 6, 13376, 20520, 14512, 705, 20751, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27713, 25, 44855, 11682, 25, 775, 761, 284, 1011, 656, 1848, 1306, 62, 19119, 62, 19052, 284, 5412, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 6105, 13, 198, 220, 220, 220, 220, 220, 220, 220, 18931, 13, 10951, 10786, 10987, 318, 407, 1865, 1844, 357, 41745, 23884, 828, 4953, 986, 4458, 18982, 7, 5143, 17816, 5219, 6, 7131, 6, 13376, 20520, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 611, 1057, 17816, 5219, 6, 4083, 1136, 10786, 21858, 62, 312, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 24248, 13, 22915, 82, 13, 2617, 10786, 21858, 2389, 3256, 1057, 17816, 5219, 6, 7131, 6, 21858, 62, 312, 6, 12962, 628, 220, 220, 220, 611, 1057, 17816, 5219, 6, 4083, 1136, 10786, 448, 2958, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 24248, 13, 22915, 82, 13, 2617, 10786, 448, 2958, 3256, 1057, 17816, 5219, 6, 7131, 6, 448, 2958, 6, 12962, 628, 220, 220, 220, 18931, 13, 10951, 10786, 10987, 1844, 351, 8055, 23884, 4458, 18982, 7, 5143, 17816, 5219, 6, 4083, 1136, 10786, 448, 2958, 3256, 29513, 34680, 33047, 22305, 628, 220, 220, 220, 2270, 198 ]
2.553488
430
#!/usr/bin/python # you need to config this! # set the model file, and if the model supports big-grams: set seed with bigrams.. ## the conf dict stores all relevant config parameters conf={} conf['model'] = "climate2_2015_7.txt.2gram.small.model" # default dummy model #conf['model'] = "climate2_2015_7.txt.2gram.model" # if using a bigram model conf['seedfn'] = "../data/climate.seed" # bigram seed for climate change models # config for hypernym extraction conf['num_taxomy_best'] = 1 # number of most similar terms to consider when building a taxonomy conf['sim_threshold'] = 0.40 # if using a unigram model #conf['seedfn'] = "../data/climate-single-word.seed" # config for hypernym extraction #conf['num_taxomy_best'] = 3 # number of most similar terms to consider when building a taxonomy #conf['sim_threshold'] = 0.23 conf['binary_model'] = True # default: using a binary word2vec model (like created by Mikolov's C implementation) conf['domain'] = "climate change" # your domain of knowledge -- not important for the algorithms .. ######################################################################################################################## # no need to change below this DB_PATH= "../data/our.db" #DB_PATH= "/home/wohlg/workspace/dl4j-0.4-examples/src/main/java/MinicBac/python/data/our.db" print "db-path", DB_PATH import sqlite3 def get_db(): """ just connect to the sqlite3 database """ conf['db'] = sqlite3.connect(DB_PATH) # model file name conf['MFN'] = "../data/models/" + conf['model'] # setup logging import logging, os logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 2, 345, 761, 284, 4566, 428, 0, 198, 2, 900, 262, 2746, 2393, 11, 290, 611, 262, 2746, 6971, 1263, 12, 4546, 82, 25, 900, 9403, 351, 1263, 9474, 492, 628, 198, 2235, 262, 1013, 8633, 7000, 477, 5981, 4566, 10007, 198, 198, 10414, 34758, 92, 198, 10414, 17816, 19849, 20520, 796, 366, 42570, 17, 62, 4626, 62, 22, 13, 14116, 13, 17, 4546, 13, 17470, 13, 19849, 1, 1303, 4277, 31548, 2746, 198, 2, 10414, 17816, 19849, 20520, 796, 366, 42570, 17, 62, 4626, 62, 22, 13, 14116, 13, 17, 4546, 13, 19849, 1, 628, 198, 198, 2, 611, 1262, 257, 1263, 859, 2746, 198, 10414, 17816, 28826, 22184, 20520, 796, 366, 40720, 7890, 14, 42570, 13, 28826, 1, 1303, 1263, 859, 9403, 329, 4258, 1487, 4981, 220, 198, 198, 2, 4566, 329, 8718, 3281, 76, 22236, 198, 10414, 17816, 22510, 62, 19290, 9145, 62, 13466, 20520, 796, 352, 1303, 1271, 286, 749, 2092, 2846, 284, 2074, 618, 2615, 257, 1687, 30565, 198, 10414, 17816, 14323, 62, 400, 10126, 20520, 796, 657, 13, 1821, 628, 198, 2, 611, 1262, 257, 555, 328, 859, 220, 2746, 198, 2, 10414, 17816, 28826, 22184, 20520, 796, 366, 40720, 7890, 14, 42570, 12, 29762, 12, 4775, 13, 28826, 1, 198, 198, 2, 220, 4566, 329, 8718, 3281, 76, 22236, 198, 2, 10414, 17816, 22510, 62, 19290, 9145, 62, 13466, 20520, 796, 513, 1303, 1271, 286, 749, 2092, 2846, 284, 2074, 618, 2615, 257, 1687, 30565, 198, 2, 10414, 17816, 14323, 62, 400, 10126, 20520, 796, 657, 13, 1954, 628, 198, 10414, 17816, 39491, 62, 19849, 20520, 796, 6407, 1303, 4277, 25, 1262, 257, 13934, 1573, 17, 35138, 2746, 357, 2339, 2727, 416, 17722, 349, 709, 338, 327, 7822, 8, 198, 10414, 17816, 27830, 20520, 796, 366, 42570, 1487, 1, 1303, 534, 7386, 286, 3725, 1377, 407, 1593, 329, 262, 16113, 11485, 198, 198, 29113, 29113, 29113, 14468, 7804, 198, 198, 2, 645, 761, 284, 1487, 2174, 428, 198, 11012, 62, 34219, 28, 366, 40720, 7890, 14, 454, 13, 9945, 1, 198, 2, 11012, 62, 34219, 28, 12813, 11195, 14, 86, 48988, 70, 14, 5225, 10223, 14, 25404, 19, 73, 12, 15, 13, 19, 12, 1069, 12629, 14, 10677, 14, 12417, 14, 12355, 14, 9452, 291, 33, 330, 14, 29412, 14, 7890, 14, 454, 13, 9945, 1, 198, 198, 4798, 366, 9945, 12, 6978, 1600, 20137, 62, 34219, 198, 198, 11748, 44161, 578, 18, 198, 4299, 651, 62, 9945, 33529, 198, 220, 220, 220, 37227, 655, 2018, 284, 262, 44161, 578, 18, 6831, 37227, 198, 220, 220, 220, 1013, 17816, 9945, 20520, 796, 44161, 578, 18, 13, 8443, 7, 11012, 62, 34219, 8, 628, 198, 2, 2746, 2393, 1438, 198, 10414, 17816, 44, 43221, 20520, 796, 366, 40720, 7890, 14, 27530, 30487, 1343, 1013, 17816, 19849, 20520, 198, 198, 2, 9058, 18931, 198, 11748, 18931, 11, 28686, 198, 6404, 2667, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 8, 82, 1058, 4064, 7, 5715, 3672, 8, 82, 1058, 4064, 7, 20500, 8, 82, 3256, 1241, 28, 6404, 2667, 13, 10778, 8, 198 ]
3.213462
520
from .neumiss_layer import NeuMiss from .neumiss_mlp import NeuMissMLP
[ 6738, 764, 25668, 747, 62, 29289, 1330, 3169, 84, 17140, 198, 6738, 764, 25668, 747, 62, 4029, 79, 1330, 3169, 84, 17140, 5805, 47, 198 ]
2.84
25
""" REST API Resource Routing http://flask-restplus.readthedocs.io """ from datetime import datetime from flask import request from flask_restplus import Resource from .security import require_auth from . import api_rest from .func import * from .engine import * # wildcard import the TTDS lib class SecureResource(Resource): """ Calls require_auth decorator on all requests """ method_decorators = [require_auth] @api_rest.route('/resource/<string:resource_id>') class ResourceOne(Resource): """ Unsecure Resource Class: Inherit from Resource """ @api_rest.route('/secure-resource/<string:resource_id>') class SecureResourceOne(SecureResource): """ Unsecure Resource Class: Inherit from Resource """ # this is the example hardcode test @api_rest.route('/hello') @api_rest.route('/demo10') @api_rest.route('/search')
[ 37811, 198, 49, 6465, 7824, 20857, 371, 13660, 198, 4023, 1378, 2704, 2093, 12, 2118, 9541, 13, 961, 83, 704, 420, 82, 13, 952, 198, 37811, 198, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 42903, 1330, 2581, 198, 6738, 42903, 62, 2118, 9541, 1330, 20857, 198, 198, 6738, 764, 12961, 1330, 2421, 62, 18439, 198, 6738, 764, 1330, 40391, 62, 2118, 198, 6738, 764, 20786, 1330, 1635, 198, 6738, 764, 18392, 1330, 1635, 220, 220, 220, 220, 220, 220, 1303, 4295, 9517, 1330, 262, 26653, 5258, 9195, 198, 198, 4871, 26707, 26198, 7, 26198, 2599, 198, 220, 220, 220, 37227, 27592, 2421, 62, 18439, 11705, 1352, 319, 477, 7007, 37227, 198, 220, 220, 220, 2446, 62, 12501, 273, 2024, 796, 685, 46115, 62, 18439, 60, 628, 198, 31, 15042, 62, 2118, 13, 38629, 10786, 14, 31092, 14, 27, 8841, 25, 31092, 62, 312, 29, 11537, 198, 4871, 20857, 3198, 7, 26198, 2599, 198, 220, 220, 220, 37227, 791, 22390, 20857, 5016, 25, 47025, 270, 422, 20857, 37227, 628, 198, 31, 15042, 62, 2118, 13, 38629, 10786, 14, 22390, 12, 31092, 14, 27, 8841, 25, 31092, 62, 312, 29, 11537, 198, 4871, 26707, 26198, 3198, 7, 49793, 26198, 2599, 198, 220, 220, 220, 37227, 791, 22390, 20857, 5016, 25, 47025, 270, 422, 20857, 37227, 628, 198, 2, 428, 318, 262, 1672, 1327, 8189, 1332, 198, 31, 15042, 62, 2118, 13, 38629, 10786, 14, 31373, 11537, 198, 198, 31, 15042, 62, 2118, 13, 38629, 10786, 14, 9536, 78, 940, 11537, 628, 198, 31, 15042, 62, 2118, 13, 38629, 10786, 14, 12947, 11537, 628, 198 ]
3.231061
264
#sachin_katageri #SKATCODE from tkinter import* me=Tk() me.geometry("354x460") me.title("CALCULATOR") melabel = Label(me,text="CALCULATOR",bg='White',font=("Times",30,'bold')) melabel.pack(side=TOP) me.config(background='Dark gray') textin=StringVar() operator="" metext=Entry(me,font=("Courier New",12,'bold'),textvar=textin,width=25,bd=5,bg='powder blue') metext.pack() but1=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(1),text="1",font=("Courier New",16,'bold')) but1.place(x=10,y=100) but2=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(2),text="2",font=("Courier New",16,'bold')) but2.place(x=10,y=170) but3=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(3),text="3",font=("Courier New",16,'bold')) but3.place(x=10,y=240) but4=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(4),text="4",font=("Courier New",16,'bold')) but4.place(x=75,y=100) but5=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(5),text="5",font=("Courier New",16,'bold')) but5.place(x=75,y=170) but6=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(6),text="6",font=("Courier New",16,'bold')) but6.place(x=75,y=240) but7=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(7),text="7",font=("Courier New",16,'bold')) but7.place(x=140,y=100) but8=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(8),text="8",font=("Courier New",16,'bold')) but8.place(x=140,y=170) but9=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(9),text="9",font=("Courier New",16,'bold')) but9.place(x=140,y=240) but0=Button(me,padx=14,pady=14,bd=4,bg='white',command=lambda:clickbut(0),text="0",font=("Courier New",16,'bold')) but0.place(x=10,y=310) butdot=Button(me,padx=47,pady=14,bd=4,bg='white',command=lambda:clickbut("."),text=".",font=("Courier New",16,'bold')) butdot.place(x=75,y=310) butpl=Button(me,padx=14,pady=14,bd=4,bg='white',text="+",command=lambda:clickbut("+"),font=("Courier New",16,'bold')) butpl.place(x=205,y=100) butsub=Button(me,padx=14,pady=14,bd=4,bg='white',text="-",command=lambda:clickbut("-"),font=("Courier New",16,'bold')) butsub.place(x=205,y=170) butml=Button(me,padx=14,pady=14,bd=4,bg='white',text="*",command=lambda:clickbut("*"),font=("Courier New",16,'bold')) butml.place(x=205,y=240) butdiv=Button(me,padx=14,pady=14,bd=4,bg='white',text="/",command=lambda:clickbut("/"),font=("Courier New",16,'bold')) butdiv.place(x=205,y=310) butclear=Button(me,padx=14,pady=119,bd=4,bg='white',text="CE",command=clrbut,font=("Courier New",16,'bold')) butclear.place(x=270,y=100) butequal=Button(me,padx=151,pady=14,bd=4,bg='white',command=equlbut,text="=",font=("Courier New",16,'bold')) butequal.place(x=10,y=380) me.mainloop()
[ 2, 82, 620, 259, 62, 41826, 3536, 72, 201, 198, 2, 18831, 1404, 34, 16820, 201, 198, 6738, 256, 74, 3849, 1330, 9, 201, 198, 201, 198, 1326, 28, 51, 74, 3419, 201, 198, 1326, 13, 469, 15748, 7203, 32182, 87, 34716, 4943, 201, 198, 1326, 13, 7839, 7203, 34, 1847, 34, 6239, 25633, 4943, 201, 198, 17694, 9608, 796, 36052, 7, 1326, 11, 5239, 2625, 34, 1847, 34, 6239, 25633, 1600, 35904, 11639, 12256, 3256, 10331, 28, 7203, 28595, 1600, 1270, 4032, 36575, 6, 4008, 201, 198, 17694, 9608, 13, 8002, 7, 1589, 28, 35222, 8, 201, 198, 1326, 13, 11250, 7, 25249, 11639, 17367, 12768, 11537, 201, 198, 201, 198, 5239, 259, 28, 10100, 19852, 3419, 201, 198, 46616, 33151, 201, 198, 201, 198, 220, 220, 220, 220, 220, 201, 198, 4164, 2302, 28, 30150, 7, 1326, 11, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1065, 4032, 36575, 33809, 5239, 7785, 28, 5239, 259, 11, 10394, 28, 1495, 11, 17457, 28, 20, 11, 35904, 11639, 45855, 4171, 11537, 201, 198, 4164, 2302, 13, 8002, 3419, 201, 198, 201, 198, 4360, 16, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 16, 828, 5239, 2625, 16, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 16, 13, 5372, 7, 87, 28, 940, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 4360, 17, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 17, 828, 5239, 2625, 17, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 17, 13, 5372, 7, 87, 28, 940, 11, 88, 28, 17279, 8, 201, 198, 201, 198, 4360, 18, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 18, 828, 5239, 2625, 18, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 18, 13, 5372, 7, 87, 28, 940, 11, 88, 28, 16102, 8, 201, 198, 201, 198, 4360, 19, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 19, 828, 5239, 2625, 19, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 19, 13, 5372, 7, 87, 28, 2425, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 4360, 20, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 20, 828, 5239, 2625, 20, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 20, 13, 5372, 7, 87, 28, 2425, 11, 88, 28, 17279, 8, 201, 198, 201, 198, 4360, 21, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 21, 828, 5239, 2625, 21, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 21, 13, 5372, 7, 87, 28, 2425, 11, 88, 28, 16102, 8, 201, 198, 201, 198, 4360, 22, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 22, 828, 5239, 2625, 22, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 22, 13, 5372, 7, 87, 28, 15187, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 4360, 23, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 23, 828, 5239, 2625, 23, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 23, 13, 5372, 7, 87, 28, 15187, 11, 88, 28, 17279, 8, 201, 198, 201, 198, 4360, 24, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 24, 828, 5239, 2625, 24, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 24, 13, 5372, 7, 87, 28, 15187, 11, 88, 28, 16102, 8, 201, 198, 201, 198, 4360, 15, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7, 15, 828, 5239, 2625, 15, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 15, 13, 5372, 7, 87, 28, 940, 11, 88, 28, 26717, 8, 201, 198, 201, 198, 4360, 26518, 28, 21864, 7, 1326, 11, 15636, 87, 28, 2857, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 50033, 25, 12976, 4360, 7203, 526, 828, 5239, 2625, 33283, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 26518, 13, 5372, 7, 87, 28, 2425, 11, 88, 28, 26717, 8, 201, 198, 201, 198, 4360, 489, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 5239, 2625, 10, 1600, 21812, 28, 50033, 25, 12976, 4360, 7203, 10, 12340, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 489, 13, 5372, 7, 87, 28, 21261, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 4360, 7266, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 5239, 2625, 12, 1600, 21812, 28, 50033, 25, 12976, 4360, 7203, 12, 12340, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 7266, 13, 5372, 7, 87, 28, 21261, 11, 88, 28, 17279, 8, 201, 198, 201, 198, 4360, 4029, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 5239, 2625, 9, 1600, 21812, 28, 50033, 25, 12976, 4360, 7203, 9, 12340, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 4029, 13, 5372, 7, 87, 28, 21261, 11, 88, 28, 16102, 8, 201, 198, 201, 198, 4360, 7146, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 5239, 35922, 1600, 21812, 28, 50033, 25, 12976, 4360, 7203, 14, 12340, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 7146, 13, 5372, 7, 87, 28, 21261, 11, 88, 28, 26717, 8, 201, 198, 201, 198, 4360, 20063, 28, 21864, 7, 1326, 11, 15636, 87, 28, 1415, 11, 79, 4597, 28, 16315, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 5239, 2625, 5222, 1600, 21812, 28, 565, 81, 4360, 11, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 4360, 20063, 13, 5372, 7, 87, 28, 20233, 11, 88, 28, 3064, 8, 201, 198, 201, 198, 65, 1133, 13255, 28, 21864, 7, 1326, 11, 15636, 87, 28, 24309, 11, 79, 4597, 28, 1415, 11, 17457, 28, 19, 11, 35904, 11639, 11186, 3256, 21812, 28, 27363, 377, 4360, 11, 5239, 2625, 28, 1600, 10331, 28, 7203, 34, 280, 5277, 968, 1600, 1433, 4032, 36575, 6, 4008, 201, 198, 65, 1133, 13255, 13, 5372, 7, 87, 28, 940, 11, 88, 28, 23734, 8, 201, 198, 1326, 13, 12417, 26268, 3419, 201, 198 ]
2.08388
1,371
def SortArrayByArgMinIndex(array,index): ''' MAKE SURE TO SORT BY MOST IMPORTANT INDEX LAST!!! ''' a = array L = len(a) for i in range(L): temp = a[i] flag = 0 j = 0 while j < i and flag == 0: if temp[index] < a[j][index]: a[j+1] = a[j] a[j] = temp j += 1 else: flag = 1 return(a)
[ 198, 4299, 33947, 19182, 3886, 28100, 9452, 15732, 7, 18747, 11, 9630, 2599, 198, 197, 7061, 6, 39134, 311, 11335, 5390, 311, 9863, 11050, 337, 10892, 30023, 9863, 8643, 24413, 6369, 41894, 10185, 705, 7061, 198, 197, 64, 796, 7177, 198, 197, 43, 796, 18896, 7, 64, 8, 198, 197, 1640, 1312, 287, 2837, 7, 43, 2599, 198, 197, 197, 29510, 796, 257, 58, 72, 60, 198, 197, 197, 32109, 796, 657, 198, 197, 197, 73, 796, 657, 198, 197, 197, 4514, 474, 1279, 1312, 290, 6056, 6624, 657, 25, 198, 197, 197, 197, 361, 20218, 58, 9630, 60, 1279, 257, 58, 73, 7131, 9630, 5974, 198, 197, 197, 197, 197, 64, 58, 73, 10, 16, 60, 796, 257, 58, 73, 60, 198, 197, 197, 197, 197, 64, 58, 73, 60, 796, 20218, 198, 197, 197, 197, 197, 73, 15853, 352, 198, 197, 197, 197, 17772, 25, 198, 197, 197, 197, 197, 32109, 796, 352, 198, 197, 7783, 7, 64, 8, 198 ]
1.95679
162
# This file lists files which should be ignored by pytest collect_ignore = ["setup.py", "connery.py", "connery/modules/ipython.py"]
[ 2, 770, 2393, 8341, 3696, 543, 815, 307, 9514, 416, 12972, 9288, 198, 33327, 62, 46430, 796, 14631, 40406, 13, 9078, 1600, 366, 1102, 35865, 13, 9078, 1600, 366, 1102, 35865, 14, 18170, 14, 541, 7535, 13, 9078, 8973, 198 ]
3.3
40
""" Tests for `nas` module. """ import pytest from nas import nas
[ 37811, 198, 51, 3558, 329, 4600, 24716, 63, 8265, 13, 198, 37811, 198, 11748, 12972, 9288, 198, 6738, 25221, 1330, 25221, 628 ]
3.045455
22
#%% import os # IN_FILE = 'test.ncm' # OUT_FILE = IN_FILE.split('.')[0] fileToC('up5.html','htmlData') # %%
[ 2, 16626, 198, 11748, 28686, 198, 198, 2, 3268, 62, 25664, 796, 705, 9288, 13, 10782, 76, 6, 198, 2, 16289, 62, 25664, 796, 3268, 62, 25664, 13, 35312, 10786, 2637, 38381, 15, 60, 198, 7753, 2514, 34, 10786, 929, 20, 13, 6494, 41707, 6494, 6601, 11537, 198, 2, 43313, 628, 198 ]
2.134615
52
""" This module is the concrete implementation of S2FGAN. This module structure is following: make_kernel is used to intialise the kernel for blurring image Blur, a layer used to apply blur kerbel to input PixelNorm, a layer used to apply pixel normalization EqualConv1d, convolution 1d with equalized learning trick EqualConv2d, convolution 2d with equalized learning trick Equallinear, linear layerwith equalized learning trick Embedding, attribute mapping networks. Encoder, the encoder of S2FGAN. StyledConv, the upblock for the decoder of S2FGAN. Discriminator, the discrimantor of S2FGAN. VGGPerceptualLoss, the perceptual loss based on VGG19. """ import math import torch import torchvision from torch import nn from torch.nn import functional as F from torch.autograd import Function from torch.nn.init import normal_ from torch import autograd, optim from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix #Pixel Normalization #create blur kernel #Blur Layer #Equlized convlution 2d #trainable input layer for decoder #Block for Attribute Mapping Network #Attribute Mapping Network #encoder #decoder #convolution layer with dowmsample and activation function #residual block #domain discriminator #model discriminator def requires_grad(model, flag=True): """ Return None Parameters ---------- model : pytorch model flag : bool, default true Returns ------- None set requires_grad flag for model """ for p in model.parameters(): p.requires_grad = flag #calculate generator loss #VGG Perceptual loss #The function is used downsample and binarize the input #calculte r1 loss
[ 37811, 198, 1212, 8265, 318, 262, 10017, 7822, 286, 311, 17, 30386, 1565, 13, 198, 1212, 8265, 4645, 318, 1708, 25, 198, 220, 220, 220, 787, 62, 33885, 318, 973, 284, 493, 498, 786, 262, 9720, 329, 698, 14924, 2939, 198, 220, 220, 220, 1086, 333, 11, 257, 7679, 973, 284, 4174, 23671, 41927, 6667, 284, 5128, 198, 220, 220, 220, 11349, 35393, 11, 257, 7679, 973, 284, 4174, 17465, 3487, 1634, 198, 220, 220, 220, 28701, 3103, 85, 16, 67, 11, 3063, 2122, 352, 67, 351, 4961, 1143, 4673, 6908, 198, 220, 220, 220, 28701, 3103, 85, 17, 67, 11, 3063, 2122, 362, 67, 351, 4961, 1143, 4673, 6908, 198, 220, 220, 220, 7889, 439, 259, 451, 11, 14174, 7679, 4480, 4961, 1143, 4673, 6908, 198, 220, 220, 220, 13302, 6048, 278, 11, 11688, 16855, 7686, 13, 198, 220, 220, 220, 14711, 12342, 11, 262, 2207, 12342, 286, 311, 17, 30386, 1565, 13, 198, 220, 220, 220, 42378, 992, 3103, 85, 11, 262, 510, 9967, 329, 262, 875, 12342, 286, 311, 17, 30386, 1565, 13, 198, 220, 220, 220, 8444, 3036, 20900, 11, 262, 6534, 415, 273, 286, 311, 17, 30386, 1565, 13, 198, 220, 220, 220, 569, 11190, 5990, 984, 723, 43, 793, 11, 262, 49615, 2994, 1912, 319, 569, 11190, 1129, 13, 198, 37811, 198, 198, 11748, 10688, 198, 11748, 28034, 198, 11748, 28034, 10178, 198, 6738, 28034, 1330, 299, 77, 198, 6738, 28034, 13, 20471, 1330, 10345, 355, 376, 198, 6738, 28034, 13, 2306, 519, 6335, 1330, 15553, 198, 6738, 28034, 13, 20471, 13, 15003, 1330, 3487, 62, 198, 6738, 28034, 1330, 1960, 519, 6335, 11, 6436, 198, 6738, 1034, 1330, 376, 1484, 3123, 15492, 3041, 41596, 11, 43954, 62, 293, 15492, 62, 260, 2290, 11, 510, 69, 1447, 77, 17, 67, 11, 3063, 17, 67, 62, 9744, 13049, 628, 198, 2, 40809, 14435, 1634, 220, 198, 198, 2, 17953, 23671, 9720, 628, 220, 220, 220, 220, 198, 2, 3629, 333, 34398, 198, 198, 2, 36, 80, 377, 1143, 3063, 75, 1009, 362, 67, 628, 198, 198, 2, 27432, 540, 5128, 7679, 329, 875, 12342, 628, 198, 198, 2, 12235, 329, 3460, 4163, 337, 5912, 7311, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 33682, 337, 5912, 7311, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 12685, 12342, 628, 198, 2, 12501, 12342, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 42946, 2122, 7679, 351, 47276, 907, 1403, 290, 14916, 2163, 198, 198, 2, 411, 312, 723, 2512, 198, 220, 220, 220, 220, 198, 2, 27830, 6534, 20900, 220, 220, 220, 220, 220, 628, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 19849, 6534, 20900, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 4299, 4433, 62, 9744, 7, 19849, 11, 6056, 28, 17821, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 6045, 198, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 1058, 12972, 13165, 354, 2746, 198, 220, 220, 220, 6056, 220, 1058, 20512, 11, 4277, 2081, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 198, 220, 220, 220, 900, 4433, 62, 9744, 6056, 329, 2746, 198, 220, 220, 220, 220, 198, 220, 220, 220, 37227, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 279, 287, 2746, 13, 17143, 7307, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 279, 13, 47911, 62, 9744, 796, 6056, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 2, 9948, 3129, 378, 17301, 2994, 198, 198, 2, 53, 11190, 2448, 984, 723, 2994, 220, 220, 220, 220, 198, 198, 2, 464, 2163, 318, 973, 21838, 1403, 290, 9874, 283, 1096, 262, 5128, 220, 220, 198, 198, 2, 9948, 40820, 68, 374, 16, 2994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
2.604938
729
#\input texinfo """ Searching for names with given scope and name. This is very central in Jedi and Python. The name resolution is quite complicated with descripter, ``__getattribute__``, ``__getattr__``, ``global``, etc. Flow checks +++++++++++ Flow checks are not really mature. There's only a check for ``isinstance``. It would check whether a flow has the form of ``if isinstance(a, type_or_tuple)``. Unfortunately every other thing is being ignored (e.g. a == '' would be easy to check for -> a is a string). There's big potential in these checks. """ from itertools import chain from jedi._compatibility import unicode, u from jedi.parser import tree as pr from jedi import debug from jedi import common from jedi import settings from jedi.evaluate import representation as er from jedi.evaluate import dynamic from jedi.evaluate import compiled from jedi.evaluate import docstrings from jedi.evaluate import iterable from jedi.evaluate import imports from jedi.evaluate import analysis from jedi.evaluate import flow_analysis from jedi.evaluate import param from jedi.evaluate import helpers from jedi.evaluate.cache import memoize_default def filter_after_position(names, position): """ Removes all names after a certain position. If position is None, just returns the names list. """ if position is None: return names names_new = [] for n in names: # Filter positions and also allow list comprehensions and lambdas. if n.start_pos[0] is not None and n.start_pos < position \ or isinstance(n.get_definition(), (pr.CompFor, pr.Lambda)): names_new.append(n) return names_new def filter_definition_names(names, origin, position=None): """ Filter names that are actual definitions in a scope. Names that are just used will be ignored. """ # Just calculate the scope from the first stmt = names[0].get_definition() scope = stmt.get_parent_scope() if not (isinstance(scope, er.FunctionExecution) and isinstance(scope.base, er.LambdaWrapper)): names = filter_after_position(names, position) names = [name for name in names if name.is_definition()] # Private name mangling (compile.c) disallows access on names # preceeded by two underscores `__` if used outside of the class. Names # that also end with two underscores (e.g. __id__) are not affected. for name in list(names): if name.value.startswith('__') and not name.value.endswith('__'): if filter_private_variable(scope, origin): names.remove(name) return names @memoize_default([], evaluator_is_first_arg=True) def _remove_statements(evaluator, stmt, name): """ This is the part where statements are being stripped. Due to lazy evaluation, statements like a = func; b = a; b() have to be evaluated. """ types = [] # Remove the statement docstr stuff for now, that has to be # implemented with the evaluator class. #if stmt.docstr: #res_new.append(stmt) check_instance = None if isinstance(stmt, er.InstanceElement) and stmt.is_class_var: check_instance = stmt.instance stmt = stmt.var types += evaluator.eval_statement(stmt, seek_name=name) if check_instance is not None: # class renames types = [er.get_instance_el(evaluator, check_instance, a, True) if isinstance(a, (er.Function, pr.Function)) else a for a in types] return types def check_flow_information(evaluator, flow, search_name, pos): """ Try to find out the type of a variable just with the information that is given by the flows: e.g. It is also responsible for assert checks.:: if isinstance(k, str): k. # <- completion here ensures that `k` is a string. """ if not settings.dynamic_flow_information: return None result = [] if flow.is_scope(): # Check for asserts. try: names = reversed(flow.names_dict[search_name.value]) except (KeyError, AttributeError): names = [] for name in names: ass = name.get_parent_until(pr.AssertStmt) if isinstance(ass, pr.AssertStmt) and pos is not None and ass.start_pos < pos: result = _check_isinstance_type(evaluator, ass.assertion(), search_name) if result: break if isinstance(flow, (pr.IfStmt, pr.WhileStmt)): element = flow.children[1] result = _check_isinstance_type(evaluator, element, search_name) return result def global_names_dict_generator(evaluator, scope, position): """ For global name lookups. Yields tuples of (names_dict, position). If the position is None, the position does not matter anymore in that scope. This function is used to include names from outer scopes. For example, when the current scope is function: >>> from jedi._compatibility import u, no_unicode_pprint >>> from jedi.parser import Parser, load_grammar >>> parser = Parser(load_grammar(), u(''' ... x = ['a', 'b', 'c'] ... def func(): ... y = None ... ''')) >>> scope = parser.module.subscopes[0] >>> scope <Function: func@3-5> `global_names_dict_generator` is a generator. First it yields names from most inner scope. >>> from jedi.evaluate import Evaluator >>> evaluator = Evaluator(load_grammar()) >>> scope = er.wrap(evaluator, scope) >>> pairs = list(global_names_dict_generator(evaluator, scope, (4, 0))) >>> no_unicode_pprint(pairs[0]) ({'func': [], 'y': [<Name: y@4,4>]}, (4, 0)) Then it yields the names from one level "lower". In this example, this is the most outer scope. As you can see, the position in the tuple is now None, because typically the whole module is loaded before the function is called. >>> no_unicode_pprint(pairs[1]) ({'func': [<Name: func@3,4>], 'x': [<Name: x@2,0>]}, None) After that we have a few underscore names that are part of the module. >>> sorted(pairs[2][0].keys()) ['__doc__', '__file__', '__name__', '__package__'] >>> pairs[3] # global names -> there are none in our example. ({}, None) >>> pairs[4] # package modules -> Also none. ({}, None) Finally, it yields names from builtin, if `include_builtin` is true (default). >>> pairs[5][0].values() #doctest: +ELLIPSIS [[<CompiledName: ...>], ...] """ in_func = False while scope is not None: if not (scope.type == 'classdef' and in_func): # Names in methods cannot be resolved within the class. for names_dict in scope.names_dicts(True): yield names_dict, position if scope.type == 'funcdef': # The position should be reset if the current scope is a function. in_func = True position = None scope = er.wrap(evaluator, scope.get_parent_scope()) # Add builtins to the global scope. for names_dict in compiled.builtin.names_dicts(True): yield names_dict, None def check_tuple_assignments(types, name): """ Checks if tuples are assigned. """ for index in name.assignment_indexes(): new_types = [] for r in types: try: func = r.get_exact_index_types except AttributeError: debug.warning("Invalid tuple lookup #%s of result %s in %s", index, types, name) else: try: new_types += func(index) except IndexError: pass types = new_types return types def filter_private_variable(scope, origin_node): """Check if a variable is defined inside the same class or outside.""" instance = scope.get_parent_scope() coming_from = origin_node while coming_from is not None \ and not isinstance(coming_from, (pr.Class, compiled.CompiledObject)): coming_from = coming_from.get_parent_scope() # CompiledObjects don't have double underscore attributes, but Jedi abuses # those for fakes (builtins.pym -> list). if isinstance(instance, compiled.CompiledObject): return instance != coming_from else: return isinstance(instance, er.Instance) and instance.base.base != coming_from
[ 2, 59, 15414, 48659, 10951, 198, 198, 37811, 198, 18243, 278, 329, 3891, 351, 1813, 8354, 290, 1438, 13, 770, 318, 845, 4318, 287, 16147, 290, 198, 37906, 13, 383, 1438, 6323, 318, 2407, 8253, 351, 1715, 5528, 353, 11, 198, 15506, 834, 1136, 42348, 834, 15506, 11, 7559, 834, 1136, 35226, 834, 15506, 11, 7559, 20541, 15506, 11, 3503, 13, 198, 198, 37535, 8794, 198, 25128, 45340, 198, 198, 37535, 8794, 389, 407, 1107, 15345, 13, 1318, 338, 691, 257, 2198, 329, 7559, 271, 39098, 15506, 13, 220, 632, 198, 19188, 2198, 1771, 257, 5202, 468, 262, 1296, 286, 7559, 361, 318, 39098, 7, 64, 11, 2099, 62, 273, 62, 83, 29291, 8, 15506, 13, 198, 13898, 790, 584, 1517, 318, 852, 9514, 357, 68, 13, 70, 13, 257, 6624, 10148, 561, 307, 2562, 284, 198, 9122, 329, 4613, 257, 318, 257, 4731, 737, 1318, 338, 1263, 2785, 287, 777, 8794, 13, 198, 37811, 198, 6738, 340, 861, 10141, 1330, 6333, 198, 198, 6738, 474, 13740, 13557, 5589, 25901, 1330, 28000, 1098, 11, 334, 198, 6738, 474, 13740, 13, 48610, 1330, 5509, 355, 778, 198, 6738, 474, 13740, 1330, 14257, 198, 6738, 474, 13740, 1330, 2219, 198, 6738, 474, 13740, 1330, 6460, 198, 6738, 474, 13740, 13, 49786, 1330, 10552, 355, 1931, 198, 6738, 474, 13740, 13, 49786, 1330, 8925, 198, 6738, 474, 13740, 13, 49786, 1330, 14102, 198, 6738, 474, 13740, 13, 49786, 1330, 2205, 37336, 198, 6738, 474, 13740, 13, 49786, 1330, 11629, 540, 198, 6738, 474, 13740, 13, 49786, 1330, 17944, 198, 6738, 474, 13740, 13, 49786, 1330, 3781, 198, 6738, 474, 13740, 13, 49786, 1330, 5202, 62, 20930, 198, 6738, 474, 13740, 13, 49786, 1330, 5772, 198, 6738, 474, 13740, 13, 49786, 1330, 49385, 198, 6738, 474, 13740, 13, 49786, 13, 23870, 1330, 16155, 1096, 62, 12286, 628, 198, 4299, 8106, 62, 8499, 62, 9150, 7, 14933, 11, 2292, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3982, 5241, 477, 3891, 706, 257, 1728, 2292, 13, 1002, 2292, 318, 6045, 11, 655, 198, 220, 220, 220, 5860, 262, 3891, 1351, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2292, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 3891, 628, 220, 220, 220, 3891, 62, 3605, 796, 17635, 198, 220, 220, 220, 329, 299, 287, 3891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 25853, 6116, 290, 635, 1249, 1351, 8569, 507, 290, 19343, 67, 292, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 299, 13, 9688, 62, 1930, 58, 15, 60, 318, 407, 6045, 290, 299, 13, 9688, 62, 1930, 1279, 2292, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 393, 318, 39098, 7, 77, 13, 1136, 62, 46758, 22784, 357, 1050, 13, 7293, 1890, 11, 778, 13, 43, 4131, 6814, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 62, 3605, 13, 33295, 7, 77, 8, 198, 220, 220, 220, 1441, 3891, 62, 3605, 628, 198, 4299, 8106, 62, 46758, 62, 14933, 7, 14933, 11, 8159, 11, 2292, 28, 14202, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 25853, 3891, 326, 389, 4036, 17336, 287, 257, 8354, 13, 28531, 326, 389, 655, 198, 220, 220, 220, 973, 481, 307, 9514, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 2329, 15284, 262, 8354, 422, 262, 717, 198, 220, 220, 220, 336, 16762, 796, 3891, 58, 15, 4083, 1136, 62, 46758, 3419, 198, 220, 220, 220, 8354, 796, 336, 16762, 13, 1136, 62, 8000, 62, 29982, 3419, 628, 220, 220, 220, 611, 407, 357, 271, 39098, 7, 29982, 11, 1931, 13, 22203, 23002, 1009, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 318, 39098, 7, 29982, 13, 8692, 11, 1931, 13, 43, 4131, 6814, 36918, 2848, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 8106, 62, 8499, 62, 9150, 7, 14933, 11, 2292, 8, 198, 220, 220, 220, 3891, 796, 685, 3672, 329, 1438, 287, 3891, 611, 1438, 13, 271, 62, 46758, 3419, 60, 628, 220, 220, 220, 1303, 15348, 1438, 582, 40799, 357, 5589, 576, 13, 66, 8, 595, 47205, 1895, 319, 3891, 198, 220, 220, 220, 1303, 662, 2707, 276, 416, 734, 41731, 4600, 834, 63, 611, 973, 2354, 286, 262, 1398, 13, 28531, 198, 220, 220, 220, 1303, 326, 635, 886, 351, 734, 41731, 357, 68, 13, 70, 13, 11593, 312, 834, 8, 389, 407, 5676, 13, 198, 220, 220, 220, 329, 1438, 287, 1351, 7, 14933, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 13, 8367, 13, 9688, 2032, 342, 10786, 834, 11537, 290, 407, 1438, 13, 8367, 13, 437, 2032, 342, 10786, 834, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8106, 62, 19734, 62, 45286, 7, 29982, 11, 8159, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 13, 28956, 7, 3672, 8, 198, 220, 220, 220, 1441, 3891, 628, 198, 198, 31, 11883, 78, 1096, 62, 12286, 26933, 4357, 5418, 84, 1352, 62, 271, 62, 11085, 62, 853, 28, 17821, 8, 628, 198, 4299, 4808, 28956, 62, 14269, 3196, 7, 18206, 84, 1352, 11, 336, 16762, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 770, 318, 262, 636, 810, 6299, 389, 852, 18818, 13, 628, 220, 220, 220, 14444, 284, 16931, 12660, 11, 6299, 588, 257, 796, 25439, 26, 275, 796, 257, 26, 275, 3419, 423, 284, 307, 198, 220, 220, 220, 16726, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3858, 796, 17635, 198, 220, 220, 220, 1303, 17220, 262, 2643, 2205, 2536, 3404, 329, 783, 11, 326, 468, 284, 307, 198, 220, 220, 220, 1303, 9177, 351, 262, 5418, 84, 1352, 1398, 13, 198, 220, 220, 220, 1303, 361, 336, 16762, 13, 15390, 2536, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 411, 62, 3605, 13, 33295, 7, 301, 16762, 8, 628, 220, 220, 220, 2198, 62, 39098, 796, 6045, 198, 220, 220, 220, 611, 318, 39098, 7, 301, 16762, 11, 1931, 13, 33384, 20180, 8, 290, 336, 16762, 13, 271, 62, 4871, 62, 7785, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 62, 39098, 796, 336, 16762, 13, 39098, 198, 220, 220, 220, 220, 220, 220, 220, 336, 16762, 796, 336, 16762, 13, 7785, 628, 220, 220, 220, 3858, 15853, 5418, 84, 1352, 13, 18206, 62, 26090, 7, 301, 16762, 11, 5380, 62, 3672, 28, 3672, 8, 628, 220, 220, 220, 611, 2198, 62, 39098, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1398, 8851, 1047, 198, 220, 220, 220, 220, 220, 220, 220, 3858, 796, 685, 263, 13, 1136, 62, 39098, 62, 417, 7, 18206, 84, 1352, 11, 2198, 62, 39098, 11, 257, 11, 6407, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 64, 11, 357, 263, 13, 22203, 11, 778, 13, 22203, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 257, 329, 257, 287, 3858, 60, 198, 220, 220, 220, 1441, 3858, 628, 198, 198, 4299, 2198, 62, 11125, 62, 17018, 7, 18206, 84, 1352, 11, 5202, 11, 2989, 62, 3672, 11, 1426, 2599, 198, 220, 220, 220, 37227, 9993, 284, 1064, 503, 262, 2099, 286, 257, 7885, 655, 351, 262, 1321, 326, 198, 220, 220, 220, 318, 1813, 416, 262, 15623, 25, 304, 13, 70, 13, 632, 318, 635, 4497, 329, 6818, 8794, 13, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 74, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 479, 13, 220, 1303, 24293, 11939, 994, 628, 220, 220, 220, 19047, 326, 4600, 74, 63, 318, 257, 4731, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 6460, 13, 67, 28995, 62, 11125, 62, 17018, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 1255, 796, 17635, 198, 220, 220, 220, 611, 5202, 13, 271, 62, 29982, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6822, 329, 29348, 13, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 17687, 7, 11125, 13, 14933, 62, 11600, 58, 12947, 62, 3672, 13, 8367, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 9218, 12331, 11, 3460, 4163, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3891, 796, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1438, 287, 3891, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 840, 796, 1438, 13, 1136, 62, 8000, 62, 28446, 7, 1050, 13, 8021, 861, 1273, 16762, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 562, 11, 778, 13, 8021, 861, 1273, 16762, 8, 290, 1426, 318, 407, 6045, 290, 840, 13, 9688, 62, 1930, 1279, 1426, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 4808, 9122, 62, 271, 39098, 62, 4906, 7, 18206, 84, 1352, 11, 840, 13, 30493, 295, 22784, 2989, 62, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 611, 318, 39098, 7, 11125, 11, 357, 1050, 13, 1532, 1273, 16762, 11, 778, 13, 3633, 1273, 16762, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5002, 796, 5202, 13, 17197, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 4808, 9122, 62, 271, 39098, 62, 4906, 7, 18206, 84, 1352, 11, 5002, 11, 2989, 62, 3672, 8, 198, 220, 220, 220, 1441, 1255, 628, 198, 198, 4299, 3298, 62, 14933, 62, 11600, 62, 8612, 1352, 7, 18206, 84, 1352, 11, 8354, 11, 2292, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1114, 3298, 1438, 804, 4739, 13, 575, 1164, 82, 12777, 2374, 286, 357, 14933, 62, 11600, 11, 2292, 737, 1002, 262, 198, 220, 220, 220, 2292, 318, 6045, 11, 262, 2292, 857, 407, 2300, 7471, 287, 326, 8354, 13, 628, 220, 220, 220, 770, 2163, 318, 973, 284, 2291, 3891, 422, 12076, 629, 13920, 13, 1114, 1672, 11, 618, 198, 220, 220, 220, 262, 1459, 8354, 318, 2163, 25, 628, 220, 220, 220, 13163, 422, 474, 13740, 13557, 5589, 25901, 1330, 334, 11, 645, 62, 46903, 1098, 62, 381, 22272, 198, 220, 220, 220, 13163, 422, 474, 13740, 13, 48610, 1330, 23042, 263, 11, 3440, 62, 4546, 3876, 198, 220, 220, 220, 13163, 30751, 796, 23042, 263, 7, 2220, 62, 4546, 3876, 22784, 334, 7, 7061, 6, 198, 220, 220, 220, 2644, 2124, 796, 37250, 64, 3256, 705, 65, 3256, 705, 66, 20520, 198, 220, 220, 220, 2644, 825, 25439, 33529, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 331, 796, 6045, 198, 220, 220, 220, 2644, 705, 7061, 4008, 198, 220, 220, 220, 13163, 8354, 796, 30751, 13, 21412, 13, 7266, 1416, 13920, 58, 15, 60, 198, 220, 220, 220, 13163, 8354, 198, 220, 220, 220, 1279, 22203, 25, 25439, 31, 18, 12, 20, 29, 628, 220, 220, 220, 4600, 20541, 62, 14933, 62, 11600, 62, 8612, 1352, 63, 318, 257, 17301, 13, 220, 3274, 340, 19299, 3891, 422, 198, 220, 220, 220, 749, 8434, 8354, 13, 628, 220, 220, 220, 13163, 422, 474, 13740, 13, 49786, 1330, 26439, 84, 1352, 198, 220, 220, 220, 13163, 5418, 84, 1352, 796, 26439, 84, 1352, 7, 2220, 62, 4546, 3876, 28955, 198, 220, 220, 220, 13163, 8354, 796, 1931, 13, 37150, 7, 18206, 84, 1352, 11, 8354, 8, 198, 220, 220, 220, 13163, 14729, 796, 1351, 7, 20541, 62, 14933, 62, 11600, 62, 8612, 1352, 7, 18206, 84, 1352, 11, 8354, 11, 357, 19, 11, 657, 22305, 198, 220, 220, 220, 13163, 645, 62, 46903, 1098, 62, 381, 22272, 7, 79, 3468, 58, 15, 12962, 198, 220, 220, 220, 37913, 6, 20786, 10354, 685, 4357, 705, 88, 10354, 685, 27, 5376, 25, 331, 31, 19, 11, 19, 37981, 5512, 357, 19, 11, 657, 4008, 628, 220, 220, 220, 3244, 340, 19299, 262, 3891, 422, 530, 1241, 366, 21037, 1911, 554, 428, 1672, 11, 428, 198, 220, 220, 220, 318, 262, 749, 12076, 8354, 13, 1081, 345, 460, 766, 11, 262, 2292, 287, 262, 46545, 318, 783, 198, 220, 220, 220, 6045, 11, 780, 6032, 262, 2187, 8265, 318, 9639, 878, 262, 2163, 318, 198, 220, 220, 220, 1444, 13, 628, 220, 220, 220, 13163, 645, 62, 46903, 1098, 62, 381, 22272, 7, 79, 3468, 58, 16, 12962, 198, 220, 220, 220, 37913, 6, 20786, 10354, 685, 27, 5376, 25, 25439, 31, 18, 11, 19, 29, 4357, 705, 87, 10354, 685, 27, 5376, 25, 2124, 31, 17, 11, 15, 37981, 5512, 6045, 8, 628, 220, 220, 220, 2293, 326, 356, 423, 257, 1178, 44810, 3891, 326, 389, 636, 286, 262, 8265, 13, 628, 220, 220, 220, 13163, 23243, 7, 79, 3468, 58, 17, 7131, 15, 4083, 13083, 28955, 198, 220, 220, 220, 37250, 834, 15390, 834, 3256, 705, 834, 7753, 834, 3256, 705, 834, 3672, 834, 3256, 705, 834, 26495, 834, 20520, 198, 220, 220, 220, 13163, 14729, 58, 18, 60, 220, 1303, 3298, 3891, 4613, 612, 389, 4844, 287, 674, 1672, 13, 198, 220, 220, 220, 37913, 5512, 6045, 8, 198, 220, 220, 220, 13163, 14729, 58, 19, 60, 220, 1303, 5301, 13103, 4613, 4418, 4844, 13, 198, 220, 220, 220, 37913, 5512, 6045, 8, 628, 220, 220, 220, 9461, 11, 340, 19299, 3891, 422, 3170, 259, 11, 611, 4600, 17256, 62, 18780, 259, 63, 318, 198, 220, 220, 220, 2081, 357, 12286, 737, 628, 220, 220, 220, 13163, 14729, 58, 20, 7131, 15, 4083, 27160, 3419, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4598, 310, 395, 25, 1343, 23304, 47643, 1797, 198, 220, 220, 220, 16410, 27, 7293, 3902, 5376, 25, 2644, 29, 4357, 2644, 60, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 287, 62, 20786, 796, 10352, 198, 220, 220, 220, 981, 8354, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 357, 29982, 13, 4906, 6624, 705, 4871, 4299, 6, 290, 287, 62, 20786, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 28531, 287, 5050, 2314, 307, 12939, 1626, 262, 1398, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 3891, 62, 11600, 287, 8354, 13, 14933, 62, 11600, 82, 7, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7800, 3891, 62, 11600, 11, 2292, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 8354, 13, 4906, 6624, 705, 20786, 4299, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 383, 2292, 815, 307, 13259, 611, 262, 1459, 8354, 318, 257, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 287, 62, 20786, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2292, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 8354, 796, 1931, 13, 37150, 7, 18206, 84, 1352, 11, 8354, 13, 1136, 62, 8000, 62, 29982, 28955, 628, 220, 220, 220, 1303, 3060, 3170, 1040, 284, 262, 3298, 8354, 13, 198, 220, 220, 220, 329, 3891, 62, 11600, 287, 14102, 13, 18780, 259, 13, 14933, 62, 11600, 82, 7, 17821, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7800, 3891, 62, 11600, 11, 6045, 628, 198, 4299, 2198, 62, 83, 29291, 62, 562, 570, 902, 7, 19199, 11, 1438, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 47719, 611, 12777, 2374, 389, 8686, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 329, 6376, 287, 1438, 13, 562, 16747, 62, 9630, 274, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 19199, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 374, 287, 3858, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 796, 374, 13, 1136, 62, 1069, 529, 62, 9630, 62, 19199, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14257, 13, 43917, 7203, 44651, 46545, 35847, 1303, 4, 82, 286, 1255, 4064, 82, 287, 4064, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 11, 3858, 11, 1438, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 19199, 15853, 25439, 7, 9630, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 12901, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 3858, 796, 649, 62, 19199, 198, 220, 220, 220, 1441, 3858, 628, 198, 4299, 8106, 62, 19734, 62, 45286, 7, 29982, 11, 8159, 62, 17440, 2599, 198, 220, 220, 220, 37227, 9787, 611, 257, 7885, 318, 5447, 2641, 262, 976, 1398, 393, 2354, 526, 15931, 198, 220, 220, 220, 4554, 796, 8354, 13, 1136, 62, 8000, 62, 29982, 3419, 198, 220, 220, 220, 2406, 62, 6738, 796, 8159, 62, 17440, 198, 220, 220, 220, 981, 2406, 62, 6738, 318, 407, 6045, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 407, 318, 39098, 7, 4976, 62, 6738, 11, 357, 1050, 13, 9487, 11, 14102, 13, 7293, 3902, 10267, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2406, 62, 6738, 796, 2406, 62, 6738, 13, 1136, 62, 8000, 62, 29982, 3419, 628, 220, 220, 220, 1303, 3082, 3902, 10267, 82, 836, 470, 423, 4274, 44810, 12608, 11, 475, 16147, 19544, 198, 220, 220, 220, 1303, 883, 329, 277, 1124, 357, 18780, 1040, 13, 79, 4948, 4613, 1351, 737, 198, 220, 220, 220, 611, 318, 39098, 7, 39098, 11, 14102, 13, 7293, 3902, 10267, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 4554, 14512, 2406, 62, 6738, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 318, 39098, 7, 39098, 11, 1931, 13, 33384, 8, 290, 4554, 13, 8692, 13, 8692, 14512, 2406, 62, 6738, 198 ]
2.610565
3,256
#!/usr/bin/env python """ A Python implementation of ANSI X9.31 using AES 128, following: http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf Copyright (C) 2015 - Brian Caswell <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ #import random #import unittest from Crypto.Cipher import AES class PRNG(object): """ A python implementation of ANSI X9.31 using AES 128 Attributes: random_data: Currently available block of generated random data V: "seed value which is also kept secret" DT: "date/time vector updated upon each iteration" I: Intermediate value aes_ctx: AES state machine context """ BLOCK_SIZE = 16 def __init__(self, seed=None): """ Seed is V + Key + DT as a string """ if seed is not None: assert len(seed) == 48 else: seed = "zaybxcwdveuftgsh" + "0123456789abcdef" + "\x00" * 16 self.V, key, self.DT = [seed[i:i+PRNG.BLOCK_SIZE] for i in range(0, len(seed), PRNG.BLOCK_SIZE)] self.random_data = '' self.I = "\x00" * PRNG.BLOCK_SIZE self.aes_ctx = AES.new(key, mode=AES.MODE_ECB) @staticmethod def _xor_string(value_1, value_2): """ value_1 ^ value_2 Exceptions: AssertionError if value_1 and value_2 are not the same length """ assert len(value_1) == len(value_2) return ''.join(chr(ord(a) ^ ord(b)) for a, b in zip(value_1, value_2)) def _get_block(self): """ Get the next block from the PRNG, saving it to self.random_data Arguments: None Returns: None Exceptions: None """ # encrypt the counter value, giving intermediate value I self.I = self.aes_ctx.encrypt(self.DT) # XOR I with secret vector V, encrypt the result to obtain pseudo # random data tmp = self._xor_string(self.I, self.V) self.random_data = self.aes_ctx.encrypt(tmp) # XOR random data with I, and encrypt to get new secret vector V tmp = self._xor_string(self.random_data, self.I) self.V = self.aes_ctx.encrypt(tmp) # update DT value i = PRNG.BLOCK_SIZE - 1 while i >= 0: out = (ord(self.DT[i]) + 1) % 256 self.DT = self.DT[:i] + chr(out) + self.DT[i+1:] if out != 0: break i -= 1 def get(self, size): """ Get 'size' bytes of random data Arguments: size: Amount of random data to return Returns: str of length 'size' of random data Exceptions: AssertionError if size is not a positive integer """ assert isinstance(size, int) assert size > 0 result = '' while len(result) < size: need = size - len(result) if not len(self.random_data): self._get_block() result += self.random_data[:need] self.random_data = self.random_data[need:] return result
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 32, 11361, 7822, 286, 3537, 11584, 1395, 24, 13, 3132, 1262, 34329, 13108, 11, 1708, 25, 198, 198, 4023, 1378, 6359, 6015, 13, 77, 396, 13, 9567, 14, 24432, 14, 2257, 44, 14, 66, 615, 79, 14, 15390, 2886, 14, 81, 782, 14, 24, 3132, 35906, 469, 742, 13, 12315, 198, 198, 15269, 357, 34, 8, 1853, 532, 8403, 11294, 4053, 1279, 20475, 66, 31, 75, 403, 1136, 3055, 13, 785, 29, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 439, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 10970, 47466, 13, 198, 198, 37811, 198, 198, 2, 11748, 4738, 198, 2, 11748, 555, 715, 395, 198, 6738, 36579, 13, 34, 10803, 1330, 34329, 198, 198, 4871, 4810, 10503, 7, 15252, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 317, 21015, 7822, 286, 3537, 11584, 1395, 24, 13, 3132, 1262, 34329, 13108, 628, 220, 220, 220, 49213, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 7890, 25, 16888, 1695, 2512, 286, 7560, 4738, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 569, 25, 366, 28826, 1988, 543, 318, 635, 4030, 3200, 1, 198, 220, 220, 220, 220, 220, 220, 220, 24311, 25, 366, 4475, 14, 2435, 15879, 6153, 2402, 1123, 24415, 1, 198, 220, 220, 220, 220, 220, 220, 220, 314, 25, 42540, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 257, 274, 62, 49464, 25, 34329, 1181, 4572, 4732, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 9878, 11290, 62, 33489, 796, 1467, 628, 220, 220, 220, 825, 11593, 15003, 834, 7, 944, 11, 9403, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 23262, 318, 569, 1343, 7383, 1343, 24311, 355, 257, 4731, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 9403, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 28826, 8, 6624, 4764, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9403, 796, 366, 89, 323, 65, 25306, 16993, 303, 84, 701, 70, 1477, 1, 1343, 366, 486, 1954, 2231, 3134, 4531, 39305, 4299, 1, 1343, 37082, 87, 405, 1, 1635, 1467, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 53, 11, 1994, 11, 2116, 13, 24544, 796, 685, 28826, 58, 72, 25, 72, 10, 4805, 10503, 13, 9148, 11290, 62, 33489, 60, 329, 1312, 287, 2837, 7, 15, 11, 18896, 7, 28826, 828, 4810, 10503, 13, 9148, 11290, 62, 33489, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 62, 7890, 796, 10148, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40, 796, 37082, 87, 405, 1, 1635, 4810, 10503, 13, 9148, 11290, 62, 33489, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 64, 274, 62, 49464, 796, 34329, 13, 3605, 7, 2539, 11, 4235, 28, 32, 1546, 13, 49058, 62, 2943, 33, 8, 628, 220, 220, 220, 2488, 12708, 24396, 198, 220, 220, 220, 825, 4808, 87, 273, 62, 8841, 7, 8367, 62, 16, 11, 1988, 62, 17, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 62, 16, 10563, 1988, 62, 17, 628, 220, 220, 220, 220, 220, 220, 220, 1475, 11755, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2195, 861, 295, 12331, 611, 1988, 62, 16, 290, 1988, 62, 17, 389, 407, 262, 976, 4129, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 18896, 7, 8367, 62, 16, 8, 6624, 18896, 7, 8367, 62, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 705, 4458, 22179, 7, 354, 81, 7, 585, 7, 64, 8, 10563, 2760, 7, 65, 4008, 329, 257, 11, 275, 287, 19974, 7, 8367, 62, 16, 11, 1988, 62, 17, 4008, 628, 220, 220, 220, 825, 4808, 1136, 62, 9967, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 262, 1306, 2512, 422, 262, 4810, 10503, 11, 8914, 340, 284, 2116, 13, 25120, 62, 7890, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 1475, 11755, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 34117, 262, 3753, 1988, 11, 3501, 19898, 1988, 314, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 40, 796, 2116, 13, 64, 274, 62, 49464, 13, 12685, 6012, 7, 944, 13, 24544, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1395, 1581, 314, 351, 3200, 15879, 569, 11, 34117, 262, 1255, 284, 7330, 24543, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4738, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 2116, 13557, 87, 273, 62, 8841, 7, 944, 13, 40, 11, 2116, 13, 53, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 62, 7890, 796, 2116, 13, 64, 274, 62, 49464, 13, 12685, 6012, 7, 22065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1395, 1581, 4738, 1366, 351, 314, 11, 290, 34117, 284, 651, 649, 3200, 15879, 569, 198, 220, 220, 220, 220, 220, 220, 220, 45218, 796, 2116, 13557, 87, 273, 62, 8841, 7, 944, 13, 25120, 62, 7890, 11, 2116, 13, 40, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 53, 796, 2116, 13, 64, 274, 62, 49464, 13, 12685, 6012, 7, 22065, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 4296, 24311, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 796, 4810, 10503, 13, 9148, 11290, 62, 33489, 532, 352, 198, 220, 220, 220, 220, 220, 220, 220, 981, 1312, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 796, 357, 585, 7, 944, 13, 24544, 58, 72, 12962, 1343, 352, 8, 4064, 17759, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 24544, 796, 2116, 13, 24544, 58, 25, 72, 60, 1343, 442, 81, 7, 448, 8, 1343, 2116, 13, 24544, 58, 72, 10, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 503, 14512, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 48185, 352, 628, 220, 220, 220, 825, 651, 7, 944, 11, 2546, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 3497, 705, 7857, 6, 9881, 286, 4738, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2546, 25, 26308, 286, 4738, 1366, 284, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 965, 286, 4129, 705, 7857, 6, 286, 4738, 1366, 628, 220, 220, 220, 220, 220, 220, 220, 1475, 11755, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2195, 861, 295, 12331, 611, 2546, 318, 407, 257, 3967, 18253, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 7857, 11, 493, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 2546, 1875, 657, 628, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 981, 18896, 7, 20274, 8, 1279, 2546, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 761, 796, 2546, 532, 18896, 7, 20274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 18896, 7, 944, 13, 25120, 62, 7890, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 1136, 62, 9967, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 15853, 2116, 13, 25120, 62, 7890, 58, 25, 31227, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 25120, 62, 7890, 796, 2116, 13, 25120, 62, 7890, 58, 31227, 47715, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 198 ]
2.387413
1,732
import typing # Segment Tree
[ 11748, 19720, 198, 198, 2, 1001, 5154, 12200 ]
3.625
8
import pandas as pd from unittest2 import TestCase # or `from unittest import ...` if on Python 3.4+ import category_encoders as encoders
[ 11748, 19798, 292, 355, 279, 67, 198, 6738, 555, 715, 395, 17, 1330, 6208, 20448, 220, 1303, 393, 4600, 6738, 555, 715, 395, 1330, 2644, 63, 611, 319, 11361, 513, 13, 19, 10, 198, 198, 11748, 6536, 62, 12685, 375, 364, 355, 2207, 375, 364, 628 ]
3.065217
46
import unittest import pythonioc class TestDepCycle(unittest.TestCase): """ Regression test for issue #3 dependency cycle on error. """
[ 11748, 555, 715, 395, 198, 11748, 21015, 72, 420, 198, 198, 4871, 6208, 12156, 20418, 2375, 7, 403, 715, 395, 13, 14402, 20448, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3310, 2234, 1332, 329, 2071, 1303, 18, 20203, 6772, 319, 4049, 13, 198, 220, 220, 220, 37227, 628 ]
2.941176
51
import os import fabtools from fabtools import require from fabric.api import task, sudo, cd from fabric.colors import cyan from dploy.context import ctx from dploy.utils import git_dirname @task def checkout(): """ Checkouts the code on the remote location using git """ branch = ctx('git.branch') git_root = ctx('git.dirs.root') git_dir = git_dirname(ctx('git.repository')) git_path = os.path.join(git_root, git_dir) if not fabtools.deb.is_installed('git'): fabtools.deb.install('git') print(cyan('Checking out {} @ {} -> {}'.format( branch, ctx('git.repository'), git_path))) # Experimental require.git.working_copy(ctx('git.repository'), path=git_path, branch=branch, update=True, use_sudo=True) with cd(git_path): sudo('git submodule update --init --recursive') sudo("find . -iname '*.pyc' | xargs rm -f") # /Experimental # if files.exists(os.path.join(git_path, '.git'), use_sudo=True): # print(cyan('Updating {} on {}'.format(branch, env.stage))) # with cd(git_path): # sudo('git reset --hard') # sudo('git pull') # sudo('git submodule update --init --recursive') # sudo('git checkout {}'.format(branch)) # sudo("find . -iname '*.pyc' | xargs rm -f") # else: # print(cyan('Cloning {} on {}'.format(branch, env.stage))) # with cd(git_root): # sudo('git clone --recursive -b {} {} {}'.format( # ctx('git.branch'), ctx('git.repository'), git_dir))
[ 11748, 28686, 198, 11748, 7843, 31391, 198, 198, 6738, 7843, 31391, 1330, 2421, 198, 6738, 9664, 13, 15042, 1330, 4876, 11, 21061, 11, 22927, 198, 6738, 9664, 13, 4033, 669, 1330, 36818, 198, 6738, 288, 1420, 13, 22866, 1330, 269, 17602, 198, 6738, 288, 1420, 13, 26791, 1330, 17606, 62, 15908, 3672, 628, 198, 31, 35943, 198, 4299, 28006, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6822, 5269, 262, 2438, 319, 262, 6569, 4067, 1262, 17606, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8478, 796, 269, 17602, 10786, 18300, 13, 1671, 3702, 11537, 198, 220, 220, 220, 17606, 62, 15763, 796, 269, 17602, 10786, 18300, 13, 15908, 82, 13, 15763, 11537, 198, 220, 220, 220, 17606, 62, 15908, 796, 17606, 62, 15908, 3672, 7, 49464, 10786, 18300, 13, 260, 1930, 37765, 6, 4008, 198, 220, 220, 220, 17606, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 18300, 62, 15763, 11, 17606, 62, 15908, 8, 198, 220, 220, 220, 611, 407, 7843, 31391, 13, 11275, 13, 271, 62, 37050, 10786, 18300, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7843, 31391, 13, 11275, 13, 17350, 10786, 18300, 11537, 628, 220, 220, 220, 3601, 7, 948, 272, 10786, 9787, 278, 503, 23884, 2488, 23884, 4613, 23884, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 8478, 11, 269, 17602, 10786, 18300, 13, 260, 1930, 37765, 33809, 17606, 62, 6978, 22305, 198, 220, 220, 220, 1303, 32286, 198, 220, 220, 220, 2421, 13, 18300, 13, 16090, 62, 30073, 7, 49464, 10786, 18300, 13, 260, 1930, 37765, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3108, 28, 18300, 62, 6978, 11, 8478, 28, 1671, 3702, 11, 4296, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 779, 62, 24032, 28, 17821, 8, 198, 220, 220, 220, 351, 22927, 7, 18300, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 850, 21412, 4296, 1377, 15003, 1377, 8344, 30753, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 21061, 7203, 19796, 764, 532, 259, 480, 705, 24620, 9078, 66, 6, 930, 2124, 22046, 42721, 532, 69, 4943, 198, 220, 220, 220, 1303, 1220, 20468, 9134, 628, 220, 220, 220, 1303, 611, 3696, 13, 1069, 1023, 7, 418, 13, 6978, 13, 22179, 7, 18300, 62, 6978, 11, 45302, 18300, 33809, 779, 62, 24032, 28, 17821, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7, 948, 272, 10786, 4933, 38734, 23884, 319, 23884, 4458, 18982, 7, 1671, 3702, 11, 17365, 13, 14247, 22305, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 351, 22927, 7, 18300, 62, 6978, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 13259, 1377, 10424, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 2834, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 850, 21412, 4296, 1377, 15003, 1377, 8344, 30753, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 28006, 23884, 4458, 18982, 7, 1671, 3702, 4008, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 7203, 19796, 764, 532, 259, 480, 705, 24620, 9078, 66, 6, 930, 2124, 22046, 42721, 532, 69, 4943, 198, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7, 948, 272, 10786, 2601, 12484, 23884, 319, 23884, 4458, 18982, 7, 1671, 3702, 11, 17365, 13, 14247, 22305, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 351, 22927, 7, 18300, 62, 15763, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 21061, 10786, 18300, 17271, 1377, 8344, 30753, 532, 65, 23884, 23884, 23884, 4458, 18982, 7, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 17602, 10786, 18300, 13, 1671, 3702, 33809, 269, 17602, 10786, 18300, 13, 260, 1930, 37765, 33809, 17606, 62, 15908, 4008, 198 ]
2.253463
722
number = 100 factorialnumber = factorial(number) print(f"Factorial({number}) = {factorialnumber}") sumfactorialnumber = sum_of_digits(factorialnumber) print( f"Sum of digits in the factorial number({number}) = {sumfactorialnumber}")
[ 201, 198, 201, 198, 201, 198, 17618, 796, 1802, 201, 198, 22584, 5132, 17618, 796, 1109, 5132, 7, 17618, 8, 201, 198, 4798, 7, 69, 1, 29054, 5132, 15090, 17618, 30072, 796, 1391, 22584, 5132, 17618, 92, 4943, 201, 198, 16345, 22584, 5132, 17618, 796, 2160, 62, 1659, 62, 12894, 896, 7, 22584, 5132, 17618, 8, 201, 198, 4798, 7, 201, 198, 220, 220, 220, 277, 1, 13065, 286, 19561, 287, 262, 1109, 5132, 1271, 15090, 17618, 30072, 796, 1391, 16345, 22584, 5132, 17618, 92, 4943, 201, 198 ]
2.829545
88
# # PySNMP MIB module HPN-ICF-STACK-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HPN-ICF-STACK-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:41:29 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ValueSizeConstraint, ValueRangeConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsIntersection") entPhysicalIndex, = mibBuilder.importSymbols("ENTITY-MIB", "entPhysicalIndex") hpnicfCommon, = mibBuilder.importSymbols("HPN-ICF-OID-MIB", "hpnicfCommon") ifDescr, ifIndex = mibBuilder.importSymbols("IF-MIB", "ifDescr", "ifIndex") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") MibIdentifier, Gauge32, Unsigned32, iso, Bits, Integer32, Counter64, ObjectIdentity, Counter32, TimeTicks, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "MibIdentifier", "Gauge32", "Unsigned32", "iso", "Bits", "Integer32", "Counter64", "ObjectIdentity", "Counter32", "TimeTicks", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "ModuleIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") hpnicfStack = ModuleIdentity((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91)) hpnicfStack.setRevisions(('2008-04-30 16:50',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: hpnicfStack.setRevisionsDescriptions(('The initial revision of this MIB module.',)) if mibBuilder.loadTexts: hpnicfStack.setLastUpdated('200804301650Z') if mibBuilder.loadTexts: hpnicfStack.setOrganization('') if mibBuilder.loadTexts: hpnicfStack.setContactInfo('') if mibBuilder.loadTexts: hpnicfStack.setDescription('This MIB is used to manage STM (Stack Topology Management) information for IRF (Intelligent Resilient Framework) device. This MIB is applicable to IRF-capable products. Some objects in this MIB may be used only for some specific products, so users should refer to the related documents to acquire more detailed information.') hpnicfStackGlobalConfig = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1)) hpnicfStackMaxMember = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackMaxMember.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMaxMember.setDescription('The maximum number of members in a stack.') hpnicfStackMemberNum = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackMemberNum.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMemberNum.setDescription('The number of members currently in a stack.') hpnicfStackMaxConfigPriority = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackMaxConfigPriority.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMaxConfigPriority.setDescription('The highest priority that can be configured for a member in a stack.') hpnicfStackAutoUpdate = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disabled", 1), ("enabled", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackAutoUpdate.setStatus('current') if mibBuilder.loadTexts: hpnicfStackAutoUpdate.setDescription('The function for automatically updating the image from the master to a device that is attempting to join the stack. When a new device tries to join a stack, STM verifies the image consistency between the joining device and the master. If the joining device uses a different image version than the master, the function updates the joining device with the image of the master. When this function is disabled, the new device can not join the stack if it uses a different software version than the master. disabled: disable auto update function enabled: enable auto update function') hpnicfStackMacPersistence = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("notPersist", 1), ("persistForSixMin", 2), ("persistForever", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackMacPersistence.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMacPersistence.setDescription('The mode of bridge MAC address persistence. When a stack starts, the bridge MAC address of the master is used as that of the stack. When the master leaves the stack, the bridge MAC address of the stack changes depending on the mode of bridge MAC address persistence. notPersist: The bridge MAC address of the new master is used as that of the stack immediately. persistForSixMin: The original bridge MAC address will be reserved for six minutes. In this period, if the master that has left rejoins the stack, the bridge MAC address of the stack will not change. If the old master does not rejoin the stack within this period, the bridge MAC address of the new master will be used as that of the stack. persistForever: Whether the master leaves or not, the bridge MAC address of the stack will never change.') hpnicfStackLinkDelayInterval = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 30000))).setUnits('millisecond').setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackLinkDelayInterval.setStatus('current') if mibBuilder.loadTexts: hpnicfStackLinkDelayInterval.setDescription('Delay for stack ports to report a link down event. If the link comes up before the delay timer expires, the stack port will not report the link down event. If the link is not recovered before the delay timer expires, the stack port will report the change. If the delay is set to 0, the stack ports will report a link down event without delay. 0: no delay 1-30000(ms): delay time') hpnicfStackTopology = MibScalar((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("chainConn", 1), ("ringConn", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackTopology.setStatus('current') if mibBuilder.loadTexts: hpnicfStackTopology.setDescription('Stack topology. chainConn: daisy-chain connection ringConn: ring connection') hpnicfStackDeviceConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2), ) if mibBuilder.loadTexts: hpnicfStackDeviceConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfStackDeviceConfigTable.setDescription('This table contains objects to manage device information in a stack.') hpnicfStackDeviceConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: hpnicfStackDeviceConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfStackDeviceConfigEntry.setDescription('This table contains objects to manage device information in a stack.') hpnicfStackMemberID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackMemberID.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMemberID.setDescription('The member ID of the device in a stack.') hpnicfStackConfigMemberID = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1, 2), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackConfigMemberID.setStatus('current') if mibBuilder.loadTexts: hpnicfStackConfigMemberID.setDescription('The configured member ID of the device. The valid value ranges from 1 to the value in hpnicfStackMaxMember. The configured member ID will take effect at a reboot if it is unique within the stack.') hpnicfStackPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackPriority.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPriority.setDescription('The priority of a device in the stack. The valid value ranges from 1 to the value in hpnicfStackMaxConfigPriority.') hpnicfStackPortNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackPortNum.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortNum.setDescription('The number of stack ports enabled in a device.') hpnicfStackPortMaxNum = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 2, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackPortMaxNum.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortMaxNum.setDescription('The maximum number of stack ports in a device.') hpnicfStackBoardConfigTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 3), ) if mibBuilder.loadTexts: hpnicfStackBoardConfigTable.setStatus('current') if mibBuilder.loadTexts: hpnicfStackBoardConfigTable.setDescription('This table contains objects to manage MPU information for a stack.') hpnicfStackBoardConfigEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 3, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: hpnicfStackBoardConfigEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfStackBoardConfigEntry.setDescription('This table contains objects to manage MPU information for a stack.') hpnicfStackBoardRole = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 3, 1, 1), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("slave", 1), ("master", 2), ("loading", 3), ("other", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackBoardRole.setStatus('current') if mibBuilder.loadTexts: hpnicfStackBoardRole.setDescription('The role of the MPU in a stack. slave: Standby MPU master: Master MPU loading: Standby MPU is loading the software image from the master. other: other') hpnicfStackBoardBelongtoMember = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 3, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackBoardBelongtoMember.setStatus('current') if mibBuilder.loadTexts: hpnicfStackBoardBelongtoMember.setDescription('Member ID of the device that holds the current board.') hpnicfStackPortInfoTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4), ) if mibBuilder.loadTexts: hpnicfStackPortInfoTable.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortInfoTable.setDescription('This table contains objects to manage stack port information for IRF stacked devices.') hpnicfStackPortInfoEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1), ).setIndexNames((0, "HPN-ICF-STACK-MIB", "hpnicfStackMemberID"), (0, "HPN-ICF-STACK-MIB", "hpnicfStackPortIndex")) if mibBuilder.loadTexts: hpnicfStackPortInfoEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortInfoEntry.setDescription('This table contains objects to manage stack port information for IRF stacked devices.') hpnicfStackPortIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1, 1), Integer32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: hpnicfStackPortIndex.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortIndex.setDescription('The index of a stack port of the device.') hpnicfStackPortEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("disabled", 1), ("enabled", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackPortEnable.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortEnable.setDescription("The status of a stack port of the device. If no physical ports are added to the stack port, its status is 'disabled'. If the stack port has physical ports, its status is 'enabled'. disabled: The stack port is disabled. enabled: The stack port is enabled.") hpnicfStackPortStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("up", 1), ("down", 2), ("silent", 3), ("disabled", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackPortStatus.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortStatus.setDescription('The link status of a stack port on the device. up: A physical link is present on the stack port. down: No physical link is present on the stack port. silent: The link state of the stack port is up, but the port cannot transmit or receive traffic. disabled: The stack port does not contain physical links.') hpnicfStackNeighbor = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackNeighbor.setStatus('current') if mibBuilder.loadTexts: hpnicfStackNeighbor.setDescription("The member ID of the stack port's neighbor. 0 means no neighbor exists.") hpnicfStackPortForwardingPath = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 4, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 511))).setMaxAccess("readonly") if mibBuilder.loadTexts: hpnicfStackPortForwardingPath.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortForwardingPath.setDescription("List of egress member IDs on a stack port. Each member device uses the egress member ID lists to choose the outgoing stack port for known unicast frames to be sent out of other member devices. The egress member ID lists are comma separated. A zero-length string means no egress members exist. For example: In a ring stack of 1-2-3-4-5-7-1, if hpnicfStackPortForwardingPath.1.1 returns '7,5,4', IRF-port 1/1 will be the outgoing port for frames to reach members 7, 5, and 4 from member 1.") hpnicfStackPhyPortInfoTable = MibTable((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 5), ) if mibBuilder.loadTexts: hpnicfStackPhyPortInfoTable.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPhyPortInfoTable.setDescription('This table contains objects to manage information about physical ports that can be used for IRF stacking.') hpnicfStackPhyPortInfoEntry = MibTableRow((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 5, 1), ).setIndexNames((0, "ENTITY-MIB", "entPhysicalIndex")) if mibBuilder.loadTexts: hpnicfStackPhyPortInfoEntry.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPhyPortInfoEntry.setDescription('This table contains objects to manage information about physical ports that can be used for IRF stacking.') hpnicfStackBelongtoPort = MibTableColumn((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 5, 1, 1), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: hpnicfStackBelongtoPort.setStatus('current') if mibBuilder.loadTexts: hpnicfStackBelongtoPort.setDescription('The index of the stack port to which the physical port is added. 0 means the physical port is not added to any stack port. The value will take effect when IRF is enabled on the device.') hpnicfStackTrap = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6)) hpnicfStackTrapOjbects = MibIdentifier((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0)) hpnicfStackPortLinkStatusChange = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 1)).setObjects(("HPN-ICF-STACK-MIB", "hpnicfStackMemberID"), ("HPN-ICF-STACK-MIB", "hpnicfStackPortIndex"), ("HPN-ICF-STACK-MIB", "hpnicfStackPortStatus")) if mibBuilder.loadTexts: hpnicfStackPortLinkStatusChange.setStatus('current') if mibBuilder.loadTexts: hpnicfStackPortLinkStatusChange.setDescription('The hpnicfStackPortLinkStatusChange trap indicates that the link status of the stack port has changed.') hpnicfStackTopologyChange = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 2)).setObjects(("HPN-ICF-STACK-MIB", "hpnicfStackTopology")) if mibBuilder.loadTexts: hpnicfStackTopologyChange.setStatus('current') if mibBuilder.loadTexts: hpnicfStackTopologyChange.setDescription('The hpnicfStackTopologyChange trap indicates that the topology type of the IRF stack has changed.') hpnicfStackMadBfdChangeNormal = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 3)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifDescr")) if mibBuilder.loadTexts: hpnicfStackMadBfdChangeNormal.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMadBfdChangeNormal.setDescription('The hpnicfStackMadBfdChangeNormal trap indicates that the BFD MAD function changed to the normal state.') hpnicfStackMadBfdChangeFailure = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 4)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifDescr")) if mibBuilder.loadTexts: hpnicfStackMadBfdChangeFailure.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMadBfdChangeFailure.setDescription('The hpnicfStackMadBfdChangeFailure trap indicates that the BFD MAD function changed to the failure state.') hpnicfStackMadLacpChangeNormal = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 5)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifDescr")) if mibBuilder.loadTexts: hpnicfStackMadLacpChangeNormal.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMadLacpChangeNormal.setDescription('The hpnicfStackMadLacpChangeNormal trap indicates that the LACP MAD function changed to the normal state.') hpnicfStackMadLacpChangeFailure = NotificationType((1, 3, 6, 1, 4, 1, 11, 2, 14, 11, 15, 2, 91, 6, 0, 6)).setObjects(("IF-MIB", "ifIndex"), ("IF-MIB", "ifDescr")) if mibBuilder.loadTexts: hpnicfStackMadLacpChangeFailure.setStatus('current') if mibBuilder.loadTexts: hpnicfStackMadLacpChangeFailure.setDescription('The hpnicfStackMadLacpChangeFailure trap indicates that the LACP MAD function changed to the failure state.') mibBuilder.exportSymbols("HPN-ICF-STACK-MIB", hpnicfStackPortInfoEntry=hpnicfStackPortInfoEntry, hpnicfStackBelongtoPort=hpnicfStackBelongtoPort, PYSNMP_MODULE_ID=hpnicfStack, hpnicfStackMadBfdChangeNormal=hpnicfStackMadBfdChangeNormal, hpnicfStackTrapOjbects=hpnicfStackTrapOjbects, hpnicfStackMaxMember=hpnicfStackMaxMember, hpnicfStackPortForwardingPath=hpnicfStackPortForwardingPath, hpnicfStackTopologyChange=hpnicfStackTopologyChange, hpnicfStackPortLinkStatusChange=hpnicfStackPortLinkStatusChange, hpnicfStackPortMaxNum=hpnicfStackPortMaxNum, hpnicfStackNeighbor=hpnicfStackNeighbor, hpnicfStack=hpnicfStack, hpnicfStackPortStatus=hpnicfStackPortStatus, hpnicfStackTrap=hpnicfStackTrap, hpnicfStackMaxConfigPriority=hpnicfStackMaxConfigPriority, hpnicfStackMadLacpChangeNormal=hpnicfStackMadLacpChangeNormal, hpnicfStackTopology=hpnicfStackTopology, hpnicfStackBoardBelongtoMember=hpnicfStackBoardBelongtoMember, hpnicfStackConfigMemberID=hpnicfStackConfigMemberID, hpnicfStackMacPersistence=hpnicfStackMacPersistence, hpnicfStackPhyPortInfoEntry=hpnicfStackPhyPortInfoEntry, hpnicfStackMadBfdChangeFailure=hpnicfStackMadBfdChangeFailure, hpnicfStackPriority=hpnicfStackPriority, hpnicfStackPortNum=hpnicfStackPortNum, hpnicfStackPortIndex=hpnicfStackPortIndex, hpnicfStackMadLacpChangeFailure=hpnicfStackMadLacpChangeFailure, hpnicfStackPortEnable=hpnicfStackPortEnable, hpnicfStackMemberNum=hpnicfStackMemberNum, hpnicfStackBoardConfigTable=hpnicfStackBoardConfigTable, hpnicfStackBoardConfigEntry=hpnicfStackBoardConfigEntry, hpnicfStackDeviceConfigTable=hpnicfStackDeviceConfigTable, hpnicfStackLinkDelayInterval=hpnicfStackLinkDelayInterval, hpnicfStackMemberID=hpnicfStackMemberID, hpnicfStackAutoUpdate=hpnicfStackAutoUpdate, hpnicfStackBoardRole=hpnicfStackBoardRole, hpnicfStackPhyPortInfoTable=hpnicfStackPhyPortInfoTable, hpnicfStackDeviceConfigEntry=hpnicfStackDeviceConfigEntry, hpnicfStackGlobalConfig=hpnicfStackGlobalConfig, hpnicfStackPortInfoTable=hpnicfStackPortInfoTable)
[ 2, 198, 2, 9485, 15571, 7378, 337, 9865, 8265, 6574, 45, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 357, 4023, 1378, 16184, 76, 489, 8937, 13, 785, 14, 79, 893, 11632, 8, 198, 2, 7054, 45, 13, 16, 2723, 2393, 1378, 14, 14490, 14, 67, 615, 47562, 19, 14, 13603, 14, 76, 571, 82, 13, 16184, 76, 489, 8937, 13, 785, 14, 292, 77, 16, 14, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 198, 2, 21522, 771, 416, 279, 893, 11632, 12, 15, 13, 18, 13, 19, 379, 3300, 1737, 220, 352, 1511, 25, 3901, 25, 1959, 13130, 198, 2, 1550, 2583, 42274, 54, 15567, 19, 12, 44, 12, 1415, 2425, 3859, 21450, 2196, 1248, 13, 20, 13, 15, 416, 2836, 288, 615, 47562, 19, 198, 2, 8554, 11361, 2196, 513, 13, 22, 13, 18, 357, 12286, 11, 1526, 2681, 13130, 11, 7769, 25, 1954, 25, 1314, 8, 220, 198, 2, 198, 12349, 316, 10100, 11, 34142, 11, 9515, 33234, 7483, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 1600, 366, 12349, 316, 10100, 1600, 366, 46541, 1600, 366, 10267, 33234, 7483, 4943, 198, 45, 2434, 40161, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 1677, 5883, 1137, 6234, 1600, 366, 45, 2434, 40161, 4943, 198, 3103, 2536, 6003, 38176, 11, 14206, 11395, 3103, 2536, 2913, 11, 11052, 10699, 3103, 2536, 2913, 11, 11052, 17257, 3103, 2536, 2913, 11, 1482, 2536, 6003, 9492, 5458, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 1921, 45, 16, 12, 2200, 20032, 12529, 1600, 366, 3103, 2536, 6003, 38176, 1600, 366, 28008, 11395, 3103, 2536, 2913, 1600, 366, 11395, 10699, 3103, 2536, 2913, 1600, 366, 11395, 17257, 3103, 2536, 2913, 1600, 366, 3103, 2536, 6003, 9492, 5458, 4943, 198, 298, 31611, 15732, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 3525, 9050, 12, 8895, 33, 1600, 366, 298, 31611, 15732, 4943, 198, 24831, 6988, 69, 17227, 11, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 39, 13137, 12, 2149, 37, 12, 46, 2389, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 17227, 4943, 198, 361, 24564, 81, 11, 611, 15732, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 24564, 81, 1600, 366, 361, 15732, 4943, 198, 26796, 38143, 3610, 11, 42808, 13247, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 10943, 37, 1600, 366, 26796, 38143, 3610, 1600, 366, 3673, 2649, 13247, 4943, 198, 44, 571, 33234, 7483, 11, 35094, 469, 2624, 11, 791, 32696, 2624, 11, 47279, 11, 44733, 11, 34142, 2624, 11, 15034, 2414, 11, 9515, 7390, 26858, 11, 15034, 2624, 11, 3862, 51, 3378, 11, 314, 79, 20231, 11, 337, 571, 3351, 282, 283, 11, 337, 571, 10962, 11, 337, 571, 10962, 25166, 11, 337, 571, 10962, 39470, 11, 42808, 6030, 11, 19937, 7390, 26858, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 50, 8895, 1600, 366, 44, 571, 33234, 7483, 1600, 366, 38, 559, 469, 2624, 1600, 366, 3118, 32696, 2624, 1600, 366, 26786, 1600, 366, 33, 896, 1600, 366, 46541, 2624, 1600, 366, 31694, 2414, 1600, 366, 10267, 7390, 26858, 1600, 366, 31694, 2624, 1600, 366, 7575, 51, 3378, 1600, 366, 40, 79, 20231, 1600, 366, 44, 571, 3351, 282, 283, 1600, 366, 44, 571, 10962, 1600, 366, 44, 571, 10962, 25166, 1600, 366, 44, 571, 10962, 39470, 1600, 366, 3673, 2649, 6030, 1600, 366, 26796, 7390, 26858, 4943, 198, 23114, 10100, 11, 8255, 723, 3103, 4018, 796, 285, 571, 32875, 13, 11748, 13940, 2022, 10220, 7203, 15571, 7378, 85, 17, 12, 4825, 1600, 366, 23114, 10100, 1600, 366, 8206, 723, 3103, 4018, 4943, 198, 24831, 6988, 69, 25896, 796, 19937, 7390, 26858, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 4008, 198, 24831, 6988, 69, 25896, 13, 2617, 18009, 3279, 7, 10786, 11528, 12, 3023, 12, 1270, 1467, 25, 1120, 3256, 4008, 198, 198, 361, 651, 35226, 7, 76, 571, 32875, 11, 705, 9641, 3256, 357, 15, 11, 657, 11, 657, 4008, 1875, 357, 19, 11, 604, 11, 657, 2599, 198, 220, 220, 220, 611, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13, 2617, 18009, 3279, 24564, 1968, 507, 7, 10786, 464, 4238, 18440, 286, 428, 337, 9865, 8265, 2637, 11, 4008, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13, 2617, 5956, 17354, 10786, 2167, 1795, 3559, 486, 17544, 57, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13, 2617, 26121, 1634, 7, 7061, 8, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13, 2617, 17829, 12360, 7, 7061, 8, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13, 2617, 11828, 10786, 1212, 337, 9865, 318, 973, 284, 6687, 3563, 44, 357, 25896, 5849, 1435, 8549, 8, 1321, 329, 14826, 37, 357, 5317, 32940, 1874, 346, 1153, 25161, 8, 3335, 13, 770, 337, 9865, 318, 9723, 284, 14826, 37, 12, 11128, 540, 3186, 13, 2773, 5563, 287, 428, 337, 9865, 743, 307, 973, 691, 329, 617, 2176, 3186, 11, 523, 2985, 815, 3522, 284, 262, 3519, 4963, 284, 12831, 517, 6496, 1321, 2637, 8, 198, 24831, 6988, 69, 25896, 22289, 16934, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 4008, 198, 24831, 6988, 69, 25896, 11518, 27608, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 352, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11518, 27608, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11518, 27608, 13, 2617, 11828, 10786, 464, 5415, 1271, 286, 1866, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 27608, 33111, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 362, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27608, 33111, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27608, 33111, 13, 2617, 11828, 10786, 464, 1271, 286, 1866, 3058, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 11518, 16934, 22442, 414, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 513, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11518, 16934, 22442, 414, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11518, 16934, 22442, 414, 13, 2617, 11828, 10786, 464, 4511, 8475, 326, 460, 307, 17839, 329, 257, 2888, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 27722, 10260, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 604, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 47730, 1600, 352, 828, 5855, 25616, 1600, 362, 22305, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27722, 10260, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27722, 10260, 13, 2617, 11828, 10786, 464, 2163, 329, 6338, 19698, 262, 2939, 422, 262, 4958, 284, 257, 3335, 326, 318, 9361, 284, 4654, 262, 8931, 13, 1649, 257, 649, 3335, 8404, 284, 4654, 257, 8931, 11, 3563, 44, 3326, 6945, 262, 2939, 15794, 1022, 262, 9679, 3335, 290, 262, 4958, 13, 1002, 262, 9679, 3335, 3544, 257, 1180, 2939, 2196, 621, 262, 4958, 11, 262, 2163, 5992, 262, 9679, 3335, 351, 262, 2939, 286, 262, 4958, 13, 1649, 428, 2163, 318, 10058, 11, 262, 649, 3335, 460, 407, 4654, 262, 8931, 611, 340, 3544, 257, 1180, 3788, 2196, 621, 262, 4958, 13, 10058, 25, 15560, 8295, 4296, 2163, 9343, 25, 7139, 8295, 4296, 2163, 11537, 198, 24831, 6988, 69, 25896, 14155, 30946, 13274, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 642, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 1662, 30946, 396, 1600, 352, 828, 5855, 19276, 396, 1890, 21447, 9452, 1600, 362, 828, 5855, 19276, 396, 16351, 332, 1600, 513, 22305, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 14155, 30946, 13274, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 14155, 30946, 13274, 13, 2617, 11828, 10786, 464, 4235, 286, 7696, 20582, 2209, 30802, 13, 1649, 257, 8931, 4940, 11, 262, 7696, 20582, 2209, 286, 262, 4958, 318, 973, 355, 326, 286, 262, 8931, 13, 1649, 262, 4958, 5667, 262, 8931, 11, 262, 7696, 20582, 2209, 286, 262, 8931, 2458, 6906, 319, 262, 4235, 286, 7696, 20582, 2209, 30802, 13, 407, 30946, 396, 25, 383, 7696, 20582, 2209, 286, 262, 649, 4958, 318, 973, 355, 326, 286, 262, 8931, 3393, 13, 21160, 1890, 21447, 9452, 25, 383, 2656, 7696, 20582, 2209, 481, 307, 10395, 329, 2237, 2431, 13, 554, 428, 2278, 11, 611, 262, 4958, 326, 468, 1364, 30668, 1040, 262, 8931, 11, 262, 7696, 20582, 2209, 286, 262, 8931, 481, 407, 1487, 13, 1002, 262, 1468, 4958, 857, 407, 302, 22179, 262, 8931, 1626, 428, 2278, 11, 262, 7696, 20582, 2209, 286, 262, 649, 4958, 481, 307, 973, 355, 326, 286, 262, 8931, 13, 21160, 16351, 332, 25, 10127, 262, 4958, 5667, 393, 407, 11, 262, 7696, 20582, 2209, 286, 262, 8931, 481, 1239, 1487, 2637, 8, 198, 24831, 6988, 69, 25896, 11280, 13856, 323, 9492, 2100, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 718, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 17257, 3103, 2536, 2913, 7, 15, 11, 513, 2388, 4008, 737, 2617, 3118, 896, 10786, 17805, 27866, 623, 27691, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11280, 13856, 323, 9492, 2100, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 11280, 13856, 323, 9492, 2100, 13, 2617, 11828, 10786, 13856, 323, 329, 8931, 14090, 284, 989, 257, 2792, 866, 1785, 13, 1002, 262, 2792, 2058, 510, 878, 262, 5711, 19781, 27396, 11, 262, 8931, 2493, 481, 407, 989, 262, 2792, 866, 1785, 13, 1002, 262, 2792, 318, 407, 11911, 878, 262, 5711, 19781, 27396, 11, 262, 8931, 2493, 481, 989, 262, 1487, 13, 1002, 262, 5711, 318, 900, 284, 657, 11, 262, 8931, 14090, 481, 989, 257, 2792, 866, 1785, 1231, 5711, 13, 657, 25, 645, 5711, 352, 12, 18, 2388, 7, 907, 2599, 5711, 640, 11537, 198, 24831, 6988, 69, 25896, 9126, 1435, 796, 337, 571, 3351, 282, 283, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 352, 11, 767, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 7983, 37321, 1600, 352, 828, 5855, 1806, 37321, 1600, 362, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 9126, 1435, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 9126, 1435, 13, 2617, 11828, 10786, 25896, 1353, 1435, 13, 6333, 37321, 25, 12379, 13560, 12, 7983, 4637, 5858, 37321, 25, 5858, 4637, 11537, 198, 24831, 6988, 69, 25896, 24728, 16934, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 24728, 16934, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 24728, 16934, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 3335, 1321, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 24728, 16934, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 3525, 9050, 12, 8895, 33, 1600, 366, 298, 31611, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 24728, 16934, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 24728, 16934, 30150, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 3335, 1321, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 27608, 2389, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 11, 352, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27608, 2389, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 27608, 2389, 13, 2617, 11828, 10786, 464, 2888, 4522, 286, 262, 3335, 287, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 16934, 27608, 2389, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 11, 362, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 16934, 27608, 2389, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 16934, 27608, 2389, 13, 2617, 11828, 10786, 464, 17839, 2888, 4522, 286, 262, 3335, 13, 383, 4938, 1988, 16069, 422, 352, 284, 262, 1988, 287, 27673, 6988, 69, 25896, 11518, 27608, 13, 383, 17839, 2888, 4522, 481, 1011, 1245, 379, 257, 20149, 611, 340, 318, 3748, 1626, 262, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 22442, 414, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 11, 513, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 22442, 414, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 22442, 414, 13, 2617, 11828, 10786, 464, 8475, 286, 257, 3335, 287, 262, 8931, 13, 383, 4938, 1988, 16069, 422, 352, 284, 262, 1988, 287, 27673, 6988, 69, 25896, 11518, 16934, 22442, 414, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 33111, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 11, 604, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 33111, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 33111, 13, 2617, 11828, 10786, 464, 1271, 286, 8931, 14090, 9343, 287, 257, 3335, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 11518, 33111, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 362, 11, 352, 11, 642, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 11518, 33111, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 11518, 33111, 13, 2617, 11828, 10786, 464, 5415, 1271, 286, 8931, 14090, 287, 257, 3335, 2637, 8, 198, 24831, 6988, 69, 25896, 29828, 16934, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 513, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 16934, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 16934, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 4904, 52, 1321, 329, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 29828, 16934, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 513, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 3525, 9050, 12, 8895, 33, 1600, 366, 298, 31611, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 16934, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 16934, 30150, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 4904, 52, 1321, 329, 257, 8931, 2637, 8, 198, 24831, 6988, 69, 25896, 29828, 47445, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 513, 11, 352, 11, 352, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 36341, 1600, 352, 828, 5855, 9866, 1600, 362, 828, 5855, 25138, 1600, 513, 828, 5855, 847, 1600, 604, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 47445, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 47445, 13, 2617, 11828, 10786, 464, 2597, 286, 262, 4904, 52, 287, 257, 8931, 13, 11778, 25, 5751, 1525, 4904, 52, 4958, 25, 5599, 4904, 52, 11046, 25, 5751, 1525, 4904, 52, 318, 11046, 262, 3788, 2939, 422, 262, 4958, 13, 584, 25, 584, 11537, 198, 24831, 6988, 69, 25896, 29828, 12193, 506, 1462, 27608, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 513, 11, 352, 11, 362, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 12193, 506, 1462, 27608, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 29828, 12193, 506, 1462, 27608, 13, 2617, 11828, 10786, 27608, 4522, 286, 262, 3335, 326, 6622, 262, 1459, 3096, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 12360, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 12360, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 12360, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 8931, 2493, 1321, 329, 14826, 37, 24167, 4410, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 12360, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 27608, 2389, 12340, 357, 15, 11, 366, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 13924, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 12360, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 12360, 30150, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 8931, 2493, 1321, 329, 14826, 37, 24167, 4410, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 15732, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 11, 352, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 33780, 69, 1211, 313, 1958, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 15732, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 15732, 13, 2617, 11828, 10786, 464, 6376, 286, 257, 8931, 2493, 286, 262, 3335, 2637, 8, 198, 24831, 6988, 69, 25896, 13924, 36695, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 11, 362, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 47730, 1600, 352, 828, 5855, 25616, 1600, 362, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 36695, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 36695, 13, 2617, 11828, 7203, 464, 3722, 286, 257, 8931, 2493, 286, 262, 3335, 13, 1002, 645, 3518, 14090, 389, 2087, 284, 262, 8931, 2493, 11, 663, 3722, 318, 705, 47730, 4458, 1002, 262, 8931, 2493, 468, 3518, 14090, 11, 663, 3722, 318, 705, 25616, 4458, 10058, 25, 383, 8931, 2493, 318, 10058, 13, 9343, 25, 383, 8931, 2493, 318, 9343, 19570, 198, 24831, 6988, 69, 25896, 13924, 19580, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 11, 513, 828, 34142, 2624, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 3103, 2536, 6003, 38176, 7, 28008, 11395, 3103, 2536, 2913, 7, 16, 11, 362, 11, 513, 11, 604, 4008, 737, 21018, 7, 13190, 40161, 28, 45, 2434, 40161, 7, 7203, 929, 1600, 352, 828, 5855, 2902, 1600, 362, 828, 5855, 18217, 298, 1600, 513, 828, 5855, 47730, 1600, 604, 22305, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 19580, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 19580, 13, 2617, 11828, 10786, 464, 2792, 3722, 286, 257, 8931, 2493, 319, 262, 3335, 13, 510, 25, 317, 3518, 2792, 318, 1944, 319, 262, 8931, 2493, 13, 866, 25, 1400, 3518, 2792, 318, 1944, 319, 262, 8931, 2493, 13, 10574, 25, 383, 2792, 1181, 286, 262, 8931, 2493, 318, 510, 11, 475, 262, 2493, 2314, 21937, 393, 3328, 4979, 13, 10058, 25, 383, 8931, 2493, 857, 407, 3994, 3518, 6117, 2637, 8, 198, 24831, 6988, 69, 25896, 46445, 2865, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 11, 604, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 46445, 2865, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 46445, 2865, 13, 2617, 11828, 7203, 464, 2888, 4522, 286, 262, 8931, 2493, 338, 4780, 13, 657, 1724, 645, 4780, 7160, 19570, 198, 24831, 6988, 69, 25896, 13924, 39746, 278, 15235, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 604, 11, 352, 11, 642, 828, 2556, 316, 10100, 22446, 7266, 4906, 7, 7266, 4906, 22882, 28, 11395, 10699, 3103, 2536, 2913, 7, 15, 11, 642, 1157, 4008, 737, 2617, 11518, 15457, 7203, 961, 8807, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 39746, 278, 15235, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 39746, 278, 15235, 13, 2617, 11828, 7203, 8053, 286, 304, 5914, 2888, 32373, 319, 257, 8931, 2493, 13, 5501, 2888, 3335, 3544, 262, 304, 5914, 2888, 4522, 8341, 284, 3853, 262, 28181, 8931, 2493, 329, 1900, 28000, 459, 13431, 284, 307, 1908, 503, 286, 584, 2888, 4410, 13, 383, 304, 5914, 2888, 4522, 8341, 389, 39650, 11266, 13, 317, 6632, 12, 13664, 4731, 1724, 645, 304, 5914, 1866, 2152, 13, 1114, 1672, 25, 554, 257, 5858, 8931, 286, 352, 12, 17, 12, 18, 12, 19, 12, 20, 12, 22, 12, 16, 11, 611, 27673, 6988, 69, 25896, 13924, 39746, 278, 15235, 13, 16, 13, 16, 5860, 705, 22, 11, 20, 11, 19, 3256, 14826, 37, 12, 634, 352, 14, 16, 481, 307, 262, 28181, 2493, 329, 13431, 284, 3151, 1866, 767, 11, 642, 11, 290, 604, 422, 2888, 352, 19570, 198, 24831, 6988, 69, 25896, 2725, 88, 13924, 12360, 10962, 796, 337, 571, 10962, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 642, 828, 1267, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 10962, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 10962, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 1321, 546, 3518, 14090, 326, 460, 307, 973, 329, 14826, 37, 41228, 2637, 8, 198, 24831, 6988, 69, 25896, 2725, 88, 13924, 12360, 30150, 796, 337, 571, 10962, 25166, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 642, 11, 352, 828, 6739, 2617, 15732, 36690, 19510, 15, 11, 366, 3525, 9050, 12, 8895, 33, 1600, 366, 298, 31611, 15732, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 30150, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 30150, 13, 2617, 11828, 10786, 1212, 3084, 4909, 5563, 284, 6687, 1321, 546, 3518, 14090, 326, 460, 307, 973, 329, 14826, 37, 41228, 2637, 8, 198, 24831, 6988, 69, 25896, 12193, 506, 1462, 13924, 796, 337, 571, 10962, 39470, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 642, 11, 352, 11, 352, 828, 34142, 2624, 3419, 737, 2617, 11518, 15457, 7203, 961, 13564, 4943, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 12193, 506, 1462, 13924, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 12193, 506, 1462, 13924, 13, 2617, 11828, 10786, 464, 6376, 286, 262, 8931, 2493, 284, 543, 262, 3518, 2493, 318, 2087, 13, 657, 1724, 262, 3518, 2493, 318, 407, 2087, 284, 597, 8931, 2493, 13, 383, 1988, 481, 1011, 1245, 618, 14826, 37, 318, 9343, 319, 262, 3335, 2637, 8, 198, 24831, 6988, 69, 25896, 51, 2416, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 4008, 198, 24831, 6988, 69, 25896, 51, 2416, 46, 73, 65, 478, 82, 796, 337, 571, 33234, 7483, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 4008, 198, 24831, 6988, 69, 25896, 13924, 11280, 19580, 19400, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 352, 29720, 2617, 10267, 82, 7, 7203, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 27608, 2389, 12340, 5855, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 13924, 15732, 12340, 5855, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 13924, 19580, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 11280, 19580, 19400, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 13924, 11280, 19580, 19400, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 13924, 11280, 19580, 19400, 12840, 9217, 326, 262, 2792, 3722, 286, 262, 8931, 2493, 468, 3421, 2637, 8, 198, 24831, 6988, 69, 25896, 9126, 1435, 19400, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 362, 29720, 2617, 10267, 82, 7, 7203, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 366, 24831, 6988, 69, 25896, 9126, 1435, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 9126, 1435, 19400, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 9126, 1435, 19400, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 9126, 1435, 19400, 12840, 9217, 326, 262, 1353, 1435, 2099, 286, 262, 14826, 37, 8931, 468, 3421, 2637, 8, 198, 24831, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 513, 29720, 2617, 10267, 82, 7, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 5855, 5064, 12, 8895, 33, 1600, 366, 361, 24564, 81, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 12840, 9217, 326, 262, 347, 26009, 45878, 2163, 3421, 284, 262, 3487, 1181, 2637, 8, 198, 24831, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 604, 29720, 2617, 10267, 82, 7, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 5855, 5064, 12, 8895, 33, 1600, 366, 361, 24564, 81, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 12840, 9217, 326, 262, 347, 26009, 45878, 2163, 3421, 284, 262, 5287, 1181, 2637, 8, 198, 24831, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 642, 29720, 2617, 10267, 82, 7, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 5855, 5064, 12, 8895, 33, 1600, 366, 361, 24564, 81, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 12840, 9217, 326, 262, 406, 33056, 45878, 2163, 3421, 284, 262, 3487, 1181, 2637, 8, 198, 24831, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 796, 42808, 6030, 19510, 16, 11, 513, 11, 718, 11, 352, 11, 604, 11, 352, 11, 1367, 11, 362, 11, 1478, 11, 1367, 11, 1315, 11, 362, 11, 10495, 11, 718, 11, 657, 11, 718, 29720, 2617, 10267, 82, 7, 7203, 5064, 12, 8895, 33, 1600, 366, 361, 15732, 12340, 5855, 5064, 12, 8895, 33, 1600, 366, 361, 24564, 81, 48774, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 13, 2617, 19580, 10786, 14421, 11537, 198, 361, 285, 571, 32875, 13, 2220, 8206, 82, 25, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 13, 2617, 11828, 10786, 464, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 12840, 9217, 326, 262, 406, 33056, 45878, 2163, 3421, 284, 262, 5287, 1181, 2637, 8, 198, 76, 571, 32875, 13, 39344, 13940, 2022, 10220, 7203, 39, 13137, 12, 2149, 37, 12, 2257, 8120, 12, 8895, 33, 1600, 27673, 6988, 69, 25896, 13924, 12360, 30150, 28, 24831, 6988, 69, 25896, 13924, 12360, 30150, 11, 27673, 6988, 69, 25896, 12193, 506, 1462, 13924, 28, 24831, 6988, 69, 25896, 12193, 506, 1462, 13924, 11, 350, 56, 15571, 7378, 62, 33365, 24212, 62, 2389, 28, 24831, 6988, 69, 25896, 11, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 28, 24831, 6988, 69, 25896, 18454, 33, 16344, 19400, 26447, 11, 27673, 6988, 69, 25896, 51, 2416, 46, 73, 65, 478, 82, 28, 24831, 6988, 69, 25896, 51, 2416, 46, 73, 65, 478, 82, 11, 27673, 6988, 69, 25896, 11518, 27608, 28, 24831, 6988, 69, 25896, 11518, 27608, 11, 27673, 6988, 69, 25896, 13924, 39746, 278, 15235, 28, 24831, 6988, 69, 25896, 13924, 39746, 278, 15235, 11, 27673, 6988, 69, 25896, 9126, 1435, 19400, 28, 24831, 6988, 69, 25896, 9126, 1435, 19400, 11, 27673, 6988, 69, 25896, 13924, 11280, 19580, 19400, 28, 24831, 6988, 69, 25896, 13924, 11280, 19580, 19400, 11, 27673, 6988, 69, 25896, 13924, 11518, 33111, 28, 24831, 6988, 69, 25896, 13924, 11518, 33111, 11, 27673, 6988, 69, 25896, 46445, 2865, 28, 24831, 6988, 69, 25896, 46445, 2865, 11, 27673, 6988, 69, 25896, 28, 24831, 6988, 69, 25896, 11, 27673, 6988, 69, 25896, 13924, 19580, 28, 24831, 6988, 69, 25896, 13924, 19580, 11, 27673, 6988, 69, 25896, 51, 2416, 28, 24831, 6988, 69, 25896, 51, 2416, 11, 27673, 6988, 69, 25896, 11518, 16934, 22442, 414, 28, 24831, 6988, 69, 25896, 11518, 16934, 22442, 414, 11, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 28, 24831, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 26447, 11, 27673, 6988, 69, 25896, 9126, 1435, 28, 24831, 6988, 69, 25896, 9126, 1435, 11, 27673, 6988, 69, 25896, 29828, 12193, 506, 1462, 27608, 28, 24831, 6988, 69, 25896, 29828, 12193, 506, 1462, 27608, 11, 27673, 6988, 69, 25896, 16934, 27608, 2389, 28, 24831, 6988, 69, 25896, 16934, 27608, 2389, 11, 27673, 6988, 69, 25896, 14155, 30946, 13274, 28, 24831, 6988, 69, 25896, 14155, 30946, 13274, 11, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 30150, 28, 24831, 6988, 69, 25896, 2725, 88, 13924, 12360, 30150, 11, 27673, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 28, 24831, 6988, 69, 25896, 18454, 33, 16344, 19400, 50015, 11, 27673, 6988, 69, 25896, 22442, 414, 28, 24831, 6988, 69, 25896, 22442, 414, 11, 27673, 6988, 69, 25896, 13924, 33111, 28, 24831, 6988, 69, 25896, 13924, 33111, 11, 27673, 6988, 69, 25896, 13924, 15732, 28, 24831, 6988, 69, 25896, 13924, 15732, 11, 27673, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 28, 24831, 6988, 69, 25896, 18454, 43, 330, 79, 19400, 50015, 11, 27673, 6988, 69, 25896, 13924, 36695, 28, 24831, 6988, 69, 25896, 13924, 36695, 11, 27673, 6988, 69, 25896, 27608, 33111, 28, 24831, 6988, 69, 25896, 27608, 33111, 11, 27673, 6988, 69, 25896, 29828, 16934, 10962, 28, 24831, 6988, 69, 25896, 29828, 16934, 10962, 11, 27673, 6988, 69, 25896, 29828, 16934, 30150, 28, 24831, 6988, 69, 25896, 29828, 16934, 30150, 11, 27673, 6988, 69, 25896, 24728, 16934, 10962, 28, 24831, 6988, 69, 25896, 24728, 16934, 10962, 11, 27673, 6988, 69, 25896, 11280, 13856, 323, 9492, 2100, 28, 24831, 6988, 69, 25896, 11280, 13856, 323, 9492, 2100, 11, 27673, 6988, 69, 25896, 27608, 2389, 28, 24831, 6988, 69, 25896, 27608, 2389, 11, 27673, 6988, 69, 25896, 27722, 10260, 28, 24831, 6988, 69, 25896, 27722, 10260, 11, 27673, 6988, 69, 25896, 29828, 47445, 28, 24831, 6988, 69, 25896, 29828, 47445, 11, 27673, 6988, 69, 25896, 2725, 88, 13924, 12360, 10962, 28, 24831, 6988, 69, 25896, 2725, 88, 13924, 12360, 10962, 11, 27673, 6988, 69, 25896, 24728, 16934, 30150, 28, 24831, 6988, 69, 25896, 24728, 16934, 30150, 11, 27673, 6988, 69, 25896, 22289, 16934, 28, 24831, 6988, 69, 25896, 22289, 16934, 11, 27673, 6988, 69, 25896, 13924, 12360, 10962, 28, 24831, 6988, 69, 25896, 13924, 12360, 10962, 8, 198 ]
3.030129
6,804
""" Feature extraction algorithms. Each algorithm works on the HandwrittenData class. They have to be applied like this: >>> import hwrt.features >>> from hwrt.handwritten_data import HandwrittenData >>> data_json = '[[{"time": 123, "x": 45, "y": 67}]]' >>> a = HandwrittenData(raw_data_id=2953, raw_data_json=data_json) >>> feature_list = [StrokeCount(), ... ConstantPointCoordinates(strokes=4, ... points_per_stroke=20, ... fill_empty_with=0)] >>> x = a.feature_extraction(feature_list) """ # Core Library modules import abc import logging import sys from itertools import combinations_with_replacement as combinations_wr from typing import Any, Dict, List # Third party modules import numpy from PIL import Image, ImageDraw # Local modules from . import geometry, handwritten_data, preprocessing, utils logger = logging.getLogger(__name__) def get_features(model_description_features: List[Dict[str, Any]]): """Get features from a list of dictionaries Parameters ---------- model_description_features : List[Dict[str, Any]] Examples -------- >>> l = [{'StrokeCount': None}, \ {'ConstantPointCoordinates': \ [{'strokes': 4}, \ {'points_per_stroke': 81}, \ {'fill_empty_with': 0}, \ {'pen_down': False}] \ } \ ] >>> get_features(l) [StrokeCount, ConstantPointCoordinates - strokes: 4 - points per stroke: 81 - fill empty with: 0 - pen down feature: False - pixel_env: 0 ] """ return utils.get_objectlist( model_description_features, config_key="features", module=sys.modules[__name__] ) def print_featurelist(feature_list: List): """ Print the feature_list in a human-readable form. Parameters ---------- feature_list : List feature objects """ input_features = sum(n.get_dimension() for n in feature_list) print("## Features (%i)" % input_features) print("```") for algorithm in feature_list: print("* %s" % str(algorithm)) print("```") class Feature(metaclass=abc.ABCMeta): """Abstract class which defines which methods to implement for features.""" @abc.abstractmethod def __call__(self, hwr_obj): """Get the features value for a given recording ``hwr_obj``.""" assert isinstance( hwr_obj, handwritten_data.HandwrittenData ), "handwritten data is not of type HandwrittenData, but of %r" % type(hwr_obj) @abc.abstractmethod def get_dimension(self): """Return the length of the list which __call__ will return.""" # Only feature calculation classes follow # Every feature class must have a __str__, __repr__ function so that error # messages can help you to find and fix bugs in features. # Every feature class must have a __call__ function which is used to get the # features value(s) for a given recording. # Every feature class must have a get_dimension function so that the total # number of features can be calculated and checked for consistency. # # * __call__ must take exactly one argument of type HandwrittenData # * __call__ must return a list of length get_dimension() # * get_dimension must return a positive number # * have a 'normalize' attribute that is either True or False # Local features class ConstantPointCoordinates(Feature): """Take the first ``points_per_stroke=20`` points coordinates of the first ``strokes=4`` strokes as features. This leads to :math:`2 \\cdot \\text{points_per_stroke} \\cdot \\text{strokes}` features. If ``points`` is set to 0, the first ``points_per_stroke`` point coordinates and the ``pen_down`` feature is used. This leads to :math:`3 \\cdot \\text{points_per_stroke}` features. Parameters ---------- strokes : int points_per_stroke : int fill_empty_with : float pen_down : boolean pixel_env : int How big should the pixel map around the given point be? """ normalize = False def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" if self.strokes > 0: if self.pixel_env > 0: return ( (2 + (1 + 2 * self.pixel_env) ** 2) * self.strokes * self.points_per_stroke ) else: return 2 * self.strokes * self.points_per_stroke else: if self.pen_down: return 3 * self.points_per_stroke else: return 2 * self.points_per_stroke def _features_with_strokes(self, hwr_obj): """Calculate the ConstantPointCoordinates features for the case of a fixed number of strokes.""" x = [] img = Image.new( "L", ( (int(hwr_obj.get_width() * self.scaling_factor) + 2), (int(hwr_obj.get_height() * self.scaling_factor) + 2), ), "black", ) draw = ImageDraw.Draw(img, "L") pointlist = hwr_obj.get_pointlist() bb = hwr_obj.get_bounding_box() for stroke_nr in range(self.strokes): last_point = None # make sure that the current symbol actually has that many # strokes if stroke_nr < len(pointlist): for point_nr in range(self.points_per_stroke): if point_nr < len(pointlist[stroke_nr]): point = pointlist[stroke_nr][point_nr] x.append(pointlist[stroke_nr][point_nr]["x"]) x.append(pointlist[stroke_nr][point_nr]["y"]) if last_point is None: last_point = point y_from = int( (-bb["miny"] + last_point["y"]) * self.scaling_factor ) x_from = int( (-bb["minx"] + last_point["x"]) * self.scaling_factor ) y_to = int((-bb["miny"] + point["y"]) * self.scaling_factor) x_to = int((-bb["minx"] + point["x"]) * self.scaling_factor) draw.line([x_from, y_from, x_to, y_to], fill="#ffffff", width=1) if self.pixel_env > 0: pix = img.load() for x_offset in range(-self.pixel_env, self.pixel_env + 1): for y_offset in range( -self.pixel_env, self.pixel_env + 1 ): xp = ( int( (-bb["minx"] + point["x"]) * self.scaling_factor ) + x_offset ) yp = ( int( (-bb["miny"] + point["y"]) * self.scaling_factor ) + y_offset ) xp = max(0, xp) yp = max(0, yp) x.append(pix[xp, yp]) last_point = point else: x.append(self.fill_empty_with) x.append(self.fill_empty_with) if self.pixel_env > 0: for _ in range((1 + 2 * self.pixel_env) ** 2): x.append(self.fill_empty_with) else: for _ in range(self.points_per_stroke): x.append(self.fill_empty_with) x.append(self.fill_empty_with) if self.pixel_env > 0: for _ in range((1 + 2 * self.pixel_env) ** 2): x.append(self.fill_empty_with) del draw return x def _features_without_strokes(self, hwr_obj): """Calculate the ConstantPointCoordinates features for the case of a single (callapesed) stroke with pen_down features.""" x = [] for point in hwr_obj.get_pointlist()[0]: if len(x) >= 3 * self.points_per_stroke or ( len(x) >= 2 * self.points_per_stroke and not self.pen_down ): break x.append(point["x"]) x.append(point["y"]) if self.pen_down: if "pen_down" not in point: logger.error( "The " "ConstantPointCoordinates(strokes=0) " "feature should only be used after " "SpaceEvenly preprocessing step." ) else: x.append(int(point["pen_down"])) if self.pen_down: while len(x) != 3 * self.points_per_stroke: x.append(self.fill_empty_with) else: while len(x) != 2 * self.points_per_stroke: x.append(self.fill_empty_with) return x class FirstNPoints(Feature): """Similar to the ``ConstantPointCoordinates`` feature, this feature takes the first ``n=81`` point coordinates. It also has the ``fill_empty_with=0`` to make sure that the dimension of this feature is always the same.""" normalize = False def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 2 * self.n # Global features class Bitmap(Feature): """Get a fixed-size bitmap of the recording.""" normalize = True def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return self.size ** 2 class StrokeCount(Feature): """Stroke count as a 1 dimensional recording.""" normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class Ink(Feature): """Ink as a 1 dimensional feature. It gives a numeric value for the amount of ink this would eventually have consumed. """ normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class AspectRatio(Feature): """Aspect ratio of a recording as a 1 dimensional feature.""" normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class Width(Feature): """Width of a recording as a 1 dimensional feature. .. note:: This is the current width. So if the recording was scaled, this will not be the original width. """ normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class Height(Feature): """Height of a recording as a a 1 dimensional feature. .. note:: This is the current hight. So if the recording was scaled, this will not be the original height. """ normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class Time(Feature): """The time in milliseconds it took to create the recording. This is a 1 dimensional feature.""" normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 class CenterOfMass(Feature): """Center of mass of a recording as a 2 dimensional feature.""" normalize = True def get_dimension(self): # pylint: disable=R0201 """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 2 class StrokeCenter(Feature): """Get the stroke center of mass coordinates as a 2 dimensional feature.""" normalize = True def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return self.strokes * 2 class DouglasPeuckerPoints(Feature): """Get the number of points which are left after applying the Douglas Peucker line simplification algorithm. """ normalize = True def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return 1 def _stroke_simplification(self, pointlist): """The Douglas-Peucker line simplification takes a list of points as an argument. It tries to simplifiy this list by removing as many points as possible while still maintaining the overall shape of the stroke. It does so by taking the first and the last point, connecting them by a straight line and searchin for the point with the highest distance. If that distance is bigger than 'epsilon', the point is important and the algorithm continues recursively.""" # Find the point with the biggest distance dmax = 0 index = 0 for i in range(1, len(pointlist)): d = geometry.perpendicular_distance( pointlist[i], pointlist[0], pointlist[-1] ) if d > dmax: index = i dmax = d # If the maximum distance is bigger than the threshold 'epsilon', then # simplify the pointlist recursively if dmax >= self.epsilon: # Recursive call rec_results1 = self._stroke_simplification(pointlist[0:index]) rec_results2 = self._stroke_simplification(pointlist[index:]) result_list = rec_results1[:-1] + rec_results2 else: result_list = [pointlist[0], pointlist[-1]] return result_list class StrokeIntersections(Feature): """Count the number of intersections which strokes in the recording have with each other in form of a symmetrical matrix for the first ``stroke=4`` strokes. The feature dimension is :math:`round(\\frac{\\text{strokes}^2}{2} + \\frac{\\text{strokes}}{2})` because the symmetrical part is discarded. ======= ======= ======= ======= === - stroke1 stroke2 stroke3 ------- ------- ------- ------- --- stroke1 0 1 0 ... stroke2 1 2 0 ... stroke3 0 0 0 ... ... ... ... ... ... ======= ======= ======= ======= === Returns values of upper triangular matrix (including diagonal) from left to right, top to bottom. ..warning This method has an error. It should probably not be used. """ normalize = True def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return int(round(float(self.strokes ** 2) / 2 + float(self.strokes) / 2)) class ReCurvature(Feature): """Re-curvature is a 1 dimensional, stroke-global feature for a recording. It is the ratio :math:`\\frac{\\text{height}(s)}{\\text{length}(s)}`. If ``length(s) == 0``, then the re-curvature is defined to be 1. """ normalize = True def get_dimension(self): """Get the dimension of the returned feature. This equals the number of elements in the returned list of numbers.""" return self.strokes
[ 37811, 198, 38816, 22236, 16113, 13, 198, 198, 10871, 11862, 2499, 319, 262, 7157, 15266, 6601, 1398, 13, 1119, 423, 284, 307, 5625, 588, 198, 5661, 25, 198, 198, 33409, 1330, 289, 86, 17034, 13, 40890, 198, 33409, 422, 289, 86, 17034, 13, 4993, 15266, 62, 7890, 1330, 7157, 15266, 6601, 198, 33409, 1366, 62, 17752, 796, 705, 30109, 4895, 2435, 1298, 17031, 11, 366, 87, 1298, 4153, 11, 366, 88, 1298, 8275, 92, 11907, 6, 198, 33409, 257, 796, 7157, 15266, 6601, 7, 1831, 62, 7890, 62, 312, 28, 1959, 4310, 11, 8246, 62, 7890, 62, 17752, 28, 7890, 62, 17752, 8, 198, 33409, 3895, 62, 4868, 796, 685, 1273, 305, 365, 12332, 22784, 198, 986, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20217, 12727, 7222, 585, 17540, 7, 20661, 5209, 28, 19, 11, 198, 986, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 62, 525, 62, 30757, 28, 1238, 11, 198, 986, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6070, 62, 28920, 62, 4480, 28, 15, 15437, 198, 33409, 2124, 796, 257, 13, 30053, 62, 2302, 7861, 7, 30053, 62, 4868, 8, 198, 37811, 198, 198, 2, 7231, 10074, 13103, 198, 11748, 450, 66, 198, 11748, 18931, 198, 11748, 25064, 198, 6738, 340, 861, 10141, 1330, 17790, 62, 4480, 62, 35666, 5592, 355, 17790, 62, 18351, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 198, 198, 2, 10467, 2151, 13103, 198, 11748, 299, 32152, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 25302, 198, 198, 2, 10714, 13103, 198, 6738, 764, 1330, 22939, 11, 45916, 62, 7890, 11, 662, 36948, 11, 3384, 4487, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 4299, 651, 62, 40890, 7, 19849, 62, 11213, 62, 40890, 25, 7343, 58, 35, 713, 58, 2536, 11, 4377, 11907, 2599, 198, 220, 220, 220, 37227, 3855, 3033, 422, 257, 1351, 286, 48589, 3166, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 2746, 62, 11213, 62, 40890, 1058, 7343, 58, 35, 713, 58, 2536, 11, 4377, 11907, 628, 220, 220, 220, 21066, 198, 220, 220, 220, 24200, 198, 220, 220, 220, 13163, 300, 796, 685, 90, 6, 1273, 305, 365, 12332, 10354, 6045, 5512, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 3103, 18797, 12727, 7222, 585, 17540, 10354, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 90, 6, 20661, 5209, 10354, 604, 5512, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 13033, 62, 525, 62, 30757, 10354, 9773, 5512, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 20797, 62, 28920, 62, 4480, 10354, 657, 5512, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 3617, 62, 2902, 10354, 10352, 92, 60, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 198, 220, 220, 220, 13163, 651, 62, 40890, 7, 75, 8, 198, 220, 220, 220, 685, 1273, 305, 365, 12332, 11, 20217, 12727, 7222, 585, 17540, 198, 220, 220, 220, 220, 532, 29483, 25, 604, 198, 220, 220, 220, 220, 532, 2173, 583, 14000, 25, 9773, 198, 220, 220, 220, 220, 532, 6070, 6565, 351, 25, 657, 198, 220, 220, 220, 220, 532, 3112, 866, 3895, 25, 10352, 198, 220, 220, 220, 220, 532, 17465, 62, 24330, 25, 657, 198, 220, 220, 220, 2361, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 3384, 4487, 13, 1136, 62, 15252, 4868, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 11213, 62, 40890, 11, 4566, 62, 2539, 2625, 40890, 1600, 8265, 28, 17597, 13, 18170, 58, 834, 3672, 834, 60, 198, 220, 220, 220, 1267, 628, 198, 4299, 3601, 62, 30053, 4868, 7, 30053, 62, 4868, 25, 7343, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 262, 3895, 62, 4868, 287, 257, 1692, 12, 46155, 1296, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 3895, 62, 4868, 1058, 7343, 198, 220, 220, 220, 220, 220, 220, 220, 3895, 5563, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 5128, 62, 40890, 796, 2160, 7, 77, 13, 1136, 62, 46156, 3419, 329, 299, 287, 3895, 62, 4868, 8, 198, 220, 220, 220, 3601, 7203, 2235, 17571, 37633, 72, 16725, 4064, 5128, 62, 40890, 8, 198, 220, 220, 220, 3601, 7203, 15506, 63, 4943, 198, 220, 220, 220, 329, 11862, 287, 3895, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 9, 4064, 82, 1, 4064, 965, 7, 282, 42289, 4008, 198, 220, 220, 220, 3601, 7203, 15506, 63, 4943, 628, 198, 4871, 27018, 7, 4164, 330, 31172, 28, 39305, 13, 24694, 48526, 2599, 628, 220, 220, 220, 37227, 23839, 1398, 543, 15738, 543, 5050, 284, 3494, 329, 3033, 526, 15931, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 11593, 13345, 834, 7, 944, 11, 289, 18351, 62, 26801, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 3033, 1988, 329, 257, 1813, 8296, 7559, 71, 18351, 62, 26801, 15506, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 289, 18351, 62, 26801, 11, 45916, 62, 7890, 13, 12885, 15266, 6601, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 366, 4993, 15266, 1366, 318, 407, 286, 2099, 7157, 15266, 6601, 11, 475, 286, 4064, 81, 1, 4064, 2099, 7, 71, 18351, 62, 26801, 8, 628, 220, 220, 220, 2488, 39305, 13, 397, 8709, 24396, 198, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 262, 4129, 286, 262, 1351, 543, 11593, 13345, 834, 481, 1441, 526, 15931, 628, 198, 2, 5514, 3895, 17952, 6097, 1061, 198, 198, 2, 3887, 3895, 1398, 1276, 423, 257, 11593, 2536, 834, 11, 11593, 260, 1050, 834, 2163, 523, 326, 4049, 198, 2, 6218, 460, 1037, 345, 284, 1064, 290, 4259, 11316, 287, 3033, 13, 198, 2, 3887, 3895, 1398, 1276, 423, 257, 11593, 13345, 834, 2163, 543, 318, 973, 284, 651, 262, 198, 2, 3033, 1988, 7, 82, 8, 329, 257, 1813, 8296, 13, 198, 2, 3887, 3895, 1398, 1276, 423, 257, 651, 62, 46156, 2163, 523, 326, 262, 2472, 198, 2, 1271, 286, 3033, 460, 307, 10488, 290, 10667, 329, 15794, 13, 198, 2, 198, 2, 1635, 11593, 13345, 834, 1276, 1011, 3446, 530, 4578, 286, 2099, 7157, 15266, 6601, 198, 2, 1635, 11593, 13345, 834, 1276, 1441, 257, 1351, 286, 4129, 651, 62, 46156, 3419, 198, 2, 1635, 651, 62, 46156, 1276, 1441, 257, 3967, 1271, 198, 2, 1635, 423, 257, 705, 11265, 1096, 6, 11688, 326, 318, 2035, 6407, 393, 10352, 628, 198, 2, 10714, 3033, 628, 198, 4871, 20217, 12727, 7222, 585, 17540, 7, 38816, 2599, 628, 220, 220, 220, 37227, 12322, 262, 717, 7559, 13033, 62, 525, 62, 30757, 28, 1238, 15506, 2173, 22715, 286, 262, 717, 198, 220, 220, 220, 220, 220, 220, 7559, 20661, 5209, 28, 19, 15506, 29483, 355, 3033, 13, 770, 5983, 284, 198, 220, 220, 220, 220, 220, 220, 1058, 11018, 25, 63, 17, 26867, 10210, 313, 26867, 5239, 90, 13033, 62, 525, 62, 30757, 92, 26867, 10210, 313, 26867, 5239, 90, 20661, 5209, 92, 63, 198, 220, 220, 220, 220, 220, 220, 3033, 13, 628, 220, 220, 220, 220, 220, 220, 1002, 7559, 13033, 15506, 318, 900, 284, 657, 11, 262, 717, 7559, 13033, 62, 525, 62, 30757, 15506, 966, 198, 220, 220, 220, 220, 220, 220, 22715, 290, 262, 7559, 3617, 62, 2902, 15506, 3895, 318, 973, 13, 770, 5983, 284, 198, 220, 220, 220, 220, 220, 220, 1058, 11018, 25, 63, 18, 26867, 10210, 313, 26867, 5239, 90, 13033, 62, 525, 62, 30757, 92, 63, 3033, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 29483, 1058, 493, 198, 220, 220, 220, 2173, 62, 525, 62, 30757, 1058, 493, 198, 220, 220, 220, 6070, 62, 28920, 62, 4480, 1058, 12178, 198, 220, 220, 220, 3112, 62, 2902, 1058, 25131, 198, 220, 220, 220, 17465, 62, 24330, 1058, 493, 198, 220, 220, 220, 220, 220, 220, 220, 1374, 1263, 815, 262, 17465, 3975, 1088, 262, 1813, 966, 307, 30, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 10352, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 20661, 5209, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 32515, 62, 24330, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 17, 1343, 357, 16, 1343, 362, 1635, 2116, 13, 32515, 62, 24330, 8, 12429, 362, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 20661, 5209, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 2116, 13, 20661, 5209, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3617, 62, 2902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 513, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 628, 220, 220, 220, 825, 4808, 40890, 62, 4480, 62, 20661, 5209, 7, 944, 11, 289, 18351, 62, 26801, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 262, 20217, 12727, 7222, 585, 17540, 3033, 329, 262, 1339, 286, 198, 220, 220, 220, 220, 220, 220, 220, 257, 5969, 1271, 286, 29483, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 33705, 796, 7412, 13, 3605, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 43, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 71, 18351, 62, 26801, 13, 1136, 62, 10394, 3419, 1635, 2116, 13, 1416, 4272, 62, 31412, 8, 1343, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 600, 7, 71, 18351, 62, 26801, 13, 1136, 62, 17015, 3419, 1635, 2116, 13, 1416, 4272, 62, 31412, 8, 1343, 362, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 13424, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 3197, 796, 7412, 25302, 13, 25302, 7, 9600, 11, 366, 43, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 966, 4868, 796, 289, 18351, 62, 26801, 13, 1136, 62, 4122, 4868, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 275, 65, 796, 289, 18351, 62, 26801, 13, 1136, 62, 7784, 278, 62, 3524, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 329, 14000, 62, 48624, 287, 2837, 7, 944, 13, 20661, 5209, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4122, 796, 6045, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 787, 1654, 326, 262, 1459, 6194, 1682, 468, 326, 867, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 29483, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 14000, 62, 48624, 1279, 18896, 7, 4122, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 966, 62, 48624, 287, 2837, 7, 944, 13, 13033, 62, 525, 62, 30757, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 966, 62, 48624, 1279, 18896, 7, 4122, 4868, 58, 30757, 62, 48624, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 796, 966, 4868, 58, 30757, 62, 48624, 7131, 4122, 62, 48624, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 4122, 4868, 58, 30757, 62, 48624, 7131, 4122, 62, 48624, 7131, 1, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 4122, 4868, 58, 30757, 62, 48624, 7131, 4122, 62, 48624, 7131, 1, 88, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 938, 62, 4122, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4122, 796, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 6738, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13841, 11848, 14692, 1084, 88, 8973, 1343, 938, 62, 4122, 14692, 88, 8973, 8, 1635, 2116, 13, 1416, 4272, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 6738, 796, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13841, 11848, 14692, 1084, 87, 8973, 1343, 938, 62, 4122, 14692, 87, 8973, 8, 1635, 2116, 13, 1416, 4272, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 1462, 796, 493, 19510, 12, 11848, 14692, 1084, 88, 8973, 1343, 966, 14692, 88, 8973, 8, 1635, 2116, 13, 1416, 4272, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 1462, 796, 493, 19510, 12, 11848, 14692, 1084, 87, 8973, 1343, 966, 14692, 87, 8973, 8, 1635, 2116, 13, 1416, 4272, 62, 31412, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3197, 13, 1370, 26933, 87, 62, 6738, 11, 331, 62, 6738, 11, 2124, 62, 1462, 11, 331, 62, 1462, 4357, 6070, 25698, 12927, 487, 1600, 9647, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 32515, 62, 24330, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 844, 796, 33705, 13, 2220, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 2124, 62, 28968, 287, 2837, 32590, 944, 13, 32515, 62, 24330, 11, 2116, 13, 32515, 62, 24330, 1343, 352, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 331, 62, 28968, 287, 2837, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 944, 13, 32515, 62, 24330, 11, 2116, 13, 32515, 62, 24330, 1343, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36470, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13841, 11848, 14692, 1084, 87, 8973, 1343, 966, 14692, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 1416, 4272, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 2124, 62, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 79, 796, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 493, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13841, 11848, 14692, 1084, 88, 8973, 1343, 966, 14692, 88, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1635, 2116, 13, 1416, 4272, 62, 31412, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 331, 62, 28968, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 36470, 796, 3509, 7, 15, 11, 36470, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 79, 796, 3509, 7, 15, 11, 331, 79, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 79, 844, 58, 42372, 11, 331, 79, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 938, 62, 4122, 796, 966, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 32515, 62, 24330, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 19510, 16, 1343, 362, 1635, 2116, 13, 32515, 62, 24330, 8, 12429, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 7, 944, 13, 13033, 62, 525, 62, 30757, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 32515, 62, 24330, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 287, 2837, 19510, 16, 1343, 362, 1635, 2116, 13, 32515, 62, 24330, 8, 12429, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 3197, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628, 220, 220, 220, 825, 4808, 40890, 62, 19419, 62, 20661, 5209, 7, 944, 11, 289, 18351, 62, 26801, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 9771, 3129, 378, 262, 20217, 12727, 7222, 585, 17540, 3033, 329, 262, 1339, 286, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 357, 13345, 7916, 276, 8, 14000, 351, 3112, 62, 2902, 3033, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 329, 966, 287, 289, 18351, 62, 26801, 13, 1136, 62, 4122, 4868, 3419, 58, 15, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 87, 8, 18189, 513, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 393, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 18896, 7, 87, 8, 18189, 362, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 290, 407, 2116, 13, 3617, 62, 2902, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 4122, 14692, 87, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 4122, 14692, 88, 8973, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3617, 62, 2902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 366, 3617, 62, 2902, 1, 407, 287, 966, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 18224, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 464, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 3103, 18797, 12727, 7222, 585, 17540, 7, 20661, 5209, 28, 15, 8, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 30053, 815, 691, 307, 973, 706, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 14106, 6104, 306, 662, 36948, 2239, 526, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 600, 7, 4122, 14692, 3617, 62, 2902, 8973, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 3617, 62, 2902, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 18896, 7, 87, 8, 14512, 513, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 18896, 7, 87, 8, 14512, 362, 1635, 2116, 13, 13033, 62, 525, 62, 30757, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 13, 33295, 7, 944, 13, 20797, 62, 28920, 62, 4480, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2124, 628, 198, 4871, 3274, 45, 40710, 7, 38816, 2599, 628, 220, 220, 220, 37227, 18925, 284, 262, 7559, 3103, 18797, 12727, 7222, 585, 17540, 15506, 3895, 11, 428, 3895, 2753, 198, 220, 220, 220, 262, 717, 7559, 77, 28, 6659, 15506, 966, 22715, 13, 632, 635, 468, 262, 198, 220, 220, 220, 7559, 20797, 62, 28920, 62, 4480, 28, 15, 15506, 284, 787, 1654, 326, 262, 15793, 286, 428, 3895, 318, 198, 220, 220, 220, 1464, 262, 976, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 10352, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 1635, 2116, 13, 77, 628, 198, 2, 8060, 3033, 628, 198, 4871, 4722, 8899, 7, 38816, 2599, 628, 220, 220, 220, 37227, 3855, 257, 5969, 12, 7857, 1643, 8899, 286, 262, 8296, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 7857, 12429, 362, 628, 198, 4871, 30183, 365, 12332, 7, 38816, 2599, 628, 220, 220, 220, 37227, 1273, 305, 365, 954, 355, 257, 352, 38517, 8296, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 33068, 7, 38816, 2599, 628, 220, 220, 220, 37227, 818, 74, 355, 257, 352, 38517, 3895, 13, 632, 3607, 257, 35575, 1988, 329, 262, 2033, 198, 220, 220, 220, 286, 16882, 428, 561, 4191, 423, 13529, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 1081, 806, 29665, 952, 7, 38816, 2599, 628, 220, 220, 220, 37227, 1722, 806, 8064, 286, 257, 8296, 355, 257, 352, 38517, 3895, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 38807, 7, 38816, 2599, 628, 220, 220, 220, 37227, 30916, 286, 257, 8296, 355, 257, 352, 38517, 3895, 13, 628, 220, 220, 220, 11485, 3465, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 1459, 9647, 13, 1406, 611, 262, 8296, 373, 27464, 11, 428, 481, 198, 220, 220, 220, 220, 220, 220, 220, 407, 307, 262, 2656, 9647, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 27280, 7, 38816, 2599, 628, 220, 220, 220, 37227, 23106, 286, 257, 8296, 355, 257, 257, 352, 38517, 3895, 13, 628, 220, 220, 220, 11485, 3465, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 770, 318, 262, 1459, 289, 432, 13, 1406, 611, 262, 8296, 373, 27464, 11, 428, 481, 198, 220, 220, 220, 220, 220, 220, 220, 407, 307, 262, 2656, 6001, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 3862, 7, 38816, 2599, 628, 220, 220, 220, 37227, 464, 640, 287, 38694, 340, 1718, 284, 2251, 262, 8296, 13, 770, 318, 257, 352, 198, 220, 220, 220, 38517, 3895, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 198, 4871, 3337, 5189, 20273, 7, 38816, 2599, 628, 220, 220, 220, 37227, 23656, 286, 2347, 286, 257, 8296, 355, 257, 362, 38517, 3895, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 220, 1303, 279, 2645, 600, 25, 15560, 28, 49, 15, 1264, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 362, 628, 198, 4871, 30183, 365, 23656, 7, 38816, 2599, 628, 220, 220, 220, 37227, 3855, 262, 14000, 3641, 286, 2347, 22715, 355, 257, 362, 38517, 3895, 526, 15931, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 20661, 5209, 1635, 362, 628, 198, 4871, 15796, 6435, 12603, 40710, 7, 38816, 2599, 628, 220, 220, 220, 37227, 3855, 262, 1271, 286, 2173, 543, 389, 1364, 706, 11524, 262, 15796, 198, 220, 220, 220, 2631, 12603, 1627, 7106, 2649, 11862, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 352, 628, 220, 220, 220, 825, 4808, 30757, 62, 14323, 489, 2649, 7, 944, 11, 966, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 464, 15796, 12, 6435, 12603, 1627, 7106, 2649, 2753, 257, 1351, 286, 2173, 355, 281, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 13, 632, 8404, 284, 7106, 361, 7745, 428, 1351, 416, 10829, 355, 867, 2173, 198, 220, 220, 220, 220, 220, 220, 220, 355, 1744, 981, 991, 10941, 262, 4045, 5485, 286, 262, 14000, 13, 198, 220, 220, 220, 220, 220, 220, 220, 632, 857, 523, 416, 2263, 262, 717, 290, 262, 938, 966, 11, 14320, 606, 198, 220, 220, 220, 220, 220, 220, 220, 416, 257, 3892, 1627, 290, 2989, 259, 329, 262, 966, 351, 262, 4511, 198, 220, 220, 220, 220, 220, 220, 220, 5253, 13, 1002, 326, 5253, 318, 5749, 621, 705, 538, 18217, 261, 3256, 262, 966, 318, 198, 220, 220, 220, 220, 220, 220, 220, 1593, 290, 262, 11862, 4477, 664, 1834, 2280, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 9938, 262, 966, 351, 262, 4094, 5253, 198, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 16, 11, 18896, 7, 4122, 4868, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 796, 22939, 13, 525, 37038, 13174, 62, 30246, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 966, 4868, 58, 72, 4357, 966, 4868, 58, 15, 4357, 966, 4868, 58, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 288, 1875, 288, 9806, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6376, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 9806, 796, 288, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 1002, 262, 5415, 5253, 318, 5749, 621, 262, 11387, 705, 538, 18217, 261, 3256, 788, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 30276, 262, 966, 4868, 664, 1834, 2280, 198, 220, 220, 220, 220, 220, 220, 220, 611, 288, 9806, 18189, 2116, 13, 538, 18217, 261, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3311, 30753, 869, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 43420, 16, 796, 2116, 13557, 30757, 62, 14323, 489, 2649, 7, 4122, 4868, 58, 15, 25, 9630, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 664, 62, 43420, 17, 796, 2116, 13557, 30757, 62, 14323, 489, 2649, 7, 4122, 4868, 58, 9630, 25, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4868, 796, 664, 62, 43420, 16, 58, 21912, 16, 60, 1343, 664, 62, 43420, 17, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 62, 4868, 796, 685, 4122, 4868, 58, 15, 4357, 966, 4868, 58, 12, 16, 11907, 628, 220, 220, 220, 220, 220, 220, 220, 1441, 1255, 62, 4868, 628, 198, 4871, 30183, 365, 9492, 23946, 7, 38816, 2599, 198, 220, 220, 220, 37227, 12332, 262, 1271, 286, 42085, 543, 29483, 287, 262, 8296, 423, 198, 220, 220, 220, 220, 220, 220, 351, 1123, 584, 287, 1296, 286, 257, 23606, 34546, 17593, 329, 262, 717, 198, 220, 220, 220, 220, 220, 220, 7559, 30757, 28, 19, 15506, 29483, 13, 383, 3895, 15793, 318, 198, 220, 220, 220, 220, 220, 220, 1058, 11018, 25, 63, 744, 7, 6852, 31944, 90, 6852, 5239, 90, 20661, 5209, 92, 61, 17, 18477, 17, 92, 1343, 26867, 31944, 90, 6852, 5239, 90, 20661, 5209, 11709, 90, 17, 30072, 63, 198, 220, 220, 220, 220, 220, 220, 780, 262, 23606, 34546, 636, 318, 25148, 13, 628, 220, 220, 220, 29335, 855, 220, 220, 29335, 855, 29335, 855, 29335, 855, 24844, 198, 220, 220, 220, 220, 220, 532, 220, 220, 220, 220, 220, 220, 14000, 16, 14000, 17, 14000, 18, 198, 220, 220, 220, 35656, 220, 220, 35656, 35656, 35656, 11420, 198, 220, 220, 220, 14000, 16, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 352, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 14000, 17, 220, 220, 220, 220, 352, 220, 220, 220, 220, 220, 220, 220, 362, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 14000, 18, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 220, 657, 220, 220, 220, 220, 2644, 198, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 220, 220, 2644, 220, 220, 220, 2644, 220, 220, 2644, 198, 220, 220, 220, 29335, 855, 220, 220, 29335, 855, 29335, 855, 29335, 855, 24844, 628, 220, 220, 220, 16409, 3815, 286, 6727, 46963, 17593, 357, 8201, 40039, 8, 198, 220, 220, 220, 422, 1364, 284, 826, 11, 1353, 284, 4220, 13, 628, 220, 220, 220, 11485, 43917, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 468, 281, 4049, 13, 632, 815, 2192, 407, 307, 973, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 493, 7, 744, 7, 22468, 7, 944, 13, 20661, 5209, 12429, 362, 8, 1220, 362, 1343, 12178, 7, 944, 13, 20661, 5209, 8, 1220, 362, 4008, 628, 198, 4871, 797, 26628, 85, 1300, 7, 38816, 2599, 628, 220, 220, 220, 37227, 3041, 12, 22019, 85, 1300, 318, 257, 352, 38517, 11, 14000, 12, 20541, 3895, 329, 257, 8296, 13, 198, 220, 220, 220, 632, 318, 262, 8064, 198, 220, 220, 220, 1058, 11018, 25, 63, 6852, 31944, 90, 6852, 5239, 90, 17015, 92, 7, 82, 8, 18477, 6852, 5239, 90, 13664, 92, 7, 82, 38165, 44646, 198, 220, 220, 220, 1002, 7559, 13664, 7, 82, 8, 6624, 657, 15506, 11, 788, 262, 302, 12, 22019, 85, 1300, 318, 5447, 284, 307, 352, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 3487, 1096, 796, 6407, 628, 220, 220, 220, 825, 651, 62, 46156, 7, 944, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 3855, 262, 15793, 286, 262, 4504, 3895, 13, 770, 21767, 262, 1271, 198, 220, 220, 220, 220, 220, 220, 220, 286, 4847, 287, 262, 4504, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 2116, 13, 20661, 5209, 198 ]
2.228287
7,530
from rest_framework import permissions, viewsets, generics, filters from .serializers import JobsSerializer, HousingSerializer, ApplicantSerializer, HeatmapSerializer from .models import Jobs, Housing, Applicant, Heatmap from .data_collection.collect_data import CollectData from django.shortcuts import render debug = False if(debug): apa = CollectData()
[ 6738, 1334, 62, 30604, 1330, 21627, 11, 5009, 1039, 11, 1152, 873, 11, 16628, 198, 198, 6738, 764, 46911, 11341, 1330, 19161, 32634, 7509, 11, 16797, 32634, 7509, 11, 49217, 32634, 7509, 11, 12308, 8899, 32634, 7509, 198, 198, 6738, 764, 27530, 1330, 19161, 11, 16797, 11, 49217, 11, 12308, 8899, 198, 6738, 764, 7890, 62, 43681, 13, 33327, 62, 7890, 1330, 9745, 6601, 198, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 198, 24442, 796, 10352, 198, 198, 361, 7, 24442, 2599, 198, 220, 220, 220, 2471, 64, 796, 9745, 6601, 3419 ]
3.831579
95
from django.views.generic import DetailView from django.contrib.auth.mixins import LoginRequiredMixin, UserPassesTestMixin from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.urls import reverse_lazy from core.views import PaginatedListView from .models import Tag, Ingredient, Recipe from .forms.tag_forms import TagModelForm from .forms.ingredient_forms import IngredientModelForm from .forms.recipe_forms import RecipeModelForm ############## # Tag Mixins # ############## ############# # Tag Views # ############# ##################### # Ingredient Mixins # ##################### #################### # Ingredient Views # #################### ################# # Recipe Mixins # ################# ################ # Recipe Views # ################
[ 6738, 42625, 14208, 13, 33571, 13, 41357, 1330, 42585, 7680, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 19816, 1040, 1330, 23093, 37374, 35608, 259, 11, 11787, 47, 13978, 14402, 35608, 259, 198, 6738, 42625, 14208, 13, 33571, 13, 41357, 13, 19312, 1330, 13610, 7680, 11, 10133, 7680, 11, 23520, 7680, 198, 198, 6738, 42625, 14208, 13, 6371, 82, 1330, 9575, 62, 75, 12582, 198, 198, 6738, 4755, 13, 33571, 1330, 31525, 3898, 8053, 7680, 198, 6738, 764, 27530, 1330, 17467, 11, 17589, 445, 1153, 11, 26694, 198, 6738, 764, 23914, 13, 12985, 62, 23914, 1330, 17467, 17633, 8479, 198, 6738, 764, 23914, 13, 278, 445, 1153, 62, 23914, 1330, 17589, 445, 1153, 17633, 8479, 198, 6738, 764, 23914, 13, 29102, 431, 62, 23914, 1330, 26694, 17633, 8479, 198, 198, 7804, 4242, 2235, 198, 2, 17467, 15561, 1040, 1303, 198, 7804, 4242, 2235, 628, 198, 198, 7804, 4242, 2, 198, 2, 17467, 29978, 1303, 198, 7804, 4242, 2, 628, 628, 628, 198, 14468, 4242, 2, 198, 2, 17589, 445, 1153, 15561, 1040, 1303, 198, 14468, 4242, 2, 628, 198, 14468, 4242, 198, 2, 17589, 445, 1153, 29978, 1303, 198, 14468, 4242, 628, 628, 628, 198, 14468, 2, 198, 2, 26694, 15561, 1040, 1303, 198, 14468, 2, 628, 198, 14468, 198, 2, 26694, 29978, 1303, 198, 14468, 628, 628, 198 ]
3.669683
221
import unittest from libcet import cet
[ 11748, 555, 715, 395, 198, 198, 6738, 9195, 66, 316, 1330, 269, 316, 628 ]
2.928571
14
"""Companies app""" # Django from django.apps import AppConfig class CompaniesAppConfig(AppConfig): """Companies app config""" name = "paranuara.companies" verbose_name = 'Companies'
[ 37811, 49111, 598, 37811, 198, 198, 2, 37770, 198, 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 628, 198, 4871, 24382, 4677, 16934, 7, 4677, 16934, 2599, 198, 220, 220, 220, 37227, 49111, 598, 4566, 37811, 628, 220, 220, 220, 1438, 796, 366, 1845, 42357, 3301, 13, 34390, 444, 1, 198, 220, 220, 220, 15942, 577, 62, 3672, 796, 705, 49111, 6, 198 ]
3.15873
63
from quasargui import * layout = QInput( classes='q-ma-lg', label='Your city', children=[ Slot('prepend', [ QIcon('place') ]) ]) run(layout, title='slots example')
[ 6738, 627, 292, 853, 9019, 1330, 1635, 198, 198, 39786, 796, 1195, 20560, 7, 198, 220, 220, 220, 6097, 11639, 80, 12, 2611, 12, 75, 70, 3256, 198, 220, 220, 220, 6167, 11639, 7120, 1748, 3256, 198, 220, 220, 220, 1751, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 32026, 10786, 3866, 37038, 3256, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1195, 19578, 10786, 5372, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 33761, 198, 220, 220, 220, 33761, 198, 198, 5143, 7, 39786, 11, 3670, 11639, 6649, 1747, 1672, 11537, 198 ]
2.1
100
import io import pathlib from collections import namedtuple from typing import Any, Dict, List, Optional, Tuple, Iterator, Union from torchdata.datapipes.iter import IterDataPipe, Mapper, Zipper from torchvision.prototype import features from torchvision.prototype.datasets.utils import ( Dataset, OnlineResource, GDriveResource, ) from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, ) from torchvision.prototype.features import Label from .._api import register_dataset, register_info NAME = "pcam" _Resource = namedtuple("_Resource", ("file_name", "gdrive_id", "sha256")) @register_info(NAME) @register_dataset(NAME) class PCAM(Dataset): # TODO write proper docstring """PCAM Dataset homepage="https://github.com/basveeling/pcam" """ _RESOURCES = { "train": ( _Resource( # Images file_name="camelyonpatch_level_2_split_train_x.h5.gz", gdrive_id="1Ka0XfEMiwgCYPdTI-vv6eUElOBnKFKQ2", sha256="d619e741468a7ab35c7e4a75e6821b7e7e6c9411705d45708f2a0efc8960656c", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_train_y.h5.gz", gdrive_id="1269yhu3pZDP8UYFQs-NYs3FPwuK-nGSG", sha256="b74126d2c01b20d3661f9b46765d29cf4e4fba6faba29c8e0d09d406331ab75a", ), ), "test": ( _Resource( # Images file_name="camelyonpatch_level_2_split_test_x.h5.gz", gdrive_id="1qV65ZqZvWzuIVthK8eVDhIwrbnsJdbg_", sha256="79174c2201ad521602a5888be8f36ee10875f37403dd3f2086caf2182ef87245", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_test_y.h5.gz", gdrive_id="17BHrSrwWKjYsOgTMmoqrIjDy6Fa2o_gP", sha256="0a522005fccc8bbd04c5a117bfaf81d8da2676f03a29d7499f71d0a0bd6068ef", ), ), "val": ( _Resource( # Images file_name="camelyonpatch_level_2_split_valid_x.h5.gz", gdrive_id="1hgshYGWK8V-eGRy8LToWJJgDU_rXWVJ3", sha256="f82ee1670d027b4ec388048d9eabc2186b77c009655dae76d624c0ecb053ccb2", ), _Resource( # Targets file_name="camelyonpatch_level_2_split_valid_y.h5.gz", gdrive_id="1bH8ZRbhSVAhScTS0p9-ZzGnX91cHT3uO", sha256="ce1ae30f08feb468447971cfd0472e7becd0ad96d877c64120c72571439ae48c", ), ), }
[ 11748, 33245, 198, 11748, 3108, 8019, 198, 6738, 17268, 1330, 3706, 83, 29291, 198, 6738, 19720, 1330, 4377, 11, 360, 713, 11, 7343, 11, 32233, 11, 309, 29291, 11, 40806, 1352, 11, 4479, 198, 198, 6738, 28034, 7890, 13, 19608, 499, 18636, 13, 2676, 1330, 40806, 6601, 47, 3757, 11, 337, 11463, 11, 1168, 14710, 198, 6738, 28034, 10178, 13, 38124, 1330, 3033, 198, 6738, 28034, 10178, 13, 38124, 13, 19608, 292, 1039, 13, 26791, 1330, 357, 198, 220, 220, 220, 16092, 292, 316, 11, 198, 220, 220, 220, 7467, 26198, 11, 198, 220, 220, 220, 402, 24825, 26198, 11, 198, 8, 198, 6738, 28034, 10178, 13, 38124, 13, 19608, 292, 1039, 13, 26791, 13557, 32538, 1330, 357, 198, 220, 220, 220, 9254, 62, 1477, 13493, 11, 198, 220, 220, 220, 9254, 62, 1477, 1648, 1359, 11, 198, 8, 198, 6738, 28034, 10178, 13, 38124, 13, 40890, 1330, 36052, 198, 198, 6738, 11485, 62, 15042, 1330, 7881, 62, 19608, 292, 316, 11, 7881, 62, 10951, 628, 198, 20608, 796, 366, 14751, 321, 1, 628, 198, 198, 62, 26198, 796, 3706, 83, 29291, 7203, 62, 26198, 1600, 5855, 7753, 62, 3672, 1600, 366, 70, 19472, 62, 312, 1600, 366, 26270, 11645, 48774, 628, 198, 31, 30238, 62, 10951, 7, 20608, 8, 628, 198, 31, 30238, 62, 19608, 292, 316, 7, 20608, 8, 198, 4871, 4217, 2390, 7, 27354, 292, 316, 2599, 198, 220, 220, 220, 1303, 16926, 46, 3551, 1774, 2205, 8841, 198, 220, 220, 220, 37227, 5662, 2390, 16092, 292, 316, 628, 220, 220, 220, 34940, 2625, 5450, 1378, 12567, 13, 785, 14, 12093, 303, 10809, 14, 14751, 321, 1, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 4808, 19535, 2606, 7397, 1546, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 366, 27432, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 5382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 27432, 62, 87, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 16, 37281, 15, 55, 69, 3620, 14246, 70, 34, 48232, 67, 25621, 12, 25093, 21, 68, 8924, 75, 9864, 77, 42, 26236, 48, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 67, 21, 1129, 68, 4524, 1415, 3104, 64, 22, 397, 2327, 66, 22, 68, 19, 64, 2425, 68, 3104, 2481, 65, 22, 68, 22, 68, 21, 66, 5824, 1157, 34801, 67, 2231, 32583, 69, 17, 64, 15, 891, 66, 4531, 1899, 37466, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 31089, 1039, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 27432, 62, 88, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 1065, 3388, 88, 13415, 18, 79, 57, 6322, 23, 52, 56, 37, 48, 82, 12, 12805, 82, 18, 5837, 43812, 42, 12, 77, 14313, 38, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 65, 4524, 19420, 67, 17, 66, 486, 65, 1238, 67, 2623, 5333, 69, 24, 65, 24669, 2996, 67, 1959, 12993, 19, 68, 19, 69, 7012, 21, 69, 15498, 1959, 66, 23, 68, 15, 67, 2931, 67, 29703, 31697, 397, 2425, 64, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 366, 9288, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 5382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 9288, 62, 87, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 16, 80, 53, 2996, 57, 80, 57, 85, 54, 27624, 3824, 400, 42, 23, 68, 8898, 71, 40, 18351, 65, 5907, 41, 9945, 70, 62, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 3720, 22985, 66, 17, 1264, 324, 4309, 1433, 2999, 64, 3365, 3459, 1350, 23, 69, 2623, 1453, 15711, 2425, 69, 2718, 31552, 1860, 18, 69, 1238, 4521, 66, 1878, 17, 24294, 891, 5774, 22995, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 31089, 1039, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 9288, 62, 88, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 1558, 33, 39, 81, 50, 31653, 54, 42, 73, 56, 82, 46, 70, 15972, 5908, 80, 81, 40, 73, 35, 88, 21, 50110, 17, 78, 62, 70, 47, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 15, 64, 49542, 22544, 69, 535, 66, 23, 11848, 67, 3023, 66, 20, 64, 17657, 19881, 1878, 6659, 67, 23, 6814, 2075, 4304, 69, 3070, 64, 1959, 67, 4524, 2079, 69, 4869, 67, 15, 64, 15, 17457, 1899, 3104, 891, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 366, 2100, 1298, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 5382, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 12102, 62, 87, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 16, 71, 70, 1477, 56, 33191, 42, 23, 53, 12, 68, 10761, 88, 23, 43, 2514, 54, 32178, 70, 35, 52, 62, 81, 55, 54, 53, 41, 18, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 69, 6469, 1453, 1433, 2154, 67, 44698, 65, 19, 721, 2548, 1795, 2780, 67, 24, 68, 39305, 17, 25096, 65, 3324, 66, 405, 4846, 2816, 67, 3609, 4304, 67, 21, 1731, 66, 15, 721, 65, 2713, 18, 535, 65, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 26198, 7, 220, 1303, 31089, 1039, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 3672, 2625, 66, 480, 306, 261, 17147, 62, 5715, 62, 17, 62, 35312, 62, 12102, 62, 88, 13, 71, 20, 13, 34586, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 308, 19472, 62, 312, 2625, 16, 65, 39, 23, 57, 49, 34369, 50, 53, 10910, 3351, 4694, 15, 79, 24, 12, 57, 89, 38, 77, 55, 6420, 66, 6535, 18, 84, 46, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 427, 64, 11645, 2625, 344, 16, 3609, 1270, 69, 2919, 69, 1765, 38472, 2598, 3720, 4869, 12993, 67, 15, 37856, 68, 22, 9423, 67, 15, 324, 4846, 67, 42802, 66, 2414, 10232, 66, 22, 28676, 1415, 2670, 3609, 2780, 66, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1782, 198 ]
1.790132
1,439