Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import ceil, sqrt T = int(input()) answer = "" for t in range(T): n = int(input()) end = False add = [] lim = ceil(sqrt(n)) + 1 for a in range(2, lim): if n % a == 0: for b in range(a+1, lim): c = n / a / b if int(c) == c and c != b and c != a and c != 1: answer += "YES\n" c = int(n / a / b) answer += "{} {} {}\n".format(a, b, c) end = True break if end: break if not end: answer += "NO\n" print(answer)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt n = int(input()) for _ in range(n): a = 0 b = 0 k = int(input()) for i in range(2,int(sqrt(k))+1): if k%i == 0: a = i break if a > 0: temp = int(sqrt(k/a+1)) for i in range(a+1,temp+1): if (k/a) % i == 0: b = i break if a==0 or b==0: print("NO") elif(k/(a*b) > b): print("YES") print(a,b,int( k/(a*b) ) ) else: print("NO") #print(a,b,c,k)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def check(count,n): a = int(math.sqrt(n)) for i in range(count, a+1): if n % i == 0: return i return 0 for i in range(int(input())): n = int(input()) a,b,c = 0, 0 , 0 while(n != 0): if (check(2,n) == 0): c = n n = 0 break elif (check(2,n) != 0 ): a = check(2,n) b = check(a+1,n /a) if (b == 0): break c = n / (a*b) break if (c <= 1 or a <=1 or b <=1 or a == b or b == c or c == a ) : print("NO") continue print("YES") print(a,' ',b,' ',int(c))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(), cout.tie(NULL); int t; cin >> t; while (t--) { long long n, i, j, k, a = 1, b = 1, c = 1; cin >> n; bool ok = 1; for (i = 2; i * i <= n; i++) { if (n % i == 0) { a = i; break; } } j = n / a; for (i = 2; i * i <= j; i++) { if (j % i == 0) { if (i == a) continue; b = i; break; } } if (b == 1 || a == 1 || (j / b) == 1) ok = 0; c = n / (a * b); if (a == b || b == c || c == a) ok = 0; if (!ok) { cout << "NO" << endl; } else { cout << "YES" << endl; cout << a << ' ' << b << ' ' << c << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n = int(input()) d = {} x = int(math.sqrt(n)) ans = [] flag = 0 product = 1 for i in range(2,x+1): if n%i==0: product*=i if n%product==0: ans.append(i) else: product/=i flag = 1 if len(ans)==2: break if flag == 1 and len(ans)>=2: y = n//(ans[-1]*ans[-2]) if y in ans or n%y!=0: print("NO") else: print("YES") ans.append(y) for i in ans: print(i,end=" ") print() else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
d=dict() import math def primeFactors(n): c=0 while n % 2 == 0: c+=1 n = n // 2 if c!=0: d[2]=c for i in range(3, int(math.sqrt(n)) + 1, 2): c=0 while n % i == 0: c+=1 n = n // i if c!=0: d[i]=c if n > 2: if n in d: d[n]+=1 else: d[n]=1 I=input for _ in range(int(I())): d.clear() n=int(I()) primeFactors(n) # print(d) k=list(d.keys()) v=list(d.values()) if len(set(d))==1: if v[0]>=6: print('YES') a=k[0] b=k[0]**2 c=k[0]**(v[0]-3) print(a,b,c) else: print('NO') elif len(set(d))==2: if sum(v)>=4: print('YES') a=k[0] b=(k[0]**(v[0]-1))*(k[1]**(v[1]-1)) c=k[1] print(a,b,c) else: print('NO') else: a=k[0]**v[0] b=k[1]**v[1] c=1 for i in range(2,len(k)): c*=(k[i]**v[i]) print('YES') print(a,b,c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for j in range(int(input())): n=int(input()) flag = False for i in range(2,int(n**(1/3))+1): if n%i==0: z=n//i for k in range(i+1,int(z**0.5)+1): if z%k==0 and k*k!=z: flag=True print("YES") print(i,k,z//k) break if flag==True: break if flag==False: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) if t<=100: while t>0: l=list() n = int(input()) x = int(2) y = int(2) z = int(2) for i in range(2,round(n**0.5)+1): if n%i == 0 and not(i in l): n=n//i l.append(i) break for i in range(2, round(n ** 0.5)+1): if n%i == 0 and not (i in l): n = n // i l.append(i) break if not(n in l) and n>1 and len(l)==2: print('YES') print(l[0],l[1],n) else : print('NO') t -= 1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): a = [] while n % 2 == 0: a.append(2) n = n // 2 for i in range(3,int(math.sqrt(n))+1,2): while n % i== 0: a.append(i) n = n//i if n > 2: a.append(n) return a t = int(input()) for _ in range(t): n = int(input()) k = primeFactors(n) l = len(k) w = len(set(k)) if l>=6: p=1 print("YES") for i in range(3,l): p*=k[i] print(k[0],k[1]*k[2],p) elif l<=2: print("NO") elif l==3: if w==3: print("YES") print(k[0],k[1],k[2]) else: print("NO") else: if w==1: print("NO") else: print("YES") k.sort() if l==4: print(k[0],k[1]*k[2],k[3]) else: print(k[0],k[1]*k[2]*k[3],k[4])
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math from math import sqrt def primeFactors(n): a=[] # Print the number of two's that divide n while n % 2 == 0: a.append(2) n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3,int(math.sqrt(n))+1,2): # while i divides n , print i ad divide n while n % i== 0: a.append(i) n = n / i # Condition if n is a prime # number greater than 2 if n > 2: a.append(n) return a t=int(input()) for _ in range(t): n=int(input()) s=set([]) x=int(sqrt(n))+2 for i in range(2,x): if n%i==0: s.add(i) n=n//i break x=int(sqrt(n))+2 for i in range(2,x): if n%i==0 and i not in s: s.add(i) s.add(n//i) break a=list(s) if len(a)==3: print("YES") print(*a) else: print("NO") # a = primeFactors(n) # a.sort() # s=set([]) # if len(a)>3: # s.add(a[0]) # if a[0]==a[1]: # s.add(a[1]*a[2]) # k=1 # for i in range(3,len(a)): # k*=a[i] # if k in s: # s=set([]) # s.add(a[0]) # s.add(a[1]*a[-1]) # k=1 # for i in range(2,len(a)-1): # k*=a[i] # if k in s: # print("NO") # continue # else: # s.add(k) # a=list(s) # print("YES") # print(int(a[0]),int(a[1]),int(a[2])) # continue # else: # s.add(k) # a=list(s) # print("YES") # print(int(a[0]),int(a[1]),int(a[2])) # continue # else: # s.add(a[1]) # for i in range(2,len(a)): # k*=a[i] # if k in s: # print("NO") # continue # else: # s.add(k) # a=list(s) # print("YES") # print(int(a[0]),int(a[1]),int(a[2])) # continue # elif len(a)==3: # temp=list(set(a)) # if len(temp)==3: # print("YES") # print(int(a[0]),int(a[1]),int(a[2])) # else: # print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primefact(n): c = 0 l=[] while n % 2 == 0: c = c + 1 l.append(2) n = n / 2 for i in range(3, int(math.sqrt(n)) + 1, 2): while n % i == 0: c = c + 1 l.append(i) n = n / i if n > 2: l.append(int(n)) c = c + 1 return l t=int(input()) for i in range(t): temp=[] n=int(input()) temp=primefact(n) dic={} for j in temp: if j in dic: dic[j]=dic[j]+1 else: dic[j]=1 if len(dic)==1: for k in dic: if dic[k]>=6: print("YES") print(k*1,k*2,int(math.pow(k,(dic[k]-3)))) else: print("NO") elif len(dic)==2: k=list(dic.keys()) if dic[k[0]]>=2 and dic[k[1]]>=2: print("YES") print(k[0],int(math.pow(k[0],(dic[k[0]]-1))*math.pow(k[1],(dic[k[1]]-1))),k[1]) elif dic[k[0]]>=3: print("YES") print(k[0],int(math.pow(k[0],(dic[k[0]]-1))),k[1]) elif dic[k[1]] >= 3: print("YES") print(k[0],int(math.pow(k[1], (dic[k[1]] - 1))), k[1]) else: print("NO") elif len(dic)>=3: print("YES") k = list(dic.keys()) print(int(math.pow(k[0],(dic[k[0]]))),end=" ") print(int(math.pow(k[1],(dic[k[1]]))),end=" ") p = 1 for j in range(2, len(k)): p = p * math.pow(k[j], (dic[k[j]])) print(int(p)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) n2=n prime={} z=int((n**(1/2))) i=2 while(i<z+1): if n%i==0: prime[i]=prime.get(i,0)+1 n=n//i z=int((n**(1/2))) i=2 continue else: i+=1 else: prime[int(n)]=prime.get(int(n),0)+1 n=n2 if len(prime)>=2: output=[] c=0 for i in prime: if c>=2: break output.append(i) c+=1 product=output[0]*output[1] if n//product!=1 and n//product not in output: print("YES") print(output[0],output[1],n//product) else: print("NO") if len(prime)==1: for i in prime: if prime[i]>=6: print("YES") print(i,i**i,i**(prime[i]-3)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math from collections import Counter def primeFactors(n): ans = [] while n % 2 == 0: ans.append(2) n = n//2 for i in range(3,int(math.sqrt(n))+1,2): while n % i== 0: ans.append(i) n = n // i if n > 2: ans.append(n) return ans def prod(a): ans = 1 for i in a: ans*=i return ans for _ in range(int(input())): n = int(input()) a = primeFactors(n) if len(a)<3: print("NO") else: c = Counter(a) if len(set(a))<3: if len(c)==1: if c[a[0]]>=6: print("YES") print(a[0],a[0]*a[0],a[0]**(c[a[0]]-3)) else: print("NO") else: if len(a)>=4: print("YES") print(a[0],a[-1],prod(a[1:-1])) else: print("NO") else: w = list(set(a)) print("YES") print(w[0],w[1],prod(a)//(w[0]*w[1]))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
n=int(input()) for i in range (n): a=int(input()) A=[] for i in range (2, int(a**(0.5))): if a%i==0: A.append(i) a/=i break if (len(A) == 0): print("NO") continue else: for i in range (A[0] + 1, int(a**0.5)+1): if a %i==0: A.append(i) a/=i break if len(A)==2: if A[1]==a or A[0]==1: print("NO") else: print("YES") print(A[0], A[1], int(a)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# ------------------- fast io -------------------- import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # ------------------- fast io -------------------- import math import bisect primes=[2] for j in range(3,10**5,2): indy=min(bisect.bisect_left(primes,math.ceil(math.sqrt(j))),len(primes)-1) broke=False for s in range(indy+1): if j%primes[s]==0: broke=True break if broke==False: primes.append(j) minny=len(primes) testcases=int(input()) for j in range(testcases): #ok we will find its prime divisors n=int(input()) indy=min(bisect.bisect_left(primes,math.ceil(math.sqrt(n))),minny-1) facs=[] for s in range(indy+1): if n%primes[s]==0: facs.append(primes[s]) exi=True if len(facs)>=3: a,b,c=facs[0],facs[1],n//(facs[0]*facs[1]) elif len(facs)==2: a,b,c=facs[0],facs[1],n//(facs[0]*facs[1]) if c==0 or c==1 or c==a or c==b: exi=False elif len(facs)==1: a,b,c=facs[0],facs[0]**2,n//(facs[0]**3) if c==0 or c==1 or c==a or c==b: exi=False elif len(facs)==0: a,b,c=0,0,0 exi=False if a*b*c==n and exi==True: print("YES") print(str(a)+" "+str(b)+" "+str(c)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#import numpy as np #import pandas as pd #import os #import matplotlib #import seaborn as sns #import matplotlib.pyplot as plt #from tqdm import tqdm_notebook #%matplotlib inline #import cv2 as cv #import torch #print(torch.__version__) #torch.cuda.is_available() #torch.version.cuda def sqrt(p) : lo = 0.0 hi = 1000000000.0 for i in range(1, 64): mid = (lo + hi) / 2.0 if(mid * mid > p): hi = mid else: lo = mid return (lo); test = int(input()) def solve(): n = int(input()) dp = [] lmt = int(sqrt(n) + 1); for i in range(2, lmt): if n % i == 0: while n % i == 0: dp.append(i) n /= i if n != 1: dp.append(n) #for i in dp: # print(i) if len(dp) < 3: print("NO") return elif dp[0] == dp[len(dp) - 1]: dp[0] = (dp[0] * dp[1]) last = 0 for i in range(2, len(dp)): if i == len(dp) - 1: break if i == 2: last = dp[i] else: last = last * dp[i] if dp[0] == last or dp[len(dp) - 1] == last or last == 0: print("NO") else: print("YES") print(int(dp[0]), " ", int(dp[len(dp) - 1]), " ", int(last)) else: last = 0 for i in range(1, len(dp)): if i == len(dp) - 1: break if i == 1: last = dp[i] else: last = last * dp[i] if last == dp[0] or last == dp[len(dp) - 1] or last == 0: print("NO") else: print("YES") print(int(dp[0]), " " , int(last), " ", int(dp[len(dp) - 1])) while test > 0: solve() test -= 1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#----------------- # cook your dish here #############----------------- ######----- import math ########### ##### try: ####### def func1(t2,io):############# ###### ########## if len(io) >= 3 and len(t2) >= 3:###### ########## y = t2[1]###### ####### x = t2[0]#######3 ##### z = n//(x*y)######## ############ return [x,y,z]######### ###### elif len(io) >= 6 and len(t2) == 1:############33 ####### y = pow(t2[0], 2)## ###### x = t2[0]########## ######### ####### ###### ########## z = n // pow(x, 3)############ ############ return [x,y,z] elif len(io) >= 4 and len(t2) == 2:########## ##### y = t2[1]################## ###### x = t2[0]###### ###### z = n // (y*x)######### ########## return [x,y,z]####### else: ########## return "NO"#######3 def func2(l): ############ io = []########### ########### while l%2 == 0:######## ######## io.append(2)###### ######### l = l//2### ######## for p in range(3, int(math.sqrt(l)) + 1, 2):########## ############# while (l%p == 0):########### ########### io.append(p)########## ######## l = l//p ########## if l > 2:######### ###### io.append(l)######## return io######## ######### tyu = int(input())######## ######## for tyc in range(tyu):######### ########### n = int(input())##### ############# io = func2(n) t2 = list(set(io))######### ############## f = func1(t2,io)###### ############# if f=='NO':####### ##### print("NO")########## else: ########### print("YES")###3 print(*f)### ########### ####### ########## continue ####### ############ except: pass ########## ################ ##### ############# ##########################
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) def factor(n): arr = set({}) for i in range(2, int(n**0.5)+1): if n % i == 0: arr.add(i) arr.add(int(n/i)) return arr def find(n, arr): for a in arr: for b in arr: for c in arr: if (a != b) and (b != c) and (a != c) and a*b*c == n: print('YES') return str(a) + ' ' + str(b) + ' ' + str(c) return 'NO' for _ in range(t): n = int(input()) arr = factor(n) print(find(n, arr))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 100; int main() { long long t; cin >> t; while (t--) { long long n; cin >> n; vector<long long> v; for (long long i = 2; i * i <= n; i++) { if (v.size() == 2) { break; } else if (n % i == 0) { n = n / i; v.push_back(i); } } if (v.size() == 2 && n > 1 && v[0] != n && v[1] != n) v.push_back(n); if (v.size() == 3) cout << "YES" << endl << v[0] << " " << v[1] << " " << v[2] << endl; else cout << "NO" << endl; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.util.ArrayList; //import java.util.HashMap; import java.io.InputStreamReader; public class TEMP1 { static boolean isp(int n) { for(int i=2;i<=(int)Math.sqrt(n);i++) { if(n%i==0) return false; } return true; } public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); for(int i=0;i<t;i++) { int n=Integer.parseInt(br.readLine()); int copy=n; if(n<24) { System.out.println("NO"); continue; } String ans=""; int temp=(int)Math.sqrt(n); int cou=0,ls=0; int arr[]=new int[2]; for(int j=2;j<=temp;j++) { if(n%j==0) { ans=ans+(j+" "); n/=j; cou++; arr[ls]=j; ls++; if(cou==2) break; } } if(n==1||arr[0]==n||arr[1]==n||cou<2) System.out.println("NO"); else System.out.println("YES\n"+ans+n); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t = int(input()) for _ in range(t): n = int(input()) factors = [] i = 2 while i * i <= n: while n % i == 0: factors.append(i) n //= i i += 1 if n > 1: factors.append(n) # print(factors) if len(factors) < 3: print("NO") else: i = 0 a = factors[i] i += 1 b = factors[i] i += 1 while i < len(factors) and b == a: b *= factors[i] i += 1 if b != a: break if i == len(factors): print("NO") else: c = factors[i] i += 1 while i < len(factors): c *= factors[i] i += 1 if c != a and c != b: print("YES") print(a, b, c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import collections def findDistinctTree(n): queue = collections.deque() queue.append(2) i = 2 while True: if queue: i = queue.popleft() else: i += 1 if i >= n // i: print('NO') return if n % i != 0: continue m = n // i for j in range(i + 1, m): if n % j == 0: queue.append(j) if j >= m / j: break if m % j != 0: continue print('YES') print('{} {} {}'.format(i, j, m//j)) return print('NO') return if __name__ == '__main__': N = int(input()) cases = [] for _ in range(N): n = int(input()) cases.append(n) for case in cases: findDistinctTree(case)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math n=int(input()) for i in range(n): l=[] trigger=0 a=int(input()) d=0 original=a c=int(math.sqrt(a)) for j in range(2,c+1): if a%j==0: l.append(j) a=a//j trigger+=1 if trigger==2: if a<original and l[0]!=a and l[1]!=a and original%a==0: l.append(a) print("YES") print(*l,sep=" ") d+=1 break if d==0: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.lang.*; import java.io.*; public class Main { /* HashMap<> map=new HashMap<>(); TreeMap<> map=new TreeMap<>(); map.put(p,map.getOrDefault(p,0)+1); for(Map.Entry<> mx:map.entrySet()){ int v=mx.getValue(),k=mx.getKey(); }for (int i = 1; i <= 1000; i++) fac[i] = fac[i - 1] * i % mod; ArrayList<Pair<Character,Integer>> l=new ArrayList<>(); ArrayList<> l=new ArrayList<>(); HashSet<> has=new HashSet<>();*/ PrintWriter out; FastReader sc; long mod=(long)(1e9+7); int maxint= Integer.MAX_VALUE; int minint= Integer.MIN_VALUE; long maxlong=Long.MAX_VALUE; long minlong=Long.MIN_VALUE; public void sol(){ int testCase=ni(); while(testCase-->0){ int n=ni(); HashSet<Integer> h=new HashSet<>(); ArrayList<Integer> l=new ArrayList<>(); for(int i=2;i*i<=n;i++){ if(n%i==0){ l.add(i); h.add(i); n/=i; } }if(n>=2){ l.add(n); h.add(n); }if(h.size()>=3){ yes(); pr(l.get(0)+" "+l.get(1)+" "); int p=1; for(int i=2;i<l.size();i++){ p*=l.get(i); }pl(p); }else no(); } } public static void main(String[] args) { Main g=new Main(); g.out=new PrintWriter(System.out); g.sc=new FastReader(); g.sol(); g.out.flush(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public int ni(){ return sc.nextInt(); }public long nl(){ return sc.nextLong(); }public double nd(){ return sc.nextDouble(); }public char[] rl(){ return sc.nextLine().toCharArray(); }public String rl1(){ return sc.nextLine(); } public void pl(Object s){ out.println(s); }public void ex(){ out.println(); } public void pr(Object s){ out.print(s); }public String next(){ return sc.next(); }public long abs(long x){ return Math.abs(x); } public int abs(int x){ return Math.abs(x); } public double abs(double x){ return Math.abs(x); } public long pow(long x,long y){ return (long)Math.pow(x,y); } public int pow(int x,int y){ return (int)Math.pow(x,y); } public double pow(double x,double y){ return Math.pow(x,y); }public long min(long x,long y){ return (long)Math.min(x,y); } public int min(int x,int y){ return (int)Math.min(x,y); } public double min(double x,double y){ return Math.min(x,y); }public long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); }public long lcm(long a, long b) { return (a / gcd(a, b)) * b; } void sort1(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) { l.add(i); } Collections.sort(l,Collections.reverseOrder()); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } } void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }void sort1(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) { l.add(i); } Collections.sort(l,Collections.reverseOrder()); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } } void sort(double[] a) { ArrayList<Double> l = new ArrayList<>(); for (double i : a) { l.add(i); } Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } }int swap(int a,int b){ return a; }long swap(long a,long b){ return a; }double swap(double a,double b){ return a; } boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0); }boolean isPowerOfTwo (long x) { return x!=0 && ((x&(x-1)) == 0); }public long max(long x,long y){ return (long)Math.max(x,y); } public int max(int x,int y){ return (int)Math.max(x,y); } public double max(double x,double y){ return Math.max(x,y); }long sqrt(long x){ return (long)Math.sqrt(x); }int sqrt(int x){ return (int)Math.sqrt(x); }void input(int[] ar,int n){ for(int i=0;i<n;i++)ar[i]=ni(); }void input(long[] ar,int n){ for(int i=0;i<n;i++)ar[i]=nl(); }void fill(int[] ar,int k){ Arrays.fill(ar,k); }void yes(){ pl("YES"); }void no(){ pl("NO"); } int[] sieve(int n) { boolean prime[] = new boolean[n+1]; int[] k=new int[n+1]; for(int i=0;i<=n;i++) { prime[i] = true; k[i]=i; } for(int p = 2; p <=n; p++) { if(prime[p] == true) { // sieve[p]=p; for(int i = p*2; i <= n; i += p) { prime[i] = false; // sieve[i]=p; while(k[i]%(p*p)==0){ k[i]/=(p*p); } } } }return k; } int strSmall(int[] arr, int target) { int start = 0, end = arr.length-1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr[mid] >= target) { end = mid - 1; } else { ans = mid; start = mid + 1; } } return ans; } int strSmall(ArrayList<Integer> arr, int target) { int start = 0, end = arr.size()-1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr.get(mid) > target) { start = mid + 1; ans=start; } else { end = mid - 1; } } return ans; }long mMultiplication(long a,long b) { long res = 0; a %= mod; while (b > 0) { if ((b & 1) > 0) { res = (res + a) % mod; } a = (2 * a) % mod; b >>= 1; } return res; }long nCr(int n, int r, long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; }long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; }long modInverse(long n, long p) { return power(n, p - 2, p); } public static class Pair implements Comparable<Pair> { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } public String toString() { return x + "," + y; } public boolean equals(Object o) { if (o instanceof Pair) { Pair p = (Pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Double(x).hashCode() * 31 + new Double(y).hashCode(); } public int compareTo(Pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt for i in range(int(input())): n = int(input()) a , b , c = (None , None, None ) for i in range(2, int(sqrt(n)) + 2): if n % i == 0: a = i n = n// i; break; if ( a != None): for i in range(a+1, int(sqrt(n)) + 2): if n % i == 0: b = i n //= i break c = n if None in (a, b, c) or b == c or c < 2 or a == c: print("NO") else: print("YES") print(a, b, c)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#------------------------template--------------------------# import os import sys from math import * from collections import * from bisect import * from io import BytesIO, IOBase from fractions import * def vsInput(): sys.stdin = open('input.txt', 'r') sys.stdout = open('output.txt', 'w') BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") def value(): return tuple(map(int,input().split())) def array(): return [int(i) for i in input().split()] def Int(): return int(input()) def Str(): return input() def arrayS(): return [i for i in input().split()] #-------------------------code---------------------------# #vsInput() def factors(n): ans=[] while n % 2 == 0: ans.append(2) n = n // 2 for i in range(3,int(sqrt(n))+1,2): while n % i== 0: ans.append(i) n = n // i if n > 2: ans.append(n) return ans for _ in range(Int()): n=Int() f=factors(n) #print(f) if(len(f)<3): print("NO") continue a=f[0] b=f[1] i=2 while(i<len(f) and b==a): b*=f[i] i+=1 c=n//(a*b) if(c!=a and c!=b and a!=b and c>1): print("YES") print(a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): ans=[] while n % 2 == 0: ans.append(2) n = n / 2 for i in range(3,int(math.sqrt(n))+1,2): while n%i==0: ans.append(i) n = n / i if n > 2: ans.append(int(n)) return ans t=int(input()) for g in range(0,t): n=int(input()) a=primeFactors(n) a.sort() ans=1 i=1 x=y=z=0 x=a[0] if(len(a)==1): ans=0 if(ans==1): if(a[1]!=a[0]): y=a[1] z=int(n/(x*y)) else: if(len(a)>2): y=a[1]*a[2] z=int(n/(x*y)) else: ans=0 if(ans==1 and z!=1 and x!=y and y!=z and x!=z): print("YES") print(x,y,z) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) for i in range(t): n = int(input()) sq = int(math.sqrt(n)) l = [] f = 0 for j in range(2,sq): if n%j==0: n = n//j l.append(j) f = j if len(l) == 2: break elif j>n: break else: f = j if len(l) == 2: if n>j: l.append(n) print("YES") for x in l: print(x,end=" ") print() else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
''' بِسْمِ Ψ§Ω„Ω„ΩŽΩ‘Ω‡Ω Ψ§Ω„Ψ±ΩŽΩ‘Ψ­Ω’Ω…ΩŽΩ°Ω†Ω Ψ§Ω„Ψ±ΩŽΩ‘Ψ­ΩΩŠΩ…Ω ''' #codeforces gi = lambda : list(map(int,input().split())) t, = gi() for k in range(t): n, = gi() div = 1 sq = int(n ** .5) for j in range(2, sq + 1): if n % j == 0: div = j break x = n // div sq = int(x ** .5) div2 = 1 for j in range(2, sq + 1): if x % j == 0: if len({div, j, x // j}) == 3: div2 = j break; if div == 1 or div2 == 1: print("NO") else: print("YES") print(div, div2, x // div2)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def three_multiply(n): a, b, c = 0, 0, 0 for i in range(2, n // 2): if i * i > n: break if n % i == 0: a = i n = n // i break for i in range(a + 1, n // 2): if i * i > n: break if n % i == 0: b = i if n // i > b: c = n // i break if a and b and c: print("YES") print(a, b, c) else: print("NO") t = int(input()) X = [] x = [X.append(int(input())) for i in range(t)] for x in X: three_multiply(x)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; import java.io.*; public class Main { /** * * k = 1 * * 2^17+1 2^17 0 * 1 2^17+1 1 * * dp[2][2] = max( */ public static void main(String[] args) { FastReader sc = new FastReader(); int t = sc.nextInt(); outer: while (t-->0) { int n = sc.nextInt(); Set<Integer> set = new HashSet<>(); for (int i = 2; i*i<=n;i++) { if (n % i == 0) { set.add(i); n /= i; break; } } for (int i = 2; i*i <= n; i++) { if (n % i == 0 && !set.contains(i)) { n /= i; set.add(i); break; } } if (set.size() < 2 || set.contains(n)) { System.out.println("NO"); } else { System.out.println("YES"); for (int k : set) { System.out.print(k+ " "); } System.out.println(n); } } // 2 <= a * b * c = n // } private static int[] isPrime(int num) { for (int i = 2; i <= (int)Math.sqrt(num); i++) { if (num % i == 0) return new int[]{i, num/i}; } return null; } private static int sign(long num) { if (num < 0) return -1; return 1; } private static class Pair { int x; int y; public Pair(int x, int y) { this.x=x; this.y=y; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } /** * 7 3 * 3 1 5 * 9 6 5 * * i = 1: 1 * i = 2: 2 * i = 3: 3 * * * 1 2 3 3 3 3 3 */ /** * * 1+1 **/
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#------------------------------what is this I don't know....just makes my mess faster-------------------------------------- import os import sys from io import BytesIO, IOBase BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") #----------------------------------Real game starts here-------------------------------------- #_______________________________________________________________# def fact(x): if x == 0: return 1 else: return x * fact(x-1) def lower_bound(li, num): #return 0 if all are greater or equal to answer = -1 start = 0 end = len(li)-1 while(start <= end): middle = (end+start)//2 if li[middle] >= num: answer = middle end = middle - 1 else: start = middle + 1 return answer #index where x is not less than num def upper_bound(li, num): #return n-1 if all are small or equal answer = -1 start = 0 end = len(li)-1 while(start <= end): middle = (end+start)//2 if li[middle] <= num: answer = middle start = middle + 1 else: end = middle - 1 return answer #index where x is not greater than num def abs(x): return x if x >=0 else -x def binary_search(li, val, lb, ub): ans = 0 while(lb <= ub): mid = (lb+ub)//2 #print(mid, li[mid]) if li[mid] > val: ub = mid-1 elif val > li[mid]: lb = mid + 1 else: ans = 1 break return ans def sieve_of_eratosthenes(n): ans = [] arr = [1]*(n+1) arr[0],arr[1], i = 0, 0, 2 while(i*i <= n): if arr[i] == 1: j = i+i while(j <= n): arr[j] = 0 j += i i += 1 for k in range(n): if arr[k] == 1: ans.append(k) return ans def nc2(x): if x == 1: return 0 else: return x*(x-1)//2 #_______________________________________________________________# ''' β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„β–„ β–„β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–€β–€β–€β–€β–€β–€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–„ β–‘β–β–ˆβ–ˆβ–ˆβ–ˆβ–€β–’β–’Aestroixβ–’β–’β–€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–‘β–ˆβ–ˆβ–ˆβ–€β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–€β–ˆβ–ˆβ–ˆβ–ˆ β–‘β–β–ˆβ–ˆβ–’β–’β–’β–’β–’KARMANYAβ–’β–’β–’β–’β–’β–’β–ˆβ–ˆβ–ˆβ–ˆβ–Œ ________________ β–‘β–β–ˆβ–Œβ–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–ˆβ–ˆβ–ˆβ–ˆβ–Œ ? ? |β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’| β–‘β–‘β–ˆβ–’β–’β–„β–€β–€β–€β–€β–€β–„β–’β–’β–„β–€β–€β–€β–€β–€β–„β–’β–’β–β–ˆβ–ˆβ–ˆβ–Œ ? |___CM ONE DAY___| β–‘β–‘β–‘β–β–‘β–‘β–‘β–„β–„β–‘β–‘β–Œβ–β–‘β–‘β–‘β–„β–„β–‘β–‘β–Œβ–’β–β–ˆβ–ˆβ–ˆβ–Œ ? ? |β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’β–’| β–‘β–„β–€β–Œβ–‘β–‘β–‘β–€β–€β–‘β–‘β–Œβ–β–‘β–‘β–‘β–€β–€β–‘β–‘β–Œβ–’β–€β–’β–ˆβ–Œ ? ? β–‘β–Œβ–’β–€β–„β–‘β–‘β–‘β–‘β–„β–€β–’β–’β–€β–„β–‘β–‘β–‘β–„β–€β–’β–’β–„β–€β–’β–Œ ? β–‘β–€β–„β–β–’β–€β–€β–€β–€β–’β–’β–’β–’β–’β–’β–€β–€β–€β–’β–’β–’β–’β–’β–’β–ˆ ? ? β–‘β–‘β–‘β–€β–Œβ–’β–„β–ˆβ–ˆβ–„β–„β–„β–„β–ˆβ–ˆβ–ˆβ–ˆβ–„β–’β–’β–’β–’β–ˆβ–€ ? β–‘β–‘β–‘β–‘β–„β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ β–ˆβ–ˆβ–ˆβ–ˆ=========β–ˆβ–’β–’β–β–Œ β–‘β–‘β–‘β–€β–ˆβ–ˆβ–ˆβ–€β–€β–ˆβ–ˆβ–ˆβ–ˆβ–€β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–€β–’β–Œ β–‘β–‘β–‘β–‘β–‘β–Œβ–’β–’β–’β–„β–’β–’β–’β–„β–’β–’β–’β–’β–’β–’β– β–‘β–‘β–‘β–‘β–‘β–Œβ–’β–’β–’β–’β–€β–€β–€β–’β–’β–’β–’β–’β–’β–’β– β–‘β–‘β–‘β–‘β–‘β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ ''' from math import * def is_prime(n): for i in range(2,int(sqrt(n))+1): if n%i == 0: return 0 return 1 for _ in range(int(input())): n = int(input()) ans = set() for j in range(2): i = 2 while(i*i <= n): if n%i == 0 and not (i in ans) : ans.add(i) n //= i break i += 1 if len(ans) < 2 or n == 1 or n in ans: print("NO") else: print("YES") ans = list(ans) ans.append(n) print(*ans)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> #pragma warning(disable : 4996) #pragma warning(disable : 6031) int main() { int c; scanf("%d", &c); int ans[3]; while (c--) { memset(ans, 0, sizeof(ans)); int n, now = -1; scanf("%d", &n); for (int t = 2; t <= sqrt(n); t++) { if (n % t == 0) { now++; ans[now] = t; if (now == 1) { now++; ans[now] = n / ans[0] / ans[1]; if (ans[0] != ans[1] && ans[1] != ans[2] && ans[0] != ans[2] && n == ans[0] * ans[1] * ans[2]) break; else now = 0; } } } if (now == 2 && ans[0] != ans[1] && ans[1] != ans[2] && ans[0] != ans[2] && n == ans[0] * ans[1] * ans[2]) printf("YES\n%d %d %d\n", ans[0], ans[1], ans[2]); else printf("NO\n"); } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 21 18:49:02 2020 @author: dennis """ import atexit import io import sys import math _INPUT_LINES = sys.stdin.read().splitlines() input = iter(_INPUT_LINES).__next__ _OUTPUT_BUFFER = io.StringIO() sys.stdout = _OUTPUT_BUFFER @atexit.register def write(): sys.__stdout__.write(_OUTPUT_BUFFER.getvalue()) def find(n, x): for c in range(x, int(math.sqrt(n))+1): if n%c == 0: return c return 0 for _ in range(int(input())): n = int(input()) a = find(n, 2) if a: b = find(n//a, a+1) if b: c = n//(a*b) if (a and b and c) and (a != b != c != a) and (a*b*c == n): print('YES') print(a, b, c) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for we in range(int(input())): n = int(input()) c = 0 a = [] for i in range(2, int(n**0.5)+1): if n % i == 0: a.append(i) n = n//i if len(a) == 2: break if len(a) == 2 and n > a[1]: print('YES') print(a[0],a[1],n) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import ceil,sqrt def kFactors(n, k=3): a = [] for i in range(2, ceil(sqrt(n))): if(n%i==0): n = n / i a.append(i) if n > 2: a.append(n) a = list(set(a)) if len(a) < k: return [-1] return [a[0],a[1]] for i in range(int(input())): n = int(input()) a = kFactors(n) if(a[0]==-1): print('NO') else: print('YES') print(int(a[0]),int(a[1]),int(n//(a[0]*a[1])))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { long long int n, a, b, c; cin >> n; int flag = 0; for (long long int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { a = i; flag = 1; break; }; } if (flag == 0) { cout << "NO" << endl; continue; } n = n / a; for (long long int i = a + 1; i <= sqrt(n); i++) { if (n % i == 0) { b = i; flag = 0; break; } } if (flag == 1) { cout << "NO" << endl; continue; } n = n / b; if (n <= b) cout << "NO" << endl; else { cout << "YES" << endl; cout << a << " " << b << " " << n << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const int MAX = 1000005; const double PI = acos(-1.0); int SetBit(int n, int X) { return n | (1 << X); } int ClearBit(int n, int X) { return n & ~(1 << X); } int ToggleBit(int n, int X) { return n ^ (1 << X); } bool CheckBit(int n, int X) { return (bool)(n & (1 << X)); } void doTheTask(int n) { for (int i = 2; i * i <= n; i++) { if (n % i == 0) { int d = n / i; for (int j = i + 1; j * j < d; j++) { if (d % j == 0) { printf("YES\n%d %d %d\n", i, j, d / j); return; } } } } printf("NO\n"); } int main(void) { int tc, n, i, j, a, b, c; scanf("%d", &tc); while (tc--) { scanf("%d", &n); doTheTask(n); } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys from math import sqrt def solution(n): for i in range(2, int(sqrt(n))+1): if n % i == 0: a = i n_a = n // i for j in range(2, int(sqrt(n_a))+1): if n_a % j == 0 and j != a: ra, rb, rc = a, j, n // (a * j) if ra != rb and rb != rc and rc != ra: return f"YES\n{ra} {rb} {rc}" return "NO" for line in sys.stdin: t = int(line) break for line in sys.stdin: n = int(line) print(solution(n))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; public class Class2 { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringBuffer rs = new StringBuffer(); while (t-- > 0) { long n=Integer.parseInt(br.readLine()); ArrayList<Long> ar=new ArrayList<>(); for(long i=2l;i<=(long)Math.sqrt(n);i++){ if(n%i==0){ ar.add(i); ar.add(n/i); } } int fl=0; for(long i:ar){ for(long j:ar){ for(long k:ar){ if(i==j||i==k||j==k){ continue; } if(i*j*k==n){ rs.append("YES\n"); rs.append(i+" "+j+" "+k+"\n"); fl=1; break; } } if (fl==1){ break; } } if(fl==1){ break; } } if(fl==0){ rs.append("NO\n"); } } System.out.println(rs); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(input()): n = input() dic = {} x = 2 while x*x <= n: while n%x == 0: n /= x if x in dic: dic[x] += 1 else: dic[x] = 1 x += 1 if n > 1: dic[n] = 1 ans = [] #print dic if len(dic) >= 3: for i in dic: ans.append(pow(i, dic[i])) while len(ans) > 3: val = ans.pop() ans[-1] *= val print "YES" print ' '.join([str(x) for x in ans]) elif len(dic) == 2 and sum(dic.values()) <= 3: print "NO" elif len(dic) == 2: print "YES" vals = dic.keys() print vals[0], vals[1], pow(vals[0], dic[vals[0]]-1)*pow(vals[1], dic[vals[1]]-1) elif len(dic) == 1 and sum(dic.values()) >= 6: print "YES" vals = dic.keys() print pow(vals[0], 1), pow(vals[0], 2), pow(vals[0], dic[vals[0]]-3) else: print "NO"
PYTHON
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n, a = 1, b = 1, c = 1; set<int> s; cin >> n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { a = i; n /= a; s.insert(a); break; } } for (int i = a + 1; i * i <= n; i++) { if (n % i == 0) { b = i; n /= b; s.insert(b); break; } } if (s.size() < 2 || s.count(n) || n == 1) { cout << "NO" << endl; } else { cout << "YES" << endl; cout << a << " " << b << " " << n << endl; } } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
""" -----------------------------Pseudo--------------------------------- """ import copy import sys from collections import defaultdict, Counter #sys.setrecursionlimit(20000) #PI = 3.1415926535897932384626433832795 def input(): return sys.stdin.readline() def mapi(): return map(int,input().split()) def maps(): return map(str,input().split()) # def print(arg, *argv, end=None): sys.stdout.write(str(arg)) for i in argv: sys.stdout.write(" "+str(i)) sys.stdout.write(end) if end else sys.stdout.write("\n") # def GCD(x, y): return GCD(y,x%y) if y else x # def modPow(x, y, p): res,x = 1,x%p while(y>0): if(y&1)==1: res=(res*x)%p y,x = y>>1,(x*x)%p return res def modInv(s, mod): return modPow(s,mod-2,mod) #---------------------------------------------------------------# from math import * def solve(): t = 1 t = int(input()) while(t): t-=1 n = int(input()) a = 0 b = 0 flag = 0 for i in range(int(pow(n,1/3))+1, 1,-1): if n%i == 0: a = i #print(a) tmp = n//a for j in range(int(sqrt(tmp))+1, 1,-1): if (tmp)%j==0 and a!=j: b = j c = tmp//b if a!=c and b!=c: if c>=2: flag = 1 break if flag: print("YES") print(a,b,c) else: print("NO") #---------------------------------------------------------------# if __name__ == '__main__': solve()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t, a; cin >> t; while (t--) { cin >> a; int f1 = 0, f2 = 0, rs1, rs2, rs3; for (int i = 2; i < min(a, 100000); i++) { if (a % i == 0) { a = a / i; f1 = 1; rs1 = i; for (int j = i + 1; j < min(a, 100000); j++) { if (a % j == 0) { a = a / j; f2 = 1; rs2 = j; rs3 = a; break; } } break; } } if (f1 == 1 && f2 == 1) { if (rs1 < rs2 && rs2 < rs3 && rs1 < rs3) { cout << "YES" << endl; cout << rs1 << " " << rs2 << " " << rs3 << endl; } else { cout << "NO" << endl; } } else { cout << "NO" << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t = 0; cin >> t; while (t--) { int n = 0; int a = 0, b = 0, c = 0; cin >> n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { a = i; n /= i; break; } } for (int i = a + 1; i * i <= n; i++) { if (n % i == 0) { if (n / i != i && n / i != a && n / i >= 2) { b = i; c = n / i; } } } if (a >= 2 && b >= 2 && c >= 2) { cout << "YES" << "\n"; cout << a << " " << b << " " << c << "\n"; } else { cout << "NO" << "\n"; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class test { static int N = (int) 2e5 + 99; public static class pair implements Comparable<pair> { int x; int s; public pair(int x, int s) { this.x = x; this.s = s; } @Override public int compareTo(pair o) { return (this.s - o.s); } } public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int t = sc.nextInt(); StringBuilder st = new StringBuilder(); while (t-- > 0) { int n=sc.nextInt(); HashSet<Integer> hs=solve(n); if(hs.contains(1))hs.remove(1); if(hs.size()>=3) {System.out.println("YES"); for(Integer val: hs ) { System.out.print(val+" "); } System.out.println(); } else System.out.println("NO"); } System.out.println(st); } static HashSet<Integer> solve(int n) { HashSet<Integer> hs=new HashSet<>(); int i = 2, j = 0; int N=n; while (i <= Math.sqrt(n)) { if (hs.size()==2) break; if (N % i == 0) { hs.add(i); N = N/ i; } i++; } hs.add(N); return hs; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static int mod=(int)1e9+7; public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); int t=sc.nextInt(); while (t-->0){ int n=sc.nextInt(); HashMap<Integer,Integer> hm= fac(n); int[] arr1=new int[hm.size()]; int[] arr2=new int[hm.size()]; int count=0; for (int x:hm.keySet()){ arr1[count]=x; arr2[count]=hm.get(x); count++; } if (count>=3){ System.out.println("YES"); System.out.println(arr1[0]+" "+arr1[1]+" "+n/(arr1[0]*arr1[1])); }else if (count==2){ if (arr2[0]+arr2[1]>=4){ System.out.println("YES"); System.out.println(arr1[0]+" "+arr1[1]+" "+(n/(arr1[0]*arr1[1]))); }else System.out.println("NO"); }else{ if (arr2[0]>=6){ System.out.println("YES"); System.out.println(arr1[0]+" "+(arr1[0]*arr1[0])+" "+(n/(arr1[0]*arr1[0]*arr1[0]))); }else System.out.println("NO"); } } } static HashMap<Integer, Integer> fac(int x){ HashMap<Integer,Integer> map=new HashMap<>(); for (int i=2;i*i<=x;i++){ int cnt=0; boolean f=false; while (x%i==0){ f=true; x/=i; cnt++; } if (f)map.put(i,cnt); } if (x>1)map.put(x,map.getOrDefault(x,0)+1); return map; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt t = int(input()) for test in range(t): n = int(input()) k = int(sqrt(n)) a = 0 b = 0 c = 0 for j in range(2,k+1): if n %j == 0: n = n//j a = j break k = int(sqrt(n)) for j in range(2,k+1): if n %j == 0 and not(j==a) and not(a == n//j): n = n//j b = j break c = n if c > 1 and a> 0 and b > 0 and not(c==b): print('YES') print(a,b,c) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.ArrayList; import java.util.Scanner; public class ProductofThreeNumbers { public static ArrayList<Integer> factors; public static void main(String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); getFactors(n); //brute force boolean found = false; for (int i=0;i<factors.size()-2;i++) { for (int j=i+1;j<factors.size()-1;j++) { for (int k=j+1;k<factors.size();k++) { if ((factors.get(i) * factors.get(j) * factors.get(k)) == n) { //print the numbres System.out.println("YES"); System.out.println(factors.get(i) + " " + factors.get(j) + " " + factors.get(k)); found = true; i = factors.size(); j = factors.size(); k = factors.size(); break; } } } } if (!found) { System.out.println("NO"); } } in.close(); } public static void getFactors(int n) { factors = new ArrayList<>(); for (int i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) factors.add(i); } int size = factors.size() - 2; if (factors.size() == 0) { return; } if (factors.get(size + 1) * factors.get(size + 1) != n) { factors.add(n / factors.get(size + 1)); } for (int i=size;i>=0;i--) { factors.add(n / factors.get(i)); } } public static void printFactors() { for (int i=0;i<factors.size();i++) { System.out.print(factors.get(i) + " "); } System.out.println(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
""" Author: guiferviz Time: 2020-02-08 17:10:34 """ def prime_factors(n): factors = [] while n % 2 == 0: n //= 2 factors.append(2) for i in range(3, int(n**0.5 + 1), 2): while n % i == 0: n //= i factors.append(i) if n != 1: factors.append(n) return factors def solve(): n = int(input()) f = prime_factors(n) a, b, c = 1, 1, 1 for i in f: if a == 1: a = i elif b == 1 or a == b: b *= i else: c *= i sol = False if a * b * c == n and a != b and b != c and a != c and b > 1 and c > 1: sol = True if sol: print("YES") print(a, b, c) else: print("NO") def main(): t = int(input()) for _ in range(t): solve() if __name__ == "__main__": main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt for _ in range(int(input())): n=int(input()) a=[] s=int(sqrt(n)) for i in range(2,s+1): if n%i==0: a.append(i) n//=i if len(a)==2: if a[1]!=n and a[0]!=n: a.append(n) break if len(a)==3: print('YES') print(*a) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.*; import java.util.ArrayList; import java.util.HashSet; import java.util.StringTokenizer; // Ω†ΩˆΨ±Ψͺ Ψ§Ω„ΩƒΩˆΨ― يا ΩƒΨ¨ΩŠΨ± Ψ§Ψͺفآل // يا Ψ±Ψ¨ Accepted public class ProductOfThreeNumbers { static ArrayList<Integer> primes; public static void primeFactors(int n) { while (n % 2 == 0) { primes.add(2); n /= 2; } for (int i = 3; i <= Math.sqrt(n); i += 2) { while (n % i == 0) { primes.add(i); n /= i; } } if (n > 1) primes.add(n); } public static void main(String[] args) { FastReader in = new FastReader(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); int t = in.nextInt(); while (t-- > 0) { primes = new ArrayList<>(); int x = in.nextInt(); primeFactors(x); if (primes.size() < 3) out.println("NO"); else { HashSet<Integer> set = new HashSet<>(); int sum = 1, size = 0; for (Integer i : primes) { if (size < 3) if (!set.contains(i)) { set.add(i); size++; } else if (!set.contains(sum * i)) { set.add(sum * i); sum = 1; size++; } else sum *= i; else sum *= i; } if (sum != 1) for (Integer i : set) { if (!set.contains(i * sum)) { set.remove(i); set.add(i * sum); sum = 1; break; } } if (set.size() < 3 || sum != 1) out.println("NO"); if (set.size() == 3) { out.println("YES"); for (Integer i : set) { out.print(i + " "); } out.println(); } } } out.close(); } private static class FastReader { BufferedReader br; StringTokenizer st; FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math q=int(input()) for j in range(q): n=int(input()) d=[] flag=0 for i in range(2,int(math.sqrt(n))+1): if n%i==0: if len(d)==2: break else: d.append(i) n=int(n/i) if len(d)==1 or len(d)==0: flag=1 elif len(d)==2: if n>1: if n!=d[0] and n!=d[1]: print("YES") print(d[0],end=" ") print(d[1],end=" ") print(n) else: flag=1 # print("NO") else: flag=1 if flag==1: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# -*- coding: utf-8 -*- """ Created on Sat Jan 25 10:20:51 2020 @author: Anthony """ def abc(num): threshold=num**0.5 myDivisors=[] potentialDiv=2 current=num while(potentialDiv<=threshold and current!=1): if current//potentialDiv == current/potentialDiv: myDivisors.append(potentialDiv) current/=potentialDiv potentialDiv+=1 if len(myDivisors)>=2 and (current not in myDivisors): myDivisors.append(int(current)) return myDivisors if len(myDivisors)>=3 and current==1: return myDivisors else: return False repeat=int(input()) for i in range(0,repeat): temp=abc(int(input())) if temp: for i in range(0,len(temp)): for j in range(i+1,len(temp)): if (temp[i]*temp[j] not in temp) and len(temp)>3: temp[i]*=temp[j] temp[j]=1 safiye=[] for x in temp: if x!=1: safiye.append(x) if len(safiye)==3: print("YES") for x in safiye: print(x,end=" ") else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=nn=int(input()) l1=[]; i=2 while len(l1)<2 and i*i<=nn: if n%i==0: l1.append(i); n//=i i+=1 if len(l1)<2 or l1[1]==n or l1[0]==n: print("NO") else: print("YES"); print(l1[0],l1[1],n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for _ in range(int(input())): n=int(input()) def solve(n): ans=[] for i in range(2,int(n**0.5)+1): if n%i==0: ans.append(i) n/=i break if len(ans)==0: return [] for i in range(2,int(n**0.5)+1): if n%i==0 and i!=ans[0] and n/i!=ans[0] and i!=n/i: ans.append(i) ans.append(int(n/i)) break return ans ans=solve(n) if len(ans)!=3: print('NO') else: print('YES') print(' '.join(list(map(str,ans))))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def f(n): i = 2 v = [] while i <= int(n**(1/2)) + 1: if n % i == 0: v.append(i) n //= i if len(v) >= 2: if (n not in v) and (n != 1): return (v[0], v[1], n) else: return False i += 1 return False for _ in range(int(input())): v = f(int(input())) if v == False: print('NO') else: print('YES') print(*v)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using pii = pair<int, int>; using edge = tuple<int, int, int, int>; using graph = vector<vector<edge>>; void go() { ll n; cin >> n; ll a, b, c, m; for (a = 2; a * a <= n; a++) { if (n % a == 0) { m = n / a; for (b = 2; b * b <= m; b++) { if (m % b == 0) { c = m / b; if (a != b && a != c && b != c) { cout << "YES\n"; if (a < b && a < c) cout << a << " " << min(b, c) << " " << max(b, c) << "\n"; else if (b < a && b < c) cout << b << " " << min(a, c) << " " << max(a, c) << "\n"; else cout << c << " " << min(a, b) << " " << max(a, b) << "\n"; return; } } } } } cout << "NO\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); int t; cin >> t; while (t--) go(); }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys import math from collections import Counter from collections import OrderedDict from collections import defaultdict from functools import reduce sys.setrecursionlimit(10**6) def inputt(): return sys.stdin.readline().strip() def printt(n): sys.stdout.write(str(n)+'\n') def listt(): return [int(i) for i in inputt().split()] def gcd(a,b): return math.gcd(a,b) def lcm(a,b): return (a*b) // gcd(a,b) def factors(n): step = 2 if n%2 else 1 return set(reduce(list.__add__,([i, n//i] for i in range(1, int(math.sqrt(n))+1, step) if n % i == 0))) def comb(n,k): factn=math.factorial(n) factk=math.factorial(k) fact=math.factorial(n-k) ans=factn//(factk*fact) return ans def is_prime(n): if n <= 1: return False if n == 2: return True if n > 2 and n % 2 == 0: return False max_div = math.floor(math.sqrt(n)) for i in range(3, 1 + max_div, 2): if n % i == 0: return False return True def maxpower(n,x): B_max = int(math.log(n, x)) + 1#tells upto what power of x n is less than it like 1024->5^4 return B_max def sf(s,n): for i in range(s,int(math.sqrt(n)+1)): if n%i==0: n=n//i return i,n return 1,n t=int(inputt()) #t=1 for _ in range(t): a,b,c=1,1,1 n=int(inputt()) a,n=sf(2,n) b,n=sf(a+1,n) c=n #print(a,b,c) if a!=b and b!=c and c!=1 and a!=c and a!=1 and b!=1: print("YES") print(a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math num = int(input()) nums = [] for i in range(num): nums.append(int(input())) def isPrime(num): for i in range(2, int(math.sqrt(num)) + 1): if num % i == 0: return False return True def getDel(num, left): for i in range(left, int(math.sqrt(num)) + 1): if num % i == 0: return [i, num // i] return [-1] def thirdNum(f, s, num): if num != f and num != s: return num elif isPrime(num): return -1 else: for i in range(s + 1, num): if num % i == 0: return i return -1 for i in nums: if isPrime(i) == True: print("NO") else: f = getDel(i, 2) if f[0] > 0: s = getDel(f[1], f[0] + 1) if s[0] > 0: t = thirdNum(f[0], s[0], s[1]) if t > 0: print("YES") print(' '.join(map(str, [f[0],s[0],t]))) else: print("NO") else: print("NO") else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math,sys t = int(input()) answer = [] while t!=0: t-=1 n = int(input()) num = n if num in answer: print('NO') continue even = True if num%2==0 else False if even == True: arr = [1] counter = 1 else: arr = [2] counter = 2 while len(arr)!=3: i = arr[-1]+1 if i>n: break while n%i!=0 and i<int(pow(n,0.5)): i+=1 arr.append(i) n=n//i if n!=1 and len(arr)==3 and (n not in arr) and arr[1]*arr[2]*n == num: print('YES') arr.append(n) arr = map(str,arr[1:]) print(' '.join(arr)) else: if num not in answer: answer.append(num) print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for i in range(int(input())): n = int(input()) d = [] cnt = 2 a,b,c = 1,1,1 for i in range(2,int(n**0.5)+1): if n%i==0: a = i break x = n//a for i in range(2,int(x**0.5)+1): if x%i==0 and i!=a: b = i break c = n//(a*b) if a<b<c and a*b*c==n and min(a,b,c)>1: print("YEs\n",a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys t = int(sys.stdin.readline().rstrip()) for _ in range(t): n = int(sys.stdin.readline().rstrip()) i = 2 sol = [] while i<=n**(1/2): if n%i == 0: n = n//i sol.append(str(i)) i+=1 if len(sol) == 2: if str(n) not in sol and n != 1: sol.append(str(n)) break if len(sol) == 3: print('YES') print(' '.join(sol)) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; void parr(int arr[], int n, string name) { int i; for (i = 0; i < n; i++) cout << arr[i] << " "; cout << "\n"; } template <typename T> void p(T x, string name = " ") { cout << name << " : " << x << "\n"; } void fn(int n) { int a, b, c; int i, j, temp; bool found = false; for (i = 2; i * i <= n; i++) { temp = n; if (temp % i == 0) { a = i; temp = temp / a; for (j = 2; j * j <= temp; j++) { if (j != a && temp % j == 0) { b = j; c = n / (a * b); if (c != a && c != b && c != 1) { cout << "YES\n"; cout << a << " " << b << " " << c; found = true; break; } } } if (found) break; } } if (!found) cout << "NO"; } int main() { int t; cin >> t; while (t--) { int n; cin >> n; fn(n); cout << "\n"; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t = int(input()) while t > 0: n = int(input()) d = set() for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0 and not i in d: d.add(i) n /= i break for i in range(2, int(math.sqrt(n)) + 1): if n % i == 0 and not i in d: d.add(i) n /= i break if n == 1 or len(d) < 2 or n in d: print("NO") else: d.add(int(n)) print("YES") print("{} {} {}".format(*list(d))) t = t - 1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t=sc.nextInt(); int a[]=new int[3]; while(t-->0) { Arrays.fill(a,0); int cnt=0; int n=sc.nextInt(); for(int i=2;i<=Math.sqrt(n);i++) { if(n%i==0) { a[cnt++]=i; n/=i; if(cnt==2) {a[cnt]=n;break;} } } if(cnt==2&&a[2]>a[1]) { System.out.println("YES\n"+a[0]+" "+a[1]+" "+a[2]); } else System.out.println("NO"); } sc.close(); } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; long long t, n, z, x, c, s; int main() { cin >> t; while (t--) { cin >> n; long long f = 0; for (int i = 2; i * i <= n; i++) { for (int j = i + 1; j * j <= (n / i); j++) { z = i * j; x = n / z; s = i * j * x; if (s == n) { if (i != j && i != x && j != x) { f = 1; cout << "YES" << "\n"; cout << i << " " << j << " " << x << "\n"; break; } else continue; } } if (f == 1) break; } if (f == 0) cout << "NO" << "\n"; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
""" Template written to be used by Python Programmers. Use at your own risk!!!! Owned by adi0311(rating - 1989 at CodeChef and 1405 at CodeForces). """ import sys from bisect import bisect_left as bl, bisect_right as br, bisect # Binary Search alternative import math from timeit import default_timer as dt # To get the running time of a program from itertools import zip_longest as zl # zl(x, y) return [(x[0], y[0]), ...] from itertools import groupby as gb # gb(x, y) from itertools import combinations as comb # comb(x, y) return [all subsets of x with len == y] from itertools import combinations_with_replacement as cwr from collections import defaultdict as dd # defaultdict(<datatype>) Free of KeyError. from collections import deque as dq # deque(list) append(), appendleft(), pop(), popleft() - O(1) from collections import Counter as c # Counter(list) return a dict with {key: count} # sys.setrecursionlimit(2*pow(10, 6)) # sys.stdin = open("input.txt", "r") # sys.stdout = open("output.txt", "w") mod = pow(10, 9) + 7 mod2 = 998244353 # def data(): return sys.stdin.readline().strip() # def out(var): sys.stdout.write(var) def data(): return input() def l(): return list(sp()) def sl(): return list(ssp()) def sp(): return map(int, data().split()) def ssp(): return map(str, data().split()) def l1d(n, val=0): return [val for i in range(n)] def l2d(n, m, val=0): return [[val for i in range(n)] for j in range(m)] def factors(n): s = set() i = 2 while i <= math.sqrt(n): if n % i == 0: s.add(n//i) s.add(i) i += 1 return s for _ in range(int(data())): n = int(data()) ans = factors(n) if len(ans) < 3: print("NO") else: r = False for i in ans: for j in ans: if i != j: if n//(i*j) == n/(i*j) and n//(i*j) != 1 and n//(i*j) != i and n//(i*j) != j: print("YES") print(i, j, n//(i*j)) r = True break if r: break if not r: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int factor(int y, int z) { for (int i = z + 1; i * i <= y; i++) { if (y % i == 0) return i; } return 0; } int main() { int t; cin >> t; while (t > 0) { int n; cin >> n; int x = factor(n, 1); if (x >= 2) { int m = factor(n / x, x); if (m >= 2 && m != x) { int z = n / (x * m); if (z != x && z != m && z >= 2) { cout << "yes" << endl; cout << x << " " << m << " " << z << endl; } else cout << "no" << endl; } else cout << "no" << endl; } else cout << "no" << endl; t--; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def solve(x): factors = [] i = 2 while i*i < x: if x % i == 0: x //= i factors.append(i) if len(factors) == 2: break i += 1 factors.append(x) if len(factors) == 3: print("YES") print(f"{factors[0]} {factors[1]} {factors[2]}") else: print("NO") def main(): t = int(input()) for i in range(t): x = int(input()) solve(x) main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def solve(n): A=[] for i in range(2,int(math.sqrt(n))+1): if(n%i==0): A.append(i) break if(len(A)==0): print("NO") return n=n//A[0] for i in range(A[0]+1,int(math.sqrt(n))+1): if(n%i==0): A.append(i) A.append(int(n/(i))) break if(len(A)!=3): print("NO") return if(A[0]<A[1] and A[1]<A[2]): print("YES") print(A[0],A[1],A[2]) else: print("NO") t=int(input()) for _ in range(t): n=int(input()) solve(n)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import sys from collections import defaultdict import math def primeFactors(n): # Print the number of two's that divide n ans=[] while n % 2 == 0: ans.append(2) n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3, int(math.sqrt(n)) + 1, 2): # while i divides n , print i ad divide n while n % i == 0: ans.append(i) n = n / i # Condition if n is a prime # number greater than 2 if n > 2: ans.append(int(n)) return ans t = int(input()) for _ in range(t): n=int(input()) #n,k=map(int,input().split()) #b=list(map(int,input().split())) req=primeFactors(n) d=defaultdict(lambda:0) for j in req: d[j]+=1 l=sorted(list(set(req))) if len(l)>=3: print("YES") print(l[0], l[1], n//(l[0]*l[1])) elif len(l)==2: ans=[l[0],l[1],n//(l[0]*l[1])] if len(set(ans))==3 and min(ans)!=1: print("YES") print(l[0], l[1], n // (l[0] * l[1])) else: print("NO") else: if d[l[0]]<6: print("NO") else: print('YES') print(l[0], l[0]**2, n//(l[0]**3))
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math for _ in range(int(input())): n = int(input()) flag = False if n < 24: print('NO') elif n == 24: print('YES') print(2, 3, 4) else: for a in range(2, int(math.sqrt(n)) + 1): if n % a == 0: tn = int(n / a) for b in range(a + 1, int(math.sqrt(tn)) + 1): if tn % b == 0: c = int(tn / b) if c != b and a != c: print('YES') print(a, b, c) flag = True break if flag is True: break if flag is False: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) for k in range(t): x=int(input()) A=[] start=2 while((start**2)<x): if len(A)==2: break if x%start==0: x/=start A.append(start) start+=1 if len(A)==2: print("YES") print(int(A[0]),end=" ") print(int(A[1]),end=" ") print(int(x)) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math t=int(input()) while t>0: n=int(input()) flag=-1 for i in range(2,int(math.sqrt(n))+1): if n%i==0: for j in range(2,int(math.sqrt(n//i))+1): if (n//i)%j==0 and j!=i and (n//j)//i !=j and (n//j)//i !=i and (n//j)//i !=1: flag=1 print('YES') print(i,j,(n//i)//j) break if flag==1: break if flag==-1: print('NO') t-=1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.*; public class Main{ public static void main(String[]args){ Scanner sc=new Scanner(System.in); //System.out.println("Enter T: "); int T=sc.nextInt(); for(int t=0;t<T;t++){ int n=sc.nextInt(); solve(n); } } public static void solve(int n) { int n_copy=n; ArrayList<Integer>list=new ArrayList<>(); for(int i=2;i<=Math.sqrt(n);i++){ if(n_copy%i==0){ list.add(n/i); } } int a=0,b=0,c=0; boolean flag=false; String res="NO"; for(int i=0;i<list.size();i++){ int num=list.get(i); for(int j=2;j<=Math.sqrt(num);j++){ if(num%j==0){ int num2=num/j; int third=n/num; if(num2!=j&&num2!=third&&j!=third){ a=num2; b=j; c=n/num; res="YES"; flag=true; break; } } } if(flag==true){break;} } System.out.println(res); if(res.equals("YES")){ System.out.println(a+" "+b+" "+c); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int a = 0, b = 0, c = 0; for (int i = 2; i <= 1000 && i < n; i++) { if (n % i == 0) { int sum = n / i; for (int j = i + 1; j < 30000 && j < sum; j++) { if (sum % j == 0 && sum / j != i && sum / j != j) { a = j; b = sum / j; c = i; break; } } } if (a != 0) break; } if (a != 0) { System.out.println("YES"); System.out.println(a + " " + c + " " + b); } else System.out.println("NO"); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import functools import heapq as hp import collections import bisect import math def unpack(func=int): return map(func, input().split()) def l_unpack(func=int): """list unpack""" return list(map(func, input().split())) def s_unpack(func=int, rev=False): """sorted list unpack""" return sorted(map(func, input().split()), reverse=rev) def ml_unpack(n): # multiple line unpack """list of n integers passed on n line, one on each""" return [int(input()) for i in range(n)] def range_n(): return range(int(input())) def getint(): return int(input()) def counter(a): d = {} for x in a: if x in d: d[x] += 1 else: d[x] = 1 return d def main(): for _ in range_n(): n = getint() d = {} i = 2 while i * i <= n: if i>n: break if not n % i: d[i] = 0 while not n % i: n //= i d[i] += 1 if len(d) == 2: break i += 1 if n > 1: d[n] = 1 key = list(d) # print(d) if len(key) == 1 and d[key[0]] > 5: k = key[0] a, b, c = k, k ** 2, k ** (d[k] - 3) elif len(key) == 2: a, b = key if d[a] > 2: b = b ** d[b] c = a ** (d[a] - 1) elif d[b] > 2: a = a ** d[a] c = b ** (d[b] - 1) elif d[a] == d[b] == 2: c = a * b else: print('NO') continue elif len(key) == 3: a, b, c = key a, b, c = a ** d[a], b ** d[b], c ** d[c] else: print('NO') continue print('YES') print(a, b, c) main()
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) while (t>0): t=t-1 n=int(input()) c=[] i=2 while (len(c)<2 and i*i<n): if (n%i)==0: c.append(i) n=n//i i+=1 if (len(c)==2 and n not in c): print("YES") print(*c,n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
def f1(x,k): for i in range(int(math.sqrt(x)),1,-1): if (x%i==0): y=x//i if (i!=y) and (i!=k) and (y!=k): return i return 0 import math t=int(input()) for i in range(t): n=int(input()) if (n<24): print("NO") continue a=0 b=0 c=0 for j in range(int(pow(n,1/3)),1,-1): if (n%j==0): p=n//j z=f1(p,j) if (z!=0): a=j b=z c=p//z break if (a!=0): print("YES") print(a,b,c) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt, ceil def s(y, x=0): for i in range(2, ceil(sqrt(y))): n = y // i if y % i == 0 and i != x and n != x and i != n : return i, n else: return 0, 0 for i in range(int(input())): x, y = s(int(input())) y, z = s(y, x) if y == z: print('NO') else: print('YES') print(x, y, z)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.Scanner; public class ProductOfThreeNumbers{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- > 0){ long n = sc.nextLong(); long a = 1, b = 1, c = 1; for(long i = 2; i * i <= n; i++){ if(n % i == 0){ if(a == 1){ a = i; n /= i; }else if((n/i) != i && b == 1 && i != a){ b = i; break; } } } c = n/b; if(a != b && b != c && c != 1 && a != 1 && b != 1){ System.out.println("YES"); System.out.println(a + " " + b + " " + c); }else{ System.out.println("NO"); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int t; cin >> t; while (t--) { int n, a = 0, b = 0, c = 0, n1; cin >> n; for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { n1 = n / i; a = i; break; } } for (int i = a + 1; i <= sqrt(n1); i++) { if (n1 % i == 0) { b = i; break; } } if (a > 0 && b > 0) c = n / (a * b); if (c > 1 && c != a && c != b) cout << "YES" << endl << a << " " << b << " " << c << endl; else cout << "NO" << endl; } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
t=int(input()) for i in range(t): n=int(input()) l=[] i=2 while(len(l)<2 and i*i < n): if(n%i==0): n=n//i l.append(i) i+=1 if len(l)==2 and n not in l: print("YES") print(*l,n) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt n=int(input()) for i in range(n): t=int(input()) if t<24: print("NO") continue else: a,b=0,0 for j in range(2,int(sqrt(t))+1): if t%j==0: a=j t//=j break for j in range(2,int(sqrt(t))+1): if t%j==0 and j!=a: b=j t//=j break if a==0 or b==0 or t==b or t==a or t<2: print("NO") else: print("YES") print(a,b,t)
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author laxit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int test = in.nextInt(); while (test-- > 0) { int n = in.nextInt(); boolean flag = false; int k = 0, i = 0; int[] arr = new int[3]; for (i = 2; (i * i * i) <= n; i++) { if (n % i == 0) { arr[k++] = i; n = n / i; i++; break; } } for (; i * i <= n; i++) { if (n % i == 0) { arr[k++] = i; n = n / i; break; } } if (k == 2 && n > arr[1]) { arr[k] = n; flag = true; } if (flag) { out.println("YES"); out.println(arr[0] + " " + arr[1] + " " + arr[2]); } else out.println("NO"); } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math def primeFactors(n): # Print the number of two's that divide n l=[] while n % 2 == 0: l.append(2) n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3,int(math.sqrt(n))+1,2): # while i divides n , print i ad divide n while n % i== 0: l.append(i) n = n / i if n > 2: l.append(n) return l t=int(input()) while t: n=int(input()) l=[] l=primeFactors(n) n1=len(l) a,b,c=0,0,0 a=l[0] x=list(set(l)) n2=len(x) if n1>=5: if l[0]!=l[1]: b=l[1] r=2 else: b=l[1]*l[2] r=3 c=1 for i in range(r,n1): c=c*l[i] if n1==3 and n2==3: b=l[1] c=l[2] if n1==4: if l[0]!=l[1]: b=l[1] c=l[2]*l[3] else: b=l[1]*l[2] c=l[3] a=int(a) b=int(b) c=int(c) if a!=b and b!=c and c!=a: print("YES") print(a,b,c) else: print("NO") t-=1
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
# https://codeforces.com/contest/1294/problem/C import math for _ in range(int(input())): n = int(input()) l = [] i = 2 x = int(math.sqrt(n)) while i < (x + 1) and len(l)<2: if n%i == 0: n /= i x = int(math.sqrt(n)) l.append(i) i += 1 l.append(int(n)) if len(set(l)) == 3: print('YES') print(*l) else: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while (t--) { int n, i = 2, a = 0, b = 0, c = 0, k = 0; cin >> n; for (; i <= sqrt(n); i++) if (n % i == 0) break; n /= i; a = i++; for (; i <= sqrt(n); i++) if (n % i == 0) { k = 1; break; } if (k) b = i, c = n / i; if (a != b && b != c && (c != a) && (a >= 2) && (b >= 2) && (c >= 2)) { cout << "YES\n"; cout << a << " " << b << " " << c << endl; } else cout << "NO\n"; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int x; int t; cin >> t; for (int k = 0; k < t; k++) { cin >> x; int a = 0, b = 0, c = 0; for (int i = 2; i < sqrt(x); i++) { if (x % i == 0) { for (int j = i + 1; j < sqrt(x / i); j++) { if ((x / i) % j == 0 && x / i / j > 2) { a = i; b = j; c = x / i / j; } } } } if (a == 0) { cout << "No" << endl; } else { cout << "Yes" << endl; cout << a << " " << b << " " << c << endl; } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import time s=time.time() primes=[] poss=[True for i in range(40000)] for i in range(2,40000): if(poss[i]): primes.append(i) for j in range(i,40000,i): poss[j]=False # print(primes) # print(time.time()-s) def find(n): # n=int(input()) primedivisor=[] for i in primes: if(i>n): break if(n%i==0): primedivisor.append(i) if(len(primedivisor)==0): # print("NO") return -1 elif(len(primedivisor)==1): temp=1 ans=-1 while(n%temp==0): temp*=primedivisor[0] ans+=1 if(ans<3): # print("NO") return -1 elif(ans<6): if(primedivisor[0]**ans !=n): return[1,primedivisor[0],primedivisor[0]**2] else: return -1 else: # print("YES") return [primedivisor[0]**(ans-3),primedivisor[0],primedivisor[0]**2] elif(len(primedivisor)==2): temp=1 ans=-1 while(n%temp==0): temp*=primedivisor[0] ans+=1 temp=1 ans2=-1 while(n%temp==0): temp*=primedivisor[1] ans2+=1 # print(ans,ans2) if(ans>2): # print("YES") return [primedivisor[1]**ans2,primedivisor[0],primedivisor[0]**(ans-1)] elif(ans2>2): # print("YES") return [primedivisor[0]**ans,primedivisor[1],primedivisor[1]**(ans2-1)] elif(ans==2): if(ans2==1): # print("NO") if(primedivisor[0]**2)*primedivisor[1]!=n : return[1,primedivisor[0],primedivisor[1]] return -1 else: # print("YES") return [primedivisor[1]*primedivisor[0],primedivisor[0],primedivisor[1]] elif(ans2==2): if(ans==1): # print("NO") if(primedivisor[1]**2)*primedivisor[0]!=n : return[1,primedivisor[0],primedivisor[1]] return -1 else: # print("YES") return [primedivisor[1]*primedivisor[0],primedivisor[0],primedivisor[1]] elif(ans==1 and ans2==1): if(primedivisor[1]*primedivisor[0]!=n): return[1,primedivisor[0],primedivisor[1]] return-1 else: # print("YES") ap=[] temp=1 while(n%temp==0): temp*=primedivisor[0] # print(temp//primedivisor[0],end=" ") ap.append(temp//primedivisor[0]) temp=1 while(n%temp==0): temp*=primedivisor[1] # print(temp//primedivisor[1],end=" ") ap.append(temp//primedivisor[1]) temp=1 for j in range(2,len(primedivisor)): while(n%temp==0): temp*=primedivisor[j] temp=temp//primedivisor[j] # print(temp,end=" ") ap.append(temp) return ap t=int(input()) for _ in range(t): n=int(input()) x=find(n) # print(x) if(x!=-1): temp=x[0]*x[1]*x[2] if(temp!=n): x[0]*=n//temp print("YES") print(*x) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
for t in range(int(input())): n = int(input()) try: a = list(i for i in range(2, int(n**.5)+1) if n%i == 0)[0] n //= a b = list(i for i in range(a+1, int(n**.5)+1) if n%i == 0)[0] c = n // b if c <= b: raise print('YES') print(a, b, n//b) except: print('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import java.util.Scanner; public class ProductofThreeNumbers { public static int findDiv(int last, int n){ for(int i=last+1; i<Math.sqrt(n) ;i++){ if(n%i==0) return i; } return -1; } public static void main(String[] args) { Scanner s = new Scanner(System.in); int t = s.nextInt(); while (t-- > 0) { int n = s.nextInt(); int a=findDiv(1, n); int b=findDiv(a, n/a); int c=n/(a*b); if(a<0 || b<0 || a==c || b==c) System.out.println("NO"); else{ System.out.println("YES"); System.out.print(a+ " "+ b+ " "+c); System.out.println(); } } } }
JAVA
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; int main() { int t; scanf("%d", &t); while (t--) { int n; scanf("%d", &n); int a = -1, b = -1, c = -1; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { a = i; break; } } if (a == -1) printf("NO\n"); else { int x = n / a; for (int i = 2; i * i <= x; i++) { if (x % i == 0) { if (a != x / i && a != i && x / i != i) { b = i; c = x / i; break; } } } if (b == -1 || c == -1) printf("NO\n"); else { printf("YES\n"); printf("%d %d %d\n", a, b, c); } } } return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; set<int> v; void solve() { int n; cin >> n; int nn = n; v.clear(); for (int i = 2; i * i <= n; i++) if (n % i == 0) { v.insert(i); n /= i; } if (n > 1) v.insert(n); if (v.size() <= 2) { cout << "NO" << endl; return; } cout << "YES" << endl; int s1 = *v.begin(); v.erase(v.begin()); int s2 = *v.begin(); v.erase(v.begin()); cout << s1 << ' ' << s2 << ' ' << nn / (s1 * s2) << endl; } int main() { int t; cin >> t; while (t--) solve(); return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; using namespace std; void solve() { int n; cin >> n; int arr[3]; for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { arr[0] = i; n /= i; break; } } bool good1 = false; for (int j = 2; j <= sqrt(n); j++) { if (n % j == 0) { if (j != n && j != arr[0]) { arr[1] = j; n /= j; good1 = true; break; } } } if (n != arr[0] && n != arr[1] && n != 1 && good1) cout << "YES\n" << arr[0] << " " << arr[1] << " " << n << "\n"; else cout << "NO\n"; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cout << fixed; int t; cin >> t; while (t--) solve(); return 0; }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { for (; b; a %= b, swap(a, b)) ; return a; } vector<long long> pr; int main() { ios::sync_with_stdio(0); cin.tie(0), cout.tie(0); pr.push_back(2); for (long long i = 3; i * i <= 1000000000; i++) { bool flag = false; for (int j = 0; j < pr.size() && pr[j] * pr[j] <= i; j++) { if (i % pr[j] == 0) { flag = true; break; } } if (!flag) pr.push_back(i); } int t; cin >> t; while (t--) { map<long long, int> mp; long long n; cin >> n; for (int i = 0; i < pr.size(); i++) { while (n % pr[i] == 0) { n /= pr[i]; mp[pr[i]]++; } } if (n != 1) mp[n]++; if (mp.size() >= 3) { cout << "YES\n"; long long tmp = 1; int cnt = 0; for (auto &it : mp) { if (cnt < 3) tmp = 1; for (int i = 0; i < it.second; i++) tmp *= it.first; if (cnt < 2) { cout << tmp << ' '; } cnt++; } cout << tmp << ' '; cout << '\n'; } else if (mp.size() == 2) { int twoCnt = 0; bool flag = false; for (auto &it : mp) { if (it.second >= 3) flag = true; else if (it.second == 2) twoCnt++; } if (!flag) { if (twoCnt == 2) { cout << "YES\n"; long long f1 = (*mp.begin()).first; long long f2 = (*++mp.begin()).first; cout << f1 << ' ' << f2 << ' ' << f1 * f2 << '\n'; } else cout << "NO\n"; continue; } cout << "YES\n"; bool hasPrinted = false; for (auto &it : mp) { if (it.second >= 3 && !hasPrinted) { cout << it.first << ' '; long long tmp = 1; for (int i = 0; i < it.second - 1; i++) tmp *= it.first; cout << tmp << ' '; hasPrinted = true; } else { long long tmp = 1; for (int i = 0; i < it.second; i++) tmp *= it.first; cout << tmp << ' '; } } cout << '\n'; } else if (mp.size() == 1) { auto it = *mp.begin(); if (it.second < 6) { cout << "NO\n"; continue; } cout << "YES\n"; long long num = it.first; cout << num << ' ' << num * num << ' '; long long tmp = 1; for (int i = 0; i < it.second - 3; i++) tmp *= it.first; cout << tmp << '\n'; } else cout << "NO\n"; } }
CPP
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
from math import sqrt n=int(input()) for i in range(n): m=int(input()) m1=m c=2 p=[] while len(p)<3 and c<=sqrt(m1): if m%c==0: m=m//c p.append(c) else: c=c+1 if len(p)==3: if p[0]==p[1]: p[1]=p[1]*p[2] p[2]=m1//p[0]//p[1] if len(p)==2: p.append(m1//p[0]//p[1]) if len(p)==3 and p[2]>1 and p[0]!=p[2] and p[1]!=p[2] and p[0]!=p[1]: print ('YES') print (*p) else: print ('NO')
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
import math # N, M = map(int, input().split()) # A = list(map(int, input().split())) T = int(input()) def primeFactors(n): c = 1 for i in range(2,int(math.sqrt(n))+1,1): while n % i== 0: c = c*i if c not in L and c > 1 and len(L) < 2: L.append(c) c = 1 n = n // i # Condition if n is a prime # number greater than 2 if n > 2: c *= n if c > 1 and c not in L: L.append(c) for t in range(T): N = int(input()) L = [] primeFactors(N) if len(L) == 3: print("YES") # print(L) print(L[0], L[1], L[2]) else: print("NO")
PYTHON3
1294_C. Product of Three Numbers
You are given one integer number n. Find three distinct integers a, b, c such that 2 ≀ a, b, c and a β‹… b β‹… c = n or say that it is impossible to do it. If there are several answers, you can print any. You have to answer t independent test cases. Input The first line of the input contains one integer t (1 ≀ t ≀ 100) β€” the number of test cases. The next n lines describe test cases. The i-th test case is given on a new line as one integer n (2 ≀ n ≀ 10^9). Output For each test case, print the answer on it. Print "NO" if it is impossible to represent n as a β‹… b β‹… c for some distinct integers a, b, c such that 2 ≀ a, b, c. Otherwise, print "YES" and any possible such representation. Example Input 5 64 32 97 2 12345 Output YES 2 4 8 NO NO NO YES 3 5 823
2
9
// import java.util.Vector; import java.util.*; import java.lang.Math; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import javax.management.Query; import java.io.*; import java.util.Arrays; import java.math.BigInteger; public class Main { static int mod = 1000000007; /* ======================DSU===================== */ static class dsu { static int parent[], n;// min[],value[]; static long size[]; dsu(int n) { parent = new int[n + 1]; size = new long[n + 1]; // min=new int[n+1]; // value=new int[n+1]; this.n = n; makeSet(); } static void makeSet() { for (int i = 1; i <= n; i++) { parent[i] = i; size[i] = 1; // min[i]=i; } } static int find(int a) { if (parent[a] == a) return a; else { return parent[a] = find(parent[a]);// Path Compression } } static void union(int a, int b) { int setA = find(a); int setB = find(b); if (setA == setB) return; if (size[setA] >= size[setB]) { parent[setB] = setA; size[setA] += size[setB]; } else { parent[setA] = setB; size[setB] += size[setA]; } } } /* ======================================================== */ static class Pair implements Comparator<Pair> { long x; long y; // Constructor public Pair(long x, long y) { this.x = x; this.y = y; } public Pair() { } @Override public int compare(Main.Pair o1, Main.Pair o2) { // if (o1.y < o2.y) // return -1; // if (o1.y > o2.y) // return 1; // if (o1.y == o2.y) { // if (o1.x <= o2.x) { // return -1; // } else { // return 1; // } // } // return 0; return ((int) (o1.x - o2.x)); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] intArr(int n) { int res[] = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } long[] longArr(int n) { long res[] = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static FastReader f = new FastReader(); static BufferedWriter w = new BufferedWriter(new OutputStreamWriter(System.out)); static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int LowerBound(int a[], int x) { // x is the target value or key int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// x is the key or target value int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long power(long x, long y) { long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int power(int x, int y) { int res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y >>= 1; x = (x * x); } return res; } static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } /* * ===========Modular Operations================== */ static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modAdd(long a, long b) { return (a % mod + b % mod) % mod; } static long modMul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long nCrModPFermat(int n, int r) { long p = 1000000007; if (r == 0) return 1; long[] fac = new long[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } /* * =============================================== */ static List<Character> removeDup(ArrayList<Character> list) { List<Character> newList = list.stream().distinct().collect(Collectors.toList()); return newList; } static void ruffleSort(long[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); int temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } /* * ===========Dynamic prog Recur Section=========== */ static int DP[][]; static ArrayList<ArrayList<Integer>> g; static int count = 0; static ArrayList<Long> bitMask(ArrayList<Long> ar, int n) { ArrayList<Long> ans = new ArrayList<>(); for (int mask = 0; mask <= Math.pow(2, n) - 1; mask++) { long sum = 0; for (int i = 0; i < n; i++) { if (((1 << i) & mask) > 0) { sum += ar.get(i); } } ans.add(sum); } return ans; } static long calNum(long year) { return (year / (long) 4) - (year / (long) 100) + (year / (long) 400); } /* * ====================================Main================================= */ static String reverse(String n) { String s = ""; for (int i = n.length() - 1; i >= 0; i--) { if (n.charAt(i) == '2') { s += "5"; } else if (n.charAt(i) == '5') { s += "2"; } else { s += n.charAt(i); } } return s; } static boolean check(int n) { int a = n % 10; int b = n / 10; if ((a == 0 || a == 1 || a == 2 || a == 5 || a == 8) && ((b == 0 || b == 1 || b == 2 || b == 5 || b == 8))) { return true; } return false; } public static void main(String args[]) throws Exception { // File file = new File("D:\\VS Code\\Java\\Output.txt"); // FileWriter fw = new FileWriter("D:\\VS Code\\Java\\Output.txt"); Random rand = new Random(); int t = 1; t = f.nextInt(); while (t-- != 0) { int n=f.nextInt(); int n1=n; int a=0,b=0,c=0; for(a=2;a<=Math.sqrt(n);a++){ if(n%a==0){ break; } } n/=a; for(b=a+1;b<Math.sqrt(n);b++){ if(n%b==0){ break; } } n/=b; if(n!=a && n!=b && n!=1 && n!=0 && a*b*n==n1){ w.write("YES\n"+a+" "+b+" "+n); }else{ w.write("NO"); } w.write("\n"); } w.flush(); } }
JAVA